xref: /linux/mm/zswap.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <crypto/acompress.h>
29 #include <linux/zswap.h>
30 #include <linux/mm_types.h>
31 #include <linux/page-flags.h>
32 #include <linux/swapops.h>
33 #include <linux/writeback.h>
34 #include <linux/pagemap.h>
35 #include <linux/workqueue.h>
36 #include <linux/list_lru.h>
37 #include <linux/zsmalloc.h>
38 
39 #include "swap.h"
40 #include "internal.h"
41 
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of pages currently stored in zswap */
46 atomic_long_t zswap_stored_pages = ATOMIC_LONG_INIT(0);
47 /* The number of incompressible pages currently stored in zswap */
48 static atomic_long_t zswap_stored_incompressible_pages = ATOMIC_LONG_INIT(0);
49 
50 /*
51  * The statistics below are not protected from concurrent access for
52  * performance reasons so they may not be a 100% accurate.  However,
53  * they do provide useful information on roughly how many times a
54  * certain event is occurring.
55 */
56 
57 /* Pool limit was hit (see zswap_max_pool_percent) */
58 static u64 zswap_pool_limit_hit;
59 /* Pages written back when pool limit was reached */
60 static u64 zswap_written_back_pages;
61 /* Store failed due to a reclaim failure after pool limit was reached */
62 static u64 zswap_reject_reclaim_fail;
63 /* Store failed due to compression algorithm failure */
64 static u64 zswap_reject_compress_fail;
65 /* Compressed page was too big for the allocator to (optimally) store */
66 static u64 zswap_reject_compress_poor;
67 /* Load or writeback failed due to decompression failure */
68 static u64 zswap_decompress_fail;
69 /* Store failed because underlying allocator could not get memory */
70 static u64 zswap_reject_alloc_fail;
71 /* Store failed because the entry metadata could not be allocated (rare) */
72 static u64 zswap_reject_kmemcache_fail;
73 
74 /* Shrinker work queue */
75 static struct workqueue_struct *shrink_wq;
76 /* Pool limit was hit, we need to calm down */
77 static bool zswap_pool_reached_full;
78 
79 /*********************************
80 * tunables
81 **********************************/
82 
83 #define ZSWAP_PARAM_UNSET ""
84 
85 static int zswap_setup(void);
86 
87 /* Enable/disable zswap */
88 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
89 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
90 static int zswap_enabled_param_set(const char *,
91 				   const struct kernel_param *);
92 static const struct kernel_param_ops zswap_enabled_param_ops = {
93 	.set =		zswap_enabled_param_set,
94 	.get =		param_get_bool,
95 };
96 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
97 
98 /* Crypto compressor to use */
99 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
100 static int zswap_compressor_param_set(const char *,
101 				      const struct kernel_param *);
102 static const struct kernel_param_ops zswap_compressor_param_ops = {
103 	.set =		zswap_compressor_param_set,
104 	.get =		param_get_charp,
105 	.free =		param_free_charp,
106 };
107 module_param_cb(compressor, &zswap_compressor_param_ops,
108 		&zswap_compressor, 0644);
109 
110 /* The maximum percentage of memory that the compressed pool can occupy */
111 static unsigned int zswap_max_pool_percent = 20;
112 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
113 
114 /* The threshold for accepting new pages after the max_pool_percent was hit */
115 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
116 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
117 		   uint, 0644);
118 
119 /* Enable/disable memory pressure-based shrinker. */
120 static bool zswap_shrinker_enabled = IS_ENABLED(
121 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
122 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
123 
zswap_is_enabled(void)124 bool zswap_is_enabled(void)
125 {
126 	return zswap_enabled;
127 }
128 
zswap_never_enabled(void)129 bool zswap_never_enabled(void)
130 {
131 	return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
132 }
133 
134 /*********************************
135 * data structures
136 **********************************/
137 
138 struct crypto_acomp_ctx {
139 	struct crypto_acomp *acomp;
140 	struct acomp_req *req;
141 	struct crypto_wait wait;
142 	u8 *buffer;
143 	struct mutex mutex;
144 	bool is_sleepable;
145 };
146 
147 /*
148  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
149  * The only case where lru_lock is not acquired while holding tree.lock is
150  * when a zswap_entry is taken off the lru for writeback, in that case it
151  * needs to be verified that it's still valid in the tree.
152  */
153 struct zswap_pool {
154 	struct zs_pool *zs_pool;
155 	struct crypto_acomp_ctx __percpu *acomp_ctx;
156 	struct percpu_ref ref;
157 	struct list_head list;
158 	struct work_struct release_work;
159 	struct hlist_node node;
160 	char tfm_name[CRYPTO_MAX_ALG_NAME];
161 };
162 
163 /* Global LRU lists shared by all zswap pools. */
164 static struct list_lru zswap_list_lru;
165 
166 /* The lock protects zswap_next_shrink updates. */
167 static DEFINE_SPINLOCK(zswap_shrink_lock);
168 static struct mem_cgroup *zswap_next_shrink;
169 static struct work_struct zswap_shrink_work;
170 static struct shrinker *zswap_shrinker;
171 
172 /*
173  * struct zswap_entry
174  *
175  * This structure contains the metadata for tracking a single compressed
176  * page within zswap.
177  *
178  * swpentry - associated swap entry, the offset indexes into the red-black tree
179  * length - the length in bytes of the compressed page data.  Needed during
180  *          decompression.
181  * referenced - true if the entry recently entered the zswap pool. Unset by the
182  *              writeback logic. The entry is only reclaimed by the writeback
183  *              logic if referenced is unset. See comments in the shrinker
184  *              section for context.
185  * pool - the zswap_pool the entry's data is in
186  * handle - zsmalloc allocation handle that stores the compressed page data
187  * objcg - the obj_cgroup that the compressed memory is charged to
188  * lru - handle to the pool's lru used to evict pages.
189  */
190 struct zswap_entry {
191 	swp_entry_t swpentry;
192 	unsigned int length;
193 	bool referenced;
194 	struct zswap_pool *pool;
195 	unsigned long handle;
196 	struct obj_cgroup *objcg;
197 	struct list_head lru;
198 };
199 
200 static struct xarray *zswap_trees[MAX_SWAPFILES];
201 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
202 
203 /* RCU-protected iteration */
204 static LIST_HEAD(zswap_pools);
205 /* protects zswap_pools list modification */
206 static DEFINE_SPINLOCK(zswap_pools_lock);
207 /* pool counter to provide unique names to zsmalloc */
208 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
209 
210 enum zswap_init_type {
211 	ZSWAP_UNINIT,
212 	ZSWAP_INIT_SUCCEED,
213 	ZSWAP_INIT_FAILED
214 };
215 
216 static enum zswap_init_type zswap_init_state;
217 
218 /* used to ensure the integrity of initialization */
219 static DEFINE_MUTEX(zswap_init_lock);
220 
221 /* init completed, but couldn't create the initial pool */
222 static bool zswap_has_pool;
223 
224 /*********************************
225 * helpers and fwd declarations
226 **********************************/
227 
228 /* One swap address space for each 64M swap space */
229 #define ZSWAP_ADDRESS_SPACE_SHIFT 14
230 #define ZSWAP_ADDRESS_SPACE_PAGES (1 << ZSWAP_ADDRESS_SPACE_SHIFT)
swap_zswap_tree(swp_entry_t swp)231 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
232 {
233 	return &zswap_trees[swp_type(swp)][swp_offset(swp)
234 		>> ZSWAP_ADDRESS_SPACE_SHIFT];
235 }
236 
237 #define zswap_pool_debug(msg, p)			\
238 	pr_debug("%s pool %s\n", msg, (p)->tfm_name)
239 
240 /*********************************
241 * pool functions
242 **********************************/
243 static void __zswap_pool_empty(struct percpu_ref *ref);
244 
zswap_pool_create(char * compressor)245 static struct zswap_pool *zswap_pool_create(char *compressor)
246 {
247 	struct zswap_pool *pool;
248 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
249 	int ret, cpu;
250 
251 	if (!zswap_has_pool && !strcmp(compressor, ZSWAP_PARAM_UNSET))
252 		return NULL;
253 
254 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
255 	if (!pool)
256 		return NULL;
257 
258 	/* unique name for each pool specifically required by zsmalloc */
259 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
260 	pool->zs_pool = zs_create_pool(name);
261 	if (!pool->zs_pool)
262 		goto error;
263 
264 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
265 
266 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
267 	if (!pool->acomp_ctx) {
268 		pr_err("percpu alloc failed\n");
269 		goto error;
270 	}
271 
272 	for_each_possible_cpu(cpu)
273 		mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex);
274 
275 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
276 				       &pool->node);
277 	if (ret)
278 		goto error;
279 
280 	/* being the current pool takes 1 ref; this func expects the
281 	 * caller to always add the new pool as the current pool
282 	 */
283 	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
284 			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
285 	if (ret)
286 		goto ref_fail;
287 	INIT_LIST_HEAD(&pool->list);
288 
289 	zswap_pool_debug("created", pool);
290 
291 	return pool;
292 
293 ref_fail:
294 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
295 error:
296 	if (pool->acomp_ctx)
297 		free_percpu(pool->acomp_ctx);
298 	if (pool->zs_pool)
299 		zs_destroy_pool(pool->zs_pool);
300 	kfree(pool);
301 	return NULL;
302 }
303 
__zswap_pool_create_fallback(void)304 static struct zswap_pool *__zswap_pool_create_fallback(void)
305 {
306 	if (!crypto_has_acomp(zswap_compressor, 0, 0) &&
307 	    strcmp(zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
308 		pr_err("compressor %s not available, using default %s\n",
309 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
310 		param_free_charp(&zswap_compressor);
311 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
312 	}
313 
314 	/* Default compressor should be available. Kconfig bug? */
315 	if (WARN_ON_ONCE(!crypto_has_acomp(zswap_compressor, 0, 0))) {
316 		zswap_compressor = ZSWAP_PARAM_UNSET;
317 		return NULL;
318 	}
319 
320 	return zswap_pool_create(zswap_compressor);
321 }
322 
zswap_pool_destroy(struct zswap_pool * pool)323 static void zswap_pool_destroy(struct zswap_pool *pool)
324 {
325 	zswap_pool_debug("destroying", pool);
326 
327 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
328 	free_percpu(pool->acomp_ctx);
329 
330 	zs_destroy_pool(pool->zs_pool);
331 	kfree(pool);
332 }
333 
__zswap_pool_release(struct work_struct * work)334 static void __zswap_pool_release(struct work_struct *work)
335 {
336 	struct zswap_pool *pool = container_of(work, typeof(*pool),
337 						release_work);
338 
339 	synchronize_rcu();
340 
341 	/* nobody should have been able to get a ref... */
342 	WARN_ON(!percpu_ref_is_zero(&pool->ref));
343 	percpu_ref_exit(&pool->ref);
344 
345 	/* pool is now off zswap_pools list and has no references. */
346 	zswap_pool_destroy(pool);
347 }
348 
349 static struct zswap_pool *zswap_pool_current(void);
350 
__zswap_pool_empty(struct percpu_ref * ref)351 static void __zswap_pool_empty(struct percpu_ref *ref)
352 {
353 	struct zswap_pool *pool;
354 
355 	pool = container_of(ref, typeof(*pool), ref);
356 
357 	spin_lock_bh(&zswap_pools_lock);
358 
359 	WARN_ON(pool == zswap_pool_current());
360 
361 	list_del_rcu(&pool->list);
362 
363 	INIT_WORK(&pool->release_work, __zswap_pool_release);
364 	schedule_work(&pool->release_work);
365 
366 	spin_unlock_bh(&zswap_pools_lock);
367 }
368 
zswap_pool_tryget(struct zswap_pool * pool)369 static int __must_check zswap_pool_tryget(struct zswap_pool *pool)
370 {
371 	if (!pool)
372 		return 0;
373 
374 	return percpu_ref_tryget(&pool->ref);
375 }
376 
377 /* The caller must already have a reference. */
zswap_pool_get(struct zswap_pool * pool)378 static void zswap_pool_get(struct zswap_pool *pool)
379 {
380 	percpu_ref_get(&pool->ref);
381 }
382 
zswap_pool_put(struct zswap_pool * pool)383 static void zswap_pool_put(struct zswap_pool *pool)
384 {
385 	percpu_ref_put(&pool->ref);
386 }
387 
__zswap_pool_current(void)388 static struct zswap_pool *__zswap_pool_current(void)
389 {
390 	struct zswap_pool *pool;
391 
392 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
393 	WARN_ONCE(!pool && zswap_has_pool,
394 		  "%s: no page storage pool!\n", __func__);
395 
396 	return pool;
397 }
398 
zswap_pool_current(void)399 static struct zswap_pool *zswap_pool_current(void)
400 {
401 	assert_spin_locked(&zswap_pools_lock);
402 
403 	return __zswap_pool_current();
404 }
405 
zswap_pool_current_get(void)406 static struct zswap_pool *zswap_pool_current_get(void)
407 {
408 	struct zswap_pool *pool;
409 
410 	rcu_read_lock();
411 
412 	pool = __zswap_pool_current();
413 	if (!zswap_pool_tryget(pool))
414 		pool = NULL;
415 
416 	rcu_read_unlock();
417 
418 	return pool;
419 }
420 
421 /* type and compressor must be null-terminated */
zswap_pool_find_get(char * compressor)422 static struct zswap_pool *zswap_pool_find_get(char *compressor)
423 {
424 	struct zswap_pool *pool;
425 
426 	assert_spin_locked(&zswap_pools_lock);
427 
428 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
429 		if (strcmp(pool->tfm_name, compressor))
430 			continue;
431 		/* if we can't get it, it's about to be destroyed */
432 		if (!zswap_pool_tryget(pool))
433 			continue;
434 		return pool;
435 	}
436 
437 	return NULL;
438 }
439 
zswap_max_pages(void)440 static unsigned long zswap_max_pages(void)
441 {
442 	return totalram_pages() * zswap_max_pool_percent / 100;
443 }
444 
zswap_accept_thr_pages(void)445 static unsigned long zswap_accept_thr_pages(void)
446 {
447 	return zswap_max_pages() * zswap_accept_thr_percent / 100;
448 }
449 
zswap_total_pages(void)450 unsigned long zswap_total_pages(void)
451 {
452 	struct zswap_pool *pool;
453 	unsigned long total = 0;
454 
455 	rcu_read_lock();
456 	list_for_each_entry_rcu(pool, &zswap_pools, list)
457 		total += zs_get_total_pages(pool->zs_pool);
458 	rcu_read_unlock();
459 
460 	return total;
461 }
462 
zswap_check_limits(void)463 static bool zswap_check_limits(void)
464 {
465 	unsigned long cur_pages = zswap_total_pages();
466 	unsigned long max_pages = zswap_max_pages();
467 
468 	if (cur_pages >= max_pages) {
469 		zswap_pool_limit_hit++;
470 		zswap_pool_reached_full = true;
471 	} else if (zswap_pool_reached_full &&
472 		   cur_pages <= zswap_accept_thr_pages()) {
473 			zswap_pool_reached_full = false;
474 	}
475 	return zswap_pool_reached_full;
476 }
477 
478 /*********************************
479 * param callbacks
480 **********************************/
481 
zswap_compressor_param_set(const char * val,const struct kernel_param * kp)482 static int zswap_compressor_param_set(const char *val, const struct kernel_param *kp)
483 {
484 	struct zswap_pool *pool, *put_pool = NULL;
485 	char *s = strstrip((char *)val);
486 	bool create_pool = false;
487 	int ret = 0;
488 
489 	mutex_lock(&zswap_init_lock);
490 	switch (zswap_init_state) {
491 	case ZSWAP_UNINIT:
492 		/* Handled in zswap_setup() */
493 		ret = param_set_charp(s, kp);
494 		break;
495 	case ZSWAP_INIT_SUCCEED:
496 		if (!zswap_has_pool || strcmp(s, *(char **)kp->arg))
497 			create_pool = true;
498 		break;
499 	case ZSWAP_INIT_FAILED:
500 		pr_err("can't set param, initialization failed\n");
501 		ret = -ENODEV;
502 	}
503 	mutex_unlock(&zswap_init_lock);
504 
505 	if (!create_pool)
506 		return ret;
507 
508 	if (!crypto_has_acomp(s, 0, 0)) {
509 		pr_err("compressor %s not available\n", s);
510 		return -ENOENT;
511 	}
512 
513 	spin_lock_bh(&zswap_pools_lock);
514 
515 	pool = zswap_pool_find_get(s);
516 	if (pool) {
517 		zswap_pool_debug("using existing", pool);
518 		WARN_ON(pool == zswap_pool_current());
519 		list_del_rcu(&pool->list);
520 	}
521 
522 	spin_unlock_bh(&zswap_pools_lock);
523 
524 	if (!pool)
525 		pool = zswap_pool_create(s);
526 	else {
527 		/*
528 		 * Restore the initial ref dropped by percpu_ref_kill()
529 		 * when the pool was decommissioned and switch it again
530 		 * to percpu mode.
531 		 */
532 		percpu_ref_resurrect(&pool->ref);
533 
534 		/* Drop the ref from zswap_pool_find_get(). */
535 		zswap_pool_put(pool);
536 	}
537 
538 	if (pool)
539 		ret = param_set_charp(s, kp);
540 	else
541 		ret = -EINVAL;
542 
543 	spin_lock_bh(&zswap_pools_lock);
544 
545 	if (!ret) {
546 		put_pool = zswap_pool_current();
547 		list_add_rcu(&pool->list, &zswap_pools);
548 		zswap_has_pool = true;
549 	} else if (pool) {
550 		/*
551 		 * Add the possibly pre-existing pool to the end of the pools
552 		 * list; if it's new (and empty) then it'll be removed and
553 		 * destroyed by the put after we drop the lock
554 		 */
555 		list_add_tail_rcu(&pool->list, &zswap_pools);
556 		put_pool = pool;
557 	}
558 
559 	spin_unlock_bh(&zswap_pools_lock);
560 
561 	/*
562 	 * Drop the ref from either the old current pool,
563 	 * or the new pool we failed to add
564 	 */
565 	if (put_pool)
566 		percpu_ref_kill(&put_pool->ref);
567 
568 	return ret;
569 }
570 
zswap_enabled_param_set(const char * val,const struct kernel_param * kp)571 static int zswap_enabled_param_set(const char *val,
572 				   const struct kernel_param *kp)
573 {
574 	int ret = -ENODEV;
575 
576 	/* if this is load-time (pre-init) param setting, only set param. */
577 	if (system_state != SYSTEM_RUNNING)
578 		return param_set_bool(val, kp);
579 
580 	mutex_lock(&zswap_init_lock);
581 	switch (zswap_init_state) {
582 	case ZSWAP_UNINIT:
583 		if (zswap_setup())
584 			break;
585 		fallthrough;
586 	case ZSWAP_INIT_SUCCEED:
587 		if (!zswap_has_pool)
588 			pr_err("can't enable, no pool configured\n");
589 		else
590 			ret = param_set_bool(val, kp);
591 		break;
592 	case ZSWAP_INIT_FAILED:
593 		pr_err("can't enable, initialization failed\n");
594 	}
595 	mutex_unlock(&zswap_init_lock);
596 
597 	return ret;
598 }
599 
600 /*********************************
601 * lru functions
602 **********************************/
603 
604 /* should be called under RCU */
605 #ifdef CONFIG_MEMCG
mem_cgroup_from_entry(struct zswap_entry * entry)606 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
607 {
608 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
609 }
610 #else
mem_cgroup_from_entry(struct zswap_entry * entry)611 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
612 {
613 	return NULL;
614 }
615 #endif
616 
entry_to_nid(struct zswap_entry * entry)617 static inline int entry_to_nid(struct zswap_entry *entry)
618 {
619 	return page_to_nid(virt_to_page(entry));
620 }
621 
zswap_lru_add(struct list_lru * list_lru,struct zswap_entry * entry)622 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
623 {
624 	int nid = entry_to_nid(entry);
625 	struct mem_cgroup *memcg;
626 
627 	/*
628 	 * Note that it is safe to use rcu_read_lock() here, even in the face of
629 	 * concurrent memcg offlining:
630 	 *
631 	 * 1. list_lru_add() is called before list_lru_one is dead. The
632 	 *    new entry will be reparented to memcg's parent's list_lru.
633 	 * 2. list_lru_add() is called after list_lru_one is dead. The
634 	 *    new entry will be added directly to memcg's parent's list_lru.
635 	 *
636 	 * Similar reasoning holds for list_lru_del().
637 	 */
638 	rcu_read_lock();
639 	memcg = mem_cgroup_from_entry(entry);
640 	/* will always succeed */
641 	list_lru_add(list_lru, &entry->lru, nid, memcg);
642 	rcu_read_unlock();
643 }
644 
zswap_lru_del(struct list_lru * list_lru,struct zswap_entry * entry)645 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
646 {
647 	int nid = entry_to_nid(entry);
648 	struct mem_cgroup *memcg;
649 
650 	rcu_read_lock();
651 	memcg = mem_cgroup_from_entry(entry);
652 	/* will always succeed */
653 	list_lru_del(list_lru, &entry->lru, nid, memcg);
654 	rcu_read_unlock();
655 }
656 
zswap_lruvec_state_init(struct lruvec * lruvec)657 void zswap_lruvec_state_init(struct lruvec *lruvec)
658 {
659 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
660 }
661 
zswap_folio_swapin(struct folio * folio)662 void zswap_folio_swapin(struct folio *folio)
663 {
664 	struct lruvec *lruvec;
665 
666 	if (folio) {
667 		lruvec = folio_lruvec(folio);
668 		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
669 	}
670 }
671 
672 /*
673  * This function should be called when a memcg is being offlined.
674  *
675  * Since the global shrinker shrink_worker() may hold a reference
676  * of the memcg, we must check and release the reference in
677  * zswap_next_shrink.
678  *
679  * shrink_worker() must handle the case where this function releases
680  * the reference of memcg being shrunk.
681  */
zswap_memcg_offline_cleanup(struct mem_cgroup * memcg)682 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
683 {
684 	/* lock out zswap shrinker walking memcg tree */
685 	spin_lock(&zswap_shrink_lock);
686 	if (zswap_next_shrink == memcg) {
687 		do {
688 			zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
689 		} while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
690 	}
691 	spin_unlock(&zswap_shrink_lock);
692 }
693 
694 /*********************************
695 * zswap entry functions
696 **********************************/
697 static struct kmem_cache *zswap_entry_cache;
698 
zswap_entry_cache_alloc(gfp_t gfp,int nid)699 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
700 {
701 	struct zswap_entry *entry;
702 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
703 	if (!entry)
704 		return NULL;
705 	return entry;
706 }
707 
zswap_entry_cache_free(struct zswap_entry * entry)708 static void zswap_entry_cache_free(struct zswap_entry *entry)
709 {
710 	kmem_cache_free(zswap_entry_cache, entry);
711 }
712 
713 /*
714  * Carries out the common pattern of freeing an entry's zsmalloc allocation,
715  * freeing the entry itself, and decrementing the number of stored pages.
716  */
zswap_entry_free(struct zswap_entry * entry)717 static void zswap_entry_free(struct zswap_entry *entry)
718 {
719 	zswap_lru_del(&zswap_list_lru, entry);
720 	zs_free(entry->pool->zs_pool, entry->handle);
721 	zswap_pool_put(entry->pool);
722 	if (entry->objcg) {
723 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
724 		obj_cgroup_put(entry->objcg);
725 	}
726 	if (entry->length == PAGE_SIZE)
727 		atomic_long_dec(&zswap_stored_incompressible_pages);
728 	zswap_entry_cache_free(entry);
729 	atomic_long_dec(&zswap_stored_pages);
730 }
731 
732 /*********************************
733 * compressed storage functions
734 **********************************/
zswap_cpu_comp_prepare(unsigned int cpu,struct hlist_node * node)735 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
736 {
737 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
738 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
739 	struct crypto_acomp *acomp = NULL;
740 	struct acomp_req *req = NULL;
741 	u8 *buffer = NULL;
742 	int ret;
743 
744 	buffer = kmalloc_node(PAGE_SIZE, GFP_KERNEL, cpu_to_node(cpu));
745 	if (!buffer) {
746 		ret = -ENOMEM;
747 		goto fail;
748 	}
749 
750 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
751 	if (IS_ERR(acomp)) {
752 		pr_err("could not alloc crypto acomp %s : %ld\n",
753 				pool->tfm_name, PTR_ERR(acomp));
754 		ret = PTR_ERR(acomp);
755 		goto fail;
756 	}
757 
758 	req = acomp_request_alloc(acomp);
759 	if (!req) {
760 		pr_err("could not alloc crypto acomp_request %s\n",
761 		       pool->tfm_name);
762 		ret = -ENOMEM;
763 		goto fail;
764 	}
765 
766 	/*
767 	 * Only hold the mutex after completing allocations, otherwise we may
768 	 * recurse into zswap through reclaim and attempt to hold the mutex
769 	 * again resulting in a deadlock.
770 	 */
771 	mutex_lock(&acomp_ctx->mutex);
772 	crypto_init_wait(&acomp_ctx->wait);
773 
774 	/*
775 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
776 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
777 	 * won't be called, crypto_wait_req() will return without blocking.
778 	 */
779 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
780 				   crypto_req_done, &acomp_ctx->wait);
781 
782 	acomp_ctx->buffer = buffer;
783 	acomp_ctx->acomp = acomp;
784 	acomp_ctx->is_sleepable = acomp_is_async(acomp);
785 	acomp_ctx->req = req;
786 	mutex_unlock(&acomp_ctx->mutex);
787 	return 0;
788 
789 fail:
790 	if (acomp)
791 		crypto_free_acomp(acomp);
792 	kfree(buffer);
793 	return ret;
794 }
795 
zswap_cpu_comp_dead(unsigned int cpu,struct hlist_node * node)796 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
797 {
798 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
799 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
800 	struct acomp_req *req;
801 	struct crypto_acomp *acomp;
802 	u8 *buffer;
803 
804 	if (IS_ERR_OR_NULL(acomp_ctx))
805 		return 0;
806 
807 	mutex_lock(&acomp_ctx->mutex);
808 	req = acomp_ctx->req;
809 	acomp = acomp_ctx->acomp;
810 	buffer = acomp_ctx->buffer;
811 	acomp_ctx->req = NULL;
812 	acomp_ctx->acomp = NULL;
813 	acomp_ctx->buffer = NULL;
814 	mutex_unlock(&acomp_ctx->mutex);
815 
816 	/*
817 	 * Do the actual freeing after releasing the mutex to avoid subtle
818 	 * locking dependencies causing deadlocks.
819 	 */
820 	if (!IS_ERR_OR_NULL(req))
821 		acomp_request_free(req);
822 	if (!IS_ERR_OR_NULL(acomp))
823 		crypto_free_acomp(acomp);
824 	kfree(buffer);
825 
826 	return 0;
827 }
828 
acomp_ctx_get_cpu_lock(struct zswap_pool * pool)829 static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool)
830 {
831 	struct crypto_acomp_ctx *acomp_ctx;
832 
833 	for (;;) {
834 		acomp_ctx = raw_cpu_ptr(pool->acomp_ctx);
835 		mutex_lock(&acomp_ctx->mutex);
836 		if (likely(acomp_ctx->req))
837 			return acomp_ctx;
838 		/*
839 		 * It is possible that we were migrated to a different CPU after
840 		 * getting the per-CPU ctx but before the mutex was acquired. If
841 		 * the old CPU got offlined, zswap_cpu_comp_dead() could have
842 		 * already freed ctx->req (among other things) and set it to
843 		 * NULL. Just try again on the new CPU that we ended up on.
844 		 */
845 		mutex_unlock(&acomp_ctx->mutex);
846 	}
847 }
848 
acomp_ctx_put_unlock(struct crypto_acomp_ctx * acomp_ctx)849 static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx)
850 {
851 	mutex_unlock(&acomp_ctx->mutex);
852 }
853 
zswap_compress(struct page * page,struct zswap_entry * entry,struct zswap_pool * pool)854 static bool zswap_compress(struct page *page, struct zswap_entry *entry,
855 			   struct zswap_pool *pool)
856 {
857 	struct crypto_acomp_ctx *acomp_ctx;
858 	struct scatterlist input, output;
859 	int comp_ret = 0, alloc_ret = 0;
860 	unsigned int dlen = PAGE_SIZE;
861 	unsigned long handle;
862 	gfp_t gfp;
863 	u8 *dst;
864 	bool mapped = false;
865 
866 	acomp_ctx = acomp_ctx_get_cpu_lock(pool);
867 	dst = acomp_ctx->buffer;
868 	sg_init_table(&input, 1);
869 	sg_set_page(&input, page, PAGE_SIZE, 0);
870 
871 	sg_init_one(&output, dst, PAGE_SIZE);
872 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
873 
874 	/*
875 	 * it maybe looks a little bit silly that we send an asynchronous request,
876 	 * then wait for its completion synchronously. This makes the process look
877 	 * synchronous in fact.
878 	 * Theoretically, acomp supports users send multiple acomp requests in one
879 	 * acomp instance, then get those requests done simultaneously. but in this
880 	 * case, zswap actually does store and load page by page, there is no
881 	 * existing method to send the second page before the first page is done
882 	 * in one thread doing zwap.
883 	 * but in different threads running on different cpu, we have different
884 	 * acomp instance, so multiple threads can do (de)compression in parallel.
885 	 */
886 	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
887 	dlen = acomp_ctx->req->dlen;
888 
889 	/*
890 	 * If a page cannot be compressed into a size smaller than PAGE_SIZE,
891 	 * save the content as is without a compression, to keep the LRU order
892 	 * of writebacks.  If writeback is disabled, reject the page since it
893 	 * only adds metadata overhead.  swap_writeout() will put the page back
894 	 * to the active LRU list in the case.
895 	 */
896 	if (comp_ret || !dlen || dlen >= PAGE_SIZE) {
897 		dlen = PAGE_SIZE;
898 		if (!mem_cgroup_zswap_writeback_enabled(
899 					folio_memcg(page_folio(page)))) {
900 			comp_ret = comp_ret ? comp_ret : -EINVAL;
901 			goto unlock;
902 		}
903 		comp_ret = 0;
904 		dlen = PAGE_SIZE;
905 		dst = kmap_local_page(page);
906 		mapped = true;
907 	}
908 
909 	gfp = GFP_NOWAIT | __GFP_NORETRY | __GFP_HIGHMEM | __GFP_MOVABLE;
910 	handle = zs_malloc(pool->zs_pool, dlen, gfp, page_to_nid(page));
911 	if (IS_ERR_VALUE(handle)) {
912 		alloc_ret = PTR_ERR((void *)handle);
913 		goto unlock;
914 	}
915 
916 	zs_obj_write(pool->zs_pool, handle, dst, dlen);
917 	entry->handle = handle;
918 	entry->length = dlen;
919 
920 unlock:
921 	if (mapped)
922 		kunmap_local(dst);
923 	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
924 		zswap_reject_compress_poor++;
925 	else if (comp_ret)
926 		zswap_reject_compress_fail++;
927 	else if (alloc_ret)
928 		zswap_reject_alloc_fail++;
929 
930 	acomp_ctx_put_unlock(acomp_ctx);
931 	return comp_ret == 0 && alloc_ret == 0;
932 }
933 
zswap_decompress(struct zswap_entry * entry,struct folio * folio)934 static bool zswap_decompress(struct zswap_entry *entry, struct folio *folio)
935 {
936 	struct zswap_pool *pool = entry->pool;
937 	struct scatterlist input, output;
938 	struct crypto_acomp_ctx *acomp_ctx;
939 	int decomp_ret = 0, dlen = PAGE_SIZE;
940 	u8 *src, *obj;
941 
942 	acomp_ctx = acomp_ctx_get_cpu_lock(pool);
943 	obj = zs_obj_read_begin(pool->zs_pool, entry->handle, acomp_ctx->buffer);
944 
945 	/* zswap entries of length PAGE_SIZE are not compressed. */
946 	if (entry->length == PAGE_SIZE) {
947 		memcpy_to_folio(folio, 0, obj, entry->length);
948 		goto read_done;
949 	}
950 
951 	/*
952 	 * zs_obj_read_begin() might return a kmap address of highmem when
953 	 * acomp_ctx->buffer is not used.  However, sg_init_one() does not
954 	 * handle highmem addresses, so copy the object to acomp_ctx->buffer.
955 	 */
956 	if (virt_addr_valid(obj)) {
957 		src = obj;
958 	} else {
959 		WARN_ON_ONCE(obj == acomp_ctx->buffer);
960 		memcpy(acomp_ctx->buffer, obj, entry->length);
961 		src = acomp_ctx->buffer;
962 	}
963 
964 	sg_init_one(&input, src, entry->length);
965 	sg_init_table(&output, 1);
966 	sg_set_folio(&output, folio, PAGE_SIZE, 0);
967 	acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
968 	decomp_ret = crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait);
969 	dlen = acomp_ctx->req->dlen;
970 
971 read_done:
972 	zs_obj_read_end(pool->zs_pool, entry->handle, obj);
973 	acomp_ctx_put_unlock(acomp_ctx);
974 
975 	if (!decomp_ret && dlen == PAGE_SIZE)
976 		return true;
977 
978 	zswap_decompress_fail++;
979 	pr_alert_ratelimited("Decompression error from zswap (%d:%lu %s %u->%d)\n",
980 						swp_type(entry->swpentry),
981 						swp_offset(entry->swpentry),
982 						entry->pool->tfm_name, entry->length, dlen);
983 	return false;
984 }
985 
986 /*********************************
987 * writeback code
988 **********************************/
989 /*
990  * Attempts to free an entry by adding a folio to the swap cache,
991  * decompressing the entry data into the folio, and issuing a
992  * bio write to write the folio back to the swap device.
993  *
994  * This can be thought of as a "resumed writeback" of the folio
995  * to the swap device.  We are basically resuming the same swap
996  * writeback path that was intercepted with the zswap_store()
997  * in the first place.  After the folio has been decompressed into
998  * the swap cache, the compressed version stored by zswap can be
999  * freed.
1000  */
zswap_writeback_entry(struct zswap_entry * entry,swp_entry_t swpentry)1001 static int zswap_writeback_entry(struct zswap_entry *entry,
1002 				 swp_entry_t swpentry)
1003 {
1004 	struct xarray *tree;
1005 	pgoff_t offset = swp_offset(swpentry);
1006 	struct folio *folio;
1007 	struct mempolicy *mpol;
1008 	bool folio_was_allocated;
1009 	struct swap_info_struct *si;
1010 	int ret = 0;
1011 
1012 	/* try to allocate swap cache folio */
1013 	si = get_swap_device(swpentry);
1014 	if (!si)
1015 		return -EEXIST;
1016 
1017 	mpol = get_task_policy(current);
1018 	folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1019 			NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1020 	put_swap_device(si);
1021 	if (!folio)
1022 		return -ENOMEM;
1023 
1024 	/*
1025 	 * Found an existing folio, we raced with swapin or concurrent
1026 	 * shrinker. We generally writeback cold folios from zswap, and
1027 	 * swapin means the folio just became hot, so skip this folio.
1028 	 * For unlikely concurrent shrinker case, it will be unlinked
1029 	 * and freed when invalidated by the concurrent shrinker anyway.
1030 	 */
1031 	if (!folio_was_allocated) {
1032 		ret = -EEXIST;
1033 		goto out;
1034 	}
1035 
1036 	/*
1037 	 * folio is locked, and the swapcache is now secured against
1038 	 * concurrent swapping to and from the slot, and concurrent
1039 	 * swapoff so we can safely dereference the zswap tree here.
1040 	 * Verify that the swap entry hasn't been invalidated and recycled
1041 	 * behind our backs, to avoid overwriting a new swap folio with
1042 	 * old compressed data. Only when this is successful can the entry
1043 	 * be dereferenced.
1044 	 */
1045 	tree = swap_zswap_tree(swpentry);
1046 	if (entry != xa_load(tree, offset)) {
1047 		ret = -ENOMEM;
1048 		goto out;
1049 	}
1050 
1051 	if (!zswap_decompress(entry, folio)) {
1052 		ret = -EIO;
1053 		goto out;
1054 	}
1055 
1056 	xa_erase(tree, offset);
1057 
1058 	count_vm_event(ZSWPWB);
1059 	if (entry->objcg)
1060 		count_objcg_events(entry->objcg, ZSWPWB, 1);
1061 
1062 	zswap_entry_free(entry);
1063 
1064 	/* folio is up to date */
1065 	folio_mark_uptodate(folio);
1066 
1067 	/* move it to the tail of the inactive list after end_writeback */
1068 	folio_set_reclaim(folio);
1069 
1070 	/* start writeback */
1071 	__swap_writepage(folio, NULL);
1072 
1073 out:
1074 	if (ret && ret != -EEXIST) {
1075 		swap_cache_del_folio(folio);
1076 		folio_unlock(folio);
1077 	}
1078 	folio_put(folio);
1079 	return ret;
1080 }
1081 
1082 /*********************************
1083 * shrinker functions
1084 **********************************/
1085 /*
1086  * The dynamic shrinker is modulated by the following factors:
1087  *
1088  * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1089  *    the entry a second chance) before rotating it in the LRU list. If the
1090  *    entry is considered again by the shrinker, with its referenced bit unset,
1091  *    it is written back. The writeback rate as a result is dynamically
1092  *    adjusted by the pool activities - if the pool is dominated by new entries
1093  *    (i.e lots of recent zswapouts), these entries will be protected and
1094  *    the writeback rate will slow down. On the other hand, if the pool has a
1095  *    lot of stagnant entries, these entries will be reclaimed immediately,
1096  *    effectively increasing the writeback rate.
1097  *
1098  * 2. Swapins counter: If we observe swapins, it is a sign that we are
1099  *    overshrinking and should slow down. We maintain a swapins counter, which
1100  *    is consumed and subtract from the number of eligible objects on the LRU
1101  *    in zswap_shrinker_count().
1102  *
1103  * 3. Compression ratio. The better the workload compresses, the less gains we
1104  *    can expect from writeback. We scale down the number of objects available
1105  *    for reclaim by this ratio.
1106  */
shrink_memcg_cb(struct list_head * item,struct list_lru_one * l,void * arg)1107 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1108 				       void *arg)
1109 {
1110 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1111 	bool *encountered_page_in_swapcache = (bool *)arg;
1112 	swp_entry_t swpentry;
1113 	enum lru_status ret = LRU_REMOVED_RETRY;
1114 	int writeback_result;
1115 
1116 	/*
1117 	 * Second chance algorithm: if the entry has its referenced bit set, give it
1118 	 * a second chance. Only clear the referenced bit and rotate it in the
1119 	 * zswap's LRU list.
1120 	 */
1121 	if (entry->referenced) {
1122 		entry->referenced = false;
1123 		return LRU_ROTATE;
1124 	}
1125 
1126 	/*
1127 	 * As soon as we drop the LRU lock, the entry can be freed by
1128 	 * a concurrent invalidation. This means the following:
1129 	 *
1130 	 * 1. We extract the swp_entry_t to the stack, allowing
1131 	 *    zswap_writeback_entry() to pin the swap entry and
1132 	 *    then validate the zwap entry against that swap entry's
1133 	 *    tree using pointer value comparison. Only when that
1134 	 *    is successful can the entry be dereferenced.
1135 	 *
1136 	 * 2. Usually, objects are taken off the LRU for reclaim. In
1137 	 *    this case this isn't possible, because if reclaim fails
1138 	 *    for whatever reason, we have no means of knowing if the
1139 	 *    entry is alive to put it back on the LRU.
1140 	 *
1141 	 *    So rotate it before dropping the lock. If the entry is
1142 	 *    written back or invalidated, the free path will unlink
1143 	 *    it. For failures, rotation is the right thing as well.
1144 	 *
1145 	 *    Temporary failures, where the same entry should be tried
1146 	 *    again immediately, almost never happen for this shrinker.
1147 	 *    We don't do any trylocking; -ENOMEM comes closest,
1148 	 *    but that's extremely rare and doesn't happen spuriously
1149 	 *    either. Don't bother distinguishing this case.
1150 	 */
1151 	list_move_tail(item, &l->list);
1152 
1153 	/*
1154 	 * Once the lru lock is dropped, the entry might get freed. The
1155 	 * swpentry is copied to the stack, and entry isn't deref'd again
1156 	 * until the entry is verified to still be alive in the tree.
1157 	 */
1158 	swpentry = entry->swpentry;
1159 
1160 	/*
1161 	 * It's safe to drop the lock here because we return either
1162 	 * LRU_REMOVED_RETRY, LRU_RETRY or LRU_STOP.
1163 	 */
1164 	spin_unlock(&l->lock);
1165 
1166 	writeback_result = zswap_writeback_entry(entry, swpentry);
1167 
1168 	if (writeback_result) {
1169 		zswap_reject_reclaim_fail++;
1170 		ret = LRU_RETRY;
1171 
1172 		/*
1173 		 * Encountering a page already in swap cache is a sign that we are shrinking
1174 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1175 		 * shrinker context).
1176 		 */
1177 		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1178 			ret = LRU_STOP;
1179 			*encountered_page_in_swapcache = true;
1180 		}
1181 	} else {
1182 		zswap_written_back_pages++;
1183 	}
1184 
1185 	return ret;
1186 }
1187 
zswap_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1188 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1189 		struct shrink_control *sc)
1190 {
1191 	unsigned long shrink_ret;
1192 	bool encountered_page_in_swapcache = false;
1193 
1194 	if (!zswap_shrinker_enabled ||
1195 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1196 		sc->nr_scanned = 0;
1197 		return SHRINK_STOP;
1198 	}
1199 
1200 	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1201 		&encountered_page_in_swapcache);
1202 
1203 	if (encountered_page_in_swapcache)
1204 		return SHRINK_STOP;
1205 
1206 	return shrink_ret ? shrink_ret : SHRINK_STOP;
1207 }
1208 
zswap_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1209 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1210 		struct shrink_control *sc)
1211 {
1212 	struct mem_cgroup *memcg = sc->memcg;
1213 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1214 	atomic_long_t *nr_disk_swapins =
1215 		&lruvec->zswap_lruvec_state.nr_disk_swapins;
1216 	unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1217 		nr_remain;
1218 
1219 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1220 		return 0;
1221 
1222 	/*
1223 	 * The shrinker resumes swap writeback, which will enter block
1224 	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1225 	 * rules (may_enter_fs()), which apply on a per-folio basis.
1226 	 */
1227 	if (!gfp_has_io_fs(sc->gfp_mask))
1228 		return 0;
1229 
1230 	/*
1231 	 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1232 	 * have them per-node and thus per-lruvec. Careful if memcg is
1233 	 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1234 	 * for the lruvec, but not for memcg_page_state().
1235 	 *
1236 	 * Without memcg, use the zswap pool-wide metrics.
1237 	 */
1238 	if (!mem_cgroup_disabled()) {
1239 		mem_cgroup_flush_stats(memcg);
1240 		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1241 		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1242 	} else {
1243 		nr_backing = zswap_total_pages();
1244 		nr_stored = atomic_long_read(&zswap_stored_pages);
1245 	}
1246 
1247 	if (!nr_stored)
1248 		return 0;
1249 
1250 	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1251 	if (!nr_freeable)
1252 		return 0;
1253 
1254 	/*
1255 	 * Subtract from the lru size the number of pages that are recently swapped
1256 	 * in from disk. The idea is that had we protect the zswap's LRU by this
1257 	 * amount of pages, these disk swapins would not have happened.
1258 	 */
1259 	nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1260 	do {
1261 		if (nr_freeable >= nr_disk_swapins_cur)
1262 			nr_remain = 0;
1263 		else
1264 			nr_remain = nr_disk_swapins_cur - nr_freeable;
1265 	} while (!atomic_long_try_cmpxchg(
1266 		nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1267 
1268 	nr_freeable -= nr_disk_swapins_cur - nr_remain;
1269 	if (!nr_freeable)
1270 		return 0;
1271 
1272 	/*
1273 	 * Scale the number of freeable pages by the memory saving factor.
1274 	 * This ensures that the better zswap compresses memory, the fewer
1275 	 * pages we will evict to swap (as it will otherwise incur IO for
1276 	 * relatively small memory saving).
1277 	 */
1278 	return mult_frac(nr_freeable, nr_backing, nr_stored);
1279 }
1280 
zswap_alloc_shrinker(void)1281 static struct shrinker *zswap_alloc_shrinker(void)
1282 {
1283 	struct shrinker *shrinker;
1284 
1285 	shrinker =
1286 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1287 	if (!shrinker)
1288 		return NULL;
1289 
1290 	shrinker->scan_objects = zswap_shrinker_scan;
1291 	shrinker->count_objects = zswap_shrinker_count;
1292 	shrinker->batch = 0;
1293 	shrinker->seeks = DEFAULT_SEEKS;
1294 	return shrinker;
1295 }
1296 
shrink_memcg(struct mem_cgroup * memcg)1297 static int shrink_memcg(struct mem_cgroup *memcg)
1298 {
1299 	int nid, shrunk = 0, scanned = 0;
1300 
1301 	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1302 		return -ENOENT;
1303 
1304 	/*
1305 	 * Skip zombies because their LRUs are reparented and we would be
1306 	 * reclaiming from the parent instead of the dead memcg.
1307 	 */
1308 	if (memcg && !mem_cgroup_online(memcg))
1309 		return -ENOENT;
1310 
1311 	for_each_node_state(nid, N_NORMAL_MEMORY) {
1312 		unsigned long nr_to_walk = 1;
1313 
1314 		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1315 					    &shrink_memcg_cb, NULL, &nr_to_walk);
1316 		scanned += 1 - nr_to_walk;
1317 	}
1318 
1319 	if (!scanned)
1320 		return -ENOENT;
1321 
1322 	return shrunk ? 0 : -EAGAIN;
1323 }
1324 
shrink_worker(struct work_struct * w)1325 static void shrink_worker(struct work_struct *w)
1326 {
1327 	struct mem_cgroup *memcg;
1328 	int ret, failures = 0, attempts = 0;
1329 	unsigned long thr;
1330 
1331 	/* Reclaim down to the accept threshold */
1332 	thr = zswap_accept_thr_pages();
1333 
1334 	/*
1335 	 * Global reclaim will select cgroup in a round-robin fashion from all
1336 	 * online memcgs, but memcgs that have no pages in zswap and
1337 	 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1338 	 * candidates for shrinking.
1339 	 *
1340 	 * Shrinking will be aborted if we encounter the following
1341 	 * MAX_RECLAIM_RETRIES times:
1342 	 * - No writeback-candidate memcgs found in a memcg tree walk.
1343 	 * - Shrinking a writeback-candidate memcg failed.
1344 	 *
1345 	 * We save iteration cursor memcg into zswap_next_shrink,
1346 	 * which can be modified by the offline memcg cleaner
1347 	 * zswap_memcg_offline_cleanup().
1348 	 *
1349 	 * Since the offline cleaner is called only once, we cannot leave an
1350 	 * offline memcg reference in zswap_next_shrink.
1351 	 * We can rely on the cleaner only if we get online memcg under lock.
1352 	 *
1353 	 * If we get an offline memcg, we cannot determine if the cleaner has
1354 	 * already been called or will be called later. We must put back the
1355 	 * reference before returning from this function. Otherwise, the
1356 	 * offline memcg left in zswap_next_shrink will hold the reference
1357 	 * until the next run of shrink_worker().
1358 	 */
1359 	do {
1360 		/*
1361 		 * Start shrinking from the next memcg after zswap_next_shrink.
1362 		 * When the offline cleaner has already advanced the cursor,
1363 		 * advancing the cursor here overlooks one memcg, but this
1364 		 * should be negligibly rare.
1365 		 *
1366 		 * If we get an online memcg, keep the extra reference in case
1367 		 * the original one obtained by mem_cgroup_iter() is dropped by
1368 		 * zswap_memcg_offline_cleanup() while we are shrinking the
1369 		 * memcg.
1370 		 */
1371 		spin_lock(&zswap_shrink_lock);
1372 		do {
1373 			memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1374 			zswap_next_shrink = memcg;
1375 		} while (memcg && !mem_cgroup_tryget_online(memcg));
1376 		spin_unlock(&zswap_shrink_lock);
1377 
1378 		if (!memcg) {
1379 			/*
1380 			 * Continue shrinking without incrementing failures if
1381 			 * we found candidate memcgs in the last tree walk.
1382 			 */
1383 			if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1384 				break;
1385 
1386 			attempts = 0;
1387 			goto resched;
1388 		}
1389 
1390 		ret = shrink_memcg(memcg);
1391 		/* drop the extra reference */
1392 		mem_cgroup_put(memcg);
1393 
1394 		/*
1395 		 * There are no writeback-candidate pages in the memcg.
1396 		 * This is not an issue as long as we can find another memcg
1397 		 * with pages in zswap. Skip this without incrementing attempts
1398 		 * and failures.
1399 		 */
1400 		if (ret == -ENOENT)
1401 			continue;
1402 		++attempts;
1403 
1404 		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1405 			break;
1406 resched:
1407 		cond_resched();
1408 	} while (zswap_total_pages() > thr);
1409 }
1410 
1411 /*********************************
1412 * main API
1413 **********************************/
1414 
zswap_store_page(struct page * page,struct obj_cgroup * objcg,struct zswap_pool * pool)1415 static bool zswap_store_page(struct page *page,
1416 			     struct obj_cgroup *objcg,
1417 			     struct zswap_pool *pool)
1418 {
1419 	swp_entry_t page_swpentry = page_swap_entry(page);
1420 	struct zswap_entry *entry, *old;
1421 
1422 	/* allocate entry */
1423 	entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1424 	if (!entry) {
1425 		zswap_reject_kmemcache_fail++;
1426 		return false;
1427 	}
1428 
1429 	if (!zswap_compress(page, entry, pool))
1430 		goto compress_failed;
1431 
1432 	old = xa_store(swap_zswap_tree(page_swpentry),
1433 		       swp_offset(page_swpentry),
1434 		       entry, GFP_KERNEL);
1435 	if (xa_is_err(old)) {
1436 		int err = xa_err(old);
1437 
1438 		WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1439 		zswap_reject_alloc_fail++;
1440 		goto store_failed;
1441 	}
1442 
1443 	/*
1444 	 * We may have had an existing entry that became stale when
1445 	 * the folio was redirtied and now the new version is being
1446 	 * swapped out. Get rid of the old.
1447 	 */
1448 	if (old)
1449 		zswap_entry_free(old);
1450 
1451 	/*
1452 	 * The entry is successfully compressed and stored in the tree, there is
1453 	 * no further possibility of failure. Grab refs to the pool and objcg,
1454 	 * charge zswap memory, and increment zswap_stored_pages.
1455 	 * The opposite actions will be performed by zswap_entry_free()
1456 	 * when the entry is removed from the tree.
1457 	 */
1458 	zswap_pool_get(pool);
1459 	if (objcg) {
1460 		obj_cgroup_get(objcg);
1461 		obj_cgroup_charge_zswap(objcg, entry->length);
1462 	}
1463 	atomic_long_inc(&zswap_stored_pages);
1464 	if (entry->length == PAGE_SIZE)
1465 		atomic_long_inc(&zswap_stored_incompressible_pages);
1466 
1467 	/*
1468 	 * We finish initializing the entry while it's already in xarray.
1469 	 * This is safe because:
1470 	 *
1471 	 * 1. Concurrent stores and invalidations are excluded by folio lock.
1472 	 *
1473 	 * 2. Writeback is excluded by the entry not being on the LRU yet.
1474 	 *    The publishing order matters to prevent writeback from seeing
1475 	 *    an incoherent entry.
1476 	 */
1477 	entry->pool = pool;
1478 	entry->swpentry = page_swpentry;
1479 	entry->objcg = objcg;
1480 	entry->referenced = true;
1481 	if (entry->length) {
1482 		INIT_LIST_HEAD(&entry->lru);
1483 		zswap_lru_add(&zswap_list_lru, entry);
1484 	}
1485 
1486 	return true;
1487 
1488 store_failed:
1489 	zs_free(pool->zs_pool, entry->handle);
1490 compress_failed:
1491 	zswap_entry_cache_free(entry);
1492 	return false;
1493 }
1494 
zswap_store(struct folio * folio)1495 bool zswap_store(struct folio *folio)
1496 {
1497 	long nr_pages = folio_nr_pages(folio);
1498 	swp_entry_t swp = folio->swap;
1499 	struct obj_cgroup *objcg = NULL;
1500 	struct mem_cgroup *memcg = NULL;
1501 	struct zswap_pool *pool;
1502 	bool ret = false;
1503 	long index;
1504 
1505 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1506 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1507 
1508 	if (!zswap_enabled)
1509 		goto check_old;
1510 
1511 	objcg = get_obj_cgroup_from_folio(folio);
1512 	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1513 		memcg = get_mem_cgroup_from_objcg(objcg);
1514 		if (shrink_memcg(memcg)) {
1515 			mem_cgroup_put(memcg);
1516 			goto put_objcg;
1517 		}
1518 		mem_cgroup_put(memcg);
1519 	}
1520 
1521 	if (zswap_check_limits())
1522 		goto put_objcg;
1523 
1524 	pool = zswap_pool_current_get();
1525 	if (!pool)
1526 		goto put_objcg;
1527 
1528 	if (objcg) {
1529 		memcg = get_mem_cgroup_from_objcg(objcg);
1530 		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1531 			mem_cgroup_put(memcg);
1532 			goto put_pool;
1533 		}
1534 		mem_cgroup_put(memcg);
1535 	}
1536 
1537 	for (index = 0; index < nr_pages; ++index) {
1538 		struct page *page = folio_page(folio, index);
1539 
1540 		if (!zswap_store_page(page, objcg, pool))
1541 			goto put_pool;
1542 	}
1543 
1544 	if (objcg)
1545 		count_objcg_events(objcg, ZSWPOUT, nr_pages);
1546 
1547 	count_vm_events(ZSWPOUT, nr_pages);
1548 
1549 	ret = true;
1550 
1551 put_pool:
1552 	zswap_pool_put(pool);
1553 put_objcg:
1554 	obj_cgroup_put(objcg);
1555 	if (!ret && zswap_pool_reached_full)
1556 		queue_work(shrink_wq, &zswap_shrink_work);
1557 check_old:
1558 	/*
1559 	 * If the zswap store fails or zswap is disabled, we must invalidate
1560 	 * the possibly stale entries which were previously stored at the
1561 	 * offsets corresponding to each page of the folio. Otherwise,
1562 	 * writeback could overwrite the new data in the swapfile.
1563 	 */
1564 	if (!ret) {
1565 		unsigned type = swp_type(swp);
1566 		pgoff_t offset = swp_offset(swp);
1567 		struct zswap_entry *entry;
1568 		struct xarray *tree;
1569 
1570 		for (index = 0; index < nr_pages; ++index) {
1571 			tree = swap_zswap_tree(swp_entry(type, offset + index));
1572 			entry = xa_erase(tree, offset + index);
1573 			if (entry)
1574 				zswap_entry_free(entry);
1575 		}
1576 	}
1577 
1578 	return ret;
1579 }
1580 
1581 /**
1582  * zswap_load() - load a folio from zswap
1583  * @folio: folio to load
1584  *
1585  * Return: 0 on success, with the folio unlocked and marked up-to-date, or one
1586  * of the following error codes:
1587  *
1588  *  -EIO: if the swapped out content was in zswap, but could not be loaded
1589  *  into the page due to a decompression failure. The folio is unlocked, but
1590  *  NOT marked up-to-date, so that an IO error is emitted (e.g. do_swap_page()
1591  *  will SIGBUS).
1592  *
1593  *  -EINVAL: if the swapped out content was in zswap, but the page belongs
1594  *  to a large folio, which is not supported by zswap. The folio is unlocked,
1595  *  but NOT marked up-to-date, so that an IO error is emitted (e.g.
1596  *  do_swap_page() will SIGBUS).
1597  *
1598  *  -ENOENT: if the swapped out content was not in zswap. The folio remains
1599  *  locked on return.
1600  */
zswap_load(struct folio * folio)1601 int zswap_load(struct folio *folio)
1602 {
1603 	swp_entry_t swp = folio->swap;
1604 	pgoff_t offset = swp_offset(swp);
1605 	bool swapcache = folio_test_swapcache(folio);
1606 	struct xarray *tree = swap_zswap_tree(swp);
1607 	struct zswap_entry *entry;
1608 
1609 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1610 
1611 	if (zswap_never_enabled())
1612 		return -ENOENT;
1613 
1614 	/*
1615 	 * Large folios should not be swapped in while zswap is being used, as
1616 	 * they are not properly handled. Zswap does not properly load large
1617 	 * folios, and a large folio may only be partially in zswap.
1618 	 */
1619 	if (WARN_ON_ONCE(folio_test_large(folio))) {
1620 		folio_unlock(folio);
1621 		return -EINVAL;
1622 	}
1623 
1624 	entry = xa_load(tree, offset);
1625 	if (!entry)
1626 		return -ENOENT;
1627 
1628 	if (!zswap_decompress(entry, folio)) {
1629 		folio_unlock(folio);
1630 		return -EIO;
1631 	}
1632 
1633 	folio_mark_uptodate(folio);
1634 
1635 	count_vm_event(ZSWPIN);
1636 	if (entry->objcg)
1637 		count_objcg_events(entry->objcg, ZSWPIN, 1);
1638 
1639 	/*
1640 	 * When reading into the swapcache, invalidate our entry. The
1641 	 * swapcache can be the authoritative owner of the page and
1642 	 * its mappings, and the pressure that results from having two
1643 	 * in-memory copies outweighs any benefits of caching the
1644 	 * compression work.
1645 	 *
1646 	 * (Most swapins go through the swapcache. The notable
1647 	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1648 	 * files, which reads into a private page and may free it if
1649 	 * the fault fails. We remain the primary owner of the entry.)
1650 	 */
1651 	if (swapcache) {
1652 		folio_mark_dirty(folio);
1653 		xa_erase(tree, offset);
1654 		zswap_entry_free(entry);
1655 	}
1656 
1657 	folio_unlock(folio);
1658 	return 0;
1659 }
1660 
zswap_invalidate(swp_entry_t swp)1661 void zswap_invalidate(swp_entry_t swp)
1662 {
1663 	pgoff_t offset = swp_offset(swp);
1664 	struct xarray *tree = swap_zswap_tree(swp);
1665 	struct zswap_entry *entry;
1666 
1667 	if (xa_empty(tree))
1668 		return;
1669 
1670 	entry = xa_erase(tree, offset);
1671 	if (entry)
1672 		zswap_entry_free(entry);
1673 }
1674 
zswap_swapon(int type,unsigned long nr_pages)1675 int zswap_swapon(int type, unsigned long nr_pages)
1676 {
1677 	struct xarray *trees, *tree;
1678 	unsigned int nr, i;
1679 
1680 	nr = DIV_ROUND_UP(nr_pages, ZSWAP_ADDRESS_SPACE_PAGES);
1681 	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1682 	if (!trees) {
1683 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1684 		return -ENOMEM;
1685 	}
1686 
1687 	for (i = 0; i < nr; i++)
1688 		xa_init(trees + i);
1689 
1690 	nr_zswap_trees[type] = nr;
1691 	zswap_trees[type] = trees;
1692 	return 0;
1693 }
1694 
zswap_swapoff(int type)1695 void zswap_swapoff(int type)
1696 {
1697 	struct xarray *trees = zswap_trees[type];
1698 	unsigned int i;
1699 
1700 	if (!trees)
1701 		return;
1702 
1703 	/* try_to_unuse() invalidated all the entries already */
1704 	for (i = 0; i < nr_zswap_trees[type]; i++)
1705 		WARN_ON_ONCE(!xa_empty(trees + i));
1706 
1707 	kvfree(trees);
1708 	nr_zswap_trees[type] = 0;
1709 	zswap_trees[type] = NULL;
1710 }
1711 
1712 /*********************************
1713 * debugfs functions
1714 **********************************/
1715 #ifdef CONFIG_DEBUG_FS
1716 #include <linux/debugfs.h>
1717 
1718 static struct dentry *zswap_debugfs_root;
1719 
debugfs_get_total_size(void * data,u64 * val)1720 static int debugfs_get_total_size(void *data, u64 *val)
1721 {
1722 	*val = zswap_total_pages() * PAGE_SIZE;
1723 	return 0;
1724 }
1725 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1726 
debugfs_get_stored_pages(void * data,u64 * val)1727 static int debugfs_get_stored_pages(void *data, u64 *val)
1728 {
1729 	*val = atomic_long_read(&zswap_stored_pages);
1730 	return 0;
1731 }
1732 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n");
1733 
debugfs_get_stored_incompressible_pages(void * data,u64 * val)1734 static int debugfs_get_stored_incompressible_pages(void *data, u64 *val)
1735 {
1736 	*val = atomic_long_read(&zswap_stored_incompressible_pages);
1737 	return 0;
1738 }
1739 DEFINE_DEBUGFS_ATTRIBUTE(stored_incompressible_pages_fops,
1740 		debugfs_get_stored_incompressible_pages, NULL, "%llu\n");
1741 
zswap_debugfs_init(void)1742 static int zswap_debugfs_init(void)
1743 {
1744 	if (!debugfs_initialized())
1745 		return -ENODEV;
1746 
1747 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1748 
1749 	debugfs_create_u64("pool_limit_hit", 0444,
1750 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1751 	debugfs_create_u64("reject_reclaim_fail", 0444,
1752 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1753 	debugfs_create_u64("reject_alloc_fail", 0444,
1754 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1755 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1756 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1757 	debugfs_create_u64("reject_compress_fail", 0444,
1758 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1759 	debugfs_create_u64("reject_compress_poor", 0444,
1760 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1761 	debugfs_create_u64("decompress_fail", 0444,
1762 			   zswap_debugfs_root, &zswap_decompress_fail);
1763 	debugfs_create_u64("written_back_pages", 0444,
1764 			   zswap_debugfs_root, &zswap_written_back_pages);
1765 	debugfs_create_file("pool_total_size", 0444,
1766 			    zswap_debugfs_root, NULL, &total_size_fops);
1767 	debugfs_create_file("stored_pages", 0444,
1768 			    zswap_debugfs_root, NULL, &stored_pages_fops);
1769 	debugfs_create_file("stored_incompressible_pages", 0444,
1770 			    zswap_debugfs_root, NULL,
1771 			    &stored_incompressible_pages_fops);
1772 
1773 	return 0;
1774 }
1775 #else
zswap_debugfs_init(void)1776 static int zswap_debugfs_init(void)
1777 {
1778 	return 0;
1779 }
1780 #endif
1781 
1782 /*********************************
1783 * module init and exit
1784 **********************************/
zswap_setup(void)1785 static int zswap_setup(void)
1786 {
1787 	struct zswap_pool *pool;
1788 	int ret;
1789 
1790 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1791 	if (!zswap_entry_cache) {
1792 		pr_err("entry cache creation failed\n");
1793 		goto cache_fail;
1794 	}
1795 
1796 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1797 				      "mm/zswap_pool:prepare",
1798 				      zswap_cpu_comp_prepare,
1799 				      zswap_cpu_comp_dead);
1800 	if (ret)
1801 		goto hp_fail;
1802 
1803 	shrink_wq = alloc_workqueue("zswap-shrink",
1804 			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1805 	if (!shrink_wq)
1806 		goto shrink_wq_fail;
1807 
1808 	zswap_shrinker = zswap_alloc_shrinker();
1809 	if (!zswap_shrinker)
1810 		goto shrinker_fail;
1811 	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1812 		goto lru_fail;
1813 	shrinker_register(zswap_shrinker);
1814 
1815 	INIT_WORK(&zswap_shrink_work, shrink_worker);
1816 
1817 	pool = __zswap_pool_create_fallback();
1818 	if (pool) {
1819 		pr_info("loaded using pool %s\n", pool->tfm_name);
1820 		list_add(&pool->list, &zswap_pools);
1821 		zswap_has_pool = true;
1822 		static_branch_enable(&zswap_ever_enabled);
1823 	} else {
1824 		pr_err("pool creation failed\n");
1825 		zswap_enabled = false;
1826 	}
1827 
1828 	if (zswap_debugfs_init())
1829 		pr_warn("debugfs initialization failed\n");
1830 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1831 	return 0;
1832 
1833 lru_fail:
1834 	shrinker_free(zswap_shrinker);
1835 shrinker_fail:
1836 	destroy_workqueue(shrink_wq);
1837 shrink_wq_fail:
1838 	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1839 hp_fail:
1840 	kmem_cache_destroy(zswap_entry_cache);
1841 cache_fail:
1842 	/* if built-in, we aren't unloaded on failure; don't allow use */
1843 	zswap_init_state = ZSWAP_INIT_FAILED;
1844 	zswap_enabled = false;
1845 	return -ENOMEM;
1846 }
1847 
zswap_init(void)1848 static int __init zswap_init(void)
1849 {
1850 	if (!zswap_enabled)
1851 		return 0;
1852 	return zswap_setup();
1853 }
1854 /* must be late so crypto has time to come up */
1855 late_initcall(zswap_init);
1856 
1857 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1858 MODULE_DESCRIPTION("Compressed cache for swap pages");
1859