1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
15 #ifndef __SVM_SVM_H
16 #define __SVM_SVM_H
17
18 #include <linux/kvm_types.h>
19 #include <linux/kvm_host.h>
20 #include <linux/bits.h>
21
22 #include <asm/svm.h>
23 #include <asm/sev-common.h>
24
25 #include "cpuid.h"
26 #include "kvm_cache_regs.h"
27
28 /*
29 * Helpers to convert to/from physical addresses for pages whose address is
30 * consumed directly by hardware. Even though it's a physical address, SVM
31 * often restricts the address to the natural width, hence 'unsigned long'
32 * instead of 'hpa_t'.
33 */
__sme_page_pa(struct page * page)34 static inline unsigned long __sme_page_pa(struct page *page)
35 {
36 return __sme_set(page_to_pfn(page) << PAGE_SHIFT);
37 }
38
__sme_pa_to_page(unsigned long pa)39 static inline struct page *__sme_pa_to_page(unsigned long pa)
40 {
41 return pfn_to_page(__sme_clr(pa) >> PAGE_SHIFT);
42 }
43
44 #define IOPM_SIZE PAGE_SIZE * 3
45 #define MSRPM_SIZE PAGE_SIZE * 2
46
47 #define MAX_DIRECT_ACCESS_MSRS 48
48 #define MSRPM_OFFSETS 32
49 extern u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
50 extern bool npt_enabled;
51 extern int nrips;
52 extern int vgif;
53 extern bool intercept_smi;
54 extern bool x2avic_enabled;
55 extern bool vnmi;
56 extern int lbrv;
57
58 /*
59 * Clean bits in VMCB.
60 * VMCB_ALL_CLEAN_MASK might also need to
61 * be updated if this enum is modified.
62 */
63 enum {
64 VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
65 pause filter count */
66 VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
67 VMCB_ASID, /* ASID */
68 VMCB_INTR, /* int_ctl, int_vector */
69 VMCB_NPT, /* npt_en, nCR3, gPAT */
70 VMCB_CR, /* CR0, CR3, CR4, EFER */
71 VMCB_DR, /* DR6, DR7 */
72 VMCB_DT, /* GDT, IDT */
73 VMCB_SEG, /* CS, DS, SS, ES, CPL */
74 VMCB_CR2, /* CR2 only */
75 VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
76 VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE,
77 * AVIC PHYSICAL_TABLE pointer,
78 * AVIC LOGICAL_TABLE pointer
79 */
80 VMCB_SW = 31, /* Reserved for hypervisor/software use */
81 };
82
83 #define VMCB_ALL_CLEAN_MASK ( \
84 (1U << VMCB_INTERCEPTS) | (1U << VMCB_PERM_MAP) | \
85 (1U << VMCB_ASID) | (1U << VMCB_INTR) | \
86 (1U << VMCB_NPT) | (1U << VMCB_CR) | (1U << VMCB_DR) | \
87 (1U << VMCB_DT) | (1U << VMCB_SEG) | (1U << VMCB_CR2) | \
88 (1U << VMCB_LBR) | (1U << VMCB_AVIC) | \
89 (1U << VMCB_SW))
90
91 /* TPR and CR2 are always written before VMRUN */
92 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
93
94 struct kvm_sev_info {
95 bool active; /* SEV enabled guest */
96 bool es_active; /* SEV-ES enabled guest */
97 bool need_init; /* waiting for SEV_INIT2 */
98 unsigned int asid; /* ASID used for this guest */
99 unsigned int handle; /* SEV firmware handle */
100 int fd; /* SEV device fd */
101 unsigned long pages_locked; /* Number of pages locked */
102 struct list_head regions_list; /* List of registered regions */
103 u64 ap_jump_table; /* SEV-ES AP Jump Table address */
104 u64 vmsa_features;
105 u16 ghcb_version; /* Highest guest GHCB protocol version allowed */
106 struct kvm *enc_context_owner; /* Owner of copied encryption context */
107 struct list_head mirror_vms; /* List of VMs mirroring */
108 struct list_head mirror_entry; /* Use as a list entry of mirrors */
109 struct misc_cg *misc_cg; /* For misc cgroup accounting */
110 atomic_t migration_in_progress;
111 void *snp_context; /* SNP guest context page */
112 void *guest_req_buf; /* Bounce buffer for SNP Guest Request input */
113 void *guest_resp_buf; /* Bounce buffer for SNP Guest Request output */
114 struct mutex guest_req_mutex; /* Must acquire before using bounce buffers */
115 };
116
117 struct kvm_svm {
118 struct kvm kvm;
119
120 /* Struct members for AVIC */
121 u32 avic_vm_id;
122 struct page *avic_logical_id_table_page;
123 struct page *avic_physical_id_table_page;
124 struct hlist_node hnode;
125
126 struct kvm_sev_info sev_info;
127 };
128
129 struct kvm_vcpu;
130
131 struct kvm_vmcb_info {
132 struct vmcb *ptr;
133 unsigned long pa;
134 int cpu;
135 uint64_t asid_generation;
136 };
137
138 struct vmcb_save_area_cached {
139 u64 efer;
140 u64 cr4;
141 u64 cr3;
142 u64 cr0;
143 u64 dr7;
144 u64 dr6;
145 };
146
147 struct vmcb_ctrl_area_cached {
148 u32 intercepts[MAX_INTERCEPT];
149 u16 pause_filter_thresh;
150 u16 pause_filter_count;
151 u64 iopm_base_pa;
152 u64 msrpm_base_pa;
153 u64 tsc_offset;
154 u32 asid;
155 u8 tlb_ctl;
156 u32 int_ctl;
157 u32 int_vector;
158 u32 int_state;
159 u32 exit_code;
160 u32 exit_code_hi;
161 u64 exit_info_1;
162 u64 exit_info_2;
163 u32 exit_int_info;
164 u32 exit_int_info_err;
165 u64 nested_ctl;
166 u32 event_inj;
167 u32 event_inj_err;
168 u64 next_rip;
169 u64 nested_cr3;
170 u64 virt_ext;
171 u32 clean;
172 union {
173 #if IS_ENABLED(CONFIG_HYPERV) || IS_ENABLED(CONFIG_KVM_HYPERV)
174 struct hv_vmcb_enlightenments hv_enlightenments;
175 #endif
176 u8 reserved_sw[32];
177 };
178 };
179
180 struct svm_nested_state {
181 struct kvm_vmcb_info vmcb02;
182 u64 hsave_msr;
183 u64 vm_cr_msr;
184 u64 vmcb12_gpa;
185 u64 last_vmcb12_gpa;
186
187 /* These are the merged vectors */
188 u32 *msrpm;
189
190 /* A VMRUN has started but has not yet been performed, so
191 * we cannot inject a nested vmexit yet. */
192 bool nested_run_pending;
193
194 /* cache for control fields of the guest */
195 struct vmcb_ctrl_area_cached ctl;
196
197 /*
198 * Note: this struct is not kept up-to-date while L2 runs; it is only
199 * valid within nested_svm_vmrun.
200 */
201 struct vmcb_save_area_cached save;
202
203 bool initialized;
204
205 /*
206 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
207 * changes in MSR bitmap for L1 or switching to a different L2. Note,
208 * this flag can only be used reliably in conjunction with a paravirt L1
209 * which informs L0 whether any changes to MSR bitmap for L2 were done
210 * on its side.
211 */
212 bool force_msr_bitmap_recalc;
213 };
214
215 struct vcpu_sev_es_state {
216 /* SEV-ES support */
217 struct sev_es_save_area *vmsa;
218 struct ghcb *ghcb;
219 u8 valid_bitmap[16];
220 struct kvm_host_map ghcb_map;
221 bool received_first_sipi;
222 unsigned int ap_reset_hold_type;
223
224 /* SEV-ES scratch area support */
225 u64 sw_scratch;
226 void *ghcb_sa;
227 u32 ghcb_sa_len;
228 bool ghcb_sa_sync;
229 bool ghcb_sa_free;
230
231 /* SNP Page-State-Change buffer entries currently being processed */
232 u16 psc_idx;
233 u16 psc_inflight;
234 bool psc_2m;
235
236 u64 ghcb_registered_gpa;
237
238 struct mutex snp_vmsa_mutex; /* Used to handle concurrent updates of VMSA. */
239 gpa_t snp_vmsa_gpa;
240 bool snp_ap_waiting_for_reset;
241 bool snp_has_guest_vmsa;
242 };
243
244 struct vcpu_svm {
245 struct kvm_vcpu vcpu;
246 /* vmcb always points at current_vmcb->ptr, it's purely a shorthand. */
247 struct vmcb *vmcb;
248 struct kvm_vmcb_info vmcb01;
249 struct kvm_vmcb_info *current_vmcb;
250 u32 asid;
251 u32 sysenter_esp_hi;
252 u32 sysenter_eip_hi;
253 uint64_t tsc_aux;
254
255 u64 msr_decfg;
256
257 u64 next_rip;
258
259 u64 spec_ctrl;
260
261 u64 tsc_ratio_msr;
262 /*
263 * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be
264 * translated into the appropriate L2_CFG bits on the host to
265 * perform speculative control.
266 */
267 u64 virt_spec_ctrl;
268
269 u32 *msrpm;
270
271 ulong nmi_iret_rip;
272
273 struct svm_nested_state nested;
274
275 /* NMI mask value, used when vNMI is not enabled */
276 bool nmi_masked;
277
278 /*
279 * True when NMIs are still masked but guest IRET was just intercepted
280 * and KVM is waiting for RIP to change, which will signal that the
281 * intercepted IRET was retired and thus NMI can be unmasked.
282 */
283 bool awaiting_iret_completion;
284
285 /*
286 * Set when KVM is awaiting IRET completion and needs to inject NMIs as
287 * soon as the IRET completes (e.g. NMI is pending injection). KVM
288 * temporarily steals RFLAGS.TF to single-step the guest in this case
289 * in order to regain control as soon as the NMI-blocking condition
290 * goes away.
291 */
292 bool nmi_singlestep;
293 u64 nmi_singlestep_guest_rflags;
294
295 bool nmi_l1_to_l2;
296
297 unsigned long soft_int_csbase;
298 unsigned long soft_int_old_rip;
299 unsigned long soft_int_next_rip;
300 bool soft_int_injected;
301
302 u32 ldr_reg;
303 u32 dfr_reg;
304 struct page *avic_backing_page;
305 u64 *avic_physical_id_cache;
306
307 /*
308 * Per-vcpu list of struct amd_svm_iommu_ir:
309 * This is used mainly to store interrupt remapping information used
310 * when update the vcpu affinity. This avoids the need to scan for
311 * IRTE and try to match ga_tag in the IOMMU driver.
312 */
313 struct list_head ir_list;
314 spinlock_t ir_list_lock;
315
316 /* Save desired MSR intercept (read: pass-through) state */
317 struct {
318 DECLARE_BITMAP(read, MAX_DIRECT_ACCESS_MSRS);
319 DECLARE_BITMAP(write, MAX_DIRECT_ACCESS_MSRS);
320 } shadow_msr_intercept;
321
322 struct vcpu_sev_es_state sev_es;
323
324 bool guest_state_loaded;
325
326 bool x2avic_msrs_intercepted;
327
328 /* Guest GIF value, used when vGIF is not enabled */
329 bool guest_gif;
330 };
331
332 struct svm_cpu_data {
333 u64 asid_generation;
334 u32 max_asid;
335 u32 next_asid;
336 u32 min_asid;
337
338 struct vmcb *save_area;
339 unsigned long save_area_pa;
340
341 struct vmcb *current_vmcb;
342
343 /* index = sev_asid, value = vmcb pointer */
344 struct vmcb **sev_vmcbs;
345 };
346
347 DECLARE_PER_CPU(struct svm_cpu_data, svm_data);
348
349 void recalc_intercepts(struct vcpu_svm *svm);
350
to_kvm_svm(struct kvm * kvm)351 static __always_inline struct kvm_svm *to_kvm_svm(struct kvm *kvm)
352 {
353 return container_of(kvm, struct kvm_svm, kvm);
354 }
355
to_kvm_sev_info(struct kvm * kvm)356 static __always_inline struct kvm_sev_info *to_kvm_sev_info(struct kvm *kvm)
357 {
358 return &to_kvm_svm(kvm)->sev_info;
359 }
360
sev_guest(struct kvm * kvm)361 static __always_inline bool sev_guest(struct kvm *kvm)
362 {
363 #ifdef CONFIG_KVM_AMD_SEV
364 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
365
366 return sev->active;
367 #else
368 return false;
369 #endif
370 }
371
sev_es_guest(struct kvm * kvm)372 static __always_inline bool sev_es_guest(struct kvm *kvm)
373 {
374 #ifdef CONFIG_KVM_AMD_SEV
375 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
376
377 return sev->es_active && !WARN_ON_ONCE(!sev->active);
378 #else
379 return false;
380 #endif
381 }
382
sev_snp_guest(struct kvm * kvm)383 static __always_inline bool sev_snp_guest(struct kvm *kvm)
384 {
385 #ifdef CONFIG_KVM_AMD_SEV
386 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
387
388 return (sev->vmsa_features & SVM_SEV_FEAT_SNP_ACTIVE) &&
389 !WARN_ON_ONCE(!sev_es_guest(kvm));
390 #else
391 return false;
392 #endif
393 }
394
ghcb_gpa_is_registered(struct vcpu_svm * svm,u64 val)395 static inline bool ghcb_gpa_is_registered(struct vcpu_svm *svm, u64 val)
396 {
397 return svm->sev_es.ghcb_registered_gpa == val;
398 }
399
vmcb_mark_all_dirty(struct vmcb * vmcb)400 static inline void vmcb_mark_all_dirty(struct vmcb *vmcb)
401 {
402 vmcb->control.clean = 0;
403 }
404
vmcb_mark_all_clean(struct vmcb * vmcb)405 static inline void vmcb_mark_all_clean(struct vmcb *vmcb)
406 {
407 vmcb->control.clean = VMCB_ALL_CLEAN_MASK
408 & ~VMCB_ALWAYS_DIRTY_MASK;
409 }
410
vmcb_mark_dirty(struct vmcb * vmcb,int bit)411 static inline void vmcb_mark_dirty(struct vmcb *vmcb, int bit)
412 {
413 vmcb->control.clean &= ~(1 << bit);
414 }
415
vmcb_is_dirty(struct vmcb * vmcb,int bit)416 static inline bool vmcb_is_dirty(struct vmcb *vmcb, int bit)
417 {
418 return !test_bit(bit, (unsigned long *)&vmcb->control.clean);
419 }
420
to_svm(struct kvm_vcpu * vcpu)421 static __always_inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
422 {
423 return container_of(vcpu, struct vcpu_svm, vcpu);
424 }
425
426 /*
427 * Only the PDPTRs are loaded on demand into the shadow MMU. All other
428 * fields are synchronized on VM-Exit, because accessing the VMCB is cheap.
429 *
430 * CR3 might be out of date in the VMCB but it is not marked dirty; instead,
431 * KVM_REQ_LOAD_MMU_PGD is always requested when the cached vcpu->arch.cr3
432 * is changed. svm_load_mmu_pgd() then syncs the new CR3 value into the VMCB.
433 */
434 #define SVM_REGS_LAZY_LOAD_SET (1 << VCPU_EXREG_PDPTR)
435
vmcb_set_intercept(struct vmcb_control_area * control,u32 bit)436 static inline void vmcb_set_intercept(struct vmcb_control_area *control, u32 bit)
437 {
438 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
439 __set_bit(bit, (unsigned long *)&control->intercepts);
440 }
441
vmcb_clr_intercept(struct vmcb_control_area * control,u32 bit)442 static inline void vmcb_clr_intercept(struct vmcb_control_area *control, u32 bit)
443 {
444 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
445 __clear_bit(bit, (unsigned long *)&control->intercepts);
446 }
447
vmcb_is_intercept(struct vmcb_control_area * control,u32 bit)448 static inline bool vmcb_is_intercept(struct vmcb_control_area *control, u32 bit)
449 {
450 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
451 return test_bit(bit, (unsigned long *)&control->intercepts);
452 }
453
vmcb12_is_intercept(struct vmcb_ctrl_area_cached * control,u32 bit)454 static inline bool vmcb12_is_intercept(struct vmcb_ctrl_area_cached *control, u32 bit)
455 {
456 WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT);
457 return test_bit(bit, (unsigned long *)&control->intercepts);
458 }
459
set_exception_intercept(struct vcpu_svm * svm,u32 bit)460 static inline void set_exception_intercept(struct vcpu_svm *svm, u32 bit)
461 {
462 struct vmcb *vmcb = svm->vmcb01.ptr;
463
464 WARN_ON_ONCE(bit >= 32);
465 vmcb_set_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
466
467 recalc_intercepts(svm);
468 }
469
clr_exception_intercept(struct vcpu_svm * svm,u32 bit)470 static inline void clr_exception_intercept(struct vcpu_svm *svm, u32 bit)
471 {
472 struct vmcb *vmcb = svm->vmcb01.ptr;
473
474 WARN_ON_ONCE(bit >= 32);
475 vmcb_clr_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit);
476
477 recalc_intercepts(svm);
478 }
479
svm_set_intercept(struct vcpu_svm * svm,int bit)480 static inline void svm_set_intercept(struct vcpu_svm *svm, int bit)
481 {
482 struct vmcb *vmcb = svm->vmcb01.ptr;
483
484 vmcb_set_intercept(&vmcb->control, bit);
485
486 recalc_intercepts(svm);
487 }
488
svm_clr_intercept(struct vcpu_svm * svm,int bit)489 static inline void svm_clr_intercept(struct vcpu_svm *svm, int bit)
490 {
491 struct vmcb *vmcb = svm->vmcb01.ptr;
492
493 vmcb_clr_intercept(&vmcb->control, bit);
494
495 recalc_intercepts(svm);
496 }
497
svm_is_intercept(struct vcpu_svm * svm,int bit)498 static inline bool svm_is_intercept(struct vcpu_svm *svm, int bit)
499 {
500 return vmcb_is_intercept(&svm->vmcb->control, bit);
501 }
502
nested_vgif_enabled(struct vcpu_svm * svm)503 static inline bool nested_vgif_enabled(struct vcpu_svm *svm)
504 {
505 return guest_can_use(&svm->vcpu, X86_FEATURE_VGIF) &&
506 (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK);
507 }
508
get_vgif_vmcb(struct vcpu_svm * svm)509 static inline struct vmcb *get_vgif_vmcb(struct vcpu_svm *svm)
510 {
511 if (!vgif)
512 return NULL;
513
514 if (is_guest_mode(&svm->vcpu) && !nested_vgif_enabled(svm))
515 return svm->nested.vmcb02.ptr;
516 else
517 return svm->vmcb01.ptr;
518 }
519
enable_gif(struct vcpu_svm * svm)520 static inline void enable_gif(struct vcpu_svm *svm)
521 {
522 struct vmcb *vmcb = get_vgif_vmcb(svm);
523
524 if (vmcb)
525 vmcb->control.int_ctl |= V_GIF_MASK;
526 else
527 svm->guest_gif = true;
528 }
529
disable_gif(struct vcpu_svm * svm)530 static inline void disable_gif(struct vcpu_svm *svm)
531 {
532 struct vmcb *vmcb = get_vgif_vmcb(svm);
533
534 if (vmcb)
535 vmcb->control.int_ctl &= ~V_GIF_MASK;
536 else
537 svm->guest_gif = false;
538 }
539
gif_set(struct vcpu_svm * svm)540 static inline bool gif_set(struct vcpu_svm *svm)
541 {
542 struct vmcb *vmcb = get_vgif_vmcb(svm);
543
544 if (vmcb)
545 return !!(vmcb->control.int_ctl & V_GIF_MASK);
546 else
547 return svm->guest_gif;
548 }
549
nested_npt_enabled(struct vcpu_svm * svm)550 static inline bool nested_npt_enabled(struct vcpu_svm *svm)
551 {
552 return svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE;
553 }
554
nested_vnmi_enabled(struct vcpu_svm * svm)555 static inline bool nested_vnmi_enabled(struct vcpu_svm *svm)
556 {
557 return guest_can_use(&svm->vcpu, X86_FEATURE_VNMI) &&
558 (svm->nested.ctl.int_ctl & V_NMI_ENABLE_MASK);
559 }
560
is_x2apic_msrpm_offset(u32 offset)561 static inline bool is_x2apic_msrpm_offset(u32 offset)
562 {
563 /* 4 msrs per u8, and 4 u8 in u32 */
564 u32 msr = offset * 16;
565
566 return (msr >= APIC_BASE_MSR) &&
567 (msr < (APIC_BASE_MSR + 0x100));
568 }
569
get_vnmi_vmcb_l1(struct vcpu_svm * svm)570 static inline struct vmcb *get_vnmi_vmcb_l1(struct vcpu_svm *svm)
571 {
572 if (!vnmi)
573 return NULL;
574
575 if (is_guest_mode(&svm->vcpu))
576 return NULL;
577 else
578 return svm->vmcb01.ptr;
579 }
580
is_vnmi_enabled(struct vcpu_svm * svm)581 static inline bool is_vnmi_enabled(struct vcpu_svm *svm)
582 {
583 struct vmcb *vmcb = get_vnmi_vmcb_l1(svm);
584
585 if (vmcb)
586 return !!(vmcb->control.int_ctl & V_NMI_ENABLE_MASK);
587 else
588 return false;
589 }
590
591 /* svm.c */
592 #define MSR_INVALID 0xffffffffU
593
594 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
595
596 extern bool dump_invalid_vmcb;
597
598 u32 svm_msrpm_offset(u32 msr);
599 u32 *svm_vcpu_alloc_msrpm(void);
600 void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm);
601 void svm_vcpu_free_msrpm(u32 *msrpm);
602 void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
603 void svm_enable_lbrv(struct kvm_vcpu *vcpu);
604 void svm_update_lbrv(struct kvm_vcpu *vcpu);
605
606 int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer);
607 void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
608 void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
609 void disable_nmi_singlestep(struct vcpu_svm *svm);
610 bool svm_smi_blocked(struct kvm_vcpu *vcpu);
611 bool svm_nmi_blocked(struct kvm_vcpu *vcpu);
612 bool svm_interrupt_blocked(struct kvm_vcpu *vcpu);
613 void svm_set_gif(struct vcpu_svm *svm, bool value);
614 int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code);
615 void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
616 int read, int write);
617 void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool disable);
618 void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
619 int trig_mode, int vec);
620
621 /* nested.c */
622
623 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
624 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
625 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
626
nested_svm_virtualize_tpr(struct kvm_vcpu * vcpu)627 static inline bool nested_svm_virtualize_tpr(struct kvm_vcpu *vcpu)
628 {
629 struct vcpu_svm *svm = to_svm(vcpu);
630
631 return is_guest_mode(vcpu) && (svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK);
632 }
633
nested_exit_on_smi(struct vcpu_svm * svm)634 static inline bool nested_exit_on_smi(struct vcpu_svm *svm)
635 {
636 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SMI);
637 }
638
nested_exit_on_intr(struct vcpu_svm * svm)639 static inline bool nested_exit_on_intr(struct vcpu_svm *svm)
640 {
641 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INTR);
642 }
643
nested_exit_on_nmi(struct vcpu_svm * svm)644 static inline bool nested_exit_on_nmi(struct vcpu_svm *svm)
645 {
646 return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_NMI);
647 }
648
649 int enter_svm_guest_mode(struct kvm_vcpu *vcpu,
650 u64 vmcb_gpa, struct vmcb *vmcb12, bool from_vmrun);
651 void svm_leave_nested(struct kvm_vcpu *vcpu);
652 void svm_free_nested(struct vcpu_svm *svm);
653 int svm_allocate_nested(struct vcpu_svm *svm);
654 int nested_svm_vmrun(struct kvm_vcpu *vcpu);
655 void svm_copy_vmrun_state(struct vmcb_save_area *to_save,
656 struct vmcb_save_area *from_save);
657 void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb);
658 int nested_svm_vmexit(struct vcpu_svm *svm);
659
nested_svm_simple_vmexit(struct vcpu_svm * svm,u32 exit_code)660 static inline int nested_svm_simple_vmexit(struct vcpu_svm *svm, u32 exit_code)
661 {
662 svm->vmcb->control.exit_code = exit_code;
663 svm->vmcb->control.exit_info_1 = 0;
664 svm->vmcb->control.exit_info_2 = 0;
665 return nested_svm_vmexit(svm);
666 }
667
668 int nested_svm_exit_handled(struct vcpu_svm *svm);
669 int nested_svm_check_permissions(struct kvm_vcpu *vcpu);
670 int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
671 bool has_error_code, u32 error_code);
672 int nested_svm_exit_special(struct vcpu_svm *svm);
673 void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu);
674 void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu);
675 void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm,
676 struct vmcb_control_area *control);
677 void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm,
678 struct vmcb_save_area *save);
679 void nested_sync_control_from_vmcb02(struct vcpu_svm *svm);
680 void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm);
681 void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb);
682
683 extern struct kvm_x86_nested_ops svm_nested_ops;
684
685 /* avic.c */
686 #define AVIC_REQUIRED_APICV_INHIBITS \
687 ( \
688 BIT(APICV_INHIBIT_REASON_DISABLED) | \
689 BIT(APICV_INHIBIT_REASON_ABSENT) | \
690 BIT(APICV_INHIBIT_REASON_HYPERV) | \
691 BIT(APICV_INHIBIT_REASON_NESTED) | \
692 BIT(APICV_INHIBIT_REASON_IRQWIN) | \
693 BIT(APICV_INHIBIT_REASON_PIT_REINJ) | \
694 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
695 BIT(APICV_INHIBIT_REASON_SEV) | \
696 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
697 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
698 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) | \
699 BIT(APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED) \
700 )
701
702 bool avic_hardware_setup(void);
703 int avic_ga_log_notifier(u32 ga_tag);
704 void avic_vm_destroy(struct kvm *kvm);
705 int avic_vm_init(struct kvm *kvm);
706 void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb);
707 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu);
708 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu);
709 int avic_init_vcpu(struct vcpu_svm *svm);
710 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
711 void avic_vcpu_put(struct kvm_vcpu *vcpu);
712 void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu);
713 void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu);
714 int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
715 uint32_t guest_irq, bool set);
716 void avic_vcpu_blocking(struct kvm_vcpu *vcpu);
717 void avic_vcpu_unblocking(struct kvm_vcpu *vcpu);
718 void avic_ring_doorbell(struct kvm_vcpu *vcpu);
719 unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu);
720 void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu);
721
722
723 /* sev.c */
724
725 void pre_sev_run(struct vcpu_svm *svm, int cpu);
726 void sev_init_vmcb(struct vcpu_svm *svm);
727 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm);
728 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in);
729 void sev_es_vcpu_reset(struct vcpu_svm *svm);
730 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
731 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa);
732 void sev_es_unmap_ghcb(struct vcpu_svm *svm);
733
734 #ifdef CONFIG_KVM_AMD_SEV
735 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp);
736 int sev_mem_enc_register_region(struct kvm *kvm,
737 struct kvm_enc_region *range);
738 int sev_mem_enc_unregister_region(struct kvm *kvm,
739 struct kvm_enc_region *range);
740 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd);
741 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd);
742 void sev_guest_memory_reclaimed(struct kvm *kvm);
743 int sev_handle_vmgexit(struct kvm_vcpu *vcpu);
744
745 /* These symbols are used in common code and are stubbed below. */
746
747 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp);
snp_safe_alloc_page(void)748 static inline struct page *snp_safe_alloc_page(void)
749 {
750 return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT);
751 }
752
753 void sev_free_vcpu(struct kvm_vcpu *vcpu);
754 void sev_vm_destroy(struct kvm *kvm);
755 void __init sev_set_cpu_caps(void);
756 void __init sev_hardware_setup(void);
757 void sev_hardware_unsetup(void);
758 int sev_cpu_init(struct svm_cpu_data *sd);
759 int sev_dev_get_attr(u32 group, u64 attr, u64 *val);
760 extern unsigned int max_sev_asid;
761 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code);
762 void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu);
763 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
764 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
765 int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn);
766 #else
snp_safe_alloc_page_node(int node,gfp_t gfp)767 static inline struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
768 {
769 return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
770 }
771
snp_safe_alloc_page(void)772 static inline struct page *snp_safe_alloc_page(void)
773 {
774 return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT);
775 }
776
sev_free_vcpu(struct kvm_vcpu * vcpu)777 static inline void sev_free_vcpu(struct kvm_vcpu *vcpu) {}
sev_vm_destroy(struct kvm * kvm)778 static inline void sev_vm_destroy(struct kvm *kvm) {}
sev_set_cpu_caps(void)779 static inline void __init sev_set_cpu_caps(void) {}
sev_hardware_setup(void)780 static inline void __init sev_hardware_setup(void) {}
sev_hardware_unsetup(void)781 static inline void sev_hardware_unsetup(void) {}
sev_cpu_init(struct svm_cpu_data * sd)782 static inline int sev_cpu_init(struct svm_cpu_data *sd) { return 0; }
sev_dev_get_attr(u32 group,u64 attr,u64 * val)783 static inline int sev_dev_get_attr(u32 group, u64 attr, u64 *val) { return -ENXIO; }
784 #define max_sev_asid 0
sev_handle_rmp_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code)785 static inline void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) {}
sev_snp_init_protected_guest_state(struct kvm_vcpu * vcpu)786 static inline void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) {}
sev_gmem_prepare(struct kvm * kvm,kvm_pfn_t pfn,gfn_t gfn,int max_order)787 static inline int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
788 {
789 return 0;
790 }
sev_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)791 static inline void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) {}
sev_private_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn)792 static inline int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
793 {
794 return 0;
795 }
796
797 #endif
798
799 /* vmenter.S */
800
801 void __svm_sev_es_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted,
802 struct sev_es_save_area *hostsa);
803 void __svm_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted);
804
805 #define DEFINE_KVM_GHCB_ACCESSORS(field) \
806 static __always_inline bool kvm_ghcb_##field##_is_valid(const struct vcpu_svm *svm) \
807 { \
808 return test_bit(GHCB_BITMAP_IDX(field), \
809 (unsigned long *)&svm->sev_es.valid_bitmap); \
810 } \
811 \
812 static __always_inline u64 kvm_ghcb_get_##field##_if_valid(struct vcpu_svm *svm, struct ghcb *ghcb) \
813 { \
814 return kvm_ghcb_##field##_is_valid(svm) ? ghcb->save.field : 0; \
815 } \
816
817 DEFINE_KVM_GHCB_ACCESSORS(cpl)
818 DEFINE_KVM_GHCB_ACCESSORS(rax)
819 DEFINE_KVM_GHCB_ACCESSORS(rcx)
820 DEFINE_KVM_GHCB_ACCESSORS(rdx)
821 DEFINE_KVM_GHCB_ACCESSORS(rbx)
822 DEFINE_KVM_GHCB_ACCESSORS(rsi)
823 DEFINE_KVM_GHCB_ACCESSORS(sw_exit_code)
824 DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_1)
825 DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_2)
826 DEFINE_KVM_GHCB_ACCESSORS(sw_scratch)
827 DEFINE_KVM_GHCB_ACCESSORS(xcr0)
828
829 #endif
830