1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38
39 #include "swap.h"
40 #include "internal.h"
41
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_long_t zswap_stored_pages = ATOMIC_INIT(0);
47
48 /*
49 * The statistics below are not protected from concurrent access for
50 * performance reasons so they may not be a 100% accurate. However,
51 * they do provide useful information on roughly how many times a
52 * certain event is occurring.
53 */
54
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor;
65 /* Store failed because underlying allocator could not get memory */
66 static u64 zswap_reject_alloc_fail;
67 /* Store failed because the entry metadata could not be allocated (rare) */
68 static u64 zswap_reject_kmemcache_fail;
69
70 /* Shrinker work queue */
71 static struct workqueue_struct *shrink_wq;
72 /* Pool limit was hit, we need to calm down */
73 static bool zswap_pool_reached_full;
74
75 /*********************************
76 * tunables
77 **********************************/
78
79 #define ZSWAP_PARAM_UNSET ""
80
81 static int zswap_setup(void);
82
83 /* Enable/disable zswap */
84 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 .set = zswap_enabled_param_set,
90 .get = param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 .set = zswap_compressor_param_set,
100 .get = param_get_charp,
101 .free = param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 &zswap_compressor, 0644);
105
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 .set = zswap_zpool_param_set,
111 .get = param_get_charp,
112 .free = param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 uint, 0644);
124
125 /* Enable/disable memory pressure-based shrinker. */
126 static bool zswap_shrinker_enabled = IS_ENABLED(
127 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
128 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
129
zswap_is_enabled(void)130 bool zswap_is_enabled(void)
131 {
132 return zswap_enabled;
133 }
134
zswap_never_enabled(void)135 bool zswap_never_enabled(void)
136 {
137 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
138 }
139
140 /*********************************
141 * data structures
142 **********************************/
143
144 struct crypto_acomp_ctx {
145 struct crypto_acomp *acomp;
146 struct acomp_req *req;
147 struct crypto_wait wait;
148 u8 *buffer;
149 struct mutex mutex;
150 bool is_sleepable;
151 };
152
153 /*
154 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
155 * The only case where lru_lock is not acquired while holding tree.lock is
156 * when a zswap_entry is taken off the lru for writeback, in that case it
157 * needs to be verified that it's still valid in the tree.
158 */
159 struct zswap_pool {
160 struct zpool *zpool;
161 struct crypto_acomp_ctx __percpu *acomp_ctx;
162 struct percpu_ref ref;
163 struct list_head list;
164 struct work_struct release_work;
165 struct hlist_node node;
166 char tfm_name[CRYPTO_MAX_ALG_NAME];
167 };
168
169 /* Global LRU lists shared by all zswap pools. */
170 static struct list_lru zswap_list_lru;
171
172 /* The lock protects zswap_next_shrink updates. */
173 static DEFINE_SPINLOCK(zswap_shrink_lock);
174 static struct mem_cgroup *zswap_next_shrink;
175 static struct work_struct zswap_shrink_work;
176 static struct shrinker *zswap_shrinker;
177
178 /*
179 * struct zswap_entry
180 *
181 * This structure contains the metadata for tracking a single compressed
182 * page within zswap.
183 *
184 * swpentry - associated swap entry, the offset indexes into the red-black tree
185 * length - the length in bytes of the compressed page data. Needed during
186 * decompression.
187 * referenced - true if the entry recently entered the zswap pool. Unset by the
188 * writeback logic. The entry is only reclaimed by the writeback
189 * logic if referenced is unset. See comments in the shrinker
190 * section for context.
191 * pool - the zswap_pool the entry's data is in
192 * handle - zpool allocation handle that stores the compressed page data
193 * objcg - the obj_cgroup that the compressed memory is charged to
194 * lru - handle to the pool's lru used to evict pages.
195 */
196 struct zswap_entry {
197 swp_entry_t swpentry;
198 unsigned int length;
199 bool referenced;
200 struct zswap_pool *pool;
201 unsigned long handle;
202 struct obj_cgroup *objcg;
203 struct list_head lru;
204 };
205
206 static struct xarray *zswap_trees[MAX_SWAPFILES];
207 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
208
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
215
216 enum zswap_init_type {
217 ZSWAP_UNINIT,
218 ZSWAP_INIT_SUCCEED,
219 ZSWAP_INIT_FAILED
220 };
221
222 static enum zswap_init_type zswap_init_state;
223
224 /* used to ensure the integrity of initialization */
225 static DEFINE_MUTEX(zswap_init_lock);
226
227 /* init completed, but couldn't create the initial pool */
228 static bool zswap_has_pool;
229
230 /*********************************
231 * helpers and fwd declarations
232 **********************************/
233
swap_zswap_tree(swp_entry_t swp)234 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
235 {
236 return &zswap_trees[swp_type(swp)][swp_offset(swp)
237 >> SWAP_ADDRESS_SPACE_SHIFT];
238 }
239
240 #define zswap_pool_debug(msg, p) \
241 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
242 zpool_get_type((p)->zpool))
243
244 /*********************************
245 * pool functions
246 **********************************/
247 static void __zswap_pool_empty(struct percpu_ref *ref);
248
zswap_pool_create(char * type,char * compressor)249 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
250 {
251 struct zswap_pool *pool;
252 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
253 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
254 int ret;
255
256 if (!zswap_has_pool) {
257 /* if either are unset, pool initialization failed, and we
258 * need both params to be set correctly before trying to
259 * create a pool.
260 */
261 if (!strcmp(type, ZSWAP_PARAM_UNSET))
262 return NULL;
263 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
264 return NULL;
265 }
266
267 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
268 if (!pool)
269 return NULL;
270
271 /* unique name for each pool specifically required by zsmalloc */
272 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
273 pool->zpool = zpool_create_pool(type, name, gfp);
274 if (!pool->zpool) {
275 pr_err("%s zpool not available\n", type);
276 goto error;
277 }
278 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
279
280 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
281
282 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
283 if (!pool->acomp_ctx) {
284 pr_err("percpu alloc failed\n");
285 goto error;
286 }
287
288 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
289 &pool->node);
290 if (ret)
291 goto error;
292
293 /* being the current pool takes 1 ref; this func expects the
294 * caller to always add the new pool as the current pool
295 */
296 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
297 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
298 if (ret)
299 goto ref_fail;
300 INIT_LIST_HEAD(&pool->list);
301
302 zswap_pool_debug("created", pool);
303
304 return pool;
305
306 ref_fail:
307 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
308 error:
309 if (pool->acomp_ctx)
310 free_percpu(pool->acomp_ctx);
311 if (pool->zpool)
312 zpool_destroy_pool(pool->zpool);
313 kfree(pool);
314 return NULL;
315 }
316
__zswap_pool_create_fallback(void)317 static struct zswap_pool *__zswap_pool_create_fallback(void)
318 {
319 bool has_comp, has_zpool;
320
321 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
322 if (!has_comp && strcmp(zswap_compressor,
323 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
324 pr_err("compressor %s not available, using default %s\n",
325 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
326 param_free_charp(&zswap_compressor);
327 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
328 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
329 }
330 if (!has_comp) {
331 pr_err("default compressor %s not available\n",
332 zswap_compressor);
333 param_free_charp(&zswap_compressor);
334 zswap_compressor = ZSWAP_PARAM_UNSET;
335 }
336
337 has_zpool = zpool_has_pool(zswap_zpool_type);
338 if (!has_zpool && strcmp(zswap_zpool_type,
339 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
340 pr_err("zpool %s not available, using default %s\n",
341 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
342 param_free_charp(&zswap_zpool_type);
343 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
344 has_zpool = zpool_has_pool(zswap_zpool_type);
345 }
346 if (!has_zpool) {
347 pr_err("default zpool %s not available\n",
348 zswap_zpool_type);
349 param_free_charp(&zswap_zpool_type);
350 zswap_zpool_type = ZSWAP_PARAM_UNSET;
351 }
352
353 if (!has_comp || !has_zpool)
354 return NULL;
355
356 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
357 }
358
zswap_pool_destroy(struct zswap_pool * pool)359 static void zswap_pool_destroy(struct zswap_pool *pool)
360 {
361 zswap_pool_debug("destroying", pool);
362
363 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
364 free_percpu(pool->acomp_ctx);
365
366 zpool_destroy_pool(pool->zpool);
367 kfree(pool);
368 }
369
__zswap_pool_release(struct work_struct * work)370 static void __zswap_pool_release(struct work_struct *work)
371 {
372 struct zswap_pool *pool = container_of(work, typeof(*pool),
373 release_work);
374
375 synchronize_rcu();
376
377 /* nobody should have been able to get a ref... */
378 WARN_ON(!percpu_ref_is_zero(&pool->ref));
379 percpu_ref_exit(&pool->ref);
380
381 /* pool is now off zswap_pools list and has no references. */
382 zswap_pool_destroy(pool);
383 }
384
385 static struct zswap_pool *zswap_pool_current(void);
386
__zswap_pool_empty(struct percpu_ref * ref)387 static void __zswap_pool_empty(struct percpu_ref *ref)
388 {
389 struct zswap_pool *pool;
390
391 pool = container_of(ref, typeof(*pool), ref);
392
393 spin_lock_bh(&zswap_pools_lock);
394
395 WARN_ON(pool == zswap_pool_current());
396
397 list_del_rcu(&pool->list);
398
399 INIT_WORK(&pool->release_work, __zswap_pool_release);
400 schedule_work(&pool->release_work);
401
402 spin_unlock_bh(&zswap_pools_lock);
403 }
404
zswap_pool_tryget(struct zswap_pool * pool)405 static int __must_check zswap_pool_tryget(struct zswap_pool *pool)
406 {
407 if (!pool)
408 return 0;
409
410 return percpu_ref_tryget(&pool->ref);
411 }
412
413 /* The caller must already have a reference. */
zswap_pool_get(struct zswap_pool * pool)414 static void zswap_pool_get(struct zswap_pool *pool)
415 {
416 percpu_ref_get(&pool->ref);
417 }
418
zswap_pool_put(struct zswap_pool * pool)419 static void zswap_pool_put(struct zswap_pool *pool)
420 {
421 percpu_ref_put(&pool->ref);
422 }
423
__zswap_pool_current(void)424 static struct zswap_pool *__zswap_pool_current(void)
425 {
426 struct zswap_pool *pool;
427
428 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
429 WARN_ONCE(!pool && zswap_has_pool,
430 "%s: no page storage pool!\n", __func__);
431
432 return pool;
433 }
434
zswap_pool_current(void)435 static struct zswap_pool *zswap_pool_current(void)
436 {
437 assert_spin_locked(&zswap_pools_lock);
438
439 return __zswap_pool_current();
440 }
441
zswap_pool_current_get(void)442 static struct zswap_pool *zswap_pool_current_get(void)
443 {
444 struct zswap_pool *pool;
445
446 rcu_read_lock();
447
448 pool = __zswap_pool_current();
449 if (!zswap_pool_tryget(pool))
450 pool = NULL;
451
452 rcu_read_unlock();
453
454 return pool;
455 }
456
457 /* type and compressor must be null-terminated */
zswap_pool_find_get(char * type,char * compressor)458 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
459 {
460 struct zswap_pool *pool;
461
462 assert_spin_locked(&zswap_pools_lock);
463
464 list_for_each_entry_rcu(pool, &zswap_pools, list) {
465 if (strcmp(pool->tfm_name, compressor))
466 continue;
467 if (strcmp(zpool_get_type(pool->zpool), type))
468 continue;
469 /* if we can't get it, it's about to be destroyed */
470 if (!zswap_pool_tryget(pool))
471 continue;
472 return pool;
473 }
474
475 return NULL;
476 }
477
zswap_max_pages(void)478 static unsigned long zswap_max_pages(void)
479 {
480 return totalram_pages() * zswap_max_pool_percent / 100;
481 }
482
zswap_accept_thr_pages(void)483 static unsigned long zswap_accept_thr_pages(void)
484 {
485 return zswap_max_pages() * zswap_accept_thr_percent / 100;
486 }
487
zswap_total_pages(void)488 unsigned long zswap_total_pages(void)
489 {
490 struct zswap_pool *pool;
491 unsigned long total = 0;
492
493 rcu_read_lock();
494 list_for_each_entry_rcu(pool, &zswap_pools, list)
495 total += zpool_get_total_pages(pool->zpool);
496 rcu_read_unlock();
497
498 return total;
499 }
500
zswap_check_limits(void)501 static bool zswap_check_limits(void)
502 {
503 unsigned long cur_pages = zswap_total_pages();
504 unsigned long max_pages = zswap_max_pages();
505
506 if (cur_pages >= max_pages) {
507 zswap_pool_limit_hit++;
508 zswap_pool_reached_full = true;
509 } else if (zswap_pool_reached_full &&
510 cur_pages <= zswap_accept_thr_pages()) {
511 zswap_pool_reached_full = false;
512 }
513 return zswap_pool_reached_full;
514 }
515
516 /*********************************
517 * param callbacks
518 **********************************/
519
zswap_pool_changed(const char * s,const struct kernel_param * kp)520 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
521 {
522 /* no change required */
523 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
524 return false;
525 return true;
526 }
527
528 /* val must be a null-terminated string */
__zswap_param_set(const char * val,const struct kernel_param * kp,char * type,char * compressor)529 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
530 char *type, char *compressor)
531 {
532 struct zswap_pool *pool, *put_pool = NULL;
533 char *s = strstrip((char *)val);
534 int ret = 0;
535 bool new_pool = false;
536
537 mutex_lock(&zswap_init_lock);
538 switch (zswap_init_state) {
539 case ZSWAP_UNINIT:
540 /* if this is load-time (pre-init) param setting,
541 * don't create a pool; that's done during init.
542 */
543 ret = param_set_charp(s, kp);
544 break;
545 case ZSWAP_INIT_SUCCEED:
546 new_pool = zswap_pool_changed(s, kp);
547 break;
548 case ZSWAP_INIT_FAILED:
549 pr_err("can't set param, initialization failed\n");
550 ret = -ENODEV;
551 }
552 mutex_unlock(&zswap_init_lock);
553
554 /* no need to create a new pool, return directly */
555 if (!new_pool)
556 return ret;
557
558 if (!type) {
559 if (!zpool_has_pool(s)) {
560 pr_err("zpool %s not available\n", s);
561 return -ENOENT;
562 }
563 type = s;
564 } else if (!compressor) {
565 if (!crypto_has_acomp(s, 0, 0)) {
566 pr_err("compressor %s not available\n", s);
567 return -ENOENT;
568 }
569 compressor = s;
570 } else {
571 WARN_ON(1);
572 return -EINVAL;
573 }
574
575 spin_lock_bh(&zswap_pools_lock);
576
577 pool = zswap_pool_find_get(type, compressor);
578 if (pool) {
579 zswap_pool_debug("using existing", pool);
580 WARN_ON(pool == zswap_pool_current());
581 list_del_rcu(&pool->list);
582 }
583
584 spin_unlock_bh(&zswap_pools_lock);
585
586 if (!pool)
587 pool = zswap_pool_create(type, compressor);
588 else {
589 /*
590 * Restore the initial ref dropped by percpu_ref_kill()
591 * when the pool was decommissioned and switch it again
592 * to percpu mode.
593 */
594 percpu_ref_resurrect(&pool->ref);
595
596 /* Drop the ref from zswap_pool_find_get(). */
597 zswap_pool_put(pool);
598 }
599
600 if (pool)
601 ret = param_set_charp(s, kp);
602 else
603 ret = -EINVAL;
604
605 spin_lock_bh(&zswap_pools_lock);
606
607 if (!ret) {
608 put_pool = zswap_pool_current();
609 list_add_rcu(&pool->list, &zswap_pools);
610 zswap_has_pool = true;
611 } else if (pool) {
612 /* add the possibly pre-existing pool to the end of the pools
613 * list; if it's new (and empty) then it'll be removed and
614 * destroyed by the put after we drop the lock
615 */
616 list_add_tail_rcu(&pool->list, &zswap_pools);
617 put_pool = pool;
618 }
619
620 spin_unlock_bh(&zswap_pools_lock);
621
622 if (!zswap_has_pool && !pool) {
623 /* if initial pool creation failed, and this pool creation also
624 * failed, maybe both compressor and zpool params were bad.
625 * Allow changing this param, so pool creation will succeed
626 * when the other param is changed. We already verified this
627 * param is ok in the zpool_has_pool() or crypto_has_acomp()
628 * checks above.
629 */
630 ret = param_set_charp(s, kp);
631 }
632
633 /* drop the ref from either the old current pool,
634 * or the new pool we failed to add
635 */
636 if (put_pool)
637 percpu_ref_kill(&put_pool->ref);
638
639 return ret;
640 }
641
zswap_compressor_param_set(const char * val,const struct kernel_param * kp)642 static int zswap_compressor_param_set(const char *val,
643 const struct kernel_param *kp)
644 {
645 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
646 }
647
zswap_zpool_param_set(const char * val,const struct kernel_param * kp)648 static int zswap_zpool_param_set(const char *val,
649 const struct kernel_param *kp)
650 {
651 return __zswap_param_set(val, kp, NULL, zswap_compressor);
652 }
653
zswap_enabled_param_set(const char * val,const struct kernel_param * kp)654 static int zswap_enabled_param_set(const char *val,
655 const struct kernel_param *kp)
656 {
657 int ret = -ENODEV;
658
659 /* if this is load-time (pre-init) param setting, only set param. */
660 if (system_state != SYSTEM_RUNNING)
661 return param_set_bool(val, kp);
662
663 mutex_lock(&zswap_init_lock);
664 switch (zswap_init_state) {
665 case ZSWAP_UNINIT:
666 if (zswap_setup())
667 break;
668 fallthrough;
669 case ZSWAP_INIT_SUCCEED:
670 if (!zswap_has_pool)
671 pr_err("can't enable, no pool configured\n");
672 else
673 ret = param_set_bool(val, kp);
674 break;
675 case ZSWAP_INIT_FAILED:
676 pr_err("can't enable, initialization failed\n");
677 }
678 mutex_unlock(&zswap_init_lock);
679
680 return ret;
681 }
682
683 /*********************************
684 * lru functions
685 **********************************/
686
687 /* should be called under RCU */
688 #ifdef CONFIG_MEMCG
mem_cgroup_from_entry(struct zswap_entry * entry)689 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
690 {
691 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
692 }
693 #else
mem_cgroup_from_entry(struct zswap_entry * entry)694 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
695 {
696 return NULL;
697 }
698 #endif
699
entry_to_nid(struct zswap_entry * entry)700 static inline int entry_to_nid(struct zswap_entry *entry)
701 {
702 return page_to_nid(virt_to_page(entry));
703 }
704
zswap_lru_add(struct list_lru * list_lru,struct zswap_entry * entry)705 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
706 {
707 int nid = entry_to_nid(entry);
708 struct mem_cgroup *memcg;
709
710 /*
711 * Note that it is safe to use rcu_read_lock() here, even in the face of
712 * concurrent memcg offlining:
713 *
714 * 1. list_lru_add() is called before list_lru_one is dead. The
715 * new entry will be reparented to memcg's parent's list_lru.
716 * 2. list_lru_add() is called after list_lru_one is dead. The
717 * new entry will be added directly to memcg's parent's list_lru.
718 *
719 * Similar reasoning holds for list_lru_del().
720 */
721 rcu_read_lock();
722 memcg = mem_cgroup_from_entry(entry);
723 /* will always succeed */
724 list_lru_add(list_lru, &entry->lru, nid, memcg);
725 rcu_read_unlock();
726 }
727
zswap_lru_del(struct list_lru * list_lru,struct zswap_entry * entry)728 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
729 {
730 int nid = entry_to_nid(entry);
731 struct mem_cgroup *memcg;
732
733 rcu_read_lock();
734 memcg = mem_cgroup_from_entry(entry);
735 /* will always succeed */
736 list_lru_del(list_lru, &entry->lru, nid, memcg);
737 rcu_read_unlock();
738 }
739
zswap_lruvec_state_init(struct lruvec * lruvec)740 void zswap_lruvec_state_init(struct lruvec *lruvec)
741 {
742 atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
743 }
744
zswap_folio_swapin(struct folio * folio)745 void zswap_folio_swapin(struct folio *folio)
746 {
747 struct lruvec *lruvec;
748
749 if (folio) {
750 lruvec = folio_lruvec(folio);
751 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
752 }
753 }
754
755 /*
756 * This function should be called when a memcg is being offlined.
757 *
758 * Since the global shrinker shrink_worker() may hold a reference
759 * of the memcg, we must check and release the reference in
760 * zswap_next_shrink.
761 *
762 * shrink_worker() must handle the case where this function releases
763 * the reference of memcg being shrunk.
764 */
zswap_memcg_offline_cleanup(struct mem_cgroup * memcg)765 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
766 {
767 /* lock out zswap shrinker walking memcg tree */
768 spin_lock(&zswap_shrink_lock);
769 if (zswap_next_shrink == memcg) {
770 do {
771 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
772 } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
773 }
774 spin_unlock(&zswap_shrink_lock);
775 }
776
777 /*********************************
778 * zswap entry functions
779 **********************************/
780 static struct kmem_cache *zswap_entry_cache;
781
zswap_entry_cache_alloc(gfp_t gfp,int nid)782 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
783 {
784 struct zswap_entry *entry;
785 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
786 if (!entry)
787 return NULL;
788 return entry;
789 }
790
zswap_entry_cache_free(struct zswap_entry * entry)791 static void zswap_entry_cache_free(struct zswap_entry *entry)
792 {
793 kmem_cache_free(zswap_entry_cache, entry);
794 }
795
796 /*
797 * Carries out the common pattern of freeing and entry's zpool allocation,
798 * freeing the entry itself, and decrementing the number of stored pages.
799 */
zswap_entry_free(struct zswap_entry * entry)800 static void zswap_entry_free(struct zswap_entry *entry)
801 {
802 zswap_lru_del(&zswap_list_lru, entry);
803 zpool_free(entry->pool->zpool, entry->handle);
804 zswap_pool_put(entry->pool);
805 if (entry->objcg) {
806 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
807 obj_cgroup_put(entry->objcg);
808 }
809 zswap_entry_cache_free(entry);
810 atomic_long_dec(&zswap_stored_pages);
811 }
812
813 /*********************************
814 * compressed storage functions
815 **********************************/
zswap_cpu_comp_prepare(unsigned int cpu,struct hlist_node * node)816 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
817 {
818 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
819 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
820 struct crypto_acomp *acomp;
821 struct acomp_req *req;
822 int ret;
823
824 mutex_init(&acomp_ctx->mutex);
825
826 acomp_ctx->buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
827 if (!acomp_ctx->buffer)
828 return -ENOMEM;
829
830 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
831 if (IS_ERR(acomp)) {
832 pr_err("could not alloc crypto acomp %s : %ld\n",
833 pool->tfm_name, PTR_ERR(acomp));
834 ret = PTR_ERR(acomp);
835 goto acomp_fail;
836 }
837 acomp_ctx->acomp = acomp;
838 acomp_ctx->is_sleepable = acomp_is_async(acomp);
839
840 req = acomp_request_alloc(acomp_ctx->acomp);
841 if (!req) {
842 pr_err("could not alloc crypto acomp_request %s\n",
843 pool->tfm_name);
844 ret = -ENOMEM;
845 goto req_fail;
846 }
847 acomp_ctx->req = req;
848
849 crypto_init_wait(&acomp_ctx->wait);
850 /*
851 * if the backend of acomp is async zip, crypto_req_done() will wakeup
852 * crypto_wait_req(); if the backend of acomp is scomp, the callback
853 * won't be called, crypto_wait_req() will return without blocking.
854 */
855 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
856 crypto_req_done, &acomp_ctx->wait);
857
858 return 0;
859
860 req_fail:
861 crypto_free_acomp(acomp_ctx->acomp);
862 acomp_fail:
863 kfree(acomp_ctx->buffer);
864 return ret;
865 }
866
zswap_cpu_comp_dead(unsigned int cpu,struct hlist_node * node)867 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
868 {
869 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
870 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
871
872 if (!IS_ERR_OR_NULL(acomp_ctx)) {
873 if (!IS_ERR_OR_NULL(acomp_ctx->req))
874 acomp_request_free(acomp_ctx->req);
875 if (!IS_ERR_OR_NULL(acomp_ctx->acomp))
876 crypto_free_acomp(acomp_ctx->acomp);
877 kfree(acomp_ctx->buffer);
878 }
879
880 return 0;
881 }
882
883 /* Prevent CPU hotplug from freeing up the per-CPU acomp_ctx resources */
acomp_ctx_get_cpu(struct crypto_acomp_ctx __percpu * acomp_ctx)884 static struct crypto_acomp_ctx *acomp_ctx_get_cpu(struct crypto_acomp_ctx __percpu *acomp_ctx)
885 {
886 cpus_read_lock();
887 return raw_cpu_ptr(acomp_ctx);
888 }
889
acomp_ctx_put_cpu(void)890 static void acomp_ctx_put_cpu(void)
891 {
892 cpus_read_unlock();
893 }
894
zswap_compress(struct page * page,struct zswap_entry * entry,struct zswap_pool * pool)895 static bool zswap_compress(struct page *page, struct zswap_entry *entry,
896 struct zswap_pool *pool)
897 {
898 struct crypto_acomp_ctx *acomp_ctx;
899 struct scatterlist input, output;
900 int comp_ret = 0, alloc_ret = 0;
901 unsigned int dlen = PAGE_SIZE;
902 unsigned long handle;
903 struct zpool *zpool;
904 char *buf;
905 gfp_t gfp;
906 u8 *dst;
907
908 acomp_ctx = acomp_ctx_get_cpu(pool->acomp_ctx);
909 mutex_lock(&acomp_ctx->mutex);
910
911 dst = acomp_ctx->buffer;
912 sg_init_table(&input, 1);
913 sg_set_page(&input, page, PAGE_SIZE, 0);
914
915 /*
916 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
917 * and hardware-accelerators may won't check the dst buffer size, so
918 * giving the dst buffer with enough length to avoid buffer overflow.
919 */
920 sg_init_one(&output, dst, PAGE_SIZE * 2);
921 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
922
923 /*
924 * it maybe looks a little bit silly that we send an asynchronous request,
925 * then wait for its completion synchronously. This makes the process look
926 * synchronous in fact.
927 * Theoretically, acomp supports users send multiple acomp requests in one
928 * acomp instance, then get those requests done simultaneously. but in this
929 * case, zswap actually does store and load page by page, there is no
930 * existing method to send the second page before the first page is done
931 * in one thread doing zwap.
932 * but in different threads running on different cpu, we have different
933 * acomp instance, so multiple threads can do (de)compression in parallel.
934 */
935 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
936 dlen = acomp_ctx->req->dlen;
937 if (comp_ret)
938 goto unlock;
939
940 zpool = pool->zpool;
941 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
942 if (zpool_malloc_support_movable(zpool))
943 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
944 alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
945 if (alloc_ret)
946 goto unlock;
947
948 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
949 memcpy(buf, dst, dlen);
950 zpool_unmap_handle(zpool, handle);
951
952 entry->handle = handle;
953 entry->length = dlen;
954
955 unlock:
956 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
957 zswap_reject_compress_poor++;
958 else if (comp_ret)
959 zswap_reject_compress_fail++;
960 else if (alloc_ret)
961 zswap_reject_alloc_fail++;
962
963 mutex_unlock(&acomp_ctx->mutex);
964 acomp_ctx_put_cpu();
965 return comp_ret == 0 && alloc_ret == 0;
966 }
967
zswap_decompress(struct zswap_entry * entry,struct folio * folio)968 static void zswap_decompress(struct zswap_entry *entry, struct folio *folio)
969 {
970 struct zpool *zpool = entry->pool->zpool;
971 struct scatterlist input, output;
972 struct crypto_acomp_ctx *acomp_ctx;
973 u8 *src;
974
975 acomp_ctx = acomp_ctx_get_cpu(entry->pool->acomp_ctx);
976 mutex_lock(&acomp_ctx->mutex);
977
978 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
979 /*
980 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
981 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
982 * resort to copying the buffer to a temporary one.
983 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
984 * such as a kmap address of high memory or even ever a vmap address.
985 * However, sg_init_one is only equipped to handle linearly mapped low memory.
986 * In such cases, we also must copy the buffer to a temporary and lowmem one.
987 */
988 if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
989 !virt_addr_valid(src)) {
990 memcpy(acomp_ctx->buffer, src, entry->length);
991 src = acomp_ctx->buffer;
992 zpool_unmap_handle(zpool, entry->handle);
993 }
994
995 sg_init_one(&input, src, entry->length);
996 sg_init_table(&output, 1);
997 sg_set_folio(&output, folio, PAGE_SIZE, 0);
998 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
999 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1000 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1001 mutex_unlock(&acomp_ctx->mutex);
1002
1003 if (src != acomp_ctx->buffer)
1004 zpool_unmap_handle(zpool, entry->handle);
1005 acomp_ctx_put_cpu();
1006 }
1007
1008 /*********************************
1009 * writeback code
1010 **********************************/
1011 /*
1012 * Attempts to free an entry by adding a folio to the swap cache,
1013 * decompressing the entry data into the folio, and issuing a
1014 * bio write to write the folio back to the swap device.
1015 *
1016 * This can be thought of as a "resumed writeback" of the folio
1017 * to the swap device. We are basically resuming the same swap
1018 * writeback path that was intercepted with the zswap_store()
1019 * in the first place. After the folio has been decompressed into
1020 * the swap cache, the compressed version stored by zswap can be
1021 * freed.
1022 */
zswap_writeback_entry(struct zswap_entry * entry,swp_entry_t swpentry)1023 static int zswap_writeback_entry(struct zswap_entry *entry,
1024 swp_entry_t swpentry)
1025 {
1026 struct xarray *tree;
1027 pgoff_t offset = swp_offset(swpentry);
1028 struct folio *folio;
1029 struct mempolicy *mpol;
1030 bool folio_was_allocated;
1031 struct writeback_control wbc = {
1032 .sync_mode = WB_SYNC_NONE,
1033 };
1034
1035 /* try to allocate swap cache folio */
1036 mpol = get_task_policy(current);
1037 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1038 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1039 if (!folio)
1040 return -ENOMEM;
1041
1042 /*
1043 * Found an existing folio, we raced with swapin or concurrent
1044 * shrinker. We generally writeback cold folios from zswap, and
1045 * swapin means the folio just became hot, so skip this folio.
1046 * For unlikely concurrent shrinker case, it will be unlinked
1047 * and freed when invalidated by the concurrent shrinker anyway.
1048 */
1049 if (!folio_was_allocated) {
1050 folio_put(folio);
1051 return -EEXIST;
1052 }
1053
1054 /*
1055 * folio is locked, and the swapcache is now secured against
1056 * concurrent swapping to and from the slot, and concurrent
1057 * swapoff so we can safely dereference the zswap tree here.
1058 * Verify that the swap entry hasn't been invalidated and recycled
1059 * behind our backs, to avoid overwriting a new swap folio with
1060 * old compressed data. Only when this is successful can the entry
1061 * be dereferenced.
1062 */
1063 tree = swap_zswap_tree(swpentry);
1064 if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1065 delete_from_swap_cache(folio);
1066 folio_unlock(folio);
1067 folio_put(folio);
1068 return -ENOMEM;
1069 }
1070
1071 zswap_decompress(entry, folio);
1072
1073 count_vm_event(ZSWPWB);
1074 if (entry->objcg)
1075 count_objcg_events(entry->objcg, ZSWPWB, 1);
1076
1077 zswap_entry_free(entry);
1078
1079 /* folio is up to date */
1080 folio_mark_uptodate(folio);
1081
1082 /* move it to the tail of the inactive list after end_writeback */
1083 folio_set_reclaim(folio);
1084
1085 /* start writeback */
1086 __swap_writepage(folio, &wbc);
1087 folio_put(folio);
1088
1089 return 0;
1090 }
1091
1092 /*********************************
1093 * shrinker functions
1094 **********************************/
1095 /*
1096 * The dynamic shrinker is modulated by the following factors:
1097 *
1098 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1099 * the entry a second chance) before rotating it in the LRU list. If the
1100 * entry is considered again by the shrinker, with its referenced bit unset,
1101 * it is written back. The writeback rate as a result is dynamically
1102 * adjusted by the pool activities - if the pool is dominated by new entries
1103 * (i.e lots of recent zswapouts), these entries will be protected and
1104 * the writeback rate will slow down. On the other hand, if the pool has a
1105 * lot of stagnant entries, these entries will be reclaimed immediately,
1106 * effectively increasing the writeback rate.
1107 *
1108 * 2. Swapins counter: If we observe swapins, it is a sign that we are
1109 * overshrinking and should slow down. We maintain a swapins counter, which
1110 * is consumed and subtract from the number of eligible objects on the LRU
1111 * in zswap_shrinker_count().
1112 *
1113 * 3. Compression ratio. The better the workload compresses, the less gains we
1114 * can expect from writeback. We scale down the number of objects available
1115 * for reclaim by this ratio.
1116 */
shrink_memcg_cb(struct list_head * item,struct list_lru_one * l,void * arg)1117 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1118 void *arg)
1119 {
1120 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1121 bool *encountered_page_in_swapcache = (bool *)arg;
1122 swp_entry_t swpentry;
1123 enum lru_status ret = LRU_REMOVED_RETRY;
1124 int writeback_result;
1125
1126 /*
1127 * Second chance algorithm: if the entry has its referenced bit set, give it
1128 * a second chance. Only clear the referenced bit and rotate it in the
1129 * zswap's LRU list.
1130 */
1131 if (entry->referenced) {
1132 entry->referenced = false;
1133 return LRU_ROTATE;
1134 }
1135
1136 /*
1137 * As soon as we drop the LRU lock, the entry can be freed by
1138 * a concurrent invalidation. This means the following:
1139 *
1140 * 1. We extract the swp_entry_t to the stack, allowing
1141 * zswap_writeback_entry() to pin the swap entry and
1142 * then validate the zwap entry against that swap entry's
1143 * tree using pointer value comparison. Only when that
1144 * is successful can the entry be dereferenced.
1145 *
1146 * 2. Usually, objects are taken off the LRU for reclaim. In
1147 * this case this isn't possible, because if reclaim fails
1148 * for whatever reason, we have no means of knowing if the
1149 * entry is alive to put it back on the LRU.
1150 *
1151 * So rotate it before dropping the lock. If the entry is
1152 * written back or invalidated, the free path will unlink
1153 * it. For failures, rotation is the right thing as well.
1154 *
1155 * Temporary failures, where the same entry should be tried
1156 * again immediately, almost never happen for this shrinker.
1157 * We don't do any trylocking; -ENOMEM comes closest,
1158 * but that's extremely rare and doesn't happen spuriously
1159 * either. Don't bother distinguishing this case.
1160 */
1161 list_move_tail(item, &l->list);
1162
1163 /*
1164 * Once the lru lock is dropped, the entry might get freed. The
1165 * swpentry is copied to the stack, and entry isn't deref'd again
1166 * until the entry is verified to still be alive in the tree.
1167 */
1168 swpentry = entry->swpentry;
1169
1170 /*
1171 * It's safe to drop the lock here because we return either
1172 * LRU_REMOVED_RETRY or LRU_RETRY.
1173 */
1174 spin_unlock(&l->lock);
1175
1176 writeback_result = zswap_writeback_entry(entry, swpentry);
1177
1178 if (writeback_result) {
1179 zswap_reject_reclaim_fail++;
1180 ret = LRU_RETRY;
1181
1182 /*
1183 * Encountering a page already in swap cache is a sign that we are shrinking
1184 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1185 * shrinker context).
1186 */
1187 if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1188 ret = LRU_STOP;
1189 *encountered_page_in_swapcache = true;
1190 }
1191 } else {
1192 zswap_written_back_pages++;
1193 }
1194
1195 return ret;
1196 }
1197
zswap_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1198 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1199 struct shrink_control *sc)
1200 {
1201 unsigned long shrink_ret;
1202 bool encountered_page_in_swapcache = false;
1203
1204 if (!zswap_shrinker_enabled ||
1205 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1206 sc->nr_scanned = 0;
1207 return SHRINK_STOP;
1208 }
1209
1210 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1211 &encountered_page_in_swapcache);
1212
1213 if (encountered_page_in_swapcache)
1214 return SHRINK_STOP;
1215
1216 return shrink_ret ? shrink_ret : SHRINK_STOP;
1217 }
1218
zswap_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1219 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1220 struct shrink_control *sc)
1221 {
1222 struct mem_cgroup *memcg = sc->memcg;
1223 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1224 atomic_long_t *nr_disk_swapins =
1225 &lruvec->zswap_lruvec_state.nr_disk_swapins;
1226 unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1227 nr_remain;
1228
1229 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1230 return 0;
1231
1232 /*
1233 * The shrinker resumes swap writeback, which will enter block
1234 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1235 * rules (may_enter_fs()), which apply on a per-folio basis.
1236 */
1237 if (!gfp_has_io_fs(sc->gfp_mask))
1238 return 0;
1239
1240 /*
1241 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1242 * have them per-node and thus per-lruvec. Careful if memcg is
1243 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1244 * for the lruvec, but not for memcg_page_state().
1245 *
1246 * Without memcg, use the zswap pool-wide metrics.
1247 */
1248 if (!mem_cgroup_disabled()) {
1249 mem_cgroup_flush_stats(memcg);
1250 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1251 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1252 } else {
1253 nr_backing = zswap_total_pages();
1254 nr_stored = atomic_long_read(&zswap_stored_pages);
1255 }
1256
1257 if (!nr_stored)
1258 return 0;
1259
1260 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1261 if (!nr_freeable)
1262 return 0;
1263
1264 /*
1265 * Subtract from the lru size the number of pages that are recently swapped
1266 * in from disk. The idea is that had we protect the zswap's LRU by this
1267 * amount of pages, these disk swapins would not have happened.
1268 */
1269 nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1270 do {
1271 if (nr_freeable >= nr_disk_swapins_cur)
1272 nr_remain = 0;
1273 else
1274 nr_remain = nr_disk_swapins_cur - nr_freeable;
1275 } while (!atomic_long_try_cmpxchg(
1276 nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1277
1278 nr_freeable -= nr_disk_swapins_cur - nr_remain;
1279 if (!nr_freeable)
1280 return 0;
1281
1282 /*
1283 * Scale the number of freeable pages by the memory saving factor.
1284 * This ensures that the better zswap compresses memory, the fewer
1285 * pages we will evict to swap (as it will otherwise incur IO for
1286 * relatively small memory saving).
1287 */
1288 return mult_frac(nr_freeable, nr_backing, nr_stored);
1289 }
1290
zswap_alloc_shrinker(void)1291 static struct shrinker *zswap_alloc_shrinker(void)
1292 {
1293 struct shrinker *shrinker;
1294
1295 shrinker =
1296 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1297 if (!shrinker)
1298 return NULL;
1299
1300 shrinker->scan_objects = zswap_shrinker_scan;
1301 shrinker->count_objects = zswap_shrinker_count;
1302 shrinker->batch = 0;
1303 shrinker->seeks = DEFAULT_SEEKS;
1304 return shrinker;
1305 }
1306
shrink_memcg(struct mem_cgroup * memcg)1307 static int shrink_memcg(struct mem_cgroup *memcg)
1308 {
1309 int nid, shrunk = 0, scanned = 0;
1310
1311 if (!mem_cgroup_zswap_writeback_enabled(memcg))
1312 return -ENOENT;
1313
1314 /*
1315 * Skip zombies because their LRUs are reparented and we would be
1316 * reclaiming from the parent instead of the dead memcg.
1317 */
1318 if (memcg && !mem_cgroup_online(memcg))
1319 return -ENOENT;
1320
1321 for_each_node_state(nid, N_NORMAL_MEMORY) {
1322 unsigned long nr_to_walk = 1;
1323
1324 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1325 &shrink_memcg_cb, NULL, &nr_to_walk);
1326 scanned += 1 - nr_to_walk;
1327 }
1328
1329 if (!scanned)
1330 return -ENOENT;
1331
1332 return shrunk ? 0 : -EAGAIN;
1333 }
1334
shrink_worker(struct work_struct * w)1335 static void shrink_worker(struct work_struct *w)
1336 {
1337 struct mem_cgroup *memcg;
1338 int ret, failures = 0, attempts = 0;
1339 unsigned long thr;
1340
1341 /* Reclaim down to the accept threshold */
1342 thr = zswap_accept_thr_pages();
1343
1344 /*
1345 * Global reclaim will select cgroup in a round-robin fashion from all
1346 * online memcgs, but memcgs that have no pages in zswap and
1347 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1348 * candidates for shrinking.
1349 *
1350 * Shrinking will be aborted if we encounter the following
1351 * MAX_RECLAIM_RETRIES times:
1352 * - No writeback-candidate memcgs found in a memcg tree walk.
1353 * - Shrinking a writeback-candidate memcg failed.
1354 *
1355 * We save iteration cursor memcg into zswap_next_shrink,
1356 * which can be modified by the offline memcg cleaner
1357 * zswap_memcg_offline_cleanup().
1358 *
1359 * Since the offline cleaner is called only once, we cannot leave an
1360 * offline memcg reference in zswap_next_shrink.
1361 * We can rely on the cleaner only if we get online memcg under lock.
1362 *
1363 * If we get an offline memcg, we cannot determine if the cleaner has
1364 * already been called or will be called later. We must put back the
1365 * reference before returning from this function. Otherwise, the
1366 * offline memcg left in zswap_next_shrink will hold the reference
1367 * until the next run of shrink_worker().
1368 */
1369 do {
1370 /*
1371 * Start shrinking from the next memcg after zswap_next_shrink.
1372 * When the offline cleaner has already advanced the cursor,
1373 * advancing the cursor here overlooks one memcg, but this
1374 * should be negligibly rare.
1375 *
1376 * If we get an online memcg, keep the extra reference in case
1377 * the original one obtained by mem_cgroup_iter() is dropped by
1378 * zswap_memcg_offline_cleanup() while we are shrinking the
1379 * memcg.
1380 */
1381 spin_lock(&zswap_shrink_lock);
1382 do {
1383 memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1384 zswap_next_shrink = memcg;
1385 } while (memcg && !mem_cgroup_tryget_online(memcg));
1386 spin_unlock(&zswap_shrink_lock);
1387
1388 if (!memcg) {
1389 /*
1390 * Continue shrinking without incrementing failures if
1391 * we found candidate memcgs in the last tree walk.
1392 */
1393 if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1394 break;
1395
1396 attempts = 0;
1397 goto resched;
1398 }
1399
1400 ret = shrink_memcg(memcg);
1401 /* drop the extra reference */
1402 mem_cgroup_put(memcg);
1403
1404 /*
1405 * There are no writeback-candidate pages in the memcg.
1406 * This is not an issue as long as we can find another memcg
1407 * with pages in zswap. Skip this without incrementing attempts
1408 * and failures.
1409 */
1410 if (ret == -ENOENT)
1411 continue;
1412 ++attempts;
1413
1414 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1415 break;
1416 resched:
1417 cond_resched();
1418 } while (zswap_total_pages() > thr);
1419 }
1420
1421 /*********************************
1422 * main API
1423 **********************************/
1424
zswap_store_page(struct page * page,struct obj_cgroup * objcg,struct zswap_pool * pool)1425 static ssize_t zswap_store_page(struct page *page,
1426 struct obj_cgroup *objcg,
1427 struct zswap_pool *pool)
1428 {
1429 swp_entry_t page_swpentry = page_swap_entry(page);
1430 struct zswap_entry *entry, *old;
1431
1432 /* allocate entry */
1433 entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1434 if (!entry) {
1435 zswap_reject_kmemcache_fail++;
1436 return -EINVAL;
1437 }
1438
1439 if (!zswap_compress(page, entry, pool))
1440 goto compress_failed;
1441
1442 old = xa_store(swap_zswap_tree(page_swpentry),
1443 swp_offset(page_swpentry),
1444 entry, GFP_KERNEL);
1445 if (xa_is_err(old)) {
1446 int err = xa_err(old);
1447
1448 WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1449 zswap_reject_alloc_fail++;
1450 goto store_failed;
1451 }
1452
1453 /*
1454 * We may have had an existing entry that became stale when
1455 * the folio was redirtied and now the new version is being
1456 * swapped out. Get rid of the old.
1457 */
1458 if (old)
1459 zswap_entry_free(old);
1460
1461 /*
1462 * The entry is successfully compressed and stored in the tree, there is
1463 * no further possibility of failure. Grab refs to the pool and objcg.
1464 * These refs will be dropped by zswap_entry_free() when the entry is
1465 * removed from the tree.
1466 */
1467 zswap_pool_get(pool);
1468 if (objcg)
1469 obj_cgroup_get(objcg);
1470
1471 /*
1472 * We finish initializing the entry while it's already in xarray.
1473 * This is safe because:
1474 *
1475 * 1. Concurrent stores and invalidations are excluded by folio lock.
1476 *
1477 * 2. Writeback is excluded by the entry not being on the LRU yet.
1478 * The publishing order matters to prevent writeback from seeing
1479 * an incoherent entry.
1480 */
1481 entry->pool = pool;
1482 entry->swpentry = page_swpentry;
1483 entry->objcg = objcg;
1484 entry->referenced = true;
1485 if (entry->length) {
1486 INIT_LIST_HEAD(&entry->lru);
1487 zswap_lru_add(&zswap_list_lru, entry);
1488 }
1489
1490 return entry->length;
1491
1492 store_failed:
1493 zpool_free(pool->zpool, entry->handle);
1494 compress_failed:
1495 zswap_entry_cache_free(entry);
1496 return -EINVAL;
1497 }
1498
zswap_store(struct folio * folio)1499 bool zswap_store(struct folio *folio)
1500 {
1501 long nr_pages = folio_nr_pages(folio);
1502 swp_entry_t swp = folio->swap;
1503 struct obj_cgroup *objcg = NULL;
1504 struct mem_cgroup *memcg = NULL;
1505 struct zswap_pool *pool;
1506 size_t compressed_bytes = 0;
1507 bool ret = false;
1508 long index;
1509
1510 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1511 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1512
1513 if (!zswap_enabled)
1514 goto check_old;
1515
1516 objcg = get_obj_cgroup_from_folio(folio);
1517 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1518 memcg = get_mem_cgroup_from_objcg(objcg);
1519 if (shrink_memcg(memcg)) {
1520 mem_cgroup_put(memcg);
1521 goto put_objcg;
1522 }
1523 mem_cgroup_put(memcg);
1524 }
1525
1526 if (zswap_check_limits())
1527 goto put_objcg;
1528
1529 pool = zswap_pool_current_get();
1530 if (!pool)
1531 goto put_objcg;
1532
1533 if (objcg) {
1534 memcg = get_mem_cgroup_from_objcg(objcg);
1535 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1536 mem_cgroup_put(memcg);
1537 goto put_pool;
1538 }
1539 mem_cgroup_put(memcg);
1540 }
1541
1542 for (index = 0; index < nr_pages; ++index) {
1543 struct page *page = folio_page(folio, index);
1544 ssize_t bytes;
1545
1546 bytes = zswap_store_page(page, objcg, pool);
1547 if (bytes < 0)
1548 goto put_pool;
1549 compressed_bytes += bytes;
1550 }
1551
1552 if (objcg) {
1553 obj_cgroup_charge_zswap(objcg, compressed_bytes);
1554 count_objcg_events(objcg, ZSWPOUT, nr_pages);
1555 }
1556
1557 atomic_long_add(nr_pages, &zswap_stored_pages);
1558 count_vm_events(ZSWPOUT, nr_pages);
1559
1560 ret = true;
1561
1562 put_pool:
1563 zswap_pool_put(pool);
1564 put_objcg:
1565 obj_cgroup_put(objcg);
1566 if (!ret && zswap_pool_reached_full)
1567 queue_work(shrink_wq, &zswap_shrink_work);
1568 check_old:
1569 /*
1570 * If the zswap store fails or zswap is disabled, we must invalidate
1571 * the possibly stale entries which were previously stored at the
1572 * offsets corresponding to each page of the folio. Otherwise,
1573 * writeback could overwrite the new data in the swapfile.
1574 */
1575 if (!ret) {
1576 unsigned type = swp_type(swp);
1577 pgoff_t offset = swp_offset(swp);
1578 struct zswap_entry *entry;
1579 struct xarray *tree;
1580
1581 for (index = 0; index < nr_pages; ++index) {
1582 tree = swap_zswap_tree(swp_entry(type, offset + index));
1583 entry = xa_erase(tree, offset + index);
1584 if (entry)
1585 zswap_entry_free(entry);
1586 }
1587 }
1588
1589 return ret;
1590 }
1591
zswap_load(struct folio * folio)1592 bool zswap_load(struct folio *folio)
1593 {
1594 swp_entry_t swp = folio->swap;
1595 pgoff_t offset = swp_offset(swp);
1596 bool swapcache = folio_test_swapcache(folio);
1597 struct xarray *tree = swap_zswap_tree(swp);
1598 struct zswap_entry *entry;
1599
1600 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1601
1602 if (zswap_never_enabled())
1603 return false;
1604
1605 /*
1606 * Large folios should not be swapped in while zswap is being used, as
1607 * they are not properly handled. Zswap does not properly load large
1608 * folios, and a large folio may only be partially in zswap.
1609 *
1610 * Return true without marking the folio uptodate so that an IO error is
1611 * emitted (e.g. do_swap_page() will sigbus).
1612 */
1613 if (WARN_ON_ONCE(folio_test_large(folio)))
1614 return true;
1615
1616 /*
1617 * When reading into the swapcache, invalidate our entry. The
1618 * swapcache can be the authoritative owner of the page and
1619 * its mappings, and the pressure that results from having two
1620 * in-memory copies outweighs any benefits of caching the
1621 * compression work.
1622 *
1623 * (Most swapins go through the swapcache. The notable
1624 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1625 * files, which reads into a private page and may free it if
1626 * the fault fails. We remain the primary owner of the entry.)
1627 */
1628 if (swapcache)
1629 entry = xa_erase(tree, offset);
1630 else
1631 entry = xa_load(tree, offset);
1632
1633 if (!entry)
1634 return false;
1635
1636 zswap_decompress(entry, folio);
1637
1638 count_vm_event(ZSWPIN);
1639 if (entry->objcg)
1640 count_objcg_events(entry->objcg, ZSWPIN, 1);
1641
1642 if (swapcache) {
1643 zswap_entry_free(entry);
1644 folio_mark_dirty(folio);
1645 }
1646
1647 folio_mark_uptodate(folio);
1648 return true;
1649 }
1650
zswap_invalidate(swp_entry_t swp)1651 void zswap_invalidate(swp_entry_t swp)
1652 {
1653 pgoff_t offset = swp_offset(swp);
1654 struct xarray *tree = swap_zswap_tree(swp);
1655 struct zswap_entry *entry;
1656
1657 if (xa_empty(tree))
1658 return;
1659
1660 entry = xa_erase(tree, offset);
1661 if (entry)
1662 zswap_entry_free(entry);
1663 }
1664
zswap_swapon(int type,unsigned long nr_pages)1665 int zswap_swapon(int type, unsigned long nr_pages)
1666 {
1667 struct xarray *trees, *tree;
1668 unsigned int nr, i;
1669
1670 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1671 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1672 if (!trees) {
1673 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1674 return -ENOMEM;
1675 }
1676
1677 for (i = 0; i < nr; i++)
1678 xa_init(trees + i);
1679
1680 nr_zswap_trees[type] = nr;
1681 zswap_trees[type] = trees;
1682 return 0;
1683 }
1684
zswap_swapoff(int type)1685 void zswap_swapoff(int type)
1686 {
1687 struct xarray *trees = zswap_trees[type];
1688 unsigned int i;
1689
1690 if (!trees)
1691 return;
1692
1693 /* try_to_unuse() invalidated all the entries already */
1694 for (i = 0; i < nr_zswap_trees[type]; i++)
1695 WARN_ON_ONCE(!xa_empty(trees + i));
1696
1697 kvfree(trees);
1698 nr_zswap_trees[type] = 0;
1699 zswap_trees[type] = NULL;
1700 }
1701
1702 /*********************************
1703 * debugfs functions
1704 **********************************/
1705 #ifdef CONFIG_DEBUG_FS
1706 #include <linux/debugfs.h>
1707
1708 static struct dentry *zswap_debugfs_root;
1709
debugfs_get_total_size(void * data,u64 * val)1710 static int debugfs_get_total_size(void *data, u64 *val)
1711 {
1712 *val = zswap_total_pages() * PAGE_SIZE;
1713 return 0;
1714 }
1715 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1716
debugfs_get_stored_pages(void * data,u64 * val)1717 static int debugfs_get_stored_pages(void *data, u64 *val)
1718 {
1719 *val = atomic_long_read(&zswap_stored_pages);
1720 return 0;
1721 }
1722 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n");
1723
zswap_debugfs_init(void)1724 static int zswap_debugfs_init(void)
1725 {
1726 if (!debugfs_initialized())
1727 return -ENODEV;
1728
1729 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1730
1731 debugfs_create_u64("pool_limit_hit", 0444,
1732 zswap_debugfs_root, &zswap_pool_limit_hit);
1733 debugfs_create_u64("reject_reclaim_fail", 0444,
1734 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1735 debugfs_create_u64("reject_alloc_fail", 0444,
1736 zswap_debugfs_root, &zswap_reject_alloc_fail);
1737 debugfs_create_u64("reject_kmemcache_fail", 0444,
1738 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1739 debugfs_create_u64("reject_compress_fail", 0444,
1740 zswap_debugfs_root, &zswap_reject_compress_fail);
1741 debugfs_create_u64("reject_compress_poor", 0444,
1742 zswap_debugfs_root, &zswap_reject_compress_poor);
1743 debugfs_create_u64("written_back_pages", 0444,
1744 zswap_debugfs_root, &zswap_written_back_pages);
1745 debugfs_create_file("pool_total_size", 0444,
1746 zswap_debugfs_root, NULL, &total_size_fops);
1747 debugfs_create_file("stored_pages", 0444,
1748 zswap_debugfs_root, NULL, &stored_pages_fops);
1749
1750 return 0;
1751 }
1752 #else
zswap_debugfs_init(void)1753 static int zswap_debugfs_init(void)
1754 {
1755 return 0;
1756 }
1757 #endif
1758
1759 /*********************************
1760 * module init and exit
1761 **********************************/
zswap_setup(void)1762 static int zswap_setup(void)
1763 {
1764 struct zswap_pool *pool;
1765 int ret;
1766
1767 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1768 if (!zswap_entry_cache) {
1769 pr_err("entry cache creation failed\n");
1770 goto cache_fail;
1771 }
1772
1773 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1774 "mm/zswap_pool:prepare",
1775 zswap_cpu_comp_prepare,
1776 zswap_cpu_comp_dead);
1777 if (ret)
1778 goto hp_fail;
1779
1780 shrink_wq = alloc_workqueue("zswap-shrink",
1781 WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1782 if (!shrink_wq)
1783 goto shrink_wq_fail;
1784
1785 zswap_shrinker = zswap_alloc_shrinker();
1786 if (!zswap_shrinker)
1787 goto shrinker_fail;
1788 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1789 goto lru_fail;
1790 shrinker_register(zswap_shrinker);
1791
1792 INIT_WORK(&zswap_shrink_work, shrink_worker);
1793
1794 pool = __zswap_pool_create_fallback();
1795 if (pool) {
1796 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1797 zpool_get_type(pool->zpool));
1798 list_add(&pool->list, &zswap_pools);
1799 zswap_has_pool = true;
1800 static_branch_enable(&zswap_ever_enabled);
1801 } else {
1802 pr_err("pool creation failed\n");
1803 zswap_enabled = false;
1804 }
1805
1806 if (zswap_debugfs_init())
1807 pr_warn("debugfs initialization failed\n");
1808 zswap_init_state = ZSWAP_INIT_SUCCEED;
1809 return 0;
1810
1811 lru_fail:
1812 shrinker_free(zswap_shrinker);
1813 shrinker_fail:
1814 destroy_workqueue(shrink_wq);
1815 shrink_wq_fail:
1816 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1817 hp_fail:
1818 kmem_cache_destroy(zswap_entry_cache);
1819 cache_fail:
1820 /* if built-in, we aren't unloaded on failure; don't allow use */
1821 zswap_init_state = ZSWAP_INIT_FAILED;
1822 zswap_enabled = false;
1823 return -ENOMEM;
1824 }
1825
zswap_init(void)1826 static int __init zswap_init(void)
1827 {
1828 if (!zswap_enabled)
1829 return 0;
1830 return zswap_setup();
1831 }
1832 /* must be late so crypto has time to come up */
1833 late_initcall(zswap_init);
1834
1835 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1836 MODULE_DESCRIPTION("Compressed cache for swap pages");
1837