xref: /linux/drivers/gpu/drm/i915/display/intel_cx0_phy.c (revision c6d732c3bd41375d176447b043274396268aa6ab)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2023 Intel Corporation
4  */
5 
6 #include <linux/log2.h>
7 #include <linux/math64.h>
8 
9 #include <drm/drm_print.h>
10 
11 #include "i915_utils.h"
12 #include "intel_alpm.h"
13 #include "intel_cx0_phy.h"
14 #include "intel_cx0_phy_regs.h"
15 #include "intel_ddi.h"
16 #include "intel_ddi_buf_trans.h"
17 #include "intel_de.h"
18 #include "intel_display_types.h"
19 #include "intel_dp.h"
20 #include "intel_hdmi.h"
21 #include "intel_panel.h"
22 #include "intel_psr.h"
23 #include "intel_snps_hdmi_pll.h"
24 #include "intel_tc.h"
25 
26 #define MB_WRITE_COMMITTED      true
27 #define MB_WRITE_UNCOMMITTED    false
28 
29 #define for_each_cx0_lane_in_mask(__lane_mask, __lane) \
30 	for ((__lane) = 0; (__lane) < 2; (__lane)++) \
31 		for_each_if((__lane_mask) & BIT(__lane))
32 
33 #define INTEL_CX0_LANE0		BIT(0)
34 #define INTEL_CX0_LANE1		BIT(1)
35 #define INTEL_CX0_BOTH_LANES	(INTEL_CX0_LANE1 | INTEL_CX0_LANE0)
36 
intel_encoder_is_c10phy(struct intel_encoder * encoder)37 bool intel_encoder_is_c10phy(struct intel_encoder *encoder)
38 {
39 	struct intel_display *display = to_intel_display(encoder);
40 	enum phy phy = intel_encoder_to_phy(encoder);
41 
42 	if (display->platform.pantherlake) {
43 		if (display->platform.pantherlake_wildcatlake)
44 			return phy <= PHY_B;
45 		else
46 			return phy == PHY_A;
47 	}
48 
49 	if ((display->platform.lunarlake || display->platform.meteorlake) && phy < PHY_C)
50 		return true;
51 
52 	return false;
53 }
54 
lane_mask_to_lane(u8 lane_mask)55 static int lane_mask_to_lane(u8 lane_mask)
56 {
57 	if (WARN_ON((lane_mask & ~INTEL_CX0_BOTH_LANES) ||
58 		    hweight8(lane_mask) != 1))
59 		return 0;
60 
61 	return ilog2(lane_mask);
62 }
63 
intel_cx0_get_owned_lane_mask(struct intel_encoder * encoder)64 static u8 intel_cx0_get_owned_lane_mask(struct intel_encoder *encoder)
65 {
66 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
67 
68 	if (!intel_tc_port_in_dp_alt_mode(dig_port))
69 		return INTEL_CX0_BOTH_LANES;
70 
71 	/*
72 	 * In DP-alt with pin assignment D, only PHY lane 0 is owned
73 	 * by display and lane 1 is owned by USB.
74 	 */
75 	return intel_tc_port_max_lane_count(dig_port) > 2
76 		? INTEL_CX0_BOTH_LANES : INTEL_CX0_LANE0;
77 }
78 
79 static void
assert_dc_off(struct intel_display * display)80 assert_dc_off(struct intel_display *display)
81 {
82 	bool enabled;
83 
84 	enabled = intel_display_power_is_enabled(display, POWER_DOMAIN_DC_OFF);
85 	drm_WARN_ON(display->drm, !enabled);
86 }
87 
intel_cx0_program_msgbus_timer(struct intel_encoder * encoder)88 static void intel_cx0_program_msgbus_timer(struct intel_encoder *encoder)
89 {
90 	struct intel_display *display = to_intel_display(encoder);
91 	int lane;
92 
93 	for_each_cx0_lane_in_mask(INTEL_CX0_BOTH_LANES, lane)
94 		intel_de_rmw(display,
95 			     XELPDP_PORT_MSGBUS_TIMER(display, encoder->port, lane),
96 			     XELPDP_PORT_MSGBUS_TIMER_VAL_MASK,
97 			     XELPDP_PORT_MSGBUS_TIMER_VAL);
98 }
99 
100 /*
101  * Prepare HW for CX0 phy transactions.
102  *
103  * It is required that PSR and DC5/6 are disabled before any CX0 message
104  * bus transaction is executed.
105  *
106  * We also do the msgbus timer programming here to ensure that the timer
107  * is already programmed before any access to the msgbus.
108  */
intel_cx0_phy_transaction_begin(struct intel_encoder * encoder)109 static intel_wakeref_t intel_cx0_phy_transaction_begin(struct intel_encoder *encoder)
110 {
111 	struct intel_display *display = to_intel_display(encoder);
112 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
113 	intel_wakeref_t wakeref;
114 
115 	intel_psr_pause(intel_dp);
116 	wakeref = intel_display_power_get(display, POWER_DOMAIN_DC_OFF);
117 	intel_cx0_program_msgbus_timer(encoder);
118 
119 	return wakeref;
120 }
121 
intel_cx0_phy_transaction_end(struct intel_encoder * encoder,intel_wakeref_t wakeref)122 static void intel_cx0_phy_transaction_end(struct intel_encoder *encoder, intel_wakeref_t wakeref)
123 {
124 	struct intel_display *display = to_intel_display(encoder);
125 	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
126 
127 	intel_psr_resume(intel_dp);
128 	intel_display_power_put(display, POWER_DOMAIN_DC_OFF, wakeref);
129 }
130 
intel_clear_response_ready_flag(struct intel_encoder * encoder,int lane)131 static void intel_clear_response_ready_flag(struct intel_encoder *encoder,
132 					    int lane)
133 {
134 	struct intel_display *display = to_intel_display(encoder);
135 
136 	intel_de_rmw(display,
137 		     XELPDP_PORT_P2M_MSGBUS_STATUS(display, encoder->port, lane),
138 		     0, XELPDP_PORT_P2M_RESPONSE_READY | XELPDP_PORT_P2M_ERROR_SET);
139 }
140 
intel_cx0_bus_reset(struct intel_encoder * encoder,int lane)141 static void intel_cx0_bus_reset(struct intel_encoder *encoder, int lane)
142 {
143 	struct intel_display *display = to_intel_display(encoder);
144 	enum port port = encoder->port;
145 	enum phy phy = intel_encoder_to_phy(encoder);
146 
147 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
148 		       XELPDP_PORT_M2P_TRANSACTION_RESET);
149 
150 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
151 				    XELPDP_PORT_M2P_TRANSACTION_RESET,
152 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
153 		drm_err_once(display->drm,
154 			     "Failed to bring PHY %c to idle.\n",
155 			     phy_name(phy));
156 		return;
157 	}
158 
159 	intel_clear_response_ready_flag(encoder, lane);
160 }
161 
intel_cx0_wait_for_ack(struct intel_encoder * encoder,int command,int lane,u32 * val)162 static int intel_cx0_wait_for_ack(struct intel_encoder *encoder,
163 				  int command, int lane, u32 *val)
164 {
165 	struct intel_display *display = to_intel_display(encoder);
166 	enum port port = encoder->port;
167 	enum phy phy = intel_encoder_to_phy(encoder);
168 
169 	if (intel_de_wait_custom(display,
170 				 XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane),
171 				 XELPDP_PORT_P2M_RESPONSE_READY,
172 				 XELPDP_PORT_P2M_RESPONSE_READY,
173 				 XELPDP_MSGBUS_TIMEOUT_FAST_US,
174 				 XELPDP_MSGBUS_TIMEOUT_SLOW, val)) {
175 		drm_dbg_kms(display->drm,
176 			    "PHY %c Timeout waiting for message ACK. Status: 0x%x\n",
177 			    phy_name(phy), *val);
178 
179 		if (!(intel_de_read(display, XELPDP_PORT_MSGBUS_TIMER(display, port, lane)) &
180 		      XELPDP_PORT_MSGBUS_TIMER_TIMED_OUT))
181 			drm_dbg_kms(display->drm,
182 				    "PHY %c Hardware did not detect a timeout\n",
183 				    phy_name(phy));
184 
185 		intel_cx0_bus_reset(encoder, lane);
186 		return -ETIMEDOUT;
187 	}
188 
189 	if (*val & XELPDP_PORT_P2M_ERROR_SET) {
190 		drm_dbg_kms(display->drm,
191 			    "PHY %c Error occurred during %s command. Status: 0x%x\n",
192 			    phy_name(phy),
193 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
194 		intel_cx0_bus_reset(encoder, lane);
195 		return -EINVAL;
196 	}
197 
198 	if (REG_FIELD_GET(XELPDP_PORT_P2M_COMMAND_TYPE_MASK, *val) != command) {
199 		drm_dbg_kms(display->drm,
200 			    "PHY %c Not a %s response. MSGBUS Status: 0x%x.\n",
201 			    phy_name(phy),
202 			    command == XELPDP_PORT_P2M_COMMAND_READ_ACK ? "read" : "write", *val);
203 		intel_cx0_bus_reset(encoder, lane);
204 		return -EINVAL;
205 	}
206 
207 	return 0;
208 }
209 
__intel_cx0_read_once(struct intel_encoder * encoder,int lane,u16 addr)210 static int __intel_cx0_read_once(struct intel_encoder *encoder,
211 				 int lane, u16 addr)
212 {
213 	struct intel_display *display = to_intel_display(encoder);
214 	enum port port = encoder->port;
215 	enum phy phy = intel_encoder_to_phy(encoder);
216 	int ack;
217 	u32 val;
218 
219 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
220 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
221 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
222 		drm_dbg_kms(display->drm,
223 			    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus and retry.\n", phy_name(phy));
224 		intel_cx0_bus_reset(encoder, lane);
225 		return -ETIMEDOUT;
226 	}
227 
228 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
229 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
230 		       XELPDP_PORT_M2P_COMMAND_READ |
231 		       XELPDP_PORT_M2P_ADDRESS(addr));
232 
233 	ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_READ_ACK, lane, &val);
234 	if (ack < 0)
235 		return ack;
236 
237 	intel_clear_response_ready_flag(encoder, lane);
238 
239 	/*
240 	 * FIXME: Workaround to let HW to settle
241 	 * down and let the message bus to end up
242 	 * in a known state
243 	 */
244 	if (DISPLAY_VER(display) < 30)
245 		intel_cx0_bus_reset(encoder, lane);
246 
247 	return REG_FIELD_GET(XELPDP_PORT_P2M_DATA_MASK, val);
248 }
249 
__intel_cx0_read(struct intel_encoder * encoder,int lane,u16 addr)250 static u8 __intel_cx0_read(struct intel_encoder *encoder,
251 			   int lane, u16 addr)
252 {
253 	struct intel_display *display = to_intel_display(encoder);
254 	enum phy phy = intel_encoder_to_phy(encoder);
255 	int i, status;
256 
257 	assert_dc_off(display);
258 
259 	/* 3 tries is assumed to be enough to read successfully */
260 	for (i = 0; i < 3; i++) {
261 		status = __intel_cx0_read_once(encoder, lane, addr);
262 
263 		if (status >= 0)
264 			return status;
265 	}
266 
267 	drm_err_once(display->drm,
268 		     "PHY %c Read %04x failed after %d retries.\n",
269 		     phy_name(phy), addr, i);
270 
271 	return 0;
272 }
273 
intel_cx0_read(struct intel_encoder * encoder,u8 lane_mask,u16 addr)274 static u8 intel_cx0_read(struct intel_encoder *encoder,
275 			 u8 lane_mask, u16 addr)
276 {
277 	int lane = lane_mask_to_lane(lane_mask);
278 
279 	return __intel_cx0_read(encoder, lane, addr);
280 }
281 
__intel_cx0_write_once(struct intel_encoder * encoder,int lane,u16 addr,u8 data,bool committed)282 static int __intel_cx0_write_once(struct intel_encoder *encoder,
283 				  int lane, u16 addr, u8 data, bool committed)
284 {
285 	struct intel_display *display = to_intel_display(encoder);
286 	enum port port = encoder->port;
287 	enum phy phy = intel_encoder_to_phy(encoder);
288 	int ack;
289 	u32 val;
290 
291 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
292 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
293 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
294 		drm_dbg_kms(display->drm,
295 			    "PHY %c Timeout waiting for previous transaction to complete. Resetting the bus.\n", phy_name(phy));
296 		intel_cx0_bus_reset(encoder, lane);
297 		return -ETIMEDOUT;
298 	}
299 
300 	intel_de_write(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
301 		       XELPDP_PORT_M2P_TRANSACTION_PENDING |
302 		       (committed ? XELPDP_PORT_M2P_COMMAND_WRITE_COMMITTED :
303 				    XELPDP_PORT_M2P_COMMAND_WRITE_UNCOMMITTED) |
304 		       XELPDP_PORT_M2P_DATA(data) |
305 		       XELPDP_PORT_M2P_ADDRESS(addr));
306 
307 	if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
308 				    XELPDP_PORT_M2P_TRANSACTION_PENDING,
309 				    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
310 		drm_dbg_kms(display->drm,
311 			    "PHY %c Timeout waiting for write to complete. Resetting the bus.\n", phy_name(phy));
312 		intel_cx0_bus_reset(encoder, lane);
313 		return -ETIMEDOUT;
314 	}
315 
316 	if (committed) {
317 		ack = intel_cx0_wait_for_ack(encoder, XELPDP_PORT_P2M_COMMAND_WRITE_ACK, lane, &val);
318 		if (ack < 0)
319 			return ack;
320 	} else if ((intel_de_read(display, XELPDP_PORT_P2M_MSGBUS_STATUS(display, port, lane)) &
321 		    XELPDP_PORT_P2M_ERROR_SET)) {
322 		drm_dbg_kms(display->drm,
323 			    "PHY %c Error occurred during write command.\n", phy_name(phy));
324 		intel_cx0_bus_reset(encoder, lane);
325 		return -EINVAL;
326 	}
327 
328 	intel_clear_response_ready_flag(encoder, lane);
329 
330 	/*
331 	 * FIXME: Workaround to let HW to settle
332 	 * down and let the message bus to end up
333 	 * in a known state
334 	 */
335 	if (DISPLAY_VER(display) < 30)
336 		intel_cx0_bus_reset(encoder, lane);
337 
338 	return 0;
339 }
340 
__intel_cx0_write(struct intel_encoder * encoder,int lane,u16 addr,u8 data,bool committed)341 static void __intel_cx0_write(struct intel_encoder *encoder,
342 			      int lane, u16 addr, u8 data, bool committed)
343 {
344 	struct intel_display *display = to_intel_display(encoder);
345 	enum phy phy = intel_encoder_to_phy(encoder);
346 	int i, status;
347 
348 	assert_dc_off(display);
349 
350 	/* 3 tries is assumed to be enough to write successfully */
351 	for (i = 0; i < 3; i++) {
352 		status = __intel_cx0_write_once(encoder, lane, addr, data, committed);
353 
354 		if (status == 0)
355 			return;
356 	}
357 
358 	drm_err_once(display->drm,
359 		     "PHY %c Write %04x failed after %d retries.\n", phy_name(phy), addr, i);
360 }
361 
intel_cx0_write(struct intel_encoder * encoder,u8 lane_mask,u16 addr,u8 data,bool committed)362 static void intel_cx0_write(struct intel_encoder *encoder,
363 			    u8 lane_mask, u16 addr, u8 data, bool committed)
364 {
365 	int lane;
366 
367 	for_each_cx0_lane_in_mask(lane_mask, lane)
368 		__intel_cx0_write(encoder, lane, addr, data, committed);
369 }
370 
intel_c20_sram_write(struct intel_encoder * encoder,int lane,u16 addr,u16 data)371 static void intel_c20_sram_write(struct intel_encoder *encoder,
372 				 int lane, u16 addr, u16 data)
373 {
374 	struct intel_display *display = to_intel_display(encoder);
375 
376 	assert_dc_off(display);
377 
378 	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_H, addr >> 8, 0);
379 	intel_cx0_write(encoder, lane, PHY_C20_WR_ADDRESS_L, addr & 0xff, 0);
380 
381 	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_H, data >> 8, 0);
382 	intel_cx0_write(encoder, lane, PHY_C20_WR_DATA_L, data & 0xff, 1);
383 }
384 
intel_c20_sram_read(struct intel_encoder * encoder,int lane,u16 addr)385 static u16 intel_c20_sram_read(struct intel_encoder *encoder,
386 			       int lane, u16 addr)
387 {
388 	struct intel_display *display = to_intel_display(encoder);
389 	u16 val;
390 
391 	assert_dc_off(display);
392 
393 	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_H, addr >> 8, 0);
394 	intel_cx0_write(encoder, lane, PHY_C20_RD_ADDRESS_L, addr & 0xff, 1);
395 
396 	val = intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_H);
397 	val <<= 8;
398 	val |= intel_cx0_read(encoder, lane, PHY_C20_RD_DATA_L);
399 
400 	return val;
401 }
402 
__intel_cx0_rmw(struct intel_encoder * encoder,int lane,u16 addr,u8 clear,u8 set,bool committed)403 static void __intel_cx0_rmw(struct intel_encoder *encoder,
404 			    int lane, u16 addr, u8 clear, u8 set, bool committed)
405 {
406 	u8 old, val;
407 
408 	old = __intel_cx0_read(encoder, lane, addr);
409 	val = (old & ~clear) | set;
410 
411 	if (val != old)
412 		__intel_cx0_write(encoder, lane, addr, val, committed);
413 }
414 
intel_cx0_rmw(struct intel_encoder * encoder,u8 lane_mask,u16 addr,u8 clear,u8 set,bool committed)415 static void intel_cx0_rmw(struct intel_encoder *encoder,
416 			  u8 lane_mask, u16 addr, u8 clear, u8 set, bool committed)
417 {
418 	u8 lane;
419 
420 	for_each_cx0_lane_in_mask(lane_mask, lane)
421 		__intel_cx0_rmw(encoder, lane, addr, clear, set, committed);
422 }
423 
intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state * crtc_state)424 static u8 intel_c10_get_tx_vboost_lvl(const struct intel_crtc_state *crtc_state)
425 {
426 	if (intel_crtc_has_dp_encoder(crtc_state)) {
427 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
428 		    (crtc_state->port_clock == 540000 ||
429 		     crtc_state->port_clock == 810000))
430 			return 5;
431 		else
432 			return 4;
433 	} else {
434 		return 5;
435 	}
436 }
437 
intel_c10_get_tx_term_ctl(const struct intel_crtc_state * crtc_state)438 static u8 intel_c10_get_tx_term_ctl(const struct intel_crtc_state *crtc_state)
439 {
440 	if (intel_crtc_has_dp_encoder(crtc_state)) {
441 		if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP) &&
442 		    (crtc_state->port_clock == 540000 ||
443 		     crtc_state->port_clock == 810000))
444 			return 5;
445 		else
446 			return 2;
447 	} else {
448 		return 6;
449 	}
450 }
451 
intel_cx0_phy_set_signal_levels(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)452 void intel_cx0_phy_set_signal_levels(struct intel_encoder *encoder,
453 				     const struct intel_crtc_state *crtc_state)
454 {
455 	struct intel_display *display = to_intel_display(encoder);
456 	const struct intel_ddi_buf_trans *trans;
457 	u8 owned_lane_mask;
458 	intel_wakeref_t wakeref;
459 	int n_entries, ln;
460 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
461 
462 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
463 		return;
464 
465 	owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
466 
467 	wakeref = intel_cx0_phy_transaction_begin(encoder);
468 
469 	trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
470 	if (drm_WARN_ON_ONCE(display->drm, !trans)) {
471 		intel_cx0_phy_transaction_end(encoder, wakeref);
472 		return;
473 	}
474 
475 	if (intel_encoder_is_c10phy(encoder)) {
476 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
477 			      0, C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
478 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CMN(3),
479 			      C10_CMN3_TXVBOOST_MASK,
480 			      C10_CMN3_TXVBOOST(intel_c10_get_tx_vboost_lvl(crtc_state)),
481 			      MB_WRITE_UNCOMMITTED);
482 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_TX(1),
483 			      C10_TX1_TERMCTL_MASK,
484 			      C10_TX1_TERMCTL(intel_c10_get_tx_term_ctl(crtc_state)),
485 			      MB_WRITE_COMMITTED);
486 	}
487 
488 	for (ln = 0; ln < crtc_state->lane_count; ln++) {
489 		int level = intel_ddi_level(encoder, crtc_state, ln);
490 		int lane = ln / 2;
491 		int tx = ln % 2;
492 		u8 lane_mask = lane == 0 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
493 
494 		if (!(lane_mask & owned_lane_mask))
495 			continue;
496 
497 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 0),
498 			      C10_PHY_OVRD_LEVEL_MASK,
499 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.pre_cursor),
500 			      MB_WRITE_COMMITTED);
501 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 1),
502 			      C10_PHY_OVRD_LEVEL_MASK,
503 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.vswing),
504 			      MB_WRITE_COMMITTED);
505 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_VDROVRD_CTL(lane, tx, 2),
506 			      C10_PHY_OVRD_LEVEL_MASK,
507 			      C10_PHY_OVRD_LEVEL(trans->entries[level].snps.post_cursor),
508 			      MB_WRITE_COMMITTED);
509 	}
510 
511 	/* Write Override enables in 0xD71 */
512 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_OVRD,
513 		      0, PHY_C10_VDR_OVRD_TX1 | PHY_C10_VDR_OVRD_TX2,
514 		      MB_WRITE_COMMITTED);
515 
516 	if (intel_encoder_is_c10phy(encoder))
517 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1),
518 			      0, C10_VDR_CTRL_UPDATE_CFG, MB_WRITE_COMMITTED);
519 
520 	intel_cx0_phy_transaction_end(encoder, wakeref);
521 }
522 
523 /*
524  * Basic DP link rates with 38.4 MHz reference clock.
525  * Note: The tables below are with SSC. In non-ssc
526  * registers 0xC04 to 0xC08(pll[4] to pll[8]) will be
527  * programmed 0.
528  */
529 
530 static const struct intel_c10pll_state mtl_c10_dp_rbr = {
531 	.clock = 162000,
532 	.tx = 0x10,
533 	.cmn = 0x21,
534 	.pll[0] = 0xB4,
535 	.pll[1] = 0,
536 	.pll[2] = 0x30,
537 	.pll[3] = 0x1,
538 	.pll[4] = 0x26,
539 	.pll[5] = 0x0C,
540 	.pll[6] = 0x98,
541 	.pll[7] = 0x46,
542 	.pll[8] = 0x1,
543 	.pll[9] = 0x1,
544 	.pll[10] = 0,
545 	.pll[11] = 0,
546 	.pll[12] = 0xC0,
547 	.pll[13] = 0,
548 	.pll[14] = 0,
549 	.pll[15] = 0x2,
550 	.pll[16] = 0x84,
551 	.pll[17] = 0x4F,
552 	.pll[18] = 0xE5,
553 	.pll[19] = 0x23,
554 };
555 
556 static const struct intel_c10pll_state mtl_c10_edp_r216 = {
557 	.clock = 216000,
558 	.tx = 0x10,
559 	.cmn = 0x21,
560 	.pll[0] = 0x4,
561 	.pll[1] = 0,
562 	.pll[2] = 0xA2,
563 	.pll[3] = 0x1,
564 	.pll[4] = 0x33,
565 	.pll[5] = 0x10,
566 	.pll[6] = 0x75,
567 	.pll[7] = 0xB3,
568 	.pll[8] = 0x1,
569 	.pll[9] = 0x1,
570 	.pll[10] = 0,
571 	.pll[11] = 0,
572 	.pll[12] = 0,
573 	.pll[13] = 0,
574 	.pll[14] = 0,
575 	.pll[15] = 0x2,
576 	.pll[16] = 0x85,
577 	.pll[17] = 0x0F,
578 	.pll[18] = 0xE6,
579 	.pll[19] = 0x23,
580 };
581 
582 static const struct intel_c10pll_state mtl_c10_edp_r243 = {
583 	.clock = 243000,
584 	.tx = 0x10,
585 	.cmn = 0x21,
586 	.pll[0] = 0x34,
587 	.pll[1] = 0,
588 	.pll[2] = 0xDA,
589 	.pll[3] = 0x1,
590 	.pll[4] = 0x39,
591 	.pll[5] = 0x12,
592 	.pll[6] = 0xE3,
593 	.pll[7] = 0xE9,
594 	.pll[8] = 0x1,
595 	.pll[9] = 0x1,
596 	.pll[10] = 0,
597 	.pll[11] = 0,
598 	.pll[12] = 0x20,
599 	.pll[13] = 0,
600 	.pll[14] = 0,
601 	.pll[15] = 0x2,
602 	.pll[16] = 0x85,
603 	.pll[17] = 0x8F,
604 	.pll[18] = 0xE6,
605 	.pll[19] = 0x23,
606 };
607 
608 static const struct intel_c10pll_state mtl_c10_dp_hbr1 = {
609 	.clock = 270000,
610 	.tx = 0x10,
611 	.cmn = 0x21,
612 	.pll[0] = 0xF4,
613 	.pll[1] = 0,
614 	.pll[2] = 0xF8,
615 	.pll[3] = 0x0,
616 	.pll[4] = 0x20,
617 	.pll[5] = 0x0A,
618 	.pll[6] = 0x29,
619 	.pll[7] = 0x10,
620 	.pll[8] = 0x1,   /* Verify */
621 	.pll[9] = 0x1,
622 	.pll[10] = 0,
623 	.pll[11] = 0,
624 	.pll[12] = 0xA0,
625 	.pll[13] = 0,
626 	.pll[14] = 0,
627 	.pll[15] = 0x1,
628 	.pll[16] = 0x84,
629 	.pll[17] = 0x4F,
630 	.pll[18] = 0xE5,
631 	.pll[19] = 0x23,
632 };
633 
634 static const struct intel_c10pll_state mtl_c10_edp_r324 = {
635 	.clock = 324000,
636 	.tx = 0x10,
637 	.cmn = 0x21,
638 	.pll[0] = 0xB4,
639 	.pll[1] = 0,
640 	.pll[2] = 0x30,
641 	.pll[3] = 0x1,
642 	.pll[4] = 0x26,
643 	.pll[5] = 0x0C,
644 	.pll[6] = 0x98,
645 	.pll[7] = 0x46,
646 	.pll[8] = 0x1,
647 	.pll[9] = 0x1,
648 	.pll[10] = 0,
649 	.pll[11] = 0,
650 	.pll[12] = 0xC0,
651 	.pll[13] = 0,
652 	.pll[14] = 0,
653 	.pll[15] = 0x1,
654 	.pll[16] = 0x85,
655 	.pll[17] = 0x4F,
656 	.pll[18] = 0xE6,
657 	.pll[19] = 0x23,
658 };
659 
660 static const struct intel_c10pll_state mtl_c10_edp_r432 = {
661 	.clock = 432000,
662 	.tx = 0x10,
663 	.cmn = 0x21,
664 	.pll[0] = 0x4,
665 	.pll[1] = 0,
666 	.pll[2] = 0xA2,
667 	.pll[3] = 0x1,
668 	.pll[4] = 0x33,
669 	.pll[5] = 0x10,
670 	.pll[6] = 0x75,
671 	.pll[7] = 0xB3,
672 	.pll[8] = 0x1,
673 	.pll[9] = 0x1,
674 	.pll[10] = 0,
675 	.pll[11] = 0,
676 	.pll[12] = 0,
677 	.pll[13] = 0,
678 	.pll[14] = 0,
679 	.pll[15] = 0x1,
680 	.pll[16] = 0x85,
681 	.pll[17] = 0x0F,
682 	.pll[18] = 0xE6,
683 	.pll[19] = 0x23,
684 };
685 
686 static const struct intel_c10pll_state mtl_c10_dp_hbr2 = {
687 	.clock = 540000,
688 	.tx = 0x10,
689 	.cmn = 0x21,
690 	.pll[0] = 0xF4,
691 	.pll[1] = 0,
692 	.pll[2] = 0xF8,
693 	.pll[3] = 0,
694 	.pll[4] = 0x20,
695 	.pll[5] = 0x0A,
696 	.pll[6] = 0x29,
697 	.pll[7] = 0x10,
698 	.pll[8] = 0x1,
699 	.pll[9] = 0x1,
700 	.pll[10] = 0,
701 	.pll[11] = 0,
702 	.pll[12] = 0xA0,
703 	.pll[13] = 0,
704 	.pll[14] = 0,
705 	.pll[15] = 0,
706 	.pll[16] = 0x84,
707 	.pll[17] = 0x4F,
708 	.pll[18] = 0xE5,
709 	.pll[19] = 0x23,
710 };
711 
712 static const struct intel_c10pll_state mtl_c10_edp_r675 = {
713 	.clock = 675000,
714 	.tx = 0x10,
715 	.cmn = 0x21,
716 	.pll[0] = 0xB4,
717 	.pll[1] = 0,
718 	.pll[2] = 0x3E,
719 	.pll[3] = 0x1,
720 	.pll[4] = 0xA8,
721 	.pll[5] = 0x0C,
722 	.pll[6] = 0x33,
723 	.pll[7] = 0x54,
724 	.pll[8] = 0x1,
725 	.pll[9] = 0x1,
726 	.pll[10] = 0,
727 	.pll[11] = 0,
728 	.pll[12] = 0xC8,
729 	.pll[13] = 0,
730 	.pll[14] = 0,
731 	.pll[15] = 0,
732 	.pll[16] = 0x85,
733 	.pll[17] = 0x8F,
734 	.pll[18] = 0xE6,
735 	.pll[19] = 0x23,
736 };
737 
738 static const struct intel_c10pll_state mtl_c10_dp_hbr3 = {
739 	.clock = 810000,
740 	.tx = 0x10,
741 	.cmn = 0x21,
742 	.pll[0] = 0x34,
743 	.pll[1] = 0,
744 	.pll[2] = 0x84,
745 	.pll[3] = 0x1,
746 	.pll[4] = 0x30,
747 	.pll[5] = 0x0F,
748 	.pll[6] = 0x3D,
749 	.pll[7] = 0x98,
750 	.pll[8] = 0x1,
751 	.pll[9] = 0x1,
752 	.pll[10] = 0,
753 	.pll[11] = 0,
754 	.pll[12] = 0xF0,
755 	.pll[13] = 0,
756 	.pll[14] = 0,
757 	.pll[15] = 0,
758 	.pll[16] = 0x84,
759 	.pll[17] = 0x0F,
760 	.pll[18] = 0xE5,
761 	.pll[19] = 0x23,
762 };
763 
764 static const struct intel_c10pll_state * const mtl_c10_dp_tables[] = {
765 	&mtl_c10_dp_rbr,
766 	&mtl_c10_dp_hbr1,
767 	&mtl_c10_dp_hbr2,
768 	&mtl_c10_dp_hbr3,
769 	NULL,
770 };
771 
772 static const struct intel_c10pll_state * const mtl_c10_edp_tables[] = {
773 	&mtl_c10_dp_rbr,
774 	&mtl_c10_edp_r216,
775 	&mtl_c10_edp_r243,
776 	&mtl_c10_dp_hbr1,
777 	&mtl_c10_edp_r324,
778 	&mtl_c10_edp_r432,
779 	&mtl_c10_dp_hbr2,
780 	&mtl_c10_edp_r675,
781 	&mtl_c10_dp_hbr3,
782 	NULL,
783 };
784 
785 /* C20 basic DP 1.4 tables */
786 static const struct intel_c20pll_state mtl_c20_dp_rbr = {
787 	.clock = 162000,
788 	.tx = {	0xbe88, /* tx cfg0 */
789 		0x5800, /* tx cfg1 */
790 		0x0000, /* tx cfg2 */
791 		},
792 	.cmn = {0x0500, /* cmn cfg0*/
793 		0x0005, /* cmn cfg1 */
794 		0x0000, /* cmn cfg2 */
795 		0x0000, /* cmn cfg3 */
796 		},
797 	.mpllb = { 0x50a8,	/* mpllb cfg0 */
798 		0x2120,		/* mpllb cfg1 */
799 		0xcd9a,		/* mpllb cfg2 */
800 		0xbfc1,		/* mpllb cfg3 */
801 		0x5ab8,         /* mpllb cfg4 */
802 		0x4c34,         /* mpllb cfg5 */
803 		0x2000,		/* mpllb cfg6 */
804 		0x0001,		/* mpllb cfg7 */
805 		0x6000,		/* mpllb cfg8 */
806 		0x0000,		/* mpllb cfg9 */
807 		0x0000,		/* mpllb cfg10 */
808 		},
809 };
810 
811 static const struct intel_c20pll_state mtl_c20_dp_hbr1 = {
812 	.clock = 270000,
813 	.tx = {	0xbe88, /* tx cfg0 */
814 		0x4800, /* tx cfg1 */
815 		0x0000, /* tx cfg2 */
816 		},
817 	.cmn = {0x0500, /* cmn cfg0*/
818 		0x0005, /* cmn cfg1 */
819 		0x0000, /* cmn cfg2 */
820 		0x0000, /* cmn cfg3 */
821 		},
822 	.mpllb = { 0x308c,	/* mpllb cfg0 */
823 		0x2110,		/* mpllb cfg1 */
824 		0xcc9c,		/* mpllb cfg2 */
825 		0xbfc1,		/* mpllb cfg3 */
826 		0x4b9a,         /* mpllb cfg4 */
827 		0x3f81,         /* mpllb cfg5 */
828 		0x2000,		/* mpllb cfg6 */
829 		0x0001,		/* mpllb cfg7 */
830 		0x5000,		/* mpllb cfg8 */
831 		0x0000,		/* mpllb cfg9 */
832 		0x0000,		/* mpllb cfg10 */
833 		},
834 };
835 
836 static const struct intel_c20pll_state mtl_c20_dp_hbr2 = {
837 	.clock = 540000,
838 	.tx = {	0xbe88, /* tx cfg0 */
839 		0x4800, /* tx cfg1 */
840 		0x0000, /* tx cfg2 */
841 		},
842 	.cmn = {0x0500, /* cmn cfg0*/
843 		0x0005, /* cmn cfg1 */
844 		0x0000, /* cmn cfg2 */
845 		0x0000, /* cmn cfg3 */
846 		},
847 	.mpllb = { 0x108c,	/* mpllb cfg0 */
848 		0x2108,		/* mpllb cfg1 */
849 		0xcc9c,		/* mpllb cfg2 */
850 		0xbfc1,		/* mpllb cfg3 */
851 		0x4b9a,         /* mpllb cfg4 */
852 		0x3f81,         /* mpllb cfg5 */
853 		0x2000,		/* mpllb cfg6 */
854 		0x0001,		/* mpllb cfg7 */
855 		0x5000,		/* mpllb cfg8 */
856 		0x0000,		/* mpllb cfg9 */
857 		0x0000,		/* mpllb cfg10 */
858 		},
859 };
860 
861 static const struct intel_c20pll_state mtl_c20_dp_hbr3 = {
862 	.clock = 810000,
863 	.tx = {	0xbe88, /* tx cfg0 */
864 		0x4800, /* tx cfg1 */
865 		0x0000, /* tx cfg2 */
866 		},
867 	.cmn = {0x0500, /* cmn cfg0*/
868 		0x0005, /* cmn cfg1 */
869 		0x0000, /* cmn cfg2 */
870 		0x0000, /* cmn cfg3 */
871 		},
872 	.mpllb = { 0x10d2,	/* mpllb cfg0 */
873 		0x2108,		/* mpllb cfg1 */
874 		0x8d98,		/* mpllb cfg2 */
875 		0xbfc1,		/* mpllb cfg3 */
876 		0x7166,         /* mpllb cfg4 */
877 		0x5f42,         /* mpllb cfg5 */
878 		0x2000,		/* mpllb cfg6 */
879 		0x0001,		/* mpllb cfg7 */
880 		0x7800,		/* mpllb cfg8 */
881 		0x0000,		/* mpllb cfg9 */
882 		0x0000,		/* mpllb cfg10 */
883 		},
884 };
885 
886 /* C20 basic DP 2.0 tables */
887 static const struct intel_c20pll_state mtl_c20_dp_uhbr10 = {
888 	.clock = 1000000, /* 10 Gbps */
889 	.tx = {	0xbe21, /* tx cfg0 */
890 		0xe800, /* tx cfg1 */
891 		0x0000, /* tx cfg2 */
892 		},
893 	.cmn = {0x0700, /* cmn cfg0*/
894 		0x0005, /* cmn cfg1 */
895 		0x0000, /* cmn cfg2 */
896 		0x0000, /* cmn cfg3 */
897 		},
898 	.mplla = { 0x3104,	/* mplla cfg0 */
899 		0xd105,		/* mplla cfg1 */
900 		0xc025,		/* mplla cfg2 */
901 		0xc025,		/* mplla cfg3 */
902 		0x8c00,		/* mplla cfg4 */
903 		0x759a,		/* mplla cfg5 */
904 		0x4000,		/* mplla cfg6 */
905 		0x0003,		/* mplla cfg7 */
906 		0x3555,		/* mplla cfg8 */
907 		0x0001,		/* mplla cfg9 */
908 		},
909 };
910 
911 static const struct intel_c20pll_state mtl_c20_dp_uhbr13_5 = {
912 	.clock = 1350000, /* 13.5 Gbps */
913 	.tx = {	0xbea0, /* tx cfg0 */
914 		0x4800, /* tx cfg1 */
915 		0x0000, /* tx cfg2 */
916 		},
917 	.cmn = {0x0500, /* cmn cfg0*/
918 		0x0005, /* cmn cfg1 */
919 		0x0000, /* cmn cfg2 */
920 		0x0000, /* cmn cfg3 */
921 		},
922 	.mpllb = { 0x015f,	/* mpllb cfg0 */
923 		0x2205,		/* mpllb cfg1 */
924 		0x1b17,		/* mpllb cfg2 */
925 		0xffc1,		/* mpllb cfg3 */
926 		0xe100,		/* mpllb cfg4 */
927 		0xbd00,		/* mpllb cfg5 */
928 		0x2000,		/* mpllb cfg6 */
929 		0x0001,		/* mpllb cfg7 */
930 		0x4800,		/* mpllb cfg8 */
931 		0x0000,		/* mpllb cfg9 */
932 		0x0000,		/* mpllb cfg10 */
933 		},
934 };
935 
936 static const struct intel_c20pll_state mtl_c20_dp_uhbr20 = {
937 	.clock = 2000000, /* 20 Gbps */
938 	.tx = {	0xbe20, /* tx cfg0 */
939 		0x4800, /* tx cfg1 */
940 		0x0000, /* tx cfg2 */
941 		},
942 	.cmn = {0x0500, /* cmn cfg0*/
943 		0x0005, /* cmn cfg1 */
944 		0x0000, /* cmn cfg2 */
945 		0x0000, /* cmn cfg3 */
946 		},
947 	.mplla = { 0x3104,	/* mplla cfg0 */
948 		0xd105,		/* mplla cfg1 */
949 		0x9217,		/* mplla cfg2 */
950 		0x9217,		/* mplla cfg3 */
951 		0x8c00,		/* mplla cfg4 */
952 		0x759a,		/* mplla cfg5 */
953 		0x4000,		/* mplla cfg6 */
954 		0x0003,		/* mplla cfg7 */
955 		0x3555,		/* mplla cfg8 */
956 		0x0001,		/* mplla cfg9 */
957 		},
958 };
959 
960 static const struct intel_c20pll_state * const mtl_c20_dp_tables[] = {
961 	&mtl_c20_dp_rbr,
962 	&mtl_c20_dp_hbr1,
963 	&mtl_c20_dp_hbr2,
964 	&mtl_c20_dp_hbr3,
965 	&mtl_c20_dp_uhbr10,
966 	&mtl_c20_dp_uhbr13_5,
967 	&mtl_c20_dp_uhbr20,
968 	NULL,
969 };
970 
971 /*
972  * eDP link rates with 38.4 MHz reference clock.
973  */
974 
975 static const struct intel_c20pll_state xe2hpd_c20_edp_r216 = {
976 	.clock = 216000,
977 	.tx = { 0xbe88,
978 		0x4800,
979 		0x0000,
980 		},
981 	.cmn = { 0x0500,
982 		 0x0005,
983 		 0x0000,
984 		 0x0000,
985 		},
986 	.mpllb = { 0x50e1,
987 		   0x2120,
988 		   0x8e18,
989 		   0xbfc1,
990 		   0x9000,
991 		   0x78f6,
992 		   0x0000,
993 		   0x0000,
994 		   0x0000,
995 		   0x0000,
996 		   0x0000,
997 		  },
998 };
999 
1000 static const struct intel_c20pll_state xe2hpd_c20_edp_r243 = {
1001 	.clock = 243000,
1002 	.tx = { 0xbe88,
1003 		0x4800,
1004 		0x0000,
1005 		},
1006 	.cmn = { 0x0500,
1007 		 0x0005,
1008 		 0x0000,
1009 		 0x0000,
1010 		},
1011 	.mpllb = { 0x50fd,
1012 		   0x2120,
1013 		   0x8f18,
1014 		   0xbfc1,
1015 		   0xa200,
1016 		   0x8814,
1017 		   0x2000,
1018 		   0x0001,
1019 		   0x1000,
1020 		   0x0000,
1021 		   0x0000,
1022 		  },
1023 };
1024 
1025 static const struct intel_c20pll_state xe2hpd_c20_edp_r324 = {
1026 	.clock = 324000,
1027 	.tx = { 0xbe88,
1028 		0x4800,
1029 		0x0000,
1030 		},
1031 	.cmn = { 0x0500,
1032 		 0x0005,
1033 		 0x0000,
1034 		 0x0000,
1035 		},
1036 	.mpllb = { 0x30a8,
1037 		   0x2110,
1038 		   0xcd9a,
1039 		   0xbfc1,
1040 		   0x6c00,
1041 		   0x5ab8,
1042 		   0x2000,
1043 		   0x0001,
1044 		   0x6000,
1045 		   0x0000,
1046 		   0x0000,
1047 		  },
1048 };
1049 
1050 static const struct intel_c20pll_state xe2hpd_c20_edp_r432 = {
1051 	.clock = 432000,
1052 	.tx = { 0xbe88,
1053 		0x4800,
1054 		0x0000,
1055 		},
1056 	.cmn = { 0x0500,
1057 		 0x0005,
1058 		 0x0000,
1059 		 0x0000,
1060 		},
1061 	.mpllb = { 0x30e1,
1062 		   0x2110,
1063 		   0x8e18,
1064 		   0xbfc1,
1065 		   0x9000,
1066 		   0x78f6,
1067 		   0x0000,
1068 		   0x0000,
1069 		   0x0000,
1070 		   0x0000,
1071 		   0x0000,
1072 		  },
1073 };
1074 
1075 static const struct intel_c20pll_state xe2hpd_c20_edp_r675 = {
1076 	.clock = 675000,
1077 	.tx = { 0xbe88,
1078 		0x4800,
1079 		0x0000,
1080 		},
1081 	.cmn = { 0x0500,
1082 		 0x0005,
1083 		 0x0000,
1084 		 0x0000,
1085 		},
1086 	.mpllb = { 0x10af,
1087 		   0x2108,
1088 		   0xce1a,
1089 		   0xbfc1,
1090 		   0x7080,
1091 		   0x5e80,
1092 		   0x2000,
1093 		   0x0001,
1094 		   0x6400,
1095 		   0x0000,
1096 		   0x0000,
1097 		  },
1098 };
1099 
1100 static const struct intel_c20pll_state * const xe2hpd_c20_edp_tables[] = {
1101 	&mtl_c20_dp_rbr,
1102 	&xe2hpd_c20_edp_r216,
1103 	&xe2hpd_c20_edp_r243,
1104 	&mtl_c20_dp_hbr1,
1105 	&xe2hpd_c20_edp_r324,
1106 	&xe2hpd_c20_edp_r432,
1107 	&mtl_c20_dp_hbr2,
1108 	&xe2hpd_c20_edp_r675,
1109 	&mtl_c20_dp_hbr3,
1110 	NULL,
1111 };
1112 
1113 static const struct intel_c20pll_state xe2hpd_c20_dp_uhbr13_5 = {
1114 	.clock = 1350000, /* 13.5 Gbps */
1115 	.tx = {	0xbea0, /* tx cfg0 */
1116 		0x4800, /* tx cfg1 */
1117 		0x0000, /* tx cfg2 */
1118 		},
1119 	.cmn = {0x0500, /* cmn cfg0*/
1120 		0x0005, /* cmn cfg1 */
1121 		0x0000, /* cmn cfg2 */
1122 		0x0000, /* cmn cfg3 */
1123 		},
1124 	.mpllb = { 0x015f,	/* mpllb cfg0 */
1125 		0x2205,		/* mpllb cfg1 */
1126 		0x1b17,		/* mpllb cfg2 */
1127 		0xffc1,		/* mpllb cfg3 */
1128 		0xbd00,		/* mpllb cfg4 */
1129 		0x9ec3,		/* mpllb cfg5 */
1130 		0x2000,		/* mpllb cfg6 */
1131 		0x0001,		/* mpllb cfg7 */
1132 		0x4800,		/* mpllb cfg8 */
1133 		0x0000,		/* mpllb cfg9 */
1134 		0x0000,		/* mpllb cfg10 */
1135 		},
1136 };
1137 
1138 static const struct intel_c20pll_state * const xe2hpd_c20_dp_tables[] = {
1139 	&mtl_c20_dp_rbr,
1140 	&mtl_c20_dp_hbr1,
1141 	&mtl_c20_dp_hbr2,
1142 	&mtl_c20_dp_hbr3,
1143 	&mtl_c20_dp_uhbr10,
1144 	&xe2hpd_c20_dp_uhbr13_5,
1145 	NULL,
1146 };
1147 
1148 static const struct intel_c20pll_state * const xe3lpd_c20_dp_edp_tables[] = {
1149 	&mtl_c20_dp_rbr,
1150 	&xe2hpd_c20_edp_r216,
1151 	&xe2hpd_c20_edp_r243,
1152 	&mtl_c20_dp_hbr1,
1153 	&xe2hpd_c20_edp_r324,
1154 	&xe2hpd_c20_edp_r432,
1155 	&mtl_c20_dp_hbr2,
1156 	&xe2hpd_c20_edp_r675,
1157 	&mtl_c20_dp_hbr3,
1158 	&mtl_c20_dp_uhbr10,
1159 	&xe2hpd_c20_dp_uhbr13_5,
1160 	&mtl_c20_dp_uhbr20,
1161 	NULL,
1162 };
1163 
1164 /*
1165  * HDMI link rates with 38.4 MHz reference clock.
1166  */
1167 
1168 static const struct intel_c10pll_state mtl_c10_hdmi_25_2 = {
1169 	.clock = 25200,
1170 	.tx = 0x10,
1171 	.cmn = 0x1,
1172 	.pll[0] = 0x4,
1173 	.pll[1] = 0,
1174 	.pll[2] = 0xB2,
1175 	.pll[3] = 0,
1176 	.pll[4] = 0,
1177 	.pll[5] = 0,
1178 	.pll[6] = 0,
1179 	.pll[7] = 0,
1180 	.pll[8] = 0x20,
1181 	.pll[9] = 0x1,
1182 	.pll[10] = 0,
1183 	.pll[11] = 0,
1184 	.pll[12] = 0,
1185 	.pll[13] = 0,
1186 	.pll[14] = 0,
1187 	.pll[15] = 0xD,
1188 	.pll[16] = 0x6,
1189 	.pll[17] = 0x8F,
1190 	.pll[18] = 0x84,
1191 	.pll[19] = 0x23,
1192 };
1193 
1194 static const struct intel_c10pll_state mtl_c10_hdmi_27_0 = {
1195 	.clock = 27000,
1196 	.tx = 0x10,
1197 	.cmn = 0x1,
1198 	.pll[0] = 0x34,
1199 	.pll[1] = 0,
1200 	.pll[2] = 0xC0,
1201 	.pll[3] = 0,
1202 	.pll[4] = 0,
1203 	.pll[5] = 0,
1204 	.pll[6] = 0,
1205 	.pll[7] = 0,
1206 	.pll[8] = 0x20,
1207 	.pll[9] = 0x1,
1208 	.pll[10] = 0,
1209 	.pll[11] = 0,
1210 	.pll[12] = 0x80,
1211 	.pll[13] = 0,
1212 	.pll[14] = 0,
1213 	.pll[15] = 0xD,
1214 	.pll[16] = 0x6,
1215 	.pll[17] = 0xCF,
1216 	.pll[18] = 0x84,
1217 	.pll[19] = 0x23,
1218 };
1219 
1220 static const struct intel_c10pll_state mtl_c10_hdmi_74_25 = {
1221 	.clock = 74250,
1222 	.tx = 0x10,
1223 	.cmn = 0x1,
1224 	.pll[0] = 0xF4,
1225 	.pll[1] = 0,
1226 	.pll[2] = 0x7A,
1227 	.pll[3] = 0,
1228 	.pll[4] = 0,
1229 	.pll[5] = 0,
1230 	.pll[6] = 0,
1231 	.pll[7] = 0,
1232 	.pll[8] = 0x20,
1233 	.pll[9] = 0x1,
1234 	.pll[10] = 0,
1235 	.pll[11] = 0,
1236 	.pll[12] = 0x58,
1237 	.pll[13] = 0,
1238 	.pll[14] = 0,
1239 	.pll[15] = 0xB,
1240 	.pll[16] = 0x6,
1241 	.pll[17] = 0xF,
1242 	.pll[18] = 0x85,
1243 	.pll[19] = 0x23,
1244 };
1245 
1246 static const struct intel_c10pll_state mtl_c10_hdmi_148_5 = {
1247 	.clock = 148500,
1248 	.tx = 0x10,
1249 	.cmn = 0x1,
1250 	.pll[0] = 0xF4,
1251 	.pll[1] = 0,
1252 	.pll[2] = 0x7A,
1253 	.pll[3] = 0,
1254 	.pll[4] = 0,
1255 	.pll[5] = 0,
1256 	.pll[6] = 0,
1257 	.pll[7] = 0,
1258 	.pll[8] = 0x20,
1259 	.pll[9] = 0x1,
1260 	.pll[10] = 0,
1261 	.pll[11] = 0,
1262 	.pll[12] = 0x58,
1263 	.pll[13] = 0,
1264 	.pll[14] = 0,
1265 	.pll[15] = 0xA,
1266 	.pll[16] = 0x6,
1267 	.pll[17] = 0xF,
1268 	.pll[18] = 0x85,
1269 	.pll[19] = 0x23,
1270 };
1271 
1272 static const struct intel_c10pll_state mtl_c10_hdmi_594 = {
1273 	.clock = 594000,
1274 	.tx = 0x10,
1275 	.cmn = 0x1,
1276 	.pll[0] = 0xF4,
1277 	.pll[1] = 0,
1278 	.pll[2] = 0x7A,
1279 	.pll[3] = 0,
1280 	.pll[4] = 0,
1281 	.pll[5] = 0,
1282 	.pll[6] = 0,
1283 	.pll[7] = 0,
1284 	.pll[8] = 0x20,
1285 	.pll[9] = 0x1,
1286 	.pll[10] = 0,
1287 	.pll[11] = 0,
1288 	.pll[12] = 0x58,
1289 	.pll[13] = 0,
1290 	.pll[14] = 0,
1291 	.pll[15] = 0x8,
1292 	.pll[16] = 0x6,
1293 	.pll[17] = 0xF,
1294 	.pll[18] = 0x85,
1295 	.pll[19] = 0x23,
1296 };
1297 
1298 /* Precomputed C10 HDMI PLL tables */
1299 static const struct intel_c10pll_state mtl_c10_hdmi_27027 = {
1300 	.clock = 27027,
1301 	.tx = 0x10,
1302 	.cmn = 0x1,
1303 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1304 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1305 	.pll[10] = 0xFF, .pll[11] = 0xCC, .pll[12] = 0x9C, .pll[13] = 0xCB, .pll[14] = 0xCC,
1306 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1307 };
1308 
1309 static const struct intel_c10pll_state mtl_c10_hdmi_28320 = {
1310 	.clock = 28320,
1311 	.tx = 0x10,
1312 	.cmn = 0x1,
1313 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xCC, .pll[3] = 0x00, .pll[4] = 0x00,
1314 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1315 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1316 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1317 };
1318 
1319 static const struct intel_c10pll_state mtl_c10_hdmi_30240 = {
1320 	.clock = 30240,
1321 	.tx = 0x10,
1322 	.cmn = 0x1,
1323 	.pll[0] = 0x04, .pll[1] = 0x00, .pll[2] = 0xDC, .pll[3] = 0x00, .pll[4] = 0x00,
1324 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1325 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1326 	.pll[15] = 0x0D, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1327 };
1328 
1329 static const struct intel_c10pll_state mtl_c10_hdmi_31500 = {
1330 	.clock = 31500,
1331 	.tx = 0x10,
1332 	.cmn = 0x1,
1333 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x62, .pll[3] = 0x00, .pll[4] = 0x00,
1334 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1335 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xA0, .pll[13] = 0x00, .pll[14] = 0x00,
1336 	.pll[15] = 0x0C, .pll[16] = 0x09, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1337 };
1338 
1339 static const struct intel_c10pll_state mtl_c10_hdmi_36000 = {
1340 	.clock = 36000,
1341 	.tx = 0x10,
1342 	.cmn = 0x1,
1343 	.pll[0] = 0xC4, .pll[1] = 0x00, .pll[2] = 0x76, .pll[3] = 0x00, .pll[4] = 0x00,
1344 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1345 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x00, .pll[13] = 0x00, .pll[14] = 0x00,
1346 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1347 };
1348 
1349 static const struct intel_c10pll_state mtl_c10_hdmi_40000 = {
1350 	.clock = 40000,
1351 	.tx = 0x10,
1352 	.cmn = 0x1,
1353 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1354 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1355 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x55, .pll[13] = 0x55, .pll[14] = 0x55,
1356 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1357 };
1358 
1359 static const struct intel_c10pll_state mtl_c10_hdmi_49500 = {
1360 	.clock = 49500,
1361 	.tx = 0x10,
1362 	.cmn = 0x1,
1363 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1364 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1365 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1366 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1367 };
1368 
1369 static const struct intel_c10pll_state mtl_c10_hdmi_50000 = {
1370 	.clock = 50000,
1371 	.tx = 0x10,
1372 	.cmn = 0x1,
1373 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xB0, .pll[3] = 0x00, .pll[4] = 0x00,
1374 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1375 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x2A, .pll[13] = 0xA9, .pll[14] = 0xAA,
1376 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1377 };
1378 
1379 static const struct intel_c10pll_state mtl_c10_hdmi_57284 = {
1380 	.clock = 57284,
1381 	.tx = 0x10,
1382 	.cmn = 0x1,
1383 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xCE, .pll[3] = 0x00, .pll[4] = 0x00,
1384 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1385 	.pll[10] = 0xFF, .pll[11] = 0x77, .pll[12] = 0x57, .pll[13] = 0x77, .pll[14] = 0x77,
1386 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1387 };
1388 
1389 static const struct intel_c10pll_state mtl_c10_hdmi_58000 = {
1390 	.clock = 58000,
1391 	.tx = 0x10,
1392 	.cmn = 0x1,
1393 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1394 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1395 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xD5, .pll[13] = 0x55, .pll[14] = 0x55,
1396 	.pll[15] = 0x0C, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1397 };
1398 
1399 static const struct intel_c10pll_state mtl_c10_hdmi_65000 = {
1400 	.clock = 65000,
1401 	.tx = 0x10,
1402 	.cmn = 0x1,
1403 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x66, .pll[3] = 0x00, .pll[4] = 0x00,
1404 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1405 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xB5, .pll[13] = 0x55, .pll[14] = 0x55,
1406 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1407 };
1408 
1409 static const struct intel_c10pll_state mtl_c10_hdmi_71000 = {
1410 	.clock = 71000,
1411 	.tx = 0x10,
1412 	.cmn = 0x1,
1413 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x72, .pll[3] = 0x00, .pll[4] = 0x00,
1414 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1415 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1416 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1417 };
1418 
1419 static const struct intel_c10pll_state mtl_c10_hdmi_74176 = {
1420 	.clock = 74176,
1421 	.tx = 0x10,
1422 	.cmn = 0x1,
1423 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1424 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1425 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1426 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1427 };
1428 
1429 static const struct intel_c10pll_state mtl_c10_hdmi_75000 = {
1430 	.clock = 75000,
1431 	.tx = 0x10,
1432 	.cmn = 0x1,
1433 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7C, .pll[3] = 0x00, .pll[4] = 0x00,
1434 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1435 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1436 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1437 };
1438 
1439 static const struct intel_c10pll_state mtl_c10_hdmi_78750 = {
1440 	.clock = 78750,
1441 	.tx = 0x10,
1442 	.cmn = 0x1,
1443 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x84, .pll[3] = 0x00, .pll[4] = 0x00,
1444 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1445 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x08, .pll[13] = 0x00, .pll[14] = 0x00,
1446 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1447 };
1448 
1449 static const struct intel_c10pll_state mtl_c10_hdmi_85500 = {
1450 	.clock = 85500,
1451 	.tx = 0x10,
1452 	.cmn = 0x1,
1453 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x92, .pll[3] = 0x00, .pll[4] = 0x00,
1454 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1455 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x10, .pll[13] = 0x00, .pll[14] = 0x00,
1456 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1457 };
1458 
1459 static const struct intel_c10pll_state mtl_c10_hdmi_88750 = {
1460 	.clock = 88750,
1461 	.tx = 0x10,
1462 	.cmn = 0x1,
1463 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0x98, .pll[3] = 0x00, .pll[4] = 0x00,
1464 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1465 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x72, .pll[13] = 0xA9, .pll[14] = 0xAA,
1466 	.pll[15] = 0x0B, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1467 };
1468 
1469 static const struct intel_c10pll_state mtl_c10_hdmi_106500 = {
1470 	.clock = 106500,
1471 	.tx = 0x10,
1472 	.cmn = 0x1,
1473 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBC, .pll[3] = 0x00, .pll[4] = 0x00,
1474 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1475 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xF0, .pll[13] = 0x00, .pll[14] = 0x00,
1476 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1477 };
1478 
1479 static const struct intel_c10pll_state mtl_c10_hdmi_108000 = {
1480 	.clock = 108000,
1481 	.tx = 0x10,
1482 	.cmn = 0x1,
1483 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xC0, .pll[3] = 0x00, .pll[4] = 0x00,
1484 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1485 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x80, .pll[13] = 0x00, .pll[14] = 0x00,
1486 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1487 };
1488 
1489 static const struct intel_c10pll_state mtl_c10_hdmi_115500 = {
1490 	.clock = 115500,
1491 	.tx = 0x10,
1492 	.cmn = 0x1,
1493 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD0, .pll[3] = 0x00, .pll[4] = 0x00,
1494 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1495 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1496 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1497 };
1498 
1499 static const struct intel_c10pll_state mtl_c10_hdmi_119000 = {
1500 	.clock = 119000,
1501 	.tx = 0x10,
1502 	.cmn = 0x1,
1503 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xD6, .pll[3] = 0x00, .pll[4] = 0x00,
1504 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1505 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xF5, .pll[13] = 0x55, .pll[14] = 0x55,
1506 	.pll[15] = 0x0B, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1507 };
1508 
1509 static const struct intel_c10pll_state mtl_c10_hdmi_135000 = {
1510 	.clock = 135000,
1511 	.tx = 0x10,
1512 	.cmn = 0x1,
1513 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6C, .pll[3] = 0x00, .pll[4] = 0x00,
1514 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1515 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x50, .pll[13] = 0x00, .pll[14] = 0x00,
1516 	.pll[15] = 0x0A, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1517 };
1518 
1519 static const struct intel_c10pll_state mtl_c10_hdmi_138500 = {
1520 	.clock = 138500,
1521 	.tx = 0x10,
1522 	.cmn = 0x1,
1523 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x70, .pll[3] = 0x00, .pll[4] = 0x00,
1524 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1525 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x22, .pll[13] = 0xA9, .pll[14] = 0xAA,
1526 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1527 };
1528 
1529 static const struct intel_c10pll_state mtl_c10_hdmi_147160 = {
1530 	.clock = 147160,
1531 	.tx = 0x10,
1532 	.cmn = 0x1,
1533 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x78, .pll[3] = 0x00, .pll[4] = 0x00,
1534 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1535 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0xA5, .pll[13] = 0x55, .pll[14] = 0x55,
1536 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1537 };
1538 
1539 static const struct intel_c10pll_state mtl_c10_hdmi_148352 = {
1540 	.clock = 148352,
1541 	.tx = 0x10,
1542 	.cmn = 0x1,
1543 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1544 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1545 	.pll[10] = 0xFF, .pll[11] = 0x44, .pll[12] = 0x44, .pll[13] = 0x44, .pll[14] = 0x44,
1546 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1547 };
1548 
1549 static const struct intel_c10pll_state mtl_c10_hdmi_154000 = {
1550 	.clock = 154000,
1551 	.tx = 0x10,
1552 	.cmn = 0x1,
1553 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x80, .pll[3] = 0x00, .pll[4] = 0x00,
1554 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1555 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x35, .pll[13] = 0x55, .pll[14] = 0x55,
1556 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1557 };
1558 
1559 static const struct intel_c10pll_state mtl_c10_hdmi_162000 = {
1560 	.clock = 162000,
1561 	.tx = 0x10,
1562 	.cmn = 0x1,
1563 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x88, .pll[3] = 0x00, .pll[4] = 0x00,
1564 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1565 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x60, .pll[13] = 0x00, .pll[14] = 0x00,
1566 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1567 };
1568 
1569 static const struct intel_c10pll_state mtl_c10_hdmi_167000 = {
1570 	.clock = 167000,
1571 	.tx = 0x10,
1572 	.cmn = 0x1,
1573 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x8C, .pll[3] = 0x00, .pll[4] = 0x00,
1574 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1575 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0xFA, .pll[13] = 0xA9, .pll[14] = 0xAA,
1576 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1577 };
1578 
1579 static const struct intel_c10pll_state mtl_c10_hdmi_197802 = {
1580 	.clock = 197802,
1581 	.tx = 0x10,
1582 	.cmn = 0x1,
1583 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1584 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1585 	.pll[10] = 0xFF, .pll[11] = 0x99, .pll[12] = 0x05, .pll[13] = 0x98, .pll[14] = 0x99,
1586 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1587 };
1588 
1589 static const struct intel_c10pll_state mtl_c10_hdmi_198000 = {
1590 	.clock = 198000,
1591 	.tx = 0x10,
1592 	.cmn = 0x1,
1593 	.pll[0] = 0x74, .pll[1] = 0x00, .pll[2] = 0xAE, .pll[3] = 0x00, .pll[4] = 0x00,
1594 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1595 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x20, .pll[13] = 0x00, .pll[14] = 0x00,
1596 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1597 };
1598 
1599 static const struct intel_c10pll_state mtl_c10_hdmi_209800 = {
1600 	.clock = 209800,
1601 	.tx = 0x10,
1602 	.cmn = 0x1,
1603 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xBA, .pll[3] = 0x00, .pll[4] = 0x00,
1604 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1605 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x45, .pll[13] = 0x55, .pll[14] = 0x55,
1606 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1607 };
1608 
1609 static const struct intel_c10pll_state mtl_c10_hdmi_241500 = {
1610 	.clock = 241500,
1611 	.tx = 0x10,
1612 	.cmn = 0x1,
1613 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xDA, .pll[3] = 0x00, .pll[4] = 0x00,
1614 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1615 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xC8, .pll[13] = 0x00, .pll[14] = 0x00,
1616 	.pll[15] = 0x0A, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1617 };
1618 
1619 static const struct intel_c10pll_state mtl_c10_hdmi_262750 = {
1620 	.clock = 262750,
1621 	.tx = 0x10,
1622 	.cmn = 0x1,
1623 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x68, .pll[3] = 0x00, .pll[4] = 0x00,
1624 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1625 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x6C, .pll[13] = 0xA9, .pll[14] = 0xAA,
1626 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1627 };
1628 
1629 static const struct intel_c10pll_state mtl_c10_hdmi_268500 = {
1630 	.clock = 268500,
1631 	.tx = 0x10,
1632 	.cmn = 0x1,
1633 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x6A, .pll[3] = 0x00, .pll[4] = 0x00,
1634 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1635 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0xEC, .pll[13] = 0x00, .pll[14] = 0x00,
1636 	.pll[15] = 0x09, .pll[16] = 0x09, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1637 };
1638 
1639 static const struct intel_c10pll_state mtl_c10_hdmi_296703 = {
1640 	.clock = 296703,
1641 	.tx = 0x10,
1642 	.cmn = 0x1,
1643 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1644 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1645 	.pll[10] = 0xFF, .pll[11] = 0x33, .pll[12] = 0x44, .pll[13] = 0x33, .pll[14] = 0x33,
1646 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1647 };
1648 
1649 static const struct intel_c10pll_state mtl_c10_hdmi_297000 = {
1650 	.clock = 297000,
1651 	.tx = 0x10,
1652 	.cmn = 0x1,
1653 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1654 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1655 	.pll[10] = 0xFF, .pll[11] = 0x00, .pll[12] = 0x58, .pll[13] = 0x00, .pll[14] = 0x00,
1656 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1657 };
1658 
1659 static const struct intel_c10pll_state mtl_c10_hdmi_319750 = {
1660 	.clock = 319750,
1661 	.tx = 0x10,
1662 	.cmn = 0x1,
1663 	.pll[0] = 0xB4, .pll[1] = 0x00, .pll[2] = 0x86, .pll[3] = 0x00, .pll[4] = 0x00,
1664 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1665 	.pll[10] = 0xFF, .pll[11] = 0xAA, .pll[12] = 0x44, .pll[13] = 0xA9, .pll[14] = 0xAA,
1666 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1667 };
1668 
1669 static const struct intel_c10pll_state mtl_c10_hdmi_497750 = {
1670 	.clock = 497750,
1671 	.tx = 0x10,
1672 	.cmn = 0x1,
1673 	.pll[0] = 0x34, .pll[1] = 0x00, .pll[2] = 0xE2, .pll[3] = 0x00, .pll[4] = 0x00,
1674 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1675 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x9F, .pll[13] = 0x55, .pll[14] = 0x55,
1676 	.pll[15] = 0x09, .pll[16] = 0x08, .pll[17] = 0xCF, .pll[18] = 0x84, .pll[19] = 0x23,
1677 };
1678 
1679 static const struct intel_c10pll_state mtl_c10_hdmi_592000 = {
1680 	.clock = 592000,
1681 	.tx = 0x10,
1682 	.cmn = 0x1,
1683 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1684 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1685 	.pll[10] = 0xFF, .pll[11] = 0x55, .pll[12] = 0x15, .pll[13] = 0x55, .pll[14] = 0x55,
1686 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1687 };
1688 
1689 static const struct intel_c10pll_state mtl_c10_hdmi_593407 = {
1690 	.clock = 593407,
1691 	.tx = 0x10,
1692 	.cmn = 0x1,
1693 	.pll[0] = 0xF4, .pll[1] = 0x00, .pll[2] = 0x7A, .pll[3] = 0x00, .pll[4] = 0x00,
1694 	.pll[5] = 0x00, .pll[6] = 0x00, .pll[7] = 0x00, .pll[8] = 0x20, .pll[9] = 0xFF,
1695 	.pll[10] = 0xFF, .pll[11] = 0x3B, .pll[12] = 0x44, .pll[13] = 0xBA, .pll[14] = 0xBB,
1696 	.pll[15] = 0x08, .pll[16] = 0x08, .pll[17] = 0x8F, .pll[18] = 0x84, .pll[19] = 0x23,
1697 };
1698 
1699 static const struct intel_c10pll_state * const mtl_c10_hdmi_tables[] = {
1700 	&mtl_c10_hdmi_25_2, /* Consolidated Table */
1701 	&mtl_c10_hdmi_27_0, /* Consolidated Table */
1702 	&mtl_c10_hdmi_27027,
1703 	&mtl_c10_hdmi_28320,
1704 	&mtl_c10_hdmi_30240,
1705 	&mtl_c10_hdmi_31500,
1706 	&mtl_c10_hdmi_36000,
1707 	&mtl_c10_hdmi_40000,
1708 	&mtl_c10_hdmi_49500,
1709 	&mtl_c10_hdmi_50000,
1710 	&mtl_c10_hdmi_57284,
1711 	&mtl_c10_hdmi_58000,
1712 	&mtl_c10_hdmi_65000,
1713 	&mtl_c10_hdmi_71000,
1714 	&mtl_c10_hdmi_74176,
1715 	&mtl_c10_hdmi_74_25, /* Consolidated Table */
1716 	&mtl_c10_hdmi_75000,
1717 	&mtl_c10_hdmi_78750,
1718 	&mtl_c10_hdmi_85500,
1719 	&mtl_c10_hdmi_88750,
1720 	&mtl_c10_hdmi_106500,
1721 	&mtl_c10_hdmi_108000,
1722 	&mtl_c10_hdmi_115500,
1723 	&mtl_c10_hdmi_119000,
1724 	&mtl_c10_hdmi_135000,
1725 	&mtl_c10_hdmi_138500,
1726 	&mtl_c10_hdmi_147160,
1727 	&mtl_c10_hdmi_148352,
1728 	&mtl_c10_hdmi_148_5, /* Consolidated Table */
1729 	&mtl_c10_hdmi_154000,
1730 	&mtl_c10_hdmi_162000,
1731 	&mtl_c10_hdmi_167000,
1732 	&mtl_c10_hdmi_197802,
1733 	&mtl_c10_hdmi_198000,
1734 	&mtl_c10_hdmi_209800,
1735 	&mtl_c10_hdmi_241500,
1736 	&mtl_c10_hdmi_262750,
1737 	&mtl_c10_hdmi_268500,
1738 	&mtl_c10_hdmi_296703,
1739 	&mtl_c10_hdmi_297000,
1740 	&mtl_c10_hdmi_319750,
1741 	&mtl_c10_hdmi_497750,
1742 	&mtl_c10_hdmi_592000,
1743 	&mtl_c10_hdmi_593407,
1744 	&mtl_c10_hdmi_594, /* Consolidated Table */
1745 	NULL,
1746 };
1747 
1748 static const struct intel_c20pll_state mtl_c20_hdmi_25_175 = {
1749 	.clock = 25175,
1750 	.tx = {  0xbe88, /* tx cfg0 */
1751 		  0x9800, /* tx cfg1 */
1752 		  0x0000, /* tx cfg2 */
1753 		},
1754 	.cmn = { 0x0500, /* cmn cfg0*/
1755 		  0x0005, /* cmn cfg1 */
1756 		  0x0000, /* cmn cfg2 */
1757 		  0x0000, /* cmn cfg3 */
1758 		},
1759 	.mpllb = { 0xa0d2,	/* mpllb cfg0 */
1760 		   0x7d80,	/* mpllb cfg1 */
1761 		   0x0906,	/* mpllb cfg2 */
1762 		   0xbe40,	/* mpllb cfg3 */
1763 		   0x0000,	/* mpllb cfg4 */
1764 		   0x0000,	/* mpllb cfg5 */
1765 		   0x0200,	/* mpllb cfg6 */
1766 		   0x0001,	/* mpllb cfg7 */
1767 		   0x0000,	/* mpllb cfg8 */
1768 		   0x0000,	/* mpllb cfg9 */
1769 		   0x0001,	/* mpllb cfg10 */
1770 		},
1771 };
1772 
1773 static const struct intel_c20pll_state mtl_c20_hdmi_27_0 = {
1774 	.clock = 27000,
1775 	.tx = {  0xbe88, /* tx cfg0 */
1776 		  0x9800, /* tx cfg1 */
1777 		  0x0000, /* tx cfg2 */
1778 		},
1779 	.cmn = { 0x0500, /* cmn cfg0*/
1780 		  0x0005, /* cmn cfg1 */
1781 		  0x0000, /* cmn cfg2 */
1782 		  0x0000, /* cmn cfg3 */
1783 		},
1784 	.mpllb = { 0xa0e0,	/* mpllb cfg0 */
1785 		   0x7d80,	/* mpllb cfg1 */
1786 		   0x0906,	/* mpllb cfg2 */
1787 		   0xbe40,	/* mpllb cfg3 */
1788 		   0x0000,	/* mpllb cfg4 */
1789 		   0x0000,	/* mpllb cfg5 */
1790 		   0x2200,	/* mpllb cfg6 */
1791 		   0x0001,	/* mpllb cfg7 */
1792 		   0x8000,	/* mpllb cfg8 */
1793 		   0x0000,	/* mpllb cfg9 */
1794 		   0x0001,	/* mpllb cfg10 */
1795 		},
1796 };
1797 
1798 static const struct intel_c20pll_state mtl_c20_hdmi_74_25 = {
1799 	.clock = 74250,
1800 	.tx = {  0xbe88, /* tx cfg0 */
1801 		  0x9800, /* tx cfg1 */
1802 		  0x0000, /* tx cfg2 */
1803 		},
1804 	.cmn = { 0x0500, /* cmn cfg0*/
1805 		  0x0005, /* cmn cfg1 */
1806 		  0x0000, /* cmn cfg2 */
1807 		  0x0000, /* cmn cfg3 */
1808 		},
1809 	.mpllb = { 0x609a,	/* mpllb cfg0 */
1810 		   0x7d40,	/* mpllb cfg1 */
1811 		   0xca06,	/* mpllb cfg2 */
1812 		   0xbe40,	/* mpllb cfg3 */
1813 		   0x0000,	/* mpllb cfg4 */
1814 		   0x0000,	/* mpllb cfg5 */
1815 		   0x2200,	/* mpllb cfg6 */
1816 		   0x0001,	/* mpllb cfg7 */
1817 		   0x5800,	/* mpllb cfg8 */
1818 		   0x0000,	/* mpllb cfg9 */
1819 		   0x0001,	/* mpllb cfg10 */
1820 		},
1821 };
1822 
1823 static const struct intel_c20pll_state mtl_c20_hdmi_148_5 = {
1824 	.clock = 148500,
1825 	.tx = {  0xbe88, /* tx cfg0 */
1826 		  0x9800, /* tx cfg1 */
1827 		  0x0000, /* tx cfg2 */
1828 		},
1829 	.cmn = { 0x0500, /* cmn cfg0*/
1830 		  0x0005, /* cmn cfg1 */
1831 		  0x0000, /* cmn cfg2 */
1832 		  0x0000, /* cmn cfg3 */
1833 		},
1834 	.mpllb = { 0x409a,	/* mpllb cfg0 */
1835 		   0x7d20,	/* mpllb cfg1 */
1836 		   0xca06,	/* mpllb cfg2 */
1837 		   0xbe40,	/* mpllb cfg3 */
1838 		   0x0000,	/* mpllb cfg4 */
1839 		   0x0000,	/* mpllb cfg5 */
1840 		   0x2200,	/* mpllb cfg6 */
1841 		   0x0001,	/* mpllb cfg7 */
1842 		   0x5800,	/* mpllb cfg8 */
1843 		   0x0000,	/* mpllb cfg9 */
1844 		   0x0001,	/* mpllb cfg10 */
1845 		},
1846 };
1847 
1848 static const struct intel_c20pll_state mtl_c20_hdmi_594 = {
1849 	.clock = 594000,
1850 	.tx = {  0xbe88, /* tx cfg0 */
1851 		  0x9800, /* tx cfg1 */
1852 		  0x0000, /* tx cfg2 */
1853 		},
1854 	.cmn = { 0x0500, /* cmn cfg0*/
1855 		  0x0005, /* cmn cfg1 */
1856 		  0x0000, /* cmn cfg2 */
1857 		  0x0000, /* cmn cfg3 */
1858 		},
1859 	.mpllb = { 0x009a,	/* mpllb cfg0 */
1860 		   0x7d08,	/* mpllb cfg1 */
1861 		   0xca06,	/* mpllb cfg2 */
1862 		   0xbe40,	/* mpllb cfg3 */
1863 		   0x0000,	/* mpllb cfg4 */
1864 		   0x0000,	/* mpllb cfg5 */
1865 		   0x2200,	/* mpllb cfg6 */
1866 		   0x0001,	/* mpllb cfg7 */
1867 		   0x5800,	/* mpllb cfg8 */
1868 		   0x0000,	/* mpllb cfg9 */
1869 		   0x0001,	/* mpllb cfg10 */
1870 		},
1871 };
1872 
1873 static const struct intel_c20pll_state mtl_c20_hdmi_300 = {
1874 	.clock = 3000000,
1875 	.tx = {  0xbe98, /* tx cfg0 */
1876 		  0x8800, /* tx cfg1 */
1877 		  0x0000, /* tx cfg2 */
1878 		},
1879 	.cmn = { 0x0500, /* cmn cfg0*/
1880 		  0x0005, /* cmn cfg1 */
1881 		  0x0000, /* cmn cfg2 */
1882 		  0x0000, /* cmn cfg3 */
1883 		},
1884 	.mpllb = { 0x309c,	/* mpllb cfg0 */
1885 		   0x2110,	/* mpllb cfg1 */
1886 		   0xca06,	/* mpllb cfg2 */
1887 		   0xbe40,	/* mpllb cfg3 */
1888 		   0x0000,	/* mpllb cfg4 */
1889 		   0x0000,	/* mpllb cfg5 */
1890 		   0x2200,	/* mpllb cfg6 */
1891 		   0x0001,	/* mpllb cfg7 */
1892 		   0x2000,	/* mpllb cfg8 */
1893 		   0x0000,	/* mpllb cfg9 */
1894 		   0x0004,	/* mpllb cfg10 */
1895 		},
1896 };
1897 
1898 static const struct intel_c20pll_state mtl_c20_hdmi_600 = {
1899 	.clock = 6000000,
1900 	.tx = {  0xbe98, /* tx cfg0 */
1901 		  0x8800, /* tx cfg1 */
1902 		  0x0000, /* tx cfg2 */
1903 		},
1904 	.cmn = { 0x0500, /* cmn cfg0*/
1905 		  0x0005, /* cmn cfg1 */
1906 		  0x0000, /* cmn cfg2 */
1907 		  0x0000, /* cmn cfg3 */
1908 		},
1909 	.mpllb = { 0x109c,	/* mpllb cfg0 */
1910 		   0x2108,	/* mpllb cfg1 */
1911 		   0xca06,	/* mpllb cfg2 */
1912 		   0xbe40,	/* mpllb cfg3 */
1913 		   0x0000,	/* mpllb cfg4 */
1914 		   0x0000,	/* mpllb cfg5 */
1915 		   0x2200,	/* mpllb cfg6 */
1916 		   0x0001,	/* mpllb cfg7 */
1917 		   0x2000,	/* mpllb cfg8 */
1918 		   0x0000,	/* mpllb cfg9 */
1919 		   0x0004,	/* mpllb cfg10 */
1920 		},
1921 };
1922 
1923 static const struct intel_c20pll_state mtl_c20_hdmi_800 = {
1924 	.clock = 8000000,
1925 	.tx = {  0xbe98, /* tx cfg0 */
1926 		  0x8800, /* tx cfg1 */
1927 		  0x0000, /* tx cfg2 */
1928 		},
1929 	.cmn = { 0x0500, /* cmn cfg0*/
1930 		  0x0005, /* cmn cfg1 */
1931 		  0x0000, /* cmn cfg2 */
1932 		  0x0000, /* cmn cfg3 */
1933 		},
1934 	.mpllb = { 0x10d0,	/* mpllb cfg0 */
1935 		   0x2108,	/* mpllb cfg1 */
1936 		   0x4a06,	/* mpllb cfg2 */
1937 		   0xbe40,	/* mpllb cfg3 */
1938 		   0x0000,	/* mpllb cfg4 */
1939 		   0x0000,	/* mpllb cfg5 */
1940 		   0x2200,	/* mpllb cfg6 */
1941 		   0x0003,	/* mpllb cfg7 */
1942 		   0x2aaa,	/* mpllb cfg8 */
1943 		   0x0002,	/* mpllb cfg9 */
1944 		   0x0004,	/* mpllb cfg10 */
1945 		},
1946 };
1947 
1948 static const struct intel_c20pll_state mtl_c20_hdmi_1000 = {
1949 	.clock = 10000000,
1950 	.tx = {  0xbe98, /* tx cfg0 */
1951 		  0x8800, /* tx cfg1 */
1952 		  0x0000, /* tx cfg2 */
1953 		},
1954 	.cmn = { 0x0500, /* cmn cfg0*/
1955 		  0x0005, /* cmn cfg1 */
1956 		  0x0000, /* cmn cfg2 */
1957 		  0x0000, /* cmn cfg3 */
1958 		},
1959 	.mpllb = { 0x1104,	/* mpllb cfg0 */
1960 		   0x2108,	/* mpllb cfg1 */
1961 		   0x0a06,	/* mpllb cfg2 */
1962 		   0xbe40,	/* mpllb cfg3 */
1963 		   0x0000,	/* mpllb cfg4 */
1964 		   0x0000,	/* mpllb cfg5 */
1965 		   0x2200,	/* mpllb cfg6 */
1966 		   0x0003,	/* mpllb cfg7 */
1967 		   0x3555,	/* mpllb cfg8 */
1968 		   0x0001,	/* mpllb cfg9 */
1969 		   0x0004,	/* mpllb cfg10 */
1970 		},
1971 };
1972 
1973 static const struct intel_c20pll_state mtl_c20_hdmi_1200 = {
1974 	.clock = 12000000,
1975 	.tx = {  0xbe98, /* tx cfg0 */
1976 		  0x8800, /* tx cfg1 */
1977 		  0x0000, /* tx cfg2 */
1978 		},
1979 	.cmn = { 0x0500, /* cmn cfg0*/
1980 		  0x0005, /* cmn cfg1 */
1981 		  0x0000, /* cmn cfg2 */
1982 		  0x0000, /* cmn cfg3 */
1983 		},
1984 	.mpllb = { 0x1138,	/* mpllb cfg0 */
1985 		   0x2108,	/* mpllb cfg1 */
1986 		   0x5486,	/* mpllb cfg2 */
1987 		   0xfe40,	/* mpllb cfg3 */
1988 		   0x0000,	/* mpllb cfg4 */
1989 		   0x0000,	/* mpllb cfg5 */
1990 		   0x2200,	/* mpllb cfg6 */
1991 		   0x0001,	/* mpllb cfg7 */
1992 		   0x4000,	/* mpllb cfg8 */
1993 		   0x0000,	/* mpllb cfg9 */
1994 		   0x0004,	/* mpllb cfg10 */
1995 		},
1996 };
1997 
1998 static const struct intel_c20pll_state * const mtl_c20_hdmi_tables[] = {
1999 	&mtl_c20_hdmi_25_175,
2000 	&mtl_c20_hdmi_27_0,
2001 	&mtl_c20_hdmi_74_25,
2002 	&mtl_c20_hdmi_148_5,
2003 	&mtl_c20_hdmi_594,
2004 	&mtl_c20_hdmi_300,
2005 	&mtl_c20_hdmi_600,
2006 	&mtl_c20_hdmi_800,
2007 	&mtl_c20_hdmi_1000,
2008 	&mtl_c20_hdmi_1200,
2009 	NULL,
2010 };
2011 
2012 static const struct intel_c10pll_state * const *
intel_c10pll_tables_get(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2013 intel_c10pll_tables_get(struct intel_crtc_state *crtc_state,
2014 			struct intel_encoder *encoder)
2015 {
2016 	if (intel_crtc_has_dp_encoder(crtc_state)) {
2017 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP))
2018 			return mtl_c10_edp_tables;
2019 		else
2020 			return mtl_c10_dp_tables;
2021 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2022 		return mtl_c10_hdmi_tables;
2023 	}
2024 
2025 	MISSING_CASE(encoder->type);
2026 	return NULL;
2027 }
2028 
intel_cx0pll_update_ssc(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state,bool is_dp)2029 static void intel_cx0pll_update_ssc(struct intel_encoder *encoder,
2030 				    struct intel_cx0pll_state *pll_state, bool is_dp)
2031 {
2032 	struct intel_display *display = to_intel_display(encoder);
2033 
2034 	if (is_dp) {
2035 		if (intel_panel_use_ssc(display)) {
2036 			struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2037 			pll_state->ssc_enabled =
2038 				(intel_dp->dpcd[DP_MAX_DOWNSPREAD] & DP_MAX_DOWNSPREAD_0_5);
2039 		}
2040 	}
2041 }
2042 
intel_c10pll_update_pll(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state)2043 static void intel_c10pll_update_pll(struct intel_encoder *encoder,
2044 				    struct intel_cx0pll_state *pll_state)
2045 {
2046 	struct intel_display *display = to_intel_display(encoder);
2047 	int i;
2048 
2049 	if (pll_state->ssc_enabled)
2050 		return;
2051 
2052 	drm_WARN_ON(display->drm, ARRAY_SIZE(pll_state->c10.pll) < 9);
2053 	for (i = 4; i < 9; i++)
2054 		pll_state->c10.pll[i] = 0;
2055 }
2056 
intel_c10pll_calc_state_from_table(struct intel_encoder * encoder,const struct intel_c10pll_state * const * tables,bool is_dp,int port_clock,struct intel_cx0pll_state * pll_state)2057 static int intel_c10pll_calc_state_from_table(struct intel_encoder *encoder,
2058 					      const struct intel_c10pll_state * const *tables,
2059 					      bool is_dp, int port_clock,
2060 					      struct intel_cx0pll_state *pll_state)
2061 {
2062 	int i;
2063 
2064 	for (i = 0; tables[i]; i++) {
2065 		if (port_clock == tables[i]->clock) {
2066 			pll_state->c10 = *tables[i];
2067 			intel_cx0pll_update_ssc(encoder, pll_state, is_dp);
2068 			intel_c10pll_update_pll(encoder, pll_state);
2069 			pll_state->use_c10 = true;
2070 
2071 			return 0;
2072 		}
2073 	}
2074 
2075 	return -EINVAL;
2076 }
2077 
intel_c10pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2078 static int intel_c10pll_calc_state(struct intel_crtc_state *crtc_state,
2079 				   struct intel_encoder *encoder)
2080 {
2081 	const struct intel_c10pll_state * const *tables;
2082 	int err;
2083 
2084 	tables = intel_c10pll_tables_get(crtc_state, encoder);
2085 	if (!tables)
2086 		return -EINVAL;
2087 
2088 	err = intel_c10pll_calc_state_from_table(encoder, tables,
2089 						 intel_crtc_has_dp_encoder(crtc_state),
2090 						 crtc_state->port_clock,
2091 						 &crtc_state->dpll_hw_state.cx0pll);
2092 
2093 	if (err == 0 || !intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
2094 		return err;
2095 
2096 	/* For HDMI PLLs try SNPS PHY algorithm, if there are no precomputed tables */
2097 	intel_snps_hdmi_pll_compute_c10pll(&crtc_state->dpll_hw_state.cx0pll.c10,
2098 					   crtc_state->port_clock);
2099 	intel_c10pll_update_pll(encoder,
2100 				&crtc_state->dpll_hw_state.cx0pll);
2101 	crtc_state->dpll_hw_state.cx0pll.use_c10 = true;
2102 
2103 	return 0;
2104 }
2105 
intel_c10pll_readout_hw_state(struct intel_encoder * encoder,struct intel_c10pll_state * pll_state)2106 static void intel_c10pll_readout_hw_state(struct intel_encoder *encoder,
2107 					  struct intel_c10pll_state *pll_state)
2108 {
2109 	u8 lane = INTEL_CX0_LANE0;
2110 	intel_wakeref_t wakeref;
2111 	int i;
2112 
2113 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2114 
2115 	/*
2116 	 * According to C10 VDR Register programming Sequence we need
2117 	 * to do this to read PHY internal registers from MsgBus.
2118 	 */
2119 	intel_cx0_rmw(encoder, lane, PHY_C10_VDR_CONTROL(1),
2120 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
2121 		      MB_WRITE_COMMITTED);
2122 
2123 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2124 		pll_state->pll[i] = intel_cx0_read(encoder, lane, PHY_C10_VDR_PLL(i));
2125 
2126 	pll_state->cmn = intel_cx0_read(encoder, lane, PHY_C10_VDR_CMN(0));
2127 	pll_state->tx = intel_cx0_read(encoder, lane, PHY_C10_VDR_TX(0));
2128 
2129 	intel_cx0_phy_transaction_end(encoder, wakeref);
2130 }
2131 
intel_c10_pll_program(struct intel_display * display,struct intel_encoder * encoder,const struct intel_c10pll_state * pll_state)2132 static void intel_c10_pll_program(struct intel_display *display,
2133 				  struct intel_encoder *encoder,
2134 				  const struct intel_c10pll_state *pll_state)
2135 {
2136 	int i;
2137 
2138 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CONTROL(1),
2139 		      0, C10_VDR_CTRL_MSGBUS_ACCESS,
2140 		      MB_WRITE_COMMITTED);
2141 
2142 	/* Program the pll values only for the master lane */
2143 	for (i = 0; i < ARRAY_SIZE(pll_state->pll); i++)
2144 		intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_PLL(i),
2145 				pll_state->pll[i],
2146 				(i % 4) ? MB_WRITE_UNCOMMITTED : MB_WRITE_COMMITTED);
2147 
2148 	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CMN(0), pll_state->cmn, MB_WRITE_COMMITTED);
2149 	intel_cx0_write(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_TX(0), pll_state->tx, MB_WRITE_COMMITTED);
2150 
2151 	/* Custom width needs to be programmed to 0 for both the phy lanes */
2152 	intel_cx0_rmw(encoder, INTEL_CX0_BOTH_LANES, PHY_C10_VDR_CUSTOM_WIDTH,
2153 		      C10_VDR_CUSTOM_WIDTH_MASK, C10_VDR_CUSTOM_WIDTH_8_10,
2154 		      MB_WRITE_COMMITTED);
2155 	intel_cx0_rmw(encoder, INTEL_CX0_LANE0, PHY_C10_VDR_CONTROL(1),
2156 		      0, C10_VDR_CTRL_MASTER_LANE | C10_VDR_CTRL_UPDATE_CFG,
2157 		      MB_WRITE_COMMITTED);
2158 }
2159 
intel_c10pll_dump_hw_state(struct intel_display * display,const struct intel_c10pll_state * hw_state)2160 static void intel_c10pll_dump_hw_state(struct intel_display *display,
2161 				       const struct intel_c10pll_state *hw_state)
2162 {
2163 	bool fracen;
2164 	int i;
2165 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2166 	unsigned int multiplier, tx_clk_div;
2167 
2168 	fracen = hw_state->pll[0] & C10_PLL0_FRACEN;
2169 	drm_dbg_kms(display->drm, "c10pll_hw_state: fracen: %s, ",
2170 		    str_yes_no(fracen));
2171 
2172 	if (fracen) {
2173 		frac_quot = hw_state->pll[12] << 8 | hw_state->pll[11];
2174 		frac_rem =  hw_state->pll[14] << 8 | hw_state->pll[13];
2175 		frac_den =  hw_state->pll[10] << 8 | hw_state->pll[9];
2176 		drm_dbg_kms(display->drm, "quot: %u, rem: %u, den: %u,\n",
2177 			    frac_quot, frac_rem, frac_den);
2178 	}
2179 
2180 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, hw_state->pll[3]) << 8 |
2181 		      hw_state->pll[2]) / 2 + 16;
2182 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, hw_state->pll[15]);
2183 	drm_dbg_kms(display->drm,
2184 		    "multiplier: %u, tx_clk_div: %u.\n", multiplier, tx_clk_div);
2185 
2186 	drm_dbg_kms(display->drm, "c10pll_rawhw_state:");
2187 	drm_dbg_kms(display->drm, "tx: 0x%x, cmn: 0x%x\n", hw_state->tx,
2188 		    hw_state->cmn);
2189 
2190 	BUILD_BUG_ON(ARRAY_SIZE(hw_state->pll) % 4);
2191 	for (i = 0; i < ARRAY_SIZE(hw_state->pll); i = i + 4)
2192 		drm_dbg_kms(display->drm,
2193 			    "pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x, pll[%d] = 0x%x\n",
2194 			    i, hw_state->pll[i], i + 1, hw_state->pll[i + 1],
2195 			    i + 2, hw_state->pll[i + 2], i + 3, hw_state->pll[i + 3]);
2196 }
2197 
2198 /*
2199  * Some ARLs SoCs have the same drm PCI IDs, so need a helper to differentiate based
2200  * on the host bridge device ID to get the correct txx_mics value.
2201  */
is_arrowlake_s_by_host_bridge(void)2202 static bool is_arrowlake_s_by_host_bridge(void)
2203 {
2204 	struct pci_dev *pdev = NULL;
2205 	u16 host_bridge_pci_dev_id;
2206 
2207 	while ((pdev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, pdev)))
2208 		host_bridge_pci_dev_id = pdev->device;
2209 
2210 	return pdev && IS_ARROWLAKE_S_BY_HOST_BRIDGE_ID(host_bridge_pci_dev_id);
2211 }
2212 
intel_c20_hdmi_tmds_tx_cgf_1(struct intel_crtc_state * crtc_state)2213 static u16 intel_c20_hdmi_tmds_tx_cgf_1(struct intel_crtc_state *crtc_state)
2214 {
2215 	struct intel_display *display = to_intel_display(crtc_state);
2216 	u16 tx_misc;
2217 	u16 tx_dcc_cal_dac_ctrl_range = 8;
2218 	u16 tx_term_ctrl = 2;
2219 
2220 	if (DISPLAY_VER(display) >= 20) {
2221 		tx_misc = 5;
2222 		tx_term_ctrl = 4;
2223 	} else if (display->platform.battlemage) {
2224 		tx_misc = 0;
2225 	} else if (display->platform.meteorlake_u ||
2226 		   is_arrowlake_s_by_host_bridge()) {
2227 		tx_misc = 3;
2228 	} else {
2229 		tx_misc = 7;
2230 	}
2231 
2232 	return (C20_PHY_TX_MISC(tx_misc) |
2233 		C20_PHY_TX_DCC_CAL_RANGE(tx_dcc_cal_dac_ctrl_range) |
2234 		C20_PHY_TX_DCC_BYPASS | C20_PHY_TX_TERM_CTL(tx_term_ctrl));
2235 }
2236 
intel_c20_compute_hdmi_tmds_pll(struct intel_crtc_state * crtc_state)2237 static int intel_c20_compute_hdmi_tmds_pll(struct intel_crtc_state *crtc_state)
2238 {
2239 	struct intel_c20pll_state *pll_state = &crtc_state->dpll_hw_state.cx0pll.c20;
2240 	u64 datarate;
2241 	u64 mpll_tx_clk_div;
2242 	u64 vco_freq_shift;
2243 	u64 vco_freq;
2244 	u64 multiplier;
2245 	u64 mpll_multiplier;
2246 	u64 mpll_fracn_quot;
2247 	u64 mpll_fracn_rem;
2248 	u8  mpllb_ana_freq_vco;
2249 	u8  mpll_div_multiplier;
2250 
2251 	if (crtc_state->port_clock < 25175 || crtc_state->port_clock > 600000)
2252 		return -EINVAL;
2253 
2254 	datarate = ((u64)crtc_state->port_clock * 1000) * 10;
2255 	mpll_tx_clk_div = ilog2(div64_u64((u64)CLOCK_9999MHZ, (u64)datarate));
2256 	vco_freq_shift = ilog2(div64_u64((u64)CLOCK_4999MHZ * (u64)256, (u64)datarate));
2257 	vco_freq = (datarate << vco_freq_shift) >> 8;
2258 	multiplier = div64_u64((vco_freq << 28), (REFCLK_38_4_MHZ >> 4));
2259 	mpll_multiplier = 2 * (multiplier >> 32);
2260 
2261 	mpll_fracn_quot = (multiplier >> 16) & 0xFFFF;
2262 	mpll_fracn_rem  = multiplier & 0xFFFF;
2263 
2264 	mpll_div_multiplier = min_t(u8, div64_u64((vco_freq * 16 + (datarate >> 1)),
2265 						  datarate), 255);
2266 
2267 	if (vco_freq <= DATARATE_3000000000)
2268 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_3;
2269 	else if (vco_freq <= DATARATE_3500000000)
2270 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_2;
2271 	else if (vco_freq <= DATARATE_4000000000)
2272 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_1;
2273 	else
2274 		mpllb_ana_freq_vco = MPLLB_ANA_FREQ_VCO_0;
2275 
2276 	pll_state->clock	= crtc_state->port_clock;
2277 	pll_state->tx[0]	= 0xbe88;
2278 	pll_state->tx[1]	= intel_c20_hdmi_tmds_tx_cgf_1(crtc_state);
2279 	pll_state->tx[2]	= 0x0000;
2280 	pll_state->cmn[0]	= 0x0500;
2281 	pll_state->cmn[1]	= 0x0005;
2282 	pll_state->cmn[2]	= 0x0000;
2283 	pll_state->cmn[3]	= 0x0000;
2284 	pll_state->mpllb[0]	= (MPLL_TX_CLK_DIV(mpll_tx_clk_div) |
2285 				   MPLL_MULTIPLIER(mpll_multiplier));
2286 	pll_state->mpllb[1]	= (CAL_DAC_CODE(CAL_DAC_CODE_31) |
2287 				   WORD_CLK_DIV |
2288 				   MPLL_DIV_MULTIPLIER(mpll_div_multiplier));
2289 	pll_state->mpllb[2]	= (MPLLB_ANA_FREQ_VCO(mpllb_ana_freq_vco) |
2290 				   CP_PROP(CP_PROP_20) |
2291 				   CP_INT(CP_INT_6));
2292 	pll_state->mpllb[3]	= (V2I(V2I_2) |
2293 				   CP_PROP_GS(CP_PROP_GS_30) |
2294 				   CP_INT_GS(CP_INT_GS_28));
2295 	pll_state->mpllb[4]	= 0x0000;
2296 	pll_state->mpllb[5]	= 0x0000;
2297 	pll_state->mpllb[6]	= (C20_MPLLB_FRACEN | SSC_UP_SPREAD);
2298 	pll_state->mpllb[7]	= MPLL_FRACN_DEN;
2299 	pll_state->mpllb[8]	= mpll_fracn_quot;
2300 	pll_state->mpllb[9]	= mpll_fracn_rem;
2301 	pll_state->mpllb[10]	= HDMI_DIV(HDMI_DIV_1);
2302 
2303 	return 0;
2304 }
2305 
2306 static const struct intel_c20pll_state * const *
intel_c20_pll_tables_get(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2307 intel_c20_pll_tables_get(struct intel_crtc_state *crtc_state,
2308 			 struct intel_encoder *encoder)
2309 {
2310 	struct intel_display *display = to_intel_display(crtc_state);
2311 
2312 	if (intel_crtc_has_dp_encoder(crtc_state)) {
2313 		if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_EDP)) {
2314 			if (DISPLAY_RUNTIME_INFO(display)->edp_typec_support)
2315 				return xe3lpd_c20_dp_edp_tables;
2316 			if (DISPLAY_VERx100(display) == 1401)
2317 				return xe2hpd_c20_edp_tables;
2318 		}
2319 
2320 		if (DISPLAY_VER(display) >= 30)
2321 			return xe3lpd_c20_dp_edp_tables;
2322 		else if (DISPLAY_VERx100(display) == 1401)
2323 			return xe2hpd_c20_dp_tables;
2324 		else
2325 			return mtl_c20_dp_tables;
2326 
2327 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2328 		return mtl_c20_hdmi_tables;
2329 	}
2330 
2331 	MISSING_CASE(encoder->type);
2332 	return NULL;
2333 }
2334 
intel_c20pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2335 static int intel_c20pll_calc_state(struct intel_crtc_state *crtc_state,
2336 				   struct intel_encoder *encoder)
2337 {
2338 	const struct intel_c20pll_state * const *tables;
2339 	int i;
2340 
2341 	/* try computed C20 HDMI tables before using consolidated tables */
2342 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
2343 		if (intel_c20_compute_hdmi_tmds_pll(crtc_state) == 0)
2344 			return 0;
2345 	}
2346 
2347 	tables = intel_c20_pll_tables_get(crtc_state, encoder);
2348 	if (!tables)
2349 		return -EINVAL;
2350 
2351 	for (i = 0; tables[i]; i++) {
2352 		if (crtc_state->port_clock == tables[i]->clock) {
2353 			crtc_state->dpll_hw_state.cx0pll.c20 = *tables[i];
2354 			intel_cx0pll_update_ssc(encoder,
2355 						&crtc_state->dpll_hw_state.cx0pll,
2356 						intel_crtc_has_dp_encoder(crtc_state));
2357 			crtc_state->dpll_hw_state.cx0pll.use_c10 = false;
2358 			return 0;
2359 		}
2360 	}
2361 
2362 	return -EINVAL;
2363 }
2364 
intel_cx0pll_calc_state(struct intel_crtc_state * crtc_state,struct intel_encoder * encoder)2365 int intel_cx0pll_calc_state(struct intel_crtc_state *crtc_state,
2366 			    struct intel_encoder *encoder)
2367 {
2368 	if (intel_encoder_is_c10phy(encoder))
2369 		return intel_c10pll_calc_state(crtc_state, encoder);
2370 	return intel_c20pll_calc_state(crtc_state, encoder);
2371 }
2372 
intel_c20phy_use_mpllb(const struct intel_c20pll_state * state)2373 static bool intel_c20phy_use_mpllb(const struct intel_c20pll_state *state)
2374 {
2375 	return state->tx[0] & C20_PHY_USE_MPLLB;
2376 }
2377 
intel_c20pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_c20pll_state * pll_state)2378 static int intel_c20pll_calc_port_clock(struct intel_encoder *encoder,
2379 					const struct intel_c20pll_state *pll_state)
2380 {
2381 	unsigned int frac, frac_en, frac_quot, frac_rem, frac_den;
2382 	unsigned int multiplier, refclk = 38400;
2383 	unsigned int tx_clk_div;
2384 	unsigned int ref_clk_mpllb_div;
2385 	unsigned int fb_clk_div4_en;
2386 	unsigned int ref, vco;
2387 	unsigned int tx_rate_mult;
2388 	unsigned int tx_rate = REG_FIELD_GET(C20_PHY_TX_RATE, pll_state->tx[0]);
2389 
2390 	if (intel_c20phy_use_mpllb(pll_state)) {
2391 		tx_rate_mult = 1;
2392 		frac_en = REG_FIELD_GET(C20_MPLLB_FRACEN, pll_state->mpllb[6]);
2393 		frac_quot = pll_state->mpllb[8];
2394 		frac_rem =  pll_state->mpllb[9];
2395 		frac_den =  pll_state->mpllb[7];
2396 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mpllb[0]);
2397 		tx_clk_div = REG_FIELD_GET(C20_MPLLB_TX_CLK_DIV_MASK, pll_state->mpllb[0]);
2398 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mpllb[6]);
2399 		fb_clk_div4_en = 0;
2400 	} else {
2401 		tx_rate_mult = 2;
2402 		frac_en = REG_FIELD_GET(C20_MPLLA_FRACEN, pll_state->mplla[6]);
2403 		frac_quot = pll_state->mplla[8];
2404 		frac_rem =  pll_state->mplla[9];
2405 		frac_den =  pll_state->mplla[7];
2406 		multiplier = REG_FIELD_GET(C20_MULTIPLIER_MASK, pll_state->mplla[0]);
2407 		tx_clk_div = REG_FIELD_GET(C20_MPLLA_TX_CLK_DIV_MASK, pll_state->mplla[1]);
2408 		ref_clk_mpllb_div = REG_FIELD_GET(C20_REF_CLK_MPLLB_DIV_MASK, pll_state->mplla[6]);
2409 		fb_clk_div4_en = REG_FIELD_GET(C20_FB_CLK_DIV4_EN, pll_state->mplla[0]);
2410 	}
2411 
2412 	if (frac_en)
2413 		frac = frac_quot + DIV_ROUND_CLOSEST(frac_rem, frac_den);
2414 	else
2415 		frac = 0;
2416 
2417 	ref = DIV_ROUND_CLOSEST(refclk * (1 << (1 + fb_clk_div4_en)), 1 << ref_clk_mpllb_div);
2418 	vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(ref, (multiplier << (17 - 2)) + frac) >> 17, 10);
2419 
2420 	return vco << tx_rate_mult >> tx_clk_div >> tx_rate;
2421 }
2422 
intel_c20pll_readout_hw_state(struct intel_encoder * encoder,struct intel_c20pll_state * pll_state)2423 static void intel_c20pll_readout_hw_state(struct intel_encoder *encoder,
2424 					  struct intel_c20pll_state *pll_state)
2425 {
2426 	struct intel_display *display = to_intel_display(encoder);
2427 	bool cntx;
2428 	intel_wakeref_t wakeref;
2429 	int i;
2430 
2431 	wakeref = intel_cx0_phy_transaction_begin(encoder);
2432 
2433 	/* 1. Read current context selection */
2434 	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & PHY_C20_CONTEXT_TOGGLE;
2435 
2436 	/* Read Tx configuration */
2437 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2438 		if (cntx)
2439 			pll_state->tx[i] = intel_c20_sram_read(encoder,
2440 							       INTEL_CX0_LANE0,
2441 							       PHY_C20_B_TX_CNTX_CFG(display, i));
2442 		else
2443 			pll_state->tx[i] = intel_c20_sram_read(encoder,
2444 							       INTEL_CX0_LANE0,
2445 							       PHY_C20_A_TX_CNTX_CFG(display, i));
2446 	}
2447 
2448 	/* Read common configuration */
2449 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2450 		if (cntx)
2451 			pll_state->cmn[i] = intel_c20_sram_read(encoder,
2452 								INTEL_CX0_LANE0,
2453 								PHY_C20_B_CMN_CNTX_CFG(display, i));
2454 		else
2455 			pll_state->cmn[i] = intel_c20_sram_read(encoder,
2456 								INTEL_CX0_LANE0,
2457 								PHY_C20_A_CMN_CNTX_CFG(display, i));
2458 	}
2459 
2460 	if (intel_c20phy_use_mpllb(pll_state)) {
2461 		/* MPLLB configuration */
2462 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2463 			if (cntx)
2464 				pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2465 									  INTEL_CX0_LANE0,
2466 									  PHY_C20_B_MPLLB_CNTX_CFG(display, i));
2467 			else
2468 				pll_state->mpllb[i] = intel_c20_sram_read(encoder,
2469 									  INTEL_CX0_LANE0,
2470 									  PHY_C20_A_MPLLB_CNTX_CFG(display, i));
2471 		}
2472 	} else {
2473 		/* MPLLA configuration */
2474 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2475 			if (cntx)
2476 				pll_state->mplla[i] = intel_c20_sram_read(encoder,
2477 									  INTEL_CX0_LANE0,
2478 									  PHY_C20_B_MPLLA_CNTX_CFG(display, i));
2479 			else
2480 				pll_state->mplla[i] = intel_c20_sram_read(encoder,
2481 									  INTEL_CX0_LANE0,
2482 									  PHY_C20_A_MPLLA_CNTX_CFG(display, i));
2483 		}
2484 	}
2485 
2486 	pll_state->clock = intel_c20pll_calc_port_clock(encoder, pll_state);
2487 
2488 	intel_cx0_phy_transaction_end(encoder, wakeref);
2489 }
2490 
intel_c20pll_dump_hw_state(struct intel_display * display,const struct intel_c20pll_state * hw_state)2491 static void intel_c20pll_dump_hw_state(struct intel_display *display,
2492 				       const struct intel_c20pll_state *hw_state)
2493 {
2494 	int i;
2495 
2496 	drm_dbg_kms(display->drm, "c20pll_hw_state:\n");
2497 	drm_dbg_kms(display->drm,
2498 		    "tx[0] = 0x%.4x, tx[1] = 0x%.4x, tx[2] = 0x%.4x\n",
2499 		    hw_state->tx[0], hw_state->tx[1], hw_state->tx[2]);
2500 	drm_dbg_kms(display->drm,
2501 		    "cmn[0] = 0x%.4x, cmn[1] = 0x%.4x, cmn[2] = 0x%.4x, cmn[3] = 0x%.4x\n",
2502 		    hw_state->cmn[0], hw_state->cmn[1], hw_state->cmn[2], hw_state->cmn[3]);
2503 
2504 	if (intel_c20phy_use_mpllb(hw_state)) {
2505 		for (i = 0; i < ARRAY_SIZE(hw_state->mpllb); i++)
2506 			drm_dbg_kms(display->drm, "mpllb[%d] = 0x%.4x\n", i,
2507 				    hw_state->mpllb[i]);
2508 	} else {
2509 		for (i = 0; i < ARRAY_SIZE(hw_state->mplla); i++)
2510 			drm_dbg_kms(display->drm, "mplla[%d] = 0x%.4x\n", i,
2511 				    hw_state->mplla[i]);
2512 	}
2513 }
2514 
intel_cx0pll_dump_hw_state(struct intel_display * display,const struct intel_cx0pll_state * hw_state)2515 void intel_cx0pll_dump_hw_state(struct intel_display *display,
2516 				const struct intel_cx0pll_state *hw_state)
2517 {
2518 	if (hw_state->use_c10)
2519 		intel_c10pll_dump_hw_state(display, &hw_state->c10);
2520 	else
2521 		intel_c20pll_dump_hw_state(display, &hw_state->c20);
2522 }
2523 
intel_c20_get_dp_rate(u32 clock)2524 static u8 intel_c20_get_dp_rate(u32 clock)
2525 {
2526 	switch (clock) {
2527 	case 162000: /* 1.62 Gbps DP1.4 */
2528 		return 0;
2529 	case 270000: /* 2.7 Gbps DP1.4 */
2530 		return 1;
2531 	case 540000: /* 5.4 Gbps DP 1.4 */
2532 		return 2;
2533 	case 810000: /* 8.1 Gbps DP1.4 */
2534 		return 3;
2535 	case 216000: /* 2.16 Gbps eDP */
2536 		return 4;
2537 	case 243000: /* 2.43 Gbps eDP */
2538 		return 5;
2539 	case 324000: /* 3.24 Gbps eDP */
2540 		return 6;
2541 	case 432000: /* 4.32 Gbps eDP */
2542 		return 7;
2543 	case 1000000: /* 10 Gbps DP2.0 */
2544 		return 8;
2545 	case 1350000: /* 13.5 Gbps DP2.0 */
2546 		return 9;
2547 	case 2000000: /* 20 Gbps DP2.0 */
2548 		return 10;
2549 	case 648000: /* 6.48 Gbps eDP*/
2550 		return 11;
2551 	case 675000: /* 6.75 Gbps eDP*/
2552 		return 12;
2553 	default:
2554 		MISSING_CASE(clock);
2555 		return 0;
2556 	}
2557 }
2558 
intel_c20_get_hdmi_rate(u32 clock)2559 static u8 intel_c20_get_hdmi_rate(u32 clock)
2560 {
2561 	if (clock >= 25175 && clock <= 600000)
2562 		return 0;
2563 
2564 	switch (clock) {
2565 	case 300000: /* 3 Gbps */
2566 	case 600000: /* 6 Gbps */
2567 	case 1200000: /* 12 Gbps */
2568 		return 1;
2569 	case 800000: /* 8 Gbps */
2570 		return 2;
2571 	case 1000000: /* 10 Gbps */
2572 		return 3;
2573 	default:
2574 		MISSING_CASE(clock);
2575 		return 0;
2576 	}
2577 }
2578 
is_dp2(u32 clock)2579 static bool is_dp2(u32 clock)
2580 {
2581 	/* DP2.0 clock rates */
2582 	if (clock == 1000000 || clock == 1350000 || clock  == 2000000)
2583 		return true;
2584 
2585 	return false;
2586 }
2587 
is_hdmi_frl(u32 clock)2588 static bool is_hdmi_frl(u32 clock)
2589 {
2590 	switch (clock) {
2591 	case 300000: /* 3 Gbps */
2592 	case 600000: /* 6 Gbps */
2593 	case 800000: /* 8 Gbps */
2594 	case 1000000: /* 10 Gbps */
2595 	case 1200000: /* 12 Gbps */
2596 		return true;
2597 	default:
2598 		return false;
2599 	}
2600 }
2601 
intel_c20_protocol_switch_valid(struct intel_encoder * encoder)2602 static bool intel_c20_protocol_switch_valid(struct intel_encoder *encoder)
2603 {
2604 	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
2605 
2606 	/* banks should not be cleared for DPALT/USB4/TBT modes */
2607 	/* TODO: optimize re-calibration in legacy mode */
2608 	return intel_tc_port_in_legacy_mode(intel_dig_port);
2609 }
2610 
intel_get_c20_custom_width(u32 clock,bool dp)2611 static int intel_get_c20_custom_width(u32 clock, bool dp)
2612 {
2613 	if (dp && is_dp2(clock))
2614 		return 2;
2615 	else if (is_hdmi_frl(clock))
2616 		return 1;
2617 	else
2618 		return 0;
2619 }
2620 
intel_c20_pll_program(struct intel_display * display,struct intel_encoder * encoder,const struct intel_c20pll_state * pll_state,bool is_dp,int port_clock)2621 static void intel_c20_pll_program(struct intel_display *display,
2622 				  struct intel_encoder *encoder,
2623 				  const struct intel_c20pll_state *pll_state,
2624 				  bool is_dp, int port_clock)
2625 {
2626 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2627 	bool cntx;
2628 	int i;
2629 
2630 	/* 1. Read current context selection */
2631 	cntx = intel_cx0_read(encoder, INTEL_CX0_LANE0, PHY_C20_VDR_CUSTOM_SERDES_RATE) & BIT(0);
2632 
2633 	/*
2634 	 * 2. If there is a protocol switch from HDMI to DP or vice versa, clear
2635 	 * the lane #0 MPLLB CAL_DONE_BANK DP2.0 10G and 20G rates enable MPLLA.
2636 	 * Protocol switch is only applicable for MPLLA
2637 	 */
2638 	if (intel_c20_protocol_switch_valid(encoder)) {
2639 		for (i = 0; i < 4; i++)
2640 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0, RAWLANEAONX_DIG_TX_MPLLB_CAL_DONE_BANK(i), 0);
2641 		usleep_range(4000, 4100);
2642 	}
2643 
2644 	/* 3. Write SRAM configuration context. If A in use, write configuration to B context */
2645 	/* 3.1 Tx configuration */
2646 	for (i = 0; i < ARRAY_SIZE(pll_state->tx); i++) {
2647 		if (cntx)
2648 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2649 					     PHY_C20_A_TX_CNTX_CFG(display, i),
2650 					     pll_state->tx[i]);
2651 		else
2652 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2653 					     PHY_C20_B_TX_CNTX_CFG(display, i),
2654 					     pll_state->tx[i]);
2655 	}
2656 
2657 	/* 3.2 common configuration */
2658 	for (i = 0; i < ARRAY_SIZE(pll_state->cmn); i++) {
2659 		if (cntx)
2660 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2661 					     PHY_C20_A_CMN_CNTX_CFG(display, i),
2662 					     pll_state->cmn[i]);
2663 		else
2664 			intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2665 					     PHY_C20_B_CMN_CNTX_CFG(display, i),
2666 					     pll_state->cmn[i]);
2667 	}
2668 
2669 	/* 3.3 mpllb or mplla configuration */
2670 	if (intel_c20phy_use_mpllb(pll_state)) {
2671 		for (i = 0; i < ARRAY_SIZE(pll_state->mpllb); i++) {
2672 			if (cntx)
2673 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2674 						     PHY_C20_A_MPLLB_CNTX_CFG(display, i),
2675 						     pll_state->mpllb[i]);
2676 			else
2677 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2678 						     PHY_C20_B_MPLLB_CNTX_CFG(display, i),
2679 						     pll_state->mpllb[i]);
2680 		}
2681 	} else {
2682 		for (i = 0; i < ARRAY_SIZE(pll_state->mplla); i++) {
2683 			if (cntx)
2684 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2685 						     PHY_C20_A_MPLLA_CNTX_CFG(display, i),
2686 						     pll_state->mplla[i]);
2687 			else
2688 				intel_c20_sram_write(encoder, INTEL_CX0_LANE0,
2689 						     PHY_C20_B_MPLLA_CNTX_CFG(display, i),
2690 						     pll_state->mplla[i]);
2691 		}
2692 	}
2693 
2694 	/* 4. Program custom width to match the link protocol */
2695 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_WIDTH,
2696 		      PHY_C20_CUSTOM_WIDTH_MASK,
2697 		      PHY_C20_CUSTOM_WIDTH(intel_get_c20_custom_width(port_clock, is_dp)),
2698 		      MB_WRITE_COMMITTED);
2699 
2700 	/* 5. For DP or 6. For HDMI */
2701 	if (is_dp) {
2702 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2703 			      BIT(6) | PHY_C20_CUSTOM_SERDES_MASK,
2704 			      BIT(6) | PHY_C20_CUSTOM_SERDES(intel_c20_get_dp_rate(port_clock)),
2705 			      MB_WRITE_COMMITTED);
2706 	} else {
2707 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2708 			      BIT(7) | PHY_C20_CUSTOM_SERDES_MASK,
2709 			      is_hdmi_frl(port_clock) ? BIT(7) : 0,
2710 			      MB_WRITE_COMMITTED);
2711 
2712 		intel_cx0_write(encoder, INTEL_CX0_BOTH_LANES, PHY_C20_VDR_HDMI_RATE,
2713 				intel_c20_get_hdmi_rate(port_clock),
2714 				MB_WRITE_COMMITTED);
2715 	}
2716 
2717 	/*
2718 	 * 7. Write Vendor specific registers to toggle context setting to load
2719 	 * the updated programming toggle context bit
2720 	 */
2721 	intel_cx0_rmw(encoder, owned_lane_mask, PHY_C20_VDR_CUSTOM_SERDES_RATE,
2722 		      BIT(0), cntx ? 0 : 1, MB_WRITE_COMMITTED);
2723 }
2724 
intel_c10pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_c10pll_state * pll_state)2725 static int intel_c10pll_calc_port_clock(struct intel_encoder *encoder,
2726 					const struct intel_c10pll_state *pll_state)
2727 {
2728 	unsigned int frac_quot = 0, frac_rem = 0, frac_den = 1;
2729 	unsigned int multiplier, tx_clk_div, hdmi_div, refclk = 38400;
2730 	int tmpclk = 0;
2731 
2732 	if (pll_state->pll[0] & C10_PLL0_FRACEN) {
2733 		frac_quot = pll_state->pll[12] << 8 | pll_state->pll[11];
2734 		frac_rem =  pll_state->pll[14] << 8 | pll_state->pll[13];
2735 		frac_den =  pll_state->pll[10] << 8 | pll_state->pll[9];
2736 	}
2737 
2738 	multiplier = (REG_FIELD_GET8(C10_PLL3_MULTIPLIERH_MASK, pll_state->pll[3]) << 8 |
2739 		      pll_state->pll[2]) / 2 + 16;
2740 
2741 	tx_clk_div = REG_FIELD_GET8(C10_PLL15_TXCLKDIV_MASK, pll_state->pll[15]);
2742 	hdmi_div = REG_FIELD_GET8(C10_PLL15_HDMIDIV_MASK, pll_state->pll[15]);
2743 
2744 	tmpclk = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, (multiplier << 16) + frac_quot) +
2745 				     DIV_ROUND_CLOSEST(refclk * frac_rem, frac_den),
2746 				     10 << (tx_clk_div + 16));
2747 	tmpclk *= (hdmi_div ? 2 : 1);
2748 
2749 	return tmpclk;
2750 }
2751 
intel_program_port_clock_ctl(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state,bool is_dp,int port_clock,bool lane_reversal)2752 static void intel_program_port_clock_ctl(struct intel_encoder *encoder,
2753 					 const struct intel_cx0pll_state *pll_state,
2754 					 bool is_dp, int port_clock,
2755 					 bool lane_reversal)
2756 {
2757 	struct intel_display *display = to_intel_display(encoder);
2758 	u32 val = 0;
2759 
2760 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL1(display, encoder->port),
2761 		     XELPDP_PORT_REVERSAL,
2762 		     lane_reversal ? XELPDP_PORT_REVERSAL : 0);
2763 
2764 	if (lane_reversal)
2765 		val |= XELPDP_LANE1_PHY_CLOCK_SELECT;
2766 
2767 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
2768 
2769 	if (!is_dp && is_hdmi_frl(port_clock))
2770 		val |= XELPDP_DDI_CLOCK_SELECT_PREP(display, XELPDP_DDI_CLOCK_SELECT_DIV18CLK);
2771 	else
2772 		val |= XELPDP_DDI_CLOCK_SELECT_PREP(display, XELPDP_DDI_CLOCK_SELECT_MAXPCLK);
2773 
2774 	/* TODO: HDMI FRL */
2775 	/* DP2.0 10G and 20G rates enable MPLLA*/
2776 	if (port_clock == 1000000 || port_clock == 2000000)
2777 		val |= pll_state->ssc_enabled ? XELPDP_SSC_ENABLE_PLLA : 0;
2778 	else
2779 		val |= pll_state->ssc_enabled ? XELPDP_SSC_ENABLE_PLLB : 0;
2780 
2781 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
2782 		     XELPDP_LANE1_PHY_CLOCK_SELECT | XELPDP_FORWARD_CLOCK_UNGATE |
2783 		     XELPDP_DDI_CLOCK_SELECT_MASK(display) | XELPDP_SSC_ENABLE_PLLA |
2784 		     XELPDP_SSC_ENABLE_PLLB, val);
2785 }
2786 
intel_cx0_get_powerdown_update(u8 lane_mask)2787 static u32 intel_cx0_get_powerdown_update(u8 lane_mask)
2788 {
2789 	u32 val = 0;
2790 	int lane = 0;
2791 
2792 	for_each_cx0_lane_in_mask(lane_mask, lane)
2793 		val |= XELPDP_LANE_POWERDOWN_UPDATE(lane);
2794 
2795 	return val;
2796 }
2797 
intel_cx0_get_powerdown_state(u8 lane_mask,u8 state)2798 static u32 intel_cx0_get_powerdown_state(u8 lane_mask, u8 state)
2799 {
2800 	u32 val = 0;
2801 	int lane = 0;
2802 
2803 	for_each_cx0_lane_in_mask(lane_mask, lane)
2804 		val |= XELPDP_LANE_POWERDOWN_NEW_STATE(lane, state);
2805 
2806 	return val;
2807 }
2808 
intel_cx0_powerdown_change_sequence(struct intel_encoder * encoder,u8 lane_mask,u8 state)2809 static void intel_cx0_powerdown_change_sequence(struct intel_encoder *encoder,
2810 						u8 lane_mask, u8 state)
2811 {
2812 	struct intel_display *display = to_intel_display(encoder);
2813 	enum port port = encoder->port;
2814 	enum phy phy = intel_encoder_to_phy(encoder);
2815 	i915_reg_t buf_ctl2_reg = XELPDP_PORT_BUF_CTL2(display, port);
2816 	int lane;
2817 
2818 	intel_de_rmw(display, buf_ctl2_reg,
2819 		     intel_cx0_get_powerdown_state(INTEL_CX0_BOTH_LANES, XELPDP_LANE_POWERDOWN_NEW_STATE_MASK),
2820 		     intel_cx0_get_powerdown_state(lane_mask, state));
2821 
2822 	/* Wait for pending transactions.*/
2823 	for_each_cx0_lane_in_mask(lane_mask, lane)
2824 		if (intel_de_wait_for_clear(display, XELPDP_PORT_M2P_MSGBUS_CTL(display, port, lane),
2825 					    XELPDP_PORT_M2P_TRANSACTION_PENDING,
2826 					    XELPDP_MSGBUS_TIMEOUT_SLOW)) {
2827 			drm_dbg_kms(display->drm,
2828 				    "PHY %c Timeout waiting for previous transaction to complete. Reset the bus.\n",
2829 				    phy_name(phy));
2830 			intel_cx0_bus_reset(encoder, lane);
2831 		}
2832 
2833 	intel_de_rmw(display, buf_ctl2_reg,
2834 		     intel_cx0_get_powerdown_update(INTEL_CX0_BOTH_LANES),
2835 		     intel_cx0_get_powerdown_update(lane_mask));
2836 
2837 	/* Update Timeout Value */
2838 	if (intel_de_wait_custom(display, buf_ctl2_reg,
2839 				 intel_cx0_get_powerdown_update(lane_mask), 0,
2840 				 XELPDP_PORT_POWERDOWN_UPDATE_TIMEOUT_US, 0, NULL))
2841 		drm_warn(display->drm,
2842 			 "PHY %c failed to bring out of Lane reset after %dus.\n",
2843 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2844 }
2845 
intel_cx0_setup_powerdown(struct intel_encoder * encoder)2846 static void intel_cx0_setup_powerdown(struct intel_encoder *encoder)
2847 {
2848 	struct intel_display *display = to_intel_display(encoder);
2849 	enum port port = encoder->port;
2850 
2851 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port),
2852 		     XELPDP_POWER_STATE_READY_MASK,
2853 		     XELPDP_POWER_STATE_READY(CX0_P2_STATE_READY));
2854 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL3(display, port),
2855 		     XELPDP_POWER_STATE_ACTIVE_MASK |
2856 		     XELPDP_PLL_LANE_STAGGERING_DELAY_MASK,
2857 		     XELPDP_POWER_STATE_ACTIVE(CX0_P0_STATE_ACTIVE) |
2858 		     XELPDP_PLL_LANE_STAGGERING_DELAY(0));
2859 }
2860 
intel_cx0_get_pclk_refclk_request(u8 lane_mask)2861 static u32 intel_cx0_get_pclk_refclk_request(u8 lane_mask)
2862 {
2863 	u32 val = 0;
2864 	int lane = 0;
2865 
2866 	for_each_cx0_lane_in_mask(lane_mask, lane)
2867 		val |= XELPDP_LANE_PCLK_REFCLK_REQUEST(lane);
2868 
2869 	return val;
2870 }
2871 
intel_cx0_get_pclk_refclk_ack(u8 lane_mask)2872 static u32 intel_cx0_get_pclk_refclk_ack(u8 lane_mask)
2873 {
2874 	u32 val = 0;
2875 	int lane = 0;
2876 
2877 	for_each_cx0_lane_in_mask(lane_mask, lane)
2878 		val |= XELPDP_LANE_PCLK_REFCLK_ACK(lane);
2879 
2880 	return val;
2881 }
2882 
intel_cx0_phy_lane_reset(struct intel_encoder * encoder,bool lane_reversal)2883 static void intel_cx0_phy_lane_reset(struct intel_encoder *encoder,
2884 				     bool lane_reversal)
2885 {
2886 	struct intel_display *display = to_intel_display(encoder);
2887 	enum port port = encoder->port;
2888 	enum phy phy = intel_encoder_to_phy(encoder);
2889 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2890 	u8 lane_mask = lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
2891 	u32 lane_pipe_reset = owned_lane_mask == INTEL_CX0_BOTH_LANES
2892 				? XELPDP_LANE_PIPE_RESET(0) | XELPDP_LANE_PIPE_RESET(1)
2893 				: XELPDP_LANE_PIPE_RESET(0);
2894 	u32 lane_phy_current_status = owned_lane_mask == INTEL_CX0_BOTH_LANES
2895 					? (XELPDP_LANE_PHY_CURRENT_STATUS(0) |
2896 					   XELPDP_LANE_PHY_CURRENT_STATUS(1))
2897 					: XELPDP_LANE_PHY_CURRENT_STATUS(0);
2898 
2899 	if (intel_de_wait_custom(display, XELPDP_PORT_BUF_CTL1(display, port),
2900 				 XELPDP_PORT_BUF_SOC_PHY_READY,
2901 				 XELPDP_PORT_BUF_SOC_PHY_READY,
2902 				 XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US, 0, NULL))
2903 		drm_warn(display->drm,
2904 			 "PHY %c failed to bring out of SOC reset after %dus.\n",
2905 			 phy_name(phy), XELPDP_PORT_BUF_SOC_READY_TIMEOUT_US);
2906 
2907 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset,
2908 		     lane_pipe_reset);
2909 
2910 	if (intel_de_wait_custom(display, XELPDP_PORT_BUF_CTL2(display, port),
2911 				 lane_phy_current_status, lane_phy_current_status,
2912 				 XELPDP_PORT_RESET_START_TIMEOUT_US, 0, NULL))
2913 		drm_warn(display->drm,
2914 			 "PHY %c failed to bring out of Lane reset after %dus.\n",
2915 			 phy_name(phy), XELPDP_PORT_RESET_START_TIMEOUT_US);
2916 
2917 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, port),
2918 		     intel_cx0_get_pclk_refclk_request(owned_lane_mask),
2919 		     intel_cx0_get_pclk_refclk_request(lane_mask));
2920 
2921 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, port),
2922 				 intel_cx0_get_pclk_refclk_ack(owned_lane_mask),
2923 				 intel_cx0_get_pclk_refclk_ack(lane_mask),
2924 				 XELPDP_REFCLK_ENABLE_TIMEOUT_US, 0, NULL))
2925 		drm_warn(display->drm,
2926 			 "PHY %c failed to request refclk after %dus.\n",
2927 			 phy_name(phy), XELPDP_REFCLK_ENABLE_TIMEOUT_US);
2928 
2929 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
2930 					    CX0_P2_STATE_RESET);
2931 	intel_cx0_setup_powerdown(encoder);
2932 
2933 	intel_de_rmw(display, XELPDP_PORT_BUF_CTL2(display, port), lane_pipe_reset, 0);
2934 
2935 	if (intel_de_wait_for_clear(display, XELPDP_PORT_BUF_CTL2(display, port),
2936 				    lane_phy_current_status,
2937 				    XELPDP_PORT_RESET_END_TIMEOUT))
2938 		drm_warn(display->drm,
2939 			 "PHY %c failed to bring out of Lane reset after %dms.\n",
2940 			 phy_name(phy), XELPDP_PORT_RESET_END_TIMEOUT);
2941 }
2942 
intel_cx0_program_phy_lane(struct intel_encoder * encoder,int lane_count,bool lane_reversal)2943 static void intel_cx0_program_phy_lane(struct intel_encoder *encoder, int lane_count,
2944 				       bool lane_reversal)
2945 {
2946 	int i;
2947 	u8 disables;
2948 	bool dp_alt_mode = intel_tc_port_in_dp_alt_mode(enc_to_dig_port(encoder));
2949 	u8 owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
2950 
2951 	if (intel_encoder_is_c10phy(encoder))
2952 		intel_cx0_rmw(encoder, owned_lane_mask,
2953 			      PHY_C10_VDR_CONTROL(1), 0,
2954 			      C10_VDR_CTRL_MSGBUS_ACCESS,
2955 			      MB_WRITE_COMMITTED);
2956 
2957 	if (lane_reversal)
2958 		disables = REG_GENMASK8(3, 0) >> lane_count;
2959 	else
2960 		disables = REG_GENMASK8(3, 0) << lane_count;
2961 
2962 	if (dp_alt_mode && lane_count == 1) {
2963 		disables &= ~REG_GENMASK8(1, 0);
2964 		disables |= REG_FIELD_PREP8(REG_GENMASK8(1, 0), 0x1);
2965 	}
2966 
2967 	for (i = 0; i < 4; i++) {
2968 		int tx = i % 2 + 1;
2969 		u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
2970 
2971 		if (!(owned_lane_mask & lane_mask))
2972 			continue;
2973 
2974 		intel_cx0_rmw(encoder, lane_mask, PHY_CX0_TX_CONTROL(tx, 2),
2975 			      CONTROL2_DISABLE_SINGLE_TX,
2976 			      disables & BIT(i) ? CONTROL2_DISABLE_SINGLE_TX : 0,
2977 			      MB_WRITE_COMMITTED);
2978 	}
2979 
2980 	if (intel_encoder_is_c10phy(encoder))
2981 		intel_cx0_rmw(encoder, owned_lane_mask,
2982 			      PHY_C10_VDR_CONTROL(1), 0,
2983 			      C10_VDR_CTRL_UPDATE_CFG,
2984 			      MB_WRITE_COMMITTED);
2985 }
2986 
intel_cx0_get_pclk_pll_request(u8 lane_mask)2987 static u32 intel_cx0_get_pclk_pll_request(u8 lane_mask)
2988 {
2989 	u32 val = 0;
2990 	int lane = 0;
2991 
2992 	for_each_cx0_lane_in_mask(lane_mask, lane)
2993 		val |= XELPDP_LANE_PCLK_PLL_REQUEST(lane);
2994 
2995 	return val;
2996 }
2997 
intel_cx0_get_pclk_pll_ack(u8 lane_mask)2998 static u32 intel_cx0_get_pclk_pll_ack(u8 lane_mask)
2999 {
3000 	u32 val = 0;
3001 	int lane = 0;
3002 
3003 	for_each_cx0_lane_in_mask(lane_mask, lane)
3004 		val |= XELPDP_LANE_PCLK_PLL_ACK(lane);
3005 
3006 	return val;
3007 }
3008 
__intel_cx0pll_enable(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state,bool is_dp,int port_clock,int lane_count)3009 static void __intel_cx0pll_enable(struct intel_encoder *encoder,
3010 				  const struct intel_cx0pll_state *pll_state,
3011 				  bool is_dp, int port_clock, int lane_count)
3012 {
3013 	struct intel_display *display = to_intel_display(encoder);
3014 	enum phy phy = intel_encoder_to_phy(encoder);
3015 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3016 	bool lane_reversal = dig_port->lane_reversal;
3017 	u8 maxpclk_lane = lane_reversal ? INTEL_CX0_LANE1 :
3018 					  INTEL_CX0_LANE0;
3019 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3020 
3021 	/*
3022 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3023 	 * clock muxes, gating and SSC
3024 	 */
3025 	intel_program_port_clock_ctl(encoder, pll_state, is_dp, port_clock, lane_reversal);
3026 
3027 	/* 2. Bring PHY out of reset. */
3028 	intel_cx0_phy_lane_reset(encoder, lane_reversal);
3029 
3030 	/*
3031 	 * 3. Change Phy power state to Ready.
3032 	 * TODO: For DP alt mode use only one lane.
3033 	 */
3034 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3035 					    CX0_P2_STATE_READY);
3036 
3037 	/*
3038 	 * 4. Program PORT_MSGBUS_TIMER register's Message Bus Timer field to 0xA000.
3039 	 *    (This is done inside intel_cx0_phy_transaction_begin(), since we would need
3040 	 *    the right timer thresholds for readouts too.)
3041 	 */
3042 
3043 	/* 5. Program PHY internal PLL internal registers. */
3044 	if (intel_encoder_is_c10phy(encoder))
3045 		intel_c10_pll_program(display, encoder, &pll_state->c10);
3046 	else
3047 		intel_c20_pll_program(display, encoder, &pll_state->c20, is_dp, port_clock);
3048 
3049 	/*
3050 	 * 6. Program the enabled and disabled owned PHY lane
3051 	 * transmitters over message bus
3052 	 */
3053 	intel_cx0_program_phy_lane(encoder, lane_count, lane_reversal);
3054 
3055 	/*
3056 	 * 7. Follow the Display Voltage Frequency Switching - Sequence
3057 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3058 	 */
3059 
3060 	/*
3061 	 * 8. Program DDI_CLK_VALFREQ to match intended DDI
3062 	 * clock frequency.
3063 	 */
3064 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), port_clock);
3065 
3066 	/*
3067 	 * 9. Set PORT_CLOCK_CTL register PCLK PLL Request
3068 	 * LN<Lane for maxPCLK> to "1" to enable PLL.
3069 	 */
3070 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3071 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES),
3072 		     intel_cx0_get_pclk_pll_request(maxpclk_lane));
3073 
3074 	/* 10. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK> == "1". */
3075 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3076 				 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES),
3077 				 intel_cx0_get_pclk_pll_ack(maxpclk_lane),
3078 				 XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US, 0, NULL))
3079 		drm_warn(display->drm, "Port %c PLL not locked after %dus.\n",
3080 			 phy_name(phy), XELPDP_PCLK_PLL_ENABLE_TIMEOUT_US);
3081 
3082 	/*
3083 	 * 11. Follow the Display Voltage Frequency Switching Sequence After
3084 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3085 	 */
3086 
3087 	/* TODO: enable TBT-ALT mode */
3088 	intel_cx0_phy_transaction_end(encoder, wakeref);
3089 }
3090 
intel_cx0pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3091 static void intel_cx0pll_enable(struct intel_encoder *encoder,
3092 				const struct intel_crtc_state *crtc_state)
3093 {
3094 	__intel_cx0pll_enable(encoder, &crtc_state->dpll_hw_state.cx0pll,
3095 			      intel_crtc_has_dp_encoder(crtc_state),
3096 			      crtc_state->port_clock, crtc_state->lane_count);
3097 }
3098 
intel_mtl_tbt_calc_port_clock(struct intel_encoder * encoder)3099 int intel_mtl_tbt_calc_port_clock(struct intel_encoder *encoder)
3100 {
3101 	struct intel_display *display = to_intel_display(encoder);
3102 	u32 clock, val;
3103 
3104 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3105 
3106 	clock = XELPDP_DDI_CLOCK_SELECT_GET(display, val);
3107 
3108 	drm_WARN_ON(display->drm, !(val & XELPDP_FORWARD_CLOCK_UNGATE));
3109 	drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_REQUEST));
3110 	drm_WARN_ON(display->drm, !(val & XELPDP_TBT_CLOCK_ACK));
3111 
3112 	switch (clock) {
3113 	case XELPDP_DDI_CLOCK_SELECT_TBT_162:
3114 		return 162000;
3115 	case XELPDP_DDI_CLOCK_SELECT_TBT_270:
3116 		return 270000;
3117 	case XELPDP_DDI_CLOCK_SELECT_TBT_540:
3118 		return 540000;
3119 	case XELPDP_DDI_CLOCK_SELECT_TBT_810:
3120 		return 810000;
3121 	case XELPDP_DDI_CLOCK_SELECT_TBT_312_5:
3122 		return 1000000;
3123 	case XELPDP_DDI_CLOCK_SELECT_TBT_625:
3124 		return 2000000;
3125 	default:
3126 		MISSING_CASE(clock);
3127 		return 162000;
3128 	}
3129 }
3130 
intel_mtl_tbt_clock_select(struct intel_display * display,int clock)3131 static int intel_mtl_tbt_clock_select(struct intel_display *display,
3132 				      int clock)
3133 {
3134 	switch (clock) {
3135 	case 162000:
3136 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3137 	case 270000:
3138 		return XELPDP_DDI_CLOCK_SELECT_TBT_270;
3139 	case 540000:
3140 		return XELPDP_DDI_CLOCK_SELECT_TBT_540;
3141 	case 810000:
3142 		return XELPDP_DDI_CLOCK_SELECT_TBT_810;
3143 	case 1000000:
3144 		if (DISPLAY_VER(display) < 30) {
3145 			drm_WARN_ON(display->drm, "UHBR10 not supported for the platform\n");
3146 			return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3147 		}
3148 		return XELPDP_DDI_CLOCK_SELECT_TBT_312_5;
3149 	case 2000000:
3150 		if (DISPLAY_VER(display) < 30) {
3151 			drm_WARN_ON(display->drm, "UHBR20 not supported for the platform\n");
3152 			return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3153 		}
3154 		return XELPDP_DDI_CLOCK_SELECT_TBT_625;
3155 	default:
3156 		MISSING_CASE(clock);
3157 		return XELPDP_DDI_CLOCK_SELECT_TBT_162;
3158 	}
3159 }
3160 
intel_mtl_tbt_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3161 static void intel_mtl_tbt_pll_enable(struct intel_encoder *encoder,
3162 				     const struct intel_crtc_state *crtc_state)
3163 {
3164 	struct intel_display *display = to_intel_display(encoder);
3165 	enum phy phy = intel_encoder_to_phy(encoder);
3166 	u32 val = 0;
3167 	u32 mask;
3168 
3169 	/*
3170 	 * 1. Program PORT_CLOCK_CTL REGISTER to configure
3171 	 * clock muxes, gating and SSC
3172 	 */
3173 
3174 	mask = XELPDP_DDI_CLOCK_SELECT_MASK(display);
3175 	val |= XELPDP_DDI_CLOCK_SELECT_PREP(display,
3176 					    intel_mtl_tbt_clock_select(display, crtc_state->port_clock));
3177 
3178 	mask |= XELPDP_FORWARD_CLOCK_UNGATE;
3179 	val |= XELPDP_FORWARD_CLOCK_UNGATE;
3180 
3181 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3182 		     mask, val);
3183 
3184 	/* 2. Read back PORT_CLOCK_CTL REGISTER */
3185 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3186 
3187 	/*
3188 	 * 3. Follow the Display Voltage Frequency Switching - Sequence
3189 	 * Before Frequency Change. We handle this step in bxt_set_cdclk().
3190 	 */
3191 
3192 	/*
3193 	 * 4. Set PORT_CLOCK_CTL register TBT CLOCK Request to "1" to enable PLL.
3194 	 */
3195 	val |= XELPDP_TBT_CLOCK_REQUEST;
3196 	intel_de_write(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port), val);
3197 
3198 	/* 5. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "1". */
3199 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3200 				 XELPDP_TBT_CLOCK_ACK,
3201 				 XELPDP_TBT_CLOCK_ACK,
3202 				 100, 0, NULL))
3203 		drm_warn(display->drm,
3204 			 "[ENCODER:%d:%s][%c] PHY PLL not locked after 100us.\n",
3205 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
3206 
3207 	/*
3208 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
3209 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3210 	 */
3211 
3212 	/*
3213 	 * 7. Program DDI_CLK_VALFREQ to match intended DDI
3214 	 * clock frequency.
3215 	 */
3216 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port),
3217 		       crtc_state->port_clock);
3218 }
3219 
intel_mtl_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3220 void intel_mtl_pll_enable(struct intel_encoder *encoder,
3221 			  const struct intel_crtc_state *crtc_state)
3222 {
3223 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3224 
3225 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
3226 		intel_mtl_tbt_pll_enable(encoder, crtc_state);
3227 	else
3228 		intel_cx0pll_enable(encoder, crtc_state);
3229 }
3230 
3231 /*
3232  * According to HAS we need to enable MAC Transmitting LFPS in the "PHY Common
3233  * Control 0" PIPE register in case of AUX Less ALPM is going to be used. This
3234  * function is doing that and is called by link retrain sequence.
3235  */
intel_lnl_mac_transmit_lfps(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3236 void intel_lnl_mac_transmit_lfps(struct intel_encoder *encoder,
3237 				 const struct intel_crtc_state *crtc_state)
3238 {
3239 	struct intel_display *display = to_intel_display(encoder);
3240 	intel_wakeref_t wakeref;
3241 	int i;
3242 	u8 owned_lane_mask;
3243 
3244 	if (DISPLAY_VER(display) < 20 ||
3245 	    !intel_alpm_is_alpm_aux_less(enc_to_intel_dp(encoder), crtc_state))
3246 		return;
3247 
3248 	owned_lane_mask = intel_cx0_get_owned_lane_mask(encoder);
3249 
3250 	wakeref = intel_cx0_phy_transaction_begin(encoder);
3251 
3252 	if (intel_encoder_is_c10phy(encoder))
3253 		intel_cx0_rmw(encoder, owned_lane_mask, PHY_C10_VDR_CONTROL(1), 0,
3254 			      C10_VDR_CTRL_MSGBUS_ACCESS, MB_WRITE_COMMITTED);
3255 
3256 	for (i = 0; i < 4; i++) {
3257 		int tx = i % 2 + 1;
3258 		u8 lane_mask = i < 2 ? INTEL_CX0_LANE0 : INTEL_CX0_LANE1;
3259 
3260 		if (!(owned_lane_mask & lane_mask))
3261 			continue;
3262 
3263 		intel_cx0_rmw(encoder, lane_mask, PHY_CMN1_CONTROL(tx, 0),
3264 			      CONTROL0_MAC_TRANSMIT_LFPS,
3265 			      CONTROL0_MAC_TRANSMIT_LFPS, MB_WRITE_COMMITTED);
3266 	}
3267 
3268 	intel_cx0_phy_transaction_end(encoder, wakeref);
3269 }
3270 
cx0_power_control_disable_val(struct intel_encoder * encoder)3271 static u8 cx0_power_control_disable_val(struct intel_encoder *encoder)
3272 {
3273 	struct intel_display *display = to_intel_display(encoder);
3274 
3275 	if (intel_encoder_is_c10phy(encoder))
3276 		return CX0_P2PG_STATE_DISABLE;
3277 
3278 	if ((display->platform.battlemage && encoder->port == PORT_A) ||
3279 	    (DISPLAY_VER(display) >= 30 && encoder->type == INTEL_OUTPUT_EDP))
3280 		return CX0_P2PG_STATE_DISABLE;
3281 
3282 	return CX0_P4PG_STATE_DISABLE;
3283 }
3284 
intel_cx0pll_disable(struct intel_encoder * encoder)3285 static void intel_cx0pll_disable(struct intel_encoder *encoder)
3286 {
3287 	struct intel_display *display = to_intel_display(encoder);
3288 	enum phy phy = intel_encoder_to_phy(encoder);
3289 	intel_wakeref_t wakeref = intel_cx0_phy_transaction_begin(encoder);
3290 
3291 	/* 1. Change owned PHY lane power to Disable state. */
3292 	intel_cx0_powerdown_change_sequence(encoder, INTEL_CX0_BOTH_LANES,
3293 					    cx0_power_control_disable_val(encoder));
3294 
3295 	/*
3296 	 * 2. Follow the Display Voltage Frequency Switching Sequence Before
3297 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3298 	 */
3299 
3300 	/*
3301 	 * 3. Set PORT_CLOCK_CTL register PCLK PLL Request LN<Lane for maxPCLK>
3302 	 * to "0" to disable PLL.
3303 	 */
3304 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3305 		     intel_cx0_get_pclk_pll_request(INTEL_CX0_BOTH_LANES) |
3306 		     intel_cx0_get_pclk_refclk_request(INTEL_CX0_BOTH_LANES), 0);
3307 
3308 	/* 4. Program DDI_CLK_VALFREQ to 0. */
3309 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3310 
3311 	/*
3312 	 * 5. Poll on PORT_CLOCK_CTL PCLK PLL Ack LN<Lane for maxPCLK**> == "0".
3313 	 */
3314 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3315 				 intel_cx0_get_pclk_pll_ack(INTEL_CX0_BOTH_LANES) |
3316 				 intel_cx0_get_pclk_refclk_ack(INTEL_CX0_BOTH_LANES), 0,
3317 				 XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US, 0, NULL))
3318 		drm_warn(display->drm,
3319 			 "Port %c PLL not unlocked after %dus.\n",
3320 			 phy_name(phy), XELPDP_PCLK_PLL_DISABLE_TIMEOUT_US);
3321 
3322 	/*
3323 	 * 6. Follow the Display Voltage Frequency Switching Sequence After
3324 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3325 	 */
3326 
3327 	/* 7. Program PORT_CLOCK_CTL register to disable and gate clocks. */
3328 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3329 		     XELPDP_DDI_CLOCK_SELECT_MASK(display), 0);
3330 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3331 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
3332 
3333 	intel_cx0_phy_transaction_end(encoder, wakeref);
3334 }
3335 
intel_cx0_pll_is_enabled(struct intel_encoder * encoder)3336 static bool intel_cx0_pll_is_enabled(struct intel_encoder *encoder)
3337 {
3338 	struct intel_display *display = to_intel_display(encoder);
3339 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3340 	u8 lane = dig_port->lane_reversal ? INTEL_CX0_LANE1 : INTEL_CX0_LANE0;
3341 
3342 	return intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port)) &
3343 			     intel_cx0_get_pclk_pll_request(lane);
3344 }
3345 
intel_mtl_tbt_pll_disable(struct intel_encoder * encoder)3346 static void intel_mtl_tbt_pll_disable(struct intel_encoder *encoder)
3347 {
3348 	struct intel_display *display = to_intel_display(encoder);
3349 	enum phy phy = intel_encoder_to_phy(encoder);
3350 
3351 	/*
3352 	 * 1. Follow the Display Voltage Frequency Switching Sequence Before
3353 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3354 	 */
3355 
3356 	/*
3357 	 * 2. Set PORT_CLOCK_CTL register TBT CLOCK Request to "0" to disable PLL.
3358 	 */
3359 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3360 		     XELPDP_TBT_CLOCK_REQUEST, 0);
3361 
3362 	/* 3. Poll on PORT_CLOCK_CTL TBT CLOCK Ack == "0". */
3363 	if (intel_de_wait_custom(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3364 				 XELPDP_TBT_CLOCK_ACK, 0, 10, 0, NULL))
3365 		drm_warn(display->drm,
3366 			 "[ENCODER:%d:%s][%c] PHY PLL not unlocked after 10us.\n",
3367 			 encoder->base.base.id, encoder->base.name, phy_name(phy));
3368 
3369 	/*
3370 	 * 4. Follow the Display Voltage Frequency Switching Sequence After
3371 	 * Frequency Change. We handle this step in bxt_set_cdclk().
3372 	 */
3373 
3374 	/*
3375 	 * 5. Program PORT CLOCK CTRL register to disable and gate clocks
3376 	 */
3377 	intel_de_rmw(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port),
3378 		     XELPDP_DDI_CLOCK_SELECT_MASK(display) |
3379 		     XELPDP_FORWARD_CLOCK_UNGATE, 0);
3380 
3381 	/* 6. Program DDI_CLK_VALFREQ to 0. */
3382 	intel_de_write(display, DDI_CLK_VALFREQ(encoder->port), 0);
3383 }
3384 
intel_mtl_pll_disable(struct intel_encoder * encoder)3385 void intel_mtl_pll_disable(struct intel_encoder *encoder)
3386 {
3387 	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
3388 
3389 	if (intel_tc_port_in_tbt_alt_mode(dig_port))
3390 		intel_mtl_tbt_pll_disable(encoder);
3391 	else
3392 		intel_cx0pll_disable(encoder);
3393 }
3394 
3395 enum icl_port_dpll_id
intel_mtl_port_pll_type(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)3396 intel_mtl_port_pll_type(struct intel_encoder *encoder,
3397 			const struct intel_crtc_state *crtc_state)
3398 {
3399 	struct intel_display *display = to_intel_display(encoder);
3400 	u32 val, clock;
3401 
3402 	/*
3403 	 * TODO: Determine the PLL type from the SW state, once MTL PLL
3404 	 * handling is done via the standard shared DPLL framework.
3405 	 */
3406 	val = intel_de_read(display, XELPDP_PORT_CLOCK_CTL(display, encoder->port));
3407 	clock = XELPDP_DDI_CLOCK_SELECT_GET(display, val);
3408 
3409 	if (clock == XELPDP_DDI_CLOCK_SELECT_MAXPCLK ||
3410 	    clock == XELPDP_DDI_CLOCK_SELECT_DIV18CLK)
3411 		return ICL_PORT_DPLL_MG_PHY;
3412 	else
3413 		return ICL_PORT_DPLL_DEFAULT;
3414 }
3415 
intel_c10pll_state_verify(const struct intel_crtc_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder,struct intel_c10pll_state * mpllb_hw_state)3416 static void intel_c10pll_state_verify(const struct intel_crtc_state *state,
3417 				      struct intel_crtc *crtc,
3418 				      struct intel_encoder *encoder,
3419 				      struct intel_c10pll_state *mpllb_hw_state)
3420 {
3421 	struct intel_display *display = to_intel_display(state);
3422 	const struct intel_c10pll_state *mpllb_sw_state = &state->dpll_hw_state.cx0pll.c10;
3423 	int i;
3424 
3425 	for (i = 0; i < ARRAY_SIZE(mpllb_sw_state->pll); i++) {
3426 		u8 expected = mpllb_sw_state->pll[i];
3427 
3428 		INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->pll[i] != expected,
3429 					 "[CRTC:%d:%s] mismatch in C10MPLLB: Register[%d] (expected 0x%02x, found 0x%02x)",
3430 					 crtc->base.base.id, crtc->base.name, i,
3431 					 expected, mpllb_hw_state->pll[i]);
3432 	}
3433 
3434 	INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->tx != mpllb_sw_state->tx,
3435 				 "[CRTC:%d:%s] mismatch in C10MPLLB: Register TX0 (expected 0x%02x, found 0x%02x)",
3436 				 crtc->base.base.id, crtc->base.name,
3437 				 mpllb_sw_state->tx, mpllb_hw_state->tx);
3438 
3439 	INTEL_DISPLAY_STATE_WARN(display, mpllb_hw_state->cmn != mpllb_sw_state->cmn,
3440 				 "[CRTC:%d:%s] mismatch in C10MPLLB: Register CMN0 (expected 0x%02x, found 0x%02x)",
3441 				 crtc->base.base.id, crtc->base.name,
3442 				 mpllb_sw_state->cmn, mpllb_hw_state->cmn);
3443 }
3444 
intel_cx0pll_readout_hw_state(struct intel_encoder * encoder,struct intel_cx0pll_state * pll_state)3445 void intel_cx0pll_readout_hw_state(struct intel_encoder *encoder,
3446 				   struct intel_cx0pll_state *pll_state)
3447 {
3448 	pll_state->use_c10 = false;
3449 
3450 	pll_state->tbt_mode = intel_tc_port_in_tbt_alt_mode(enc_to_dig_port(encoder));
3451 	if (pll_state->tbt_mode)
3452 		return;
3453 
3454 	if (intel_encoder_is_c10phy(encoder)) {
3455 		intel_c10pll_readout_hw_state(encoder, &pll_state->c10);
3456 		pll_state->use_c10 = true;
3457 	} else {
3458 		intel_c20pll_readout_hw_state(encoder, &pll_state->c20);
3459 	}
3460 }
3461 
mtl_compare_hw_state_c10(const struct intel_c10pll_state * a,const struct intel_c10pll_state * b)3462 static bool mtl_compare_hw_state_c10(const struct intel_c10pll_state *a,
3463 				     const struct intel_c10pll_state *b)
3464 {
3465 	if (a->tx != b->tx)
3466 		return false;
3467 
3468 	if (a->cmn != b->cmn)
3469 		return false;
3470 
3471 	if (memcmp(&a->pll, &b->pll, sizeof(a->pll)) != 0)
3472 		return false;
3473 
3474 	return true;
3475 }
3476 
mtl_compare_hw_state_c20(const struct intel_c20pll_state * a,const struct intel_c20pll_state * b)3477 static bool mtl_compare_hw_state_c20(const struct intel_c20pll_state *a,
3478 				     const struct intel_c20pll_state *b)
3479 {
3480 	if (memcmp(&a->tx, &b->tx, sizeof(a->tx)) != 0)
3481 		return false;
3482 
3483 	if (memcmp(&a->cmn, &b->cmn, sizeof(a->cmn)) != 0)
3484 		return false;
3485 
3486 	if (a->tx[0] & C20_PHY_USE_MPLLB) {
3487 		if (memcmp(&a->mpllb, &b->mpllb, sizeof(a->mpllb)) != 0)
3488 			return false;
3489 	} else {
3490 		if (memcmp(&a->mplla, &b->mplla, sizeof(a->mplla)) != 0)
3491 			return false;
3492 	}
3493 
3494 	return true;
3495 }
3496 
intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state * a,const struct intel_cx0pll_state * b)3497 bool intel_cx0pll_compare_hw_state(const struct intel_cx0pll_state *a,
3498 				   const struct intel_cx0pll_state *b)
3499 {
3500 	if (a->tbt_mode || b->tbt_mode)
3501 		return true;
3502 
3503 	if (a->use_c10 != b->use_c10)
3504 		return false;
3505 
3506 	if (a->use_c10)
3507 		return mtl_compare_hw_state_c10(&a->c10,
3508 						&b->c10);
3509 	else
3510 		return mtl_compare_hw_state_c20(&a->c20,
3511 						&b->c20);
3512 }
3513 
intel_cx0pll_calc_port_clock(struct intel_encoder * encoder,const struct intel_cx0pll_state * pll_state)3514 int intel_cx0pll_calc_port_clock(struct intel_encoder *encoder,
3515 				 const struct intel_cx0pll_state *pll_state)
3516 {
3517 	if (intel_encoder_is_c10phy(encoder))
3518 		return intel_c10pll_calc_port_clock(encoder, &pll_state->c10);
3519 
3520 	return intel_c20pll_calc_port_clock(encoder, &pll_state->c20);
3521 }
3522 
intel_c20pll_state_verify(const struct intel_crtc_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder,struct intel_c20pll_state * mpll_hw_state)3523 static void intel_c20pll_state_verify(const struct intel_crtc_state *state,
3524 				      struct intel_crtc *crtc,
3525 				      struct intel_encoder *encoder,
3526 				      struct intel_c20pll_state *mpll_hw_state)
3527 {
3528 	struct intel_display *display = to_intel_display(state);
3529 	const struct intel_c20pll_state *mpll_sw_state = &state->dpll_hw_state.cx0pll.c20;
3530 	bool sw_use_mpllb = intel_c20phy_use_mpllb(mpll_sw_state);
3531 	bool hw_use_mpllb = intel_c20phy_use_mpllb(mpll_hw_state);
3532 	int clock = intel_c20pll_calc_port_clock(encoder, mpll_sw_state);
3533 	int i;
3534 
3535 	INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->clock != clock,
3536 				 "[CRTC:%d:%s] mismatch in C20: Register CLOCK (expected %d, found %d)",
3537 				 crtc->base.base.id, crtc->base.name,
3538 				 mpll_sw_state->clock, mpll_hw_state->clock);
3539 
3540 	INTEL_DISPLAY_STATE_WARN(display, sw_use_mpllb != hw_use_mpllb,
3541 				 "[CRTC:%d:%s] mismatch in C20: Register MPLLB selection (expected %d, found %d)",
3542 				 crtc->base.base.id, crtc->base.name,
3543 				 sw_use_mpllb, hw_use_mpllb);
3544 
3545 	if (hw_use_mpllb) {
3546 		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mpllb); i++) {
3547 			INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mpllb[i] != mpll_sw_state->mpllb[i],
3548 						 "[CRTC:%d:%s] mismatch in C20MPLLB: Register[%d] (expected 0x%04x, found 0x%04x)",
3549 						 crtc->base.base.id, crtc->base.name, i,
3550 						 mpll_sw_state->mpllb[i], mpll_hw_state->mpllb[i]);
3551 		}
3552 	} else {
3553 		for (i = 0; i < ARRAY_SIZE(mpll_sw_state->mplla); i++) {
3554 			INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->mplla[i] != mpll_sw_state->mplla[i],
3555 						 "[CRTC:%d:%s] mismatch in C20MPLLA: Register[%d] (expected 0x%04x, found 0x%04x)",
3556 						 crtc->base.base.id, crtc->base.name, i,
3557 						 mpll_sw_state->mplla[i], mpll_hw_state->mplla[i]);
3558 		}
3559 	}
3560 
3561 	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->tx); i++) {
3562 		INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->tx[i] != mpll_sw_state->tx[i],
3563 					 "[CRTC:%d:%s] mismatch in C20: Register TX[%i] (expected 0x%04x, found 0x%04x)",
3564 					 crtc->base.base.id, crtc->base.name, i,
3565 					 mpll_sw_state->tx[i], mpll_hw_state->tx[i]);
3566 	}
3567 
3568 	for (i = 0; i < ARRAY_SIZE(mpll_sw_state->cmn); i++) {
3569 		INTEL_DISPLAY_STATE_WARN(display, mpll_hw_state->cmn[i] != mpll_sw_state->cmn[i],
3570 					 "[CRTC:%d:%s] mismatch in C20: Register CMN[%i] (expected 0x%04x, found 0x%04x)",
3571 					 crtc->base.base.id, crtc->base.name, i,
3572 					 mpll_sw_state->cmn[i], mpll_hw_state->cmn[i]);
3573 	}
3574 }
3575 
intel_cx0pll_state_verify(struct intel_atomic_state * state,struct intel_crtc * crtc)3576 void intel_cx0pll_state_verify(struct intel_atomic_state *state,
3577 			       struct intel_crtc *crtc)
3578 {
3579 	struct intel_display *display = to_intel_display(state);
3580 	const struct intel_crtc_state *new_crtc_state =
3581 		intel_atomic_get_new_crtc_state(state, crtc);
3582 	struct intel_encoder *encoder;
3583 	struct intel_cx0pll_state mpll_hw_state = {};
3584 
3585 	if (DISPLAY_VER(display) < 14)
3586 		return;
3587 
3588 	if (!new_crtc_state->hw.active)
3589 		return;
3590 
3591 	/* intel_get_crtc_new_encoder() only works for modeset/fastset commits */
3592 	if (!intel_crtc_needs_modeset(new_crtc_state) &&
3593 	    !intel_crtc_needs_fastset(new_crtc_state))
3594 		return;
3595 
3596 	encoder = intel_get_crtc_new_encoder(state, new_crtc_state);
3597 	intel_cx0pll_readout_hw_state(encoder, &mpll_hw_state);
3598 
3599 	if (mpll_hw_state.tbt_mode)
3600 		return;
3601 
3602 	if (intel_encoder_is_c10phy(encoder))
3603 		intel_c10pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c10);
3604 	else
3605 		intel_c20pll_state_verify(new_crtc_state, crtc, encoder, &mpll_hw_state.c20);
3606 }
3607 
3608 /*
3609  * WA 14022081154
3610  * The dedicated display PHYs reset to a power state that blocks S0ix, increasing idle
3611  * system power. After a system reset (cold boot, S3/4/5, warm reset) if a dedicated
3612  * PHY is not being brought up shortly, use these steps to move the PHY to the lowest
3613  * power state to save power. For PTL the workaround is needed only for port A. Port B
3614  * is not connected.
3615  *
3616  * 1. Follow the PLL Enable Sequence, using any valid frequency such as DP 1.62 GHz.
3617  *    This brings lanes out of reset and enables the PLL to allow powerdown to be moved
3618  *    to the Disable state.
3619  * 2. Follow PLL Disable Sequence. This moves powerdown to the Disable state and disables the PLL.
3620  */
intel_cx0_pll_power_save_wa(struct intel_display * display)3621 void intel_cx0_pll_power_save_wa(struct intel_display *display)
3622 {
3623 	struct intel_encoder *encoder;
3624 
3625 	if (DISPLAY_VER(display) != 30)
3626 		return;
3627 
3628 	for_each_intel_encoder(display->drm, encoder) {
3629 		struct intel_cx0pll_state pll_state = {};
3630 		int port_clock = 162000;
3631 
3632 		if (!intel_encoder_is_dig_port(encoder))
3633 			continue;
3634 
3635 		if (!intel_encoder_is_c10phy(encoder))
3636 			continue;
3637 
3638 		if (intel_cx0_pll_is_enabled(encoder))
3639 			continue;
3640 
3641 		if (intel_c10pll_calc_state_from_table(encoder,
3642 						       mtl_c10_edp_tables,
3643 						       true, port_clock,
3644 						       &pll_state) < 0) {
3645 			drm_WARN_ON(display->drm,
3646 				    "Unable to calc C10 state from the tables\n");
3647 			continue;
3648 		}
3649 
3650 		drm_dbg_kms(display->drm,
3651 			    "[ENCODER:%d:%s] Applying power saving workaround on disabled PLL\n",
3652 			    encoder->base.base.id, encoder->base.name);
3653 
3654 		__intel_cx0pll_enable(encoder, &pll_state, true, port_clock, 4);
3655 		intel_cx0pll_disable(encoder);
3656 	}
3657 }
3658