/* * Double-precision e^x function. * * Copyright (c) 2018-2024, Arm Limited. * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception */ #ifndef PL_MATH_EXP_INLINE_H #define PL_MATH_EXP_INLINE_H #include #include #include #include "math_config.h" #define N (1 << EXP_TABLE_BITS) #define InvLn2N __exp_data.invln2N #define NegLn2hiN __exp_data.negln2hiN #define NegLn2loN __exp_data.negln2loN #define Shift __exp_data.shift #define T __exp_data.tab #define C2 __exp_data.poly[5 - EXP_POLY_ORDER] #define C3 __exp_data.poly[6 - EXP_POLY_ORDER] #define C4 __exp_data.poly[7 - EXP_POLY_ORDER] #define C5 __exp_data.poly[8 - EXP_POLY_ORDER] #define C6 __exp_data.poly[9 - EXP_POLY_ORDER] /* Handle cases that may overflow or underflow when computing the result that is scale*(1+TMP) without intermediate rounding. The bit representation of scale is in SBITS, however it has a computed exponent that may have overflown into the sign bit so that needs to be adjusted before using it as a double. (int32_t)KI is the k used in the argument reduction and exponent adjustment of scale, positive k here means the result may overflow and negative k means the result may underflow. */ static inline double exp_inline_special_case (double_t tmp, uint64_t sbits, uint64_t ki) { double_t scale, y; if ((ki & 0x80000000) == 0) { /* k > 0, the exponent of scale might have overflowed by <= 460. */ sbits -= 1009ull << 52; scale = asdouble (sbits); y = 0x1p1009 * (scale + scale * tmp); return check_oflow (eval_as_double (y)); } /* k < 0, need special care in the subnormal range. */ sbits += 1022ull << 52; scale = asdouble (sbits); y = scale + scale * tmp; if (y < 1.0) { /* Round y to the right precision before scaling it into the subnormal range to avoid double rounding that can cause 0.5+E/2 ulp error where E is the worst-case ulp error outside the subnormal range. So this is only useful if the goal is better than 1 ulp worst-case error. */ double_t hi, lo; lo = scale - y + scale * tmp; hi = 1.0 + y; lo = 1.0 - hi + y + lo; y = eval_as_double (hi + lo) - 1.0; /* Avoid -0.0 with downward rounding. */ if (WANT_ROUNDING && y == 0.0) y = 0.0; /* The underflow exception needs to be signaled explicitly. */ force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022); } y = 0x1p-1022 * y; return check_uflow (eval_as_double (y)); } /* Top 12 bits of a double (sign and exponent bits). */ static inline uint32_t top12 (double x) { return asuint64 (x) >> 52; } /* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. If hastail is 0 then xtail is assumed to be 0 too. */ static inline double exp_inline (double x, double xtail) { uint32_t abstop; uint64_t ki, idx, top, sbits; /* double_t for better performance on targets with FLT_EVAL_METHOD==2. */ double_t kd, z, r, r2, scale, tail, tmp; abstop = top12 (x) & 0x7ff; if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54))) { if (abstop - top12 (0x1p-54) >= 0x80000000) /* Avoid spurious underflow for tiny x. */ /* Note: 0 is common input. */ return WANT_ROUNDING ? 1.0 + x : 1.0; if (abstop >= top12 (1024.0)) { if (asuint64 (x) == asuint64 (-INFINITY)) return 0.0; if (abstop >= top12 (INFINITY)) return 1.0 + x; if (asuint64 (x) >> 63) return __math_uflow (0); else return __math_oflow (0); } /* Large x is special cased below. */ abstop = 0; } /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */ /* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */ z = InvLn2N * x; #if TOINT_INTRINSICS kd = roundtoint (z); ki = converttoint (z); #elif EXP_USE_TOINT_NARROW /* z - kd is in [-0.5-2^-16, 0.5] in all rounding modes. */ kd = eval_as_double (z + Shift); ki = asuint64 (kd) >> 16; kd = (double_t) (int32_t) ki; #else /* z - kd is in [-1, 1] in non-nearest rounding modes. */ kd = eval_as_double (z + Shift); ki = asuint64 (kd); kd -= Shift; #endif r = x + kd * NegLn2hiN + kd * NegLn2loN; /* The code assumes 2^-200 < |xtail| < 2^-8/N. */ if (!__builtin_constant_p (xtail) || xtail != 0.0) r += xtail; /* 2^(k/N) ~= scale * (1 + tail). */ idx = 2 * (ki % N); top = ki << (52 - EXP_TABLE_BITS); tail = asdouble (T[idx]); /* This is only a valid scale when -1023*N < k < 1024*N. */ sbits = T[idx + 1] + top; /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */ /* Evaluation is optimized assuming superscalar pipelined execution. */ r2 = r * r; /* Without fma the worst case error is 0.25/N ulp larger. */ /* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */ #if EXP_POLY_ORDER == 4 tmp = tail + r + r2 * C2 + r * r2 * (C3 + r * C4); #elif EXP_POLY_ORDER == 5 tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5); #elif EXP_POLY_ORDER == 6 tmp = tail + r + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6); #endif if (unlikely (abstop == 0)) return exp_inline_special_case (tmp, sbits, ki); scale = asdouble (sbits); /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there is no spurious underflow here even without fma. */ return eval_as_double (scale + scale * tmp); } #endif