1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string.h>
37 #include <linux/string_helpers.h>
38 #include <linux/delay.h>
39 #include <linux/capability.h>
40 #include <linux/compat.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/idr.h>
43 #include <linux/debugfs.h>
44 #include <linux/rpmb.h>
45
46 #include <linux/mmc/ioctl.h>
47 #include <linux/mmc/card.h>
48 #include <linux/mmc/host.h>
49 #include <linux/mmc/mmc.h>
50 #include <linux/mmc/sd.h>
51
52 #include <linux/uaccess.h>
53 #include <linux/unaligned.h>
54
55 #include "queue.h"
56 #include "block.h"
57 #include "core.h"
58 #include "card.h"
59 #include "crypto.h"
60 #include "host.h"
61 #include "bus.h"
62 #include "mmc_ops.h"
63 #include "quirks.h"
64 #include "sd_ops.h"
65
66 MODULE_ALIAS("mmc:block");
67 #ifdef MODULE_PARAM_PREFIX
68 #undef MODULE_PARAM_PREFIX
69 #endif
70 #define MODULE_PARAM_PREFIX "mmcblk."
71
72 /*
73 * Set a 10 second timeout for polling write request busy state. Note, mmc core
74 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
75 * second software timer to timeout the whole request, so 10 seconds should be
76 * ample.
77 */
78 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
79 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
80 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
81
82 #define RPMB_FRAME_SIZE sizeof(struct rpmb_frame)
83 #define CHECK_SIZE_NEQ(val) ((val) != sizeof(struct rpmb_frame))
84 #define CHECK_SIZE_ALIGNED(val) IS_ALIGNED((val), sizeof(struct rpmb_frame))
85
86 static DEFINE_MUTEX(block_mutex);
87
88 /*
89 * The defaults come from config options but can be overriden by module
90 * or bootarg options.
91 */
92 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
93
94 /*
95 * We've only got one major, so number of mmcblk devices is
96 * limited to (1 << 20) / number of minors per device. It is also
97 * limited by the MAX_DEVICES below.
98 */
99 static int max_devices;
100
101 #define MAX_DEVICES 256
102
103 static DEFINE_IDA(mmc_blk_ida);
104 static DEFINE_IDA(mmc_rpmb_ida);
105
106 struct mmc_blk_busy_data {
107 struct mmc_card *card;
108 u32 status;
109 };
110
111 /*
112 * There is one mmc_blk_data per slot.
113 */
114 struct mmc_blk_data {
115 struct device *parent;
116 struct gendisk *disk;
117 struct mmc_queue queue;
118 struct list_head part;
119 struct list_head rpmbs;
120
121 unsigned int flags;
122 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
123 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
124
125 struct kref kref;
126 unsigned int read_only;
127 unsigned int part_type;
128 unsigned int reset_done;
129 #define MMC_BLK_READ BIT(0)
130 #define MMC_BLK_WRITE BIT(1)
131 #define MMC_BLK_DISCARD BIT(2)
132 #define MMC_BLK_SECDISCARD BIT(3)
133 #define MMC_BLK_CQE_RECOVERY BIT(4)
134 #define MMC_BLK_TRIM BIT(5)
135
136 /*
137 * Only set in main mmc_blk_data associated
138 * with mmc_card with dev_set_drvdata, and keeps
139 * track of the current selected device partition.
140 */
141 unsigned int part_curr;
142 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
143 int area_type;
144
145 /* debugfs files (only in main mmc_blk_data) */
146 struct dentry *status_dentry;
147 struct dentry *ext_csd_dentry;
148 };
149
150 /* Device type for RPMB character devices */
151 static dev_t mmc_rpmb_devt;
152
153 /* Bus type for RPMB character devices */
154 static const struct bus_type mmc_rpmb_bus_type = {
155 .name = "mmc_rpmb",
156 };
157
158 /**
159 * struct mmc_rpmb_data - special RPMB device type for these areas
160 * @dev: the device for the RPMB area
161 * @chrdev: character device for the RPMB area
162 * @id: unique device ID number
163 * @part_index: partition index (0 on first)
164 * @md: parent MMC block device
165 * @rdev: registered RPMB device
166 * @node: list item, so we can put this device on a list
167 */
168 struct mmc_rpmb_data {
169 struct device dev;
170 struct cdev chrdev;
171 int id;
172 unsigned int part_index;
173 struct mmc_blk_data *md;
174 struct rpmb_dev *rdev;
175 struct list_head node;
176 };
177
178 static DEFINE_MUTEX(open_lock);
179
180 module_param(perdev_minors, int, 0444);
181 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
182
183 static inline int mmc_blk_part_switch(struct mmc_card *card,
184 unsigned int part_type);
185 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
186 struct mmc_card *card,
187 int recovery_mode,
188 struct mmc_queue *mq);
189 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
190 static int mmc_spi_err_check(struct mmc_card *card);
191 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
192
mmc_blk_get(struct gendisk * disk)193 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
194 {
195 struct mmc_blk_data *md;
196
197 mutex_lock(&open_lock);
198 md = disk->private_data;
199 if (md && !kref_get_unless_zero(&md->kref))
200 md = NULL;
201 mutex_unlock(&open_lock);
202
203 return md;
204 }
205
mmc_get_devidx(struct gendisk * disk)206 static inline int mmc_get_devidx(struct gendisk *disk)
207 {
208 int devidx = disk->first_minor / perdev_minors;
209 return devidx;
210 }
211
mmc_blk_kref_release(struct kref * ref)212 static void mmc_blk_kref_release(struct kref *ref)
213 {
214 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
215 int devidx;
216
217 devidx = mmc_get_devidx(md->disk);
218 ida_free(&mmc_blk_ida, devidx);
219
220 mutex_lock(&open_lock);
221 md->disk->private_data = NULL;
222 mutex_unlock(&open_lock);
223
224 put_disk(md->disk);
225 kfree(md);
226 }
227
mmc_blk_put(struct mmc_blk_data * md)228 static void mmc_blk_put(struct mmc_blk_data *md)
229 {
230 kref_put(&md->kref, mmc_blk_kref_release);
231 }
232
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)233 static ssize_t power_ro_lock_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235 {
236 int ret;
237 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
238 struct mmc_card *card = md->queue.card;
239 int locked = 0;
240
241 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
242 locked = 2;
243 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
244 locked = 1;
245
246 ret = sysfs_emit(buf, "%d\n", locked);
247
248 mmc_blk_put(md);
249
250 return ret;
251 }
252
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)253 static ssize_t power_ro_lock_store(struct device *dev,
254 struct device_attribute *attr, const char *buf, size_t count)
255 {
256 int ret;
257 struct mmc_blk_data *md, *part_md;
258 struct mmc_queue *mq;
259 struct request *req;
260 unsigned long set;
261
262 if (kstrtoul(buf, 0, &set))
263 return -EINVAL;
264
265 if (set != 1)
266 return count;
267
268 md = mmc_blk_get(dev_to_disk(dev));
269 mq = &md->queue;
270
271 /* Dispatch locking to the block layer */
272 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
273 if (IS_ERR(req)) {
274 count = PTR_ERR(req);
275 goto out_put;
276 }
277 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
278 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
279 blk_execute_rq(req, false);
280 ret = req_to_mmc_queue_req(req)->drv_op_result;
281 blk_mq_free_request(req);
282
283 if (!ret) {
284 pr_info("%s: Locking boot partition ro until next power on\n",
285 md->disk->disk_name);
286 set_disk_ro(md->disk, 1);
287
288 list_for_each_entry(part_md, &md->part, part)
289 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
290 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
291 set_disk_ro(part_md->disk, 1);
292 }
293 }
294 out_put:
295 mmc_blk_put(md);
296 return count;
297 }
298
299 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
300 power_ro_lock_show, power_ro_lock_store);
301
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)302 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
303 char *buf)
304 {
305 int ret;
306 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
307
308 ret = sysfs_emit(buf, "%d\n",
309 get_disk_ro(dev_to_disk(dev)) ^
310 md->read_only);
311 mmc_blk_put(md);
312 return ret;
313 }
314
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)315 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
316 const char *buf, size_t count)
317 {
318 int ret;
319 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
320 unsigned long set;
321
322 if (kstrtoul(buf, 0, &set)) {
323 ret = -EINVAL;
324 goto out;
325 }
326
327 set_disk_ro(dev_to_disk(dev), set || md->read_only);
328 ret = count;
329 out:
330 mmc_blk_put(md);
331 return ret;
332 }
333
334 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
335
336 static struct attribute *mmc_disk_attrs[] = {
337 &dev_attr_force_ro.attr,
338 &dev_attr_ro_lock_until_next_power_on.attr,
339 NULL,
340 };
341
mmc_disk_attrs_is_visible(struct kobject * kobj,struct attribute * a,int n)342 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
343 struct attribute *a, int n)
344 {
345 struct device *dev = kobj_to_dev(kobj);
346 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
347 umode_t mode = a->mode;
348
349 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
350 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
351 md->queue.card->ext_csd.boot_ro_lockable) {
352 mode = S_IRUGO;
353 if (!(md->queue.card->ext_csd.boot_ro_lock &
354 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
355 mode |= S_IWUSR;
356 }
357
358 mmc_blk_put(md);
359 return mode;
360 }
361
362 static const struct attribute_group mmc_disk_attr_group = {
363 .is_visible = mmc_disk_attrs_is_visible,
364 .attrs = mmc_disk_attrs,
365 };
366
367 static const struct attribute_group *mmc_disk_attr_groups[] = {
368 &mmc_disk_attr_group,
369 NULL,
370 };
371
mmc_blk_open(struct gendisk * disk,blk_mode_t mode)372 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
373 {
374 struct mmc_blk_data *md = mmc_blk_get(disk);
375 int ret = -ENXIO;
376
377 mutex_lock(&block_mutex);
378 if (md) {
379 ret = 0;
380 if ((mode & BLK_OPEN_WRITE) && md->read_only) {
381 mmc_blk_put(md);
382 ret = -EROFS;
383 }
384 }
385 mutex_unlock(&block_mutex);
386
387 return ret;
388 }
389
mmc_blk_release(struct gendisk * disk)390 static void mmc_blk_release(struct gendisk *disk)
391 {
392 struct mmc_blk_data *md = disk->private_data;
393
394 mutex_lock(&block_mutex);
395 mmc_blk_put(md);
396 mutex_unlock(&block_mutex);
397 }
398
399 static int
mmc_blk_getgeo(struct gendisk * disk,struct hd_geometry * geo)400 mmc_blk_getgeo(struct gendisk *disk, struct hd_geometry *geo)
401 {
402 geo->cylinders = get_capacity(disk) / (4 * 16);
403 geo->heads = 4;
404 geo->sectors = 16;
405 return 0;
406 }
407
408 struct mmc_blk_ioc_data {
409 struct mmc_ioc_cmd ic;
410 unsigned char *buf;
411 u64 buf_bytes;
412 unsigned int flags;
413 #define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */
414 #define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */
415
416 struct mmc_rpmb_data *rpmb;
417 };
418
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)419 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
420 struct mmc_ioc_cmd __user *user)
421 {
422 struct mmc_blk_ioc_data *idata;
423 int err;
424
425 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
426 if (!idata) {
427 err = -ENOMEM;
428 goto out;
429 }
430
431 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
432 err = -EFAULT;
433 goto idata_err;
434 }
435
436 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
437 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
438 err = -EOVERFLOW;
439 goto idata_err;
440 }
441
442 if (!idata->buf_bytes) {
443 idata->buf = NULL;
444 return idata;
445 }
446
447 idata->buf = memdup_user((void __user *)(unsigned long)
448 idata->ic.data_ptr, idata->buf_bytes);
449 if (IS_ERR(idata->buf)) {
450 err = PTR_ERR(idata->buf);
451 goto idata_err;
452 }
453
454 return idata;
455
456 idata_err:
457 kfree(idata);
458 out:
459 return ERR_PTR(err);
460 }
461
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)462 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
463 struct mmc_blk_ioc_data *idata)
464 {
465 struct mmc_ioc_cmd *ic = &idata->ic;
466
467 if (copy_to_user(&(ic_ptr->response), ic->response,
468 sizeof(ic->response)))
469 return -EFAULT;
470
471 if (!idata->ic.write_flag) {
472 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
473 idata->buf, idata->buf_bytes))
474 return -EFAULT;
475 }
476
477 return 0;
478 }
479
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data ** idatas,int i)480 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
481 struct mmc_blk_ioc_data **idatas, int i)
482 {
483 struct mmc_command cmd = {}, sbc = {};
484 struct mmc_data data = {};
485 struct mmc_request mrq = {};
486 struct scatterlist sg;
487 bool r1b_resp;
488 unsigned int busy_timeout_ms;
489 int err;
490 unsigned int target_part;
491 struct mmc_blk_ioc_data *idata = idatas[i];
492 struct mmc_blk_ioc_data *prev_idata = NULL;
493
494 if (!card || !md || !idata)
495 return -EINVAL;
496
497 if (idata->flags & MMC_BLK_IOC_DROP)
498 return 0;
499
500 if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
501 prev_idata = idatas[i - 1];
502
503 /*
504 * The RPMB accesses comes in from the character device, so we
505 * need to target these explicitly. Else we just target the
506 * partition type for the block device the ioctl() was issued
507 * on.
508 */
509 if (idata->rpmb) {
510 /* Support multiple RPMB partitions */
511 target_part = idata->rpmb->part_index;
512 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
513 } else {
514 target_part = md->part_type;
515 }
516
517 cmd.opcode = idata->ic.opcode;
518 cmd.arg = idata->ic.arg;
519 cmd.flags = idata->ic.flags;
520
521 if (idata->buf_bytes) {
522 data.sg = &sg;
523 data.sg_len = 1;
524 data.blksz = idata->ic.blksz;
525 data.blocks = idata->ic.blocks;
526
527 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
528
529 if (idata->ic.write_flag)
530 data.flags = MMC_DATA_WRITE;
531 else
532 data.flags = MMC_DATA_READ;
533
534 /* data.flags must already be set before doing this. */
535 mmc_set_data_timeout(&data, card);
536
537 /* Allow overriding the timeout_ns for empirical tuning. */
538 if (idata->ic.data_timeout_ns)
539 data.timeout_ns = idata->ic.data_timeout_ns;
540
541 mrq.data = &data;
542 }
543
544 mrq.cmd = &cmd;
545
546 err = mmc_blk_part_switch(card, target_part);
547 if (err)
548 return err;
549
550 if (idata->ic.is_acmd) {
551 err = mmc_app_cmd(card->host, card);
552 if (err)
553 return err;
554 }
555
556 if (idata->rpmb || prev_idata) {
557 sbc.opcode = MMC_SET_BLOCK_COUNT;
558 /*
559 * We don't do any blockcount validation because the max size
560 * may be increased by a future standard. We just copy the
561 * 'Reliable Write' bit here.
562 */
563 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
564 if (prev_idata)
565 sbc.arg = prev_idata->ic.arg;
566 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
567 mrq.sbc = &sbc;
568 }
569
570 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
571 (cmd.opcode == MMC_SWITCH))
572 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
573
574 /* If it's an R1B response we need some more preparations. */
575 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
576 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
577 if (r1b_resp)
578 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
579
580 mmc_wait_for_req(card->host, &mrq);
581 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
582
583 if (prev_idata) {
584 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
585 if (sbc.error) {
586 dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
587 __func__, sbc.error);
588 return sbc.error;
589 }
590 }
591
592 if (cmd.error) {
593 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
594 __func__, cmd.error);
595 return cmd.error;
596 }
597 if (data.error) {
598 dev_err(mmc_dev(card->host), "%s: data error %d\n",
599 __func__, data.error);
600 return data.error;
601 }
602
603 /*
604 * Make sure the cache of the PARTITION_CONFIG register and
605 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
606 * changed it successfully.
607 */
608 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
609 (cmd.opcode == MMC_SWITCH)) {
610 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
611 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
612
613 /*
614 * Update cache so the next mmc_blk_part_switch call operates
615 * on up-to-date data.
616 */
617 card->ext_csd.part_config = value;
618 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
619 }
620
621 /*
622 * Make sure to update CACHE_CTRL in case it was changed. The cache
623 * will get turned back on if the card is re-initialized, e.g.
624 * suspend/resume or hw reset in recovery.
625 */
626 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
627 (cmd.opcode == MMC_SWITCH)) {
628 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
629
630 card->ext_csd.cache_ctrl = value;
631 }
632
633 /*
634 * According to the SD specs, some commands require a delay after
635 * issuing the command.
636 */
637 if (idata->ic.postsleep_min_us)
638 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
639
640 if (mmc_host_is_spi(card->host)) {
641 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
642 return mmc_spi_err_check(card);
643 return err;
644 }
645
646 /*
647 * Ensure RPMB, writes and R1B responses are completed by polling with
648 * CMD13. Note that, usually we don't need to poll when using HW busy
649 * detection, but here it's needed since some commands may indicate the
650 * error through the R1 status bits.
651 */
652 if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
653 struct mmc_blk_busy_data cb_data = {
654 .card = card,
655 };
656
657 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
658 &mmc_blk_busy_cb, &cb_data);
659
660 idata->ic.response[0] = cb_data.status;
661 }
662
663 return err;
664 }
665
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)666 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
667 struct mmc_ioc_cmd __user *ic_ptr,
668 struct mmc_rpmb_data *rpmb)
669 {
670 struct mmc_blk_ioc_data *idata;
671 struct mmc_blk_ioc_data *idatas[1];
672 struct mmc_queue *mq;
673 struct mmc_card *card;
674 int err = 0, ioc_err = 0;
675 struct request *req;
676
677 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
678 if (IS_ERR(idata))
679 return PTR_ERR(idata);
680 /* This will be NULL on non-RPMB ioctl():s */
681 idata->rpmb = rpmb;
682
683 card = md->queue.card;
684 if (IS_ERR(card)) {
685 err = PTR_ERR(card);
686 goto cmd_done;
687 }
688
689 /*
690 * Dispatch the ioctl() into the block request queue.
691 */
692 mq = &md->queue;
693 req = blk_mq_alloc_request(mq->queue,
694 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
695 if (IS_ERR(req)) {
696 err = PTR_ERR(req);
697 goto cmd_done;
698 }
699 idatas[0] = idata;
700 req_to_mmc_queue_req(req)->drv_op =
701 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
702 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
703 req_to_mmc_queue_req(req)->drv_op_data = idatas;
704 req_to_mmc_queue_req(req)->ioc_count = 1;
705 blk_execute_rq(req, false);
706 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
707 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
708 blk_mq_free_request(req);
709
710 cmd_done:
711 kfree(idata->buf);
712 kfree(idata);
713 return ioc_err ? ioc_err : err;
714 }
715
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)716 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
717 struct mmc_ioc_multi_cmd __user *user,
718 struct mmc_rpmb_data *rpmb)
719 {
720 struct mmc_blk_ioc_data **idata = NULL;
721 struct mmc_ioc_cmd __user *cmds = user->cmds;
722 struct mmc_card *card;
723 struct mmc_queue *mq;
724 int err = 0, ioc_err = 0;
725 __u64 num_of_cmds;
726 unsigned int i, n;
727 struct request *req;
728
729 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
730 sizeof(num_of_cmds)))
731 return -EFAULT;
732
733 if (!num_of_cmds)
734 return 0;
735
736 if (num_of_cmds > MMC_IOC_MAX_CMDS)
737 return -EINVAL;
738
739 n = num_of_cmds;
740 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
741 if (!idata)
742 return -ENOMEM;
743
744 for (i = 0; i < n; i++) {
745 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
746 if (IS_ERR(idata[i])) {
747 err = PTR_ERR(idata[i]);
748 n = i;
749 goto cmd_err;
750 }
751 /* This will be NULL on non-RPMB ioctl():s */
752 idata[i]->rpmb = rpmb;
753 }
754
755 card = md->queue.card;
756 if (IS_ERR(card)) {
757 err = PTR_ERR(card);
758 goto cmd_err;
759 }
760
761
762 /*
763 * Dispatch the ioctl()s into the block request queue.
764 */
765 mq = &md->queue;
766 req = blk_mq_alloc_request(mq->queue,
767 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
768 if (IS_ERR(req)) {
769 err = PTR_ERR(req);
770 goto cmd_err;
771 }
772 req_to_mmc_queue_req(req)->drv_op =
773 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
774 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
775 req_to_mmc_queue_req(req)->drv_op_data = idata;
776 req_to_mmc_queue_req(req)->ioc_count = n;
777 blk_execute_rq(req, false);
778 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
779
780 /* copy to user if data and response */
781 for (i = 0; i < n && !err; i++)
782 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
783
784 blk_mq_free_request(req);
785
786 cmd_err:
787 for (i = 0; i < n; i++) {
788 kfree(idata[i]->buf);
789 kfree(idata[i]);
790 }
791 kfree(idata);
792 return ioc_err ? ioc_err : err;
793 }
794
mmc_blk_check_blkdev(struct block_device * bdev)795 static int mmc_blk_check_blkdev(struct block_device *bdev)
796 {
797 /*
798 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
799 * whole block device, not on a partition. This prevents overspray
800 * between sibling partitions.
801 */
802 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
803 return -EPERM;
804 return 0;
805 }
806
mmc_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)807 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
808 unsigned int cmd, unsigned long arg)
809 {
810 struct mmc_blk_data *md;
811 int ret;
812
813 switch (cmd) {
814 case MMC_IOC_CMD:
815 ret = mmc_blk_check_blkdev(bdev);
816 if (ret)
817 return ret;
818 md = mmc_blk_get(bdev->bd_disk);
819 if (!md)
820 return -EINVAL;
821 ret = mmc_blk_ioctl_cmd(md,
822 (struct mmc_ioc_cmd __user *)arg,
823 NULL);
824 mmc_blk_put(md);
825 return ret;
826 case MMC_IOC_MULTI_CMD:
827 ret = mmc_blk_check_blkdev(bdev);
828 if (ret)
829 return ret;
830 md = mmc_blk_get(bdev->bd_disk);
831 if (!md)
832 return -EINVAL;
833 ret = mmc_blk_ioctl_multi_cmd(md,
834 (struct mmc_ioc_multi_cmd __user *)arg,
835 NULL);
836 mmc_blk_put(md);
837 return ret;
838 default:
839 return -EINVAL;
840 }
841 }
842
843 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)844 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
845 unsigned int cmd, unsigned long arg)
846 {
847 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
848 }
849 #endif
850
mmc_blk_alternative_gpt_sector(struct gendisk * disk,sector_t * sector)851 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
852 sector_t *sector)
853 {
854 struct mmc_blk_data *md;
855 int ret;
856
857 md = mmc_blk_get(disk);
858 if (!md)
859 return -EINVAL;
860
861 if (md->queue.card)
862 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
863 else
864 ret = -ENODEV;
865
866 mmc_blk_put(md);
867
868 return ret;
869 }
870
871 static const struct block_device_operations mmc_bdops = {
872 .open = mmc_blk_open,
873 .release = mmc_blk_release,
874 .getgeo = mmc_blk_getgeo,
875 .owner = THIS_MODULE,
876 .ioctl = mmc_blk_ioctl,
877 #ifdef CONFIG_COMPAT
878 .compat_ioctl = mmc_blk_compat_ioctl,
879 #endif
880 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
881 };
882
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)883 static int mmc_blk_part_switch_pre(struct mmc_card *card,
884 unsigned int part_type)
885 {
886 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
887 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
888 int ret = 0;
889
890 if ((part_type & mask) == rpmb) {
891 if (card->ext_csd.cmdq_en) {
892 ret = mmc_cmdq_disable(card);
893 if (ret)
894 return ret;
895 }
896 mmc_retune_pause(card->host);
897 }
898
899 return ret;
900 }
901
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)902 static int mmc_blk_part_switch_post(struct mmc_card *card,
903 unsigned int part_type)
904 {
905 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
906 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
907 int ret = 0;
908
909 if ((part_type & mask) == rpmb) {
910 mmc_retune_unpause(card->host);
911 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
912 ret = mmc_cmdq_enable(card);
913 }
914
915 return ret;
916 }
917
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)918 static inline int mmc_blk_part_switch(struct mmc_card *card,
919 unsigned int part_type)
920 {
921 int ret = 0;
922 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
923
924 if (main_md->part_curr == part_type)
925 return 0;
926
927 if (mmc_card_mmc(card)) {
928 u8 part_config = card->ext_csd.part_config;
929
930 ret = mmc_blk_part_switch_pre(card, part_type);
931 if (ret)
932 return ret;
933
934 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
935 part_config |= part_type;
936
937 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
938 EXT_CSD_PART_CONFIG, part_config,
939 card->ext_csd.part_time);
940 if (ret) {
941 mmc_blk_part_switch_post(card, part_type);
942 return ret;
943 }
944
945 card->ext_csd.part_config = part_config;
946
947 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
948 }
949
950 main_md->part_curr = part_type;
951 return ret;
952 }
953
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)954 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
955 {
956 int err;
957 u32 result;
958 __be32 *blocks;
959 u8 resp_sz = mmc_card_ult_capacity(card) ? 8 : 4;
960 unsigned int noio_flag;
961
962 struct mmc_request mrq = {};
963 struct mmc_command cmd = {};
964 struct mmc_data data = {};
965 struct scatterlist sg;
966
967 err = mmc_app_cmd(card->host, card);
968 if (err)
969 return err;
970
971 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
972 cmd.arg = 0;
973 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
974
975 data.blksz = resp_sz;
976 data.blocks = 1;
977 data.flags = MMC_DATA_READ;
978 data.sg = &sg;
979 data.sg_len = 1;
980 mmc_set_data_timeout(&data, card);
981
982 mrq.cmd = &cmd;
983 mrq.data = &data;
984
985 noio_flag = memalloc_noio_save();
986 blocks = kmalloc(resp_sz, GFP_KERNEL);
987 memalloc_noio_restore(noio_flag);
988 if (!blocks)
989 return -ENOMEM;
990
991 sg_init_one(&sg, blocks, resp_sz);
992
993 mmc_wait_for_req(card->host, &mrq);
994
995 if (mmc_card_ult_capacity(card)) {
996 /*
997 * Normally, ACMD22 returns the number of written sectors as
998 * u32. SDUC, however, returns it as u64. This is not a
999 * superfluous requirement, because SDUC writes may exceed 2TB.
1000 * For Linux mmc however, the previously write operation could
1001 * not be more than the block layer limits, thus just make room
1002 * for a u64 and cast the response back to u32.
1003 */
1004 result = clamp_val(get_unaligned_be64(blocks), 0, UINT_MAX);
1005 } else {
1006 result = ntohl(*blocks);
1007 }
1008 kfree(blocks);
1009
1010 if (cmd.error || data.error)
1011 return -EIO;
1012
1013 *written_blocks = result;
1014
1015 return 0;
1016 }
1017
mmc_blk_clock_khz(struct mmc_host * host)1018 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
1019 {
1020 if (host->actual_clock)
1021 return host->actual_clock / 1000;
1022
1023 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
1024 if (host->ios.clock)
1025 return host->ios.clock / 2000;
1026
1027 /* How can there be no clock */
1028 WARN_ON_ONCE(1);
1029 return 100; /* 100 kHz is minimum possible value */
1030 }
1031
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)1032 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1033 struct mmc_data *data)
1034 {
1035 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1036 unsigned int khz;
1037
1038 if (data->timeout_clks) {
1039 khz = mmc_blk_clock_khz(host);
1040 ms += DIV_ROUND_UP(data->timeout_clks, khz);
1041 }
1042
1043 return ms;
1044 }
1045
1046 /*
1047 * Attempts to reset the card and get back to the requested partition.
1048 * Therefore any error here must result in cancelling the block layer
1049 * request, it must not be reattempted without going through the mmc_blk
1050 * partition sanity checks.
1051 */
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)1052 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1053 int type)
1054 {
1055 int err;
1056 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1057
1058 if (md->reset_done & type)
1059 return -EEXIST;
1060
1061 md->reset_done |= type;
1062 err = mmc_hw_reset(host->card);
1063 /*
1064 * A successful reset will leave the card in the main partition, but
1065 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1066 * in that case.
1067 */
1068 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1069 if (err)
1070 return err;
1071 /* Ensure we switch back to the correct partition */
1072 if (mmc_blk_part_switch(host->card, md->part_type))
1073 /*
1074 * We have failed to get back into the correct
1075 * partition, so we need to abort the whole request.
1076 */
1077 return -ENODEV;
1078 return 0;
1079 }
1080
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1081 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1082 {
1083 md->reset_done &= ~type;
1084 }
1085
mmc_blk_check_sbc(struct mmc_queue_req * mq_rq)1086 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1087 {
1088 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1089 int i;
1090
1091 for (i = 1; i < mq_rq->ioc_count; i++) {
1092 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1093 mmc_op_multi(idata[i]->ic.opcode)) {
1094 idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1095 idata[i]->flags |= MMC_BLK_IOC_SBC;
1096 }
1097 }
1098 }
1099
1100 /*
1101 * The non-block commands come back from the block layer after it queued it and
1102 * processed it with all other requests and then they get issued in this
1103 * function.
1104 */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1105 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1106 {
1107 struct mmc_queue_req *mq_rq;
1108 struct mmc_card *card = mq->card;
1109 struct mmc_blk_data *md = mq->blkdata;
1110 struct mmc_blk_ioc_data **idata;
1111 bool rpmb_ioctl;
1112 u8 **ext_csd;
1113 u32 status;
1114 int ret;
1115 int i;
1116
1117 mq_rq = req_to_mmc_queue_req(req);
1118 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1119
1120 switch (mq_rq->drv_op) {
1121 case MMC_DRV_OP_IOCTL:
1122 if (card->ext_csd.cmdq_en) {
1123 ret = mmc_cmdq_disable(card);
1124 if (ret)
1125 break;
1126 }
1127
1128 mmc_blk_check_sbc(mq_rq);
1129
1130 fallthrough;
1131 case MMC_DRV_OP_IOCTL_RPMB:
1132 idata = mq_rq->drv_op_data;
1133 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1134 ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1135 if (ret)
1136 break;
1137 }
1138 /* Always switch back to main area after RPMB access */
1139 if (rpmb_ioctl)
1140 mmc_blk_part_switch(card, 0);
1141 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1142 mmc_cmdq_enable(card);
1143 break;
1144 case MMC_DRV_OP_BOOT_WP:
1145 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1146 card->ext_csd.boot_ro_lock |
1147 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1148 card->ext_csd.part_time);
1149 if (ret)
1150 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1151 md->disk->disk_name, ret);
1152 else
1153 card->ext_csd.boot_ro_lock |=
1154 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1155 break;
1156 case MMC_DRV_OP_GET_CARD_STATUS:
1157 ret = mmc_send_status(card, &status);
1158 if (!ret)
1159 ret = status;
1160 break;
1161 case MMC_DRV_OP_GET_EXT_CSD:
1162 ext_csd = mq_rq->drv_op_data;
1163 ret = mmc_get_ext_csd(card, ext_csd);
1164 break;
1165 default:
1166 pr_err("%s: unknown driver specific operation\n",
1167 md->disk->disk_name);
1168 ret = -EINVAL;
1169 break;
1170 }
1171 mq_rq->drv_op_result = ret;
1172 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1173 }
1174
mmc_blk_issue_erase_rq(struct mmc_queue * mq,struct request * req,int type,unsigned int erase_arg)1175 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1176 int type, unsigned int erase_arg)
1177 {
1178 struct mmc_blk_data *md = mq->blkdata;
1179 struct mmc_card *card = md->queue.card;
1180 unsigned int nr;
1181 sector_t from;
1182 int err = 0;
1183 blk_status_t status = BLK_STS_OK;
1184
1185 if (!mmc_card_can_erase(card)) {
1186 status = BLK_STS_NOTSUPP;
1187 goto fail;
1188 }
1189
1190 from = blk_rq_pos(req);
1191 nr = blk_rq_sectors(req);
1192
1193 do {
1194 err = 0;
1195 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1196 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1197 INAND_CMD38_ARG_EXT_CSD,
1198 erase_arg == MMC_TRIM_ARG ?
1199 INAND_CMD38_ARG_TRIM :
1200 INAND_CMD38_ARG_ERASE,
1201 card->ext_csd.generic_cmd6_time);
1202 }
1203 if (!err)
1204 err = mmc_erase(card, from, nr, erase_arg);
1205 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1206 if (err)
1207 status = BLK_STS_IOERR;
1208 else
1209 mmc_blk_reset_success(md, type);
1210 fail:
1211 blk_mq_end_request(req, status);
1212 }
1213
mmc_blk_issue_trim_rq(struct mmc_queue * mq,struct request * req)1214 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1215 {
1216 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1217 }
1218
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1219 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1220 {
1221 struct mmc_blk_data *md = mq->blkdata;
1222 struct mmc_card *card = md->queue.card;
1223 unsigned int arg = card->erase_arg;
1224
1225 if (mmc_card_broken_sd_discard(card))
1226 arg = SD_ERASE_ARG;
1227
1228 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1229 }
1230
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1231 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1232 struct request *req)
1233 {
1234 struct mmc_blk_data *md = mq->blkdata;
1235 struct mmc_card *card = md->queue.card;
1236 unsigned int nr, arg;
1237 sector_t from;
1238 int err = 0, type = MMC_BLK_SECDISCARD;
1239 blk_status_t status = BLK_STS_OK;
1240
1241 if (!(mmc_card_can_secure_erase_trim(card))) {
1242 status = BLK_STS_NOTSUPP;
1243 goto out;
1244 }
1245
1246 from = blk_rq_pos(req);
1247 nr = blk_rq_sectors(req);
1248
1249 if (mmc_card_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1250 arg = MMC_SECURE_TRIM1_ARG;
1251 else
1252 arg = MMC_SECURE_ERASE_ARG;
1253
1254 retry:
1255 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1256 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1257 INAND_CMD38_ARG_EXT_CSD,
1258 arg == MMC_SECURE_TRIM1_ARG ?
1259 INAND_CMD38_ARG_SECTRIM1 :
1260 INAND_CMD38_ARG_SECERASE,
1261 card->ext_csd.generic_cmd6_time);
1262 if (err)
1263 goto out_retry;
1264 }
1265
1266 err = mmc_erase(card, from, nr, arg);
1267 if (err == -EIO)
1268 goto out_retry;
1269 if (err) {
1270 status = BLK_STS_IOERR;
1271 goto out;
1272 }
1273
1274 if (arg == MMC_SECURE_TRIM1_ARG) {
1275 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1276 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1277 INAND_CMD38_ARG_EXT_CSD,
1278 INAND_CMD38_ARG_SECTRIM2,
1279 card->ext_csd.generic_cmd6_time);
1280 if (err)
1281 goto out_retry;
1282 }
1283
1284 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1285 if (err == -EIO)
1286 goto out_retry;
1287 if (err) {
1288 status = BLK_STS_IOERR;
1289 goto out;
1290 }
1291 }
1292
1293 out_retry:
1294 if (err && !mmc_blk_reset(md, card->host, type))
1295 goto retry;
1296 if (!err)
1297 mmc_blk_reset_success(md, type);
1298 out:
1299 blk_mq_end_request(req, status);
1300 }
1301
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1302 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1303 {
1304 struct mmc_blk_data *md = mq->blkdata;
1305 struct mmc_card *card = md->queue.card;
1306 int ret = 0;
1307
1308 ret = mmc_flush_cache(card->host);
1309 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1310 }
1311
1312 /*
1313 * Reformat current write as a reliable write, supporting
1314 * both legacy and the enhanced reliable write MMC cards.
1315 * In each transfer we'll handle only as much as a single
1316 * reliable write can handle, thus finish the request in
1317 * partial completions.
1318 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1319 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1320 struct mmc_card *card,
1321 struct request *req)
1322 {
1323 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1324 /* Legacy mode imposes restrictions on transfers. */
1325 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1326 brq->data.blocks = 1;
1327
1328 if (brq->data.blocks > card->ext_csd.rel_sectors)
1329 brq->data.blocks = card->ext_csd.rel_sectors;
1330 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1331 brq->data.blocks = 1;
1332 }
1333 }
1334
1335 #define CMD_ERRORS_EXCL_OOR \
1336 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1337 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1338 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1339 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1340 R1_CC_ERROR | /* Card controller error */ \
1341 R1_ERROR) /* General/unknown error */
1342
1343 #define CMD_ERRORS \
1344 (CMD_ERRORS_EXCL_OOR | \
1345 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1346
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1347 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1348 {
1349 u32 val;
1350
1351 /*
1352 * Per the SD specification(physical layer version 4.10)[1],
1353 * section 4.3.3, it explicitly states that "When the last
1354 * block of user area is read using CMD18, the host should
1355 * ignore OUT_OF_RANGE error that may occur even the sequence
1356 * is correct". And JESD84-B51 for eMMC also has a similar
1357 * statement on section 6.8.3.
1358 *
1359 * Multiple block read/write could be done by either predefined
1360 * method, namely CMD23, or open-ending mode. For open-ending mode,
1361 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1362 *
1363 * However the spec[1] doesn't tell us whether we should also
1364 * ignore that for predefined method. But per the spec[1], section
1365 * 4.15 Set Block Count Command, it says"If illegal block count
1366 * is set, out of range error will be indicated during read/write
1367 * operation (For example, data transfer is stopped at user area
1368 * boundary)." In another word, we could expect a out of range error
1369 * in the response for the following CMD18/25. And if argument of
1370 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1371 * we could also expect to get a -ETIMEDOUT or any error number from
1372 * the host drivers due to missing data response(for write)/data(for
1373 * read), as the cards will stop the data transfer by itself per the
1374 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1375 */
1376
1377 if (!brq->stop.error) {
1378 bool oor_with_open_end;
1379 /* If there is no error yet, check R1 response */
1380
1381 val = brq->stop.resp[0] & CMD_ERRORS;
1382 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1383
1384 if (val && !oor_with_open_end)
1385 brq->stop.error = -EIO;
1386 }
1387 }
1388
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1389 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1390 int recovery_mode, bool *do_rel_wr_p,
1391 bool *do_data_tag_p)
1392 {
1393 struct mmc_blk_data *md = mq->blkdata;
1394 struct mmc_card *card = md->queue.card;
1395 struct mmc_blk_request *brq = &mqrq->brq;
1396 struct request *req = mmc_queue_req_to_req(mqrq);
1397 bool do_rel_wr, do_data_tag;
1398
1399 /*
1400 * Reliable writes are used to implement Forced Unit Access and
1401 * are supported only on MMCs.
1402 */
1403 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1404 rq_data_dir(req) == WRITE &&
1405 (md->flags & MMC_BLK_REL_WR);
1406
1407 memset(brq, 0, sizeof(struct mmc_blk_request));
1408
1409 mmc_crypto_prepare_req(mqrq);
1410
1411 brq->mrq.data = &brq->data;
1412 brq->mrq.tag = req->tag;
1413
1414 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1415 brq->stop.arg = 0;
1416
1417 if (rq_data_dir(req) == READ) {
1418 brq->data.flags = MMC_DATA_READ;
1419 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1420 } else {
1421 brq->data.flags = MMC_DATA_WRITE;
1422 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1423 }
1424
1425 brq->data.blksz = 512;
1426 brq->data.blocks = blk_rq_sectors(req);
1427 brq->data.blk_addr = blk_rq_pos(req);
1428
1429 /*
1430 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1431 * The eMMC will give "high" priority tasks priority over "simple"
1432 * priority tasks. Here we always set "simple" priority by not setting
1433 * MMC_DATA_PRIO.
1434 */
1435
1436 /*
1437 * The block layer doesn't support all sector count
1438 * restrictions, so we need to be prepared for too big
1439 * requests.
1440 */
1441 if (brq->data.blocks > card->host->max_blk_count)
1442 brq->data.blocks = card->host->max_blk_count;
1443
1444 if (brq->data.blocks > 1) {
1445 /*
1446 * Some SD cards in SPI mode return a CRC error or even lock up
1447 * completely when trying to read the last block using a
1448 * multiblock read command.
1449 */
1450 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1451 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1452 get_capacity(md->disk)))
1453 brq->data.blocks--;
1454
1455 /*
1456 * After a read error, we redo the request one (native) sector
1457 * at a time in order to accurately determine which
1458 * sectors can be read successfully.
1459 */
1460 if (recovery_mode)
1461 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1462
1463 /*
1464 * Some controllers have HW issues while operating
1465 * in multiple I/O mode
1466 */
1467 if (card->host->ops->multi_io_quirk)
1468 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1469 (rq_data_dir(req) == READ) ?
1470 MMC_DATA_READ : MMC_DATA_WRITE,
1471 brq->data.blocks);
1472 }
1473
1474 if (do_rel_wr) {
1475 mmc_apply_rel_rw(brq, card, req);
1476 brq->data.flags |= MMC_DATA_REL_WR;
1477 }
1478
1479 /*
1480 * Data tag is used only during writing meta data to speed
1481 * up write and any subsequent read of this meta data
1482 */
1483 do_data_tag = card->ext_csd.data_tag_unit_size &&
1484 (req->cmd_flags & REQ_META) &&
1485 (rq_data_dir(req) == WRITE) &&
1486 ((brq->data.blocks * brq->data.blksz) >=
1487 card->ext_csd.data_tag_unit_size);
1488
1489 if (do_data_tag)
1490 brq->data.flags |= MMC_DATA_DAT_TAG;
1491
1492 mmc_set_data_timeout(&brq->data, card);
1493
1494 brq->data.sg = mqrq->sg;
1495 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1496
1497 /*
1498 * Adjust the sg list so it is the same size as the
1499 * request.
1500 */
1501 if (brq->data.blocks != blk_rq_sectors(req)) {
1502 int i, data_size = brq->data.blocks << 9;
1503 struct scatterlist *sg;
1504
1505 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1506 data_size -= sg->length;
1507 if (data_size <= 0) {
1508 sg->length += data_size;
1509 i++;
1510 break;
1511 }
1512 }
1513 brq->data.sg_len = i;
1514 }
1515
1516 if (do_rel_wr_p)
1517 *do_rel_wr_p = do_rel_wr;
1518
1519 if (do_data_tag_p)
1520 *do_data_tag_p = do_data_tag;
1521 }
1522
1523 #define MMC_CQE_RETRIES 2
1524
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1525 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1526 {
1527 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1528 struct mmc_request *mrq = &mqrq->brq.mrq;
1529 struct request_queue *q = req->q;
1530 struct mmc_host *host = mq->card->host;
1531 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1532 unsigned long flags;
1533 bool put_card;
1534 int err;
1535
1536 mmc_cqe_post_req(host, mrq);
1537
1538 if (mrq->cmd && mrq->cmd->error)
1539 err = mrq->cmd->error;
1540 else if (mrq->data && mrq->data->error)
1541 err = mrq->data->error;
1542 else
1543 err = 0;
1544
1545 if (err) {
1546 if (mqrq->retries++ < MMC_CQE_RETRIES)
1547 blk_mq_requeue_request(req, true);
1548 else
1549 blk_mq_end_request(req, BLK_STS_IOERR);
1550 } else if (mrq->data) {
1551 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1552 blk_mq_requeue_request(req, true);
1553 else
1554 __blk_mq_end_request(req, BLK_STS_OK);
1555 } else if (mq->in_recovery) {
1556 blk_mq_requeue_request(req, true);
1557 } else {
1558 blk_mq_end_request(req, BLK_STS_OK);
1559 }
1560
1561 spin_lock_irqsave(&mq->lock, flags);
1562
1563 mq->in_flight[issue_type] -= 1;
1564
1565 put_card = (mmc_tot_in_flight(mq) == 0);
1566
1567 mmc_cqe_check_busy(mq);
1568
1569 spin_unlock_irqrestore(&mq->lock, flags);
1570
1571 if (!mq->cqe_busy)
1572 blk_mq_run_hw_queues(q, true);
1573
1574 if (put_card)
1575 mmc_put_card(mq->card, &mq->ctx);
1576 }
1577
mmc_blk_cqe_recovery(struct mmc_queue * mq)1578 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1579 {
1580 struct mmc_card *card = mq->card;
1581 struct mmc_host *host = card->host;
1582 int err;
1583
1584 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1585
1586 err = mmc_cqe_recovery(host);
1587 if (err)
1588 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1589 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1590
1591 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1592 }
1593
mmc_blk_cqe_req_done(struct mmc_request * mrq)1594 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1595 {
1596 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1597 brq.mrq);
1598 struct request *req = mmc_queue_req_to_req(mqrq);
1599 struct request_queue *q = req->q;
1600 struct mmc_queue *mq = q->queuedata;
1601
1602 /*
1603 * Block layer timeouts race with completions which means the normal
1604 * completion path cannot be used during recovery.
1605 */
1606 if (mq->in_recovery)
1607 mmc_blk_cqe_complete_rq(mq, req);
1608 else if (likely(!blk_should_fake_timeout(req->q)))
1609 blk_mq_complete_request(req);
1610 }
1611
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1612 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1613 {
1614 mrq->done = mmc_blk_cqe_req_done;
1615 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1616
1617 return mmc_cqe_start_req(host, mrq);
1618 }
1619
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1620 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1621 struct request *req)
1622 {
1623 struct mmc_blk_request *brq = &mqrq->brq;
1624
1625 memset(brq, 0, sizeof(*brq));
1626
1627 brq->mrq.cmd = &brq->cmd;
1628 brq->mrq.tag = req->tag;
1629
1630 return &brq->mrq;
1631 }
1632
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1633 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1634 {
1635 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1636 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1637
1638 mrq->cmd->opcode = MMC_SWITCH;
1639 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1640 (EXT_CSD_FLUSH_CACHE << 16) |
1641 (1 << 8) |
1642 EXT_CSD_CMD_SET_NORMAL;
1643 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1644
1645 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1646 }
1647
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1648 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1649 {
1650 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1651 struct mmc_host *host = mq->card->host;
1652 int err;
1653
1654 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1655 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1656 mmc_pre_req(host, &mqrq->brq.mrq);
1657
1658 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1659 if (err)
1660 mmc_post_req(host, &mqrq->brq.mrq, err);
1661
1662 return err;
1663 }
1664
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1665 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1666 {
1667 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1668 struct mmc_host *host = mq->card->host;
1669
1670 if (host->hsq_enabled)
1671 return mmc_blk_hsq_issue_rw_rq(mq, req);
1672
1673 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1674
1675 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1676 }
1677
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1678 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1679 struct mmc_card *card,
1680 int recovery_mode,
1681 struct mmc_queue *mq)
1682 {
1683 u32 readcmd, writecmd;
1684 struct mmc_blk_request *brq = &mqrq->brq;
1685 struct request *req = mmc_queue_req_to_req(mqrq);
1686 struct mmc_blk_data *md = mq->blkdata;
1687 bool do_rel_wr, do_data_tag;
1688
1689 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1690
1691 brq->mrq.cmd = &brq->cmd;
1692
1693 brq->cmd.arg = blk_rq_pos(req);
1694 if (!mmc_card_blockaddr(card))
1695 brq->cmd.arg <<= 9;
1696 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1697
1698 if (brq->data.blocks > 1 || do_rel_wr) {
1699 /* SPI multiblock writes terminate using a special
1700 * token, not a STOP_TRANSMISSION request.
1701 */
1702 if (!mmc_host_is_spi(card->host) ||
1703 rq_data_dir(req) == READ)
1704 brq->mrq.stop = &brq->stop;
1705 readcmd = MMC_READ_MULTIPLE_BLOCK;
1706 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1707 } else {
1708 brq->mrq.stop = NULL;
1709 readcmd = MMC_READ_SINGLE_BLOCK;
1710 writecmd = MMC_WRITE_BLOCK;
1711 }
1712 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1713
1714 /*
1715 * Pre-defined multi-block transfers are preferable to
1716 * open ended-ones (and necessary for reliable writes).
1717 * However, it is not sufficient to just send CMD23,
1718 * and avoid the final CMD12, as on an error condition
1719 * CMD12 (stop) needs to be sent anyway. This, coupled
1720 * with Auto-CMD23 enhancements provided by some
1721 * hosts, means that the complexity of dealing
1722 * with this is best left to the host. If CMD23 is
1723 * supported by card and host, we'll fill sbc in and let
1724 * the host deal with handling it correctly. This means
1725 * that for hosts that don't expose MMC_CAP_CMD23, no
1726 * change of behavior will be observed.
1727 *
1728 * N.B: Some MMC cards experience perf degradation.
1729 * We'll avoid using CMD23-bounded multiblock writes for
1730 * these, while retaining features like reliable writes.
1731 */
1732 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1733 (do_rel_wr || !mmc_card_blk_no_cmd23(card) || do_data_tag)) {
1734 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1735 brq->sbc.arg = brq->data.blocks |
1736 (do_rel_wr ? (1 << 31) : 0) |
1737 (do_data_tag ? (1 << 29) : 0);
1738 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1739 brq->mrq.sbc = &brq->sbc;
1740 }
1741
1742 if (mmc_card_ult_capacity(card)) {
1743 brq->cmd.ext_addr = blk_rq_pos(req) >> 32;
1744 brq->cmd.has_ext_addr = true;
1745 }
1746 }
1747
1748 #define MMC_MAX_RETRIES 5
1749 #define MMC_DATA_RETRIES 2
1750 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1751
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1752 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1753 {
1754 struct mmc_command cmd = {
1755 .opcode = MMC_STOP_TRANSMISSION,
1756 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1757 /* Some hosts wait for busy anyway, so provide a busy timeout */
1758 .busy_timeout = timeout,
1759 };
1760
1761 return mmc_wait_for_cmd(card->host, &cmd, 5);
1762 }
1763
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1764 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1765 {
1766 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1767 struct mmc_blk_request *brq = &mqrq->brq;
1768 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1769 int err;
1770
1771 mmc_retune_hold_now(card->host);
1772
1773 mmc_blk_send_stop(card, timeout);
1774
1775 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1776
1777 mmc_retune_release(card->host);
1778
1779 return err;
1780 }
1781
1782 #define MMC_READ_SINGLE_RETRIES 2
1783
1784 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1785 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1786 {
1787 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1788 struct mmc_request *mrq = &mqrq->brq.mrq;
1789 struct mmc_card *card = mq->card;
1790 struct mmc_host *host = card->host;
1791 blk_status_t error = BLK_STS_OK;
1792 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1793
1794 do {
1795 u32 status;
1796 int err;
1797 int retries = 0;
1798
1799 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1800 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1801
1802 mmc_wait_for_req(host, mrq);
1803
1804 err = mmc_send_status(card, &status);
1805 if (err)
1806 goto error_exit;
1807
1808 if (!mmc_host_is_spi(host) &&
1809 !mmc_ready_for_data(status)) {
1810 err = mmc_blk_fix_state(card, req);
1811 if (err)
1812 goto error_exit;
1813 }
1814
1815 if (!mrq->cmd->error)
1816 break;
1817 }
1818
1819 if (mrq->cmd->error ||
1820 mrq->data->error ||
1821 (!mmc_host_is_spi(host) &&
1822 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1823 error = BLK_STS_IOERR;
1824 else
1825 error = BLK_STS_OK;
1826
1827 } while (blk_update_request(req, error, bytes_per_read));
1828
1829 return;
1830
1831 error_exit:
1832 mrq->data->bytes_xfered = 0;
1833 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1834 /* Let it try the remaining request again */
1835 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1836 mqrq->retries = MMC_MAX_RETRIES - 1;
1837 }
1838
mmc_blk_oor_valid(struct mmc_blk_request * brq)1839 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1840 {
1841 return !!brq->mrq.sbc;
1842 }
1843
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1844 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1845 {
1846 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1847 }
1848
1849 /*
1850 * Check for errors the host controller driver might not have seen such as
1851 * response mode errors or invalid card state.
1852 */
mmc_blk_status_error(struct request * req,u32 status)1853 static bool mmc_blk_status_error(struct request *req, u32 status)
1854 {
1855 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1856 struct mmc_blk_request *brq = &mqrq->brq;
1857 struct mmc_queue *mq = req->q->queuedata;
1858 u32 stop_err_bits;
1859
1860 if (mmc_host_is_spi(mq->card->host))
1861 return false;
1862
1863 stop_err_bits = mmc_blk_stop_err_bits(brq);
1864
1865 return brq->cmd.resp[0] & CMD_ERRORS ||
1866 brq->stop.resp[0] & stop_err_bits ||
1867 status & stop_err_bits ||
1868 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1869 }
1870
mmc_blk_cmd_started(struct mmc_blk_request * brq)1871 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1872 {
1873 return !brq->sbc.error && !brq->cmd.error &&
1874 !(brq->cmd.resp[0] & CMD_ERRORS);
1875 }
1876
1877 /*
1878 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1879 * policy:
1880 * 1. A request that has transferred at least some data is considered
1881 * successful and will be requeued if there is remaining data to
1882 * transfer.
1883 * 2. Otherwise the number of retries is incremented and the request
1884 * will be requeued if there are remaining retries.
1885 * 3. Otherwise the request will be errored out.
1886 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1887 * mqrq->retries. So there are only 4 possible actions here:
1888 * 1. do not accept the bytes_xfered value i.e. set it to zero
1889 * 2. change mqrq->retries to determine the number of retries
1890 * 3. try to reset the card
1891 * 4. read one sector at a time
1892 */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1893 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1894 {
1895 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1896 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1897 struct mmc_blk_request *brq = &mqrq->brq;
1898 struct mmc_blk_data *md = mq->blkdata;
1899 struct mmc_card *card = mq->card;
1900 u32 status;
1901 u32 blocks;
1902 int err;
1903
1904 /*
1905 * Some errors the host driver might not have seen. Set the number of
1906 * bytes transferred to zero in that case.
1907 */
1908 err = __mmc_send_status(card, &status, 0);
1909 if (err || mmc_blk_status_error(req, status))
1910 brq->data.bytes_xfered = 0;
1911
1912 mmc_retune_release(card->host);
1913
1914 /*
1915 * Try again to get the status. This also provides an opportunity for
1916 * re-tuning.
1917 */
1918 if (err)
1919 err = __mmc_send_status(card, &status, 0);
1920
1921 /*
1922 * Nothing more to do after the number of bytes transferred has been
1923 * updated and there is no card.
1924 */
1925 if (err && mmc_detect_card_removed(card->host))
1926 return;
1927
1928 /* Try to get back to "tran" state */
1929 if (!mmc_host_is_spi(mq->card->host) &&
1930 (err || !mmc_ready_for_data(status)))
1931 err = mmc_blk_fix_state(mq->card, req);
1932
1933 /*
1934 * Special case for SD cards where the card might record the number of
1935 * blocks written.
1936 */
1937 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1938 rq_data_dir(req) == WRITE) {
1939 if (mmc_sd_num_wr_blocks(card, &blocks))
1940 brq->data.bytes_xfered = 0;
1941 else
1942 brq->data.bytes_xfered = blocks << 9;
1943 }
1944
1945 /* Reset if the card is in a bad state */
1946 if (!mmc_host_is_spi(mq->card->host) &&
1947 err && mmc_blk_reset(md, card->host, type)) {
1948 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1949 mqrq->retries = MMC_NO_RETRIES;
1950 return;
1951 }
1952
1953 /*
1954 * If anything was done, just return and if there is anything remaining
1955 * on the request it will get requeued.
1956 */
1957 if (brq->data.bytes_xfered)
1958 return;
1959
1960 /* Reset before last retry */
1961 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1962 mmc_blk_reset(md, card->host, type))
1963 return;
1964
1965 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1966 if (brq->sbc.error || brq->cmd.error)
1967 return;
1968
1969 /* Reduce the remaining retries for data errors */
1970 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1971 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1972 return;
1973 }
1974
1975 if (rq_data_dir(req) == READ && brq->data.blocks >
1976 queue_physical_block_size(mq->queue) >> 9) {
1977 /* Read one (native) sector at a time */
1978 mmc_blk_read_single(mq, req);
1979 return;
1980 }
1981 }
1982
mmc_blk_rq_error(struct mmc_blk_request * brq)1983 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1984 {
1985 mmc_blk_eval_resp_error(brq);
1986
1987 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1988 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1989 }
1990
mmc_spi_err_check(struct mmc_card * card)1991 static int mmc_spi_err_check(struct mmc_card *card)
1992 {
1993 u32 status = 0;
1994 int err;
1995
1996 /*
1997 * SPI does not have a TRAN state we have to wait on, instead the
1998 * card is ready again when it no longer holds the line LOW.
1999 * We still have to ensure two things here before we know the write
2000 * was successful:
2001 * 1. The card has not disconnected during busy and we actually read our
2002 * own pull-up, thinking it was still connected, so ensure it
2003 * still responds.
2004 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
2005 * just reconnected card after being disconnected during busy.
2006 */
2007 err = __mmc_send_status(card, &status, 0);
2008 if (err)
2009 return err;
2010 /* All R1 and R2 bits of SPI are errors in our case */
2011 if (status)
2012 return -EIO;
2013 return 0;
2014 }
2015
mmc_blk_busy_cb(void * cb_data,bool * busy)2016 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
2017 {
2018 struct mmc_blk_busy_data *data = cb_data;
2019 u32 status = 0;
2020 int err;
2021
2022 err = mmc_send_status(data->card, &status);
2023 if (err)
2024 return err;
2025
2026 /* Accumulate response error bits. */
2027 data->status |= status;
2028
2029 *busy = !mmc_ready_for_data(status);
2030 return 0;
2031 }
2032
mmc_blk_card_busy(struct mmc_card * card,struct request * req)2033 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2034 {
2035 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2036 struct mmc_blk_busy_data cb_data;
2037 int err;
2038
2039 if (rq_data_dir(req) == READ)
2040 return 0;
2041
2042 if (mmc_host_is_spi(card->host)) {
2043 err = mmc_spi_err_check(card);
2044 if (err)
2045 mqrq->brq.data.bytes_xfered = 0;
2046 return err;
2047 }
2048
2049 cb_data.card = card;
2050 cb_data.status = 0;
2051 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2052 &mmc_blk_busy_cb, &cb_data);
2053
2054 /*
2055 * Do not assume data transferred correctly if there are any error bits
2056 * set.
2057 */
2058 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2059 mqrq->brq.data.bytes_xfered = 0;
2060 err = err ? err : -EIO;
2061 }
2062
2063 /* Copy the exception bit so it will be seen later on */
2064 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2065 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2066
2067 return err;
2068 }
2069
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)2070 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2071 struct request *req)
2072 {
2073 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2074
2075 mmc_blk_reset_success(mq->blkdata, type);
2076 }
2077
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)2078 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2079 {
2080 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2081 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2082
2083 if (nr_bytes) {
2084 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2085 blk_mq_requeue_request(req, true);
2086 else
2087 __blk_mq_end_request(req, BLK_STS_OK);
2088 } else if (!blk_rq_bytes(req)) {
2089 __blk_mq_end_request(req, BLK_STS_IOERR);
2090 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2091 blk_mq_requeue_request(req, true);
2092 } else {
2093 if (mmc_card_removed(mq->card))
2094 req->rq_flags |= RQF_QUIET;
2095 blk_mq_end_request(req, BLK_STS_IOERR);
2096 }
2097 }
2098
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2099 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2100 struct mmc_queue_req *mqrq)
2101 {
2102 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2103 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2104 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2105 }
2106
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2107 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2108 struct mmc_queue_req *mqrq)
2109 {
2110 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2111 mmc_run_bkops(mq->card);
2112 }
2113
mmc_blk_hsq_req_done(struct mmc_request * mrq)2114 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2115 {
2116 struct mmc_queue_req *mqrq =
2117 container_of(mrq, struct mmc_queue_req, brq.mrq);
2118 struct request *req = mmc_queue_req_to_req(mqrq);
2119 struct request_queue *q = req->q;
2120 struct mmc_queue *mq = q->queuedata;
2121 struct mmc_host *host = mq->card->host;
2122 unsigned long flags;
2123
2124 if (mmc_blk_rq_error(&mqrq->brq) ||
2125 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2126 spin_lock_irqsave(&mq->lock, flags);
2127 mq->recovery_needed = true;
2128 mq->recovery_req = req;
2129 spin_unlock_irqrestore(&mq->lock, flags);
2130
2131 host->cqe_ops->cqe_recovery_start(host);
2132
2133 schedule_work(&mq->recovery_work);
2134 return;
2135 }
2136
2137 mmc_blk_rw_reset_success(mq, req);
2138
2139 /*
2140 * Block layer timeouts race with completions which means the normal
2141 * completion path cannot be used during recovery.
2142 */
2143 if (mq->in_recovery)
2144 mmc_blk_cqe_complete_rq(mq, req);
2145 else if (likely(!blk_should_fake_timeout(req->q)))
2146 blk_mq_complete_request(req);
2147 }
2148
mmc_blk_mq_complete(struct request * req)2149 void mmc_blk_mq_complete(struct request *req)
2150 {
2151 struct mmc_queue *mq = req->q->queuedata;
2152 struct mmc_host *host = mq->card->host;
2153
2154 if (host->cqe_enabled)
2155 mmc_blk_cqe_complete_rq(mq, req);
2156 else if (likely(!blk_should_fake_timeout(req->q)))
2157 mmc_blk_mq_complete_rq(mq, req);
2158 }
2159
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)2160 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2161 struct request *req)
2162 {
2163 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2164 struct mmc_host *host = mq->card->host;
2165
2166 if (mmc_blk_rq_error(&mqrq->brq) ||
2167 mmc_blk_card_busy(mq->card, req)) {
2168 mmc_blk_mq_rw_recovery(mq, req);
2169 } else {
2170 mmc_blk_rw_reset_success(mq, req);
2171 mmc_retune_release(host);
2172 }
2173
2174 mmc_blk_urgent_bkops(mq, mqrq);
2175 }
2176
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,enum mmc_issue_type issue_type)2177 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2178 {
2179 unsigned long flags;
2180 bool put_card;
2181
2182 spin_lock_irqsave(&mq->lock, flags);
2183
2184 mq->in_flight[issue_type] -= 1;
2185
2186 put_card = (mmc_tot_in_flight(mq) == 0);
2187
2188 spin_unlock_irqrestore(&mq->lock, flags);
2189
2190 if (put_card)
2191 mmc_put_card(mq->card, &mq->ctx);
2192 }
2193
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req,bool can_sleep)2194 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2195 bool can_sleep)
2196 {
2197 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2198 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2199 struct mmc_request *mrq = &mqrq->brq.mrq;
2200 struct mmc_host *host = mq->card->host;
2201
2202 mmc_post_req(host, mrq, 0);
2203
2204 /*
2205 * Block layer timeouts race with completions which means the normal
2206 * completion path cannot be used during recovery.
2207 */
2208 if (mq->in_recovery) {
2209 mmc_blk_mq_complete_rq(mq, req);
2210 } else if (likely(!blk_should_fake_timeout(req->q))) {
2211 if (can_sleep)
2212 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2213 else
2214 blk_mq_complete_request(req);
2215 }
2216
2217 mmc_blk_mq_dec_in_flight(mq, issue_type);
2218 }
2219
mmc_blk_mq_recovery(struct mmc_queue * mq)2220 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2221 {
2222 struct request *req = mq->recovery_req;
2223 struct mmc_host *host = mq->card->host;
2224 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2225
2226 mq->recovery_req = NULL;
2227 mq->rw_wait = false;
2228
2229 if (mmc_blk_rq_error(&mqrq->brq)) {
2230 mmc_retune_hold_now(host);
2231 mmc_blk_mq_rw_recovery(mq, req);
2232 }
2233
2234 mmc_blk_urgent_bkops(mq, mqrq);
2235
2236 mmc_blk_mq_post_req(mq, req, true);
2237 }
2238
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2239 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2240 struct request **prev_req)
2241 {
2242 if (mmc_host_can_done_complete(mq->card->host))
2243 return;
2244
2245 mutex_lock(&mq->complete_lock);
2246
2247 if (!mq->complete_req)
2248 goto out_unlock;
2249
2250 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2251
2252 if (prev_req)
2253 *prev_req = mq->complete_req;
2254 else
2255 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2256
2257 mq->complete_req = NULL;
2258
2259 out_unlock:
2260 mutex_unlock(&mq->complete_lock);
2261 }
2262
mmc_blk_mq_complete_work(struct work_struct * work)2263 void mmc_blk_mq_complete_work(struct work_struct *work)
2264 {
2265 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2266 complete_work);
2267
2268 mmc_blk_mq_complete_prev_req(mq, NULL);
2269 }
2270
mmc_blk_mq_req_done(struct mmc_request * mrq)2271 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2272 {
2273 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2274 brq.mrq);
2275 struct request *req = mmc_queue_req_to_req(mqrq);
2276 struct request_queue *q = req->q;
2277 struct mmc_queue *mq = q->queuedata;
2278 struct mmc_host *host = mq->card->host;
2279 unsigned long flags;
2280
2281 if (!mmc_host_can_done_complete(host)) {
2282 bool waiting;
2283
2284 /*
2285 * We cannot complete the request in this context, so record
2286 * that there is a request to complete, and that a following
2287 * request does not need to wait (although it does need to
2288 * complete complete_req first).
2289 */
2290 spin_lock_irqsave(&mq->lock, flags);
2291 mq->complete_req = req;
2292 mq->rw_wait = false;
2293 waiting = mq->waiting;
2294 spin_unlock_irqrestore(&mq->lock, flags);
2295
2296 /*
2297 * If 'waiting' then the waiting task will complete this
2298 * request, otherwise queue a work to do it. Note that
2299 * complete_work may still race with the dispatch of a following
2300 * request.
2301 */
2302 if (waiting)
2303 wake_up(&mq->wait);
2304 else
2305 queue_work(mq->card->complete_wq, &mq->complete_work);
2306
2307 return;
2308 }
2309
2310 /* Take the recovery path for errors or urgent background operations */
2311 if (mmc_blk_rq_error(&mqrq->brq) ||
2312 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2313 spin_lock_irqsave(&mq->lock, flags);
2314 mq->recovery_needed = true;
2315 mq->recovery_req = req;
2316 spin_unlock_irqrestore(&mq->lock, flags);
2317 wake_up(&mq->wait);
2318 schedule_work(&mq->recovery_work);
2319 return;
2320 }
2321
2322 mmc_blk_rw_reset_success(mq, req);
2323
2324 mq->rw_wait = false;
2325 wake_up(&mq->wait);
2326
2327 /* context unknown */
2328 mmc_blk_mq_post_req(mq, req, false);
2329 }
2330
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2331 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2332 {
2333 unsigned long flags;
2334 bool done;
2335
2336 /*
2337 * Wait while there is another request in progress, but not if recovery
2338 * is needed. Also indicate whether there is a request waiting to start.
2339 */
2340 spin_lock_irqsave(&mq->lock, flags);
2341 if (mq->recovery_needed) {
2342 *err = -EBUSY;
2343 done = true;
2344 } else {
2345 done = !mq->rw_wait;
2346 }
2347 mq->waiting = !done;
2348 spin_unlock_irqrestore(&mq->lock, flags);
2349
2350 return done;
2351 }
2352
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2353 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2354 {
2355 int err = 0;
2356
2357 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2358
2359 /* Always complete the previous request if there is one */
2360 mmc_blk_mq_complete_prev_req(mq, prev_req);
2361
2362 return err;
2363 }
2364
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2365 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2366 struct request *req)
2367 {
2368 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2369 struct mmc_host *host = mq->card->host;
2370 struct request *prev_req = NULL;
2371 int err = 0;
2372
2373 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2374
2375 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2376
2377 mmc_pre_req(host, &mqrq->brq.mrq);
2378
2379 err = mmc_blk_rw_wait(mq, &prev_req);
2380 if (err)
2381 goto out_post_req;
2382
2383 mq->rw_wait = true;
2384
2385 err = mmc_start_request(host, &mqrq->brq.mrq);
2386
2387 if (prev_req)
2388 mmc_blk_mq_post_req(mq, prev_req, true);
2389
2390 if (err)
2391 mq->rw_wait = false;
2392
2393 /* Release re-tuning here where there is no synchronization required */
2394 if (err || mmc_host_can_done_complete(host))
2395 mmc_retune_release(host);
2396
2397 out_post_req:
2398 if (err)
2399 mmc_post_req(host, &mqrq->brq.mrq, err);
2400
2401 return err;
2402 }
2403
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2404 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2405 {
2406 if (host->cqe_enabled)
2407 return host->cqe_ops->cqe_wait_for_idle(host);
2408
2409 return mmc_blk_rw_wait(mq, NULL);
2410 }
2411
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2412 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2413 {
2414 struct mmc_blk_data *md = mq->blkdata;
2415 struct mmc_card *card = md->queue.card;
2416 struct mmc_host *host = card->host;
2417 int ret;
2418
2419 ret = mmc_blk_part_switch(card, md->part_type);
2420 if (ret)
2421 return MMC_REQ_FAILED_TO_START;
2422
2423 switch (mmc_issue_type(mq, req)) {
2424 case MMC_ISSUE_SYNC:
2425 ret = mmc_blk_wait_for_idle(mq, host);
2426 if (ret)
2427 return MMC_REQ_BUSY;
2428 switch (req_op(req)) {
2429 case REQ_OP_DRV_IN:
2430 case REQ_OP_DRV_OUT:
2431 mmc_blk_issue_drv_op(mq, req);
2432 break;
2433 case REQ_OP_DISCARD:
2434 mmc_blk_issue_discard_rq(mq, req);
2435 break;
2436 case REQ_OP_SECURE_ERASE:
2437 mmc_blk_issue_secdiscard_rq(mq, req);
2438 break;
2439 case REQ_OP_WRITE_ZEROES:
2440 mmc_blk_issue_trim_rq(mq, req);
2441 break;
2442 case REQ_OP_FLUSH:
2443 mmc_blk_issue_flush(mq, req);
2444 break;
2445 default:
2446 WARN_ON_ONCE(1);
2447 return MMC_REQ_FAILED_TO_START;
2448 }
2449 return MMC_REQ_FINISHED;
2450 case MMC_ISSUE_DCMD:
2451 case MMC_ISSUE_ASYNC:
2452 switch (req_op(req)) {
2453 case REQ_OP_FLUSH:
2454 if (!mmc_cache_enabled(host)) {
2455 blk_mq_end_request(req, BLK_STS_OK);
2456 return MMC_REQ_FINISHED;
2457 }
2458 ret = mmc_blk_cqe_issue_flush(mq, req);
2459 break;
2460 case REQ_OP_WRITE:
2461 card->written_flag = true;
2462 fallthrough;
2463 case REQ_OP_READ:
2464 if (host->cqe_enabled)
2465 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2466 else
2467 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2468 break;
2469 default:
2470 WARN_ON_ONCE(1);
2471 ret = -EINVAL;
2472 }
2473 if (!ret)
2474 return MMC_REQ_STARTED;
2475 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2476 default:
2477 WARN_ON_ONCE(1);
2478 return MMC_REQ_FAILED_TO_START;
2479 }
2480 }
2481
mmc_blk_readonly(struct mmc_card * card)2482 static inline int mmc_blk_readonly(struct mmc_card *card)
2483 {
2484 return mmc_card_readonly(card) ||
2485 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2486 }
2487
2488 /*
2489 * Search for a declared partitions node for the disk in mmc-card related node.
2490 *
2491 * This is to permit support for partition table defined in DT in special case
2492 * where a partition table is not written in the disk and is expected to be
2493 * passed from the running system.
2494 *
2495 * For the user disk, "partitions" node is searched.
2496 * For the special HW disk, "partitions-" node with the appended name is used
2497 * following this conversion table (to adhere to JEDEC naming)
2498 * - boot0 -> partitions-boot1
2499 * - boot1 -> partitions-boot2
2500 * - gp0 -> partitions-gp1
2501 * - gp1 -> partitions-gp2
2502 * - gp2 -> partitions-gp3
2503 * - gp3 -> partitions-gp4
2504 */
mmc_blk_get_partitions_node(struct device * mmc_dev,const char * subname)2505 static struct fwnode_handle *mmc_blk_get_partitions_node(struct device *mmc_dev,
2506 const char *subname)
2507 {
2508 const char *node_name = "partitions";
2509
2510 if (subname) {
2511 mmc_dev = mmc_dev->parent;
2512
2513 /*
2514 * Check if we are allocating a BOOT disk boot0/1 disk.
2515 * In DT we use the JEDEC naming boot1/2.
2516 */
2517 if (!strcmp(subname, "boot0"))
2518 node_name = "partitions-boot1";
2519 if (!strcmp(subname, "boot1"))
2520 node_name = "partitions-boot2";
2521 /*
2522 * Check if we are allocating a GP disk gp0/1/2/3 disk.
2523 * In DT we use the JEDEC naming gp1/2/3/4.
2524 */
2525 if (!strcmp(subname, "gp0"))
2526 node_name = "partitions-gp1";
2527 if (!strcmp(subname, "gp1"))
2528 node_name = "partitions-gp2";
2529 if (!strcmp(subname, "gp2"))
2530 node_name = "partitions-gp3";
2531 if (!strcmp(subname, "gp3"))
2532 node_name = "partitions-gp4";
2533 }
2534
2535 return device_get_named_child_node(mmc_dev, node_name);
2536 }
2537
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type,unsigned int part_type)2538 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2539 struct device *parent,
2540 sector_t size,
2541 bool default_ro,
2542 const char *subname,
2543 int area_type,
2544 unsigned int part_type)
2545 {
2546 struct fwnode_handle *disk_fwnode;
2547 struct mmc_blk_data *md;
2548 int devidx, ret;
2549 char cap_str[10];
2550 unsigned int features = 0;
2551
2552 devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2553 if (devidx < 0) {
2554 /*
2555 * We get -ENOSPC because there are no more any available
2556 * devidx. The reason may be that, either userspace haven't yet
2557 * unmounted the partitions, which postpones mmc_blk_release()
2558 * from being called, or the device has more partitions than
2559 * what we support.
2560 */
2561 if (devidx == -ENOSPC)
2562 dev_err(mmc_dev(card->host),
2563 "no more device IDs available\n");
2564
2565 return ERR_PTR(devidx);
2566 }
2567
2568 md = kzalloc(sizeof(*md), GFP_KERNEL);
2569 if (!md) {
2570 ret = -ENOMEM;
2571 goto out;
2572 }
2573
2574 md->area_type = area_type;
2575
2576 /*
2577 * Set the read-only status based on the supported commands
2578 * and the write protect switch.
2579 */
2580 md->read_only = mmc_blk_readonly(card);
2581
2582 if (mmc_host_can_cmd23(card->host) && mmc_card_can_cmd23(card))
2583 md->flags |= MMC_BLK_CMD23;
2584
2585 if (md->flags & MMC_BLK_CMD23 &&
2586 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2587 card->ext_csd.rel_sectors)) {
2588 md->flags |= MMC_BLK_REL_WR;
2589 features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2590 } else if (mmc_cache_enabled(card->host)) {
2591 features |= BLK_FEAT_WRITE_CACHE;
2592 }
2593
2594 md->disk = mmc_init_queue(&md->queue, card, features);
2595 if (IS_ERR(md->disk)) {
2596 ret = PTR_ERR(md->disk);
2597 goto err_kfree;
2598 }
2599
2600 INIT_LIST_HEAD(&md->part);
2601 INIT_LIST_HEAD(&md->rpmbs);
2602 kref_init(&md->kref);
2603
2604 md->queue.blkdata = md;
2605 md->part_type = part_type;
2606
2607 md->disk->major = MMC_BLOCK_MAJOR;
2608 md->disk->minors = perdev_minors;
2609 md->disk->first_minor = devidx * perdev_minors;
2610 md->disk->fops = &mmc_bdops;
2611 md->disk->private_data = md;
2612 md->parent = parent;
2613 set_disk_ro(md->disk, md->read_only || default_ro);
2614 if (area_type & MMC_BLK_DATA_AREA_RPMB)
2615 md->disk->flags |= GENHD_FL_NO_PART;
2616
2617 /*
2618 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2619 *
2620 * - be set for removable media with permanent block devices
2621 * - be unset for removable block devices with permanent media
2622 *
2623 * Since MMC block devices clearly fall under the second
2624 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2625 * should use the block device creation/destruction hotplug
2626 * messages to tell when the card is present.
2627 */
2628
2629 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2630 "mmcblk%u%s", card->host->index, subname ? subname : "");
2631
2632 set_capacity(md->disk, size);
2633
2634 string_get_size((u64)size, 512, STRING_UNITS_2,
2635 cap_str, sizeof(cap_str));
2636 pr_info("%s: %s %s %s%s\n",
2637 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2638 cap_str, md->read_only ? " (ro)" : "");
2639
2640 /* used in ->open, must be set before add_disk: */
2641 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2642 dev_set_drvdata(&card->dev, md);
2643 disk_fwnode = mmc_blk_get_partitions_node(parent, subname);
2644 ret = add_disk_fwnode(md->parent, md->disk, mmc_disk_attr_groups,
2645 disk_fwnode);
2646 if (ret)
2647 goto err_put_disk;
2648 return md;
2649
2650 err_put_disk:
2651 put_disk(md->disk);
2652 blk_mq_free_tag_set(&md->queue.tag_set);
2653 err_kfree:
2654 kfree(md);
2655 out:
2656 ida_free(&mmc_blk_ida, devidx);
2657 return ERR_PTR(ret);
2658 }
2659
mmc_blk_alloc(struct mmc_card * card)2660 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2661 {
2662 sector_t size;
2663
2664 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2665 /*
2666 * The EXT_CSD sector count is in number or 512 byte
2667 * sectors.
2668 */
2669 size = card->ext_csd.sectors;
2670 } else {
2671 /*
2672 * The CSD capacity field is in units of read_blkbits.
2673 * set_capacity takes units of 512 bytes.
2674 */
2675 size = (typeof(sector_t))card->csd.capacity
2676 << (card->csd.read_blkbits - 9);
2677 }
2678
2679 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2680 MMC_BLK_DATA_AREA_MAIN, 0);
2681 }
2682
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2683 static int mmc_blk_alloc_part(struct mmc_card *card,
2684 struct mmc_blk_data *md,
2685 unsigned int part_type,
2686 sector_t size,
2687 bool default_ro,
2688 const char *subname,
2689 int area_type)
2690 {
2691 struct mmc_blk_data *part_md;
2692
2693 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2694 subname, area_type, part_type);
2695 if (IS_ERR(part_md))
2696 return PTR_ERR(part_md);
2697 list_add(&part_md->part, &md->part);
2698
2699 return 0;
2700 }
2701
2702 /**
2703 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2704 * @filp: the character device file
2705 * @cmd: the ioctl() command
2706 * @arg: the argument from userspace
2707 *
2708 * This will essentially just redirect the ioctl()s coming in over to
2709 * the main block device spawning the RPMB character device.
2710 */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2711 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2712 unsigned long arg)
2713 {
2714 struct mmc_rpmb_data *rpmb = filp->private_data;
2715 int ret;
2716
2717 switch (cmd) {
2718 case MMC_IOC_CMD:
2719 ret = mmc_blk_ioctl_cmd(rpmb->md,
2720 (struct mmc_ioc_cmd __user *)arg,
2721 rpmb);
2722 break;
2723 case MMC_IOC_MULTI_CMD:
2724 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2725 (struct mmc_ioc_multi_cmd __user *)arg,
2726 rpmb);
2727 break;
2728 default:
2729 ret = -EINVAL;
2730 break;
2731 }
2732
2733 return ret;
2734 }
2735
2736 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2737 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2738 unsigned long arg)
2739 {
2740 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2741 }
2742 #endif
2743
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2744 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2745 {
2746 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2747 struct mmc_rpmb_data, chrdev);
2748
2749 get_device(&rpmb->dev);
2750 filp->private_data = rpmb;
2751
2752 return nonseekable_open(inode, filp);
2753 }
2754
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2755 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2756 {
2757 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2758 struct mmc_rpmb_data, chrdev);
2759
2760 put_device(&rpmb->dev);
2761
2762 return 0;
2763 }
2764
2765 static const struct file_operations mmc_rpmb_fileops = {
2766 .release = mmc_rpmb_chrdev_release,
2767 .open = mmc_rpmb_chrdev_open,
2768 .owner = THIS_MODULE,
2769 .unlocked_ioctl = mmc_rpmb_ioctl,
2770 #ifdef CONFIG_COMPAT
2771 .compat_ioctl = mmc_rpmb_ioctl_compat,
2772 #endif
2773 };
2774
mmc_blk_rpmb_device_release(struct device * dev)2775 static void mmc_blk_rpmb_device_release(struct device *dev)
2776 {
2777 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2778
2779 rpmb_dev_unregister(rpmb->rdev);
2780 mmc_blk_put(rpmb->md);
2781 ida_free(&mmc_rpmb_ida, rpmb->id);
2782 kfree(rpmb);
2783 }
2784
free_idata(struct mmc_blk_ioc_data ** idata,unsigned int cmd_count)2785 static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count)
2786 {
2787 unsigned int n;
2788
2789 for (n = 0; n < cmd_count; n++)
2790 kfree(idata[n]);
2791 kfree(idata);
2792 }
2793
alloc_idata(struct mmc_rpmb_data * rpmb,unsigned int cmd_count)2794 static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb,
2795 unsigned int cmd_count)
2796 {
2797 struct mmc_blk_ioc_data **idata;
2798 unsigned int n;
2799
2800 idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL);
2801 if (!idata)
2802 return NULL;
2803
2804 for (n = 0; n < cmd_count; n++) {
2805 idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL);
2806 if (!idata[n]) {
2807 free_idata(idata, n);
2808 return NULL;
2809 }
2810 idata[n]->rpmb = rpmb;
2811 }
2812
2813 return idata;
2814 }
2815
set_idata(struct mmc_blk_ioc_data * idata,u32 opcode,int write_flag,u8 * buf,unsigned int buf_bytes)2816 static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode,
2817 int write_flag, u8 *buf, unsigned int buf_bytes)
2818 {
2819 /*
2820 * The size of an RPMB frame must match what's expected by the
2821 * hardware.
2822 */
2823 static_assert(!CHECK_SIZE_NEQ(512), "RPMB frame size must be 512 bytes");
2824
2825 idata->ic.opcode = opcode;
2826 idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
2827 idata->ic.write_flag = write_flag;
2828 idata->ic.blksz = RPMB_FRAME_SIZE;
2829 idata->ic.blocks = buf_bytes / idata->ic.blksz;
2830 idata->buf = buf;
2831 idata->buf_bytes = buf_bytes;
2832 }
2833
mmc_route_rpmb_frames(struct device * dev,u8 * req,unsigned int req_len,u8 * resp,unsigned int resp_len)2834 static int mmc_route_rpmb_frames(struct device *dev, u8 *req,
2835 unsigned int req_len, u8 *resp,
2836 unsigned int resp_len)
2837 {
2838 struct rpmb_frame *frm = (struct rpmb_frame *)req;
2839 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2840 struct mmc_blk_data *md = rpmb->md;
2841 struct mmc_blk_ioc_data **idata;
2842 struct mmc_queue_req *mq_rq;
2843 unsigned int cmd_count;
2844 struct request *rq;
2845 u16 req_type;
2846 bool write;
2847 int ret;
2848
2849 if (IS_ERR(md->queue.card))
2850 return PTR_ERR(md->queue.card);
2851
2852 if (req_len < RPMB_FRAME_SIZE)
2853 return -EINVAL;
2854
2855 req_type = be16_to_cpu(frm->req_resp);
2856 switch (req_type) {
2857 case RPMB_PROGRAM_KEY:
2858 if (CHECK_SIZE_NEQ(req_len) || CHECK_SIZE_NEQ(resp_len))
2859 return -EINVAL;
2860 write = true;
2861 break;
2862 case RPMB_GET_WRITE_COUNTER:
2863 if (CHECK_SIZE_NEQ(req_len) || CHECK_SIZE_NEQ(resp_len))
2864 return -EINVAL;
2865 write = false;
2866 break;
2867 case RPMB_WRITE_DATA:
2868 if (!CHECK_SIZE_ALIGNED(req_len) || CHECK_SIZE_NEQ(resp_len))
2869 return -EINVAL;
2870 write = true;
2871 break;
2872 case RPMB_READ_DATA:
2873 if (CHECK_SIZE_NEQ(req_len) || !CHECK_SIZE_ALIGNED(resp_len))
2874 return -EINVAL;
2875 write = false;
2876 break;
2877 default:
2878 return -EINVAL;
2879 }
2880
2881 /* Write operations require 3 commands, read operations require 2 */
2882 cmd_count = write ? 3 : 2;
2883
2884 idata = alloc_idata(rpmb, cmd_count);
2885 if (!idata)
2886 return -ENOMEM;
2887
2888 if (write) {
2889 struct rpmb_frame *resp_frm = (struct rpmb_frame *)resp;
2890
2891 /* Send write request frame(s) */
2892 set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK,
2893 1 | MMC_CMD23_ARG_REL_WR, req, req_len);
2894
2895 /* Send result request frame */
2896 memset(resp_frm, 0, RPMB_FRAME_SIZE);
2897 resp_frm->req_resp = cpu_to_be16(RPMB_RESULT_READ);
2898 set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp,
2899 resp_len);
2900
2901 /* Read response frame */
2902 set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2903 } else {
2904 /* Send write request frame(s) */
2905 set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len);
2906
2907 /* Read response frame */
2908 set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2909 }
2910
2911 rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0);
2912 if (IS_ERR(rq)) {
2913 ret = PTR_ERR(rq);
2914 goto out;
2915 }
2916
2917 mq_rq = req_to_mmc_queue_req(rq);
2918 mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB;
2919 mq_rq->drv_op_result = -EIO;
2920 mq_rq->drv_op_data = idata;
2921 mq_rq->ioc_count = cmd_count;
2922 blk_execute_rq(rq, false);
2923 ret = req_to_mmc_queue_req(rq)->drv_op_result;
2924
2925 blk_mq_free_request(rq);
2926
2927 out:
2928 free_idata(idata, cmd_count);
2929 return ret;
2930 }
2931
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2932 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2933 struct mmc_blk_data *md,
2934 unsigned int part_index,
2935 sector_t size,
2936 const char *subname)
2937 {
2938 int devidx, ret;
2939 char rpmb_name[DISK_NAME_LEN];
2940 char cap_str[10];
2941 struct mmc_rpmb_data *rpmb;
2942
2943 /* This creates the minor number for the RPMB char device */
2944 devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2945 if (devidx < 0)
2946 return devidx;
2947
2948 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2949 if (!rpmb) {
2950 ida_free(&mmc_rpmb_ida, devidx);
2951 return -ENOMEM;
2952 }
2953
2954 snprintf(rpmb_name, sizeof(rpmb_name),
2955 "mmcblk%u%s", card->host->index, subname ? subname : "");
2956
2957 rpmb->id = devidx;
2958 rpmb->part_index = part_index;
2959 rpmb->dev.init_name = rpmb_name;
2960 rpmb->dev.bus = &mmc_rpmb_bus_type;
2961 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2962 rpmb->dev.parent = &card->dev;
2963 rpmb->dev.release = mmc_blk_rpmb_device_release;
2964 device_initialize(&rpmb->dev);
2965 dev_set_drvdata(&rpmb->dev, rpmb);
2966 mmc_blk_get(md->disk);
2967 rpmb->md = md;
2968
2969 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2970 rpmb->chrdev.owner = THIS_MODULE;
2971 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2972 if (ret) {
2973 pr_err("%s: could not add character device\n", rpmb_name);
2974 goto out_put_device;
2975 }
2976
2977 list_add(&rpmb->node, &md->rpmbs);
2978
2979 string_get_size((u64)size, 512, STRING_UNITS_2,
2980 cap_str, sizeof(cap_str));
2981
2982 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2983 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2984 MAJOR(mmc_rpmb_devt), rpmb->id);
2985
2986 return 0;
2987
2988 out_put_device:
2989 put_device(&rpmb->dev);
2990 return ret;
2991 }
2992
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2993 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2994
2995 {
2996 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2997 put_device(&rpmb->dev);
2998 }
2999
3000 /* MMC Physical partitions consist of two boot partitions and
3001 * up to four general purpose partitions.
3002 * For each partition enabled in EXT_CSD a block device will be allocatedi
3003 * to provide access to the partition.
3004 */
3005
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)3006 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
3007 {
3008 int idx, ret;
3009
3010 if (!mmc_card_mmc(card))
3011 return 0;
3012
3013 for (idx = 0; idx < card->nr_parts; idx++) {
3014 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
3015 /*
3016 * RPMB partitions does not provide block access, they
3017 * are only accessed using ioctl():s. Thus create
3018 * special RPMB block devices that do not have a
3019 * backing block queue for these.
3020 */
3021 ret = mmc_blk_alloc_rpmb_part(card, md,
3022 card->part[idx].part_cfg,
3023 card->part[idx].size >> 9,
3024 card->part[idx].name);
3025 if (ret)
3026 return ret;
3027 } else if (card->part[idx].size) {
3028 ret = mmc_blk_alloc_part(card, md,
3029 card->part[idx].part_cfg,
3030 card->part[idx].size >> 9,
3031 card->part[idx].force_ro,
3032 card->part[idx].name,
3033 card->part[idx].area_type);
3034 if (ret)
3035 return ret;
3036 }
3037 }
3038
3039 return 0;
3040 }
3041
mmc_blk_remove_req(struct mmc_blk_data * md)3042 static void mmc_blk_remove_req(struct mmc_blk_data *md)
3043 {
3044 /*
3045 * Flush remaining requests and free queues. It is freeing the queue
3046 * that stops new requests from being accepted.
3047 */
3048 del_gendisk(md->disk);
3049 mmc_cleanup_queue(&md->queue);
3050 mmc_blk_put(md);
3051 }
3052
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)3053 static void mmc_blk_remove_parts(struct mmc_card *card,
3054 struct mmc_blk_data *md)
3055 {
3056 struct list_head *pos, *q;
3057 struct mmc_blk_data *part_md;
3058 struct mmc_rpmb_data *rpmb;
3059
3060 /* Remove RPMB partitions */
3061 list_for_each_safe(pos, q, &md->rpmbs) {
3062 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
3063 list_del(pos);
3064 mmc_blk_remove_rpmb_part(rpmb);
3065 }
3066 /* Remove block partitions */
3067 list_for_each_safe(pos, q, &md->part) {
3068 part_md = list_entry(pos, struct mmc_blk_data, part);
3069 list_del(pos);
3070 mmc_blk_remove_req(part_md);
3071 }
3072 }
3073
3074 #ifdef CONFIG_DEBUG_FS
3075
mmc_dbg_card_status_get(void * data,u64 * val)3076 static int mmc_dbg_card_status_get(void *data, u64 *val)
3077 {
3078 struct mmc_card *card = data;
3079 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3080 struct mmc_queue *mq = &md->queue;
3081 struct request *req;
3082 int ret;
3083
3084 /* Ask the block layer about the card status */
3085 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3086 if (IS_ERR(req))
3087 return PTR_ERR(req);
3088 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
3089 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3090 blk_execute_rq(req, false);
3091 ret = req_to_mmc_queue_req(req)->drv_op_result;
3092 if (ret >= 0) {
3093 *val = ret;
3094 ret = 0;
3095 }
3096 blk_mq_free_request(req);
3097
3098 return ret;
3099 }
3100 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
3101 NULL, "%08llx\n");
3102
3103 /* That is two digits * 512 + 1 for newline */
3104 #define EXT_CSD_STR_LEN 1025
3105
mmc_ext_csd_open(struct inode * inode,struct file * filp)3106 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
3107 {
3108 struct mmc_card *card = inode->i_private;
3109 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3110 struct mmc_queue *mq = &md->queue;
3111 struct request *req;
3112 char *buf;
3113 ssize_t n = 0;
3114 u8 *ext_csd;
3115 int err, i;
3116
3117 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
3118 if (!buf)
3119 return -ENOMEM;
3120
3121 /* Ask the block layer for the EXT CSD */
3122 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3123 if (IS_ERR(req)) {
3124 err = PTR_ERR(req);
3125 goto out_free;
3126 }
3127 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
3128 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3129 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
3130 blk_execute_rq(req, false);
3131 err = req_to_mmc_queue_req(req)->drv_op_result;
3132 blk_mq_free_request(req);
3133 if (err) {
3134 pr_err("FAILED %d\n", err);
3135 goto out_free;
3136 }
3137
3138 for (i = 0; i < 512; i++)
3139 n += sprintf(buf + n, "%02x", ext_csd[i]);
3140 n += sprintf(buf + n, "\n");
3141
3142 if (n != EXT_CSD_STR_LEN) {
3143 err = -EINVAL;
3144 kfree(ext_csd);
3145 goto out_free;
3146 }
3147
3148 filp->private_data = buf;
3149 kfree(ext_csd);
3150 return 0;
3151
3152 out_free:
3153 kfree(buf);
3154 return err;
3155 }
3156
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)3157 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
3158 size_t cnt, loff_t *ppos)
3159 {
3160 char *buf = filp->private_data;
3161
3162 return simple_read_from_buffer(ubuf, cnt, ppos,
3163 buf, EXT_CSD_STR_LEN);
3164 }
3165
mmc_ext_csd_release(struct inode * inode,struct file * file)3166 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
3167 {
3168 kfree(file->private_data);
3169 return 0;
3170 }
3171
3172 static const struct file_operations mmc_dbg_ext_csd_fops = {
3173 .open = mmc_ext_csd_open,
3174 .read = mmc_ext_csd_read,
3175 .release = mmc_ext_csd_release,
3176 .llseek = default_llseek,
3177 };
3178
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3179 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3180 {
3181 struct dentry *root;
3182
3183 if (!card->debugfs_root)
3184 return;
3185
3186 root = card->debugfs_root;
3187
3188 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
3189 md->status_dentry =
3190 debugfs_create_file_unsafe("status", 0400, root,
3191 card,
3192 &mmc_dbg_card_status_fops);
3193 }
3194
3195 if (mmc_card_mmc(card)) {
3196 md->ext_csd_dentry =
3197 debugfs_create_file("ext_csd", S_IRUSR, root, card,
3198 &mmc_dbg_ext_csd_fops);
3199 }
3200 }
3201
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3202 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3203 struct mmc_blk_data *md)
3204 {
3205 if (!card->debugfs_root)
3206 return;
3207
3208 debugfs_remove(md->status_dentry);
3209 md->status_dentry = NULL;
3210
3211 debugfs_remove(md->ext_csd_dentry);
3212 md->ext_csd_dentry = NULL;
3213 }
3214
3215 #else
3216
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3217 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3218 {
3219 }
3220
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3221 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3222 struct mmc_blk_data *md)
3223 {
3224 }
3225
3226 #endif /* CONFIG_DEBUG_FS */
3227
mmc_blk_rpmb_add(struct mmc_card * card)3228 static void mmc_blk_rpmb_add(struct mmc_card *card)
3229 {
3230 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3231 struct mmc_rpmb_data *rpmb;
3232 struct rpmb_dev *rdev;
3233 unsigned int n;
3234 u32 cid[4];
3235 struct rpmb_descr descr = {
3236 .type = RPMB_TYPE_EMMC,
3237 .route_frames = mmc_route_rpmb_frames,
3238 .reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ?
3239 2 : 32,
3240 .capacity = card->ext_csd.raw_rpmb_size_mult,
3241 .dev_id = (void *)cid,
3242 .dev_id_len = sizeof(cid),
3243 };
3244
3245 /*
3246 * Provice CID as an octet array. The CID needs to be interpreted
3247 * when used as input to derive the RPMB key since some fields
3248 * will change due to firmware updates.
3249 */
3250 for (n = 0; n < 4; n++)
3251 cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]);
3252
3253 list_for_each_entry(rpmb, &md->rpmbs, node) {
3254 rdev = rpmb_dev_register(&rpmb->dev, &descr);
3255 if (IS_ERR(rdev)) {
3256 pr_warn("%s: could not register RPMB device\n",
3257 dev_name(&rpmb->dev));
3258 continue;
3259 }
3260 rpmb->rdev = rdev;
3261 }
3262 }
3263
mmc_blk_probe(struct mmc_card * card)3264 static int mmc_blk_probe(struct mmc_card *card)
3265 {
3266 struct mmc_blk_data *md;
3267 int ret = 0;
3268
3269 /*
3270 * Check that the card supports the command class(es) we need.
3271 */
3272 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3273 return -ENODEV;
3274
3275 mmc_fixup_device(card, mmc_blk_fixups);
3276
3277 card->complete_wq = alloc_workqueue("mmc_complete",
3278 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3279 if (!card->complete_wq) {
3280 pr_err("Failed to create mmc completion workqueue");
3281 return -ENOMEM;
3282 }
3283
3284 md = mmc_blk_alloc(card);
3285 if (IS_ERR(md)) {
3286 ret = PTR_ERR(md);
3287 goto out_free;
3288 }
3289
3290 ret = mmc_blk_alloc_parts(card, md);
3291 if (ret)
3292 goto out;
3293
3294 /* Add two debugfs entries */
3295 mmc_blk_add_debugfs(card, md);
3296
3297 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3298 pm_runtime_use_autosuspend(&card->dev);
3299
3300 /*
3301 * Don't enable runtime PM for SD-combo cards here. Leave that
3302 * decision to be taken during the SDIO init sequence instead.
3303 */
3304 if (!mmc_card_sd_combo(card)) {
3305 pm_runtime_set_active(&card->dev);
3306 pm_runtime_enable(&card->dev);
3307 }
3308
3309 mmc_blk_rpmb_add(card);
3310
3311 return 0;
3312
3313 out:
3314 mmc_blk_remove_parts(card, md);
3315 mmc_blk_remove_req(md);
3316 out_free:
3317 destroy_workqueue(card->complete_wq);
3318 return ret;
3319 }
3320
mmc_blk_remove(struct mmc_card * card)3321 static void mmc_blk_remove(struct mmc_card *card)
3322 {
3323 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3324
3325 mmc_blk_remove_debugfs(card, md);
3326 mmc_blk_remove_parts(card, md);
3327 pm_runtime_get_sync(&card->dev);
3328 if (md->part_curr != md->part_type) {
3329 mmc_claim_host(card->host);
3330 mmc_blk_part_switch(card, md->part_type);
3331 mmc_release_host(card->host);
3332 }
3333 if (!mmc_card_sd_combo(card))
3334 pm_runtime_disable(&card->dev);
3335 pm_runtime_put_noidle(&card->dev);
3336 mmc_blk_remove_req(md);
3337 destroy_workqueue(card->complete_wq);
3338 }
3339
_mmc_blk_suspend(struct mmc_card * card)3340 static int _mmc_blk_suspend(struct mmc_card *card)
3341 {
3342 struct mmc_blk_data *part_md;
3343 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3344
3345 if (md) {
3346 mmc_queue_suspend(&md->queue);
3347 list_for_each_entry(part_md, &md->part, part) {
3348 mmc_queue_suspend(&part_md->queue);
3349 }
3350 }
3351 return 0;
3352 }
3353
mmc_blk_shutdown(struct mmc_card * card)3354 static void mmc_blk_shutdown(struct mmc_card *card)
3355 {
3356 _mmc_blk_suspend(card);
3357 }
3358
3359 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3360 static int mmc_blk_suspend(struct device *dev)
3361 {
3362 struct mmc_card *card = mmc_dev_to_card(dev);
3363
3364 return _mmc_blk_suspend(card);
3365 }
3366
mmc_blk_resume(struct device * dev)3367 static int mmc_blk_resume(struct device *dev)
3368 {
3369 struct mmc_blk_data *part_md;
3370 struct mmc_blk_data *md = dev_get_drvdata(dev);
3371
3372 if (md) {
3373 /*
3374 * Resume involves the card going into idle state,
3375 * so current partition is always the main one.
3376 */
3377 md->part_curr = md->part_type;
3378 mmc_queue_resume(&md->queue);
3379 list_for_each_entry(part_md, &md->part, part) {
3380 mmc_queue_resume(&part_md->queue);
3381 }
3382 }
3383 return 0;
3384 }
3385 #endif
3386
3387 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3388
3389 static struct mmc_driver mmc_driver = {
3390 .drv = {
3391 .name = "mmcblk",
3392 .pm = &mmc_blk_pm_ops,
3393 },
3394 .probe = mmc_blk_probe,
3395 .remove = mmc_blk_remove,
3396 .shutdown = mmc_blk_shutdown,
3397 };
3398
mmc_blk_init(void)3399 static int __init mmc_blk_init(void)
3400 {
3401 int res;
3402
3403 res = bus_register(&mmc_rpmb_bus_type);
3404 if (res < 0) {
3405 pr_err("mmcblk: could not register RPMB bus type\n");
3406 return res;
3407 }
3408 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3409 if (res < 0) {
3410 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3411 goto out_bus_unreg;
3412 }
3413
3414 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3415 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3416
3417 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3418
3419 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3420 if (res)
3421 goto out_chrdev_unreg;
3422
3423 res = mmc_register_driver(&mmc_driver);
3424 if (res)
3425 goto out_blkdev_unreg;
3426
3427 return 0;
3428
3429 out_blkdev_unreg:
3430 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3431 out_chrdev_unreg:
3432 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3433 out_bus_unreg:
3434 bus_unregister(&mmc_rpmb_bus_type);
3435 return res;
3436 }
3437
mmc_blk_exit(void)3438 static void __exit mmc_blk_exit(void)
3439 {
3440 mmc_unregister_driver(&mmc_driver);
3441 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3442 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3443 bus_unregister(&mmc_rpmb_bus_type);
3444 }
3445
3446 module_init(mmc_blk_init);
3447 module_exit(mmc_blk_exit);
3448
3449 MODULE_LICENSE("GPL");
3450 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3451