xref: /linux/drivers/gpu/drm/xe/xe_guc.c (revision 72c181399b01bb4836d1fabaa9f5f6438c82178e)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc.h"
7 
8 #include <drm/drm_managed.h>
9 
10 #include <generated/xe_wa_oob.h>
11 
12 #include "abi/guc_actions_abi.h"
13 #include "abi/guc_errors_abi.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_gtt_defs.h"
16 #include "regs/xe_guc_regs.h"
17 #include "regs/xe_irq_regs.h"
18 #include "xe_bo.h"
19 #include "xe_configfs.h"
20 #include "xe_device.h"
21 #include "xe_force_wake.h"
22 #include "xe_gt.h"
23 #include "xe_gt_printk.h"
24 #include "xe_gt_sriov_vf.h"
25 #include "xe_gt_throttle.h"
26 #include "xe_guc_ads.h"
27 #include "xe_guc_buf.h"
28 #include "xe_guc_capture.h"
29 #include "xe_guc_ct.h"
30 #include "xe_guc_db_mgr.h"
31 #include "xe_guc_engine_activity.h"
32 #include "xe_guc_hwconfig.h"
33 #include "xe_guc_klv_helpers.h"
34 #include "xe_guc_log.h"
35 #include "xe_guc_pc.h"
36 #include "xe_guc_relay.h"
37 #include "xe_guc_submit.h"
38 #include "xe_memirq.h"
39 #include "xe_mmio.h"
40 #include "xe_platform_types.h"
41 #include "xe_sriov.h"
42 #include "xe_uc.h"
43 #include "xe_uc_fw.h"
44 #include "xe_wa.h"
45 #include "xe_wopcm.h"
46 
guc_bo_ggtt_addr(struct xe_guc * guc,struct xe_bo * bo)47 static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
48 			    struct xe_bo *bo)
49 {
50 	struct xe_device *xe = guc_to_xe(guc);
51 	u32 addr;
52 
53 	/*
54 	 * For most BOs, the address on the allocating tile is fine. However for
55 	 * some, e.g. G2G CTB, the address on a specific tile is required as it
56 	 * might be different for each tile. So, just always ask for the address
57 	 * on the target GuC.
58 	 */
59 	addr = __xe_bo_ggtt_addr(bo, gt_to_tile(guc_to_gt(guc))->id);
60 
61 	/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
62 	xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
63 	xe_assert(xe, addr < GUC_GGTT_TOP);
64 	xe_assert(xe, xe_bo_size(bo) <= GUC_GGTT_TOP - addr);
65 
66 	return addr;
67 }
68 
guc_ctl_debug_flags(struct xe_guc * guc)69 static u32 guc_ctl_debug_flags(struct xe_guc *guc)
70 {
71 	u32 level = xe_guc_log_get_level(&guc->log);
72 	u32 flags = 0;
73 
74 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
75 		flags |= GUC_LOG_DISABLED;
76 	else
77 		flags |= FIELD_PREP(GUC_LOG_VERBOSITY, GUC_LOG_LEVEL_TO_VERBOSITY(level));
78 
79 	return flags;
80 }
81 
guc_ctl_feature_flags(struct xe_guc * guc)82 static u32 guc_ctl_feature_flags(struct xe_guc *guc)
83 {
84 	struct xe_device *xe = guc_to_xe(guc);
85 	u32 flags = GUC_CTL_ENABLE_LITE_RESTORE;
86 
87 	if (!xe->info.skip_guc_pc)
88 		flags |= GUC_CTL_ENABLE_SLPC;
89 
90 	if (xe_configfs_get_psmi_enabled(to_pci_dev(xe->drm.dev)))
91 		flags |= GUC_CTL_ENABLE_PSMI_LOGGING;
92 
93 	return flags;
94 }
95 
guc_ctl_log_params_flags(struct xe_guc * guc)96 static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
97 {
98 	u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
99 	u32 flags;
100 
101 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
102 	#define LOG_UNIT SZ_1M
103 	#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
104 	#else
105 	#define LOG_UNIT SZ_4K
106 	#define LOG_FLAG 0
107 	#endif
108 
109 	#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
110 	#define CAPTURE_UNIT SZ_1M
111 	#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
112 	#else
113 	#define CAPTURE_UNIT SZ_4K
114 	#define CAPTURE_FLAG 0
115 	#endif
116 
117 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
118 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
119 	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
120 	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
121 	BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
122 	BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
123 
124 	flags = GUC_LOG_VALID |
125 		GUC_LOG_NOTIFY_ON_HALF_FULL |
126 		CAPTURE_FLAG |
127 		LOG_FLAG |
128 		FIELD_PREP(GUC_LOG_CRASH, CRASH_BUFFER_SIZE / LOG_UNIT - 1) |
129 		FIELD_PREP(GUC_LOG_DEBUG, DEBUG_BUFFER_SIZE / LOG_UNIT - 1) |
130 		FIELD_PREP(GUC_LOG_CAPTURE, CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) |
131 		FIELD_PREP(GUC_LOG_BUF_ADDR, offset);
132 
133 	#undef LOG_UNIT
134 	#undef LOG_FLAG
135 	#undef CAPTURE_UNIT
136 	#undef CAPTURE_FLAG
137 
138 	return flags;
139 }
140 
guc_ctl_ads_flags(struct xe_guc * guc)141 static u32 guc_ctl_ads_flags(struct xe_guc *guc)
142 {
143 	u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
144 	u32 flags = FIELD_PREP(GUC_ADS_ADDR, ads);
145 
146 	return flags;
147 }
148 
needs_wa_dual_queue(struct xe_gt * gt)149 static bool needs_wa_dual_queue(struct xe_gt *gt)
150 {
151 	/*
152 	 * The DUAL_QUEUE_WA tells the GuC to not allow concurrent submissions
153 	 * on RCS and CCSes with different address spaces, which on DG2 is
154 	 * required as a WA for an HW bug.
155 	 */
156 	if (XE_GT_WA(gt, 22011391025))
157 		return true;
158 
159 	/*
160 	 * On newer platforms, the HW has been updated to not allow parallel
161 	 * execution of different address spaces, so the RCS/CCS will stall the
162 	 * context switch if one of the other RCS/CCSes is busy with a different
163 	 * address space. While functionally correct, having a submission
164 	 * stalled on the HW limits the GuC ability to shuffle things around and
165 	 * can cause complications if the non-stalled submission runs for a long
166 	 * time, because the GuC doesn't know that the stalled submission isn't
167 	 * actually running and might declare it as hung. Therefore, we enable
168 	 * the DUAL_QUEUE_WA on all newer platforms on GTs that have CCS engines
169 	 * to move management back to the GuC.
170 	 */
171 	if (CCS_MASK(gt) && GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
172 		return true;
173 
174 	return false;
175 }
176 
guc_ctl_wa_flags(struct xe_guc * guc)177 static u32 guc_ctl_wa_flags(struct xe_guc *guc)
178 {
179 	struct xe_device *xe = guc_to_xe(guc);
180 	struct xe_gt *gt = guc_to_gt(guc);
181 	u32 flags = 0;
182 
183 	if (XE_GT_WA(gt, 22012773006))
184 		flags |= GUC_WA_POLLCS;
185 
186 	if (XE_GT_WA(gt, 14014475959))
187 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
188 
189 	if (needs_wa_dual_queue(gt))
190 		flags |= GUC_WA_DUAL_QUEUE;
191 
192 	/*
193 	 * Wa_22011802037: FIXME - there's more to be done than simply setting
194 	 * this flag: make sure each CS is stopped when preparing for GT reset
195 	 * and wait for pending MI_FW.
196 	 */
197 	if (GRAPHICS_VERx100(xe) < 1270)
198 		flags |= GUC_WA_PRE_PARSER;
199 
200 	if (XE_GT_WA(gt, 22012727170) || XE_GT_WA(gt, 22012727685))
201 		flags |= GUC_WA_CONTEXT_ISOLATION;
202 
203 	if (XE_GT_WA(gt, 18020744125) &&
204 	    !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
205 		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
206 
207 	if (XE_GT_WA(gt, 1509372804))
208 		flags |= GUC_WA_RENDER_RST_RC6_EXIT;
209 
210 	if (XE_GT_WA(gt, 14018913170))
211 		flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
212 
213 	if (XE_GT_WA(gt, 16023683509))
214 		flags |= GUC_WA_SAVE_RESTORE_MCFG_REG_AT_MC6;
215 
216 	return flags;
217 }
218 
guc_ctl_devid(struct xe_guc * guc)219 static u32 guc_ctl_devid(struct xe_guc *guc)
220 {
221 	struct xe_device *xe = guc_to_xe(guc);
222 
223 	return (((u32)xe->info.devid) << 16) | xe->info.revid;
224 }
225 
guc_print_params(struct xe_guc * guc)226 static void guc_print_params(struct xe_guc *guc)
227 {
228 	struct xe_gt *gt = guc_to_gt(guc);
229 	u32 *params = guc->params;
230 	int i;
231 
232 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
233 	BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
234 
235 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
236 		xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
237 }
238 
guc_init_params(struct xe_guc * guc)239 static void guc_init_params(struct xe_guc *guc)
240 {
241 	u32 *params = guc->params;
242 
243 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
244 	params[GUC_CTL_FEATURE] = 0;
245 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
246 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
247 	params[GUC_CTL_WA] = 0;
248 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
249 
250 	guc_print_params(guc);
251 }
252 
guc_init_params_post_hwconfig(struct xe_guc * guc)253 static void guc_init_params_post_hwconfig(struct xe_guc *guc)
254 {
255 	u32 *params = guc->params;
256 
257 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
258 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
259 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
260 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
261 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
262 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
263 
264 	guc_print_params(guc);
265 }
266 
267 /*
268  * Initialize the GuC parameter block before starting the firmware
269  * transfer. These parameters are read by the firmware on startup
270  * and cannot be changed thereafter.
271  */
guc_write_params(struct xe_guc * guc)272 static void guc_write_params(struct xe_guc *guc)
273 {
274 	struct xe_gt *gt = guc_to_gt(guc);
275 	int i;
276 
277 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
278 
279 	xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(0), 0);
280 
281 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
282 		xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(1 + i), guc->params[i]);
283 }
284 
guc_action_register_g2g_buffer(struct xe_guc * guc,u32 type,u32 dst_tile,u32 dst_dev,u32 desc_addr,u32 buff_addr,u32 size)285 static int guc_action_register_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev,
286 					  u32 desc_addr, u32 buff_addr, u32 size)
287 {
288 	struct xe_gt *gt = guc_to_gt(guc);
289 	struct xe_device *xe = gt_to_xe(gt);
290 	u32 action[] = {
291 		XE_GUC_ACTION_REGISTER_G2G,
292 		FIELD_PREP(XE_G2G_REGISTER_SIZE, size / SZ_4K - 1) |
293 		FIELD_PREP(XE_G2G_REGISTER_TYPE, type) |
294 		FIELD_PREP(XE_G2G_REGISTER_TILE, dst_tile) |
295 		FIELD_PREP(XE_G2G_REGISTER_DEVICE, dst_dev),
296 		desc_addr,
297 		buff_addr,
298 	};
299 
300 	xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
301 	xe_assert(xe, !(size % SZ_4K));
302 
303 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
304 }
305 
guc_action_deregister_g2g_buffer(struct xe_guc * guc,u32 type,u32 dst_tile,u32 dst_dev)306 static int guc_action_deregister_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev)
307 {
308 	struct xe_gt *gt = guc_to_gt(guc);
309 	struct xe_device *xe = gt_to_xe(gt);
310 	u32 action[] = {
311 		XE_GUC_ACTION_DEREGISTER_G2G,
312 		FIELD_PREP(XE_G2G_DEREGISTER_TYPE, type) |
313 		FIELD_PREP(XE_G2G_DEREGISTER_TILE, dst_tile) |
314 		FIELD_PREP(XE_G2G_DEREGISTER_DEVICE, dst_dev),
315 	};
316 
317 	xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
318 
319 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
320 }
321 
322 #define G2G_DEV(gt)	(((gt)->info.type == XE_GT_TYPE_MAIN) ? 0 : 1)
323 
324 #define G2G_BUFFER_SIZE (SZ_4K)
325 #define G2G_DESC_SIZE (64)
326 #define G2G_DESC_AREA_SIZE (SZ_4K)
327 
328 /*
329  * Generate a unique id for each bi-directional CTB for each pair of
330  * near and far tiles/devices. The id can then be used as an index into
331  * a single allocation that is sub-divided into multiple CTBs.
332  *
333  * For example, with two devices per tile and two tiles, the table should
334  * look like:
335  *           Far <tile>.<dev>
336  *         0.0   0.1   1.0   1.1
337  * N 0.0  --/-- 00/01 02/03 04/05
338  * e 0.1  01/00 --/-- 06/07 08/09
339  * a 1.0  03/02 07/06 --/-- 10/11
340  * r 1.1  05/04 09/08 11/10 --/--
341  *
342  * Where each entry is Rx/Tx channel id.
343  *
344  * So GuC #3 (tile 1, dev 1) talking to GuC #2 (tile 1, dev 0) would
345  * be reading from channel #11 and writing to channel #10. Whereas,
346  * GuC #2 talking to GuC #3 would be read on #10 and write to #11.
347  */
g2g_slot(u32 near_tile,u32 near_dev,u32 far_tile,u32 far_dev,u32 type,u32 max_inst,bool have_dev)348 static unsigned int g2g_slot(u32 near_tile, u32 near_dev, u32 far_tile, u32 far_dev,
349 			     u32 type, u32 max_inst, bool have_dev)
350 {
351 	u32 near = near_tile, far = far_tile;
352 	u32 idx = 0, x, y, direction;
353 	int i;
354 
355 	if (have_dev) {
356 		near = (near << 1) | near_dev;
357 		far = (far << 1) | far_dev;
358 	}
359 
360 	/* No need to send to one's self */
361 	if (far == near)
362 		return -1;
363 
364 	if (far > near) {
365 		/* Top right table half */
366 		x = far;
367 		y = near;
368 
369 		/* T/R is 'forwards' direction */
370 		direction = type;
371 	} else {
372 		/* Bottom left table half */
373 		x = near;
374 		y = far;
375 
376 		/* B/L is 'backwards' direction */
377 		direction = (1 - type);
378 	}
379 
380 	/* Count the rows prior to the target */
381 	for (i = y; i > 0; i--)
382 		idx += max_inst - i;
383 
384 	/* Count this row up to the target */
385 	idx += (x - 1 - y);
386 
387 	/* Slots are in Rx/Tx pairs */
388 	idx *= 2;
389 
390 	/* Pick Rx/Tx direction */
391 	idx += direction;
392 
393 	return idx;
394 }
395 
guc_g2g_register(struct xe_guc * near_guc,struct xe_gt * far_gt,u32 type,bool have_dev)396 static int guc_g2g_register(struct xe_guc *near_guc, struct xe_gt *far_gt, u32 type, bool have_dev)
397 {
398 	struct xe_gt *near_gt = guc_to_gt(near_guc);
399 	struct xe_device *xe = gt_to_xe(near_gt);
400 	struct xe_bo *g2g_bo;
401 	u32 near_tile = gt_to_tile(near_gt)->id;
402 	u32 near_dev = G2G_DEV(near_gt);
403 	u32 far_tile = gt_to_tile(far_gt)->id;
404 	u32 far_dev = G2G_DEV(far_gt);
405 	u32 max = xe->info.gt_count;
406 	u32 base, desc, buf;
407 	int slot;
408 
409 	/* G2G is not allowed between different cards */
410 	xe_assert(xe, xe == gt_to_xe(far_gt));
411 
412 	g2g_bo = near_guc->g2g.bo;
413 	xe_assert(xe, g2g_bo);
414 
415 	slot = g2g_slot(near_tile, near_dev, far_tile, far_dev, type, max, have_dev);
416 	xe_assert(xe, slot >= 0);
417 
418 	base = guc_bo_ggtt_addr(near_guc, g2g_bo);
419 	desc = base + slot * G2G_DESC_SIZE;
420 	buf = base + G2G_DESC_AREA_SIZE + slot * G2G_BUFFER_SIZE;
421 
422 	xe_assert(xe, (desc - base + G2G_DESC_SIZE) <= G2G_DESC_AREA_SIZE);
423 	xe_assert(xe, (buf - base + G2G_BUFFER_SIZE) <= xe_bo_size(g2g_bo));
424 
425 	return guc_action_register_g2g_buffer(near_guc, type, far_tile, far_dev,
426 					      desc, buf, G2G_BUFFER_SIZE);
427 }
428 
guc_g2g_deregister(struct xe_guc * guc,u32 far_tile,u32 far_dev,u32 type)429 static void guc_g2g_deregister(struct xe_guc *guc, u32 far_tile, u32 far_dev, u32 type)
430 {
431 	guc_action_deregister_g2g_buffer(guc, type, far_tile, far_dev);
432 }
433 
guc_g2g_size(struct xe_guc * guc)434 static u32 guc_g2g_size(struct xe_guc *guc)
435 {
436 	struct xe_gt *gt = guc_to_gt(guc);
437 	struct xe_device *xe = gt_to_xe(gt);
438 	unsigned int count = xe->info.gt_count;
439 	u32 num_channels = (count * (count - 1)) / 2;
440 
441 	xe_assert(xe, num_channels * XE_G2G_TYPE_LIMIT * G2G_DESC_SIZE <= G2G_DESC_AREA_SIZE);
442 
443 	return num_channels * XE_G2G_TYPE_LIMIT * G2G_BUFFER_SIZE + G2G_DESC_AREA_SIZE;
444 }
445 
xe_guc_g2g_wanted(struct xe_device * xe)446 static bool xe_guc_g2g_wanted(struct xe_device *xe)
447 {
448 	/* Can't do GuC to GuC communication if there is only one GuC */
449 	if (xe->info.gt_count <= 1)
450 		return false;
451 
452 	/* No current user */
453 	return false;
454 }
455 
guc_g2g_alloc(struct xe_guc * guc)456 static int guc_g2g_alloc(struct xe_guc *guc)
457 {
458 	struct xe_gt *gt = guc_to_gt(guc);
459 	struct xe_device *xe = gt_to_xe(gt);
460 	struct xe_tile *tile = gt_to_tile(gt);
461 	struct xe_bo *bo;
462 	u32 g2g_size;
463 
464 	if (guc->g2g.bo)
465 		return 0;
466 
467 	if (gt->info.id != 0) {
468 		struct xe_gt *root_gt = xe_device_get_gt(xe, 0);
469 		struct xe_guc *root_guc = &root_gt->uc.guc;
470 		struct xe_bo *bo;
471 
472 		bo = xe_bo_get(root_guc->g2g.bo);
473 		if (!bo)
474 			return -ENODEV;
475 
476 		guc->g2g.bo = bo;
477 		guc->g2g.owned = false;
478 		return 0;
479 	}
480 
481 	g2g_size = guc_g2g_size(guc);
482 	bo = xe_managed_bo_create_pin_map(xe, tile, g2g_size,
483 					  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
484 					  XE_BO_FLAG_GGTT |
485 					  XE_BO_FLAG_GGTT_ALL |
486 					  XE_BO_FLAG_GGTT_INVALIDATE |
487 					  XE_BO_FLAG_PINNED_NORESTORE);
488 	if (IS_ERR(bo))
489 		return PTR_ERR(bo);
490 
491 	xe_map_memset(xe, &bo->vmap, 0, 0, g2g_size);
492 	guc->g2g.bo = bo;
493 	guc->g2g.owned = true;
494 
495 	return 0;
496 }
497 
guc_g2g_fini(struct xe_guc * guc)498 static void guc_g2g_fini(struct xe_guc *guc)
499 {
500 	if (!guc->g2g.bo)
501 		return;
502 
503 	/* Unpinning the owned object is handled by generic shutdown */
504 	if (!guc->g2g.owned)
505 		xe_bo_put(guc->g2g.bo);
506 
507 	guc->g2g.bo = NULL;
508 }
509 
guc_g2g_start(struct xe_guc * guc)510 static int guc_g2g_start(struct xe_guc *guc)
511 {
512 	struct xe_gt *far_gt, *gt = guc_to_gt(guc);
513 	struct xe_device *xe = gt_to_xe(gt);
514 	unsigned int i, j;
515 	int t, err;
516 	bool have_dev;
517 
518 	if (!guc->g2g.bo) {
519 		int ret;
520 
521 		ret = guc_g2g_alloc(guc);
522 		if (ret)
523 			return ret;
524 	}
525 
526 	/* GuC interface will need extending if more GT device types are ever created. */
527 	xe_gt_assert(gt, (gt->info.type == XE_GT_TYPE_MAIN) || (gt->info.type == XE_GT_TYPE_MEDIA));
528 
529 	/* Channel numbering depends on whether there are multiple GTs per tile */
530 	have_dev = xe->info.gt_count > xe->info.tile_count;
531 
532 	for_each_gt(far_gt, xe, i) {
533 		u32 far_tile, far_dev;
534 
535 		if (far_gt->info.id == gt->info.id)
536 			continue;
537 
538 		far_tile = gt_to_tile(far_gt)->id;
539 		far_dev = G2G_DEV(far_gt);
540 
541 		for (t = 0; t < XE_G2G_TYPE_LIMIT; t++) {
542 			err = guc_g2g_register(guc, far_gt, t, have_dev);
543 			if (err) {
544 				while (--t >= 0)
545 					guc_g2g_deregister(guc, far_tile, far_dev, t);
546 				goto err_deregister;
547 			}
548 		}
549 	}
550 
551 	return 0;
552 
553 err_deregister:
554 	for_each_gt(far_gt, xe, j) {
555 		u32 tile, dev;
556 
557 		if (far_gt->info.id == gt->info.id)
558 			continue;
559 
560 		if (j >= i)
561 			break;
562 
563 		tile = gt_to_tile(far_gt)->id;
564 		dev = G2G_DEV(far_gt);
565 
566 		for (t = 0; t < XE_G2G_TYPE_LIMIT; t++)
567 			guc_g2g_deregister(guc, tile, dev, t);
568 	}
569 
570 	return err;
571 }
572 
__guc_opt_in_features_enable(struct xe_guc * guc,u64 addr,u32 num_dwords)573 static int __guc_opt_in_features_enable(struct xe_guc *guc, u64 addr, u32 num_dwords)
574 {
575 	u32 action[] = {
576 		XE_GUC_ACTION_OPT_IN_FEATURE_KLV,
577 		lower_32_bits(addr),
578 		upper_32_bits(addr),
579 		num_dwords
580 	};
581 
582 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
583 }
584 
supports_dynamic_ics(struct xe_guc * guc)585 static bool supports_dynamic_ics(struct xe_guc *guc)
586 {
587 	struct xe_device *xe = guc_to_xe(guc);
588 	struct xe_gt *gt = guc_to_gt(guc);
589 
590 	/* Dynamic ICS is available for PVC and Xe2 and newer platforms. */
591 	if (xe->info.platform != XE_PVC && GRAPHICS_VER(xe) < 20)
592 		return false;
593 
594 	/*
595 	 * The feature is currently not compatible with multi-lrc, so the GuC
596 	 * does not support it at all on the media engines (which are the main
597 	 * users of mlrc). On the primary GT side, to avoid it being used in
598 	 * conjunction with mlrc, we only enable it if we are in single CCS
599 	 * mode.
600 	 */
601 	if (xe_gt_is_media_type(gt) || gt->ccs_mode > 1)
602 		return false;
603 
604 	/*
605 	 * Dynamic ICS requires GuC v70.40.1, which maps to compatibility
606 	 * version v1.18.4.
607 	 */
608 	return GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 18, 4);
609 }
610 
611 #define OPT_IN_MAX_DWORDS 16
xe_guc_opt_in_features_enable(struct xe_guc * guc)612 int xe_guc_opt_in_features_enable(struct xe_guc *guc)
613 {
614 	struct xe_device *xe = guc_to_xe(guc);
615 	CLASS(xe_guc_buf, buf)(&guc->buf, OPT_IN_MAX_DWORDS);
616 	u32 count = 0;
617 	u32 *klvs;
618 	int ret;
619 
620 	if (!xe_guc_buf_is_valid(buf))
621 		return -ENOBUFS;
622 
623 	klvs = xe_guc_buf_cpu_ptr(buf);
624 
625 	/*
626 	 * The extra CAT error type opt-in was added in GuC v70.17.0, which maps
627 	 * to compatibility version v1.7.0.
628 	 * Note that the GuC allows enabling this KLV even on platforms that do
629 	 * not support the extra type; in such case the returned type variable
630 	 * will be set to a known invalid value which we can check against.
631 	 */
632 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 7, 0))
633 		klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_EXT_CAT_ERR_TYPE);
634 
635 	if (supports_dynamic_ics(guc))
636 		klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_DYNAMIC_INHIBIT_CONTEXT_SWITCH);
637 
638 	if (count) {
639 		xe_assert(xe, count <= OPT_IN_MAX_DWORDS);
640 
641 		ret = __guc_opt_in_features_enable(guc, xe_guc_buf_flush(buf), count);
642 		if (ret < 0) {
643 			xe_gt_err(guc_to_gt(guc),
644 				  "failed to enable GuC opt-in features: %pe\n",
645 				  ERR_PTR(ret));
646 			return ret;
647 		}
648 	}
649 
650 	return 0;
651 }
652 
guc_fini_hw(void * arg)653 static void guc_fini_hw(void *arg)
654 {
655 	struct xe_guc *guc = arg;
656 	struct xe_gt *gt = guc_to_gt(guc);
657 	unsigned int fw_ref;
658 
659 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
660 	xe_uc_sanitize_reset(&guc_to_gt(guc)->uc);
661 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
662 
663 	guc_g2g_fini(guc);
664 }
665 
666 /**
667  * xe_guc_comm_init_early - early initialization of GuC communication
668  * @guc: the &xe_guc to initialize
669  *
670  * Must be called prior to first MMIO communication with GuC firmware.
671  */
xe_guc_comm_init_early(struct xe_guc * guc)672 void xe_guc_comm_init_early(struct xe_guc *guc)
673 {
674 	struct xe_gt *gt = guc_to_gt(guc);
675 
676 	if (xe_gt_is_media_type(gt))
677 		guc->notify_reg = MED_GUC_HOST_INTERRUPT;
678 	else
679 		guc->notify_reg = GUC_HOST_INTERRUPT;
680 }
681 
xe_guc_realloc_post_hwconfig(struct xe_guc * guc)682 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
683 {
684 	struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
685 	struct xe_device *xe = guc_to_xe(guc);
686 	int ret;
687 
688 	if (!IS_DGFX(guc_to_xe(guc)))
689 		return 0;
690 
691 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
692 	if (ret)
693 		return ret;
694 
695 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
696 	if (ret)
697 		return ret;
698 
699 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
700 	if (ret)
701 		return ret;
702 
703 	return 0;
704 }
705 
vf_guc_init_noalloc(struct xe_guc * guc)706 static int vf_guc_init_noalloc(struct xe_guc *guc)
707 {
708 	struct xe_gt *gt = guc_to_gt(guc);
709 	int err;
710 
711 	err = xe_gt_sriov_vf_bootstrap(gt);
712 	if (err)
713 		return err;
714 
715 	err = xe_gt_sriov_vf_query_config(gt);
716 	if (err)
717 		return err;
718 
719 	return 0;
720 }
721 
xe_guc_init_noalloc(struct xe_guc * guc)722 int xe_guc_init_noalloc(struct xe_guc *guc)
723 {
724 	struct xe_device *xe = guc_to_xe(guc);
725 	struct xe_gt *gt = guc_to_gt(guc);
726 	int ret;
727 
728 	xe_guc_comm_init_early(guc);
729 
730 	ret = xe_guc_ct_init_noalloc(&guc->ct);
731 	if (ret)
732 		goto out;
733 
734 	ret = xe_guc_relay_init(&guc->relay);
735 	if (ret)
736 		goto out;
737 
738 	if (IS_SRIOV_VF(xe)) {
739 		ret = vf_guc_init_noalloc(guc);
740 		if (ret)
741 			goto out;
742 	}
743 
744 	return 0;
745 
746 out:
747 	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
748 	return ret;
749 }
750 
xe_guc_init(struct xe_guc * guc)751 int xe_guc_init(struct xe_guc *guc)
752 {
753 	struct xe_device *xe = guc_to_xe(guc);
754 	struct xe_gt *gt = guc_to_gt(guc);
755 	int ret;
756 
757 	guc->fw.type = XE_UC_FW_TYPE_GUC;
758 	ret = xe_uc_fw_init(&guc->fw);
759 	if (ret)
760 		return ret;
761 
762 	if (!xe_uc_fw_is_enabled(&guc->fw))
763 		return 0;
764 
765 	if (IS_SRIOV_VF(xe)) {
766 		ret = xe_guc_ct_init(&guc->ct);
767 		if (ret)
768 			goto out;
769 		return 0;
770 	}
771 
772 	ret = xe_guc_log_init(&guc->log);
773 	if (ret)
774 		goto out;
775 
776 	ret = xe_guc_capture_init(guc);
777 	if (ret)
778 		goto out;
779 
780 	ret = xe_guc_ads_init(&guc->ads);
781 	if (ret)
782 		goto out;
783 
784 	ret = xe_guc_ct_init(&guc->ct);
785 	if (ret)
786 		goto out;
787 
788 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
789 
790 	ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
791 	if (ret)
792 		goto out;
793 
794 	guc_init_params(guc);
795 
796 	return 0;
797 
798 out:
799 	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
800 	return ret;
801 }
802 
vf_guc_init_post_hwconfig(struct xe_guc * guc)803 static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
804 {
805 	int err;
806 
807 	err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
808 	if (err)
809 		return err;
810 
811 	err = xe_guc_buf_cache_init(&guc->buf);
812 	if (err)
813 		return err;
814 
815 	/* XXX xe_guc_db_mgr_init not needed for now */
816 
817 	return 0;
818 }
819 
820 /**
821  * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
822  * @guc: The GuC object
823  *
824  * Return: 0 on success, negative error code on error.
825  */
xe_guc_init_post_hwconfig(struct xe_guc * guc)826 int xe_guc_init_post_hwconfig(struct xe_guc *guc)
827 {
828 	int ret;
829 
830 	if (IS_SRIOV_VF(guc_to_xe(guc)))
831 		return vf_guc_init_post_hwconfig(guc);
832 
833 	ret = xe_guc_realloc_post_hwconfig(guc);
834 	if (ret)
835 		return ret;
836 
837 	ret = xe_guc_ct_init_post_hwconfig(&guc->ct);
838 	if (ret)
839 		return ret;
840 
841 	guc_init_params_post_hwconfig(guc);
842 
843 	ret = xe_guc_submit_init(guc, ~0);
844 	if (ret)
845 		return ret;
846 
847 	ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
848 	if (ret)
849 		return ret;
850 
851 	ret = xe_guc_pc_init(&guc->pc);
852 	if (ret)
853 		return ret;
854 
855 	ret = xe_guc_engine_activity_init(guc);
856 	if (ret)
857 		return ret;
858 
859 	ret = xe_guc_buf_cache_init(&guc->buf);
860 	if (ret)
861 		return ret;
862 
863 	return xe_guc_ads_init_post_hwconfig(&guc->ads);
864 }
865 
xe_guc_post_load_init(struct xe_guc * guc)866 int xe_guc_post_load_init(struct xe_guc *guc)
867 {
868 	int ret;
869 
870 	xe_guc_ads_populate_post_load(&guc->ads);
871 
872 	ret = xe_guc_opt_in_features_enable(guc);
873 	if (ret)
874 		return ret;
875 
876 	if (xe_guc_g2g_wanted(guc_to_xe(guc))) {
877 		ret = guc_g2g_start(guc);
878 		if (ret)
879 			return ret;
880 	}
881 
882 	return xe_guc_submit_enable(guc);
883 }
884 
xe_guc_reset(struct xe_guc * guc)885 int xe_guc_reset(struct xe_guc *guc)
886 {
887 	struct xe_gt *gt = guc_to_gt(guc);
888 	struct xe_mmio *mmio = &gt->mmio;
889 	u32 guc_status, gdrst;
890 	int ret;
891 
892 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
893 
894 	if (IS_SRIOV_VF(gt_to_xe(gt)))
895 		return xe_gt_sriov_vf_bootstrap(gt);
896 
897 	xe_mmio_write32(mmio, GDRST, GRDOM_GUC);
898 
899 	ret = xe_mmio_wait32(mmio, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
900 	if (ret) {
901 		xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
902 		goto err_out;
903 	}
904 
905 	guc_status = xe_mmio_read32(mmio, GUC_STATUS);
906 	if (!(guc_status & GS_MIA_IN_RESET)) {
907 		xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
908 			  guc_status);
909 		ret = -EIO;
910 		goto err_out;
911 	}
912 
913 	return 0;
914 
915 err_out:
916 
917 	return ret;
918 }
919 
guc_prepare_xfer(struct xe_guc * guc)920 static void guc_prepare_xfer(struct xe_guc *guc)
921 {
922 	struct xe_gt *gt = guc_to_gt(guc);
923 	struct xe_mmio *mmio = &gt->mmio;
924 	struct xe_device *xe =  guc_to_xe(guc);
925 	u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
926 		GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
927 		GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
928 		GUC_ENABLE_MIA_CLOCK_GATING;
929 
930 	if (GRAPHICS_VERx100(xe) < 1250)
931 		shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
932 				GUC_ENABLE_MIA_CACHING;
933 
934 	if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
935 		shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
936 
937 	/* Must program this register before loading the ucode with DMA */
938 	xe_mmio_write32(mmio, GUC_SHIM_CONTROL, shim_flags);
939 
940 	xe_mmio_write32(mmio, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
941 
942 	/* Make sure GuC receives ARAT interrupts */
943 	xe_mmio_rmw32(mmio, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
944 }
945 
946 /*
947  * Supporting MMIO & in memory RSA
948  */
guc_xfer_rsa(struct xe_guc * guc)949 static int guc_xfer_rsa(struct xe_guc *guc)
950 {
951 	struct xe_gt *gt = guc_to_gt(guc);
952 	u32 rsa[UOS_RSA_SCRATCH_COUNT];
953 	size_t copied;
954 	int i;
955 
956 	if (guc->fw.rsa_size > 256) {
957 		u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
958 				    xe_uc_fw_rsa_offset(&guc->fw);
959 		xe_mmio_write32(&gt->mmio, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
960 		return 0;
961 	}
962 
963 	copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
964 	if (copied < sizeof(rsa))
965 		return -ENOMEM;
966 
967 	for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
968 		xe_mmio_write32(&gt->mmio, UOS_RSA_SCRATCH(i), rsa[i]);
969 
970 	return 0;
971 }
972 
973 /*
974  * Check a previously read GuC status register (GUC_STATUS) looking for
975  * known terminal states (either completion or failure) of either the
976  * microkernel status field or the boot ROM status field. Returns +1 for
977  * successful completion, -1 for failure and 0 for any intermediate state.
978  */
guc_load_done(u32 status)979 static int guc_load_done(u32 status)
980 {
981 	u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
982 	u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
983 
984 	switch (uk_val) {
985 	case XE_GUC_LOAD_STATUS_READY:
986 		return 1;
987 
988 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
989 	case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
990 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
991 	case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
992 	case XE_GUC_LOAD_STATUS_BOOTROM_VERSION_MISMATCH:
993 	case XE_GUC_LOAD_STATUS_DPC_ERROR:
994 	case XE_GUC_LOAD_STATUS_EXCEPTION:
995 	case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
996 	case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
997 	case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
998 	case XE_GUC_LOAD_STATUS_KLV_WORKAROUND_INIT_ERROR:
999 	case XE_GUC_LOAD_STATUS_INVALID_FTR_FLAG:
1000 		return -1;
1001 	}
1002 
1003 	switch (br_val) {
1004 	case XE_BOOTROM_STATUS_NO_KEY_FOUND:
1005 	case XE_BOOTROM_STATUS_RSA_FAILED:
1006 	case XE_BOOTROM_STATUS_PAVPC_FAILED:
1007 	case XE_BOOTROM_STATUS_WOPCM_FAILED:
1008 	case XE_BOOTROM_STATUS_LOADLOC_FAILED:
1009 	case XE_BOOTROM_STATUS_JUMP_FAILED:
1010 	case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
1011 	case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
1012 	case XE_BOOTROM_STATUS_EXCEPTION:
1013 	case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
1014 		return -1;
1015 	}
1016 
1017 	return 0;
1018 }
1019 
guc_pc_get_cur_freq(struct xe_guc_pc * guc_pc)1020 static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
1021 {
1022 	u32 freq;
1023 	int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
1024 
1025 	return ret ? ret : freq;
1026 }
1027 
1028 /*
1029  * Wait for the GuC to start up.
1030  *
1031  * Measurements indicate this should take no more than 20ms (assuming the GT
1032  * clock is at maximum frequency). However, thermal throttling and other issues
1033  * can prevent the clock hitting max and thus making the load take significantly
1034  * longer. Allow up to 200ms as a safety margin for real world worst case situations.
1035  *
1036  * However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
1037  * lead to even longer times. E.g. if the GT is clamped to minimum frequency then
1038  * the load times can be in the seconds range. So the timeout is increased for debug
1039  * builds to ensure that problems can be correctly analysed. For release builds, the
1040  * timeout is kept short so that users don't wait forever to find out that there is a
1041  * problem. In either case, if the load took longer than is reasonable even with some
1042  * 'sensible' throttling, then flag a warning because something is not right.
1043  *
1044  * Note that there is a limit on how long an individual usleep_range() can wait for,
1045  * hence longer waits require wrapping a shorter wait in a loop.
1046  *
1047  * Note that the only reason an end user should hit the shorter timeout is in case of
1048  * extreme thermal throttling. And a system that is that hot during boot is probably
1049  * dead anyway!
1050  */
1051 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
1052 #define GUC_LOAD_RETRY_LIMIT	20
1053 #else
1054 #define GUC_LOAD_RETRY_LIMIT	3
1055 #endif
1056 #define GUC_LOAD_TIME_WARN_MS      200
1057 
guc_wait_ucode(struct xe_guc * guc)1058 static int guc_wait_ucode(struct xe_guc *guc)
1059 {
1060 	struct xe_gt *gt = guc_to_gt(guc);
1061 	struct xe_mmio *mmio = &gt->mmio;
1062 	struct xe_guc_pc *guc_pc = &gt->uc.guc.pc;
1063 	ktime_t before, after, delta;
1064 	int load_done;
1065 	u32 status = 0;
1066 	int count = 0;
1067 	u64 delta_ms;
1068 	u32 before_freq;
1069 
1070 	before_freq = xe_guc_pc_get_act_freq(guc_pc);
1071 	before = ktime_get();
1072 	/*
1073 	 * Note, can't use any kind of timing information from the call to xe_mmio_wait.
1074 	 * It could return a thousand intermediate stages at random times. Instead, must
1075 	 * manually track the total time taken and locally implement the timeout.
1076 	 */
1077 	do {
1078 		u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
1079 		int ret;
1080 
1081 		/*
1082 		 * Wait for any change (intermediate or terminal) in the status register.
1083 		 * Note, the return value is a don't care. The only failure code is timeout
1084 		 * but the timeouts need to be accumulated over all the intermediate partial
1085 		 * timeouts rather than allowing a huge timeout each time. So basically, need
1086 		 * to treat a timeout no different to a value change.
1087 		 */
1088 		ret = xe_mmio_wait32_not(mmio, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
1089 					 last_status, 1000 * 1000, &status, false);
1090 		if (ret < 0)
1091 			count++;
1092 		after = ktime_get();
1093 		delta = ktime_sub(after, before);
1094 		delta_ms = ktime_to_ms(delta);
1095 
1096 		load_done = guc_load_done(status);
1097 		if (load_done != 0)
1098 			break;
1099 
1100 		if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
1101 			break;
1102 
1103 		xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
1104 			  count, xe_guc_pc_get_act_freq(guc_pc),
1105 			  guc_pc_get_cur_freq(guc_pc), status,
1106 			  REG_FIELD_GET(GS_BOOTROM_MASK, status),
1107 			  REG_FIELD_GET(GS_UKERNEL_MASK, status));
1108 	} while (1);
1109 
1110 	if (load_done != 1) {
1111 		u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
1112 		u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
1113 
1114 		xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
1115 			  status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
1116 			  guc_pc_get_cur_freq(guc_pc), load_done);
1117 		xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
1118 			  REG_FIELD_GET(GS_MIA_IN_RESET, status),
1119 			  bootrom, ukernel,
1120 			  REG_FIELD_GET(GS_MIA_MASK, status),
1121 			  REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
1122 
1123 		switch (bootrom) {
1124 		case XE_BOOTROM_STATUS_NO_KEY_FOUND:
1125 			xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
1126 				  xe_mmio_read32(mmio, GUC_HEADER_INFO));
1127 			break;
1128 
1129 		case XE_BOOTROM_STATUS_RSA_FAILED:
1130 			xe_gt_err(gt, "firmware signature verification failed\n");
1131 			break;
1132 
1133 		case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
1134 			xe_gt_err(gt, "firmware production part check failure\n");
1135 			break;
1136 		}
1137 
1138 		switch (ukernel) {
1139 		case XE_GUC_LOAD_STATUS_HWCONFIG_START:
1140 			xe_gt_err(gt, "still extracting hwconfig table.\n");
1141 			break;
1142 
1143 		case XE_GUC_LOAD_STATUS_EXCEPTION:
1144 			xe_gt_err(gt, "firmware exception. EIP: %#x\n",
1145 				  xe_mmio_read32(mmio, SOFT_SCRATCH(13)));
1146 			break;
1147 
1148 		case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
1149 			xe_gt_err(gt, "illegal init/ADS data\n");
1150 			break;
1151 
1152 		case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
1153 			xe_gt_err(gt, "illegal register in save/restore workaround list\n");
1154 			break;
1155 
1156 		case XE_GUC_LOAD_STATUS_KLV_WORKAROUND_INIT_ERROR:
1157 			xe_gt_err(gt, "illegal workaround KLV data\n");
1158 			break;
1159 
1160 		case XE_GUC_LOAD_STATUS_INVALID_FTR_FLAG:
1161 			xe_gt_err(gt, "illegal feature flag specified\n");
1162 			break;
1163 		}
1164 
1165 		return -EPROTO;
1166 	} else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
1167 		xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
1168 			   delta_ms, status, count);
1169 		xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
1170 			   xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
1171 			   before_freq, xe_gt_throttle_get_limit_reasons(gt));
1172 	} else {
1173 		xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
1174 			  delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
1175 			  before_freq, status, count);
1176 	}
1177 
1178 	return 0;
1179 }
1180 ALLOW_ERROR_INJECTION(guc_wait_ucode, ERRNO);
1181 
__xe_guc_upload(struct xe_guc * guc)1182 static int __xe_guc_upload(struct xe_guc *guc)
1183 {
1184 	int ret;
1185 
1186 	/* Raise GT freq to speed up HuC/GuC load */
1187 	xe_guc_pc_raise_unslice(&guc->pc);
1188 
1189 	guc_write_params(guc);
1190 	guc_prepare_xfer(guc);
1191 
1192 	/*
1193 	 * Note that GuC needs the CSS header plus uKernel code to be copied
1194 	 * by the DMA engine in one operation, whereas the RSA signature is
1195 	 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
1196 	 * register (if key size <= 256) or through a ggtt-pinned vma (if key
1197 	 * size > 256). The RSA size and therefore the way we provide it to the
1198 	 * HW is fixed for each platform and hard-coded in the bootrom.
1199 	 */
1200 	ret = guc_xfer_rsa(guc);
1201 	if (ret)
1202 		goto out;
1203 	/*
1204 	 * Current uCode expects the code to be loaded at 8k; locations below
1205 	 * this are used for the stack.
1206 	 */
1207 	ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
1208 	if (ret)
1209 		goto out;
1210 
1211 	/* Wait for authentication */
1212 	ret = guc_wait_ucode(guc);
1213 	if (ret)
1214 		goto out;
1215 
1216 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
1217 	return 0;
1218 
1219 out:
1220 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
1221 	return ret;
1222 }
1223 
vf_guc_min_load_for_hwconfig(struct xe_guc * guc)1224 static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
1225 {
1226 	struct xe_gt *gt = guc_to_gt(guc);
1227 	int ret;
1228 
1229 	ret = xe_guc_hwconfig_init(guc);
1230 	if (ret)
1231 		return ret;
1232 
1233 	ret = xe_guc_enable_communication(guc);
1234 	if (ret)
1235 		return ret;
1236 
1237 	ret = xe_gt_sriov_vf_connect(gt);
1238 	if (ret)
1239 		goto err_out;
1240 
1241 	ret = xe_gt_sriov_vf_query_runtime(gt);
1242 	if (ret)
1243 		goto err_out;
1244 
1245 	return 0;
1246 
1247 err_out:
1248 	xe_guc_sanitize(guc);
1249 	return ret;
1250 }
1251 
1252 /**
1253  * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
1254  * @guc: The GuC object
1255  *
1256  * This function uploads a minimal GuC that does not support submissions but
1257  * in a state where the hwconfig table can be read. Next, it reads and parses
1258  * the hwconfig table so it can be used for subsequent steps in the driver load.
1259  * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
1260  *
1261  * Return: 0 on success, negative error code on error.
1262  */
xe_guc_min_load_for_hwconfig(struct xe_guc * guc)1263 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
1264 {
1265 	int ret;
1266 
1267 	if (IS_SRIOV_VF(guc_to_xe(guc)))
1268 		return vf_guc_min_load_for_hwconfig(guc);
1269 
1270 	xe_guc_ads_populate_minimal(&guc->ads);
1271 
1272 	xe_guc_pc_init_early(&guc->pc);
1273 
1274 	ret = __xe_guc_upload(guc);
1275 	if (ret)
1276 		return ret;
1277 
1278 	ret = xe_guc_hwconfig_init(guc);
1279 	if (ret)
1280 		return ret;
1281 
1282 	ret = xe_guc_enable_communication(guc);
1283 	if (ret)
1284 		return ret;
1285 
1286 	return 0;
1287 }
1288 
xe_guc_upload(struct xe_guc * guc)1289 int xe_guc_upload(struct xe_guc *guc)
1290 {
1291 	xe_guc_ads_populate(&guc->ads);
1292 
1293 	return __xe_guc_upload(guc);
1294 }
1295 
guc_handle_mmio_msg(struct xe_guc * guc)1296 static void guc_handle_mmio_msg(struct xe_guc *guc)
1297 {
1298 	struct xe_gt *gt = guc_to_gt(guc);
1299 	u32 msg;
1300 
1301 	if (IS_SRIOV_VF(guc_to_xe(guc)))
1302 		return;
1303 
1304 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
1305 
1306 	msg = xe_mmio_read32(&gt->mmio, SOFT_SCRATCH(15));
1307 	msg &= XE_GUC_RECV_MSG_EXCEPTION |
1308 		XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
1309 	xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(15), 0);
1310 
1311 	if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
1312 		xe_gt_err(gt, "Received early GuC crash dump notification!\n");
1313 
1314 	if (msg & XE_GUC_RECV_MSG_EXCEPTION)
1315 		xe_gt_err(gt, "Received early GuC exception notification!\n");
1316 }
1317 
guc_enable_irq(struct xe_guc * guc)1318 static void guc_enable_irq(struct xe_guc *guc)
1319 {
1320 	struct xe_gt *gt = guc_to_gt(guc);
1321 	u32 events = xe_gt_is_media_type(gt) ?
1322 		REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST)  :
1323 		REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
1324 
1325 	/* Primary GuC and media GuC share a single enable bit */
1326 	xe_mmio_write32(&gt->mmio, GUC_SG_INTR_ENABLE,
1327 			REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
1328 
1329 	/*
1330 	 * There are separate mask bits for primary and media GuCs, so use
1331 	 * a RMW operation to avoid clobbering the other GuC's setting.
1332 	 */
1333 	xe_mmio_rmw32(&gt->mmio, GUC_SG_INTR_MASK, events, 0);
1334 }
1335 
xe_guc_enable_communication(struct xe_guc * guc)1336 int xe_guc_enable_communication(struct xe_guc *guc)
1337 {
1338 	struct xe_device *xe = guc_to_xe(guc);
1339 	int err;
1340 
1341 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
1342 		struct xe_gt *gt = guc_to_gt(guc);
1343 		struct xe_tile *tile = gt_to_tile(gt);
1344 
1345 		err = xe_memirq_init_guc(&tile->memirq, guc);
1346 		if (err)
1347 			return err;
1348 	} else {
1349 		guc_enable_irq(guc);
1350 	}
1351 
1352 	err = xe_guc_ct_enable(&guc->ct);
1353 	if (err)
1354 		return err;
1355 
1356 	guc_handle_mmio_msg(guc);
1357 
1358 	return 0;
1359 }
1360 
xe_guc_suspend(struct xe_guc * guc)1361 int xe_guc_suspend(struct xe_guc *guc)
1362 {
1363 	struct xe_gt *gt = guc_to_gt(guc);
1364 	u32 action[] = {
1365 		XE_GUC_ACTION_CLIENT_SOFT_RESET,
1366 	};
1367 	int ret;
1368 
1369 	ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
1370 	if (ret) {
1371 		xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
1372 		return ret;
1373 	}
1374 
1375 	xe_guc_sanitize(guc);
1376 	return 0;
1377 }
1378 
xe_guc_notify(struct xe_guc * guc)1379 void xe_guc_notify(struct xe_guc *guc)
1380 {
1381 	struct xe_gt *gt = guc_to_gt(guc);
1382 	const u32 default_notify_data = 0;
1383 
1384 	/*
1385 	 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
1386 	 * additional payload data to the GuC but this capability is not
1387 	 * used by the firmware yet. Use default value in the meantime.
1388 	 */
1389 	xe_mmio_write32(&gt->mmio, guc->notify_reg, default_notify_data);
1390 }
1391 
xe_guc_auth_huc(struct xe_guc * guc,u32 rsa_addr)1392 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
1393 {
1394 	u32 action[] = {
1395 		XE_GUC_ACTION_AUTHENTICATE_HUC,
1396 		rsa_addr
1397 	};
1398 
1399 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
1400 }
1401 
xe_guc_mmio_send_recv(struct xe_guc * guc,const u32 * request,u32 len,u32 * response_buf)1402 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
1403 			  u32 len, u32 *response_buf)
1404 {
1405 	struct xe_device *xe = guc_to_xe(guc);
1406 	struct xe_gt *gt = guc_to_gt(guc);
1407 	struct xe_mmio *mmio = &gt->mmio;
1408 	u32 header, reply;
1409 	struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
1410 		MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
1411 	const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
1412 	bool lost = false;
1413 	int ret;
1414 	int i;
1415 
1416 	BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
1417 
1418 	xe_assert(xe, len);
1419 	xe_assert(xe, len <= VF_SW_FLAG_COUNT);
1420 	xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
1421 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
1422 		  GUC_HXG_ORIGIN_HOST);
1423 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
1424 		  GUC_HXG_TYPE_REQUEST);
1425 
1426 retry:
1427 	/* Not in critical data-path, just do if else for GT type */
1428 	if (xe_gt_is_media_type(gt)) {
1429 		for (i = 0; i < len; ++i)
1430 			xe_mmio_write32(mmio, MED_VF_SW_FLAG(i),
1431 					request[i]);
1432 		xe_mmio_read32(mmio, MED_VF_SW_FLAG(LAST_INDEX));
1433 	} else {
1434 		for (i = 0; i < len; ++i)
1435 			xe_mmio_write32(mmio, VF_SW_FLAG(i),
1436 					request[i]);
1437 		xe_mmio_read32(mmio, VF_SW_FLAG(LAST_INDEX));
1438 	}
1439 
1440 	xe_guc_notify(guc);
1441 
1442 	ret = xe_mmio_wait32(mmio, reply_reg, GUC_HXG_MSG_0_ORIGIN,
1443 			     FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
1444 			     50000, &reply, false);
1445 	if (ret) {
1446 		/* scratch registers might be cleared during FLR, try once more */
1447 		if (!reply && !lost) {
1448 			xe_gt_dbg(gt, "GuC mmio request %#x: lost, trying again\n", request[0]);
1449 			lost = true;
1450 			goto retry;
1451 		}
1452 timeout:
1453 		xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
1454 			  request[0], reply);
1455 		return ret;
1456 	}
1457 
1458 	header = xe_mmio_read32(mmio, reply_reg);
1459 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1460 	    GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
1461 		/*
1462 		 * Once we got a BUSY reply we must wait again for the final
1463 		 * response but this time we can't use ORIGIN mask anymore.
1464 		 * To spot a right change in the reply, we take advantage that
1465 		 * response SUCCESS and FAILURE differ only by the single bit
1466 		 * and all other bits are set and can be used as a new mask.
1467 		 */
1468 		u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
1469 		u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
1470 
1471 		BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
1472 		BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
1473 
1474 		ret = xe_mmio_wait32(mmio, reply_reg, resp_mask, resp_mask,
1475 				     1000000, &header, false);
1476 
1477 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
1478 			     GUC_HXG_ORIGIN_GUC))
1479 			goto proto;
1480 		if (unlikely(ret)) {
1481 			if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1482 			    GUC_HXG_TYPE_NO_RESPONSE_BUSY)
1483 				goto proto;
1484 			goto timeout;
1485 		}
1486 	}
1487 
1488 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1489 	    GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1490 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
1491 
1492 		xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
1493 			  request[0], reason);
1494 		goto retry;
1495 	}
1496 
1497 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1498 	    GUC_HXG_TYPE_RESPONSE_FAILURE) {
1499 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
1500 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
1501 
1502 		xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
1503 			  request[0], error, hint);
1504 		return -ENXIO;
1505 	}
1506 
1507 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1508 	    GUC_HXG_TYPE_RESPONSE_SUCCESS) {
1509 proto:
1510 		xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
1511 			  request[0], header);
1512 		return -EPROTO;
1513 	}
1514 
1515 	/* Just copy entire possible message response */
1516 	if (response_buf) {
1517 		response_buf[0] = header;
1518 
1519 		for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
1520 			reply_reg.addr += sizeof(u32);
1521 			response_buf[i] = xe_mmio_read32(mmio, reply_reg);
1522 		}
1523 	}
1524 
1525 	/* Use data from the GuC response as our return value */
1526 	return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
1527 }
1528 ALLOW_ERROR_INJECTION(xe_guc_mmio_send_recv, ERRNO);
1529 
xe_guc_mmio_send(struct xe_guc * guc,const u32 * request,u32 len)1530 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
1531 {
1532 	return xe_guc_mmio_send_recv(guc, request, len, NULL);
1533 }
1534 
guc_self_cfg(struct xe_guc * guc,u16 key,u16 len,u64 val)1535 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
1536 {
1537 	struct xe_device *xe = guc_to_xe(guc);
1538 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
1539 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
1540 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
1541 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
1542 			   GUC_ACTION_HOST2GUC_SELF_CFG),
1543 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
1544 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
1545 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
1546 			   lower_32_bits(val)),
1547 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
1548 			   upper_32_bits(val)),
1549 	};
1550 	int ret;
1551 
1552 	xe_assert(xe, len <= 2);
1553 	xe_assert(xe, len != 1 || !upper_32_bits(val));
1554 
1555 	/* Self config must go over MMIO */
1556 	ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
1557 
1558 	if (unlikely(ret < 0))
1559 		return ret;
1560 	if (unlikely(ret > 1))
1561 		return -EPROTO;
1562 	if (unlikely(!ret))
1563 		return -ENOKEY;
1564 
1565 	return 0;
1566 }
1567 
xe_guc_self_cfg32(struct xe_guc * guc,u16 key,u32 val)1568 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
1569 {
1570 	return guc_self_cfg(guc, key, 1, val);
1571 }
1572 
xe_guc_self_cfg64(struct xe_guc * guc,u16 key,u64 val)1573 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
1574 {
1575 	return guc_self_cfg(guc, key, 2, val);
1576 }
1577 
xe_guc_sw_0_irq_handler(struct xe_guc * guc)1578 static void xe_guc_sw_0_irq_handler(struct xe_guc *guc)
1579 {
1580 	struct xe_gt *gt = guc_to_gt(guc);
1581 
1582 	if (IS_SRIOV_VF(gt_to_xe(gt)))
1583 		xe_gt_sriov_vf_migrated_event_handler(gt);
1584 }
1585 
xe_guc_irq_handler(struct xe_guc * guc,const u16 iir)1586 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
1587 {
1588 	if (iir & GUC_INTR_GUC2HOST)
1589 		xe_guc_ct_irq_handler(&guc->ct);
1590 
1591 	if (iir & GUC_INTR_SW_INT_0)
1592 		xe_guc_sw_0_irq_handler(guc);
1593 }
1594 
xe_guc_sanitize(struct xe_guc * guc)1595 void xe_guc_sanitize(struct xe_guc *guc)
1596 {
1597 	xe_uc_fw_sanitize(&guc->fw);
1598 	xe_guc_ct_disable(&guc->ct);
1599 	xe_guc_submit_disable(guc);
1600 }
1601 
xe_guc_reset_prepare(struct xe_guc * guc)1602 int xe_guc_reset_prepare(struct xe_guc *guc)
1603 {
1604 	return xe_guc_submit_reset_prepare(guc);
1605 }
1606 
xe_guc_reset_wait(struct xe_guc * guc)1607 void xe_guc_reset_wait(struct xe_guc *guc)
1608 {
1609 	xe_guc_submit_reset_wait(guc);
1610 }
1611 
xe_guc_stop_prepare(struct xe_guc * guc)1612 void xe_guc_stop_prepare(struct xe_guc *guc)
1613 {
1614 	if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1615 		int err;
1616 
1617 		err = xe_guc_pc_stop(&guc->pc);
1618 		xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
1619 			   ERR_PTR(err));
1620 	}
1621 }
1622 
xe_guc_stop(struct xe_guc * guc)1623 void xe_guc_stop(struct xe_guc *guc)
1624 {
1625 	xe_guc_ct_stop(&guc->ct);
1626 
1627 	xe_guc_submit_stop(guc);
1628 }
1629 
xe_guc_start(struct xe_guc * guc)1630 int xe_guc_start(struct xe_guc *guc)
1631 {
1632 	return xe_guc_submit_start(guc);
1633 }
1634 
xe_guc_print_info(struct xe_guc * guc,struct drm_printer * p)1635 void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
1636 {
1637 	struct xe_gt *gt = guc_to_gt(guc);
1638 	unsigned int fw_ref;
1639 	u32 status;
1640 	int i;
1641 
1642 	xe_uc_fw_print(&guc->fw, p);
1643 
1644 	if (!IS_SRIOV_VF(gt_to_xe(gt))) {
1645 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1646 		if (!fw_ref)
1647 			return;
1648 
1649 		status = xe_mmio_read32(&gt->mmio, GUC_STATUS);
1650 
1651 		drm_printf(p, "\nGuC status 0x%08x:\n", status);
1652 		drm_printf(p, "\tBootrom status = 0x%x\n",
1653 			   REG_FIELD_GET(GS_BOOTROM_MASK, status));
1654 		drm_printf(p, "\tuKernel status = 0x%x\n",
1655 			   REG_FIELD_GET(GS_UKERNEL_MASK, status));
1656 		drm_printf(p, "\tMIA Core status = 0x%x\n",
1657 			   REG_FIELD_GET(GS_MIA_MASK, status));
1658 		drm_printf(p, "\tLog level = %d\n",
1659 			   xe_guc_log_get_level(&guc->log));
1660 
1661 		drm_puts(p, "\nScratch registers:\n");
1662 		for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
1663 			drm_printf(p, "\t%2d: \t0x%x\n",
1664 				   i, xe_mmio_read32(&gt->mmio, SOFT_SCRATCH(i)));
1665 		}
1666 
1667 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1668 	}
1669 
1670 	drm_puts(p, "\n");
1671 	xe_guc_ct_print(&guc->ct, p, false);
1672 
1673 	drm_puts(p, "\n");
1674 	xe_guc_submit_print(guc, p);
1675 }
1676 
1677 /**
1678  * xe_guc_declare_wedged() - Declare GuC wedged
1679  * @guc: the GuC object
1680  *
1681  * Wedge the GuC which stops all submission, saves desired debug state, and
1682  * cleans up anything which could timeout.
1683  */
xe_guc_declare_wedged(struct xe_guc * guc)1684 void xe_guc_declare_wedged(struct xe_guc *guc)
1685 {
1686 	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
1687 
1688 	xe_guc_reset_prepare(guc);
1689 	xe_guc_ct_stop(&guc->ct);
1690 	xe_guc_submit_wedge(guc);
1691 }
1692 
1693 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1694 #include "tests/xe_guc_g2g_test.c"
1695 #endif
1696