1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16
17 /*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap
22 */
23 #define VMALLOC_START (MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END (VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30
31 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32
33 #ifndef __ASSEMBLY__
34
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42
emit_pte_barriers(void)43 static inline void emit_pte_barriers(void)
44 {
45 /*
46 * These barriers are emitted under certain conditions after a pte entry
47 * was modified (see e.g. __set_pte_complete()). The dsb makes the store
48 * visible to the table walker. The isb ensures that any previous
49 * speculative "invalid translation" marker that is in the CPU's
50 * pipeline gets cleared, so that any access to that address after
51 * setting the pte to valid won't cause a spurious fault. If the thread
52 * gets preempted after storing to the pgtable but before emitting these
53 * barriers, __switch_to() emits a dsb which ensure the walker gets to
54 * see the store. There is no guarantee of an isb being issued though.
55 * This is safe because it will still get issued (albeit on a
56 * potentially different CPU) when the thread starts running again,
57 * before any access to the address.
58 */
59 dsb(ishst);
60 isb();
61 }
62
queue_pte_barriers(void)63 static inline void queue_pte_barriers(void)
64 {
65 unsigned long flags;
66
67 if (in_interrupt()) {
68 emit_pte_barriers();
69 return;
70 }
71
72 flags = read_thread_flags();
73
74 if (flags & BIT(TIF_LAZY_MMU)) {
75 /* Avoid the atomic op if already set. */
76 if (!(flags & BIT(TIF_LAZY_MMU_PENDING)))
77 set_thread_flag(TIF_LAZY_MMU_PENDING);
78 } else {
79 emit_pte_barriers();
80 }
81 }
82
83 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
arch_enter_lazy_mmu_mode(void)84 static inline void arch_enter_lazy_mmu_mode(void)
85 {
86 /*
87 * lazy_mmu_mode is not supposed to permit nesting. But in practice this
88 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation
89 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change
90 * permissions on the linear map with apply_to_page_range(), which
91 * re-enters lazy_mmu_mode. So we tolerate nesting in our
92 * implementation. The first call to arch_leave_lazy_mmu_mode() will
93 * flush and clear the flag such that the remainder of the work in the
94 * outer nest behaves as if outside of lazy mmu mode. This is safe and
95 * keeps tracking simple.
96 */
97
98 if (in_interrupt())
99 return;
100
101 set_thread_flag(TIF_LAZY_MMU);
102 }
103
arch_flush_lazy_mmu_mode(void)104 static inline void arch_flush_lazy_mmu_mode(void)
105 {
106 if (in_interrupt())
107 return;
108
109 if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING))
110 emit_pte_barriers();
111 }
112
arch_leave_lazy_mmu_mode(void)113 static inline void arch_leave_lazy_mmu_mode(void)
114 {
115 if (in_interrupt())
116 return;
117
118 arch_flush_lazy_mmu_mode();
119 clear_thread_flag(TIF_LAZY_MMU);
120 }
121
122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
124
125 /* Set stride and tlb_level in flush_*_tlb_range */
126 #define flush_pmd_tlb_range(vma, addr, end) \
127 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
128 #define flush_pud_tlb_range(vma, addr, end) \
129 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
131
132 /*
133 * Outside of a few very special situations (e.g. hibernation), we always
134 * use broadcast TLB invalidation instructions, therefore a spurious page
135 * fault on one CPU which has been handled concurrently by another CPU
136 * does not need to perform additional invalidation.
137 */
138 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
139
140 /*
141 * ZERO_PAGE is a global shared page that is always zero: used
142 * for zero-mapped memory areas etc..
143 */
144 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
145 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
146
147 #define pte_ERROR(e) \
148 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
149
150 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)151 static inline phys_addr_t __pte_to_phys(pte_t pte)
152 {
153 pte_val(pte) &= ~PTE_MAYBE_SHARED;
154 return (pte_val(pte) & PTE_ADDR_LOW) |
155 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
156 }
__phys_to_pte_val(phys_addr_t phys)157 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
158 {
159 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
160 }
161 #else
__pte_to_phys(pte_t pte)162 static inline phys_addr_t __pte_to_phys(pte_t pte)
163 {
164 return pte_val(pte) & PTE_ADDR_LOW;
165 }
166
__phys_to_pte_val(phys_addr_t phys)167 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
168 {
169 return phys;
170 }
171 #endif
172
173 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
174 #define pfn_pte(pfn,prot) \
175 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
176
177 #define pte_none(pte) (!pte_val(pte))
178 #define __pte_clear(mm, addr, ptep) \
179 __set_pte(ptep, __pte(0))
180 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
181
182 /*
183 * The following only work if pte_present(). Undefined behaviour otherwise.
184 */
185 #define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte))
186 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
187 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
188 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
189 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY))
190 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
191 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
192 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
193 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
194 PTE_ATTRINDX(MT_NORMAL_TAGGED))
195
196 #define pte_cont_addr_end(addr, end) \
197 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
198 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
199 })
200
201 #define pmd_cont_addr_end(addr, end) \
202 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
203 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
204 })
205
206 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte))
207 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
208 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
209
210 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
211 #define pte_present_invalid(pte) \
212 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
213 /*
214 * Execute-only user mappings do not have the PTE_USER bit set. All valid
215 * kernel mappings have the PTE_UXN bit set.
216 */
217 #define pte_valid_not_user(pte) \
218 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
219 /*
220 * Returns true if the pte is valid and has the contiguous bit set.
221 */
222 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte))
223 /*
224 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
225 * so that we don't erroneously return false for pages that have been
226 * remapped as PROT_NONE but are yet to be flushed from the TLB.
227 * Note that we can't make any assumptions based on the state of the access
228 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
229 * TLB.
230 */
231 #define pte_accessible(mm, pte) \
232 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
233
por_el0_allows_pkey(u8 pkey,bool write,bool execute)234 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
235 {
236 u64 por;
237
238 if (!system_supports_poe())
239 return true;
240
241 por = read_sysreg_s(SYS_POR_EL0);
242
243 if (write)
244 return por_elx_allows_write(por, pkey);
245
246 if (execute)
247 return por_elx_allows_exec(por, pkey);
248
249 return por_elx_allows_read(por, pkey);
250 }
251
252 /*
253 * p??_access_permitted() is true for valid user mappings (PTE_USER
254 * bit set, subject to the write permission check). For execute-only
255 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
256 * not set) must return false. PROT_NONE mappings do not have the
257 * PTE_VALID bit set.
258 */
259 #define pte_access_permitted_no_overlay(pte, write) \
260 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
261 #define pte_access_permitted(pte, write) \
262 (pte_access_permitted_no_overlay(pte, write) && \
263 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
264 #define pmd_access_permitted(pmd, write) \
265 (pte_access_permitted(pmd_pte(pmd), (write)))
266 #define pud_access_permitted(pud, write) \
267 (pte_access_permitted(pud_pte(pud), (write)))
268
clear_pte_bit(pte_t pte,pgprot_t prot)269 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
270 {
271 pte_val(pte) &= ~pgprot_val(prot);
272 return pte;
273 }
274
set_pte_bit(pte_t pte,pgprot_t prot)275 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
276 {
277 pte_val(pte) |= pgprot_val(prot);
278 return pte;
279 }
280
clear_pmd_bit(pmd_t pmd,pgprot_t prot)281 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
282 {
283 pmd_val(pmd) &= ~pgprot_val(prot);
284 return pmd;
285 }
286
set_pmd_bit(pmd_t pmd,pgprot_t prot)287 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
288 {
289 pmd_val(pmd) |= pgprot_val(prot);
290 return pmd;
291 }
292
pte_mkwrite_novma(pte_t pte)293 static inline pte_t pte_mkwrite_novma(pte_t pte)
294 {
295 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
296 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
297 return pte;
298 }
299
pte_mkclean(pte_t pte)300 static inline pte_t pte_mkclean(pte_t pte)
301 {
302 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
303 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
304
305 return pte;
306 }
307
pte_mkdirty(pte_t pte)308 static inline pte_t pte_mkdirty(pte_t pte)
309 {
310 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
311
312 if (pte_write(pte))
313 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
314
315 return pte;
316 }
317
pte_wrprotect(pte_t pte)318 static inline pte_t pte_wrprotect(pte_t pte)
319 {
320 /*
321 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
322 * clear), set the PTE_DIRTY bit.
323 */
324 if (pte_hw_dirty(pte))
325 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
326
327 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
328 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
329 return pte;
330 }
331
pte_mkold(pte_t pte)332 static inline pte_t pte_mkold(pte_t pte)
333 {
334 return clear_pte_bit(pte, __pgprot(PTE_AF));
335 }
336
pte_mkyoung(pte_t pte)337 static inline pte_t pte_mkyoung(pte_t pte)
338 {
339 return set_pte_bit(pte, __pgprot(PTE_AF));
340 }
341
pte_mkspecial(pte_t pte)342 static inline pte_t pte_mkspecial(pte_t pte)
343 {
344 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
345 }
346
pte_mkcont(pte_t pte)347 static inline pte_t pte_mkcont(pte_t pte)
348 {
349 return set_pte_bit(pte, __pgprot(PTE_CONT));
350 }
351
pte_mknoncont(pte_t pte)352 static inline pte_t pte_mknoncont(pte_t pte)
353 {
354 return clear_pte_bit(pte, __pgprot(PTE_CONT));
355 }
356
pte_mkvalid(pte_t pte)357 static inline pte_t pte_mkvalid(pte_t pte)
358 {
359 return set_pte_bit(pte, __pgprot(PTE_VALID));
360 }
361
pte_mkinvalid(pte_t pte)362 static inline pte_t pte_mkinvalid(pte_t pte)
363 {
364 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
365 pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
366 return pte;
367 }
368
pmd_mkcont(pmd_t pmd)369 static inline pmd_t pmd_mkcont(pmd_t pmd)
370 {
371 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
372 }
373
374 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)375 static inline int pte_uffd_wp(pte_t pte)
376 {
377 return !!(pte_val(pte) & PTE_UFFD_WP);
378 }
379
pte_mkuffd_wp(pte_t pte)380 static inline pte_t pte_mkuffd_wp(pte_t pte)
381 {
382 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
383 }
384
pte_clear_uffd_wp(pte_t pte)385 static inline pte_t pte_clear_uffd_wp(pte_t pte)
386 {
387 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
388 }
389 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
390
__set_pte_nosync(pte_t * ptep,pte_t pte)391 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
392 {
393 WRITE_ONCE(*ptep, pte);
394 }
395
__set_pte_complete(pte_t pte)396 static inline void __set_pte_complete(pte_t pte)
397 {
398 /*
399 * Only if the new pte is valid and kernel, otherwise TLB maintenance
400 * has the necessary barriers.
401 */
402 if (pte_valid_not_user(pte))
403 queue_pte_barriers();
404 }
405
__set_pte(pte_t * ptep,pte_t pte)406 static inline void __set_pte(pte_t *ptep, pte_t pte)
407 {
408 __set_pte_nosync(ptep, pte);
409 __set_pte_complete(pte);
410 }
411
__ptep_get(pte_t * ptep)412 static inline pte_t __ptep_get(pte_t *ptep)
413 {
414 return READ_ONCE(*ptep);
415 }
416
417 extern void __sync_icache_dcache(pte_t pteval);
418 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
419
420 /*
421 * PTE bits configuration in the presence of hardware Dirty Bit Management
422 * (PTE_WRITE == PTE_DBM):
423 *
424 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
425 * 0 0 | 1 0 0
426 * 0 1 | 1 1 0
427 * 1 0 | 1 0 1
428 * 1 1 | 0 1 x
429 *
430 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
431 * the page fault mechanism. Checking the dirty status of a pte becomes:
432 *
433 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
434 */
435
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)436 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
437 pte_t pte)
438 {
439 pte_t old_pte;
440
441 if (!IS_ENABLED(CONFIG_DEBUG_VM))
442 return;
443
444 old_pte = __ptep_get(ptep);
445
446 if (!pte_valid(old_pte) || !pte_valid(pte))
447 return;
448 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
449 return;
450
451 /*
452 * Check for potential race with hardware updates of the pte
453 * (__ptep_set_access_flags safely changes valid ptes without going
454 * through an invalid entry).
455 */
456 VM_WARN_ONCE(!pte_young(pte),
457 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
458 __func__, pte_val(old_pte), pte_val(pte));
459 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
460 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
461 __func__, pte_val(old_pte), pte_val(pte));
462 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
463 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
464 __func__, pte_val(old_pte), pte_val(pte));
465 }
466
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)467 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
468 {
469 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
470 __sync_icache_dcache(pte);
471
472 /*
473 * If the PTE would provide user space access to the tags associated
474 * with it then ensure that the MTE tags are synchronised. Although
475 * pte_access_permitted_no_overlay() returns false for exec only
476 * mappings, they don't expose tags (instruction fetches don't check
477 * tags).
478 */
479 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
480 !pte_special(pte) && pte_tagged(pte))
481 mte_sync_tags(pte, nr_pages);
482 }
483
484 /*
485 * Select all bits except the pfn
486 */
487 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)488 static inline pgprot_t pte_pgprot(pte_t pte)
489 {
490 unsigned long pfn = pte_pfn(pte);
491
492 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
493 }
494
495 #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)496 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
497 {
498 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
499 }
500
501 /*
502 * Hugetlb definitions.
503 */
504 #define HUGE_MAX_HSTATE 4
505 #define HPAGE_SHIFT PMD_SHIFT
506 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
507 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
508 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
509
pgd_pte(pgd_t pgd)510 static inline pte_t pgd_pte(pgd_t pgd)
511 {
512 return __pte(pgd_val(pgd));
513 }
514
p4d_pte(p4d_t p4d)515 static inline pte_t p4d_pte(p4d_t p4d)
516 {
517 return __pte(p4d_val(p4d));
518 }
519
pud_pte(pud_t pud)520 static inline pte_t pud_pte(pud_t pud)
521 {
522 return __pte(pud_val(pud));
523 }
524
pte_pud(pte_t pte)525 static inline pud_t pte_pud(pte_t pte)
526 {
527 return __pud(pte_val(pte));
528 }
529
pud_pmd(pud_t pud)530 static inline pmd_t pud_pmd(pud_t pud)
531 {
532 return __pmd(pud_val(pud));
533 }
534
pmd_pte(pmd_t pmd)535 static inline pte_t pmd_pte(pmd_t pmd)
536 {
537 return __pte(pmd_val(pmd));
538 }
539
pte_pmd(pte_t pte)540 static inline pmd_t pte_pmd(pte_t pte)
541 {
542 return __pmd(pte_val(pte));
543 }
544
mk_pud_sect_prot(pgprot_t prot)545 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
546 {
547 return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT);
548 }
549
mk_pmd_sect_prot(pgprot_t prot)550 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
551 {
552 return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
553 }
554
pte_swp_mkexclusive(pte_t pte)555 static inline pte_t pte_swp_mkexclusive(pte_t pte)
556 {
557 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
558 }
559
pte_swp_exclusive(pte_t pte)560 static inline bool pte_swp_exclusive(pte_t pte)
561 {
562 return pte_val(pte) & PTE_SWP_EXCLUSIVE;
563 }
564
pte_swp_clear_exclusive(pte_t pte)565 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
566 {
567 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
568 }
569
570 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)571 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
572 {
573 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
574 }
575
pte_swp_uffd_wp(pte_t pte)576 static inline int pte_swp_uffd_wp(pte_t pte)
577 {
578 return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
579 }
580
pte_swp_clear_uffd_wp(pte_t pte)581 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
582 {
583 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
584 }
585 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
586
587 #ifdef CONFIG_NUMA_BALANCING
588 /*
589 * See the comment in include/linux/pgtable.h
590 */
pte_protnone(pte_t pte)591 static inline int pte_protnone(pte_t pte)
592 {
593 /*
594 * pte_present_invalid() tells us that the pte is invalid from HW
595 * perspective but present from SW perspective, so the fields are to be
596 * interpretted as per the HW layout. The second 2 checks are the unique
597 * encoding that we use for PROT_NONE. It is insufficient to only use
598 * the first check because we share the same encoding scheme with pmds
599 * which support pmd_mkinvalid(), so can be present-invalid without
600 * being PROT_NONE.
601 */
602 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
603 }
604
pmd_protnone(pmd_t pmd)605 static inline int pmd_protnone(pmd_t pmd)
606 {
607 return pte_protnone(pmd_pte(pmd));
608 }
609 #endif
610
611 #define pmd_present(pmd) pte_present(pmd_pte(pmd))
612 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
613 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
614 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
615 #define pmd_user(pmd) pte_user(pmd_pte(pmd))
616 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
617 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
618 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
619 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
620 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
621 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
622 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
623 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
624 #define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
625 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
626 #define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd))
627 #define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
628 #define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
629 #define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd))
630 #define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
631 #define pmd_swp_clear_uffd_wp(pmd) \
632 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
633 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
634
635 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
636
pmd_mkhuge(pmd_t pmd)637 static inline pmd_t pmd_mkhuge(pmd_t pmd)
638 {
639 /*
640 * It's possible that the pmd is present-invalid on entry
641 * and in that case it needs to remain present-invalid on
642 * exit. So ensure the VALID bit does not get modified.
643 */
644 pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID;
645 pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID;
646
647 return __pmd((pmd_val(pmd) & ~mask) | val);
648 }
649
650 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
651 #define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL)))
pmd_mkspecial(pmd_t pmd)652 static inline pmd_t pmd_mkspecial(pmd_t pmd)
653 {
654 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
655 }
656 #endif
657
658 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
659 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
660 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
661 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
662
663 #define pud_young(pud) pte_young(pud_pte(pud))
664 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
665 #define pud_write(pud) pte_write(pud_pte(pud))
666
pud_mkhuge(pud_t pud)667 static inline pud_t pud_mkhuge(pud_t pud)
668 {
669 /*
670 * It's possible that the pud is present-invalid on entry
671 * and in that case it needs to remain present-invalid on
672 * exit. So ensure the VALID bit does not get modified.
673 */
674 pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID;
675 pudval_t val = PUD_TYPE_SECT & ~PTE_VALID;
676
677 return __pud((pud_val(pud) & ~mask) | val);
678 }
679
680 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
681 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
682 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
683 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
684
685 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)686 static inline pgprot_t pmd_pgprot(pmd_t pmd)
687 {
688 unsigned long pfn = pmd_pfn(pmd);
689
690 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
691 }
692
693 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)694 static inline pgprot_t pud_pgprot(pud_t pud)
695 {
696 unsigned long pfn = pud_pfn(pud);
697
698 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
699 }
700
__set_ptes_anysz(struct mm_struct * mm,pte_t * ptep,pte_t pte,unsigned int nr,unsigned long pgsize)701 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep,
702 pte_t pte, unsigned int nr,
703 unsigned long pgsize)
704 {
705 unsigned long stride = pgsize >> PAGE_SHIFT;
706
707 switch (pgsize) {
708 case PAGE_SIZE:
709 page_table_check_ptes_set(mm, ptep, pte, nr);
710 break;
711 case PMD_SIZE:
712 page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr);
713 break;
714 #ifndef __PAGETABLE_PMD_FOLDED
715 case PUD_SIZE:
716 page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr);
717 break;
718 #endif
719 default:
720 VM_WARN_ON(1);
721 }
722
723 __sync_cache_and_tags(pte, nr * stride);
724
725 for (;;) {
726 __check_safe_pte_update(mm, ptep, pte);
727 __set_pte_nosync(ptep, pte);
728 if (--nr == 0)
729 break;
730 ptep++;
731 pte = pte_advance_pfn(pte, stride);
732 }
733
734 __set_pte_complete(pte);
735 }
736
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)737 static inline void __set_ptes(struct mm_struct *mm,
738 unsigned long __always_unused addr,
739 pte_t *ptep, pte_t pte, unsigned int nr)
740 {
741 __set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE);
742 }
743
__set_pmds(struct mm_struct * mm,unsigned long __always_unused addr,pmd_t * pmdp,pmd_t pmd,unsigned int nr)744 static inline void __set_pmds(struct mm_struct *mm,
745 unsigned long __always_unused addr,
746 pmd_t *pmdp, pmd_t pmd, unsigned int nr)
747 {
748 __set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE);
749 }
750 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1)
751
__set_puds(struct mm_struct * mm,unsigned long __always_unused addr,pud_t * pudp,pud_t pud,unsigned int nr)752 static inline void __set_puds(struct mm_struct *mm,
753 unsigned long __always_unused addr,
754 pud_t *pudp, pud_t pud, unsigned int nr)
755 {
756 __set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE);
757 }
758 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1)
759
760 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
761 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
762
763 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
764 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
765
766 #define __pgprot_modify(prot,mask,bits) \
767 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
768
769 #define pgprot_nx(prot) \
770 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
771
772 #define pgprot_decrypted(prot) \
773 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
774 #define pgprot_encrypted(prot) \
775 __pgprot_modify(prot, PROT_NS_SHARED, 0)
776
777 /*
778 * Mark the prot value as uncacheable and unbufferable.
779 */
780 #define pgprot_noncached(prot) \
781 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
782 #define pgprot_writecombine(prot) \
783 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
784 #define pgprot_device(prot) \
785 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
786 #define pgprot_tagged(prot) \
787 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
788 #define pgprot_mhp pgprot_tagged
789 /*
790 * DMA allocations for non-coherent devices use what the Arm architecture calls
791 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
792 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
793 * is intended for MMIO and thus forbids speculation, preserves access size,
794 * requires strict alignment and can also force write responses to come from the
795 * endpoint.
796 */
797 #define pgprot_dmacoherent(prot) \
798 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
799 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
800
801 #define __HAVE_PHYS_MEM_ACCESS_PROT
802 struct file;
803 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
804 unsigned long size, pgprot_t vma_prot);
805
806 #define pmd_none(pmd) (!pmd_val(pmd))
807
808 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
809 PMD_TYPE_TABLE)
810 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
811 PMD_TYPE_SECT)
812 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
813 #define pmd_bad(pmd) (!pmd_table(pmd))
814
815 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
816 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
817
818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)819 static inline int pmd_trans_huge(pmd_t pmd)
820 {
821 /*
822 * If pmd is present-invalid, pmd_table() won't detect it
823 * as a table, so force the valid bit for the comparison.
824 */
825 return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
826 }
827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
828
829 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)830 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)831 static inline bool pud_table(pud_t pud) { return true; }
832 #else
833 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
834 PUD_TYPE_SECT)
835 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
836 PUD_TYPE_TABLE)
837 #endif
838
839 extern pgd_t swapper_pg_dir[];
840 extern pgd_t idmap_pg_dir[];
841 extern pgd_t tramp_pg_dir[];
842 extern pgd_t reserved_pg_dir[];
843
844 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
845
in_swapper_pgdir(void * addr)846 static inline bool in_swapper_pgdir(void *addr)
847 {
848 return ((unsigned long)addr & PAGE_MASK) ==
849 ((unsigned long)swapper_pg_dir & PAGE_MASK);
850 }
851
set_pmd(pmd_t * pmdp,pmd_t pmd)852 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
853 {
854 #ifdef __PAGETABLE_PMD_FOLDED
855 if (in_swapper_pgdir(pmdp)) {
856 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
857 return;
858 }
859 #endif /* __PAGETABLE_PMD_FOLDED */
860
861 WRITE_ONCE(*pmdp, pmd);
862
863 if (pmd_valid(pmd))
864 queue_pte_barriers();
865 }
866
pmd_clear(pmd_t * pmdp)867 static inline void pmd_clear(pmd_t *pmdp)
868 {
869 set_pmd(pmdp, __pmd(0));
870 }
871
pmd_page_paddr(pmd_t pmd)872 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
873 {
874 return __pmd_to_phys(pmd);
875 }
876
pmd_page_vaddr(pmd_t pmd)877 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
878 {
879 return (unsigned long)__va(pmd_page_paddr(pmd));
880 }
881
882 /* Find an entry in the third-level page table. */
883 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
884
885 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
886 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
887 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
888
889 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
890
891 /* use ONLY for statically allocated translation tables */
892 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
893
894 #if CONFIG_PGTABLE_LEVELS > 2
895
896 #define pmd_ERROR(e) \
897 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
898
899 #define pud_none(pud) (!pud_val(pud))
900 #define pud_bad(pud) ((pud_val(pud) & PUD_TYPE_MASK) != \
901 PUD_TYPE_TABLE)
902 #define pud_present(pud) pte_present(pud_pte(pud))
903 #ifndef __PAGETABLE_PMD_FOLDED
904 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
905 #else
906 #define pud_leaf(pud) false
907 #endif
908 #define pud_valid(pud) pte_valid(pud_pte(pud))
909 #define pud_user(pud) pte_user(pud_pte(pud))
910 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
911
912 static inline bool pgtable_l4_enabled(void);
913
set_pud(pud_t * pudp,pud_t pud)914 static inline void set_pud(pud_t *pudp, pud_t pud)
915 {
916 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
917 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
918 return;
919 }
920
921 WRITE_ONCE(*pudp, pud);
922
923 if (pud_valid(pud))
924 queue_pte_barriers();
925 }
926
pud_clear(pud_t * pudp)927 static inline void pud_clear(pud_t *pudp)
928 {
929 set_pud(pudp, __pud(0));
930 }
931
pud_page_paddr(pud_t pud)932 static inline phys_addr_t pud_page_paddr(pud_t pud)
933 {
934 return __pud_to_phys(pud);
935 }
936
pud_pgtable(pud_t pud)937 static inline pmd_t *pud_pgtable(pud_t pud)
938 {
939 return (pmd_t *)__va(pud_page_paddr(pud));
940 }
941
942 /* Find an entry in the second-level page table. */
943 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
944
945 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
946 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
947 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
948
949 #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
950
951 /* use ONLY for statically allocated translation tables */
952 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
953
954 #else
955
956 #define pud_valid(pud) false
957 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
958 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
959
960 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
961 #define pmd_set_fixmap(addr) NULL
962 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
963 #define pmd_clear_fixmap()
964
965 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
966
967 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
968
969 #if CONFIG_PGTABLE_LEVELS > 3
970
pgtable_l4_enabled(void)971 static __always_inline bool pgtable_l4_enabled(void)
972 {
973 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
974 return true;
975 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
976 return vabits_actual == VA_BITS;
977 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
978 }
979
mm_pud_folded(const struct mm_struct * mm)980 static inline bool mm_pud_folded(const struct mm_struct *mm)
981 {
982 return !pgtable_l4_enabled();
983 }
984 #define mm_pud_folded mm_pud_folded
985
986 #define pud_ERROR(e) \
987 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
988
989 #define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d))
990 #define p4d_bad(p4d) (pgtable_l4_enabled() && \
991 ((p4d_val(p4d) & P4D_TYPE_MASK) != \
992 P4D_TYPE_TABLE))
993 #define p4d_present(p4d) (!p4d_none(p4d))
994
set_p4d(p4d_t * p4dp,p4d_t p4d)995 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
996 {
997 if (in_swapper_pgdir(p4dp)) {
998 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
999 return;
1000 }
1001
1002 WRITE_ONCE(*p4dp, p4d);
1003 queue_pte_barriers();
1004 }
1005
p4d_clear(p4d_t * p4dp)1006 static inline void p4d_clear(p4d_t *p4dp)
1007 {
1008 if (pgtable_l4_enabled())
1009 set_p4d(p4dp, __p4d(0));
1010 }
1011
p4d_page_paddr(p4d_t p4d)1012 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
1013 {
1014 return __p4d_to_phys(p4d);
1015 }
1016
1017 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
1018
p4d_to_folded_pud(p4d_t * p4dp,unsigned long addr)1019 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
1020 {
1021 /* Ensure that 'p4dp' indexes a page table according to 'addr' */
1022 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
1023
1024 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
1025 }
1026
p4d_pgtable(p4d_t p4d)1027 static inline pud_t *p4d_pgtable(p4d_t p4d)
1028 {
1029 return (pud_t *)__va(p4d_page_paddr(p4d));
1030 }
1031
pud_offset_phys(p4d_t * p4dp,unsigned long addr)1032 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
1033 {
1034 BUG_ON(!pgtable_l4_enabled());
1035
1036 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
1037 }
1038
1039 static inline
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long addr)1040 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
1041 {
1042 if (!pgtable_l4_enabled())
1043 return p4d_to_folded_pud(p4dp, addr);
1044 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
1045 }
1046 #define pud_offset_lockless pud_offset_lockless
1047
pud_offset(p4d_t * p4dp,unsigned long addr)1048 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
1049 {
1050 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
1051 }
1052 #define pud_offset pud_offset
1053
pud_set_fixmap(unsigned long addr)1054 static inline pud_t *pud_set_fixmap(unsigned long addr)
1055 {
1056 if (!pgtable_l4_enabled())
1057 return NULL;
1058 return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
1059 }
1060
pud_set_fixmap_offset(p4d_t * p4dp,unsigned long addr)1061 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
1062 {
1063 if (!pgtable_l4_enabled())
1064 return p4d_to_folded_pud(p4dp, addr);
1065 return pud_set_fixmap(pud_offset_phys(p4dp, addr));
1066 }
1067
pud_clear_fixmap(void)1068 static inline void pud_clear_fixmap(void)
1069 {
1070 if (pgtable_l4_enabled())
1071 clear_fixmap(FIX_PUD);
1072 }
1073
1074 /* use ONLY for statically allocated translation tables */
pud_offset_kimg(p4d_t * p4dp,u64 addr)1075 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
1076 {
1077 if (!pgtable_l4_enabled())
1078 return p4d_to_folded_pud(p4dp, addr);
1079 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
1080 }
1081
1082 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
1083
1084 #else
1085
pgtable_l4_enabled(void)1086 static inline bool pgtable_l4_enabled(void) { return false; }
1087
1088 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
1089
1090 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
1091 #define pud_set_fixmap(addr) NULL
1092 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
1093 #define pud_clear_fixmap()
1094
1095 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
1096
1097 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
1098
1099 #if CONFIG_PGTABLE_LEVELS > 4
1100
pgtable_l5_enabled(void)1101 static __always_inline bool pgtable_l5_enabled(void)
1102 {
1103 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1104 return vabits_actual == VA_BITS;
1105 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1106 }
1107
mm_p4d_folded(const struct mm_struct * mm)1108 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1109 {
1110 return !pgtable_l5_enabled();
1111 }
1112 #define mm_p4d_folded mm_p4d_folded
1113
1114 #define p4d_ERROR(e) \
1115 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1116
1117 #define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd))
1118 #define pgd_bad(pgd) (pgtable_l5_enabled() && \
1119 ((pgd_val(pgd) & PGD_TYPE_MASK) != \
1120 PGD_TYPE_TABLE))
1121 #define pgd_present(pgd) (!pgd_none(pgd))
1122
set_pgd(pgd_t * pgdp,pgd_t pgd)1123 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1124 {
1125 if (in_swapper_pgdir(pgdp)) {
1126 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1127 return;
1128 }
1129
1130 WRITE_ONCE(*pgdp, pgd);
1131 queue_pte_barriers();
1132 }
1133
pgd_clear(pgd_t * pgdp)1134 static inline void pgd_clear(pgd_t *pgdp)
1135 {
1136 if (pgtable_l5_enabled())
1137 set_pgd(pgdp, __pgd(0));
1138 }
1139
pgd_page_paddr(pgd_t pgd)1140 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1141 {
1142 return __pgd_to_phys(pgd);
1143 }
1144
1145 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1146
pgd_to_folded_p4d(pgd_t * pgdp,unsigned long addr)1147 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1148 {
1149 /* Ensure that 'pgdp' indexes a page table according to 'addr' */
1150 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1151
1152 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1153 }
1154
p4d_offset_phys(pgd_t * pgdp,unsigned long addr)1155 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1156 {
1157 BUG_ON(!pgtable_l5_enabled());
1158
1159 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1160 }
1161
1162 static inline
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1163 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1164 {
1165 if (!pgtable_l5_enabled())
1166 return pgd_to_folded_p4d(pgdp, addr);
1167 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1168 }
1169 #define p4d_offset_lockless p4d_offset_lockless
1170
p4d_offset(pgd_t * pgdp,unsigned long addr)1171 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1172 {
1173 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1174 }
1175
p4d_set_fixmap(unsigned long addr)1176 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1177 {
1178 if (!pgtable_l5_enabled())
1179 return NULL;
1180 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1181 }
1182
p4d_set_fixmap_offset(pgd_t * pgdp,unsigned long addr)1183 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1184 {
1185 if (!pgtable_l5_enabled())
1186 return pgd_to_folded_p4d(pgdp, addr);
1187 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1188 }
1189
p4d_clear_fixmap(void)1190 static inline void p4d_clear_fixmap(void)
1191 {
1192 if (pgtable_l5_enabled())
1193 clear_fixmap(FIX_P4D);
1194 }
1195
1196 /* use ONLY for statically allocated translation tables */
p4d_offset_kimg(pgd_t * pgdp,u64 addr)1197 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1198 {
1199 if (!pgtable_l5_enabled())
1200 return pgd_to_folded_p4d(pgdp, addr);
1201 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1202 }
1203
1204 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1205
1206 #else
1207
pgtable_l5_enabled(void)1208 static inline bool pgtable_l5_enabled(void) { return false; }
1209
1210 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1211
1212 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1213 #define p4d_set_fixmap(addr) NULL
1214 #define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp)
1215 #define p4d_clear_fixmap()
1216
1217 #define p4d_offset_kimg(dir,addr) ((p4d_t *)dir)
1218
1219 static inline
p4d_offset_lockless_folded(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1220 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1221 {
1222 /*
1223 * With runtime folding of the pud, pud_offset_lockless() passes
1224 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1225 * will offset the pointer assuming that it points into
1226 * a page-table page. However, the fast GUP path passes us a
1227 * pgd_t allocated on the stack and so we must use the original
1228 * pointer in 'pgdp' to construct the p4d pointer instead of
1229 * using the generic p4d_offset_lockless() implementation.
1230 *
1231 * Note: reusing the original pointer means that we may
1232 * dereference the same (live) page-table entry multiple times.
1233 * This is safe because it is still only loaded once in the
1234 * context of each level and the CPU guarantees same-address
1235 * read-after-read ordering.
1236 */
1237 return p4d_offset(pgdp, addr);
1238 }
1239 #define p4d_offset_lockless p4d_offset_lockless_folded
1240
1241 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
1242
1243 #define pgd_ERROR(e) \
1244 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1245
1246 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1247 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
1248
pte_modify(pte_t pte,pgprot_t newprot)1249 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1250 {
1251 /*
1252 * Normal and Normal-Tagged are two different memory types and indices
1253 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1254 */
1255 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1256 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1257 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1258
1259 /* preserve the hardware dirty information */
1260 if (pte_hw_dirty(pte))
1261 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1262
1263 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1264 /*
1265 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1266 * dirtiness again.
1267 */
1268 if (pte_sw_dirty(pte))
1269 pte = pte_mkdirty(pte);
1270 return pte;
1271 }
1272
pmd_modify(pmd_t pmd,pgprot_t newprot)1273 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1274 {
1275 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1276 }
1277
1278 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1279 unsigned long address, pte_t *ptep,
1280 pte_t entry, int dirty);
1281
1282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1283 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)1284 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1285 unsigned long address, pmd_t *pmdp,
1286 pmd_t entry, int dirty)
1287 {
1288 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1289 pmd_pte(entry), dirty);
1290 }
1291 #endif
1292
1293 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1294 static inline bool pte_user_accessible_page(pte_t pte)
1295 {
1296 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1297 }
1298
pmd_user_accessible_page(pmd_t pmd)1299 static inline bool pmd_user_accessible_page(pmd_t pmd)
1300 {
1301 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1302 }
1303
pud_user_accessible_page(pud_t pud)1304 static inline bool pud_user_accessible_page(pud_t pud)
1305 {
1306 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1307 }
1308 #endif
1309
1310 /*
1311 * Atomic pte/pmd modifications.
1312 */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1313 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1314 unsigned long address,
1315 pte_t *ptep)
1316 {
1317 pte_t old_pte, pte;
1318
1319 pte = __ptep_get(ptep);
1320 do {
1321 old_pte = pte;
1322 pte = pte_mkold(pte);
1323 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1324 pte_val(old_pte), pte_val(pte));
1325 } while (pte_val(pte) != pte_val(old_pte));
1326
1327 return pte_young(pte);
1328 }
1329
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1330 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1331 unsigned long address, pte_t *ptep)
1332 {
1333 int young = __ptep_test_and_clear_young(vma, address, ptep);
1334
1335 if (young) {
1336 /*
1337 * We can elide the trailing DSB here since the worst that can
1338 * happen is that a CPU continues to use the young entry in its
1339 * TLB and we mistakenly reclaim the associated page. The
1340 * window for such an event is bounded by the next
1341 * context-switch, which provides a DSB to complete the TLB
1342 * invalidation.
1343 */
1344 flush_tlb_page_nosync(vma, address);
1345 }
1346
1347 return young;
1348 }
1349
1350 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1351 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1352 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1353 unsigned long address,
1354 pmd_t *pmdp)
1355 {
1356 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1357 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1358 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1359 }
1360 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1361
__ptep_get_and_clear_anysz(struct mm_struct * mm,pte_t * ptep,unsigned long pgsize)1362 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm,
1363 pte_t *ptep,
1364 unsigned long pgsize)
1365 {
1366 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1367
1368 switch (pgsize) {
1369 case PAGE_SIZE:
1370 page_table_check_pte_clear(mm, pte);
1371 break;
1372 case PMD_SIZE:
1373 page_table_check_pmd_clear(mm, pte_pmd(pte));
1374 break;
1375 #ifndef __PAGETABLE_PMD_FOLDED
1376 case PUD_SIZE:
1377 page_table_check_pud_clear(mm, pte_pud(pte));
1378 break;
1379 #endif
1380 default:
1381 VM_WARN_ON(1);
1382 }
1383
1384 return pte;
1385 }
1386
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)1387 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1388 unsigned long address, pte_t *ptep)
1389 {
1390 return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE);
1391 }
1392
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1393 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1394 pte_t *ptep, unsigned int nr, int full)
1395 {
1396 for (;;) {
1397 __ptep_get_and_clear(mm, addr, ptep);
1398 if (--nr == 0)
1399 break;
1400 ptep++;
1401 addr += PAGE_SIZE;
1402 }
1403 }
1404
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1405 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1406 unsigned long addr, pte_t *ptep,
1407 unsigned int nr, int full)
1408 {
1409 pte_t pte, tmp_pte;
1410
1411 pte = __ptep_get_and_clear(mm, addr, ptep);
1412 while (--nr) {
1413 ptep++;
1414 addr += PAGE_SIZE;
1415 tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1416 if (pte_dirty(tmp_pte))
1417 pte = pte_mkdirty(pte);
1418 if (pte_young(tmp_pte))
1419 pte = pte_mkyoung(pte);
1420 }
1421 return pte;
1422 }
1423
1424 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1425 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1426 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1427 unsigned long address, pmd_t *pmdp)
1428 {
1429 return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE));
1430 }
1431 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1432
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1433 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1434 unsigned long address, pte_t *ptep,
1435 pte_t pte)
1436 {
1437 pte_t old_pte;
1438
1439 do {
1440 old_pte = pte;
1441 pte = pte_wrprotect(pte);
1442 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1443 pte_val(old_pte), pte_val(pte));
1444 } while (pte_val(pte) != pte_val(old_pte));
1445 }
1446
1447 /*
1448 * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1449 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1450 */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1451 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1452 unsigned long address, pte_t *ptep)
1453 {
1454 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1455 }
1456
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1457 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1458 pte_t *ptep, unsigned int nr)
1459 {
1460 unsigned int i;
1461
1462 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1463 __ptep_set_wrprotect(mm, address, ptep);
1464 }
1465
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1466 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1467 unsigned long addr, pte_t *ptep,
1468 pte_t pte, cydp_t flags)
1469 {
1470 pte_t old_pte;
1471
1472 do {
1473 old_pte = pte;
1474
1475 if (flags & CYDP_CLEAR_YOUNG)
1476 pte = pte_mkold(pte);
1477 if (flags & CYDP_CLEAR_DIRTY)
1478 pte = pte_mkclean(pte);
1479
1480 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1481 pte_val(old_pte), pte_val(pte));
1482 } while (pte_val(pte) != pte_val(old_pte));
1483 }
1484
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1485 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1486 unsigned long addr, pte_t *ptep,
1487 unsigned int nr, cydp_t flags)
1488 {
1489 pte_t pte;
1490
1491 for (;;) {
1492 pte = __ptep_get(ptep);
1493
1494 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1495 __set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1496 else
1497 __clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1498
1499 if (--nr == 0)
1500 break;
1501 ptep++;
1502 addr += PAGE_SIZE;
1503 }
1504 }
1505
1506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1507 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1508 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1509 unsigned long address, pmd_t *pmdp)
1510 {
1511 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1512 }
1513
1514 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1515 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1516 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1517 {
1518 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1519 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1520 }
1521 #endif
1522
1523 /*
1524 * Encode and decode a swap entry:
1525 * bits 0-1: present (must be zero)
1526 * bits 2: remember PG_anon_exclusive
1527 * bit 3: remember uffd-wp state
1528 * bits 6-10: swap type
1529 * bit 11: PTE_PRESENT_INVALID (must be zero)
1530 * bits 12-61: swap offset
1531 */
1532 #define __SWP_TYPE_SHIFT 6
1533 #define __SWP_TYPE_BITS 5
1534 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
1535 #define __SWP_OFFSET_SHIFT 12
1536 #define __SWP_OFFSET_BITS 50
1537 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
1538
1539 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1540 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1541 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1542
1543 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1544 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
1545
1546 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1547 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1548 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1549 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1550
1551 /*
1552 * Ensure that there are not more swap files than can be encoded in the kernel
1553 * PTEs.
1554 */
1555 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1556
1557 #ifdef CONFIG_ARM64_MTE
1558
1559 #define __HAVE_ARCH_PREPARE_TO_SWAP
1560 extern int arch_prepare_to_swap(struct folio *folio);
1561
1562 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1563 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1564 {
1565 if (system_supports_mte())
1566 mte_invalidate_tags(type, offset);
1567 }
1568
arch_swap_invalidate_area(int type)1569 static inline void arch_swap_invalidate_area(int type)
1570 {
1571 if (system_supports_mte())
1572 mte_invalidate_tags_area(type);
1573 }
1574
1575 #define __HAVE_ARCH_SWAP_RESTORE
1576 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1577
1578 #endif /* CONFIG_ARM64_MTE */
1579
1580 /*
1581 * On AArch64, the cache coherency is handled via the __set_ptes() function.
1582 */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1583 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1584 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1585 unsigned int nr)
1586 {
1587 /*
1588 * We don't do anything here, so there's a very small chance of
1589 * us retaking a user fault which we just fixed up. The alternative
1590 * is doing a dsb(ishst), but that penalises the fastpath.
1591 */
1592 }
1593
1594 #define update_mmu_cache(vma, addr, ptep) \
1595 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1596 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1597
1598 #ifdef CONFIG_ARM64_PA_BITS_52
1599 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1600 #else
1601 #define phys_to_ttbr(addr) (addr)
1602 #endif
1603
1604 /*
1605 * On arm64 without hardware Access Flag, copying from user will fail because
1606 * the pte is old and cannot be marked young. So we always end up with zeroed
1607 * page after fork() + CoW for pfn mappings. We don't always have a
1608 * hardware-managed access flag on arm64.
1609 */
1610 #define arch_has_hw_pte_young cpu_has_hw_af
1611
1612 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1613 #define arch_has_hw_nonleaf_pmd_young system_supports_haft
1614 #endif
1615
1616 /*
1617 * Experimentally, it's cheap to set the access flag in hardware and we
1618 * benefit from prefaulting mappings as 'old' to start with.
1619 */
1620 #define arch_wants_old_prefaulted_pte cpu_has_hw_af
1621
1622 /*
1623 * Request exec memory is read into pagecache in at least 64K folios. This size
1624 * can be contpte-mapped when 4K base pages are in use (16 pages into 1 iTLB
1625 * entry), and HPA can coalesce it (4 pages into 1 TLB entry) when 16K base
1626 * pages are in use.
1627 */
1628 #define exec_folio_order() ilog2(SZ_64K >> PAGE_SHIFT)
1629
pud_sect_supported(void)1630 static inline bool pud_sect_supported(void)
1631 {
1632 return PAGE_SIZE == SZ_4K;
1633 }
1634
1635
1636 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1637 #define ptep_modify_prot_start ptep_modify_prot_start
1638 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1639 unsigned long addr, pte_t *ptep);
1640
1641 #define ptep_modify_prot_commit ptep_modify_prot_commit
1642 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1643 unsigned long addr, pte_t *ptep,
1644 pte_t old_pte, pte_t new_pte);
1645
1646 #define modify_prot_start_ptes modify_prot_start_ptes
1647 extern pte_t modify_prot_start_ptes(struct vm_area_struct *vma,
1648 unsigned long addr, pte_t *ptep,
1649 unsigned int nr);
1650
1651 #define modify_prot_commit_ptes modify_prot_commit_ptes
1652 extern void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1653 pte_t *ptep, pte_t old_pte, pte_t pte,
1654 unsigned int nr);
1655
1656 #ifdef CONFIG_ARM64_CONTPTE
1657
1658 /*
1659 * The contpte APIs are used to transparently manage the contiguous bit in ptes
1660 * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1661 * a private implementation detail of the public ptep API (see below).
1662 */
1663 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1664 pte_t *ptep, pte_t pte);
1665 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1666 pte_t *ptep, pte_t pte);
1667 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1668 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1669 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1670 pte_t *ptep, pte_t pte, unsigned int nr);
1671 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1672 pte_t *ptep, unsigned int nr, int full);
1673 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1674 unsigned long addr, pte_t *ptep,
1675 unsigned int nr, int full);
1676 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1677 unsigned long addr, pte_t *ptep);
1678 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1679 unsigned long addr, pte_t *ptep);
1680 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1681 pte_t *ptep, unsigned int nr);
1682 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1683 unsigned long addr, pte_t *ptep,
1684 pte_t entry, int dirty);
1685 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1686 unsigned long addr, pte_t *ptep,
1687 unsigned int nr, cydp_t flags);
1688
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1689 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1690 unsigned long addr, pte_t *ptep, pte_t pte)
1691 {
1692 /*
1693 * Only bother trying if both the virtual and physical addresses are
1694 * aligned and correspond to the last entry in a contig range. The core
1695 * code mostly modifies ranges from low to high, so this is the likely
1696 * the last modification in the contig range, so a good time to fold.
1697 * We can't fold special mappings, because there is no associated folio.
1698 */
1699
1700 const unsigned long contmask = CONT_PTES - 1;
1701 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1702
1703 if (unlikely(valign)) {
1704 bool palign = (pte_pfn(pte) & contmask) == contmask;
1705
1706 if (unlikely(palign &&
1707 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1708 __contpte_try_fold(mm, addr, ptep, pte);
1709 }
1710 }
1711
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1712 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1713 unsigned long addr, pte_t *ptep, pte_t pte)
1714 {
1715 if (unlikely(pte_valid_cont(pte)))
1716 __contpte_try_unfold(mm, addr, ptep, pte);
1717 }
1718
1719 #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1720 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1721 {
1722 if (!pte_valid_cont(pte))
1723 return 1;
1724
1725 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1726 }
1727
1728 /*
1729 * The below functions constitute the public API that arm64 presents to the
1730 * core-mm to manipulate PTE entries within their page tables (or at least this
1731 * is the subset of the API that arm64 needs to implement). These public
1732 * versions will automatically and transparently apply the contiguous bit where
1733 * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1734 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1735 * private versions, which are prefixed with double underscore. All of these
1736 * APIs except for ptep_get_lockless() are expected to be called with the PTL
1737 * held. Although the contiguous bit is considered private to the
1738 * implementation, it is deliberately allowed to leak through the getters (e.g.
1739 * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1740 * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1741 * its possible a pte will be passed to a setter with the contiguous bit set, so
1742 * we explicitly clear the contiguous bit in those cases to prevent accidentally
1743 * setting it in the pgtable.
1744 */
1745
1746 #define ptep_get ptep_get
ptep_get(pte_t * ptep)1747 static inline pte_t ptep_get(pte_t *ptep)
1748 {
1749 pte_t pte = __ptep_get(ptep);
1750
1751 if (likely(!pte_valid_cont(pte)))
1752 return pte;
1753
1754 return contpte_ptep_get(ptep, pte);
1755 }
1756
1757 #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1758 static inline pte_t ptep_get_lockless(pte_t *ptep)
1759 {
1760 pte_t pte = __ptep_get(ptep);
1761
1762 if (likely(!pte_valid_cont(pte)))
1763 return pte;
1764
1765 return contpte_ptep_get_lockless(ptep);
1766 }
1767
set_pte(pte_t * ptep,pte_t pte)1768 static inline void set_pte(pte_t *ptep, pte_t pte)
1769 {
1770 /*
1771 * We don't have the mm or vaddr so cannot unfold contig entries (since
1772 * it requires tlb maintenance). set_pte() is not used in core code, so
1773 * this should never even be called. Regardless do our best to service
1774 * any call and emit a warning if there is any attempt to set a pte on
1775 * top of an existing contig range.
1776 */
1777 pte_t orig_pte = __ptep_get(ptep);
1778
1779 WARN_ON_ONCE(pte_valid_cont(orig_pte));
1780 __set_pte(ptep, pte_mknoncont(pte));
1781 }
1782
1783 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1784 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1785 pte_t *ptep, pte_t pte, unsigned int nr)
1786 {
1787 pte = pte_mknoncont(pte);
1788
1789 if (likely(nr == 1)) {
1790 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1791 __set_ptes(mm, addr, ptep, pte, 1);
1792 contpte_try_fold(mm, addr, ptep, pte);
1793 } else {
1794 contpte_set_ptes(mm, addr, ptep, pte, nr);
1795 }
1796 }
1797
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1798 static inline void pte_clear(struct mm_struct *mm,
1799 unsigned long addr, pte_t *ptep)
1800 {
1801 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1802 __pte_clear(mm, addr, ptep);
1803 }
1804
1805 #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1806 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1807 pte_t *ptep, unsigned int nr, int full)
1808 {
1809 if (likely(nr == 1)) {
1810 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1811 __clear_full_ptes(mm, addr, ptep, nr, full);
1812 } else {
1813 contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1814 }
1815 }
1816
1817 #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1818 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1819 unsigned long addr, pte_t *ptep,
1820 unsigned int nr, int full)
1821 {
1822 pte_t pte;
1823
1824 if (likely(nr == 1)) {
1825 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1826 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1827 } else {
1828 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1829 }
1830
1831 return pte;
1832 }
1833
1834 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1835 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1836 unsigned long addr, pte_t *ptep)
1837 {
1838 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1839 return __ptep_get_and_clear(mm, addr, ptep);
1840 }
1841
1842 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1843 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1844 unsigned long addr, pte_t *ptep)
1845 {
1846 pte_t orig_pte = __ptep_get(ptep);
1847
1848 if (likely(!pte_valid_cont(orig_pte)))
1849 return __ptep_test_and_clear_young(vma, addr, ptep);
1850
1851 return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1852 }
1853
1854 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1855 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1856 unsigned long addr, pte_t *ptep)
1857 {
1858 pte_t orig_pte = __ptep_get(ptep);
1859
1860 if (likely(!pte_valid_cont(orig_pte)))
1861 return __ptep_clear_flush_young(vma, addr, ptep);
1862
1863 return contpte_ptep_clear_flush_young(vma, addr, ptep);
1864 }
1865
1866 #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1867 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1868 unsigned long addr, pte_t *ptep, unsigned int nr)
1869 {
1870 if (likely(nr == 1)) {
1871 /*
1872 * Optimization: wrprotect_ptes() can only be called for present
1873 * ptes so we only need to check contig bit as condition for
1874 * unfold, and we can remove the contig bit from the pte we read
1875 * to avoid re-reading. This speeds up fork() which is sensitive
1876 * for order-0 folios. Equivalent to contpte_try_unfold().
1877 */
1878 pte_t orig_pte = __ptep_get(ptep);
1879
1880 if (unlikely(pte_cont(orig_pte))) {
1881 __contpte_try_unfold(mm, addr, ptep, orig_pte);
1882 orig_pte = pte_mknoncont(orig_pte);
1883 }
1884 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1885 } else {
1886 contpte_wrprotect_ptes(mm, addr, ptep, nr);
1887 }
1888 }
1889
1890 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1891 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1892 unsigned long addr, pte_t *ptep)
1893 {
1894 wrprotect_ptes(mm, addr, ptep, 1);
1895 }
1896
1897 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1898 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1899 unsigned long addr, pte_t *ptep,
1900 pte_t entry, int dirty)
1901 {
1902 pte_t orig_pte = __ptep_get(ptep);
1903
1904 entry = pte_mknoncont(entry);
1905
1906 if (likely(!pte_valid_cont(orig_pte)))
1907 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1908
1909 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1910 }
1911
1912 #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1913 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1914 unsigned long addr, pte_t *ptep,
1915 unsigned int nr, cydp_t flags)
1916 {
1917 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1918 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1919 else
1920 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1921 }
1922
1923 #else /* CONFIG_ARM64_CONTPTE */
1924
1925 #define ptep_get __ptep_get
1926 #define set_pte __set_pte
1927 #define set_ptes __set_ptes
1928 #define pte_clear __pte_clear
1929 #define clear_full_ptes __clear_full_ptes
1930 #define get_and_clear_full_ptes __get_and_clear_full_ptes
1931 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1932 #define ptep_get_and_clear __ptep_get_and_clear
1933 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1934 #define ptep_test_and_clear_young __ptep_test_and_clear_young
1935 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1936 #define ptep_clear_flush_young __ptep_clear_flush_young
1937 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1938 #define ptep_set_wrprotect __ptep_set_wrprotect
1939 #define wrprotect_ptes __wrprotect_ptes
1940 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1941 #define ptep_set_access_flags __ptep_set_access_flags
1942 #define clear_young_dirty_ptes __clear_young_dirty_ptes
1943
1944 #endif /* CONFIG_ARM64_CONTPTE */
1945
1946 #endif /* !__ASSEMBLY__ */
1947
1948 #endif /* __ASM_PGTABLE_H */
1949