// SPDX-License-Identifier: GPL-2.0-only /* * Kernel-based Virtual Machine driver for Linux * * AMD SVM support * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Yaniv Kamay * Avi Kivity */ #ifndef __SVM_SVM_H #define __SVM_SVM_H #include #include #include #include #include #include "cpuid.h" #include "kvm_cache_regs.h" /* * Helpers to convert to/from physical addresses for pages whose address is * consumed directly by hardware. Even though it's a physical address, SVM * often restricts the address to the natural width, hence 'unsigned long' * instead of 'hpa_t'. */ static inline unsigned long __sme_page_pa(struct page *page) { return __sme_set(page_to_pfn(page) << PAGE_SHIFT); } static inline struct page *__sme_pa_to_page(unsigned long pa) { return pfn_to_page(__sme_clr(pa) >> PAGE_SHIFT); } #define IOPM_SIZE PAGE_SIZE * 3 #define MSRPM_SIZE PAGE_SIZE * 2 #define MAX_DIRECT_ACCESS_MSRS 48 #define MSRPM_OFFSETS 32 extern u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; extern bool npt_enabled; extern int nrips; extern int vgif; extern bool intercept_smi; extern bool x2avic_enabled; extern bool vnmi; extern int lbrv; /* * Clean bits in VMCB. * VMCB_ALL_CLEAN_MASK might also need to * be updated if this enum is modified. */ enum { VMCB_INTERCEPTS, /* Intercept vectors, TSC offset, pause filter count */ VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */ VMCB_ASID, /* ASID */ VMCB_INTR, /* int_ctl, int_vector */ VMCB_NPT, /* npt_en, nCR3, gPAT */ VMCB_CR, /* CR0, CR3, CR4, EFER */ VMCB_DR, /* DR6, DR7 */ VMCB_DT, /* GDT, IDT */ VMCB_SEG, /* CS, DS, SS, ES, CPL */ VMCB_CR2, /* CR2 only */ VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */ VMCB_AVIC, /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE, * AVIC PHYSICAL_TABLE pointer, * AVIC LOGICAL_TABLE pointer */ VMCB_SW = 31, /* Reserved for hypervisor/software use */ }; #define VMCB_ALL_CLEAN_MASK ( \ (1U << VMCB_INTERCEPTS) | (1U << VMCB_PERM_MAP) | \ (1U << VMCB_ASID) | (1U << VMCB_INTR) | \ (1U << VMCB_NPT) | (1U << VMCB_CR) | (1U << VMCB_DR) | \ (1U << VMCB_DT) | (1U << VMCB_SEG) | (1U << VMCB_CR2) | \ (1U << VMCB_LBR) | (1U << VMCB_AVIC) | \ (1U << VMCB_SW)) /* TPR and CR2 are always written before VMRUN */ #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2)) struct kvm_sev_info { bool active; /* SEV enabled guest */ bool es_active; /* SEV-ES enabled guest */ bool need_init; /* waiting for SEV_INIT2 */ unsigned int asid; /* ASID used for this guest */ unsigned int handle; /* SEV firmware handle */ int fd; /* SEV device fd */ unsigned long pages_locked; /* Number of pages locked */ struct list_head regions_list; /* List of registered regions */ u64 ap_jump_table; /* SEV-ES AP Jump Table address */ u64 vmsa_features; u16 ghcb_version; /* Highest guest GHCB protocol version allowed */ struct kvm *enc_context_owner; /* Owner of copied encryption context */ struct list_head mirror_vms; /* List of VMs mirroring */ struct list_head mirror_entry; /* Use as a list entry of mirrors */ struct misc_cg *misc_cg; /* For misc cgroup accounting */ atomic_t migration_in_progress; void *snp_context; /* SNP guest context page */ void *guest_req_buf; /* Bounce buffer for SNP Guest Request input */ void *guest_resp_buf; /* Bounce buffer for SNP Guest Request output */ struct mutex guest_req_mutex; /* Must acquire before using bounce buffers */ }; struct kvm_svm { struct kvm kvm; /* Struct members for AVIC */ u32 avic_vm_id; struct page *avic_logical_id_table_page; struct page *avic_physical_id_table_page; struct hlist_node hnode; struct kvm_sev_info sev_info; }; struct kvm_vcpu; struct kvm_vmcb_info { struct vmcb *ptr; unsigned long pa; int cpu; uint64_t asid_generation; }; struct vmcb_save_area_cached { u64 efer; u64 cr4; u64 cr3; u64 cr0; u64 dr7; u64 dr6; }; struct vmcb_ctrl_area_cached { u32 intercepts[MAX_INTERCEPT]; u16 pause_filter_thresh; u16 pause_filter_count; u64 iopm_base_pa; u64 msrpm_base_pa; u64 tsc_offset; u32 asid; u8 tlb_ctl; u32 int_ctl; u32 int_vector; u32 int_state; u32 exit_code; u32 exit_code_hi; u64 exit_info_1; u64 exit_info_2; u32 exit_int_info; u32 exit_int_info_err; u64 nested_ctl; u32 event_inj; u32 event_inj_err; u64 next_rip; u64 nested_cr3; u64 virt_ext; u32 clean; union { #if IS_ENABLED(CONFIG_HYPERV) || IS_ENABLED(CONFIG_KVM_HYPERV) struct hv_vmcb_enlightenments hv_enlightenments; #endif u8 reserved_sw[32]; }; }; struct svm_nested_state { struct kvm_vmcb_info vmcb02; u64 hsave_msr; u64 vm_cr_msr; u64 vmcb12_gpa; u64 last_vmcb12_gpa; /* These are the merged vectors */ u32 *msrpm; /* A VMRUN has started but has not yet been performed, so * we cannot inject a nested vmexit yet. */ bool nested_run_pending; /* cache for control fields of the guest */ struct vmcb_ctrl_area_cached ctl; /* * Note: this struct is not kept up-to-date while L2 runs; it is only * valid within nested_svm_vmrun. */ struct vmcb_save_area_cached save; bool initialized; /* * Indicates whether MSR bitmap for L2 needs to be rebuilt due to * changes in MSR bitmap for L1 or switching to a different L2. Note, * this flag can only be used reliably in conjunction with a paravirt L1 * which informs L0 whether any changes to MSR bitmap for L2 were done * on its side. */ bool force_msr_bitmap_recalc; }; struct vcpu_sev_es_state { /* SEV-ES support */ struct sev_es_save_area *vmsa; struct ghcb *ghcb; u8 valid_bitmap[16]; struct kvm_host_map ghcb_map; bool received_first_sipi; unsigned int ap_reset_hold_type; /* SEV-ES scratch area support */ u64 sw_scratch; void *ghcb_sa; u32 ghcb_sa_len; bool ghcb_sa_sync; bool ghcb_sa_free; /* SNP Page-State-Change buffer entries currently being processed */ u16 psc_idx; u16 psc_inflight; bool psc_2m; u64 ghcb_registered_gpa; struct mutex snp_vmsa_mutex; /* Used to handle concurrent updates of VMSA. */ gpa_t snp_vmsa_gpa; bool snp_ap_waiting_for_reset; bool snp_has_guest_vmsa; }; struct vcpu_svm { struct kvm_vcpu vcpu; /* vmcb always points at current_vmcb->ptr, it's purely a shorthand. */ struct vmcb *vmcb; struct kvm_vmcb_info vmcb01; struct kvm_vmcb_info *current_vmcb; u32 asid; u32 sysenter_esp_hi; u32 sysenter_eip_hi; uint64_t tsc_aux; u64 msr_decfg; u64 next_rip; u64 spec_ctrl; u64 tsc_ratio_msr; /* * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be * translated into the appropriate L2_CFG bits on the host to * perform speculative control. */ u64 virt_spec_ctrl; u32 *msrpm; ulong nmi_iret_rip; struct svm_nested_state nested; /* NMI mask value, used when vNMI is not enabled */ bool nmi_masked; /* * True when NMIs are still masked but guest IRET was just intercepted * and KVM is waiting for RIP to change, which will signal that the * intercepted IRET was retired and thus NMI can be unmasked. */ bool awaiting_iret_completion; /* * Set when KVM is awaiting IRET completion and needs to inject NMIs as * soon as the IRET completes (e.g. NMI is pending injection). KVM * temporarily steals RFLAGS.TF to single-step the guest in this case * in order to regain control as soon as the NMI-blocking condition * goes away. */ bool nmi_singlestep; u64 nmi_singlestep_guest_rflags; bool nmi_l1_to_l2; unsigned long soft_int_csbase; unsigned long soft_int_old_rip; unsigned long soft_int_next_rip; bool soft_int_injected; u32 ldr_reg; u32 dfr_reg; struct page *avic_backing_page; u64 *avic_physical_id_cache; /* * Per-vcpu list of struct amd_svm_iommu_ir: * This is used mainly to store interrupt remapping information used * when update the vcpu affinity. This avoids the need to scan for * IRTE and try to match ga_tag in the IOMMU driver. */ struct list_head ir_list; spinlock_t ir_list_lock; /* Save desired MSR intercept (read: pass-through) state */ struct { DECLARE_BITMAP(read, MAX_DIRECT_ACCESS_MSRS); DECLARE_BITMAP(write, MAX_DIRECT_ACCESS_MSRS); } shadow_msr_intercept; struct vcpu_sev_es_state sev_es; bool guest_state_loaded; bool x2avic_msrs_intercepted; /* Guest GIF value, used when vGIF is not enabled */ bool guest_gif; }; struct svm_cpu_data { u64 asid_generation; u32 max_asid; u32 next_asid; u32 min_asid; struct vmcb *save_area; unsigned long save_area_pa; struct vmcb *current_vmcb; /* index = sev_asid, value = vmcb pointer */ struct vmcb **sev_vmcbs; }; DECLARE_PER_CPU(struct svm_cpu_data, svm_data); void recalc_intercepts(struct vcpu_svm *svm); static __always_inline struct kvm_svm *to_kvm_svm(struct kvm *kvm) { return container_of(kvm, struct kvm_svm, kvm); } static __always_inline struct kvm_sev_info *to_kvm_sev_info(struct kvm *kvm) { return &to_kvm_svm(kvm)->sev_info; } static __always_inline bool sev_guest(struct kvm *kvm) { #ifdef CONFIG_KVM_AMD_SEV struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; return sev->active; #else return false; #endif } static __always_inline bool sev_es_guest(struct kvm *kvm) { #ifdef CONFIG_KVM_AMD_SEV struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; return sev->es_active && !WARN_ON_ONCE(!sev->active); #else return false; #endif } static __always_inline bool sev_snp_guest(struct kvm *kvm) { #ifdef CONFIG_KVM_AMD_SEV struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; return (sev->vmsa_features & SVM_SEV_FEAT_SNP_ACTIVE) && !WARN_ON_ONCE(!sev_es_guest(kvm)); #else return false; #endif } static inline bool ghcb_gpa_is_registered(struct vcpu_svm *svm, u64 val) { return svm->sev_es.ghcb_registered_gpa == val; } static inline void vmcb_mark_all_dirty(struct vmcb *vmcb) { vmcb->control.clean = 0; } static inline void vmcb_mark_all_clean(struct vmcb *vmcb) { vmcb->control.clean = VMCB_ALL_CLEAN_MASK & ~VMCB_ALWAYS_DIRTY_MASK; } static inline void vmcb_mark_dirty(struct vmcb *vmcb, int bit) { vmcb->control.clean &= ~(1 << bit); } static inline bool vmcb_is_dirty(struct vmcb *vmcb, int bit) { return !test_bit(bit, (unsigned long *)&vmcb->control.clean); } static __always_inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) { return container_of(vcpu, struct vcpu_svm, vcpu); } /* * Only the PDPTRs are loaded on demand into the shadow MMU. All other * fields are synchronized on VM-Exit, because accessing the VMCB is cheap. * * CR3 might be out of date in the VMCB but it is not marked dirty; instead, * KVM_REQ_LOAD_MMU_PGD is always requested when the cached vcpu->arch.cr3 * is changed. svm_load_mmu_pgd() then syncs the new CR3 value into the VMCB. */ #define SVM_REGS_LAZY_LOAD_SET (1 << VCPU_EXREG_PDPTR) static inline void vmcb_set_intercept(struct vmcb_control_area *control, u32 bit) { WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT); __set_bit(bit, (unsigned long *)&control->intercepts); } static inline void vmcb_clr_intercept(struct vmcb_control_area *control, u32 bit) { WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT); __clear_bit(bit, (unsigned long *)&control->intercepts); } static inline bool vmcb_is_intercept(struct vmcb_control_area *control, u32 bit) { WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT); return test_bit(bit, (unsigned long *)&control->intercepts); } static inline bool vmcb12_is_intercept(struct vmcb_ctrl_area_cached *control, u32 bit) { WARN_ON_ONCE(bit >= 32 * MAX_INTERCEPT); return test_bit(bit, (unsigned long *)&control->intercepts); } static inline void set_exception_intercept(struct vcpu_svm *svm, u32 bit) { struct vmcb *vmcb = svm->vmcb01.ptr; WARN_ON_ONCE(bit >= 32); vmcb_set_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit); recalc_intercepts(svm); } static inline void clr_exception_intercept(struct vcpu_svm *svm, u32 bit) { struct vmcb *vmcb = svm->vmcb01.ptr; WARN_ON_ONCE(bit >= 32); vmcb_clr_intercept(&vmcb->control, INTERCEPT_EXCEPTION_OFFSET + bit); recalc_intercepts(svm); } static inline void svm_set_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = svm->vmcb01.ptr; vmcb_set_intercept(&vmcb->control, bit); recalc_intercepts(svm); } static inline void svm_clr_intercept(struct vcpu_svm *svm, int bit) { struct vmcb *vmcb = svm->vmcb01.ptr; vmcb_clr_intercept(&vmcb->control, bit); recalc_intercepts(svm); } static inline bool svm_is_intercept(struct vcpu_svm *svm, int bit) { return vmcb_is_intercept(&svm->vmcb->control, bit); } static inline bool nested_vgif_enabled(struct vcpu_svm *svm) { return guest_can_use(&svm->vcpu, X86_FEATURE_VGIF) && (svm->nested.ctl.int_ctl & V_GIF_ENABLE_MASK); } static inline struct vmcb *get_vgif_vmcb(struct vcpu_svm *svm) { if (!vgif) return NULL; if (is_guest_mode(&svm->vcpu) && !nested_vgif_enabled(svm)) return svm->nested.vmcb02.ptr; else return svm->vmcb01.ptr; } static inline void enable_gif(struct vcpu_svm *svm) { struct vmcb *vmcb = get_vgif_vmcb(svm); if (vmcb) vmcb->control.int_ctl |= V_GIF_MASK; else svm->guest_gif = true; } static inline void disable_gif(struct vcpu_svm *svm) { struct vmcb *vmcb = get_vgif_vmcb(svm); if (vmcb) vmcb->control.int_ctl &= ~V_GIF_MASK; else svm->guest_gif = false; } static inline bool gif_set(struct vcpu_svm *svm) { struct vmcb *vmcb = get_vgif_vmcb(svm); if (vmcb) return !!(vmcb->control.int_ctl & V_GIF_MASK); else return svm->guest_gif; } static inline bool nested_npt_enabled(struct vcpu_svm *svm) { return svm->nested.ctl.nested_ctl & SVM_NESTED_CTL_NP_ENABLE; } static inline bool nested_vnmi_enabled(struct vcpu_svm *svm) { return guest_can_use(&svm->vcpu, X86_FEATURE_VNMI) && (svm->nested.ctl.int_ctl & V_NMI_ENABLE_MASK); } static inline bool is_x2apic_msrpm_offset(u32 offset) { /* 4 msrs per u8, and 4 u8 in u32 */ u32 msr = offset * 16; return (msr >= APIC_BASE_MSR) && (msr < (APIC_BASE_MSR + 0x100)); } static inline struct vmcb *get_vnmi_vmcb_l1(struct vcpu_svm *svm) { if (!vnmi) return NULL; if (is_guest_mode(&svm->vcpu)) return NULL; else return svm->vmcb01.ptr; } static inline bool is_vnmi_enabled(struct vcpu_svm *svm) { struct vmcb *vmcb = get_vnmi_vmcb_l1(svm); if (vmcb) return !!(vmcb->control.int_ctl & V_NMI_ENABLE_MASK); else return false; } /* svm.c */ #define MSR_INVALID 0xffffffffU #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) extern bool dump_invalid_vmcb; u32 svm_msrpm_offset(u32 msr); u32 *svm_vcpu_alloc_msrpm(void); void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm); void svm_vcpu_free_msrpm(u32 *msrpm); void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb); void svm_enable_lbrv(struct kvm_vcpu *vcpu); void svm_update_lbrv(struct kvm_vcpu *vcpu); int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer); void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); void disable_nmi_singlestep(struct vcpu_svm *svm); bool svm_smi_blocked(struct kvm_vcpu *vcpu); bool svm_nmi_blocked(struct kvm_vcpu *vcpu); bool svm_interrupt_blocked(struct kvm_vcpu *vcpu); void svm_set_gif(struct vcpu_svm *svm, bool value); int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code); void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr, int read, int write); void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool disable); void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode, int trig_mode, int vec); /* nested.c */ #define NESTED_EXIT_HOST 0 /* Exit handled on host level */ #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */ #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */ static inline bool nested_svm_virtualize_tpr(struct kvm_vcpu *vcpu) { struct vcpu_svm *svm = to_svm(vcpu); return is_guest_mode(vcpu) && (svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK); } static inline bool nested_exit_on_smi(struct vcpu_svm *svm) { return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SMI); } static inline bool nested_exit_on_intr(struct vcpu_svm *svm) { return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_INTR); } static inline bool nested_exit_on_nmi(struct vcpu_svm *svm) { return vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_NMI); } int enter_svm_guest_mode(struct kvm_vcpu *vcpu, u64 vmcb_gpa, struct vmcb *vmcb12, bool from_vmrun); void svm_leave_nested(struct kvm_vcpu *vcpu); void svm_free_nested(struct vcpu_svm *svm); int svm_allocate_nested(struct vcpu_svm *svm); int nested_svm_vmrun(struct kvm_vcpu *vcpu); void svm_copy_vmrun_state(struct vmcb_save_area *to_save, struct vmcb_save_area *from_save); void svm_copy_vmloadsave_state(struct vmcb *to_vmcb, struct vmcb *from_vmcb); int nested_svm_vmexit(struct vcpu_svm *svm); static inline int nested_svm_simple_vmexit(struct vcpu_svm *svm, u32 exit_code) { svm->vmcb->control.exit_code = exit_code; svm->vmcb->control.exit_info_1 = 0; svm->vmcb->control.exit_info_2 = 0; return nested_svm_vmexit(svm); } int nested_svm_exit_handled(struct vcpu_svm *svm); int nested_svm_check_permissions(struct kvm_vcpu *vcpu); int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, bool has_error_code, u32 error_code); int nested_svm_exit_special(struct vcpu_svm *svm); void nested_svm_update_tsc_ratio_msr(struct kvm_vcpu *vcpu); void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu); void nested_copy_vmcb_control_to_cache(struct vcpu_svm *svm, struct vmcb_control_area *control); void nested_copy_vmcb_save_to_cache(struct vcpu_svm *svm, struct vmcb_save_area *save); void nested_sync_control_from_vmcb02(struct vcpu_svm *svm); void nested_vmcb02_compute_g_pat(struct vcpu_svm *svm); void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb); extern struct kvm_x86_nested_ops svm_nested_ops; /* avic.c */ #define AVIC_REQUIRED_APICV_INHIBITS \ ( \ BIT(APICV_INHIBIT_REASON_DISABLED) | \ BIT(APICV_INHIBIT_REASON_ABSENT) | \ BIT(APICV_INHIBIT_REASON_HYPERV) | \ BIT(APICV_INHIBIT_REASON_NESTED) | \ BIT(APICV_INHIBIT_REASON_IRQWIN) | \ BIT(APICV_INHIBIT_REASON_PIT_REINJ) | \ BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ BIT(APICV_INHIBIT_REASON_SEV) | \ BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) | \ BIT(APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED) \ ) bool avic_hardware_setup(void); int avic_ga_log_notifier(u32 ga_tag); void avic_vm_destroy(struct kvm *kvm); int avic_vm_init(struct kvm *kvm); void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb); int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu); int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu); int avic_init_vcpu(struct vcpu_svm *svm); void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu); void avic_vcpu_put(struct kvm_vcpu *vcpu); void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu); void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu); int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set); void avic_vcpu_blocking(struct kvm_vcpu *vcpu); void avic_vcpu_unblocking(struct kvm_vcpu *vcpu); void avic_ring_doorbell(struct kvm_vcpu *vcpu); unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu); void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu); /* sev.c */ void pre_sev_run(struct vcpu_svm *svm, int cpu); void sev_init_vmcb(struct vcpu_svm *svm); void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm); int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in); void sev_es_vcpu_reset(struct vcpu_svm *svm); void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector); void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa); void sev_es_unmap_ghcb(struct vcpu_svm *svm); #ifdef CONFIG_KVM_AMD_SEV int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp); int sev_mem_enc_register_region(struct kvm *kvm, struct kvm_enc_region *range); int sev_mem_enc_unregister_region(struct kvm *kvm, struct kvm_enc_region *range); int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd); int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd); void sev_guest_memory_reclaimed(struct kvm *kvm); int sev_handle_vmgexit(struct kvm_vcpu *vcpu); /* These symbols are used in common code and are stubbed below. */ struct page *snp_safe_alloc_page_node(int node, gfp_t gfp); static inline struct page *snp_safe_alloc_page(void) { return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT); } void sev_free_vcpu(struct kvm_vcpu *vcpu); void sev_vm_destroy(struct kvm *kvm); void __init sev_set_cpu_caps(void); void __init sev_hardware_setup(void); void sev_hardware_unsetup(void); int sev_cpu_init(struct svm_cpu_data *sd); int sev_dev_get_attr(u32 group, u64 attr, u64 *val); extern unsigned int max_sev_asid; void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code); void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu); int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order); void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end); int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn); #else static inline struct page *snp_safe_alloc_page_node(int node, gfp_t gfp) { return alloc_pages_node(node, gfp | __GFP_ZERO, 0); } static inline struct page *snp_safe_alloc_page(void) { return snp_safe_alloc_page_node(numa_node_id(), GFP_KERNEL_ACCOUNT); } static inline void sev_free_vcpu(struct kvm_vcpu *vcpu) {} static inline void sev_vm_destroy(struct kvm *kvm) {} static inline void __init sev_set_cpu_caps(void) {} static inline void __init sev_hardware_setup(void) {} static inline void sev_hardware_unsetup(void) {} static inline int sev_cpu_init(struct svm_cpu_data *sd) { return 0; } static inline int sev_dev_get_attr(u32 group, u64 attr, u64 *val) { return -ENXIO; } #define max_sev_asid 0 static inline void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code) {} static inline void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu) {} static inline int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order) { return 0; } static inline void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) {} static inline int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn) { return 0; } #endif /* vmenter.S */ void __svm_sev_es_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted, struct sev_es_save_area *hostsa); void __svm_vcpu_run(struct vcpu_svm *svm, bool spec_ctrl_intercepted); #define DEFINE_KVM_GHCB_ACCESSORS(field) \ static __always_inline bool kvm_ghcb_##field##_is_valid(const struct vcpu_svm *svm) \ { \ return test_bit(GHCB_BITMAP_IDX(field), \ (unsigned long *)&svm->sev_es.valid_bitmap); \ } \ \ static __always_inline u64 kvm_ghcb_get_##field##_if_valid(struct vcpu_svm *svm, struct ghcb *ghcb) \ { \ return kvm_ghcb_##field##_is_valid(svm) ? ghcb->save.field : 0; \ } \ DEFINE_KVM_GHCB_ACCESSORS(cpl) DEFINE_KVM_GHCB_ACCESSORS(rax) DEFINE_KVM_GHCB_ACCESSORS(rcx) DEFINE_KVM_GHCB_ACCESSORS(rdx) DEFINE_KVM_GHCB_ACCESSORS(rbx) DEFINE_KVM_GHCB_ACCESSORS(rsi) DEFINE_KVM_GHCB_ACCESSORS(sw_exit_code) DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_1) DEFINE_KVM_GHCB_ACCESSORS(sw_exit_info_2) DEFINE_KVM_GHCB_ACCESSORS(sw_scratch) DEFINE_KVM_GHCB_ACCESSORS(xcr0) #endif