xref: /linux/mm/zswap.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38 
39 #include "swap.h"
40 #include "internal.h"
41 
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_long_t zswap_stored_pages = ATOMIC_LONG_INIT(0);
47 
48 /*
49  * The statistics below are not protected from concurrent access for
50  * performance reasons so they may not be a 100% accurate.  However,
51  * they do provide useful information on roughly how many times a
52  * certain event is occurring.
53 */
54 
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor;
65 /* Load or writeback failed due to decompression failure */
66 static u64 zswap_decompress_fail;
67 /* Store failed because underlying allocator could not get memory */
68 static u64 zswap_reject_alloc_fail;
69 /* Store failed because the entry metadata could not be allocated (rare) */
70 static u64 zswap_reject_kmemcache_fail;
71 
72 /* Shrinker work queue */
73 static struct workqueue_struct *shrink_wq;
74 /* Pool limit was hit, we need to calm down */
75 static bool zswap_pool_reached_full;
76 
77 /*********************************
78 * tunables
79 **********************************/
80 
81 #define ZSWAP_PARAM_UNSET ""
82 
83 static int zswap_setup(void);
84 
85 /* Enable/disable zswap */
86 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
87 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
88 static int zswap_enabled_param_set(const char *,
89 				   const struct kernel_param *);
90 static const struct kernel_param_ops zswap_enabled_param_ops = {
91 	.set =		zswap_enabled_param_set,
92 	.get =		param_get_bool,
93 };
94 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
95 
96 /* Crypto compressor to use */
97 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
98 static int zswap_compressor_param_set(const char *,
99 				      const struct kernel_param *);
100 static const struct kernel_param_ops zswap_compressor_param_ops = {
101 	.set =		zswap_compressor_param_set,
102 	.get =		param_get_charp,
103 	.free =		param_free_charp,
104 };
105 module_param_cb(compressor, &zswap_compressor_param_ops,
106 		&zswap_compressor, 0644);
107 
108 /* Compressed storage zpool to use */
109 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
110 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
111 static const struct kernel_param_ops zswap_zpool_param_ops = {
112 	.set =		zswap_zpool_param_set,
113 	.get =		param_get_charp,
114 	.free =		param_free_charp,
115 };
116 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
117 
118 /* The maximum percentage of memory that the compressed pool can occupy */
119 static unsigned int zswap_max_pool_percent = 20;
120 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
121 
122 /* The threshold for accepting new pages after the max_pool_percent was hit */
123 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
124 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
125 		   uint, 0644);
126 
127 /* Enable/disable memory pressure-based shrinker. */
128 static bool zswap_shrinker_enabled = IS_ENABLED(
129 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
130 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
131 
132 bool zswap_is_enabled(void)
133 {
134 	return zswap_enabled;
135 }
136 
137 bool zswap_never_enabled(void)
138 {
139 	return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
140 }
141 
142 /*********************************
143 * data structures
144 **********************************/
145 
146 struct crypto_acomp_ctx {
147 	struct crypto_acomp *acomp;
148 	struct acomp_req *req;
149 	struct crypto_wait wait;
150 	u8 *buffer;
151 	struct mutex mutex;
152 	bool is_sleepable;
153 };
154 
155 /*
156  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
157  * The only case where lru_lock is not acquired while holding tree.lock is
158  * when a zswap_entry is taken off the lru for writeback, in that case it
159  * needs to be verified that it's still valid in the tree.
160  */
161 struct zswap_pool {
162 	struct zpool *zpool;
163 	struct crypto_acomp_ctx __percpu *acomp_ctx;
164 	struct percpu_ref ref;
165 	struct list_head list;
166 	struct work_struct release_work;
167 	struct hlist_node node;
168 	char tfm_name[CRYPTO_MAX_ALG_NAME];
169 };
170 
171 /* Global LRU lists shared by all zswap pools. */
172 static struct list_lru zswap_list_lru;
173 
174 /* The lock protects zswap_next_shrink updates. */
175 static DEFINE_SPINLOCK(zswap_shrink_lock);
176 static struct mem_cgroup *zswap_next_shrink;
177 static struct work_struct zswap_shrink_work;
178 static struct shrinker *zswap_shrinker;
179 
180 /*
181  * struct zswap_entry
182  *
183  * This structure contains the metadata for tracking a single compressed
184  * page within zswap.
185  *
186  * swpentry - associated swap entry, the offset indexes into the red-black tree
187  * length - the length in bytes of the compressed page data.  Needed during
188  *          decompression.
189  * referenced - true if the entry recently entered the zswap pool. Unset by the
190  *              writeback logic. The entry is only reclaimed by the writeback
191  *              logic if referenced is unset. See comments in the shrinker
192  *              section for context.
193  * pool - the zswap_pool the entry's data is in
194  * handle - zpool allocation handle that stores the compressed page data
195  * objcg - the obj_cgroup that the compressed memory is charged to
196  * lru - handle to the pool's lru used to evict pages.
197  */
198 struct zswap_entry {
199 	swp_entry_t swpentry;
200 	unsigned int length;
201 	bool referenced;
202 	struct zswap_pool *pool;
203 	unsigned long handle;
204 	struct obj_cgroup *objcg;
205 	struct list_head lru;
206 };
207 
208 static struct xarray *zswap_trees[MAX_SWAPFILES];
209 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
210 
211 /* RCU-protected iteration */
212 static LIST_HEAD(zswap_pools);
213 /* protects zswap_pools list modification */
214 static DEFINE_SPINLOCK(zswap_pools_lock);
215 /* pool counter to provide unique names to zpool */
216 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
217 
218 enum zswap_init_type {
219 	ZSWAP_UNINIT,
220 	ZSWAP_INIT_SUCCEED,
221 	ZSWAP_INIT_FAILED
222 };
223 
224 static enum zswap_init_type zswap_init_state;
225 
226 /* used to ensure the integrity of initialization */
227 static DEFINE_MUTEX(zswap_init_lock);
228 
229 /* init completed, but couldn't create the initial pool */
230 static bool zswap_has_pool;
231 
232 /*********************************
233 * helpers and fwd declarations
234 **********************************/
235 
236 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
237 {
238 	return &zswap_trees[swp_type(swp)][swp_offset(swp)
239 		>> SWAP_ADDRESS_SPACE_SHIFT];
240 }
241 
242 #define zswap_pool_debug(msg, p)				\
243 	pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name,		\
244 		 zpool_get_type((p)->zpool))
245 
246 /*********************************
247 * pool functions
248 **********************************/
249 static void __zswap_pool_empty(struct percpu_ref *ref);
250 
251 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
252 {
253 	struct zswap_pool *pool;
254 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
255 	gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
256 	int ret, cpu;
257 
258 	if (!zswap_has_pool) {
259 		/* if either are unset, pool initialization failed, and we
260 		 * need both params to be set correctly before trying to
261 		 * create a pool.
262 		 */
263 		if (!strcmp(type, ZSWAP_PARAM_UNSET))
264 			return NULL;
265 		if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
266 			return NULL;
267 	}
268 
269 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
270 	if (!pool)
271 		return NULL;
272 
273 	/* unique name for each pool specifically required by zsmalloc */
274 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
275 	pool->zpool = zpool_create_pool(type, name, gfp);
276 	if (!pool->zpool) {
277 		pr_err("%s zpool not available\n", type);
278 		goto error;
279 	}
280 	pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
281 
282 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
283 
284 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
285 	if (!pool->acomp_ctx) {
286 		pr_err("percpu alloc failed\n");
287 		goto error;
288 	}
289 
290 	for_each_possible_cpu(cpu)
291 		mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex);
292 
293 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
294 				       &pool->node);
295 	if (ret)
296 		goto error;
297 
298 	/* being the current pool takes 1 ref; this func expects the
299 	 * caller to always add the new pool as the current pool
300 	 */
301 	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
302 			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
303 	if (ret)
304 		goto ref_fail;
305 	INIT_LIST_HEAD(&pool->list);
306 
307 	zswap_pool_debug("created", pool);
308 
309 	return pool;
310 
311 ref_fail:
312 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
313 error:
314 	if (pool->acomp_ctx)
315 		free_percpu(pool->acomp_ctx);
316 	if (pool->zpool)
317 		zpool_destroy_pool(pool->zpool);
318 	kfree(pool);
319 	return NULL;
320 }
321 
322 static struct zswap_pool *__zswap_pool_create_fallback(void)
323 {
324 	bool has_comp, has_zpool;
325 
326 	has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
327 	if (!has_comp && strcmp(zswap_compressor,
328 				CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
329 		pr_err("compressor %s not available, using default %s\n",
330 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
331 		param_free_charp(&zswap_compressor);
332 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
333 		has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
334 	}
335 	if (!has_comp) {
336 		pr_err("default compressor %s not available\n",
337 		       zswap_compressor);
338 		param_free_charp(&zswap_compressor);
339 		zswap_compressor = ZSWAP_PARAM_UNSET;
340 	}
341 
342 	has_zpool = zpool_has_pool(zswap_zpool_type);
343 	if (!has_zpool && strcmp(zswap_zpool_type,
344 				 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
345 		pr_err("zpool %s not available, using default %s\n",
346 		       zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
347 		param_free_charp(&zswap_zpool_type);
348 		zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
349 		has_zpool = zpool_has_pool(zswap_zpool_type);
350 	}
351 	if (!has_zpool) {
352 		pr_err("default zpool %s not available\n",
353 		       zswap_zpool_type);
354 		param_free_charp(&zswap_zpool_type);
355 		zswap_zpool_type = ZSWAP_PARAM_UNSET;
356 	}
357 
358 	if (!has_comp || !has_zpool)
359 		return NULL;
360 
361 	return zswap_pool_create(zswap_zpool_type, zswap_compressor);
362 }
363 
364 static void zswap_pool_destroy(struct zswap_pool *pool)
365 {
366 	zswap_pool_debug("destroying", pool);
367 
368 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
369 	free_percpu(pool->acomp_ctx);
370 
371 	zpool_destroy_pool(pool->zpool);
372 	kfree(pool);
373 }
374 
375 static void __zswap_pool_release(struct work_struct *work)
376 {
377 	struct zswap_pool *pool = container_of(work, typeof(*pool),
378 						release_work);
379 
380 	synchronize_rcu();
381 
382 	/* nobody should have been able to get a ref... */
383 	WARN_ON(!percpu_ref_is_zero(&pool->ref));
384 	percpu_ref_exit(&pool->ref);
385 
386 	/* pool is now off zswap_pools list and has no references. */
387 	zswap_pool_destroy(pool);
388 }
389 
390 static struct zswap_pool *zswap_pool_current(void);
391 
392 static void __zswap_pool_empty(struct percpu_ref *ref)
393 {
394 	struct zswap_pool *pool;
395 
396 	pool = container_of(ref, typeof(*pool), ref);
397 
398 	spin_lock_bh(&zswap_pools_lock);
399 
400 	WARN_ON(pool == zswap_pool_current());
401 
402 	list_del_rcu(&pool->list);
403 
404 	INIT_WORK(&pool->release_work, __zswap_pool_release);
405 	schedule_work(&pool->release_work);
406 
407 	spin_unlock_bh(&zswap_pools_lock);
408 }
409 
410 static int __must_check zswap_pool_tryget(struct zswap_pool *pool)
411 {
412 	if (!pool)
413 		return 0;
414 
415 	return percpu_ref_tryget(&pool->ref);
416 }
417 
418 /* The caller must already have a reference. */
419 static void zswap_pool_get(struct zswap_pool *pool)
420 {
421 	percpu_ref_get(&pool->ref);
422 }
423 
424 static void zswap_pool_put(struct zswap_pool *pool)
425 {
426 	percpu_ref_put(&pool->ref);
427 }
428 
429 static struct zswap_pool *__zswap_pool_current(void)
430 {
431 	struct zswap_pool *pool;
432 
433 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
434 	WARN_ONCE(!pool && zswap_has_pool,
435 		  "%s: no page storage pool!\n", __func__);
436 
437 	return pool;
438 }
439 
440 static struct zswap_pool *zswap_pool_current(void)
441 {
442 	assert_spin_locked(&zswap_pools_lock);
443 
444 	return __zswap_pool_current();
445 }
446 
447 static struct zswap_pool *zswap_pool_current_get(void)
448 {
449 	struct zswap_pool *pool;
450 
451 	rcu_read_lock();
452 
453 	pool = __zswap_pool_current();
454 	if (!zswap_pool_tryget(pool))
455 		pool = NULL;
456 
457 	rcu_read_unlock();
458 
459 	return pool;
460 }
461 
462 /* type and compressor must be null-terminated */
463 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
464 {
465 	struct zswap_pool *pool;
466 
467 	assert_spin_locked(&zswap_pools_lock);
468 
469 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
470 		if (strcmp(pool->tfm_name, compressor))
471 			continue;
472 		if (strcmp(zpool_get_type(pool->zpool), type))
473 			continue;
474 		/* if we can't get it, it's about to be destroyed */
475 		if (!zswap_pool_tryget(pool))
476 			continue;
477 		return pool;
478 	}
479 
480 	return NULL;
481 }
482 
483 static unsigned long zswap_max_pages(void)
484 {
485 	return totalram_pages() * zswap_max_pool_percent / 100;
486 }
487 
488 static unsigned long zswap_accept_thr_pages(void)
489 {
490 	return zswap_max_pages() * zswap_accept_thr_percent / 100;
491 }
492 
493 unsigned long zswap_total_pages(void)
494 {
495 	struct zswap_pool *pool;
496 	unsigned long total = 0;
497 
498 	rcu_read_lock();
499 	list_for_each_entry_rcu(pool, &zswap_pools, list)
500 		total += zpool_get_total_pages(pool->zpool);
501 	rcu_read_unlock();
502 
503 	return total;
504 }
505 
506 static bool zswap_check_limits(void)
507 {
508 	unsigned long cur_pages = zswap_total_pages();
509 	unsigned long max_pages = zswap_max_pages();
510 
511 	if (cur_pages >= max_pages) {
512 		zswap_pool_limit_hit++;
513 		zswap_pool_reached_full = true;
514 	} else if (zswap_pool_reached_full &&
515 		   cur_pages <= zswap_accept_thr_pages()) {
516 			zswap_pool_reached_full = false;
517 	}
518 	return zswap_pool_reached_full;
519 }
520 
521 /*********************************
522 * param callbacks
523 **********************************/
524 
525 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
526 {
527 	/* no change required */
528 	if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
529 		return false;
530 	return true;
531 }
532 
533 /* val must be a null-terminated string */
534 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
535 			     char *type, char *compressor)
536 {
537 	struct zswap_pool *pool, *put_pool = NULL;
538 	char *s = strstrip((char *)val);
539 	int ret = 0;
540 	bool new_pool = false;
541 
542 	mutex_lock(&zswap_init_lock);
543 	switch (zswap_init_state) {
544 	case ZSWAP_UNINIT:
545 		/* if this is load-time (pre-init) param setting,
546 		 * don't create a pool; that's done during init.
547 		 */
548 		ret = param_set_charp(s, kp);
549 		break;
550 	case ZSWAP_INIT_SUCCEED:
551 		new_pool = zswap_pool_changed(s, kp);
552 		break;
553 	case ZSWAP_INIT_FAILED:
554 		pr_err("can't set param, initialization failed\n");
555 		ret = -ENODEV;
556 	}
557 	mutex_unlock(&zswap_init_lock);
558 
559 	/* no need to create a new pool, return directly */
560 	if (!new_pool)
561 		return ret;
562 
563 	if (!type) {
564 		if (!zpool_has_pool(s)) {
565 			pr_err("zpool %s not available\n", s);
566 			return -ENOENT;
567 		}
568 		type = s;
569 	} else if (!compressor) {
570 		if (!crypto_has_acomp(s, 0, 0)) {
571 			pr_err("compressor %s not available\n", s);
572 			return -ENOENT;
573 		}
574 		compressor = s;
575 	} else {
576 		WARN_ON(1);
577 		return -EINVAL;
578 	}
579 
580 	spin_lock_bh(&zswap_pools_lock);
581 
582 	pool = zswap_pool_find_get(type, compressor);
583 	if (pool) {
584 		zswap_pool_debug("using existing", pool);
585 		WARN_ON(pool == zswap_pool_current());
586 		list_del_rcu(&pool->list);
587 	}
588 
589 	spin_unlock_bh(&zswap_pools_lock);
590 
591 	if (!pool)
592 		pool = zswap_pool_create(type, compressor);
593 	else {
594 		/*
595 		 * Restore the initial ref dropped by percpu_ref_kill()
596 		 * when the pool was decommissioned and switch it again
597 		 * to percpu mode.
598 		 */
599 		percpu_ref_resurrect(&pool->ref);
600 
601 		/* Drop the ref from zswap_pool_find_get(). */
602 		zswap_pool_put(pool);
603 	}
604 
605 	if (pool)
606 		ret = param_set_charp(s, kp);
607 	else
608 		ret = -EINVAL;
609 
610 	spin_lock_bh(&zswap_pools_lock);
611 
612 	if (!ret) {
613 		put_pool = zswap_pool_current();
614 		list_add_rcu(&pool->list, &zswap_pools);
615 		zswap_has_pool = true;
616 	} else if (pool) {
617 		/* add the possibly pre-existing pool to the end of the pools
618 		 * list; if it's new (and empty) then it'll be removed and
619 		 * destroyed by the put after we drop the lock
620 		 */
621 		list_add_tail_rcu(&pool->list, &zswap_pools);
622 		put_pool = pool;
623 	}
624 
625 	spin_unlock_bh(&zswap_pools_lock);
626 
627 	if (!zswap_has_pool && !pool) {
628 		/* if initial pool creation failed, and this pool creation also
629 		 * failed, maybe both compressor and zpool params were bad.
630 		 * Allow changing this param, so pool creation will succeed
631 		 * when the other param is changed. We already verified this
632 		 * param is ok in the zpool_has_pool() or crypto_has_acomp()
633 		 * checks above.
634 		 */
635 		ret = param_set_charp(s, kp);
636 	}
637 
638 	/* drop the ref from either the old current pool,
639 	 * or the new pool we failed to add
640 	 */
641 	if (put_pool)
642 		percpu_ref_kill(&put_pool->ref);
643 
644 	return ret;
645 }
646 
647 static int zswap_compressor_param_set(const char *val,
648 				      const struct kernel_param *kp)
649 {
650 	return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
651 }
652 
653 static int zswap_zpool_param_set(const char *val,
654 				 const struct kernel_param *kp)
655 {
656 	return __zswap_param_set(val, kp, NULL, zswap_compressor);
657 }
658 
659 static int zswap_enabled_param_set(const char *val,
660 				   const struct kernel_param *kp)
661 {
662 	int ret = -ENODEV;
663 
664 	/* if this is load-time (pre-init) param setting, only set param. */
665 	if (system_state != SYSTEM_RUNNING)
666 		return param_set_bool(val, kp);
667 
668 	mutex_lock(&zswap_init_lock);
669 	switch (zswap_init_state) {
670 	case ZSWAP_UNINIT:
671 		if (zswap_setup())
672 			break;
673 		fallthrough;
674 	case ZSWAP_INIT_SUCCEED:
675 		if (!zswap_has_pool)
676 			pr_err("can't enable, no pool configured\n");
677 		else
678 			ret = param_set_bool(val, kp);
679 		break;
680 	case ZSWAP_INIT_FAILED:
681 		pr_err("can't enable, initialization failed\n");
682 	}
683 	mutex_unlock(&zswap_init_lock);
684 
685 	return ret;
686 }
687 
688 /*********************************
689 * lru functions
690 **********************************/
691 
692 /* should be called under RCU */
693 #ifdef CONFIG_MEMCG
694 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
695 {
696 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
697 }
698 #else
699 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
700 {
701 	return NULL;
702 }
703 #endif
704 
705 static inline int entry_to_nid(struct zswap_entry *entry)
706 {
707 	return page_to_nid(virt_to_page(entry));
708 }
709 
710 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
711 {
712 	int nid = entry_to_nid(entry);
713 	struct mem_cgroup *memcg;
714 
715 	/*
716 	 * Note that it is safe to use rcu_read_lock() here, even in the face of
717 	 * concurrent memcg offlining:
718 	 *
719 	 * 1. list_lru_add() is called before list_lru_one is dead. The
720 	 *    new entry will be reparented to memcg's parent's list_lru.
721 	 * 2. list_lru_add() is called after list_lru_one is dead. The
722 	 *    new entry will be added directly to memcg's parent's list_lru.
723 	 *
724 	 * Similar reasoning holds for list_lru_del().
725 	 */
726 	rcu_read_lock();
727 	memcg = mem_cgroup_from_entry(entry);
728 	/* will always succeed */
729 	list_lru_add(list_lru, &entry->lru, nid, memcg);
730 	rcu_read_unlock();
731 }
732 
733 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
734 {
735 	int nid = entry_to_nid(entry);
736 	struct mem_cgroup *memcg;
737 
738 	rcu_read_lock();
739 	memcg = mem_cgroup_from_entry(entry);
740 	/* will always succeed */
741 	list_lru_del(list_lru, &entry->lru, nid, memcg);
742 	rcu_read_unlock();
743 }
744 
745 void zswap_lruvec_state_init(struct lruvec *lruvec)
746 {
747 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
748 }
749 
750 void zswap_folio_swapin(struct folio *folio)
751 {
752 	struct lruvec *lruvec;
753 
754 	if (folio) {
755 		lruvec = folio_lruvec(folio);
756 		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
757 	}
758 }
759 
760 /*
761  * This function should be called when a memcg is being offlined.
762  *
763  * Since the global shrinker shrink_worker() may hold a reference
764  * of the memcg, we must check and release the reference in
765  * zswap_next_shrink.
766  *
767  * shrink_worker() must handle the case where this function releases
768  * the reference of memcg being shrunk.
769  */
770 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
771 {
772 	/* lock out zswap shrinker walking memcg tree */
773 	spin_lock(&zswap_shrink_lock);
774 	if (zswap_next_shrink == memcg) {
775 		do {
776 			zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
777 		} while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
778 	}
779 	spin_unlock(&zswap_shrink_lock);
780 }
781 
782 /*********************************
783 * zswap entry functions
784 **********************************/
785 static struct kmem_cache *zswap_entry_cache;
786 
787 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
788 {
789 	struct zswap_entry *entry;
790 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
791 	if (!entry)
792 		return NULL;
793 	return entry;
794 }
795 
796 static void zswap_entry_cache_free(struct zswap_entry *entry)
797 {
798 	kmem_cache_free(zswap_entry_cache, entry);
799 }
800 
801 /*
802  * Carries out the common pattern of freeing and entry's zpool allocation,
803  * freeing the entry itself, and decrementing the number of stored pages.
804  */
805 static void zswap_entry_free(struct zswap_entry *entry)
806 {
807 	zswap_lru_del(&zswap_list_lru, entry);
808 	zpool_free(entry->pool->zpool, entry->handle);
809 	zswap_pool_put(entry->pool);
810 	if (entry->objcg) {
811 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
812 		obj_cgroup_put(entry->objcg);
813 	}
814 	zswap_entry_cache_free(entry);
815 	atomic_long_dec(&zswap_stored_pages);
816 }
817 
818 /*********************************
819 * compressed storage functions
820 **********************************/
821 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
822 {
823 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
824 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
825 	struct crypto_acomp *acomp = NULL;
826 	struct acomp_req *req = NULL;
827 	u8 *buffer = NULL;
828 	int ret;
829 
830 	buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
831 	if (!buffer) {
832 		ret = -ENOMEM;
833 		goto fail;
834 	}
835 
836 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
837 	if (IS_ERR(acomp)) {
838 		pr_err("could not alloc crypto acomp %s : %ld\n",
839 				pool->tfm_name, PTR_ERR(acomp));
840 		ret = PTR_ERR(acomp);
841 		goto fail;
842 	}
843 
844 	req = acomp_request_alloc(acomp);
845 	if (!req) {
846 		pr_err("could not alloc crypto acomp_request %s\n",
847 		       pool->tfm_name);
848 		ret = -ENOMEM;
849 		goto fail;
850 	}
851 
852 	/*
853 	 * Only hold the mutex after completing allocations, otherwise we may
854 	 * recurse into zswap through reclaim and attempt to hold the mutex
855 	 * again resulting in a deadlock.
856 	 */
857 	mutex_lock(&acomp_ctx->mutex);
858 	crypto_init_wait(&acomp_ctx->wait);
859 
860 	/*
861 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
862 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
863 	 * won't be called, crypto_wait_req() will return without blocking.
864 	 */
865 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
866 				   crypto_req_done, &acomp_ctx->wait);
867 
868 	acomp_ctx->buffer = buffer;
869 	acomp_ctx->acomp = acomp;
870 	acomp_ctx->is_sleepable = acomp_is_async(acomp);
871 	acomp_ctx->req = req;
872 	mutex_unlock(&acomp_ctx->mutex);
873 	return 0;
874 
875 fail:
876 	if (acomp)
877 		crypto_free_acomp(acomp);
878 	kfree(buffer);
879 	return ret;
880 }
881 
882 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
883 {
884 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
885 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
886 	struct acomp_req *req;
887 	struct crypto_acomp *acomp;
888 	u8 *buffer;
889 
890 	if (IS_ERR_OR_NULL(acomp_ctx))
891 		return 0;
892 
893 	mutex_lock(&acomp_ctx->mutex);
894 	req = acomp_ctx->req;
895 	acomp = acomp_ctx->acomp;
896 	buffer = acomp_ctx->buffer;
897 	acomp_ctx->req = NULL;
898 	acomp_ctx->acomp = NULL;
899 	acomp_ctx->buffer = NULL;
900 	mutex_unlock(&acomp_ctx->mutex);
901 
902 	/*
903 	 * Do the actual freeing after releasing the mutex to avoid subtle
904 	 * locking dependencies causing deadlocks.
905 	 */
906 	if (!IS_ERR_OR_NULL(req))
907 		acomp_request_free(req);
908 	if (!IS_ERR_OR_NULL(acomp))
909 		crypto_free_acomp(acomp);
910 	kfree(buffer);
911 
912 	return 0;
913 }
914 
915 static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool)
916 {
917 	struct crypto_acomp_ctx *acomp_ctx;
918 
919 	for (;;) {
920 		acomp_ctx = raw_cpu_ptr(pool->acomp_ctx);
921 		mutex_lock(&acomp_ctx->mutex);
922 		if (likely(acomp_ctx->req))
923 			return acomp_ctx;
924 		/*
925 		 * It is possible that we were migrated to a different CPU after
926 		 * getting the per-CPU ctx but before the mutex was acquired. If
927 		 * the old CPU got offlined, zswap_cpu_comp_dead() could have
928 		 * already freed ctx->req (among other things) and set it to
929 		 * NULL. Just try again on the new CPU that we ended up on.
930 		 */
931 		mutex_unlock(&acomp_ctx->mutex);
932 	}
933 }
934 
935 static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx)
936 {
937 	mutex_unlock(&acomp_ctx->mutex);
938 }
939 
940 static bool zswap_compress(struct page *page, struct zswap_entry *entry,
941 			   struct zswap_pool *pool)
942 {
943 	struct crypto_acomp_ctx *acomp_ctx;
944 	struct scatterlist input, output;
945 	int comp_ret = 0, alloc_ret = 0;
946 	unsigned int dlen = PAGE_SIZE;
947 	unsigned long handle;
948 	struct zpool *zpool;
949 	gfp_t gfp;
950 	u8 *dst;
951 
952 	acomp_ctx = acomp_ctx_get_cpu_lock(pool);
953 	dst = acomp_ctx->buffer;
954 	sg_init_table(&input, 1);
955 	sg_set_page(&input, page, PAGE_SIZE, 0);
956 
957 	/*
958 	 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
959 	 * and hardware-accelerators may won't check the dst buffer size, so
960 	 * giving the dst buffer with enough length to avoid buffer overflow.
961 	 */
962 	sg_init_one(&output, dst, PAGE_SIZE * 2);
963 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
964 
965 	/*
966 	 * it maybe looks a little bit silly that we send an asynchronous request,
967 	 * then wait for its completion synchronously. This makes the process look
968 	 * synchronous in fact.
969 	 * Theoretically, acomp supports users send multiple acomp requests in one
970 	 * acomp instance, then get those requests done simultaneously. but in this
971 	 * case, zswap actually does store and load page by page, there is no
972 	 * existing method to send the second page before the first page is done
973 	 * in one thread doing zwap.
974 	 * but in different threads running on different cpu, we have different
975 	 * acomp instance, so multiple threads can do (de)compression in parallel.
976 	 */
977 	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
978 	dlen = acomp_ctx->req->dlen;
979 	if (comp_ret)
980 		goto unlock;
981 
982 	zpool = pool->zpool;
983 	gfp = GFP_NOWAIT | __GFP_NORETRY | __GFP_HIGHMEM | __GFP_MOVABLE;
984 	alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle, page_to_nid(page));
985 	if (alloc_ret)
986 		goto unlock;
987 
988 	zpool_obj_write(zpool, handle, dst, dlen);
989 	entry->handle = handle;
990 	entry->length = dlen;
991 
992 unlock:
993 	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
994 		zswap_reject_compress_poor++;
995 	else if (comp_ret)
996 		zswap_reject_compress_fail++;
997 	else if (alloc_ret)
998 		zswap_reject_alloc_fail++;
999 
1000 	acomp_ctx_put_unlock(acomp_ctx);
1001 	return comp_ret == 0 && alloc_ret == 0;
1002 }
1003 
1004 static bool zswap_decompress(struct zswap_entry *entry, struct folio *folio)
1005 {
1006 	struct zpool *zpool = entry->pool->zpool;
1007 	struct scatterlist input, output;
1008 	struct crypto_acomp_ctx *acomp_ctx;
1009 	int decomp_ret, dlen;
1010 	u8 *src, *obj;
1011 
1012 	acomp_ctx = acomp_ctx_get_cpu_lock(entry->pool);
1013 	obj = zpool_obj_read_begin(zpool, entry->handle, acomp_ctx->buffer);
1014 
1015 	/*
1016 	 * zpool_obj_read_begin() might return a kmap address of highmem when
1017 	 * acomp_ctx->buffer is not used.  However, sg_init_one() does not
1018 	 * handle highmem addresses, so copy the object to acomp_ctx->buffer.
1019 	 */
1020 	if (virt_addr_valid(obj)) {
1021 		src = obj;
1022 	} else {
1023 		WARN_ON_ONCE(obj == acomp_ctx->buffer);
1024 		memcpy(acomp_ctx->buffer, obj, entry->length);
1025 		src = acomp_ctx->buffer;
1026 	}
1027 
1028 	sg_init_one(&input, src, entry->length);
1029 	sg_init_table(&output, 1);
1030 	sg_set_folio(&output, folio, PAGE_SIZE, 0);
1031 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1032 	decomp_ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
1033 	dlen = acomp_ctx->req->dlen;
1034 
1035 	zpool_obj_read_end(zpool, entry->handle, obj);
1036 	acomp_ctx_put_unlock(acomp_ctx);
1037 
1038 	if (!decomp_ret && dlen == PAGE_SIZE)
1039 		return true;
1040 
1041 	zswap_decompress_fail++;
1042 	pr_alert_ratelimited("Decompression error from zswap (%d:%lu %s %u->%d)\n",
1043 						swp_type(entry->swpentry),
1044 						swp_offset(entry->swpentry),
1045 						entry->pool->tfm_name, entry->length, dlen);
1046 	return false;
1047 }
1048 
1049 /*********************************
1050 * writeback code
1051 **********************************/
1052 /*
1053  * Attempts to free an entry by adding a folio to the swap cache,
1054  * decompressing the entry data into the folio, and issuing a
1055  * bio write to write the folio back to the swap device.
1056  *
1057  * This can be thought of as a "resumed writeback" of the folio
1058  * to the swap device.  We are basically resuming the same swap
1059  * writeback path that was intercepted with the zswap_store()
1060  * in the first place.  After the folio has been decompressed into
1061  * the swap cache, the compressed version stored by zswap can be
1062  * freed.
1063  */
1064 static int zswap_writeback_entry(struct zswap_entry *entry,
1065 				 swp_entry_t swpentry)
1066 {
1067 	struct xarray *tree;
1068 	pgoff_t offset = swp_offset(swpentry);
1069 	struct folio *folio;
1070 	struct mempolicy *mpol;
1071 	bool folio_was_allocated;
1072 	struct swap_info_struct *si;
1073 	int ret = 0;
1074 
1075 	/* try to allocate swap cache folio */
1076 	si = get_swap_device(swpentry);
1077 	if (!si)
1078 		return -EEXIST;
1079 
1080 	mpol = get_task_policy(current);
1081 	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1082 			NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1083 	put_swap_device(si);
1084 	if (!folio)
1085 		return -ENOMEM;
1086 
1087 	/*
1088 	 * Found an existing folio, we raced with swapin or concurrent
1089 	 * shrinker. We generally writeback cold folios from zswap, and
1090 	 * swapin means the folio just became hot, so skip this folio.
1091 	 * For unlikely concurrent shrinker case, it will be unlinked
1092 	 * and freed when invalidated by the concurrent shrinker anyway.
1093 	 */
1094 	if (!folio_was_allocated) {
1095 		ret = -EEXIST;
1096 		goto out;
1097 	}
1098 
1099 	/*
1100 	 * folio is locked, and the swapcache is now secured against
1101 	 * concurrent swapping to and from the slot, and concurrent
1102 	 * swapoff so we can safely dereference the zswap tree here.
1103 	 * Verify that the swap entry hasn't been invalidated and recycled
1104 	 * behind our backs, to avoid overwriting a new swap folio with
1105 	 * old compressed data. Only when this is successful can the entry
1106 	 * be dereferenced.
1107 	 */
1108 	tree = swap_zswap_tree(swpentry);
1109 	if (entry != xa_load(tree, offset)) {
1110 		ret = -ENOMEM;
1111 		goto out;
1112 	}
1113 
1114 	if (!zswap_decompress(entry, folio)) {
1115 		ret = -EIO;
1116 		goto out;
1117 	}
1118 
1119 	xa_erase(tree, offset);
1120 
1121 	count_vm_event(ZSWPWB);
1122 	if (entry->objcg)
1123 		count_objcg_events(entry->objcg, ZSWPWB, 1);
1124 
1125 	zswap_entry_free(entry);
1126 
1127 	/* folio is up to date */
1128 	folio_mark_uptodate(folio);
1129 
1130 	/* move it to the tail of the inactive list after end_writeback */
1131 	folio_set_reclaim(folio);
1132 
1133 	/* start writeback */
1134 	__swap_writepage(folio, NULL);
1135 
1136 out:
1137 	if (ret && ret != -EEXIST) {
1138 		delete_from_swap_cache(folio);
1139 		folio_unlock(folio);
1140 	}
1141 	folio_put(folio);
1142 	return ret;
1143 }
1144 
1145 /*********************************
1146 * shrinker functions
1147 **********************************/
1148 /*
1149  * The dynamic shrinker is modulated by the following factors:
1150  *
1151  * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1152  *    the entry a second chance) before rotating it in the LRU list. If the
1153  *    entry is considered again by the shrinker, with its referenced bit unset,
1154  *    it is written back. The writeback rate as a result is dynamically
1155  *    adjusted by the pool activities - if the pool is dominated by new entries
1156  *    (i.e lots of recent zswapouts), these entries will be protected and
1157  *    the writeback rate will slow down. On the other hand, if the pool has a
1158  *    lot of stagnant entries, these entries will be reclaimed immediately,
1159  *    effectively increasing the writeback rate.
1160  *
1161  * 2. Swapins counter: If we observe swapins, it is a sign that we are
1162  *    overshrinking and should slow down. We maintain a swapins counter, which
1163  *    is consumed and subtract from the number of eligible objects on the LRU
1164  *    in zswap_shrinker_count().
1165  *
1166  * 3. Compression ratio. The better the workload compresses, the less gains we
1167  *    can expect from writeback. We scale down the number of objects available
1168  *    for reclaim by this ratio.
1169  */
1170 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1171 				       void *arg)
1172 {
1173 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1174 	bool *encountered_page_in_swapcache = (bool *)arg;
1175 	swp_entry_t swpentry;
1176 	enum lru_status ret = LRU_REMOVED_RETRY;
1177 	int writeback_result;
1178 
1179 	/*
1180 	 * Second chance algorithm: if the entry has its referenced bit set, give it
1181 	 * a second chance. Only clear the referenced bit and rotate it in the
1182 	 * zswap's LRU list.
1183 	 */
1184 	if (entry->referenced) {
1185 		entry->referenced = false;
1186 		return LRU_ROTATE;
1187 	}
1188 
1189 	/*
1190 	 * As soon as we drop the LRU lock, the entry can be freed by
1191 	 * a concurrent invalidation. This means the following:
1192 	 *
1193 	 * 1. We extract the swp_entry_t to the stack, allowing
1194 	 *    zswap_writeback_entry() to pin the swap entry and
1195 	 *    then validate the zwap entry against that swap entry's
1196 	 *    tree using pointer value comparison. Only when that
1197 	 *    is successful can the entry be dereferenced.
1198 	 *
1199 	 * 2. Usually, objects are taken off the LRU for reclaim. In
1200 	 *    this case this isn't possible, because if reclaim fails
1201 	 *    for whatever reason, we have no means of knowing if the
1202 	 *    entry is alive to put it back on the LRU.
1203 	 *
1204 	 *    So rotate it before dropping the lock. If the entry is
1205 	 *    written back or invalidated, the free path will unlink
1206 	 *    it. For failures, rotation is the right thing as well.
1207 	 *
1208 	 *    Temporary failures, where the same entry should be tried
1209 	 *    again immediately, almost never happen for this shrinker.
1210 	 *    We don't do any trylocking; -ENOMEM comes closest,
1211 	 *    but that's extremely rare and doesn't happen spuriously
1212 	 *    either. Don't bother distinguishing this case.
1213 	 */
1214 	list_move_tail(item, &l->list);
1215 
1216 	/*
1217 	 * Once the lru lock is dropped, the entry might get freed. The
1218 	 * swpentry is copied to the stack, and entry isn't deref'd again
1219 	 * until the entry is verified to still be alive in the tree.
1220 	 */
1221 	swpentry = entry->swpentry;
1222 
1223 	/*
1224 	 * It's safe to drop the lock here because we return either
1225 	 * LRU_REMOVED_RETRY, LRU_RETRY or LRU_STOP.
1226 	 */
1227 	spin_unlock(&l->lock);
1228 
1229 	writeback_result = zswap_writeback_entry(entry, swpentry);
1230 
1231 	if (writeback_result) {
1232 		zswap_reject_reclaim_fail++;
1233 		ret = LRU_RETRY;
1234 
1235 		/*
1236 		 * Encountering a page already in swap cache is a sign that we are shrinking
1237 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1238 		 * shrinker context).
1239 		 */
1240 		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1241 			ret = LRU_STOP;
1242 			*encountered_page_in_swapcache = true;
1243 		}
1244 	} else {
1245 		zswap_written_back_pages++;
1246 	}
1247 
1248 	return ret;
1249 }
1250 
1251 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1252 		struct shrink_control *sc)
1253 {
1254 	unsigned long shrink_ret;
1255 	bool encountered_page_in_swapcache = false;
1256 
1257 	if (!zswap_shrinker_enabled ||
1258 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1259 		sc->nr_scanned = 0;
1260 		return SHRINK_STOP;
1261 	}
1262 
1263 	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1264 		&encountered_page_in_swapcache);
1265 
1266 	if (encountered_page_in_swapcache)
1267 		return SHRINK_STOP;
1268 
1269 	return shrink_ret ? shrink_ret : SHRINK_STOP;
1270 }
1271 
1272 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1273 		struct shrink_control *sc)
1274 {
1275 	struct mem_cgroup *memcg = sc->memcg;
1276 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1277 	atomic_long_t *nr_disk_swapins =
1278 		&lruvec->zswap_lruvec_state.nr_disk_swapins;
1279 	unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1280 		nr_remain;
1281 
1282 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1283 		return 0;
1284 
1285 	/*
1286 	 * The shrinker resumes swap writeback, which will enter block
1287 	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1288 	 * rules (may_enter_fs()), which apply on a per-folio basis.
1289 	 */
1290 	if (!gfp_has_io_fs(sc->gfp_mask))
1291 		return 0;
1292 
1293 	/*
1294 	 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1295 	 * have them per-node and thus per-lruvec. Careful if memcg is
1296 	 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1297 	 * for the lruvec, but not for memcg_page_state().
1298 	 *
1299 	 * Without memcg, use the zswap pool-wide metrics.
1300 	 */
1301 	if (!mem_cgroup_disabled()) {
1302 		mem_cgroup_flush_stats(memcg);
1303 		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1304 		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1305 	} else {
1306 		nr_backing = zswap_total_pages();
1307 		nr_stored = atomic_long_read(&zswap_stored_pages);
1308 	}
1309 
1310 	if (!nr_stored)
1311 		return 0;
1312 
1313 	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1314 	if (!nr_freeable)
1315 		return 0;
1316 
1317 	/*
1318 	 * Subtract from the lru size the number of pages that are recently swapped
1319 	 * in from disk. The idea is that had we protect the zswap's LRU by this
1320 	 * amount of pages, these disk swapins would not have happened.
1321 	 */
1322 	nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1323 	do {
1324 		if (nr_freeable >= nr_disk_swapins_cur)
1325 			nr_remain = 0;
1326 		else
1327 			nr_remain = nr_disk_swapins_cur - nr_freeable;
1328 	} while (!atomic_long_try_cmpxchg(
1329 		nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1330 
1331 	nr_freeable -= nr_disk_swapins_cur - nr_remain;
1332 	if (!nr_freeable)
1333 		return 0;
1334 
1335 	/*
1336 	 * Scale the number of freeable pages by the memory saving factor.
1337 	 * This ensures that the better zswap compresses memory, the fewer
1338 	 * pages we will evict to swap (as it will otherwise incur IO for
1339 	 * relatively small memory saving).
1340 	 */
1341 	return mult_frac(nr_freeable, nr_backing, nr_stored);
1342 }
1343 
1344 static struct shrinker *zswap_alloc_shrinker(void)
1345 {
1346 	struct shrinker *shrinker;
1347 
1348 	shrinker =
1349 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1350 	if (!shrinker)
1351 		return NULL;
1352 
1353 	shrinker->scan_objects = zswap_shrinker_scan;
1354 	shrinker->count_objects = zswap_shrinker_count;
1355 	shrinker->batch = 0;
1356 	shrinker->seeks = DEFAULT_SEEKS;
1357 	return shrinker;
1358 }
1359 
1360 static int shrink_memcg(struct mem_cgroup *memcg)
1361 {
1362 	int nid, shrunk = 0, scanned = 0;
1363 
1364 	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1365 		return -ENOENT;
1366 
1367 	/*
1368 	 * Skip zombies because their LRUs are reparented and we would be
1369 	 * reclaiming from the parent instead of the dead memcg.
1370 	 */
1371 	if (memcg && !mem_cgroup_online(memcg))
1372 		return -ENOENT;
1373 
1374 	for_each_node_state(nid, N_NORMAL_MEMORY) {
1375 		unsigned long nr_to_walk = 1;
1376 
1377 		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1378 					    &shrink_memcg_cb, NULL, &nr_to_walk);
1379 		scanned += 1 - nr_to_walk;
1380 	}
1381 
1382 	if (!scanned)
1383 		return -ENOENT;
1384 
1385 	return shrunk ? 0 : -EAGAIN;
1386 }
1387 
1388 static void shrink_worker(struct work_struct *w)
1389 {
1390 	struct mem_cgroup *memcg;
1391 	int ret, failures = 0, attempts = 0;
1392 	unsigned long thr;
1393 
1394 	/* Reclaim down to the accept threshold */
1395 	thr = zswap_accept_thr_pages();
1396 
1397 	/*
1398 	 * Global reclaim will select cgroup in a round-robin fashion from all
1399 	 * online memcgs, but memcgs that have no pages in zswap and
1400 	 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1401 	 * candidates for shrinking.
1402 	 *
1403 	 * Shrinking will be aborted if we encounter the following
1404 	 * MAX_RECLAIM_RETRIES times:
1405 	 * - No writeback-candidate memcgs found in a memcg tree walk.
1406 	 * - Shrinking a writeback-candidate memcg failed.
1407 	 *
1408 	 * We save iteration cursor memcg into zswap_next_shrink,
1409 	 * which can be modified by the offline memcg cleaner
1410 	 * zswap_memcg_offline_cleanup().
1411 	 *
1412 	 * Since the offline cleaner is called only once, we cannot leave an
1413 	 * offline memcg reference in zswap_next_shrink.
1414 	 * We can rely on the cleaner only if we get online memcg under lock.
1415 	 *
1416 	 * If we get an offline memcg, we cannot determine if the cleaner has
1417 	 * already been called or will be called later. We must put back the
1418 	 * reference before returning from this function. Otherwise, the
1419 	 * offline memcg left in zswap_next_shrink will hold the reference
1420 	 * until the next run of shrink_worker().
1421 	 */
1422 	do {
1423 		/*
1424 		 * Start shrinking from the next memcg after zswap_next_shrink.
1425 		 * When the offline cleaner has already advanced the cursor,
1426 		 * advancing the cursor here overlooks one memcg, but this
1427 		 * should be negligibly rare.
1428 		 *
1429 		 * If we get an online memcg, keep the extra reference in case
1430 		 * the original one obtained by mem_cgroup_iter() is dropped by
1431 		 * zswap_memcg_offline_cleanup() while we are shrinking the
1432 		 * memcg.
1433 		 */
1434 		spin_lock(&zswap_shrink_lock);
1435 		do {
1436 			memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1437 			zswap_next_shrink = memcg;
1438 		} while (memcg && !mem_cgroup_tryget_online(memcg));
1439 		spin_unlock(&zswap_shrink_lock);
1440 
1441 		if (!memcg) {
1442 			/*
1443 			 * Continue shrinking without incrementing failures if
1444 			 * we found candidate memcgs in the last tree walk.
1445 			 */
1446 			if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1447 				break;
1448 
1449 			attempts = 0;
1450 			goto resched;
1451 		}
1452 
1453 		ret = shrink_memcg(memcg);
1454 		/* drop the extra reference */
1455 		mem_cgroup_put(memcg);
1456 
1457 		/*
1458 		 * There are no writeback-candidate pages in the memcg.
1459 		 * This is not an issue as long as we can find another memcg
1460 		 * with pages in zswap. Skip this without incrementing attempts
1461 		 * and failures.
1462 		 */
1463 		if (ret == -ENOENT)
1464 			continue;
1465 		++attempts;
1466 
1467 		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1468 			break;
1469 resched:
1470 		cond_resched();
1471 	} while (zswap_total_pages() > thr);
1472 }
1473 
1474 /*********************************
1475 * main API
1476 **********************************/
1477 
1478 static bool zswap_store_page(struct page *page,
1479 			     struct obj_cgroup *objcg,
1480 			     struct zswap_pool *pool)
1481 {
1482 	swp_entry_t page_swpentry = page_swap_entry(page);
1483 	struct zswap_entry *entry, *old;
1484 
1485 	/* allocate entry */
1486 	entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1487 	if (!entry) {
1488 		zswap_reject_kmemcache_fail++;
1489 		return false;
1490 	}
1491 
1492 	if (!zswap_compress(page, entry, pool))
1493 		goto compress_failed;
1494 
1495 	old = xa_store(swap_zswap_tree(page_swpentry),
1496 		       swp_offset(page_swpentry),
1497 		       entry, GFP_KERNEL);
1498 	if (xa_is_err(old)) {
1499 		int err = xa_err(old);
1500 
1501 		WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1502 		zswap_reject_alloc_fail++;
1503 		goto store_failed;
1504 	}
1505 
1506 	/*
1507 	 * We may have had an existing entry that became stale when
1508 	 * the folio was redirtied and now the new version is being
1509 	 * swapped out. Get rid of the old.
1510 	 */
1511 	if (old)
1512 		zswap_entry_free(old);
1513 
1514 	/*
1515 	 * The entry is successfully compressed and stored in the tree, there is
1516 	 * no further possibility of failure. Grab refs to the pool and objcg,
1517 	 * charge zswap memory, and increment zswap_stored_pages.
1518 	 * The opposite actions will be performed by zswap_entry_free()
1519 	 * when the entry is removed from the tree.
1520 	 */
1521 	zswap_pool_get(pool);
1522 	if (objcg) {
1523 		obj_cgroup_get(objcg);
1524 		obj_cgroup_charge_zswap(objcg, entry->length);
1525 	}
1526 	atomic_long_inc(&zswap_stored_pages);
1527 
1528 	/*
1529 	 * We finish initializing the entry while it's already in xarray.
1530 	 * This is safe because:
1531 	 *
1532 	 * 1. Concurrent stores and invalidations are excluded by folio lock.
1533 	 *
1534 	 * 2. Writeback is excluded by the entry not being on the LRU yet.
1535 	 *    The publishing order matters to prevent writeback from seeing
1536 	 *    an incoherent entry.
1537 	 */
1538 	entry->pool = pool;
1539 	entry->swpentry = page_swpentry;
1540 	entry->objcg = objcg;
1541 	entry->referenced = true;
1542 	if (entry->length) {
1543 		INIT_LIST_HEAD(&entry->lru);
1544 		zswap_lru_add(&zswap_list_lru, entry);
1545 	}
1546 
1547 	return true;
1548 
1549 store_failed:
1550 	zpool_free(pool->zpool, entry->handle);
1551 compress_failed:
1552 	zswap_entry_cache_free(entry);
1553 	return false;
1554 }
1555 
1556 bool zswap_store(struct folio *folio)
1557 {
1558 	long nr_pages = folio_nr_pages(folio);
1559 	swp_entry_t swp = folio->swap;
1560 	struct obj_cgroup *objcg = NULL;
1561 	struct mem_cgroup *memcg = NULL;
1562 	struct zswap_pool *pool;
1563 	bool ret = false;
1564 	long index;
1565 
1566 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1567 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1568 
1569 	if (!zswap_enabled)
1570 		goto check_old;
1571 
1572 	objcg = get_obj_cgroup_from_folio(folio);
1573 	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1574 		memcg = get_mem_cgroup_from_objcg(objcg);
1575 		if (shrink_memcg(memcg)) {
1576 			mem_cgroup_put(memcg);
1577 			goto put_objcg;
1578 		}
1579 		mem_cgroup_put(memcg);
1580 	}
1581 
1582 	if (zswap_check_limits())
1583 		goto put_objcg;
1584 
1585 	pool = zswap_pool_current_get();
1586 	if (!pool)
1587 		goto put_objcg;
1588 
1589 	if (objcg) {
1590 		memcg = get_mem_cgroup_from_objcg(objcg);
1591 		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1592 			mem_cgroup_put(memcg);
1593 			goto put_pool;
1594 		}
1595 		mem_cgroup_put(memcg);
1596 	}
1597 
1598 	for (index = 0; index < nr_pages; ++index) {
1599 		struct page *page = folio_page(folio, index);
1600 
1601 		if (!zswap_store_page(page, objcg, pool))
1602 			goto put_pool;
1603 	}
1604 
1605 	if (objcg)
1606 		count_objcg_events(objcg, ZSWPOUT, nr_pages);
1607 
1608 	count_vm_events(ZSWPOUT, nr_pages);
1609 
1610 	ret = true;
1611 
1612 put_pool:
1613 	zswap_pool_put(pool);
1614 put_objcg:
1615 	obj_cgroup_put(objcg);
1616 	if (!ret && zswap_pool_reached_full)
1617 		queue_work(shrink_wq, &zswap_shrink_work);
1618 check_old:
1619 	/*
1620 	 * If the zswap store fails or zswap is disabled, we must invalidate
1621 	 * the possibly stale entries which were previously stored at the
1622 	 * offsets corresponding to each page of the folio. Otherwise,
1623 	 * writeback could overwrite the new data in the swapfile.
1624 	 */
1625 	if (!ret) {
1626 		unsigned type = swp_type(swp);
1627 		pgoff_t offset = swp_offset(swp);
1628 		struct zswap_entry *entry;
1629 		struct xarray *tree;
1630 
1631 		for (index = 0; index < nr_pages; ++index) {
1632 			tree = swap_zswap_tree(swp_entry(type, offset + index));
1633 			entry = xa_erase(tree, offset + index);
1634 			if (entry)
1635 				zswap_entry_free(entry);
1636 		}
1637 	}
1638 
1639 	return ret;
1640 }
1641 
1642 /**
1643  * zswap_load() - load a folio from zswap
1644  * @folio: folio to load
1645  *
1646  * Return: 0 on success, with the folio unlocked and marked up-to-date, or one
1647  * of the following error codes:
1648  *
1649  *  -EIO: if the swapped out content was in zswap, but could not be loaded
1650  *  into the page due to a decompression failure. The folio is unlocked, but
1651  *  NOT marked up-to-date, so that an IO error is emitted (e.g. do_swap_page()
1652  *  will SIGBUS).
1653  *
1654  *  -EINVAL: if the swapped out content was in zswap, but the page belongs
1655  *  to a large folio, which is not supported by zswap. The folio is unlocked,
1656  *  but NOT marked up-to-date, so that an IO error is emitted (e.g.
1657  *  do_swap_page() will SIGBUS).
1658  *
1659  *  -ENOENT: if the swapped out content was not in zswap. The folio remains
1660  *  locked on return.
1661  */
1662 int zswap_load(struct folio *folio)
1663 {
1664 	swp_entry_t swp = folio->swap;
1665 	pgoff_t offset = swp_offset(swp);
1666 	bool swapcache = folio_test_swapcache(folio);
1667 	struct xarray *tree = swap_zswap_tree(swp);
1668 	struct zswap_entry *entry;
1669 
1670 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1671 
1672 	if (zswap_never_enabled())
1673 		return -ENOENT;
1674 
1675 	/*
1676 	 * Large folios should not be swapped in while zswap is being used, as
1677 	 * they are not properly handled. Zswap does not properly load large
1678 	 * folios, and a large folio may only be partially in zswap.
1679 	 */
1680 	if (WARN_ON_ONCE(folio_test_large(folio))) {
1681 		folio_unlock(folio);
1682 		return -EINVAL;
1683 	}
1684 
1685 	entry = xa_load(tree, offset);
1686 	if (!entry)
1687 		return -ENOENT;
1688 
1689 	if (!zswap_decompress(entry, folio)) {
1690 		folio_unlock(folio);
1691 		return -EIO;
1692 	}
1693 
1694 	folio_mark_uptodate(folio);
1695 
1696 	count_vm_event(ZSWPIN);
1697 	if (entry->objcg)
1698 		count_objcg_events(entry->objcg, ZSWPIN, 1);
1699 
1700 	/*
1701 	 * When reading into the swapcache, invalidate our entry. The
1702 	 * swapcache can be the authoritative owner of the page and
1703 	 * its mappings, and the pressure that results from having two
1704 	 * in-memory copies outweighs any benefits of caching the
1705 	 * compression work.
1706 	 *
1707 	 * (Most swapins go through the swapcache. The notable
1708 	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1709 	 * files, which reads into a private page and may free it if
1710 	 * the fault fails. We remain the primary owner of the entry.)
1711 	 */
1712 	if (swapcache) {
1713 		folio_mark_dirty(folio);
1714 		xa_erase(tree, offset);
1715 		zswap_entry_free(entry);
1716 	}
1717 
1718 	folio_unlock(folio);
1719 	return 0;
1720 }
1721 
1722 void zswap_invalidate(swp_entry_t swp)
1723 {
1724 	pgoff_t offset = swp_offset(swp);
1725 	struct xarray *tree = swap_zswap_tree(swp);
1726 	struct zswap_entry *entry;
1727 
1728 	if (xa_empty(tree))
1729 		return;
1730 
1731 	entry = xa_erase(tree, offset);
1732 	if (entry)
1733 		zswap_entry_free(entry);
1734 }
1735 
1736 int zswap_swapon(int type, unsigned long nr_pages)
1737 {
1738 	struct xarray *trees, *tree;
1739 	unsigned int nr, i;
1740 
1741 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1742 	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1743 	if (!trees) {
1744 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1745 		return -ENOMEM;
1746 	}
1747 
1748 	for (i = 0; i < nr; i++)
1749 		xa_init(trees + i);
1750 
1751 	nr_zswap_trees[type] = nr;
1752 	zswap_trees[type] = trees;
1753 	return 0;
1754 }
1755 
1756 void zswap_swapoff(int type)
1757 {
1758 	struct xarray *trees = zswap_trees[type];
1759 	unsigned int i;
1760 
1761 	if (!trees)
1762 		return;
1763 
1764 	/* try_to_unuse() invalidated all the entries already */
1765 	for (i = 0; i < nr_zswap_trees[type]; i++)
1766 		WARN_ON_ONCE(!xa_empty(trees + i));
1767 
1768 	kvfree(trees);
1769 	nr_zswap_trees[type] = 0;
1770 	zswap_trees[type] = NULL;
1771 }
1772 
1773 /*********************************
1774 * debugfs functions
1775 **********************************/
1776 #ifdef CONFIG_DEBUG_FS
1777 #include <linux/debugfs.h>
1778 
1779 static struct dentry *zswap_debugfs_root;
1780 
1781 static int debugfs_get_total_size(void *data, u64 *val)
1782 {
1783 	*val = zswap_total_pages() * PAGE_SIZE;
1784 	return 0;
1785 }
1786 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1787 
1788 static int debugfs_get_stored_pages(void *data, u64 *val)
1789 {
1790 	*val = atomic_long_read(&zswap_stored_pages);
1791 	return 0;
1792 }
1793 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n");
1794 
1795 static int zswap_debugfs_init(void)
1796 {
1797 	if (!debugfs_initialized())
1798 		return -ENODEV;
1799 
1800 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1801 
1802 	debugfs_create_u64("pool_limit_hit", 0444,
1803 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1804 	debugfs_create_u64("reject_reclaim_fail", 0444,
1805 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1806 	debugfs_create_u64("reject_alloc_fail", 0444,
1807 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1808 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1809 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1810 	debugfs_create_u64("reject_compress_fail", 0444,
1811 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1812 	debugfs_create_u64("reject_compress_poor", 0444,
1813 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1814 	debugfs_create_u64("decompress_fail", 0444,
1815 			   zswap_debugfs_root, &zswap_decompress_fail);
1816 	debugfs_create_u64("written_back_pages", 0444,
1817 			   zswap_debugfs_root, &zswap_written_back_pages);
1818 	debugfs_create_file("pool_total_size", 0444,
1819 			    zswap_debugfs_root, NULL, &total_size_fops);
1820 	debugfs_create_file("stored_pages", 0444,
1821 			    zswap_debugfs_root, NULL, &stored_pages_fops);
1822 
1823 	return 0;
1824 }
1825 #else
1826 static int zswap_debugfs_init(void)
1827 {
1828 	return 0;
1829 }
1830 #endif
1831 
1832 /*********************************
1833 * module init and exit
1834 **********************************/
1835 static int zswap_setup(void)
1836 {
1837 	struct zswap_pool *pool;
1838 	int ret;
1839 
1840 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1841 	if (!zswap_entry_cache) {
1842 		pr_err("entry cache creation failed\n");
1843 		goto cache_fail;
1844 	}
1845 
1846 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1847 				      "mm/zswap_pool:prepare",
1848 				      zswap_cpu_comp_prepare,
1849 				      zswap_cpu_comp_dead);
1850 	if (ret)
1851 		goto hp_fail;
1852 
1853 	shrink_wq = alloc_workqueue("zswap-shrink",
1854 			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1855 	if (!shrink_wq)
1856 		goto shrink_wq_fail;
1857 
1858 	zswap_shrinker = zswap_alloc_shrinker();
1859 	if (!zswap_shrinker)
1860 		goto shrinker_fail;
1861 	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1862 		goto lru_fail;
1863 	shrinker_register(zswap_shrinker);
1864 
1865 	INIT_WORK(&zswap_shrink_work, shrink_worker);
1866 
1867 	pool = __zswap_pool_create_fallback();
1868 	if (pool) {
1869 		pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1870 			zpool_get_type(pool->zpool));
1871 		list_add(&pool->list, &zswap_pools);
1872 		zswap_has_pool = true;
1873 		static_branch_enable(&zswap_ever_enabled);
1874 	} else {
1875 		pr_err("pool creation failed\n");
1876 		zswap_enabled = false;
1877 	}
1878 
1879 	if (zswap_debugfs_init())
1880 		pr_warn("debugfs initialization failed\n");
1881 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1882 	return 0;
1883 
1884 lru_fail:
1885 	shrinker_free(zswap_shrinker);
1886 shrinker_fail:
1887 	destroy_workqueue(shrink_wq);
1888 shrink_wq_fail:
1889 	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1890 hp_fail:
1891 	kmem_cache_destroy(zswap_entry_cache);
1892 cache_fail:
1893 	/* if built-in, we aren't unloaded on failure; don't allow use */
1894 	zswap_init_state = ZSWAP_INIT_FAILED;
1895 	zswap_enabled = false;
1896 	return -ENOMEM;
1897 }
1898 
1899 static int __init zswap_init(void)
1900 {
1901 	if (!zswap_enabled)
1902 		return 0;
1903 	return zswap_setup();
1904 }
1905 /* must be late so crypto has time to come up */
1906 late_initcall(zswap_init);
1907 
1908 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1909 MODULE_DESCRIPTION("Compressed cache for swap pages");
1910