1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include "xe_guc.h"
7
8 #include <linux/iopoll.h>
9 #include <drm/drm_managed.h>
10
11 #include <generated/xe_wa_oob.h>
12
13 #include "abi/guc_actions_abi.h"
14 #include "abi/guc_errors_abi.h"
15 #include "regs/xe_gt_regs.h"
16 #include "regs/xe_gtt_defs.h"
17 #include "regs/xe_guc_regs.h"
18 #include "regs/xe_irq_regs.h"
19 #include "xe_bo.h"
20 #include "xe_configfs.h"
21 #include "xe_device.h"
22 #include "xe_force_wake.h"
23 #include "xe_gt.h"
24 #include "xe_gt_printk.h"
25 #include "xe_gt_sriov_vf.h"
26 #include "xe_gt_throttle.h"
27 #include "xe_gt_sriov_pf_migration.h"
28 #include "xe_guc_ads.h"
29 #include "xe_guc_buf.h"
30 #include "xe_guc_capture.h"
31 #include "xe_guc_ct.h"
32 #include "xe_guc_db_mgr.h"
33 #include "xe_guc_engine_activity.h"
34 #include "xe_guc_hwconfig.h"
35 #include "xe_guc_klv_helpers.h"
36 #include "xe_guc_log.h"
37 #include "xe_guc_pc.h"
38 #include "xe_guc_relay.h"
39 #include "xe_guc_submit.h"
40 #include "xe_memirq.h"
41 #include "xe_mmio.h"
42 #include "xe_platform_types.h"
43 #include "xe_sriov.h"
44 #include "xe_sriov_pf_migration.h"
45 #include "xe_uc.h"
46 #include "xe_uc_fw.h"
47 #include "xe_wa.h"
48 #include "xe_wopcm.h"
49
guc_bo_ggtt_addr(struct xe_guc * guc,struct xe_bo * bo)50 static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
51 struct xe_bo *bo)
52 {
53 struct xe_device *xe = guc_to_xe(guc);
54 u32 addr;
55
56 /*
57 * For most BOs, the address on the allocating tile is fine. However for
58 * some, e.g. G2G CTB, the address on a specific tile is required as it
59 * might be different for each tile. So, just always ask for the address
60 * on the target GuC.
61 */
62 addr = __xe_bo_ggtt_addr(bo, gt_to_tile(guc_to_gt(guc))->id);
63
64 /* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
65 xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
66 xe_assert(xe, addr < GUC_GGTT_TOP);
67 xe_assert(xe, xe_bo_size(bo) <= GUC_GGTT_TOP - addr);
68
69 return addr;
70 }
71
guc_ctl_debug_flags(struct xe_guc * guc)72 static u32 guc_ctl_debug_flags(struct xe_guc *guc)
73 {
74 u32 level = xe_guc_log_get_level(&guc->log);
75 u32 flags = 0;
76
77 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
78 flags |= GUC_LOG_DISABLED;
79 else
80 flags |= FIELD_PREP(GUC_LOG_VERBOSITY, GUC_LOG_LEVEL_TO_VERBOSITY(level));
81
82 return flags;
83 }
84
guc_ctl_feature_flags(struct xe_guc * guc)85 static u32 guc_ctl_feature_flags(struct xe_guc *guc)
86 {
87 struct xe_device *xe = guc_to_xe(guc);
88 u32 flags = GUC_CTL_ENABLE_LITE_RESTORE;
89
90 if (!xe->info.skip_guc_pc)
91 flags |= GUC_CTL_ENABLE_SLPC;
92
93 if (xe_configfs_get_psmi_enabled(to_pci_dev(xe->drm.dev)))
94 flags |= GUC_CTL_ENABLE_PSMI_LOGGING;
95
96 if (xe_guc_using_main_gamctrl_queues(guc))
97 flags |= GUC_CTL_MAIN_GAMCTRL_QUEUES;
98
99 return flags;
100 }
101
guc_ctl_log_params_flags(struct xe_guc * guc)102 static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
103 {
104 u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
105 u32 flags;
106
107 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
108 #define LOG_UNIT SZ_1M
109 #define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
110 #else
111 #define LOG_UNIT SZ_4K
112 #define LOG_FLAG 0
113 #endif
114
115 #if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
116 #define CAPTURE_UNIT SZ_1M
117 #define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
118 #else
119 #define CAPTURE_UNIT SZ_4K
120 #define CAPTURE_FLAG 0
121 #endif
122
123 BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
124 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
125 BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
126 BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
127 BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
128 BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
129
130 flags = GUC_LOG_VALID |
131 GUC_LOG_NOTIFY_ON_HALF_FULL |
132 CAPTURE_FLAG |
133 LOG_FLAG |
134 FIELD_PREP(GUC_LOG_CRASH, CRASH_BUFFER_SIZE / LOG_UNIT - 1) |
135 FIELD_PREP(GUC_LOG_DEBUG, DEBUG_BUFFER_SIZE / LOG_UNIT - 1) |
136 FIELD_PREP(GUC_LOG_CAPTURE, CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) |
137 FIELD_PREP(GUC_LOG_BUF_ADDR, offset);
138
139 #undef LOG_UNIT
140 #undef LOG_FLAG
141 #undef CAPTURE_UNIT
142 #undef CAPTURE_FLAG
143
144 return flags;
145 }
146
guc_ctl_ads_flags(struct xe_guc * guc)147 static u32 guc_ctl_ads_flags(struct xe_guc *guc)
148 {
149 u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
150 u32 flags = FIELD_PREP(GUC_ADS_ADDR, ads);
151
152 return flags;
153 }
154
needs_wa_dual_queue(struct xe_gt * gt)155 static bool needs_wa_dual_queue(struct xe_gt *gt)
156 {
157 /*
158 * The DUAL_QUEUE_WA tells the GuC to not allow concurrent submissions
159 * on RCS and CCSes with different address spaces, which on DG2 is
160 * required as a WA for an HW bug.
161 */
162 if (XE_GT_WA(gt, 22011391025))
163 return true;
164
165 /*
166 * On newer platforms, the HW has been updated to not allow parallel
167 * execution of different address spaces, so the RCS/CCS will stall the
168 * context switch if one of the other RCS/CCSes is busy with a different
169 * address space. While functionally correct, having a submission
170 * stalled on the HW limits the GuC ability to shuffle things around and
171 * can cause complications if the non-stalled submission runs for a long
172 * time, because the GuC doesn't know that the stalled submission isn't
173 * actually running and might declare it as hung. Therefore, we enable
174 * the DUAL_QUEUE_WA on all newer platforms on GTs that have CCS engines
175 * to move management back to the GuC.
176 */
177 if (CCS_MASK(gt) && GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
178 return true;
179
180 return false;
181 }
182
guc_ctl_wa_flags(struct xe_guc * guc)183 static u32 guc_ctl_wa_flags(struct xe_guc *guc)
184 {
185 struct xe_device *xe = guc_to_xe(guc);
186 struct xe_gt *gt = guc_to_gt(guc);
187 u32 flags = 0;
188
189 if (XE_GT_WA(gt, 22012773006))
190 flags |= GUC_WA_POLLCS;
191
192 if (XE_GT_WA(gt, 14014475959))
193 flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
194
195 if (needs_wa_dual_queue(gt))
196 flags |= GUC_WA_DUAL_QUEUE;
197
198 /*
199 * Wa_22011802037: FIXME - there's more to be done than simply setting
200 * this flag: make sure each CS is stopped when preparing for GT reset
201 * and wait for pending MI_FW.
202 */
203 if (GRAPHICS_VERx100(xe) < 1270)
204 flags |= GUC_WA_PRE_PARSER;
205
206 if (XE_GT_WA(gt, 22012727170) || XE_GT_WA(gt, 22012727685))
207 flags |= GUC_WA_CONTEXT_ISOLATION;
208
209 if (XE_GT_WA(gt, 18020744125) &&
210 !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
211 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
212
213 if (XE_GT_WA(gt, 1509372804))
214 flags |= GUC_WA_RENDER_RST_RC6_EXIT;
215
216 if (XE_GT_WA(gt, 14018913170))
217 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
218
219 if (XE_GT_WA(gt, 16023683509))
220 flags |= GUC_WA_SAVE_RESTORE_MCFG_REG_AT_MC6;
221
222 return flags;
223 }
224
guc_ctl_devid(struct xe_guc * guc)225 static u32 guc_ctl_devid(struct xe_guc *guc)
226 {
227 struct xe_device *xe = guc_to_xe(guc);
228
229 return (((u32)xe->info.devid) << 16) | xe->info.revid;
230 }
231
guc_print_params(struct xe_guc * guc)232 static void guc_print_params(struct xe_guc *guc)
233 {
234 struct xe_gt *gt = guc_to_gt(guc);
235 u32 *params = guc->params;
236 int i;
237
238 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
239 BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
240
241 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
242 xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
243 }
244
guc_init_params(struct xe_guc * guc)245 static void guc_init_params(struct xe_guc *guc)
246 {
247 u32 *params = guc->params;
248
249 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
250 params[GUC_CTL_FEATURE] = 0;
251 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
252 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
253 params[GUC_CTL_WA] = 0;
254 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
255
256 guc_print_params(guc);
257 }
258
guc_init_params_post_hwconfig(struct xe_guc * guc)259 static void guc_init_params_post_hwconfig(struct xe_guc *guc)
260 {
261 u32 *params = guc->params;
262
263 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
264 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
265 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
266 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
267 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
268 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
269
270 guc_print_params(guc);
271 }
272
273 /*
274 * Initialize the GuC parameter block before starting the firmware
275 * transfer. These parameters are read by the firmware on startup
276 * and cannot be changed thereafter.
277 */
guc_write_params(struct xe_guc * guc)278 static void guc_write_params(struct xe_guc *guc)
279 {
280 struct xe_gt *gt = guc_to_gt(guc);
281 int i;
282
283 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
284
285 xe_mmio_write32(>->mmio, SOFT_SCRATCH(0), 0);
286
287 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
288 xe_mmio_write32(>->mmio, SOFT_SCRATCH(1 + i), guc->params[i]);
289 }
290
guc_action_register_g2g_buffer(struct xe_guc * guc,u32 type,u32 dst_tile,u32 dst_dev,u32 desc_addr,u32 buff_addr,u32 size)291 static int guc_action_register_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev,
292 u32 desc_addr, u32 buff_addr, u32 size)
293 {
294 struct xe_gt *gt = guc_to_gt(guc);
295 struct xe_device *xe = gt_to_xe(gt);
296 u32 action[] = {
297 XE_GUC_ACTION_REGISTER_G2G,
298 FIELD_PREP(XE_G2G_REGISTER_SIZE, size / SZ_4K - 1) |
299 FIELD_PREP(XE_G2G_REGISTER_TYPE, type) |
300 FIELD_PREP(XE_G2G_REGISTER_TILE, dst_tile) |
301 FIELD_PREP(XE_G2G_REGISTER_DEVICE, dst_dev),
302 desc_addr,
303 buff_addr,
304 };
305
306 xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
307 xe_assert(xe, !(size % SZ_4K));
308
309 return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
310 }
311
guc_action_deregister_g2g_buffer(struct xe_guc * guc,u32 type,u32 dst_tile,u32 dst_dev)312 static int guc_action_deregister_g2g_buffer(struct xe_guc *guc, u32 type, u32 dst_tile, u32 dst_dev)
313 {
314 struct xe_gt *gt = guc_to_gt(guc);
315 struct xe_device *xe = gt_to_xe(gt);
316 u32 action[] = {
317 XE_GUC_ACTION_DEREGISTER_G2G,
318 FIELD_PREP(XE_G2G_DEREGISTER_TYPE, type) |
319 FIELD_PREP(XE_G2G_DEREGISTER_TILE, dst_tile) |
320 FIELD_PREP(XE_G2G_DEREGISTER_DEVICE, dst_dev),
321 };
322
323 xe_assert(xe, (type == XE_G2G_TYPE_IN) || (type == XE_G2G_TYPE_OUT));
324
325 return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
326 }
327
328 #define G2G_DEV(gt) (((gt)->info.type == XE_GT_TYPE_MAIN) ? 0 : 1)
329
330 #define G2G_BUFFER_SIZE (SZ_4K)
331 #define G2G_DESC_SIZE (64)
332 #define G2G_DESC_AREA_SIZE (SZ_4K)
333
334 /*
335 * Generate a unique id for each bi-directional CTB for each pair of
336 * near and far tiles/devices. The id can then be used as an index into
337 * a single allocation that is sub-divided into multiple CTBs.
338 *
339 * For example, with two devices per tile and two tiles, the table should
340 * look like:
341 * Far <tile>.<dev>
342 * 0.0 0.1 1.0 1.1
343 * N 0.0 --/-- 00/01 02/03 04/05
344 * e 0.1 01/00 --/-- 06/07 08/09
345 * a 1.0 03/02 07/06 --/-- 10/11
346 * r 1.1 05/04 09/08 11/10 --/--
347 *
348 * Where each entry is Rx/Tx channel id.
349 *
350 * So GuC #3 (tile 1, dev 1) talking to GuC #2 (tile 1, dev 0) would
351 * be reading from channel #11 and writing to channel #10. Whereas,
352 * GuC #2 talking to GuC #3 would be read on #10 and write to #11.
353 */
g2g_slot(u32 near_tile,u32 near_dev,u32 far_tile,u32 far_dev,u32 type,u32 max_inst,bool have_dev)354 static unsigned int g2g_slot(u32 near_tile, u32 near_dev, u32 far_tile, u32 far_dev,
355 u32 type, u32 max_inst, bool have_dev)
356 {
357 u32 near = near_tile, far = far_tile;
358 u32 idx = 0, x, y, direction;
359 int i;
360
361 if (have_dev) {
362 near = (near << 1) | near_dev;
363 far = (far << 1) | far_dev;
364 }
365
366 /* No need to send to one's self */
367 if (far == near)
368 return -1;
369
370 if (far > near) {
371 /* Top right table half */
372 x = far;
373 y = near;
374
375 /* T/R is 'forwards' direction */
376 direction = type;
377 } else {
378 /* Bottom left table half */
379 x = near;
380 y = far;
381
382 /* B/L is 'backwards' direction */
383 direction = (1 - type);
384 }
385
386 /* Count the rows prior to the target */
387 for (i = y; i > 0; i--)
388 idx += max_inst - i;
389
390 /* Count this row up to the target */
391 idx += (x - 1 - y);
392
393 /* Slots are in Rx/Tx pairs */
394 idx *= 2;
395
396 /* Pick Rx/Tx direction */
397 idx += direction;
398
399 return idx;
400 }
401
guc_g2g_register(struct xe_guc * near_guc,struct xe_gt * far_gt,u32 type,bool have_dev)402 static int guc_g2g_register(struct xe_guc *near_guc, struct xe_gt *far_gt, u32 type, bool have_dev)
403 {
404 struct xe_gt *near_gt = guc_to_gt(near_guc);
405 struct xe_device *xe = gt_to_xe(near_gt);
406 struct xe_bo *g2g_bo;
407 u32 near_tile = gt_to_tile(near_gt)->id;
408 u32 near_dev = G2G_DEV(near_gt);
409 u32 far_tile = gt_to_tile(far_gt)->id;
410 u32 far_dev = G2G_DEV(far_gt);
411 u32 max = xe->info.gt_count;
412 u32 base, desc, buf;
413 int slot;
414
415 /* G2G is not allowed between different cards */
416 xe_assert(xe, xe == gt_to_xe(far_gt));
417
418 g2g_bo = near_guc->g2g.bo;
419 xe_assert(xe, g2g_bo);
420
421 slot = g2g_slot(near_tile, near_dev, far_tile, far_dev, type, max, have_dev);
422 xe_assert(xe, slot >= 0);
423
424 base = guc_bo_ggtt_addr(near_guc, g2g_bo);
425 desc = base + slot * G2G_DESC_SIZE;
426 buf = base + G2G_DESC_AREA_SIZE + slot * G2G_BUFFER_SIZE;
427
428 xe_assert(xe, (desc - base + G2G_DESC_SIZE) <= G2G_DESC_AREA_SIZE);
429 xe_assert(xe, (buf - base + G2G_BUFFER_SIZE) <= xe_bo_size(g2g_bo));
430
431 return guc_action_register_g2g_buffer(near_guc, type, far_tile, far_dev,
432 desc, buf, G2G_BUFFER_SIZE);
433 }
434
guc_g2g_deregister(struct xe_guc * guc,u32 far_tile,u32 far_dev,u32 type)435 static void guc_g2g_deregister(struct xe_guc *guc, u32 far_tile, u32 far_dev, u32 type)
436 {
437 guc_action_deregister_g2g_buffer(guc, type, far_tile, far_dev);
438 }
439
guc_g2g_size(struct xe_guc * guc)440 static u32 guc_g2g_size(struct xe_guc *guc)
441 {
442 struct xe_gt *gt = guc_to_gt(guc);
443 struct xe_device *xe = gt_to_xe(gt);
444 unsigned int count = xe->info.gt_count;
445 u32 num_channels = (count * (count - 1)) / 2;
446
447 xe_assert(xe, num_channels * XE_G2G_TYPE_LIMIT * G2G_DESC_SIZE <= G2G_DESC_AREA_SIZE);
448
449 return num_channels * XE_G2G_TYPE_LIMIT * G2G_BUFFER_SIZE + G2G_DESC_AREA_SIZE;
450 }
451
xe_guc_g2g_wanted(struct xe_device * xe)452 static bool xe_guc_g2g_wanted(struct xe_device *xe)
453 {
454 /* Can't do GuC to GuC communication if there is only one GuC */
455 if (xe->info.gt_count <= 1)
456 return false;
457
458 /* No current user */
459 return false;
460 }
461
guc_g2g_alloc(struct xe_guc * guc)462 static int guc_g2g_alloc(struct xe_guc *guc)
463 {
464 struct xe_gt *gt = guc_to_gt(guc);
465 struct xe_device *xe = gt_to_xe(gt);
466 struct xe_tile *tile = gt_to_tile(gt);
467 struct xe_bo *bo;
468 u32 g2g_size;
469
470 if (guc->g2g.bo)
471 return 0;
472
473 if (gt->info.id != 0) {
474 struct xe_gt *root_gt = xe_device_get_gt(xe, 0);
475 struct xe_guc *root_guc = &root_gt->uc.guc;
476 struct xe_bo *bo;
477
478 bo = xe_bo_get(root_guc->g2g.bo);
479 if (!bo)
480 return -ENODEV;
481
482 guc->g2g.bo = bo;
483 guc->g2g.owned = false;
484 return 0;
485 }
486
487 g2g_size = guc_g2g_size(guc);
488 bo = xe_managed_bo_create_pin_map(xe, tile, g2g_size,
489 XE_BO_FLAG_VRAM_IF_DGFX(tile) |
490 XE_BO_FLAG_GGTT |
491 XE_BO_FLAG_GGTT_ALL |
492 XE_BO_FLAG_GGTT_INVALIDATE |
493 XE_BO_FLAG_PINNED_NORESTORE);
494 if (IS_ERR(bo))
495 return PTR_ERR(bo);
496
497 xe_map_memset(xe, &bo->vmap, 0, 0, g2g_size);
498 guc->g2g.bo = bo;
499 guc->g2g.owned = true;
500
501 return 0;
502 }
503
guc_g2g_fini(struct xe_guc * guc)504 static void guc_g2g_fini(struct xe_guc *guc)
505 {
506 if (!guc->g2g.bo)
507 return;
508
509 /* Unpinning the owned object is handled by generic shutdown */
510 if (!guc->g2g.owned)
511 xe_bo_put(guc->g2g.bo);
512
513 guc->g2g.bo = NULL;
514 }
515
guc_g2g_start(struct xe_guc * guc)516 static int guc_g2g_start(struct xe_guc *guc)
517 {
518 struct xe_gt *far_gt, *gt = guc_to_gt(guc);
519 struct xe_device *xe = gt_to_xe(gt);
520 unsigned int i, j;
521 int t, err;
522 bool have_dev;
523
524 if (!guc->g2g.bo) {
525 int ret;
526
527 ret = guc_g2g_alloc(guc);
528 if (ret)
529 return ret;
530 }
531
532 /* GuC interface will need extending if more GT device types are ever created. */
533 xe_gt_assert(gt, (gt->info.type == XE_GT_TYPE_MAIN) || (gt->info.type == XE_GT_TYPE_MEDIA));
534
535 /* Channel numbering depends on whether there are multiple GTs per tile */
536 have_dev = xe->info.gt_count > xe->info.tile_count;
537
538 for_each_gt(far_gt, xe, i) {
539 u32 far_tile, far_dev;
540
541 if (far_gt->info.id == gt->info.id)
542 continue;
543
544 far_tile = gt_to_tile(far_gt)->id;
545 far_dev = G2G_DEV(far_gt);
546
547 for (t = 0; t < XE_G2G_TYPE_LIMIT; t++) {
548 err = guc_g2g_register(guc, far_gt, t, have_dev);
549 if (err) {
550 while (--t >= 0)
551 guc_g2g_deregister(guc, far_tile, far_dev, t);
552 goto err_deregister;
553 }
554 }
555 }
556
557 return 0;
558
559 err_deregister:
560 for_each_gt(far_gt, xe, j) {
561 u32 tile, dev;
562
563 if (far_gt->info.id == gt->info.id)
564 continue;
565
566 if (j >= i)
567 break;
568
569 tile = gt_to_tile(far_gt)->id;
570 dev = G2G_DEV(far_gt);
571
572 for (t = 0; t < XE_G2G_TYPE_LIMIT; t++)
573 guc_g2g_deregister(guc, tile, dev, t);
574 }
575
576 return err;
577 }
578
__guc_opt_in_features_enable(struct xe_guc * guc,u64 addr,u32 num_dwords)579 static int __guc_opt_in_features_enable(struct xe_guc *guc, u64 addr, u32 num_dwords)
580 {
581 u32 action[] = {
582 XE_GUC_ACTION_OPT_IN_FEATURE_KLV,
583 lower_32_bits(addr),
584 upper_32_bits(addr),
585 num_dwords
586 };
587
588 return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
589 }
590
supports_dynamic_ics(struct xe_guc * guc)591 static bool supports_dynamic_ics(struct xe_guc *guc)
592 {
593 struct xe_device *xe = guc_to_xe(guc);
594 struct xe_gt *gt = guc_to_gt(guc);
595
596 /* Dynamic ICS is available for PVC and Xe2 and newer platforms. */
597 if (xe->info.platform != XE_PVC && GRAPHICS_VER(xe) < 20)
598 return false;
599
600 /*
601 * The feature is currently not compatible with multi-lrc, so the GuC
602 * does not support it at all on the media engines (which are the main
603 * users of mlrc). On the primary GT side, to avoid it being used in
604 * conjunction with mlrc, we only enable it if we are in single CCS
605 * mode.
606 */
607 if (xe_gt_is_media_type(gt) || gt->ccs_mode > 1)
608 return false;
609
610 /*
611 * Dynamic ICS requires GuC v70.40.1, which maps to compatibility
612 * version v1.18.4.
613 */
614 return GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 18, 4);
615 }
616
617 #define OPT_IN_MAX_DWORDS 16
xe_guc_opt_in_features_enable(struct xe_guc * guc)618 int xe_guc_opt_in_features_enable(struct xe_guc *guc)
619 {
620 struct xe_device *xe = guc_to_xe(guc);
621 CLASS(xe_guc_buf, buf)(&guc->buf, OPT_IN_MAX_DWORDS);
622 u32 count = 0;
623 u32 *klvs;
624 int ret;
625
626 if (!xe_guc_buf_is_valid(buf))
627 return -ENOBUFS;
628
629 klvs = xe_guc_buf_cpu_ptr(buf);
630
631 /*
632 * The extra CAT error type opt-in was added in GuC v70.17.0, which maps
633 * to compatibility version v1.7.0.
634 * Note that the GuC allows enabling this KLV even on platforms that do
635 * not support the extra type; in such case the returned type variable
636 * will be set to a known invalid value which we can check against.
637 */
638 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 7, 0))
639 klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_EXT_CAT_ERR_TYPE);
640
641 if (supports_dynamic_ics(guc))
642 klvs[count++] = PREP_GUC_KLV_TAG(OPT_IN_FEATURE_DYNAMIC_INHIBIT_CONTEXT_SWITCH);
643
644 if (count) {
645 xe_assert(xe, count <= OPT_IN_MAX_DWORDS);
646
647 ret = __guc_opt_in_features_enable(guc, xe_guc_buf_flush(buf), count);
648 if (ret < 0) {
649 xe_gt_err(guc_to_gt(guc),
650 "failed to enable GuC opt-in features: %pe\n",
651 ERR_PTR(ret));
652 return ret;
653 }
654 }
655
656 return 0;
657 }
658
guc_fini_hw(void * arg)659 static void guc_fini_hw(void *arg)
660 {
661 struct xe_guc *guc = arg;
662 struct xe_gt *gt = guc_to_gt(guc);
663 unsigned int fw_ref;
664
665 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
666 xe_uc_sanitize_reset(&guc_to_gt(guc)->uc);
667 xe_force_wake_put(gt_to_fw(gt), fw_ref);
668
669 guc_g2g_fini(guc);
670 }
671
672 /**
673 * xe_guc_comm_init_early - early initialization of GuC communication
674 * @guc: the &xe_guc to initialize
675 *
676 * Must be called prior to first MMIO communication with GuC firmware.
677 */
xe_guc_comm_init_early(struct xe_guc * guc)678 void xe_guc_comm_init_early(struct xe_guc *guc)
679 {
680 struct xe_gt *gt = guc_to_gt(guc);
681
682 if (xe_gt_is_media_type(gt))
683 guc->notify_reg = MED_GUC_HOST_INTERRUPT;
684 else
685 guc->notify_reg = GUC_HOST_INTERRUPT;
686 }
687
xe_guc_realloc_post_hwconfig(struct xe_guc * guc)688 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
689 {
690 struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
691 struct xe_device *xe = guc_to_xe(guc);
692 int ret;
693
694 if (!IS_DGFX(guc_to_xe(guc)))
695 return 0;
696
697 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
698 if (ret)
699 return ret;
700
701 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
702 if (ret)
703 return ret;
704
705 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
706 if (ret)
707 return ret;
708
709 return 0;
710 }
711
vf_guc_init_noalloc(struct xe_guc * guc)712 static int vf_guc_init_noalloc(struct xe_guc *guc)
713 {
714 struct xe_gt *gt = guc_to_gt(guc);
715 int err;
716
717 err = xe_gt_sriov_vf_bootstrap(gt);
718 if (err)
719 return err;
720
721 err = xe_gt_sriov_vf_query_config(gt);
722 if (err)
723 return err;
724
725 return 0;
726 }
727
xe_guc_init_noalloc(struct xe_guc * guc)728 int xe_guc_init_noalloc(struct xe_guc *guc)
729 {
730 struct xe_device *xe = guc_to_xe(guc);
731 struct xe_gt *gt = guc_to_gt(guc);
732 int ret;
733
734 xe_guc_comm_init_early(guc);
735
736 ret = xe_guc_ct_init_noalloc(&guc->ct);
737 if (ret)
738 goto out;
739
740 ret = xe_guc_relay_init(&guc->relay);
741 if (ret)
742 goto out;
743
744 if (IS_SRIOV_VF(xe)) {
745 ret = vf_guc_init_noalloc(guc);
746 if (ret)
747 goto out;
748 }
749
750 return 0;
751
752 out:
753 xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
754 return ret;
755 }
756
xe_guc_init(struct xe_guc * guc)757 int xe_guc_init(struct xe_guc *guc)
758 {
759 struct xe_device *xe = guc_to_xe(guc);
760 struct xe_gt *gt = guc_to_gt(guc);
761 int ret;
762
763 guc->fw.type = XE_UC_FW_TYPE_GUC;
764 ret = xe_uc_fw_init(&guc->fw);
765 if (ret)
766 return ret;
767
768 if (!xe_uc_fw_is_enabled(&guc->fw))
769 return 0;
770
771 if (IS_SRIOV_VF(xe)) {
772 ret = xe_guc_ct_init(&guc->ct);
773 if (ret)
774 goto out;
775 return 0;
776 }
777
778 ret = xe_guc_log_init(&guc->log);
779 if (ret)
780 goto out;
781
782 ret = xe_guc_capture_init(guc);
783 if (ret)
784 goto out;
785
786 ret = xe_guc_ads_init(&guc->ads);
787 if (ret)
788 goto out;
789
790 ret = xe_guc_ct_init(&guc->ct);
791 if (ret)
792 goto out;
793
794 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
795
796 ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
797 if (ret)
798 goto out;
799
800 guc_init_params(guc);
801
802 return 0;
803
804 out:
805 xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
806 return ret;
807 }
808
vf_guc_init_post_hwconfig(struct xe_guc * guc)809 static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
810 {
811 int err;
812
813 err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
814 if (err)
815 return err;
816
817 err = xe_guc_buf_cache_init(&guc->buf);
818 if (err)
819 return err;
820
821 /* XXX xe_guc_db_mgr_init not needed for now */
822
823 return 0;
824 }
825
guc_additional_cache_size(struct xe_device * xe)826 static u32 guc_additional_cache_size(struct xe_device *xe)
827 {
828 if (IS_SRIOV_PF(xe) && xe_sriov_pf_migration_supported(xe))
829 return XE_GT_SRIOV_PF_MIGRATION_GUC_DATA_MAX_SIZE;
830 else
831 return 0; /* Fallback to default size */
832 }
833
834 /**
835 * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
836 * @guc: The GuC object
837 *
838 * Return: 0 on success, negative error code on error.
839 */
xe_guc_init_post_hwconfig(struct xe_guc * guc)840 int xe_guc_init_post_hwconfig(struct xe_guc *guc)
841 {
842 int ret;
843
844 if (IS_SRIOV_VF(guc_to_xe(guc)))
845 return vf_guc_init_post_hwconfig(guc);
846
847 ret = xe_guc_realloc_post_hwconfig(guc);
848 if (ret)
849 return ret;
850
851 ret = xe_guc_ct_init_post_hwconfig(&guc->ct);
852 if (ret)
853 return ret;
854
855 guc_init_params_post_hwconfig(guc);
856
857 ret = xe_guc_submit_init(guc, ~0);
858 if (ret)
859 return ret;
860
861 ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
862 if (ret)
863 return ret;
864
865 ret = xe_guc_pc_init(&guc->pc);
866 if (ret)
867 return ret;
868
869 ret = xe_guc_engine_activity_init(guc);
870 if (ret)
871 return ret;
872
873 ret = xe_guc_buf_cache_init_with_size(&guc->buf,
874 guc_additional_cache_size(guc_to_xe(guc)));
875 if (ret)
876 return ret;
877
878 return xe_guc_ads_init_post_hwconfig(&guc->ads);
879 }
880
xe_guc_post_load_init(struct xe_guc * guc)881 int xe_guc_post_load_init(struct xe_guc *guc)
882 {
883 int ret;
884
885 xe_guc_ads_populate_post_load(&guc->ads);
886
887 ret = xe_guc_opt_in_features_enable(guc);
888 if (ret)
889 return ret;
890
891 if (xe_guc_g2g_wanted(guc_to_xe(guc))) {
892 ret = guc_g2g_start(guc);
893 if (ret)
894 return ret;
895 }
896
897 return xe_guc_submit_enable(guc);
898 }
899
xe_guc_reset(struct xe_guc * guc)900 int xe_guc_reset(struct xe_guc *guc)
901 {
902 struct xe_gt *gt = guc_to_gt(guc);
903 struct xe_mmio *mmio = >->mmio;
904 u32 guc_status, gdrst;
905 int ret;
906
907 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
908
909 if (IS_SRIOV_VF(gt_to_xe(gt)))
910 return xe_gt_sriov_vf_bootstrap(gt);
911
912 xe_mmio_write32(mmio, GDRST, GRDOM_GUC);
913
914 ret = xe_mmio_wait32(mmio, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
915 if (ret) {
916 xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
917 goto err_out;
918 }
919
920 guc_status = xe_mmio_read32(mmio, GUC_STATUS);
921 if (!(guc_status & GS_MIA_IN_RESET)) {
922 xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
923 guc_status);
924 ret = -EIO;
925 goto err_out;
926 }
927
928 return 0;
929
930 err_out:
931
932 return ret;
933 }
934
guc_prepare_xfer(struct xe_guc * guc)935 static void guc_prepare_xfer(struct xe_guc *guc)
936 {
937 struct xe_gt *gt = guc_to_gt(guc);
938 struct xe_mmio *mmio = >->mmio;
939 struct xe_device *xe = guc_to_xe(guc);
940 u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
941 GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
942 GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
943 GUC_ENABLE_MIA_CLOCK_GATING;
944
945 if (GRAPHICS_VERx100(xe) < 1250)
946 shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
947 GUC_ENABLE_MIA_CACHING;
948
949 if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
950 shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
951
952 /* Must program this register before loading the ucode with DMA */
953 xe_mmio_write32(mmio, GUC_SHIM_CONTROL, shim_flags);
954
955 xe_mmio_write32(mmio, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
956
957 /* Make sure GuC receives ARAT interrupts */
958 xe_mmio_rmw32(mmio, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
959 }
960
961 /*
962 * Supporting MMIO & in memory RSA
963 */
guc_xfer_rsa(struct xe_guc * guc)964 static int guc_xfer_rsa(struct xe_guc *guc)
965 {
966 struct xe_gt *gt = guc_to_gt(guc);
967 u32 rsa[UOS_RSA_SCRATCH_COUNT];
968 size_t copied;
969 int i;
970
971 if (guc->fw.rsa_size > 256) {
972 u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
973 xe_uc_fw_rsa_offset(&guc->fw);
974 xe_mmio_write32(>->mmio, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
975 return 0;
976 }
977
978 copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
979 if (copied < sizeof(rsa))
980 return -ENOMEM;
981
982 for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
983 xe_mmio_write32(>->mmio, UOS_RSA_SCRATCH(i), rsa[i]);
984
985 return 0;
986 }
987
988 /*
989 * Wait for the GuC to start up.
990 *
991 * Measurements indicate this should take no more than 20ms (assuming the GT
992 * clock is at maximum frequency). However, thermal throttling and other issues
993 * can prevent the clock hitting max and thus making the load take significantly
994 * longer. Allow up to 3s as a safety margin in normal builds. For
995 * CONFIG_DRM_XE_DEBUG allow up to 10s to account for slower execution, issues
996 * in PCODE, driver, fan, etc.
997 *
998 * Keep checking the GUC_STATUS every 10ms with a debug message every 100
999 * attempts as a "I'm slow, but alive" message. Regardless, if it takes more
1000 * than 200ms, emit a warning.
1001 */
1002
1003 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
1004 #define GUC_LOAD_TIMEOUT_SEC 20
1005 #else
1006 #define GUC_LOAD_TIMEOUT_SEC 3
1007 #endif
1008 #define GUC_LOAD_TIME_WARN_MSEC 200
1009
print_load_status_err(struct xe_gt * gt,u32 status)1010 static void print_load_status_err(struct xe_gt *gt, u32 status)
1011 {
1012 struct xe_mmio *mmio = >->mmio;
1013 u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
1014 u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
1015
1016 xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
1017 REG_FIELD_GET(GS_MIA_IN_RESET, status),
1018 bootrom, ukernel,
1019 REG_FIELD_GET(GS_MIA_MASK, status),
1020 REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
1021
1022 switch (bootrom) {
1023 case XE_BOOTROM_STATUS_NO_KEY_FOUND:
1024 xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
1025 xe_mmio_read32(mmio, GUC_HEADER_INFO));
1026 break;
1027 case XE_BOOTROM_STATUS_RSA_FAILED:
1028 xe_gt_err(gt, "firmware signature verification failed\n");
1029 break;
1030 case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
1031 xe_gt_err(gt, "firmware production part check failure\n");
1032 break;
1033 }
1034
1035 switch (ukernel) {
1036 case XE_GUC_LOAD_STATUS_HWCONFIG_START:
1037 xe_gt_err(gt, "still extracting hwconfig table.\n");
1038 break;
1039 case XE_GUC_LOAD_STATUS_EXCEPTION:
1040 xe_gt_err(gt, "firmware exception. EIP: %#x\n",
1041 xe_mmio_read32(mmio, SOFT_SCRATCH(13)));
1042 break;
1043 case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
1044 xe_gt_err(gt, "illegal init/ADS data\n");
1045 break;
1046 case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
1047 xe_gt_err(gt, "illegal register in save/restore workaround list\n");
1048 break;
1049 case XE_GUC_LOAD_STATUS_KLV_WORKAROUND_INIT_ERROR:
1050 xe_gt_err(gt, "illegal workaround KLV data\n");
1051 break;
1052 case XE_GUC_LOAD_STATUS_INVALID_FTR_FLAG:
1053 xe_gt_err(gt, "illegal feature flag specified\n");
1054 break;
1055 }
1056 }
1057
1058 /*
1059 * Check GUC_STATUS looking for known terminal states (either completion or
1060 * failure) of either the microkernel status field or the boot ROM status field.
1061 *
1062 * Returns 1 for successful completion, -1 for failure and 0 for any
1063 * intermediate state.
1064 */
guc_load_done(struct xe_gt * gt,u32 * status,u32 * tries)1065 static int guc_load_done(struct xe_gt *gt, u32 *status, u32 *tries)
1066 {
1067 u32 ukernel, bootrom;
1068
1069 *status = xe_mmio_read32(>->mmio, GUC_STATUS);
1070 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, *status);
1071 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, *status);
1072
1073 switch (ukernel) {
1074 case XE_GUC_LOAD_STATUS_READY:
1075 return 1;
1076 case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
1077 case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
1078 case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
1079 case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
1080 case XE_GUC_LOAD_STATUS_BOOTROM_VERSION_MISMATCH:
1081 case XE_GUC_LOAD_STATUS_DPC_ERROR:
1082 case XE_GUC_LOAD_STATUS_EXCEPTION:
1083 case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
1084 case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
1085 case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
1086 case XE_GUC_LOAD_STATUS_KLV_WORKAROUND_INIT_ERROR:
1087 case XE_GUC_LOAD_STATUS_INVALID_FTR_FLAG:
1088 return -1;
1089 }
1090
1091 switch (bootrom) {
1092 case XE_BOOTROM_STATUS_NO_KEY_FOUND:
1093 case XE_BOOTROM_STATUS_RSA_FAILED:
1094 case XE_BOOTROM_STATUS_PAVPC_FAILED:
1095 case XE_BOOTROM_STATUS_WOPCM_FAILED:
1096 case XE_BOOTROM_STATUS_LOADLOC_FAILED:
1097 case XE_BOOTROM_STATUS_JUMP_FAILED:
1098 case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
1099 case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
1100 case XE_BOOTROM_STATUS_EXCEPTION:
1101 case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
1102 return -1;
1103 }
1104
1105 if (++*tries >= 100) {
1106 struct xe_guc_pc *guc_pc = >->uc.guc.pc;
1107
1108 *tries = 0;
1109 xe_gt_dbg(gt, "GuC load still in progress, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
1110 xe_guc_pc_get_act_freq(guc_pc),
1111 xe_guc_pc_get_cur_freq_fw(guc_pc),
1112 *status, ukernel, bootrom);
1113 }
1114
1115 return 0;
1116 }
1117
guc_wait_ucode(struct xe_guc * guc)1118 static int guc_wait_ucode(struct xe_guc *guc)
1119 {
1120 struct xe_gt *gt = guc_to_gt(guc);
1121 struct xe_guc_pc *guc_pc = >->uc.guc.pc;
1122 u32 before_freq, act_freq, cur_freq;
1123 u32 status = 0, tries = 0;
1124 ktime_t before;
1125 u64 delta_ms;
1126 int ret;
1127
1128 before_freq = xe_guc_pc_get_act_freq(guc_pc);
1129 before = ktime_get();
1130
1131 ret = poll_timeout_us(ret = guc_load_done(gt, &status, &tries), ret,
1132 10 * USEC_PER_MSEC,
1133 GUC_LOAD_TIMEOUT_SEC * USEC_PER_SEC, false);
1134
1135 delta_ms = ktime_to_ms(ktime_sub(ktime_get(), before));
1136 act_freq = xe_guc_pc_get_act_freq(guc_pc);
1137 cur_freq = xe_guc_pc_get_cur_freq_fw(guc_pc);
1138
1139 if (ret) {
1140 xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz)\n",
1141 status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
1142 xe_guc_pc_get_cur_freq_fw(guc_pc));
1143 print_load_status_err(gt, status);
1144
1145 return -EPROTO;
1146 }
1147
1148 if (delta_ms > GUC_LOAD_TIME_WARN_MSEC) {
1149 xe_gt_warn(gt, "GuC load: excessive init time: %lldms! [status = 0x%08X]\n",
1150 delta_ms, status);
1151 xe_gt_warn(gt, "GuC load: excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
1152 act_freq, cur_freq, before_freq,
1153 xe_gt_throttle_get_limit_reasons(gt));
1154 } else {
1155 xe_gt_dbg(gt, "GuC load: init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X\n",
1156 delta_ms, act_freq, cur_freq, before_freq, status);
1157 }
1158
1159 return 0;
1160 }
1161 ALLOW_ERROR_INJECTION(guc_wait_ucode, ERRNO);
1162
__xe_guc_upload(struct xe_guc * guc)1163 static int __xe_guc_upload(struct xe_guc *guc)
1164 {
1165 int ret;
1166
1167 /* Raise GT freq to speed up HuC/GuC load */
1168 xe_guc_pc_raise_unslice(&guc->pc);
1169
1170 guc_write_params(guc);
1171 guc_prepare_xfer(guc);
1172
1173 /*
1174 * Note that GuC needs the CSS header plus uKernel code to be copied
1175 * by the DMA engine in one operation, whereas the RSA signature is
1176 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
1177 * register (if key size <= 256) or through a ggtt-pinned vma (if key
1178 * size > 256). The RSA size and therefore the way we provide it to the
1179 * HW is fixed for each platform and hard-coded in the bootrom.
1180 */
1181 ret = guc_xfer_rsa(guc);
1182 if (ret)
1183 goto out;
1184 /*
1185 * Current uCode expects the code to be loaded at 8k; locations below
1186 * this are used for the stack.
1187 */
1188 ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
1189 if (ret)
1190 goto out;
1191
1192 /* Wait for authentication */
1193 ret = guc_wait_ucode(guc);
1194 if (ret)
1195 goto out;
1196
1197 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
1198 return 0;
1199
1200 out:
1201 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
1202 return ret;
1203 }
1204
vf_guc_min_load_for_hwconfig(struct xe_guc * guc)1205 static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
1206 {
1207 struct xe_gt *gt = guc_to_gt(guc);
1208 int ret;
1209
1210 ret = xe_guc_hwconfig_init(guc);
1211 if (ret)
1212 return ret;
1213
1214 ret = xe_guc_enable_communication(guc);
1215 if (ret)
1216 return ret;
1217
1218 ret = xe_gt_sriov_vf_connect(gt);
1219 if (ret)
1220 goto err_out;
1221
1222 ret = xe_gt_sriov_vf_query_runtime(gt);
1223 if (ret)
1224 goto err_out;
1225
1226 return 0;
1227
1228 err_out:
1229 xe_guc_sanitize(guc);
1230 return ret;
1231 }
1232
1233 /**
1234 * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
1235 * @guc: The GuC object
1236 *
1237 * This function uploads a minimal GuC that does not support submissions but
1238 * in a state where the hwconfig table can be read. Next, it reads and parses
1239 * the hwconfig table so it can be used for subsequent steps in the driver load.
1240 * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
1241 *
1242 * Return: 0 on success, negative error code on error.
1243 */
xe_guc_min_load_for_hwconfig(struct xe_guc * guc)1244 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
1245 {
1246 int ret;
1247
1248 if (IS_SRIOV_VF(guc_to_xe(guc)))
1249 return vf_guc_min_load_for_hwconfig(guc);
1250
1251 xe_guc_ads_populate_minimal(&guc->ads);
1252
1253 xe_guc_pc_init_early(&guc->pc);
1254
1255 ret = __xe_guc_upload(guc);
1256 if (ret)
1257 return ret;
1258
1259 ret = xe_guc_hwconfig_init(guc);
1260 if (ret)
1261 return ret;
1262
1263 ret = xe_guc_enable_communication(guc);
1264 if (ret)
1265 return ret;
1266
1267 return 0;
1268 }
1269
xe_guc_upload(struct xe_guc * guc)1270 int xe_guc_upload(struct xe_guc *guc)
1271 {
1272 struct xe_gt *gt = guc_to_gt(guc);
1273
1274 xe_guc_ads_populate(&guc->ads);
1275
1276 if (xe_guc_using_main_gamctrl_queues(guc))
1277 xe_mmio_write32(>->mmio, MAIN_GAMCTRL_MODE, MAIN_GAMCTRL_QUEUE_SELECT);
1278
1279 return __xe_guc_upload(guc);
1280 }
1281
guc_handle_mmio_msg(struct xe_guc * guc)1282 static void guc_handle_mmio_msg(struct xe_guc *guc)
1283 {
1284 struct xe_gt *gt = guc_to_gt(guc);
1285 u32 msg;
1286
1287 if (IS_SRIOV_VF(guc_to_xe(guc)))
1288 return;
1289
1290 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
1291
1292 msg = xe_mmio_read32(>->mmio, SOFT_SCRATCH(15));
1293 msg &= XE_GUC_RECV_MSG_EXCEPTION |
1294 XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
1295 xe_mmio_write32(>->mmio, SOFT_SCRATCH(15), 0);
1296
1297 if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
1298 xe_gt_err(gt, "Received early GuC crash dump notification!\n");
1299
1300 if (msg & XE_GUC_RECV_MSG_EXCEPTION)
1301 xe_gt_err(gt, "Received early GuC exception notification!\n");
1302 }
1303
guc_enable_irq(struct xe_guc * guc)1304 static void guc_enable_irq(struct xe_guc *guc)
1305 {
1306 struct xe_gt *gt = guc_to_gt(guc);
1307 u32 events = xe_gt_is_media_type(gt) ?
1308 REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST) :
1309 REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
1310
1311 /* Primary GuC and media GuC share a single enable bit */
1312 xe_mmio_write32(>->mmio, GUC_SG_INTR_ENABLE,
1313 REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
1314
1315 /*
1316 * There are separate mask bits for primary and media GuCs, so use
1317 * a RMW operation to avoid clobbering the other GuC's setting.
1318 */
1319 xe_mmio_rmw32(>->mmio, GUC_SG_INTR_MASK, events, 0);
1320 }
1321
xe_guc_enable_communication(struct xe_guc * guc)1322 int xe_guc_enable_communication(struct xe_guc *guc)
1323 {
1324 struct xe_device *xe = guc_to_xe(guc);
1325 int err;
1326
1327 if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
1328 struct xe_gt *gt = guc_to_gt(guc);
1329 struct xe_tile *tile = gt_to_tile(gt);
1330
1331 err = xe_memirq_init_guc(&tile->memirq, guc);
1332 if (err)
1333 return err;
1334 } else {
1335 guc_enable_irq(guc);
1336 }
1337
1338 err = xe_guc_ct_enable(&guc->ct);
1339 if (err)
1340 return err;
1341
1342 guc_handle_mmio_msg(guc);
1343
1344 return 0;
1345 }
1346
xe_guc_suspend(struct xe_guc * guc)1347 int xe_guc_suspend(struct xe_guc *guc)
1348 {
1349 struct xe_gt *gt = guc_to_gt(guc);
1350 u32 action[] = {
1351 XE_GUC_ACTION_CLIENT_SOFT_RESET,
1352 };
1353 int ret;
1354
1355 ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
1356 if (ret) {
1357 xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
1358 return ret;
1359 }
1360
1361 xe_guc_sanitize(guc);
1362 return 0;
1363 }
1364
xe_guc_notify(struct xe_guc * guc)1365 void xe_guc_notify(struct xe_guc *guc)
1366 {
1367 struct xe_gt *gt = guc_to_gt(guc);
1368 const u32 default_notify_data = 0;
1369
1370 /*
1371 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
1372 * additional payload data to the GuC but this capability is not
1373 * used by the firmware yet. Use default value in the meantime.
1374 */
1375 xe_mmio_write32(>->mmio, guc->notify_reg, default_notify_data);
1376 }
1377
xe_guc_auth_huc(struct xe_guc * guc,u32 rsa_addr)1378 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
1379 {
1380 u32 action[] = {
1381 XE_GUC_ACTION_AUTHENTICATE_HUC,
1382 rsa_addr
1383 };
1384
1385 return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
1386 }
1387
xe_guc_mmio_send_recv(struct xe_guc * guc,const u32 * request,u32 len,u32 * response_buf)1388 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
1389 u32 len, u32 *response_buf)
1390 {
1391 struct xe_device *xe = guc_to_xe(guc);
1392 struct xe_gt *gt = guc_to_gt(guc);
1393 struct xe_mmio *mmio = >->mmio;
1394 u32 header, reply;
1395 struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
1396 MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
1397 const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
1398 bool lost = false;
1399 int ret;
1400 int i;
1401
1402 BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
1403
1404 xe_assert(xe, len);
1405 xe_assert(xe, len <= VF_SW_FLAG_COUNT);
1406 xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
1407 xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
1408 GUC_HXG_ORIGIN_HOST);
1409 xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
1410 GUC_HXG_TYPE_REQUEST);
1411
1412 retry:
1413 /* Not in critical data-path, just do if else for GT type */
1414 if (xe_gt_is_media_type(gt)) {
1415 for (i = 0; i < len; ++i)
1416 xe_mmio_write32(mmio, MED_VF_SW_FLAG(i),
1417 request[i]);
1418 xe_mmio_read32(mmio, MED_VF_SW_FLAG(LAST_INDEX));
1419 } else {
1420 for (i = 0; i < len; ++i)
1421 xe_mmio_write32(mmio, VF_SW_FLAG(i),
1422 request[i]);
1423 xe_mmio_read32(mmio, VF_SW_FLAG(LAST_INDEX));
1424 }
1425
1426 xe_guc_notify(guc);
1427
1428 ret = xe_mmio_wait32(mmio, reply_reg, GUC_HXG_MSG_0_ORIGIN,
1429 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
1430 50000, &reply, false);
1431 if (ret) {
1432 /* scratch registers might be cleared during FLR, try once more */
1433 if (!reply && !lost) {
1434 xe_gt_dbg(gt, "GuC mmio request %#x: lost, trying again\n", request[0]);
1435 lost = true;
1436 goto retry;
1437 }
1438 timeout:
1439 xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
1440 request[0], reply);
1441 return ret;
1442 }
1443
1444 header = xe_mmio_read32(mmio, reply_reg);
1445 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1446 GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
1447 /*
1448 * Once we got a BUSY reply we must wait again for the final
1449 * response but this time we can't use ORIGIN mask anymore.
1450 * To spot a right change in the reply, we take advantage that
1451 * response SUCCESS and FAILURE differ only by the single bit
1452 * and all other bits are set and can be used as a new mask.
1453 */
1454 u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
1455 u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
1456
1457 BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
1458 BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
1459
1460 ret = xe_mmio_wait32(mmio, reply_reg, resp_mask, resp_mask,
1461 2000000, &header, false);
1462
1463 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
1464 GUC_HXG_ORIGIN_GUC))
1465 goto proto;
1466 if (unlikely(ret)) {
1467 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1468 GUC_HXG_TYPE_NO_RESPONSE_BUSY)
1469 goto proto;
1470 goto timeout;
1471 }
1472 }
1473
1474 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1475 GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1476 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
1477
1478 xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
1479 request[0], reason);
1480 goto retry;
1481 }
1482
1483 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1484 GUC_HXG_TYPE_RESPONSE_FAILURE) {
1485 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
1486 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
1487
1488 xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
1489 request[0], error, hint);
1490 return -ENXIO;
1491 }
1492
1493 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1494 GUC_HXG_TYPE_RESPONSE_SUCCESS) {
1495 proto:
1496 xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
1497 request[0], header);
1498 return -EPROTO;
1499 }
1500
1501 /* Just copy entire possible message response */
1502 if (response_buf) {
1503 response_buf[0] = header;
1504
1505 for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
1506 reply_reg.addr += sizeof(u32);
1507 response_buf[i] = xe_mmio_read32(mmio, reply_reg);
1508 }
1509 }
1510
1511 /* Use data from the GuC response as our return value */
1512 return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
1513 }
1514 ALLOW_ERROR_INJECTION(xe_guc_mmio_send_recv, ERRNO);
1515
xe_guc_mmio_send(struct xe_guc * guc,const u32 * request,u32 len)1516 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
1517 {
1518 return xe_guc_mmio_send_recv(guc, request, len, NULL);
1519 }
1520
guc_self_cfg(struct xe_guc * guc,u16 key,u16 len,u64 val)1521 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
1522 {
1523 struct xe_device *xe = guc_to_xe(guc);
1524 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
1525 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
1526 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
1527 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
1528 GUC_ACTION_HOST2GUC_SELF_CFG),
1529 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
1530 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
1531 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
1532 lower_32_bits(val)),
1533 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
1534 upper_32_bits(val)),
1535 };
1536 int ret;
1537
1538 xe_assert(xe, len <= 2);
1539 xe_assert(xe, len != 1 || !upper_32_bits(val));
1540
1541 /* Self config must go over MMIO */
1542 ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
1543
1544 if (unlikely(ret < 0))
1545 return ret;
1546 if (unlikely(ret > 1))
1547 return -EPROTO;
1548 if (unlikely(!ret))
1549 return -ENOKEY;
1550
1551 return 0;
1552 }
1553
xe_guc_self_cfg32(struct xe_guc * guc,u16 key,u32 val)1554 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
1555 {
1556 return guc_self_cfg(guc, key, 1, val);
1557 }
1558
xe_guc_self_cfg64(struct xe_guc * guc,u16 key,u64 val)1559 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
1560 {
1561 return guc_self_cfg(guc, key, 2, val);
1562 }
1563
xe_guc_sw_0_irq_handler(struct xe_guc * guc)1564 static void xe_guc_sw_0_irq_handler(struct xe_guc *guc)
1565 {
1566 struct xe_gt *gt = guc_to_gt(guc);
1567
1568 if (IS_SRIOV_VF(gt_to_xe(gt)))
1569 xe_gt_sriov_vf_migrated_event_handler(gt);
1570 }
1571
xe_guc_irq_handler(struct xe_guc * guc,const u16 iir)1572 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
1573 {
1574 if (iir & GUC_INTR_GUC2HOST)
1575 xe_guc_ct_irq_handler(&guc->ct);
1576
1577 if (iir & GUC_INTR_SW_INT_0)
1578 xe_guc_sw_0_irq_handler(guc);
1579 }
1580
xe_guc_sanitize(struct xe_guc * guc)1581 void xe_guc_sanitize(struct xe_guc *guc)
1582 {
1583 xe_uc_fw_sanitize(&guc->fw);
1584 xe_guc_ct_disable(&guc->ct);
1585 xe_guc_submit_disable(guc);
1586 }
1587
xe_guc_reset_prepare(struct xe_guc * guc)1588 int xe_guc_reset_prepare(struct xe_guc *guc)
1589 {
1590 return xe_guc_submit_reset_prepare(guc);
1591 }
1592
xe_guc_reset_wait(struct xe_guc * guc)1593 void xe_guc_reset_wait(struct xe_guc *guc)
1594 {
1595 xe_guc_submit_reset_wait(guc);
1596 }
1597
xe_guc_stop_prepare(struct xe_guc * guc)1598 void xe_guc_stop_prepare(struct xe_guc *guc)
1599 {
1600 if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1601 int err;
1602
1603 err = xe_guc_pc_stop(&guc->pc);
1604 xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
1605 ERR_PTR(err));
1606 }
1607 }
1608
xe_guc_stop(struct xe_guc * guc)1609 void xe_guc_stop(struct xe_guc *guc)
1610 {
1611 xe_guc_ct_stop(&guc->ct);
1612
1613 xe_guc_submit_stop(guc);
1614 }
1615
xe_guc_start(struct xe_guc * guc)1616 int xe_guc_start(struct xe_guc *guc)
1617 {
1618 return xe_guc_submit_start(guc);
1619 }
1620
xe_guc_print_info(struct xe_guc * guc,struct drm_printer * p)1621 int xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
1622 {
1623 struct xe_gt *gt = guc_to_gt(guc);
1624 unsigned int fw_ref;
1625 u32 status;
1626 int i;
1627
1628 xe_uc_fw_print(&guc->fw, p);
1629
1630 if (!IS_SRIOV_VF(gt_to_xe(gt))) {
1631 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1632 if (!fw_ref)
1633 return -EIO;
1634
1635 status = xe_mmio_read32(>->mmio, GUC_STATUS);
1636
1637 drm_printf(p, "\nGuC status 0x%08x:\n", status);
1638 drm_printf(p, "\tBootrom status = 0x%x\n",
1639 REG_FIELD_GET(GS_BOOTROM_MASK, status));
1640 drm_printf(p, "\tuKernel status = 0x%x\n",
1641 REG_FIELD_GET(GS_UKERNEL_MASK, status));
1642 drm_printf(p, "\tMIA Core status = 0x%x\n",
1643 REG_FIELD_GET(GS_MIA_MASK, status));
1644 drm_printf(p, "\tLog level = %d\n",
1645 xe_guc_log_get_level(&guc->log));
1646
1647 drm_puts(p, "\nScratch registers:\n");
1648 for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
1649 drm_printf(p, "\t%2d: \t0x%x\n",
1650 i, xe_mmio_read32(>->mmio, SOFT_SCRATCH(i)));
1651 }
1652
1653 xe_force_wake_put(gt_to_fw(gt), fw_ref);
1654 }
1655
1656 drm_puts(p, "\n");
1657 xe_guc_ct_print(&guc->ct, p, false);
1658
1659 drm_puts(p, "\n");
1660 xe_guc_submit_print(guc, p);
1661
1662 return 0;
1663 }
1664
1665 /**
1666 * xe_guc_declare_wedged() - Declare GuC wedged
1667 * @guc: the GuC object
1668 *
1669 * Wedge the GuC which stops all submission, saves desired debug state, and
1670 * cleans up anything which could timeout.
1671 */
xe_guc_declare_wedged(struct xe_guc * guc)1672 void xe_guc_declare_wedged(struct xe_guc *guc)
1673 {
1674 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
1675
1676 xe_guc_reset_prepare(guc);
1677 xe_guc_ct_stop(&guc->ct);
1678 xe_guc_submit_wedge(guc);
1679 }
1680
1681 /**
1682 * xe_guc_using_main_gamctrl_queues() - Detect which reporting queues to use.
1683 * @guc: The GuC object
1684 *
1685 * For Xe3p and beyond, we want to program the hardware to use the
1686 * "Main GAMCTRL queue" rather than the legacy queue before we upload
1687 * the GuC firmware. This will allow the GuC to use a new set of
1688 * registers for pagefault handling and avoid some unnecessary
1689 * complications with MCR register range handling.
1690 *
1691 * Return: true if can use new main gamctrl queues.
1692 */
xe_guc_using_main_gamctrl_queues(struct xe_guc * guc)1693 bool xe_guc_using_main_gamctrl_queues(struct xe_guc *guc)
1694 {
1695 struct xe_gt *gt = guc_to_gt(guc);
1696
1697 /*
1698 * For Xe3p media gt (35), the GuC and the CS subunits may be still Xe3
1699 * that lacks the Main GAMCTRL support. Reserved bits from the GMD_ID
1700 * inform the IP version of the subunits.
1701 */
1702 if (xe_gt_is_media_type(gt) && MEDIA_VER(gt_to_xe(gt)) == 35) {
1703 u32 val = xe_mmio_read32(>->mmio, GMD_ID);
1704 u32 subip = REG_FIELD_GET(GMD_ID_SUBIP_FLAG_MASK, val);
1705
1706 if (!subip)
1707 return true;
1708
1709 xe_gt_WARN(gt, subip != 1,
1710 "GMD_ID has unknown value in the SUBIP_FLAG field - 0x%x\n",
1711 subip);
1712
1713 return false;
1714 }
1715
1716 return GT_VER(gt) >= 35;
1717 }
1718
1719 #if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
1720 #include "tests/xe_guc_g2g_test.c"
1721 #endif
1722