1 // SPDX-License-Identifier: GPL-2.0-or-later 2 // SPI init/core code 3 // 4 // Copyright (C) 2005 David Brownell 5 // Copyright (C) 2008 Secret Lab Technologies Ltd. 6 7 #include <linux/acpi.h> 8 #include <linux/cache.h> 9 #include <linux/clk/clk-conf.h> 10 #include <linux/delay.h> 11 #include <linux/device.h> 12 #include <linux/dmaengine.h> 13 #include <linux/dma-mapping.h> 14 #include <linux/export.h> 15 #include <linux/gpio/consumer.h> 16 #include <linux/highmem.h> 17 #include <linux/idr.h> 18 #include <linux/init.h> 19 #include <linux/ioport.h> 20 #include <linux/kernel.h> 21 #include <linux/kthread.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mutex.h> 24 #include <linux/of_device.h> 25 #include <linux/of_irq.h> 26 #include <linux/percpu.h> 27 #include <linux/platform_data/x86/apple.h> 28 #include <linux/pm_domain.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/property.h> 31 #include <linux/ptp_clock_kernel.h> 32 #include <linux/sched/rt.h> 33 #include <linux/slab.h> 34 #include <linux/spi/offload/types.h> 35 #include <linux/spi/spi.h> 36 #include <linux/spi/spi-mem.h> 37 #include <uapi/linux/sched/types.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/spi.h> 41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start); 42 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop); 43 44 #include "internals.h" 45 46 static DEFINE_IDR(spi_controller_idr); 47 48 static void spidev_release(struct device *dev) 49 { 50 struct spi_device *spi = to_spi_device(dev); 51 52 spi_controller_put(spi->controller); 53 kfree(spi->driver_override); 54 free_percpu(spi->pcpu_statistics); 55 kfree(spi); 56 } 57 58 static ssize_t 59 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 60 { 61 const struct spi_device *spi = to_spi_device(dev); 62 int len; 63 64 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1); 65 if (len != -ENODEV) 66 return len; 67 68 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias); 69 } 70 static DEVICE_ATTR_RO(modalias); 71 72 static ssize_t driver_override_store(struct device *dev, 73 struct device_attribute *a, 74 const char *buf, size_t count) 75 { 76 struct spi_device *spi = to_spi_device(dev); 77 int ret; 78 79 ret = driver_set_override(dev, &spi->driver_override, buf, count); 80 if (ret) 81 return ret; 82 83 return count; 84 } 85 86 static ssize_t driver_override_show(struct device *dev, 87 struct device_attribute *a, char *buf) 88 { 89 const struct spi_device *spi = to_spi_device(dev); 90 ssize_t len; 91 92 device_lock(dev); 93 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : ""); 94 device_unlock(dev); 95 return len; 96 } 97 static DEVICE_ATTR_RW(driver_override); 98 99 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev) 100 { 101 struct spi_statistics __percpu *pcpu_stats; 102 103 if (dev) 104 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics); 105 else 106 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL); 107 108 if (pcpu_stats) { 109 int cpu; 110 111 for_each_possible_cpu(cpu) { 112 struct spi_statistics *stat; 113 114 stat = per_cpu_ptr(pcpu_stats, cpu); 115 u64_stats_init(&stat->syncp); 116 } 117 } 118 return pcpu_stats; 119 } 120 121 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat, 122 char *buf, size_t offset) 123 { 124 u64 val = 0; 125 int i; 126 127 for_each_possible_cpu(i) { 128 const struct spi_statistics *pcpu_stats; 129 u64_stats_t *field; 130 unsigned int start; 131 u64 inc; 132 133 pcpu_stats = per_cpu_ptr(stat, i); 134 field = (void *)pcpu_stats + offset; 135 do { 136 start = u64_stats_fetch_begin(&pcpu_stats->syncp); 137 inc = u64_stats_read(field); 138 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start)); 139 val += inc; 140 } 141 return sysfs_emit(buf, "%llu\n", val); 142 } 143 144 #define SPI_STATISTICS_ATTRS(field, file) \ 145 static ssize_t spi_controller_##field##_show(struct device *dev, \ 146 struct device_attribute *attr, \ 147 char *buf) \ 148 { \ 149 struct spi_controller *ctlr = container_of(dev, \ 150 struct spi_controller, dev); \ 151 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \ 152 } \ 153 static struct device_attribute dev_attr_spi_controller_##field = { \ 154 .attr = { .name = file, .mode = 0444 }, \ 155 .show = spi_controller_##field##_show, \ 156 }; \ 157 static ssize_t spi_device_##field##_show(struct device *dev, \ 158 struct device_attribute *attr, \ 159 char *buf) \ 160 { \ 161 struct spi_device *spi = to_spi_device(dev); \ 162 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \ 163 } \ 164 static struct device_attribute dev_attr_spi_device_##field = { \ 165 .attr = { .name = file, .mode = 0444 }, \ 166 .show = spi_device_##field##_show, \ 167 } 168 169 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \ 170 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \ 171 char *buf) \ 172 { \ 173 return spi_emit_pcpu_stats(stat, buf, \ 174 offsetof(struct spi_statistics, field)); \ 175 } \ 176 SPI_STATISTICS_ATTRS(name, file) 177 178 #define SPI_STATISTICS_SHOW(field) \ 179 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \ 180 field) 181 182 SPI_STATISTICS_SHOW(messages); 183 SPI_STATISTICS_SHOW(transfers); 184 SPI_STATISTICS_SHOW(errors); 185 SPI_STATISTICS_SHOW(timedout); 186 187 SPI_STATISTICS_SHOW(spi_sync); 188 SPI_STATISTICS_SHOW(spi_sync_immediate); 189 SPI_STATISTICS_SHOW(spi_async); 190 191 SPI_STATISTICS_SHOW(bytes); 192 SPI_STATISTICS_SHOW(bytes_rx); 193 SPI_STATISTICS_SHOW(bytes_tx); 194 195 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \ 196 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \ 197 "transfer_bytes_histo_" number, \ 198 transfer_bytes_histo[index]) 199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1"); 200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3"); 201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7"); 202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15"); 203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31"); 204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63"); 205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127"); 206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255"); 207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511"); 208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023"); 209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047"); 210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095"); 211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191"); 212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383"); 213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767"); 214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535"); 215 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+"); 216 217 SPI_STATISTICS_SHOW(transfers_split_maxsize); 218 219 static struct attribute *spi_dev_attrs[] = { 220 &dev_attr_modalias.attr, 221 &dev_attr_driver_override.attr, 222 NULL, 223 }; 224 225 static const struct attribute_group spi_dev_group = { 226 .attrs = spi_dev_attrs, 227 }; 228 229 static struct attribute *spi_device_statistics_attrs[] = { 230 &dev_attr_spi_device_messages.attr, 231 &dev_attr_spi_device_transfers.attr, 232 &dev_attr_spi_device_errors.attr, 233 &dev_attr_spi_device_timedout.attr, 234 &dev_attr_spi_device_spi_sync.attr, 235 &dev_attr_spi_device_spi_sync_immediate.attr, 236 &dev_attr_spi_device_spi_async.attr, 237 &dev_attr_spi_device_bytes.attr, 238 &dev_attr_spi_device_bytes_rx.attr, 239 &dev_attr_spi_device_bytes_tx.attr, 240 &dev_attr_spi_device_transfer_bytes_histo0.attr, 241 &dev_attr_spi_device_transfer_bytes_histo1.attr, 242 &dev_attr_spi_device_transfer_bytes_histo2.attr, 243 &dev_attr_spi_device_transfer_bytes_histo3.attr, 244 &dev_attr_spi_device_transfer_bytes_histo4.attr, 245 &dev_attr_spi_device_transfer_bytes_histo5.attr, 246 &dev_attr_spi_device_transfer_bytes_histo6.attr, 247 &dev_attr_spi_device_transfer_bytes_histo7.attr, 248 &dev_attr_spi_device_transfer_bytes_histo8.attr, 249 &dev_attr_spi_device_transfer_bytes_histo9.attr, 250 &dev_attr_spi_device_transfer_bytes_histo10.attr, 251 &dev_attr_spi_device_transfer_bytes_histo11.attr, 252 &dev_attr_spi_device_transfer_bytes_histo12.attr, 253 &dev_attr_spi_device_transfer_bytes_histo13.attr, 254 &dev_attr_spi_device_transfer_bytes_histo14.attr, 255 &dev_attr_spi_device_transfer_bytes_histo15.attr, 256 &dev_attr_spi_device_transfer_bytes_histo16.attr, 257 &dev_attr_spi_device_transfers_split_maxsize.attr, 258 NULL, 259 }; 260 261 static const struct attribute_group spi_device_statistics_group = { 262 .name = "statistics", 263 .attrs = spi_device_statistics_attrs, 264 }; 265 266 static const struct attribute_group *spi_dev_groups[] = { 267 &spi_dev_group, 268 &spi_device_statistics_group, 269 NULL, 270 }; 271 272 static struct attribute *spi_controller_statistics_attrs[] = { 273 &dev_attr_spi_controller_messages.attr, 274 &dev_attr_spi_controller_transfers.attr, 275 &dev_attr_spi_controller_errors.attr, 276 &dev_attr_spi_controller_timedout.attr, 277 &dev_attr_spi_controller_spi_sync.attr, 278 &dev_attr_spi_controller_spi_sync_immediate.attr, 279 &dev_attr_spi_controller_spi_async.attr, 280 &dev_attr_spi_controller_bytes.attr, 281 &dev_attr_spi_controller_bytes_rx.attr, 282 &dev_attr_spi_controller_bytes_tx.attr, 283 &dev_attr_spi_controller_transfer_bytes_histo0.attr, 284 &dev_attr_spi_controller_transfer_bytes_histo1.attr, 285 &dev_attr_spi_controller_transfer_bytes_histo2.attr, 286 &dev_attr_spi_controller_transfer_bytes_histo3.attr, 287 &dev_attr_spi_controller_transfer_bytes_histo4.attr, 288 &dev_attr_spi_controller_transfer_bytes_histo5.attr, 289 &dev_attr_spi_controller_transfer_bytes_histo6.attr, 290 &dev_attr_spi_controller_transfer_bytes_histo7.attr, 291 &dev_attr_spi_controller_transfer_bytes_histo8.attr, 292 &dev_attr_spi_controller_transfer_bytes_histo9.attr, 293 &dev_attr_spi_controller_transfer_bytes_histo10.attr, 294 &dev_attr_spi_controller_transfer_bytes_histo11.attr, 295 &dev_attr_spi_controller_transfer_bytes_histo12.attr, 296 &dev_attr_spi_controller_transfer_bytes_histo13.attr, 297 &dev_attr_spi_controller_transfer_bytes_histo14.attr, 298 &dev_attr_spi_controller_transfer_bytes_histo15.attr, 299 &dev_attr_spi_controller_transfer_bytes_histo16.attr, 300 &dev_attr_spi_controller_transfers_split_maxsize.attr, 301 NULL, 302 }; 303 304 static const struct attribute_group spi_controller_statistics_group = { 305 .name = "statistics", 306 .attrs = spi_controller_statistics_attrs, 307 }; 308 309 static const struct attribute_group *spi_controller_groups[] = { 310 &spi_controller_statistics_group, 311 NULL, 312 }; 313 314 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats, 315 struct spi_transfer *xfer, 316 struct spi_message *msg) 317 { 318 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1; 319 struct spi_statistics *stats; 320 321 if (l2len < 0) 322 l2len = 0; 323 324 get_cpu(); 325 stats = this_cpu_ptr(pcpu_stats); 326 u64_stats_update_begin(&stats->syncp); 327 328 u64_stats_inc(&stats->transfers); 329 u64_stats_inc(&stats->transfer_bytes_histo[l2len]); 330 331 u64_stats_add(&stats->bytes, xfer->len); 332 if (spi_valid_txbuf(msg, xfer)) 333 u64_stats_add(&stats->bytes_tx, xfer->len); 334 if (spi_valid_rxbuf(msg, xfer)) 335 u64_stats_add(&stats->bytes_rx, xfer->len); 336 337 u64_stats_update_end(&stats->syncp); 338 put_cpu(); 339 } 340 341 /* 342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work, 343 * and the sysfs version makes coldplug work too. 344 */ 345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name) 346 { 347 while (id->name[0]) { 348 if (!strcmp(name, id->name)) 349 return id; 350 id++; 351 } 352 return NULL; 353 } 354 355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev) 356 { 357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver); 358 359 return spi_match_id(sdrv->id_table, sdev->modalias); 360 } 361 EXPORT_SYMBOL_GPL(spi_get_device_id); 362 363 const void *spi_get_device_match_data(const struct spi_device *sdev) 364 { 365 const void *match; 366 367 match = device_get_match_data(&sdev->dev); 368 if (match) 369 return match; 370 371 return (const void *)spi_get_device_id(sdev)->driver_data; 372 } 373 EXPORT_SYMBOL_GPL(spi_get_device_match_data); 374 375 static int spi_match_device(struct device *dev, const struct device_driver *drv) 376 { 377 const struct spi_device *spi = to_spi_device(dev); 378 const struct spi_driver *sdrv = to_spi_driver(drv); 379 380 /* Check override first, and if set, only use the named driver */ 381 if (spi->driver_override) 382 return strcmp(spi->driver_override, drv->name) == 0; 383 384 /* Attempt an OF style match */ 385 if (of_driver_match_device(dev, drv)) 386 return 1; 387 388 /* Then try ACPI */ 389 if (acpi_driver_match_device(dev, drv)) 390 return 1; 391 392 if (sdrv->id_table) 393 return !!spi_match_id(sdrv->id_table, spi->modalias); 394 395 return strcmp(spi->modalias, drv->name) == 0; 396 } 397 398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env) 399 { 400 const struct spi_device *spi = to_spi_device(dev); 401 int rc; 402 403 rc = acpi_device_uevent_modalias(dev, env); 404 if (rc != -ENODEV) 405 return rc; 406 407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias); 408 } 409 410 static int spi_probe(struct device *dev) 411 { 412 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 413 struct spi_device *spi = to_spi_device(dev); 414 struct fwnode_handle *fwnode = dev_fwnode(dev); 415 int ret; 416 417 ret = of_clk_set_defaults(dev->of_node, false); 418 if (ret) 419 return ret; 420 421 if (is_of_node(fwnode)) 422 spi->irq = of_irq_get(dev->of_node, 0); 423 else if (is_acpi_device_node(fwnode) && spi->irq < 0) 424 spi->irq = acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode), 0); 425 if (spi->irq == -EPROBE_DEFER) 426 return dev_err_probe(dev, spi->irq, "Failed to get irq\n"); 427 if (spi->irq < 0) 428 spi->irq = 0; 429 430 ret = dev_pm_domain_attach(dev, PD_FLAG_ATTACH_POWER_ON | 431 PD_FLAG_DETACH_POWER_OFF); 432 if (ret) 433 return ret; 434 435 if (sdrv->probe) 436 ret = sdrv->probe(spi); 437 438 return ret; 439 } 440 441 static void spi_remove(struct device *dev) 442 { 443 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 444 445 if (sdrv->remove) 446 sdrv->remove(to_spi_device(dev)); 447 } 448 449 static void spi_shutdown(struct device *dev) 450 { 451 if (dev->driver) { 452 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 453 454 if (sdrv->shutdown) 455 sdrv->shutdown(to_spi_device(dev)); 456 } 457 } 458 459 const struct bus_type spi_bus_type = { 460 .name = "spi", 461 .dev_groups = spi_dev_groups, 462 .match = spi_match_device, 463 .uevent = spi_uevent, 464 .probe = spi_probe, 465 .remove = spi_remove, 466 .shutdown = spi_shutdown, 467 }; 468 EXPORT_SYMBOL_GPL(spi_bus_type); 469 470 /** 471 * __spi_register_driver - register a SPI driver 472 * @owner: owner module of the driver to register 473 * @sdrv: the driver to register 474 * Context: can sleep 475 * 476 * Return: zero on success, else a negative error code. 477 */ 478 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv) 479 { 480 sdrv->driver.owner = owner; 481 sdrv->driver.bus = &spi_bus_type; 482 483 /* 484 * For Really Good Reasons we use spi: modaliases not of: 485 * modaliases for DT so module autoloading won't work if we 486 * don't have a spi_device_id as well as a compatible string. 487 */ 488 if (sdrv->driver.of_match_table) { 489 const struct of_device_id *of_id; 490 491 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0]; 492 of_id++) { 493 const char *of_name; 494 495 /* Strip off any vendor prefix */ 496 of_name = strnchr(of_id->compatible, 497 sizeof(of_id->compatible), ','); 498 if (of_name) 499 of_name++; 500 else 501 of_name = of_id->compatible; 502 503 if (sdrv->id_table) { 504 const struct spi_device_id *spi_id; 505 506 spi_id = spi_match_id(sdrv->id_table, of_name); 507 if (spi_id) 508 continue; 509 } else { 510 if (strcmp(sdrv->driver.name, of_name) == 0) 511 continue; 512 } 513 514 pr_warn("SPI driver %s has no spi_device_id for %s\n", 515 sdrv->driver.name, of_id->compatible); 516 } 517 } 518 519 return driver_register(&sdrv->driver); 520 } 521 EXPORT_SYMBOL_GPL(__spi_register_driver); 522 523 /*-------------------------------------------------------------------------*/ 524 525 /* 526 * SPI devices should normally not be created by SPI device drivers; that 527 * would make them board-specific. Similarly with SPI controller drivers. 528 * Device registration normally goes into like arch/.../mach.../board-YYY.c 529 * with other readonly (flashable) information about mainboard devices. 530 */ 531 532 struct boardinfo { 533 struct list_head list; 534 struct spi_board_info board_info; 535 }; 536 537 static LIST_HEAD(board_list); 538 static LIST_HEAD(spi_controller_list); 539 540 /* 541 * Used to protect add/del operation for board_info list and 542 * spi_controller list, and their matching process also used 543 * to protect object of type struct idr. 544 */ 545 static DEFINE_MUTEX(board_lock); 546 547 /** 548 * spi_alloc_device - Allocate a new SPI device 549 * @ctlr: Controller to which device is connected 550 * Context: can sleep 551 * 552 * Allows a driver to allocate and initialize a spi_device without 553 * registering it immediately. This allows a driver to directly 554 * fill the spi_device with device parameters before calling 555 * spi_add_device() on it. 556 * 557 * Caller is responsible to call spi_add_device() on the returned 558 * spi_device structure to add it to the SPI controller. If the caller 559 * needs to discard the spi_device without adding it, then it should 560 * call spi_dev_put() on it. 561 * 562 * Return: a pointer to the new device, or NULL. 563 */ 564 struct spi_device *spi_alloc_device(struct spi_controller *ctlr) 565 { 566 struct spi_device *spi; 567 568 if (!spi_controller_get(ctlr)) 569 return NULL; 570 571 spi = kzalloc(sizeof(*spi), GFP_KERNEL); 572 if (!spi) { 573 spi_controller_put(ctlr); 574 return NULL; 575 } 576 577 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL); 578 if (!spi->pcpu_statistics) { 579 kfree(spi); 580 spi_controller_put(ctlr); 581 return NULL; 582 } 583 584 spi->controller = ctlr; 585 spi->dev.parent = &ctlr->dev; 586 spi->dev.bus = &spi_bus_type; 587 spi->dev.release = spidev_release; 588 spi->mode = ctlr->buswidth_override_bits; 589 spi->num_chipselect = 1; 590 591 device_initialize(&spi->dev); 592 return spi; 593 } 594 EXPORT_SYMBOL_GPL(spi_alloc_device); 595 596 static void spi_dev_set_name(struct spi_device *spi) 597 { 598 struct device *dev = &spi->dev; 599 struct fwnode_handle *fwnode = dev_fwnode(dev); 600 601 if (is_acpi_device_node(fwnode)) { 602 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode))); 603 return; 604 } 605 606 if (is_software_node(fwnode)) { 607 dev_set_name(dev, "spi-%pfwP", fwnode); 608 return; 609 } 610 611 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev), 612 spi_get_chipselect(spi, 0)); 613 } 614 615 /* 616 * Zero(0) is a valid physical CS value and can be located at any 617 * logical CS in the spi->chip_select[]. If all the physical CS 618 * are initialized to 0 then It would be difficult to differentiate 619 * between a valid physical CS 0 & an unused logical CS whose physical 620 * CS can be 0. As a solution to this issue initialize all the CS to -1. 621 * Now all the unused logical CS will have -1 physical CS value & can be 622 * ignored while performing physical CS validity checks. 623 */ 624 #define SPI_INVALID_CS ((s8)-1) 625 626 static inline int spi_dev_check_cs(struct device *dev, 627 struct spi_device *spi, u8 idx, 628 struct spi_device *new_spi, u8 new_idx) 629 { 630 u8 cs, cs_new; 631 u8 idx_new; 632 633 cs = spi_get_chipselect(spi, idx); 634 for (idx_new = new_idx; idx_new < new_spi->num_chipselect; idx_new++) { 635 cs_new = spi_get_chipselect(new_spi, idx_new); 636 if (cs == cs_new) { 637 dev_err(dev, "chipselect %u already in use\n", cs_new); 638 return -EBUSY; 639 } 640 } 641 return 0; 642 } 643 644 static int spi_dev_check(struct device *dev, void *data) 645 { 646 struct spi_device *spi = to_spi_device(dev); 647 struct spi_device *new_spi = data; 648 int status, idx; 649 650 if (spi->controller == new_spi->controller) { 651 for (idx = 0; idx < spi->num_chipselect; idx++) { 652 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0); 653 if (status) 654 return status; 655 } 656 } 657 return 0; 658 } 659 660 static void spi_cleanup(struct spi_device *spi) 661 { 662 if (spi->controller->cleanup) 663 spi->controller->cleanup(spi); 664 } 665 666 static int __spi_add_device(struct spi_device *spi) 667 { 668 struct spi_controller *ctlr = spi->controller; 669 struct device *dev = ctlr->dev.parent; 670 int status, idx; 671 u8 cs; 672 673 if (spi->num_chipselect > SPI_DEVICE_CS_CNT_MAX) { 674 dev_err(dev, "num_cs %d > max %d\n", spi->num_chipselect, 675 SPI_DEVICE_CS_CNT_MAX); 676 return -EOVERFLOW; 677 } 678 679 for (idx = 0; idx < spi->num_chipselect; idx++) { 680 /* Chipselects are numbered 0..max; validate. */ 681 cs = spi_get_chipselect(spi, idx); 682 if (cs >= ctlr->num_chipselect) { 683 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx), 684 ctlr->num_chipselect); 685 return -EINVAL; 686 } 687 } 688 689 /* 690 * Make sure that multiple logical CS doesn't map to the same physical CS. 691 * For example, spi->chip_select[0] != spi->chip_select[1] and so on. 692 */ 693 if (!spi_controller_is_target(ctlr)) { 694 for (idx = 0; idx < spi->num_chipselect; idx++) { 695 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1); 696 if (status) 697 return status; 698 } 699 } 700 701 /* Initialize unused logical CS as invalid */ 702 for (idx = spi->num_chipselect; idx < SPI_DEVICE_CS_CNT_MAX; idx++) 703 spi_set_chipselect(spi, idx, SPI_INVALID_CS); 704 705 /* Set the bus ID string */ 706 spi_dev_set_name(spi); 707 708 /* 709 * We need to make sure there's no other device with this 710 * chipselect **BEFORE** we call setup(), else we'll trash 711 * its configuration. 712 */ 713 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check); 714 if (status) 715 return status; 716 717 /* Controller may unregister concurrently */ 718 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) && 719 !device_is_registered(&ctlr->dev)) { 720 return -ENODEV; 721 } 722 723 if (ctlr->cs_gpiods) { 724 u8 cs; 725 726 for (idx = 0; idx < spi->num_chipselect; idx++) { 727 cs = spi_get_chipselect(spi, idx); 728 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]); 729 } 730 } 731 732 /* 733 * Drivers may modify this initial i/o setup, but will 734 * normally rely on the device being setup. Devices 735 * using SPI_CS_HIGH can't coexist well otherwise... 736 */ 737 status = spi_setup(spi); 738 if (status < 0) { 739 dev_err(dev, "can't setup %s, status %d\n", 740 dev_name(&spi->dev), status); 741 return status; 742 } 743 744 /* Device may be bound to an active driver when this returns */ 745 status = device_add(&spi->dev); 746 if (status < 0) { 747 dev_err(dev, "can't add %s, status %d\n", 748 dev_name(&spi->dev), status); 749 spi_cleanup(spi); 750 } else { 751 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev)); 752 } 753 754 return status; 755 } 756 757 /** 758 * spi_add_device - Add spi_device allocated with spi_alloc_device 759 * @spi: spi_device to register 760 * 761 * Companion function to spi_alloc_device. Devices allocated with 762 * spi_alloc_device can be added onto the SPI bus with this function. 763 * 764 * Return: 0 on success; negative errno on failure 765 */ 766 int spi_add_device(struct spi_device *spi) 767 { 768 struct spi_controller *ctlr = spi->controller; 769 int status; 770 771 /* Set the bus ID string */ 772 spi_dev_set_name(spi); 773 774 mutex_lock(&ctlr->add_lock); 775 status = __spi_add_device(spi); 776 mutex_unlock(&ctlr->add_lock); 777 return status; 778 } 779 EXPORT_SYMBOL_GPL(spi_add_device); 780 781 /** 782 * spi_new_device - instantiate one new SPI device 783 * @ctlr: Controller to which device is connected 784 * @chip: Describes the SPI device 785 * Context: can sleep 786 * 787 * On typical mainboards, this is purely internal; and it's not needed 788 * after board init creates the hard-wired devices. Some development 789 * platforms may not be able to use spi_register_board_info though, and 790 * this is exported so that for example a USB or parport based adapter 791 * driver could add devices (which it would learn about out-of-band). 792 * 793 * Return: the new device, or NULL. 794 */ 795 struct spi_device *spi_new_device(struct spi_controller *ctlr, 796 struct spi_board_info *chip) 797 { 798 struct spi_device *proxy; 799 int status; 800 801 /* 802 * NOTE: caller did any chip->bus_num checks necessary. 803 * 804 * Also, unless we change the return value convention to use 805 * error-or-pointer (not NULL-or-pointer), troubleshootability 806 * suggests syslogged diagnostics are best here (ugh). 807 */ 808 809 proxy = spi_alloc_device(ctlr); 810 if (!proxy) 811 return NULL; 812 813 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias)); 814 815 /* Use provided chip-select for proxy device */ 816 spi_set_chipselect(proxy, 0, chip->chip_select); 817 818 proxy->max_speed_hz = chip->max_speed_hz; 819 proxy->mode = chip->mode; 820 proxy->irq = chip->irq; 821 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias)); 822 proxy->dev.platform_data = (void *) chip->platform_data; 823 proxy->controller_data = chip->controller_data; 824 proxy->controller_state = NULL; 825 /* 826 * By default spi->chip_select[0] will hold the physical CS number, 827 * so set bit 0 in spi->cs_index_mask. 828 */ 829 proxy->cs_index_mask = BIT(0); 830 831 if (chip->swnode) { 832 status = device_add_software_node(&proxy->dev, chip->swnode); 833 if (status) { 834 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n", 835 chip->modalias, status); 836 goto err_dev_put; 837 } 838 } 839 840 status = spi_add_device(proxy); 841 if (status < 0) 842 goto err_dev_put; 843 844 return proxy; 845 846 err_dev_put: 847 device_remove_software_node(&proxy->dev); 848 spi_dev_put(proxy); 849 return NULL; 850 } 851 EXPORT_SYMBOL_GPL(spi_new_device); 852 853 /** 854 * spi_unregister_device - unregister a single SPI device 855 * @spi: spi_device to unregister 856 * 857 * Start making the passed SPI device vanish. Normally this would be handled 858 * by spi_unregister_controller(). 859 */ 860 void spi_unregister_device(struct spi_device *spi) 861 { 862 struct fwnode_handle *fwnode; 863 864 if (!spi) 865 return; 866 867 fwnode = dev_fwnode(&spi->dev); 868 if (is_of_node(fwnode)) { 869 of_node_clear_flag(to_of_node(fwnode), OF_POPULATED); 870 of_node_put(to_of_node(fwnode)); 871 } else if (is_acpi_device_node(fwnode)) { 872 acpi_device_clear_enumerated(to_acpi_device_node(fwnode)); 873 } 874 device_remove_software_node(&spi->dev); 875 device_del(&spi->dev); 876 spi_cleanup(spi); 877 put_device(&spi->dev); 878 } 879 EXPORT_SYMBOL_GPL(spi_unregister_device); 880 881 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr, 882 struct spi_board_info *bi) 883 { 884 struct spi_device *dev; 885 886 if (ctlr->bus_num != bi->bus_num) 887 return; 888 889 dev = spi_new_device(ctlr, bi); 890 if (!dev) 891 dev_err(ctlr->dev.parent, "can't create new device for %s\n", 892 bi->modalias); 893 } 894 895 /** 896 * spi_register_board_info - register SPI devices for a given board 897 * @info: array of chip descriptors 898 * @n: how many descriptors are provided 899 * Context: can sleep 900 * 901 * Board-specific early init code calls this (probably during arch_initcall) 902 * with segments of the SPI device table. Any device nodes are created later, 903 * after the relevant parent SPI controller (bus_num) is defined. We keep 904 * this table of devices forever, so that reloading a controller driver will 905 * not make Linux forget about these hard-wired devices. 906 * 907 * Other code can also call this, e.g. a particular add-on board might provide 908 * SPI devices through its expansion connector, so code initializing that board 909 * would naturally declare its SPI devices. 910 * 911 * The board info passed can safely be __initdata ... but be careful of 912 * any embedded pointers (platform_data, etc), they're copied as-is. 913 * 914 * Return: zero on success, else a negative error code. 915 */ 916 int spi_register_board_info(struct spi_board_info const *info, unsigned n) 917 { 918 struct boardinfo *bi; 919 int i; 920 921 if (!n) 922 return 0; 923 924 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL); 925 if (!bi) 926 return -ENOMEM; 927 928 for (i = 0; i < n; i++, bi++, info++) { 929 struct spi_controller *ctlr; 930 931 memcpy(&bi->board_info, info, sizeof(*info)); 932 933 mutex_lock(&board_lock); 934 list_add_tail(&bi->list, &board_list); 935 list_for_each_entry(ctlr, &spi_controller_list, list) 936 spi_match_controller_to_boardinfo(ctlr, 937 &bi->board_info); 938 mutex_unlock(&board_lock); 939 } 940 941 return 0; 942 } 943 944 /*-------------------------------------------------------------------------*/ 945 946 /* Core methods for SPI resource management */ 947 948 /** 949 * spi_res_alloc - allocate a spi resource that is life-cycle managed 950 * during the processing of a spi_message while using 951 * spi_transfer_one 952 * @spi: the SPI device for which we allocate memory 953 * @release: the release code to execute for this resource 954 * @size: size to alloc and return 955 * @gfp: GFP allocation flags 956 * 957 * Return: the pointer to the allocated data 958 * 959 * This may get enhanced in the future to allocate from a memory pool 960 * of the @spi_device or @spi_controller to avoid repeated allocations. 961 */ 962 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release, 963 size_t size, gfp_t gfp) 964 { 965 struct spi_res *sres; 966 967 sres = kzalloc(sizeof(*sres) + size, gfp); 968 if (!sres) 969 return NULL; 970 971 INIT_LIST_HEAD(&sres->entry); 972 sres->release = release; 973 974 return sres->data; 975 } 976 977 /** 978 * spi_res_free - free an SPI resource 979 * @res: pointer to the custom data of a resource 980 */ 981 static void spi_res_free(void *res) 982 { 983 struct spi_res *sres = container_of(res, struct spi_res, data); 984 985 WARN_ON(!list_empty(&sres->entry)); 986 kfree(sres); 987 } 988 989 /** 990 * spi_res_add - add a spi_res to the spi_message 991 * @message: the SPI message 992 * @res: the spi_resource 993 */ 994 static void spi_res_add(struct spi_message *message, void *res) 995 { 996 struct spi_res *sres = container_of(res, struct spi_res, data); 997 998 WARN_ON(!list_empty(&sres->entry)); 999 list_add_tail(&sres->entry, &message->resources); 1000 } 1001 1002 /** 1003 * spi_res_release - release all SPI resources for this message 1004 * @ctlr: the @spi_controller 1005 * @message: the @spi_message 1006 */ 1007 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message) 1008 { 1009 struct spi_res *res, *tmp; 1010 1011 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) { 1012 if (res->release) 1013 res->release(ctlr, message, res->data); 1014 1015 list_del(&res->entry); 1016 1017 kfree(res); 1018 } 1019 } 1020 1021 /*-------------------------------------------------------------------------*/ 1022 #define spi_for_each_valid_cs(spi, idx) \ 1023 for (idx = 0; idx < spi->num_chipselect; idx++) \ 1024 if (!(spi->cs_index_mask & BIT(idx))) {} else 1025 1026 static inline bool spi_is_last_cs(struct spi_device *spi) 1027 { 1028 u8 idx; 1029 bool last = false; 1030 1031 spi_for_each_valid_cs(spi, idx) { 1032 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx)) 1033 last = true; 1034 } 1035 return last; 1036 } 1037 1038 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate) 1039 { 1040 /* 1041 * Historically ACPI has no means of the GPIO polarity and 1042 * thus the SPISerialBus() resource defines it on the per-chip 1043 * basis. In order to avoid a chain of negations, the GPIO 1044 * polarity is considered being Active High. Even for the cases 1045 * when _DSD() is involved (in the updated versions of ACPI) 1046 * the GPIO CS polarity must be defined Active High to avoid 1047 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH 1048 * into account. 1049 */ 1050 if (is_acpi_device_node(dev_fwnode(&spi->dev))) 1051 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable); 1052 else 1053 /* Polarity handled by GPIO library */ 1054 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate); 1055 1056 if (activate) 1057 spi_delay_exec(&spi->cs_setup, NULL); 1058 else 1059 spi_delay_exec(&spi->cs_inactive, NULL); 1060 } 1061 1062 static void spi_set_cs(struct spi_device *spi, bool enable, bool force) 1063 { 1064 bool activate = enable; 1065 u8 idx; 1066 1067 /* 1068 * Avoid calling into the driver (or doing delays) if the chip select 1069 * isn't actually changing from the last time this was called. 1070 */ 1071 if (!force && (enable == spi_is_last_cs(spi)) && 1072 (spi->controller->last_cs_index_mask == spi->cs_index_mask) && 1073 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH))) 1074 return; 1075 1076 trace_spi_set_cs(spi, activate); 1077 1078 spi->controller->last_cs_index_mask = spi->cs_index_mask; 1079 for (idx = 0; idx < SPI_DEVICE_CS_CNT_MAX; idx++) { 1080 if (enable && idx < spi->num_chipselect) 1081 spi->controller->last_cs[idx] = spi_get_chipselect(spi, 0); 1082 else 1083 spi->controller->last_cs[idx] = SPI_INVALID_CS; 1084 } 1085 1086 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH; 1087 if (spi->controller->last_cs_mode_high) 1088 enable = !enable; 1089 1090 /* 1091 * Handle chip select delays for GPIO based CS or controllers without 1092 * programmable chip select timing. 1093 */ 1094 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate) 1095 spi_delay_exec(&spi->cs_hold, NULL); 1096 1097 if (spi_is_csgpiod(spi)) { 1098 if (!(spi->mode & SPI_NO_CS)) { 1099 spi_for_each_valid_cs(spi, idx) { 1100 if (spi_get_csgpiod(spi, idx)) 1101 spi_toggle_csgpiod(spi, idx, enable, activate); 1102 } 1103 } 1104 /* Some SPI controllers need both GPIO CS & ->set_cs() */ 1105 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) && 1106 spi->controller->set_cs) 1107 spi->controller->set_cs(spi, !enable); 1108 } else if (spi->controller->set_cs) { 1109 spi->controller->set_cs(spi, !enable); 1110 } 1111 1112 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) { 1113 if (activate) 1114 spi_delay_exec(&spi->cs_setup, NULL); 1115 else 1116 spi_delay_exec(&spi->cs_inactive, NULL); 1117 } 1118 } 1119 1120 #ifdef CONFIG_HAS_DMA 1121 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev, 1122 struct sg_table *sgt, void *buf, size_t len, 1123 enum dma_data_direction dir, unsigned long attrs) 1124 { 1125 const bool vmalloced_buf = is_vmalloc_addr(buf); 1126 unsigned int max_seg_size = dma_get_max_seg_size(dev); 1127 #ifdef CONFIG_HIGHMEM 1128 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE && 1129 (unsigned long)buf < (PKMAP_BASE + 1130 (LAST_PKMAP * PAGE_SIZE))); 1131 #else 1132 const bool kmap_buf = false; 1133 #endif 1134 int desc_len; 1135 int sgs; 1136 struct page *vm_page; 1137 struct scatterlist *sg; 1138 void *sg_buf; 1139 size_t min; 1140 int i, ret; 1141 1142 if (vmalloced_buf || kmap_buf) { 1143 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE); 1144 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len); 1145 } else if (virt_addr_valid(buf)) { 1146 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len); 1147 sgs = DIV_ROUND_UP(len, desc_len); 1148 } else { 1149 return -EINVAL; 1150 } 1151 1152 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL); 1153 if (ret != 0) 1154 return ret; 1155 1156 sg = &sgt->sgl[0]; 1157 for (i = 0; i < sgs; i++) { 1158 1159 if (vmalloced_buf || kmap_buf) { 1160 /* 1161 * Next scatterlist entry size is the minimum between 1162 * the desc_len and the remaining buffer length that 1163 * fits in a page. 1164 */ 1165 min = min_t(size_t, desc_len, 1166 min_t(size_t, len, 1167 PAGE_SIZE - offset_in_page(buf))); 1168 if (vmalloced_buf) 1169 vm_page = vmalloc_to_page(buf); 1170 else 1171 vm_page = kmap_to_page(buf); 1172 if (!vm_page) { 1173 sg_free_table(sgt); 1174 return -ENOMEM; 1175 } 1176 sg_set_page(sg, vm_page, 1177 min, offset_in_page(buf)); 1178 } else { 1179 min = min_t(size_t, len, desc_len); 1180 sg_buf = buf; 1181 sg_set_buf(sg, sg_buf, min); 1182 } 1183 1184 buf += min; 1185 len -= min; 1186 sg = sg_next(sg); 1187 } 1188 1189 ret = dma_map_sgtable(dev, sgt, dir, attrs); 1190 if (ret < 0) { 1191 sg_free_table(sgt); 1192 return ret; 1193 } 1194 1195 return 0; 1196 } 1197 1198 int spi_map_buf(struct spi_controller *ctlr, struct device *dev, 1199 struct sg_table *sgt, void *buf, size_t len, 1200 enum dma_data_direction dir) 1201 { 1202 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0); 1203 } 1204 1205 static void spi_unmap_buf_attrs(struct spi_controller *ctlr, 1206 struct device *dev, struct sg_table *sgt, 1207 enum dma_data_direction dir, 1208 unsigned long attrs) 1209 { 1210 dma_unmap_sgtable(dev, sgt, dir, attrs); 1211 sg_free_table(sgt); 1212 sgt->orig_nents = 0; 1213 sgt->nents = 0; 1214 } 1215 1216 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev, 1217 struct sg_table *sgt, enum dma_data_direction dir) 1218 { 1219 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0); 1220 } 1221 1222 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1223 { 1224 struct device *tx_dev, *rx_dev; 1225 struct spi_transfer *xfer; 1226 int ret; 1227 1228 if (!ctlr->can_dma) 1229 return 0; 1230 1231 if (ctlr->dma_tx) 1232 tx_dev = ctlr->dma_tx->device->dev; 1233 else if (ctlr->dma_map_dev) 1234 tx_dev = ctlr->dma_map_dev; 1235 else 1236 tx_dev = ctlr->dev.parent; 1237 1238 if (ctlr->dma_rx) 1239 rx_dev = ctlr->dma_rx->device->dev; 1240 else if (ctlr->dma_map_dev) 1241 rx_dev = ctlr->dma_map_dev; 1242 else 1243 rx_dev = ctlr->dev.parent; 1244 1245 ret = -ENOMSG; 1246 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1247 /* The sync is done before each transfer. */ 1248 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1249 1250 if (!ctlr->can_dma(ctlr, msg->spi, xfer)) 1251 continue; 1252 1253 if (xfer->tx_buf != NULL) { 1254 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1255 (void *)xfer->tx_buf, 1256 xfer->len, DMA_TO_DEVICE, 1257 attrs); 1258 if (ret != 0) 1259 return ret; 1260 1261 xfer->tx_sg_mapped = true; 1262 } 1263 1264 if (xfer->rx_buf != NULL) { 1265 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1266 xfer->rx_buf, xfer->len, 1267 DMA_FROM_DEVICE, attrs); 1268 if (ret != 0) { 1269 spi_unmap_buf_attrs(ctlr, tx_dev, 1270 &xfer->tx_sg, DMA_TO_DEVICE, 1271 attrs); 1272 1273 return ret; 1274 } 1275 1276 xfer->rx_sg_mapped = true; 1277 } 1278 } 1279 /* No transfer has been mapped, bail out with success */ 1280 if (ret) 1281 return 0; 1282 1283 ctlr->cur_rx_dma_dev = rx_dev; 1284 ctlr->cur_tx_dma_dev = tx_dev; 1285 1286 return 0; 1287 } 1288 1289 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg) 1290 { 1291 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1292 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1293 struct spi_transfer *xfer; 1294 1295 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1296 /* The sync has already been done after each transfer. */ 1297 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC; 1298 1299 if (xfer->rx_sg_mapped) 1300 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg, 1301 DMA_FROM_DEVICE, attrs); 1302 xfer->rx_sg_mapped = false; 1303 1304 if (xfer->tx_sg_mapped) 1305 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg, 1306 DMA_TO_DEVICE, attrs); 1307 xfer->tx_sg_mapped = false; 1308 } 1309 1310 return 0; 1311 } 1312 1313 static void spi_dma_sync_for_device(struct spi_controller *ctlr, 1314 struct spi_transfer *xfer) 1315 { 1316 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1317 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1318 1319 if (xfer->tx_sg_mapped) 1320 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1321 if (xfer->rx_sg_mapped) 1322 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1323 } 1324 1325 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr, 1326 struct spi_transfer *xfer) 1327 { 1328 struct device *rx_dev = ctlr->cur_rx_dma_dev; 1329 struct device *tx_dev = ctlr->cur_tx_dma_dev; 1330 1331 if (xfer->rx_sg_mapped) 1332 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE); 1333 if (xfer->tx_sg_mapped) 1334 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE); 1335 } 1336 #else /* !CONFIG_HAS_DMA */ 1337 static inline int __spi_map_msg(struct spi_controller *ctlr, 1338 struct spi_message *msg) 1339 { 1340 return 0; 1341 } 1342 1343 static inline int __spi_unmap_msg(struct spi_controller *ctlr, 1344 struct spi_message *msg) 1345 { 1346 return 0; 1347 } 1348 1349 static void spi_dma_sync_for_device(struct spi_controller *ctrl, 1350 struct spi_transfer *xfer) 1351 { 1352 } 1353 1354 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl, 1355 struct spi_transfer *xfer) 1356 { 1357 } 1358 #endif /* !CONFIG_HAS_DMA */ 1359 1360 static inline int spi_unmap_msg(struct spi_controller *ctlr, 1361 struct spi_message *msg) 1362 { 1363 struct spi_transfer *xfer; 1364 1365 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1366 /* 1367 * Restore the original value of tx_buf or rx_buf if they are 1368 * NULL. 1369 */ 1370 if (xfer->tx_buf == ctlr->dummy_tx) 1371 xfer->tx_buf = NULL; 1372 if (xfer->rx_buf == ctlr->dummy_rx) 1373 xfer->rx_buf = NULL; 1374 } 1375 1376 return __spi_unmap_msg(ctlr, msg); 1377 } 1378 1379 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg) 1380 { 1381 struct spi_transfer *xfer; 1382 void *tmp; 1383 unsigned int max_tx, max_rx; 1384 1385 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) 1386 && !(msg->spi->mode & SPI_3WIRE)) { 1387 max_tx = 0; 1388 max_rx = 0; 1389 1390 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1391 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) && 1392 !xfer->tx_buf) 1393 max_tx = max(xfer->len, max_tx); 1394 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) && 1395 !xfer->rx_buf) 1396 max_rx = max(xfer->len, max_rx); 1397 } 1398 1399 if (max_tx) { 1400 tmp = krealloc(ctlr->dummy_tx, max_tx, 1401 GFP_KERNEL | GFP_DMA | __GFP_ZERO); 1402 if (!tmp) 1403 return -ENOMEM; 1404 ctlr->dummy_tx = tmp; 1405 } 1406 1407 if (max_rx) { 1408 tmp = krealloc(ctlr->dummy_rx, max_rx, 1409 GFP_KERNEL | GFP_DMA); 1410 if (!tmp) 1411 return -ENOMEM; 1412 ctlr->dummy_rx = tmp; 1413 } 1414 1415 if (max_tx || max_rx) { 1416 list_for_each_entry(xfer, &msg->transfers, 1417 transfer_list) { 1418 if (!xfer->len) 1419 continue; 1420 if (!xfer->tx_buf) 1421 xfer->tx_buf = ctlr->dummy_tx; 1422 if (!xfer->rx_buf) 1423 xfer->rx_buf = ctlr->dummy_rx; 1424 } 1425 } 1426 } 1427 1428 return __spi_map_msg(ctlr, msg); 1429 } 1430 1431 static int spi_transfer_wait(struct spi_controller *ctlr, 1432 struct spi_message *msg, 1433 struct spi_transfer *xfer) 1434 { 1435 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1436 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1437 u32 speed_hz = xfer->speed_hz; 1438 unsigned long long ms; 1439 1440 if (spi_controller_is_target(ctlr)) { 1441 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { 1442 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n"); 1443 return -EINTR; 1444 } 1445 } else { 1446 if (!speed_hz) 1447 speed_hz = 100000; 1448 1449 /* 1450 * For each byte we wait for 8 cycles of the SPI clock. 1451 * Since speed is defined in Hz and we want milliseconds, 1452 * use respective multiplier, but before the division, 1453 * otherwise we may get 0 for short transfers. 1454 */ 1455 ms = 8LL * MSEC_PER_SEC * xfer->len; 1456 do_div(ms, speed_hz); 1457 1458 /* 1459 * Increase it twice and add 200 ms tolerance, use 1460 * predefined maximum in case of overflow. 1461 */ 1462 ms += ms + 200; 1463 if (ms > UINT_MAX) 1464 ms = UINT_MAX; 1465 1466 ms = wait_for_completion_timeout(&ctlr->xfer_completion, 1467 msecs_to_jiffies(ms)); 1468 1469 if (ms == 0) { 1470 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout); 1471 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout); 1472 dev_err(&msg->spi->dev, 1473 "SPI transfer timed out\n"); 1474 return -ETIMEDOUT; 1475 } 1476 1477 if (xfer->error & SPI_TRANS_FAIL_IO) 1478 return -EIO; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static void _spi_transfer_delay_ns(u32 ns) 1485 { 1486 if (!ns) 1487 return; 1488 if (ns <= NSEC_PER_USEC) { 1489 ndelay(ns); 1490 } else { 1491 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 1492 1493 fsleep(us); 1494 } 1495 } 1496 1497 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer) 1498 { 1499 u32 delay = _delay->value; 1500 u32 unit = _delay->unit; 1501 u32 hz; 1502 1503 if (!delay) 1504 return 0; 1505 1506 switch (unit) { 1507 case SPI_DELAY_UNIT_USECS: 1508 delay *= NSEC_PER_USEC; 1509 break; 1510 case SPI_DELAY_UNIT_NSECS: 1511 /* Nothing to do here */ 1512 break; 1513 case SPI_DELAY_UNIT_SCK: 1514 /* Clock cycles need to be obtained from spi_transfer */ 1515 if (!xfer) 1516 return -EINVAL; 1517 /* 1518 * If there is unknown effective speed, approximate it 1519 * by underestimating with half of the requested Hz. 1520 */ 1521 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2; 1522 if (!hz) 1523 return -EINVAL; 1524 1525 /* Convert delay to nanoseconds */ 1526 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz); 1527 break; 1528 default: 1529 return -EINVAL; 1530 } 1531 1532 return delay; 1533 } 1534 EXPORT_SYMBOL_GPL(spi_delay_to_ns); 1535 1536 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer) 1537 { 1538 int delay; 1539 1540 might_sleep(); 1541 1542 if (!_delay) 1543 return -EINVAL; 1544 1545 delay = spi_delay_to_ns(_delay, xfer); 1546 if (delay < 0) 1547 return delay; 1548 1549 _spi_transfer_delay_ns(delay); 1550 1551 return 0; 1552 } 1553 EXPORT_SYMBOL_GPL(spi_delay_exec); 1554 1555 static void _spi_transfer_cs_change_delay(struct spi_message *msg, 1556 struct spi_transfer *xfer) 1557 { 1558 u32 default_delay_ns = 10 * NSEC_PER_USEC; 1559 u32 delay = xfer->cs_change_delay.value; 1560 u32 unit = xfer->cs_change_delay.unit; 1561 int ret; 1562 1563 /* Return early on "fast" mode - for everything but USECS */ 1564 if (!delay) { 1565 if (unit == SPI_DELAY_UNIT_USECS) 1566 _spi_transfer_delay_ns(default_delay_ns); 1567 return; 1568 } 1569 1570 ret = spi_delay_exec(&xfer->cs_change_delay, xfer); 1571 if (ret) { 1572 dev_err_once(&msg->spi->dev, 1573 "Use of unsupported delay unit %i, using default of %luus\n", 1574 unit, default_delay_ns / NSEC_PER_USEC); 1575 _spi_transfer_delay_ns(default_delay_ns); 1576 } 1577 } 1578 1579 void spi_transfer_cs_change_delay_exec(struct spi_message *msg, 1580 struct spi_transfer *xfer) 1581 { 1582 _spi_transfer_cs_change_delay(msg, xfer); 1583 } 1584 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec); 1585 1586 /* 1587 * spi_transfer_one_message - Default implementation of transfer_one_message() 1588 * 1589 * This is a standard implementation of transfer_one_message() for 1590 * drivers which implement a transfer_one() operation. It provides 1591 * standard handling of delays and chip select management. 1592 */ 1593 static int spi_transfer_one_message(struct spi_controller *ctlr, 1594 struct spi_message *msg) 1595 { 1596 struct spi_transfer *xfer; 1597 bool keep_cs = false; 1598 int ret = 0; 1599 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics; 1600 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics; 1601 1602 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list); 1603 spi_set_cs(msg->spi, !xfer->cs_off, false); 1604 1605 SPI_STATISTICS_INCREMENT_FIELD(statm, messages); 1606 SPI_STATISTICS_INCREMENT_FIELD(stats, messages); 1607 1608 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1609 trace_spi_transfer_start(msg, xfer); 1610 1611 spi_statistics_add_transfer_stats(statm, xfer, msg); 1612 spi_statistics_add_transfer_stats(stats, xfer, msg); 1613 1614 if (!ctlr->ptp_sts_supported) { 1615 xfer->ptp_sts_word_pre = 0; 1616 ptp_read_system_prets(xfer->ptp_sts); 1617 } 1618 1619 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) { 1620 reinit_completion(&ctlr->xfer_completion); 1621 1622 fallback_pio: 1623 spi_dma_sync_for_device(ctlr, xfer); 1624 ret = ctlr->transfer_one(ctlr, msg->spi, xfer); 1625 if (ret < 0) { 1626 spi_dma_sync_for_cpu(ctlr, xfer); 1627 1628 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) && 1629 (xfer->error & SPI_TRANS_FAIL_NO_START)) { 1630 __spi_unmap_msg(ctlr, msg); 1631 ctlr->fallback = true; 1632 xfer->error &= ~SPI_TRANS_FAIL_NO_START; 1633 goto fallback_pio; 1634 } 1635 1636 SPI_STATISTICS_INCREMENT_FIELD(statm, 1637 errors); 1638 SPI_STATISTICS_INCREMENT_FIELD(stats, 1639 errors); 1640 dev_err(&msg->spi->dev, 1641 "SPI transfer failed: %d\n", ret); 1642 goto out; 1643 } 1644 1645 if (ret > 0) { 1646 ret = spi_transfer_wait(ctlr, msg, xfer); 1647 if (ret < 0) 1648 msg->status = ret; 1649 } 1650 1651 spi_dma_sync_for_cpu(ctlr, xfer); 1652 } else { 1653 if (xfer->len) 1654 dev_err(&msg->spi->dev, 1655 "Bufferless transfer has length %u\n", 1656 xfer->len); 1657 } 1658 1659 if (!ctlr->ptp_sts_supported) { 1660 ptp_read_system_postts(xfer->ptp_sts); 1661 xfer->ptp_sts_word_post = xfer->len; 1662 } 1663 1664 trace_spi_transfer_stop(msg, xfer); 1665 1666 if (msg->status != -EINPROGRESS) 1667 goto out; 1668 1669 spi_transfer_delay_exec(xfer); 1670 1671 if (xfer->cs_change) { 1672 if (list_is_last(&xfer->transfer_list, 1673 &msg->transfers)) { 1674 keep_cs = true; 1675 } else { 1676 if (!xfer->cs_off) 1677 spi_set_cs(msg->spi, false, false); 1678 _spi_transfer_cs_change_delay(msg, xfer); 1679 if (!list_next_entry(xfer, transfer_list)->cs_off) 1680 spi_set_cs(msg->spi, true, false); 1681 } 1682 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) && 1683 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) { 1684 spi_set_cs(msg->spi, xfer->cs_off, false); 1685 } 1686 1687 msg->actual_length += xfer->len; 1688 } 1689 1690 out: 1691 if (ret != 0 || !keep_cs) 1692 spi_set_cs(msg->spi, false, false); 1693 1694 if (msg->status == -EINPROGRESS) 1695 msg->status = ret; 1696 1697 if (msg->status && ctlr->handle_err) 1698 ctlr->handle_err(ctlr, msg); 1699 1700 spi_finalize_current_message(ctlr); 1701 1702 return ret; 1703 } 1704 1705 /** 1706 * spi_finalize_current_transfer - report completion of a transfer 1707 * @ctlr: the controller reporting completion 1708 * 1709 * Called by SPI drivers using the core transfer_one_message() 1710 * implementation to notify it that the current interrupt driven 1711 * transfer has finished and the next one may be scheduled. 1712 */ 1713 void spi_finalize_current_transfer(struct spi_controller *ctlr) 1714 { 1715 complete(&ctlr->xfer_completion); 1716 } 1717 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer); 1718 1719 static void spi_idle_runtime_pm(struct spi_controller *ctlr) 1720 { 1721 if (ctlr->auto_runtime_pm) { 1722 pm_runtime_put_autosuspend(ctlr->dev.parent); 1723 } 1724 } 1725 1726 static int __spi_pump_transfer_message(struct spi_controller *ctlr, 1727 struct spi_message *msg, bool was_busy) 1728 { 1729 struct spi_transfer *xfer; 1730 int ret; 1731 1732 if (!was_busy && ctlr->auto_runtime_pm) { 1733 ret = pm_runtime_get_sync(ctlr->dev.parent); 1734 if (ret < 0) { 1735 pm_runtime_put_noidle(ctlr->dev.parent); 1736 dev_err(&ctlr->dev, "Failed to power device: %d\n", 1737 ret); 1738 1739 msg->status = ret; 1740 spi_finalize_current_message(ctlr); 1741 1742 return ret; 1743 } 1744 } 1745 1746 if (!was_busy) 1747 trace_spi_controller_busy(ctlr); 1748 1749 if (!was_busy && ctlr->prepare_transfer_hardware) { 1750 ret = ctlr->prepare_transfer_hardware(ctlr); 1751 if (ret) { 1752 dev_err(&ctlr->dev, 1753 "failed to prepare transfer hardware: %d\n", 1754 ret); 1755 1756 if (ctlr->auto_runtime_pm) 1757 pm_runtime_put(ctlr->dev.parent); 1758 1759 msg->status = ret; 1760 spi_finalize_current_message(ctlr); 1761 1762 return ret; 1763 } 1764 } 1765 1766 trace_spi_message_start(msg); 1767 1768 if (ctlr->prepare_message) { 1769 ret = ctlr->prepare_message(ctlr, msg); 1770 if (ret) { 1771 dev_err(&ctlr->dev, "failed to prepare message: %d\n", 1772 ret); 1773 msg->status = ret; 1774 spi_finalize_current_message(ctlr); 1775 return ret; 1776 } 1777 msg->prepared = true; 1778 } 1779 1780 ret = spi_map_msg(ctlr, msg); 1781 if (ret) { 1782 msg->status = ret; 1783 spi_finalize_current_message(ctlr); 1784 return ret; 1785 } 1786 1787 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 1788 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 1789 xfer->ptp_sts_word_pre = 0; 1790 ptp_read_system_prets(xfer->ptp_sts); 1791 } 1792 } 1793 1794 /* 1795 * Drivers implementation of transfer_one_message() must arrange for 1796 * spi_finalize_current_message() to get called. Most drivers will do 1797 * this in the calling context, but some don't. For those cases, a 1798 * completion is used to guarantee that this function does not return 1799 * until spi_finalize_current_message() is done accessing 1800 * ctlr->cur_msg. 1801 * Use of the following two flags enable to opportunistically skip the 1802 * use of the completion since its use involves expensive spin locks. 1803 * In case of a race with the context that calls 1804 * spi_finalize_current_message() the completion will always be used, 1805 * due to strict ordering of these flags using barriers. 1806 */ 1807 WRITE_ONCE(ctlr->cur_msg_incomplete, true); 1808 WRITE_ONCE(ctlr->cur_msg_need_completion, false); 1809 reinit_completion(&ctlr->cur_msg_completion); 1810 smp_wmb(); /* Make these available to spi_finalize_current_message() */ 1811 1812 ret = ctlr->transfer_one_message(ctlr, msg); 1813 if (ret) { 1814 dev_err(&ctlr->dev, 1815 "failed to transfer one message from queue\n"); 1816 return ret; 1817 } 1818 1819 WRITE_ONCE(ctlr->cur_msg_need_completion, true); 1820 smp_mb(); /* See spi_finalize_current_message()... */ 1821 if (READ_ONCE(ctlr->cur_msg_incomplete)) 1822 wait_for_completion(&ctlr->cur_msg_completion); 1823 1824 return 0; 1825 } 1826 1827 /** 1828 * __spi_pump_messages - function which processes SPI message queue 1829 * @ctlr: controller to process queue for 1830 * @in_kthread: true if we are in the context of the message pump thread 1831 * 1832 * This function checks if there is any SPI message in the queue that 1833 * needs processing and if so call out to the driver to initialize hardware 1834 * and transfer each message. 1835 * 1836 * Note that it is called both from the kthread itself and also from 1837 * inside spi_sync(); the queue extraction handling at the top of the 1838 * function should deal with this safely. 1839 */ 1840 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread) 1841 { 1842 struct spi_message *msg; 1843 bool was_busy = false; 1844 unsigned long flags; 1845 int ret; 1846 1847 /* Take the I/O mutex */ 1848 mutex_lock(&ctlr->io_mutex); 1849 1850 /* Lock queue */ 1851 spin_lock_irqsave(&ctlr->queue_lock, flags); 1852 1853 /* Make sure we are not already running a message */ 1854 if (ctlr->cur_msg) 1855 goto out_unlock; 1856 1857 /* Check if the queue is idle */ 1858 if (list_empty(&ctlr->queue) || !ctlr->running) { 1859 if (!ctlr->busy) 1860 goto out_unlock; 1861 1862 /* Defer any non-atomic teardown to the thread */ 1863 if (!in_kthread) { 1864 if (!ctlr->dummy_rx && !ctlr->dummy_tx && 1865 !ctlr->unprepare_transfer_hardware) { 1866 spi_idle_runtime_pm(ctlr); 1867 ctlr->busy = false; 1868 ctlr->queue_empty = true; 1869 trace_spi_controller_idle(ctlr); 1870 } else { 1871 kthread_queue_work(ctlr->kworker, 1872 &ctlr->pump_messages); 1873 } 1874 goto out_unlock; 1875 } 1876 1877 ctlr->busy = false; 1878 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1879 1880 kfree(ctlr->dummy_rx); 1881 ctlr->dummy_rx = NULL; 1882 kfree(ctlr->dummy_tx); 1883 ctlr->dummy_tx = NULL; 1884 if (ctlr->unprepare_transfer_hardware && 1885 ctlr->unprepare_transfer_hardware(ctlr)) 1886 dev_err(&ctlr->dev, 1887 "failed to unprepare transfer hardware\n"); 1888 spi_idle_runtime_pm(ctlr); 1889 trace_spi_controller_idle(ctlr); 1890 1891 spin_lock_irqsave(&ctlr->queue_lock, flags); 1892 ctlr->queue_empty = true; 1893 goto out_unlock; 1894 } 1895 1896 /* Extract head of queue */ 1897 msg = list_first_entry(&ctlr->queue, struct spi_message, queue); 1898 ctlr->cur_msg = msg; 1899 1900 list_del_init(&msg->queue); 1901 if (ctlr->busy) 1902 was_busy = true; 1903 else 1904 ctlr->busy = true; 1905 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1906 1907 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 1908 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 1909 1910 ctlr->cur_msg = NULL; 1911 ctlr->fallback = false; 1912 1913 mutex_unlock(&ctlr->io_mutex); 1914 1915 /* Prod the scheduler in case transfer_one() was busy waiting */ 1916 if (!ret) 1917 cond_resched(); 1918 return; 1919 1920 out_unlock: 1921 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 1922 mutex_unlock(&ctlr->io_mutex); 1923 } 1924 1925 /** 1926 * spi_pump_messages - kthread work function which processes spi message queue 1927 * @work: pointer to kthread work struct contained in the controller struct 1928 */ 1929 static void spi_pump_messages(struct kthread_work *work) 1930 { 1931 struct spi_controller *ctlr = 1932 container_of(work, struct spi_controller, pump_messages); 1933 1934 __spi_pump_messages(ctlr, true); 1935 } 1936 1937 /** 1938 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp 1939 * @ctlr: Pointer to the spi_controller structure of the driver 1940 * @xfer: Pointer to the transfer being timestamped 1941 * @progress: How many words (not bytes) have been transferred so far 1942 * @irqs_off: If true, will disable IRQs and preemption for the duration of the 1943 * transfer, for less jitter in time measurement. Only compatible 1944 * with PIO drivers. If true, must follow up with 1945 * spi_take_timestamp_post or otherwise system will crash. 1946 * WARNING: for fully predictable results, the CPU frequency must 1947 * also be under control (governor). 1948 * 1949 * This is a helper for drivers to collect the beginning of the TX timestamp 1950 * for the requested byte from the SPI transfer. The frequency with which this 1951 * function must be called (once per word, once for the whole transfer, once 1952 * per batch of words etc) is arbitrary as long as the @tx buffer offset is 1953 * greater than or equal to the requested byte at the time of the call. The 1954 * timestamp is only taken once, at the first such call. It is assumed that 1955 * the driver advances its @tx buffer pointer monotonically. 1956 */ 1957 void spi_take_timestamp_pre(struct spi_controller *ctlr, 1958 struct spi_transfer *xfer, 1959 size_t progress, bool irqs_off) 1960 { 1961 if (!xfer->ptp_sts) 1962 return; 1963 1964 if (xfer->timestamped) 1965 return; 1966 1967 if (progress > xfer->ptp_sts_word_pre) 1968 return; 1969 1970 /* Capture the resolution of the timestamp */ 1971 xfer->ptp_sts_word_pre = progress; 1972 1973 if (irqs_off) { 1974 local_irq_save(ctlr->irq_flags); 1975 preempt_disable(); 1976 } 1977 1978 ptp_read_system_prets(xfer->ptp_sts); 1979 } 1980 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre); 1981 1982 /** 1983 * spi_take_timestamp_post - helper to collect the end of the TX timestamp 1984 * @ctlr: Pointer to the spi_controller structure of the driver 1985 * @xfer: Pointer to the transfer being timestamped 1986 * @progress: How many words (not bytes) have been transferred so far 1987 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU. 1988 * 1989 * This is a helper for drivers to collect the end of the TX timestamp for 1990 * the requested byte from the SPI transfer. Can be called with an arbitrary 1991 * frequency: only the first call where @tx exceeds or is equal to the 1992 * requested word will be timestamped. 1993 */ 1994 void spi_take_timestamp_post(struct spi_controller *ctlr, 1995 struct spi_transfer *xfer, 1996 size_t progress, bool irqs_off) 1997 { 1998 if (!xfer->ptp_sts) 1999 return; 2000 2001 if (xfer->timestamped) 2002 return; 2003 2004 if (progress < xfer->ptp_sts_word_post) 2005 return; 2006 2007 ptp_read_system_postts(xfer->ptp_sts); 2008 2009 if (irqs_off) { 2010 local_irq_restore(ctlr->irq_flags); 2011 preempt_enable(); 2012 } 2013 2014 /* Capture the resolution of the timestamp */ 2015 xfer->ptp_sts_word_post = progress; 2016 2017 xfer->timestamped = 1; 2018 } 2019 EXPORT_SYMBOL_GPL(spi_take_timestamp_post); 2020 2021 /** 2022 * spi_set_thread_rt - set the controller to pump at realtime priority 2023 * @ctlr: controller to boost priority of 2024 * 2025 * This can be called because the controller requested realtime priority 2026 * (by setting the ->rt value before calling spi_register_controller()) or 2027 * because a device on the bus said that its transfers needed realtime 2028 * priority. 2029 * 2030 * NOTE: at the moment if any device on a bus says it needs realtime then 2031 * the thread will be at realtime priority for all transfers on that 2032 * controller. If this eventually becomes a problem we may see if we can 2033 * find a way to boost the priority only temporarily during relevant 2034 * transfers. 2035 */ 2036 static void spi_set_thread_rt(struct spi_controller *ctlr) 2037 { 2038 dev_info(&ctlr->dev, 2039 "will run message pump with realtime priority\n"); 2040 sched_set_fifo(ctlr->kworker->task); 2041 } 2042 2043 static int spi_init_queue(struct spi_controller *ctlr) 2044 { 2045 ctlr->running = false; 2046 ctlr->busy = false; 2047 ctlr->queue_empty = true; 2048 2049 ctlr->kworker = kthread_run_worker(0, dev_name(&ctlr->dev)); 2050 if (IS_ERR(ctlr->kworker)) { 2051 dev_err(&ctlr->dev, "failed to create message pump kworker\n"); 2052 return PTR_ERR(ctlr->kworker); 2053 } 2054 2055 kthread_init_work(&ctlr->pump_messages, spi_pump_messages); 2056 2057 /* 2058 * Controller config will indicate if this controller should run the 2059 * message pump with high (realtime) priority to reduce the transfer 2060 * latency on the bus by minimising the delay between a transfer 2061 * request and the scheduling of the message pump thread. Without this 2062 * setting the message pump thread will remain at default priority. 2063 */ 2064 if (ctlr->rt) 2065 spi_set_thread_rt(ctlr); 2066 2067 return 0; 2068 } 2069 2070 /** 2071 * spi_get_next_queued_message() - called by driver to check for queued 2072 * messages 2073 * @ctlr: the controller to check for queued messages 2074 * 2075 * If there are more messages in the queue, the next message is returned from 2076 * this call. 2077 * 2078 * Return: the next message in the queue, else NULL if the queue is empty. 2079 */ 2080 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr) 2081 { 2082 struct spi_message *next; 2083 unsigned long flags; 2084 2085 /* Get a pointer to the next message, if any */ 2086 spin_lock_irqsave(&ctlr->queue_lock, flags); 2087 next = list_first_entry_or_null(&ctlr->queue, struct spi_message, 2088 queue); 2089 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2090 2091 return next; 2092 } 2093 EXPORT_SYMBOL_GPL(spi_get_next_queued_message); 2094 2095 /* 2096 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message() 2097 * and spi_maybe_unoptimize_message() 2098 * @msg: the message to unoptimize 2099 * 2100 * Peripheral drivers should use spi_unoptimize_message() and callers inside 2101 * core should use spi_maybe_unoptimize_message() rather than calling this 2102 * function directly. 2103 * 2104 * It is not valid to call this on a message that is not currently optimized. 2105 */ 2106 static void __spi_unoptimize_message(struct spi_message *msg) 2107 { 2108 struct spi_controller *ctlr = msg->spi->controller; 2109 2110 if (ctlr->unoptimize_message) 2111 ctlr->unoptimize_message(msg); 2112 2113 spi_res_release(ctlr, msg); 2114 2115 msg->optimized = false; 2116 msg->opt_state = NULL; 2117 } 2118 2119 /* 2120 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral 2121 * @msg: the message to unoptimize 2122 * 2123 * This function is used to unoptimize a message if and only if it was 2124 * optimized by the core (via spi_maybe_optimize_message()). 2125 */ 2126 static void spi_maybe_unoptimize_message(struct spi_message *msg) 2127 { 2128 if (!msg->pre_optimized && msg->optimized && 2129 !msg->spi->controller->defer_optimize_message) 2130 __spi_unoptimize_message(msg); 2131 } 2132 2133 /** 2134 * spi_finalize_current_message() - the current message is complete 2135 * @ctlr: the controller to return the message to 2136 * 2137 * Called by the driver to notify the core that the message in the front of the 2138 * queue is complete and can be removed from the queue. 2139 */ 2140 void spi_finalize_current_message(struct spi_controller *ctlr) 2141 { 2142 struct spi_transfer *xfer; 2143 struct spi_message *mesg; 2144 int ret; 2145 2146 mesg = ctlr->cur_msg; 2147 2148 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) { 2149 list_for_each_entry(xfer, &mesg->transfers, transfer_list) { 2150 ptp_read_system_postts(xfer->ptp_sts); 2151 xfer->ptp_sts_word_post = xfer->len; 2152 } 2153 } 2154 2155 if (unlikely(ctlr->ptp_sts_supported)) 2156 list_for_each_entry(xfer, &mesg->transfers, transfer_list) 2157 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped); 2158 2159 spi_unmap_msg(ctlr, mesg); 2160 2161 if (mesg->prepared && ctlr->unprepare_message) { 2162 ret = ctlr->unprepare_message(ctlr, mesg); 2163 if (ret) { 2164 dev_err(&ctlr->dev, "failed to unprepare message: %d\n", 2165 ret); 2166 } 2167 } 2168 2169 mesg->prepared = false; 2170 2171 spi_maybe_unoptimize_message(mesg); 2172 2173 WRITE_ONCE(ctlr->cur_msg_incomplete, false); 2174 smp_mb(); /* See __spi_pump_transfer_message()... */ 2175 if (READ_ONCE(ctlr->cur_msg_need_completion)) 2176 complete(&ctlr->cur_msg_completion); 2177 2178 trace_spi_message_done(mesg); 2179 2180 mesg->state = NULL; 2181 if (mesg->complete) 2182 mesg->complete(mesg->context); 2183 } 2184 EXPORT_SYMBOL_GPL(spi_finalize_current_message); 2185 2186 static int spi_start_queue(struct spi_controller *ctlr) 2187 { 2188 unsigned long flags; 2189 2190 spin_lock_irqsave(&ctlr->queue_lock, flags); 2191 2192 if (ctlr->running || ctlr->busy) { 2193 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2194 return -EBUSY; 2195 } 2196 2197 ctlr->running = true; 2198 ctlr->cur_msg = NULL; 2199 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2200 2201 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2202 2203 return 0; 2204 } 2205 2206 static int spi_stop_queue(struct spi_controller *ctlr) 2207 { 2208 unsigned int limit = 500; 2209 unsigned long flags; 2210 2211 /* 2212 * This is a bit lame, but is optimized for the common execution path. 2213 * A wait_queue on the ctlr->busy could be used, but then the common 2214 * execution path (pump_messages) would be required to call wake_up or 2215 * friends on every SPI message. Do this instead. 2216 */ 2217 do { 2218 spin_lock_irqsave(&ctlr->queue_lock, flags); 2219 if (list_empty(&ctlr->queue) && !ctlr->busy) { 2220 ctlr->running = false; 2221 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2222 return 0; 2223 } 2224 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2225 usleep_range(10000, 11000); 2226 } while (--limit); 2227 2228 return -EBUSY; 2229 } 2230 2231 static int spi_destroy_queue(struct spi_controller *ctlr) 2232 { 2233 int ret; 2234 2235 ret = spi_stop_queue(ctlr); 2236 2237 /* 2238 * kthread_flush_worker will block until all work is done. 2239 * If the reason that stop_queue timed out is that the work will never 2240 * finish, then it does no good to call flush/stop thread, so 2241 * return anyway. 2242 */ 2243 if (ret) { 2244 dev_err(&ctlr->dev, "problem destroying queue\n"); 2245 return ret; 2246 } 2247 2248 kthread_destroy_worker(ctlr->kworker); 2249 2250 return 0; 2251 } 2252 2253 static int __spi_queued_transfer(struct spi_device *spi, 2254 struct spi_message *msg, 2255 bool need_pump) 2256 { 2257 struct spi_controller *ctlr = spi->controller; 2258 unsigned long flags; 2259 2260 spin_lock_irqsave(&ctlr->queue_lock, flags); 2261 2262 if (!ctlr->running) { 2263 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2264 return -ESHUTDOWN; 2265 } 2266 msg->actual_length = 0; 2267 msg->status = -EINPROGRESS; 2268 2269 list_add_tail(&msg->queue, &ctlr->queue); 2270 ctlr->queue_empty = false; 2271 if (!ctlr->busy && need_pump) 2272 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages); 2273 2274 spin_unlock_irqrestore(&ctlr->queue_lock, flags); 2275 return 0; 2276 } 2277 2278 /** 2279 * spi_queued_transfer - transfer function for queued transfers 2280 * @spi: SPI device which is requesting transfer 2281 * @msg: SPI message which is to handled is queued to driver queue 2282 * 2283 * Return: zero on success, else a negative error code. 2284 */ 2285 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg) 2286 { 2287 return __spi_queued_transfer(spi, msg, true); 2288 } 2289 2290 static int spi_controller_initialize_queue(struct spi_controller *ctlr) 2291 { 2292 int ret; 2293 2294 ctlr->transfer = spi_queued_transfer; 2295 if (!ctlr->transfer_one_message) 2296 ctlr->transfer_one_message = spi_transfer_one_message; 2297 2298 /* Initialize and start queue */ 2299 ret = spi_init_queue(ctlr); 2300 if (ret) { 2301 dev_err(&ctlr->dev, "problem initializing queue\n"); 2302 goto err_init_queue; 2303 } 2304 ctlr->queued = true; 2305 ret = spi_start_queue(ctlr); 2306 if (ret) { 2307 dev_err(&ctlr->dev, "problem starting queue\n"); 2308 goto err_start_queue; 2309 } 2310 2311 return 0; 2312 2313 err_start_queue: 2314 spi_destroy_queue(ctlr); 2315 err_init_queue: 2316 return ret; 2317 } 2318 2319 /** 2320 * spi_flush_queue - Send all pending messages in the queue from the callers' 2321 * context 2322 * @ctlr: controller to process queue for 2323 * 2324 * This should be used when one wants to ensure all pending messages have been 2325 * sent before doing something. Is used by the spi-mem code to make sure SPI 2326 * memory operations do not preempt regular SPI transfers that have been queued 2327 * before the spi-mem operation. 2328 */ 2329 void spi_flush_queue(struct spi_controller *ctlr) 2330 { 2331 if (ctlr->transfer == spi_queued_transfer) 2332 __spi_pump_messages(ctlr, false); 2333 } 2334 2335 /*-------------------------------------------------------------------------*/ 2336 2337 #if defined(CONFIG_OF) 2338 static void of_spi_parse_dt_cs_delay(struct device_node *nc, 2339 struct spi_delay *delay, const char *prop) 2340 { 2341 u32 value; 2342 2343 if (!of_property_read_u32(nc, prop, &value)) { 2344 if (value > U16_MAX) { 2345 delay->value = DIV_ROUND_UP(value, 1000); 2346 delay->unit = SPI_DELAY_UNIT_USECS; 2347 } else { 2348 delay->value = value; 2349 delay->unit = SPI_DELAY_UNIT_NSECS; 2350 } 2351 } 2352 } 2353 2354 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi, 2355 struct device_node *nc) 2356 { 2357 u32 value, cs[SPI_DEVICE_CS_CNT_MAX], map[SPI_DEVICE_DATA_LANE_CNT_MAX]; 2358 int rc, idx, max_num_data_lanes; 2359 2360 /* Mode (clock phase/polarity/etc.) */ 2361 if (of_property_read_bool(nc, "spi-cpha")) 2362 spi->mode |= SPI_CPHA; 2363 if (of_property_read_bool(nc, "spi-cpol")) 2364 spi->mode |= SPI_CPOL; 2365 if (of_property_read_bool(nc, "spi-3wire")) 2366 spi->mode |= SPI_3WIRE; 2367 if (of_property_read_bool(nc, "spi-lsb-first")) 2368 spi->mode |= SPI_LSB_FIRST; 2369 if (of_property_read_bool(nc, "spi-cs-high")) 2370 spi->mode |= SPI_CS_HIGH; 2371 2372 /* Device DUAL/QUAD mode */ 2373 2374 rc = of_property_read_variable_u32_array(nc, "spi-tx-lane-map", map, 1, 2375 ARRAY_SIZE(map)); 2376 if (rc >= 0) { 2377 max_num_data_lanes = rc; 2378 for (idx = 0; idx < max_num_data_lanes; idx++) 2379 spi->tx_lane_map[idx] = map[idx]; 2380 } else if (rc == -EINVAL) { 2381 /* Default lane map is identity mapping. */ 2382 max_num_data_lanes = ARRAY_SIZE(spi->tx_lane_map); 2383 for (idx = 0; idx < max_num_data_lanes; idx++) 2384 spi->tx_lane_map[idx] = idx; 2385 } else { 2386 dev_err(&ctlr->dev, 2387 "failed to read spi-tx-lane-map property: %d\n", rc); 2388 return rc; 2389 } 2390 2391 rc = of_property_count_u32_elems(nc, "spi-tx-bus-width"); 2392 if (rc < 0 && rc != -EINVAL) { 2393 dev_err(&ctlr->dev, 2394 "failed to read spi-tx-bus-width property: %d\n", rc); 2395 return rc; 2396 } 2397 if (rc > max_num_data_lanes) { 2398 dev_err(&ctlr->dev, 2399 "spi-tx-bus-width has more elements (%d) than spi-tx-lane-map (%d)\n", 2400 rc, max_num_data_lanes); 2401 return -EINVAL; 2402 } 2403 2404 if (rc == -EINVAL) { 2405 /* Default when property is not present. */ 2406 spi->num_tx_lanes = 1; 2407 } else { 2408 u32 first_value; 2409 2410 spi->num_tx_lanes = rc; 2411 2412 for (idx = 0; idx < spi->num_tx_lanes; idx++) { 2413 rc = of_property_read_u32_index(nc, "spi-tx-bus-width", 2414 idx, &value); 2415 if (rc) 2416 return rc; 2417 2418 /* 2419 * For now, we only support all lanes having the same 2420 * width so we can keep using the existing mode flags. 2421 */ 2422 if (!idx) 2423 first_value = value; 2424 else if (first_value != value) { 2425 dev_err(&ctlr->dev, 2426 "spi-tx-bus-width has inconsistent values: first %d vs later %d\n", 2427 first_value, value); 2428 return -EINVAL; 2429 } 2430 } 2431 2432 switch (value) { 2433 case 0: 2434 spi->mode |= SPI_NO_TX; 2435 break; 2436 case 1: 2437 break; 2438 case 2: 2439 spi->mode |= SPI_TX_DUAL; 2440 break; 2441 case 4: 2442 spi->mode |= SPI_TX_QUAD; 2443 break; 2444 case 8: 2445 spi->mode |= SPI_TX_OCTAL; 2446 break; 2447 default: 2448 dev_warn(&ctlr->dev, 2449 "spi-tx-bus-width %d not supported\n", 2450 value); 2451 break; 2452 } 2453 } 2454 2455 for (idx = 0; idx < spi->num_tx_lanes; idx++) { 2456 if (spi->tx_lane_map[idx] >= spi->controller->num_data_lanes) { 2457 dev_err(&ctlr->dev, 2458 "spi-tx-lane-map has invalid value %d (num_data_lanes=%d)\n", 2459 spi->tx_lane_map[idx], 2460 spi->controller->num_data_lanes); 2461 return -EINVAL; 2462 } 2463 } 2464 2465 rc = of_property_read_variable_u32_array(nc, "spi-rx-lane-map", map, 1, 2466 ARRAY_SIZE(map)); 2467 if (rc >= 0) { 2468 max_num_data_lanes = rc; 2469 for (idx = 0; idx < max_num_data_lanes; idx++) 2470 spi->rx_lane_map[idx] = map[idx]; 2471 } else if (rc == -EINVAL) { 2472 /* Default lane map is identity mapping. */ 2473 max_num_data_lanes = ARRAY_SIZE(spi->rx_lane_map); 2474 for (idx = 0; idx < max_num_data_lanes; idx++) 2475 spi->rx_lane_map[idx] = idx; 2476 } else { 2477 dev_err(&ctlr->dev, 2478 "failed to read spi-rx-lane-map property: %d\n", rc); 2479 return rc; 2480 } 2481 2482 rc = of_property_count_u32_elems(nc, "spi-rx-bus-width"); 2483 if (rc < 0 && rc != -EINVAL) { 2484 dev_err(&ctlr->dev, 2485 "failed to read spi-rx-bus-width property: %d\n", rc); 2486 return rc; 2487 } 2488 if (rc > max_num_data_lanes) { 2489 dev_err(&ctlr->dev, 2490 "spi-rx-bus-width has more elements (%d) than spi-rx-lane-map (%d)\n", 2491 rc, max_num_data_lanes); 2492 return -EINVAL; 2493 } 2494 2495 if (rc == -EINVAL) { 2496 /* Default when property is not present. */ 2497 spi->num_rx_lanes = 1; 2498 } else { 2499 u32 first_value; 2500 2501 spi->num_rx_lanes = rc; 2502 2503 for (idx = 0; idx < spi->num_rx_lanes; idx++) { 2504 rc = of_property_read_u32_index(nc, "spi-rx-bus-width", 2505 idx, &value); 2506 if (rc) 2507 return rc; 2508 2509 /* 2510 * For now, we only support all lanes having the same 2511 * width so we can keep using the existing mode flags. 2512 */ 2513 if (!idx) 2514 first_value = value; 2515 else if (first_value != value) { 2516 dev_err(&ctlr->dev, 2517 "spi-rx-bus-width has inconsistent values: first %d vs later %d\n", 2518 first_value, value); 2519 return -EINVAL; 2520 } 2521 } 2522 2523 switch (value) { 2524 case 0: 2525 spi->mode |= SPI_NO_RX; 2526 break; 2527 case 1: 2528 break; 2529 case 2: 2530 spi->mode |= SPI_RX_DUAL; 2531 break; 2532 case 4: 2533 spi->mode |= SPI_RX_QUAD; 2534 break; 2535 case 8: 2536 spi->mode |= SPI_RX_OCTAL; 2537 break; 2538 default: 2539 dev_warn(&ctlr->dev, 2540 "spi-rx-bus-width %d not supported\n", 2541 value); 2542 break; 2543 } 2544 } 2545 2546 for (idx = 0; idx < spi->num_rx_lanes; idx++) { 2547 if (spi->rx_lane_map[idx] >= spi->controller->num_data_lanes) { 2548 dev_err(&ctlr->dev, 2549 "spi-rx-lane-map has invalid value %d (num_data_lanes=%d)\n", 2550 spi->rx_lane_map[idx], 2551 spi->controller->num_data_lanes); 2552 return -EINVAL; 2553 } 2554 } 2555 2556 if (spi_controller_is_target(ctlr)) { 2557 if (!of_node_name_eq(nc, "slave")) { 2558 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n", 2559 nc); 2560 return -EINVAL; 2561 } 2562 return 0; 2563 } 2564 2565 /* Device address */ 2566 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1, 2567 SPI_DEVICE_CS_CNT_MAX); 2568 if (rc < 0) { 2569 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n", 2570 nc, rc); 2571 return rc; 2572 } 2573 2574 if ((of_property_present(nc, "parallel-memories")) && 2575 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) { 2576 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n"); 2577 return -EINVAL; 2578 } 2579 2580 spi->num_chipselect = rc; 2581 for (idx = 0; idx < rc; idx++) 2582 spi_set_chipselect(spi, idx, cs[idx]); 2583 2584 /* 2585 * By default spi->chip_select[0] will hold the physical CS number, 2586 * so set bit 0 in spi->cs_index_mask. 2587 */ 2588 spi->cs_index_mask = BIT(0); 2589 2590 /* Device speed */ 2591 if (!of_property_read_u32(nc, "spi-max-frequency", &value)) 2592 spi->max_speed_hz = value; 2593 2594 /* Device CS delays */ 2595 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns"); 2596 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns"); 2597 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns"); 2598 2599 return 0; 2600 } 2601 2602 static struct spi_device * 2603 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc) 2604 { 2605 struct spi_device *spi; 2606 int rc; 2607 2608 /* Alloc an spi_device */ 2609 spi = spi_alloc_device(ctlr); 2610 if (!spi) { 2611 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc); 2612 rc = -ENOMEM; 2613 goto err_out; 2614 } 2615 2616 /* Select device driver */ 2617 rc = of_alias_from_compatible(nc, spi->modalias, 2618 sizeof(spi->modalias)); 2619 if (rc < 0) { 2620 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc); 2621 goto err_out; 2622 } 2623 2624 rc = of_spi_parse_dt(ctlr, spi, nc); 2625 if (rc) 2626 goto err_out; 2627 2628 /* Store a pointer to the node in the device structure */ 2629 of_node_get(nc); 2630 2631 device_set_node(&spi->dev, of_fwnode_handle(nc)); 2632 2633 /* Register the new device */ 2634 rc = spi_add_device(spi); 2635 if (rc) { 2636 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc); 2637 goto err_of_node_put; 2638 } 2639 2640 return spi; 2641 2642 err_of_node_put: 2643 of_node_put(nc); 2644 err_out: 2645 spi_dev_put(spi); 2646 return ERR_PTR(rc); 2647 } 2648 2649 /** 2650 * of_register_spi_devices() - Register child devices onto the SPI bus 2651 * @ctlr: Pointer to spi_controller device 2652 * 2653 * Registers an spi_device for each child node of controller node which 2654 * represents a valid SPI target device. 2655 */ 2656 static void of_register_spi_devices(struct spi_controller *ctlr) 2657 { 2658 struct spi_device *spi; 2659 struct device_node *nc; 2660 2661 for_each_available_child_of_node(ctlr->dev.of_node, nc) { 2662 if (of_node_test_and_set_flag(nc, OF_POPULATED)) 2663 continue; 2664 spi = of_register_spi_device(ctlr, nc); 2665 if (IS_ERR(spi)) { 2666 dev_warn(&ctlr->dev, 2667 "Failed to create SPI device for %pOF\n", nc); 2668 of_node_clear_flag(nc, OF_POPULATED); 2669 } 2670 } 2671 } 2672 #else 2673 static void of_register_spi_devices(struct spi_controller *ctlr) { } 2674 #endif 2675 2676 /** 2677 * spi_new_ancillary_device() - Register ancillary SPI device 2678 * @spi: Pointer to the main SPI device registering the ancillary device 2679 * @chip_select: Chip Select of the ancillary device 2680 * 2681 * Register an ancillary SPI device; for example some chips have a chip-select 2682 * for normal device usage and another one for setup/firmware upload. 2683 * 2684 * This may only be called from main SPI device's probe routine. 2685 * 2686 * Return: 0 on success; negative errno on failure 2687 */ 2688 struct spi_device *spi_new_ancillary_device(struct spi_device *spi, 2689 u8 chip_select) 2690 { 2691 struct spi_controller *ctlr = spi->controller; 2692 struct spi_device *ancillary; 2693 int rc; 2694 2695 /* Alloc an spi_device */ 2696 ancillary = spi_alloc_device(ctlr); 2697 if (!ancillary) { 2698 rc = -ENOMEM; 2699 goto err_out; 2700 } 2701 2702 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias)); 2703 2704 /* Use provided chip-select for ancillary device */ 2705 spi_set_chipselect(ancillary, 0, chip_select); 2706 2707 /* Take over SPI mode/speed from SPI main device */ 2708 ancillary->max_speed_hz = spi->max_speed_hz; 2709 ancillary->mode = spi->mode; 2710 /* 2711 * By default spi->chip_select[0] will hold the physical CS number, 2712 * so set bit 0 in spi->cs_index_mask. 2713 */ 2714 ancillary->cs_index_mask = BIT(0); 2715 2716 WARN_ON(!mutex_is_locked(&ctlr->add_lock)); 2717 2718 /* Register the new device */ 2719 rc = __spi_add_device(ancillary); 2720 if (rc) { 2721 dev_err(&spi->dev, "failed to register ancillary device\n"); 2722 goto err_out; 2723 } 2724 2725 return ancillary; 2726 2727 err_out: 2728 spi_dev_put(ancillary); 2729 return ERR_PTR(rc); 2730 } 2731 EXPORT_SYMBOL_GPL(spi_new_ancillary_device); 2732 2733 #ifdef CONFIG_ACPI 2734 struct acpi_spi_lookup { 2735 struct spi_controller *ctlr; 2736 u32 max_speed_hz; 2737 u32 mode; 2738 int irq; 2739 u8 bits_per_word; 2740 u8 chip_select; 2741 int n; 2742 int index; 2743 }; 2744 2745 static int acpi_spi_count(struct acpi_resource *ares, void *data) 2746 { 2747 struct acpi_resource_spi_serialbus *sb; 2748 int *count = data; 2749 2750 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS) 2751 return 1; 2752 2753 sb = &ares->data.spi_serial_bus; 2754 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI) 2755 return 1; 2756 2757 *count = *count + 1; 2758 2759 return 1; 2760 } 2761 2762 /** 2763 * acpi_spi_count_resources - Count the number of SpiSerialBus resources 2764 * @adev: ACPI device 2765 * 2766 * Return: the number of SpiSerialBus resources in the ACPI-device's 2767 * resource-list; or a negative error code. 2768 */ 2769 int acpi_spi_count_resources(struct acpi_device *adev) 2770 { 2771 LIST_HEAD(r); 2772 int count = 0; 2773 int ret; 2774 2775 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count); 2776 if (ret < 0) 2777 return ret; 2778 2779 acpi_dev_free_resource_list(&r); 2780 2781 return count; 2782 } 2783 EXPORT_SYMBOL_GPL(acpi_spi_count_resources); 2784 2785 static void acpi_spi_parse_apple_properties(struct acpi_device *dev, 2786 struct acpi_spi_lookup *lookup) 2787 { 2788 const union acpi_object *obj; 2789 2790 if (!x86_apple_machine) 2791 return; 2792 2793 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj) 2794 && obj->buffer.length >= 4) 2795 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer; 2796 2797 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj) 2798 && obj->buffer.length == 8) 2799 lookup->bits_per_word = *(u64 *)obj->buffer.pointer; 2800 2801 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj) 2802 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer) 2803 lookup->mode |= SPI_LSB_FIRST; 2804 2805 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj) 2806 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2807 lookup->mode |= SPI_CPOL; 2808 2809 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj) 2810 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer) 2811 lookup->mode |= SPI_CPHA; 2812 } 2813 2814 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data) 2815 { 2816 struct acpi_spi_lookup *lookup = data; 2817 struct spi_controller *ctlr = lookup->ctlr; 2818 2819 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) { 2820 struct acpi_resource_spi_serialbus *sb; 2821 acpi_handle parent_handle; 2822 acpi_status status; 2823 2824 sb = &ares->data.spi_serial_bus; 2825 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) { 2826 2827 if (lookup->index != -1 && lookup->n++ != lookup->index) 2828 return 1; 2829 2830 status = acpi_get_handle(NULL, 2831 sb->resource_source.string_ptr, 2832 &parent_handle); 2833 2834 if (ACPI_FAILURE(status)) 2835 return -ENODEV; 2836 2837 if (ctlr) { 2838 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle)) 2839 return -ENODEV; 2840 } else { 2841 struct acpi_device *adev; 2842 2843 adev = acpi_fetch_acpi_dev(parent_handle); 2844 if (!adev) 2845 return -ENODEV; 2846 2847 ctlr = acpi_spi_find_controller_by_adev(adev); 2848 if (!ctlr) 2849 return -EPROBE_DEFER; 2850 2851 lookup->ctlr = ctlr; 2852 } 2853 2854 /* 2855 * ACPI DeviceSelection numbering is handled by the 2856 * host controller driver in Windows and can vary 2857 * from driver to driver. In Linux we always expect 2858 * 0 .. max - 1 so we need to ask the driver to 2859 * translate between the two schemes. 2860 */ 2861 if (ctlr->fw_translate_cs) { 2862 int cs = ctlr->fw_translate_cs(ctlr, 2863 sb->device_selection); 2864 if (cs < 0) 2865 return cs; 2866 lookup->chip_select = cs; 2867 } else { 2868 lookup->chip_select = sb->device_selection; 2869 } 2870 2871 lookup->max_speed_hz = sb->connection_speed; 2872 lookup->bits_per_word = sb->data_bit_length; 2873 2874 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) 2875 lookup->mode |= SPI_CPHA; 2876 if (sb->clock_polarity == ACPI_SPI_START_HIGH) 2877 lookup->mode |= SPI_CPOL; 2878 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH) 2879 lookup->mode |= SPI_CS_HIGH; 2880 } 2881 } else if (lookup->irq < 0) { 2882 struct resource r; 2883 2884 if (acpi_dev_resource_interrupt(ares, 0, &r)) 2885 lookup->irq = r.start; 2886 } 2887 2888 /* Always tell the ACPI core to skip this resource */ 2889 return 1; 2890 } 2891 2892 /** 2893 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information 2894 * @ctlr: controller to which the spi device belongs 2895 * @adev: ACPI Device for the spi device 2896 * @index: Index of the spi resource inside the ACPI Node 2897 * 2898 * This should be used to allocate a new SPI device from and ACPI Device node. 2899 * The caller is responsible for calling spi_add_device to register the SPI device. 2900 * 2901 * If ctlr is set to NULL, the Controller for the SPI device will be looked up 2902 * using the resource. 2903 * If index is set to -1, index is not used. 2904 * Note: If index is -1, ctlr must be set. 2905 * 2906 * Return: a pointer to the new device, or ERR_PTR on error. 2907 */ 2908 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr, 2909 struct acpi_device *adev, 2910 int index) 2911 { 2912 acpi_handle parent_handle = NULL; 2913 struct list_head resource_list; 2914 struct acpi_spi_lookup lookup = {}; 2915 struct spi_device *spi; 2916 int ret; 2917 2918 if (!ctlr && index == -1) 2919 return ERR_PTR(-EINVAL); 2920 2921 lookup.ctlr = ctlr; 2922 lookup.irq = -1; 2923 lookup.index = index; 2924 lookup.n = 0; 2925 2926 INIT_LIST_HEAD(&resource_list); 2927 ret = acpi_dev_get_resources(adev, &resource_list, 2928 acpi_spi_add_resource, &lookup); 2929 acpi_dev_free_resource_list(&resource_list); 2930 2931 if (ret < 0) 2932 /* Found SPI in _CRS but it points to another controller */ 2933 return ERR_PTR(ret); 2934 2935 if (!lookup.max_speed_hz && 2936 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) && 2937 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) { 2938 /* Apple does not use _CRS but nested devices for SPI target devices */ 2939 acpi_spi_parse_apple_properties(adev, &lookup); 2940 } 2941 2942 if (!lookup.max_speed_hz) 2943 return ERR_PTR(-ENODEV); 2944 2945 spi = spi_alloc_device(lookup.ctlr); 2946 if (!spi) { 2947 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n", 2948 dev_name(&adev->dev)); 2949 return ERR_PTR(-ENOMEM); 2950 } 2951 2952 spi_set_chipselect(spi, 0, lookup.chip_select); 2953 2954 ACPI_COMPANION_SET(&spi->dev, adev); 2955 spi->max_speed_hz = lookup.max_speed_hz; 2956 spi->mode |= lookup.mode; 2957 spi->irq = lookup.irq; 2958 spi->bits_per_word = lookup.bits_per_word; 2959 /* 2960 * By default spi->chip_select[0] will hold the physical CS number, 2961 * so set bit 0 in spi->cs_index_mask. 2962 */ 2963 spi->cs_index_mask = BIT(0); 2964 2965 return spi; 2966 } 2967 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc); 2968 2969 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr, 2970 struct acpi_device *adev) 2971 { 2972 struct spi_device *spi; 2973 2974 if (acpi_bus_get_status(adev) || !adev->status.present || 2975 acpi_device_enumerated(adev)) 2976 return AE_OK; 2977 2978 spi = acpi_spi_device_alloc(ctlr, adev, -1); 2979 if (IS_ERR(spi)) { 2980 if (PTR_ERR(spi) == -ENOMEM) 2981 return AE_NO_MEMORY; 2982 else 2983 return AE_OK; 2984 } 2985 2986 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias, 2987 sizeof(spi->modalias)); 2988 2989 /* 2990 * This gets re-tried in spi_probe() for -EPROBE_DEFER handling in case 2991 * the GPIO controller does not have a driver yet. This needs to be done 2992 * here too, because this call sets the GPIO direction and/or bias. 2993 * Setting these needs to be done even if there is no driver, in which 2994 * case spi_probe() will never get called. 2995 * TODO: ideally the setup of the GPIO should be handled in a generic 2996 * manner in the ACPI/gpiolib core code. 2997 */ 2998 if (spi->irq < 0) 2999 spi->irq = acpi_dev_gpio_irq_get(adev, 0); 3000 3001 acpi_device_set_enumerated(adev); 3002 3003 adev->power.flags.ignore_parent = true; 3004 if (spi_add_device(spi)) { 3005 adev->power.flags.ignore_parent = false; 3006 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n", 3007 dev_name(&adev->dev)); 3008 spi_dev_put(spi); 3009 } 3010 3011 return AE_OK; 3012 } 3013 3014 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level, 3015 void *data, void **return_value) 3016 { 3017 struct acpi_device *adev = acpi_fetch_acpi_dev(handle); 3018 struct spi_controller *ctlr = data; 3019 3020 if (!adev) 3021 return AE_OK; 3022 3023 return acpi_register_spi_device(ctlr, adev); 3024 } 3025 3026 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32 3027 3028 static void acpi_register_spi_devices(struct spi_controller *ctlr) 3029 { 3030 acpi_status status; 3031 acpi_handle handle; 3032 3033 handle = ACPI_HANDLE(ctlr->dev.parent); 3034 if (!handle) 3035 return; 3036 3037 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT, 3038 SPI_ACPI_ENUMERATE_MAX_DEPTH, 3039 acpi_spi_add_device, NULL, ctlr, NULL); 3040 if (ACPI_FAILURE(status)) 3041 dev_warn(&ctlr->dev, "failed to enumerate SPI target devices\n"); 3042 } 3043 #else 3044 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {} 3045 #endif /* CONFIG_ACPI */ 3046 3047 static void spi_controller_release(struct device *dev) 3048 { 3049 struct spi_controller *ctlr; 3050 3051 ctlr = container_of(dev, struct spi_controller, dev); 3052 kfree(ctlr); 3053 } 3054 3055 static const struct class spi_controller_class = { 3056 .name = "spi_master", 3057 .dev_release = spi_controller_release, 3058 .dev_groups = spi_controller_groups, 3059 }; 3060 3061 #ifdef CONFIG_SPI_SLAVE 3062 /** 3063 * spi_target_abort - abort the ongoing transfer request on an SPI target controller 3064 * @spi: device used for the current transfer 3065 */ 3066 int spi_target_abort(struct spi_device *spi) 3067 { 3068 struct spi_controller *ctlr = spi->controller; 3069 3070 if (spi_controller_is_target(ctlr) && ctlr->target_abort) 3071 return ctlr->target_abort(ctlr); 3072 3073 return -ENOTSUPP; 3074 } 3075 EXPORT_SYMBOL_GPL(spi_target_abort); 3076 3077 static ssize_t slave_show(struct device *dev, struct device_attribute *attr, 3078 char *buf) 3079 { 3080 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 3081 dev); 3082 struct device *child; 3083 int ret; 3084 3085 child = device_find_any_child(&ctlr->dev); 3086 ret = sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL); 3087 put_device(child); 3088 3089 return ret; 3090 } 3091 3092 static ssize_t slave_store(struct device *dev, struct device_attribute *attr, 3093 const char *buf, size_t count) 3094 { 3095 struct spi_controller *ctlr = container_of(dev, struct spi_controller, 3096 dev); 3097 struct spi_device *spi; 3098 struct device *child; 3099 char name[32]; 3100 int rc; 3101 3102 rc = sscanf(buf, "%31s", name); 3103 if (rc != 1 || !name[0]) 3104 return -EINVAL; 3105 3106 child = device_find_any_child(&ctlr->dev); 3107 if (child) { 3108 /* Remove registered target device */ 3109 device_unregister(child); 3110 put_device(child); 3111 } 3112 3113 if (strcmp(name, "(null)")) { 3114 /* Register new target device */ 3115 spi = spi_alloc_device(ctlr); 3116 if (!spi) 3117 return -ENOMEM; 3118 3119 strscpy(spi->modalias, name, sizeof(spi->modalias)); 3120 3121 rc = spi_add_device(spi); 3122 if (rc) { 3123 spi_dev_put(spi); 3124 return rc; 3125 } 3126 } 3127 3128 return count; 3129 } 3130 3131 static DEVICE_ATTR_RW(slave); 3132 3133 static struct attribute *spi_target_attrs[] = { 3134 &dev_attr_slave.attr, 3135 NULL, 3136 }; 3137 3138 static const struct attribute_group spi_target_group = { 3139 .attrs = spi_target_attrs, 3140 }; 3141 3142 static const struct attribute_group *spi_target_groups[] = { 3143 &spi_controller_statistics_group, 3144 &spi_target_group, 3145 NULL, 3146 }; 3147 3148 static const struct class spi_target_class = { 3149 .name = "spi_slave", 3150 .dev_release = spi_controller_release, 3151 .dev_groups = spi_target_groups, 3152 }; 3153 #else 3154 extern struct class spi_target_class; /* dummy */ 3155 #endif 3156 3157 /** 3158 * __spi_alloc_controller - allocate an SPI host or target controller 3159 * @dev: the controller, possibly using the platform_bus 3160 * @size: how much zeroed driver-private data to allocate; the pointer to this 3161 * memory is in the driver_data field of the returned device, accessible 3162 * with spi_controller_get_devdata(); the memory is cacheline aligned; 3163 * drivers granting DMA access to portions of their private data need to 3164 * round up @size using ALIGN(size, dma_get_cache_alignment()). 3165 * @target: flag indicating whether to allocate an SPI host (false) or SPI target (true) 3166 * controller 3167 * Context: can sleep 3168 * 3169 * This call is used only by SPI controller drivers, which are the 3170 * only ones directly touching chip registers. It's how they allocate 3171 * an spi_controller structure, prior to calling spi_register_controller(). 3172 * 3173 * This must be called from context that can sleep. 3174 * 3175 * The caller is responsible for assigning the bus number and initializing the 3176 * controller's methods before calling spi_register_controller(); and (after 3177 * errors adding the device) calling spi_controller_put() to prevent a memory 3178 * leak. 3179 * 3180 * Return: the SPI controller structure on success, else NULL. 3181 */ 3182 struct spi_controller *__spi_alloc_controller(struct device *dev, 3183 unsigned int size, bool target) 3184 { 3185 struct spi_controller *ctlr; 3186 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment()); 3187 3188 if (!dev) 3189 return NULL; 3190 3191 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL); 3192 if (!ctlr) 3193 return NULL; 3194 3195 device_initialize(&ctlr->dev); 3196 INIT_LIST_HEAD(&ctlr->queue); 3197 spin_lock_init(&ctlr->queue_lock); 3198 spin_lock_init(&ctlr->bus_lock_spinlock); 3199 mutex_init(&ctlr->bus_lock_mutex); 3200 mutex_init(&ctlr->io_mutex); 3201 mutex_init(&ctlr->add_lock); 3202 ctlr->bus_num = -1; 3203 ctlr->num_chipselect = 1; 3204 ctlr->num_data_lanes = 1; 3205 ctlr->target = target; 3206 if (IS_ENABLED(CONFIG_SPI_SLAVE) && target) 3207 ctlr->dev.class = &spi_target_class; 3208 else 3209 ctlr->dev.class = &spi_controller_class; 3210 ctlr->dev.parent = dev; 3211 3212 device_set_node(&ctlr->dev, dev_fwnode(dev)); 3213 3214 pm_suspend_ignore_children(&ctlr->dev, true); 3215 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size); 3216 3217 return ctlr; 3218 } 3219 EXPORT_SYMBOL_GPL(__spi_alloc_controller); 3220 3221 static void devm_spi_release_controller(void *ctlr) 3222 { 3223 spi_controller_put(ctlr); 3224 } 3225 3226 /** 3227 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller() 3228 * @dev: physical device of SPI controller 3229 * @size: how much zeroed driver-private data to allocate 3230 * @target: whether to allocate an SPI host (false) or SPI target (true) controller 3231 * Context: can sleep 3232 * 3233 * Allocate an SPI controller and automatically release a reference on it 3234 * when @dev is unbound from its driver. Drivers are thus relieved from 3235 * having to call spi_controller_put(). 3236 * 3237 * The arguments to this function are identical to __spi_alloc_controller(). 3238 * 3239 * Return: the SPI controller structure on success, else NULL. 3240 */ 3241 struct spi_controller *__devm_spi_alloc_controller(struct device *dev, 3242 unsigned int size, 3243 bool target) 3244 { 3245 struct spi_controller *ctlr; 3246 int ret; 3247 3248 ctlr = __spi_alloc_controller(dev, size, target); 3249 if (!ctlr) 3250 return NULL; 3251 3252 ret = devm_add_action_or_reset(dev, devm_spi_release_controller, ctlr); 3253 if (ret) 3254 return NULL; 3255 3256 ctlr->devm_allocated = true; 3257 3258 return ctlr; 3259 } 3260 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller); 3261 3262 /** 3263 * spi_get_gpio_descs() - grab chip select GPIOs for the controller 3264 * @ctlr: The SPI controller to grab GPIO descriptors for 3265 */ 3266 static int spi_get_gpio_descs(struct spi_controller *ctlr) 3267 { 3268 int nb, i; 3269 struct gpio_desc **cs; 3270 struct device *dev = &ctlr->dev; 3271 unsigned long native_cs_mask = 0; 3272 unsigned int num_cs_gpios = 0; 3273 3274 nb = gpiod_count(dev, "cs"); 3275 if (nb < 0) { 3276 /* No GPIOs at all is fine, else return the error */ 3277 if (nb == -ENOENT) 3278 return 0; 3279 return nb; 3280 } 3281 3282 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect); 3283 3284 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs), 3285 GFP_KERNEL); 3286 if (!cs) 3287 return -ENOMEM; 3288 ctlr->cs_gpiods = cs; 3289 3290 for (i = 0; i < nb; i++) { 3291 /* 3292 * Most chipselects are active low, the inverted 3293 * semantics are handled by special quirks in gpiolib, 3294 * so initializing them GPIOD_OUT_LOW here means 3295 * "unasserted", in most cases this will drive the physical 3296 * line high. 3297 */ 3298 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i, 3299 GPIOD_OUT_LOW); 3300 if (IS_ERR(cs[i])) 3301 return PTR_ERR(cs[i]); 3302 3303 if (cs[i]) { 3304 /* 3305 * If we find a CS GPIO, name it after the device and 3306 * chip select line. 3307 */ 3308 char *gpioname; 3309 3310 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d", 3311 dev_name(dev), i); 3312 if (!gpioname) 3313 return -ENOMEM; 3314 gpiod_set_consumer_name(cs[i], gpioname); 3315 num_cs_gpios++; 3316 continue; 3317 } 3318 3319 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) { 3320 dev_err(dev, "Invalid native chip select %d\n", i); 3321 return -EINVAL; 3322 } 3323 native_cs_mask |= BIT(i); 3324 } 3325 3326 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1; 3327 3328 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios && 3329 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) { 3330 dev_err(dev, "No unused native chip select available\n"); 3331 return -EINVAL; 3332 } 3333 3334 return 0; 3335 } 3336 3337 static int spi_controller_check_ops(struct spi_controller *ctlr) 3338 { 3339 /* 3340 * The controller may implement only the high-level SPI-memory like 3341 * operations if it does not support regular SPI transfers, and this is 3342 * valid use case. 3343 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least 3344 * one of the ->transfer_xxx() method be implemented. 3345 */ 3346 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) { 3347 if (!ctlr->transfer && !ctlr->transfer_one && 3348 !ctlr->transfer_one_message) { 3349 return -EINVAL; 3350 } 3351 } 3352 3353 return 0; 3354 } 3355 3356 /* Allocate dynamic bus number using Linux idr */ 3357 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end) 3358 { 3359 int id; 3360 3361 mutex_lock(&board_lock); 3362 id = idr_alloc(&spi_controller_idr, ctlr, start, end, GFP_KERNEL); 3363 mutex_unlock(&board_lock); 3364 if (WARN(id < 0, "couldn't get idr")) 3365 return id == -ENOSPC ? -EBUSY : id; 3366 ctlr->bus_num = id; 3367 return 0; 3368 } 3369 3370 /** 3371 * spi_register_controller - register SPI host or target controller 3372 * @ctlr: initialized controller, originally from spi_alloc_host() or 3373 * spi_alloc_target() 3374 * Context: can sleep 3375 * 3376 * SPI controllers connect to their drivers using some non-SPI bus, 3377 * such as the platform bus. The final stage of probe() in that code 3378 * includes calling spi_register_controller() to hook up to this SPI bus glue. 3379 * 3380 * SPI controllers use board specific (often SOC specific) bus numbers, 3381 * and board-specific addressing for SPI devices combines those numbers 3382 * with chip select numbers. Since SPI does not directly support dynamic 3383 * device identification, boards need configuration tables telling which 3384 * chip is at which address. 3385 * 3386 * This must be called from context that can sleep. It returns zero on 3387 * success, else a negative error code (dropping the controller's refcount). 3388 * After a successful return, the caller is responsible for calling 3389 * spi_unregister_controller(). 3390 * 3391 * Return: zero on success, else a negative error code. 3392 */ 3393 int spi_register_controller(struct spi_controller *ctlr) 3394 { 3395 struct device *dev = ctlr->dev.parent; 3396 struct boardinfo *bi; 3397 int first_dynamic; 3398 int status; 3399 int idx; 3400 3401 if (!dev) 3402 return -ENODEV; 3403 3404 /* 3405 * Make sure all necessary hooks are implemented before registering 3406 * the SPI controller. 3407 */ 3408 status = spi_controller_check_ops(ctlr); 3409 if (status) 3410 return status; 3411 3412 if (ctlr->bus_num < 0) 3413 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi"); 3414 if (ctlr->bus_num >= 0) { 3415 /* Devices with a fixed bus num must check-in with the num */ 3416 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1); 3417 if (status) 3418 return status; 3419 } 3420 if (ctlr->bus_num < 0) { 3421 first_dynamic = of_alias_get_highest_id("spi"); 3422 if (first_dynamic < 0) 3423 first_dynamic = 0; 3424 else 3425 first_dynamic++; 3426 3427 status = spi_controller_id_alloc(ctlr, first_dynamic, 0); 3428 if (status) 3429 return status; 3430 } 3431 ctlr->bus_lock_flag = 0; 3432 init_completion(&ctlr->xfer_completion); 3433 init_completion(&ctlr->cur_msg_completion); 3434 if (!ctlr->max_dma_len) 3435 ctlr->max_dma_len = INT_MAX; 3436 3437 /* 3438 * Register the device, then userspace will see it. 3439 * Registration fails if the bus ID is in use. 3440 */ 3441 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num); 3442 3443 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) { 3444 status = spi_get_gpio_descs(ctlr); 3445 if (status) 3446 goto free_bus_id; 3447 /* 3448 * A controller using GPIO descriptors always 3449 * supports SPI_CS_HIGH if need be. 3450 */ 3451 ctlr->mode_bits |= SPI_CS_HIGH; 3452 } 3453 3454 /* 3455 * Even if it's just one always-selected device, there must 3456 * be at least one chipselect. 3457 */ 3458 if (!ctlr->num_chipselect) { 3459 status = -EINVAL; 3460 goto free_bus_id; 3461 } 3462 3463 /* Setting last_cs to SPI_INVALID_CS means no chip selected */ 3464 for (idx = 0; idx < SPI_DEVICE_CS_CNT_MAX; idx++) 3465 ctlr->last_cs[idx] = SPI_INVALID_CS; 3466 3467 status = device_add(&ctlr->dev); 3468 if (status < 0) 3469 goto free_bus_id; 3470 dev_dbg(dev, "registered %s %s\n", 3471 spi_controller_is_target(ctlr) ? "target" : "host", 3472 dev_name(&ctlr->dev)); 3473 3474 /* 3475 * If we're using a queued driver, start the queue. Note that we don't 3476 * need the queueing logic if the driver is only supporting high-level 3477 * memory operations. 3478 */ 3479 if (ctlr->transfer) { 3480 dev_info(dev, "controller is unqueued, this is deprecated\n"); 3481 } else if (ctlr->transfer_one || ctlr->transfer_one_message) { 3482 status = spi_controller_initialize_queue(ctlr); 3483 if (status) { 3484 device_del(&ctlr->dev); 3485 goto free_bus_id; 3486 } 3487 } 3488 /* Add statistics */ 3489 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev); 3490 if (!ctlr->pcpu_statistics) { 3491 dev_err(dev, "Error allocating per-cpu statistics\n"); 3492 status = -ENOMEM; 3493 goto destroy_queue; 3494 } 3495 3496 mutex_lock(&board_lock); 3497 list_add_tail(&ctlr->list, &spi_controller_list); 3498 list_for_each_entry(bi, &board_list, list) 3499 spi_match_controller_to_boardinfo(ctlr, &bi->board_info); 3500 mutex_unlock(&board_lock); 3501 3502 /* Register devices from the device tree and ACPI */ 3503 of_register_spi_devices(ctlr); 3504 acpi_register_spi_devices(ctlr); 3505 return status; 3506 3507 destroy_queue: 3508 spi_destroy_queue(ctlr); 3509 free_bus_id: 3510 mutex_lock(&board_lock); 3511 idr_remove(&spi_controller_idr, ctlr->bus_num); 3512 mutex_unlock(&board_lock); 3513 return status; 3514 } 3515 EXPORT_SYMBOL_GPL(spi_register_controller); 3516 3517 static void devm_spi_unregister_controller(void *ctlr) 3518 { 3519 spi_unregister_controller(ctlr); 3520 } 3521 3522 /** 3523 * devm_spi_register_controller - register managed SPI host or target controller 3524 * @dev: device managing SPI controller 3525 * @ctlr: initialized controller, originally from spi_alloc_host() or 3526 * spi_alloc_target() 3527 * Context: can sleep 3528 * 3529 * Register a SPI device as with spi_register_controller() which will 3530 * automatically be unregistered and freed. 3531 * 3532 * Return: zero on success, else a negative error code. 3533 */ 3534 int devm_spi_register_controller(struct device *dev, 3535 struct spi_controller *ctlr) 3536 { 3537 int ret; 3538 3539 ret = spi_register_controller(ctlr); 3540 if (ret) 3541 return ret; 3542 3543 return devm_add_action_or_reset(dev, devm_spi_unregister_controller, ctlr); 3544 3545 } 3546 EXPORT_SYMBOL_GPL(devm_spi_register_controller); 3547 3548 static int __unregister(struct device *dev, void *null) 3549 { 3550 spi_unregister_device(to_spi_device(dev)); 3551 return 0; 3552 } 3553 3554 /** 3555 * spi_unregister_controller - unregister SPI host or target controller 3556 * @ctlr: the controller being unregistered 3557 * Context: can sleep 3558 * 3559 * This call is used only by SPI controller drivers, which are the 3560 * only ones directly touching chip registers. 3561 * 3562 * This must be called from context that can sleep. 3563 * 3564 * Note that this function also drops a reference to the controller. 3565 */ 3566 void spi_unregister_controller(struct spi_controller *ctlr) 3567 { 3568 struct spi_controller *found; 3569 int id = ctlr->bus_num; 3570 3571 /* Prevent addition of new devices, unregister existing ones */ 3572 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3573 mutex_lock(&ctlr->add_lock); 3574 3575 device_for_each_child(&ctlr->dev, NULL, __unregister); 3576 3577 /* First make sure that this controller was ever added */ 3578 mutex_lock(&board_lock); 3579 found = idr_find(&spi_controller_idr, id); 3580 mutex_unlock(&board_lock); 3581 if (ctlr->queued) { 3582 if (spi_destroy_queue(ctlr)) 3583 dev_err(&ctlr->dev, "queue remove failed\n"); 3584 } 3585 mutex_lock(&board_lock); 3586 list_del(&ctlr->list); 3587 mutex_unlock(&board_lock); 3588 3589 device_del(&ctlr->dev); 3590 3591 /* Free bus id */ 3592 mutex_lock(&board_lock); 3593 if (found == ctlr) 3594 idr_remove(&spi_controller_idr, id); 3595 mutex_unlock(&board_lock); 3596 3597 if (IS_ENABLED(CONFIG_SPI_DYNAMIC)) 3598 mutex_unlock(&ctlr->add_lock); 3599 3600 /* 3601 * Release the last reference on the controller if its driver 3602 * has not yet been converted to devm_spi_alloc_host/target(). 3603 */ 3604 if (!ctlr->devm_allocated) 3605 put_device(&ctlr->dev); 3606 } 3607 EXPORT_SYMBOL_GPL(spi_unregister_controller); 3608 3609 static inline int __spi_check_suspended(const struct spi_controller *ctlr) 3610 { 3611 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0; 3612 } 3613 3614 static inline void __spi_mark_suspended(struct spi_controller *ctlr) 3615 { 3616 mutex_lock(&ctlr->bus_lock_mutex); 3617 ctlr->flags |= SPI_CONTROLLER_SUSPENDED; 3618 mutex_unlock(&ctlr->bus_lock_mutex); 3619 } 3620 3621 static inline void __spi_mark_resumed(struct spi_controller *ctlr) 3622 { 3623 mutex_lock(&ctlr->bus_lock_mutex); 3624 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED; 3625 mutex_unlock(&ctlr->bus_lock_mutex); 3626 } 3627 3628 int spi_controller_suspend(struct spi_controller *ctlr) 3629 { 3630 int ret = 0; 3631 3632 /* Basically no-ops for non-queued controllers */ 3633 if (ctlr->queued) { 3634 ret = spi_stop_queue(ctlr); 3635 if (ret) 3636 dev_err(&ctlr->dev, "queue stop failed\n"); 3637 } 3638 3639 __spi_mark_suspended(ctlr); 3640 return ret; 3641 } 3642 EXPORT_SYMBOL_GPL(spi_controller_suspend); 3643 3644 int spi_controller_resume(struct spi_controller *ctlr) 3645 { 3646 int ret = 0; 3647 3648 __spi_mark_resumed(ctlr); 3649 3650 if (ctlr->queued) { 3651 ret = spi_start_queue(ctlr); 3652 if (ret) 3653 dev_err(&ctlr->dev, "queue restart failed\n"); 3654 } 3655 return ret; 3656 } 3657 EXPORT_SYMBOL_GPL(spi_controller_resume); 3658 3659 /*-------------------------------------------------------------------------*/ 3660 3661 /* Core methods for spi_message alterations */ 3662 3663 static void __spi_replace_transfers_release(struct spi_controller *ctlr, 3664 struct spi_message *msg, 3665 void *res) 3666 { 3667 struct spi_replaced_transfers *rxfer = res; 3668 size_t i; 3669 3670 /* Call extra callback if requested */ 3671 if (rxfer->release) 3672 rxfer->release(ctlr, msg, res); 3673 3674 /* Insert replaced transfers back into the message */ 3675 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after); 3676 3677 /* Remove the formerly inserted entries */ 3678 for (i = 0; i < rxfer->inserted; i++) 3679 list_del(&rxfer->inserted_transfers[i].transfer_list); 3680 } 3681 3682 /** 3683 * spi_replace_transfers - replace transfers with several transfers 3684 * and register change with spi_message.resources 3685 * @msg: the spi_message we work upon 3686 * @xfer_first: the first spi_transfer we want to replace 3687 * @remove: number of transfers to remove 3688 * @insert: the number of transfers we want to insert instead 3689 * @release: extra release code necessary in some circumstances 3690 * @extradatasize: extra data to allocate (with alignment guarantees 3691 * of struct @spi_transfer) 3692 * @gfp: gfp flags 3693 * 3694 * Returns: pointer to @spi_replaced_transfers, 3695 * PTR_ERR(...) in case of errors. 3696 */ 3697 static struct spi_replaced_transfers *spi_replace_transfers( 3698 struct spi_message *msg, 3699 struct spi_transfer *xfer_first, 3700 size_t remove, 3701 size_t insert, 3702 spi_replaced_release_t release, 3703 size_t extradatasize, 3704 gfp_t gfp) 3705 { 3706 struct spi_replaced_transfers *rxfer; 3707 struct spi_transfer *xfer; 3708 size_t i; 3709 3710 /* Allocate the structure using spi_res */ 3711 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release, 3712 struct_size(rxfer, inserted_transfers, insert) 3713 + extradatasize, 3714 gfp); 3715 if (!rxfer) 3716 return ERR_PTR(-ENOMEM); 3717 3718 /* The release code to invoke before running the generic release */ 3719 rxfer->release = release; 3720 3721 /* Assign extradata */ 3722 if (extradatasize) 3723 rxfer->extradata = 3724 &rxfer->inserted_transfers[insert]; 3725 3726 /* Init the replaced_transfers list */ 3727 INIT_LIST_HEAD(&rxfer->replaced_transfers); 3728 3729 /* 3730 * Assign the list_entry after which we should reinsert 3731 * the @replaced_transfers - it may be spi_message.messages! 3732 */ 3733 rxfer->replaced_after = xfer_first->transfer_list.prev; 3734 3735 /* Remove the requested number of transfers */ 3736 for (i = 0; i < remove; i++) { 3737 /* 3738 * If the entry after replaced_after it is msg->transfers 3739 * then we have been requested to remove more transfers 3740 * than are in the list. 3741 */ 3742 if (rxfer->replaced_after->next == &msg->transfers) { 3743 dev_err(&msg->spi->dev, 3744 "requested to remove more spi_transfers than are available\n"); 3745 /* Insert replaced transfers back into the message */ 3746 list_splice(&rxfer->replaced_transfers, 3747 rxfer->replaced_after); 3748 3749 /* Free the spi_replace_transfer structure... */ 3750 spi_res_free(rxfer); 3751 3752 /* ...and return with an error */ 3753 return ERR_PTR(-EINVAL); 3754 } 3755 3756 /* 3757 * Remove the entry after replaced_after from list of 3758 * transfers and add it to list of replaced_transfers. 3759 */ 3760 list_move_tail(rxfer->replaced_after->next, 3761 &rxfer->replaced_transfers); 3762 } 3763 3764 /* 3765 * Create copy of the given xfer with identical settings 3766 * based on the first transfer to get removed. 3767 */ 3768 for (i = 0; i < insert; i++) { 3769 /* We need to run in reverse order */ 3770 xfer = &rxfer->inserted_transfers[insert - 1 - i]; 3771 3772 /* Copy all spi_transfer data */ 3773 memcpy(xfer, xfer_first, sizeof(*xfer)); 3774 3775 /* Add to list */ 3776 list_add(&xfer->transfer_list, rxfer->replaced_after); 3777 3778 /* Clear cs_change and delay for all but the last */ 3779 if (i) { 3780 xfer->cs_change = false; 3781 xfer->delay.value = 0; 3782 } 3783 } 3784 3785 /* Set up inserted... */ 3786 rxfer->inserted = insert; 3787 3788 /* ...and register it with spi_res/spi_message */ 3789 spi_res_add(msg, rxfer); 3790 3791 return rxfer; 3792 } 3793 3794 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr, 3795 struct spi_message *msg, 3796 struct spi_transfer **xferp, 3797 size_t maxsize) 3798 { 3799 struct spi_transfer *xfer = *xferp, *xfers; 3800 struct spi_replaced_transfers *srt; 3801 size_t offset; 3802 size_t count, i; 3803 3804 /* Calculate how many we have to replace */ 3805 count = DIV_ROUND_UP(xfer->len, maxsize); 3806 3807 /* Create replacement */ 3808 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL); 3809 if (IS_ERR(srt)) 3810 return PTR_ERR(srt); 3811 xfers = srt->inserted_transfers; 3812 3813 /* 3814 * Now handle each of those newly inserted spi_transfers. 3815 * Note that the replacements spi_transfers all are preset 3816 * to the same values as *xferp, so tx_buf, rx_buf and len 3817 * are all identical (as well as most others) 3818 * so we just have to fix up len and the pointers. 3819 */ 3820 3821 /* 3822 * The first transfer just needs the length modified, so we 3823 * run it outside the loop. 3824 */ 3825 xfers[0].len = min_t(size_t, maxsize, xfer[0].len); 3826 3827 /* All the others need rx_buf/tx_buf also set */ 3828 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) { 3829 /* Update rx_buf, tx_buf and DMA */ 3830 if (xfers[i].rx_buf) 3831 xfers[i].rx_buf += offset; 3832 if (xfers[i].tx_buf) 3833 xfers[i].tx_buf += offset; 3834 3835 /* Update length */ 3836 xfers[i].len = min(maxsize, xfers[i].len - offset); 3837 } 3838 3839 /* 3840 * We set up xferp to the last entry we have inserted, 3841 * so that we skip those already split transfers. 3842 */ 3843 *xferp = &xfers[count - 1]; 3844 3845 /* Increment statistics counters */ 3846 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, 3847 transfers_split_maxsize); 3848 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics, 3849 transfers_split_maxsize); 3850 3851 return 0; 3852 } 3853 3854 /** 3855 * spi_split_transfers_maxsize - split spi transfers into multiple transfers 3856 * when an individual transfer exceeds a 3857 * certain size 3858 * @ctlr: the @spi_controller for this transfer 3859 * @msg: the @spi_message to transform 3860 * @maxsize: the maximum when to apply this 3861 * 3862 * This function allocates resources that are automatically freed during the 3863 * spi message unoptimize phase so this function should only be called from 3864 * optimize_message callbacks. 3865 * 3866 * Return: status of transformation 3867 */ 3868 int spi_split_transfers_maxsize(struct spi_controller *ctlr, 3869 struct spi_message *msg, 3870 size_t maxsize) 3871 { 3872 struct spi_transfer *xfer; 3873 int ret; 3874 3875 /* 3876 * Iterate over the transfer_list, 3877 * but note that xfer is advanced to the last transfer inserted 3878 * to avoid checking sizes again unnecessarily (also xfer does 3879 * potentially belong to a different list by the time the 3880 * replacement has happened). 3881 */ 3882 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3883 if (xfer->len > maxsize) { 3884 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3885 maxsize); 3886 if (ret) 3887 return ret; 3888 } 3889 } 3890 3891 return 0; 3892 } 3893 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize); 3894 3895 3896 /** 3897 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers 3898 * when an individual transfer exceeds a 3899 * certain number of SPI words 3900 * @ctlr: the @spi_controller for this transfer 3901 * @msg: the @spi_message to transform 3902 * @maxwords: the number of words to limit each transfer to 3903 * 3904 * This function allocates resources that are automatically freed during the 3905 * spi message unoptimize phase so this function should only be called from 3906 * optimize_message callbacks. 3907 * 3908 * Return: status of transformation 3909 */ 3910 int spi_split_transfers_maxwords(struct spi_controller *ctlr, 3911 struct spi_message *msg, 3912 size_t maxwords) 3913 { 3914 struct spi_transfer *xfer; 3915 3916 /* 3917 * Iterate over the transfer_list, 3918 * but note that xfer is advanced to the last transfer inserted 3919 * to avoid checking sizes again unnecessarily (also xfer does 3920 * potentially belong to a different list by the time the 3921 * replacement has happened). 3922 */ 3923 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 3924 size_t maxsize; 3925 int ret; 3926 3927 maxsize = maxwords * spi_bpw_to_bytes(xfer->bits_per_word); 3928 if (xfer->len > maxsize) { 3929 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer, 3930 maxsize); 3931 if (ret) 3932 return ret; 3933 } 3934 } 3935 3936 return 0; 3937 } 3938 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords); 3939 3940 /*-------------------------------------------------------------------------*/ 3941 3942 /* 3943 * Core methods for SPI controller protocol drivers. Some of the 3944 * other core methods are currently defined as inline functions. 3945 */ 3946 3947 static int __spi_validate_bits_per_word(struct spi_controller *ctlr, 3948 u8 bits_per_word) 3949 { 3950 if (ctlr->bits_per_word_mask) { 3951 /* Only 32 bits fit in the mask */ 3952 if (bits_per_word > 32) 3953 return -EINVAL; 3954 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word))) 3955 return -EINVAL; 3956 } 3957 3958 return 0; 3959 } 3960 3961 /** 3962 * spi_set_cs_timing - configure CS setup, hold, and inactive delays 3963 * @spi: the device that requires specific CS timing configuration 3964 * 3965 * Return: zero on success, else a negative error code. 3966 */ 3967 static int spi_set_cs_timing(struct spi_device *spi) 3968 { 3969 struct device *parent = spi->controller->dev.parent; 3970 int status = 0; 3971 3972 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) { 3973 if (spi->controller->auto_runtime_pm) { 3974 status = pm_runtime_get_sync(parent); 3975 if (status < 0) { 3976 pm_runtime_put_noidle(parent); 3977 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 3978 status); 3979 return status; 3980 } 3981 3982 status = spi->controller->set_cs_timing(spi); 3983 pm_runtime_put_autosuspend(parent); 3984 } else { 3985 status = spi->controller->set_cs_timing(spi); 3986 } 3987 } 3988 return status; 3989 } 3990 3991 /** 3992 * spi_setup - setup SPI mode and clock rate 3993 * @spi: the device whose settings are being modified 3994 * Context: can sleep, and no requests are queued to the device 3995 * 3996 * SPI protocol drivers may need to update the transfer mode if the 3997 * device doesn't work with its default. They may likewise need 3998 * to update clock rates or word sizes from initial values. This function 3999 * changes those settings, and must be called from a context that can sleep. 4000 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take 4001 * effect the next time the device is selected and data is transferred to 4002 * or from it. When this function returns, the SPI device is deselected. 4003 * 4004 * Note that this call will fail if the protocol driver specifies an option 4005 * that the underlying controller or its driver does not support. For 4006 * example, not all hardware supports wire transfers using nine bit words, 4007 * LSB-first wire encoding, or active-high chipselects. 4008 * 4009 * Return: zero on success, else a negative error code. 4010 */ 4011 int spi_setup(struct spi_device *spi) 4012 { 4013 unsigned bad_bits, ugly_bits; 4014 int status; 4015 4016 /* 4017 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO 4018 * are set at the same time. 4019 */ 4020 if ((hweight_long(spi->mode & 4021 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) || 4022 (hweight_long(spi->mode & 4023 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) { 4024 dev_err(&spi->dev, 4025 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n"); 4026 return -EINVAL; 4027 } 4028 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */ 4029 if ((spi->mode & SPI_3WIRE) && (spi->mode & 4030 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 4031 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 4032 return -EINVAL; 4033 /* Check against conflicting MOSI idle configuration */ 4034 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) { 4035 dev_err(&spi->dev, 4036 "setup: MOSI configured to idle low and high at the same time.\n"); 4037 return -EINVAL; 4038 } 4039 /* 4040 * Help drivers fail *cleanly* when they need options 4041 * that aren't supported with their current controller. 4042 * SPI_CS_WORD has a fallback software implementation, 4043 * so it is ignored here. 4044 */ 4045 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD | 4046 SPI_NO_TX | SPI_NO_RX); 4047 ugly_bits = bad_bits & 4048 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL | 4049 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL); 4050 if (ugly_bits) { 4051 dev_warn(&spi->dev, 4052 "setup: ignoring unsupported mode bits %x\n", 4053 ugly_bits); 4054 spi->mode &= ~ugly_bits; 4055 bad_bits &= ~ugly_bits; 4056 } 4057 if (bad_bits) { 4058 dev_err(&spi->dev, "setup: unsupported mode bits %x\n", 4059 bad_bits); 4060 return -EINVAL; 4061 } 4062 4063 if (!spi->bits_per_word) { 4064 spi->bits_per_word = 8; 4065 } else { 4066 /* 4067 * Some controllers may not support the default 8 bits-per-word 4068 * so only perform the check when this is explicitly provided. 4069 */ 4070 status = __spi_validate_bits_per_word(spi->controller, 4071 spi->bits_per_word); 4072 if (status) 4073 return status; 4074 } 4075 4076 if (spi->controller->max_speed_hz && 4077 (!spi->max_speed_hz || 4078 spi->max_speed_hz > spi->controller->max_speed_hz)) 4079 spi->max_speed_hz = spi->controller->max_speed_hz; 4080 4081 mutex_lock(&spi->controller->io_mutex); 4082 4083 if (spi->controller->setup) { 4084 status = spi->controller->setup(spi); 4085 if (status) { 4086 mutex_unlock(&spi->controller->io_mutex); 4087 dev_err(&spi->controller->dev, "Failed to setup device: %d\n", 4088 status); 4089 return status; 4090 } 4091 } 4092 4093 status = spi_set_cs_timing(spi); 4094 if (status) { 4095 mutex_unlock(&spi->controller->io_mutex); 4096 return status; 4097 } 4098 4099 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) { 4100 status = pm_runtime_resume_and_get(spi->controller->dev.parent); 4101 if (status < 0) { 4102 mutex_unlock(&spi->controller->io_mutex); 4103 dev_err(&spi->controller->dev, "Failed to power device: %d\n", 4104 status); 4105 return status; 4106 } 4107 4108 /* 4109 * We do not want to return positive value from pm_runtime_get, 4110 * there are many instances of devices calling spi_setup() and 4111 * checking for a non-zero return value instead of a negative 4112 * return value. 4113 */ 4114 status = 0; 4115 4116 spi_set_cs(spi, false, true); 4117 pm_runtime_put_autosuspend(spi->controller->dev.parent); 4118 } else { 4119 spi_set_cs(spi, false, true); 4120 } 4121 4122 mutex_unlock(&spi->controller->io_mutex); 4123 4124 if (spi->rt && !spi->controller->rt) { 4125 spi->controller->rt = true; 4126 spi_set_thread_rt(spi->controller); 4127 } 4128 4129 trace_spi_setup(spi, status); 4130 4131 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n", 4132 spi->mode & SPI_MODE_X_MASK, 4133 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "", 4134 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "", 4135 (spi->mode & SPI_3WIRE) ? "3wire, " : "", 4136 (spi->mode & SPI_LOOP) ? "loopback, " : "", 4137 spi->bits_per_word, spi->max_speed_hz, 4138 status); 4139 4140 return status; 4141 } 4142 EXPORT_SYMBOL_GPL(spi_setup); 4143 4144 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer, 4145 struct spi_device *spi) 4146 { 4147 int delay1, delay2; 4148 4149 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer); 4150 if (delay1 < 0) 4151 return delay1; 4152 4153 delay2 = spi_delay_to_ns(&spi->word_delay, xfer); 4154 if (delay2 < 0) 4155 return delay2; 4156 4157 if (delay1 < delay2) 4158 memcpy(&xfer->word_delay, &spi->word_delay, 4159 sizeof(xfer->word_delay)); 4160 4161 return 0; 4162 } 4163 4164 static int __spi_validate(struct spi_device *spi, struct spi_message *message) 4165 { 4166 struct spi_controller *ctlr = spi->controller; 4167 struct spi_transfer *xfer; 4168 int w_size; 4169 4170 if (list_empty(&message->transfers)) 4171 return -EINVAL; 4172 4173 message->spi = spi; 4174 4175 /* 4176 * Half-duplex links include original MicroWire, and ones with 4177 * only one data pin like SPI_3WIRE (switches direction) or where 4178 * either MOSI or MISO is missing. They can also be caused by 4179 * software limitations. 4180 */ 4181 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) || 4182 (spi->mode & SPI_3WIRE)) { 4183 unsigned flags = ctlr->flags; 4184 4185 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4186 if (xfer->rx_buf && xfer->tx_buf) 4187 return -EINVAL; 4188 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf) 4189 return -EINVAL; 4190 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf) 4191 return -EINVAL; 4192 } 4193 } 4194 4195 /* 4196 * Set transfer bits_per_word and max speed as spi device default if 4197 * it is not set for this transfer. 4198 * Set transfer tx_nbits and rx_nbits as single transfer default 4199 * (SPI_NBITS_SINGLE) if it is not set for this transfer. 4200 * Ensure transfer word_delay is at least as long as that required by 4201 * device itself. 4202 */ 4203 message->frame_length = 0; 4204 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4205 xfer->effective_speed_hz = 0; 4206 message->frame_length += xfer->len; 4207 if (!xfer->bits_per_word) 4208 xfer->bits_per_word = spi->bits_per_word; 4209 4210 if (!xfer->speed_hz) 4211 xfer->speed_hz = spi->max_speed_hz; 4212 4213 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz) 4214 xfer->speed_hz = ctlr->max_speed_hz; 4215 4216 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word)) 4217 return -EINVAL; 4218 4219 /* DDR mode is supported only if controller has dtr_caps=true. 4220 * default considered as SDR mode for SPI and QSPI controller. 4221 * Note: This is applicable only to QSPI controller. 4222 */ 4223 if (xfer->dtr_mode && !ctlr->dtr_caps) 4224 return -EINVAL; 4225 4226 /* 4227 * SPI transfer length should be multiple of SPI word size 4228 * where SPI word size should be power-of-two multiple. 4229 */ 4230 if (xfer->bits_per_word <= 8) 4231 w_size = 1; 4232 else if (xfer->bits_per_word <= 16) 4233 w_size = 2; 4234 else 4235 w_size = 4; 4236 4237 /* No partial transfers accepted */ 4238 if (xfer->len % w_size) 4239 return -EINVAL; 4240 4241 if (xfer->speed_hz && ctlr->min_speed_hz && 4242 xfer->speed_hz < ctlr->min_speed_hz) 4243 return -EINVAL; 4244 4245 if (xfer->tx_buf && !xfer->tx_nbits) 4246 xfer->tx_nbits = SPI_NBITS_SINGLE; 4247 if (xfer->rx_buf && !xfer->rx_nbits) 4248 xfer->rx_nbits = SPI_NBITS_SINGLE; 4249 /* 4250 * Check transfer tx/rx_nbits: 4251 * 1. check the value matches one of single, dual and quad 4252 * 2. check tx/rx_nbits match the mode in spi_device 4253 */ 4254 if (xfer->tx_buf) { 4255 if (spi->mode & SPI_NO_TX) 4256 return -EINVAL; 4257 if (xfer->tx_nbits != SPI_NBITS_SINGLE && 4258 xfer->tx_nbits != SPI_NBITS_DUAL && 4259 xfer->tx_nbits != SPI_NBITS_QUAD && 4260 xfer->tx_nbits != SPI_NBITS_OCTAL) 4261 return -EINVAL; 4262 if ((xfer->tx_nbits == SPI_NBITS_DUAL) && 4263 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) 4264 return -EINVAL; 4265 if ((xfer->tx_nbits == SPI_NBITS_QUAD) && 4266 !(spi->mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) 4267 return -EINVAL; 4268 if ((xfer->tx_nbits == SPI_NBITS_OCTAL) && 4269 !(spi->mode & SPI_TX_OCTAL)) 4270 return -EINVAL; 4271 } 4272 /* Check transfer rx_nbits */ 4273 if (xfer->rx_buf) { 4274 if (spi->mode & SPI_NO_RX) 4275 return -EINVAL; 4276 if (xfer->rx_nbits != SPI_NBITS_SINGLE && 4277 xfer->rx_nbits != SPI_NBITS_DUAL && 4278 xfer->rx_nbits != SPI_NBITS_QUAD && 4279 xfer->rx_nbits != SPI_NBITS_OCTAL) 4280 return -EINVAL; 4281 if ((xfer->rx_nbits == SPI_NBITS_DUAL) && 4282 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))) 4283 return -EINVAL; 4284 if ((xfer->rx_nbits == SPI_NBITS_QUAD) && 4285 !(spi->mode & (SPI_RX_QUAD | SPI_RX_OCTAL))) 4286 return -EINVAL; 4287 if ((xfer->rx_nbits == SPI_NBITS_OCTAL) && 4288 !(spi->mode & SPI_RX_OCTAL)) 4289 return -EINVAL; 4290 } 4291 4292 if (_spi_xfer_word_delay_update(xfer, spi)) 4293 return -EINVAL; 4294 4295 /* Make sure controller supports required offload features. */ 4296 if (xfer->offload_flags) { 4297 if (!message->offload) 4298 return -EINVAL; 4299 4300 if (xfer->offload_flags & ~message->offload->xfer_flags) 4301 return -EINVAL; 4302 } 4303 } 4304 4305 message->status = -EINPROGRESS; 4306 4307 return 0; 4308 } 4309 4310 /* 4311 * spi_split_transfers - generic handling of transfer splitting 4312 * @msg: the message to split 4313 * 4314 * Under certain conditions, a SPI controller may not support arbitrary 4315 * transfer sizes or other features required by a peripheral. This function 4316 * will split the transfers in the message into smaller transfers that are 4317 * supported by the controller. 4318 * 4319 * Controllers with special requirements not covered here can also split 4320 * transfers in the optimize_message() callback. 4321 * 4322 * Context: can sleep 4323 * Return: zero on success, else a negative error code 4324 */ 4325 static int spi_split_transfers(struct spi_message *msg) 4326 { 4327 struct spi_controller *ctlr = msg->spi->controller; 4328 struct spi_transfer *xfer; 4329 int ret; 4330 4331 /* 4332 * If an SPI controller does not support toggling the CS line on each 4333 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO 4334 * for the CS line, we can emulate the CS-per-word hardware function by 4335 * splitting transfers into one-word transfers and ensuring that 4336 * cs_change is set for each transfer. 4337 */ 4338 if ((msg->spi->mode & SPI_CS_WORD) && 4339 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) { 4340 ret = spi_split_transfers_maxwords(ctlr, msg, 1); 4341 if (ret) 4342 return ret; 4343 4344 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 4345 /* Don't change cs_change on the last entry in the list */ 4346 if (list_is_last(&xfer->transfer_list, &msg->transfers)) 4347 break; 4348 4349 xfer->cs_change = 1; 4350 } 4351 } else { 4352 ret = spi_split_transfers_maxsize(ctlr, msg, 4353 spi_max_transfer_size(msg->spi)); 4354 if (ret) 4355 return ret; 4356 } 4357 4358 return 0; 4359 } 4360 4361 /* 4362 * __spi_optimize_message - shared implementation for spi_optimize_message() 4363 * and spi_maybe_optimize_message() 4364 * @spi: the device that will be used for the message 4365 * @msg: the message to optimize 4366 * 4367 * Peripheral drivers will call spi_optimize_message() and the spi core will 4368 * call spi_maybe_optimize_message() instead of calling this directly. 4369 * 4370 * It is not valid to call this on a message that has already been optimized. 4371 * 4372 * Return: zero on success, else a negative error code 4373 */ 4374 static int __spi_optimize_message(struct spi_device *spi, 4375 struct spi_message *msg) 4376 { 4377 struct spi_controller *ctlr = spi->controller; 4378 int ret; 4379 4380 ret = __spi_validate(spi, msg); 4381 if (ret) 4382 return ret; 4383 4384 ret = spi_split_transfers(msg); 4385 if (ret) 4386 return ret; 4387 4388 if (ctlr->optimize_message) { 4389 ret = ctlr->optimize_message(msg); 4390 if (ret) { 4391 spi_res_release(ctlr, msg); 4392 return ret; 4393 } 4394 } 4395 4396 msg->optimized = true; 4397 4398 return 0; 4399 } 4400 4401 /* 4402 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized 4403 * @spi: the device that will be used for the message 4404 * @msg: the message to optimize 4405 * Return: zero on success, else a negative error code 4406 */ 4407 static int spi_maybe_optimize_message(struct spi_device *spi, 4408 struct spi_message *msg) 4409 { 4410 if (spi->controller->defer_optimize_message) { 4411 msg->spi = spi; 4412 return 0; 4413 } 4414 4415 if (msg->pre_optimized) 4416 return 0; 4417 4418 return __spi_optimize_message(spi, msg); 4419 } 4420 4421 /** 4422 * spi_optimize_message - do any one-time validation and setup for a SPI message 4423 * @spi: the device that will be used for the message 4424 * @msg: the message to optimize 4425 * 4426 * Peripheral drivers that reuse the same message repeatedly may call this to 4427 * perform as much message prep as possible once, rather than repeating it each 4428 * time a message transfer is performed to improve throughput and reduce CPU 4429 * usage. 4430 * 4431 * Once a message has been optimized, it cannot be modified with the exception 4432 * of updating the contents of any xfer->tx_buf (the pointer can't be changed, 4433 * only the data in the memory it points to). 4434 * 4435 * Calls to this function must be balanced with calls to spi_unoptimize_message() 4436 * to avoid leaking resources. 4437 * 4438 * Context: can sleep 4439 * Return: zero on success, else a negative error code 4440 */ 4441 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg) 4442 { 4443 int ret; 4444 4445 /* 4446 * Pre-optimization is not supported and optimization is deferred e.g. 4447 * when using spi-mux. 4448 */ 4449 if (spi->controller->defer_optimize_message) 4450 return 0; 4451 4452 ret = __spi_optimize_message(spi, msg); 4453 if (ret) 4454 return ret; 4455 4456 /* 4457 * This flag indicates that the peripheral driver called spi_optimize_message() 4458 * and therefore we shouldn't unoptimize message automatically when finalizing 4459 * the message but rather wait until spi_unoptimize_message() is called 4460 * by the peripheral driver. 4461 */ 4462 msg->pre_optimized = true; 4463 4464 return 0; 4465 } 4466 EXPORT_SYMBOL_GPL(spi_optimize_message); 4467 4468 /** 4469 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message() 4470 * @msg: the message to unoptimize 4471 * 4472 * Calls to this function must be balanced with calls to spi_optimize_message(). 4473 * 4474 * Context: can sleep 4475 */ 4476 void spi_unoptimize_message(struct spi_message *msg) 4477 { 4478 if (msg->spi->controller->defer_optimize_message) 4479 return; 4480 4481 __spi_unoptimize_message(msg); 4482 msg->pre_optimized = false; 4483 } 4484 EXPORT_SYMBOL_GPL(spi_unoptimize_message); 4485 4486 static int __spi_async(struct spi_device *spi, struct spi_message *message) 4487 { 4488 struct spi_controller *ctlr = spi->controller; 4489 struct spi_transfer *xfer; 4490 4491 /* 4492 * Some controllers do not support doing regular SPI transfers. Return 4493 * ENOTSUPP when this is the case. 4494 */ 4495 if (!ctlr->transfer) 4496 return -ENOTSUPP; 4497 4498 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async); 4499 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async); 4500 4501 trace_spi_message_submit(message); 4502 4503 if (!ctlr->ptp_sts_supported) { 4504 list_for_each_entry(xfer, &message->transfers, transfer_list) { 4505 xfer->ptp_sts_word_pre = 0; 4506 ptp_read_system_prets(xfer->ptp_sts); 4507 } 4508 } 4509 4510 return ctlr->transfer(spi, message); 4511 } 4512 4513 static void devm_spi_unoptimize_message(void *msg) 4514 { 4515 spi_unoptimize_message(msg); 4516 } 4517 4518 /** 4519 * devm_spi_optimize_message - managed version of spi_optimize_message() 4520 * @dev: the device that manages @msg (usually @spi->dev) 4521 * @spi: the device that will be used for the message 4522 * @msg: the message to optimize 4523 * Return: zero on success, else a negative error code 4524 * 4525 * spi_unoptimize_message() will automatically be called when the device is 4526 * removed. 4527 */ 4528 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi, 4529 struct spi_message *msg) 4530 { 4531 int ret; 4532 4533 ret = spi_optimize_message(spi, msg); 4534 if (ret) 4535 return ret; 4536 4537 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg); 4538 } 4539 EXPORT_SYMBOL_GPL(devm_spi_optimize_message); 4540 4541 /** 4542 * spi_async - asynchronous SPI transfer 4543 * @spi: device with which data will be exchanged 4544 * @message: describes the data transfers, including completion callback 4545 * Context: any (IRQs may be blocked, etc) 4546 * 4547 * This call may be used in_irq and other contexts which can't sleep, 4548 * as well as from task contexts which can sleep. 4549 * 4550 * The completion callback is invoked in a context which can't sleep. 4551 * Before that invocation, the value of message->status is undefined. 4552 * When the callback is issued, message->status holds either zero (to 4553 * indicate complete success) or a negative error code. After that 4554 * callback returns, the driver which issued the transfer request may 4555 * deallocate the associated memory; it's no longer in use by any SPI 4556 * core or controller driver code. 4557 * 4558 * Note that although all messages to a spi_device are handled in 4559 * FIFO order, messages may go to different devices in other orders. 4560 * Some device might be higher priority, or have various "hard" access 4561 * time requirements, for example. 4562 * 4563 * On detection of any fault during the transfer, processing of 4564 * the entire message is aborted, and the device is deselected. 4565 * Until returning from the associated message completion callback, 4566 * no other spi_message queued to that device will be processed. 4567 * (This rule applies equally to all the synchronous transfer calls, 4568 * which are wrappers around this core asynchronous primitive.) 4569 * 4570 * Return: zero on success, else a negative error code. 4571 */ 4572 int spi_async(struct spi_device *spi, struct spi_message *message) 4573 { 4574 struct spi_controller *ctlr = spi->controller; 4575 int ret; 4576 unsigned long flags; 4577 4578 ret = spi_maybe_optimize_message(spi, message); 4579 if (ret) 4580 return ret; 4581 4582 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4583 4584 if (ctlr->bus_lock_flag) 4585 ret = -EBUSY; 4586 else 4587 ret = __spi_async(spi, message); 4588 4589 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4590 4591 return ret; 4592 } 4593 EXPORT_SYMBOL_GPL(spi_async); 4594 4595 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg) 4596 { 4597 bool was_busy; 4598 int ret; 4599 4600 mutex_lock(&ctlr->io_mutex); 4601 4602 was_busy = ctlr->busy; 4603 4604 ctlr->cur_msg = msg; 4605 ret = __spi_pump_transfer_message(ctlr, msg, was_busy); 4606 if (ret) 4607 dev_err(&ctlr->dev, "noqueue transfer failed\n"); 4608 ctlr->cur_msg = NULL; 4609 ctlr->fallback = false; 4610 4611 if (!was_busy) { 4612 kfree(ctlr->dummy_rx); 4613 ctlr->dummy_rx = NULL; 4614 kfree(ctlr->dummy_tx); 4615 ctlr->dummy_tx = NULL; 4616 if (ctlr->unprepare_transfer_hardware && 4617 ctlr->unprepare_transfer_hardware(ctlr)) 4618 dev_err(&ctlr->dev, 4619 "failed to unprepare transfer hardware\n"); 4620 spi_idle_runtime_pm(ctlr); 4621 } 4622 4623 mutex_unlock(&ctlr->io_mutex); 4624 } 4625 4626 /*-------------------------------------------------------------------------*/ 4627 4628 /* 4629 * Utility methods for SPI protocol drivers, layered on 4630 * top of the core. Some other utility methods are defined as 4631 * inline functions. 4632 */ 4633 4634 static void spi_complete(void *arg) 4635 { 4636 complete(arg); 4637 } 4638 4639 static int __spi_sync(struct spi_device *spi, struct spi_message *message) 4640 { 4641 DECLARE_COMPLETION_ONSTACK(done); 4642 unsigned long flags; 4643 int status; 4644 struct spi_controller *ctlr = spi->controller; 4645 4646 if (__spi_check_suspended(ctlr)) { 4647 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n"); 4648 return -ESHUTDOWN; 4649 } 4650 4651 status = spi_maybe_optimize_message(spi, message); 4652 if (status) 4653 return status; 4654 4655 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync); 4656 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync); 4657 4658 /* 4659 * Checking queue_empty here only guarantees async/sync message 4660 * ordering when coming from the same context. It does not need to 4661 * guard against reentrancy from a different context. The io_mutex 4662 * will catch those cases. 4663 */ 4664 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) { 4665 message->actual_length = 0; 4666 message->status = -EINPROGRESS; 4667 4668 trace_spi_message_submit(message); 4669 4670 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate); 4671 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate); 4672 4673 __spi_transfer_message_noqueue(ctlr, message); 4674 4675 return message->status; 4676 } 4677 4678 /* 4679 * There are messages in the async queue that could have originated 4680 * from the same context, so we need to preserve ordering. 4681 * Therefor we send the message to the async queue and wait until they 4682 * are completed. 4683 */ 4684 message->complete = spi_complete; 4685 message->context = &done; 4686 4687 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4688 status = __spi_async(spi, message); 4689 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4690 4691 if (status == 0) { 4692 wait_for_completion(&done); 4693 status = message->status; 4694 } 4695 message->complete = NULL; 4696 message->context = NULL; 4697 4698 return status; 4699 } 4700 4701 /** 4702 * spi_sync - blocking/synchronous SPI data transfers 4703 * @spi: device with which data will be exchanged 4704 * @message: describes the data transfers 4705 * Context: can sleep 4706 * 4707 * This call may only be used from a context that may sleep. The sleep 4708 * is non-interruptible, and has no timeout. Low-overhead controller 4709 * drivers may DMA directly into and out of the message buffers. 4710 * 4711 * Note that the SPI device's chip select is active during the message, 4712 * and then is normally disabled between messages. Drivers for some 4713 * frequently-used devices may want to minimize costs of selecting a chip, 4714 * by leaving it selected in anticipation that the next message will go 4715 * to the same chip. (That may increase power usage.) 4716 * 4717 * Also, the caller is guaranteeing that the memory associated with the 4718 * message will not be freed before this call returns. 4719 * 4720 * Return: zero on success, else a negative error code. 4721 */ 4722 int spi_sync(struct spi_device *spi, struct spi_message *message) 4723 { 4724 int ret; 4725 4726 mutex_lock(&spi->controller->bus_lock_mutex); 4727 ret = __spi_sync(spi, message); 4728 mutex_unlock(&spi->controller->bus_lock_mutex); 4729 4730 return ret; 4731 } 4732 EXPORT_SYMBOL_GPL(spi_sync); 4733 4734 /** 4735 * spi_sync_locked - version of spi_sync with exclusive bus usage 4736 * @spi: device with which data will be exchanged 4737 * @message: describes the data transfers 4738 * Context: can sleep 4739 * 4740 * This call may only be used from a context that may sleep. The sleep 4741 * is non-interruptible, and has no timeout. Low-overhead controller 4742 * drivers may DMA directly into and out of the message buffers. 4743 * 4744 * This call should be used by drivers that require exclusive access to the 4745 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must 4746 * be released by a spi_bus_unlock call when the exclusive access is over. 4747 * 4748 * Return: zero on success, else a negative error code. 4749 */ 4750 int spi_sync_locked(struct spi_device *spi, struct spi_message *message) 4751 { 4752 return __spi_sync(spi, message); 4753 } 4754 EXPORT_SYMBOL_GPL(spi_sync_locked); 4755 4756 /** 4757 * spi_bus_lock - obtain a lock for exclusive SPI bus usage 4758 * @ctlr: SPI bus controller that should be locked for exclusive bus access 4759 * Context: can sleep 4760 * 4761 * This call may only be used from a context that may sleep. The sleep 4762 * is non-interruptible, and has no timeout. 4763 * 4764 * This call should be used by drivers that require exclusive access to the 4765 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the 4766 * exclusive access is over. Data transfer must be done by spi_sync_locked 4767 * and spi_async_locked calls when the SPI bus lock is held. 4768 * 4769 * Return: always zero. 4770 */ 4771 int spi_bus_lock(struct spi_controller *ctlr) 4772 { 4773 unsigned long flags; 4774 4775 mutex_lock(&ctlr->bus_lock_mutex); 4776 4777 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags); 4778 ctlr->bus_lock_flag = 1; 4779 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags); 4780 4781 /* Mutex remains locked until spi_bus_unlock() is called */ 4782 4783 return 0; 4784 } 4785 EXPORT_SYMBOL_GPL(spi_bus_lock); 4786 4787 /** 4788 * spi_bus_unlock - release the lock for exclusive SPI bus usage 4789 * @ctlr: SPI bus controller that was locked for exclusive bus access 4790 * Context: can sleep 4791 * 4792 * This call may only be used from a context that may sleep. The sleep 4793 * is non-interruptible, and has no timeout. 4794 * 4795 * This call releases an SPI bus lock previously obtained by an spi_bus_lock 4796 * call. 4797 * 4798 * Return: always zero. 4799 */ 4800 int spi_bus_unlock(struct spi_controller *ctlr) 4801 { 4802 ctlr->bus_lock_flag = 0; 4803 4804 mutex_unlock(&ctlr->bus_lock_mutex); 4805 4806 return 0; 4807 } 4808 EXPORT_SYMBOL_GPL(spi_bus_unlock); 4809 4810 /* Portable code must never pass more than 32 bytes */ 4811 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES) 4812 4813 static u8 *buf; 4814 4815 /** 4816 * spi_write_then_read - SPI synchronous write followed by read 4817 * @spi: device with which data will be exchanged 4818 * @txbuf: data to be written (need not be DMA-safe) 4819 * @n_tx: size of txbuf, in bytes 4820 * @rxbuf: buffer into which data will be read (need not be DMA-safe) 4821 * @n_rx: size of rxbuf, in bytes 4822 * Context: can sleep 4823 * 4824 * This performs a half duplex MicroWire style transaction with the 4825 * device, sending txbuf and then reading rxbuf. The return value 4826 * is zero for success, else a negative errno status code. 4827 * This call may only be used from a context that may sleep. 4828 * 4829 * Parameters to this routine are always copied using a small buffer. 4830 * Performance-sensitive or bulk transfer code should instead use 4831 * spi_{async,sync}() calls with DMA-safe buffers. 4832 * 4833 * Return: zero on success, else a negative error code. 4834 */ 4835 int spi_write_then_read(struct spi_device *spi, 4836 const void *txbuf, unsigned n_tx, 4837 void *rxbuf, unsigned n_rx) 4838 { 4839 static DEFINE_MUTEX(lock); 4840 4841 int status; 4842 struct spi_message message; 4843 struct spi_transfer x[2]; 4844 u8 *local_buf; 4845 4846 /* 4847 * Use preallocated DMA-safe buffer if we can. We can't avoid 4848 * copying here, (as a pure convenience thing), but we can 4849 * keep heap costs out of the hot path unless someone else is 4850 * using the pre-allocated buffer or the transfer is too large. 4851 */ 4852 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) { 4853 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx), 4854 GFP_KERNEL | GFP_DMA); 4855 if (!local_buf) 4856 return -ENOMEM; 4857 } else { 4858 local_buf = buf; 4859 } 4860 4861 spi_message_init(&message); 4862 memset(x, 0, sizeof(x)); 4863 if (n_tx) { 4864 x[0].len = n_tx; 4865 spi_message_add_tail(&x[0], &message); 4866 } 4867 if (n_rx) { 4868 x[1].len = n_rx; 4869 spi_message_add_tail(&x[1], &message); 4870 } 4871 4872 memcpy(local_buf, txbuf, n_tx); 4873 x[0].tx_buf = local_buf; 4874 x[1].rx_buf = local_buf + n_tx; 4875 4876 /* Do the I/O */ 4877 status = spi_sync(spi, &message); 4878 if (status == 0) 4879 memcpy(rxbuf, x[1].rx_buf, n_rx); 4880 4881 if (x[0].tx_buf == buf) 4882 mutex_unlock(&lock); 4883 else 4884 kfree(local_buf); 4885 4886 return status; 4887 } 4888 EXPORT_SYMBOL_GPL(spi_write_then_read); 4889 4890 /*-------------------------------------------------------------------------*/ 4891 4892 #if IS_ENABLED(CONFIG_OF) 4893 /* The spi controllers are not using spi_bus, so we find it with another way */ 4894 struct spi_controller *of_find_spi_controller_by_node(struct device_node *node) 4895 { 4896 struct device *dev; 4897 4898 dev = class_find_device_by_of_node(&spi_controller_class, node); 4899 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4900 dev = class_find_device_by_of_node(&spi_target_class, node); 4901 if (!dev) 4902 return NULL; 4903 4904 /* Reference got in class_find_device */ 4905 return container_of(dev, struct spi_controller, dev); 4906 } 4907 EXPORT_SYMBOL_GPL(of_find_spi_controller_by_node); 4908 #endif 4909 4910 #if IS_ENABLED(CONFIG_OF_DYNAMIC) 4911 /* Must call put_device() when done with returned spi_device device */ 4912 static struct spi_device *of_find_spi_device_by_node(struct device_node *node) 4913 { 4914 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node); 4915 4916 return dev ? to_spi_device(dev) : NULL; 4917 } 4918 4919 static int of_spi_notify(struct notifier_block *nb, unsigned long action, 4920 void *arg) 4921 { 4922 struct of_reconfig_data *rd = arg; 4923 struct spi_controller *ctlr; 4924 struct spi_device *spi; 4925 4926 switch (of_reconfig_get_state_change(action, arg)) { 4927 case OF_RECONFIG_CHANGE_ADD: 4928 ctlr = of_find_spi_controller_by_node(rd->dn->parent); 4929 if (ctlr == NULL) 4930 return NOTIFY_OK; /* Not for us */ 4931 4932 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) { 4933 put_device(&ctlr->dev); 4934 return NOTIFY_OK; 4935 } 4936 4937 /* 4938 * Clear the flag before adding the device so that fw_devlink 4939 * doesn't skip adding consumers to this device. 4940 */ 4941 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE; 4942 spi = of_register_spi_device(ctlr, rd->dn); 4943 put_device(&ctlr->dev); 4944 4945 if (IS_ERR(spi)) { 4946 pr_err("%s: failed to create for '%pOF'\n", 4947 __func__, rd->dn); 4948 of_node_clear_flag(rd->dn, OF_POPULATED); 4949 return notifier_from_errno(PTR_ERR(spi)); 4950 } 4951 break; 4952 4953 case OF_RECONFIG_CHANGE_REMOVE: 4954 /* Already depopulated? */ 4955 if (!of_node_check_flag(rd->dn, OF_POPULATED)) 4956 return NOTIFY_OK; 4957 4958 /* Find our device by node */ 4959 spi = of_find_spi_device_by_node(rd->dn); 4960 if (spi == NULL) 4961 return NOTIFY_OK; /* No? not meant for us */ 4962 4963 /* Unregister takes one ref away */ 4964 spi_unregister_device(spi); 4965 4966 /* And put the reference of the find */ 4967 put_device(&spi->dev); 4968 break; 4969 } 4970 4971 return NOTIFY_OK; 4972 } 4973 4974 static struct notifier_block spi_of_notifier = { 4975 .notifier_call = of_spi_notify, 4976 }; 4977 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4978 extern struct notifier_block spi_of_notifier; 4979 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */ 4980 4981 #if IS_ENABLED(CONFIG_ACPI) 4982 static int spi_acpi_controller_match(struct device *dev, const void *data) 4983 { 4984 return device_match_acpi_dev(dev->parent, data); 4985 } 4986 4987 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev) 4988 { 4989 struct device *dev; 4990 4991 dev = class_find_device(&spi_controller_class, NULL, adev, 4992 spi_acpi_controller_match); 4993 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE)) 4994 dev = class_find_device(&spi_target_class, NULL, adev, 4995 spi_acpi_controller_match); 4996 if (!dev) 4997 return NULL; 4998 4999 return container_of(dev, struct spi_controller, dev); 5000 } 5001 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev); 5002 5003 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev) 5004 { 5005 struct device *dev; 5006 5007 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev); 5008 return to_spi_device(dev); 5009 } 5010 5011 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value, 5012 void *arg) 5013 { 5014 struct acpi_device *adev = arg; 5015 struct spi_controller *ctlr; 5016 struct spi_device *spi; 5017 5018 switch (value) { 5019 case ACPI_RECONFIG_DEVICE_ADD: 5020 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev)); 5021 if (!ctlr) 5022 break; 5023 5024 acpi_register_spi_device(ctlr, adev); 5025 put_device(&ctlr->dev); 5026 break; 5027 case ACPI_RECONFIG_DEVICE_REMOVE: 5028 if (!acpi_device_enumerated(adev)) 5029 break; 5030 5031 spi = acpi_spi_find_device_by_adev(adev); 5032 if (!spi) 5033 break; 5034 5035 spi_unregister_device(spi); 5036 put_device(&spi->dev); 5037 break; 5038 } 5039 5040 return NOTIFY_OK; 5041 } 5042 5043 static struct notifier_block spi_acpi_notifier = { 5044 .notifier_call = acpi_spi_notify, 5045 }; 5046 #else 5047 extern struct notifier_block spi_acpi_notifier; 5048 #endif 5049 5050 static int __init spi_init(void) 5051 { 5052 int status; 5053 5054 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 5055 if (!buf) { 5056 status = -ENOMEM; 5057 goto err0; 5058 } 5059 5060 status = bus_register(&spi_bus_type); 5061 if (status < 0) 5062 goto err1; 5063 5064 status = class_register(&spi_controller_class); 5065 if (status < 0) 5066 goto err2; 5067 5068 if (IS_ENABLED(CONFIG_SPI_SLAVE)) { 5069 status = class_register(&spi_target_class); 5070 if (status < 0) 5071 goto err3; 5072 } 5073 5074 if (IS_ENABLED(CONFIG_OF_DYNAMIC)) 5075 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier)); 5076 if (IS_ENABLED(CONFIG_ACPI)) 5077 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier)); 5078 5079 return 0; 5080 5081 err3: 5082 class_unregister(&spi_controller_class); 5083 err2: 5084 bus_unregister(&spi_bus_type); 5085 err1: 5086 kfree(buf); 5087 buf = NULL; 5088 err0: 5089 return status; 5090 } 5091 5092 /* 5093 * A board_info is normally registered in arch_initcall(), 5094 * but even essential drivers wait till later. 5095 * 5096 * REVISIT only boardinfo really needs static linking. The rest (device and 5097 * driver registration) _could_ be dynamically linked (modular) ... Costs 5098 * include needing to have boardinfo data structures be much more public. 5099 */ 5100 postcore_initcall(spi_init); 5101