xref: /linux/drivers/net/ethernet/dec/tulip/winbond-840.c (revision 4f2c0a4acffbec01079c28f839422e64ddeff004)
1 /* winbond-840.c: A Linux PCI network adapter device driver. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms of
6 	the GNU General Public License (GPL), incorporated herein by reference.
7 	Drivers based on or derived from this code fall under the GPL and must
8 	retain the authorship, copyright and license notice.  This file is not
9 	a complete program and may only be used when the entire operating
10 	system is licensed under the GPL.
11 
12 	The author may be reached as becker@scyld.com, or C/O
13 	Scyld Computing Corporation
14 	410 Severn Ave., Suite 210
15 	Annapolis MD 21403
16 
17 	Support and updates available at
18 	http://www.scyld.com/network/drivers.html
19 
20 	Do not remove the copyright information.
21 	Do not change the version information unless an improvement has been made.
22 	Merely removing my name, as Compex has done in the past, does not count
23 	as an improvement.
24 
25 	Changelog:
26 	* ported to 2.4
27 		???
28 	* spin lock update, memory barriers, new style dma mappings
29 		limit each tx buffer to < 1024 bytes
30 		remove DescIntr from Rx descriptors (that's an Tx flag)
31 		remove next pointer from Tx descriptors
32 		synchronize tx_q_bytes
33 		software reset in tx_timeout
34 			Copyright (C) 2000 Manfred Spraul
35 	* further cleanups
36 		power management.
37 		support for big endian descriptors
38 			Copyright (C) 2001 Manfred Spraul
39 	* ethtool support (jgarzik)
40 	* Replace some MII-related magic numbers with constants (jgarzik)
41 
42 	TODO:
43 	* enable pci_power_off
44 	* Wake-On-LAN
45 */
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #define DRV_NAME	"winbond-840"
50 
51 /* Automatically extracted configuration info:
52 probe-func: winbond840_probe
53 config-in: tristate 'Winbond W89c840 Ethernet support' CONFIG_WINBOND_840
54 
55 c-help-name: Winbond W89c840 PCI Ethernet support
56 c-help-symbol: CONFIG_WINBOND_840
57 c-help: This driver is for the Winbond W89c840 chip.  It also works with
58 c-help: the TX9882 chip on the Compex RL100-ATX board.
59 c-help: More specific information and updates are available from
60 c-help: http://www.scyld.com/network/drivers.html
61 */
62 
63 /* The user-configurable values.
64    These may be modified when a driver module is loaded.*/
65 
66 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
67 static int max_interrupt_work = 20;
68 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
69    The '840 uses a 64 element hash table based on the Ethernet CRC.  */
70 static int multicast_filter_limit = 32;
71 
72 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
73    Setting to > 1518 effectively disables this feature. */
74 static int rx_copybreak;
75 
76 /* Used to pass the media type, etc.
77    Both 'options[]' and 'full_duplex[]' should exist for driver
78    interoperability.
79    The media type is usually passed in 'options[]'.
80 */
81 #define MAX_UNITS 8		/* More are supported, limit only on options */
82 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
83 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
84 
85 /* Operational parameters that are set at compile time. */
86 
87 /* Keep the ring sizes a power of two for compile efficiency.
88    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
89    Making the Tx ring too large decreases the effectiveness of channel
90    bonding and packet priority.
91    There are no ill effects from too-large receive rings. */
92 #define TX_QUEUE_LEN	10		/* Limit ring entries actually used.  */
93 #define TX_QUEUE_LEN_RESTART	5
94 
95 #define TX_BUFLIMIT	(1024-128)
96 
97 /* The presumed FIFO size for working around the Tx-FIFO-overflow bug.
98    To avoid overflowing we don't queue again until we have room for a
99    full-size packet.
100  */
101 #define TX_FIFO_SIZE (2048)
102 #define TX_BUG_FIFO_LIMIT (TX_FIFO_SIZE-1514-16)
103 
104 
105 /* Operational parameters that usually are not changed. */
106 /* Time in jiffies before concluding the transmitter is hung. */
107 #define TX_TIMEOUT  (2*HZ)
108 
109 /* Include files, designed to support most kernel versions 2.0.0 and later. */
110 #include <linux/module.h>
111 #include <linux/kernel.h>
112 #include <linux/string.h>
113 #include <linux/timer.h>
114 #include <linux/errno.h>
115 #include <linux/ioport.h>
116 #include <linux/interrupt.h>
117 #include <linux/pci.h>
118 #include <linux/dma-mapping.h>
119 #include <linux/netdevice.h>
120 #include <linux/etherdevice.h>
121 #include <linux/skbuff.h>
122 #include <linux/init.h>
123 #include <linux/delay.h>
124 #include <linux/ethtool.h>
125 #include <linux/mii.h>
126 #include <linux/rtnetlink.h>
127 #include <linux/crc32.h>
128 #include <linux/bitops.h>
129 #include <linux/uaccess.h>
130 #include <asm/processor.h>		/* Processor type for cache alignment. */
131 #include <asm/io.h>
132 #include <asm/irq.h>
133 
134 #include "tulip.h"
135 
136 #undef PKT_BUF_SZ			/* tulip.h also defines this */
137 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
138 
139 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
140 MODULE_DESCRIPTION("Winbond W89c840 Ethernet driver");
141 MODULE_LICENSE("GPL");
142 
143 module_param(max_interrupt_work, int, 0);
144 module_param(debug, int, 0);
145 module_param(rx_copybreak, int, 0);
146 module_param(multicast_filter_limit, int, 0);
147 module_param_array(options, int, NULL, 0);
148 module_param_array(full_duplex, int, NULL, 0);
149 MODULE_PARM_DESC(max_interrupt_work, "winbond-840 maximum events handled per interrupt");
150 MODULE_PARM_DESC(debug, "winbond-840 debug level (0-6)");
151 MODULE_PARM_DESC(rx_copybreak, "winbond-840 copy breakpoint for copy-only-tiny-frames");
152 MODULE_PARM_DESC(multicast_filter_limit, "winbond-840 maximum number of filtered multicast addresses");
153 MODULE_PARM_DESC(options, "winbond-840: Bits 0-3: media type, bit 17: full duplex");
154 MODULE_PARM_DESC(full_duplex, "winbond-840 full duplex setting(s) (1)");
155 
156 /*
157 				Theory of Operation
158 
159 I. Board Compatibility
160 
161 This driver is for the Winbond w89c840 chip.
162 
163 II. Board-specific settings
164 
165 None.
166 
167 III. Driver operation
168 
169 This chip is very similar to the Digital 21*4* "Tulip" family.  The first
170 twelve registers and the descriptor format are nearly identical.  Read a
171 Tulip manual for operational details.
172 
173 A significant difference is that the multicast filter and station address are
174 stored in registers rather than loaded through a pseudo-transmit packet.
175 
176 Unlike the Tulip, transmit buffers are limited to 1KB.  To transmit a
177 full-sized packet we must use both data buffers in a descriptor.  Thus the
178 driver uses ring mode where descriptors are implicitly sequential in memory,
179 rather than using the second descriptor address as a chain pointer to
180 subsequent descriptors.
181 
182 IV. Notes
183 
184 If you are going to almost clone a Tulip, why not go all the way and avoid
185 the need for a new driver?
186 
187 IVb. References
188 
189 http://www.scyld.com/expert/100mbps.html
190 http://www.scyld.com/expert/NWay.html
191 http://www.winbond.com.tw/
192 
193 IVc. Errata
194 
195 A horrible bug exists in the transmit FIFO.  Apparently the chip doesn't
196 correctly detect a full FIFO, and queuing more than 2048 bytes may result in
197 silent data corruption.
198 
199 Test with 'ping -s 10000' on a fast computer.
200 
201 */
202 
203 
204 
205 /*
206   PCI probe table.
207 */
208 enum chip_capability_flags {
209 	CanHaveMII=1, HasBrokenTx=2, AlwaysFDX=4, FDXOnNoMII=8,
210 };
211 
212 static const struct pci_device_id w840_pci_tbl[] = {
213 	{ 0x1050, 0x0840, PCI_ANY_ID, 0x8153,     0, 0, 0 },
214 	{ 0x1050, 0x0840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
215 	{ 0x11f6, 0x2011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
216 	{ }
217 };
218 MODULE_DEVICE_TABLE(pci, w840_pci_tbl);
219 
220 enum {
221 	netdev_res_size		= 128,	/* size of PCI BAR resource */
222 };
223 
224 struct pci_id_info {
225         const char *name;
226         int drv_flags;		/* Driver use, intended as capability flags. */
227 };
228 
229 static const struct pci_id_info pci_id_tbl[] = {
230 	{ 				/* Sometime a Level-One switch card. */
231 	  "Winbond W89c840",	CanHaveMII | HasBrokenTx | FDXOnNoMII},
232 	{ "Winbond W89c840",	CanHaveMII | HasBrokenTx},
233 	{ "Compex RL100-ATX",	CanHaveMII | HasBrokenTx},
234 	{ }	/* terminate list. */
235 };
236 
237 /* This driver was written to use PCI memory space, however some x86 systems
238    work only with I/O space accesses. See CONFIG_TULIP_MMIO in .config
239 */
240 
241 /* Offsets to the Command and Status Registers, "CSRs".
242    While similar to the Tulip, these registers are longword aligned.
243    Note: It's not useful to define symbolic names for every register bit in
244    the device.  The name can only partially document the semantics and make
245    the driver longer and more difficult to read.
246 */
247 enum w840_offsets {
248 	PCIBusCfg=0x00, TxStartDemand=0x04, RxStartDemand=0x08,
249 	RxRingPtr=0x0C, TxRingPtr=0x10,
250 	IntrStatus=0x14, NetworkConfig=0x18, IntrEnable=0x1C,
251 	RxMissed=0x20, EECtrl=0x24, MIICtrl=0x24, BootRom=0x28, GPTimer=0x2C,
252 	CurRxDescAddr=0x30, CurRxBufAddr=0x34,			/* Debug use */
253 	MulticastFilter0=0x38, MulticastFilter1=0x3C, StationAddr=0x40,
254 	CurTxDescAddr=0x4C, CurTxBufAddr=0x50,
255 };
256 
257 /* Bits in the NetworkConfig register. */
258 enum rx_mode_bits {
259 	AcceptErr=0x80,
260 	RxAcceptBroadcast=0x20, AcceptMulticast=0x10,
261 	RxAcceptAllPhys=0x08, AcceptMyPhys=0x02,
262 };
263 
264 enum mii_reg_bits {
265 	MDIO_ShiftClk=0x10000, MDIO_DataIn=0x80000, MDIO_DataOut=0x20000,
266 	MDIO_EnbOutput=0x40000, MDIO_EnbIn = 0x00000,
267 };
268 
269 /* The Tulip Rx and Tx buffer descriptors. */
270 struct w840_rx_desc {
271 	s32 status;
272 	s32 length;
273 	u32 buffer1;
274 	u32 buffer2;
275 };
276 
277 struct w840_tx_desc {
278 	s32 status;
279 	s32 length;
280 	u32 buffer1, buffer2;
281 };
282 
283 #define MII_CNT		1 /* winbond only supports one MII */
284 struct netdev_private {
285 	struct w840_rx_desc *rx_ring;
286 	dma_addr_t	rx_addr[RX_RING_SIZE];
287 	struct w840_tx_desc *tx_ring;
288 	dma_addr_t	tx_addr[TX_RING_SIZE];
289 	dma_addr_t ring_dma_addr;
290 	/* The addresses of receive-in-place skbuffs. */
291 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
292 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
293 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
294 	struct net_device_stats stats;
295 	struct timer_list timer;	/* Media monitoring timer. */
296 	/* Frequently used values: keep some adjacent for cache effect. */
297 	spinlock_t lock;
298 	int chip_id, drv_flags;
299 	struct pci_dev *pci_dev;
300 	int csr6;
301 	struct w840_rx_desc *rx_head_desc;
302 	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
303 	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
304 	unsigned int cur_tx, dirty_tx;
305 	unsigned int tx_q_bytes;
306 	unsigned int tx_full;				/* The Tx queue is full. */
307 	/* MII transceiver section. */
308 	int mii_cnt;						/* MII device addresses. */
309 	unsigned char phys[MII_CNT];		/* MII device addresses, but only the first is used */
310 	u32 mii;
311 	struct mii_if_info mii_if;
312 	void __iomem *base_addr;
313 };
314 
315 static int  eeprom_read(void __iomem *ioaddr, int location);
316 static int  mdio_read(struct net_device *dev, int phy_id, int location);
317 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
318 static int  netdev_open(struct net_device *dev);
319 static int  update_link(struct net_device *dev);
320 static void netdev_timer(struct timer_list *t);
321 static void init_rxtx_rings(struct net_device *dev);
322 static void free_rxtx_rings(struct netdev_private *np);
323 static void init_registers(struct net_device *dev);
324 static void tx_timeout(struct net_device *dev, unsigned int txqueue);
325 static int alloc_ringdesc(struct net_device *dev);
326 static void free_ringdesc(struct netdev_private *np);
327 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
328 static irqreturn_t intr_handler(int irq, void *dev_instance);
329 static void netdev_error(struct net_device *dev, int intr_status);
330 static int  netdev_rx(struct net_device *dev);
331 static u32 __set_rx_mode(struct net_device *dev);
332 static void set_rx_mode(struct net_device *dev);
333 static struct net_device_stats *get_stats(struct net_device *dev);
334 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
335 static const struct ethtool_ops netdev_ethtool_ops;
336 static int  netdev_close(struct net_device *dev);
337 
338 static const struct net_device_ops netdev_ops = {
339 	.ndo_open		= netdev_open,
340 	.ndo_stop		= netdev_close,
341 	.ndo_start_xmit		= start_tx,
342 	.ndo_get_stats		= get_stats,
343 	.ndo_set_rx_mode	= set_rx_mode,
344 	.ndo_eth_ioctl		= netdev_ioctl,
345 	.ndo_tx_timeout		= tx_timeout,
346 	.ndo_set_mac_address	= eth_mac_addr,
347 	.ndo_validate_addr	= eth_validate_addr,
348 };
349 
w840_probe1(struct pci_dev * pdev,const struct pci_device_id * ent)350 static int w840_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
351 {
352 	struct net_device *dev;
353 	struct netdev_private *np;
354 	static int find_cnt;
355 	int chip_idx = ent->driver_data;
356 	int irq;
357 	int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
358 	__le16 addr[ETH_ALEN / 2];
359 	void __iomem *ioaddr;
360 
361 	i = pcim_enable_device(pdev);
362 	if (i) return i;
363 
364 	pci_set_master(pdev);
365 
366 	irq = pdev->irq;
367 
368 	if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
369 		pr_warn("Device %s disabled due to DMA limitations\n",
370 			pci_name(pdev));
371 		return -EIO;
372 	}
373 	dev = alloc_etherdev(sizeof(*np));
374 	if (!dev)
375 		return -ENOMEM;
376 	SET_NETDEV_DEV(dev, &pdev->dev);
377 
378 	if (pci_request_regions(pdev, DRV_NAME))
379 		goto err_out_netdev;
380 
381 	ioaddr = pci_iomap(pdev, TULIP_BAR, netdev_res_size);
382 	if (!ioaddr)
383 		goto err_out_netdev;
384 
385 	for (i = 0; i < 3; i++)
386 		addr[i] = cpu_to_le16(eeprom_read(ioaddr, i));
387 	eth_hw_addr_set(dev, (u8 *)addr);
388 
389 	/* Reset the chip to erase previous misconfiguration.
390 	   No hold time required! */
391 	iowrite32(0x00000001, ioaddr + PCIBusCfg);
392 
393 	np = netdev_priv(dev);
394 	np->pci_dev = pdev;
395 	np->chip_id = chip_idx;
396 	np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
397 	spin_lock_init(&np->lock);
398 	np->mii_if.dev = dev;
399 	np->mii_if.mdio_read = mdio_read;
400 	np->mii_if.mdio_write = mdio_write;
401 	np->base_addr = ioaddr;
402 
403 	pci_set_drvdata(pdev, dev);
404 
405 	if (dev->mem_start)
406 		option = dev->mem_start;
407 
408 	/* The lower four bits are the media type. */
409 	if (option > 0) {
410 		if (option & 0x200)
411 			np->mii_if.full_duplex = 1;
412 		if (option & 15)
413 			dev_info(&dev->dev,
414 				 "ignoring user supplied media type %d",
415 				 option & 15);
416 	}
417 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
418 		np->mii_if.full_duplex = 1;
419 
420 	if (np->mii_if.full_duplex)
421 		np->mii_if.force_media = 1;
422 
423 	/* The chip-specific entries in the device structure. */
424 	dev->netdev_ops = &netdev_ops;
425 	dev->ethtool_ops = &netdev_ethtool_ops;
426 	dev->watchdog_timeo = TX_TIMEOUT;
427 
428 	i = register_netdev(dev);
429 	if (i)
430 		goto err_out_cleardev;
431 
432 	dev_info(&dev->dev, "%s at %p, %pM, IRQ %d\n",
433 		 pci_id_tbl[chip_idx].name, ioaddr, dev->dev_addr, irq);
434 
435 	if (np->drv_flags & CanHaveMII) {
436 		int phy, phy_idx = 0;
437 		for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) {
438 			int mii_status = mdio_read(dev, phy, MII_BMSR);
439 			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
440 				np->phys[phy_idx++] = phy;
441 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
442 				np->mii = (mdio_read(dev, phy, MII_PHYSID1) << 16)+
443 						mdio_read(dev, phy, MII_PHYSID2);
444 				dev_info(&dev->dev,
445 					 "MII PHY %08xh found at address %d, status 0x%04x advertising %04x\n",
446 					 np->mii, phy, mii_status,
447 					 np->mii_if.advertising);
448 			}
449 		}
450 		np->mii_cnt = phy_idx;
451 		np->mii_if.phy_id = np->phys[0];
452 		if (phy_idx == 0) {
453 			dev_warn(&dev->dev,
454 				 "MII PHY not found -- this device may not operate correctly\n");
455 		}
456 	}
457 
458 	find_cnt++;
459 	return 0;
460 
461 err_out_cleardev:
462 	pci_iounmap(pdev, ioaddr);
463 err_out_netdev:
464 	free_netdev (dev);
465 	return -ENODEV;
466 }
467 
468 
469 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.  These are
470    often serial bit streams generated by the host processor.
471    The example below is for the common 93c46 EEPROM, 64 16 bit words. */
472 
473 /* Delay between EEPROM clock transitions.
474    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
475    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
476    made udelay() unreliable.
477 */
478 #define eeprom_delay(ee_addr)	ioread32(ee_addr)
479 
480 enum EEPROM_Ctrl_Bits {
481 	EE_ShiftClk=0x02, EE_Write0=0x801, EE_Write1=0x805,
482 	EE_ChipSelect=0x801, EE_DataIn=0x08,
483 };
484 
485 /* The EEPROM commands include the alway-set leading bit. */
486 enum EEPROM_Cmds {
487 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
488 };
489 
eeprom_read(void __iomem * addr,int location)490 static int eeprom_read(void __iomem *addr, int location)
491 {
492 	int i;
493 	int retval = 0;
494 	void __iomem *ee_addr = addr + EECtrl;
495 	int read_cmd = location | EE_ReadCmd;
496 	iowrite32(EE_ChipSelect, ee_addr);
497 
498 	/* Shift the read command bits out. */
499 	for (i = 10; i >= 0; i--) {
500 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
501 		iowrite32(dataval, ee_addr);
502 		eeprom_delay(ee_addr);
503 		iowrite32(dataval | EE_ShiftClk, ee_addr);
504 		eeprom_delay(ee_addr);
505 	}
506 	iowrite32(EE_ChipSelect, ee_addr);
507 	eeprom_delay(ee_addr);
508 
509 	for (i = 16; i > 0; i--) {
510 		iowrite32(EE_ChipSelect | EE_ShiftClk, ee_addr);
511 		eeprom_delay(ee_addr);
512 		retval = (retval << 1) | ((ioread32(ee_addr) & EE_DataIn) ? 1 : 0);
513 		iowrite32(EE_ChipSelect, ee_addr);
514 		eeprom_delay(ee_addr);
515 	}
516 
517 	/* Terminate the EEPROM access. */
518 	iowrite32(0, ee_addr);
519 	return retval;
520 }
521 
522 /*  MII transceiver control section.
523 	Read and write the MII registers using software-generated serial
524 	MDIO protocol.  See the MII specifications or DP83840A data sheet
525 	for details.
526 
527 	The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
528 	met by back-to-back 33Mhz PCI cycles. */
529 #define mdio_delay(mdio_addr) ioread32(mdio_addr)
530 
531 /* Set iff a MII transceiver on any interface requires mdio preamble.
532    This only set with older transceivers, so the extra
533    code size of a per-interface flag is not worthwhile. */
534 static char mii_preamble_required = 1;
535 
536 #define MDIO_WRITE0 (MDIO_EnbOutput)
537 #define MDIO_WRITE1 (MDIO_DataOut | MDIO_EnbOutput)
538 
539 /* Generate the preamble required for initial synchronization and
540    a few older transceivers. */
mdio_sync(void __iomem * mdio_addr)541 static void mdio_sync(void __iomem *mdio_addr)
542 {
543 	int bits = 32;
544 
545 	/* Establish sync by sending at least 32 logic ones. */
546 	while (--bits >= 0) {
547 		iowrite32(MDIO_WRITE1, mdio_addr);
548 		mdio_delay(mdio_addr);
549 		iowrite32(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
550 		mdio_delay(mdio_addr);
551 	}
552 }
553 
mdio_read(struct net_device * dev,int phy_id,int location)554 static int mdio_read(struct net_device *dev, int phy_id, int location)
555 {
556 	struct netdev_private *np = netdev_priv(dev);
557 	void __iomem *mdio_addr = np->base_addr + MIICtrl;
558 	int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
559 	int i, retval = 0;
560 
561 	if (mii_preamble_required)
562 		mdio_sync(mdio_addr);
563 
564 	/* Shift the read command bits out. */
565 	for (i = 15; i >= 0; i--) {
566 		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
567 
568 		iowrite32(dataval, mdio_addr);
569 		mdio_delay(mdio_addr);
570 		iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
571 		mdio_delay(mdio_addr);
572 	}
573 	/* Read the two transition, 16 data, and wire-idle bits. */
574 	for (i = 20; i > 0; i--) {
575 		iowrite32(MDIO_EnbIn, mdio_addr);
576 		mdio_delay(mdio_addr);
577 		retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DataIn) ? 1 : 0);
578 		iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
579 		mdio_delay(mdio_addr);
580 	}
581 	return (retval>>1) & 0xffff;
582 }
583 
mdio_write(struct net_device * dev,int phy_id,int location,int value)584 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
585 {
586 	struct netdev_private *np = netdev_priv(dev);
587 	void __iomem *mdio_addr = np->base_addr + MIICtrl;
588 	int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
589 	int i;
590 
591 	if (location == 4  &&  phy_id == np->phys[0])
592 		np->mii_if.advertising = value;
593 
594 	if (mii_preamble_required)
595 		mdio_sync(mdio_addr);
596 
597 	/* Shift the command bits out. */
598 	for (i = 31; i >= 0; i--) {
599 		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
600 
601 		iowrite32(dataval, mdio_addr);
602 		mdio_delay(mdio_addr);
603 		iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
604 		mdio_delay(mdio_addr);
605 	}
606 	/* Clear out extra bits. */
607 	for (i = 2; i > 0; i--) {
608 		iowrite32(MDIO_EnbIn, mdio_addr);
609 		mdio_delay(mdio_addr);
610 		iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
611 		mdio_delay(mdio_addr);
612 	}
613 }
614 
615 
netdev_open(struct net_device * dev)616 static int netdev_open(struct net_device *dev)
617 {
618 	struct netdev_private *np = netdev_priv(dev);
619 	void __iomem *ioaddr = np->base_addr;
620 	const int irq = np->pci_dev->irq;
621 	int i;
622 
623 	iowrite32(0x00000001, ioaddr + PCIBusCfg);		/* Reset */
624 
625 	netif_device_detach(dev);
626 	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
627 	if (i)
628 		goto out_err;
629 
630 	if (debug > 1)
631 		netdev_dbg(dev, "%s() irq %d\n", __func__, irq);
632 
633 	i = alloc_ringdesc(dev);
634 	if (i)
635 		goto out_err;
636 
637 	spin_lock_irq(&np->lock);
638 	netif_device_attach(dev);
639 	init_registers(dev);
640 	spin_unlock_irq(&np->lock);
641 
642 	netif_start_queue(dev);
643 	if (debug > 2)
644 		netdev_dbg(dev, "Done %s()\n", __func__);
645 
646 	/* Set the timer to check for link beat. */
647 	timer_setup(&np->timer, netdev_timer, 0);
648 	np->timer.expires = jiffies + 1*HZ;
649 	add_timer(&np->timer);
650 	return 0;
651 out_err:
652 	netif_device_attach(dev);
653 	return i;
654 }
655 
656 #define MII_DAVICOM_DM9101	0x0181b800
657 
update_link(struct net_device * dev)658 static int update_link(struct net_device *dev)
659 {
660 	struct netdev_private *np = netdev_priv(dev);
661 	int duplex, fasteth, result, mii_reg;
662 
663 	/* BSMR */
664 	mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
665 
666 	if (mii_reg == 0xffff)
667 		return np->csr6;
668 	/* reread: the link status bit is sticky */
669 	mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
670 	if (!(mii_reg & 0x4)) {
671 		if (netif_carrier_ok(dev)) {
672 			if (debug)
673 				dev_info(&dev->dev,
674 					 "MII #%d reports no link. Disabling watchdog\n",
675 					 np->phys[0]);
676 			netif_carrier_off(dev);
677 		}
678 		return np->csr6;
679 	}
680 	if (!netif_carrier_ok(dev)) {
681 		if (debug)
682 			dev_info(&dev->dev,
683 				 "MII #%d link is back. Enabling watchdog\n",
684 				 np->phys[0]);
685 		netif_carrier_on(dev);
686 	}
687 
688 	if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) {
689 		/* If the link partner doesn't support autonegotiation
690 		 * the MII detects it's abilities with the "parallel detection".
691 		 * Some MIIs update the LPA register to the result of the parallel
692 		 * detection, some don't.
693 		 * The Davicom PHY [at least 0181b800] doesn't.
694 		 * Instead bit 9 and 13 of the BMCR are updated to the result
695 		 * of the negotiation..
696 		 */
697 		mii_reg = mdio_read(dev, np->phys[0], MII_BMCR);
698 		duplex = mii_reg & BMCR_FULLDPLX;
699 		fasteth = mii_reg & BMCR_SPEED100;
700 	} else {
701 		int negotiated;
702 		mii_reg	= mdio_read(dev, np->phys[0], MII_LPA);
703 		negotiated = mii_reg & np->mii_if.advertising;
704 
705 		duplex = (negotiated & LPA_100FULL) || ((negotiated & 0x02C0) == LPA_10FULL);
706 		fasteth = negotiated & 0x380;
707 	}
708 	duplex |= np->mii_if.force_media;
709 	/* remove fastether and fullduplex */
710 	result = np->csr6 & ~0x20000200;
711 	if (duplex)
712 		result |= 0x200;
713 	if (fasteth)
714 		result |= 0x20000000;
715 	if (result != np->csr6 && debug)
716 		dev_info(&dev->dev,
717 			 "Setting %dMBit-%s-duplex based on MII#%d\n",
718 			 fasteth ? 100 : 10, duplex ? "full" : "half",
719 			 np->phys[0]);
720 	return result;
721 }
722 
723 #define RXTX_TIMEOUT	2000
update_csr6(struct net_device * dev,int new)724 static inline void update_csr6(struct net_device *dev, int new)
725 {
726 	struct netdev_private *np = netdev_priv(dev);
727 	void __iomem *ioaddr = np->base_addr;
728 	int limit = RXTX_TIMEOUT;
729 
730 	if (!netif_device_present(dev))
731 		new = 0;
732 	if (new==np->csr6)
733 		return;
734 	/* stop both Tx and Rx processes */
735 	iowrite32(np->csr6 & ~0x2002, ioaddr + NetworkConfig);
736 	/* wait until they have really stopped */
737 	for (;;) {
738 		int csr5 = ioread32(ioaddr + IntrStatus);
739 		int t;
740 
741 		t = (csr5 >> 17) & 0x07;
742 		if (t==0||t==1) {
743 			/* rx stopped */
744 			t = (csr5 >> 20) & 0x07;
745 			if (t==0||t==1)
746 				break;
747 		}
748 
749 		limit--;
750 		if(!limit) {
751 			dev_info(&dev->dev,
752 				 "couldn't stop rxtx, IntrStatus %xh\n", csr5);
753 			break;
754 		}
755 		udelay(1);
756 	}
757 	np->csr6 = new;
758 	/* and restart them with the new configuration */
759 	iowrite32(np->csr6, ioaddr + NetworkConfig);
760 	if (new & 0x200)
761 		np->mii_if.full_duplex = 1;
762 }
763 
netdev_timer(struct timer_list * t)764 static void netdev_timer(struct timer_list *t)
765 {
766 	struct netdev_private *np = from_timer(np, t, timer);
767 	struct net_device *dev = pci_get_drvdata(np->pci_dev);
768 	void __iomem *ioaddr = np->base_addr;
769 
770 	if (debug > 2)
771 		netdev_dbg(dev, "Media selection timer tick, status %08x config %08x\n",
772 			   ioread32(ioaddr + IntrStatus),
773 			   ioread32(ioaddr + NetworkConfig));
774 	spin_lock_irq(&np->lock);
775 	update_csr6(dev, update_link(dev));
776 	spin_unlock_irq(&np->lock);
777 	np->timer.expires = jiffies + 10*HZ;
778 	add_timer(&np->timer);
779 }
780 
init_rxtx_rings(struct net_device * dev)781 static void init_rxtx_rings(struct net_device *dev)
782 {
783 	struct netdev_private *np = netdev_priv(dev);
784 	int i;
785 
786 	np->rx_head_desc = &np->rx_ring[0];
787 	np->tx_ring = (struct w840_tx_desc*)&np->rx_ring[RX_RING_SIZE];
788 
789 	/* Initial all Rx descriptors. */
790 	for (i = 0; i < RX_RING_SIZE; i++) {
791 		np->rx_ring[i].length = np->rx_buf_sz;
792 		np->rx_ring[i].status = 0;
793 		np->rx_skbuff[i] = NULL;
794 	}
795 	/* Mark the last entry as wrapping the ring. */
796 	np->rx_ring[i-1].length |= DescEndRing;
797 
798 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
799 	for (i = 0; i < RX_RING_SIZE; i++) {
800 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
801 		np->rx_skbuff[i] = skb;
802 		if (skb == NULL)
803 			break;
804 		np->rx_addr[i] = dma_map_single(&np->pci_dev->dev, skb->data,
805 						np->rx_buf_sz,
806 						DMA_FROM_DEVICE);
807 
808 		np->rx_ring[i].buffer1 = np->rx_addr[i];
809 		np->rx_ring[i].status = DescOwned;
810 	}
811 
812 	np->cur_rx = 0;
813 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
814 
815 	/* Initialize the Tx descriptors */
816 	for (i = 0; i < TX_RING_SIZE; i++) {
817 		np->tx_skbuff[i] = NULL;
818 		np->tx_ring[i].status = 0;
819 	}
820 	np->tx_full = 0;
821 	np->tx_q_bytes = np->dirty_tx = np->cur_tx = 0;
822 
823 	iowrite32(np->ring_dma_addr, np->base_addr + RxRingPtr);
824 	iowrite32(np->ring_dma_addr+sizeof(struct w840_rx_desc)*RX_RING_SIZE,
825 		np->base_addr + TxRingPtr);
826 
827 }
828 
free_rxtx_rings(struct netdev_private * np)829 static void free_rxtx_rings(struct netdev_private* np)
830 {
831 	int i;
832 	/* Free all the skbuffs in the Rx queue. */
833 	for (i = 0; i < RX_RING_SIZE; i++) {
834 		np->rx_ring[i].status = 0;
835 		if (np->rx_skbuff[i]) {
836 			dma_unmap_single(&np->pci_dev->dev, np->rx_addr[i],
837 					 np->rx_skbuff[i]->len,
838 					 DMA_FROM_DEVICE);
839 			dev_kfree_skb(np->rx_skbuff[i]);
840 		}
841 		np->rx_skbuff[i] = NULL;
842 	}
843 	for (i = 0; i < TX_RING_SIZE; i++) {
844 		if (np->tx_skbuff[i]) {
845 			dma_unmap_single(&np->pci_dev->dev, np->tx_addr[i],
846 					 np->tx_skbuff[i]->len, DMA_TO_DEVICE);
847 			dev_kfree_skb(np->tx_skbuff[i]);
848 		}
849 		np->tx_skbuff[i] = NULL;
850 	}
851 }
852 
init_registers(struct net_device * dev)853 static void init_registers(struct net_device *dev)
854 {
855 	struct netdev_private *np = netdev_priv(dev);
856 	void __iomem *ioaddr = np->base_addr;
857 	int i;
858 
859 	for (i = 0; i < 6; i++)
860 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
861 
862 	/* Initialize other registers. */
863 #ifdef __BIG_ENDIAN
864 	i = (1<<20);	/* Big-endian descriptors */
865 #else
866 	i = 0;
867 #endif
868 	i |= (0x04<<2);		/* skip length 4 u32 */
869 	i |= 0x02;		/* give Rx priority */
870 
871 	/* Configure the PCI bus bursts and FIFO thresholds.
872 	   486: Set 8 longword cache alignment, 8 longword burst.
873 	   586: Set 16 longword cache alignment, no burst limit.
874 	   Cache alignment bits 15:14	     Burst length 13:8
875 		0000	<not allowed> 		0000 align to cache	0800 8 longwords
876 		4000	8  longwords		0100 1 longword		1000 16 longwords
877 		8000	16 longwords		0200 2 longwords	2000 32 longwords
878 		C000	32  longwords		0400 4 longwords */
879 
880 #if defined (__i386__) && !defined(MODULE) && !defined(CONFIG_UML)
881 	/* When not a module we can work around broken '486 PCI boards. */
882 	if (boot_cpu_data.x86 <= 4) {
883 		i |= 0x4800;
884 		dev_info(&dev->dev,
885 			 "This is a 386/486 PCI system, setting cache alignment to 8 longwords\n");
886 	} else {
887 		i |= 0xE000;
888 	}
889 #elif defined(__powerpc__) || defined(__i386__) || defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
890 	i |= 0xE000;
891 #elif defined(CONFIG_SPARC) || defined (CONFIG_PARISC) || defined(CONFIG_ARM)
892 	i |= 0x4800;
893 #else
894 	dev_warn(&dev->dev, "unknown CPU architecture, using default csr0 setting\n");
895 	i |= 0x4800;
896 #endif
897 	iowrite32(i, ioaddr + PCIBusCfg);
898 
899 	np->csr6 = 0;
900 	/* 128 byte Tx threshold;
901 		Transmit on; Receive on; */
902 	update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev));
903 
904 	/* Clear and Enable interrupts by setting the interrupt mask. */
905 	iowrite32(0x1A0F5, ioaddr + IntrStatus);
906 	iowrite32(0x1A0F5, ioaddr + IntrEnable);
907 
908 	iowrite32(0, ioaddr + RxStartDemand);
909 }
910 
tx_timeout(struct net_device * dev,unsigned int txqueue)911 static void tx_timeout(struct net_device *dev, unsigned int txqueue)
912 {
913 	struct netdev_private *np = netdev_priv(dev);
914 	void __iomem *ioaddr = np->base_addr;
915 	const int irq = np->pci_dev->irq;
916 
917 	dev_warn(&dev->dev, "Transmit timed out, status %08x, resetting...\n",
918 		 ioread32(ioaddr + IntrStatus));
919 
920 	{
921 		int i;
922 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
923 		for (i = 0; i < RX_RING_SIZE; i++)
924 			printk(KERN_CONT " %08x", (unsigned int)np->rx_ring[i].status);
925 		printk(KERN_CONT "\n");
926 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
927 		for (i = 0; i < TX_RING_SIZE; i++)
928 			printk(KERN_CONT " %08x", np->tx_ring[i].status);
929 		printk(KERN_CONT "\n");
930 	}
931 	printk(KERN_DEBUG "Tx cur %d Tx dirty %d Tx Full %d, q bytes %d\n",
932 	       np->cur_tx, np->dirty_tx, np->tx_full, np->tx_q_bytes);
933 	printk(KERN_DEBUG "Tx Descriptor addr %xh\n", ioread32(ioaddr+0x4C));
934 
935 	disable_irq(irq);
936 	spin_lock_irq(&np->lock);
937 	/*
938 	 * Under high load dirty_tx and the internal tx descriptor pointer
939 	 * come out of sync, thus perform a software reset and reinitialize
940 	 * everything.
941 	 */
942 
943 	iowrite32(1, np->base_addr+PCIBusCfg);
944 	udelay(1);
945 
946 	free_rxtx_rings(np);
947 	init_rxtx_rings(dev);
948 	init_registers(dev);
949 	spin_unlock_irq(&np->lock);
950 	enable_irq(irq);
951 
952 	netif_wake_queue(dev);
953 	netif_trans_update(dev); /* prevent tx timeout */
954 	np->stats.tx_errors++;
955 }
956 
957 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
alloc_ringdesc(struct net_device * dev)958 static int alloc_ringdesc(struct net_device *dev)
959 {
960 	struct netdev_private *np = netdev_priv(dev);
961 
962 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
963 
964 	np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
965 					 sizeof(struct w840_rx_desc) * RX_RING_SIZE +
966 					 sizeof(struct w840_tx_desc) * TX_RING_SIZE,
967 					 &np->ring_dma_addr, GFP_KERNEL);
968 	if(!np->rx_ring)
969 		return -ENOMEM;
970 	init_rxtx_rings(dev);
971 	return 0;
972 }
973 
free_ringdesc(struct netdev_private * np)974 static void free_ringdesc(struct netdev_private *np)
975 {
976 	dma_free_coherent(&np->pci_dev->dev,
977 			  sizeof(struct w840_rx_desc) * RX_RING_SIZE +
978 			  sizeof(struct w840_tx_desc) * TX_RING_SIZE,
979 			  np->rx_ring, np->ring_dma_addr);
980 
981 }
982 
start_tx(struct sk_buff * skb,struct net_device * dev)983 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
984 {
985 	struct netdev_private *np = netdev_priv(dev);
986 	unsigned entry;
987 
988 	/* Caution: the write order is important here, set the field
989 	   with the "ownership" bits last. */
990 
991 	/* Calculate the next Tx descriptor entry. */
992 	entry = np->cur_tx % TX_RING_SIZE;
993 
994 	np->tx_addr[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
995 					    skb->len, DMA_TO_DEVICE);
996 	np->tx_skbuff[entry] = skb;
997 
998 	np->tx_ring[entry].buffer1 = np->tx_addr[entry];
999 	if (skb->len < TX_BUFLIMIT) {
1000 		np->tx_ring[entry].length = DescWholePkt | skb->len;
1001 	} else {
1002 		int len = skb->len - TX_BUFLIMIT;
1003 
1004 		np->tx_ring[entry].buffer2 = np->tx_addr[entry]+TX_BUFLIMIT;
1005 		np->tx_ring[entry].length = DescWholePkt | (len << 11) | TX_BUFLIMIT;
1006 	}
1007 	if(entry == TX_RING_SIZE-1)
1008 		np->tx_ring[entry].length |= DescEndRing;
1009 
1010 	/* Now acquire the irq spinlock.
1011 	 * The difficult race is the ordering between
1012 	 * increasing np->cur_tx and setting DescOwned:
1013 	 * - if np->cur_tx is increased first the interrupt
1014 	 *   handler could consider the packet as transmitted
1015 	 *   since DescOwned is cleared.
1016 	 * - If DescOwned is set first the NIC could report the
1017 	 *   packet as sent, but the interrupt handler would ignore it
1018 	 *   since the np->cur_tx was not yet increased.
1019 	 */
1020 	spin_lock_irq(&np->lock);
1021 	np->cur_tx++;
1022 
1023 	wmb(); /* flush length, buffer1, buffer2 */
1024 	np->tx_ring[entry].status = DescOwned;
1025 	wmb(); /* flush status and kick the hardware */
1026 	iowrite32(0, np->base_addr + TxStartDemand);
1027 	np->tx_q_bytes += skb->len;
1028 	/* Work around horrible bug in the chip by marking the queue as full
1029 	   when we do not have FIFO room for a maximum sized packet. */
1030 	if (np->cur_tx - np->dirty_tx > TX_QUEUE_LEN ||
1031 		((np->drv_flags & HasBrokenTx) && np->tx_q_bytes > TX_BUG_FIFO_LIMIT)) {
1032 		netif_stop_queue(dev);
1033 		wmb();
1034 		np->tx_full = 1;
1035 	}
1036 	spin_unlock_irq(&np->lock);
1037 
1038 	if (debug > 4) {
1039 		netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n",
1040 			   np->cur_tx, entry);
1041 	}
1042 	return NETDEV_TX_OK;
1043 }
1044 
netdev_tx_done(struct net_device * dev)1045 static void netdev_tx_done(struct net_device *dev)
1046 {
1047 	struct netdev_private *np = netdev_priv(dev);
1048 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1049 		int entry = np->dirty_tx % TX_RING_SIZE;
1050 		int tx_status = np->tx_ring[entry].status;
1051 
1052 		if (tx_status < 0)
1053 			break;
1054 		if (tx_status & 0x8000) { 	/* There was an error, log it. */
1055 #ifndef final_version
1056 			if (debug > 1)
1057 				netdev_dbg(dev, "Transmit error, Tx status %08x\n",
1058 					   tx_status);
1059 #endif
1060 			np->stats.tx_errors++;
1061 			if (tx_status & 0x0104) np->stats.tx_aborted_errors++;
1062 			if (tx_status & 0x0C80) np->stats.tx_carrier_errors++;
1063 			if (tx_status & 0x0200) np->stats.tx_window_errors++;
1064 			if (tx_status & 0x0002) np->stats.tx_fifo_errors++;
1065 			if ((tx_status & 0x0080) && np->mii_if.full_duplex == 0)
1066 				np->stats.tx_heartbeat_errors++;
1067 		} else {
1068 #ifndef final_version
1069 			if (debug > 3)
1070 				netdev_dbg(dev, "Transmit slot %d ok, Tx status %08x\n",
1071 					   entry, tx_status);
1072 #endif
1073 			np->stats.tx_bytes += np->tx_skbuff[entry]->len;
1074 			np->stats.collisions += (tx_status >> 3) & 15;
1075 			np->stats.tx_packets++;
1076 		}
1077 		/* Free the original skb. */
1078 		dma_unmap_single(&np->pci_dev->dev, np->tx_addr[entry],
1079 				 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
1080 		np->tx_q_bytes -= np->tx_skbuff[entry]->len;
1081 		dev_kfree_skb_irq(np->tx_skbuff[entry]);
1082 		np->tx_skbuff[entry] = NULL;
1083 	}
1084 	if (np->tx_full &&
1085 		np->cur_tx - np->dirty_tx < TX_QUEUE_LEN_RESTART &&
1086 		np->tx_q_bytes < TX_BUG_FIFO_LIMIT) {
1087 		/* The ring is no longer full, clear tbusy. */
1088 		np->tx_full = 0;
1089 		wmb();
1090 		netif_wake_queue(dev);
1091 	}
1092 }
1093 
1094 /* The interrupt handler does all of the Rx thread work and cleans up
1095    after the Tx thread. */
intr_handler(int irq,void * dev_instance)1096 static irqreturn_t intr_handler(int irq, void *dev_instance)
1097 {
1098 	struct net_device *dev = (struct net_device *)dev_instance;
1099 	struct netdev_private *np = netdev_priv(dev);
1100 	void __iomem *ioaddr = np->base_addr;
1101 	int work_limit = max_interrupt_work;
1102 	int handled = 0;
1103 
1104 	if (!netif_device_present(dev))
1105 		return IRQ_NONE;
1106 	do {
1107 		u32 intr_status = ioread32(ioaddr + IntrStatus);
1108 
1109 		/* Acknowledge all of the current interrupt sources ASAP. */
1110 		iowrite32(intr_status & 0x001ffff, ioaddr + IntrStatus);
1111 
1112 		if (debug > 4)
1113 			netdev_dbg(dev, "Interrupt, status %04x\n", intr_status);
1114 
1115 		if ((intr_status & (NormalIntr|AbnormalIntr)) == 0)
1116 			break;
1117 
1118 		handled = 1;
1119 
1120 		if (intr_status & (RxIntr | RxNoBuf))
1121 			netdev_rx(dev);
1122 		if (intr_status & RxNoBuf)
1123 			iowrite32(0, ioaddr + RxStartDemand);
1124 
1125 		if (intr_status & (TxNoBuf | TxIntr) &&
1126 			np->cur_tx != np->dirty_tx) {
1127 			spin_lock(&np->lock);
1128 			netdev_tx_done(dev);
1129 			spin_unlock(&np->lock);
1130 		}
1131 
1132 		/* Abnormal error summary/uncommon events handlers. */
1133 		if (intr_status & (AbnormalIntr | TxFIFOUnderflow | SystemError |
1134 						   TimerInt | TxDied))
1135 			netdev_error(dev, intr_status);
1136 
1137 		if (--work_limit < 0) {
1138 			dev_warn(&dev->dev,
1139 				 "Too much work at interrupt, status=0x%04x\n",
1140 				 intr_status);
1141 			/* Set the timer to re-enable the other interrupts after
1142 			   10*82usec ticks. */
1143 			spin_lock(&np->lock);
1144 			if (netif_device_present(dev)) {
1145 				iowrite32(AbnormalIntr | TimerInt, ioaddr + IntrEnable);
1146 				iowrite32(10, ioaddr + GPTimer);
1147 			}
1148 			spin_unlock(&np->lock);
1149 			break;
1150 		}
1151 	} while (1);
1152 
1153 	if (debug > 3)
1154 		netdev_dbg(dev, "exiting interrupt, status=%#4.4x\n",
1155 			   ioread32(ioaddr + IntrStatus));
1156 	return IRQ_RETVAL(handled);
1157 }
1158 
1159 /* This routine is logically part of the interrupt handler, but separated
1160    for clarity and better register allocation. */
netdev_rx(struct net_device * dev)1161 static int netdev_rx(struct net_device *dev)
1162 {
1163 	struct netdev_private *np = netdev_priv(dev);
1164 	int entry = np->cur_rx % RX_RING_SIZE;
1165 	int work_limit = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
1166 
1167 	if (debug > 4) {
1168 		netdev_dbg(dev, " In netdev_rx(), entry %d status %04x\n",
1169 			   entry, np->rx_ring[entry].status);
1170 	}
1171 
1172 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1173 	while (--work_limit >= 0) {
1174 		struct w840_rx_desc *desc = np->rx_head_desc;
1175 		s32 status = desc->status;
1176 
1177 		if (debug > 4)
1178 			netdev_dbg(dev, "  netdev_rx() status was %08x\n",
1179 				   status);
1180 		if (status < 0)
1181 			break;
1182 		if ((status & 0x38008300) != 0x0300) {
1183 			if ((status & 0x38000300) != 0x0300) {
1184 				/* Ingore earlier buffers. */
1185 				if ((status & 0xffff) != 0x7fff) {
1186 					dev_warn(&dev->dev,
1187 						 "Oversized Ethernet frame spanned multiple buffers, entry %#x status %04x!\n",
1188 						 np->cur_rx, status);
1189 					np->stats.rx_length_errors++;
1190 				}
1191 			} else if (status & 0x8000) {
1192 				/* There was a fatal error. */
1193 				if (debug > 2)
1194 					netdev_dbg(dev, "Receive error, Rx status %08x\n",
1195 						   status);
1196 				np->stats.rx_errors++; /* end of a packet.*/
1197 				if (status & 0x0890) np->stats.rx_length_errors++;
1198 				if (status & 0x004C) np->stats.rx_frame_errors++;
1199 				if (status & 0x0002) np->stats.rx_crc_errors++;
1200 			}
1201 		} else {
1202 			struct sk_buff *skb;
1203 			/* Omit the four octet CRC from the length. */
1204 			int pkt_len = ((status >> 16) & 0x7ff) - 4;
1205 
1206 #ifndef final_version
1207 			if (debug > 4)
1208 				netdev_dbg(dev, "  netdev_rx() normal Rx pkt length %d status %x\n",
1209 					   pkt_len, status);
1210 #endif
1211 			/* Check if the packet is long enough to accept without copying
1212 			   to a minimally-sized skbuff. */
1213 			if (pkt_len < rx_copybreak &&
1214 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1215 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1216 				dma_sync_single_for_cpu(&np->pci_dev->dev,
1217 							np->rx_addr[entry],
1218 							np->rx_skbuff[entry]->len,
1219 							DMA_FROM_DEVICE);
1220 				skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1221 				skb_put(skb, pkt_len);
1222 				dma_sync_single_for_device(&np->pci_dev->dev,
1223 							   np->rx_addr[entry],
1224 							   np->rx_skbuff[entry]->len,
1225 							   DMA_FROM_DEVICE);
1226 			} else {
1227 				dma_unmap_single(&np->pci_dev->dev,
1228 						 np->rx_addr[entry],
1229 						 np->rx_skbuff[entry]->len,
1230 						 DMA_FROM_DEVICE);
1231 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
1232 				np->rx_skbuff[entry] = NULL;
1233 			}
1234 #ifndef final_version				/* Remove after testing. */
1235 			/* You will want this info for the initial debug. */
1236 			if (debug > 5)
1237 				netdev_dbg(dev, "  Rx data %pM %pM %02x%02x %pI4\n",
1238 					   &skb->data[0], &skb->data[6],
1239 					   skb->data[12], skb->data[13],
1240 					   &skb->data[14]);
1241 #endif
1242 			skb->protocol = eth_type_trans(skb, dev);
1243 			netif_rx(skb);
1244 			np->stats.rx_packets++;
1245 			np->stats.rx_bytes += pkt_len;
1246 		}
1247 		entry = (++np->cur_rx) % RX_RING_SIZE;
1248 		np->rx_head_desc = &np->rx_ring[entry];
1249 	}
1250 
1251 	/* Refill the Rx ring buffers. */
1252 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1253 		struct sk_buff *skb;
1254 		entry = np->dirty_rx % RX_RING_SIZE;
1255 		if (np->rx_skbuff[entry] == NULL) {
1256 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1257 			np->rx_skbuff[entry] = skb;
1258 			if (skb == NULL)
1259 				break;			/* Better luck next round. */
1260 			np->rx_addr[entry] = dma_map_single(&np->pci_dev->dev,
1261 							    skb->data,
1262 							    np->rx_buf_sz,
1263 							    DMA_FROM_DEVICE);
1264 			np->rx_ring[entry].buffer1 = np->rx_addr[entry];
1265 		}
1266 		wmb();
1267 		np->rx_ring[entry].status = DescOwned;
1268 	}
1269 
1270 	return 0;
1271 }
1272 
netdev_error(struct net_device * dev,int intr_status)1273 static void netdev_error(struct net_device *dev, int intr_status)
1274 {
1275 	struct netdev_private *np = netdev_priv(dev);
1276 	void __iomem *ioaddr = np->base_addr;
1277 
1278 	if (debug > 2)
1279 		netdev_dbg(dev, "Abnormal event, %08x\n", intr_status);
1280 	if (intr_status == 0xffffffff)
1281 		return;
1282 	spin_lock(&np->lock);
1283 	if (intr_status & TxFIFOUnderflow) {
1284 		int new;
1285 		/* Bump up the Tx threshold */
1286 #if 0
1287 		/* This causes lots of dropped packets,
1288 		 * and under high load even tx_timeouts
1289 		 */
1290 		new = np->csr6 + 0x4000;
1291 #else
1292 		new = (np->csr6 >> 14)&0x7f;
1293 		if (new < 64)
1294 			new *= 2;
1295 		 else
1296 		 	new = 127; /* load full packet before starting */
1297 		new = (np->csr6 & ~(0x7F << 14)) | (new<<14);
1298 #endif
1299 		netdev_dbg(dev, "Tx underflow, new csr6 %08x\n", new);
1300 		update_csr6(dev, new);
1301 	}
1302 	if (intr_status & RxDied) {		/* Missed a Rx frame. */
1303 		np->stats.rx_errors++;
1304 	}
1305 	if (intr_status & TimerInt) {
1306 		/* Re-enable other interrupts. */
1307 		if (netif_device_present(dev))
1308 			iowrite32(0x1A0F5, ioaddr + IntrEnable);
1309 	}
1310 	np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1311 	iowrite32(0, ioaddr + RxStartDemand);
1312 	spin_unlock(&np->lock);
1313 }
1314 
get_stats(struct net_device * dev)1315 static struct net_device_stats *get_stats(struct net_device *dev)
1316 {
1317 	struct netdev_private *np = netdev_priv(dev);
1318 	void __iomem *ioaddr = np->base_addr;
1319 
1320 	/* The chip only need report frame silently dropped. */
1321 	spin_lock_irq(&np->lock);
1322 	if (netif_running(dev) && netif_device_present(dev))
1323 		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1324 	spin_unlock_irq(&np->lock);
1325 
1326 	return &np->stats;
1327 }
1328 
1329 
__set_rx_mode(struct net_device * dev)1330 static u32 __set_rx_mode(struct net_device *dev)
1331 {
1332 	struct netdev_private *np = netdev_priv(dev);
1333 	void __iomem *ioaddr = np->base_addr;
1334 	u32 mc_filter[2];			/* Multicast hash filter */
1335 	u32 rx_mode;
1336 
1337 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1338 		memset(mc_filter, 0xff, sizeof(mc_filter));
1339 		rx_mode = RxAcceptBroadcast | AcceptMulticast | RxAcceptAllPhys
1340 			| AcceptMyPhys;
1341 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1342 		   (dev->flags & IFF_ALLMULTI)) {
1343 		/* Too many to match, or accept all multicasts. */
1344 		memset(mc_filter, 0xff, sizeof(mc_filter));
1345 		rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1346 	} else {
1347 		struct netdev_hw_addr *ha;
1348 
1349 		memset(mc_filter, 0, sizeof(mc_filter));
1350 		netdev_for_each_mc_addr(ha, dev) {
1351 			int filbit;
1352 
1353 			filbit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1354 			filbit &= 0x3f;
1355 			mc_filter[filbit >> 5] |= 1 << (filbit & 31);
1356 		}
1357 		rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1358 	}
1359 	iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1360 	iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1361 	return rx_mode;
1362 }
1363 
set_rx_mode(struct net_device * dev)1364 static void set_rx_mode(struct net_device *dev)
1365 {
1366 	struct netdev_private *np = netdev_priv(dev);
1367 	u32 rx_mode = __set_rx_mode(dev);
1368 	spin_lock_irq(&np->lock);
1369 	update_csr6(dev, (np->csr6 & ~0x00F8) | rx_mode);
1370 	spin_unlock_irq(&np->lock);
1371 }
1372 
netdev_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1373 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1374 {
1375 	struct netdev_private *np = netdev_priv(dev);
1376 
1377 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1378 	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1379 }
1380 
netdev_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1381 static int netdev_get_link_ksettings(struct net_device *dev,
1382 				     struct ethtool_link_ksettings *cmd)
1383 {
1384 	struct netdev_private *np = netdev_priv(dev);
1385 
1386 	spin_lock_irq(&np->lock);
1387 	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1388 	spin_unlock_irq(&np->lock);
1389 
1390 	return 0;
1391 }
1392 
netdev_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1393 static int netdev_set_link_ksettings(struct net_device *dev,
1394 				     const struct ethtool_link_ksettings *cmd)
1395 {
1396 	struct netdev_private *np = netdev_priv(dev);
1397 	int rc;
1398 
1399 	spin_lock_irq(&np->lock);
1400 	rc = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1401 	spin_unlock_irq(&np->lock);
1402 
1403 	return rc;
1404 }
1405 
netdev_nway_reset(struct net_device * dev)1406 static int netdev_nway_reset(struct net_device *dev)
1407 {
1408 	struct netdev_private *np = netdev_priv(dev);
1409 	return mii_nway_restart(&np->mii_if);
1410 }
1411 
netdev_get_link(struct net_device * dev)1412 static u32 netdev_get_link(struct net_device *dev)
1413 {
1414 	struct netdev_private *np = netdev_priv(dev);
1415 	return mii_link_ok(&np->mii_if);
1416 }
1417 
netdev_get_msglevel(struct net_device * dev)1418 static u32 netdev_get_msglevel(struct net_device *dev)
1419 {
1420 	return debug;
1421 }
1422 
netdev_set_msglevel(struct net_device * dev,u32 value)1423 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1424 {
1425 	debug = value;
1426 }
1427 
1428 static const struct ethtool_ops netdev_ethtool_ops = {
1429 	.get_drvinfo		= netdev_get_drvinfo,
1430 	.nway_reset		= netdev_nway_reset,
1431 	.get_link		= netdev_get_link,
1432 	.get_msglevel		= netdev_get_msglevel,
1433 	.set_msglevel		= netdev_set_msglevel,
1434 	.get_link_ksettings	= netdev_get_link_ksettings,
1435 	.set_link_ksettings	= netdev_set_link_ksettings,
1436 };
1437 
netdev_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1438 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1439 {
1440 	struct mii_ioctl_data *data = if_mii(rq);
1441 	struct netdev_private *np = netdev_priv(dev);
1442 
1443 	switch(cmd) {
1444 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
1445 		data->phy_id = ((struct netdev_private *)netdev_priv(dev))->phys[0] & 0x1f;
1446 		fallthrough;
1447 
1448 	case SIOCGMIIREG:		/* Read MII PHY register. */
1449 		spin_lock_irq(&np->lock);
1450 		data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1451 		spin_unlock_irq(&np->lock);
1452 		return 0;
1453 
1454 	case SIOCSMIIREG:		/* Write MII PHY register. */
1455 		spin_lock_irq(&np->lock);
1456 		mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1457 		spin_unlock_irq(&np->lock);
1458 		return 0;
1459 	default:
1460 		return -EOPNOTSUPP;
1461 	}
1462 }
1463 
netdev_close(struct net_device * dev)1464 static int netdev_close(struct net_device *dev)
1465 {
1466 	struct netdev_private *np = netdev_priv(dev);
1467 	void __iomem *ioaddr = np->base_addr;
1468 
1469 	netif_stop_queue(dev);
1470 
1471 	if (debug > 1) {
1472 		netdev_dbg(dev, "Shutting down ethercard, status was %08x Config %08x\n",
1473 			   ioread32(ioaddr + IntrStatus),
1474 			   ioread32(ioaddr + NetworkConfig));
1475 		netdev_dbg(dev, "Queue pointers were Tx %d / %d,  Rx %d / %d\n",
1476 			   np->cur_tx, np->dirty_tx,
1477 			   np->cur_rx, np->dirty_rx);
1478 	}
1479 
1480 	/* Stop the chip's Tx and Rx processes. */
1481 	spin_lock_irq(&np->lock);
1482 	netif_device_detach(dev);
1483 	update_csr6(dev, 0);
1484 	iowrite32(0x0000, ioaddr + IntrEnable);
1485 	spin_unlock_irq(&np->lock);
1486 
1487 	free_irq(np->pci_dev->irq, dev);
1488 	wmb();
1489 	netif_device_attach(dev);
1490 
1491 	if (ioread32(ioaddr + NetworkConfig) != 0xffffffff)
1492 		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1493 
1494 #ifdef __i386__
1495 	if (debug > 2) {
1496 		int i;
1497 
1498 		printk(KERN_DEBUG"  Tx ring at %p:\n", np->tx_ring);
1499 		for (i = 0; i < TX_RING_SIZE; i++)
1500 			printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1501 			       i, np->tx_ring[i].length,
1502 			       np->tx_ring[i].status, np->tx_ring[i].buffer1);
1503 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1504 		for (i = 0; i < RX_RING_SIZE; i++) {
1505 			printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1506 			       i, np->rx_ring[i].length,
1507 			       np->rx_ring[i].status, np->rx_ring[i].buffer1);
1508 		}
1509 	}
1510 #endif /* __i386__ debugging only */
1511 
1512 	del_timer_sync(&np->timer);
1513 
1514 	free_rxtx_rings(np);
1515 	free_ringdesc(np);
1516 
1517 	return 0;
1518 }
1519 
w840_remove1(struct pci_dev * pdev)1520 static void w840_remove1(struct pci_dev *pdev)
1521 {
1522 	struct net_device *dev = pci_get_drvdata(pdev);
1523 
1524 	if (dev) {
1525 		struct netdev_private *np = netdev_priv(dev);
1526 		unregister_netdev(dev);
1527 		pci_iounmap(pdev, np->base_addr);
1528 		free_netdev(dev);
1529 	}
1530 }
1531 
1532 /*
1533  * suspend/resume synchronization:
1534  * - open, close, do_ioctl:
1535  * 	rtnl_lock, & netif_device_detach after the rtnl_unlock.
1536  * - get_stats:
1537  * 	spin_lock_irq(np->lock), doesn't touch hw if not present
1538  * - start_xmit:
1539  * 	synchronize_irq + netif_tx_disable;
1540  * - tx_timeout:
1541  * 	netif_device_detach + netif_tx_disable;
1542  * - set_multicast_list
1543  * 	netif_device_detach + netif_tx_disable;
1544  * - interrupt handler
1545  * 	doesn't touch hw if not present, synchronize_irq waits for
1546  * 	running instances of the interrupt handler.
1547  *
1548  * Disabling hw requires clearing csr6 & IntrEnable.
1549  * update_csr6 & all function that write IntrEnable check netif_device_present
1550  * before settings any bits.
1551  *
1552  * Detach must occur under spin_unlock_irq(), interrupts from a detached
1553  * device would cause an irq storm.
1554  */
w840_suspend(struct device * dev_d)1555 static int __maybe_unused w840_suspend(struct device *dev_d)
1556 {
1557 	struct net_device *dev = dev_get_drvdata(dev_d);
1558 	struct netdev_private *np = netdev_priv(dev);
1559 	void __iomem *ioaddr = np->base_addr;
1560 
1561 	rtnl_lock();
1562 	if (netif_running (dev)) {
1563 		del_timer_sync(&np->timer);
1564 
1565 		spin_lock_irq(&np->lock);
1566 		netif_device_detach(dev);
1567 		update_csr6(dev, 0);
1568 		iowrite32(0, ioaddr + IntrEnable);
1569 		spin_unlock_irq(&np->lock);
1570 
1571 		synchronize_irq(np->pci_dev->irq);
1572 		netif_tx_disable(dev);
1573 
1574 		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1575 
1576 		/* no more hardware accesses behind this line. */
1577 
1578 		BUG_ON(np->csr6 || ioread32(ioaddr + IntrEnable));
1579 
1580 		/* pci_power_off(pdev, -1); */
1581 
1582 		free_rxtx_rings(np);
1583 	} else {
1584 		netif_device_detach(dev);
1585 	}
1586 	rtnl_unlock();
1587 	return 0;
1588 }
1589 
w840_resume(struct device * dev_d)1590 static int __maybe_unused w840_resume(struct device *dev_d)
1591 {
1592 	struct net_device *dev = dev_get_drvdata(dev_d);
1593 	struct netdev_private *np = netdev_priv(dev);
1594 
1595 	rtnl_lock();
1596 	if (netif_device_present(dev))
1597 		goto out; /* device not suspended */
1598 	if (netif_running(dev)) {
1599 		spin_lock_irq(&np->lock);
1600 		iowrite32(1, np->base_addr+PCIBusCfg);
1601 		ioread32(np->base_addr+PCIBusCfg);
1602 		udelay(1);
1603 		netif_device_attach(dev);
1604 		init_rxtx_rings(dev);
1605 		init_registers(dev);
1606 		spin_unlock_irq(&np->lock);
1607 
1608 		netif_wake_queue(dev);
1609 
1610 		mod_timer(&np->timer, jiffies + 1*HZ);
1611 	} else {
1612 		netif_device_attach(dev);
1613 	}
1614 out:
1615 	rtnl_unlock();
1616 	return 0;
1617 }
1618 
1619 static SIMPLE_DEV_PM_OPS(w840_pm_ops, w840_suspend, w840_resume);
1620 
1621 static struct pci_driver w840_driver = {
1622 	.name		= DRV_NAME,
1623 	.id_table	= w840_pci_tbl,
1624 	.probe		= w840_probe1,
1625 	.remove		= w840_remove1,
1626 	.driver.pm	= &w840_pm_ops,
1627 };
1628 
1629 module_pci_driver(w840_driver);
1630