1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "xe_guc.h" 7 8 #include <linux/iopoll.h> 9 #include <drm/drm_managed.h> 10 11 #include <generated/xe_wa_oob.h> 12 13 #include "abi/guc_actions_abi.h" 14 #include "abi/guc_errors_abi.h" 15 #include "regs/xe_gt_regs.h" 16 #include "regs/xe_gtt_defs.h" 17 #include "regs/xe_guc_regs.h" 18 #include "regs/xe_irq_regs.h" 19 #include "xe_bo.h" 20 #include "xe_configfs.h" 21 #include "xe_device.h" 22 #include "xe_force_wake.h" 23 #include "xe_gt.h" 24 #include "xe_gt_printk.h" 25 #include "xe_gt_sriov_vf.h" 26 #include "xe_gt_throttle.h" 27 #include "xe_gt_sriov_pf_migration.h" 28 #include "xe_guc_ads.h" 29 #include "xe_guc_buf.h" 30 #include "xe_guc_capture.h" 31 #include "xe_guc_ct.h" 32 #include "xe_guc_db_mgr.h" 33 #include "xe_guc_engine_activity.h" 34 #include "xe_guc_hwconfig.h" 35 #include "xe_guc_klv_helpers.h" 36 #include "xe_guc_log.h" 37 #include "xe_guc_pc.h" 38 #include "xe_guc_relay.h" 39 #include "xe_guc_submit.h" 40 #include "xe_memirq.h" 41 #include "xe_mmio.h" 42 #include "xe_platform_types.h" 43 #include "xe_sriov.h" 44 #include "xe_sriov_pf_migration.h" 45 #include "xe_uc.h" 46 #include "xe_uc_fw.h" 47 #include "xe_wa.h" 48 #include "xe_wopcm.h" 49 50 static u32 guc_bo_ggtt_addr(struct xe_guc *guc, 51 struct xe_bo *bo) 52 { 53 struct xe_device *xe = guc_to_xe(guc); 54 u32 addr; 55 56 /* 57 * For most BOs, the address on the allocating tile is fine. However for 58 * some, e.g. G2G CTB, the address on a specific tile is required as it 59 * might be different for each tile. So, just always ask for the address 60 * on the target GuC. 61 */ 62 addr = __xe_bo_ggtt_addr(bo, gt_to_tile(guc_to_gt(guc))->id); 63 64 /* GuC addresses above GUC_GGTT_TOP don't map through the GTT */ 65 xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc))); 66 xe_assert(xe, addr < GUC_GGTT_TOP); 67 xe_assert(xe, xe_bo_size(bo) <= GUC_GGTT_TOP - addr); 68 69 return addr; 70 } 71 72 static u32 guc_ctl_debug_flags(struct xe_guc *guc) 73 { 74 u32 level = xe_guc_log_get_level(&guc->log); 75 u32 flags = 0; 76 77 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 78 flags |= GUC_LOG_DISABLED; 79 else 80 flags |= FIELD_PREP(GUC_LOG_VERBOSITY, GUC_LOG_LEVEL_TO_VERBOSITY(level)); 81 82 return flags; 83 } 84 85 static u32 guc_ctl_feature_flags(struct xe_guc *guc) 86 { 87 struct xe_device *xe = guc_to_xe(guc); 88 u32 flags = GUC_CTL_ENABLE_LITE_RESTORE; 89 90 if (!xe->info.skip_guc_pc) 91 flags |= GUC_CTL_ENABLE_SLPC; 92 93 if (xe_configfs_get_psmi_enabled(to_pci_dev(xe->drm.dev))) 94 flags |= GUC_CTL_ENABLE_PSMI_LOGGING; 95 96 if (xe_guc_using_main_gamctrl_queues(guc)) 97 flags |= GUC_CTL_MAIN_GAMCTRL_QUEUES; 98 99 return flags; 100 } 101 102 static u32 guc_ctl_log_params_flags(struct xe_guc *guc) 103 { 104 u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT; 105 u32 flags; 106 107 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) 108 #define LOG_UNIT SZ_1M 109 #define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS 110 #else 111 #define LOG_UNIT SZ_4K 112 #define LOG_FLAG 0 113 #endif 114 115 #if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0) 116 #define CAPTURE_UNIT SZ_1M 117 #define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS 118 #else 119 #define CAPTURE_UNIT SZ_4K 120 #define CAPTURE_FLAG 0 121 #endif 122 123 BUILD_BUG_ON(!CRASH_BUFFER_SIZE); 124 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT)); 125 BUILD_BUG_ON(!DEBUG_BUFFER_SIZE); 126 BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT)); 127 BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE); 128 BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT)); 129 130 flags = GUC_LOG_VALID | 131 GUC_LOG_NOTIFY_ON_HALF_FULL | 132 CAPTURE_FLAG | 133 LOG_FLAG | 134 FIELD_PREP(GUC_LOG_CRASH, CRASH_BUFFER_SIZE / LOG_UNIT - 1) | 135 FIELD_PREP(GUC_LOG_DEBUG, DEBUG_BUFFER_SIZE / LOG_UNIT - 1) | 136 FIELD_PREP(GUC_LOG_CAPTURE, CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) | 137 FIELD_PREP(GUC_LOG_BUF_ADDR, offset); 138 139 #undef LOG_UNIT 140 #undef LOG_FLAG 141 #undef CAPTURE_UNIT 142 #undef CAPTURE_FLAG 143 144 return flags; 145 } 146 147 static u32 guc_ctl_ads_flags(struct xe_guc *guc) 148 { 149 u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT; 150 u32 flags = FIELD_PREP(GUC_ADS_ADDR, ads); 151 152 return flags; 153 } 154 155 static bool needs_wa_dual_queue(struct xe_gt *gt) 156 { 157 /* 158 * The DUAL_QUEUE_WA tells the GuC to not allow concurrent submissions 159 * on RCS and CCSes with different address spaces, which on DG2 is 160 * required as a WA for an HW bug. 161 */ 162 if (XE_GT_WA(gt, 22011391025)) 163 return true; 164 165 /* 166 * On newer platforms, the HW has been updated to not allow parallel 167 * execution of different address spaces, so the RCS/CCS will stall the 168 * context switch if one of the other RCS/CCSes is busy with a different 169 * address space. While functionally correct, having a submission 170 * stalled on the HW limits the GuC ability to shuffle things around and 171 * can cause complications if the non-stalled submission runs for a long 172 * time, because the GuC doesn't know that the stalled submission isn't 173 * actually running and might declare it as hung. Therefore, we enable 174 * the DUAL_QUEUE_WA on all newer platforms on GTs that have CCS engines 175 * to move management back to the GuC. 176 */ 177 if (CCS_MASK(gt) && GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) 178 return true; 179 180 return false; 181 } 182 183 static u32 guc_ctl_wa_flags(struct xe_guc *guc) 184 { 185 struct xe_device *xe = guc_to_xe(guc); 186 struct xe_gt *gt = guc_to_gt(guc); 187 u32 flags = 0; 188 189 if (XE_GT_WA(gt, 22012773006)) 190 flags |= GUC_WA_POLLCS; 191 192 if (XE_GT_WA(gt, 14014475959)) 193 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 194 195 if (needs_wa_dual_queue(gt)) 196 flags |= GUC_WA_DUAL_QUEUE; 197 198 /* 199 * Wa_22011802037: FIXME - there's more to be done than simply setting 200 * this flag: make sure each CS is stopped when preparing for GT reset 201 * and wait for pending MI_FW. 202 */ 203 if (GRAPHICS_VERx100(xe) < 1270) 204 flags |= GUC_WA_PRE_PARSER; 205 206 if (XE_GT_WA(gt, 22012727170) || XE_GT_WA(gt, 22012727685)) 207 flags |= GUC_WA_CONTEXT_ISOLATION; 208 209 if (XE_GT_WA(gt, 18020744125) && 210 !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER)) 211 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; 212 213 if (XE_GT_WA(gt, 1509372804)) 214 flags |= GUC_WA_RENDER_RST_RC6_EXIT; 215 216 if (XE_GT_WA(gt, 14018913170)) 217 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6; 218 219 if (XE_GT_WA(gt, 16023683509)) 220 flags |= GUC_WA_SAVE_RESTORE_MCFG_REG_AT_MC6; 221 222 return flags; 223 } 224 225 static u32 guc_ctl_devid(struct xe_guc *guc) 226 { 227 struct xe_device *xe = guc_to_xe(guc); 228 229 return (((u32)xe->info.devid) << 16) | xe->info.revid; 230 } 231 232 static void guc_print_params(struct xe_guc *guc) 233 { 234 struct xe_gt *gt = guc_to_gt(guc); 235 u32 *params = guc->params; 236 int i; 237 238 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 239 BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT); 240 241 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 242 xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]); 243 } 244 245 static void guc_init_params(struct xe_guc *guc) 246 { 247 u32 *params = guc->params; 248 249 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 250 params[GUC_CTL_FEATURE] = 0; 251 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 252 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 253 params[GUC_CTL_WA] = 0; 254 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 255 256 guc_print_params(guc); 257 } 258 259 static void guc_init_params_post_hwconfig(struct xe_guc *guc) 260 { 261 u32 *params = guc->params; 262 263 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 264 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 265 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 266 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 267 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 268 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 269 270 guc_print_params(guc); 271 } 272 273 /* 274 * Initialize the GuC parameter block before starting the firmware 275 * transfer. These parameters are read by the firmware on startup 276 * and cannot be changed thereafter. 277 */ 278 static void guc_write_params(struct xe_guc *guc) 279 { 280 struct xe_gt *gt = guc_to_gt(guc); 281 int i; 282 283 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); 284 285 xe_mmio_write32(>->mmio, SOFT_SCRATCH(0), 0); 286 287 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 288 xe_mmio_write32(>->mmio, SOFT_SCRATCH(1 + i), guc->params[i]); 289 } 290 291 static int guc_action_register_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev, 292 u32 desc_addr, u32 buff_addr, u32 size) 293 { 294 struct xe_gt *gt = guc_to_gt(guc); 295 struct xe_device *xe = gt_to_xe(gt); 296 u32 action[] = { 297 XE_GUC_ACTION_REGISTER_G2G, 298 FIELD_PREP(XE_G2G_REGISTER_SIZE, size / SZ_4K - 1) | 299 FIELD_PREP(XE_G2G_REGISTER_TYPE, type) | 300 FIELD_PREP(XE_G2G_REGISTER_TILE, dst_tile) | 301 FIELD_PREP(XE_G2G_REGISTER_DEVICE, dst_dev), 302 desc_addr, 303 buff_addr, 304 }; 305 306 xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT)); 307 xe_assert(xe, !(size % SZ_4K)); 308 309 return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action)); 310 } 311 312 static int guc_action_deregister_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev) 313 { 314 struct xe_gt *gt = guc_to_gt(guc); 315 struct xe_device *xe = gt_to_xe(gt); 316 u32 action[] = { 317 XE_GUC_ACTION_DEREGISTER_G2G, 318 FIELD_PREP(XE_G2G_DEREGISTER_TYPE, type) | 319 FIELD_PREP(XE_G2G_DEREGISTER_TILE, dst_tile) | 320 FIELD_PREP(XE_G2G_DEREGISTER_DEVICE, dst_dev), 321 }; 322 323 xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT)); 324 325 return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action)); 326 } 327 328 #define G2G_DEV(gt) (((gt)->info.type == XE_GT_TYPE_MAIN) ? 0 : 1) 329 330 #define G2G_BUFFER_SIZE (SZ_4K) 331 #define G2G_DESC_SIZE (64) 332 #define G2G_DESC_AREA_SIZE (SZ_4K) 333 334 /* 335 * Generate a unique id for each bi-directional CTB for each pair of 336 * near and far tiles/devices. The id can then be used as an index into 337 * a single allocation that is sub-divided into multiple CTBs. 338 * 339 * For example, with two devices per tile and two tiles, the table should 340 * look like: 341 * Far <tile>.<dev> 342 * 0.0 0.1 1.0 1.1 343 * N 0.0 --/-- 00/01 02/03 04/05 344 * e 0.1 01/00 --/-- 06/07 08/09 345 * a 1.0 03/02 07/06 --/-- 10/11 346 * r 1.1 05/04 09/08 11/10 --/-- 347 * 348 * Where each entry is Rx/Tx channel id. 349 * 350 * So GuC #3 (tile 1, dev 1) talking to GuC #2 (tile 1, dev 0) would 351 * be reading from channel #11 and writing to channel #10. Whereas, 352 * GuC #2 talking to GuC #3 would be read on #10 and write to #11. 353 */ 354 static unsigned int g2g_slot(u32 near_tile, u32 near_dev, u32 far_tile, u32 far_dev, 355 u32 type, u32 max_inst, bool have_dev) 356 { 357 u32 near = near_tile, far = far_tile; 358 u32 idx = 0, x, y, direction; 359 int i; 360 361 if (have_dev) { 362 near = (near << 1) | near_dev; 363 far = (far << 1) | far_dev; 364 } 365 366 /* No need to send to one's self */ 367 if (far == near) 368 return -1; 369 370 if (far > near) { 371 /* Top right table half */ 372 x = far; 373 y = near; 374 375 /* T/R is 'forwards' direction */ 376 direction = type; 377 } else { 378 /* Bottom left table half */ 379 x = near; 380 y = far; 381 382 /* B/L is 'backwards' direction */ 383 direction = (1 - type); 384 } 385 386 /* Count the rows prior to the target */ 387 for (i = y; i > 0; i--) 388 idx += max_inst - i; 389 390 /* Count this row up to the target */ 391 idx += (x - 1 - y); 392 393 /* Slots are in Rx/Tx pairs */ 394 idx *= 2; 395 396 /* Pick Rx/Tx direction */ 397 idx += direction; 398 399 return idx; 400 } 401 402 static int guc_g2g_register(struct xe_guc *near_guc, struct xe_gt *far_gt, u32 type, bool have_dev) 403 { 404 struct xe_gt *near_gt = guc_to_gt(near_guc); 405 struct xe_device *xe = gt_to_xe(near_gt); 406 struct xe_bo *g2g_bo; 407 u32 near_tile = gt_to_tile(near_gt)->id; 408 u32 near_dev = G2G_DEV(near_gt); 409 u32 far_tile = gt_to_tile(far_gt)->id; 410 u32 far_dev = G2G_DEV(far_gt); 411 u32 max = xe->info.gt_count; 412 u32 base, desc, buf; 413 int slot; 414 415 /* G2G is not allowed between different cards */ 416 xe_assert(xe, xe == gt_to_xe(far_gt)); 417 418 g2g_bo = near_guc->g2g.bo; 419 xe_assert(xe, g2g_bo); 420 421 slot = g2g_slot(near_tile, near_dev, far_tile, far_dev, type, max, have_dev); 422 xe_assert(xe, slot >= 0); 423 424 base = guc_bo_ggtt_addr(near_guc, g2g_bo); 425 desc = base + slot * G2G_DESC_SIZE; 426 buf = base + G2G_DESC_AREA_SIZE + slot * G2G_BUFFER_SIZE; 427 428 xe_assert(xe, (desc - base + G2G_DESC_SIZE) <= G2G_DESC_AREA_SIZE); 429 xe_assert(xe, (buf - base + G2G_BUFFER_SIZE) <= xe_bo_size(g2g_bo)); 430 431 return guc_action_register_g2g_buffer(near_guc, type, far_tile, far_dev, 432 desc, buf, G2G_BUFFER_SIZE); 433 } 434 435 static void guc_g2g_deregister(struct xe_guc *guc, u32 far_tile, u32 far_dev, u32 type) 436 { 437 guc_action_deregister_g2g_buffer(guc, type, far_tile, far_dev); 438 } 439 440 static u32 guc_g2g_size(struct xe_guc *guc) 441 { 442 struct xe_gt *gt = guc_to_gt(guc); 443 struct xe_device *xe = gt_to_xe(gt); 444 unsigned int count = xe->info.gt_count; 445 u32 num_channels = (count * (count - 1)) / 2; 446 447 xe_assert(xe, num_channels * XE_G2G_TYPE_LIMIT * G2G_DESC_SIZE <= G2G_DESC_AREA_SIZE); 448 449 return num_channels * XE_G2G_TYPE_LIMIT * G2G_BUFFER_SIZE + G2G_DESC_AREA_SIZE; 450 } 451 452 static bool xe_guc_g2g_wanted(struct xe_device *xe) 453 { 454 /* Can't do GuC to GuC communication if there is only one GuC */ 455 if (xe->info.gt_count <= 1) 456 return false; 457 458 /* No current user */ 459 return false; 460 } 461 462 static int guc_g2g_alloc(struct xe_guc *guc) 463 { 464 struct xe_gt *gt = guc_to_gt(guc); 465 struct xe_device *xe = gt_to_xe(gt); 466 struct xe_tile *tile = gt_to_tile(gt); 467 struct xe_bo *bo; 468 u32 g2g_size; 469 470 if (guc->g2g.bo) 471 return 0; 472 473 if (gt->info.id != 0) { 474 struct xe_gt *root_gt = xe_device_get_gt(xe, 0); 475 struct xe_guc *root_guc = &root_gt->uc.guc; 476 struct xe_bo *bo; 477 478 bo = xe_bo_get(root_guc->g2g.bo); 479 if (!bo) 480 return -ENODEV; 481 482 guc->g2g.bo = bo; 483 guc->g2g.owned = false; 484 return 0; 485 } 486 487 g2g_size = guc_g2g_size(guc); 488 bo = xe_managed_bo_create_pin_map(xe, tile, g2g_size, 489 XE_BO_FLAG_VRAM_IF_DGFX(tile) | 490 XE_BO_FLAG_GGTT | 491 XE_BO_FLAG_GGTT_ALL | 492 XE_BO_FLAG_GGTT_INVALIDATE | 493 XE_BO_FLAG_PINNED_NORESTORE); 494 if (IS_ERR(bo)) 495 return PTR_ERR(bo); 496 497 xe_map_memset(xe, &bo->vmap, 0, 0, g2g_size); 498 guc->g2g.bo = bo; 499 guc->g2g.owned = true; 500 501 return 0; 502 } 503 504 static void guc_g2g_fini(struct xe_guc *guc) 505 { 506 if (!guc->g2g.bo) 507 return; 508 509 /* Unpinning the owned object is handled by generic shutdown */ 510 if (!guc->g2g.owned) 511 xe_bo_put(guc->g2g.bo); 512 513 guc->g2g.bo = NULL; 514 } 515 516 static int guc_g2g_start(struct xe_guc *guc) 517 { 518 struct xe_gt *far_gt, *gt = guc_to_gt(guc); 519 struct xe_device *xe = gt_to_xe(gt); 520 unsigned int i, j; 521 int t, err; 522 bool have_dev; 523 524 if (!guc->g2g.bo) { 525 int ret; 526 527 ret = guc_g2g_alloc(guc); 528 if (ret) 529 return ret; 530 } 531 532 /* GuC interface will need extending if more GT device types are ever created. */ 533 xe_gt_assert(gt, (gt->info.type == XE_GT_TYPE_MAIN) || (gt->info.type == XE_GT_TYPE_MEDIA)); 534 535 /* Channel numbering depends on whether there are multiple GTs per tile */ 536 have_dev = xe->info.gt_count > xe->info.tile_count; 537 538 for_each_gt(far_gt, xe, i) { 539 u32 far_tile, far_dev; 540 541 if (far_gt->info.id == gt->info.id) 542 continue; 543 544 far_tile = gt_to_tile(far_gt)->id; 545 far_dev = G2G_DEV(far_gt); 546 547 for (t = 0; t < XE_G2G_TYPE_LIMIT; t++) { 548 err = guc_g2g_register(guc, far_gt, t, have_dev); 549 if (err) { 550 while (--t >= 0) 551 guc_g2g_deregister(guc, far_tile, far_dev, t); 552 goto err_deregister; 553 } 554 } 555 } 556 557 return 0; 558 559 err_deregister: 560 for_each_gt(far_gt, xe, j) { 561 u32 tile, dev; 562 563 if (far_gt->info.id == gt->info.id) 564 continue; 565 566 if (j >= i) 567 break; 568 569 tile = gt_to_tile(far_gt)->id; 570 dev = G2G_DEV(far_gt); 571 572 for (t = 0; t < XE_G2G_TYPE_LIMIT; t++) 573 guc_g2g_deregister(guc, tile, dev, t); 574 } 575 576 return err; 577 } 578 579 static int __guc_opt_in_features_enable(struct xe_guc *guc, u64 addr, u32 num_dwords) 580 { 581 u32 action[] = { 582 XE_GUC_ACTION_OPT_IN_FEATURE_KLV, 583 lower_32_bits(addr), 584 upper_32_bits(addr), 585 num_dwords 586 }; 587 588 return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action)); 589 } 590 591 static bool supports_dynamic_ics(struct xe_guc *guc) 592 { 593 struct xe_device *xe = guc_to_xe(guc); 594 struct xe_gt *gt = guc_to_gt(guc); 595 596 /* Dynamic ICS is available for PVC and Xe2 and newer platforms. */ 597 if (xe->info.platform != XE_PVC && GRAPHICS_VER(xe) < 20) 598 return false; 599 600 /* 601 * The feature is currently not compatible with multi-lrc, so the GuC 602 * does not support it at all on the media engines (which are the main 603 * users of mlrc). On the primary GT side, to avoid it being used in 604 * conjunction with mlrc, we only enable it if we are in single CCS 605 * mode. 606 */ 607 if (xe_gt_is_media_type(gt) || gt->ccs_mode > 1) 608 return false; 609 610 /* 611 * Dynamic ICS requires GuC v70.40.1, which maps to compatibility 612 * version v1.18.4. 613 */ 614 return GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 18, 4); 615 } 616 617 #define OPT_IN_MAX_DWORDS 16 618 int xe_guc_opt_in_features_enable(struct xe_guc *guc) 619 { 620 struct xe_device *xe = guc_to_xe(guc); 621 CLASS(xe_guc_buf, buf)(&guc->buf, OPT_IN_MAX_DWORDS); 622 u32 count = 0; 623 u32 *klvs; 624 int ret; 625 626 if (!xe_guc_buf_is_valid(buf)) 627 return -ENOBUFS; 628 629 klvs = xe_guc_buf_cpu_ptr(buf); 630 631 /* 632 * The extra CAT error type opt-in was added in GuC v70.17.0, which maps 633 * to compatibility version v1.7.0. 634 * Note that the GuC allows enabling this KLV even on platforms that do 635 * not support the extra type; in such case the returned type variable 636 * will be set to a known invalid value which we can check against. 637 */ 638 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 7, 0)) 639 klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_EXT_CAT_ERR_TYPE); 640 641 if (supports_dynamic_ics(guc)) 642 klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_DYNAMIC_INHIBIT_CONTEXT_SWITCH); 643 644 if (count) { 645 xe_assert(xe, count <= OPT_IN_MAX_DWORDS); 646 647 ret = __guc_opt_in_features_enable(guc, xe_guc_buf_flush(buf), count); 648 if (ret < 0) { 649 xe_gt_err(guc_to_gt(guc), 650 "failed to enable GuC opt-in features: %pe\n", 651 ERR_PTR(ret)); 652 return ret; 653 } 654 } 655 656 return 0; 657 } 658 659 static void guc_fini_hw(void *arg) 660 { 661 struct xe_guc *guc = arg; 662 struct xe_gt *gt = guc_to_gt(guc); 663 unsigned int fw_ref; 664 665 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL); 666 xe_uc_sanitize_reset(&guc_to_gt(guc)->uc); 667 xe_force_wake_put(gt_to_fw(gt), fw_ref); 668 669 guc_g2g_fini(guc); 670 } 671 672 /** 673 * xe_guc_comm_init_early - early initialization of GuC communication 674 * @guc: the &xe_guc to initialize 675 * 676 * Must be called prior to first MMIO communication with GuC firmware. 677 */ 678 void xe_guc_comm_init_early(struct xe_guc *guc) 679 { 680 struct xe_gt *gt = guc_to_gt(guc); 681 682 if (xe_gt_is_media_type(gt)) 683 guc->notify_reg = MED_GUC_HOST_INTERRUPT; 684 else 685 guc->notify_reg = GUC_HOST_INTERRUPT; 686 } 687 688 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc) 689 { 690 struct xe_tile *tile = gt_to_tile(guc_to_gt(guc)); 691 struct xe_device *xe = guc_to_xe(guc); 692 int ret; 693 694 if (!IS_DGFX(guc_to_xe(guc))) 695 return 0; 696 697 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo); 698 if (ret) 699 return ret; 700 701 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo); 702 if (ret) 703 return ret; 704 705 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo); 706 if (ret) 707 return ret; 708 709 return 0; 710 } 711 712 static int vf_guc_init_noalloc(struct xe_guc *guc) 713 { 714 struct xe_gt *gt = guc_to_gt(guc); 715 int err; 716 717 err = xe_gt_sriov_vf_bootstrap(gt); 718 if (err) 719 return err; 720 721 err = xe_gt_sriov_vf_query_config(gt); 722 if (err) 723 return err; 724 725 return 0; 726 } 727 728 int xe_guc_init_noalloc(struct xe_guc *guc) 729 { 730 struct xe_device *xe = guc_to_xe(guc); 731 struct xe_gt *gt = guc_to_gt(guc); 732 int ret; 733 734 xe_guc_comm_init_early(guc); 735 736 ret = xe_guc_ct_init_noalloc(&guc->ct); 737 if (ret) 738 goto out; 739 740 ret = xe_guc_relay_init(&guc->relay); 741 if (ret) 742 goto out; 743 744 if (IS_SRIOV_VF(xe)) { 745 ret = vf_guc_init_noalloc(guc); 746 if (ret) 747 goto out; 748 } 749 750 return 0; 751 752 out: 753 xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret)); 754 return ret; 755 } 756 757 int xe_guc_init(struct xe_guc *guc) 758 { 759 struct xe_device *xe = guc_to_xe(guc); 760 struct xe_gt *gt = guc_to_gt(guc); 761 int ret; 762 763 guc->fw.type = XE_UC_FW_TYPE_GUC; 764 ret = xe_uc_fw_init(&guc->fw); 765 if (ret) 766 return ret; 767 768 if (!xe_uc_fw_is_enabled(&guc->fw)) 769 return 0; 770 771 if (IS_SRIOV_VF(xe)) { 772 ret = xe_guc_ct_init(&guc->ct); 773 if (ret) 774 goto out; 775 return 0; 776 } 777 778 ret = xe_guc_log_init(&guc->log); 779 if (ret) 780 goto out; 781 782 ret = xe_guc_capture_init(guc); 783 if (ret) 784 goto out; 785 786 ret = xe_guc_ads_init(&guc->ads); 787 if (ret) 788 goto out; 789 790 ret = xe_guc_ct_init(&guc->ct); 791 if (ret) 792 goto out; 793 794 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE); 795 796 ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc); 797 if (ret) 798 goto out; 799 800 guc_init_params(guc); 801 802 return 0; 803 804 out: 805 xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret)); 806 return ret; 807 } 808 809 static int vf_guc_init_post_hwconfig(struct xe_guc *guc) 810 { 811 int err; 812 813 err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc))); 814 if (err) 815 return err; 816 817 err = xe_guc_buf_cache_init(&guc->buf); 818 if (err) 819 return err; 820 821 /* XXX xe_guc_db_mgr_init not needed for now */ 822 823 return 0; 824 } 825 826 static u32 guc_additional_cache_size(struct xe_device *xe) 827 { 828 if (IS_SRIOV_PF(xe) && xe_sriov_pf_migration_supported(xe)) 829 return XE_GT_SRIOV_PF_MIGRATION_GUC_DATA_MAX_SIZE; 830 else 831 return 0; /* Fallback to default size */ 832 } 833 834 /** 835 * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load 836 * @guc: The GuC object 837 * 838 * Return: 0 on success, negative error code on error. 839 */ 840 int xe_guc_init_post_hwconfig(struct xe_guc *guc) 841 { 842 int ret; 843 844 if (IS_SRIOV_VF(guc_to_xe(guc))) 845 return vf_guc_init_post_hwconfig(guc); 846 847 ret = xe_guc_realloc_post_hwconfig(guc); 848 if (ret) 849 return ret; 850 851 ret = xe_guc_ct_init_post_hwconfig(&guc->ct); 852 if (ret) 853 return ret; 854 855 guc_init_params_post_hwconfig(guc); 856 857 ret = xe_guc_submit_init(guc, ~0); 858 if (ret) 859 return ret; 860 861 ret = xe_guc_db_mgr_init(&guc->dbm, ~0); 862 if (ret) 863 return ret; 864 865 ret = xe_guc_pc_init(&guc->pc); 866 if (ret) 867 return ret; 868 869 ret = xe_guc_engine_activity_init(guc); 870 if (ret) 871 return ret; 872 873 ret = xe_guc_buf_cache_init_with_size(&guc->buf, 874 guc_additional_cache_size(guc_to_xe(guc))); 875 if (ret) 876 return ret; 877 878 return xe_guc_ads_init_post_hwconfig(&guc->ads); 879 } 880 881 int xe_guc_post_load_init(struct xe_guc *guc) 882 { 883 int ret; 884 885 xe_guc_ads_populate_post_load(&guc->ads); 886 887 ret = xe_guc_opt_in_features_enable(guc); 888 if (ret) 889 return ret; 890 891 if (xe_guc_g2g_wanted(guc_to_xe(guc))) { 892 ret = guc_g2g_start(guc); 893 if (ret) 894 return ret; 895 } 896 897 return xe_guc_submit_enable(guc); 898 } 899 900 int xe_guc_reset(struct xe_guc *guc) 901 { 902 struct xe_gt *gt = guc_to_gt(guc); 903 struct xe_mmio *mmio = >->mmio; 904 u32 guc_status, gdrst; 905 int ret; 906 907 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); 908 909 if (IS_SRIOV_VF(gt_to_xe(gt))) 910 return xe_gt_sriov_vf_bootstrap(gt); 911 912 xe_mmio_write32(mmio, GDRST, GRDOM_GUC); 913 914 ret = xe_mmio_wait32(mmio, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false); 915 if (ret) { 916 xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst); 917 goto err_out; 918 } 919 920 guc_status = xe_mmio_read32(mmio, GUC_STATUS); 921 if (!(guc_status & GS_MIA_IN_RESET)) { 922 xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n", 923 guc_status); 924 ret = -EIO; 925 goto err_out; 926 } 927 928 return 0; 929 930 err_out: 931 932 return ret; 933 } 934 935 static void guc_prepare_xfer(struct xe_guc *guc) 936 { 937 struct xe_gt *gt = guc_to_gt(guc); 938 struct xe_mmio *mmio = >->mmio; 939 struct xe_device *xe = guc_to_xe(guc); 940 u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC | 941 GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA | 942 GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA | 943 GUC_ENABLE_MIA_CLOCK_GATING; 944 945 if (GRAPHICS_VERx100(xe) < 1250) 946 shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES | 947 GUC_ENABLE_MIA_CACHING; 948 949 if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC) 950 shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index); 951 952 /* Must program this register before loading the ucode with DMA */ 953 xe_mmio_write32(mmio, GUC_SHIM_CONTROL, shim_flags); 954 955 xe_mmio_write32(mmio, GT_PM_CONFIG, GT_DOORBELL_ENABLE); 956 957 /* Make sure GuC receives ARAT interrupts */ 958 xe_mmio_rmw32(mmio, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0); 959 } 960 961 /* 962 * Supporting MMIO & in memory RSA 963 */ 964 static int guc_xfer_rsa(struct xe_guc *guc) 965 { 966 struct xe_gt *gt = guc_to_gt(guc); 967 u32 rsa[UOS_RSA_SCRATCH_COUNT]; 968 size_t copied; 969 int i; 970 971 if (guc->fw.rsa_size > 256) { 972 u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) + 973 xe_uc_fw_rsa_offset(&guc->fw); 974 xe_mmio_write32(>->mmio, UOS_RSA_SCRATCH(0), rsa_ggtt_addr); 975 return 0; 976 } 977 978 copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa)); 979 if (copied < sizeof(rsa)) 980 return -ENOMEM; 981 982 for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++) 983 xe_mmio_write32(>->mmio, UOS_RSA_SCRATCH(i), rsa[i]); 984 985 return 0; 986 } 987 988 /* 989 * Wait for the GuC to start up. 990 * 991 * Measurements indicate this should take no more than 20ms (assuming the GT 992 * clock is at maximum frequency). However, thermal throttling and other issues 993 * can prevent the clock hitting max and thus making the load take significantly 994 * longer. Allow up to 3s as a safety margin in normal builds. For 995 * CONFIG_DRM_XE_DEBUG allow up to 10s to account for slower execution, issues 996 * in PCODE, driver, fan, etc. 997 * 998 * Keep checking the GUC_STATUS every 10ms with a debug message every 100 999 * attempts as a "I'm slow, but alive" message. Regardless, if it takes more 1000 * than 200ms, emit a warning. 1001 */ 1002 1003 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG) 1004 #define GUC_LOAD_TIMEOUT_SEC 20 1005 #else 1006 #define GUC_LOAD_TIMEOUT_SEC 3 1007 #endif 1008 #define GUC_LOAD_TIME_WARN_MSEC 200 1009 1010 static void print_load_status_err(struct xe_gt *gt, u32 status) 1011 { 1012 struct xe_mmio *mmio = >->mmio; 1013 u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status); 1014 u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status); 1015 1016 xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n", 1017 REG_FIELD_GET(GS_MIA_IN_RESET, status), 1018 bootrom, ukernel, 1019 REG_FIELD_GET(GS_MIA_MASK, status), 1020 REG_FIELD_GET(GS_AUTH_STATUS_MASK, status)); 1021 1022 switch (bootrom) { 1023 case XE_BOOTROM_STATUS_NO_KEY_FOUND: 1024 xe_gt_err(gt, "invalid key requested, header = 0x%08X\n", 1025 xe_mmio_read32(mmio, GUC_HEADER_INFO)); 1026 break; 1027 case XE_BOOTROM_STATUS_RSA_FAILED: 1028 xe_gt_err(gt, "firmware signature verification failed\n"); 1029 break; 1030 case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE: 1031 xe_gt_err(gt, "firmware production part check failure\n"); 1032 break; 1033 } 1034 1035 switch (ukernel) { 1036 case XE_GUC_LOAD_STATUS_HWCONFIG_START: 1037 xe_gt_err(gt, "still extracting hwconfig table.\n"); 1038 break; 1039 case XE_GUC_LOAD_STATUS_EXCEPTION: 1040 xe_gt_err(gt, "firmware exception. EIP: %#x\n", 1041 xe_mmio_read32(mmio, SOFT_SCRATCH(13))); 1042 break; 1043 case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID: 1044 xe_gt_err(gt, "illegal init/ADS data\n"); 1045 break; 1046 case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID: 1047 xe_gt_err(gt, "illegal register in save/restore workaround list\n"); 1048 break; 1049 case XE_GUC_LOAD_STATUS_KLV_WORKAROUND_INIT_ERROR: 1050 xe_gt_err(gt, "illegal workaround KLV data\n"); 1051 break; 1052 case XE_GUC_LOAD_STATUS_INVALID_FTR_FLAG: 1053 xe_gt_err(gt, "illegal feature flag specified\n"); 1054 break; 1055 } 1056 } 1057 1058 /* 1059 * Check GUC_STATUS looking for known terminal states (either completion or 1060 * failure) of either the microkernel status field or the boot ROM status field. 1061 * 1062 * Returns 1 for successful completion, -1 for failure and 0 for any 1063 * intermediate state. 1064 */ 1065 static int guc_load_done(struct xe_gt *gt, u32 *status, u32 *tries) 1066 { 1067 u32 ukernel, bootrom; 1068 1069 *status = xe_mmio_read32(>->mmio, GUC_STATUS); 1070 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, *status); 1071 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, *status); 1072 1073 switch (ukernel) { 1074 case XE_GUC_LOAD_STATUS_READY: 1075 return 1; 1076 case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH: 1077 case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH: 1078 case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE: 1079 case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR: 1080 case XE_GUC_LOAD_STATUS_BOOTROM_VERSION_MISMATCH: 1081 case XE_GUC_LOAD_STATUS_DPC_ERROR: 1082 case XE_GUC_LOAD_STATUS_EXCEPTION: 1083 case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID: 1084 case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID: 1085 case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID: 1086 case XE_GUC_LOAD_STATUS_KLV_WORKAROUND_INIT_ERROR: 1087 case XE_GUC_LOAD_STATUS_INVALID_FTR_FLAG: 1088 return -1; 1089 } 1090 1091 switch (bootrom) { 1092 case XE_BOOTROM_STATUS_NO_KEY_FOUND: 1093 case XE_BOOTROM_STATUS_RSA_FAILED: 1094 case XE_BOOTROM_STATUS_PAVPC_FAILED: 1095 case XE_BOOTROM_STATUS_WOPCM_FAILED: 1096 case XE_BOOTROM_STATUS_LOADLOC_FAILED: 1097 case XE_BOOTROM_STATUS_JUMP_FAILED: 1098 case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED: 1099 case XE_BOOTROM_STATUS_MPUMAP_INCORRECT: 1100 case XE_BOOTROM_STATUS_EXCEPTION: 1101 case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE: 1102 return -1; 1103 } 1104 1105 if (++*tries >= 100) { 1106 struct xe_guc_pc *guc_pc = >->uc.guc.pc; 1107 1108 *tries = 0; 1109 xe_gt_dbg(gt, "GuC load still in progress, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n", 1110 xe_guc_pc_get_act_freq(guc_pc), 1111 xe_guc_pc_get_cur_freq_fw(guc_pc), 1112 *status, ukernel, bootrom); 1113 } 1114 1115 return 0; 1116 } 1117 1118 static int guc_wait_ucode(struct xe_guc *guc) 1119 { 1120 struct xe_gt *gt = guc_to_gt(guc); 1121 struct xe_guc_pc *guc_pc = >->uc.guc.pc; 1122 u32 before_freq, act_freq, cur_freq; 1123 u32 status = 0, tries = 0; 1124 ktime_t before; 1125 u64 delta_ms; 1126 int ret; 1127 1128 before_freq = xe_guc_pc_get_act_freq(guc_pc); 1129 before = ktime_get(); 1130 1131 ret = poll_timeout_us(ret = guc_load_done(gt, &status, &tries), ret, 1132 10 * USEC_PER_MSEC, 1133 GUC_LOAD_TIMEOUT_SEC * USEC_PER_SEC, false); 1134 1135 delta_ms = ktime_to_ms(ktime_sub(ktime_get(), before)); 1136 act_freq = xe_guc_pc_get_act_freq(guc_pc); 1137 cur_freq = xe_guc_pc_get_cur_freq_fw(guc_pc); 1138 1139 if (ret) { 1140 xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz)\n", 1141 status, delta_ms, xe_guc_pc_get_act_freq(guc_pc), 1142 xe_guc_pc_get_cur_freq_fw(guc_pc)); 1143 print_load_status_err(gt, status); 1144 1145 return -EPROTO; 1146 } 1147 1148 if (delta_ms > GUC_LOAD_TIME_WARN_MSEC) { 1149 xe_gt_warn(gt, "GuC load: excessive init time: %lldms! [status = 0x%08X]\n", 1150 delta_ms, status); 1151 xe_gt_warn(gt, "GuC load: excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n", 1152 act_freq, cur_freq, before_freq, 1153 xe_gt_throttle_get_limit_reasons(gt)); 1154 } else { 1155 xe_gt_dbg(gt, "GuC load: init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X\n", 1156 delta_ms, act_freq, cur_freq, before_freq, status); 1157 } 1158 1159 return 0; 1160 } 1161 ALLOW_ERROR_INJECTION(guc_wait_ucode, ERRNO); 1162 1163 static int __xe_guc_upload(struct xe_guc *guc) 1164 { 1165 int ret; 1166 1167 /* Raise GT freq to speed up HuC/GuC load */ 1168 xe_guc_pc_raise_unslice(&guc->pc); 1169 1170 guc_write_params(guc); 1171 guc_prepare_xfer(guc); 1172 1173 /* 1174 * Note that GuC needs the CSS header plus uKernel code to be copied 1175 * by the DMA engine in one operation, whereas the RSA signature is 1176 * loaded separately, either by copying it to the UOS_RSA_SCRATCH 1177 * register (if key size <= 256) or through a ggtt-pinned vma (if key 1178 * size > 256). The RSA size and therefore the way we provide it to the 1179 * HW is fixed for each platform and hard-coded in the bootrom. 1180 */ 1181 ret = guc_xfer_rsa(guc); 1182 if (ret) 1183 goto out; 1184 /* 1185 * Current uCode expects the code to be loaded at 8k; locations below 1186 * this are used for the stack. 1187 */ 1188 ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE); 1189 if (ret) 1190 goto out; 1191 1192 /* Wait for authentication */ 1193 ret = guc_wait_ucode(guc); 1194 if (ret) 1195 goto out; 1196 1197 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING); 1198 return 0; 1199 1200 out: 1201 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL); 1202 return ret; 1203 } 1204 1205 static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc) 1206 { 1207 struct xe_gt *gt = guc_to_gt(guc); 1208 int ret; 1209 1210 ret = xe_guc_hwconfig_init(guc); 1211 if (ret) 1212 return ret; 1213 1214 ret = xe_guc_enable_communication(guc); 1215 if (ret) 1216 return ret; 1217 1218 ret = xe_gt_sriov_vf_connect(gt); 1219 if (ret) 1220 goto err_out; 1221 1222 ret = xe_gt_sriov_vf_query_runtime(gt); 1223 if (ret) 1224 goto err_out; 1225 1226 return 0; 1227 1228 err_out: 1229 xe_guc_sanitize(guc); 1230 return ret; 1231 } 1232 1233 /** 1234 * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table 1235 * @guc: The GuC object 1236 * 1237 * This function uploads a minimal GuC that does not support submissions but 1238 * in a state where the hwconfig table can be read. Next, it reads and parses 1239 * the hwconfig table so it can be used for subsequent steps in the driver load. 1240 * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only). 1241 * 1242 * Return: 0 on success, negative error code on error. 1243 */ 1244 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc) 1245 { 1246 int ret; 1247 1248 if (IS_SRIOV_VF(guc_to_xe(guc))) 1249 return vf_guc_min_load_for_hwconfig(guc); 1250 1251 xe_guc_ads_populate_minimal(&guc->ads); 1252 1253 xe_guc_pc_init_early(&guc->pc); 1254 1255 ret = __xe_guc_upload(guc); 1256 if (ret) 1257 return ret; 1258 1259 ret = xe_guc_hwconfig_init(guc); 1260 if (ret) 1261 return ret; 1262 1263 ret = xe_guc_enable_communication(guc); 1264 if (ret) 1265 return ret; 1266 1267 return 0; 1268 } 1269 1270 int xe_guc_upload(struct xe_guc *guc) 1271 { 1272 struct xe_gt *gt = guc_to_gt(guc); 1273 1274 xe_guc_ads_populate(&guc->ads); 1275 1276 if (xe_guc_using_main_gamctrl_queues(guc)) 1277 xe_mmio_write32(>->mmio, MAIN_GAMCTRL_MODE, MAIN_GAMCTRL_QUEUE_SELECT); 1278 1279 return __xe_guc_upload(guc); 1280 } 1281 1282 static void guc_handle_mmio_msg(struct xe_guc *guc) 1283 { 1284 struct xe_gt *gt = guc_to_gt(guc); 1285 u32 msg; 1286 1287 if (IS_SRIOV_VF(guc_to_xe(guc))) 1288 return; 1289 1290 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT); 1291 1292 msg = xe_mmio_read32(>->mmio, SOFT_SCRATCH(15)); 1293 msg &= XE_GUC_RECV_MSG_EXCEPTION | 1294 XE_GUC_RECV_MSG_CRASH_DUMP_POSTED; 1295 xe_mmio_write32(>->mmio, SOFT_SCRATCH(15), 0); 1296 1297 if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED) 1298 xe_gt_err(gt, "Received early GuC crash dump notification!\n"); 1299 1300 if (msg & XE_GUC_RECV_MSG_EXCEPTION) 1301 xe_gt_err(gt, "Received early GuC exception notification!\n"); 1302 } 1303 1304 static void guc_enable_irq(struct xe_guc *guc) 1305 { 1306 struct xe_gt *gt = guc_to_gt(guc); 1307 u32 events = xe_gt_is_media_type(gt) ? 1308 REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST) : 1309 REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); 1310 1311 /* Primary GuC and media GuC share a single enable bit */ 1312 xe_mmio_write32(>->mmio, GUC_SG_INTR_ENABLE, 1313 REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST)); 1314 1315 /* 1316 * There are separate mask bits for primary and media GuCs, so use 1317 * a RMW operation to avoid clobbering the other GuC's setting. 1318 */ 1319 xe_mmio_rmw32(>->mmio, GUC_SG_INTR_MASK, events, 0); 1320 } 1321 1322 int xe_guc_enable_communication(struct xe_guc *guc) 1323 { 1324 struct xe_device *xe = guc_to_xe(guc); 1325 int err; 1326 1327 if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) { 1328 struct xe_gt *gt = guc_to_gt(guc); 1329 struct xe_tile *tile = gt_to_tile(gt); 1330 1331 err = xe_memirq_init_guc(&tile->memirq, guc); 1332 if (err) 1333 return err; 1334 } else { 1335 guc_enable_irq(guc); 1336 } 1337 1338 err = xe_guc_ct_enable(&guc->ct); 1339 if (err) 1340 return err; 1341 1342 guc_handle_mmio_msg(guc); 1343 1344 return 0; 1345 } 1346 1347 int xe_guc_suspend(struct xe_guc *guc) 1348 { 1349 struct xe_gt *gt = guc_to_gt(guc); 1350 u32 action[] = { 1351 XE_GUC_ACTION_CLIENT_SOFT_RESET, 1352 }; 1353 int ret; 1354 1355 ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action)); 1356 if (ret) { 1357 xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret)); 1358 return ret; 1359 } 1360 1361 xe_guc_sanitize(guc); 1362 return 0; 1363 } 1364 1365 void xe_guc_notify(struct xe_guc *guc) 1366 { 1367 struct xe_gt *gt = guc_to_gt(guc); 1368 const u32 default_notify_data = 0; 1369 1370 /* 1371 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass 1372 * additional payload data to the GuC but this capability is not 1373 * used by the firmware yet. Use default value in the meantime. 1374 */ 1375 xe_mmio_write32(>->mmio, guc->notify_reg, default_notify_data); 1376 } 1377 1378 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr) 1379 { 1380 u32 action[] = { 1381 XE_GUC_ACTION_AUTHENTICATE_HUC, 1382 rsa_addr 1383 }; 1384 1385 return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action)); 1386 } 1387 1388 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request, 1389 u32 len, u32 *response_buf) 1390 { 1391 struct xe_device *xe = guc_to_xe(guc); 1392 struct xe_gt *gt = guc_to_gt(guc); 1393 struct xe_mmio *mmio = >->mmio; 1394 u32 header, reply; 1395 struct xe_reg reply_reg = xe_gt_is_media_type(gt) ? 1396 MED_VF_SW_FLAG(0) : VF_SW_FLAG(0); 1397 const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1; 1398 bool lost = false; 1399 int ret; 1400 int i; 1401 1402 BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT); 1403 1404 xe_assert(xe, len); 1405 xe_assert(xe, len <= VF_SW_FLAG_COUNT); 1406 xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT); 1407 xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) == 1408 GUC_HXG_ORIGIN_HOST); 1409 xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) == 1410 GUC_HXG_TYPE_REQUEST); 1411 1412 retry: 1413 /* Not in critical data-path, just do if else for GT type */ 1414 if (xe_gt_is_media_type(gt)) { 1415 for (i = 0; i < len; ++i) 1416 xe_mmio_write32(mmio, MED_VF_SW_FLAG(i), 1417 request[i]); 1418 xe_mmio_read32(mmio, MED_VF_SW_FLAG(LAST_INDEX)); 1419 } else { 1420 for (i = 0; i < len; ++i) 1421 xe_mmio_write32(mmio, VF_SW_FLAG(i), 1422 request[i]); 1423 xe_mmio_read32(mmio, VF_SW_FLAG(LAST_INDEX)); 1424 } 1425 1426 xe_guc_notify(guc); 1427 1428 ret = xe_mmio_wait32(mmio, reply_reg, GUC_HXG_MSG_0_ORIGIN, 1429 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC), 1430 50000, &reply, false); 1431 if (ret) { 1432 /* scratch registers might be cleared during FLR, try once more */ 1433 if (!reply && !lost) { 1434 xe_gt_dbg(gt, "GuC mmio request %#x: lost, trying again\n", request[0]); 1435 lost = true; 1436 goto retry; 1437 } 1438 timeout: 1439 xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n", 1440 request[0], reply); 1441 return ret; 1442 } 1443 1444 header = xe_mmio_read32(mmio, reply_reg); 1445 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == 1446 GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 1447 /* 1448 * Once we got a BUSY reply we must wait again for the final 1449 * response but this time we can't use ORIGIN mask anymore. 1450 * To spot a right change in the reply, we take advantage that 1451 * response SUCCESS and FAILURE differ only by the single bit 1452 * and all other bits are set and can be used as a new mask. 1453 */ 1454 u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE; 1455 u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits); 1456 1457 BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS); 1458 BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1); 1459 1460 ret = xe_mmio_wait32(mmio, reply_reg, resp_mask, resp_mask, 1461 2000000, &header, false); 1462 1463 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 1464 GUC_HXG_ORIGIN_GUC)) 1465 goto proto; 1466 if (unlikely(ret)) { 1467 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != 1468 GUC_HXG_TYPE_NO_RESPONSE_BUSY) 1469 goto proto; 1470 goto timeout; 1471 } 1472 } 1473 1474 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == 1475 GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 1476 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 1477 1478 xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n", 1479 request[0], reason); 1480 goto retry; 1481 } 1482 1483 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == 1484 GUC_HXG_TYPE_RESPONSE_FAILURE) { 1485 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 1486 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 1487 1488 xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n", 1489 request[0], error, hint); 1490 return -ENXIO; 1491 } 1492 1493 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != 1494 GUC_HXG_TYPE_RESPONSE_SUCCESS) { 1495 proto: 1496 xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n", 1497 request[0], header); 1498 return -EPROTO; 1499 } 1500 1501 /* Just copy entire possible message response */ 1502 if (response_buf) { 1503 response_buf[0] = header; 1504 1505 for (i = 1; i < VF_SW_FLAG_COUNT; i++) { 1506 reply_reg.addr += sizeof(u32); 1507 response_buf[i] = xe_mmio_read32(mmio, reply_reg); 1508 } 1509 } 1510 1511 /* Use data from the GuC response as our return value */ 1512 return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 1513 } 1514 ALLOW_ERROR_INJECTION(xe_guc_mmio_send_recv, ERRNO); 1515 1516 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len) 1517 { 1518 return xe_guc_mmio_send_recv(guc, request, len, NULL); 1519 } 1520 1521 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val) 1522 { 1523 struct xe_device *xe = guc_to_xe(guc); 1524 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 1525 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 1526 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 1527 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, 1528 GUC_ACTION_HOST2GUC_SELF_CFG), 1529 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 1530 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 1531 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, 1532 lower_32_bits(val)), 1533 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, 1534 upper_32_bits(val)), 1535 }; 1536 int ret; 1537 1538 xe_assert(xe, len <= 2); 1539 xe_assert(xe, len != 1 || !upper_32_bits(val)); 1540 1541 /* Self config must go over MMIO */ 1542 ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request)); 1543 1544 if (unlikely(ret < 0)) 1545 return ret; 1546 if (unlikely(ret > 1)) 1547 return -EPROTO; 1548 if (unlikely(!ret)) 1549 return -ENOKEY; 1550 1551 return 0; 1552 } 1553 1554 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val) 1555 { 1556 return guc_self_cfg(guc, key, 1, val); 1557 } 1558 1559 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val) 1560 { 1561 return guc_self_cfg(guc, key, 2, val); 1562 } 1563 1564 static void xe_guc_sw_0_irq_handler(struct xe_guc *guc) 1565 { 1566 struct xe_gt *gt = guc_to_gt(guc); 1567 1568 if (IS_SRIOV_VF(gt_to_xe(gt))) 1569 xe_gt_sriov_vf_migrated_event_handler(gt); 1570 } 1571 1572 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir) 1573 { 1574 if (iir & GUC_INTR_GUC2HOST) 1575 xe_guc_ct_irq_handler(&guc->ct); 1576 1577 if (iir & GUC_INTR_SW_INT_0) 1578 xe_guc_sw_0_irq_handler(guc); 1579 } 1580 1581 void xe_guc_sanitize(struct xe_guc *guc) 1582 { 1583 xe_uc_fw_sanitize(&guc->fw); 1584 xe_guc_ct_disable(&guc->ct); 1585 xe_guc_submit_disable(guc); 1586 } 1587 1588 int xe_guc_reset_prepare(struct xe_guc *guc) 1589 { 1590 return xe_guc_submit_reset_prepare(guc); 1591 } 1592 1593 void xe_guc_reset_wait(struct xe_guc *guc) 1594 { 1595 xe_guc_submit_reset_wait(guc); 1596 } 1597 1598 void xe_guc_stop_prepare(struct xe_guc *guc) 1599 { 1600 if (!IS_SRIOV_VF(guc_to_xe(guc))) { 1601 int err; 1602 1603 err = xe_guc_pc_stop(&guc->pc); 1604 xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n", 1605 ERR_PTR(err)); 1606 } 1607 } 1608 1609 void xe_guc_stop(struct xe_guc *guc) 1610 { 1611 xe_guc_ct_stop(&guc->ct); 1612 1613 xe_guc_submit_stop(guc); 1614 } 1615 1616 int xe_guc_start(struct xe_guc *guc) 1617 { 1618 return xe_guc_submit_start(guc); 1619 } 1620 1621 void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p) 1622 { 1623 struct xe_gt *gt = guc_to_gt(guc); 1624 unsigned int fw_ref; 1625 u32 status; 1626 int i; 1627 1628 xe_uc_fw_print(&guc->fw, p); 1629 1630 if (!IS_SRIOV_VF(gt_to_xe(gt))) { 1631 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT); 1632 if (!fw_ref) 1633 return; 1634 1635 status = xe_mmio_read32(>->mmio, GUC_STATUS); 1636 1637 drm_printf(p, "\nGuC status 0x%08x:\n", status); 1638 drm_printf(p, "\tBootrom status = 0x%x\n", 1639 REG_FIELD_GET(GS_BOOTROM_MASK, status)); 1640 drm_printf(p, "\tuKernel status = 0x%x\n", 1641 REG_FIELD_GET(GS_UKERNEL_MASK, status)); 1642 drm_printf(p, "\tMIA Core status = 0x%x\n", 1643 REG_FIELD_GET(GS_MIA_MASK, status)); 1644 drm_printf(p, "\tLog level = %d\n", 1645 xe_guc_log_get_level(&guc->log)); 1646 1647 drm_puts(p, "\nScratch registers:\n"); 1648 for (i = 0; i < SOFT_SCRATCH_COUNT; i++) { 1649 drm_printf(p, "\t%2d: \t0x%x\n", 1650 i, xe_mmio_read32(>->mmio, SOFT_SCRATCH(i))); 1651 } 1652 1653 xe_force_wake_put(gt_to_fw(gt), fw_ref); 1654 } 1655 1656 drm_puts(p, "\n"); 1657 xe_guc_ct_print(&guc->ct, p, false); 1658 1659 drm_puts(p, "\n"); 1660 xe_guc_submit_print(guc, p); 1661 } 1662 1663 /** 1664 * xe_guc_declare_wedged() - Declare GuC wedged 1665 * @guc: the GuC object 1666 * 1667 * Wedge the GuC which stops all submission, saves desired debug state, and 1668 * cleans up anything which could timeout. 1669 */ 1670 void xe_guc_declare_wedged(struct xe_guc *guc) 1671 { 1672 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode); 1673 1674 xe_guc_reset_prepare(guc); 1675 xe_guc_ct_stop(&guc->ct); 1676 xe_guc_submit_wedge(guc); 1677 } 1678 1679 /** 1680 * xe_guc_using_main_gamctrl_queues() - Detect which reporting queues to use. 1681 * @guc: The GuC object 1682 * 1683 * For Xe3p and beyond, we want to program the hardware to use the 1684 * "Main GAMCTRL queue" rather than the legacy queue before we upload 1685 * the GuC firmware. This will allow the GuC to use a new set of 1686 * registers for pagefault handling and avoid some unnecessary 1687 * complications with MCR register range handling. 1688 * 1689 * Return: true if can use new main gamctrl queues. 1690 */ 1691 bool xe_guc_using_main_gamctrl_queues(struct xe_guc *guc) 1692 { 1693 struct xe_gt *gt = guc_to_gt(guc); 1694 1695 /* 1696 * For Xe3p media gt (35), the GuC and the CS subunits may be still Xe3 1697 * that lacks the Main GAMCTRL support. Reserved bits from the GMD_ID 1698 * inform the IP version of the subunits. 1699 */ 1700 if (xe_gt_is_media_type(gt) && MEDIA_VER(gt_to_xe(gt)) == 35) { 1701 u32 val = xe_mmio_read32(>->mmio, GMD_ID); 1702 u32 subip = REG_FIELD_GET(GMD_ID_SUBIP_FLAG_MASK, val); 1703 1704 if (!subip) 1705 return true; 1706 1707 xe_gt_WARN(gt, subip != 1, 1708 "GMD_ID has unknown value in the SUBIP_FLAG field - 0x%x\n", 1709 subip); 1710 1711 return false; 1712 } 1713 1714 return GT_VER(gt) >= 35; 1715 } 1716 1717 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST) 1718 #include "tests/xe_guc_g2g_test.c" 1719 #endif 1720