1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
128 struct filename *
getname_flags(const char __user * filename,int flags)129 getname_flags(const char __user *filename, int flags)
130 {
131 struct filename *result;
132 char *kname;
133 int len;
134
135 result = audit_reusename(filename);
136 if (result)
137 return result;
138
139 result = __getname();
140 if (unlikely(!result))
141 return ERR_PTR(-ENOMEM);
142
143 /*
144 * First, try to embed the struct filename inside the names_cache
145 * allocation
146 */
147 kname = (char *)result->iname;
148 result->name = kname;
149
150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 /*
152 * Handle both empty path and copy failure in one go.
153 */
154 if (unlikely(len <= 0)) {
155 if (unlikely(len < 0)) {
156 __putname(result);
157 return ERR_PTR(len);
158 }
159
160 /* The empty path is special. */
161 if (!(flags & LOOKUP_EMPTY)) {
162 __putname(result);
163 return ERR_PTR(-ENOENT);
164 }
165 }
166
167 /*
168 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
169 * separate struct filename so we can dedicate the entire
170 * names_cache allocation for the pathname, and re-do the copy from
171 * userland.
172 */
173 if (unlikely(len == EMBEDDED_NAME_MAX)) {
174 const size_t size = offsetof(struct filename, iname[1]);
175 kname = (char *)result;
176
177 /*
178 * size is chosen that way we to guarantee that
179 * result->iname[0] is within the same object and that
180 * kname can't be equal to result->iname, no matter what.
181 */
182 result = kzalloc(size, GFP_KERNEL);
183 if (unlikely(!result)) {
184 __putname(kname);
185 return ERR_PTR(-ENOMEM);
186 }
187 result->name = kname;
188 len = strncpy_from_user(kname, filename, PATH_MAX);
189 if (unlikely(len < 0)) {
190 __putname(kname);
191 kfree(result);
192 return ERR_PTR(len);
193 }
194 /* The empty path is special. */
195 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
196 __putname(kname);
197 kfree(result);
198 return ERR_PTR(-ENOENT);
199 }
200 if (unlikely(len == PATH_MAX)) {
201 __putname(kname);
202 kfree(result);
203 return ERR_PTR(-ENAMETOOLONG);
204 }
205 }
206
207 atomic_set(&result->refcnt, 1);
208 result->uptr = filename;
209 result->aname = NULL;
210 audit_getname(result);
211 return result;
212 }
213
214 struct filename *
getname_uflags(const char __user * filename,int uflags)215 getname_uflags(const char __user *filename, int uflags)
216 {
217 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
218
219 return getname_flags(filename, flags);
220 }
221
222 struct filename *
getname(const char __user * filename)223 getname(const char __user * filename)
224 {
225 return getname_flags(filename, 0);
226 }
227
228 struct filename *
getname_kernel(const char * filename)229 getname_kernel(const char * filename)
230 {
231 struct filename *result;
232 int len = strlen(filename) + 1;
233
234 result = __getname();
235 if (unlikely(!result))
236 return ERR_PTR(-ENOMEM);
237
238 if (len <= EMBEDDED_NAME_MAX) {
239 result->name = (char *)result->iname;
240 } else if (len <= PATH_MAX) {
241 const size_t size = offsetof(struct filename, iname[1]);
242 struct filename *tmp;
243
244 tmp = kmalloc(size, GFP_KERNEL);
245 if (unlikely(!tmp)) {
246 __putname(result);
247 return ERR_PTR(-ENOMEM);
248 }
249 tmp->name = (char *)result;
250 result = tmp;
251 } else {
252 __putname(result);
253 return ERR_PTR(-ENAMETOOLONG);
254 }
255 memcpy((char *)result->name, filename, len);
256 result->uptr = NULL;
257 result->aname = NULL;
258 atomic_set(&result->refcnt, 1);
259 audit_getname(result);
260
261 return result;
262 }
263 EXPORT_SYMBOL(getname_kernel);
264
putname(struct filename * name)265 void putname(struct filename *name)
266 {
267 if (IS_ERR(name))
268 return;
269
270 if (WARN_ON_ONCE(!atomic_read(&name->refcnt)))
271 return;
272
273 if (!atomic_dec_and_test(&name->refcnt))
274 return;
275
276 if (name->name != name->iname) {
277 __putname(name->name);
278 kfree(name);
279 } else
280 __putname(name);
281 }
282 EXPORT_SYMBOL(putname);
283
284 /**
285 * check_acl - perform ACL permission checking
286 * @idmap: idmap of the mount the inode was found from
287 * @inode: inode to check permissions on
288 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
289 *
290 * This function performs the ACL permission checking. Since this function
291 * retrieve POSIX acls it needs to know whether it is called from a blocking or
292 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
293 *
294 * If the inode has been found through an idmapped mount the idmap of
295 * the vfsmount must be passed through @idmap. This function will then take
296 * care to map the inode according to @idmap before checking permissions.
297 * On non-idmapped mounts or if permission checking is to be performed on the
298 * raw inode simply pass @nop_mnt_idmap.
299 */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)300 static int check_acl(struct mnt_idmap *idmap,
301 struct inode *inode, int mask)
302 {
303 #ifdef CONFIG_FS_POSIX_ACL
304 struct posix_acl *acl;
305
306 if (mask & MAY_NOT_BLOCK) {
307 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
308 if (!acl)
309 return -EAGAIN;
310 /* no ->get_inode_acl() calls in RCU mode... */
311 if (is_uncached_acl(acl))
312 return -ECHILD;
313 return posix_acl_permission(idmap, inode, acl, mask);
314 }
315
316 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
317 if (IS_ERR(acl))
318 return PTR_ERR(acl);
319 if (acl) {
320 int error = posix_acl_permission(idmap, inode, acl, mask);
321 posix_acl_release(acl);
322 return error;
323 }
324 #endif
325
326 return -EAGAIN;
327 }
328
329 /**
330 * acl_permission_check - perform basic UNIX permission checking
331 * @idmap: idmap of the mount the inode was found from
332 * @inode: inode to check permissions on
333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
334 *
335 * This function performs the basic UNIX permission checking. Since this
336 * function may retrieve POSIX acls it needs to know whether it is called from a
337 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
338 *
339 * If the inode has been found through an idmapped mount the idmap of
340 * the vfsmount must be passed through @idmap. This function will then take
341 * care to map the inode according to @idmap before checking permissions.
342 * On non-idmapped mounts or if permission checking is to be performed on the
343 * raw inode simply pass @nop_mnt_idmap.
344 */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)345 static int acl_permission_check(struct mnt_idmap *idmap,
346 struct inode *inode, int mask)
347 {
348 unsigned int mode = inode->i_mode;
349 vfsuid_t vfsuid;
350
351 /* Are we the owner? If so, ACL's don't matter */
352 vfsuid = i_uid_into_vfsuid(idmap, inode);
353 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
354 mask &= 7;
355 mode >>= 6;
356 return (mask & ~mode) ? -EACCES : 0;
357 }
358
359 /* Do we have ACL's? */
360 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
361 int error = check_acl(idmap, inode, mask);
362 if (error != -EAGAIN)
363 return error;
364 }
365
366 /* Only RWX matters for group/other mode bits */
367 mask &= 7;
368
369 /*
370 * Are the group permissions different from
371 * the other permissions in the bits we care
372 * about? Need to check group ownership if so.
373 */
374 if (mask & (mode ^ (mode >> 3))) {
375 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
376 if (vfsgid_in_group_p(vfsgid))
377 mode >>= 3;
378 }
379
380 /* Bits in 'mode' clear that we require? */
381 return (mask & ~mode) ? -EACCES : 0;
382 }
383
384 /**
385 * generic_permission - check for access rights on a Posix-like filesystem
386 * @idmap: idmap of the mount the inode was found from
387 * @inode: inode to check access rights for
388 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
389 * %MAY_NOT_BLOCK ...)
390 *
391 * Used to check for read/write/execute permissions on a file.
392 * We use "fsuid" for this, letting us set arbitrary permissions
393 * for filesystem access without changing the "normal" uids which
394 * are used for other things.
395 *
396 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
397 * request cannot be satisfied (eg. requires blocking or too much complexity).
398 * It would then be called again in ref-walk mode.
399 *
400 * If the inode has been found through an idmapped mount the idmap of
401 * the vfsmount must be passed through @idmap. This function will then take
402 * care to map the inode according to @idmap before checking permissions.
403 * On non-idmapped mounts or if permission checking is to be performed on the
404 * raw inode simply pass @nop_mnt_idmap.
405 */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)406 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
407 int mask)
408 {
409 int ret;
410
411 /*
412 * Do the basic permission checks.
413 */
414 ret = acl_permission_check(idmap, inode, mask);
415 if (ret != -EACCES)
416 return ret;
417
418 if (S_ISDIR(inode->i_mode)) {
419 /* DACs are overridable for directories */
420 if (!(mask & MAY_WRITE))
421 if (capable_wrt_inode_uidgid(idmap, inode,
422 CAP_DAC_READ_SEARCH))
423 return 0;
424 if (capable_wrt_inode_uidgid(idmap, inode,
425 CAP_DAC_OVERRIDE))
426 return 0;
427 return -EACCES;
428 }
429
430 /*
431 * Searching includes executable on directories, else just read.
432 */
433 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
434 if (mask == MAY_READ)
435 if (capable_wrt_inode_uidgid(idmap, inode,
436 CAP_DAC_READ_SEARCH))
437 return 0;
438 /*
439 * Read/write DACs are always overridable.
440 * Executable DACs are overridable when there is
441 * at least one exec bit set.
442 */
443 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
444 if (capable_wrt_inode_uidgid(idmap, inode,
445 CAP_DAC_OVERRIDE))
446 return 0;
447
448 return -EACCES;
449 }
450 EXPORT_SYMBOL(generic_permission);
451
452 /**
453 * do_inode_permission - UNIX permission checking
454 * @idmap: idmap of the mount the inode was found from
455 * @inode: inode to check permissions on
456 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
457 *
458 * We _really_ want to just do "generic_permission()" without
459 * even looking at the inode->i_op values. So we keep a cache
460 * flag in inode->i_opflags, that says "this has not special
461 * permission function, use the fast case".
462 */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)463 static inline int do_inode_permission(struct mnt_idmap *idmap,
464 struct inode *inode, int mask)
465 {
466 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
467 if (likely(inode->i_op->permission))
468 return inode->i_op->permission(idmap, inode, mask);
469
470 /* This gets set once for the inode lifetime */
471 spin_lock(&inode->i_lock);
472 inode->i_opflags |= IOP_FASTPERM;
473 spin_unlock(&inode->i_lock);
474 }
475 return generic_permission(idmap, inode, mask);
476 }
477
478 /**
479 * sb_permission - Check superblock-level permissions
480 * @sb: Superblock of inode to check permission on
481 * @inode: Inode to check permission on
482 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
483 *
484 * Separate out file-system wide checks from inode-specific permission checks.
485 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)486 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
487 {
488 if (unlikely(mask & MAY_WRITE)) {
489 umode_t mode = inode->i_mode;
490
491 /* Nobody gets write access to a read-only fs. */
492 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
493 return -EROFS;
494 }
495 return 0;
496 }
497
498 /**
499 * inode_permission - Check for access rights to a given inode
500 * @idmap: idmap of the mount the inode was found from
501 * @inode: Inode to check permission on
502 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
503 *
504 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
505 * this, letting us set arbitrary permissions for filesystem access without
506 * changing the "normal" UIDs which are used for other things.
507 *
508 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
509 */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)510 int inode_permission(struct mnt_idmap *idmap,
511 struct inode *inode, int mask)
512 {
513 int retval;
514
515 retval = sb_permission(inode->i_sb, inode, mask);
516 if (retval)
517 return retval;
518
519 if (unlikely(mask & MAY_WRITE)) {
520 /*
521 * Nobody gets write access to an immutable file.
522 */
523 if (IS_IMMUTABLE(inode))
524 return -EPERM;
525
526 /*
527 * Updating mtime will likely cause i_uid and i_gid to be
528 * written back improperly if their true value is unknown
529 * to the vfs.
530 */
531 if (HAS_UNMAPPED_ID(idmap, inode))
532 return -EACCES;
533 }
534
535 retval = do_inode_permission(idmap, inode, mask);
536 if (retval)
537 return retval;
538
539 retval = devcgroup_inode_permission(inode, mask);
540 if (retval)
541 return retval;
542
543 return security_inode_permission(inode, mask);
544 }
545 EXPORT_SYMBOL(inode_permission);
546
547 /**
548 * path_get - get a reference to a path
549 * @path: path to get the reference to
550 *
551 * Given a path increment the reference count to the dentry and the vfsmount.
552 */
path_get(const struct path * path)553 void path_get(const struct path *path)
554 {
555 mntget(path->mnt);
556 dget(path->dentry);
557 }
558 EXPORT_SYMBOL(path_get);
559
560 /**
561 * path_put - put a reference to a path
562 * @path: path to put the reference to
563 *
564 * Given a path decrement the reference count to the dentry and the vfsmount.
565 */
path_put(const struct path * path)566 void path_put(const struct path *path)
567 {
568 dput(path->dentry);
569 mntput(path->mnt);
570 }
571 EXPORT_SYMBOL(path_put);
572
573 #define EMBEDDED_LEVELS 2
574 struct nameidata {
575 struct path path;
576 struct qstr last;
577 struct path root;
578 struct inode *inode; /* path.dentry.d_inode */
579 unsigned int flags, state;
580 unsigned seq, next_seq, m_seq, r_seq;
581 int last_type;
582 unsigned depth;
583 int total_link_count;
584 struct saved {
585 struct path link;
586 struct delayed_call done;
587 const char *name;
588 unsigned seq;
589 } *stack, internal[EMBEDDED_LEVELS];
590 struct filename *name;
591 struct nameidata *saved;
592 unsigned root_seq;
593 int dfd;
594 vfsuid_t dir_vfsuid;
595 umode_t dir_mode;
596 } __randomize_layout;
597
598 #define ND_ROOT_PRESET 1
599 #define ND_ROOT_GRABBED 2
600 #define ND_JUMPED 4
601
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)602 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
603 {
604 struct nameidata *old = current->nameidata;
605 p->stack = p->internal;
606 p->depth = 0;
607 p->dfd = dfd;
608 p->name = name;
609 p->path.mnt = NULL;
610 p->path.dentry = NULL;
611 p->total_link_count = old ? old->total_link_count : 0;
612 p->saved = old;
613 current->nameidata = p;
614 }
615
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)616 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
617 const struct path *root)
618 {
619 __set_nameidata(p, dfd, name);
620 p->state = 0;
621 if (unlikely(root)) {
622 p->state = ND_ROOT_PRESET;
623 p->root = *root;
624 }
625 }
626
restore_nameidata(void)627 static void restore_nameidata(void)
628 {
629 struct nameidata *now = current->nameidata, *old = now->saved;
630
631 current->nameidata = old;
632 if (old)
633 old->total_link_count = now->total_link_count;
634 if (now->stack != now->internal)
635 kfree(now->stack);
636 }
637
nd_alloc_stack(struct nameidata * nd)638 static bool nd_alloc_stack(struct nameidata *nd)
639 {
640 struct saved *p;
641
642 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
643 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
644 if (unlikely(!p))
645 return false;
646 memcpy(p, nd->internal, sizeof(nd->internal));
647 nd->stack = p;
648 return true;
649 }
650
651 /**
652 * path_connected - Verify that a dentry is below mnt.mnt_root
653 * @mnt: The mountpoint to check.
654 * @dentry: The dentry to check.
655 *
656 * Rename can sometimes move a file or directory outside of a bind
657 * mount, path_connected allows those cases to be detected.
658 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)659 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
660 {
661 struct super_block *sb = mnt->mnt_sb;
662
663 /* Bind mounts can have disconnected paths */
664 if (mnt->mnt_root == sb->s_root)
665 return true;
666
667 return is_subdir(dentry, mnt->mnt_root);
668 }
669
drop_links(struct nameidata * nd)670 static void drop_links(struct nameidata *nd)
671 {
672 int i = nd->depth;
673 while (i--) {
674 struct saved *last = nd->stack + i;
675 do_delayed_call(&last->done);
676 clear_delayed_call(&last->done);
677 }
678 }
679
leave_rcu(struct nameidata * nd)680 static void leave_rcu(struct nameidata *nd)
681 {
682 nd->flags &= ~LOOKUP_RCU;
683 nd->seq = nd->next_seq = 0;
684 rcu_read_unlock();
685 }
686
terminate_walk(struct nameidata * nd)687 static void terminate_walk(struct nameidata *nd)
688 {
689 drop_links(nd);
690 if (!(nd->flags & LOOKUP_RCU)) {
691 int i;
692 path_put(&nd->path);
693 for (i = 0; i < nd->depth; i++)
694 path_put(&nd->stack[i].link);
695 if (nd->state & ND_ROOT_GRABBED) {
696 path_put(&nd->root);
697 nd->state &= ~ND_ROOT_GRABBED;
698 }
699 } else {
700 leave_rcu(nd);
701 }
702 nd->depth = 0;
703 nd->path.mnt = NULL;
704 nd->path.dentry = NULL;
705 }
706
707 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)708 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
709 {
710 int res = __legitimize_mnt(path->mnt, mseq);
711 if (unlikely(res)) {
712 if (res > 0)
713 path->mnt = NULL;
714 path->dentry = NULL;
715 return false;
716 }
717 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
718 path->dentry = NULL;
719 return false;
720 }
721 return !read_seqcount_retry(&path->dentry->d_seq, seq);
722 }
723
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)724 static inline bool legitimize_path(struct nameidata *nd,
725 struct path *path, unsigned seq)
726 {
727 return __legitimize_path(path, seq, nd->m_seq);
728 }
729
legitimize_links(struct nameidata * nd)730 static bool legitimize_links(struct nameidata *nd)
731 {
732 int i;
733 if (unlikely(nd->flags & LOOKUP_CACHED)) {
734 drop_links(nd);
735 nd->depth = 0;
736 return false;
737 }
738 for (i = 0; i < nd->depth; i++) {
739 struct saved *last = nd->stack + i;
740 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
741 drop_links(nd);
742 nd->depth = i + 1;
743 return false;
744 }
745 }
746 return true;
747 }
748
legitimize_root(struct nameidata * nd)749 static bool legitimize_root(struct nameidata *nd)
750 {
751 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
752 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
753 return true;
754 nd->state |= ND_ROOT_GRABBED;
755 return legitimize_path(nd, &nd->root, nd->root_seq);
756 }
757
758 /*
759 * Path walking has 2 modes, rcu-walk and ref-walk (see
760 * Documentation/filesystems/path-lookup.txt). In situations when we can't
761 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
762 * normal reference counts on dentries and vfsmounts to transition to ref-walk
763 * mode. Refcounts are grabbed at the last known good point before rcu-walk
764 * got stuck, so ref-walk may continue from there. If this is not successful
765 * (eg. a seqcount has changed), then failure is returned and it's up to caller
766 * to restart the path walk from the beginning in ref-walk mode.
767 */
768
769 /**
770 * try_to_unlazy - try to switch to ref-walk mode.
771 * @nd: nameidata pathwalk data
772 * Returns: true on success, false on failure
773 *
774 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
775 * for ref-walk mode.
776 * Must be called from rcu-walk context.
777 * Nothing should touch nameidata between try_to_unlazy() failure and
778 * terminate_walk().
779 */
try_to_unlazy(struct nameidata * nd)780 static bool try_to_unlazy(struct nameidata *nd)
781 {
782 struct dentry *parent = nd->path.dentry;
783
784 BUG_ON(!(nd->flags & LOOKUP_RCU));
785
786 if (unlikely(!legitimize_links(nd)))
787 goto out1;
788 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
789 goto out;
790 if (unlikely(!legitimize_root(nd)))
791 goto out;
792 leave_rcu(nd);
793 BUG_ON(nd->inode != parent->d_inode);
794 return true;
795
796 out1:
797 nd->path.mnt = NULL;
798 nd->path.dentry = NULL;
799 out:
800 leave_rcu(nd);
801 return false;
802 }
803
804 /**
805 * try_to_unlazy_next - try to switch to ref-walk mode.
806 * @nd: nameidata pathwalk data
807 * @dentry: next dentry to step into
808 * Returns: true on success, false on failure
809 *
810 * Similar to try_to_unlazy(), but here we have the next dentry already
811 * picked by rcu-walk and want to legitimize that in addition to the current
812 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
813 * Nothing should touch nameidata between try_to_unlazy_next() failure and
814 * terminate_walk().
815 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)816 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
817 {
818 int res;
819 BUG_ON(!(nd->flags & LOOKUP_RCU));
820
821 if (unlikely(!legitimize_links(nd)))
822 goto out2;
823 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
824 if (unlikely(res)) {
825 if (res > 0)
826 goto out2;
827 goto out1;
828 }
829 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
830 goto out1;
831
832 /*
833 * We need to move both the parent and the dentry from the RCU domain
834 * to be properly refcounted. And the sequence number in the dentry
835 * validates *both* dentry counters, since we checked the sequence
836 * number of the parent after we got the child sequence number. So we
837 * know the parent must still be valid if the child sequence number is
838 */
839 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
840 goto out;
841 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
842 goto out_dput;
843 /*
844 * Sequence counts matched. Now make sure that the root is
845 * still valid and get it if required.
846 */
847 if (unlikely(!legitimize_root(nd)))
848 goto out_dput;
849 leave_rcu(nd);
850 return true;
851
852 out2:
853 nd->path.mnt = NULL;
854 out1:
855 nd->path.dentry = NULL;
856 out:
857 leave_rcu(nd);
858 return false;
859 out_dput:
860 leave_rcu(nd);
861 dput(dentry);
862 return false;
863 }
864
d_revalidate(struct dentry * dentry,unsigned int flags)865 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
866 {
867 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
868 return dentry->d_op->d_revalidate(dentry, flags);
869 else
870 return 1;
871 }
872
873 /**
874 * complete_walk - successful completion of path walk
875 * @nd: pointer nameidata
876 *
877 * If we had been in RCU mode, drop out of it and legitimize nd->path.
878 * Revalidate the final result, unless we'd already done that during
879 * the path walk or the filesystem doesn't ask for it. Return 0 on
880 * success, -error on failure. In case of failure caller does not
881 * need to drop nd->path.
882 */
complete_walk(struct nameidata * nd)883 static int complete_walk(struct nameidata *nd)
884 {
885 struct dentry *dentry = nd->path.dentry;
886 int status;
887
888 if (nd->flags & LOOKUP_RCU) {
889 /*
890 * We don't want to zero nd->root for scoped-lookups or
891 * externally-managed nd->root.
892 */
893 if (!(nd->state & ND_ROOT_PRESET))
894 if (!(nd->flags & LOOKUP_IS_SCOPED))
895 nd->root.mnt = NULL;
896 nd->flags &= ~LOOKUP_CACHED;
897 if (!try_to_unlazy(nd))
898 return -ECHILD;
899 }
900
901 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
902 /*
903 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
904 * ever step outside the root during lookup" and should already
905 * be guaranteed by the rest of namei, we want to avoid a namei
906 * BUG resulting in userspace being given a path that was not
907 * scoped within the root at some point during the lookup.
908 *
909 * So, do a final sanity-check to make sure that in the
910 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
911 * we won't silently return an fd completely outside of the
912 * requested root to userspace.
913 *
914 * Userspace could move the path outside the root after this
915 * check, but as discussed elsewhere this is not a concern (the
916 * resolved file was inside the root at some point).
917 */
918 if (!path_is_under(&nd->path, &nd->root))
919 return -EXDEV;
920 }
921
922 if (likely(!(nd->state & ND_JUMPED)))
923 return 0;
924
925 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
926 return 0;
927
928 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
929 if (status > 0)
930 return 0;
931
932 if (!status)
933 status = -ESTALE;
934
935 return status;
936 }
937
set_root(struct nameidata * nd)938 static int set_root(struct nameidata *nd)
939 {
940 struct fs_struct *fs = current->fs;
941
942 /*
943 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
944 * still have to ensure it doesn't happen because it will cause a breakout
945 * from the dirfd.
946 */
947 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
948 return -ENOTRECOVERABLE;
949
950 if (nd->flags & LOOKUP_RCU) {
951 unsigned seq;
952
953 do {
954 seq = read_seqcount_begin(&fs->seq);
955 nd->root = fs->root;
956 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
957 } while (read_seqcount_retry(&fs->seq, seq));
958 } else {
959 get_fs_root(fs, &nd->root);
960 nd->state |= ND_ROOT_GRABBED;
961 }
962 return 0;
963 }
964
nd_jump_root(struct nameidata * nd)965 static int nd_jump_root(struct nameidata *nd)
966 {
967 if (unlikely(nd->flags & LOOKUP_BENEATH))
968 return -EXDEV;
969 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
970 /* Absolute path arguments to path_init() are allowed. */
971 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
972 return -EXDEV;
973 }
974 if (!nd->root.mnt) {
975 int error = set_root(nd);
976 if (error)
977 return error;
978 }
979 if (nd->flags & LOOKUP_RCU) {
980 struct dentry *d;
981 nd->path = nd->root;
982 d = nd->path.dentry;
983 nd->inode = d->d_inode;
984 nd->seq = nd->root_seq;
985 if (read_seqcount_retry(&d->d_seq, nd->seq))
986 return -ECHILD;
987 } else {
988 path_put(&nd->path);
989 nd->path = nd->root;
990 path_get(&nd->path);
991 nd->inode = nd->path.dentry->d_inode;
992 }
993 nd->state |= ND_JUMPED;
994 return 0;
995 }
996
997 /*
998 * Helper to directly jump to a known parsed path from ->get_link,
999 * caller must have taken a reference to path beforehand.
1000 */
nd_jump_link(const struct path * path)1001 int nd_jump_link(const struct path *path)
1002 {
1003 int error = -ELOOP;
1004 struct nameidata *nd = current->nameidata;
1005
1006 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1007 goto err;
1008
1009 error = -EXDEV;
1010 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1011 if (nd->path.mnt != path->mnt)
1012 goto err;
1013 }
1014 /* Not currently safe for scoped-lookups. */
1015 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1016 goto err;
1017
1018 path_put(&nd->path);
1019 nd->path = *path;
1020 nd->inode = nd->path.dentry->d_inode;
1021 nd->state |= ND_JUMPED;
1022 return 0;
1023
1024 err:
1025 path_put(path);
1026 return error;
1027 }
1028
put_link(struct nameidata * nd)1029 static inline void put_link(struct nameidata *nd)
1030 {
1031 struct saved *last = nd->stack + --nd->depth;
1032 do_delayed_call(&last->done);
1033 if (!(nd->flags & LOOKUP_RCU))
1034 path_put(&last->link);
1035 }
1036
1037 static int sysctl_protected_symlinks __read_mostly;
1038 static int sysctl_protected_hardlinks __read_mostly;
1039 static int sysctl_protected_fifos __read_mostly;
1040 static int sysctl_protected_regular __read_mostly;
1041
1042 #ifdef CONFIG_SYSCTL
1043 static struct ctl_table namei_sysctls[] = {
1044 {
1045 .procname = "protected_symlinks",
1046 .data = &sysctl_protected_symlinks,
1047 .maxlen = sizeof(int),
1048 .mode = 0644,
1049 .proc_handler = proc_dointvec_minmax,
1050 .extra1 = SYSCTL_ZERO,
1051 .extra2 = SYSCTL_ONE,
1052 },
1053 {
1054 .procname = "protected_hardlinks",
1055 .data = &sysctl_protected_hardlinks,
1056 .maxlen = sizeof(int),
1057 .mode = 0644,
1058 .proc_handler = proc_dointvec_minmax,
1059 .extra1 = SYSCTL_ZERO,
1060 .extra2 = SYSCTL_ONE,
1061 },
1062 {
1063 .procname = "protected_fifos",
1064 .data = &sysctl_protected_fifos,
1065 .maxlen = sizeof(int),
1066 .mode = 0644,
1067 .proc_handler = proc_dointvec_minmax,
1068 .extra1 = SYSCTL_ZERO,
1069 .extra2 = SYSCTL_TWO,
1070 },
1071 {
1072 .procname = "protected_regular",
1073 .data = &sysctl_protected_regular,
1074 .maxlen = sizeof(int),
1075 .mode = 0644,
1076 .proc_handler = proc_dointvec_minmax,
1077 .extra1 = SYSCTL_ZERO,
1078 .extra2 = SYSCTL_TWO,
1079 },
1080 };
1081
init_fs_namei_sysctls(void)1082 static int __init init_fs_namei_sysctls(void)
1083 {
1084 register_sysctl_init("fs", namei_sysctls);
1085 return 0;
1086 }
1087 fs_initcall(init_fs_namei_sysctls);
1088
1089 #endif /* CONFIG_SYSCTL */
1090
1091 /**
1092 * may_follow_link - Check symlink following for unsafe situations
1093 * @nd: nameidata pathwalk data
1094 * @inode: Used for idmapping.
1095 *
1096 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1097 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1098 * in a sticky world-writable directory. This is to protect privileged
1099 * processes from failing races against path names that may change out
1100 * from under them by way of other users creating malicious symlinks.
1101 * It will permit symlinks to be followed only when outside a sticky
1102 * world-writable directory, or when the uid of the symlink and follower
1103 * match, or when the directory owner matches the symlink's owner.
1104 *
1105 * Returns 0 if following the symlink is allowed, -ve on error.
1106 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1107 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1108 {
1109 struct mnt_idmap *idmap;
1110 vfsuid_t vfsuid;
1111
1112 if (!sysctl_protected_symlinks)
1113 return 0;
1114
1115 idmap = mnt_idmap(nd->path.mnt);
1116 vfsuid = i_uid_into_vfsuid(idmap, inode);
1117 /* Allowed if owner and follower match. */
1118 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1119 return 0;
1120
1121 /* Allowed if parent directory not sticky and world-writable. */
1122 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1123 return 0;
1124
1125 /* Allowed if parent directory and link owner match. */
1126 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1127 return 0;
1128
1129 if (nd->flags & LOOKUP_RCU)
1130 return -ECHILD;
1131
1132 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1133 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1134 return -EACCES;
1135 }
1136
1137 /**
1138 * safe_hardlink_source - Check for safe hardlink conditions
1139 * @idmap: idmap of the mount the inode was found from
1140 * @inode: the source inode to hardlink from
1141 *
1142 * Return false if at least one of the following conditions:
1143 * - inode is not a regular file
1144 * - inode is setuid
1145 * - inode is setgid and group-exec
1146 * - access failure for read and write
1147 *
1148 * Otherwise returns true.
1149 */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1150 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1151 struct inode *inode)
1152 {
1153 umode_t mode = inode->i_mode;
1154
1155 /* Special files should not get pinned to the filesystem. */
1156 if (!S_ISREG(mode))
1157 return false;
1158
1159 /* Setuid files should not get pinned to the filesystem. */
1160 if (mode & S_ISUID)
1161 return false;
1162
1163 /* Executable setgid files should not get pinned to the filesystem. */
1164 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1165 return false;
1166
1167 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1168 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1169 return false;
1170
1171 return true;
1172 }
1173
1174 /**
1175 * may_linkat - Check permissions for creating a hardlink
1176 * @idmap: idmap of the mount the inode was found from
1177 * @link: the source to hardlink from
1178 *
1179 * Block hardlink when all of:
1180 * - sysctl_protected_hardlinks enabled
1181 * - fsuid does not match inode
1182 * - hardlink source is unsafe (see safe_hardlink_source() above)
1183 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1184 *
1185 * If the inode has been found through an idmapped mount the idmap of
1186 * the vfsmount must be passed through @idmap. This function will then take
1187 * care to map the inode according to @idmap before checking permissions.
1188 * On non-idmapped mounts or if permission checking is to be performed on the
1189 * raw inode simply pass @nop_mnt_idmap.
1190 *
1191 * Returns 0 if successful, -ve on error.
1192 */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1193 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1194 {
1195 struct inode *inode = link->dentry->d_inode;
1196
1197 /* Inode writeback is not safe when the uid or gid are invalid. */
1198 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1199 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1200 return -EOVERFLOW;
1201
1202 if (!sysctl_protected_hardlinks)
1203 return 0;
1204
1205 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1206 * otherwise, it must be a safe source.
1207 */
1208 if (safe_hardlink_source(idmap, inode) ||
1209 inode_owner_or_capable(idmap, inode))
1210 return 0;
1211
1212 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1213 return -EPERM;
1214 }
1215
1216 /**
1217 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1218 * should be allowed, or not, on files that already
1219 * exist.
1220 * @idmap: idmap of the mount the inode was found from
1221 * @nd: nameidata pathwalk data
1222 * @inode: the inode of the file to open
1223 *
1224 * Block an O_CREAT open of a FIFO (or a regular file) when:
1225 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1226 * - the file already exists
1227 * - we are in a sticky directory
1228 * - we don't own the file
1229 * - the owner of the directory doesn't own the file
1230 * - the directory is world writable
1231 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1232 * the directory doesn't have to be world writable: being group writable will
1233 * be enough.
1234 *
1235 * If the inode has been found through an idmapped mount the idmap of
1236 * the vfsmount must be passed through @idmap. This function will then take
1237 * care to map the inode according to @idmap before checking permissions.
1238 * On non-idmapped mounts or if permission checking is to be performed on the
1239 * raw inode simply pass @nop_mnt_idmap.
1240 *
1241 * Returns 0 if the open is allowed, -ve on error.
1242 */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1243 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1244 struct inode *const inode)
1245 {
1246 umode_t dir_mode = nd->dir_mode;
1247 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1248
1249 if (likely(!(dir_mode & S_ISVTX)))
1250 return 0;
1251
1252 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1253 return 0;
1254
1255 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1256 return 0;
1257
1258 i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1259
1260 if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1261 return 0;
1262
1263 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1264 return 0;
1265
1266 if (likely(dir_mode & 0002)) {
1267 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1268 return -EACCES;
1269 }
1270
1271 if (dir_mode & 0020) {
1272 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1273 audit_log_path_denied(AUDIT_ANOM_CREAT,
1274 "sticky_create_fifo");
1275 return -EACCES;
1276 }
1277
1278 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1279 audit_log_path_denied(AUDIT_ANOM_CREAT,
1280 "sticky_create_regular");
1281 return -EACCES;
1282 }
1283 }
1284
1285 return 0;
1286 }
1287
1288 /*
1289 * follow_up - Find the mountpoint of path's vfsmount
1290 *
1291 * Given a path, find the mountpoint of its source file system.
1292 * Replace @path with the path of the mountpoint in the parent mount.
1293 * Up is towards /.
1294 *
1295 * Return 1 if we went up a level and 0 if we were already at the
1296 * root.
1297 */
follow_up(struct path * path)1298 int follow_up(struct path *path)
1299 {
1300 struct mount *mnt = real_mount(path->mnt);
1301 struct mount *parent;
1302 struct dentry *mountpoint;
1303
1304 read_seqlock_excl(&mount_lock);
1305 parent = mnt->mnt_parent;
1306 if (parent == mnt) {
1307 read_sequnlock_excl(&mount_lock);
1308 return 0;
1309 }
1310 mntget(&parent->mnt);
1311 mountpoint = dget(mnt->mnt_mountpoint);
1312 read_sequnlock_excl(&mount_lock);
1313 dput(path->dentry);
1314 path->dentry = mountpoint;
1315 mntput(path->mnt);
1316 path->mnt = &parent->mnt;
1317 return 1;
1318 }
1319 EXPORT_SYMBOL(follow_up);
1320
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1321 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1322 struct path *path, unsigned *seqp)
1323 {
1324 while (mnt_has_parent(m)) {
1325 struct dentry *mountpoint = m->mnt_mountpoint;
1326
1327 m = m->mnt_parent;
1328 if (unlikely(root->dentry == mountpoint &&
1329 root->mnt == &m->mnt))
1330 break;
1331 if (mountpoint != m->mnt.mnt_root) {
1332 path->mnt = &m->mnt;
1333 path->dentry = mountpoint;
1334 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1335 return true;
1336 }
1337 }
1338 return false;
1339 }
1340
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1341 static bool choose_mountpoint(struct mount *m, const struct path *root,
1342 struct path *path)
1343 {
1344 bool found;
1345
1346 rcu_read_lock();
1347 while (1) {
1348 unsigned seq, mseq = read_seqbegin(&mount_lock);
1349
1350 found = choose_mountpoint_rcu(m, root, path, &seq);
1351 if (unlikely(!found)) {
1352 if (!read_seqretry(&mount_lock, mseq))
1353 break;
1354 } else {
1355 if (likely(__legitimize_path(path, seq, mseq)))
1356 break;
1357 rcu_read_unlock();
1358 path_put(path);
1359 rcu_read_lock();
1360 }
1361 }
1362 rcu_read_unlock();
1363 return found;
1364 }
1365
1366 /*
1367 * Perform an automount
1368 * - return -EISDIR to tell follow_managed() to stop and return the path we
1369 * were called with.
1370 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1371 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1372 {
1373 struct dentry *dentry = path->dentry;
1374
1375 /* We don't want to mount if someone's just doing a stat -
1376 * unless they're stat'ing a directory and appended a '/' to
1377 * the name.
1378 *
1379 * We do, however, want to mount if someone wants to open or
1380 * create a file of any type under the mountpoint, wants to
1381 * traverse through the mountpoint or wants to open the
1382 * mounted directory. Also, autofs may mark negative dentries
1383 * as being automount points. These will need the attentions
1384 * of the daemon to instantiate them before they can be used.
1385 */
1386 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1387 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1388 dentry->d_inode)
1389 return -EISDIR;
1390
1391 if (count && (*count)++ >= MAXSYMLINKS)
1392 return -ELOOP;
1393
1394 return finish_automount(dentry->d_op->d_automount(path), path);
1395 }
1396
1397 /*
1398 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1399 * dentries are pinned but not locked here, so negative dentry can go
1400 * positive right under us. Use of smp_load_acquire() provides a barrier
1401 * sufficient for ->d_inode and ->d_flags consistency.
1402 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1403 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1404 int *count, unsigned lookup_flags)
1405 {
1406 struct vfsmount *mnt = path->mnt;
1407 bool need_mntput = false;
1408 int ret = 0;
1409
1410 while (flags & DCACHE_MANAGED_DENTRY) {
1411 /* Allow the filesystem to manage the transit without i_mutex
1412 * being held. */
1413 if (flags & DCACHE_MANAGE_TRANSIT) {
1414 ret = path->dentry->d_op->d_manage(path, false);
1415 flags = smp_load_acquire(&path->dentry->d_flags);
1416 if (ret < 0)
1417 break;
1418 }
1419
1420 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1421 struct vfsmount *mounted = lookup_mnt(path);
1422 if (mounted) { // ... in our namespace
1423 dput(path->dentry);
1424 if (need_mntput)
1425 mntput(path->mnt);
1426 path->mnt = mounted;
1427 path->dentry = dget(mounted->mnt_root);
1428 // here we know it's positive
1429 flags = path->dentry->d_flags;
1430 need_mntput = true;
1431 continue;
1432 }
1433 }
1434
1435 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1436 break;
1437
1438 // uncovered automount point
1439 ret = follow_automount(path, count, lookup_flags);
1440 flags = smp_load_acquire(&path->dentry->d_flags);
1441 if (ret < 0)
1442 break;
1443 }
1444
1445 if (ret == -EISDIR)
1446 ret = 0;
1447 // possible if you race with several mount --move
1448 if (need_mntput && path->mnt == mnt)
1449 mntput(path->mnt);
1450 if (!ret && unlikely(d_flags_negative(flags)))
1451 ret = -ENOENT;
1452 *jumped = need_mntput;
1453 return ret;
1454 }
1455
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1456 static inline int traverse_mounts(struct path *path, bool *jumped,
1457 int *count, unsigned lookup_flags)
1458 {
1459 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1460
1461 /* fastpath */
1462 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1463 *jumped = false;
1464 if (unlikely(d_flags_negative(flags)))
1465 return -ENOENT;
1466 return 0;
1467 }
1468 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1469 }
1470
follow_down_one(struct path * path)1471 int follow_down_one(struct path *path)
1472 {
1473 struct vfsmount *mounted;
1474
1475 mounted = lookup_mnt(path);
1476 if (mounted) {
1477 dput(path->dentry);
1478 mntput(path->mnt);
1479 path->mnt = mounted;
1480 path->dentry = dget(mounted->mnt_root);
1481 return 1;
1482 }
1483 return 0;
1484 }
1485 EXPORT_SYMBOL(follow_down_one);
1486
1487 /*
1488 * Follow down to the covering mount currently visible to userspace. At each
1489 * point, the filesystem owning that dentry may be queried as to whether the
1490 * caller is permitted to proceed or not.
1491 */
follow_down(struct path * path,unsigned int flags)1492 int follow_down(struct path *path, unsigned int flags)
1493 {
1494 struct vfsmount *mnt = path->mnt;
1495 bool jumped;
1496 int ret = traverse_mounts(path, &jumped, NULL, flags);
1497
1498 if (path->mnt != mnt)
1499 mntput(mnt);
1500 return ret;
1501 }
1502 EXPORT_SYMBOL(follow_down);
1503
1504 /*
1505 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1506 * we meet a managed dentry that would need blocking.
1507 */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1508 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1509 {
1510 struct dentry *dentry = path->dentry;
1511 unsigned int flags = dentry->d_flags;
1512
1513 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1514 return true;
1515
1516 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1517 return false;
1518
1519 for (;;) {
1520 /*
1521 * Don't forget we might have a non-mountpoint managed dentry
1522 * that wants to block transit.
1523 */
1524 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1525 int res = dentry->d_op->d_manage(path, true);
1526 if (res)
1527 return res == -EISDIR;
1528 flags = dentry->d_flags;
1529 }
1530
1531 if (flags & DCACHE_MOUNTED) {
1532 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1533 if (mounted) {
1534 path->mnt = &mounted->mnt;
1535 dentry = path->dentry = mounted->mnt.mnt_root;
1536 nd->state |= ND_JUMPED;
1537 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1538 flags = dentry->d_flags;
1539 // makes sure that non-RCU pathwalk could reach
1540 // this state.
1541 if (read_seqretry(&mount_lock, nd->m_seq))
1542 return false;
1543 continue;
1544 }
1545 if (read_seqretry(&mount_lock, nd->m_seq))
1546 return false;
1547 }
1548 return !(flags & DCACHE_NEED_AUTOMOUNT);
1549 }
1550 }
1551
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1552 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1553 struct path *path)
1554 {
1555 bool jumped;
1556 int ret;
1557
1558 path->mnt = nd->path.mnt;
1559 path->dentry = dentry;
1560 if (nd->flags & LOOKUP_RCU) {
1561 unsigned int seq = nd->next_seq;
1562 if (likely(__follow_mount_rcu(nd, path)))
1563 return 0;
1564 // *path and nd->next_seq might've been clobbered
1565 path->mnt = nd->path.mnt;
1566 path->dentry = dentry;
1567 nd->next_seq = seq;
1568 if (!try_to_unlazy_next(nd, dentry))
1569 return -ECHILD;
1570 }
1571 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1572 if (jumped) {
1573 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1574 ret = -EXDEV;
1575 else
1576 nd->state |= ND_JUMPED;
1577 }
1578 if (unlikely(ret)) {
1579 dput(path->dentry);
1580 if (path->mnt != nd->path.mnt)
1581 mntput(path->mnt);
1582 }
1583 return ret;
1584 }
1585
1586 /*
1587 * This looks up the name in dcache and possibly revalidates the found dentry.
1588 * NULL is returned if the dentry does not exist in the cache.
1589 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1590 static struct dentry *lookup_dcache(const struct qstr *name,
1591 struct dentry *dir,
1592 unsigned int flags)
1593 {
1594 struct dentry *dentry = d_lookup(dir, name);
1595 if (dentry) {
1596 int error = d_revalidate(dentry, flags);
1597 if (unlikely(error <= 0)) {
1598 if (!error)
1599 d_invalidate(dentry);
1600 dput(dentry);
1601 return ERR_PTR(error);
1602 }
1603 }
1604 return dentry;
1605 }
1606
1607 /*
1608 * Parent directory has inode locked exclusive. This is one
1609 * and only case when ->lookup() gets called on non in-lookup
1610 * dentries - as the matter of fact, this only gets called
1611 * when directory is guaranteed to have no in-lookup children
1612 * at all.
1613 */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1614 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1615 struct dentry *base,
1616 unsigned int flags)
1617 {
1618 struct dentry *dentry = lookup_dcache(name, base, flags);
1619 struct dentry *old;
1620 struct inode *dir = base->d_inode;
1621
1622 if (dentry)
1623 return dentry;
1624
1625 /* Don't create child dentry for a dead directory. */
1626 if (unlikely(IS_DEADDIR(dir)))
1627 return ERR_PTR(-ENOENT);
1628
1629 dentry = d_alloc(base, name);
1630 if (unlikely(!dentry))
1631 return ERR_PTR(-ENOMEM);
1632
1633 old = dir->i_op->lookup(dir, dentry, flags);
1634 if (unlikely(old)) {
1635 dput(dentry);
1636 dentry = old;
1637 }
1638 return dentry;
1639 }
1640 EXPORT_SYMBOL(lookup_one_qstr_excl);
1641
1642 /**
1643 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1644 * @nd: current nameidata
1645 *
1646 * Do a fast, but racy lookup in the dcache for the given dentry, and
1647 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1648 * found. On error, an ERR_PTR will be returned.
1649 *
1650 * If this function returns a valid dentry and the walk is no longer
1651 * lazy, the dentry will carry a reference that must later be put. If
1652 * RCU mode is still in force, then this is not the case and the dentry
1653 * must be legitimized before use. If this returns NULL, then the walk
1654 * will no longer be in RCU mode.
1655 */
lookup_fast(struct nameidata * nd)1656 static struct dentry *lookup_fast(struct nameidata *nd)
1657 {
1658 struct dentry *dentry, *parent = nd->path.dentry;
1659 int status = 1;
1660
1661 /*
1662 * Rename seqlock is not required here because in the off chance
1663 * of a false negative due to a concurrent rename, the caller is
1664 * going to fall back to non-racy lookup.
1665 */
1666 if (nd->flags & LOOKUP_RCU) {
1667 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1668 if (unlikely(!dentry)) {
1669 if (!try_to_unlazy(nd))
1670 return ERR_PTR(-ECHILD);
1671 return NULL;
1672 }
1673
1674 /*
1675 * This sequence count validates that the parent had no
1676 * changes while we did the lookup of the dentry above.
1677 */
1678 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1679 return ERR_PTR(-ECHILD);
1680
1681 status = d_revalidate(dentry, nd->flags);
1682 if (likely(status > 0))
1683 return dentry;
1684 if (!try_to_unlazy_next(nd, dentry))
1685 return ERR_PTR(-ECHILD);
1686 if (status == -ECHILD)
1687 /* we'd been told to redo it in non-rcu mode */
1688 status = d_revalidate(dentry, nd->flags);
1689 } else {
1690 dentry = __d_lookup(parent, &nd->last);
1691 if (unlikely(!dentry))
1692 return NULL;
1693 status = d_revalidate(dentry, nd->flags);
1694 }
1695 if (unlikely(status <= 0)) {
1696 if (!status)
1697 d_invalidate(dentry);
1698 dput(dentry);
1699 return ERR_PTR(status);
1700 }
1701 return dentry;
1702 }
1703
1704 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1705 static struct dentry *__lookup_slow(const struct qstr *name,
1706 struct dentry *dir,
1707 unsigned int flags)
1708 {
1709 struct dentry *dentry, *old;
1710 struct inode *inode = dir->d_inode;
1711 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1712
1713 /* Don't go there if it's already dead */
1714 if (unlikely(IS_DEADDIR(inode)))
1715 return ERR_PTR(-ENOENT);
1716 again:
1717 dentry = d_alloc_parallel(dir, name, &wq);
1718 if (IS_ERR(dentry))
1719 return dentry;
1720 if (unlikely(!d_in_lookup(dentry))) {
1721 int error = d_revalidate(dentry, flags);
1722 if (unlikely(error <= 0)) {
1723 if (!error) {
1724 d_invalidate(dentry);
1725 dput(dentry);
1726 goto again;
1727 }
1728 dput(dentry);
1729 dentry = ERR_PTR(error);
1730 }
1731 } else {
1732 old = inode->i_op->lookup(inode, dentry, flags);
1733 d_lookup_done(dentry);
1734 if (unlikely(old)) {
1735 dput(dentry);
1736 dentry = old;
1737 }
1738 }
1739 return dentry;
1740 }
1741
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1742 static struct dentry *lookup_slow(const struct qstr *name,
1743 struct dentry *dir,
1744 unsigned int flags)
1745 {
1746 struct inode *inode = dir->d_inode;
1747 struct dentry *res;
1748 inode_lock_shared(inode);
1749 res = __lookup_slow(name, dir, flags);
1750 inode_unlock_shared(inode);
1751 return res;
1752 }
1753
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1754 static inline int may_lookup(struct mnt_idmap *idmap,
1755 struct nameidata *restrict nd)
1756 {
1757 int err, mask;
1758
1759 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1760 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1761 if (likely(!err))
1762 return 0;
1763
1764 // If we failed, and we weren't in LOOKUP_RCU, it's final
1765 if (!(nd->flags & LOOKUP_RCU))
1766 return err;
1767
1768 // Drop out of RCU mode to make sure it wasn't transient
1769 if (!try_to_unlazy(nd))
1770 return -ECHILD; // redo it all non-lazy
1771
1772 if (err != -ECHILD) // hard error
1773 return err;
1774
1775 return inode_permission(idmap, nd->inode, MAY_EXEC);
1776 }
1777
reserve_stack(struct nameidata * nd,struct path * link)1778 static int reserve_stack(struct nameidata *nd, struct path *link)
1779 {
1780 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1781 return -ELOOP;
1782
1783 if (likely(nd->depth != EMBEDDED_LEVELS))
1784 return 0;
1785 if (likely(nd->stack != nd->internal))
1786 return 0;
1787 if (likely(nd_alloc_stack(nd)))
1788 return 0;
1789
1790 if (nd->flags & LOOKUP_RCU) {
1791 // we need to grab link before we do unlazy. And we can't skip
1792 // unlazy even if we fail to grab the link - cleanup needs it
1793 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1794
1795 if (!try_to_unlazy(nd) || !grabbed_link)
1796 return -ECHILD;
1797
1798 if (nd_alloc_stack(nd))
1799 return 0;
1800 }
1801 return -ENOMEM;
1802 }
1803
1804 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1805
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1806 static const char *pick_link(struct nameidata *nd, struct path *link,
1807 struct inode *inode, int flags)
1808 {
1809 struct saved *last;
1810 const char *res;
1811 int error = reserve_stack(nd, link);
1812
1813 if (unlikely(error)) {
1814 if (!(nd->flags & LOOKUP_RCU))
1815 path_put(link);
1816 return ERR_PTR(error);
1817 }
1818 last = nd->stack + nd->depth++;
1819 last->link = *link;
1820 clear_delayed_call(&last->done);
1821 last->seq = nd->next_seq;
1822
1823 if (flags & WALK_TRAILING) {
1824 error = may_follow_link(nd, inode);
1825 if (unlikely(error))
1826 return ERR_PTR(error);
1827 }
1828
1829 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1830 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1831 return ERR_PTR(-ELOOP);
1832
1833 if (!(nd->flags & LOOKUP_RCU)) {
1834 touch_atime(&last->link);
1835 cond_resched();
1836 } else if (atime_needs_update(&last->link, inode)) {
1837 if (!try_to_unlazy(nd))
1838 return ERR_PTR(-ECHILD);
1839 touch_atime(&last->link);
1840 }
1841
1842 error = security_inode_follow_link(link->dentry, inode,
1843 nd->flags & LOOKUP_RCU);
1844 if (unlikely(error))
1845 return ERR_PTR(error);
1846
1847 res = READ_ONCE(inode->i_link);
1848 if (!res) {
1849 const char * (*get)(struct dentry *, struct inode *,
1850 struct delayed_call *);
1851 get = inode->i_op->get_link;
1852 if (nd->flags & LOOKUP_RCU) {
1853 res = get(NULL, inode, &last->done);
1854 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1855 res = get(link->dentry, inode, &last->done);
1856 } else {
1857 res = get(link->dentry, inode, &last->done);
1858 }
1859 if (!res)
1860 goto all_done;
1861 if (IS_ERR(res))
1862 return res;
1863 }
1864 if (*res == '/') {
1865 error = nd_jump_root(nd);
1866 if (unlikely(error))
1867 return ERR_PTR(error);
1868 while (unlikely(*++res == '/'))
1869 ;
1870 }
1871 if (*res)
1872 return res;
1873 all_done: // pure jump
1874 put_link(nd);
1875 return NULL;
1876 }
1877
1878 /*
1879 * Do we need to follow links? We _really_ want to be able
1880 * to do this check without having to look at inode->i_op,
1881 * so we keep a cache of "no, this doesn't need follow_link"
1882 * for the common case.
1883 *
1884 * NOTE: dentry must be what nd->next_seq had been sampled from.
1885 */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1886 static const char *step_into(struct nameidata *nd, int flags,
1887 struct dentry *dentry)
1888 {
1889 struct path path;
1890 struct inode *inode;
1891 int err = handle_mounts(nd, dentry, &path);
1892
1893 if (err < 0)
1894 return ERR_PTR(err);
1895 inode = path.dentry->d_inode;
1896 if (likely(!d_is_symlink(path.dentry)) ||
1897 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1898 (flags & WALK_NOFOLLOW)) {
1899 /* not a symlink or should not follow */
1900 if (nd->flags & LOOKUP_RCU) {
1901 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1902 return ERR_PTR(-ECHILD);
1903 if (unlikely(!inode))
1904 return ERR_PTR(-ENOENT);
1905 } else {
1906 dput(nd->path.dentry);
1907 if (nd->path.mnt != path.mnt)
1908 mntput(nd->path.mnt);
1909 }
1910 nd->path = path;
1911 nd->inode = inode;
1912 nd->seq = nd->next_seq;
1913 return NULL;
1914 }
1915 if (nd->flags & LOOKUP_RCU) {
1916 /* make sure that d_is_symlink above matches inode */
1917 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1918 return ERR_PTR(-ECHILD);
1919 } else {
1920 if (path.mnt == nd->path.mnt)
1921 mntget(path.mnt);
1922 }
1923 return pick_link(nd, &path, inode, flags);
1924 }
1925
follow_dotdot_rcu(struct nameidata * nd)1926 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1927 {
1928 struct dentry *parent, *old;
1929
1930 if (path_equal(&nd->path, &nd->root))
1931 goto in_root;
1932 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1933 struct path path;
1934 unsigned seq;
1935 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1936 &nd->root, &path, &seq))
1937 goto in_root;
1938 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1939 return ERR_PTR(-ECHILD);
1940 nd->path = path;
1941 nd->inode = path.dentry->d_inode;
1942 nd->seq = seq;
1943 // makes sure that non-RCU pathwalk could reach this state
1944 if (read_seqretry(&mount_lock, nd->m_seq))
1945 return ERR_PTR(-ECHILD);
1946 /* we know that mountpoint was pinned */
1947 }
1948 old = nd->path.dentry;
1949 parent = old->d_parent;
1950 nd->next_seq = read_seqcount_begin(&parent->d_seq);
1951 // makes sure that non-RCU pathwalk could reach this state
1952 if (read_seqcount_retry(&old->d_seq, nd->seq))
1953 return ERR_PTR(-ECHILD);
1954 if (unlikely(!path_connected(nd->path.mnt, parent)))
1955 return ERR_PTR(-ECHILD);
1956 return parent;
1957 in_root:
1958 if (read_seqretry(&mount_lock, nd->m_seq))
1959 return ERR_PTR(-ECHILD);
1960 if (unlikely(nd->flags & LOOKUP_BENEATH))
1961 return ERR_PTR(-ECHILD);
1962 nd->next_seq = nd->seq;
1963 return nd->path.dentry;
1964 }
1965
follow_dotdot(struct nameidata * nd)1966 static struct dentry *follow_dotdot(struct nameidata *nd)
1967 {
1968 struct dentry *parent;
1969
1970 if (path_equal(&nd->path, &nd->root))
1971 goto in_root;
1972 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1973 struct path path;
1974
1975 if (!choose_mountpoint(real_mount(nd->path.mnt),
1976 &nd->root, &path))
1977 goto in_root;
1978 path_put(&nd->path);
1979 nd->path = path;
1980 nd->inode = path.dentry->d_inode;
1981 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1982 return ERR_PTR(-EXDEV);
1983 }
1984 /* rare case of legitimate dget_parent()... */
1985 parent = dget_parent(nd->path.dentry);
1986 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1987 dput(parent);
1988 return ERR_PTR(-ENOENT);
1989 }
1990 return parent;
1991
1992 in_root:
1993 if (unlikely(nd->flags & LOOKUP_BENEATH))
1994 return ERR_PTR(-EXDEV);
1995 return dget(nd->path.dentry);
1996 }
1997
handle_dots(struct nameidata * nd,int type)1998 static const char *handle_dots(struct nameidata *nd, int type)
1999 {
2000 if (type == LAST_DOTDOT) {
2001 const char *error = NULL;
2002 struct dentry *parent;
2003
2004 if (!nd->root.mnt) {
2005 error = ERR_PTR(set_root(nd));
2006 if (error)
2007 return error;
2008 }
2009 if (nd->flags & LOOKUP_RCU)
2010 parent = follow_dotdot_rcu(nd);
2011 else
2012 parent = follow_dotdot(nd);
2013 if (IS_ERR(parent))
2014 return ERR_CAST(parent);
2015 error = step_into(nd, WALK_NOFOLLOW, parent);
2016 if (unlikely(error))
2017 return error;
2018
2019 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2020 /*
2021 * If there was a racing rename or mount along our
2022 * path, then we can't be sure that ".." hasn't jumped
2023 * above nd->root (and so userspace should retry or use
2024 * some fallback).
2025 */
2026 smp_rmb();
2027 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2028 return ERR_PTR(-EAGAIN);
2029 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2030 return ERR_PTR(-EAGAIN);
2031 }
2032 }
2033 return NULL;
2034 }
2035
walk_component(struct nameidata * nd,int flags)2036 static const char *walk_component(struct nameidata *nd, int flags)
2037 {
2038 struct dentry *dentry;
2039 /*
2040 * "." and ".." are special - ".." especially so because it has
2041 * to be able to know about the current root directory and
2042 * parent relationships.
2043 */
2044 if (unlikely(nd->last_type != LAST_NORM)) {
2045 if (!(flags & WALK_MORE) && nd->depth)
2046 put_link(nd);
2047 return handle_dots(nd, nd->last_type);
2048 }
2049 dentry = lookup_fast(nd);
2050 if (IS_ERR(dentry))
2051 return ERR_CAST(dentry);
2052 if (unlikely(!dentry)) {
2053 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2054 if (IS_ERR(dentry))
2055 return ERR_CAST(dentry);
2056 }
2057 if (!(flags & WALK_MORE) && nd->depth)
2058 put_link(nd);
2059 return step_into(nd, flags, dentry);
2060 }
2061
2062 /*
2063 * We can do the critical dentry name comparison and hashing
2064 * operations one word at a time, but we are limited to:
2065 *
2066 * - Architectures with fast unaligned word accesses. We could
2067 * do a "get_unaligned()" if this helps and is sufficiently
2068 * fast.
2069 *
2070 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2071 * do not trap on the (extremely unlikely) case of a page
2072 * crossing operation.
2073 *
2074 * - Furthermore, we need an efficient 64-bit compile for the
2075 * 64-bit case in order to generate the "number of bytes in
2076 * the final mask". Again, that could be replaced with a
2077 * efficient population count instruction or similar.
2078 */
2079 #ifdef CONFIG_DCACHE_WORD_ACCESS
2080
2081 #include <asm/word-at-a-time.h>
2082
2083 #ifdef HASH_MIX
2084
2085 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2086
2087 #elif defined(CONFIG_64BIT)
2088 /*
2089 * Register pressure in the mixing function is an issue, particularly
2090 * on 32-bit x86, but almost any function requires one state value and
2091 * one temporary. Instead, use a function designed for two state values
2092 * and no temporaries.
2093 *
2094 * This function cannot create a collision in only two iterations, so
2095 * we have two iterations to achieve avalanche. In those two iterations,
2096 * we have six layers of mixing, which is enough to spread one bit's
2097 * influence out to 2^6 = 64 state bits.
2098 *
2099 * Rotate constants are scored by considering either 64 one-bit input
2100 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2101 * probability of that delta causing a change to each of the 128 output
2102 * bits, using a sample of random initial states.
2103 *
2104 * The Shannon entropy of the computed probabilities is then summed
2105 * to produce a score. Ideally, any input change has a 50% chance of
2106 * toggling any given output bit.
2107 *
2108 * Mixing scores (in bits) for (12,45):
2109 * Input delta: 1-bit 2-bit
2110 * 1 round: 713.3 42542.6
2111 * 2 rounds: 2753.7 140389.8
2112 * 3 rounds: 5954.1 233458.2
2113 * 4 rounds: 7862.6 256672.2
2114 * Perfect: 8192 258048
2115 * (64*128) (64*63/2 * 128)
2116 */
2117 #define HASH_MIX(x, y, a) \
2118 ( x ^= (a), \
2119 y ^= x, x = rol64(x,12),\
2120 x += y, y = rol64(y,45),\
2121 y *= 9 )
2122
2123 /*
2124 * Fold two longs into one 32-bit hash value. This must be fast, but
2125 * latency isn't quite as critical, as there is a fair bit of additional
2126 * work done before the hash value is used.
2127 */
fold_hash(unsigned long x,unsigned long y)2128 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2129 {
2130 y ^= x * GOLDEN_RATIO_64;
2131 y *= GOLDEN_RATIO_64;
2132 return y >> 32;
2133 }
2134
2135 #else /* 32-bit case */
2136
2137 /*
2138 * Mixing scores (in bits) for (7,20):
2139 * Input delta: 1-bit 2-bit
2140 * 1 round: 330.3 9201.6
2141 * 2 rounds: 1246.4 25475.4
2142 * 3 rounds: 1907.1 31295.1
2143 * 4 rounds: 2042.3 31718.6
2144 * Perfect: 2048 31744
2145 * (32*64) (32*31/2 * 64)
2146 */
2147 #define HASH_MIX(x, y, a) \
2148 ( x ^= (a), \
2149 y ^= x, x = rol32(x, 7),\
2150 x += y, y = rol32(y,20),\
2151 y *= 9 )
2152
fold_hash(unsigned long x,unsigned long y)2153 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2154 {
2155 /* Use arch-optimized multiply if one exists */
2156 return __hash_32(y ^ __hash_32(x));
2157 }
2158
2159 #endif
2160
2161 /*
2162 * Return the hash of a string of known length. This is carfully
2163 * designed to match hash_name(), which is the more critical function.
2164 * In particular, we must end by hashing a final word containing 0..7
2165 * payload bytes, to match the way that hash_name() iterates until it
2166 * finds the delimiter after the name.
2167 */
full_name_hash(const void * salt,const char * name,unsigned int len)2168 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2169 {
2170 unsigned long a, x = 0, y = (unsigned long)salt;
2171
2172 for (;;) {
2173 if (!len)
2174 goto done;
2175 a = load_unaligned_zeropad(name);
2176 if (len < sizeof(unsigned long))
2177 break;
2178 HASH_MIX(x, y, a);
2179 name += sizeof(unsigned long);
2180 len -= sizeof(unsigned long);
2181 }
2182 x ^= a & bytemask_from_count(len);
2183 done:
2184 return fold_hash(x, y);
2185 }
2186 EXPORT_SYMBOL(full_name_hash);
2187
2188 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2189 u64 hashlen_string(const void *salt, const char *name)
2190 {
2191 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2192 unsigned long adata, mask, len;
2193 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2194
2195 len = 0;
2196 goto inside;
2197
2198 do {
2199 HASH_MIX(x, y, a);
2200 len += sizeof(unsigned long);
2201 inside:
2202 a = load_unaligned_zeropad(name+len);
2203 } while (!has_zero(a, &adata, &constants));
2204
2205 adata = prep_zero_mask(a, adata, &constants);
2206 mask = create_zero_mask(adata);
2207 x ^= a & zero_bytemask(mask);
2208
2209 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2210 }
2211 EXPORT_SYMBOL(hashlen_string);
2212
2213 /*
2214 * Calculate the length and hash of the path component, and
2215 * return the length as the result.
2216 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2217 static inline const char *hash_name(struct nameidata *nd,
2218 const char *name,
2219 unsigned long *lastword)
2220 {
2221 unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2222 unsigned long adata, bdata, mask, len;
2223 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2224
2225 /*
2226 * The first iteration is special, because it can result in
2227 * '.' and '..' and has no mixing other than the final fold.
2228 */
2229 a = load_unaligned_zeropad(name);
2230 b = a ^ REPEAT_BYTE('/');
2231 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2232 adata = prep_zero_mask(a, adata, &constants);
2233 bdata = prep_zero_mask(b, bdata, &constants);
2234 mask = create_zero_mask(adata | bdata);
2235 a &= zero_bytemask(mask);
2236 *lastword = a;
2237 len = find_zero(mask);
2238 nd->last.hash = fold_hash(a, y);
2239 nd->last.len = len;
2240 return name + len;
2241 }
2242
2243 len = 0;
2244 x = 0;
2245 do {
2246 HASH_MIX(x, y, a);
2247 len += sizeof(unsigned long);
2248 a = load_unaligned_zeropad(name+len);
2249 b = a ^ REPEAT_BYTE('/');
2250 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2251
2252 adata = prep_zero_mask(a, adata, &constants);
2253 bdata = prep_zero_mask(b, bdata, &constants);
2254 mask = create_zero_mask(adata | bdata);
2255 a &= zero_bytemask(mask);
2256 x ^= a;
2257 len += find_zero(mask);
2258 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT
2259
2260 nd->last.hash = fold_hash(x, y);
2261 nd->last.len = len;
2262 return name + len;
2263 }
2264
2265 /*
2266 * Note that the 'last' word is always zero-masked, but
2267 * was loaded as a possibly big-endian word.
2268 */
2269 #ifdef __BIG_ENDIAN
2270 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8))
2271 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16))
2272 #endif
2273
2274 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2275
2276 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2277 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2278 {
2279 unsigned long hash = init_name_hash(salt);
2280 while (len--)
2281 hash = partial_name_hash((unsigned char)*name++, hash);
2282 return end_name_hash(hash);
2283 }
2284 EXPORT_SYMBOL(full_name_hash);
2285
2286 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2287 u64 hashlen_string(const void *salt, const char *name)
2288 {
2289 unsigned long hash = init_name_hash(salt);
2290 unsigned long len = 0, c;
2291
2292 c = (unsigned char)*name;
2293 while (c) {
2294 len++;
2295 hash = partial_name_hash(c, hash);
2296 c = (unsigned char)name[len];
2297 }
2298 return hashlen_create(end_name_hash(hash), len);
2299 }
2300 EXPORT_SYMBOL(hashlen_string);
2301
2302 /*
2303 * We know there's a real path component here of at least
2304 * one character.
2305 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2306 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2307 {
2308 unsigned long hash = init_name_hash(nd->path.dentry);
2309 unsigned long len = 0, c, last = 0;
2310
2311 c = (unsigned char)*name;
2312 do {
2313 last = (last << 8) + c;
2314 len++;
2315 hash = partial_name_hash(c, hash);
2316 c = (unsigned char)name[len];
2317 } while (c && c != '/');
2318
2319 // This is reliable for DOT or DOTDOT, since the component
2320 // cannot contain NUL characters - top bits being zero means
2321 // we cannot have had any other pathnames.
2322 *lastword = last;
2323 nd->last.hash = end_name_hash(hash);
2324 nd->last.len = len;
2325 return name + len;
2326 }
2327
2328 #endif
2329
2330 #ifndef LAST_WORD_IS_DOT
2331 #define LAST_WORD_IS_DOT 0x2e
2332 #define LAST_WORD_IS_DOTDOT 0x2e2e
2333 #endif
2334
2335 /*
2336 * Name resolution.
2337 * This is the basic name resolution function, turning a pathname into
2338 * the final dentry. We expect 'base' to be positive and a directory.
2339 *
2340 * Returns 0 and nd will have valid dentry and mnt on success.
2341 * Returns error and drops reference to input namei data on failure.
2342 */
link_path_walk(const char * name,struct nameidata * nd)2343 static int link_path_walk(const char *name, struct nameidata *nd)
2344 {
2345 int depth = 0; // depth <= nd->depth
2346 int err;
2347
2348 nd->last_type = LAST_ROOT;
2349 nd->flags |= LOOKUP_PARENT;
2350 if (IS_ERR(name))
2351 return PTR_ERR(name);
2352 while (*name=='/')
2353 name++;
2354 if (!*name) {
2355 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2356 return 0;
2357 }
2358
2359 /* At this point we know we have a real path component. */
2360 for(;;) {
2361 struct mnt_idmap *idmap;
2362 const char *link;
2363 unsigned long lastword;
2364
2365 idmap = mnt_idmap(nd->path.mnt);
2366 err = may_lookup(idmap, nd);
2367 if (err)
2368 return err;
2369
2370 nd->last.name = name;
2371 name = hash_name(nd, name, &lastword);
2372
2373 switch(lastword) {
2374 case LAST_WORD_IS_DOTDOT:
2375 nd->last_type = LAST_DOTDOT;
2376 nd->state |= ND_JUMPED;
2377 break;
2378
2379 case LAST_WORD_IS_DOT:
2380 nd->last_type = LAST_DOT;
2381 break;
2382
2383 default:
2384 nd->last_type = LAST_NORM;
2385 nd->state &= ~ND_JUMPED;
2386
2387 struct dentry *parent = nd->path.dentry;
2388 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2389 err = parent->d_op->d_hash(parent, &nd->last);
2390 if (err < 0)
2391 return err;
2392 }
2393 }
2394
2395 if (!*name)
2396 goto OK;
2397 /*
2398 * If it wasn't NUL, we know it was '/'. Skip that
2399 * slash, and continue until no more slashes.
2400 */
2401 do {
2402 name++;
2403 } while (unlikely(*name == '/'));
2404 if (unlikely(!*name)) {
2405 OK:
2406 /* pathname or trailing symlink, done */
2407 if (!depth) {
2408 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2409 nd->dir_mode = nd->inode->i_mode;
2410 nd->flags &= ~LOOKUP_PARENT;
2411 return 0;
2412 }
2413 /* last component of nested symlink */
2414 name = nd->stack[--depth].name;
2415 link = walk_component(nd, 0);
2416 } else {
2417 /* not the last component */
2418 link = walk_component(nd, WALK_MORE);
2419 }
2420 if (unlikely(link)) {
2421 if (IS_ERR(link))
2422 return PTR_ERR(link);
2423 /* a symlink to follow */
2424 nd->stack[depth++].name = name;
2425 name = link;
2426 continue;
2427 }
2428 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2429 if (nd->flags & LOOKUP_RCU) {
2430 if (!try_to_unlazy(nd))
2431 return -ECHILD;
2432 }
2433 return -ENOTDIR;
2434 }
2435 }
2436 }
2437
2438 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2439 static const char *path_init(struct nameidata *nd, unsigned flags)
2440 {
2441 int error;
2442 const char *s = nd->name->name;
2443
2444 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2445 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2446 return ERR_PTR(-EAGAIN);
2447
2448 if (!*s)
2449 flags &= ~LOOKUP_RCU;
2450 if (flags & LOOKUP_RCU)
2451 rcu_read_lock();
2452 else
2453 nd->seq = nd->next_seq = 0;
2454
2455 nd->flags = flags;
2456 nd->state |= ND_JUMPED;
2457
2458 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2459 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2460 smp_rmb();
2461
2462 if (nd->state & ND_ROOT_PRESET) {
2463 struct dentry *root = nd->root.dentry;
2464 struct inode *inode = root->d_inode;
2465 if (*s && unlikely(!d_can_lookup(root)))
2466 return ERR_PTR(-ENOTDIR);
2467 nd->path = nd->root;
2468 nd->inode = inode;
2469 if (flags & LOOKUP_RCU) {
2470 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2471 nd->root_seq = nd->seq;
2472 } else {
2473 path_get(&nd->path);
2474 }
2475 return s;
2476 }
2477
2478 nd->root.mnt = NULL;
2479
2480 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2481 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2482 error = nd_jump_root(nd);
2483 if (unlikely(error))
2484 return ERR_PTR(error);
2485 return s;
2486 }
2487
2488 /* Relative pathname -- get the starting-point it is relative to. */
2489 if (nd->dfd == AT_FDCWD) {
2490 if (flags & LOOKUP_RCU) {
2491 struct fs_struct *fs = current->fs;
2492 unsigned seq;
2493
2494 do {
2495 seq = read_seqcount_begin(&fs->seq);
2496 nd->path = fs->pwd;
2497 nd->inode = nd->path.dentry->d_inode;
2498 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2499 } while (read_seqcount_retry(&fs->seq, seq));
2500 } else {
2501 get_fs_pwd(current->fs, &nd->path);
2502 nd->inode = nd->path.dentry->d_inode;
2503 }
2504 } else {
2505 /* Caller must check execute permissions on the starting path component */
2506 struct fd f = fdget_raw(nd->dfd);
2507 struct dentry *dentry;
2508
2509 if (!fd_file(f))
2510 return ERR_PTR(-EBADF);
2511
2512 if (flags & LOOKUP_LINKAT_EMPTY) {
2513 if (fd_file(f)->f_cred != current_cred() &&
2514 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH)) {
2515 fdput(f);
2516 return ERR_PTR(-ENOENT);
2517 }
2518 }
2519
2520 dentry = fd_file(f)->f_path.dentry;
2521
2522 if (*s && unlikely(!d_can_lookup(dentry))) {
2523 fdput(f);
2524 return ERR_PTR(-ENOTDIR);
2525 }
2526
2527 nd->path = fd_file(f)->f_path;
2528 if (flags & LOOKUP_RCU) {
2529 nd->inode = nd->path.dentry->d_inode;
2530 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2531 } else {
2532 path_get(&nd->path);
2533 nd->inode = nd->path.dentry->d_inode;
2534 }
2535 fdput(f);
2536 }
2537
2538 /* For scoped-lookups we need to set the root to the dirfd as well. */
2539 if (flags & LOOKUP_IS_SCOPED) {
2540 nd->root = nd->path;
2541 if (flags & LOOKUP_RCU) {
2542 nd->root_seq = nd->seq;
2543 } else {
2544 path_get(&nd->root);
2545 nd->state |= ND_ROOT_GRABBED;
2546 }
2547 }
2548 return s;
2549 }
2550
lookup_last(struct nameidata * nd)2551 static inline const char *lookup_last(struct nameidata *nd)
2552 {
2553 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2554 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2555
2556 return walk_component(nd, WALK_TRAILING);
2557 }
2558
handle_lookup_down(struct nameidata * nd)2559 static int handle_lookup_down(struct nameidata *nd)
2560 {
2561 if (!(nd->flags & LOOKUP_RCU))
2562 dget(nd->path.dentry);
2563 nd->next_seq = nd->seq;
2564 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2565 }
2566
2567 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2568 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2569 {
2570 const char *s = path_init(nd, flags);
2571 int err;
2572
2573 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2574 err = handle_lookup_down(nd);
2575 if (unlikely(err < 0))
2576 s = ERR_PTR(err);
2577 }
2578
2579 while (!(err = link_path_walk(s, nd)) &&
2580 (s = lookup_last(nd)) != NULL)
2581 ;
2582 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2583 err = handle_lookup_down(nd);
2584 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2585 }
2586 if (!err)
2587 err = complete_walk(nd);
2588
2589 if (!err && nd->flags & LOOKUP_DIRECTORY)
2590 if (!d_can_lookup(nd->path.dentry))
2591 err = -ENOTDIR;
2592 if (!err) {
2593 *path = nd->path;
2594 nd->path.mnt = NULL;
2595 nd->path.dentry = NULL;
2596 }
2597 terminate_walk(nd);
2598 return err;
2599 }
2600
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2601 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2602 struct path *path, struct path *root)
2603 {
2604 int retval;
2605 struct nameidata nd;
2606 if (IS_ERR(name))
2607 return PTR_ERR(name);
2608 set_nameidata(&nd, dfd, name, root);
2609 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2610 if (unlikely(retval == -ECHILD))
2611 retval = path_lookupat(&nd, flags, path);
2612 if (unlikely(retval == -ESTALE))
2613 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2614
2615 if (likely(!retval))
2616 audit_inode(name, path->dentry,
2617 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2618 restore_nameidata();
2619 return retval;
2620 }
2621
2622 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2623 static int path_parentat(struct nameidata *nd, unsigned flags,
2624 struct path *parent)
2625 {
2626 const char *s = path_init(nd, flags);
2627 int err = link_path_walk(s, nd);
2628 if (!err)
2629 err = complete_walk(nd);
2630 if (!err) {
2631 *parent = nd->path;
2632 nd->path.mnt = NULL;
2633 nd->path.dentry = NULL;
2634 }
2635 terminate_walk(nd);
2636 return err;
2637 }
2638
2639 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2640 static int __filename_parentat(int dfd, struct filename *name,
2641 unsigned int flags, struct path *parent,
2642 struct qstr *last, int *type,
2643 const struct path *root)
2644 {
2645 int retval;
2646 struct nameidata nd;
2647
2648 if (IS_ERR(name))
2649 return PTR_ERR(name);
2650 set_nameidata(&nd, dfd, name, root);
2651 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2652 if (unlikely(retval == -ECHILD))
2653 retval = path_parentat(&nd, flags, parent);
2654 if (unlikely(retval == -ESTALE))
2655 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2656 if (likely(!retval)) {
2657 *last = nd.last;
2658 *type = nd.last_type;
2659 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2660 }
2661 restore_nameidata();
2662 return retval;
2663 }
2664
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2665 static int filename_parentat(int dfd, struct filename *name,
2666 unsigned int flags, struct path *parent,
2667 struct qstr *last, int *type)
2668 {
2669 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2670 }
2671
2672 /* does lookup, returns the object with parent locked */
__kern_path_locked(int dfd,struct filename * name,struct path * path)2673 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2674 {
2675 struct dentry *d;
2676 struct qstr last;
2677 int type, error;
2678
2679 error = filename_parentat(dfd, name, 0, path, &last, &type);
2680 if (error)
2681 return ERR_PTR(error);
2682 if (unlikely(type != LAST_NORM)) {
2683 path_put(path);
2684 return ERR_PTR(-EINVAL);
2685 }
2686 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2687 d = lookup_one_qstr_excl(&last, path->dentry, 0);
2688 if (IS_ERR(d)) {
2689 inode_unlock(path->dentry->d_inode);
2690 path_put(path);
2691 }
2692 return d;
2693 }
2694
kern_path_locked(const char * name,struct path * path)2695 struct dentry *kern_path_locked(const char *name, struct path *path)
2696 {
2697 struct filename *filename = getname_kernel(name);
2698 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2699
2700 putname(filename);
2701 return res;
2702 }
2703
user_path_locked_at(int dfd,const char __user * name,struct path * path)2704 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2705 {
2706 struct filename *filename = getname(name);
2707 struct dentry *res = __kern_path_locked(dfd, filename, path);
2708
2709 putname(filename);
2710 return res;
2711 }
2712 EXPORT_SYMBOL(user_path_locked_at);
2713
kern_path(const char * name,unsigned int flags,struct path * path)2714 int kern_path(const char *name, unsigned int flags, struct path *path)
2715 {
2716 struct filename *filename = getname_kernel(name);
2717 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2718
2719 putname(filename);
2720 return ret;
2721
2722 }
2723 EXPORT_SYMBOL(kern_path);
2724
2725 /**
2726 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2727 * @filename: filename structure
2728 * @flags: lookup flags
2729 * @parent: pointer to struct path to fill
2730 * @last: last component
2731 * @type: type of the last component
2732 * @root: pointer to struct path of the base directory
2733 */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2734 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2735 struct path *parent, struct qstr *last, int *type,
2736 const struct path *root)
2737 {
2738 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2739 type, root);
2740 }
2741 EXPORT_SYMBOL(vfs_path_parent_lookup);
2742
2743 /**
2744 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2745 * @dentry: pointer to dentry of the base directory
2746 * @mnt: pointer to vfs mount of the base directory
2747 * @name: pointer to file name
2748 * @flags: lookup flags
2749 * @path: pointer to struct path to fill
2750 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2751 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2752 const char *name, unsigned int flags,
2753 struct path *path)
2754 {
2755 struct filename *filename;
2756 struct path root = {.mnt = mnt, .dentry = dentry};
2757 int ret;
2758
2759 filename = getname_kernel(name);
2760 /* the first argument of filename_lookup() is ignored with root */
2761 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2762 putname(filename);
2763 return ret;
2764 }
2765 EXPORT_SYMBOL(vfs_path_lookup);
2766
lookup_one_common(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len,struct qstr * this)2767 static int lookup_one_common(struct mnt_idmap *idmap,
2768 const char *name, struct dentry *base, int len,
2769 struct qstr *this)
2770 {
2771 this->name = name;
2772 this->len = len;
2773 this->hash = full_name_hash(base, name, len);
2774 if (!len)
2775 return -EACCES;
2776
2777 if (is_dot_dotdot(name, len))
2778 return -EACCES;
2779
2780 while (len--) {
2781 unsigned int c = *(const unsigned char *)name++;
2782 if (c == '/' || c == '\0')
2783 return -EACCES;
2784 }
2785 /*
2786 * See if the low-level filesystem might want
2787 * to use its own hash..
2788 */
2789 if (base->d_flags & DCACHE_OP_HASH) {
2790 int err = base->d_op->d_hash(base, this);
2791 if (err < 0)
2792 return err;
2793 }
2794
2795 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2796 }
2797
2798 /**
2799 * try_lookup_one_len - filesystem helper to lookup single pathname component
2800 * @name: pathname component to lookup
2801 * @base: base directory to lookup from
2802 * @len: maximum length @len should be interpreted to
2803 *
2804 * Look up a dentry by name in the dcache, returning NULL if it does not
2805 * currently exist. The function does not try to create a dentry.
2806 *
2807 * Note that this routine is purely a helper for filesystem usage and should
2808 * not be called by generic code.
2809 *
2810 * The caller must hold base->i_mutex.
2811 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2812 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2813 {
2814 struct qstr this;
2815 int err;
2816
2817 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2818
2819 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2820 if (err)
2821 return ERR_PTR(err);
2822
2823 return lookup_dcache(&this, base, 0);
2824 }
2825 EXPORT_SYMBOL(try_lookup_one_len);
2826
2827 /**
2828 * lookup_one_len - filesystem helper to lookup single pathname component
2829 * @name: pathname component to lookup
2830 * @base: base directory to lookup from
2831 * @len: maximum length @len should be interpreted to
2832 *
2833 * Note that this routine is purely a helper for filesystem usage and should
2834 * not be called by generic code.
2835 *
2836 * The caller must hold base->i_mutex.
2837 */
lookup_one_len(const char * name,struct dentry * base,int len)2838 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2839 {
2840 struct dentry *dentry;
2841 struct qstr this;
2842 int err;
2843
2844 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2845
2846 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2847 if (err)
2848 return ERR_PTR(err);
2849
2850 dentry = lookup_dcache(&this, base, 0);
2851 return dentry ? dentry : __lookup_slow(&this, base, 0);
2852 }
2853 EXPORT_SYMBOL(lookup_one_len);
2854
2855 /**
2856 * lookup_one - filesystem helper to lookup single pathname component
2857 * @idmap: idmap of the mount the lookup is performed from
2858 * @name: pathname component to lookup
2859 * @base: base directory to lookup from
2860 * @len: maximum length @len should be interpreted to
2861 *
2862 * Note that this routine is purely a helper for filesystem usage and should
2863 * not be called by generic code.
2864 *
2865 * The caller must hold base->i_mutex.
2866 */
lookup_one(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2867 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2868 struct dentry *base, int len)
2869 {
2870 struct dentry *dentry;
2871 struct qstr this;
2872 int err;
2873
2874 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2875
2876 err = lookup_one_common(idmap, name, base, len, &this);
2877 if (err)
2878 return ERR_PTR(err);
2879
2880 dentry = lookup_dcache(&this, base, 0);
2881 return dentry ? dentry : __lookup_slow(&this, base, 0);
2882 }
2883 EXPORT_SYMBOL(lookup_one);
2884
2885 /**
2886 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2887 * @idmap: idmap of the mount the lookup is performed from
2888 * @name: pathname component to lookup
2889 * @base: base directory to lookup from
2890 * @len: maximum length @len should be interpreted to
2891 *
2892 * Note that this routine is purely a helper for filesystem usage and should
2893 * not be called by generic code.
2894 *
2895 * Unlike lookup_one_len, it should be called without the parent
2896 * i_mutex held, and will take the i_mutex itself if necessary.
2897 */
lookup_one_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2898 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2899 const char *name, struct dentry *base,
2900 int len)
2901 {
2902 struct qstr this;
2903 int err;
2904 struct dentry *ret;
2905
2906 err = lookup_one_common(idmap, name, base, len, &this);
2907 if (err)
2908 return ERR_PTR(err);
2909
2910 ret = lookup_dcache(&this, base, 0);
2911 if (!ret)
2912 ret = lookup_slow(&this, base, 0);
2913 return ret;
2914 }
2915 EXPORT_SYMBOL(lookup_one_unlocked);
2916
2917 /**
2918 * lookup_one_positive_unlocked - filesystem helper to lookup single
2919 * pathname component
2920 * @idmap: idmap of the mount the lookup is performed from
2921 * @name: pathname component to lookup
2922 * @base: base directory to lookup from
2923 * @len: maximum length @len should be interpreted to
2924 *
2925 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2926 * known positive or ERR_PTR(). This is what most of the users want.
2927 *
2928 * Note that pinned negative with unlocked parent _can_ become positive at any
2929 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2930 * positives have >d_inode stable, so this one avoids such problems.
2931 *
2932 * Note that this routine is purely a helper for filesystem usage and should
2933 * not be called by generic code.
2934 *
2935 * The helper should be called without i_mutex held.
2936 */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2937 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2938 const char *name,
2939 struct dentry *base, int len)
2940 {
2941 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2942
2943 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2944 dput(ret);
2945 ret = ERR_PTR(-ENOENT);
2946 }
2947 return ret;
2948 }
2949 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2950
2951 /**
2952 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2953 * @name: pathname component to lookup
2954 * @base: base directory to lookup from
2955 * @len: maximum length @len should be interpreted to
2956 *
2957 * Note that this routine is purely a helper for filesystem usage and should
2958 * not be called by generic code.
2959 *
2960 * Unlike lookup_one_len, it should be called without the parent
2961 * i_mutex held, and will take the i_mutex itself if necessary.
2962 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2963 struct dentry *lookup_one_len_unlocked(const char *name,
2964 struct dentry *base, int len)
2965 {
2966 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2967 }
2968 EXPORT_SYMBOL(lookup_one_len_unlocked);
2969
2970 /*
2971 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2972 * on negatives. Returns known positive or ERR_PTR(); that's what
2973 * most of the users want. Note that pinned negative with unlocked parent
2974 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2975 * need to be very careful; pinned positives have ->d_inode stable, so
2976 * this one avoids such problems.
2977 */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2978 struct dentry *lookup_positive_unlocked(const char *name,
2979 struct dentry *base, int len)
2980 {
2981 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2982 }
2983 EXPORT_SYMBOL(lookup_positive_unlocked);
2984
2985 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2986 int path_pts(struct path *path)
2987 {
2988 /* Find something mounted on "pts" in the same directory as
2989 * the input path.
2990 */
2991 struct dentry *parent = dget_parent(path->dentry);
2992 struct dentry *child;
2993 struct qstr this = QSTR_INIT("pts", 3);
2994
2995 if (unlikely(!path_connected(path->mnt, parent))) {
2996 dput(parent);
2997 return -ENOENT;
2998 }
2999 dput(path->dentry);
3000 path->dentry = parent;
3001 child = d_hash_and_lookup(parent, &this);
3002 if (IS_ERR_OR_NULL(child))
3003 return -ENOENT;
3004
3005 path->dentry = child;
3006 dput(parent);
3007 follow_down(path, 0);
3008 return 0;
3009 }
3010 #endif
3011
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3012 int user_path_at(int dfd, const char __user *name, unsigned flags,
3013 struct path *path)
3014 {
3015 struct filename *filename = getname_flags(name, flags);
3016 int ret = filename_lookup(dfd, filename, flags, path, NULL);
3017
3018 putname(filename);
3019 return ret;
3020 }
3021 EXPORT_SYMBOL(user_path_at);
3022
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3023 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3024 struct inode *inode)
3025 {
3026 kuid_t fsuid = current_fsuid();
3027
3028 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3029 return 0;
3030 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3031 return 0;
3032 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3033 }
3034 EXPORT_SYMBOL(__check_sticky);
3035
3036 /*
3037 * Check whether we can remove a link victim from directory dir, check
3038 * whether the type of victim is right.
3039 * 1. We can't do it if dir is read-only (done in permission())
3040 * 2. We should have write and exec permissions on dir
3041 * 3. We can't remove anything from append-only dir
3042 * 4. We can't do anything with immutable dir (done in permission())
3043 * 5. If the sticky bit on dir is set we should either
3044 * a. be owner of dir, or
3045 * b. be owner of victim, or
3046 * c. have CAP_FOWNER capability
3047 * 6. If the victim is append-only or immutable we can't do antyhing with
3048 * links pointing to it.
3049 * 7. If the victim has an unknown uid or gid we can't change the inode.
3050 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3051 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3052 * 10. We can't remove a root or mountpoint.
3053 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3054 * nfs_async_unlink().
3055 */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3056 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3057 struct dentry *victim, bool isdir)
3058 {
3059 struct inode *inode = d_backing_inode(victim);
3060 int error;
3061
3062 if (d_is_negative(victim))
3063 return -ENOENT;
3064 BUG_ON(!inode);
3065
3066 BUG_ON(victim->d_parent->d_inode != dir);
3067
3068 /* Inode writeback is not safe when the uid or gid are invalid. */
3069 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3070 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3071 return -EOVERFLOW;
3072
3073 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3074
3075 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3076 if (error)
3077 return error;
3078 if (IS_APPEND(dir))
3079 return -EPERM;
3080
3081 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3082 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3083 HAS_UNMAPPED_ID(idmap, inode))
3084 return -EPERM;
3085 if (isdir) {
3086 if (!d_is_dir(victim))
3087 return -ENOTDIR;
3088 if (IS_ROOT(victim))
3089 return -EBUSY;
3090 } else if (d_is_dir(victim))
3091 return -EISDIR;
3092 if (IS_DEADDIR(dir))
3093 return -ENOENT;
3094 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3095 return -EBUSY;
3096 return 0;
3097 }
3098
3099 /* Check whether we can create an object with dentry child in directory
3100 * dir.
3101 * 1. We can't do it if child already exists (open has special treatment for
3102 * this case, but since we are inlined it's OK)
3103 * 2. We can't do it if dir is read-only (done in permission())
3104 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3105 * 4. We should have write and exec permissions on dir
3106 * 5. We can't do it if dir is immutable (done in permission())
3107 */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3108 static inline int may_create(struct mnt_idmap *idmap,
3109 struct inode *dir, struct dentry *child)
3110 {
3111 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3112 if (child->d_inode)
3113 return -EEXIST;
3114 if (IS_DEADDIR(dir))
3115 return -ENOENT;
3116 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3117 return -EOVERFLOW;
3118
3119 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3120 }
3121
3122 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3123 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3124 {
3125 struct dentry *p = p1, *q = p2, *r;
3126
3127 while ((r = p->d_parent) != p2 && r != p)
3128 p = r;
3129 if (r == p2) {
3130 // p is a child of p2 and an ancestor of p1 or p1 itself
3131 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3132 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3133 return p;
3134 }
3135 // p is the root of connected component that contains p1
3136 // p2 does not occur on the path from p to p1
3137 while ((r = q->d_parent) != p1 && r != p && r != q)
3138 q = r;
3139 if (r == p1) {
3140 // q is a child of p1 and an ancestor of p2 or p2 itself
3141 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3142 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3143 return q;
3144 } else if (likely(r == p)) {
3145 // both p2 and p1 are descendents of p
3146 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3147 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3148 return NULL;
3149 } else { // no common ancestor at the time we'd been called
3150 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3151 return ERR_PTR(-EXDEV);
3152 }
3153 }
3154
3155 /*
3156 * p1 and p2 should be directories on the same fs.
3157 */
lock_rename(struct dentry * p1,struct dentry * p2)3158 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3159 {
3160 if (p1 == p2) {
3161 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3162 return NULL;
3163 }
3164
3165 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3166 return lock_two_directories(p1, p2);
3167 }
3168 EXPORT_SYMBOL(lock_rename);
3169
3170 /*
3171 * c1 and p2 should be on the same fs.
3172 */
lock_rename_child(struct dentry * c1,struct dentry * p2)3173 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3174 {
3175 if (READ_ONCE(c1->d_parent) == p2) {
3176 /*
3177 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3178 */
3179 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3180 /*
3181 * now that p2 is locked, nobody can move in or out of it,
3182 * so the test below is safe.
3183 */
3184 if (likely(c1->d_parent == p2))
3185 return NULL;
3186
3187 /*
3188 * c1 got moved out of p2 while we'd been taking locks;
3189 * unlock and fall back to slow case.
3190 */
3191 inode_unlock(p2->d_inode);
3192 }
3193
3194 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3195 /*
3196 * nobody can move out of any directories on this fs.
3197 */
3198 if (likely(c1->d_parent != p2))
3199 return lock_two_directories(c1->d_parent, p2);
3200
3201 /*
3202 * c1 got moved into p2 while we were taking locks;
3203 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3204 * for consistency with lock_rename().
3205 */
3206 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3207 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3208 return NULL;
3209 }
3210 EXPORT_SYMBOL(lock_rename_child);
3211
unlock_rename(struct dentry * p1,struct dentry * p2)3212 void unlock_rename(struct dentry *p1, struct dentry *p2)
3213 {
3214 inode_unlock(p1->d_inode);
3215 if (p1 != p2) {
3216 inode_unlock(p2->d_inode);
3217 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3218 }
3219 }
3220 EXPORT_SYMBOL(unlock_rename);
3221
3222 /**
3223 * vfs_prepare_mode - prepare the mode to be used for a new inode
3224 * @idmap: idmap of the mount the inode was found from
3225 * @dir: parent directory of the new inode
3226 * @mode: mode of the new inode
3227 * @mask_perms: allowed permission by the vfs
3228 * @type: type of file to be created
3229 *
3230 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3231 * object to be created.
3232 *
3233 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3234 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3235 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3236 * POSIX ACL supporting filesystems.
3237 *
3238 * Note that it's currently valid for @type to be 0 if a directory is created.
3239 * Filesystems raise that flag individually and we need to check whether each
3240 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3241 * non-zero type.
3242 *
3243 * Returns: mode to be passed to the filesystem
3244 */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3245 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3246 const struct inode *dir, umode_t mode,
3247 umode_t mask_perms, umode_t type)
3248 {
3249 mode = mode_strip_sgid(idmap, dir, mode);
3250 mode = mode_strip_umask(dir, mode);
3251
3252 /*
3253 * Apply the vfs mandated allowed permission mask and set the type of
3254 * file to be created before we call into the filesystem.
3255 */
3256 mode &= (mask_perms & ~S_IFMT);
3257 mode |= (type & S_IFMT);
3258
3259 return mode;
3260 }
3261
3262 /**
3263 * vfs_create - create new file
3264 * @idmap: idmap of the mount the inode was found from
3265 * @dir: inode of the parent directory
3266 * @dentry: dentry of the child file
3267 * @mode: mode of the child file
3268 * @want_excl: whether the file must not yet exist
3269 *
3270 * Create a new file.
3271 *
3272 * If the inode has been found through an idmapped mount the idmap of
3273 * the vfsmount must be passed through @idmap. This function will then take
3274 * care to map the inode according to @idmap before checking permissions.
3275 * On non-idmapped mounts or if permission checking is to be performed on the
3276 * raw inode simply pass @nop_mnt_idmap.
3277 */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3278 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3279 struct dentry *dentry, umode_t mode, bool want_excl)
3280 {
3281 int error;
3282
3283 error = may_create(idmap, dir, dentry);
3284 if (error)
3285 return error;
3286
3287 if (!dir->i_op->create)
3288 return -EACCES; /* shouldn't it be ENOSYS? */
3289
3290 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3291 error = security_inode_create(dir, dentry, mode);
3292 if (error)
3293 return error;
3294 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3295 if (!error)
3296 fsnotify_create(dir, dentry);
3297 return error;
3298 }
3299 EXPORT_SYMBOL(vfs_create);
3300
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3301 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3302 int (*f)(struct dentry *, umode_t, void *),
3303 void *arg)
3304 {
3305 struct inode *dir = dentry->d_parent->d_inode;
3306 int error = may_create(&nop_mnt_idmap, dir, dentry);
3307 if (error)
3308 return error;
3309
3310 mode &= S_IALLUGO;
3311 mode |= S_IFREG;
3312 error = security_inode_create(dir, dentry, mode);
3313 if (error)
3314 return error;
3315 error = f(dentry, mode, arg);
3316 if (!error)
3317 fsnotify_create(dir, dentry);
3318 return error;
3319 }
3320 EXPORT_SYMBOL(vfs_mkobj);
3321
may_open_dev(const struct path * path)3322 bool may_open_dev(const struct path *path)
3323 {
3324 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3325 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3326 }
3327
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3328 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3329 int acc_mode, int flag)
3330 {
3331 struct dentry *dentry = path->dentry;
3332 struct inode *inode = dentry->d_inode;
3333 int error;
3334
3335 if (!inode)
3336 return -ENOENT;
3337
3338 switch (inode->i_mode & S_IFMT) {
3339 case S_IFLNK:
3340 return -ELOOP;
3341 case S_IFDIR:
3342 if (acc_mode & MAY_WRITE)
3343 return -EISDIR;
3344 if (acc_mode & MAY_EXEC)
3345 return -EACCES;
3346 break;
3347 case S_IFBLK:
3348 case S_IFCHR:
3349 if (!may_open_dev(path))
3350 return -EACCES;
3351 fallthrough;
3352 case S_IFIFO:
3353 case S_IFSOCK:
3354 if (acc_mode & MAY_EXEC)
3355 return -EACCES;
3356 flag &= ~O_TRUNC;
3357 break;
3358 case S_IFREG:
3359 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3360 return -EACCES;
3361 break;
3362 }
3363
3364 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3365 if (error)
3366 return error;
3367
3368 /*
3369 * An append-only file must be opened in append mode for writing.
3370 */
3371 if (IS_APPEND(inode)) {
3372 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3373 return -EPERM;
3374 if (flag & O_TRUNC)
3375 return -EPERM;
3376 }
3377
3378 /* O_NOATIME can only be set by the owner or superuser */
3379 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3380 return -EPERM;
3381
3382 return 0;
3383 }
3384
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3385 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3386 {
3387 const struct path *path = &filp->f_path;
3388 struct inode *inode = path->dentry->d_inode;
3389 int error = get_write_access(inode);
3390 if (error)
3391 return error;
3392
3393 error = security_file_truncate(filp);
3394 if (!error) {
3395 error = do_truncate(idmap, path->dentry, 0,
3396 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3397 filp);
3398 }
3399 put_write_access(inode);
3400 return error;
3401 }
3402
open_to_namei_flags(int flag)3403 static inline int open_to_namei_flags(int flag)
3404 {
3405 if ((flag & O_ACCMODE) == 3)
3406 flag--;
3407 return flag;
3408 }
3409
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3410 static int may_o_create(struct mnt_idmap *idmap,
3411 const struct path *dir, struct dentry *dentry,
3412 umode_t mode)
3413 {
3414 int error = security_path_mknod(dir, dentry, mode, 0);
3415 if (error)
3416 return error;
3417
3418 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3419 return -EOVERFLOW;
3420
3421 error = inode_permission(idmap, dir->dentry->d_inode,
3422 MAY_WRITE | MAY_EXEC);
3423 if (error)
3424 return error;
3425
3426 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3427 }
3428
3429 /*
3430 * Attempt to atomically look up, create and open a file from a negative
3431 * dentry.
3432 *
3433 * Returns 0 if successful. The file will have been created and attached to
3434 * @file by the filesystem calling finish_open().
3435 *
3436 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3437 * be set. The caller will need to perform the open themselves. @path will
3438 * have been updated to point to the new dentry. This may be negative.
3439 *
3440 * Returns an error code otherwise.
3441 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3442 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3443 struct file *file,
3444 int open_flag, umode_t mode)
3445 {
3446 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3447 struct inode *dir = nd->path.dentry->d_inode;
3448 int error;
3449
3450 if (nd->flags & LOOKUP_DIRECTORY)
3451 open_flag |= O_DIRECTORY;
3452
3453 file->f_path.dentry = DENTRY_NOT_SET;
3454 file->f_path.mnt = nd->path.mnt;
3455 error = dir->i_op->atomic_open(dir, dentry, file,
3456 open_to_namei_flags(open_flag), mode);
3457 d_lookup_done(dentry);
3458 if (!error) {
3459 if (file->f_mode & FMODE_OPENED) {
3460 if (unlikely(dentry != file->f_path.dentry)) {
3461 dput(dentry);
3462 dentry = dget(file->f_path.dentry);
3463 }
3464 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3465 error = -EIO;
3466 } else {
3467 if (file->f_path.dentry) {
3468 dput(dentry);
3469 dentry = file->f_path.dentry;
3470 }
3471 if (unlikely(d_is_negative(dentry)))
3472 error = -ENOENT;
3473 }
3474 }
3475 if (error) {
3476 dput(dentry);
3477 dentry = ERR_PTR(error);
3478 }
3479 return dentry;
3480 }
3481
3482 /*
3483 * Look up and maybe create and open the last component.
3484 *
3485 * Must be called with parent locked (exclusive in O_CREAT case).
3486 *
3487 * Returns 0 on success, that is, if
3488 * the file was successfully atomically created (if necessary) and opened, or
3489 * the file was not completely opened at this time, though lookups and
3490 * creations were performed.
3491 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3492 * In the latter case dentry returned in @path might be negative if O_CREAT
3493 * hadn't been specified.
3494 *
3495 * An error code is returned on failure.
3496 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3497 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3498 const struct open_flags *op,
3499 bool got_write)
3500 {
3501 struct mnt_idmap *idmap;
3502 struct dentry *dir = nd->path.dentry;
3503 struct inode *dir_inode = dir->d_inode;
3504 int open_flag = op->open_flag;
3505 struct dentry *dentry;
3506 int error, create_error = 0;
3507 umode_t mode = op->mode;
3508 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3509
3510 if (unlikely(IS_DEADDIR(dir_inode)))
3511 return ERR_PTR(-ENOENT);
3512
3513 file->f_mode &= ~FMODE_CREATED;
3514 dentry = d_lookup(dir, &nd->last);
3515 for (;;) {
3516 if (!dentry) {
3517 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3518 if (IS_ERR(dentry))
3519 return dentry;
3520 }
3521 if (d_in_lookup(dentry))
3522 break;
3523
3524 error = d_revalidate(dentry, nd->flags);
3525 if (likely(error > 0))
3526 break;
3527 if (error)
3528 goto out_dput;
3529 d_invalidate(dentry);
3530 dput(dentry);
3531 dentry = NULL;
3532 }
3533 if (dentry->d_inode) {
3534 /* Cached positive dentry: will open in f_op->open */
3535 return dentry;
3536 }
3537
3538 if (open_flag & O_CREAT)
3539 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3540
3541 /*
3542 * Checking write permission is tricky, bacuse we don't know if we are
3543 * going to actually need it: O_CREAT opens should work as long as the
3544 * file exists. But checking existence breaks atomicity. The trick is
3545 * to check access and if not granted clear O_CREAT from the flags.
3546 *
3547 * Another problem is returing the "right" error value (e.g. for an
3548 * O_EXCL open we want to return EEXIST not EROFS).
3549 */
3550 if (unlikely(!got_write))
3551 open_flag &= ~O_TRUNC;
3552 idmap = mnt_idmap(nd->path.mnt);
3553 if (open_flag & O_CREAT) {
3554 if (open_flag & O_EXCL)
3555 open_flag &= ~O_TRUNC;
3556 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3557 if (likely(got_write))
3558 create_error = may_o_create(idmap, &nd->path,
3559 dentry, mode);
3560 else
3561 create_error = -EROFS;
3562 }
3563 if (create_error)
3564 open_flag &= ~O_CREAT;
3565 if (dir_inode->i_op->atomic_open) {
3566 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3567 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3568 dentry = ERR_PTR(create_error);
3569 return dentry;
3570 }
3571
3572 if (d_in_lookup(dentry)) {
3573 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3574 nd->flags);
3575 d_lookup_done(dentry);
3576 if (unlikely(res)) {
3577 if (IS_ERR(res)) {
3578 error = PTR_ERR(res);
3579 goto out_dput;
3580 }
3581 dput(dentry);
3582 dentry = res;
3583 }
3584 }
3585
3586 /* Negative dentry, just create the file */
3587 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3588 file->f_mode |= FMODE_CREATED;
3589 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3590 if (!dir_inode->i_op->create) {
3591 error = -EACCES;
3592 goto out_dput;
3593 }
3594
3595 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3596 mode, open_flag & O_EXCL);
3597 if (error)
3598 goto out_dput;
3599 }
3600 if (unlikely(create_error) && !dentry->d_inode) {
3601 error = create_error;
3602 goto out_dput;
3603 }
3604 return dentry;
3605
3606 out_dput:
3607 dput(dentry);
3608 return ERR_PTR(error);
3609 }
3610
trailing_slashes(struct nameidata * nd)3611 static inline bool trailing_slashes(struct nameidata *nd)
3612 {
3613 return (bool)nd->last.name[nd->last.len];
3614 }
3615
lookup_fast_for_open(struct nameidata * nd,int open_flag)3616 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3617 {
3618 struct dentry *dentry;
3619
3620 if (open_flag & O_CREAT) {
3621 if (trailing_slashes(nd))
3622 return ERR_PTR(-EISDIR);
3623
3624 /* Don't bother on an O_EXCL create */
3625 if (open_flag & O_EXCL)
3626 return NULL;
3627 }
3628
3629 if (trailing_slashes(nd))
3630 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3631
3632 dentry = lookup_fast(nd);
3633 if (IS_ERR_OR_NULL(dentry))
3634 return dentry;
3635
3636 if (open_flag & O_CREAT) {
3637 /* Discard negative dentries. Need inode_lock to do the create */
3638 if (!dentry->d_inode) {
3639 if (!(nd->flags & LOOKUP_RCU))
3640 dput(dentry);
3641 dentry = NULL;
3642 }
3643 }
3644 return dentry;
3645 }
3646
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3647 static const char *open_last_lookups(struct nameidata *nd,
3648 struct file *file, const struct open_flags *op)
3649 {
3650 struct dentry *dir = nd->path.dentry;
3651 int open_flag = op->open_flag;
3652 bool got_write = false;
3653 struct dentry *dentry;
3654 const char *res;
3655
3656 nd->flags |= op->intent;
3657
3658 if (nd->last_type != LAST_NORM) {
3659 if (nd->depth)
3660 put_link(nd);
3661 return handle_dots(nd, nd->last_type);
3662 }
3663
3664 /* We _can_ be in RCU mode here */
3665 dentry = lookup_fast_for_open(nd, open_flag);
3666 if (IS_ERR(dentry))
3667 return ERR_CAST(dentry);
3668
3669 if (likely(dentry))
3670 goto finish_lookup;
3671
3672 if (!(open_flag & O_CREAT)) {
3673 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3674 return ERR_PTR(-ECHILD);
3675 } else {
3676 if (nd->flags & LOOKUP_RCU) {
3677 if (!try_to_unlazy(nd))
3678 return ERR_PTR(-ECHILD);
3679 }
3680 }
3681
3682 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3683 got_write = !mnt_want_write(nd->path.mnt);
3684 /*
3685 * do _not_ fail yet - we might not need that or fail with
3686 * a different error; let lookup_open() decide; we'll be
3687 * dropping this one anyway.
3688 */
3689 }
3690 if (open_flag & O_CREAT)
3691 inode_lock(dir->d_inode);
3692 else
3693 inode_lock_shared(dir->d_inode);
3694 dentry = lookup_open(nd, file, op, got_write);
3695 if (!IS_ERR(dentry)) {
3696 if (file->f_mode & FMODE_CREATED)
3697 fsnotify_create(dir->d_inode, dentry);
3698 if (file->f_mode & FMODE_OPENED)
3699 fsnotify_open(file);
3700 }
3701 if (open_flag & O_CREAT)
3702 inode_unlock(dir->d_inode);
3703 else
3704 inode_unlock_shared(dir->d_inode);
3705
3706 if (got_write)
3707 mnt_drop_write(nd->path.mnt);
3708
3709 if (IS_ERR(dentry))
3710 return ERR_CAST(dentry);
3711
3712 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3713 dput(nd->path.dentry);
3714 nd->path.dentry = dentry;
3715 return NULL;
3716 }
3717
3718 finish_lookup:
3719 if (nd->depth)
3720 put_link(nd);
3721 res = step_into(nd, WALK_TRAILING, dentry);
3722 if (unlikely(res))
3723 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3724 return res;
3725 }
3726
3727 /*
3728 * Handle the last step of open()
3729 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3730 static int do_open(struct nameidata *nd,
3731 struct file *file, const struct open_flags *op)
3732 {
3733 struct mnt_idmap *idmap;
3734 int open_flag = op->open_flag;
3735 bool do_truncate;
3736 int acc_mode;
3737 int error;
3738
3739 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3740 error = complete_walk(nd);
3741 if (error)
3742 return error;
3743 }
3744 if (!(file->f_mode & FMODE_CREATED))
3745 audit_inode(nd->name, nd->path.dentry, 0);
3746 idmap = mnt_idmap(nd->path.mnt);
3747 if (open_flag & O_CREAT) {
3748 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3749 return -EEXIST;
3750 if (d_is_dir(nd->path.dentry))
3751 return -EISDIR;
3752 error = may_create_in_sticky(idmap, nd,
3753 d_backing_inode(nd->path.dentry));
3754 if (unlikely(error))
3755 return error;
3756 }
3757 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3758 return -ENOTDIR;
3759
3760 do_truncate = false;
3761 acc_mode = op->acc_mode;
3762 if (file->f_mode & FMODE_CREATED) {
3763 /* Don't check for write permission, don't truncate */
3764 open_flag &= ~O_TRUNC;
3765 acc_mode = 0;
3766 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3767 error = mnt_want_write(nd->path.mnt);
3768 if (error)
3769 return error;
3770 do_truncate = true;
3771 }
3772 error = may_open(idmap, &nd->path, acc_mode, open_flag);
3773 if (!error && !(file->f_mode & FMODE_OPENED))
3774 error = vfs_open(&nd->path, file);
3775 if (!error)
3776 error = security_file_post_open(file, op->acc_mode);
3777 if (!error && do_truncate)
3778 error = handle_truncate(idmap, file);
3779 if (unlikely(error > 0)) {
3780 WARN_ON(1);
3781 error = -EINVAL;
3782 }
3783 if (do_truncate)
3784 mnt_drop_write(nd->path.mnt);
3785 return error;
3786 }
3787
3788 /**
3789 * vfs_tmpfile - create tmpfile
3790 * @idmap: idmap of the mount the inode was found from
3791 * @parentpath: pointer to the path of the base directory
3792 * @file: file descriptor of the new tmpfile
3793 * @mode: mode of the new tmpfile
3794 *
3795 * Create a temporary file.
3796 *
3797 * If the inode has been found through an idmapped mount the idmap of
3798 * the vfsmount must be passed through @idmap. This function will then take
3799 * care to map the inode according to @idmap before checking permissions.
3800 * On non-idmapped mounts or if permission checking is to be performed on the
3801 * raw inode simply pass @nop_mnt_idmap.
3802 */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)3803 int vfs_tmpfile(struct mnt_idmap *idmap,
3804 const struct path *parentpath,
3805 struct file *file, umode_t mode)
3806 {
3807 struct dentry *child;
3808 struct inode *dir = d_inode(parentpath->dentry);
3809 struct inode *inode;
3810 int error;
3811 int open_flag = file->f_flags;
3812
3813 /* we want directory to be writable */
3814 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3815 if (error)
3816 return error;
3817 if (!dir->i_op->tmpfile)
3818 return -EOPNOTSUPP;
3819 child = d_alloc(parentpath->dentry, &slash_name);
3820 if (unlikely(!child))
3821 return -ENOMEM;
3822 file->f_path.mnt = parentpath->mnt;
3823 file->f_path.dentry = child;
3824 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3825 error = dir->i_op->tmpfile(idmap, dir, file, mode);
3826 dput(child);
3827 if (file->f_mode & FMODE_OPENED)
3828 fsnotify_open(file);
3829 if (error)
3830 return error;
3831 /* Don't check for other permissions, the inode was just created */
3832 error = may_open(idmap, &file->f_path, 0, file->f_flags);
3833 if (error)
3834 return error;
3835 inode = file_inode(file);
3836 if (!(open_flag & O_EXCL)) {
3837 spin_lock(&inode->i_lock);
3838 inode->i_state |= I_LINKABLE;
3839 spin_unlock(&inode->i_lock);
3840 }
3841 security_inode_post_create_tmpfile(idmap, inode);
3842 return 0;
3843 }
3844
3845 /**
3846 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3847 * @idmap: idmap of the mount the inode was found from
3848 * @parentpath: path of the base directory
3849 * @mode: mode of the new tmpfile
3850 * @open_flag: flags
3851 * @cred: credentials for open
3852 *
3853 * Create and open a temporary file. The file is not accounted in nr_files,
3854 * hence this is only for kernel internal use, and must not be installed into
3855 * file tables or such.
3856 */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)3857 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3858 const struct path *parentpath,
3859 umode_t mode, int open_flag,
3860 const struct cred *cred)
3861 {
3862 struct file *file;
3863 int error;
3864
3865 file = alloc_empty_file_noaccount(open_flag, cred);
3866 if (IS_ERR(file))
3867 return file;
3868
3869 error = vfs_tmpfile(idmap, parentpath, file, mode);
3870 if (error) {
3871 fput(file);
3872 file = ERR_PTR(error);
3873 }
3874 return file;
3875 }
3876 EXPORT_SYMBOL(kernel_tmpfile_open);
3877
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3878 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3879 const struct open_flags *op,
3880 struct file *file)
3881 {
3882 struct path path;
3883 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3884
3885 if (unlikely(error))
3886 return error;
3887 error = mnt_want_write(path.mnt);
3888 if (unlikely(error))
3889 goto out;
3890 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3891 if (error)
3892 goto out2;
3893 audit_inode(nd->name, file->f_path.dentry, 0);
3894 out2:
3895 mnt_drop_write(path.mnt);
3896 out:
3897 path_put(&path);
3898 return error;
3899 }
3900
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3901 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3902 {
3903 struct path path;
3904 int error = path_lookupat(nd, flags, &path);
3905 if (!error) {
3906 audit_inode(nd->name, path.dentry, 0);
3907 error = vfs_open(&path, file);
3908 path_put(&path);
3909 }
3910 return error;
3911 }
3912
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3913 static struct file *path_openat(struct nameidata *nd,
3914 const struct open_flags *op, unsigned flags)
3915 {
3916 struct file *file;
3917 int error;
3918
3919 file = alloc_empty_file(op->open_flag, current_cred());
3920 if (IS_ERR(file))
3921 return file;
3922
3923 if (unlikely(file->f_flags & __O_TMPFILE)) {
3924 error = do_tmpfile(nd, flags, op, file);
3925 } else if (unlikely(file->f_flags & O_PATH)) {
3926 error = do_o_path(nd, flags, file);
3927 } else {
3928 const char *s = path_init(nd, flags);
3929 while (!(error = link_path_walk(s, nd)) &&
3930 (s = open_last_lookups(nd, file, op)) != NULL)
3931 ;
3932 if (!error)
3933 error = do_open(nd, file, op);
3934 terminate_walk(nd);
3935 }
3936 if (likely(!error)) {
3937 if (likely(file->f_mode & FMODE_OPENED))
3938 return file;
3939 WARN_ON(1);
3940 error = -EINVAL;
3941 }
3942 fput(file);
3943 if (error == -EOPENSTALE) {
3944 if (flags & LOOKUP_RCU)
3945 error = -ECHILD;
3946 else
3947 error = -ESTALE;
3948 }
3949 return ERR_PTR(error);
3950 }
3951
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3952 struct file *do_filp_open(int dfd, struct filename *pathname,
3953 const struct open_flags *op)
3954 {
3955 struct nameidata nd;
3956 int flags = op->lookup_flags;
3957 struct file *filp;
3958
3959 set_nameidata(&nd, dfd, pathname, NULL);
3960 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3961 if (unlikely(filp == ERR_PTR(-ECHILD)))
3962 filp = path_openat(&nd, op, flags);
3963 if (unlikely(filp == ERR_PTR(-ESTALE)))
3964 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3965 restore_nameidata();
3966 return filp;
3967 }
3968
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)3969 struct file *do_file_open_root(const struct path *root,
3970 const char *name, const struct open_flags *op)
3971 {
3972 struct nameidata nd;
3973 struct file *file;
3974 struct filename *filename;
3975 int flags = op->lookup_flags;
3976
3977 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3978 return ERR_PTR(-ELOOP);
3979
3980 filename = getname_kernel(name);
3981 if (IS_ERR(filename))
3982 return ERR_CAST(filename);
3983
3984 set_nameidata(&nd, -1, filename, root);
3985 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3986 if (unlikely(file == ERR_PTR(-ECHILD)))
3987 file = path_openat(&nd, op, flags);
3988 if (unlikely(file == ERR_PTR(-ESTALE)))
3989 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3990 restore_nameidata();
3991 putname(filename);
3992 return file;
3993 }
3994
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3995 static struct dentry *filename_create(int dfd, struct filename *name,
3996 struct path *path, unsigned int lookup_flags)
3997 {
3998 struct dentry *dentry = ERR_PTR(-EEXIST);
3999 struct qstr last;
4000 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4001 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4002 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4003 int type;
4004 int err2;
4005 int error;
4006
4007 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4008 if (error)
4009 return ERR_PTR(error);
4010
4011 /*
4012 * Yucky last component or no last component at all?
4013 * (foo/., foo/.., /////)
4014 */
4015 if (unlikely(type != LAST_NORM))
4016 goto out;
4017
4018 /* don't fail immediately if it's r/o, at least try to report other errors */
4019 err2 = mnt_want_write(path->mnt);
4020 /*
4021 * Do the final lookup. Suppress 'create' if there is a trailing
4022 * '/', and a directory wasn't requested.
4023 */
4024 if (last.name[last.len] && !want_dir)
4025 create_flags = 0;
4026 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4027 dentry = lookup_one_qstr_excl(&last, path->dentry,
4028 reval_flag | create_flags);
4029 if (IS_ERR(dentry))
4030 goto unlock;
4031
4032 error = -EEXIST;
4033 if (d_is_positive(dentry))
4034 goto fail;
4035
4036 /*
4037 * Special case - lookup gave negative, but... we had foo/bar/
4038 * From the vfs_mknod() POV we just have a negative dentry -
4039 * all is fine. Let's be bastards - you had / on the end, you've
4040 * been asking for (non-existent) directory. -ENOENT for you.
4041 */
4042 if (unlikely(!create_flags)) {
4043 error = -ENOENT;
4044 goto fail;
4045 }
4046 if (unlikely(err2)) {
4047 error = err2;
4048 goto fail;
4049 }
4050 return dentry;
4051 fail:
4052 dput(dentry);
4053 dentry = ERR_PTR(error);
4054 unlock:
4055 inode_unlock(path->dentry->d_inode);
4056 if (!err2)
4057 mnt_drop_write(path->mnt);
4058 out:
4059 path_put(path);
4060 return dentry;
4061 }
4062
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4063 struct dentry *kern_path_create(int dfd, const char *pathname,
4064 struct path *path, unsigned int lookup_flags)
4065 {
4066 struct filename *filename = getname_kernel(pathname);
4067 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4068
4069 putname(filename);
4070 return res;
4071 }
4072 EXPORT_SYMBOL(kern_path_create);
4073
done_path_create(struct path * path,struct dentry * dentry)4074 void done_path_create(struct path *path, struct dentry *dentry)
4075 {
4076 dput(dentry);
4077 inode_unlock(path->dentry->d_inode);
4078 mnt_drop_write(path->mnt);
4079 path_put(path);
4080 }
4081 EXPORT_SYMBOL(done_path_create);
4082
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4083 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4084 struct path *path, unsigned int lookup_flags)
4085 {
4086 struct filename *filename = getname(pathname);
4087 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4088
4089 putname(filename);
4090 return res;
4091 }
4092 EXPORT_SYMBOL(user_path_create);
4093
4094 /**
4095 * vfs_mknod - create device node or file
4096 * @idmap: idmap of the mount the inode was found from
4097 * @dir: inode of the parent directory
4098 * @dentry: dentry of the child device node
4099 * @mode: mode of the child device node
4100 * @dev: device number of device to create
4101 *
4102 * Create a device node or file.
4103 *
4104 * If the inode has been found through an idmapped mount the idmap of
4105 * the vfsmount must be passed through @idmap. This function will then take
4106 * care to map the inode according to @idmap before checking permissions.
4107 * On non-idmapped mounts or if permission checking is to be performed on the
4108 * raw inode simply pass @nop_mnt_idmap.
4109 */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)4110 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4111 struct dentry *dentry, umode_t mode, dev_t dev)
4112 {
4113 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4114 int error = may_create(idmap, dir, dentry);
4115
4116 if (error)
4117 return error;
4118
4119 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4120 !capable(CAP_MKNOD))
4121 return -EPERM;
4122
4123 if (!dir->i_op->mknod)
4124 return -EPERM;
4125
4126 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4127 error = devcgroup_inode_mknod(mode, dev);
4128 if (error)
4129 return error;
4130
4131 error = security_inode_mknod(dir, dentry, mode, dev);
4132 if (error)
4133 return error;
4134
4135 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4136 if (!error)
4137 fsnotify_create(dir, dentry);
4138 return error;
4139 }
4140 EXPORT_SYMBOL(vfs_mknod);
4141
may_mknod(umode_t mode)4142 static int may_mknod(umode_t mode)
4143 {
4144 switch (mode & S_IFMT) {
4145 case S_IFREG:
4146 case S_IFCHR:
4147 case S_IFBLK:
4148 case S_IFIFO:
4149 case S_IFSOCK:
4150 case 0: /* zero mode translates to S_IFREG */
4151 return 0;
4152 case S_IFDIR:
4153 return -EPERM;
4154 default:
4155 return -EINVAL;
4156 }
4157 }
4158
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4159 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4160 unsigned int dev)
4161 {
4162 struct mnt_idmap *idmap;
4163 struct dentry *dentry;
4164 struct path path;
4165 int error;
4166 unsigned int lookup_flags = 0;
4167
4168 error = may_mknod(mode);
4169 if (error)
4170 goto out1;
4171 retry:
4172 dentry = filename_create(dfd, name, &path, lookup_flags);
4173 error = PTR_ERR(dentry);
4174 if (IS_ERR(dentry))
4175 goto out1;
4176
4177 error = security_path_mknod(&path, dentry,
4178 mode_strip_umask(path.dentry->d_inode, mode), dev);
4179 if (error)
4180 goto out2;
4181
4182 idmap = mnt_idmap(path.mnt);
4183 switch (mode & S_IFMT) {
4184 case 0: case S_IFREG:
4185 error = vfs_create(idmap, path.dentry->d_inode,
4186 dentry, mode, true);
4187 if (!error)
4188 security_path_post_mknod(idmap, dentry);
4189 break;
4190 case S_IFCHR: case S_IFBLK:
4191 error = vfs_mknod(idmap, path.dentry->d_inode,
4192 dentry, mode, new_decode_dev(dev));
4193 break;
4194 case S_IFIFO: case S_IFSOCK:
4195 error = vfs_mknod(idmap, path.dentry->d_inode,
4196 dentry, mode, 0);
4197 break;
4198 }
4199 out2:
4200 done_path_create(&path, dentry);
4201 if (retry_estale(error, lookup_flags)) {
4202 lookup_flags |= LOOKUP_REVAL;
4203 goto retry;
4204 }
4205 out1:
4206 putname(name);
4207 return error;
4208 }
4209
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4210 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4211 unsigned int, dev)
4212 {
4213 return do_mknodat(dfd, getname(filename), mode, dev);
4214 }
4215
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4216 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4217 {
4218 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4219 }
4220
4221 /**
4222 * vfs_mkdir - create directory
4223 * @idmap: idmap of the mount the inode was found from
4224 * @dir: inode of the parent directory
4225 * @dentry: dentry of the child directory
4226 * @mode: mode of the child directory
4227 *
4228 * Create a directory.
4229 *
4230 * If the inode has been found through an idmapped mount the idmap of
4231 * the vfsmount must be passed through @idmap. This function will then take
4232 * care to map the inode according to @idmap before checking permissions.
4233 * On non-idmapped mounts or if permission checking is to be performed on the
4234 * raw inode simply pass @nop_mnt_idmap.
4235 */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4236 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4237 struct dentry *dentry, umode_t mode)
4238 {
4239 int error;
4240 unsigned max_links = dir->i_sb->s_max_links;
4241
4242 error = may_create(idmap, dir, dentry);
4243 if (error)
4244 return error;
4245
4246 if (!dir->i_op->mkdir)
4247 return -EPERM;
4248
4249 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4250 error = security_inode_mkdir(dir, dentry, mode);
4251 if (error)
4252 return error;
4253
4254 if (max_links && dir->i_nlink >= max_links)
4255 return -EMLINK;
4256
4257 error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4258 if (!error)
4259 fsnotify_mkdir(dir, dentry);
4260 return error;
4261 }
4262 EXPORT_SYMBOL(vfs_mkdir);
4263
do_mkdirat(int dfd,struct filename * name,umode_t mode)4264 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4265 {
4266 struct dentry *dentry;
4267 struct path path;
4268 int error;
4269 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4270
4271 retry:
4272 dentry = filename_create(dfd, name, &path, lookup_flags);
4273 error = PTR_ERR(dentry);
4274 if (IS_ERR(dentry))
4275 goto out_putname;
4276
4277 error = security_path_mkdir(&path, dentry,
4278 mode_strip_umask(path.dentry->d_inode, mode));
4279 if (!error) {
4280 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4281 dentry, mode);
4282 }
4283 done_path_create(&path, dentry);
4284 if (retry_estale(error, lookup_flags)) {
4285 lookup_flags |= LOOKUP_REVAL;
4286 goto retry;
4287 }
4288 out_putname:
4289 putname(name);
4290 return error;
4291 }
4292
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4293 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4294 {
4295 return do_mkdirat(dfd, getname(pathname), mode);
4296 }
4297
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4298 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4299 {
4300 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4301 }
4302
4303 /**
4304 * vfs_rmdir - remove directory
4305 * @idmap: idmap of the mount the inode was found from
4306 * @dir: inode of the parent directory
4307 * @dentry: dentry of the child directory
4308 *
4309 * Remove a directory.
4310 *
4311 * If the inode has been found through an idmapped mount the idmap of
4312 * the vfsmount must be passed through @idmap. This function will then take
4313 * care to map the inode according to @idmap before checking permissions.
4314 * On non-idmapped mounts or if permission checking is to be performed on the
4315 * raw inode simply pass @nop_mnt_idmap.
4316 */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4317 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4318 struct dentry *dentry)
4319 {
4320 int error = may_delete(idmap, dir, dentry, 1);
4321
4322 if (error)
4323 return error;
4324
4325 if (!dir->i_op->rmdir)
4326 return -EPERM;
4327
4328 dget(dentry);
4329 inode_lock(dentry->d_inode);
4330
4331 error = -EBUSY;
4332 if (is_local_mountpoint(dentry) ||
4333 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4334 goto out;
4335
4336 error = security_inode_rmdir(dir, dentry);
4337 if (error)
4338 goto out;
4339
4340 error = dir->i_op->rmdir(dir, dentry);
4341 if (error)
4342 goto out;
4343
4344 shrink_dcache_parent(dentry);
4345 dentry->d_inode->i_flags |= S_DEAD;
4346 dont_mount(dentry);
4347 detach_mounts(dentry);
4348
4349 out:
4350 inode_unlock(dentry->d_inode);
4351 dput(dentry);
4352 if (!error)
4353 d_delete_notify(dir, dentry);
4354 return error;
4355 }
4356 EXPORT_SYMBOL(vfs_rmdir);
4357
do_rmdir(int dfd,struct filename * name)4358 int do_rmdir(int dfd, struct filename *name)
4359 {
4360 int error;
4361 struct dentry *dentry;
4362 struct path path;
4363 struct qstr last;
4364 int type;
4365 unsigned int lookup_flags = 0;
4366 retry:
4367 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4368 if (error)
4369 goto exit1;
4370
4371 switch (type) {
4372 case LAST_DOTDOT:
4373 error = -ENOTEMPTY;
4374 goto exit2;
4375 case LAST_DOT:
4376 error = -EINVAL;
4377 goto exit2;
4378 case LAST_ROOT:
4379 error = -EBUSY;
4380 goto exit2;
4381 }
4382
4383 error = mnt_want_write(path.mnt);
4384 if (error)
4385 goto exit2;
4386
4387 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4388 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4389 error = PTR_ERR(dentry);
4390 if (IS_ERR(dentry))
4391 goto exit3;
4392 if (!dentry->d_inode) {
4393 error = -ENOENT;
4394 goto exit4;
4395 }
4396 error = security_path_rmdir(&path, dentry);
4397 if (error)
4398 goto exit4;
4399 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4400 exit4:
4401 dput(dentry);
4402 exit3:
4403 inode_unlock(path.dentry->d_inode);
4404 mnt_drop_write(path.mnt);
4405 exit2:
4406 path_put(&path);
4407 if (retry_estale(error, lookup_flags)) {
4408 lookup_flags |= LOOKUP_REVAL;
4409 goto retry;
4410 }
4411 exit1:
4412 putname(name);
4413 return error;
4414 }
4415
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4416 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4417 {
4418 return do_rmdir(AT_FDCWD, getname(pathname));
4419 }
4420
4421 /**
4422 * vfs_unlink - unlink a filesystem object
4423 * @idmap: idmap of the mount the inode was found from
4424 * @dir: parent directory
4425 * @dentry: victim
4426 * @delegated_inode: returns victim inode, if the inode is delegated.
4427 *
4428 * The caller must hold dir->i_mutex.
4429 *
4430 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4431 * return a reference to the inode in delegated_inode. The caller
4432 * should then break the delegation on that inode and retry. Because
4433 * breaking a delegation may take a long time, the caller should drop
4434 * dir->i_mutex before doing so.
4435 *
4436 * Alternatively, a caller may pass NULL for delegated_inode. This may
4437 * be appropriate for callers that expect the underlying filesystem not
4438 * to be NFS exported.
4439 *
4440 * If the inode has been found through an idmapped mount the idmap of
4441 * the vfsmount must be passed through @idmap. This function will then take
4442 * care to map the inode according to @idmap before checking permissions.
4443 * On non-idmapped mounts or if permission checking is to be performed on the
4444 * raw inode simply pass @nop_mnt_idmap.
4445 */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4446 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4447 struct dentry *dentry, struct inode **delegated_inode)
4448 {
4449 struct inode *target = dentry->d_inode;
4450 int error = may_delete(idmap, dir, dentry, 0);
4451
4452 if (error)
4453 return error;
4454
4455 if (!dir->i_op->unlink)
4456 return -EPERM;
4457
4458 inode_lock(target);
4459 if (IS_SWAPFILE(target))
4460 error = -EPERM;
4461 else if (is_local_mountpoint(dentry))
4462 error = -EBUSY;
4463 else {
4464 error = security_inode_unlink(dir, dentry);
4465 if (!error) {
4466 error = try_break_deleg(target, delegated_inode);
4467 if (error)
4468 goto out;
4469 error = dir->i_op->unlink(dir, dentry);
4470 if (!error) {
4471 dont_mount(dentry);
4472 detach_mounts(dentry);
4473 }
4474 }
4475 }
4476 out:
4477 inode_unlock(target);
4478
4479 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4480 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4481 fsnotify_unlink(dir, dentry);
4482 } else if (!error) {
4483 fsnotify_link_count(target);
4484 d_delete_notify(dir, dentry);
4485 }
4486
4487 return error;
4488 }
4489 EXPORT_SYMBOL(vfs_unlink);
4490
4491 /*
4492 * Make sure that the actual truncation of the file will occur outside its
4493 * directory's i_mutex. Truncate can take a long time if there is a lot of
4494 * writeout happening, and we don't want to prevent access to the directory
4495 * while waiting on the I/O.
4496 */
do_unlinkat(int dfd,struct filename * name)4497 int do_unlinkat(int dfd, struct filename *name)
4498 {
4499 int error;
4500 struct dentry *dentry;
4501 struct path path;
4502 struct qstr last;
4503 int type;
4504 struct inode *inode = NULL;
4505 struct inode *delegated_inode = NULL;
4506 unsigned int lookup_flags = 0;
4507 retry:
4508 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4509 if (error)
4510 goto exit1;
4511
4512 error = -EISDIR;
4513 if (type != LAST_NORM)
4514 goto exit2;
4515
4516 error = mnt_want_write(path.mnt);
4517 if (error)
4518 goto exit2;
4519 retry_deleg:
4520 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4521 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4522 error = PTR_ERR(dentry);
4523 if (!IS_ERR(dentry)) {
4524
4525 /* Why not before? Because we want correct error value */
4526 if (last.name[last.len] || d_is_negative(dentry))
4527 goto slashes;
4528 inode = dentry->d_inode;
4529 ihold(inode);
4530 error = security_path_unlink(&path, dentry);
4531 if (error)
4532 goto exit3;
4533 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4534 dentry, &delegated_inode);
4535 exit3:
4536 dput(dentry);
4537 }
4538 inode_unlock(path.dentry->d_inode);
4539 if (inode)
4540 iput(inode); /* truncate the inode here */
4541 inode = NULL;
4542 if (delegated_inode) {
4543 error = break_deleg_wait(&delegated_inode);
4544 if (!error)
4545 goto retry_deleg;
4546 }
4547 mnt_drop_write(path.mnt);
4548 exit2:
4549 path_put(&path);
4550 if (retry_estale(error, lookup_flags)) {
4551 lookup_flags |= LOOKUP_REVAL;
4552 inode = NULL;
4553 goto retry;
4554 }
4555 exit1:
4556 putname(name);
4557 return error;
4558
4559 slashes:
4560 if (d_is_negative(dentry))
4561 error = -ENOENT;
4562 else if (d_is_dir(dentry))
4563 error = -EISDIR;
4564 else
4565 error = -ENOTDIR;
4566 goto exit3;
4567 }
4568
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4569 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4570 {
4571 if ((flag & ~AT_REMOVEDIR) != 0)
4572 return -EINVAL;
4573
4574 if (flag & AT_REMOVEDIR)
4575 return do_rmdir(dfd, getname(pathname));
4576 return do_unlinkat(dfd, getname(pathname));
4577 }
4578
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4579 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4580 {
4581 return do_unlinkat(AT_FDCWD, getname(pathname));
4582 }
4583
4584 /**
4585 * vfs_symlink - create symlink
4586 * @idmap: idmap of the mount the inode was found from
4587 * @dir: inode of the parent directory
4588 * @dentry: dentry of the child symlink file
4589 * @oldname: name of the file to link to
4590 *
4591 * Create a symlink.
4592 *
4593 * If the inode has been found through an idmapped mount the idmap of
4594 * the vfsmount must be passed through @idmap. This function will then take
4595 * care to map the inode according to @idmap before checking permissions.
4596 * On non-idmapped mounts or if permission checking is to be performed on the
4597 * raw inode simply pass @nop_mnt_idmap.
4598 */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4599 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4600 struct dentry *dentry, const char *oldname)
4601 {
4602 int error;
4603
4604 error = may_create(idmap, dir, dentry);
4605 if (error)
4606 return error;
4607
4608 if (!dir->i_op->symlink)
4609 return -EPERM;
4610
4611 error = security_inode_symlink(dir, dentry, oldname);
4612 if (error)
4613 return error;
4614
4615 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4616 if (!error)
4617 fsnotify_create(dir, dentry);
4618 return error;
4619 }
4620 EXPORT_SYMBOL(vfs_symlink);
4621
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4622 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4623 {
4624 int error;
4625 struct dentry *dentry;
4626 struct path path;
4627 unsigned int lookup_flags = 0;
4628
4629 if (IS_ERR(from)) {
4630 error = PTR_ERR(from);
4631 goto out_putnames;
4632 }
4633 retry:
4634 dentry = filename_create(newdfd, to, &path, lookup_flags);
4635 error = PTR_ERR(dentry);
4636 if (IS_ERR(dentry))
4637 goto out_putnames;
4638
4639 error = security_path_symlink(&path, dentry, from->name);
4640 if (!error)
4641 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4642 dentry, from->name);
4643 done_path_create(&path, dentry);
4644 if (retry_estale(error, lookup_flags)) {
4645 lookup_flags |= LOOKUP_REVAL;
4646 goto retry;
4647 }
4648 out_putnames:
4649 putname(to);
4650 putname(from);
4651 return error;
4652 }
4653
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4654 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4655 int, newdfd, const char __user *, newname)
4656 {
4657 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4658 }
4659
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4660 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4661 {
4662 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4663 }
4664
4665 /**
4666 * vfs_link - create a new link
4667 * @old_dentry: object to be linked
4668 * @idmap: idmap of the mount
4669 * @dir: new parent
4670 * @new_dentry: where to create the new link
4671 * @delegated_inode: returns inode needing a delegation break
4672 *
4673 * The caller must hold dir->i_mutex
4674 *
4675 * If vfs_link discovers a delegation on the to-be-linked file in need
4676 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4677 * inode in delegated_inode. The caller should then break the delegation
4678 * and retry. Because breaking a delegation may take a long time, the
4679 * caller should drop the i_mutex before doing so.
4680 *
4681 * Alternatively, a caller may pass NULL for delegated_inode. This may
4682 * be appropriate for callers that expect the underlying filesystem not
4683 * to be NFS exported.
4684 *
4685 * If the inode has been found through an idmapped mount the idmap of
4686 * the vfsmount must be passed through @idmap. This function will then take
4687 * care to map the inode according to @idmap before checking permissions.
4688 * On non-idmapped mounts or if permission checking is to be performed on the
4689 * raw inode simply pass @nop_mnt_idmap.
4690 */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4691 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4692 struct inode *dir, struct dentry *new_dentry,
4693 struct inode **delegated_inode)
4694 {
4695 struct inode *inode = old_dentry->d_inode;
4696 unsigned max_links = dir->i_sb->s_max_links;
4697 int error;
4698
4699 if (!inode)
4700 return -ENOENT;
4701
4702 error = may_create(idmap, dir, new_dentry);
4703 if (error)
4704 return error;
4705
4706 if (dir->i_sb != inode->i_sb)
4707 return -EXDEV;
4708
4709 /*
4710 * A link to an append-only or immutable file cannot be created.
4711 */
4712 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4713 return -EPERM;
4714 /*
4715 * Updating the link count will likely cause i_uid and i_gid to
4716 * be writen back improperly if their true value is unknown to
4717 * the vfs.
4718 */
4719 if (HAS_UNMAPPED_ID(idmap, inode))
4720 return -EPERM;
4721 if (!dir->i_op->link)
4722 return -EPERM;
4723 if (S_ISDIR(inode->i_mode))
4724 return -EPERM;
4725
4726 error = security_inode_link(old_dentry, dir, new_dentry);
4727 if (error)
4728 return error;
4729
4730 inode_lock(inode);
4731 /* Make sure we don't allow creating hardlink to an unlinked file */
4732 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4733 error = -ENOENT;
4734 else if (max_links && inode->i_nlink >= max_links)
4735 error = -EMLINK;
4736 else {
4737 error = try_break_deleg(inode, delegated_inode);
4738 if (!error)
4739 error = dir->i_op->link(old_dentry, dir, new_dentry);
4740 }
4741
4742 if (!error && (inode->i_state & I_LINKABLE)) {
4743 spin_lock(&inode->i_lock);
4744 inode->i_state &= ~I_LINKABLE;
4745 spin_unlock(&inode->i_lock);
4746 }
4747 inode_unlock(inode);
4748 if (!error)
4749 fsnotify_link(dir, inode, new_dentry);
4750 return error;
4751 }
4752 EXPORT_SYMBOL(vfs_link);
4753
4754 /*
4755 * Hardlinks are often used in delicate situations. We avoid
4756 * security-related surprises by not following symlinks on the
4757 * newname. --KAB
4758 *
4759 * We don't follow them on the oldname either to be compatible
4760 * with linux 2.0, and to avoid hard-linking to directories
4761 * and other special files. --ADM
4762 */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4763 int do_linkat(int olddfd, struct filename *old, int newdfd,
4764 struct filename *new, int flags)
4765 {
4766 struct mnt_idmap *idmap;
4767 struct dentry *new_dentry;
4768 struct path old_path, new_path;
4769 struct inode *delegated_inode = NULL;
4770 int how = 0;
4771 int error;
4772
4773 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4774 error = -EINVAL;
4775 goto out_putnames;
4776 }
4777 /*
4778 * To use null names we require CAP_DAC_READ_SEARCH or
4779 * that the open-time creds of the dfd matches current.
4780 * This ensures that not everyone will be able to create
4781 * a hardlink using the passed file descriptor.
4782 */
4783 if (flags & AT_EMPTY_PATH)
4784 how |= LOOKUP_LINKAT_EMPTY;
4785
4786 if (flags & AT_SYMLINK_FOLLOW)
4787 how |= LOOKUP_FOLLOW;
4788 retry:
4789 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4790 if (error)
4791 goto out_putnames;
4792
4793 new_dentry = filename_create(newdfd, new, &new_path,
4794 (how & LOOKUP_REVAL));
4795 error = PTR_ERR(new_dentry);
4796 if (IS_ERR(new_dentry))
4797 goto out_putpath;
4798
4799 error = -EXDEV;
4800 if (old_path.mnt != new_path.mnt)
4801 goto out_dput;
4802 idmap = mnt_idmap(new_path.mnt);
4803 error = may_linkat(idmap, &old_path);
4804 if (unlikely(error))
4805 goto out_dput;
4806 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4807 if (error)
4808 goto out_dput;
4809 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4810 new_dentry, &delegated_inode);
4811 out_dput:
4812 done_path_create(&new_path, new_dentry);
4813 if (delegated_inode) {
4814 error = break_deleg_wait(&delegated_inode);
4815 if (!error) {
4816 path_put(&old_path);
4817 goto retry;
4818 }
4819 }
4820 if (retry_estale(error, how)) {
4821 path_put(&old_path);
4822 how |= LOOKUP_REVAL;
4823 goto retry;
4824 }
4825 out_putpath:
4826 path_put(&old_path);
4827 out_putnames:
4828 putname(old);
4829 putname(new);
4830
4831 return error;
4832 }
4833
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4834 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4835 int, newdfd, const char __user *, newname, int, flags)
4836 {
4837 return do_linkat(olddfd, getname_uflags(oldname, flags),
4838 newdfd, getname(newname), flags);
4839 }
4840
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4841 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4842 {
4843 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4844 }
4845
4846 /**
4847 * vfs_rename - rename a filesystem object
4848 * @rd: pointer to &struct renamedata info
4849 *
4850 * The caller must hold multiple mutexes--see lock_rename()).
4851 *
4852 * If vfs_rename discovers a delegation in need of breaking at either
4853 * the source or destination, it will return -EWOULDBLOCK and return a
4854 * reference to the inode in delegated_inode. The caller should then
4855 * break the delegation and retry. Because breaking a delegation may
4856 * take a long time, the caller should drop all locks before doing
4857 * so.
4858 *
4859 * Alternatively, a caller may pass NULL for delegated_inode. This may
4860 * be appropriate for callers that expect the underlying filesystem not
4861 * to be NFS exported.
4862 *
4863 * The worst of all namespace operations - renaming directory. "Perverted"
4864 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4865 * Problems:
4866 *
4867 * a) we can get into loop creation.
4868 * b) race potential - two innocent renames can create a loop together.
4869 * That's where 4.4BSD screws up. Current fix: serialization on
4870 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4871 * story.
4872 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4873 * and source (if it's a non-directory or a subdirectory that moves to
4874 * different parent).
4875 * And that - after we got ->i_mutex on parents (until then we don't know
4876 * whether the target exists). Solution: try to be smart with locking
4877 * order for inodes. We rely on the fact that tree topology may change
4878 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4879 * move will be locked. Thus we can rank directories by the tree
4880 * (ancestors first) and rank all non-directories after them.
4881 * That works since everybody except rename does "lock parent, lookup,
4882 * lock child" and rename is under ->s_vfs_rename_mutex.
4883 * HOWEVER, it relies on the assumption that any object with ->lookup()
4884 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4885 * we'd better make sure that there's no link(2) for them.
4886 * d) conversion from fhandle to dentry may come in the wrong moment - when
4887 * we are removing the target. Solution: we will have to grab ->i_mutex
4888 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4889 * ->i_mutex on parents, which works but leads to some truly excessive
4890 * locking].
4891 */
vfs_rename(struct renamedata * rd)4892 int vfs_rename(struct renamedata *rd)
4893 {
4894 int error;
4895 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4896 struct dentry *old_dentry = rd->old_dentry;
4897 struct dentry *new_dentry = rd->new_dentry;
4898 struct inode **delegated_inode = rd->delegated_inode;
4899 unsigned int flags = rd->flags;
4900 bool is_dir = d_is_dir(old_dentry);
4901 struct inode *source = old_dentry->d_inode;
4902 struct inode *target = new_dentry->d_inode;
4903 bool new_is_dir = false;
4904 unsigned max_links = new_dir->i_sb->s_max_links;
4905 struct name_snapshot old_name;
4906 bool lock_old_subdir, lock_new_subdir;
4907
4908 if (source == target)
4909 return 0;
4910
4911 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4912 if (error)
4913 return error;
4914
4915 if (!target) {
4916 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4917 } else {
4918 new_is_dir = d_is_dir(new_dentry);
4919
4920 if (!(flags & RENAME_EXCHANGE))
4921 error = may_delete(rd->new_mnt_idmap, new_dir,
4922 new_dentry, is_dir);
4923 else
4924 error = may_delete(rd->new_mnt_idmap, new_dir,
4925 new_dentry, new_is_dir);
4926 }
4927 if (error)
4928 return error;
4929
4930 if (!old_dir->i_op->rename)
4931 return -EPERM;
4932
4933 /*
4934 * If we are going to change the parent - check write permissions,
4935 * we'll need to flip '..'.
4936 */
4937 if (new_dir != old_dir) {
4938 if (is_dir) {
4939 error = inode_permission(rd->old_mnt_idmap, source,
4940 MAY_WRITE);
4941 if (error)
4942 return error;
4943 }
4944 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4945 error = inode_permission(rd->new_mnt_idmap, target,
4946 MAY_WRITE);
4947 if (error)
4948 return error;
4949 }
4950 }
4951
4952 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4953 flags);
4954 if (error)
4955 return error;
4956
4957 take_dentry_name_snapshot(&old_name, old_dentry);
4958 dget(new_dentry);
4959 /*
4960 * Lock children.
4961 * The source subdirectory needs to be locked on cross-directory
4962 * rename or cross-directory exchange since its parent changes.
4963 * The target subdirectory needs to be locked on cross-directory
4964 * exchange due to parent change and on any rename due to becoming
4965 * a victim.
4966 * Non-directories need locking in all cases (for NFS reasons);
4967 * they get locked after any subdirectories (in inode address order).
4968 *
4969 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4970 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4971 */
4972 lock_old_subdir = new_dir != old_dir;
4973 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4974 if (is_dir) {
4975 if (lock_old_subdir)
4976 inode_lock_nested(source, I_MUTEX_CHILD);
4977 if (target && (!new_is_dir || lock_new_subdir))
4978 inode_lock(target);
4979 } else if (new_is_dir) {
4980 if (lock_new_subdir)
4981 inode_lock_nested(target, I_MUTEX_CHILD);
4982 inode_lock(source);
4983 } else {
4984 lock_two_nondirectories(source, target);
4985 }
4986
4987 error = -EPERM;
4988 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4989 goto out;
4990
4991 error = -EBUSY;
4992 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4993 goto out;
4994
4995 if (max_links && new_dir != old_dir) {
4996 error = -EMLINK;
4997 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4998 goto out;
4999 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5000 old_dir->i_nlink >= max_links)
5001 goto out;
5002 }
5003 if (!is_dir) {
5004 error = try_break_deleg(source, delegated_inode);
5005 if (error)
5006 goto out;
5007 }
5008 if (target && !new_is_dir) {
5009 error = try_break_deleg(target, delegated_inode);
5010 if (error)
5011 goto out;
5012 }
5013 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5014 new_dir, new_dentry, flags);
5015 if (error)
5016 goto out;
5017
5018 if (!(flags & RENAME_EXCHANGE) && target) {
5019 if (is_dir) {
5020 shrink_dcache_parent(new_dentry);
5021 target->i_flags |= S_DEAD;
5022 }
5023 dont_mount(new_dentry);
5024 detach_mounts(new_dentry);
5025 }
5026 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5027 if (!(flags & RENAME_EXCHANGE))
5028 d_move(old_dentry, new_dentry);
5029 else
5030 d_exchange(old_dentry, new_dentry);
5031 }
5032 out:
5033 if (!is_dir || lock_old_subdir)
5034 inode_unlock(source);
5035 if (target && (!new_is_dir || lock_new_subdir))
5036 inode_unlock(target);
5037 dput(new_dentry);
5038 if (!error) {
5039 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5040 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5041 if (flags & RENAME_EXCHANGE) {
5042 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5043 new_is_dir, NULL, new_dentry);
5044 }
5045 }
5046 release_dentry_name_snapshot(&old_name);
5047
5048 return error;
5049 }
5050 EXPORT_SYMBOL(vfs_rename);
5051
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5052 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5053 struct filename *to, unsigned int flags)
5054 {
5055 struct renamedata rd;
5056 struct dentry *old_dentry, *new_dentry;
5057 struct dentry *trap;
5058 struct path old_path, new_path;
5059 struct qstr old_last, new_last;
5060 int old_type, new_type;
5061 struct inode *delegated_inode = NULL;
5062 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
5063 bool should_retry = false;
5064 int error = -EINVAL;
5065
5066 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5067 goto put_names;
5068
5069 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5070 (flags & RENAME_EXCHANGE))
5071 goto put_names;
5072
5073 if (flags & RENAME_EXCHANGE)
5074 target_flags = 0;
5075
5076 retry:
5077 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5078 &old_last, &old_type);
5079 if (error)
5080 goto put_names;
5081
5082 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5083 &new_type);
5084 if (error)
5085 goto exit1;
5086
5087 error = -EXDEV;
5088 if (old_path.mnt != new_path.mnt)
5089 goto exit2;
5090
5091 error = -EBUSY;
5092 if (old_type != LAST_NORM)
5093 goto exit2;
5094
5095 if (flags & RENAME_NOREPLACE)
5096 error = -EEXIST;
5097 if (new_type != LAST_NORM)
5098 goto exit2;
5099
5100 error = mnt_want_write(old_path.mnt);
5101 if (error)
5102 goto exit2;
5103
5104 retry_deleg:
5105 trap = lock_rename(new_path.dentry, old_path.dentry);
5106 if (IS_ERR(trap)) {
5107 error = PTR_ERR(trap);
5108 goto exit_lock_rename;
5109 }
5110
5111 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5112 lookup_flags);
5113 error = PTR_ERR(old_dentry);
5114 if (IS_ERR(old_dentry))
5115 goto exit3;
5116 /* source must exist */
5117 error = -ENOENT;
5118 if (d_is_negative(old_dentry))
5119 goto exit4;
5120 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5121 lookup_flags | target_flags);
5122 error = PTR_ERR(new_dentry);
5123 if (IS_ERR(new_dentry))
5124 goto exit4;
5125 error = -EEXIST;
5126 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
5127 goto exit5;
5128 if (flags & RENAME_EXCHANGE) {
5129 error = -ENOENT;
5130 if (d_is_negative(new_dentry))
5131 goto exit5;
5132
5133 if (!d_is_dir(new_dentry)) {
5134 error = -ENOTDIR;
5135 if (new_last.name[new_last.len])
5136 goto exit5;
5137 }
5138 }
5139 /* unless the source is a directory trailing slashes give -ENOTDIR */
5140 if (!d_is_dir(old_dentry)) {
5141 error = -ENOTDIR;
5142 if (old_last.name[old_last.len])
5143 goto exit5;
5144 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5145 goto exit5;
5146 }
5147 /* source should not be ancestor of target */
5148 error = -EINVAL;
5149 if (old_dentry == trap)
5150 goto exit5;
5151 /* target should not be an ancestor of source */
5152 if (!(flags & RENAME_EXCHANGE))
5153 error = -ENOTEMPTY;
5154 if (new_dentry == trap)
5155 goto exit5;
5156
5157 error = security_path_rename(&old_path, old_dentry,
5158 &new_path, new_dentry, flags);
5159 if (error)
5160 goto exit5;
5161
5162 rd.old_dir = old_path.dentry->d_inode;
5163 rd.old_dentry = old_dentry;
5164 rd.old_mnt_idmap = mnt_idmap(old_path.mnt);
5165 rd.new_dir = new_path.dentry->d_inode;
5166 rd.new_dentry = new_dentry;
5167 rd.new_mnt_idmap = mnt_idmap(new_path.mnt);
5168 rd.delegated_inode = &delegated_inode;
5169 rd.flags = flags;
5170 error = vfs_rename(&rd);
5171 exit5:
5172 dput(new_dentry);
5173 exit4:
5174 dput(old_dentry);
5175 exit3:
5176 unlock_rename(new_path.dentry, old_path.dentry);
5177 exit_lock_rename:
5178 if (delegated_inode) {
5179 error = break_deleg_wait(&delegated_inode);
5180 if (!error)
5181 goto retry_deleg;
5182 }
5183 mnt_drop_write(old_path.mnt);
5184 exit2:
5185 if (retry_estale(error, lookup_flags))
5186 should_retry = true;
5187 path_put(&new_path);
5188 exit1:
5189 path_put(&old_path);
5190 if (should_retry) {
5191 should_retry = false;
5192 lookup_flags |= LOOKUP_REVAL;
5193 goto retry;
5194 }
5195 put_names:
5196 putname(from);
5197 putname(to);
5198 return error;
5199 }
5200
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5201 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5202 int, newdfd, const char __user *, newname, unsigned int, flags)
5203 {
5204 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5205 flags);
5206 }
5207
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5208 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5209 int, newdfd, const char __user *, newname)
5210 {
5211 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5212 0);
5213 }
5214
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5215 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5216 {
5217 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5218 getname(newname), 0);
5219 }
5220
readlink_copy(char __user * buffer,int buflen,const char * link)5221 int readlink_copy(char __user *buffer, int buflen, const char *link)
5222 {
5223 int len = PTR_ERR(link);
5224 if (IS_ERR(link))
5225 goto out;
5226
5227 len = strlen(link);
5228 if (len > (unsigned) buflen)
5229 len = buflen;
5230 if (copy_to_user(buffer, link, len))
5231 len = -EFAULT;
5232 out:
5233 return len;
5234 }
5235
5236 /**
5237 * vfs_readlink - copy symlink body into userspace buffer
5238 * @dentry: dentry on which to get symbolic link
5239 * @buffer: user memory pointer
5240 * @buflen: size of buffer
5241 *
5242 * Does not touch atime. That's up to the caller if necessary
5243 *
5244 * Does not call security hook.
5245 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5246 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5247 {
5248 struct inode *inode = d_inode(dentry);
5249 DEFINE_DELAYED_CALL(done);
5250 const char *link;
5251 int res;
5252
5253 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5254 if (unlikely(inode->i_op->readlink))
5255 return inode->i_op->readlink(dentry, buffer, buflen);
5256
5257 if (!d_is_symlink(dentry))
5258 return -EINVAL;
5259
5260 spin_lock(&inode->i_lock);
5261 inode->i_opflags |= IOP_DEFAULT_READLINK;
5262 spin_unlock(&inode->i_lock);
5263 }
5264
5265 link = READ_ONCE(inode->i_link);
5266 if (!link) {
5267 link = inode->i_op->get_link(dentry, inode, &done);
5268 if (IS_ERR(link))
5269 return PTR_ERR(link);
5270 }
5271 res = readlink_copy(buffer, buflen, link);
5272 do_delayed_call(&done);
5273 return res;
5274 }
5275 EXPORT_SYMBOL(vfs_readlink);
5276
5277 /**
5278 * vfs_get_link - get symlink body
5279 * @dentry: dentry on which to get symbolic link
5280 * @done: caller needs to free returned data with this
5281 *
5282 * Calls security hook and i_op->get_link() on the supplied inode.
5283 *
5284 * It does not touch atime. That's up to the caller if necessary.
5285 *
5286 * Does not work on "special" symlinks like /proc/$$/fd/N
5287 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5288 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5289 {
5290 const char *res = ERR_PTR(-EINVAL);
5291 struct inode *inode = d_inode(dentry);
5292
5293 if (d_is_symlink(dentry)) {
5294 res = ERR_PTR(security_inode_readlink(dentry));
5295 if (!res)
5296 res = inode->i_op->get_link(dentry, inode, done);
5297 }
5298 return res;
5299 }
5300 EXPORT_SYMBOL(vfs_get_link);
5301
5302 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5303 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5304 struct delayed_call *callback)
5305 {
5306 char *kaddr;
5307 struct page *page;
5308 struct address_space *mapping = inode->i_mapping;
5309
5310 if (!dentry) {
5311 page = find_get_page(mapping, 0);
5312 if (!page)
5313 return ERR_PTR(-ECHILD);
5314 if (!PageUptodate(page)) {
5315 put_page(page);
5316 return ERR_PTR(-ECHILD);
5317 }
5318 } else {
5319 page = read_mapping_page(mapping, 0, NULL);
5320 if (IS_ERR(page))
5321 return (char*)page;
5322 }
5323 set_delayed_call(callback, page_put_link, page);
5324 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5325 kaddr = page_address(page);
5326 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5327 return kaddr;
5328 }
5329
5330 EXPORT_SYMBOL(page_get_link);
5331
page_put_link(void * arg)5332 void page_put_link(void *arg)
5333 {
5334 put_page(arg);
5335 }
5336 EXPORT_SYMBOL(page_put_link);
5337
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5338 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5339 {
5340 DEFINE_DELAYED_CALL(done);
5341 int res = readlink_copy(buffer, buflen,
5342 page_get_link(dentry, d_inode(dentry),
5343 &done));
5344 do_delayed_call(&done);
5345 return res;
5346 }
5347 EXPORT_SYMBOL(page_readlink);
5348
page_symlink(struct inode * inode,const char * symname,int len)5349 int page_symlink(struct inode *inode, const char *symname, int len)
5350 {
5351 struct address_space *mapping = inode->i_mapping;
5352 const struct address_space_operations *aops = mapping->a_ops;
5353 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5354 struct folio *folio;
5355 void *fsdata = NULL;
5356 int err;
5357 unsigned int flags;
5358
5359 retry:
5360 if (nofs)
5361 flags = memalloc_nofs_save();
5362 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5363 if (nofs)
5364 memalloc_nofs_restore(flags);
5365 if (err)
5366 goto fail;
5367
5368 memcpy(folio_address(folio), symname, len - 1);
5369
5370 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5371 folio, fsdata);
5372 if (err < 0)
5373 goto fail;
5374 if (err < len-1)
5375 goto retry;
5376
5377 mark_inode_dirty(inode);
5378 return 0;
5379 fail:
5380 return err;
5381 }
5382 EXPORT_SYMBOL(page_symlink);
5383
5384 const struct inode_operations page_symlink_inode_operations = {
5385 .get_link = page_get_link,
5386 };
5387 EXPORT_SYMBOL(page_symlink_inode_operations);
5388