xref: /linux/drivers/gpu/drm/xe/xe_guc.c (revision 6dfafbd0299a60bfb5d5e277fdf100037c7ded07)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc.h"
7 
8 #include <linux/iopoll.h>
9 #include <drm/drm_managed.h>
10 
11 #include <generated/xe_wa_oob.h>
12 
13 #include "abi/guc_actions_abi.h"
14 #include "abi/guc_errors_abi.h"
15 #include "regs/xe_gt_regs.h"
16 #include "regs/xe_gtt_defs.h"
17 #include "regs/xe_guc_regs.h"
18 #include "regs/xe_irq_regs.h"
19 #include "xe_bo.h"
20 #include "xe_configfs.h"
21 #include "xe_device.h"
22 #include "xe_force_wake.h"
23 #include "xe_gt.h"
24 #include "xe_gt_printk.h"
25 #include "xe_gt_sriov_vf.h"
26 #include "xe_gt_throttle.h"
27 #include "xe_gt_sriov_pf_migration.h"
28 #include "xe_guc_ads.h"
29 #include "xe_guc_buf.h"
30 #include "xe_guc_capture.h"
31 #include "xe_guc_ct.h"
32 #include "xe_guc_db_mgr.h"
33 #include "xe_guc_engine_activity.h"
34 #include "xe_guc_hwconfig.h"
35 #include "xe_guc_klv_helpers.h"
36 #include "xe_guc_log.h"
37 #include "xe_guc_pc.h"
38 #include "xe_guc_relay.h"
39 #include "xe_guc_submit.h"
40 #include "xe_memirq.h"
41 #include "xe_mmio.h"
42 #include "xe_platform_types.h"
43 #include "xe_sriov.h"
44 #include "xe_sriov_pf_migration.h"
45 #include "xe_uc.h"
46 #include "xe_uc_fw.h"
47 #include "xe_wa.h"
48 #include "xe_wopcm.h"
49 
50 static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
51 			    struct xe_bo *bo)
52 {
53 	struct xe_device *xe = guc_to_xe(guc);
54 	u32 addr;
55 
56 	/*
57 	 * For most BOs, the address on the allocating tile is fine. However for
58 	 * some, e.g. G2G CTB, the address on a specific tile is required as it
59 	 * might be different for each tile. So, just always ask for the address
60 	 * on the target GuC.
61 	 */
62 	addr = __xe_bo_ggtt_addr(bo, gt_to_tile(guc_to_gt(guc))->id);
63 
64 	/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
65 	xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
66 	xe_assert(xe, addr < GUC_GGTT_TOP);
67 	xe_assert(xe, xe_bo_size(bo) <= GUC_GGTT_TOP - addr);
68 
69 	return addr;
70 }
71 
72 static u32 guc_ctl_debug_flags(struct xe_guc *guc)
73 {
74 	u32 level = xe_guc_log_get_level(&guc->log);
75 	u32 flags = 0;
76 
77 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
78 		flags |= GUC_LOG_DISABLED;
79 	else
80 		flags |= FIELD_PREP(GUC_LOG_VERBOSITY, GUC_LOG_LEVEL_TO_VERBOSITY(level));
81 
82 	return flags;
83 }
84 
85 static u32 guc_ctl_feature_flags(struct xe_guc *guc)
86 {
87 	struct xe_device *xe = guc_to_xe(guc);
88 	u32 flags = GUC_CTL_ENABLE_LITE_RESTORE;
89 
90 	if (!xe->info.skip_guc_pc)
91 		flags |= GUC_CTL_ENABLE_SLPC;
92 
93 	if (xe_configfs_get_psmi_enabled(to_pci_dev(xe->drm.dev)))
94 		flags |= GUC_CTL_ENABLE_PSMI_LOGGING;
95 
96 	if (xe_guc_using_main_gamctrl_queues(guc))
97 		flags |= GUC_CTL_MAIN_GAMCTRL_QUEUES;
98 
99 	return flags;
100 }
101 
102 static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
103 {
104 	u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
105 	u32 flags;
106 
107 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
108 	#define LOG_UNIT SZ_1M
109 	#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
110 	#else
111 	#define LOG_UNIT SZ_4K
112 	#define LOG_FLAG 0
113 	#endif
114 
115 	#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
116 	#define CAPTURE_UNIT SZ_1M
117 	#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
118 	#else
119 	#define CAPTURE_UNIT SZ_4K
120 	#define CAPTURE_FLAG 0
121 	#endif
122 
123 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
124 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
125 	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
126 	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
127 	BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
128 	BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
129 
130 	flags = GUC_LOG_VALID |
131 		GUC_LOG_NOTIFY_ON_HALF_FULL |
132 		CAPTURE_FLAG |
133 		LOG_FLAG |
134 		FIELD_PREP(GUC_LOG_CRASH, CRASH_BUFFER_SIZE / LOG_UNIT - 1) |
135 		FIELD_PREP(GUC_LOG_DEBUG, DEBUG_BUFFER_SIZE / LOG_UNIT - 1) |
136 		FIELD_PREP(GUC_LOG_CAPTURE, CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) |
137 		FIELD_PREP(GUC_LOG_BUF_ADDR, offset);
138 
139 	#undef LOG_UNIT
140 	#undef LOG_FLAG
141 	#undef CAPTURE_UNIT
142 	#undef CAPTURE_FLAG
143 
144 	return flags;
145 }
146 
147 static u32 guc_ctl_ads_flags(struct xe_guc *guc)
148 {
149 	u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
150 	u32 flags = FIELD_PREP(GUC_ADS_ADDR, ads);
151 
152 	return flags;
153 }
154 
155 static bool needs_wa_dual_queue(struct xe_gt *gt)
156 {
157 	/*
158 	 * The DUAL_QUEUE_WA tells the GuC to not allow concurrent submissions
159 	 * on RCS and CCSes with different address spaces, which on DG2 is
160 	 * required as a WA for an HW bug.
161 	 */
162 	if (XE_GT_WA(gt, 22011391025))
163 		return true;
164 
165 	/*
166 	 * On newer platforms, the HW has been updated to not allow parallel
167 	 * execution of different address spaces, so the RCS/CCS will stall the
168 	 * context switch if one of the other RCS/CCSes is busy with a different
169 	 * address space. While functionally correct, having a submission
170 	 * stalled on the HW limits the GuC ability to shuffle things around and
171 	 * can cause complications if the non-stalled submission runs for a long
172 	 * time, because the GuC doesn't know that the stalled submission isn't
173 	 * actually running and might declare it as hung. Therefore, we enable
174 	 * the DUAL_QUEUE_WA on all newer platforms on GTs that have CCS engines
175 	 * to move management back to the GuC.
176 	 */
177 	if (CCS_MASK(gt) && GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
178 		return true;
179 
180 	return false;
181 }
182 
183 static u32 guc_ctl_wa_flags(struct xe_guc *guc)
184 {
185 	struct xe_device *xe = guc_to_xe(guc);
186 	struct xe_gt *gt = guc_to_gt(guc);
187 	u32 flags = 0;
188 
189 	if (XE_GT_WA(gt, 22012773006))
190 		flags |= GUC_WA_POLLCS;
191 
192 	if (XE_GT_WA(gt, 14014475959))
193 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
194 
195 	if (needs_wa_dual_queue(gt))
196 		flags |= GUC_WA_DUAL_QUEUE;
197 
198 	/*
199 	 * Wa_22011802037: FIXME - there's more to be done than simply setting
200 	 * this flag: make sure each CS is stopped when preparing for GT reset
201 	 * and wait for pending MI_FW.
202 	 */
203 	if (GRAPHICS_VERx100(xe) < 1270)
204 		flags |= GUC_WA_PRE_PARSER;
205 
206 	if (XE_GT_WA(gt, 22012727170) || XE_GT_WA(gt, 22012727685))
207 		flags |= GUC_WA_CONTEXT_ISOLATION;
208 
209 	if (XE_GT_WA(gt, 18020744125) &&
210 	    !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
211 		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
212 
213 	if (XE_GT_WA(gt, 1509372804))
214 		flags |= GUC_WA_RENDER_RST_RC6_EXIT;
215 
216 	if (XE_GT_WA(gt, 14018913170))
217 		flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
218 
219 	if (XE_GT_WA(gt, 16023683509))
220 		flags |= GUC_WA_SAVE_RESTORE_MCFG_REG_AT_MC6;
221 
222 	return flags;
223 }
224 
225 static u32 guc_ctl_devid(struct xe_guc *guc)
226 {
227 	struct xe_device *xe = guc_to_xe(guc);
228 
229 	return (((u32)xe->info.devid) << 16) | xe->info.revid;
230 }
231 
232 static void guc_print_params(struct xe_guc *guc)
233 {
234 	struct xe_gt *gt = guc_to_gt(guc);
235 	u32 *params = guc->params;
236 	int i;
237 
238 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
239 	BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
240 
241 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
242 		xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
243 }
244 
245 static void guc_init_params(struct xe_guc *guc)
246 {
247 	u32 *params = guc->params;
248 
249 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
250 	params[GUC_CTL_FEATURE] = 0;
251 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
252 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
253 	params[GUC_CTL_WA] = 0;
254 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
255 
256 	guc_print_params(guc);
257 }
258 
259 static void guc_init_params_post_hwconfig(struct xe_guc *guc)
260 {
261 	u32 *params = guc->params;
262 
263 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
264 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
265 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
266 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
267 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
268 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
269 
270 	guc_print_params(guc);
271 }
272 
273 /*
274  * Initialize the GuC parameter block before starting the firmware
275  * transfer. These parameters are read by the firmware on startup
276  * and cannot be changed thereafter.
277  */
278 static void guc_write_params(struct xe_guc *guc)
279 {
280 	struct xe_gt *gt = guc_to_gt(guc);
281 	int i;
282 
283 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
284 
285 	xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(0), 0);
286 
287 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
288 		xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(1 + i), guc->params[i]);
289 }
290 
291 static int guc_action_register_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev,
292 					  u32 desc_addr, u32 buff_addr, u32 size)
293 {
294 	struct xe_gt *gt = guc_to_gt(guc);
295 	struct xe_device *xe = gt_to_xe(gt);
296 	u32 action[] = {
297 		XE_GUC_ACTION_REGISTER_G2G,
298 		FIELD_PREP(XE_G2G_REGISTER_SIZE, size / SZ_4K - 1) |
299 		FIELD_PREP(XE_G2G_REGISTER_TYPE, type) |
300 		FIELD_PREP(XE_G2G_REGISTER_TILE, dst_tile) |
301 		FIELD_PREP(XE_G2G_REGISTER_DEVICE, dst_dev),
302 		desc_addr,
303 		buff_addr,
304 	};
305 
306 	xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
307 	xe_assert(xe, !(size % SZ_4K));
308 
309 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
310 }
311 
312 static int guc_action_deregister_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev)
313 {
314 	struct xe_gt *gt = guc_to_gt(guc);
315 	struct xe_device *xe = gt_to_xe(gt);
316 	u32 action[] = {
317 		XE_GUC_ACTION_DEREGISTER_G2G,
318 		FIELD_PREP(XE_G2G_DEREGISTER_TYPE, type) |
319 		FIELD_PREP(XE_G2G_DEREGISTER_TILE, dst_tile) |
320 		FIELD_PREP(XE_G2G_DEREGISTER_DEVICE, dst_dev),
321 	};
322 
323 	xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
324 
325 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
326 }
327 
328 #define G2G_DEV(gt)	(((gt)->info.type == XE_GT_TYPE_MAIN) ? 0 : 1)
329 
330 #define G2G_BUFFER_SIZE (SZ_4K)
331 #define G2G_DESC_SIZE (64)
332 #define G2G_DESC_AREA_SIZE (SZ_4K)
333 
334 /*
335  * Generate a unique id for each bi-directional CTB for each pair of
336  * near and far tiles/devices. The id can then be used as an index into
337  * a single allocation that is sub-divided into multiple CTBs.
338  *
339  * For example, with two devices per tile and two tiles, the table should
340  * look like:
341  *           Far <tile>.<dev>
342  *         0.0   0.1   1.0   1.1
343  * N 0.0  --/-- 00/01 02/03 04/05
344  * e 0.1  01/00 --/-- 06/07 08/09
345  * a 1.0  03/02 07/06 --/-- 10/11
346  * r 1.1  05/04 09/08 11/10 --/--
347  *
348  * Where each entry is Rx/Tx channel id.
349  *
350  * So GuC #3 (tile 1, dev 1) talking to GuC #2 (tile 1, dev 0) would
351  * be reading from channel #11 and writing to channel #10. Whereas,
352  * GuC #2 talking to GuC #3 would be read on #10 and write to #11.
353  */
354 static unsigned int g2g_slot(u32 near_tile, u32 near_dev, u32 far_tile, u32 far_dev,
355 			     u32 type, u32 max_inst, bool have_dev)
356 {
357 	u32 near = near_tile, far = far_tile;
358 	u32 idx = 0, x, y, direction;
359 	int i;
360 
361 	if (have_dev) {
362 		near = (near << 1) | near_dev;
363 		far = (far << 1) | far_dev;
364 	}
365 
366 	/* No need to send to one's self */
367 	if (far == near)
368 		return -1;
369 
370 	if (far > near) {
371 		/* Top right table half */
372 		x = far;
373 		y = near;
374 
375 		/* T/R is 'forwards' direction */
376 		direction = type;
377 	} else {
378 		/* Bottom left table half */
379 		x = near;
380 		y = far;
381 
382 		/* B/L is 'backwards' direction */
383 		direction = (1 - type);
384 	}
385 
386 	/* Count the rows prior to the target */
387 	for (i = y; i > 0; i--)
388 		idx += max_inst - i;
389 
390 	/* Count this row up to the target */
391 	idx += (x - 1 - y);
392 
393 	/* Slots are in Rx/Tx pairs */
394 	idx *= 2;
395 
396 	/* Pick Rx/Tx direction */
397 	idx += direction;
398 
399 	return idx;
400 }
401 
402 static int guc_g2g_register(struct xe_guc *near_guc, struct xe_gt *far_gt, u32 type, bool have_dev)
403 {
404 	struct xe_gt *near_gt = guc_to_gt(near_guc);
405 	struct xe_device *xe = gt_to_xe(near_gt);
406 	struct xe_bo *g2g_bo;
407 	u32 near_tile = gt_to_tile(near_gt)->id;
408 	u32 near_dev = G2G_DEV(near_gt);
409 	u32 far_tile = gt_to_tile(far_gt)->id;
410 	u32 far_dev = G2G_DEV(far_gt);
411 	u32 max = xe->info.gt_count;
412 	u32 base, desc, buf;
413 	int slot;
414 
415 	/* G2G is not allowed between different cards */
416 	xe_assert(xe, xe == gt_to_xe(far_gt));
417 
418 	g2g_bo = near_guc->g2g.bo;
419 	xe_assert(xe, g2g_bo);
420 
421 	slot = g2g_slot(near_tile, near_dev, far_tile, far_dev, type, max, have_dev);
422 	xe_assert(xe, slot >= 0);
423 
424 	base = guc_bo_ggtt_addr(near_guc, g2g_bo);
425 	desc = base + slot * G2G_DESC_SIZE;
426 	buf = base + G2G_DESC_AREA_SIZE + slot * G2G_BUFFER_SIZE;
427 
428 	xe_assert(xe, (desc - base + G2G_DESC_SIZE) <= G2G_DESC_AREA_SIZE);
429 	xe_assert(xe, (buf - base + G2G_BUFFER_SIZE) <= xe_bo_size(g2g_bo));
430 
431 	return guc_action_register_g2g_buffer(near_guc, type, far_tile, far_dev,
432 					      desc, buf, G2G_BUFFER_SIZE);
433 }
434 
435 static void guc_g2g_deregister(struct xe_guc *guc, u32 far_tile, u32 far_dev, u32 type)
436 {
437 	guc_action_deregister_g2g_buffer(guc, type, far_tile, far_dev);
438 }
439 
440 static u32 guc_g2g_size(struct xe_guc *guc)
441 {
442 	struct xe_gt *gt = guc_to_gt(guc);
443 	struct xe_device *xe = gt_to_xe(gt);
444 	unsigned int count = xe->info.gt_count;
445 	u32 num_channels = (count * (count - 1)) / 2;
446 
447 	xe_assert(xe, num_channels * XE_G2G_TYPE_LIMIT * G2G_DESC_SIZE <= G2G_DESC_AREA_SIZE);
448 
449 	return num_channels * XE_G2G_TYPE_LIMIT * G2G_BUFFER_SIZE + G2G_DESC_AREA_SIZE;
450 }
451 
452 static bool xe_guc_g2g_wanted(struct xe_device *xe)
453 {
454 	/* Can't do GuC to GuC communication if there is only one GuC */
455 	if (xe->info.gt_count <= 1)
456 		return false;
457 
458 	/* No current user */
459 	return false;
460 }
461 
462 static int guc_g2g_alloc(struct xe_guc *guc)
463 {
464 	struct xe_gt *gt = guc_to_gt(guc);
465 	struct xe_device *xe = gt_to_xe(gt);
466 	struct xe_tile *tile = gt_to_tile(gt);
467 	struct xe_bo *bo;
468 	u32 g2g_size;
469 
470 	if (guc->g2g.bo)
471 		return 0;
472 
473 	if (gt->info.id != 0) {
474 		struct xe_gt *root_gt = xe_device_get_gt(xe, 0);
475 		struct xe_guc *root_guc = &root_gt->uc.guc;
476 		struct xe_bo *bo;
477 
478 		bo = xe_bo_get(root_guc->g2g.bo);
479 		if (!bo)
480 			return -ENODEV;
481 
482 		guc->g2g.bo = bo;
483 		guc->g2g.owned = false;
484 		return 0;
485 	}
486 
487 	g2g_size = guc_g2g_size(guc);
488 	bo = xe_managed_bo_create_pin_map(xe, tile, g2g_size,
489 					  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
490 					  XE_BO_FLAG_GGTT |
491 					  XE_BO_FLAG_GGTT_ALL |
492 					  XE_BO_FLAG_GGTT_INVALIDATE |
493 					  XE_BO_FLAG_PINNED_NORESTORE);
494 	if (IS_ERR(bo))
495 		return PTR_ERR(bo);
496 
497 	xe_map_memset(xe, &bo->vmap, 0, 0, g2g_size);
498 	guc->g2g.bo = bo;
499 	guc->g2g.owned = true;
500 
501 	return 0;
502 }
503 
504 static void guc_g2g_fini(struct xe_guc *guc)
505 {
506 	if (!guc->g2g.bo)
507 		return;
508 
509 	/* Unpinning the owned object is handled by generic shutdown */
510 	if (!guc->g2g.owned)
511 		xe_bo_put(guc->g2g.bo);
512 
513 	guc->g2g.bo = NULL;
514 }
515 
516 static int guc_g2g_start(struct xe_guc *guc)
517 {
518 	struct xe_gt *far_gt, *gt = guc_to_gt(guc);
519 	struct xe_device *xe = gt_to_xe(gt);
520 	unsigned int i, j;
521 	int t, err;
522 	bool have_dev;
523 
524 	if (!guc->g2g.bo) {
525 		int ret;
526 
527 		ret = guc_g2g_alloc(guc);
528 		if (ret)
529 			return ret;
530 	}
531 
532 	/* GuC interface will need extending if more GT device types are ever created. */
533 	xe_gt_assert(gt, (gt->info.type == XE_GT_TYPE_MAIN) || (gt->info.type == XE_GT_TYPE_MEDIA));
534 
535 	/* Channel numbering depends on whether there are multiple GTs per tile */
536 	have_dev = xe->info.gt_count > xe->info.tile_count;
537 
538 	for_each_gt(far_gt, xe, i) {
539 		u32 far_tile, far_dev;
540 
541 		if (far_gt->info.id == gt->info.id)
542 			continue;
543 
544 		far_tile = gt_to_tile(far_gt)->id;
545 		far_dev = G2G_DEV(far_gt);
546 
547 		for (t = 0; t < XE_G2G_TYPE_LIMIT; t++) {
548 			err = guc_g2g_register(guc, far_gt, t, have_dev);
549 			if (err) {
550 				while (--t >= 0)
551 					guc_g2g_deregister(guc, far_tile, far_dev, t);
552 				goto err_deregister;
553 			}
554 		}
555 	}
556 
557 	return 0;
558 
559 err_deregister:
560 	for_each_gt(far_gt, xe, j) {
561 		u32 tile, dev;
562 
563 		if (far_gt->info.id == gt->info.id)
564 			continue;
565 
566 		if (j >= i)
567 			break;
568 
569 		tile = gt_to_tile(far_gt)->id;
570 		dev = G2G_DEV(far_gt);
571 
572 		for (t = 0; t < XE_G2G_TYPE_LIMIT; t++)
573 			guc_g2g_deregister(guc, tile, dev, t);
574 	}
575 
576 	return err;
577 }
578 
579 static int __guc_opt_in_features_enable(struct xe_guc *guc, u64 addr, u32 num_dwords)
580 {
581 	u32 action[] = {
582 		XE_GUC_ACTION_OPT_IN_FEATURE_KLV,
583 		lower_32_bits(addr),
584 		upper_32_bits(addr),
585 		num_dwords
586 	};
587 
588 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
589 }
590 
591 static bool supports_dynamic_ics(struct xe_guc *guc)
592 {
593 	struct xe_device *xe = guc_to_xe(guc);
594 	struct xe_gt *gt = guc_to_gt(guc);
595 
596 	/* Dynamic ICS is available for PVC and Xe2 and newer platforms. */
597 	if (xe->info.platform != XE_PVC && GRAPHICS_VER(xe) < 20)
598 		return false;
599 
600 	/*
601 	 * The feature is currently not compatible with multi-lrc, so the GuC
602 	 * does not support it at all on the media engines (which are the main
603 	 * users of mlrc). On the primary GT side, to avoid it being used in
604 	 * conjunction with mlrc, we only enable it if we are in single CCS
605 	 * mode.
606 	 */
607 	if (xe_gt_is_media_type(gt) || gt->ccs_mode > 1)
608 		return false;
609 
610 	/*
611 	 * Dynamic ICS requires GuC v70.40.1, which maps to compatibility
612 	 * version v1.18.4.
613 	 */
614 	return GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 18, 4);
615 }
616 
617 #define OPT_IN_MAX_DWORDS 16
618 int xe_guc_opt_in_features_enable(struct xe_guc *guc)
619 {
620 	struct xe_device *xe = guc_to_xe(guc);
621 	CLASS(xe_guc_buf, buf)(&guc->buf, OPT_IN_MAX_DWORDS);
622 	u32 count = 0;
623 	u32 *klvs;
624 	int ret;
625 
626 	if (!xe_guc_buf_is_valid(buf))
627 		return -ENOBUFS;
628 
629 	klvs = xe_guc_buf_cpu_ptr(buf);
630 
631 	/*
632 	 * The extra CAT error type opt-in was added in GuC v70.17.0, which maps
633 	 * to compatibility version v1.7.0.
634 	 * Note that the GuC allows enabling this KLV even on platforms that do
635 	 * not support the extra type; in such case the returned type variable
636 	 * will be set to a known invalid value which we can check against.
637 	 */
638 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 7, 0))
639 		klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_EXT_CAT_ERR_TYPE);
640 
641 	if (supports_dynamic_ics(guc))
642 		klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_DYNAMIC_INHIBIT_CONTEXT_SWITCH);
643 
644 	if (count) {
645 		xe_assert(xe, count <= OPT_IN_MAX_DWORDS);
646 
647 		ret = __guc_opt_in_features_enable(guc, xe_guc_buf_flush(buf), count);
648 		if (ret < 0) {
649 			xe_gt_err(guc_to_gt(guc),
650 				  "failed to enable GuC opt-in features: %pe\n",
651 				  ERR_PTR(ret));
652 			return ret;
653 		}
654 	}
655 
656 	return 0;
657 }
658 
659 static void guc_fini_hw(void *arg)
660 {
661 	struct xe_guc *guc = arg;
662 	struct xe_gt *gt = guc_to_gt(guc);
663 	unsigned int fw_ref;
664 
665 	fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
666 	xe_uc_sanitize_reset(&guc_to_gt(guc)->uc);
667 	xe_force_wake_put(gt_to_fw(gt), fw_ref);
668 
669 	guc_g2g_fini(guc);
670 }
671 
672 /**
673  * xe_guc_comm_init_early - early initialization of GuC communication
674  * @guc: the &xe_guc to initialize
675  *
676  * Must be called prior to first MMIO communication with GuC firmware.
677  */
678 void xe_guc_comm_init_early(struct xe_guc *guc)
679 {
680 	struct xe_gt *gt = guc_to_gt(guc);
681 
682 	if (xe_gt_is_media_type(gt))
683 		guc->notify_reg = MED_GUC_HOST_INTERRUPT;
684 	else
685 		guc->notify_reg = GUC_HOST_INTERRUPT;
686 }
687 
688 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
689 {
690 	struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
691 	struct xe_device *xe = guc_to_xe(guc);
692 	int ret;
693 
694 	if (!IS_DGFX(guc_to_xe(guc)))
695 		return 0;
696 
697 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
698 	if (ret)
699 		return ret;
700 
701 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
702 	if (ret)
703 		return ret;
704 
705 	ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
706 	if (ret)
707 		return ret;
708 
709 	return 0;
710 }
711 
712 static int vf_guc_init_noalloc(struct xe_guc *guc)
713 {
714 	struct xe_gt *gt = guc_to_gt(guc);
715 	int err;
716 
717 	err = xe_gt_sriov_vf_bootstrap(gt);
718 	if (err)
719 		return err;
720 
721 	err = xe_gt_sriov_vf_query_config(gt);
722 	if (err)
723 		return err;
724 
725 	return 0;
726 }
727 
728 int xe_guc_init_noalloc(struct xe_guc *guc)
729 {
730 	struct xe_device *xe = guc_to_xe(guc);
731 	struct xe_gt *gt = guc_to_gt(guc);
732 	int ret;
733 
734 	xe_guc_comm_init_early(guc);
735 
736 	ret = xe_guc_ct_init_noalloc(&guc->ct);
737 	if (ret)
738 		goto out;
739 
740 	ret = xe_guc_relay_init(&guc->relay);
741 	if (ret)
742 		goto out;
743 
744 	if (IS_SRIOV_VF(xe)) {
745 		ret = vf_guc_init_noalloc(guc);
746 		if (ret)
747 			goto out;
748 	}
749 
750 	return 0;
751 
752 out:
753 	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
754 	return ret;
755 }
756 
757 int xe_guc_init(struct xe_guc *guc)
758 {
759 	struct xe_device *xe = guc_to_xe(guc);
760 	struct xe_gt *gt = guc_to_gt(guc);
761 	int ret;
762 
763 	guc->fw.type = XE_UC_FW_TYPE_GUC;
764 	ret = xe_uc_fw_init(&guc->fw);
765 	if (ret)
766 		return ret;
767 
768 	if (!xe_uc_fw_is_enabled(&guc->fw))
769 		return 0;
770 
771 	if (IS_SRIOV_VF(xe)) {
772 		ret = xe_guc_ct_init(&guc->ct);
773 		if (ret)
774 			goto out;
775 		return 0;
776 	}
777 
778 	ret = xe_guc_log_init(&guc->log);
779 	if (ret)
780 		goto out;
781 
782 	ret = xe_guc_capture_init(guc);
783 	if (ret)
784 		goto out;
785 
786 	ret = xe_guc_ads_init(&guc->ads);
787 	if (ret)
788 		goto out;
789 
790 	ret = xe_guc_ct_init(&guc->ct);
791 	if (ret)
792 		goto out;
793 
794 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
795 
796 	ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
797 	if (ret)
798 		goto out;
799 
800 	guc_init_params(guc);
801 
802 	return 0;
803 
804 out:
805 	xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
806 	return ret;
807 }
808 
809 static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
810 {
811 	int err;
812 
813 	err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
814 	if (err)
815 		return err;
816 
817 	err = xe_guc_buf_cache_init(&guc->buf);
818 	if (err)
819 		return err;
820 
821 	/* XXX xe_guc_db_mgr_init not needed for now */
822 
823 	return 0;
824 }
825 
826 static u32 guc_additional_cache_size(struct xe_device *xe)
827 {
828 	if (IS_SRIOV_PF(xe) && xe_sriov_pf_migration_supported(xe))
829 		return XE_GT_SRIOV_PF_MIGRATION_GUC_DATA_MAX_SIZE;
830 	else
831 		return 0; /* Fallback to default size */
832 }
833 
834 /**
835  * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
836  * @guc: The GuC object
837  *
838  * Return: 0 on success, negative error code on error.
839  */
840 int xe_guc_init_post_hwconfig(struct xe_guc *guc)
841 {
842 	int ret;
843 
844 	if (IS_SRIOV_VF(guc_to_xe(guc)))
845 		return vf_guc_init_post_hwconfig(guc);
846 
847 	ret = xe_guc_realloc_post_hwconfig(guc);
848 	if (ret)
849 		return ret;
850 
851 	ret = xe_guc_ct_init_post_hwconfig(&guc->ct);
852 	if (ret)
853 		return ret;
854 
855 	guc_init_params_post_hwconfig(guc);
856 
857 	ret = xe_guc_submit_init(guc, ~0);
858 	if (ret)
859 		return ret;
860 
861 	ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
862 	if (ret)
863 		return ret;
864 
865 	ret = xe_guc_pc_init(&guc->pc);
866 	if (ret)
867 		return ret;
868 
869 	ret = xe_guc_engine_activity_init(guc);
870 	if (ret)
871 		return ret;
872 
873 	ret = xe_guc_buf_cache_init_with_size(&guc->buf,
874 					      guc_additional_cache_size(guc_to_xe(guc)));
875 	if (ret)
876 		return ret;
877 
878 	return xe_guc_ads_init_post_hwconfig(&guc->ads);
879 }
880 
881 int xe_guc_post_load_init(struct xe_guc *guc)
882 {
883 	int ret;
884 
885 	xe_guc_ads_populate_post_load(&guc->ads);
886 
887 	ret = xe_guc_opt_in_features_enable(guc);
888 	if (ret)
889 		return ret;
890 
891 	if (xe_guc_g2g_wanted(guc_to_xe(guc))) {
892 		ret = guc_g2g_start(guc);
893 		if (ret)
894 			return ret;
895 	}
896 
897 	return xe_guc_submit_enable(guc);
898 }
899 
900 int xe_guc_reset(struct xe_guc *guc)
901 {
902 	struct xe_gt *gt = guc_to_gt(guc);
903 	struct xe_mmio *mmio = &gt->mmio;
904 	u32 guc_status, gdrst;
905 	int ret;
906 
907 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
908 
909 	if (IS_SRIOV_VF(gt_to_xe(gt)))
910 		return xe_gt_sriov_vf_bootstrap(gt);
911 
912 	xe_mmio_write32(mmio, GDRST, GRDOM_GUC);
913 
914 	ret = xe_mmio_wait32(mmio, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
915 	if (ret) {
916 		xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
917 		goto err_out;
918 	}
919 
920 	guc_status = xe_mmio_read32(mmio, GUC_STATUS);
921 	if (!(guc_status & GS_MIA_IN_RESET)) {
922 		xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
923 			  guc_status);
924 		ret = -EIO;
925 		goto err_out;
926 	}
927 
928 	return 0;
929 
930 err_out:
931 
932 	return ret;
933 }
934 
935 static void guc_prepare_xfer(struct xe_guc *guc)
936 {
937 	struct xe_gt *gt = guc_to_gt(guc);
938 	struct xe_mmio *mmio = &gt->mmio;
939 	struct xe_device *xe =  guc_to_xe(guc);
940 	u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
941 		GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
942 		GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
943 		GUC_ENABLE_MIA_CLOCK_GATING;
944 
945 	if (GRAPHICS_VERx100(xe) < 1250)
946 		shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
947 				GUC_ENABLE_MIA_CACHING;
948 
949 	if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
950 		shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
951 
952 	/* Must program this register before loading the ucode with DMA */
953 	xe_mmio_write32(mmio, GUC_SHIM_CONTROL, shim_flags);
954 
955 	xe_mmio_write32(mmio, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
956 
957 	/* Make sure GuC receives ARAT interrupts */
958 	xe_mmio_rmw32(mmio, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
959 }
960 
961 /*
962  * Supporting MMIO & in memory RSA
963  */
964 static int guc_xfer_rsa(struct xe_guc *guc)
965 {
966 	struct xe_gt *gt = guc_to_gt(guc);
967 	u32 rsa[UOS_RSA_SCRATCH_COUNT];
968 	size_t copied;
969 	int i;
970 
971 	if (guc->fw.rsa_size > 256) {
972 		u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
973 				    xe_uc_fw_rsa_offset(&guc->fw);
974 		xe_mmio_write32(&gt->mmio, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
975 		return 0;
976 	}
977 
978 	copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
979 	if (copied < sizeof(rsa))
980 		return -ENOMEM;
981 
982 	for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
983 		xe_mmio_write32(&gt->mmio, UOS_RSA_SCRATCH(i), rsa[i]);
984 
985 	return 0;
986 }
987 
988 /*
989  * Wait for the GuC to start up.
990  *
991  * Measurements indicate this should take no more than 20ms (assuming the GT
992  * clock is at maximum frequency). However, thermal throttling and other issues
993  * can prevent the clock hitting max and thus making the load take significantly
994  * longer. Allow up to 3s as a safety margin in normal builds. For
995  * CONFIG_DRM_XE_DEBUG allow up to 10s to account for slower execution, issues
996  * in PCODE, driver, fan, etc.
997  *
998  * Keep checking the GUC_STATUS every 10ms with a debug message every 100
999  * attempts as a "I'm slow, but alive" message. Regardless, if it takes more
1000  * than 200ms, emit a warning.
1001  */
1002 
1003 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
1004 #define GUC_LOAD_TIMEOUT_SEC	20
1005 #else
1006 #define GUC_LOAD_TIMEOUT_SEC	3
1007 #endif
1008 #define GUC_LOAD_TIME_WARN_MSEC	200
1009 
1010 static void print_load_status_err(struct xe_gt *gt, u32 status)
1011 {
1012 	struct xe_mmio *mmio = &gt->mmio;
1013 	u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
1014 	u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
1015 
1016 	xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
1017 		  REG_FIELD_GET(GS_MIA_IN_RESET, status),
1018 		  bootrom, ukernel,
1019 		  REG_FIELD_GET(GS_MIA_MASK, status),
1020 		  REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
1021 
1022 	switch (bootrom) {
1023 	case XE_BOOTROM_STATUS_NO_KEY_FOUND:
1024 		xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
1025 			  xe_mmio_read32(mmio, GUC_HEADER_INFO));
1026 		break;
1027 	case XE_BOOTROM_STATUS_RSA_FAILED:
1028 		xe_gt_err(gt, "firmware signature verification failed\n");
1029 		break;
1030 	case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
1031 		xe_gt_err(gt, "firmware production part check failure\n");
1032 		break;
1033 	}
1034 
1035 	switch (ukernel) {
1036 	case XE_GUC_LOAD_STATUS_HWCONFIG_START:
1037 		xe_gt_err(gt, "still extracting hwconfig table.\n");
1038 		break;
1039 	case XE_GUC_LOAD_STATUS_EXCEPTION:
1040 		xe_gt_err(gt, "firmware exception. EIP: %#x\n",
1041 			  xe_mmio_read32(mmio, SOFT_SCRATCH(13)));
1042 		break;
1043 	case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
1044 		xe_gt_err(gt, "illegal init/ADS data\n");
1045 		break;
1046 	case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
1047 		xe_gt_err(gt, "illegal register in save/restore workaround list\n");
1048 		break;
1049 	case XE_GUC_LOAD_STATUS_KLV_WORKAROUND_INIT_ERROR:
1050 		xe_gt_err(gt, "illegal workaround KLV data\n");
1051 		break;
1052 	case XE_GUC_LOAD_STATUS_INVALID_FTR_FLAG:
1053 		xe_gt_err(gt, "illegal feature flag specified\n");
1054 		break;
1055 	}
1056 }
1057 
1058 /*
1059  * Check GUC_STATUS looking for known terminal states (either completion or
1060  * failure) of either the microkernel status field or the boot ROM status field.
1061  *
1062  * Returns 1 for successful completion, -1 for failure and 0 for any
1063  * intermediate state.
1064  */
1065 static int guc_load_done(struct xe_gt *gt, u32 *status, u32 *tries)
1066 {
1067 	u32 ukernel, bootrom;
1068 
1069 	*status = xe_mmio_read32(&gt->mmio, GUC_STATUS);
1070 	ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, *status);
1071 	bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, *status);
1072 
1073 	switch (ukernel) {
1074 	case XE_GUC_LOAD_STATUS_READY:
1075 		return 1;
1076 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
1077 	case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
1078 	case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
1079 	case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
1080 	case XE_GUC_LOAD_STATUS_BOOTROM_VERSION_MISMATCH:
1081 	case XE_GUC_LOAD_STATUS_DPC_ERROR:
1082 	case XE_GUC_LOAD_STATUS_EXCEPTION:
1083 	case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
1084 	case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
1085 	case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
1086 	case XE_GUC_LOAD_STATUS_KLV_WORKAROUND_INIT_ERROR:
1087 	case XE_GUC_LOAD_STATUS_INVALID_FTR_FLAG:
1088 		return -1;
1089 	}
1090 
1091 	switch (bootrom) {
1092 	case XE_BOOTROM_STATUS_NO_KEY_FOUND:
1093 	case XE_BOOTROM_STATUS_RSA_FAILED:
1094 	case XE_BOOTROM_STATUS_PAVPC_FAILED:
1095 	case XE_BOOTROM_STATUS_WOPCM_FAILED:
1096 	case XE_BOOTROM_STATUS_LOADLOC_FAILED:
1097 	case XE_BOOTROM_STATUS_JUMP_FAILED:
1098 	case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
1099 	case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
1100 	case XE_BOOTROM_STATUS_EXCEPTION:
1101 	case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
1102 		return -1;
1103 	}
1104 
1105 	if (++*tries >= 100) {
1106 		struct xe_guc_pc *guc_pc = &gt->uc.guc.pc;
1107 
1108 		*tries = 0;
1109 		xe_gt_dbg(gt, "GuC load still in progress, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
1110 			  xe_guc_pc_get_act_freq(guc_pc),
1111 			  xe_guc_pc_get_cur_freq_fw(guc_pc),
1112 			  *status, ukernel, bootrom);
1113 	}
1114 
1115 	return 0;
1116 }
1117 
1118 static int guc_wait_ucode(struct xe_guc *guc)
1119 {
1120 	struct xe_gt *gt = guc_to_gt(guc);
1121 	struct xe_guc_pc *guc_pc = &gt->uc.guc.pc;
1122 	u32 before_freq, act_freq, cur_freq;
1123 	u32 status = 0, tries = 0;
1124 	ktime_t before;
1125 	u64 delta_ms;
1126 	int ret;
1127 
1128 	before_freq = xe_guc_pc_get_act_freq(guc_pc);
1129 	before = ktime_get();
1130 
1131 	ret = poll_timeout_us(ret = guc_load_done(gt, &status, &tries), ret,
1132 			      10 * USEC_PER_MSEC,
1133 			      GUC_LOAD_TIMEOUT_SEC * USEC_PER_SEC, false);
1134 
1135 	delta_ms = ktime_to_ms(ktime_sub(ktime_get(), before));
1136 	act_freq = xe_guc_pc_get_act_freq(guc_pc);
1137 	cur_freq = xe_guc_pc_get_cur_freq_fw(guc_pc);
1138 
1139 	if (ret) {
1140 		xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz)\n",
1141 			  status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
1142 			  xe_guc_pc_get_cur_freq_fw(guc_pc));
1143 		print_load_status_err(gt, status);
1144 
1145 		return -EPROTO;
1146 	}
1147 
1148 	if (delta_ms > GUC_LOAD_TIME_WARN_MSEC) {
1149 		xe_gt_warn(gt, "GuC load: excessive init time: %lldms! [status = 0x%08X]\n",
1150 			   delta_ms, status);
1151 		xe_gt_warn(gt, "GuC load: excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
1152 			   act_freq, cur_freq, before_freq,
1153 			   xe_gt_throttle_get_limit_reasons(gt));
1154 	} else {
1155 		xe_gt_dbg(gt, "GuC load: init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X\n",
1156 			  delta_ms, act_freq, cur_freq, before_freq, status);
1157 	}
1158 
1159 	return 0;
1160 }
1161 ALLOW_ERROR_INJECTION(guc_wait_ucode, ERRNO);
1162 
1163 static int __xe_guc_upload(struct xe_guc *guc)
1164 {
1165 	int ret;
1166 
1167 	/* Raise GT freq to speed up HuC/GuC load */
1168 	xe_guc_pc_raise_unslice(&guc->pc);
1169 
1170 	guc_write_params(guc);
1171 	guc_prepare_xfer(guc);
1172 
1173 	/*
1174 	 * Note that GuC needs the CSS header plus uKernel code to be copied
1175 	 * by the DMA engine in one operation, whereas the RSA signature is
1176 	 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
1177 	 * register (if key size <= 256) or through a ggtt-pinned vma (if key
1178 	 * size > 256). The RSA size and therefore the way we provide it to the
1179 	 * HW is fixed for each platform and hard-coded in the bootrom.
1180 	 */
1181 	ret = guc_xfer_rsa(guc);
1182 	if (ret)
1183 		goto out;
1184 	/*
1185 	 * Current uCode expects the code to be loaded at 8k; locations below
1186 	 * this are used for the stack.
1187 	 */
1188 	ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
1189 	if (ret)
1190 		goto out;
1191 
1192 	/* Wait for authentication */
1193 	ret = guc_wait_ucode(guc);
1194 	if (ret)
1195 		goto out;
1196 
1197 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
1198 	return 0;
1199 
1200 out:
1201 	xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
1202 	return ret;
1203 }
1204 
1205 static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
1206 {
1207 	struct xe_gt *gt = guc_to_gt(guc);
1208 	int ret;
1209 
1210 	ret = xe_guc_hwconfig_init(guc);
1211 	if (ret)
1212 		return ret;
1213 
1214 	ret = xe_guc_enable_communication(guc);
1215 	if (ret)
1216 		return ret;
1217 
1218 	ret = xe_gt_sriov_vf_connect(gt);
1219 	if (ret)
1220 		goto err_out;
1221 
1222 	ret = xe_gt_sriov_vf_query_runtime(gt);
1223 	if (ret)
1224 		goto err_out;
1225 
1226 	return 0;
1227 
1228 err_out:
1229 	xe_guc_sanitize(guc);
1230 	return ret;
1231 }
1232 
1233 /**
1234  * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
1235  * @guc: The GuC object
1236  *
1237  * This function uploads a minimal GuC that does not support submissions but
1238  * in a state where the hwconfig table can be read. Next, it reads and parses
1239  * the hwconfig table so it can be used for subsequent steps in the driver load.
1240  * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
1241  *
1242  * Return: 0 on success, negative error code on error.
1243  */
1244 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
1245 {
1246 	int ret;
1247 
1248 	if (IS_SRIOV_VF(guc_to_xe(guc)))
1249 		return vf_guc_min_load_for_hwconfig(guc);
1250 
1251 	xe_guc_ads_populate_minimal(&guc->ads);
1252 
1253 	xe_guc_pc_init_early(&guc->pc);
1254 
1255 	ret = __xe_guc_upload(guc);
1256 	if (ret)
1257 		return ret;
1258 
1259 	ret = xe_guc_hwconfig_init(guc);
1260 	if (ret)
1261 		return ret;
1262 
1263 	ret = xe_guc_enable_communication(guc);
1264 	if (ret)
1265 		return ret;
1266 
1267 	return 0;
1268 }
1269 
1270 int xe_guc_upload(struct xe_guc *guc)
1271 {
1272 	struct xe_gt *gt = guc_to_gt(guc);
1273 
1274 	xe_guc_ads_populate(&guc->ads);
1275 
1276 	if (xe_guc_using_main_gamctrl_queues(guc))
1277 		xe_mmio_write32(&gt->mmio, MAIN_GAMCTRL_MODE, MAIN_GAMCTRL_QUEUE_SELECT);
1278 
1279 	return __xe_guc_upload(guc);
1280 }
1281 
1282 static void guc_handle_mmio_msg(struct xe_guc *guc)
1283 {
1284 	struct xe_gt *gt = guc_to_gt(guc);
1285 	u32 msg;
1286 
1287 	if (IS_SRIOV_VF(guc_to_xe(guc)))
1288 		return;
1289 
1290 	xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
1291 
1292 	msg = xe_mmio_read32(&gt->mmio, SOFT_SCRATCH(15));
1293 	msg &= XE_GUC_RECV_MSG_EXCEPTION |
1294 		XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
1295 	xe_mmio_write32(&gt->mmio, SOFT_SCRATCH(15), 0);
1296 
1297 	if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
1298 		xe_gt_err(gt, "Received early GuC crash dump notification!\n");
1299 
1300 	if (msg & XE_GUC_RECV_MSG_EXCEPTION)
1301 		xe_gt_err(gt, "Received early GuC exception notification!\n");
1302 }
1303 
1304 static void guc_enable_irq(struct xe_guc *guc)
1305 {
1306 	struct xe_gt *gt = guc_to_gt(guc);
1307 	u32 events = xe_gt_is_media_type(gt) ?
1308 		REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST)  :
1309 		REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
1310 
1311 	/* Primary GuC and media GuC share a single enable bit */
1312 	xe_mmio_write32(&gt->mmio, GUC_SG_INTR_ENABLE,
1313 			REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
1314 
1315 	/*
1316 	 * There are separate mask bits for primary and media GuCs, so use
1317 	 * a RMW operation to avoid clobbering the other GuC's setting.
1318 	 */
1319 	xe_mmio_rmw32(&gt->mmio, GUC_SG_INTR_MASK, events, 0);
1320 }
1321 
1322 int xe_guc_enable_communication(struct xe_guc *guc)
1323 {
1324 	struct xe_device *xe = guc_to_xe(guc);
1325 	int err;
1326 
1327 	if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
1328 		struct xe_gt *gt = guc_to_gt(guc);
1329 		struct xe_tile *tile = gt_to_tile(gt);
1330 
1331 		err = xe_memirq_init_guc(&tile->memirq, guc);
1332 		if (err)
1333 			return err;
1334 	} else {
1335 		guc_enable_irq(guc);
1336 	}
1337 
1338 	err = xe_guc_ct_enable(&guc->ct);
1339 	if (err)
1340 		return err;
1341 
1342 	guc_handle_mmio_msg(guc);
1343 
1344 	return 0;
1345 }
1346 
1347 int xe_guc_suspend(struct xe_guc *guc)
1348 {
1349 	struct xe_gt *gt = guc_to_gt(guc);
1350 	u32 action[] = {
1351 		XE_GUC_ACTION_CLIENT_SOFT_RESET,
1352 	};
1353 	int ret;
1354 
1355 	ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
1356 	if (ret) {
1357 		xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
1358 		return ret;
1359 	}
1360 
1361 	xe_guc_sanitize(guc);
1362 	return 0;
1363 }
1364 
1365 void xe_guc_notify(struct xe_guc *guc)
1366 {
1367 	struct xe_gt *gt = guc_to_gt(guc);
1368 	const u32 default_notify_data = 0;
1369 
1370 	/*
1371 	 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
1372 	 * additional payload data to the GuC but this capability is not
1373 	 * used by the firmware yet. Use default value in the meantime.
1374 	 */
1375 	xe_mmio_write32(&gt->mmio, guc->notify_reg, default_notify_data);
1376 }
1377 
1378 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
1379 {
1380 	u32 action[] = {
1381 		XE_GUC_ACTION_AUTHENTICATE_HUC,
1382 		rsa_addr
1383 	};
1384 
1385 	return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
1386 }
1387 
1388 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
1389 			  u32 len, u32 *response_buf)
1390 {
1391 	struct xe_device *xe = guc_to_xe(guc);
1392 	struct xe_gt *gt = guc_to_gt(guc);
1393 	struct xe_mmio *mmio = &gt->mmio;
1394 	u32 header, reply;
1395 	struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
1396 		MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
1397 	const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
1398 	bool lost = false;
1399 	int ret;
1400 	int i;
1401 
1402 	BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
1403 
1404 	xe_assert(xe, len);
1405 	xe_assert(xe, len <= VF_SW_FLAG_COUNT);
1406 	xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
1407 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
1408 		  GUC_HXG_ORIGIN_HOST);
1409 	xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
1410 		  GUC_HXG_TYPE_REQUEST);
1411 
1412 retry:
1413 	/* Not in critical data-path, just do if else for GT type */
1414 	if (xe_gt_is_media_type(gt)) {
1415 		for (i = 0; i < len; ++i)
1416 			xe_mmio_write32(mmio, MED_VF_SW_FLAG(i),
1417 					request[i]);
1418 		xe_mmio_read32(mmio, MED_VF_SW_FLAG(LAST_INDEX));
1419 	} else {
1420 		for (i = 0; i < len; ++i)
1421 			xe_mmio_write32(mmio, VF_SW_FLAG(i),
1422 					request[i]);
1423 		xe_mmio_read32(mmio, VF_SW_FLAG(LAST_INDEX));
1424 	}
1425 
1426 	xe_guc_notify(guc);
1427 
1428 	ret = xe_mmio_wait32(mmio, reply_reg, GUC_HXG_MSG_0_ORIGIN,
1429 			     FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
1430 			     50000, &reply, false);
1431 	if (ret) {
1432 		/* scratch registers might be cleared during FLR, try once more */
1433 		if (!reply && !lost) {
1434 			xe_gt_dbg(gt, "GuC mmio request %#x: lost, trying again\n", request[0]);
1435 			lost = true;
1436 			goto retry;
1437 		}
1438 timeout:
1439 		xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
1440 			  request[0], reply);
1441 		return ret;
1442 	}
1443 
1444 	header = xe_mmio_read32(mmio, reply_reg);
1445 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1446 	    GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
1447 		/*
1448 		 * Once we got a BUSY reply we must wait again for the final
1449 		 * response but this time we can't use ORIGIN mask anymore.
1450 		 * To spot a right change in the reply, we take advantage that
1451 		 * response SUCCESS and FAILURE differ only by the single bit
1452 		 * and all other bits are set and can be used as a new mask.
1453 		 */
1454 		u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
1455 		u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
1456 
1457 		BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
1458 		BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
1459 
1460 		ret = xe_mmio_wait32(mmio, reply_reg, resp_mask, resp_mask,
1461 				     2000000, &header, false);
1462 
1463 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
1464 			     GUC_HXG_ORIGIN_GUC))
1465 			goto proto;
1466 		if (unlikely(ret)) {
1467 			if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1468 			    GUC_HXG_TYPE_NO_RESPONSE_BUSY)
1469 				goto proto;
1470 			goto timeout;
1471 		}
1472 	}
1473 
1474 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1475 	    GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1476 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
1477 
1478 		xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
1479 			  request[0], reason);
1480 		goto retry;
1481 	}
1482 
1483 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1484 	    GUC_HXG_TYPE_RESPONSE_FAILURE) {
1485 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
1486 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
1487 
1488 		xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
1489 			  request[0], error, hint);
1490 		return -ENXIO;
1491 	}
1492 
1493 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1494 	    GUC_HXG_TYPE_RESPONSE_SUCCESS) {
1495 proto:
1496 		xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
1497 			  request[0], header);
1498 		return -EPROTO;
1499 	}
1500 
1501 	/* Just copy entire possible message response */
1502 	if (response_buf) {
1503 		response_buf[0] = header;
1504 
1505 		for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
1506 			reply_reg.addr += sizeof(u32);
1507 			response_buf[i] = xe_mmio_read32(mmio, reply_reg);
1508 		}
1509 	}
1510 
1511 	/* Use data from the GuC response as our return value */
1512 	return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
1513 }
1514 ALLOW_ERROR_INJECTION(xe_guc_mmio_send_recv, ERRNO);
1515 
1516 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
1517 {
1518 	return xe_guc_mmio_send_recv(guc, request, len, NULL);
1519 }
1520 
1521 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
1522 {
1523 	struct xe_device *xe = guc_to_xe(guc);
1524 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
1525 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
1526 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
1527 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
1528 			   GUC_ACTION_HOST2GUC_SELF_CFG),
1529 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
1530 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
1531 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
1532 			   lower_32_bits(val)),
1533 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
1534 			   upper_32_bits(val)),
1535 	};
1536 	int ret;
1537 
1538 	xe_assert(xe, len <= 2);
1539 	xe_assert(xe, len != 1 || !upper_32_bits(val));
1540 
1541 	/* Self config must go over MMIO */
1542 	ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
1543 
1544 	if (unlikely(ret < 0))
1545 		return ret;
1546 	if (unlikely(ret > 1))
1547 		return -EPROTO;
1548 	if (unlikely(!ret))
1549 		return -ENOKEY;
1550 
1551 	return 0;
1552 }
1553 
1554 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
1555 {
1556 	return guc_self_cfg(guc, key, 1, val);
1557 }
1558 
1559 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
1560 {
1561 	return guc_self_cfg(guc, key, 2, val);
1562 }
1563 
1564 static void xe_guc_sw_0_irq_handler(struct xe_guc *guc)
1565 {
1566 	struct xe_gt *gt = guc_to_gt(guc);
1567 
1568 	if (IS_SRIOV_VF(gt_to_xe(gt)))
1569 		xe_gt_sriov_vf_migrated_event_handler(gt);
1570 }
1571 
1572 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
1573 {
1574 	if (iir & GUC_INTR_GUC2HOST)
1575 		xe_guc_ct_irq_handler(&guc->ct);
1576 
1577 	if (iir & GUC_INTR_SW_INT_0)
1578 		xe_guc_sw_0_irq_handler(guc);
1579 }
1580 
1581 void xe_guc_sanitize(struct xe_guc *guc)
1582 {
1583 	xe_uc_fw_sanitize(&guc->fw);
1584 	xe_guc_ct_disable(&guc->ct);
1585 	xe_guc_submit_disable(guc);
1586 }
1587 
1588 int xe_guc_reset_prepare(struct xe_guc *guc)
1589 {
1590 	return xe_guc_submit_reset_prepare(guc);
1591 }
1592 
1593 void xe_guc_reset_wait(struct xe_guc *guc)
1594 {
1595 	xe_guc_submit_reset_wait(guc);
1596 }
1597 
1598 void xe_guc_stop_prepare(struct xe_guc *guc)
1599 {
1600 	if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1601 		int err;
1602 
1603 		err = xe_guc_pc_stop(&guc->pc);
1604 		xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
1605 			   ERR_PTR(err));
1606 	}
1607 }
1608 
1609 void xe_guc_stop(struct xe_guc *guc)
1610 {
1611 	xe_guc_ct_stop(&guc->ct);
1612 
1613 	xe_guc_submit_stop(guc);
1614 }
1615 
1616 int xe_guc_start(struct xe_guc *guc)
1617 {
1618 	return xe_guc_submit_start(guc);
1619 }
1620 
1621 void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
1622 {
1623 	struct xe_gt *gt = guc_to_gt(guc);
1624 	unsigned int fw_ref;
1625 	u32 status;
1626 	int i;
1627 
1628 	xe_uc_fw_print(&guc->fw, p);
1629 
1630 	if (!IS_SRIOV_VF(gt_to_xe(gt))) {
1631 		fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1632 		if (!fw_ref)
1633 			return;
1634 
1635 		status = xe_mmio_read32(&gt->mmio, GUC_STATUS);
1636 
1637 		drm_printf(p, "\nGuC status 0x%08x:\n", status);
1638 		drm_printf(p, "\tBootrom status = 0x%x\n",
1639 			   REG_FIELD_GET(GS_BOOTROM_MASK, status));
1640 		drm_printf(p, "\tuKernel status = 0x%x\n",
1641 			   REG_FIELD_GET(GS_UKERNEL_MASK, status));
1642 		drm_printf(p, "\tMIA Core status = 0x%x\n",
1643 			   REG_FIELD_GET(GS_MIA_MASK, status));
1644 		drm_printf(p, "\tLog level = %d\n",
1645 			   xe_guc_log_get_level(&guc->log));
1646 
1647 		drm_puts(p, "\nScratch registers:\n");
1648 		for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
1649 			drm_printf(p, "\t%2d: \t0x%x\n",
1650 				   i, xe_mmio_read32(&gt->mmio, SOFT_SCRATCH(i)));
1651 		}
1652 
1653 		xe_force_wake_put(gt_to_fw(gt), fw_ref);
1654 	}
1655 
1656 	drm_puts(p, "\n");
1657 	xe_guc_ct_print(&guc->ct, p, false);
1658 
1659 	drm_puts(p, "\n");
1660 	xe_guc_submit_print(guc, p);
1661 }
1662 
1663 /**
1664  * xe_guc_declare_wedged() - Declare GuC wedged
1665  * @guc: the GuC object
1666  *
1667  * Wedge the GuC which stops all submission, saves desired debug state, and
1668  * cleans up anything which could timeout.
1669  */
1670 void xe_guc_declare_wedged(struct xe_guc *guc)
1671 {
1672 	xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
1673 
1674 	xe_guc_reset_prepare(guc);
1675 	xe_guc_ct_stop(&guc->ct);
1676 	xe_guc_submit_wedge(guc);
1677 }
1678 
1679 /**
1680  * xe_guc_using_main_gamctrl_queues() - Detect which reporting queues to use.
1681  * @guc: The GuC object
1682  *
1683  * For Xe3p and beyond, we want to program the hardware to use the
1684  * "Main GAMCTRL queue" rather than the legacy queue before we upload
1685  * the GuC firmware.  This will allow the GuC to use a new set of
1686  * registers for pagefault handling and avoid some unnecessary
1687  * complications with MCR register range handling.
1688  *
1689  * Return: true if can use new main gamctrl queues.
1690  */
1691 bool xe_guc_using_main_gamctrl_queues(struct xe_guc *guc)
1692 {
1693 	struct xe_gt *gt = guc_to_gt(guc);
1694 
1695 	/*
1696 	 * For Xe3p media gt (35), the GuC and the CS subunits may be still Xe3
1697 	 * that lacks the Main GAMCTRL support. Reserved bits from the GMD_ID
1698 	 * inform the IP version of the subunits.
1699 	 */
1700 	if (xe_gt_is_media_type(gt) && MEDIA_VER(gt_to_xe(gt)) == 35) {
1701 		u32 val = xe_mmio_read32(&gt->mmio, GMD_ID);
1702 		u32 subip = REG_FIELD_GET(GMD_ID_SUBIP_FLAG_MASK, val);
1703 
1704 		if (!subip)
1705 			return true;
1706 
1707 		xe_gt_WARN(gt, subip != 1,
1708 			   "GMD_ID has unknown value in the SUBIP_FLAG field - 0x%x\n",
1709 			   subip);
1710 
1711 		return false;
1712 	}
1713 
1714 	return GT_VER(gt) >= 35;
1715 }
1716 
1717 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1718 #include "tests/xe_guc_g2g_test.c"
1719 #endif
1720