xref: /linux/fs/namei.c (revision 2bfe3e0da6e619dbf6157dfad896307ab6b9a58a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
initname(struct filename * name,const char __user * uptr)128 static inline void initname(struct filename *name, const char __user *uptr)
129 {
130 	name->uptr = uptr;
131 	name->aname = NULL;
132 	atomic_set(&name->refcnt, 1);
133 }
134 
135 struct filename *
getname_flags(const char __user * filename,int flags)136 getname_flags(const char __user *filename, int flags)
137 {
138 	struct filename *result;
139 	char *kname;
140 	int len;
141 
142 	result = audit_reusename(filename);
143 	if (result)
144 		return result;
145 
146 	result = __getname();
147 	if (unlikely(!result))
148 		return ERR_PTR(-ENOMEM);
149 
150 	/*
151 	 * First, try to embed the struct filename inside the names_cache
152 	 * allocation
153 	 */
154 	kname = (char *)result->iname;
155 	result->name = kname;
156 
157 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 	/*
159 	 * Handle both empty path and copy failure in one go.
160 	 */
161 	if (unlikely(len <= 0)) {
162 		if (unlikely(len < 0)) {
163 			__putname(result);
164 			return ERR_PTR(len);
165 		}
166 
167 		/* The empty path is special. */
168 		if (!(flags & LOOKUP_EMPTY)) {
169 			__putname(result);
170 			return ERR_PTR(-ENOENT);
171 		}
172 	}
173 
174 	/*
175 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 	 * separate struct filename so we can dedicate the entire
177 	 * names_cache allocation for the pathname, and re-do the copy from
178 	 * userland.
179 	 */
180 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 		const size_t size = offsetof(struct filename, iname[1]);
182 		kname = (char *)result;
183 
184 		/*
185 		 * size is chosen that way we to guarantee that
186 		 * result->iname[0] is within the same object and that
187 		 * kname can't be equal to result->iname, no matter what.
188 		 */
189 		result = kzalloc(size, GFP_KERNEL);
190 		if (unlikely(!result)) {
191 			__putname(kname);
192 			return ERR_PTR(-ENOMEM);
193 		}
194 		result->name = kname;
195 		len = strncpy_from_user(kname, filename, PATH_MAX);
196 		if (unlikely(len < 0)) {
197 			__putname(kname);
198 			kfree(result);
199 			return ERR_PTR(len);
200 		}
201 		/* The empty path is special. */
202 		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 			__putname(kname);
204 			kfree(result);
205 			return ERR_PTR(-ENOENT);
206 		}
207 		if (unlikely(len == PATH_MAX)) {
208 			__putname(kname);
209 			kfree(result);
210 			return ERR_PTR(-ENAMETOOLONG);
211 		}
212 	}
213 	initname(result, filename);
214 	audit_getname(result);
215 	return result;
216 }
217 
getname_uflags(const char __user * filename,int uflags)218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221 
222 	return getname_flags(filename, flags);
223 }
224 
__getname_maybe_null(const char __user * pathname)225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 	struct filename *name;
228 	char c;
229 
230 	/* try to save on allocations; loss on um, though */
231 	if (get_user(c, pathname))
232 		return ERR_PTR(-EFAULT);
233 	if (!c)
234 		return NULL;
235 
236 	name = getname_flags(pathname, LOOKUP_EMPTY);
237 	if (!IS_ERR(name) && !(name->name[0])) {
238 		putname(name);
239 		name = NULL;
240 	}
241 	return name;
242 }
243 
getname_kernel(const char * filename)244 struct filename *getname_kernel(const char * filename)
245 {
246 	struct filename *result;
247 	int len = strlen(filename) + 1;
248 
249 	result = __getname();
250 	if (unlikely(!result))
251 		return ERR_PTR(-ENOMEM);
252 
253 	if (len <= EMBEDDED_NAME_MAX) {
254 		result->name = (char *)result->iname;
255 	} else if (len <= PATH_MAX) {
256 		const size_t size = offsetof(struct filename, iname[1]);
257 		struct filename *tmp;
258 
259 		tmp = kmalloc(size, GFP_KERNEL);
260 		if (unlikely(!tmp)) {
261 			__putname(result);
262 			return ERR_PTR(-ENOMEM);
263 		}
264 		tmp->name = (char *)result;
265 		result = tmp;
266 	} else {
267 		__putname(result);
268 		return ERR_PTR(-ENAMETOOLONG);
269 	}
270 	memcpy((char *)result->name, filename, len);
271 	initname(result, NULL);
272 	audit_getname(result);
273 	return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276 
putname(struct filename * name)277 void putname(struct filename *name)
278 {
279 	int refcnt;
280 
281 	if (IS_ERR_OR_NULL(name))
282 		return;
283 
284 	refcnt = atomic_read(&name->refcnt);
285 	if (unlikely(refcnt != 1)) {
286 		if (WARN_ON_ONCE(!refcnt))
287 			return;
288 
289 		if (!atomic_dec_and_test(&name->refcnt))
290 			return;
291 	}
292 
293 	if (unlikely(name->name != name->iname)) {
294 		__putname(name->name);
295 		kfree(name);
296 	} else
297 		__putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300 
301 /**
302  * check_acl - perform ACL permission checking
303  * @idmap:	idmap of the mount the inode was found from
304  * @inode:	inode to check permissions on
305  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306  *
307  * This function performs the ACL permission checking. Since this function
308  * retrieve POSIX acls it needs to know whether it is called from a blocking or
309  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310  *
311  * If the inode has been found through an idmapped mount the idmap of
312  * the vfsmount must be passed through @idmap. This function will then take
313  * care to map the inode according to @idmap before checking permissions.
314  * On non-idmapped mounts or if permission checking is to be performed on the
315  * raw inode simply pass @nop_mnt_idmap.
316  */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)317 static int check_acl(struct mnt_idmap *idmap,
318 		     struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 	struct posix_acl *acl;
322 
323 	if (mask & MAY_NOT_BLOCK) {
324 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 	        if (!acl)
326 	                return -EAGAIN;
327 		/* no ->get_inode_acl() calls in RCU mode... */
328 		if (is_uncached_acl(acl))
329 			return -ECHILD;
330 	        return posix_acl_permission(idmap, inode, acl, mask);
331 	}
332 
333 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 	if (IS_ERR(acl))
335 		return PTR_ERR(acl);
336 	if (acl) {
337 	        int error = posix_acl_permission(idmap, inode, acl, mask);
338 	        posix_acl_release(acl);
339 	        return error;
340 	}
341 #endif
342 
343 	return -EAGAIN;
344 }
345 
346 /*
347  * Very quick optimistic "we know we have no ACL's" check.
348  *
349  * Note that this is purely for ACL_TYPE_ACCESS, and purely
350  * for the "we have cached that there are no ACLs" case.
351  *
352  * If this returns true, we know there are no ACLs. But if
353  * it returns false, we might still not have ACLs (it could
354  * be the is_uncached_acl() case).
355  */
no_acl_inode(struct inode * inode)356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 	return likely(!READ_ONCE(inode->i_acl));
360 #else
361 	return true;
362 #endif
363 }
364 
365 /**
366  * acl_permission_check - perform basic UNIX permission checking
367  * @idmap:	idmap of the mount the inode was found from
368  * @inode:	inode to check permissions on
369  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370  *
371  * This function performs the basic UNIX permission checking. Since this
372  * function may retrieve POSIX acls it needs to know whether it is called from a
373  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374  *
375  * If the inode has been found through an idmapped mount the idmap of
376  * the vfsmount must be passed through @idmap. This function will then take
377  * care to map the inode according to @idmap before checking permissions.
378  * On non-idmapped mounts or if permission checking is to be performed on the
379  * raw inode simply pass @nop_mnt_idmap.
380  */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)381 static int acl_permission_check(struct mnt_idmap *idmap,
382 				struct inode *inode, int mask)
383 {
384 	unsigned int mode = inode->i_mode;
385 	vfsuid_t vfsuid;
386 
387 	/*
388 	 * Common cheap case: everybody has the requested
389 	 * rights, and there are no ACLs to check. No need
390 	 * to do any owner/group checks in that case.
391 	 *
392 	 *  - 'mask&7' is the requested permission bit set
393 	 *  - multiplying by 0111 spreads them out to all of ugo
394 	 *  - '& ~mode' looks for missing inode permission bits
395 	 *  - the '!' is for "no missing permissions"
396 	 *
397 	 * After that, we just need to check that there are no
398 	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 	 * because it will dereference the ->i_sb pointer and we
400 	 * want to avoid that if at all possible.
401 	 */
402 	if (!((mask & 7) * 0111 & ~mode)) {
403 		if (no_acl_inode(inode))
404 			return 0;
405 		if (!IS_POSIXACL(inode))
406 			return 0;
407 	}
408 
409 	/* Are we the owner? If so, ACL's don't matter */
410 	vfsuid = i_uid_into_vfsuid(idmap, inode);
411 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 		mask &= 7;
413 		mode >>= 6;
414 		return (mask & ~mode) ? -EACCES : 0;
415 	}
416 
417 	/* Do we have ACL's? */
418 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 		int error = check_acl(idmap, inode, mask);
420 		if (error != -EAGAIN)
421 			return error;
422 	}
423 
424 	/* Only RWX matters for group/other mode bits */
425 	mask &= 7;
426 
427 	/*
428 	 * Are the group permissions different from
429 	 * the other permissions in the bits we care
430 	 * about? Need to check group ownership if so.
431 	 */
432 	if (mask & (mode ^ (mode >> 3))) {
433 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 		if (vfsgid_in_group_p(vfsgid))
435 			mode >>= 3;
436 	}
437 
438 	/* Bits in 'mode' clear that we require? */
439 	return (mask & ~mode) ? -EACCES : 0;
440 }
441 
442 /**
443  * generic_permission -  check for access rights on a Posix-like filesystem
444  * @idmap:	idmap of the mount the inode was found from
445  * @inode:	inode to check access rights for
446  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447  *		%MAY_NOT_BLOCK ...)
448  *
449  * Used to check for read/write/execute permissions on a file.
450  * We use "fsuid" for this, letting us set arbitrary permissions
451  * for filesystem access without changing the "normal" uids which
452  * are used for other things.
453  *
454  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455  * request cannot be satisfied (eg. requires blocking or too much complexity).
456  * It would then be called again in ref-walk mode.
457  *
458  * If the inode has been found through an idmapped mount the idmap of
459  * the vfsmount must be passed through @idmap. This function will then take
460  * care to map the inode according to @idmap before checking permissions.
461  * On non-idmapped mounts or if permission checking is to be performed on the
462  * raw inode simply pass @nop_mnt_idmap.
463  */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 		       int mask)
466 {
467 	int ret;
468 
469 	/*
470 	 * Do the basic permission checks.
471 	 */
472 	ret = acl_permission_check(idmap, inode, mask);
473 	if (ret != -EACCES)
474 		return ret;
475 
476 	if (S_ISDIR(inode->i_mode)) {
477 		/* DACs are overridable for directories */
478 		if (!(mask & MAY_WRITE))
479 			if (capable_wrt_inode_uidgid(idmap, inode,
480 						     CAP_DAC_READ_SEARCH))
481 				return 0;
482 		if (capable_wrt_inode_uidgid(idmap, inode,
483 					     CAP_DAC_OVERRIDE))
484 			return 0;
485 		return -EACCES;
486 	}
487 
488 	/*
489 	 * Searching includes executable on directories, else just read.
490 	 */
491 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 	if (mask == MAY_READ)
493 		if (capable_wrt_inode_uidgid(idmap, inode,
494 					     CAP_DAC_READ_SEARCH))
495 			return 0;
496 	/*
497 	 * Read/write DACs are always overridable.
498 	 * Executable DACs are overridable when there is
499 	 * at least one exec bit set.
500 	 */
501 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 		if (capable_wrt_inode_uidgid(idmap, inode,
503 					     CAP_DAC_OVERRIDE))
504 			return 0;
505 
506 	return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509 
510 /**
511  * do_inode_permission - UNIX permission checking
512  * @idmap:	idmap of the mount the inode was found from
513  * @inode:	inode to check permissions on
514  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515  *
516  * We _really_ want to just do "generic_permission()" without
517  * even looking at the inode->i_op values. So we keep a cache
518  * flag in inode->i_opflags, that says "this has not special
519  * permission function, use the fast case".
520  */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 				      struct inode *inode, int mask)
523 {
524 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 		if (likely(inode->i_op->permission))
526 			return inode->i_op->permission(idmap, inode, mask);
527 
528 		/* This gets set once for the inode lifetime */
529 		spin_lock(&inode->i_lock);
530 		inode->i_opflags |= IOP_FASTPERM;
531 		spin_unlock(&inode->i_lock);
532 	}
533 	return generic_permission(idmap, inode, mask);
534 }
535 
536 /**
537  * sb_permission - Check superblock-level permissions
538  * @sb: Superblock of inode to check permission on
539  * @inode: Inode to check permission on
540  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541  *
542  * Separate out file-system wide checks from inode-specific permission checks.
543  *
544  * Note: lookup_inode_permission_may_exec() does not call here. If you add
545  * MAY_EXEC checks, adjust it.
546  */
sb_permission(struct super_block * sb,struct inode * inode,int mask)547 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
548 {
549 	if (mask & MAY_WRITE) {
550 		umode_t mode = inode->i_mode;
551 
552 		/* Nobody gets write access to a read-only fs. */
553 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
554 			return -EROFS;
555 	}
556 	return 0;
557 }
558 
559 /**
560  * inode_permission - Check for access rights to a given inode
561  * @idmap:	idmap of the mount the inode was found from
562  * @inode:	Inode to check permission on
563  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
564  *
565  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
566  * this, letting us set arbitrary permissions for filesystem access without
567  * changing the "normal" UIDs which are used for other things.
568  *
569  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
570  */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)571 int inode_permission(struct mnt_idmap *idmap,
572 		     struct inode *inode, int mask)
573 {
574 	int retval;
575 
576 	retval = sb_permission(inode->i_sb, inode, mask);
577 	if (unlikely(retval))
578 		return retval;
579 
580 	if (mask & MAY_WRITE) {
581 		/*
582 		 * Nobody gets write access to an immutable file.
583 		 */
584 		if (unlikely(IS_IMMUTABLE(inode)))
585 			return -EPERM;
586 
587 		/*
588 		 * Updating mtime will likely cause i_uid and i_gid to be
589 		 * written back improperly if their true value is unknown
590 		 * to the vfs.
591 		 */
592 		if (unlikely(HAS_UNMAPPED_ID(idmap, inode)))
593 			return -EACCES;
594 	}
595 
596 	retval = do_inode_permission(idmap, inode, mask);
597 	if (unlikely(retval))
598 		return retval;
599 
600 	retval = devcgroup_inode_permission(inode, mask);
601 	if (unlikely(retval))
602 		return retval;
603 
604 	return security_inode_permission(inode, mask);
605 }
606 EXPORT_SYMBOL(inode_permission);
607 
608 /*
609  * lookup_inode_permission_may_exec - Check traversal right for given inode
610  *
611  * This is a special case routine for may_lookup() making assumptions specific
612  * to path traversal. Use inode_permission() if you are doing something else.
613  *
614  * Work is shaved off compared to inode_permission() as follows:
615  * - we know for a fact there is no MAY_WRITE to worry about
616  * - it is an invariant the inode is a directory
617  *
618  * Since majority of real-world traversal happens on inodes which grant it for
619  * everyone, we check it upfront and only resort to more expensive work if it
620  * fails.
621  *
622  * Filesystems which have their own ->permission hook and consequently miss out
623  * on IOP_FASTPERM can still get the optimization if they set IOP_FASTPERM_MAY_EXEC
624  * on their directory inodes.
625  */
lookup_inode_permission_may_exec(struct mnt_idmap * idmap,struct inode * inode,int mask)626 static __always_inline int lookup_inode_permission_may_exec(struct mnt_idmap *idmap,
627 	struct inode *inode, int mask)
628 {
629 	/* Lookup already checked this to return -ENOTDIR */
630 	VFS_BUG_ON_INODE(!S_ISDIR(inode->i_mode), inode);
631 	VFS_BUG_ON((mask & ~MAY_NOT_BLOCK) != 0);
632 
633 	mask |= MAY_EXEC;
634 
635 	if (unlikely(!(inode->i_opflags & (IOP_FASTPERM | IOP_FASTPERM_MAY_EXEC))))
636 		return inode_permission(idmap, inode, mask);
637 
638 	if (unlikely(((inode->i_mode & 0111) != 0111) || !no_acl_inode(inode)))
639 		return inode_permission(idmap, inode, mask);
640 
641 	return security_inode_permission(inode, mask);
642 }
643 
644 /**
645  * path_get - get a reference to a path
646  * @path: path to get the reference to
647  *
648  * Given a path increment the reference count to the dentry and the vfsmount.
649  */
path_get(const struct path * path)650 void path_get(const struct path *path)
651 {
652 	mntget(path->mnt);
653 	dget(path->dentry);
654 }
655 EXPORT_SYMBOL(path_get);
656 
657 /**
658  * path_put - put a reference to a path
659  * @path: path to put the reference to
660  *
661  * Given a path decrement the reference count to the dentry and the vfsmount.
662  */
path_put(const struct path * path)663 void path_put(const struct path *path)
664 {
665 	dput(path->dentry);
666 	mntput(path->mnt);
667 }
668 EXPORT_SYMBOL(path_put);
669 
670 #define EMBEDDED_LEVELS 2
671 struct nameidata {
672 	struct path	path;
673 	struct qstr	last;
674 	struct path	root;
675 	struct inode	*inode; /* path.dentry.d_inode */
676 	unsigned int	flags, state;
677 	unsigned	seq, next_seq, m_seq, r_seq;
678 	int		last_type;
679 	unsigned	depth;
680 	int		total_link_count;
681 	struct saved {
682 		struct path link;
683 		struct delayed_call done;
684 		const char *name;
685 		unsigned seq;
686 	} *stack, internal[EMBEDDED_LEVELS];
687 	struct filename	*name;
688 	const char *pathname;
689 	struct nameidata *saved;
690 	unsigned	root_seq;
691 	int		dfd;
692 	vfsuid_t	dir_vfsuid;
693 	umode_t		dir_mode;
694 } __randomize_layout;
695 
696 #define ND_ROOT_PRESET 1
697 #define ND_ROOT_GRABBED 2
698 #define ND_JUMPED 4
699 
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)700 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
701 {
702 	struct nameidata *old = current->nameidata;
703 	p->stack = p->internal;
704 	p->depth = 0;
705 	p->dfd = dfd;
706 	p->name = name;
707 	p->pathname = likely(name) ? name->name : "";
708 	p->path.mnt = NULL;
709 	p->path.dentry = NULL;
710 	p->total_link_count = old ? old->total_link_count : 0;
711 	p->saved = old;
712 	current->nameidata = p;
713 }
714 
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)715 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
716 			  const struct path *root)
717 {
718 	__set_nameidata(p, dfd, name);
719 	p->state = 0;
720 	if (unlikely(root)) {
721 		p->state = ND_ROOT_PRESET;
722 		p->root = *root;
723 	}
724 }
725 
restore_nameidata(void)726 static void restore_nameidata(void)
727 {
728 	struct nameidata *now = current->nameidata, *old = now->saved;
729 
730 	current->nameidata = old;
731 	if (old)
732 		old->total_link_count = now->total_link_count;
733 	if (now->stack != now->internal)
734 		kfree(now->stack);
735 }
736 
nd_alloc_stack(struct nameidata * nd)737 static bool nd_alloc_stack(struct nameidata *nd)
738 {
739 	struct saved *p;
740 
741 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
742 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
743 	if (unlikely(!p))
744 		return false;
745 	memcpy(p, nd->internal, sizeof(nd->internal));
746 	nd->stack = p;
747 	return true;
748 }
749 
750 /**
751  * path_connected - Verify that a dentry is below mnt.mnt_root
752  * @mnt: The mountpoint to check.
753  * @dentry: The dentry to check.
754  *
755  * Rename can sometimes move a file or directory outside of a bind
756  * mount, path_connected allows those cases to be detected.
757  */
path_connected(struct vfsmount * mnt,struct dentry * dentry)758 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
759 {
760 	struct super_block *sb = mnt->mnt_sb;
761 
762 	/* Bind mounts can have disconnected paths */
763 	if (mnt->mnt_root == sb->s_root)
764 		return true;
765 
766 	return is_subdir(dentry, mnt->mnt_root);
767 }
768 
drop_links(struct nameidata * nd)769 static void drop_links(struct nameidata *nd)
770 {
771 	int i = nd->depth;
772 	while (i--) {
773 		struct saved *last = nd->stack + i;
774 		do_delayed_call(&last->done);
775 		clear_delayed_call(&last->done);
776 	}
777 }
778 
leave_rcu(struct nameidata * nd)779 static void leave_rcu(struct nameidata *nd)
780 {
781 	nd->flags &= ~LOOKUP_RCU;
782 	nd->seq = nd->next_seq = 0;
783 	rcu_read_unlock();
784 }
785 
terminate_walk(struct nameidata * nd)786 static void terminate_walk(struct nameidata *nd)
787 {
788 	if (unlikely(nd->depth))
789 		drop_links(nd);
790 	if (!(nd->flags & LOOKUP_RCU)) {
791 		int i;
792 		path_put(&nd->path);
793 		for (i = 0; i < nd->depth; i++)
794 			path_put(&nd->stack[i].link);
795 		if (nd->state & ND_ROOT_GRABBED) {
796 			path_put(&nd->root);
797 			nd->state &= ~ND_ROOT_GRABBED;
798 		}
799 	} else {
800 		leave_rcu(nd);
801 	}
802 	nd->depth = 0;
803 	nd->path.mnt = NULL;
804 	nd->path.dentry = NULL;
805 }
806 
807 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)808 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
809 {
810 	int res = __legitimize_mnt(path->mnt, mseq);
811 	if (unlikely(res)) {
812 		if (res > 0)
813 			path->mnt = NULL;
814 		path->dentry = NULL;
815 		return false;
816 	}
817 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
818 		path->dentry = NULL;
819 		return false;
820 	}
821 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
822 }
823 
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)824 static inline bool legitimize_path(struct nameidata *nd,
825 			    struct path *path, unsigned seq)
826 {
827 	return __legitimize_path(path, seq, nd->m_seq);
828 }
829 
legitimize_links(struct nameidata * nd)830 static bool legitimize_links(struct nameidata *nd)
831 {
832 	int i;
833 
834 	VFS_BUG_ON(nd->flags & LOOKUP_CACHED);
835 
836 	for (i = 0; i < nd->depth; i++) {
837 		struct saved *last = nd->stack + i;
838 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
839 			drop_links(nd);
840 			nd->depth = i + 1;
841 			return false;
842 		}
843 	}
844 	return true;
845 }
846 
legitimize_root(struct nameidata * nd)847 static bool legitimize_root(struct nameidata *nd)
848 {
849 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
850 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
851 		return true;
852 	nd->state |= ND_ROOT_GRABBED;
853 	return legitimize_path(nd, &nd->root, nd->root_seq);
854 }
855 
856 /*
857  * Path walking has 2 modes, rcu-walk and ref-walk (see
858  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
859  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
860  * normal reference counts on dentries and vfsmounts to transition to ref-walk
861  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
862  * got stuck, so ref-walk may continue from there. If this is not successful
863  * (eg. a seqcount has changed), then failure is returned and it's up to caller
864  * to restart the path walk from the beginning in ref-walk mode.
865  */
866 
867 /**
868  * try_to_unlazy - try to switch to ref-walk mode.
869  * @nd: nameidata pathwalk data
870  * Returns: true on success, false on failure
871  *
872  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
873  * for ref-walk mode.
874  * Must be called from rcu-walk context.
875  * Nothing should touch nameidata between try_to_unlazy() failure and
876  * terminate_walk().
877  */
try_to_unlazy(struct nameidata * nd)878 static bool try_to_unlazy(struct nameidata *nd)
879 {
880 	struct dentry *parent = nd->path.dentry;
881 
882 	BUG_ON(!(nd->flags & LOOKUP_RCU));
883 
884 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
885 		drop_links(nd);
886 		nd->depth = 0;
887 		goto out1;
888 	}
889 	if (unlikely(nd->depth && !legitimize_links(nd)))
890 		goto out1;
891 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
892 		goto out;
893 	if (unlikely(!legitimize_root(nd)))
894 		goto out;
895 	leave_rcu(nd);
896 	BUG_ON(nd->inode != parent->d_inode);
897 	return true;
898 
899 out1:
900 	nd->path.mnt = NULL;
901 	nd->path.dentry = NULL;
902 out:
903 	leave_rcu(nd);
904 	return false;
905 }
906 
907 /**
908  * try_to_unlazy_next - try to switch to ref-walk mode.
909  * @nd: nameidata pathwalk data
910  * @dentry: next dentry to step into
911  * Returns: true on success, false on failure
912  *
913  * Similar to try_to_unlazy(), but here we have the next dentry already
914  * picked by rcu-walk and want to legitimize that in addition to the current
915  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
916  * Nothing should touch nameidata between try_to_unlazy_next() failure and
917  * terminate_walk().
918  */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)919 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
920 {
921 	int res;
922 	BUG_ON(!(nd->flags & LOOKUP_RCU));
923 
924 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
925 		drop_links(nd);
926 		nd->depth = 0;
927 		goto out2;
928 	}
929 	if (unlikely(nd->depth && !legitimize_links(nd)))
930 		goto out2;
931 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
932 	if (unlikely(res)) {
933 		if (res > 0)
934 			goto out2;
935 		goto out1;
936 	}
937 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
938 		goto out1;
939 
940 	/*
941 	 * We need to move both the parent and the dentry from the RCU domain
942 	 * to be properly refcounted. And the sequence number in the dentry
943 	 * validates *both* dentry counters, since we checked the sequence
944 	 * number of the parent after we got the child sequence number. So we
945 	 * know the parent must still be valid if the child sequence number is
946 	 */
947 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
948 		goto out;
949 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
950 		goto out_dput;
951 	/*
952 	 * Sequence counts matched. Now make sure that the root is
953 	 * still valid and get it if required.
954 	 */
955 	if (unlikely(!legitimize_root(nd)))
956 		goto out_dput;
957 	leave_rcu(nd);
958 	return true;
959 
960 out2:
961 	nd->path.mnt = NULL;
962 out1:
963 	nd->path.dentry = NULL;
964 out:
965 	leave_rcu(nd);
966 	return false;
967 out_dput:
968 	leave_rcu(nd);
969 	dput(dentry);
970 	return false;
971 }
972 
d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)973 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
974 			       struct dentry *dentry, unsigned int flags)
975 {
976 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
977 		return dentry->d_op->d_revalidate(dir, name, dentry, flags);
978 	else
979 		return 1;
980 }
981 
982 /**
983  * complete_walk - successful completion of path walk
984  * @nd:  pointer nameidata
985  *
986  * If we had been in RCU mode, drop out of it and legitimize nd->path.
987  * Revalidate the final result, unless we'd already done that during
988  * the path walk or the filesystem doesn't ask for it.  Return 0 on
989  * success, -error on failure.  In case of failure caller does not
990  * need to drop nd->path.
991  */
complete_walk(struct nameidata * nd)992 static int complete_walk(struct nameidata *nd)
993 {
994 	struct dentry *dentry = nd->path.dentry;
995 	int status;
996 
997 	if (nd->flags & LOOKUP_RCU) {
998 		/*
999 		 * We don't want to zero nd->root for scoped-lookups or
1000 		 * externally-managed nd->root.
1001 		 */
1002 		if (likely(!(nd->state & ND_ROOT_PRESET)))
1003 			if (likely(!(nd->flags & LOOKUP_IS_SCOPED)))
1004 				nd->root.mnt = NULL;
1005 		nd->flags &= ~LOOKUP_CACHED;
1006 		if (!try_to_unlazy(nd))
1007 			return -ECHILD;
1008 	}
1009 
1010 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1011 		/*
1012 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
1013 		 * ever step outside the root during lookup" and should already
1014 		 * be guaranteed by the rest of namei, we want to avoid a namei
1015 		 * BUG resulting in userspace being given a path that was not
1016 		 * scoped within the root at some point during the lookup.
1017 		 *
1018 		 * So, do a final sanity-check to make sure that in the
1019 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
1020 		 * we won't silently return an fd completely outside of the
1021 		 * requested root to userspace.
1022 		 *
1023 		 * Userspace could move the path outside the root after this
1024 		 * check, but as discussed elsewhere this is not a concern (the
1025 		 * resolved file was inside the root at some point).
1026 		 */
1027 		if (!path_is_under(&nd->path, &nd->root))
1028 			return -EXDEV;
1029 	}
1030 
1031 	if (likely(!(nd->state & ND_JUMPED)))
1032 		return 0;
1033 
1034 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
1035 		return 0;
1036 
1037 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
1038 	if (status > 0)
1039 		return 0;
1040 
1041 	if (!status)
1042 		status = -ESTALE;
1043 
1044 	return status;
1045 }
1046 
set_root(struct nameidata * nd)1047 static int set_root(struct nameidata *nd)
1048 {
1049 	struct fs_struct *fs = current->fs;
1050 
1051 	/*
1052 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1053 	 * still have to ensure it doesn't happen because it will cause a breakout
1054 	 * from the dirfd.
1055 	 */
1056 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1057 		return -ENOTRECOVERABLE;
1058 
1059 	if (nd->flags & LOOKUP_RCU) {
1060 		unsigned seq;
1061 
1062 		do {
1063 			seq = read_seqbegin(&fs->seq);
1064 			nd->root = fs->root;
1065 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1066 		} while (read_seqretry(&fs->seq, seq));
1067 	} else {
1068 		get_fs_root(fs, &nd->root);
1069 		nd->state |= ND_ROOT_GRABBED;
1070 	}
1071 	return 0;
1072 }
1073 
nd_jump_root(struct nameidata * nd)1074 static int nd_jump_root(struct nameidata *nd)
1075 {
1076 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1077 		return -EXDEV;
1078 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1079 		/* Absolute path arguments to path_init() are allowed. */
1080 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1081 			return -EXDEV;
1082 	}
1083 	if (!nd->root.mnt) {
1084 		int error = set_root(nd);
1085 		if (unlikely(error))
1086 			return error;
1087 	}
1088 	if (nd->flags & LOOKUP_RCU) {
1089 		struct dentry *d;
1090 		nd->path = nd->root;
1091 		d = nd->path.dentry;
1092 		nd->inode = d->d_inode;
1093 		nd->seq = nd->root_seq;
1094 		if (read_seqcount_retry(&d->d_seq, nd->seq))
1095 			return -ECHILD;
1096 	} else {
1097 		path_put(&nd->path);
1098 		nd->path = nd->root;
1099 		path_get(&nd->path);
1100 		nd->inode = nd->path.dentry->d_inode;
1101 	}
1102 	nd->state |= ND_JUMPED;
1103 	return 0;
1104 }
1105 
1106 /*
1107  * Helper to directly jump to a known parsed path from ->get_link,
1108  * caller must have taken a reference to path beforehand.
1109  */
nd_jump_link(const struct path * path)1110 int nd_jump_link(const struct path *path)
1111 {
1112 	int error = -ELOOP;
1113 	struct nameidata *nd = current->nameidata;
1114 
1115 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1116 		goto err;
1117 
1118 	error = -EXDEV;
1119 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1120 		if (nd->path.mnt != path->mnt)
1121 			goto err;
1122 	}
1123 	/* Not currently safe for scoped-lookups. */
1124 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1125 		goto err;
1126 
1127 	path_put(&nd->path);
1128 	nd->path = *path;
1129 	nd->inode = nd->path.dentry->d_inode;
1130 	nd->state |= ND_JUMPED;
1131 	return 0;
1132 
1133 err:
1134 	path_put(path);
1135 	return error;
1136 }
1137 
put_link(struct nameidata * nd)1138 static inline void put_link(struct nameidata *nd)
1139 {
1140 	struct saved *last = nd->stack + --nd->depth;
1141 	do_delayed_call(&last->done);
1142 	if (!(nd->flags & LOOKUP_RCU))
1143 		path_put(&last->link);
1144 }
1145 
1146 static int sysctl_protected_symlinks __read_mostly;
1147 static int sysctl_protected_hardlinks __read_mostly;
1148 static int sysctl_protected_fifos __read_mostly;
1149 static int sysctl_protected_regular __read_mostly;
1150 
1151 #ifdef CONFIG_SYSCTL
1152 static const struct ctl_table namei_sysctls[] = {
1153 	{
1154 		.procname	= "protected_symlinks",
1155 		.data		= &sysctl_protected_symlinks,
1156 		.maxlen		= sizeof(int),
1157 		.mode		= 0644,
1158 		.proc_handler	= proc_dointvec_minmax,
1159 		.extra1		= SYSCTL_ZERO,
1160 		.extra2		= SYSCTL_ONE,
1161 	},
1162 	{
1163 		.procname	= "protected_hardlinks",
1164 		.data		= &sysctl_protected_hardlinks,
1165 		.maxlen		= sizeof(int),
1166 		.mode		= 0644,
1167 		.proc_handler	= proc_dointvec_minmax,
1168 		.extra1		= SYSCTL_ZERO,
1169 		.extra2		= SYSCTL_ONE,
1170 	},
1171 	{
1172 		.procname	= "protected_fifos",
1173 		.data		= &sysctl_protected_fifos,
1174 		.maxlen		= sizeof(int),
1175 		.mode		= 0644,
1176 		.proc_handler	= proc_dointvec_minmax,
1177 		.extra1		= SYSCTL_ZERO,
1178 		.extra2		= SYSCTL_TWO,
1179 	},
1180 	{
1181 		.procname	= "protected_regular",
1182 		.data		= &sysctl_protected_regular,
1183 		.maxlen		= sizeof(int),
1184 		.mode		= 0644,
1185 		.proc_handler	= proc_dointvec_minmax,
1186 		.extra1		= SYSCTL_ZERO,
1187 		.extra2		= SYSCTL_TWO,
1188 	},
1189 };
1190 
init_fs_namei_sysctls(void)1191 static int __init init_fs_namei_sysctls(void)
1192 {
1193 	register_sysctl_init("fs", namei_sysctls);
1194 	return 0;
1195 }
1196 fs_initcall(init_fs_namei_sysctls);
1197 
1198 #endif /* CONFIG_SYSCTL */
1199 
1200 /**
1201  * may_follow_link - Check symlink following for unsafe situations
1202  * @nd: nameidata pathwalk data
1203  * @inode: Used for idmapping.
1204  *
1205  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1206  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1207  * in a sticky world-writable directory. This is to protect privileged
1208  * processes from failing races against path names that may change out
1209  * from under them by way of other users creating malicious symlinks.
1210  * It will permit symlinks to be followed only when outside a sticky
1211  * world-writable directory, or when the uid of the symlink and follower
1212  * match, or when the directory owner matches the symlink's owner.
1213  *
1214  * Returns 0 if following the symlink is allowed, -ve on error.
1215  */
may_follow_link(struct nameidata * nd,const struct inode * inode)1216 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1217 {
1218 	struct mnt_idmap *idmap;
1219 	vfsuid_t vfsuid;
1220 
1221 	if (!sysctl_protected_symlinks)
1222 		return 0;
1223 
1224 	idmap = mnt_idmap(nd->path.mnt);
1225 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1226 	/* Allowed if owner and follower match. */
1227 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1228 		return 0;
1229 
1230 	/* Allowed if parent directory not sticky and world-writable. */
1231 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1232 		return 0;
1233 
1234 	/* Allowed if parent directory and link owner match. */
1235 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1236 		return 0;
1237 
1238 	if (nd->flags & LOOKUP_RCU)
1239 		return -ECHILD;
1240 
1241 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1242 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1243 	return -EACCES;
1244 }
1245 
1246 /**
1247  * safe_hardlink_source - Check for safe hardlink conditions
1248  * @idmap: idmap of the mount the inode was found from
1249  * @inode: the source inode to hardlink from
1250  *
1251  * Return false if at least one of the following conditions:
1252  *    - inode is not a regular file
1253  *    - inode is setuid
1254  *    - inode is setgid and group-exec
1255  *    - access failure for read and write
1256  *
1257  * Otherwise returns true.
1258  */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1259 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1260 				 struct inode *inode)
1261 {
1262 	umode_t mode = inode->i_mode;
1263 
1264 	/* Special files should not get pinned to the filesystem. */
1265 	if (!S_ISREG(mode))
1266 		return false;
1267 
1268 	/* Setuid files should not get pinned to the filesystem. */
1269 	if (mode & S_ISUID)
1270 		return false;
1271 
1272 	/* Executable setgid files should not get pinned to the filesystem. */
1273 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1274 		return false;
1275 
1276 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1277 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1278 		return false;
1279 
1280 	return true;
1281 }
1282 
1283 /**
1284  * may_linkat - Check permissions for creating a hardlink
1285  * @idmap: idmap of the mount the inode was found from
1286  * @link:  the source to hardlink from
1287  *
1288  * Block hardlink when all of:
1289  *  - sysctl_protected_hardlinks enabled
1290  *  - fsuid does not match inode
1291  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1292  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1293  *
1294  * If the inode has been found through an idmapped mount the idmap of
1295  * the vfsmount must be passed through @idmap. This function will then take
1296  * care to map the inode according to @idmap before checking permissions.
1297  * On non-idmapped mounts or if permission checking is to be performed on the
1298  * raw inode simply pass @nop_mnt_idmap.
1299  *
1300  * Returns 0 if successful, -ve on error.
1301  */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1302 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1303 {
1304 	struct inode *inode = link->dentry->d_inode;
1305 
1306 	/* Inode writeback is not safe when the uid or gid are invalid. */
1307 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1308 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1309 		return -EOVERFLOW;
1310 
1311 	if (!sysctl_protected_hardlinks)
1312 		return 0;
1313 
1314 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1315 	 * otherwise, it must be a safe source.
1316 	 */
1317 	if (safe_hardlink_source(idmap, inode) ||
1318 	    inode_owner_or_capable(idmap, inode))
1319 		return 0;
1320 
1321 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1322 	return -EPERM;
1323 }
1324 
1325 /**
1326  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1327  *			  should be allowed, or not, on files that already
1328  *			  exist.
1329  * @idmap: idmap of the mount the inode was found from
1330  * @nd: nameidata pathwalk data
1331  * @inode: the inode of the file to open
1332  *
1333  * Block an O_CREAT open of a FIFO (or a regular file) when:
1334  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1335  *   - the file already exists
1336  *   - we are in a sticky directory
1337  *   - we don't own the file
1338  *   - the owner of the directory doesn't own the file
1339  *   - the directory is world writable
1340  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1341  * the directory doesn't have to be world writable: being group writable will
1342  * be enough.
1343  *
1344  * If the inode has been found through an idmapped mount the idmap of
1345  * the vfsmount must be passed through @idmap. This function will then take
1346  * care to map the inode according to @idmap before checking permissions.
1347  * On non-idmapped mounts or if permission checking is to be performed on the
1348  * raw inode simply pass @nop_mnt_idmap.
1349  *
1350  * Returns 0 if the open is allowed, -ve on error.
1351  */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1352 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1353 				struct inode *const inode)
1354 {
1355 	umode_t dir_mode = nd->dir_mode;
1356 	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1357 
1358 	if (likely(!(dir_mode & S_ISVTX)))
1359 		return 0;
1360 
1361 	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1362 		return 0;
1363 
1364 	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1365 		return 0;
1366 
1367 	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1368 
1369 	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1370 		return 0;
1371 
1372 	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1373 		return 0;
1374 
1375 	if (likely(dir_mode & 0002)) {
1376 		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1377 		return -EACCES;
1378 	}
1379 
1380 	if (dir_mode & 0020) {
1381 		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1382 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1383 					      "sticky_create_fifo");
1384 			return -EACCES;
1385 		}
1386 
1387 		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1388 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1389 					      "sticky_create_regular");
1390 			return -EACCES;
1391 		}
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 /*
1398  * follow_up - Find the mountpoint of path's vfsmount
1399  *
1400  * Given a path, find the mountpoint of its source file system.
1401  * Replace @path with the path of the mountpoint in the parent mount.
1402  * Up is towards /.
1403  *
1404  * Return 1 if we went up a level and 0 if we were already at the
1405  * root.
1406  */
follow_up(struct path * path)1407 int follow_up(struct path *path)
1408 {
1409 	struct mount *mnt = real_mount(path->mnt);
1410 	struct mount *parent;
1411 	struct dentry *mountpoint;
1412 
1413 	read_seqlock_excl(&mount_lock);
1414 	parent = mnt->mnt_parent;
1415 	if (parent == mnt) {
1416 		read_sequnlock_excl(&mount_lock);
1417 		return 0;
1418 	}
1419 	mntget(&parent->mnt);
1420 	mountpoint = dget(mnt->mnt_mountpoint);
1421 	read_sequnlock_excl(&mount_lock);
1422 	dput(path->dentry);
1423 	path->dentry = mountpoint;
1424 	mntput(path->mnt);
1425 	path->mnt = &parent->mnt;
1426 	return 1;
1427 }
1428 EXPORT_SYMBOL(follow_up);
1429 
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1430 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1431 				  struct path *path, unsigned *seqp)
1432 {
1433 	while (mnt_has_parent(m)) {
1434 		struct dentry *mountpoint = m->mnt_mountpoint;
1435 
1436 		m = m->mnt_parent;
1437 		if (unlikely(root->dentry == mountpoint &&
1438 			     root->mnt == &m->mnt))
1439 			break;
1440 		if (mountpoint != m->mnt.mnt_root) {
1441 			path->mnt = &m->mnt;
1442 			path->dentry = mountpoint;
1443 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1444 			return true;
1445 		}
1446 	}
1447 	return false;
1448 }
1449 
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1450 static bool choose_mountpoint(struct mount *m, const struct path *root,
1451 			      struct path *path)
1452 {
1453 	bool found;
1454 
1455 	rcu_read_lock();
1456 	while (1) {
1457 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1458 
1459 		found = choose_mountpoint_rcu(m, root, path, &seq);
1460 		if (unlikely(!found)) {
1461 			if (!read_seqretry(&mount_lock, mseq))
1462 				break;
1463 		} else {
1464 			if (likely(__legitimize_path(path, seq, mseq)))
1465 				break;
1466 			rcu_read_unlock();
1467 			path_put(path);
1468 			rcu_read_lock();
1469 		}
1470 	}
1471 	rcu_read_unlock();
1472 	return found;
1473 }
1474 
1475 /*
1476  * Perform an automount
1477  * - return -EISDIR to tell follow_managed() to stop and return the path we
1478  *   were called with.
1479  */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1480 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1481 {
1482 	struct dentry *dentry = path->dentry;
1483 
1484 	/* We don't want to mount if someone's just doing a stat -
1485 	 * unless they're stat'ing a directory and appended a '/' to
1486 	 * the name.
1487 	 *
1488 	 * We do, however, want to mount if someone wants to open or
1489 	 * create a file of any type under the mountpoint, wants to
1490 	 * traverse through the mountpoint or wants to open the
1491 	 * mounted directory.  Also, autofs may mark negative dentries
1492 	 * as being automount points.  These will need the attentions
1493 	 * of the daemon to instantiate them before they can be used.
1494 	 */
1495 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1496 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1497 	    dentry->d_inode)
1498 		return -EISDIR;
1499 
1500 	/* No need to trigger automounts if mountpoint crossing is disabled. */
1501 	if (lookup_flags & LOOKUP_NO_XDEV)
1502 		return -EXDEV;
1503 
1504 	if (count && (*count)++ >= MAXSYMLINKS)
1505 		return -ELOOP;
1506 
1507 	return finish_automount(dentry->d_op->d_automount(path), path);
1508 }
1509 
1510 /*
1511  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1512  * dentries are pinned but not locked here, so negative dentry can go
1513  * positive right under us.  Use of smp_load_acquire() provides a barrier
1514  * sufficient for ->d_inode and ->d_flags consistency.
1515  */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1516 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1517 			     int *count, unsigned lookup_flags)
1518 {
1519 	struct vfsmount *mnt = path->mnt;
1520 	bool need_mntput = false;
1521 	int ret = 0;
1522 
1523 	while (flags & DCACHE_MANAGED_DENTRY) {
1524 		/* Allow the filesystem to manage the transit without i_rwsem
1525 		 * being held. */
1526 		if (flags & DCACHE_MANAGE_TRANSIT) {
1527 			if (lookup_flags & LOOKUP_NO_XDEV) {
1528 				ret = -EXDEV;
1529 				break;
1530 			}
1531 			ret = path->dentry->d_op->d_manage(path, false);
1532 			flags = smp_load_acquire(&path->dentry->d_flags);
1533 			if (ret < 0)
1534 				break;
1535 		}
1536 
1537 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1538 			struct vfsmount *mounted = lookup_mnt(path);
1539 			if (mounted) {		// ... in our namespace
1540 				dput(path->dentry);
1541 				if (need_mntput)
1542 					mntput(path->mnt);
1543 				path->mnt = mounted;
1544 				path->dentry = dget(mounted->mnt_root);
1545 				// here we know it's positive
1546 				flags = path->dentry->d_flags;
1547 				need_mntput = true;
1548 				if (unlikely(lookup_flags & LOOKUP_NO_XDEV)) {
1549 					ret = -EXDEV;
1550 					break;
1551 				}
1552 				continue;
1553 			}
1554 		}
1555 
1556 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1557 			break;
1558 
1559 		// uncovered automount point
1560 		ret = follow_automount(path, count, lookup_flags);
1561 		flags = smp_load_acquire(&path->dentry->d_flags);
1562 		if (ret < 0)
1563 			break;
1564 	}
1565 
1566 	if (ret == -EISDIR)
1567 		ret = 0;
1568 	// possible if you race with several mount --move
1569 	if (need_mntput && path->mnt == mnt)
1570 		mntput(path->mnt);
1571 	if (!ret && unlikely(d_flags_negative(flags)))
1572 		ret = -ENOENT;
1573 	*jumped = need_mntput;
1574 	return ret;
1575 }
1576 
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1577 static inline int traverse_mounts(struct path *path, bool *jumped,
1578 				  int *count, unsigned lookup_flags)
1579 {
1580 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1581 
1582 	/* fastpath */
1583 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1584 		*jumped = false;
1585 		if (unlikely(d_flags_negative(flags)))
1586 			return -ENOENT;
1587 		return 0;
1588 	}
1589 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1590 }
1591 
follow_down_one(struct path * path)1592 int follow_down_one(struct path *path)
1593 {
1594 	struct vfsmount *mounted;
1595 
1596 	mounted = lookup_mnt(path);
1597 	if (mounted) {
1598 		dput(path->dentry);
1599 		mntput(path->mnt);
1600 		path->mnt = mounted;
1601 		path->dentry = dget(mounted->mnt_root);
1602 		return 1;
1603 	}
1604 	return 0;
1605 }
1606 EXPORT_SYMBOL(follow_down_one);
1607 
1608 /*
1609  * Follow down to the covering mount currently visible to userspace.  At each
1610  * point, the filesystem owning that dentry may be queried as to whether the
1611  * caller is permitted to proceed or not.
1612  */
follow_down(struct path * path,unsigned int flags)1613 int follow_down(struct path *path, unsigned int flags)
1614 {
1615 	struct vfsmount *mnt = path->mnt;
1616 	bool jumped;
1617 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1618 
1619 	if (path->mnt != mnt)
1620 		mntput(mnt);
1621 	return ret;
1622 }
1623 EXPORT_SYMBOL(follow_down);
1624 
1625 /*
1626  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1627  * we meet a managed dentry that would need blocking.
1628  */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1629 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1630 {
1631 	struct dentry *dentry = path->dentry;
1632 	unsigned int flags = dentry->d_flags;
1633 
1634 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1635 		return true;
1636 
1637 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1638 		return false;
1639 
1640 	for (;;) {
1641 		/*
1642 		 * Don't forget we might have a non-mountpoint managed dentry
1643 		 * that wants to block transit.
1644 		 */
1645 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1646 			int res = dentry->d_op->d_manage(path, true);
1647 			if (res)
1648 				return res == -EISDIR;
1649 			flags = dentry->d_flags;
1650 		}
1651 
1652 		if (flags & DCACHE_MOUNTED) {
1653 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1654 			if (mounted) {
1655 				path->mnt = &mounted->mnt;
1656 				dentry = path->dentry = mounted->mnt.mnt_root;
1657 				nd->state |= ND_JUMPED;
1658 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1659 				flags = dentry->d_flags;
1660 				// makes sure that non-RCU pathwalk could reach
1661 				// this state.
1662 				if (read_seqretry(&mount_lock, nd->m_seq))
1663 					return false;
1664 				continue;
1665 			}
1666 			if (read_seqretry(&mount_lock, nd->m_seq))
1667 				return false;
1668 		}
1669 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1670 	}
1671 }
1672 
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1673 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1674 			  struct path *path)
1675 {
1676 	bool jumped;
1677 	int ret;
1678 
1679 	path->mnt = nd->path.mnt;
1680 	path->dentry = dentry;
1681 	if (nd->flags & LOOKUP_RCU) {
1682 		unsigned int seq = nd->next_seq;
1683 		if (likely(!d_managed(dentry)))
1684 			return 0;
1685 		if (likely(__follow_mount_rcu(nd, path)))
1686 			return 0;
1687 		// *path and nd->next_seq might've been clobbered
1688 		path->mnt = nd->path.mnt;
1689 		path->dentry = dentry;
1690 		nd->next_seq = seq;
1691 		if (unlikely(!try_to_unlazy_next(nd, dentry)))
1692 			return -ECHILD;
1693 	}
1694 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1695 	if (jumped)
1696 		nd->state |= ND_JUMPED;
1697 	if (unlikely(ret)) {
1698 		dput(path->dentry);
1699 		if (path->mnt != nd->path.mnt)
1700 			mntput(path->mnt);
1701 	}
1702 	return ret;
1703 }
1704 
1705 /*
1706  * This looks up the name in dcache and possibly revalidates the found dentry.
1707  * NULL is returned if the dentry does not exist in the cache.
1708  */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1709 static struct dentry *lookup_dcache(const struct qstr *name,
1710 				    struct dentry *dir,
1711 				    unsigned int flags)
1712 {
1713 	struct dentry *dentry = d_lookup(dir, name);
1714 	if (dentry) {
1715 		int error = d_revalidate(dir->d_inode, name, dentry, flags);
1716 		if (unlikely(error <= 0)) {
1717 			if (!error)
1718 				d_invalidate(dentry);
1719 			dput(dentry);
1720 			return ERR_PTR(error);
1721 		}
1722 	}
1723 	return dentry;
1724 }
1725 
1726 /*
1727  * Parent directory has inode locked exclusive.  This is one
1728  * and only case when ->lookup() gets called on non in-lookup
1729  * dentries - as the matter of fact, this only gets called
1730  * when directory is guaranteed to have no in-lookup children
1731  * at all.
1732  * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1733  * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1734  */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1735 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1736 				    struct dentry *base, unsigned int flags)
1737 {
1738 	struct dentry *dentry;
1739 	struct dentry *old;
1740 	struct inode *dir;
1741 
1742 	dentry = lookup_dcache(name, base, flags);
1743 	if (dentry)
1744 		goto found;
1745 
1746 	/* Don't create child dentry for a dead directory. */
1747 	dir = base->d_inode;
1748 	if (unlikely(IS_DEADDIR(dir)))
1749 		return ERR_PTR(-ENOENT);
1750 
1751 	dentry = d_alloc(base, name);
1752 	if (unlikely(!dentry))
1753 		return ERR_PTR(-ENOMEM);
1754 
1755 	old = dir->i_op->lookup(dir, dentry, flags);
1756 	if (unlikely(old)) {
1757 		dput(dentry);
1758 		dentry = old;
1759 	}
1760 found:
1761 	if (IS_ERR(dentry))
1762 		return dentry;
1763 	if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1764 		dput(dentry);
1765 		return ERR_PTR(-ENOENT);
1766 	}
1767 	if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1768 		dput(dentry);
1769 		return ERR_PTR(-EEXIST);
1770 	}
1771 	return dentry;
1772 }
1773 EXPORT_SYMBOL(lookup_one_qstr_excl);
1774 
1775 /**
1776  * lookup_fast - do fast lockless (but racy) lookup of a dentry
1777  * @nd: current nameidata
1778  *
1779  * Do a fast, but racy lookup in the dcache for the given dentry, and
1780  * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1781  * found. On error, an ERR_PTR will be returned.
1782  *
1783  * If this function returns a valid dentry and the walk is no longer
1784  * lazy, the dentry will carry a reference that must later be put. If
1785  * RCU mode is still in force, then this is not the case and the dentry
1786  * must be legitimized before use. If this returns NULL, then the walk
1787  * will no longer be in RCU mode.
1788  */
lookup_fast(struct nameidata * nd)1789 static struct dentry *lookup_fast(struct nameidata *nd)
1790 {
1791 	struct dentry *dentry, *parent = nd->path.dentry;
1792 	int status = 1;
1793 
1794 	/*
1795 	 * Rename seqlock is not required here because in the off chance
1796 	 * of a false negative due to a concurrent rename, the caller is
1797 	 * going to fall back to non-racy lookup.
1798 	 */
1799 	if (nd->flags & LOOKUP_RCU) {
1800 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1801 		if (unlikely(!dentry)) {
1802 			if (!try_to_unlazy(nd))
1803 				return ERR_PTR(-ECHILD);
1804 			return NULL;
1805 		}
1806 
1807 		/*
1808 		 * This sequence count validates that the parent had no
1809 		 * changes while we did the lookup of the dentry above.
1810 		 */
1811 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1812 			return ERR_PTR(-ECHILD);
1813 
1814 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1815 		if (likely(status > 0))
1816 			return dentry;
1817 		if (!try_to_unlazy_next(nd, dentry))
1818 			return ERR_PTR(-ECHILD);
1819 		if (status == -ECHILD)
1820 			/* we'd been told to redo it in non-rcu mode */
1821 			status = d_revalidate(nd->inode, &nd->last,
1822 					      dentry, nd->flags);
1823 	} else {
1824 		dentry = __d_lookup(parent, &nd->last);
1825 		if (unlikely(!dentry))
1826 			return NULL;
1827 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1828 	}
1829 	if (unlikely(status <= 0)) {
1830 		if (!status)
1831 			d_invalidate(dentry);
1832 		dput(dentry);
1833 		return ERR_PTR(status);
1834 	}
1835 	return dentry;
1836 }
1837 
1838 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1839 static struct dentry *__lookup_slow(const struct qstr *name,
1840 				    struct dentry *dir,
1841 				    unsigned int flags)
1842 {
1843 	struct dentry *dentry, *old;
1844 	struct inode *inode = dir->d_inode;
1845 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1846 
1847 	/* Don't go there if it's already dead */
1848 	if (unlikely(IS_DEADDIR(inode)))
1849 		return ERR_PTR(-ENOENT);
1850 again:
1851 	dentry = d_alloc_parallel(dir, name, &wq);
1852 	if (IS_ERR(dentry))
1853 		return dentry;
1854 	if (unlikely(!d_in_lookup(dentry))) {
1855 		int error = d_revalidate(inode, name, dentry, flags);
1856 		if (unlikely(error <= 0)) {
1857 			if (!error) {
1858 				d_invalidate(dentry);
1859 				dput(dentry);
1860 				goto again;
1861 			}
1862 			dput(dentry);
1863 			dentry = ERR_PTR(error);
1864 		}
1865 	} else {
1866 		old = inode->i_op->lookup(inode, dentry, flags);
1867 		d_lookup_done(dentry);
1868 		if (unlikely(old)) {
1869 			dput(dentry);
1870 			dentry = old;
1871 		}
1872 	}
1873 	return dentry;
1874 }
1875 
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1876 static noinline struct dentry *lookup_slow(const struct qstr *name,
1877 				  struct dentry *dir,
1878 				  unsigned int flags)
1879 {
1880 	struct inode *inode = dir->d_inode;
1881 	struct dentry *res;
1882 	inode_lock_shared(inode);
1883 	res = __lookup_slow(name, dir, flags);
1884 	inode_unlock_shared(inode);
1885 	return res;
1886 }
1887 
lookup_slow_killable(const struct qstr * name,struct dentry * dir,unsigned int flags)1888 static struct dentry *lookup_slow_killable(const struct qstr *name,
1889 					   struct dentry *dir,
1890 					   unsigned int flags)
1891 {
1892 	struct inode *inode = dir->d_inode;
1893 	struct dentry *res;
1894 
1895 	if (inode_lock_shared_killable(inode))
1896 		return ERR_PTR(-EINTR);
1897 	res = __lookup_slow(name, dir, flags);
1898 	inode_unlock_shared(inode);
1899 	return res;
1900 }
1901 
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1902 static inline int may_lookup(struct mnt_idmap *idmap,
1903 			     struct nameidata *restrict nd)
1904 {
1905 	int err, mask;
1906 
1907 	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1908 	err = lookup_inode_permission_may_exec(idmap, nd->inode, mask);
1909 	if (likely(!err))
1910 		return 0;
1911 
1912 	// If we failed, and we weren't in LOOKUP_RCU, it's final
1913 	if (!(nd->flags & LOOKUP_RCU))
1914 		return err;
1915 
1916 	// Drop out of RCU mode to make sure it wasn't transient
1917 	if (!try_to_unlazy(nd))
1918 		return -ECHILD;	// redo it all non-lazy
1919 
1920 	if (err != -ECHILD)	// hard error
1921 		return err;
1922 
1923 	return lookup_inode_permission_may_exec(idmap, nd->inode, 0);
1924 }
1925 
reserve_stack(struct nameidata * nd,struct path * link)1926 static int reserve_stack(struct nameidata *nd, struct path *link)
1927 {
1928 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1929 		return -ELOOP;
1930 
1931 	if (likely(nd->depth != EMBEDDED_LEVELS))
1932 		return 0;
1933 	if (likely(nd->stack != nd->internal))
1934 		return 0;
1935 	if (likely(nd_alloc_stack(nd)))
1936 		return 0;
1937 
1938 	if (nd->flags & LOOKUP_RCU) {
1939 		// we need to grab link before we do unlazy.  And we can't skip
1940 		// unlazy even if we fail to grab the link - cleanup needs it
1941 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1942 
1943 		if (!try_to_unlazy(nd) || !grabbed_link)
1944 			return -ECHILD;
1945 
1946 		if (nd_alloc_stack(nd))
1947 			return 0;
1948 	}
1949 	return -ENOMEM;
1950 }
1951 
1952 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1953 
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1954 static noinline const char *pick_link(struct nameidata *nd, struct path *link,
1955 		     struct inode *inode, int flags)
1956 {
1957 	struct saved *last;
1958 	const char *res;
1959 	int error;
1960 
1961 	if (nd->flags & LOOKUP_RCU) {
1962 		/* make sure that d_is_symlink from step_into_slowpath() matches the inode */
1963 		if (read_seqcount_retry(&link->dentry->d_seq, nd->next_seq))
1964 			return ERR_PTR(-ECHILD);
1965 	} else {
1966 		if (link->mnt == nd->path.mnt)
1967 			mntget(link->mnt);
1968 	}
1969 
1970 	error = reserve_stack(nd, link);
1971 	if (unlikely(error)) {
1972 		if (!(nd->flags & LOOKUP_RCU))
1973 			path_put(link);
1974 		return ERR_PTR(error);
1975 	}
1976 	last = nd->stack + nd->depth++;
1977 	last->link = *link;
1978 	clear_delayed_call(&last->done);
1979 	last->seq = nd->next_seq;
1980 
1981 	if (flags & WALK_TRAILING) {
1982 		error = may_follow_link(nd, inode);
1983 		if (unlikely(error))
1984 			return ERR_PTR(error);
1985 	}
1986 
1987 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1988 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1989 		return ERR_PTR(-ELOOP);
1990 
1991 	if (unlikely(atime_needs_update(&last->link, inode))) {
1992 		if (nd->flags & LOOKUP_RCU) {
1993 			if (!try_to_unlazy(nd))
1994 				return ERR_PTR(-ECHILD);
1995 		}
1996 		touch_atime(&last->link);
1997 		cond_resched();
1998 	}
1999 
2000 	error = security_inode_follow_link(link->dentry, inode,
2001 					   nd->flags & LOOKUP_RCU);
2002 	if (unlikely(error))
2003 		return ERR_PTR(error);
2004 
2005 	res = READ_ONCE(inode->i_link);
2006 	if (!res) {
2007 		const char * (*get)(struct dentry *, struct inode *,
2008 				struct delayed_call *);
2009 		get = inode->i_op->get_link;
2010 		if (nd->flags & LOOKUP_RCU) {
2011 			res = get(NULL, inode, &last->done);
2012 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
2013 				res = get(link->dentry, inode, &last->done);
2014 		} else {
2015 			res = get(link->dentry, inode, &last->done);
2016 		}
2017 		if (!res)
2018 			goto all_done;
2019 		if (IS_ERR(res))
2020 			return res;
2021 	}
2022 	if (*res == '/') {
2023 		error = nd_jump_root(nd);
2024 		if (unlikely(error))
2025 			return ERR_PTR(error);
2026 		while (unlikely(*++res == '/'))
2027 			;
2028 	}
2029 	if (*res)
2030 		return res;
2031 all_done: // pure jump
2032 	put_link(nd);
2033 	return NULL;
2034 }
2035 
2036 /*
2037  * Do we need to follow links? We _really_ want to be able
2038  * to do this check without having to look at inode->i_op,
2039  * so we keep a cache of "no, this doesn't need follow_link"
2040  * for the common case.
2041  *
2042  * NOTE: dentry must be what nd->next_seq had been sampled from.
2043  */
step_into_slowpath(struct nameidata * nd,int flags,struct dentry * dentry)2044 static noinline const char *step_into_slowpath(struct nameidata *nd, int flags,
2045 		     struct dentry *dentry)
2046 {
2047 	struct path path;
2048 	struct inode *inode;
2049 	int err;
2050 
2051 	err = handle_mounts(nd, dentry, &path);
2052 	if (unlikely(err < 0))
2053 		return ERR_PTR(err);
2054 	inode = path.dentry->d_inode;
2055 	if (likely(!d_is_symlink(path.dentry)) ||
2056 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
2057 	   (flags & WALK_NOFOLLOW)) {
2058 		/* not a symlink or should not follow */
2059 		if (nd->flags & LOOKUP_RCU) {
2060 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2061 				return ERR_PTR(-ECHILD);
2062 			if (unlikely(!inode))
2063 				return ERR_PTR(-ENOENT);
2064 		} else {
2065 			dput(nd->path.dentry);
2066 			if (nd->path.mnt != path.mnt)
2067 				mntput(nd->path.mnt);
2068 		}
2069 		nd->path = path;
2070 		nd->inode = inode;
2071 		nd->seq = nd->next_seq;
2072 		return NULL;
2073 	}
2074 	return pick_link(nd, &path, inode, flags);
2075 }
2076 
step_into(struct nameidata * nd,int flags,struct dentry * dentry)2077 static __always_inline const char *step_into(struct nameidata *nd, int flags,
2078                     struct dentry *dentry)
2079 {
2080 	/*
2081 	 * In the common case we are in rcu-walk and traversing over a non-mounted on
2082 	 * directory (as opposed to e.g., a symlink).
2083 	 *
2084 	 * We can handle that and negative entries with the checks below.
2085 	 */
2086 	if (likely((nd->flags & LOOKUP_RCU) &&
2087 	    !d_managed(dentry) && !d_is_symlink(dentry))) {
2088 		struct inode *inode = dentry->d_inode;
2089 		if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
2090 			return ERR_PTR(-ECHILD);
2091 		if (unlikely(!inode))
2092 			return ERR_PTR(-ENOENT);
2093 		nd->path.dentry = dentry;
2094 		/* nd->path.mnt is retained on purpose */
2095 		nd->inode = inode;
2096 		nd->seq = nd->next_seq;
2097 		return NULL;
2098 	}
2099 	return step_into_slowpath(nd, flags, dentry);
2100 }
2101 
follow_dotdot_rcu(struct nameidata * nd)2102 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2103 {
2104 	struct dentry *parent, *old;
2105 
2106 	if (path_equal(&nd->path, &nd->root))
2107 		goto in_root;
2108 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2109 		struct path path;
2110 		unsigned seq;
2111 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2112 					   &nd->root, &path, &seq))
2113 			goto in_root;
2114 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2115 			return ERR_PTR(-ECHILD);
2116 		nd->path = path;
2117 		nd->inode = path.dentry->d_inode;
2118 		nd->seq = seq;
2119 		// makes sure that non-RCU pathwalk could reach this state
2120 		if (read_seqretry(&mount_lock, nd->m_seq))
2121 			return ERR_PTR(-ECHILD);
2122 		/* we know that mountpoint was pinned */
2123 	}
2124 	old = nd->path.dentry;
2125 	parent = old->d_parent;
2126 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
2127 	// makes sure that non-RCU pathwalk could reach this state
2128 	if (read_seqcount_retry(&old->d_seq, nd->seq))
2129 		return ERR_PTR(-ECHILD);
2130 	if (unlikely(!path_connected(nd->path.mnt, parent)))
2131 		return ERR_PTR(-ECHILD);
2132 	return parent;
2133 in_root:
2134 	if (read_seqretry(&mount_lock, nd->m_seq))
2135 		return ERR_PTR(-ECHILD);
2136 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2137 		return ERR_PTR(-ECHILD);
2138 	nd->next_seq = nd->seq;
2139 	return nd->path.dentry;
2140 }
2141 
follow_dotdot(struct nameidata * nd)2142 static struct dentry *follow_dotdot(struct nameidata *nd)
2143 {
2144 	struct dentry *parent;
2145 
2146 	if (path_equal(&nd->path, &nd->root))
2147 		goto in_root;
2148 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2149 		struct path path;
2150 
2151 		if (!choose_mountpoint(real_mount(nd->path.mnt),
2152 				       &nd->root, &path))
2153 			goto in_root;
2154 		path_put(&nd->path);
2155 		nd->path = path;
2156 		nd->inode = path.dentry->d_inode;
2157 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2158 			return ERR_PTR(-EXDEV);
2159 	}
2160 	/* rare case of legitimate dget_parent()... */
2161 	parent = dget_parent(nd->path.dentry);
2162 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2163 		dput(parent);
2164 		return ERR_PTR(-ENOENT);
2165 	}
2166 	return parent;
2167 
2168 in_root:
2169 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2170 		return ERR_PTR(-EXDEV);
2171 	return dget(nd->path.dentry);
2172 }
2173 
handle_dots(struct nameidata * nd,int type)2174 static const char *handle_dots(struct nameidata *nd, int type)
2175 {
2176 	if (type == LAST_DOTDOT) {
2177 		const char *error = NULL;
2178 		struct dentry *parent;
2179 
2180 		if (!nd->root.mnt) {
2181 			error = ERR_PTR(set_root(nd));
2182 			if (unlikely(error))
2183 				return error;
2184 		}
2185 		if (nd->flags & LOOKUP_RCU)
2186 			parent = follow_dotdot_rcu(nd);
2187 		else
2188 			parent = follow_dotdot(nd);
2189 		if (IS_ERR(parent))
2190 			return ERR_CAST(parent);
2191 		error = step_into(nd, WALK_NOFOLLOW, parent);
2192 		if (unlikely(error))
2193 			return error;
2194 
2195 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2196 			/*
2197 			 * If there was a racing rename or mount along our
2198 			 * path, then we can't be sure that ".." hasn't jumped
2199 			 * above nd->root (and so userspace should retry or use
2200 			 * some fallback).
2201 			 */
2202 			smp_rmb();
2203 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2204 				return ERR_PTR(-EAGAIN);
2205 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2206 				return ERR_PTR(-EAGAIN);
2207 		}
2208 	}
2209 	return NULL;
2210 }
2211 
walk_component(struct nameidata * nd,int flags)2212 static __always_inline const char *walk_component(struct nameidata *nd, int flags)
2213 {
2214 	struct dentry *dentry;
2215 	/*
2216 	 * "." and ".." are special - ".." especially so because it has
2217 	 * to be able to know about the current root directory and
2218 	 * parent relationships.
2219 	 */
2220 	if (unlikely(nd->last_type != LAST_NORM)) {
2221 		if (unlikely(nd->depth) && !(flags & WALK_MORE))
2222 			put_link(nd);
2223 		return handle_dots(nd, nd->last_type);
2224 	}
2225 	dentry = lookup_fast(nd);
2226 	if (IS_ERR(dentry))
2227 		return ERR_CAST(dentry);
2228 	if (unlikely(!dentry)) {
2229 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2230 		if (IS_ERR(dentry))
2231 			return ERR_CAST(dentry);
2232 	}
2233 	if (unlikely(nd->depth) && !(flags & WALK_MORE))
2234 		put_link(nd);
2235 	return step_into(nd, flags, dentry);
2236 }
2237 
2238 /*
2239  * We can do the critical dentry name comparison and hashing
2240  * operations one word at a time, but we are limited to:
2241  *
2242  * - Architectures with fast unaligned word accesses. We could
2243  *   do a "get_unaligned()" if this helps and is sufficiently
2244  *   fast.
2245  *
2246  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2247  *   do not trap on the (extremely unlikely) case of a page
2248  *   crossing operation.
2249  *
2250  * - Furthermore, we need an efficient 64-bit compile for the
2251  *   64-bit case in order to generate the "number of bytes in
2252  *   the final mask". Again, that could be replaced with a
2253  *   efficient population count instruction or similar.
2254  */
2255 #ifdef CONFIG_DCACHE_WORD_ACCESS
2256 
2257 #include <asm/word-at-a-time.h>
2258 
2259 #ifdef HASH_MIX
2260 
2261 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2262 
2263 #elif defined(CONFIG_64BIT)
2264 /*
2265  * Register pressure in the mixing function is an issue, particularly
2266  * on 32-bit x86, but almost any function requires one state value and
2267  * one temporary.  Instead, use a function designed for two state values
2268  * and no temporaries.
2269  *
2270  * This function cannot create a collision in only two iterations, so
2271  * we have two iterations to achieve avalanche.  In those two iterations,
2272  * we have six layers of mixing, which is enough to spread one bit's
2273  * influence out to 2^6 = 64 state bits.
2274  *
2275  * Rotate constants are scored by considering either 64 one-bit input
2276  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2277  * probability of that delta causing a change to each of the 128 output
2278  * bits, using a sample of random initial states.
2279  *
2280  * The Shannon entropy of the computed probabilities is then summed
2281  * to produce a score.  Ideally, any input change has a 50% chance of
2282  * toggling any given output bit.
2283  *
2284  * Mixing scores (in bits) for (12,45):
2285  * Input delta: 1-bit      2-bit
2286  * 1 round:     713.3    42542.6
2287  * 2 rounds:   2753.7   140389.8
2288  * 3 rounds:   5954.1   233458.2
2289  * 4 rounds:   7862.6   256672.2
2290  * Perfect:    8192     258048
2291  *            (64*128) (64*63/2 * 128)
2292  */
2293 #define HASH_MIX(x, y, a)	\
2294 	(	x ^= (a),	\
2295 	y ^= x,	x = rol64(x,12),\
2296 	x += y,	y = rol64(y,45),\
2297 	y *= 9			)
2298 
2299 /*
2300  * Fold two longs into one 32-bit hash value.  This must be fast, but
2301  * latency isn't quite as critical, as there is a fair bit of additional
2302  * work done before the hash value is used.
2303  */
fold_hash(unsigned long x,unsigned long y)2304 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2305 {
2306 	y ^= x * GOLDEN_RATIO_64;
2307 	y *= GOLDEN_RATIO_64;
2308 	return y >> 32;
2309 }
2310 
2311 #else	/* 32-bit case */
2312 
2313 /*
2314  * Mixing scores (in bits) for (7,20):
2315  * Input delta: 1-bit      2-bit
2316  * 1 round:     330.3     9201.6
2317  * 2 rounds:   1246.4    25475.4
2318  * 3 rounds:   1907.1    31295.1
2319  * 4 rounds:   2042.3    31718.6
2320  * Perfect:    2048      31744
2321  *            (32*64)   (32*31/2 * 64)
2322  */
2323 #define HASH_MIX(x, y, a)	\
2324 	(	x ^= (a),	\
2325 	y ^= x,	x = rol32(x, 7),\
2326 	x += y,	y = rol32(y,20),\
2327 	y *= 9			)
2328 
fold_hash(unsigned long x,unsigned long y)2329 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2330 {
2331 	/* Use arch-optimized multiply if one exists */
2332 	return __hash_32(y ^ __hash_32(x));
2333 }
2334 
2335 #endif
2336 
2337 /*
2338  * Return the hash of a string of known length.  This is carfully
2339  * designed to match hash_name(), which is the more critical function.
2340  * In particular, we must end by hashing a final word containing 0..7
2341  * payload bytes, to match the way that hash_name() iterates until it
2342  * finds the delimiter after the name.
2343  */
full_name_hash(const void * salt,const char * name,unsigned int len)2344 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2345 {
2346 	unsigned long a, x = 0, y = (unsigned long)salt;
2347 
2348 	for (;;) {
2349 		if (!len)
2350 			goto done;
2351 		a = load_unaligned_zeropad(name);
2352 		if (len < sizeof(unsigned long))
2353 			break;
2354 		HASH_MIX(x, y, a);
2355 		name += sizeof(unsigned long);
2356 		len -= sizeof(unsigned long);
2357 	}
2358 	x ^= a & bytemask_from_count(len);
2359 done:
2360 	return fold_hash(x, y);
2361 }
2362 EXPORT_SYMBOL(full_name_hash);
2363 
2364 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2365 u64 hashlen_string(const void *salt, const char *name)
2366 {
2367 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2368 	unsigned long adata, mask, len;
2369 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2370 
2371 	len = 0;
2372 	goto inside;
2373 
2374 	do {
2375 		HASH_MIX(x, y, a);
2376 		len += sizeof(unsigned long);
2377 inside:
2378 		a = load_unaligned_zeropad(name+len);
2379 	} while (!has_zero(a, &adata, &constants));
2380 
2381 	adata = prep_zero_mask(a, adata, &constants);
2382 	mask = create_zero_mask(adata);
2383 	x ^= a & zero_bytemask(mask);
2384 
2385 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2386 }
2387 EXPORT_SYMBOL(hashlen_string);
2388 
2389 /*
2390  * Calculate the length and hash of the path component, and
2391  * return the length as the result.
2392  */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2393 static inline const char *hash_name(struct nameidata *nd,
2394 				    const char *name,
2395 				    unsigned long *lastword)
2396 {
2397 	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2398 	unsigned long adata, bdata, mask, len;
2399 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2400 
2401 	/*
2402 	 * The first iteration is special, because it can result in
2403 	 * '.' and '..' and has no mixing other than the final fold.
2404 	 */
2405 	a = load_unaligned_zeropad(name);
2406 	b = a ^ REPEAT_BYTE('/');
2407 	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2408 		adata = prep_zero_mask(a, adata, &constants);
2409 		bdata = prep_zero_mask(b, bdata, &constants);
2410 		mask = create_zero_mask(adata | bdata);
2411 		a &= zero_bytemask(mask);
2412 		*lastword = a;
2413 		len = find_zero(mask);
2414 		nd->last.hash = fold_hash(a, y);
2415 		nd->last.len = len;
2416 		return name + len;
2417 	}
2418 
2419 	len = 0;
2420 	x = 0;
2421 	do {
2422 		HASH_MIX(x, y, a);
2423 		len += sizeof(unsigned long);
2424 		a = load_unaligned_zeropad(name+len);
2425 		b = a ^ REPEAT_BYTE('/');
2426 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2427 
2428 	adata = prep_zero_mask(a, adata, &constants);
2429 	bdata = prep_zero_mask(b, bdata, &constants);
2430 	mask = create_zero_mask(adata | bdata);
2431 	a &= zero_bytemask(mask);
2432 	x ^= a;
2433 	len += find_zero(mask);
2434 	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2435 
2436 	nd->last.hash = fold_hash(x, y);
2437 	nd->last.len = len;
2438 	return name + len;
2439 }
2440 
2441 /*
2442  * Note that the 'last' word is always zero-masked, but
2443  * was loaded as a possibly big-endian word.
2444  */
2445 #ifdef __BIG_ENDIAN
2446   #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2447   #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2448 #endif
2449 
2450 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2451 
2452 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2453 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2454 {
2455 	unsigned long hash = init_name_hash(salt);
2456 	while (len--)
2457 		hash = partial_name_hash((unsigned char)*name++, hash);
2458 	return end_name_hash(hash);
2459 }
2460 EXPORT_SYMBOL(full_name_hash);
2461 
2462 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2463 u64 hashlen_string(const void *salt, const char *name)
2464 {
2465 	unsigned long hash = init_name_hash(salt);
2466 	unsigned long len = 0, c;
2467 
2468 	c = (unsigned char)*name;
2469 	while (c) {
2470 		len++;
2471 		hash = partial_name_hash(c, hash);
2472 		c = (unsigned char)name[len];
2473 	}
2474 	return hashlen_create(end_name_hash(hash), len);
2475 }
2476 EXPORT_SYMBOL(hashlen_string);
2477 
2478 /*
2479  * We know there's a real path component here of at least
2480  * one character.
2481  */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2482 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2483 {
2484 	unsigned long hash = init_name_hash(nd->path.dentry);
2485 	unsigned long len = 0, c, last = 0;
2486 
2487 	c = (unsigned char)*name;
2488 	do {
2489 		last = (last << 8) + c;
2490 		len++;
2491 		hash = partial_name_hash(c, hash);
2492 		c = (unsigned char)name[len];
2493 	} while (c && c != '/');
2494 
2495 	// This is reliable for DOT or DOTDOT, since the component
2496 	// cannot contain NUL characters - top bits being zero means
2497 	// we cannot have had any other pathnames.
2498 	*lastword = last;
2499 	nd->last.hash = end_name_hash(hash);
2500 	nd->last.len = len;
2501 	return name + len;
2502 }
2503 
2504 #endif
2505 
2506 #ifndef LAST_WORD_IS_DOT
2507   #define LAST_WORD_IS_DOT	0x2e
2508   #define LAST_WORD_IS_DOTDOT	0x2e2e
2509 #endif
2510 
2511 /*
2512  * Name resolution.
2513  * This is the basic name resolution function, turning a pathname into
2514  * the final dentry. We expect 'base' to be positive and a directory.
2515  *
2516  * Returns 0 and nd will have valid dentry and mnt on success.
2517  * Returns error and drops reference to input namei data on failure.
2518  */
link_path_walk(const char * name,struct nameidata * nd)2519 static int link_path_walk(const char *name, struct nameidata *nd)
2520 {
2521 	int depth = 0; // depth <= nd->depth
2522 	int err;
2523 
2524 	nd->last_type = LAST_ROOT;
2525 	nd->flags |= LOOKUP_PARENT;
2526 	if (IS_ERR(name))
2527 		return PTR_ERR(name);
2528 	if (*name == '/') {
2529 		do {
2530 			name++;
2531 		} while (unlikely(*name == '/'));
2532 	}
2533 	if (unlikely(!*name)) {
2534 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2535 		return 0;
2536 	}
2537 
2538 	/* At this point we know we have a real path component. */
2539 	for(;;) {
2540 		struct mnt_idmap *idmap;
2541 		const char *link;
2542 		unsigned long lastword;
2543 
2544 		idmap = mnt_idmap(nd->path.mnt);
2545 		err = may_lookup(idmap, nd);
2546 		if (unlikely(err))
2547 			return err;
2548 
2549 		nd->last.name = name;
2550 		name = hash_name(nd, name, &lastword);
2551 
2552 		switch(lastword) {
2553 		case LAST_WORD_IS_DOTDOT:
2554 			nd->last_type = LAST_DOTDOT;
2555 			nd->state |= ND_JUMPED;
2556 			break;
2557 
2558 		case LAST_WORD_IS_DOT:
2559 			nd->last_type = LAST_DOT;
2560 			break;
2561 
2562 		default:
2563 			nd->last_type = LAST_NORM;
2564 			nd->state &= ~ND_JUMPED;
2565 
2566 			struct dentry *parent = nd->path.dentry;
2567 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2568 				err = parent->d_op->d_hash(parent, &nd->last);
2569 				if (err < 0)
2570 					return err;
2571 			}
2572 		}
2573 
2574 		if (!*name)
2575 			goto OK;
2576 		/*
2577 		 * If it wasn't NUL, we know it was '/'. Skip that
2578 		 * slash, and continue until no more slashes.
2579 		 */
2580 		do {
2581 			name++;
2582 		} while (unlikely(*name == '/'));
2583 		if (unlikely(!*name)) {
2584 OK:
2585 			/* pathname or trailing symlink, done */
2586 			if (likely(!depth)) {
2587 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2588 				nd->dir_mode = nd->inode->i_mode;
2589 				nd->flags &= ~LOOKUP_PARENT;
2590 				return 0;
2591 			}
2592 			/* last component of nested symlink */
2593 			name = nd->stack[--depth].name;
2594 			link = walk_component(nd, 0);
2595 		} else {
2596 			/* not the last component */
2597 			link = walk_component(nd, WALK_MORE);
2598 		}
2599 		if (unlikely(link)) {
2600 			if (IS_ERR(link))
2601 				return PTR_ERR(link);
2602 			/* a symlink to follow */
2603 			nd->stack[depth++].name = name;
2604 			name = link;
2605 			continue;
2606 		}
2607 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2608 			if (nd->flags & LOOKUP_RCU) {
2609 				if (!try_to_unlazy(nd))
2610 					return -ECHILD;
2611 			}
2612 			return -ENOTDIR;
2613 		}
2614 	}
2615 }
2616 
2617 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2618 static const char *path_init(struct nameidata *nd, unsigned flags)
2619 {
2620 	int error;
2621 	const char *s = nd->pathname;
2622 
2623 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2624 	if (unlikely((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED))
2625 		return ERR_PTR(-EAGAIN);
2626 
2627 	if (unlikely(!*s))
2628 		flags &= ~LOOKUP_RCU;
2629 	if (flags & LOOKUP_RCU)
2630 		rcu_read_lock();
2631 	else
2632 		nd->seq = nd->next_seq = 0;
2633 
2634 	nd->flags = flags;
2635 	nd->state |= ND_JUMPED;
2636 
2637 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2638 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2639 	smp_rmb();
2640 
2641 	if (unlikely(nd->state & ND_ROOT_PRESET)) {
2642 		struct dentry *root = nd->root.dentry;
2643 		struct inode *inode = root->d_inode;
2644 		if (*s && unlikely(!d_can_lookup(root)))
2645 			return ERR_PTR(-ENOTDIR);
2646 		nd->path = nd->root;
2647 		nd->inode = inode;
2648 		if (flags & LOOKUP_RCU) {
2649 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2650 			nd->root_seq = nd->seq;
2651 		} else {
2652 			path_get(&nd->path);
2653 		}
2654 		return s;
2655 	}
2656 
2657 	nd->root.mnt = NULL;
2658 
2659 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2660 	if (*s == '/' && likely(!(flags & LOOKUP_IN_ROOT))) {
2661 		error = nd_jump_root(nd);
2662 		if (unlikely(error))
2663 			return ERR_PTR(error);
2664 		return s;
2665 	}
2666 
2667 	/* Relative pathname -- get the starting-point it is relative to. */
2668 	if (nd->dfd == AT_FDCWD) {
2669 		if (flags & LOOKUP_RCU) {
2670 			struct fs_struct *fs = current->fs;
2671 			unsigned seq;
2672 
2673 			do {
2674 				seq = read_seqbegin(&fs->seq);
2675 				nd->path = fs->pwd;
2676 				nd->inode = nd->path.dentry->d_inode;
2677 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2678 			} while (read_seqretry(&fs->seq, seq));
2679 		} else {
2680 			get_fs_pwd(current->fs, &nd->path);
2681 			nd->inode = nd->path.dentry->d_inode;
2682 		}
2683 	} else {
2684 		/* Caller must check execute permissions on the starting path component */
2685 		CLASS(fd_raw, f)(nd->dfd);
2686 		struct dentry *dentry;
2687 
2688 		if (fd_empty(f))
2689 			return ERR_PTR(-EBADF);
2690 
2691 		if (flags & LOOKUP_LINKAT_EMPTY) {
2692 			if (fd_file(f)->f_cred != current_cred() &&
2693 			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2694 				return ERR_PTR(-ENOENT);
2695 		}
2696 
2697 		dentry = fd_file(f)->f_path.dentry;
2698 
2699 		if (*s && unlikely(!d_can_lookup(dentry)))
2700 			return ERR_PTR(-ENOTDIR);
2701 
2702 		nd->path = fd_file(f)->f_path;
2703 		if (flags & LOOKUP_RCU) {
2704 			nd->inode = nd->path.dentry->d_inode;
2705 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2706 		} else {
2707 			path_get(&nd->path);
2708 			nd->inode = nd->path.dentry->d_inode;
2709 		}
2710 	}
2711 
2712 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2713 	if (unlikely(flags & LOOKUP_IS_SCOPED)) {
2714 		nd->root = nd->path;
2715 		if (flags & LOOKUP_RCU) {
2716 			nd->root_seq = nd->seq;
2717 		} else {
2718 			path_get(&nd->root);
2719 			nd->state |= ND_ROOT_GRABBED;
2720 		}
2721 	}
2722 	return s;
2723 }
2724 
lookup_last(struct nameidata * nd)2725 static inline const char *lookup_last(struct nameidata *nd)
2726 {
2727 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2728 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2729 
2730 	return walk_component(nd, WALK_TRAILING);
2731 }
2732 
handle_lookup_down(struct nameidata * nd)2733 static int handle_lookup_down(struct nameidata *nd)
2734 {
2735 	if (!(nd->flags & LOOKUP_RCU))
2736 		dget(nd->path.dentry);
2737 	nd->next_seq = nd->seq;
2738 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2739 }
2740 
2741 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2742 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2743 {
2744 	const char *s = path_init(nd, flags);
2745 	int err;
2746 
2747 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2748 		err = handle_lookup_down(nd);
2749 		if (unlikely(err < 0))
2750 			s = ERR_PTR(err);
2751 	}
2752 
2753 	while (!(err = link_path_walk(s, nd)) &&
2754 	       (s = lookup_last(nd)) != NULL)
2755 		;
2756 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2757 		err = handle_lookup_down(nd);
2758 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2759 	}
2760 	if (!err)
2761 		err = complete_walk(nd);
2762 
2763 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2764 		if (!d_can_lookup(nd->path.dentry))
2765 			err = -ENOTDIR;
2766 	if (!err) {
2767 		*path = nd->path;
2768 		nd->path.mnt = NULL;
2769 		nd->path.dentry = NULL;
2770 	}
2771 	terminate_walk(nd);
2772 	return err;
2773 }
2774 
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,const struct path * root)2775 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2776 		    struct path *path, const struct path *root)
2777 {
2778 	int retval;
2779 	struct nameidata nd;
2780 	if (IS_ERR(name))
2781 		return PTR_ERR(name);
2782 	set_nameidata(&nd, dfd, name, root);
2783 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2784 	if (unlikely(retval == -ECHILD))
2785 		retval = path_lookupat(&nd, flags, path);
2786 	if (unlikely(retval == -ESTALE))
2787 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2788 
2789 	if (likely(!retval))
2790 		audit_inode(name, path->dentry,
2791 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2792 	restore_nameidata();
2793 	return retval;
2794 }
2795 
2796 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2797 static int path_parentat(struct nameidata *nd, unsigned flags,
2798 				struct path *parent)
2799 {
2800 	const char *s = path_init(nd, flags);
2801 	int err = link_path_walk(s, nd);
2802 	if (!err)
2803 		err = complete_walk(nd);
2804 	if (!err) {
2805 		*parent = nd->path;
2806 		nd->path.mnt = NULL;
2807 		nd->path.dentry = NULL;
2808 	}
2809 	terminate_walk(nd);
2810 	return err;
2811 }
2812 
2813 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2814 static int __filename_parentat(int dfd, struct filename *name,
2815 			       unsigned int flags, struct path *parent,
2816 			       struct qstr *last, int *type,
2817 			       const struct path *root)
2818 {
2819 	int retval;
2820 	struct nameidata nd;
2821 
2822 	if (IS_ERR(name))
2823 		return PTR_ERR(name);
2824 	set_nameidata(&nd, dfd, name, root);
2825 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2826 	if (unlikely(retval == -ECHILD))
2827 		retval = path_parentat(&nd, flags, parent);
2828 	if (unlikely(retval == -ESTALE))
2829 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2830 	if (likely(!retval)) {
2831 		*last = nd.last;
2832 		*type = nd.last_type;
2833 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2834 	}
2835 	restore_nameidata();
2836 	return retval;
2837 }
2838 
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2839 static int filename_parentat(int dfd, struct filename *name,
2840 			     unsigned int flags, struct path *parent,
2841 			     struct qstr *last, int *type)
2842 {
2843 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2844 }
2845 
2846 /**
2847  * __start_dirop - begin a create or remove dirop, performing locking and lookup
2848  * @parent:       the dentry of the parent in which the operation will occur
2849  * @name:         a qstr holding the name within that parent
2850  * @lookup_flags: intent and other lookup flags.
2851  * @state:        task state bitmask
2852  *
2853  * The lookup is performed and necessary locks are taken so that, on success,
2854  * the returned dentry can be operated on safely.
2855  * The qstr must already have the hash value calculated.
2856  *
2857  * Returns: a locked dentry, or an error.
2858  *
2859  */
__start_dirop(struct dentry * parent,struct qstr * name,unsigned int lookup_flags,unsigned int state)2860 static struct dentry *__start_dirop(struct dentry *parent, struct qstr *name,
2861 				    unsigned int lookup_flags,
2862 				    unsigned int state)
2863 {
2864 	struct dentry *dentry;
2865 	struct inode *dir = d_inode(parent);
2866 
2867 	if (state == TASK_KILLABLE) {
2868 		int ret = down_write_killable_nested(&dir->i_rwsem,
2869 						     I_MUTEX_PARENT);
2870 		if (ret)
2871 			return ERR_PTR(ret);
2872 	} else {
2873 		inode_lock_nested(dir, I_MUTEX_PARENT);
2874 	}
2875 	dentry = lookup_one_qstr_excl(name, parent, lookup_flags);
2876 	if (IS_ERR(dentry))
2877 		inode_unlock(dir);
2878 	return dentry;
2879 }
2880 
start_dirop(struct dentry * parent,struct qstr * name,unsigned int lookup_flags)2881 struct dentry *start_dirop(struct dentry *parent, struct qstr *name,
2882 			   unsigned int lookup_flags)
2883 {
2884 	return __start_dirop(parent, name, lookup_flags, TASK_NORMAL);
2885 }
2886 
2887 /**
2888  * end_dirop - signal completion of a dirop
2889  * @de: the dentry which was returned by start_dirop or similar.
2890  *
2891  * If the de is an error, nothing happens. Otherwise any lock taken to
2892  * protect the dentry is dropped and the dentry itself is release (dput()).
2893  */
end_dirop(struct dentry * de)2894 void end_dirop(struct dentry *de)
2895 {
2896 	if (!IS_ERR(de)) {
2897 		inode_unlock(de->d_parent->d_inode);
2898 		dput(de);
2899 	}
2900 }
2901 EXPORT_SYMBOL(end_dirop);
2902 
2903 /* does lookup, returns the object with parent locked */
__start_removing_path(int dfd,struct filename * name,struct path * path)2904 static struct dentry *__start_removing_path(int dfd, struct filename *name,
2905 					   struct path *path)
2906 {
2907 	struct path parent_path __free(path_put) = {};
2908 	struct dentry *d;
2909 	struct qstr last;
2910 	int type, error;
2911 
2912 	error = filename_parentat(dfd, name, 0, &parent_path, &last, &type);
2913 	if (error)
2914 		return ERR_PTR(error);
2915 	if (unlikely(type != LAST_NORM))
2916 		return ERR_PTR(-EINVAL);
2917 	/* don't fail immediately if it's r/o, at least try to report other errors */
2918 	error = mnt_want_write(parent_path.mnt);
2919 	d = start_dirop(parent_path.dentry, &last, 0);
2920 	if (IS_ERR(d))
2921 		goto drop;
2922 	if (error)
2923 		goto fail;
2924 	path->dentry = no_free_ptr(parent_path.dentry);
2925 	path->mnt = no_free_ptr(parent_path.mnt);
2926 	return d;
2927 
2928 fail:
2929 	end_dirop(d);
2930 	d = ERR_PTR(error);
2931 drop:
2932 	if (!error)
2933 		mnt_drop_write(parent_path.mnt);
2934 	return d;
2935 }
2936 
2937 /**
2938  * kern_path_parent: lookup path returning parent and target
2939  * @name: path name
2940  * @path: path to store parent in
2941  *
2942  * The path @name should end with a normal component, not "." or ".." or "/".
2943  * A lookup is performed and if successful the parent information
2944  * is store in @parent and the dentry is returned.
2945  *
2946  * The dentry maybe negative, the parent will be positive.
2947  *
2948  * Returns:  dentry or error.
2949  */
kern_path_parent(const char * name,struct path * path)2950 struct dentry *kern_path_parent(const char *name, struct path *path)
2951 {
2952 	struct path parent_path __free(path_put) = {};
2953 	struct filename *filename __free(putname) = getname_kernel(name);
2954 	struct dentry *d;
2955 	struct qstr last;
2956 	int type, error;
2957 
2958 	error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type);
2959 	if (error)
2960 		return ERR_PTR(error);
2961 	if (unlikely(type != LAST_NORM))
2962 		return ERR_PTR(-EINVAL);
2963 
2964 	d = lookup_noperm_unlocked(&last, parent_path.dentry);
2965 	if (IS_ERR(d))
2966 		return d;
2967 	path->dentry = no_free_ptr(parent_path.dentry);
2968 	path->mnt = no_free_ptr(parent_path.mnt);
2969 	return d;
2970 }
2971 
start_removing_path(const char * name,struct path * path)2972 struct dentry *start_removing_path(const char *name, struct path *path)
2973 {
2974 	struct filename *filename = getname_kernel(name);
2975 	struct dentry *res = __start_removing_path(AT_FDCWD, filename, path);
2976 
2977 	putname(filename);
2978 	return res;
2979 }
2980 
start_removing_user_path_at(int dfd,const char __user * name,struct path * path)2981 struct dentry *start_removing_user_path_at(int dfd,
2982 					   const char __user *name,
2983 					   struct path *path)
2984 {
2985 	struct filename *filename = getname(name);
2986 	struct dentry *res = __start_removing_path(dfd, filename, path);
2987 
2988 	putname(filename);
2989 	return res;
2990 }
2991 EXPORT_SYMBOL(start_removing_user_path_at);
2992 
kern_path(const char * name,unsigned int flags,struct path * path)2993 int kern_path(const char *name, unsigned int flags, struct path *path)
2994 {
2995 	struct filename *filename = getname_kernel(name);
2996 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2997 
2998 	putname(filename);
2999 	return ret;
3000 
3001 }
3002 EXPORT_SYMBOL(kern_path);
3003 
3004 /**
3005  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
3006  * @filename: filename structure
3007  * @flags: lookup flags
3008  * @parent: pointer to struct path to fill
3009  * @last: last component
3010  * @type: type of the last component
3011  * @root: pointer to struct path of the base directory
3012  */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)3013 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
3014 			   struct path *parent, struct qstr *last, int *type,
3015 			   const struct path *root)
3016 {
3017 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
3018 				    type, root);
3019 }
3020 EXPORT_SYMBOL(vfs_path_parent_lookup);
3021 
3022 /**
3023  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
3024  * @dentry:  pointer to dentry of the base directory
3025  * @mnt: pointer to vfs mount of the base directory
3026  * @name: pointer to file name
3027  * @flags: lookup flags
3028  * @path: pointer to struct path to fill
3029  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)3030 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
3031 		    const char *name, unsigned int flags,
3032 		    struct path *path)
3033 {
3034 	struct filename *filename;
3035 	struct path root = {.mnt = mnt, .dentry = dentry};
3036 	int ret;
3037 
3038 	filename = getname_kernel(name);
3039 	/* the first argument of filename_lookup() is ignored with root */
3040 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
3041 	putname(filename);
3042 	return ret;
3043 }
3044 EXPORT_SYMBOL(vfs_path_lookup);
3045 
lookup_noperm_common(struct qstr * qname,struct dentry * base)3046 int lookup_noperm_common(struct qstr *qname, struct dentry *base)
3047 {
3048 	const char *name = qname->name;
3049 	u32 len = qname->len;
3050 
3051 	qname->hash = full_name_hash(base, name, len);
3052 	if (!len)
3053 		return -EACCES;
3054 
3055 	if (is_dot_dotdot(name, len))
3056 		return -EACCES;
3057 
3058 	while (len--) {
3059 		unsigned int c = *(const unsigned char *)name++;
3060 		if (c == '/' || c == '\0')
3061 			return -EACCES;
3062 	}
3063 	/*
3064 	 * See if the low-level filesystem might want
3065 	 * to use its own hash..
3066 	 */
3067 	if (base->d_flags & DCACHE_OP_HASH) {
3068 		int err = base->d_op->d_hash(base, qname);
3069 		if (err < 0)
3070 			return err;
3071 	}
3072 	return 0;
3073 }
3074 
lookup_one_common(struct mnt_idmap * idmap,struct qstr * qname,struct dentry * base)3075 static int lookup_one_common(struct mnt_idmap *idmap,
3076 			     struct qstr *qname, struct dentry *base)
3077 {
3078 	int err;
3079 	err = lookup_noperm_common(qname, base);
3080 	if (err < 0)
3081 		return err;
3082 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
3083 }
3084 
3085 /**
3086  * try_lookup_noperm - filesystem helper to lookup single pathname component
3087  * @name:	qstr storing pathname component to lookup
3088  * @base:	base directory to lookup from
3089  *
3090  * Look up a dentry by name in the dcache, returning NULL if it does not
3091  * currently exist.  The function does not try to create a dentry and if one
3092  * is found it doesn't try to revalidate it.
3093  *
3094  * Note that this routine is purely a helper for filesystem usage and should
3095  * not be called by generic code.  It does no permission checking.
3096  *
3097  * No locks need be held - only a counted reference to @base is needed.
3098  *
3099  */
try_lookup_noperm(struct qstr * name,struct dentry * base)3100 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base)
3101 {
3102 	int err;
3103 
3104 	err = lookup_noperm_common(name, base);
3105 	if (err)
3106 		return ERR_PTR(err);
3107 
3108 	return d_lookup(base, name);
3109 }
3110 EXPORT_SYMBOL(try_lookup_noperm);
3111 
3112 /**
3113  * lookup_noperm - filesystem helper to lookup single pathname component
3114  * @name:	qstr storing pathname component to lookup
3115  * @base:	base directory to lookup from
3116  *
3117  * Note that this routine is purely a helper for filesystem usage and should
3118  * not be called by generic code.  It does no permission checking.
3119  *
3120  * The caller must hold base->i_rwsem.
3121  */
lookup_noperm(struct qstr * name,struct dentry * base)3122 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base)
3123 {
3124 	struct dentry *dentry;
3125 	int err;
3126 
3127 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
3128 
3129 	err = lookup_noperm_common(name, base);
3130 	if (err)
3131 		return ERR_PTR(err);
3132 
3133 	dentry = lookup_dcache(name, base, 0);
3134 	return dentry ? dentry : __lookup_slow(name, base, 0);
3135 }
3136 EXPORT_SYMBOL(lookup_noperm);
3137 
3138 /**
3139  * lookup_one - lookup single pathname component
3140  * @idmap:	idmap of the mount the lookup is performed from
3141  * @name:	qstr holding pathname component to lookup
3142  * @base:	base directory to lookup from
3143  *
3144  * This can be used for in-kernel filesystem clients such as file servers.
3145  *
3146  * The caller must hold base->i_rwsem.
3147  */
lookup_one(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3148 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name,
3149 			  struct dentry *base)
3150 {
3151 	struct dentry *dentry;
3152 	int err;
3153 
3154 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
3155 
3156 	err = lookup_one_common(idmap, name, base);
3157 	if (err)
3158 		return ERR_PTR(err);
3159 
3160 	dentry = lookup_dcache(name, base, 0);
3161 	return dentry ? dentry : __lookup_slow(name, base, 0);
3162 }
3163 EXPORT_SYMBOL(lookup_one);
3164 
3165 /**
3166  * lookup_one_unlocked - lookup single pathname component
3167  * @idmap:	idmap of the mount the lookup is performed from
3168  * @name:	qstr olding pathname component to lookup
3169  * @base:	base directory to lookup from
3170  *
3171  * This can be used for in-kernel filesystem clients such as file servers.
3172  *
3173  * Unlike lookup_one, it should be called without the parent
3174  * i_rwsem held, and will take the i_rwsem itself if necessary.
3175  */
lookup_one_unlocked(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3176 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name,
3177 				   struct dentry *base)
3178 {
3179 	int err;
3180 	struct dentry *ret;
3181 
3182 	err = lookup_one_common(idmap, name, base);
3183 	if (err)
3184 		return ERR_PTR(err);
3185 
3186 	ret = lookup_dcache(name, base, 0);
3187 	if (!ret)
3188 		ret = lookup_slow(name, base, 0);
3189 	return ret;
3190 }
3191 EXPORT_SYMBOL(lookup_one_unlocked);
3192 
3193 /**
3194  * lookup_one_positive_killable - lookup single pathname component
3195  * @idmap:	idmap of the mount the lookup is performed from
3196  * @name:	qstr olding pathname component to lookup
3197  * @base:	base directory to lookup from
3198  *
3199  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3200  * known positive or ERR_PTR(). This is what most of the users want.
3201  *
3202  * Note that pinned negative with unlocked parent _can_ become positive at any
3203  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3204  * positives have >d_inode stable, so this one avoids such problems.
3205  *
3206  * This can be used for in-kernel filesystem clients such as file servers.
3207  *
3208  * It should be called without the parent i_rwsem held, and will take
3209  * the i_rwsem itself if necessary.  If a fatal signal is pending or
3210  * delivered, it will return %-EINTR if the lock is needed.
3211  */
lookup_one_positive_killable(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3212 struct dentry *lookup_one_positive_killable(struct mnt_idmap *idmap,
3213 					    struct qstr *name,
3214 					    struct dentry *base)
3215 {
3216 	int err;
3217 	struct dentry *ret;
3218 
3219 	err = lookup_one_common(idmap, name, base);
3220 	if (err)
3221 		return ERR_PTR(err);
3222 
3223 	ret = lookup_dcache(name, base, 0);
3224 	if (!ret)
3225 		ret = lookup_slow_killable(name, base, 0);
3226 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3227 		dput(ret);
3228 		ret = ERR_PTR(-ENOENT);
3229 	}
3230 	return ret;
3231 }
3232 EXPORT_SYMBOL(lookup_one_positive_killable);
3233 
3234 /**
3235  * lookup_one_positive_unlocked - lookup single pathname component
3236  * @idmap:	idmap of the mount the lookup is performed from
3237  * @name:	qstr holding pathname component to lookup
3238  * @base:	base directory to lookup from
3239  *
3240  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3241  * known positive or ERR_PTR(). This is what most of the users want.
3242  *
3243  * Note that pinned negative with unlocked parent _can_ become positive at any
3244  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3245  * positives have >d_inode stable, so this one avoids such problems.
3246  *
3247  * This can be used for in-kernel filesystem clients such as file servers.
3248  *
3249  * The helper should be called without i_rwsem held.
3250  */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3251 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3252 					    struct qstr *name,
3253 					    struct dentry *base)
3254 {
3255 	struct dentry *ret = lookup_one_unlocked(idmap, name, base);
3256 
3257 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3258 		dput(ret);
3259 		ret = ERR_PTR(-ENOENT);
3260 	}
3261 	return ret;
3262 }
3263 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3264 
3265 /**
3266  * lookup_noperm_unlocked - filesystem helper to lookup single pathname component
3267  * @name:	pathname component to lookup
3268  * @base:	base directory to lookup from
3269  *
3270  * Note that this routine is purely a helper for filesystem usage and should
3271  * not be called by generic code. It does no permission checking.
3272  *
3273  * Unlike lookup_noperm(), it should be called without the parent
3274  * i_rwsem held, and will take the i_rwsem itself if necessary.
3275  *
3276  * Unlike try_lookup_noperm() it *does* revalidate the dentry if it already
3277  * existed.
3278  */
lookup_noperm_unlocked(struct qstr * name,struct dentry * base)3279 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base)
3280 {
3281 	struct dentry *ret;
3282 	int err;
3283 
3284 	err = lookup_noperm_common(name, base);
3285 	if (err)
3286 		return ERR_PTR(err);
3287 
3288 	ret = lookup_dcache(name, base, 0);
3289 	if (!ret)
3290 		ret = lookup_slow(name, base, 0);
3291 	return ret;
3292 }
3293 EXPORT_SYMBOL(lookup_noperm_unlocked);
3294 
3295 /*
3296  * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT)
3297  * on negatives.  Returns known positive or ERR_PTR(); that's what
3298  * most of the users want.  Note that pinned negative with unlocked parent
3299  * _can_ become positive at any time, so callers of lookup_noperm_unlocked()
3300  * need to be very careful; pinned positives have ->d_inode stable, so
3301  * this one avoids such problems.
3302  */
lookup_noperm_positive_unlocked(struct qstr * name,struct dentry * base)3303 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name,
3304 					       struct dentry *base)
3305 {
3306 	struct dentry *ret;
3307 
3308 	ret = lookup_noperm_unlocked(name, base);
3309 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3310 		dput(ret);
3311 		ret = ERR_PTR(-ENOENT);
3312 	}
3313 	return ret;
3314 }
3315 EXPORT_SYMBOL(lookup_noperm_positive_unlocked);
3316 
3317 /**
3318  * start_creating - prepare to create a given name with permission checking
3319  * @idmap:  idmap of the mount
3320  * @parent: directory in which to prepare to create the name
3321  * @name:   the name to be created
3322  *
3323  * Locks are taken and a lookup is performed prior to creating
3324  * an object in a directory.  Permission checking (MAY_EXEC) is performed
3325  * against @idmap.
3326  *
3327  * If the name already exists, a positive dentry is returned, so
3328  * behaviour is similar to O_CREAT without O_EXCL, which doesn't fail
3329  * with -EEXIST.
3330  *
3331  * Returns: a negative or positive dentry, or an error.
3332  */
start_creating(struct mnt_idmap * idmap,struct dentry * parent,struct qstr * name)3333 struct dentry *start_creating(struct mnt_idmap *idmap, struct dentry *parent,
3334 			      struct qstr *name)
3335 {
3336 	int err = lookup_one_common(idmap, name, parent);
3337 
3338 	if (err)
3339 		return ERR_PTR(err);
3340 	return start_dirop(parent, name, LOOKUP_CREATE);
3341 }
3342 EXPORT_SYMBOL(start_creating);
3343 
3344 /**
3345  * start_removing - prepare to remove a given name with permission checking
3346  * @idmap:  idmap of the mount
3347  * @parent: directory in which to find the name
3348  * @name:   the name to be removed
3349  *
3350  * Locks are taken and a lookup in performed prior to removing
3351  * an object from a directory.  Permission checking (MAY_EXEC) is performed
3352  * against @idmap.
3353  *
3354  * If the name doesn't exist, an error is returned.
3355  *
3356  * end_removing() should be called when removal is complete, or aborted.
3357  *
3358  * Returns: a positive dentry, or an error.
3359  */
start_removing(struct mnt_idmap * idmap,struct dentry * parent,struct qstr * name)3360 struct dentry *start_removing(struct mnt_idmap *idmap, struct dentry *parent,
3361 			      struct qstr *name)
3362 {
3363 	int err = lookup_one_common(idmap, name, parent);
3364 
3365 	if (err)
3366 		return ERR_PTR(err);
3367 	return start_dirop(parent, name, 0);
3368 }
3369 EXPORT_SYMBOL(start_removing);
3370 
3371 /**
3372  * start_creating_killable - prepare to create a given name with permission checking
3373  * @idmap:  idmap of the mount
3374  * @parent: directory in which to prepare to create the name
3375  * @name:   the name to be created
3376  *
3377  * Locks are taken and a lookup in performed prior to creating
3378  * an object in a directory.  Permission checking (MAY_EXEC) is performed
3379  * against @idmap.
3380  *
3381  * If the name already exists, a positive dentry is returned.
3382  *
3383  * If a signal is received or was already pending, the function aborts
3384  * with -EINTR;
3385  *
3386  * Returns: a negative or positive dentry, or an error.
3387  */
start_creating_killable(struct mnt_idmap * idmap,struct dentry * parent,struct qstr * name)3388 struct dentry *start_creating_killable(struct mnt_idmap *idmap,
3389 				       struct dentry *parent,
3390 				       struct qstr *name)
3391 {
3392 	int err = lookup_one_common(idmap, name, parent);
3393 
3394 	if (err)
3395 		return ERR_PTR(err);
3396 	return __start_dirop(parent, name, LOOKUP_CREATE, TASK_KILLABLE);
3397 }
3398 EXPORT_SYMBOL(start_creating_killable);
3399 
3400 /**
3401  * start_removing_killable - prepare to remove a given name with permission checking
3402  * @idmap:  idmap of the mount
3403  * @parent: directory in which to find the name
3404  * @name:   the name to be removed
3405  *
3406  * Locks are taken and a lookup in performed prior to removing
3407  * an object from a directory.  Permission checking (MAY_EXEC) is performed
3408  * against @idmap.
3409  *
3410  * If the name doesn't exist, an error is returned.
3411  *
3412  * end_removing() should be called when removal is complete, or aborted.
3413  *
3414  * If a signal is received or was already pending, the function aborts
3415  * with -EINTR;
3416  *
3417  * Returns: a positive dentry, or an error.
3418  */
start_removing_killable(struct mnt_idmap * idmap,struct dentry * parent,struct qstr * name)3419 struct dentry *start_removing_killable(struct mnt_idmap *idmap,
3420 				       struct dentry *parent,
3421 				       struct qstr *name)
3422 {
3423 	int err = lookup_one_common(idmap, name, parent);
3424 
3425 	if (err)
3426 		return ERR_PTR(err);
3427 	return __start_dirop(parent, name, 0, TASK_KILLABLE);
3428 }
3429 EXPORT_SYMBOL(start_removing_killable);
3430 
3431 /**
3432  * start_creating_noperm - prepare to create a given name without permission checking
3433  * @parent: directory in which to prepare to create the name
3434  * @name:   the name to be created
3435  *
3436  * Locks are taken and a lookup in performed prior to creating
3437  * an object in a directory.
3438  *
3439  * If the name already exists, a positive dentry is returned.
3440  *
3441  * Returns: a negative or positive dentry, or an error.
3442  */
start_creating_noperm(struct dentry * parent,struct qstr * name)3443 struct dentry *start_creating_noperm(struct dentry *parent,
3444 				     struct qstr *name)
3445 {
3446 	int err = lookup_noperm_common(name, parent);
3447 
3448 	if (err)
3449 		return ERR_PTR(err);
3450 	return start_dirop(parent, name, LOOKUP_CREATE);
3451 }
3452 EXPORT_SYMBOL(start_creating_noperm);
3453 
3454 /**
3455  * start_removing_noperm - prepare to remove a given name without permission checking
3456  * @parent: directory in which to find the name
3457  * @name:   the name to be removed
3458  *
3459  * Locks are taken and a lookup in performed prior to removing
3460  * an object from a directory.
3461  *
3462  * If the name doesn't exist, an error is returned.
3463  *
3464  * end_removing() should be called when removal is complete, or aborted.
3465  *
3466  * Returns: a positive dentry, or an error.
3467  */
start_removing_noperm(struct dentry * parent,struct qstr * name)3468 struct dentry *start_removing_noperm(struct dentry *parent,
3469 				     struct qstr *name)
3470 {
3471 	int err = lookup_noperm_common(name, parent);
3472 
3473 	if (err)
3474 		return ERR_PTR(err);
3475 	return start_dirop(parent, name, 0);
3476 }
3477 EXPORT_SYMBOL(start_removing_noperm);
3478 
3479 /**
3480  * start_creating_dentry - prepare to create a given dentry
3481  * @parent: directory from which dentry should be removed
3482  * @child:  the dentry to be removed
3483  *
3484  * A lock is taken to protect the dentry again other dirops and
3485  * the validity of the dentry is checked: correct parent and still hashed.
3486  *
3487  * If the dentry is valid and negative a reference is taken and
3488  * returned.  If not an error is returned.
3489  *
3490  * end_creating() should be called when creation is complete, or aborted.
3491  *
3492  * Returns: the valid dentry, or an error.
3493  */
start_creating_dentry(struct dentry * parent,struct dentry * child)3494 struct dentry *start_creating_dentry(struct dentry *parent,
3495 				     struct dentry *child)
3496 {
3497 	inode_lock_nested(parent->d_inode, I_MUTEX_PARENT);
3498 	if (unlikely(IS_DEADDIR(parent->d_inode) ||
3499 		     child->d_parent != parent ||
3500 		     d_unhashed(child))) {
3501 		inode_unlock(parent->d_inode);
3502 		return ERR_PTR(-EINVAL);
3503 	}
3504 	if (d_is_positive(child)) {
3505 		inode_unlock(parent->d_inode);
3506 		return ERR_PTR(-EEXIST);
3507 	}
3508 	return dget(child);
3509 }
3510 EXPORT_SYMBOL(start_creating_dentry);
3511 
3512 /**
3513  * start_removing_dentry - prepare to remove a given dentry
3514  * @parent: directory from which dentry should be removed
3515  * @child:  the dentry to be removed
3516  *
3517  * A lock is taken to protect the dentry again other dirops and
3518  * the validity of the dentry is checked: correct parent and still hashed.
3519  *
3520  * If the dentry is valid and positive, a reference is taken and
3521  * returned.  If not an error is returned.
3522  *
3523  * end_removing() should be called when removal is complete, or aborted.
3524  *
3525  * Returns: the valid dentry, or an error.
3526  */
start_removing_dentry(struct dentry * parent,struct dentry * child)3527 struct dentry *start_removing_dentry(struct dentry *parent,
3528 				     struct dentry *child)
3529 {
3530 	inode_lock_nested(parent->d_inode, I_MUTEX_PARENT);
3531 	if (unlikely(IS_DEADDIR(parent->d_inode) ||
3532 		     child->d_parent != parent ||
3533 		     d_unhashed(child))) {
3534 		inode_unlock(parent->d_inode);
3535 		return ERR_PTR(-EINVAL);
3536 	}
3537 	if (d_is_negative(child)) {
3538 		inode_unlock(parent->d_inode);
3539 		return ERR_PTR(-ENOENT);
3540 	}
3541 	return dget(child);
3542 }
3543 EXPORT_SYMBOL(start_removing_dentry);
3544 
3545 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)3546 int path_pts(struct path *path)
3547 {
3548 	/* Find something mounted on "pts" in the same directory as
3549 	 * the input path.
3550 	 */
3551 	struct dentry *parent = dget_parent(path->dentry);
3552 	struct dentry *child;
3553 	struct qstr this = QSTR_INIT("pts", 3);
3554 
3555 	if (unlikely(!path_connected(path->mnt, parent))) {
3556 		dput(parent);
3557 		return -ENOENT;
3558 	}
3559 	dput(path->dentry);
3560 	path->dentry = parent;
3561 	child = d_hash_and_lookup(parent, &this);
3562 	if (IS_ERR_OR_NULL(child))
3563 		return -ENOENT;
3564 
3565 	path->dentry = child;
3566 	dput(parent);
3567 	follow_down(path, 0);
3568 	return 0;
3569 }
3570 #endif
3571 
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3572 int user_path_at(int dfd, const char __user *name, unsigned flags,
3573 		 struct path *path)
3574 {
3575 	struct filename *filename = getname_flags(name, flags);
3576 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3577 
3578 	putname(filename);
3579 	return ret;
3580 }
3581 EXPORT_SYMBOL(user_path_at);
3582 
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3583 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3584 		   struct inode *inode)
3585 {
3586 	kuid_t fsuid = current_fsuid();
3587 
3588 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3589 		return 0;
3590 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3591 		return 0;
3592 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3593 }
3594 EXPORT_SYMBOL(__check_sticky);
3595 
3596 /*
3597  *	Check whether we can remove a link victim from directory dir, check
3598  *  whether the type of victim is right.
3599  *  1. We can't do it if dir is read-only (done in permission())
3600  *  2. We should have write and exec permissions on dir
3601  *  3. We can't remove anything from append-only dir
3602  *  4. We can't do anything with immutable dir (done in permission())
3603  *  5. If the sticky bit on dir is set we should either
3604  *	a. be owner of dir, or
3605  *	b. be owner of victim, or
3606  *	c. have CAP_FOWNER capability
3607  *  6. If the victim is append-only or immutable we can't do antyhing with
3608  *     links pointing to it.
3609  *  7. If the victim has an unknown uid or gid we can't change the inode.
3610  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3611  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3612  * 10. We can't remove a root or mountpoint.
3613  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3614  *     nfs_async_unlink().
3615  */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3616 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3617 		      struct dentry *victim, bool isdir)
3618 {
3619 	struct inode *inode = d_backing_inode(victim);
3620 	int error;
3621 
3622 	if (d_is_negative(victim))
3623 		return -ENOENT;
3624 	BUG_ON(!inode);
3625 
3626 	BUG_ON(victim->d_parent->d_inode != dir);
3627 
3628 	/* Inode writeback is not safe when the uid or gid are invalid. */
3629 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3630 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3631 		return -EOVERFLOW;
3632 
3633 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3634 
3635 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3636 	if (error)
3637 		return error;
3638 	if (IS_APPEND(dir))
3639 		return -EPERM;
3640 
3641 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3642 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3643 	    HAS_UNMAPPED_ID(idmap, inode))
3644 		return -EPERM;
3645 	if (isdir) {
3646 		if (!d_is_dir(victim))
3647 			return -ENOTDIR;
3648 		if (IS_ROOT(victim))
3649 			return -EBUSY;
3650 	} else if (d_is_dir(victim))
3651 		return -EISDIR;
3652 	if (IS_DEADDIR(dir))
3653 		return -ENOENT;
3654 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3655 		return -EBUSY;
3656 	return 0;
3657 }
3658 
3659 /*	Check whether we can create an object with dentry child in directory
3660  *  dir.
3661  *  1. We can't do it if child already exists (open has special treatment for
3662  *     this case, but since we are inlined it's OK)
3663  *  2. We can't do it if dir is read-only (done in permission())
3664  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3665  *  4. We should have write and exec permissions on dir
3666  *  5. We can't do it if dir is immutable (done in permission())
3667  */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3668 static inline int may_create(struct mnt_idmap *idmap,
3669 			     struct inode *dir, struct dentry *child)
3670 {
3671 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3672 	if (child->d_inode)
3673 		return -EEXIST;
3674 	if (IS_DEADDIR(dir))
3675 		return -ENOENT;
3676 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3677 		return -EOVERFLOW;
3678 
3679 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3680 }
3681 
3682 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3683 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3684 {
3685 	struct dentry *p = p1, *q = p2, *r;
3686 
3687 	while ((r = p->d_parent) != p2 && r != p)
3688 		p = r;
3689 	if (r == p2) {
3690 		// p is a child of p2 and an ancestor of p1 or p1 itself
3691 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3692 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3693 		return p;
3694 	}
3695 	// p is the root of connected component that contains p1
3696 	// p2 does not occur on the path from p to p1
3697 	while ((r = q->d_parent) != p1 && r != p && r != q)
3698 		q = r;
3699 	if (r == p1) {
3700 		// q is a child of p1 and an ancestor of p2 or p2 itself
3701 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3702 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3703 		return q;
3704 	} else if (likely(r == p)) {
3705 		// both p2 and p1 are descendents of p
3706 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3707 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3708 		return NULL;
3709 	} else { // no common ancestor at the time we'd been called
3710 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3711 		return ERR_PTR(-EXDEV);
3712 	}
3713 }
3714 
3715 /*
3716  * p1 and p2 should be directories on the same fs.
3717  */
lock_rename(struct dentry * p1,struct dentry * p2)3718 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3719 {
3720 	if (p1 == p2) {
3721 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3722 		return NULL;
3723 	}
3724 
3725 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3726 	return lock_two_directories(p1, p2);
3727 }
3728 EXPORT_SYMBOL(lock_rename);
3729 
3730 /*
3731  * c1 and p2 should be on the same fs.
3732  */
lock_rename_child(struct dentry * c1,struct dentry * p2)3733 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3734 {
3735 	if (READ_ONCE(c1->d_parent) == p2) {
3736 		/*
3737 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3738 		 */
3739 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3740 		/*
3741 		 * now that p2 is locked, nobody can move in or out of it,
3742 		 * so the test below is safe.
3743 		 */
3744 		if (likely(c1->d_parent == p2))
3745 			return NULL;
3746 
3747 		/*
3748 		 * c1 got moved out of p2 while we'd been taking locks;
3749 		 * unlock and fall back to slow case.
3750 		 */
3751 		inode_unlock(p2->d_inode);
3752 	}
3753 
3754 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3755 	/*
3756 	 * nobody can move out of any directories on this fs.
3757 	 */
3758 	if (likely(c1->d_parent != p2))
3759 		return lock_two_directories(c1->d_parent, p2);
3760 
3761 	/*
3762 	 * c1 got moved into p2 while we were taking locks;
3763 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3764 	 * for consistency with lock_rename().
3765 	 */
3766 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3767 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3768 	return NULL;
3769 }
3770 EXPORT_SYMBOL(lock_rename_child);
3771 
unlock_rename(struct dentry * p1,struct dentry * p2)3772 void unlock_rename(struct dentry *p1, struct dentry *p2)
3773 {
3774 	inode_unlock(p1->d_inode);
3775 	if (p1 != p2) {
3776 		inode_unlock(p2->d_inode);
3777 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3778 	}
3779 }
3780 EXPORT_SYMBOL(unlock_rename);
3781 
3782 /**
3783  * __start_renaming - lookup and lock names for rename
3784  * @rd:           rename data containing parents and flags, and
3785  *                for receiving found dentries
3786  * @lookup_flags: extra flags to pass to ->lookup (e.g. LOOKUP_REVAL,
3787  *                LOOKUP_NO_SYMLINKS etc).
3788  * @old_last:     name of object in @rd.old_parent
3789  * @new_last:     name of object in @rd.new_parent
3790  *
3791  * Look up two names and ensure locks are in place for
3792  * rename.
3793  *
3794  * On success the found dentries are stored in @rd.old_dentry,
3795  * @rd.new_dentry and an extra ref is taken on @rd.old_parent.
3796  * These references and the lock are dropped by end_renaming().
3797  *
3798  * The passed in qstrs must have the hash calculated, and no permission
3799  * checking is performed.
3800  *
3801  * Returns: zero or an error.
3802  */
3803 static int
__start_renaming(struct renamedata * rd,int lookup_flags,struct qstr * old_last,struct qstr * new_last)3804 __start_renaming(struct renamedata *rd, int lookup_flags,
3805 		 struct qstr *old_last, struct qstr *new_last)
3806 {
3807 	struct dentry *trap;
3808 	struct dentry *d1, *d2;
3809 	int target_flags = LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
3810 	int err;
3811 
3812 	if (rd->flags & RENAME_EXCHANGE)
3813 		target_flags = 0;
3814 	if (rd->flags & RENAME_NOREPLACE)
3815 		target_flags |= LOOKUP_EXCL;
3816 
3817 	trap = lock_rename(rd->old_parent, rd->new_parent);
3818 	if (IS_ERR(trap))
3819 		return PTR_ERR(trap);
3820 
3821 	d1 = lookup_one_qstr_excl(old_last, rd->old_parent,
3822 				  lookup_flags);
3823 	err = PTR_ERR(d1);
3824 	if (IS_ERR(d1))
3825 		goto out_unlock;
3826 
3827 	d2 = lookup_one_qstr_excl(new_last, rd->new_parent,
3828 				  lookup_flags | target_flags);
3829 	err = PTR_ERR(d2);
3830 	if (IS_ERR(d2))
3831 		goto out_dput_d1;
3832 
3833 	if (d1 == trap) {
3834 		/* source is an ancestor of target */
3835 		err = -EINVAL;
3836 		goto out_dput_d2;
3837 	}
3838 
3839 	if (d2 == trap) {
3840 		/* target is an ancestor of source */
3841 		if (rd->flags & RENAME_EXCHANGE)
3842 			err = -EINVAL;
3843 		else
3844 			err = -ENOTEMPTY;
3845 		goto out_dput_d2;
3846 	}
3847 
3848 	rd->old_dentry = d1;
3849 	rd->new_dentry = d2;
3850 	dget(rd->old_parent);
3851 	return 0;
3852 
3853 out_dput_d2:
3854 	dput(d2);
3855 out_dput_d1:
3856 	dput(d1);
3857 out_unlock:
3858 	unlock_rename(rd->old_parent, rd->new_parent);
3859 	return err;
3860 }
3861 
3862 /**
3863  * start_renaming - lookup and lock names for rename with permission checking
3864  * @rd:           rename data containing parents and flags, and
3865  *                for receiving found dentries
3866  * @lookup_flags: extra flags to pass to ->lookup (e.g. LOOKUP_REVAL,
3867  *                LOOKUP_NO_SYMLINKS etc).
3868  * @old_last:     name of object in @rd.old_parent
3869  * @new_last:     name of object in @rd.new_parent
3870  *
3871  * Look up two names and ensure locks are in place for
3872  * rename.
3873  *
3874  * On success the found dentries are stored in @rd.old_dentry,
3875  * @rd.new_dentry.  Also the refcount on @rd->old_parent is increased.
3876  * These references and the lock are dropped by end_renaming().
3877  *
3878  * The passed in qstrs need not have the hash calculated, and basic
3879  * eXecute permission checking is performed against @rd.mnt_idmap.
3880  *
3881  * Returns: zero or an error.
3882  */
start_renaming(struct renamedata * rd,int lookup_flags,struct qstr * old_last,struct qstr * new_last)3883 int start_renaming(struct renamedata *rd, int lookup_flags,
3884 		   struct qstr *old_last, struct qstr *new_last)
3885 {
3886 	int err;
3887 
3888 	err = lookup_one_common(rd->mnt_idmap, old_last, rd->old_parent);
3889 	if (err)
3890 		return err;
3891 	err = lookup_one_common(rd->mnt_idmap, new_last, rd->new_parent);
3892 	if (err)
3893 		return err;
3894 	return __start_renaming(rd, lookup_flags, old_last, new_last);
3895 }
3896 EXPORT_SYMBOL(start_renaming);
3897 
3898 static int
__start_renaming_dentry(struct renamedata * rd,int lookup_flags,struct dentry * old_dentry,struct qstr * new_last)3899 __start_renaming_dentry(struct renamedata *rd, int lookup_flags,
3900 			struct dentry *old_dentry, struct qstr *new_last)
3901 {
3902 	struct dentry *trap;
3903 	struct dentry *d2;
3904 	int target_flags = LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
3905 	int err;
3906 
3907 	if (rd->flags & RENAME_EXCHANGE)
3908 		target_flags = 0;
3909 	if (rd->flags & RENAME_NOREPLACE)
3910 		target_flags |= LOOKUP_EXCL;
3911 
3912 	/* Already have the dentry - need to be sure to lock the correct parent */
3913 	trap = lock_rename_child(old_dentry, rd->new_parent);
3914 	if (IS_ERR(trap))
3915 		return PTR_ERR(trap);
3916 	if (d_unhashed(old_dentry) ||
3917 	    (rd->old_parent && rd->old_parent != old_dentry->d_parent)) {
3918 		/* dentry was removed, or moved and explicit parent requested */
3919 		err = -EINVAL;
3920 		goto out_unlock;
3921 	}
3922 
3923 	d2 = lookup_one_qstr_excl(new_last, rd->new_parent,
3924 				  lookup_flags | target_flags);
3925 	err = PTR_ERR(d2);
3926 	if (IS_ERR(d2))
3927 		goto out_unlock;
3928 
3929 	if (old_dentry == trap) {
3930 		/* source is an ancestor of target */
3931 		err = -EINVAL;
3932 		goto out_dput_d2;
3933 	}
3934 
3935 	if (d2 == trap) {
3936 		/* target is an ancestor of source */
3937 		if (rd->flags & RENAME_EXCHANGE)
3938 			err = -EINVAL;
3939 		else
3940 			err = -ENOTEMPTY;
3941 		goto out_dput_d2;
3942 	}
3943 
3944 	rd->old_dentry = dget(old_dentry);
3945 	rd->new_dentry = d2;
3946 	rd->old_parent = dget(old_dentry->d_parent);
3947 	return 0;
3948 
3949 out_dput_d2:
3950 	dput(d2);
3951 out_unlock:
3952 	unlock_rename(old_dentry->d_parent, rd->new_parent);
3953 	return err;
3954 }
3955 
3956 /**
3957  * start_renaming_dentry - lookup and lock name for rename with permission checking
3958  * @rd:           rename data containing parents and flags, and
3959  *                for receiving found dentries
3960  * @lookup_flags: extra flags to pass to ->lookup (e.g. LOOKUP_REVAL,
3961  *                LOOKUP_NO_SYMLINKS etc).
3962  * @old_dentry:   dentry of name to move
3963  * @new_last:     name of target in @rd.new_parent
3964  *
3965  * Look up target name and ensure locks are in place for
3966  * rename.
3967  *
3968  * On success the found dentry is stored in @rd.new_dentry and
3969  * @rd.old_parent is confirmed to be the parent of @old_dentry.  If it
3970  * was originally %NULL, it is set.  In either case a reference is taken
3971  * so that end_renaming() can have a stable reference to unlock.
3972  *
3973  * References and the lock can be dropped with end_renaming()
3974  *
3975  * The passed in qstr need not have the hash calculated, and basic
3976  * eXecute permission checking is performed against @rd.mnt_idmap.
3977  *
3978  * Returns: zero or an error.
3979  */
start_renaming_dentry(struct renamedata * rd,int lookup_flags,struct dentry * old_dentry,struct qstr * new_last)3980 int start_renaming_dentry(struct renamedata *rd, int lookup_flags,
3981 			  struct dentry *old_dentry, struct qstr *new_last)
3982 {
3983 	int err;
3984 
3985 	err = lookup_one_common(rd->mnt_idmap, new_last, rd->new_parent);
3986 	if (err)
3987 		return err;
3988 	return __start_renaming_dentry(rd, lookup_flags, old_dentry, new_last);
3989 }
3990 EXPORT_SYMBOL(start_renaming_dentry);
3991 
3992 /**
3993  * start_renaming_two_dentries - Lock to dentries in given parents for rename
3994  * @rd:           rename data containing parent
3995  * @old_dentry:   dentry of name to move
3996  * @new_dentry:   dentry to move to
3997  *
3998  * Ensure locks are in place for rename and check parentage is still correct.
3999  *
4000  * On success the two dentries are stored in @rd.old_dentry and
4001  * @rd.new_dentry and @rd.old_parent and @rd.new_parent are confirmed to
4002  * be the parents of the dentries.
4003  *
4004  * References and the lock can be dropped with end_renaming()
4005  *
4006  * Returns: zero or an error.
4007  */
4008 int
start_renaming_two_dentries(struct renamedata * rd,struct dentry * old_dentry,struct dentry * new_dentry)4009 start_renaming_two_dentries(struct renamedata *rd,
4010 			    struct dentry *old_dentry, struct dentry *new_dentry)
4011 {
4012 	struct dentry *trap;
4013 	int err;
4014 
4015 	/* Already have the dentry - need to be sure to lock the correct parent */
4016 	trap = lock_rename_child(old_dentry, rd->new_parent);
4017 	if (IS_ERR(trap))
4018 		return PTR_ERR(trap);
4019 	err = -EINVAL;
4020 	if (d_unhashed(old_dentry) ||
4021 	    (rd->old_parent && rd->old_parent != old_dentry->d_parent))
4022 		/* old_dentry was removed, or moved and explicit parent requested */
4023 		goto out_unlock;
4024 	if (d_unhashed(new_dentry) ||
4025 	    rd->new_parent != new_dentry->d_parent)
4026 		/* new_dentry was removed or moved */
4027 		goto out_unlock;
4028 
4029 	if (old_dentry == trap)
4030 		/* source is an ancestor of target */
4031 		goto out_unlock;
4032 
4033 	if (new_dentry == trap) {
4034 		/* target is an ancestor of source */
4035 		if (rd->flags & RENAME_EXCHANGE)
4036 			err = -EINVAL;
4037 		else
4038 			err = -ENOTEMPTY;
4039 		goto out_unlock;
4040 	}
4041 
4042 	err = -EEXIST;
4043 	if (d_is_positive(new_dentry) && (rd->flags & RENAME_NOREPLACE))
4044 		goto out_unlock;
4045 
4046 	rd->old_dentry = dget(old_dentry);
4047 	rd->new_dentry = dget(new_dentry);
4048 	rd->old_parent = dget(old_dentry->d_parent);
4049 	return 0;
4050 
4051 out_unlock:
4052 	unlock_rename(old_dentry->d_parent, rd->new_parent);
4053 	return err;
4054 }
4055 EXPORT_SYMBOL(start_renaming_two_dentries);
4056 
end_renaming(struct renamedata * rd)4057 void end_renaming(struct renamedata *rd)
4058 {
4059 	unlock_rename(rd->old_parent, rd->new_parent);
4060 	dput(rd->old_dentry);
4061 	dput(rd->new_dentry);
4062 	dput(rd->old_parent);
4063 }
4064 EXPORT_SYMBOL(end_renaming);
4065 
4066 /**
4067  * vfs_prepare_mode - prepare the mode to be used for a new inode
4068  * @idmap:	idmap of the mount the inode was found from
4069  * @dir:	parent directory of the new inode
4070  * @mode:	mode of the new inode
4071  * @mask_perms:	allowed permission by the vfs
4072  * @type:	type of file to be created
4073  *
4074  * This helper consolidates and enforces vfs restrictions on the @mode of a new
4075  * object to be created.
4076  *
4077  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
4078  * the kernel documentation for mode_strip_umask()). Moving umask stripping
4079  * after setgid stripping allows the same ordering for both non-POSIX ACL and
4080  * POSIX ACL supporting filesystems.
4081  *
4082  * Note that it's currently valid for @type to be 0 if a directory is created.
4083  * Filesystems raise that flag individually and we need to check whether each
4084  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
4085  * non-zero type.
4086  *
4087  * Returns: mode to be passed to the filesystem
4088  */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)4089 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
4090 				       const struct inode *dir, umode_t mode,
4091 				       umode_t mask_perms, umode_t type)
4092 {
4093 	mode = mode_strip_sgid(idmap, dir, mode);
4094 	mode = mode_strip_umask(dir, mode);
4095 
4096 	/*
4097 	 * Apply the vfs mandated allowed permission mask and set the type of
4098 	 * file to be created before we call into the filesystem.
4099 	 */
4100 	mode &= (mask_perms & ~S_IFMT);
4101 	mode |= (type & S_IFMT);
4102 
4103 	return mode;
4104 }
4105 
4106 /**
4107  * vfs_create - create new file
4108  * @idmap:	idmap of the mount the inode was found from
4109  * @dentry:	dentry of the child file
4110  * @mode:	mode of the child file
4111  * @di:		returns parent inode, if the inode is delegated.
4112  *
4113  * Create a new file.
4114  *
4115  * If the inode has been found through an idmapped mount the idmap of
4116  * the vfsmount must be passed through @idmap. This function will then take
4117  * care to map the inode according to @idmap before checking permissions.
4118  * On non-idmapped mounts or if permission checking is to be performed on the
4119  * raw inode simply pass @nop_mnt_idmap.
4120  */
vfs_create(struct mnt_idmap * idmap,struct dentry * dentry,umode_t mode,struct delegated_inode * di)4121 int vfs_create(struct mnt_idmap *idmap, struct dentry *dentry, umode_t mode,
4122 	       struct delegated_inode *di)
4123 {
4124 	struct inode *dir = d_inode(dentry->d_parent);
4125 	int error;
4126 
4127 	error = may_create(idmap, dir, dentry);
4128 	if (error)
4129 		return error;
4130 
4131 	if (!dir->i_op->create)
4132 		return -EACCES;	/* shouldn't it be ENOSYS? */
4133 
4134 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
4135 	error = security_inode_create(dir, dentry, mode);
4136 	if (error)
4137 		return error;
4138 	error = try_break_deleg(dir, di);
4139 	if (error)
4140 		return error;
4141 	error = dir->i_op->create(idmap, dir, dentry, mode, true);
4142 	if (!error)
4143 		fsnotify_create(dir, dentry);
4144 	return error;
4145 }
4146 EXPORT_SYMBOL(vfs_create);
4147 
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)4148 int vfs_mkobj(struct dentry *dentry, umode_t mode,
4149 		int (*f)(struct dentry *, umode_t, void *),
4150 		void *arg)
4151 {
4152 	struct inode *dir = dentry->d_parent->d_inode;
4153 	int error = may_create(&nop_mnt_idmap, dir, dentry);
4154 	if (error)
4155 		return error;
4156 
4157 	mode &= S_IALLUGO;
4158 	mode |= S_IFREG;
4159 	error = security_inode_create(dir, dentry, mode);
4160 	if (error)
4161 		return error;
4162 	error = f(dentry, mode, arg);
4163 	if (!error)
4164 		fsnotify_create(dir, dentry);
4165 	return error;
4166 }
4167 EXPORT_SYMBOL(vfs_mkobj);
4168 
may_open_dev(const struct path * path)4169 bool may_open_dev(const struct path *path)
4170 {
4171 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
4172 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
4173 }
4174 
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)4175 static int may_open(struct mnt_idmap *idmap, const struct path *path,
4176 		    int acc_mode, int flag)
4177 {
4178 	struct dentry *dentry = path->dentry;
4179 	struct inode *inode = dentry->d_inode;
4180 	int error;
4181 
4182 	if (!inode)
4183 		return -ENOENT;
4184 
4185 	switch (inode->i_mode & S_IFMT) {
4186 	case S_IFLNK:
4187 		return -ELOOP;
4188 	case S_IFDIR:
4189 		if (acc_mode & MAY_WRITE)
4190 			return -EISDIR;
4191 		if (acc_mode & MAY_EXEC)
4192 			return -EACCES;
4193 		break;
4194 	case S_IFBLK:
4195 	case S_IFCHR:
4196 		if (!may_open_dev(path))
4197 			return -EACCES;
4198 		fallthrough;
4199 	case S_IFIFO:
4200 	case S_IFSOCK:
4201 		if (acc_mode & MAY_EXEC)
4202 			return -EACCES;
4203 		flag &= ~O_TRUNC;
4204 		break;
4205 	case S_IFREG:
4206 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
4207 			return -EACCES;
4208 		break;
4209 	default:
4210 		VFS_BUG_ON_INODE(!IS_ANON_FILE(inode), inode);
4211 	}
4212 
4213 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
4214 	if (error)
4215 		return error;
4216 
4217 	/*
4218 	 * An append-only file must be opened in append mode for writing.
4219 	 */
4220 	if (IS_APPEND(inode)) {
4221 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
4222 			return -EPERM;
4223 		if (flag & O_TRUNC)
4224 			return -EPERM;
4225 	}
4226 
4227 	/* O_NOATIME can only be set by the owner or superuser */
4228 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
4229 		return -EPERM;
4230 
4231 	return 0;
4232 }
4233 
handle_truncate(struct mnt_idmap * idmap,struct file * filp)4234 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
4235 {
4236 	const struct path *path = &filp->f_path;
4237 	struct inode *inode = path->dentry->d_inode;
4238 	int error = get_write_access(inode);
4239 	if (error)
4240 		return error;
4241 
4242 	error = security_file_truncate(filp);
4243 	if (!error) {
4244 		error = do_truncate(idmap, path->dentry, 0,
4245 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
4246 				    filp);
4247 	}
4248 	put_write_access(inode);
4249 	return error;
4250 }
4251 
open_to_namei_flags(int flag)4252 static inline int open_to_namei_flags(int flag)
4253 {
4254 	if ((flag & O_ACCMODE) == 3)
4255 		flag--;
4256 	return flag;
4257 }
4258 
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)4259 static int may_o_create(struct mnt_idmap *idmap,
4260 			const struct path *dir, struct dentry *dentry,
4261 			umode_t mode)
4262 {
4263 	int error = security_path_mknod(dir, dentry, mode, 0);
4264 	if (error)
4265 		return error;
4266 
4267 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
4268 		return -EOVERFLOW;
4269 
4270 	error = inode_permission(idmap, dir->dentry->d_inode,
4271 				 MAY_WRITE | MAY_EXEC);
4272 	if (error)
4273 		return error;
4274 
4275 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
4276 }
4277 
4278 /*
4279  * Attempt to atomically look up, create and open a file from a negative
4280  * dentry.
4281  *
4282  * Returns 0 if successful.  The file will have been created and attached to
4283  * @file by the filesystem calling finish_open().
4284  *
4285  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
4286  * be set.  The caller will need to perform the open themselves.  @path will
4287  * have been updated to point to the new dentry.  This may be negative.
4288  *
4289  * Returns an error code otherwise.
4290  */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)4291 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
4292 				  struct file *file,
4293 				  int open_flag, umode_t mode)
4294 {
4295 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
4296 	struct inode *dir =  nd->path.dentry->d_inode;
4297 	int error;
4298 
4299 	if (nd->flags & LOOKUP_DIRECTORY)
4300 		open_flag |= O_DIRECTORY;
4301 
4302 	file->__f_path.dentry = DENTRY_NOT_SET;
4303 	file->__f_path.mnt = nd->path.mnt;
4304 	error = dir->i_op->atomic_open(dir, dentry, file,
4305 				       open_to_namei_flags(open_flag), mode);
4306 	d_lookup_done(dentry);
4307 	if (!error) {
4308 		if (file->f_mode & FMODE_OPENED) {
4309 			if (unlikely(dentry != file->f_path.dentry)) {
4310 				dput(dentry);
4311 				dentry = dget(file->f_path.dentry);
4312 			}
4313 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
4314 			error = -EIO;
4315 		} else {
4316 			if (file->f_path.dentry) {
4317 				dput(dentry);
4318 				dentry = file->f_path.dentry;
4319 			}
4320 			if (unlikely(d_is_negative(dentry)))
4321 				error = -ENOENT;
4322 		}
4323 	}
4324 	if (error) {
4325 		dput(dentry);
4326 		dentry = ERR_PTR(error);
4327 	}
4328 	return dentry;
4329 }
4330 
4331 /*
4332  * Look up and maybe create and open the last component.
4333  *
4334  * Must be called with parent locked (exclusive in O_CREAT case).
4335  *
4336  * Returns 0 on success, that is, if
4337  *  the file was successfully atomically created (if necessary) and opened, or
4338  *  the file was not completely opened at this time, though lookups and
4339  *  creations were performed.
4340  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
4341  * In the latter case dentry returned in @path might be negative if O_CREAT
4342  * hadn't been specified.
4343  *
4344  * An error code is returned on failure.
4345  */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write,struct delegated_inode * delegated_inode)4346 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
4347 				  const struct open_flags *op,
4348 				  bool got_write, struct delegated_inode *delegated_inode)
4349 {
4350 	struct mnt_idmap *idmap;
4351 	struct dentry *dir = nd->path.dentry;
4352 	struct inode *dir_inode = dir->d_inode;
4353 	int open_flag = op->open_flag;
4354 	struct dentry *dentry;
4355 	int error, create_error = 0;
4356 	umode_t mode = op->mode;
4357 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
4358 
4359 	if (unlikely(IS_DEADDIR(dir_inode)))
4360 		return ERR_PTR(-ENOENT);
4361 
4362 	file->f_mode &= ~FMODE_CREATED;
4363 	dentry = d_lookup(dir, &nd->last);
4364 	for (;;) {
4365 		if (!dentry) {
4366 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
4367 			if (IS_ERR(dentry))
4368 				return dentry;
4369 		}
4370 		if (d_in_lookup(dentry))
4371 			break;
4372 
4373 		error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
4374 		if (likely(error > 0))
4375 			break;
4376 		if (error)
4377 			goto out_dput;
4378 		d_invalidate(dentry);
4379 		dput(dentry);
4380 		dentry = NULL;
4381 	}
4382 	if (dentry->d_inode) {
4383 		/* Cached positive dentry: will open in f_op->open */
4384 		return dentry;
4385 	}
4386 
4387 	if (open_flag & O_CREAT)
4388 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
4389 
4390 	/*
4391 	 * Checking write permission is tricky, bacuse we don't know if we are
4392 	 * going to actually need it: O_CREAT opens should work as long as the
4393 	 * file exists.  But checking existence breaks atomicity.  The trick is
4394 	 * to check access and if not granted clear O_CREAT from the flags.
4395 	 *
4396 	 * Another problem is returing the "right" error value (e.g. for an
4397 	 * O_EXCL open we want to return EEXIST not EROFS).
4398 	 */
4399 	if (unlikely(!got_write))
4400 		open_flag &= ~O_TRUNC;
4401 	idmap = mnt_idmap(nd->path.mnt);
4402 	if (open_flag & O_CREAT) {
4403 		if (open_flag & O_EXCL)
4404 			open_flag &= ~O_TRUNC;
4405 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
4406 		if (likely(got_write))
4407 			create_error = may_o_create(idmap, &nd->path,
4408 						    dentry, mode);
4409 		else
4410 			create_error = -EROFS;
4411 	}
4412 	if (create_error)
4413 		open_flag &= ~O_CREAT;
4414 	if (dir_inode->i_op->atomic_open) {
4415 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
4416 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
4417 			dentry = ERR_PTR(create_error);
4418 		return dentry;
4419 	}
4420 
4421 	if (d_in_lookup(dentry)) {
4422 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
4423 							     nd->flags);
4424 		d_lookup_done(dentry);
4425 		if (unlikely(res)) {
4426 			if (IS_ERR(res)) {
4427 				error = PTR_ERR(res);
4428 				goto out_dput;
4429 			}
4430 			dput(dentry);
4431 			dentry = res;
4432 		}
4433 	}
4434 
4435 	/* Negative dentry, just create the file */
4436 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
4437 		/* but break the directory lease first! */
4438 		error = try_break_deleg(dir_inode, delegated_inode);
4439 		if (error)
4440 			goto out_dput;
4441 
4442 		file->f_mode |= FMODE_CREATED;
4443 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
4444 		if (!dir_inode->i_op->create) {
4445 			error = -EACCES;
4446 			goto out_dput;
4447 		}
4448 
4449 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
4450 						mode, open_flag & O_EXCL);
4451 		if (error)
4452 			goto out_dput;
4453 	}
4454 	if (unlikely(create_error) && !dentry->d_inode) {
4455 		error = create_error;
4456 		goto out_dput;
4457 	}
4458 	return dentry;
4459 
4460 out_dput:
4461 	dput(dentry);
4462 	return ERR_PTR(error);
4463 }
4464 
trailing_slashes(struct nameidata * nd)4465 static inline bool trailing_slashes(struct nameidata *nd)
4466 {
4467 	return (bool)nd->last.name[nd->last.len];
4468 }
4469 
lookup_fast_for_open(struct nameidata * nd,int open_flag)4470 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
4471 {
4472 	struct dentry *dentry;
4473 
4474 	if (open_flag & O_CREAT) {
4475 		if (trailing_slashes(nd))
4476 			return ERR_PTR(-EISDIR);
4477 
4478 		/* Don't bother on an O_EXCL create */
4479 		if (open_flag & O_EXCL)
4480 			return NULL;
4481 	}
4482 
4483 	if (trailing_slashes(nd))
4484 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
4485 
4486 	dentry = lookup_fast(nd);
4487 	if (IS_ERR_OR_NULL(dentry))
4488 		return dentry;
4489 
4490 	if (open_flag & O_CREAT) {
4491 		/* Discard negative dentries. Need inode_lock to do the create */
4492 		if (!dentry->d_inode) {
4493 			if (!(nd->flags & LOOKUP_RCU))
4494 				dput(dentry);
4495 			dentry = NULL;
4496 		}
4497 	}
4498 	return dentry;
4499 }
4500 
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)4501 static const char *open_last_lookups(struct nameidata *nd,
4502 		   struct file *file, const struct open_flags *op)
4503 {
4504 	struct delegated_inode delegated_inode = { };
4505 	struct dentry *dir = nd->path.dentry;
4506 	int open_flag = op->open_flag;
4507 	bool got_write = false;
4508 	struct dentry *dentry;
4509 	const char *res;
4510 
4511 	nd->flags |= op->intent;
4512 
4513 	if (nd->last_type != LAST_NORM) {
4514 		if (nd->depth)
4515 			put_link(nd);
4516 		return handle_dots(nd, nd->last_type);
4517 	}
4518 
4519 	/* We _can_ be in RCU mode here */
4520 	dentry = lookup_fast_for_open(nd, open_flag);
4521 	if (IS_ERR(dentry))
4522 		return ERR_CAST(dentry);
4523 
4524 	if (likely(dentry))
4525 		goto finish_lookup;
4526 
4527 	if (!(open_flag & O_CREAT)) {
4528 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
4529 			return ERR_PTR(-ECHILD);
4530 	} else {
4531 		if (nd->flags & LOOKUP_RCU) {
4532 			if (!try_to_unlazy(nd))
4533 				return ERR_PTR(-ECHILD);
4534 		}
4535 	}
4536 retry:
4537 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
4538 		got_write = !mnt_want_write(nd->path.mnt);
4539 		/*
4540 		 * do _not_ fail yet - we might not need that or fail with
4541 		 * a different error; let lookup_open() decide; we'll be
4542 		 * dropping this one anyway.
4543 		 */
4544 	}
4545 	if (open_flag & O_CREAT)
4546 		inode_lock(dir->d_inode);
4547 	else
4548 		inode_lock_shared(dir->d_inode);
4549 	dentry = lookup_open(nd, file, op, got_write, &delegated_inode);
4550 	if (!IS_ERR(dentry)) {
4551 		if (file->f_mode & FMODE_CREATED)
4552 			fsnotify_create(dir->d_inode, dentry);
4553 		if (file->f_mode & FMODE_OPENED)
4554 			fsnotify_open(file);
4555 	}
4556 	if (open_flag & O_CREAT)
4557 		inode_unlock(dir->d_inode);
4558 	else
4559 		inode_unlock_shared(dir->d_inode);
4560 
4561 	if (got_write)
4562 		mnt_drop_write(nd->path.mnt);
4563 
4564 	if (IS_ERR(dentry)) {
4565 		if (is_delegated(&delegated_inode)) {
4566 			int error = break_deleg_wait(&delegated_inode);
4567 
4568 			if (!error)
4569 				goto retry;
4570 			return ERR_PTR(error);
4571 		}
4572 		return ERR_CAST(dentry);
4573 	}
4574 
4575 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
4576 		dput(nd->path.dentry);
4577 		nd->path.dentry = dentry;
4578 		return NULL;
4579 	}
4580 
4581 finish_lookup:
4582 	if (nd->depth)
4583 		put_link(nd);
4584 	res = step_into(nd, WALK_TRAILING, dentry);
4585 	if (unlikely(res))
4586 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
4587 	return res;
4588 }
4589 
4590 /*
4591  * Handle the last step of open()
4592  */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)4593 static int do_open(struct nameidata *nd,
4594 		   struct file *file, const struct open_flags *op)
4595 {
4596 	struct mnt_idmap *idmap;
4597 	int open_flag = op->open_flag;
4598 	bool do_truncate;
4599 	int acc_mode;
4600 	int error;
4601 
4602 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
4603 		error = complete_walk(nd);
4604 		if (error)
4605 			return error;
4606 	}
4607 	if (!(file->f_mode & FMODE_CREATED))
4608 		audit_inode(nd->name, nd->path.dentry, 0);
4609 	idmap = mnt_idmap(nd->path.mnt);
4610 	if (open_flag & O_CREAT) {
4611 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
4612 			return -EEXIST;
4613 		if (d_is_dir(nd->path.dentry))
4614 			return -EISDIR;
4615 		error = may_create_in_sticky(idmap, nd,
4616 					     d_backing_inode(nd->path.dentry));
4617 		if (unlikely(error))
4618 			return error;
4619 	}
4620 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
4621 		return -ENOTDIR;
4622 
4623 	do_truncate = false;
4624 	acc_mode = op->acc_mode;
4625 	if (file->f_mode & FMODE_CREATED) {
4626 		/* Don't check for write permission, don't truncate */
4627 		open_flag &= ~O_TRUNC;
4628 		acc_mode = 0;
4629 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
4630 		error = mnt_want_write(nd->path.mnt);
4631 		if (error)
4632 			return error;
4633 		do_truncate = true;
4634 	}
4635 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
4636 	if (!error && !(file->f_mode & FMODE_OPENED))
4637 		error = vfs_open(&nd->path, file);
4638 	if (!error)
4639 		error = security_file_post_open(file, op->acc_mode);
4640 	if (!error && do_truncate)
4641 		error = handle_truncate(idmap, file);
4642 	if (unlikely(error > 0)) {
4643 		WARN_ON(1);
4644 		error = -EINVAL;
4645 	}
4646 	if (do_truncate)
4647 		mnt_drop_write(nd->path.mnt);
4648 	return error;
4649 }
4650 
4651 /**
4652  * vfs_tmpfile - create tmpfile
4653  * @idmap:	idmap of the mount the inode was found from
4654  * @parentpath:	pointer to the path of the base directory
4655  * @file:	file descriptor of the new tmpfile
4656  * @mode:	mode of the new tmpfile
4657  *
4658  * Create a temporary file.
4659  *
4660  * If the inode has been found through an idmapped mount the idmap of
4661  * the vfsmount must be passed through @idmap. This function will then take
4662  * care to map the inode according to @idmap before checking permissions.
4663  * On non-idmapped mounts or if permission checking is to be performed on the
4664  * raw inode simply pass @nop_mnt_idmap.
4665  */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)4666 int vfs_tmpfile(struct mnt_idmap *idmap,
4667 		const struct path *parentpath,
4668 		struct file *file, umode_t mode)
4669 {
4670 	struct dentry *child;
4671 	struct inode *dir = d_inode(parentpath->dentry);
4672 	struct inode *inode;
4673 	int error;
4674 	int open_flag = file->f_flags;
4675 
4676 	/* we want directory to be writable */
4677 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
4678 	if (error)
4679 		return error;
4680 	if (!dir->i_op->tmpfile)
4681 		return -EOPNOTSUPP;
4682 	child = d_alloc(parentpath->dentry, &slash_name);
4683 	if (unlikely(!child))
4684 		return -ENOMEM;
4685 	file->__f_path.mnt = parentpath->mnt;
4686 	file->__f_path.dentry = child;
4687 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4688 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
4689 	dput(child);
4690 	if (file->f_mode & FMODE_OPENED)
4691 		fsnotify_open(file);
4692 	if (error)
4693 		return error;
4694 	/* Don't check for other permissions, the inode was just created */
4695 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
4696 	if (error)
4697 		return error;
4698 	inode = file_inode(file);
4699 	if (!(open_flag & O_EXCL)) {
4700 		spin_lock(&inode->i_lock);
4701 		inode_state_set(inode, I_LINKABLE);
4702 		spin_unlock(&inode->i_lock);
4703 	}
4704 	security_inode_post_create_tmpfile(idmap, inode);
4705 	return 0;
4706 }
4707 
4708 /**
4709  * kernel_tmpfile_open - open a tmpfile for kernel internal use
4710  * @idmap:	idmap of the mount the inode was found from
4711  * @parentpath:	path of the base directory
4712  * @mode:	mode of the new tmpfile
4713  * @open_flag:	flags
4714  * @cred:	credentials for open
4715  *
4716  * Create and open a temporary file.  The file is not accounted in nr_files,
4717  * hence this is only for kernel internal use, and must not be installed into
4718  * file tables or such.
4719  */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)4720 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
4721 				 const struct path *parentpath,
4722 				 umode_t mode, int open_flag,
4723 				 const struct cred *cred)
4724 {
4725 	struct file *file;
4726 	int error;
4727 
4728 	file = alloc_empty_file_noaccount(open_flag, cred);
4729 	if (IS_ERR(file))
4730 		return file;
4731 
4732 	error = vfs_tmpfile(idmap, parentpath, file, mode);
4733 	if (error) {
4734 		fput(file);
4735 		file = ERR_PTR(error);
4736 	}
4737 	return file;
4738 }
4739 EXPORT_SYMBOL(kernel_tmpfile_open);
4740 
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)4741 static int do_tmpfile(struct nameidata *nd, unsigned flags,
4742 		const struct open_flags *op,
4743 		struct file *file)
4744 {
4745 	struct path path;
4746 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
4747 
4748 	if (unlikely(error))
4749 		return error;
4750 	error = mnt_want_write(path.mnt);
4751 	if (unlikely(error))
4752 		goto out;
4753 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
4754 	if (error)
4755 		goto out2;
4756 	audit_inode(nd->name, file->f_path.dentry, 0);
4757 out2:
4758 	mnt_drop_write(path.mnt);
4759 out:
4760 	path_put(&path);
4761 	return error;
4762 }
4763 
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)4764 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
4765 {
4766 	struct path path;
4767 	int error = path_lookupat(nd, flags, &path);
4768 	if (!error) {
4769 		audit_inode(nd->name, path.dentry, 0);
4770 		error = vfs_open(&path, file);
4771 		path_put(&path);
4772 	}
4773 	return error;
4774 }
4775 
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)4776 static struct file *path_openat(struct nameidata *nd,
4777 			const struct open_flags *op, unsigned flags)
4778 {
4779 	struct file *file;
4780 	int error;
4781 
4782 	file = alloc_empty_file(op->open_flag, current_cred());
4783 	if (IS_ERR(file))
4784 		return file;
4785 
4786 	if (unlikely(file->f_flags & __O_TMPFILE)) {
4787 		error = do_tmpfile(nd, flags, op, file);
4788 	} else if (unlikely(file->f_flags & O_PATH)) {
4789 		error = do_o_path(nd, flags, file);
4790 	} else {
4791 		const char *s = path_init(nd, flags);
4792 		while (!(error = link_path_walk(s, nd)) &&
4793 		       (s = open_last_lookups(nd, file, op)) != NULL)
4794 			;
4795 		if (!error)
4796 			error = do_open(nd, file, op);
4797 		terminate_walk(nd);
4798 	}
4799 	if (likely(!error)) {
4800 		if (likely(file->f_mode & FMODE_OPENED))
4801 			return file;
4802 		WARN_ON(1);
4803 		error = -EINVAL;
4804 	}
4805 	fput_close(file);
4806 	if (error == -EOPENSTALE) {
4807 		if (flags & LOOKUP_RCU)
4808 			error = -ECHILD;
4809 		else
4810 			error = -ESTALE;
4811 	}
4812 	return ERR_PTR(error);
4813 }
4814 
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)4815 struct file *do_filp_open(int dfd, struct filename *pathname,
4816 		const struct open_flags *op)
4817 {
4818 	struct nameidata nd;
4819 	int flags = op->lookup_flags;
4820 	struct file *filp;
4821 
4822 	set_nameidata(&nd, dfd, pathname, NULL);
4823 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4824 	if (unlikely(filp == ERR_PTR(-ECHILD)))
4825 		filp = path_openat(&nd, op, flags);
4826 	if (unlikely(filp == ERR_PTR(-ESTALE)))
4827 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4828 	restore_nameidata();
4829 	return filp;
4830 }
4831 
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)4832 struct file *do_file_open_root(const struct path *root,
4833 		const char *name, const struct open_flags *op)
4834 {
4835 	struct nameidata nd;
4836 	struct file *file;
4837 	struct filename *filename;
4838 	int flags = op->lookup_flags;
4839 
4840 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4841 		return ERR_PTR(-ELOOP);
4842 
4843 	filename = getname_kernel(name);
4844 	if (IS_ERR(filename))
4845 		return ERR_CAST(filename);
4846 
4847 	set_nameidata(&nd, -1, filename, root);
4848 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4849 	if (unlikely(file == ERR_PTR(-ECHILD)))
4850 		file = path_openat(&nd, op, flags);
4851 	if (unlikely(file == ERR_PTR(-ESTALE)))
4852 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4853 	restore_nameidata();
4854 	putname(filename);
4855 	return file;
4856 }
4857 
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)4858 static struct dentry *filename_create(int dfd, struct filename *name,
4859 				      struct path *path, unsigned int lookup_flags)
4860 {
4861 	struct dentry *dentry = ERR_PTR(-EEXIST);
4862 	struct qstr last;
4863 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4864 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4865 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4866 	int type;
4867 	int error;
4868 
4869 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4870 	if (error)
4871 		return ERR_PTR(error);
4872 
4873 	/*
4874 	 * Yucky last component or no last component at all?
4875 	 * (foo/., foo/.., /////)
4876 	 */
4877 	if (unlikely(type != LAST_NORM))
4878 		goto out;
4879 
4880 	/* don't fail immediately if it's r/o, at least try to report other errors */
4881 	error = mnt_want_write(path->mnt);
4882 	/*
4883 	 * Do the final lookup.  Suppress 'create' if there is a trailing
4884 	 * '/', and a directory wasn't requested.
4885 	 */
4886 	if (last.name[last.len] && !want_dir)
4887 		create_flags &= ~LOOKUP_CREATE;
4888 	dentry = start_dirop(path->dentry, &last, reval_flag | create_flags);
4889 	if (IS_ERR(dentry))
4890 		goto out_drop_write;
4891 
4892 	if (unlikely(error))
4893 		goto fail;
4894 
4895 	return dentry;
4896 fail:
4897 	end_dirop(dentry);
4898 	dentry = ERR_PTR(error);
4899 out_drop_write:
4900 	if (!error)
4901 		mnt_drop_write(path->mnt);
4902 out:
4903 	path_put(path);
4904 	return dentry;
4905 }
4906 
start_creating_path(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4907 struct dentry *start_creating_path(int dfd, const char *pathname,
4908 				   struct path *path, unsigned int lookup_flags)
4909 {
4910 	struct filename *filename = getname_kernel(pathname);
4911 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4912 
4913 	putname(filename);
4914 	return res;
4915 }
4916 EXPORT_SYMBOL(start_creating_path);
4917 
4918 /**
4919  * end_creating_path - finish a code section started by start_creating_path()
4920  * @path: the path instantiated by start_creating_path()
4921  * @dentry: the dentry returned by start_creating_path()
4922  *
4923  * end_creating_path() will unlock and locks taken by start_creating_path()
4924  * and drop an references that were taken.  It should only be called
4925  * if start_creating_path() returned a non-error.
4926  * If vfs_mkdir() was called and it returned an error, that error *should*
4927  * be passed to end_creating_path() together with the path.
4928  */
end_creating_path(const struct path * path,struct dentry * dentry)4929 void end_creating_path(const struct path *path, struct dentry *dentry)
4930 {
4931 	end_creating(dentry);
4932 	mnt_drop_write(path->mnt);
4933 	path_put(path);
4934 }
4935 EXPORT_SYMBOL(end_creating_path);
4936 
start_creating_user_path(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4937 inline struct dentry *start_creating_user_path(
4938 	int dfd, const char __user *pathname,
4939 	struct path *path, unsigned int lookup_flags)
4940 {
4941 	struct filename *filename = getname(pathname);
4942 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4943 
4944 	putname(filename);
4945 	return res;
4946 }
4947 EXPORT_SYMBOL(start_creating_user_path);
4948 
4949 
4950 /**
4951  * vfs_mknod - create device node or file
4952  * @idmap:		idmap of the mount the inode was found from
4953  * @dir:		inode of the parent directory
4954  * @dentry:		dentry of the child device node
4955  * @mode:		mode of the child device node
4956  * @dev:		device number of device to create
4957  * @delegated_inode:	returns parent inode, if the inode is delegated.
4958  *
4959  * Create a device node or file.
4960  *
4961  * If the inode has been found through an idmapped mount the idmap of
4962  * the vfsmount must be passed through @idmap. This function will then take
4963  * care to map the inode according to @idmap before checking permissions.
4964  * On non-idmapped mounts or if permission checking is to be performed on the
4965  * raw inode simply pass @nop_mnt_idmap.
4966  */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev,struct delegated_inode * delegated_inode)4967 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4968 	      struct dentry *dentry, umode_t mode, dev_t dev,
4969 	      struct delegated_inode *delegated_inode)
4970 {
4971 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4972 	int error = may_create(idmap, dir, dentry);
4973 
4974 	if (error)
4975 		return error;
4976 
4977 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4978 	    !capable(CAP_MKNOD))
4979 		return -EPERM;
4980 
4981 	if (!dir->i_op->mknod)
4982 		return -EPERM;
4983 
4984 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4985 	error = devcgroup_inode_mknod(mode, dev);
4986 	if (error)
4987 		return error;
4988 
4989 	error = security_inode_mknod(dir, dentry, mode, dev);
4990 	if (error)
4991 		return error;
4992 
4993 	error = try_break_deleg(dir, delegated_inode);
4994 	if (error)
4995 		return error;
4996 
4997 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4998 	if (!error)
4999 		fsnotify_create(dir, dentry);
5000 	return error;
5001 }
5002 EXPORT_SYMBOL(vfs_mknod);
5003 
may_mknod(umode_t mode)5004 static int may_mknod(umode_t mode)
5005 {
5006 	switch (mode & S_IFMT) {
5007 	case S_IFREG:
5008 	case S_IFCHR:
5009 	case S_IFBLK:
5010 	case S_IFIFO:
5011 	case S_IFSOCK:
5012 	case 0: /* zero mode translates to S_IFREG */
5013 		return 0;
5014 	case S_IFDIR:
5015 		return -EPERM;
5016 	default:
5017 		return -EINVAL;
5018 	}
5019 }
5020 
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)5021 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
5022 		unsigned int dev)
5023 {
5024 	struct delegated_inode di = { };
5025 	struct mnt_idmap *idmap;
5026 	struct dentry *dentry;
5027 	struct path path;
5028 	int error;
5029 	unsigned int lookup_flags = 0;
5030 
5031 	error = may_mknod(mode);
5032 	if (error)
5033 		goto out1;
5034 retry:
5035 	dentry = filename_create(dfd, name, &path, lookup_flags);
5036 	error = PTR_ERR(dentry);
5037 	if (IS_ERR(dentry))
5038 		goto out1;
5039 
5040 	error = security_path_mknod(&path, dentry,
5041 			mode_strip_umask(path.dentry->d_inode, mode), dev);
5042 	if (error)
5043 		goto out2;
5044 
5045 	idmap = mnt_idmap(path.mnt);
5046 	switch (mode & S_IFMT) {
5047 		case 0: case S_IFREG:
5048 			error = vfs_create(idmap, dentry, mode, &di);
5049 			if (!error)
5050 				security_path_post_mknod(idmap, dentry);
5051 			break;
5052 		case S_IFCHR: case S_IFBLK:
5053 			error = vfs_mknod(idmap, path.dentry->d_inode,
5054 					  dentry, mode, new_decode_dev(dev), &di);
5055 			break;
5056 		case S_IFIFO: case S_IFSOCK:
5057 			error = vfs_mknod(idmap, path.dentry->d_inode,
5058 					  dentry, mode, 0, &di);
5059 			break;
5060 	}
5061 out2:
5062 	end_creating_path(&path, dentry);
5063 	if (is_delegated(&di)) {
5064 		error = break_deleg_wait(&di);
5065 		if (!error)
5066 			goto retry;
5067 	}
5068 	if (retry_estale(error, lookup_flags)) {
5069 		lookup_flags |= LOOKUP_REVAL;
5070 		goto retry;
5071 	}
5072 out1:
5073 	putname(name);
5074 	return error;
5075 }
5076 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)5077 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
5078 		unsigned int, dev)
5079 {
5080 	return do_mknodat(dfd, getname(filename), mode, dev);
5081 }
5082 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)5083 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
5084 {
5085 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
5086 }
5087 
5088 /**
5089  * vfs_mkdir - create directory returning correct dentry if possible
5090  * @idmap:		idmap of the mount the inode was found from
5091  * @dir:		inode of the parent directory
5092  * @dentry:		dentry of the child directory
5093  * @mode:		mode of the child directory
5094  * @delegated_inode:	returns parent inode, if the inode is delegated.
5095  *
5096  * Create a directory.
5097  *
5098  * If the inode has been found through an idmapped mount the idmap of
5099  * the vfsmount must be passed through @idmap. This function will then take
5100  * care to map the inode according to @idmap before checking permissions.
5101  * On non-idmapped mounts or if permission checking is to be performed on the
5102  * raw inode simply pass @nop_mnt_idmap.
5103  *
5104  * In the event that the filesystem does not use the *@dentry but leaves it
5105  * negative or unhashes it and possibly splices a different one returning it,
5106  * the original dentry is dput() and the alternate is returned.
5107  *
5108  * In case of an error the dentry is dput() and an ERR_PTR() is returned.
5109  */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,struct delegated_inode * delegated_inode)5110 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
5111 			 struct dentry *dentry, umode_t mode,
5112 			 struct delegated_inode *delegated_inode)
5113 {
5114 	int error;
5115 	unsigned max_links = dir->i_sb->s_max_links;
5116 	struct dentry *de;
5117 
5118 	error = may_create(idmap, dir, dentry);
5119 	if (error)
5120 		goto err;
5121 
5122 	error = -EPERM;
5123 	if (!dir->i_op->mkdir)
5124 		goto err;
5125 
5126 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
5127 	error = security_inode_mkdir(dir, dentry, mode);
5128 	if (error)
5129 		goto err;
5130 
5131 	error = -EMLINK;
5132 	if (max_links && dir->i_nlink >= max_links)
5133 		goto err;
5134 
5135 	error = try_break_deleg(dir, delegated_inode);
5136 	if (error)
5137 		goto err;
5138 
5139 	de = dir->i_op->mkdir(idmap, dir, dentry, mode);
5140 	error = PTR_ERR(de);
5141 	if (IS_ERR(de))
5142 		goto err;
5143 	if (de) {
5144 		dput(dentry);
5145 		dentry = de;
5146 	}
5147 	fsnotify_mkdir(dir, dentry);
5148 	return dentry;
5149 
5150 err:
5151 	end_creating(dentry);
5152 	return ERR_PTR(error);
5153 }
5154 EXPORT_SYMBOL(vfs_mkdir);
5155 
do_mkdirat(int dfd,struct filename * name,umode_t mode)5156 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
5157 {
5158 	struct dentry *dentry;
5159 	struct path path;
5160 	int error;
5161 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
5162 	struct delegated_inode delegated_inode = { };
5163 
5164 retry:
5165 	dentry = filename_create(dfd, name, &path, lookup_flags);
5166 	error = PTR_ERR(dentry);
5167 	if (IS_ERR(dentry))
5168 		goto out_putname;
5169 
5170 	error = security_path_mkdir(&path, dentry,
5171 			mode_strip_umask(path.dentry->d_inode, mode));
5172 	if (!error) {
5173 		dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
5174 				   dentry, mode, &delegated_inode);
5175 		if (IS_ERR(dentry))
5176 			error = PTR_ERR(dentry);
5177 	}
5178 	end_creating_path(&path, dentry);
5179 	if (is_delegated(&delegated_inode)) {
5180 		error = break_deleg_wait(&delegated_inode);
5181 		if (!error)
5182 			goto retry;
5183 	}
5184 	if (retry_estale(error, lookup_flags)) {
5185 		lookup_flags |= LOOKUP_REVAL;
5186 		goto retry;
5187 	}
5188 out_putname:
5189 	putname(name);
5190 	return error;
5191 }
5192 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)5193 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
5194 {
5195 	return do_mkdirat(dfd, getname(pathname), mode);
5196 }
5197 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)5198 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
5199 {
5200 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
5201 }
5202 
5203 /**
5204  * vfs_rmdir - remove directory
5205  * @idmap:		idmap of the mount the inode was found from
5206  * @dir:		inode of the parent directory
5207  * @dentry:		dentry of the child directory
5208  * @delegated_inode:	returns parent inode, if it's delegated.
5209  *
5210  * Remove a directory.
5211  *
5212  * If the inode has been found through an idmapped mount the idmap of
5213  * the vfsmount must be passed through @idmap. This function will then take
5214  * care to map the inode according to @idmap before checking permissions.
5215  * On non-idmapped mounts or if permission checking is to be performed on the
5216  * raw inode simply pass @nop_mnt_idmap.
5217  */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct delegated_inode * delegated_inode)5218 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
5219 	      struct dentry *dentry, struct delegated_inode *delegated_inode)
5220 {
5221 	int error = may_delete(idmap, dir, dentry, 1);
5222 
5223 	if (error)
5224 		return error;
5225 
5226 	if (!dir->i_op->rmdir)
5227 		return -EPERM;
5228 
5229 	dget(dentry);
5230 	inode_lock(dentry->d_inode);
5231 
5232 	error = -EBUSY;
5233 	if (is_local_mountpoint(dentry) ||
5234 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
5235 		goto out;
5236 
5237 	error = security_inode_rmdir(dir, dentry);
5238 	if (error)
5239 		goto out;
5240 
5241 	error = try_break_deleg(dir, delegated_inode);
5242 	if (error)
5243 		goto out;
5244 
5245 	error = dir->i_op->rmdir(dir, dentry);
5246 	if (error)
5247 		goto out;
5248 
5249 	shrink_dcache_parent(dentry);
5250 	dentry->d_inode->i_flags |= S_DEAD;
5251 	dont_mount(dentry);
5252 	detach_mounts(dentry);
5253 
5254 out:
5255 	inode_unlock(dentry->d_inode);
5256 	dput(dentry);
5257 	if (!error)
5258 		d_delete_notify(dir, dentry);
5259 	return error;
5260 }
5261 EXPORT_SYMBOL(vfs_rmdir);
5262 
do_rmdir(int dfd,struct filename * name)5263 int do_rmdir(int dfd, struct filename *name)
5264 {
5265 	int error;
5266 	struct dentry *dentry;
5267 	struct path path;
5268 	struct qstr last;
5269 	int type;
5270 	unsigned int lookup_flags = 0;
5271 	struct delegated_inode delegated_inode = { };
5272 retry:
5273 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
5274 	if (error)
5275 		goto exit1;
5276 
5277 	switch (type) {
5278 	case LAST_DOTDOT:
5279 		error = -ENOTEMPTY;
5280 		goto exit2;
5281 	case LAST_DOT:
5282 		error = -EINVAL;
5283 		goto exit2;
5284 	case LAST_ROOT:
5285 		error = -EBUSY;
5286 		goto exit2;
5287 	}
5288 
5289 	error = mnt_want_write(path.mnt);
5290 	if (error)
5291 		goto exit2;
5292 
5293 	dentry = start_dirop(path.dentry, &last, lookup_flags);
5294 	error = PTR_ERR(dentry);
5295 	if (IS_ERR(dentry))
5296 		goto exit3;
5297 	error = security_path_rmdir(&path, dentry);
5298 	if (error)
5299 		goto exit4;
5300 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode,
5301 			  dentry, &delegated_inode);
5302 exit4:
5303 	end_dirop(dentry);
5304 exit3:
5305 	mnt_drop_write(path.mnt);
5306 exit2:
5307 	path_put(&path);
5308 	if (is_delegated(&delegated_inode)) {
5309 		error = break_deleg_wait(&delegated_inode);
5310 		if (!error)
5311 			goto retry;
5312 	}
5313 	if (retry_estale(error, lookup_flags)) {
5314 		lookup_flags |= LOOKUP_REVAL;
5315 		goto retry;
5316 	}
5317 exit1:
5318 	putname(name);
5319 	return error;
5320 }
5321 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)5322 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
5323 {
5324 	return do_rmdir(AT_FDCWD, getname(pathname));
5325 }
5326 
5327 /**
5328  * vfs_unlink - unlink a filesystem object
5329  * @idmap:	idmap of the mount the inode was found from
5330  * @dir:	parent directory
5331  * @dentry:	victim
5332  * @delegated_inode: returns victim inode, if the inode is delegated.
5333  *
5334  * The caller must hold dir->i_rwsem exclusively.
5335  *
5336  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
5337  * return a reference to the inode in delegated_inode.  The caller
5338  * should then break the delegation on that inode and retry.  Because
5339  * breaking a delegation may take a long time, the caller should drop
5340  * dir->i_rwsem before doing so.
5341  *
5342  * Alternatively, a caller may pass NULL for delegated_inode.  This may
5343  * be appropriate for callers that expect the underlying filesystem not
5344  * to be NFS exported.
5345  *
5346  * If the inode has been found through an idmapped mount the idmap of
5347  * the vfsmount must be passed through @idmap. This function will then take
5348  * care to map the inode according to @idmap before checking permissions.
5349  * On non-idmapped mounts or if permission checking is to be performed on the
5350  * raw inode simply pass @nop_mnt_idmap.
5351  */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct delegated_inode * delegated_inode)5352 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
5353 	       struct dentry *dentry, struct delegated_inode *delegated_inode)
5354 {
5355 	struct inode *target = dentry->d_inode;
5356 	int error = may_delete(idmap, dir, dentry, 0);
5357 
5358 	if (error)
5359 		return error;
5360 
5361 	if (!dir->i_op->unlink)
5362 		return -EPERM;
5363 
5364 	inode_lock(target);
5365 	if (IS_SWAPFILE(target))
5366 		error = -EPERM;
5367 	else if (is_local_mountpoint(dentry))
5368 		error = -EBUSY;
5369 	else {
5370 		error = security_inode_unlink(dir, dentry);
5371 		if (!error) {
5372 			error = try_break_deleg(dir, delegated_inode);
5373 			if (error)
5374 				goto out;
5375 			error = try_break_deleg(target, delegated_inode);
5376 			if (error)
5377 				goto out;
5378 			error = dir->i_op->unlink(dir, dentry);
5379 			if (!error) {
5380 				dont_mount(dentry);
5381 				detach_mounts(dentry);
5382 			}
5383 		}
5384 	}
5385 out:
5386 	inode_unlock(target);
5387 
5388 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
5389 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
5390 		fsnotify_unlink(dir, dentry);
5391 	} else if (!error) {
5392 		fsnotify_link_count(target);
5393 		d_delete_notify(dir, dentry);
5394 	}
5395 
5396 	return error;
5397 }
5398 EXPORT_SYMBOL(vfs_unlink);
5399 
5400 /*
5401  * Make sure that the actual truncation of the file will occur outside its
5402  * directory's i_rwsem.  Truncate can take a long time if there is a lot of
5403  * writeout happening, and we don't want to prevent access to the directory
5404  * while waiting on the I/O.
5405  */
do_unlinkat(int dfd,struct filename * name)5406 int do_unlinkat(int dfd, struct filename *name)
5407 {
5408 	int error;
5409 	struct dentry *dentry;
5410 	struct path path;
5411 	struct qstr last;
5412 	int type;
5413 	struct inode *inode;
5414 	struct delegated_inode delegated_inode = { };
5415 	unsigned int lookup_flags = 0;
5416 retry:
5417 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
5418 	if (error)
5419 		goto exit_putname;
5420 
5421 	error = -EISDIR;
5422 	if (type != LAST_NORM)
5423 		goto exit_path_put;
5424 
5425 	error = mnt_want_write(path.mnt);
5426 	if (error)
5427 		goto exit_path_put;
5428 retry_deleg:
5429 	dentry = start_dirop(path.dentry, &last, lookup_flags);
5430 	error = PTR_ERR(dentry);
5431 	if (IS_ERR(dentry))
5432 		goto exit_drop_write;
5433 
5434 	/* Why not before? Because we want correct error value */
5435 	if (unlikely(last.name[last.len])) {
5436 		if (d_is_dir(dentry))
5437 			error = -EISDIR;
5438 		else
5439 			error = -ENOTDIR;
5440 		end_dirop(dentry);
5441 		goto exit_drop_write;
5442 	}
5443 	inode = dentry->d_inode;
5444 	ihold(inode);
5445 	error = security_path_unlink(&path, dentry);
5446 	if (error)
5447 		goto exit_end_dirop;
5448 	error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
5449 			   dentry, &delegated_inode);
5450 exit_end_dirop:
5451 	end_dirop(dentry);
5452 	iput(inode);	/* truncate the inode here */
5453 	if (is_delegated(&delegated_inode)) {
5454 		error = break_deleg_wait(&delegated_inode);
5455 		if (!error)
5456 			goto retry_deleg;
5457 	}
5458 exit_drop_write:
5459 	mnt_drop_write(path.mnt);
5460 exit_path_put:
5461 	path_put(&path);
5462 	if (retry_estale(error, lookup_flags)) {
5463 		lookup_flags |= LOOKUP_REVAL;
5464 		goto retry;
5465 	}
5466 exit_putname:
5467 	putname(name);
5468 	return error;
5469 }
5470 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)5471 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
5472 {
5473 	if ((flag & ~AT_REMOVEDIR) != 0)
5474 		return -EINVAL;
5475 
5476 	if (flag & AT_REMOVEDIR)
5477 		return do_rmdir(dfd, getname(pathname));
5478 	return do_unlinkat(dfd, getname(pathname));
5479 }
5480 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)5481 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
5482 {
5483 	return do_unlinkat(AT_FDCWD, getname(pathname));
5484 }
5485 
5486 /**
5487  * vfs_symlink - create symlink
5488  * @idmap:	idmap of the mount the inode was found from
5489  * @dir:	inode of the parent directory
5490  * @dentry:	dentry of the child symlink file
5491  * @oldname:	name of the file to link to
5492  * @delegated_inode: returns victim inode, if the inode is delegated.
5493  *
5494  * Create a symlink.
5495  *
5496  * If the inode has been found through an idmapped mount the idmap of
5497  * the vfsmount must be passed through @idmap. This function will then take
5498  * care to map the inode according to @idmap before checking permissions.
5499  * On non-idmapped mounts or if permission checking is to be performed on the
5500  * raw inode simply pass @nop_mnt_idmap.
5501  */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname,struct delegated_inode * delegated_inode)5502 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
5503 		struct dentry *dentry, const char *oldname,
5504 		struct delegated_inode *delegated_inode)
5505 {
5506 	int error;
5507 
5508 	error = may_create(idmap, dir, dentry);
5509 	if (error)
5510 		return error;
5511 
5512 	if (!dir->i_op->symlink)
5513 		return -EPERM;
5514 
5515 	error = security_inode_symlink(dir, dentry, oldname);
5516 	if (error)
5517 		return error;
5518 
5519 	error = try_break_deleg(dir, delegated_inode);
5520 	if (error)
5521 		return error;
5522 
5523 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
5524 	if (!error)
5525 		fsnotify_create(dir, dentry);
5526 	return error;
5527 }
5528 EXPORT_SYMBOL(vfs_symlink);
5529 
do_symlinkat(struct filename * from,int newdfd,struct filename * to)5530 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
5531 {
5532 	int error;
5533 	struct dentry *dentry;
5534 	struct path path;
5535 	unsigned int lookup_flags = 0;
5536 	struct delegated_inode delegated_inode = { };
5537 
5538 	if (IS_ERR(from)) {
5539 		error = PTR_ERR(from);
5540 		goto out_putnames;
5541 	}
5542 retry:
5543 	dentry = filename_create(newdfd, to, &path, lookup_flags);
5544 	error = PTR_ERR(dentry);
5545 	if (IS_ERR(dentry))
5546 		goto out_putnames;
5547 
5548 	error = security_path_symlink(&path, dentry, from->name);
5549 	if (!error)
5550 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
5551 				    dentry, from->name, &delegated_inode);
5552 	end_creating_path(&path, dentry);
5553 	if (is_delegated(&delegated_inode)) {
5554 		error = break_deleg_wait(&delegated_inode);
5555 		if (!error)
5556 			goto retry;
5557 	}
5558 	if (retry_estale(error, lookup_flags)) {
5559 		lookup_flags |= LOOKUP_REVAL;
5560 		goto retry;
5561 	}
5562 out_putnames:
5563 	putname(to);
5564 	putname(from);
5565 	return error;
5566 }
5567 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)5568 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
5569 		int, newdfd, const char __user *, newname)
5570 {
5571 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
5572 }
5573 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)5574 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
5575 {
5576 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
5577 }
5578 
5579 /**
5580  * vfs_link - create a new link
5581  * @old_dentry:	object to be linked
5582  * @idmap:	idmap of the mount
5583  * @dir:	new parent
5584  * @new_dentry:	where to create the new link
5585  * @delegated_inode: returns inode needing a delegation break
5586  *
5587  * The caller must hold dir->i_rwsem exclusively.
5588  *
5589  * If vfs_link discovers a delegation on the to-be-linked file in need
5590  * of breaking, it will return -EWOULDBLOCK and return a reference to the
5591  * inode in delegated_inode.  The caller should then break the delegation
5592  * and retry.  Because breaking a delegation may take a long time, the
5593  * caller should drop the i_rwsem before doing so.
5594  *
5595  * Alternatively, a caller may pass NULL for delegated_inode.  This may
5596  * be appropriate for callers that expect the underlying filesystem not
5597  * to be NFS exported.
5598  *
5599  * If the inode has been found through an idmapped mount the idmap of
5600  * the vfsmount must be passed through @idmap. This function will then take
5601  * care to map the inode according to @idmap before checking permissions.
5602  * On non-idmapped mounts or if permission checking is to be performed on the
5603  * raw inode simply pass @nop_mnt_idmap.
5604  */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct delegated_inode * delegated_inode)5605 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
5606 	     struct inode *dir, struct dentry *new_dentry,
5607 	     struct delegated_inode *delegated_inode)
5608 {
5609 	struct inode *inode = old_dentry->d_inode;
5610 	unsigned max_links = dir->i_sb->s_max_links;
5611 	int error;
5612 
5613 	if (!inode)
5614 		return -ENOENT;
5615 
5616 	error = may_create(idmap, dir, new_dentry);
5617 	if (error)
5618 		return error;
5619 
5620 	if (dir->i_sb != inode->i_sb)
5621 		return -EXDEV;
5622 
5623 	/*
5624 	 * A link to an append-only or immutable file cannot be created.
5625 	 */
5626 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5627 		return -EPERM;
5628 	/*
5629 	 * Updating the link count will likely cause i_uid and i_gid to
5630 	 * be written back improperly if their true value is unknown to
5631 	 * the vfs.
5632 	 */
5633 	if (HAS_UNMAPPED_ID(idmap, inode))
5634 		return -EPERM;
5635 	if (!dir->i_op->link)
5636 		return -EPERM;
5637 	if (S_ISDIR(inode->i_mode))
5638 		return -EPERM;
5639 
5640 	error = security_inode_link(old_dentry, dir, new_dentry);
5641 	if (error)
5642 		return error;
5643 
5644 	inode_lock(inode);
5645 	/* Make sure we don't allow creating hardlink to an unlinked file */
5646 	if (inode->i_nlink == 0 && !(inode_state_read_once(inode) & I_LINKABLE))
5647 		error =  -ENOENT;
5648 	else if (max_links && inode->i_nlink >= max_links)
5649 		error = -EMLINK;
5650 	else {
5651 		error = try_break_deleg(dir, delegated_inode);
5652 		if (!error)
5653 			error = try_break_deleg(inode, delegated_inode);
5654 		if (!error)
5655 			error = dir->i_op->link(old_dentry, dir, new_dentry);
5656 	}
5657 
5658 	if (!error && (inode_state_read_once(inode) & I_LINKABLE)) {
5659 		spin_lock(&inode->i_lock);
5660 		inode_state_clear(inode, I_LINKABLE);
5661 		spin_unlock(&inode->i_lock);
5662 	}
5663 	inode_unlock(inode);
5664 	if (!error)
5665 		fsnotify_link(dir, inode, new_dentry);
5666 	return error;
5667 }
5668 EXPORT_SYMBOL(vfs_link);
5669 
5670 /*
5671  * Hardlinks are often used in delicate situations.  We avoid
5672  * security-related surprises by not following symlinks on the
5673  * newname.  --KAB
5674  *
5675  * We don't follow them on the oldname either to be compatible
5676  * with linux 2.0, and to avoid hard-linking to directories
5677  * and other special files.  --ADM
5678  */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)5679 int do_linkat(int olddfd, struct filename *old, int newdfd,
5680 	      struct filename *new, int flags)
5681 {
5682 	struct mnt_idmap *idmap;
5683 	struct dentry *new_dentry;
5684 	struct path old_path, new_path;
5685 	struct delegated_inode delegated_inode = { };
5686 	int how = 0;
5687 	int error;
5688 
5689 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
5690 		error = -EINVAL;
5691 		goto out_putnames;
5692 	}
5693 	/*
5694 	 * To use null names we require CAP_DAC_READ_SEARCH or
5695 	 * that the open-time creds of the dfd matches current.
5696 	 * This ensures that not everyone will be able to create
5697 	 * a hardlink using the passed file descriptor.
5698 	 */
5699 	if (flags & AT_EMPTY_PATH)
5700 		how |= LOOKUP_LINKAT_EMPTY;
5701 
5702 	if (flags & AT_SYMLINK_FOLLOW)
5703 		how |= LOOKUP_FOLLOW;
5704 retry:
5705 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
5706 	if (error)
5707 		goto out_putnames;
5708 
5709 	new_dentry = filename_create(newdfd, new, &new_path,
5710 					(how & LOOKUP_REVAL));
5711 	error = PTR_ERR(new_dentry);
5712 	if (IS_ERR(new_dentry))
5713 		goto out_putpath;
5714 
5715 	error = -EXDEV;
5716 	if (old_path.mnt != new_path.mnt)
5717 		goto out_dput;
5718 	idmap = mnt_idmap(new_path.mnt);
5719 	error = may_linkat(idmap, &old_path);
5720 	if (unlikely(error))
5721 		goto out_dput;
5722 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
5723 	if (error)
5724 		goto out_dput;
5725 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
5726 			 new_dentry, &delegated_inode);
5727 out_dput:
5728 	end_creating_path(&new_path, new_dentry);
5729 	if (is_delegated(&delegated_inode)) {
5730 		error = break_deleg_wait(&delegated_inode);
5731 		if (!error) {
5732 			path_put(&old_path);
5733 			goto retry;
5734 		}
5735 	}
5736 	if (retry_estale(error, how)) {
5737 		path_put(&old_path);
5738 		how |= LOOKUP_REVAL;
5739 		goto retry;
5740 	}
5741 out_putpath:
5742 	path_put(&old_path);
5743 out_putnames:
5744 	putname(old);
5745 	putname(new);
5746 
5747 	return error;
5748 }
5749 
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)5750 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
5751 		int, newdfd, const char __user *, newname, int, flags)
5752 {
5753 	return do_linkat(olddfd, getname_uflags(oldname, flags),
5754 		newdfd, getname(newname), flags);
5755 }
5756 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)5757 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
5758 {
5759 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
5760 }
5761 
5762 /**
5763  * vfs_rename - rename a filesystem object
5764  * @rd:		pointer to &struct renamedata info
5765  *
5766  * The caller must hold multiple mutexes--see lock_rename()).
5767  *
5768  * If vfs_rename discovers a delegation in need of breaking at either
5769  * the source or destination, it will return -EWOULDBLOCK and return a
5770  * reference to the inode in delegated_inode.  The caller should then
5771  * break the delegation and retry.  Because breaking a delegation may
5772  * take a long time, the caller should drop all locks before doing
5773  * so.
5774  *
5775  * Alternatively, a caller may pass NULL for delegated_inode.  This may
5776  * be appropriate for callers that expect the underlying filesystem not
5777  * to be NFS exported.
5778  *
5779  * The worst of all namespace operations - renaming directory. "Perverted"
5780  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
5781  * Problems:
5782  *
5783  *	a) we can get into loop creation.
5784  *	b) race potential - two innocent renames can create a loop together.
5785  *	   That's where 4.4BSD screws up. Current fix: serialization on
5786  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
5787  *	   story.
5788  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
5789  *	   and source (if it's a non-directory or a subdirectory that moves to
5790  *	   different parent).
5791  *	   And that - after we got ->i_rwsem on parents (until then we don't know
5792  *	   whether the target exists).  Solution: try to be smart with locking
5793  *	   order for inodes.  We rely on the fact that tree topology may change
5794  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
5795  *	   move will be locked.  Thus we can rank directories by the tree
5796  *	   (ancestors first) and rank all non-directories after them.
5797  *	   That works since everybody except rename does "lock parent, lookup,
5798  *	   lock child" and rename is under ->s_vfs_rename_mutex.
5799  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
5800  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
5801  *	   we'd better make sure that there's no link(2) for them.
5802  *	d) conversion from fhandle to dentry may come in the wrong moment - when
5803  *	   we are removing the target. Solution: we will have to grab ->i_rwsem
5804  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
5805  *	   ->i_rwsem on parents, which works but leads to some truly excessive
5806  *	   locking].
5807  */
vfs_rename(struct renamedata * rd)5808 int vfs_rename(struct renamedata *rd)
5809 {
5810 	int error;
5811 	struct inode *old_dir = d_inode(rd->old_parent);
5812 	struct inode *new_dir = d_inode(rd->new_parent);
5813 	struct dentry *old_dentry = rd->old_dentry;
5814 	struct dentry *new_dentry = rd->new_dentry;
5815 	struct delegated_inode *delegated_inode = rd->delegated_inode;
5816 	unsigned int flags = rd->flags;
5817 	bool is_dir = d_is_dir(old_dentry);
5818 	struct inode *source = old_dentry->d_inode;
5819 	struct inode *target = new_dentry->d_inode;
5820 	bool new_is_dir = false;
5821 	unsigned max_links = new_dir->i_sb->s_max_links;
5822 	struct name_snapshot old_name;
5823 	bool lock_old_subdir, lock_new_subdir;
5824 
5825 	if (source == target)
5826 		return 0;
5827 
5828 	error = may_delete(rd->mnt_idmap, old_dir, old_dentry, is_dir);
5829 	if (error)
5830 		return error;
5831 
5832 	if (!target) {
5833 		error = may_create(rd->mnt_idmap, new_dir, new_dentry);
5834 	} else {
5835 		new_is_dir = d_is_dir(new_dentry);
5836 
5837 		if (!(flags & RENAME_EXCHANGE))
5838 			error = may_delete(rd->mnt_idmap, new_dir,
5839 					   new_dentry, is_dir);
5840 		else
5841 			error = may_delete(rd->mnt_idmap, new_dir,
5842 					   new_dentry, new_is_dir);
5843 	}
5844 	if (error)
5845 		return error;
5846 
5847 	if (!old_dir->i_op->rename)
5848 		return -EPERM;
5849 
5850 	/*
5851 	 * If we are going to change the parent - check write permissions,
5852 	 * we'll need to flip '..'.
5853 	 */
5854 	if (new_dir != old_dir) {
5855 		if (is_dir) {
5856 			error = inode_permission(rd->mnt_idmap, source,
5857 						 MAY_WRITE);
5858 			if (error)
5859 				return error;
5860 		}
5861 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5862 			error = inode_permission(rd->mnt_idmap, target,
5863 						 MAY_WRITE);
5864 			if (error)
5865 				return error;
5866 		}
5867 	}
5868 
5869 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5870 				      flags);
5871 	if (error)
5872 		return error;
5873 
5874 	take_dentry_name_snapshot(&old_name, old_dentry);
5875 	dget(new_dentry);
5876 	/*
5877 	 * Lock children.
5878 	 * The source subdirectory needs to be locked on cross-directory
5879 	 * rename or cross-directory exchange since its parent changes.
5880 	 * The target subdirectory needs to be locked on cross-directory
5881 	 * exchange due to parent change and on any rename due to becoming
5882 	 * a victim.
5883 	 * Non-directories need locking in all cases (for NFS reasons);
5884 	 * they get locked after any subdirectories (in inode address order).
5885 	 *
5886 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5887 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5888 	 */
5889 	lock_old_subdir = new_dir != old_dir;
5890 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5891 	if (is_dir) {
5892 		if (lock_old_subdir)
5893 			inode_lock_nested(source, I_MUTEX_CHILD);
5894 		if (target && (!new_is_dir || lock_new_subdir))
5895 			inode_lock(target);
5896 	} else if (new_is_dir) {
5897 		if (lock_new_subdir)
5898 			inode_lock_nested(target, I_MUTEX_CHILD);
5899 		inode_lock(source);
5900 	} else {
5901 		lock_two_nondirectories(source, target);
5902 	}
5903 
5904 	error = -EPERM;
5905 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5906 		goto out;
5907 
5908 	error = -EBUSY;
5909 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5910 		goto out;
5911 
5912 	if (max_links && new_dir != old_dir) {
5913 		error = -EMLINK;
5914 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5915 			goto out;
5916 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5917 		    old_dir->i_nlink >= max_links)
5918 			goto out;
5919 	}
5920 	error = try_break_deleg(old_dir, delegated_inode);
5921 	if (error)
5922 		goto out;
5923 	if (new_dir != old_dir) {
5924 		error = try_break_deleg(new_dir, delegated_inode);
5925 		if (error)
5926 			goto out;
5927 	}
5928 	if (!is_dir) {
5929 		error = try_break_deleg(source, delegated_inode);
5930 		if (error)
5931 			goto out;
5932 	}
5933 	if (target && !new_is_dir) {
5934 		error = try_break_deleg(target, delegated_inode);
5935 		if (error)
5936 			goto out;
5937 	}
5938 	error = old_dir->i_op->rename(rd->mnt_idmap, old_dir, old_dentry,
5939 				      new_dir, new_dentry, flags);
5940 	if (error)
5941 		goto out;
5942 
5943 	if (!(flags & RENAME_EXCHANGE) && target) {
5944 		if (is_dir) {
5945 			shrink_dcache_parent(new_dentry);
5946 			target->i_flags |= S_DEAD;
5947 		}
5948 		dont_mount(new_dentry);
5949 		detach_mounts(new_dentry);
5950 	}
5951 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5952 		if (!(flags & RENAME_EXCHANGE))
5953 			d_move(old_dentry, new_dentry);
5954 		else
5955 			d_exchange(old_dentry, new_dentry);
5956 	}
5957 out:
5958 	if (!is_dir || lock_old_subdir)
5959 		inode_unlock(source);
5960 	if (target && (!new_is_dir || lock_new_subdir))
5961 		inode_unlock(target);
5962 	dput(new_dentry);
5963 	if (!error) {
5964 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5965 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5966 		if (flags & RENAME_EXCHANGE) {
5967 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5968 				      new_is_dir, NULL, new_dentry);
5969 		}
5970 	}
5971 	release_dentry_name_snapshot(&old_name);
5972 
5973 	return error;
5974 }
5975 EXPORT_SYMBOL(vfs_rename);
5976 
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5977 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5978 		 struct filename *to, unsigned int flags)
5979 {
5980 	struct renamedata rd;
5981 	struct path old_path, new_path;
5982 	struct qstr old_last, new_last;
5983 	int old_type, new_type;
5984 	struct delegated_inode delegated_inode = { };
5985 	unsigned int lookup_flags = 0;
5986 	bool should_retry = false;
5987 	int error = -EINVAL;
5988 
5989 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5990 		goto put_names;
5991 
5992 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5993 	    (flags & RENAME_EXCHANGE))
5994 		goto put_names;
5995 
5996 retry:
5997 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5998 				  &old_last, &old_type);
5999 	if (error)
6000 		goto put_names;
6001 
6002 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
6003 				  &new_type);
6004 	if (error)
6005 		goto exit1;
6006 
6007 	error = -EXDEV;
6008 	if (old_path.mnt != new_path.mnt)
6009 		goto exit2;
6010 
6011 	error = -EBUSY;
6012 	if (old_type != LAST_NORM)
6013 		goto exit2;
6014 
6015 	if (flags & RENAME_NOREPLACE)
6016 		error = -EEXIST;
6017 	if (new_type != LAST_NORM)
6018 		goto exit2;
6019 
6020 	error = mnt_want_write(old_path.mnt);
6021 	if (error)
6022 		goto exit2;
6023 
6024 retry_deleg:
6025 	rd.old_parent	   = old_path.dentry;
6026 	rd.mnt_idmap	   = mnt_idmap(old_path.mnt);
6027 	rd.new_parent	   = new_path.dentry;
6028 	rd.delegated_inode = &delegated_inode;
6029 	rd.flags	   = flags;
6030 
6031 	error = __start_renaming(&rd, lookup_flags, &old_last, &new_last);
6032 	if (error)
6033 		goto exit_lock_rename;
6034 
6035 	if (flags & RENAME_EXCHANGE) {
6036 		if (!d_is_dir(rd.new_dentry)) {
6037 			error = -ENOTDIR;
6038 			if (new_last.name[new_last.len])
6039 				goto exit_unlock;
6040 		}
6041 	}
6042 	/* unless the source is a directory trailing slashes give -ENOTDIR */
6043 	if (!d_is_dir(rd.old_dentry)) {
6044 		error = -ENOTDIR;
6045 		if (old_last.name[old_last.len])
6046 			goto exit_unlock;
6047 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
6048 			goto exit_unlock;
6049 	}
6050 
6051 	error = security_path_rename(&old_path, rd.old_dentry,
6052 				     &new_path, rd.new_dentry, flags);
6053 	if (error)
6054 		goto exit_unlock;
6055 
6056 	error = vfs_rename(&rd);
6057 exit_unlock:
6058 	end_renaming(&rd);
6059 exit_lock_rename:
6060 	if (is_delegated(&delegated_inode)) {
6061 		error = break_deleg_wait(&delegated_inode);
6062 		if (!error)
6063 			goto retry_deleg;
6064 	}
6065 	mnt_drop_write(old_path.mnt);
6066 exit2:
6067 	if (retry_estale(error, lookup_flags))
6068 		should_retry = true;
6069 	path_put(&new_path);
6070 exit1:
6071 	path_put(&old_path);
6072 	if (should_retry) {
6073 		should_retry = false;
6074 		lookup_flags |= LOOKUP_REVAL;
6075 		goto retry;
6076 	}
6077 put_names:
6078 	putname(from);
6079 	putname(to);
6080 	return error;
6081 }
6082 
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)6083 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
6084 		int, newdfd, const char __user *, newname, unsigned int, flags)
6085 {
6086 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
6087 				flags);
6088 }
6089 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)6090 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
6091 		int, newdfd, const char __user *, newname)
6092 {
6093 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
6094 				0);
6095 }
6096 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)6097 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
6098 {
6099 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
6100 				getname(newname), 0);
6101 }
6102 
readlink_copy(char __user * buffer,int buflen,const char * link,int linklen)6103 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
6104 {
6105 	int copylen;
6106 
6107 	copylen = linklen;
6108 	if (unlikely(copylen > (unsigned) buflen))
6109 		copylen = buflen;
6110 	if (copy_to_user(buffer, link, copylen))
6111 		copylen = -EFAULT;
6112 	return copylen;
6113 }
6114 
6115 /**
6116  * vfs_readlink - copy symlink body into userspace buffer
6117  * @dentry: dentry on which to get symbolic link
6118  * @buffer: user memory pointer
6119  * @buflen: size of buffer
6120  *
6121  * Does not touch atime.  That's up to the caller if necessary
6122  *
6123  * Does not call security hook.
6124  */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)6125 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
6126 {
6127 	struct inode *inode = d_inode(dentry);
6128 	DEFINE_DELAYED_CALL(done);
6129 	const char *link;
6130 	int res;
6131 
6132 	if (inode->i_opflags & IOP_CACHED_LINK)
6133 		return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
6134 
6135 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
6136 		if (unlikely(inode->i_op->readlink))
6137 			return inode->i_op->readlink(dentry, buffer, buflen);
6138 
6139 		if (!d_is_symlink(dentry))
6140 			return -EINVAL;
6141 
6142 		spin_lock(&inode->i_lock);
6143 		inode->i_opflags |= IOP_DEFAULT_READLINK;
6144 		spin_unlock(&inode->i_lock);
6145 	}
6146 
6147 	link = READ_ONCE(inode->i_link);
6148 	if (!link) {
6149 		link = inode->i_op->get_link(dentry, inode, &done);
6150 		if (IS_ERR(link))
6151 			return PTR_ERR(link);
6152 	}
6153 	res = readlink_copy(buffer, buflen, link, strlen(link));
6154 	do_delayed_call(&done);
6155 	return res;
6156 }
6157 EXPORT_SYMBOL(vfs_readlink);
6158 
6159 /**
6160  * vfs_get_link - get symlink body
6161  * @dentry: dentry on which to get symbolic link
6162  * @done: caller needs to free returned data with this
6163  *
6164  * Calls security hook and i_op->get_link() on the supplied inode.
6165  *
6166  * It does not touch atime.  That's up to the caller if necessary.
6167  *
6168  * Does not work on "special" symlinks like /proc/$$/fd/N
6169  */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)6170 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
6171 {
6172 	const char *res = ERR_PTR(-EINVAL);
6173 	struct inode *inode = d_inode(dentry);
6174 
6175 	if (d_is_symlink(dentry)) {
6176 		res = ERR_PTR(security_inode_readlink(dentry));
6177 		if (!res)
6178 			res = inode->i_op->get_link(dentry, inode, done);
6179 	}
6180 	return res;
6181 }
6182 EXPORT_SYMBOL(vfs_get_link);
6183 
6184 /* get the link contents into pagecache */
__page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)6185 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
6186 			     struct delayed_call *callback)
6187 {
6188 	struct folio *folio;
6189 	struct address_space *mapping = inode->i_mapping;
6190 
6191 	if (!dentry) {
6192 		folio = filemap_get_folio(mapping, 0);
6193 		if (IS_ERR(folio))
6194 			return ERR_PTR(-ECHILD);
6195 		if (!folio_test_uptodate(folio)) {
6196 			folio_put(folio);
6197 			return ERR_PTR(-ECHILD);
6198 		}
6199 	} else {
6200 		folio = read_mapping_folio(mapping, 0, NULL);
6201 		if (IS_ERR(folio))
6202 			return ERR_CAST(folio);
6203 	}
6204 	set_delayed_call(callback, page_put_link, folio);
6205 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
6206 	return folio_address(folio);
6207 }
6208 
page_get_link_raw(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)6209 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
6210 			      struct delayed_call *callback)
6211 {
6212 	return __page_get_link(dentry, inode, callback);
6213 }
6214 EXPORT_SYMBOL_GPL(page_get_link_raw);
6215 
6216 /**
6217  * page_get_link() - An implementation of the get_link inode_operation.
6218  * @dentry: The directory entry which is the symlink.
6219  * @inode: The inode for the symlink.
6220  * @callback: Used to drop the reference to the symlink.
6221  *
6222  * Filesystems which store their symlinks in the page cache should use
6223  * this to implement the get_link() member of their inode_operations.
6224  *
6225  * Return: A pointer to the NUL-terminated symlink.
6226  */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)6227 const char *page_get_link(struct dentry *dentry, struct inode *inode,
6228 					struct delayed_call *callback)
6229 {
6230 	char *kaddr = __page_get_link(dentry, inode, callback);
6231 
6232 	if (!IS_ERR(kaddr))
6233 		nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
6234 	return kaddr;
6235 }
6236 EXPORT_SYMBOL(page_get_link);
6237 
6238 /**
6239  * page_put_link() - Drop the reference to the symlink.
6240  * @arg: The folio which contains the symlink.
6241  *
6242  * This is used internally by page_get_link().  It is exported for use
6243  * by filesystems which need to implement a variant of page_get_link()
6244  * themselves.  Despite the apparent symmetry, filesystems which use
6245  * page_get_link() do not need to call page_put_link().
6246  *
6247  * The argument, while it has a void pointer type, must be a pointer to
6248  * the folio which was retrieved from the page cache.  The delayed_call
6249  * infrastructure is used to drop the reference count once the caller
6250  * is done with the symlink.
6251  */
page_put_link(void * arg)6252 void page_put_link(void *arg)
6253 {
6254 	folio_put(arg);
6255 }
6256 EXPORT_SYMBOL(page_put_link);
6257 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)6258 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
6259 {
6260 	const char *link;
6261 	int res;
6262 
6263 	DEFINE_DELAYED_CALL(done);
6264 	link = page_get_link(dentry, d_inode(dentry), &done);
6265 	res = PTR_ERR(link);
6266 	if (!IS_ERR(link))
6267 		res = readlink_copy(buffer, buflen, link, strlen(link));
6268 	do_delayed_call(&done);
6269 	return res;
6270 }
6271 EXPORT_SYMBOL(page_readlink);
6272 
page_symlink(struct inode * inode,const char * symname,int len)6273 int page_symlink(struct inode *inode, const char *symname, int len)
6274 {
6275 	struct address_space *mapping = inode->i_mapping;
6276 	const struct address_space_operations *aops = mapping->a_ops;
6277 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
6278 	struct folio *folio;
6279 	void *fsdata = NULL;
6280 	int err;
6281 	unsigned int flags;
6282 
6283 retry:
6284 	if (nofs)
6285 		flags = memalloc_nofs_save();
6286 	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
6287 	if (nofs)
6288 		memalloc_nofs_restore(flags);
6289 	if (err)
6290 		goto fail;
6291 
6292 	memcpy(folio_address(folio), symname, len - 1);
6293 
6294 	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
6295 						folio, fsdata);
6296 	if (err < 0)
6297 		goto fail;
6298 	if (err < len-1)
6299 		goto retry;
6300 
6301 	mark_inode_dirty(inode);
6302 	return 0;
6303 fail:
6304 	return err;
6305 }
6306 EXPORT_SYMBOL(page_symlink);
6307 
6308 const struct inode_operations page_symlink_inode_operations = {
6309 	.get_link	= page_get_link,
6310 };
6311 EXPORT_SYMBOL(page_symlink_inode_operations);
6312