1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include "xe_guc.h"
7
8 #include <drm/drm_managed.h>
9
10 #include <generated/xe_wa_oob.h>
11
12 #include "abi/guc_actions_abi.h"
13 #include "abi/guc_errors_abi.h"
14 #include "regs/xe_gt_regs.h"
15 #include "regs/xe_gtt_defs.h"
16 #include "regs/xe_guc_regs.h"
17 #include "regs/xe_irq_regs.h"
18 #include "xe_bo.h"
19 #include "xe_device.h"
20 #include "xe_force_wake.h"
21 #include "xe_gt.h"
22 #include "xe_gt_printk.h"
23 #include "xe_gt_sriov_vf.h"
24 #include "xe_gt_throttle.h"
25 #include "xe_guc_ads.h"
26 #include "xe_guc_capture.h"
27 #include "xe_guc_ct.h"
28 #include "xe_guc_db_mgr.h"
29 #include "xe_guc_hwconfig.h"
30 #include "xe_guc_log.h"
31 #include "xe_guc_pc.h"
32 #include "xe_guc_relay.h"
33 #include "xe_guc_submit.h"
34 #include "xe_memirq.h"
35 #include "xe_mmio.h"
36 #include "xe_platform_types.h"
37 #include "xe_sriov.h"
38 #include "xe_uc.h"
39 #include "xe_uc_fw.h"
40 #include "xe_wa.h"
41 #include "xe_wopcm.h"
42
guc_bo_ggtt_addr(struct xe_guc * guc,struct xe_bo * bo)43 static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
44 struct xe_bo *bo)
45 {
46 struct xe_device *xe = guc_to_xe(guc);
47 u32 addr = xe_bo_ggtt_addr(bo);
48
49 /* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
50 xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
51 xe_assert(xe, addr < GUC_GGTT_TOP);
52 xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
53
54 return addr;
55 }
56
guc_ctl_debug_flags(struct xe_guc * guc)57 static u32 guc_ctl_debug_flags(struct xe_guc *guc)
58 {
59 u32 level = xe_guc_log_get_level(&guc->log);
60 u32 flags = 0;
61
62 if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
63 flags |= GUC_LOG_DISABLED;
64 else
65 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
66 GUC_LOG_VERBOSITY_SHIFT;
67
68 return flags;
69 }
70
guc_ctl_feature_flags(struct xe_guc * guc)71 static u32 guc_ctl_feature_flags(struct xe_guc *guc)
72 {
73 u32 flags = GUC_CTL_ENABLE_LITE_RESTORE;
74
75 if (!guc_to_xe(guc)->info.skip_guc_pc)
76 flags |= GUC_CTL_ENABLE_SLPC;
77
78 return flags;
79 }
80
guc_ctl_log_params_flags(struct xe_guc * guc)81 static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
82 {
83 u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
84 u32 flags;
85
86 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
87 #define LOG_UNIT SZ_1M
88 #define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
89 #else
90 #define LOG_UNIT SZ_4K
91 #define LOG_FLAG 0
92 #endif
93
94 #if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
95 #define CAPTURE_UNIT SZ_1M
96 #define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
97 #else
98 #define CAPTURE_UNIT SZ_4K
99 #define CAPTURE_FLAG 0
100 #endif
101
102 BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
103 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
104 BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
105 BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
106 BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
107 BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
108
109 BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
110 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
111 BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
112 (GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
113 BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
114 (GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
115
116 flags = GUC_LOG_VALID |
117 GUC_LOG_NOTIFY_ON_HALF_FULL |
118 CAPTURE_FLAG |
119 LOG_FLAG |
120 ((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
121 ((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
122 ((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
123 GUC_LOG_CAPTURE_SHIFT) |
124 (offset << GUC_LOG_BUF_ADDR_SHIFT);
125
126 #undef LOG_UNIT
127 #undef LOG_FLAG
128 #undef CAPTURE_UNIT
129 #undef CAPTURE_FLAG
130
131 return flags;
132 }
133
guc_ctl_ads_flags(struct xe_guc * guc)134 static u32 guc_ctl_ads_flags(struct xe_guc *guc)
135 {
136 u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
137 u32 flags = ads << GUC_ADS_ADDR_SHIFT;
138
139 return flags;
140 }
141
guc_ctl_wa_flags(struct xe_guc * guc)142 static u32 guc_ctl_wa_flags(struct xe_guc *guc)
143 {
144 struct xe_device *xe = guc_to_xe(guc);
145 struct xe_gt *gt = guc_to_gt(guc);
146 u32 flags = 0;
147
148 if (XE_WA(gt, 22012773006))
149 flags |= GUC_WA_POLLCS;
150
151 if (XE_WA(gt, 14014475959))
152 flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
153
154 if (XE_WA(gt, 22011391025))
155 flags |= GUC_WA_DUAL_QUEUE;
156
157 /*
158 * Wa_22011802037: FIXME - there's more to be done than simply setting
159 * this flag: make sure each CS is stopped when preparing for GT reset
160 * and wait for pending MI_FW.
161 */
162 if (GRAPHICS_VERx100(xe) < 1270)
163 flags |= GUC_WA_PRE_PARSER;
164
165 if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
166 flags |= GUC_WA_CONTEXT_ISOLATION;
167
168 if (XE_WA(gt, 18020744125) &&
169 !xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
170 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
171
172 if (XE_WA(gt, 1509372804))
173 flags |= GUC_WA_RENDER_RST_RC6_EXIT;
174
175 if (XE_WA(gt, 14018913170))
176 flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
177
178 return flags;
179 }
180
guc_ctl_devid(struct xe_guc * guc)181 static u32 guc_ctl_devid(struct xe_guc *guc)
182 {
183 struct xe_device *xe = guc_to_xe(guc);
184
185 return (((u32)xe->info.devid) << 16) | xe->info.revid;
186 }
187
guc_print_params(struct xe_guc * guc)188 static void guc_print_params(struct xe_guc *guc)
189 {
190 struct xe_gt *gt = guc_to_gt(guc);
191 u32 *params = guc->params;
192 int i;
193
194 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
195 BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
196
197 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
198 xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
199 }
200
guc_init_params(struct xe_guc * guc)201 static void guc_init_params(struct xe_guc *guc)
202 {
203 u32 *params = guc->params;
204
205 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
206 params[GUC_CTL_FEATURE] = 0;
207 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
208 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
209 params[GUC_CTL_WA] = 0;
210 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
211
212 guc_print_params(guc);
213 }
214
guc_init_params_post_hwconfig(struct xe_guc * guc)215 static void guc_init_params_post_hwconfig(struct xe_guc *guc)
216 {
217 u32 *params = guc->params;
218
219 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
220 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
221 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
222 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
223 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
224 params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
225
226 guc_print_params(guc);
227 }
228
229 /*
230 * Initialize the GuC parameter block before starting the firmware
231 * transfer. These parameters are read by the firmware on startup
232 * and cannot be changed thereafter.
233 */
guc_write_params(struct xe_guc * guc)234 static void guc_write_params(struct xe_guc *guc)
235 {
236 struct xe_gt *gt = guc_to_gt(guc);
237 int i;
238
239 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
240
241 xe_mmio_write32(>->mmio, SOFT_SCRATCH(0), 0);
242
243 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
244 xe_mmio_write32(>->mmio, SOFT_SCRATCH(1 + i), guc->params[i]);
245 }
246
guc_fini_hw(void * arg)247 static void guc_fini_hw(void *arg)
248 {
249 struct xe_guc *guc = arg;
250 struct xe_gt *gt = guc_to_gt(guc);
251 unsigned int fw_ref;
252
253 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL);
254 xe_uc_fini_hw(&guc_to_gt(guc)->uc);
255 xe_force_wake_put(gt_to_fw(gt), fw_ref);
256 }
257
258 /**
259 * xe_guc_comm_init_early - early initialization of GuC communication
260 * @guc: the &xe_guc to initialize
261 *
262 * Must be called prior to first MMIO communication with GuC firmware.
263 */
xe_guc_comm_init_early(struct xe_guc * guc)264 void xe_guc_comm_init_early(struct xe_guc *guc)
265 {
266 struct xe_gt *gt = guc_to_gt(guc);
267
268 if (xe_gt_is_media_type(gt))
269 guc->notify_reg = MED_GUC_HOST_INTERRUPT;
270 else
271 guc->notify_reg = GUC_HOST_INTERRUPT;
272 }
273
xe_guc_realloc_post_hwconfig(struct xe_guc * guc)274 static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
275 {
276 struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
277 struct xe_device *xe = guc_to_xe(guc);
278 int ret;
279
280 if (!IS_DGFX(guc_to_xe(guc)))
281 return 0;
282
283 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
284 if (ret)
285 return ret;
286
287 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
288 if (ret)
289 return ret;
290
291 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
292 if (ret)
293 return ret;
294
295 ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
296 if (ret)
297 return ret;
298
299 return 0;
300 }
301
vf_guc_init(struct xe_guc * guc)302 static int vf_guc_init(struct xe_guc *guc)
303 {
304 int err;
305
306 xe_guc_comm_init_early(guc);
307
308 err = xe_guc_ct_init(&guc->ct);
309 if (err)
310 return err;
311
312 err = xe_guc_relay_init(&guc->relay);
313 if (err)
314 return err;
315
316 return 0;
317 }
318
xe_guc_init(struct xe_guc * guc)319 int xe_guc_init(struct xe_guc *guc)
320 {
321 struct xe_device *xe = guc_to_xe(guc);
322 struct xe_gt *gt = guc_to_gt(guc);
323 int ret;
324
325 guc->fw.type = XE_UC_FW_TYPE_GUC;
326 ret = xe_uc_fw_init(&guc->fw);
327 if (ret)
328 goto out;
329
330 if (!xe_uc_fw_is_enabled(&guc->fw))
331 return 0;
332
333 if (IS_SRIOV_VF(xe)) {
334 ret = vf_guc_init(guc);
335 if (ret)
336 goto out;
337 return 0;
338 }
339
340 ret = xe_guc_log_init(&guc->log);
341 if (ret)
342 goto out;
343
344 ret = xe_guc_capture_init(guc);
345 if (ret)
346 goto out;
347
348 ret = xe_guc_ads_init(&guc->ads);
349 if (ret)
350 goto out;
351
352 ret = xe_guc_ct_init(&guc->ct);
353 if (ret)
354 goto out;
355
356 ret = xe_guc_relay_init(&guc->relay);
357 if (ret)
358 goto out;
359
360 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
361
362 ret = devm_add_action_or_reset(xe->drm.dev, guc_fini_hw, guc);
363 if (ret)
364 goto out;
365
366 guc_init_params(guc);
367
368 xe_guc_comm_init_early(guc);
369
370 return 0;
371
372 out:
373 xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
374 return ret;
375 }
376
vf_guc_init_post_hwconfig(struct xe_guc * guc)377 static int vf_guc_init_post_hwconfig(struct xe_guc *guc)
378 {
379 int err;
380
381 err = xe_guc_submit_init(guc, xe_gt_sriov_vf_guc_ids(guc_to_gt(guc)));
382 if (err)
383 return err;
384
385 /* XXX xe_guc_db_mgr_init not needed for now */
386
387 return 0;
388 }
389
390 /**
391 * xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
392 * @guc: The GuC object
393 *
394 * Return: 0 on success, negative error code on error.
395 */
xe_guc_init_post_hwconfig(struct xe_guc * guc)396 int xe_guc_init_post_hwconfig(struct xe_guc *guc)
397 {
398 int ret;
399
400 if (IS_SRIOV_VF(guc_to_xe(guc)))
401 return vf_guc_init_post_hwconfig(guc);
402
403 ret = xe_guc_realloc_post_hwconfig(guc);
404 if (ret)
405 return ret;
406
407 guc_init_params_post_hwconfig(guc);
408
409 ret = xe_guc_submit_init(guc, ~0);
410 if (ret)
411 return ret;
412
413 ret = xe_guc_db_mgr_init(&guc->dbm, ~0);
414 if (ret)
415 return ret;
416
417 ret = xe_guc_pc_init(&guc->pc);
418 if (ret)
419 return ret;
420
421 return xe_guc_ads_init_post_hwconfig(&guc->ads);
422 }
423
xe_guc_post_load_init(struct xe_guc * guc)424 int xe_guc_post_load_init(struct xe_guc *guc)
425 {
426 xe_guc_ads_populate_post_load(&guc->ads);
427 guc->submission_state.enabled = true;
428
429 return 0;
430 }
431
xe_guc_reset(struct xe_guc * guc)432 int xe_guc_reset(struct xe_guc *guc)
433 {
434 struct xe_gt *gt = guc_to_gt(guc);
435 struct xe_mmio *mmio = >->mmio;
436 u32 guc_status, gdrst;
437 int ret;
438
439 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
440
441 if (IS_SRIOV_VF(gt_to_xe(gt)))
442 return xe_gt_sriov_vf_bootstrap(gt);
443
444 xe_mmio_write32(mmio, GDRST, GRDOM_GUC);
445
446 ret = xe_mmio_wait32(mmio, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
447 if (ret) {
448 xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
449 goto err_out;
450 }
451
452 guc_status = xe_mmio_read32(mmio, GUC_STATUS);
453 if (!(guc_status & GS_MIA_IN_RESET)) {
454 xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
455 guc_status);
456 ret = -EIO;
457 goto err_out;
458 }
459
460 return 0;
461
462 err_out:
463
464 return ret;
465 }
466
guc_prepare_xfer(struct xe_guc * guc)467 static void guc_prepare_xfer(struct xe_guc *guc)
468 {
469 struct xe_gt *gt = guc_to_gt(guc);
470 struct xe_mmio *mmio = >->mmio;
471 struct xe_device *xe = guc_to_xe(guc);
472 u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
473 GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
474 GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
475 GUC_ENABLE_MIA_CLOCK_GATING;
476
477 if (GRAPHICS_VERx100(xe) < 1250)
478 shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
479 GUC_ENABLE_MIA_CACHING;
480
481 if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
482 shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
483
484 /* Must program this register before loading the ucode with DMA */
485 xe_mmio_write32(mmio, GUC_SHIM_CONTROL, shim_flags);
486
487 xe_mmio_write32(mmio, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
488
489 /* Make sure GuC receives ARAT interrupts */
490 xe_mmio_rmw32(mmio, PMINTRMSK, ARAT_EXPIRED_INTRMSK, 0);
491 }
492
493 /*
494 * Supporting MMIO & in memory RSA
495 */
guc_xfer_rsa(struct xe_guc * guc)496 static int guc_xfer_rsa(struct xe_guc *guc)
497 {
498 struct xe_gt *gt = guc_to_gt(guc);
499 u32 rsa[UOS_RSA_SCRATCH_COUNT];
500 size_t copied;
501 int i;
502
503 if (guc->fw.rsa_size > 256) {
504 u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
505 xe_uc_fw_rsa_offset(&guc->fw);
506 xe_mmio_write32(>->mmio, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
507 return 0;
508 }
509
510 copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
511 if (copied < sizeof(rsa))
512 return -ENOMEM;
513
514 for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
515 xe_mmio_write32(>->mmio, UOS_RSA_SCRATCH(i), rsa[i]);
516
517 return 0;
518 }
519
520 /*
521 * Check a previously read GuC status register (GUC_STATUS) looking for
522 * known terminal states (either completion or failure) of either the
523 * microkernel status field or the boot ROM status field. Returns +1 for
524 * successful completion, -1 for failure and 0 for any intermediate state.
525 */
guc_load_done(u32 status)526 static int guc_load_done(u32 status)
527 {
528 u32 uk_val = REG_FIELD_GET(GS_UKERNEL_MASK, status);
529 u32 br_val = REG_FIELD_GET(GS_BOOTROM_MASK, status);
530
531 switch (uk_val) {
532 case XE_GUC_LOAD_STATUS_READY:
533 return 1;
534
535 case XE_GUC_LOAD_STATUS_ERROR_DEVID_BUILD_MISMATCH:
536 case XE_GUC_LOAD_STATUS_GUC_PREPROD_BUILD_MISMATCH:
537 case XE_GUC_LOAD_STATUS_ERROR_DEVID_INVALID_GUCTYPE:
538 case XE_GUC_LOAD_STATUS_HWCONFIG_ERROR:
539 case XE_GUC_LOAD_STATUS_DPC_ERROR:
540 case XE_GUC_LOAD_STATUS_EXCEPTION:
541 case XE_GUC_LOAD_STATUS_INIT_DATA_INVALID:
542 case XE_GUC_LOAD_STATUS_MPU_DATA_INVALID:
543 case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
544 return -1;
545 }
546
547 switch (br_val) {
548 case XE_BOOTROM_STATUS_NO_KEY_FOUND:
549 case XE_BOOTROM_STATUS_RSA_FAILED:
550 case XE_BOOTROM_STATUS_PAVPC_FAILED:
551 case XE_BOOTROM_STATUS_WOPCM_FAILED:
552 case XE_BOOTROM_STATUS_LOADLOC_FAILED:
553 case XE_BOOTROM_STATUS_JUMP_FAILED:
554 case XE_BOOTROM_STATUS_RC6CTXCONFIG_FAILED:
555 case XE_BOOTROM_STATUS_MPUMAP_INCORRECT:
556 case XE_BOOTROM_STATUS_EXCEPTION:
557 case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
558 return -1;
559 }
560
561 return 0;
562 }
563
guc_pc_get_cur_freq(struct xe_guc_pc * guc_pc)564 static s32 guc_pc_get_cur_freq(struct xe_guc_pc *guc_pc)
565 {
566 u32 freq;
567 int ret = xe_guc_pc_get_cur_freq(guc_pc, &freq);
568
569 return ret ? ret : freq;
570 }
571
572 /*
573 * Wait for the GuC to start up.
574 *
575 * Measurements indicate this should take no more than 20ms (assuming the GT
576 * clock is at maximum frequency). However, thermal throttling and other issues
577 * can prevent the clock hitting max and thus making the load take significantly
578 * longer. Allow up to 200ms as a safety margin for real world worst case situations.
579 *
580 * However, bugs anywhere from KMD to GuC to PCODE to fan failure in a CI farm can
581 * lead to even longer times. E.g. if the GT is clamped to minimum frequency then
582 * the load times can be in the seconds range. So the timeout is increased for debug
583 * builds to ensure that problems can be correctly analysed. For release builds, the
584 * timeout is kept short so that users don't wait forever to find out that there is a
585 * problem. In either case, if the load took longer than is reasonable even with some
586 * 'sensible' throttling, then flag a warning because something is not right.
587 *
588 * Note that there is a limit on how long an individual usleep_range() can wait for,
589 * hence longer waits require wrapping a shorter wait in a loop.
590 *
591 * Note that the only reason an end user should hit the shorter timeout is in case of
592 * extreme thermal throttling. And a system that is that hot during boot is probably
593 * dead anyway!
594 */
595 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
596 #define GUC_LOAD_RETRY_LIMIT 20
597 #else
598 #define GUC_LOAD_RETRY_LIMIT 3
599 #endif
600 #define GUC_LOAD_TIME_WARN_MS 200
601
guc_wait_ucode(struct xe_guc * guc)602 static void guc_wait_ucode(struct xe_guc *guc)
603 {
604 struct xe_gt *gt = guc_to_gt(guc);
605 struct xe_mmio *mmio = >->mmio;
606 struct xe_guc_pc *guc_pc = >->uc.guc.pc;
607 ktime_t before, after, delta;
608 int load_done;
609 u32 status = 0;
610 int count = 0;
611 u64 delta_ms;
612 u32 before_freq;
613
614 before_freq = xe_guc_pc_get_act_freq(guc_pc);
615 before = ktime_get();
616 /*
617 * Note, can't use any kind of timing information from the call to xe_mmio_wait.
618 * It could return a thousand intermediate stages at random times. Instead, must
619 * manually track the total time taken and locally implement the timeout.
620 */
621 do {
622 u32 last_status = status & (GS_UKERNEL_MASK | GS_BOOTROM_MASK);
623 int ret;
624
625 /*
626 * Wait for any change (intermediate or terminal) in the status register.
627 * Note, the return value is a don't care. The only failure code is timeout
628 * but the timeouts need to be accumulated over all the intermediate partial
629 * timeouts rather than allowing a huge timeout each time. So basically, need
630 * to treat a timeout no different to a value change.
631 */
632 ret = xe_mmio_wait32_not(mmio, GUC_STATUS, GS_UKERNEL_MASK | GS_BOOTROM_MASK,
633 last_status, 1000 * 1000, &status, false);
634 if (ret < 0)
635 count++;
636 after = ktime_get();
637 delta = ktime_sub(after, before);
638 delta_ms = ktime_to_ms(delta);
639
640 load_done = guc_load_done(status);
641 if (load_done != 0)
642 break;
643
644 if (delta_ms >= (GUC_LOAD_RETRY_LIMIT * 1000))
645 break;
646
647 xe_gt_dbg(gt, "load still in progress, timeouts = %d, freq = %dMHz (req %dMHz), status = 0x%08X [0x%02X/%02X]\n",
648 count, xe_guc_pc_get_act_freq(guc_pc),
649 guc_pc_get_cur_freq(guc_pc), status,
650 REG_FIELD_GET(GS_BOOTROM_MASK, status),
651 REG_FIELD_GET(GS_UKERNEL_MASK, status));
652 } while (1);
653
654 if (load_done != 1) {
655 u32 ukernel = REG_FIELD_GET(GS_UKERNEL_MASK, status);
656 u32 bootrom = REG_FIELD_GET(GS_BOOTROM_MASK, status);
657
658 xe_gt_err(gt, "load failed: status = 0x%08X, time = %lldms, freq = %dMHz (req %dMHz), done = %d\n",
659 status, delta_ms, xe_guc_pc_get_act_freq(guc_pc),
660 guc_pc_get_cur_freq(guc_pc), load_done);
661 xe_gt_err(gt, "load failed: status: Reset = %d, BootROM = 0x%02X, UKernel = 0x%02X, MIA = 0x%02X, Auth = 0x%02X\n",
662 REG_FIELD_GET(GS_MIA_IN_RESET, status),
663 bootrom, ukernel,
664 REG_FIELD_GET(GS_MIA_MASK, status),
665 REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
666
667 switch (bootrom) {
668 case XE_BOOTROM_STATUS_NO_KEY_FOUND:
669 xe_gt_err(gt, "invalid key requested, header = 0x%08X\n",
670 xe_mmio_read32(mmio, GUC_HEADER_INFO));
671 break;
672
673 case XE_BOOTROM_STATUS_RSA_FAILED:
674 xe_gt_err(gt, "firmware signature verification failed\n");
675 break;
676
677 case XE_BOOTROM_STATUS_PROD_KEY_CHECK_FAILURE:
678 xe_gt_err(gt, "firmware production part check failure\n");
679 break;
680 }
681
682 switch (ukernel) {
683 case XE_GUC_LOAD_STATUS_EXCEPTION:
684 xe_gt_err(gt, "firmware exception. EIP: %#x\n",
685 xe_mmio_read32(mmio, SOFT_SCRATCH(13)));
686 break;
687
688 case XE_GUC_LOAD_STATUS_INIT_MMIO_SAVE_RESTORE_INVALID:
689 xe_gt_err(gt, "illegal register in save/restore workaround list\n");
690 break;
691
692 case XE_GUC_LOAD_STATUS_HWCONFIG_START:
693 xe_gt_err(gt, "still extracting hwconfig table.\n");
694 break;
695 }
696
697 xe_device_declare_wedged(gt_to_xe(gt));
698 } else if (delta_ms > GUC_LOAD_TIME_WARN_MS) {
699 xe_gt_warn(gt, "excessive init time: %lldms! [status = 0x%08X, timeouts = %d]\n",
700 delta_ms, status, count);
701 xe_gt_warn(gt, "excessive init time: [freq = %dMHz (req = %dMHz), before = %dMHz, perf_limit_reasons = 0x%08X]\n",
702 xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
703 before_freq, xe_gt_throttle_get_limit_reasons(gt));
704 } else {
705 xe_gt_dbg(gt, "init took %lldms, freq = %dMHz (req = %dMHz), before = %dMHz, status = 0x%08X, timeouts = %d\n",
706 delta_ms, xe_guc_pc_get_act_freq(guc_pc), guc_pc_get_cur_freq(guc_pc),
707 before_freq, status, count);
708 }
709 }
710
__xe_guc_upload(struct xe_guc * guc)711 static int __xe_guc_upload(struct xe_guc *guc)
712 {
713 int ret;
714
715 /* Raise GT freq to speed up HuC/GuC load */
716 xe_guc_pc_raise_unslice(&guc->pc);
717
718 guc_write_params(guc);
719 guc_prepare_xfer(guc);
720
721 /*
722 * Note that GuC needs the CSS header plus uKernel code to be copied
723 * by the DMA engine in one operation, whereas the RSA signature is
724 * loaded separately, either by copying it to the UOS_RSA_SCRATCH
725 * register (if key size <= 256) or through a ggtt-pinned vma (if key
726 * size > 256). The RSA size and therefore the way we provide it to the
727 * HW is fixed for each platform and hard-coded in the bootrom.
728 */
729 ret = guc_xfer_rsa(guc);
730 if (ret)
731 goto out;
732 /*
733 * Current uCode expects the code to be loaded at 8k; locations below
734 * this are used for the stack.
735 */
736 ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
737 if (ret)
738 goto out;
739
740 /* Wait for authentication */
741 guc_wait_ucode(guc);
742
743 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
744 return 0;
745
746 out:
747 xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
748 return 0 /* FIXME: ret, don't want to stop load currently */;
749 }
750
vf_guc_min_load_for_hwconfig(struct xe_guc * guc)751 static int vf_guc_min_load_for_hwconfig(struct xe_guc *guc)
752 {
753 struct xe_gt *gt = guc_to_gt(guc);
754 int ret;
755
756 ret = xe_gt_sriov_vf_bootstrap(gt);
757 if (ret)
758 return ret;
759
760 ret = xe_gt_sriov_vf_query_config(gt);
761 if (ret)
762 return ret;
763
764 ret = xe_guc_hwconfig_init(guc);
765 if (ret)
766 return ret;
767
768 ret = xe_guc_enable_communication(guc);
769 if (ret)
770 return ret;
771
772 ret = xe_gt_sriov_vf_connect(gt);
773 if (ret)
774 return ret;
775
776 ret = xe_gt_sriov_vf_query_runtime(gt);
777 if (ret)
778 return ret;
779
780 return 0;
781 }
782
783 /**
784 * xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
785 * @guc: The GuC object
786 *
787 * This function uploads a minimal GuC that does not support submissions but
788 * in a state where the hwconfig table can be read. Next, it reads and parses
789 * the hwconfig table so it can be used for subsequent steps in the driver load.
790 * Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
791 *
792 * Return: 0 on success, negative error code on error.
793 */
xe_guc_min_load_for_hwconfig(struct xe_guc * guc)794 int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
795 {
796 int ret;
797
798 if (IS_SRIOV_VF(guc_to_xe(guc)))
799 return vf_guc_min_load_for_hwconfig(guc);
800
801 xe_guc_ads_populate_minimal(&guc->ads);
802
803 xe_guc_pc_init_early(&guc->pc);
804
805 ret = __xe_guc_upload(guc);
806 if (ret)
807 return ret;
808
809 ret = xe_guc_hwconfig_init(guc);
810 if (ret)
811 return ret;
812
813 ret = xe_guc_enable_communication(guc);
814 if (ret)
815 return ret;
816
817 return 0;
818 }
819
xe_guc_upload(struct xe_guc * guc)820 int xe_guc_upload(struct xe_guc *guc)
821 {
822 xe_guc_ads_populate(&guc->ads);
823
824 return __xe_guc_upload(guc);
825 }
826
guc_handle_mmio_msg(struct xe_guc * guc)827 static void guc_handle_mmio_msg(struct xe_guc *guc)
828 {
829 struct xe_gt *gt = guc_to_gt(guc);
830 u32 msg;
831
832 if (IS_SRIOV_VF(guc_to_xe(guc)))
833 return;
834
835 xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
836
837 msg = xe_mmio_read32(>->mmio, SOFT_SCRATCH(15));
838 msg &= XE_GUC_RECV_MSG_EXCEPTION |
839 XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
840 xe_mmio_write32(>->mmio, SOFT_SCRATCH(15), 0);
841
842 if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
843 xe_gt_err(gt, "Received early GuC crash dump notification!\n");
844
845 if (msg & XE_GUC_RECV_MSG_EXCEPTION)
846 xe_gt_err(gt, "Received early GuC exception notification!\n");
847 }
848
guc_enable_irq(struct xe_guc * guc)849 static void guc_enable_irq(struct xe_guc *guc)
850 {
851 struct xe_gt *gt = guc_to_gt(guc);
852 u32 events = xe_gt_is_media_type(gt) ?
853 REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST) :
854 REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
855
856 /* Primary GuC and media GuC share a single enable bit */
857 xe_mmio_write32(>->mmio, GUC_SG_INTR_ENABLE,
858 REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
859
860 /*
861 * There are separate mask bits for primary and media GuCs, so use
862 * a RMW operation to avoid clobbering the other GuC's setting.
863 */
864 xe_mmio_rmw32(>->mmio, GUC_SG_INTR_MASK, events, 0);
865 }
866
xe_guc_enable_communication(struct xe_guc * guc)867 int xe_guc_enable_communication(struct xe_guc *guc)
868 {
869 struct xe_device *xe = guc_to_xe(guc);
870 int err;
871
872 if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
873 struct xe_gt *gt = guc_to_gt(guc);
874 struct xe_tile *tile = gt_to_tile(gt);
875
876 err = xe_memirq_init_guc(&tile->memirq, guc);
877 if (err)
878 return err;
879 } else {
880 guc_enable_irq(guc);
881 }
882
883 err = xe_guc_ct_enable(&guc->ct);
884 if (err)
885 return err;
886
887 guc_handle_mmio_msg(guc);
888
889 return 0;
890 }
891
xe_guc_suspend(struct xe_guc * guc)892 int xe_guc_suspend(struct xe_guc *guc)
893 {
894 struct xe_gt *gt = guc_to_gt(guc);
895 u32 action[] = {
896 XE_GUC_ACTION_CLIENT_SOFT_RESET,
897 };
898 int ret;
899
900 ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
901 if (ret) {
902 xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
903 return ret;
904 }
905
906 xe_guc_sanitize(guc);
907 return 0;
908 }
909
xe_guc_notify(struct xe_guc * guc)910 void xe_guc_notify(struct xe_guc *guc)
911 {
912 struct xe_gt *gt = guc_to_gt(guc);
913 const u32 default_notify_data = 0;
914
915 /*
916 * Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
917 * additional payload data to the GuC but this capability is not
918 * used by the firmware yet. Use default value in the meantime.
919 */
920 xe_mmio_write32(>->mmio, guc->notify_reg, default_notify_data);
921 }
922
xe_guc_auth_huc(struct xe_guc * guc,u32 rsa_addr)923 int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
924 {
925 u32 action[] = {
926 XE_GUC_ACTION_AUTHENTICATE_HUC,
927 rsa_addr
928 };
929
930 return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
931 }
932
xe_guc_mmio_send_recv(struct xe_guc * guc,const u32 * request,u32 len,u32 * response_buf)933 int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
934 u32 len, u32 *response_buf)
935 {
936 struct xe_device *xe = guc_to_xe(guc);
937 struct xe_gt *gt = guc_to_gt(guc);
938 struct xe_mmio *mmio = >->mmio;
939 u32 header, reply;
940 struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
941 MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
942 const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
943 int ret;
944 int i;
945
946 BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
947
948 xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
949 xe_assert(xe, len);
950 xe_assert(xe, len <= VF_SW_FLAG_COUNT);
951 xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
952 xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
953 GUC_HXG_ORIGIN_HOST);
954 xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
955 GUC_HXG_TYPE_REQUEST);
956
957 retry:
958 /* Not in critical data-path, just do if else for GT type */
959 if (xe_gt_is_media_type(gt)) {
960 for (i = 0; i < len; ++i)
961 xe_mmio_write32(mmio, MED_VF_SW_FLAG(i),
962 request[i]);
963 xe_mmio_read32(mmio, MED_VF_SW_FLAG(LAST_INDEX));
964 } else {
965 for (i = 0; i < len; ++i)
966 xe_mmio_write32(mmio, VF_SW_FLAG(i),
967 request[i]);
968 xe_mmio_read32(mmio, VF_SW_FLAG(LAST_INDEX));
969 }
970
971 xe_guc_notify(guc);
972
973 ret = xe_mmio_wait32(mmio, reply_reg, GUC_HXG_MSG_0_ORIGIN,
974 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
975 50000, &reply, false);
976 if (ret) {
977 timeout:
978 xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
979 request[0], reply);
980 return ret;
981 }
982
983 header = xe_mmio_read32(mmio, reply_reg);
984 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
985 GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
986 /*
987 * Once we got a BUSY reply we must wait again for the final
988 * response but this time we can't use ORIGIN mask anymore.
989 * To spot a right change in the reply, we take advantage that
990 * response SUCCESS and FAILURE differ only by the single bit
991 * and all other bits are set and can be used as a new mask.
992 */
993 u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
994 u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
995
996 BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
997 BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
998
999 ret = xe_mmio_wait32(mmio, reply_reg, resp_mask, resp_mask,
1000 1000000, &header, false);
1001
1002 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
1003 GUC_HXG_ORIGIN_GUC))
1004 goto proto;
1005 if (unlikely(ret)) {
1006 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1007 GUC_HXG_TYPE_NO_RESPONSE_BUSY)
1008 goto proto;
1009 goto timeout;
1010 }
1011 }
1012
1013 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1014 GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1015 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
1016
1017 xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
1018 request[0], reason);
1019 goto retry;
1020 }
1021
1022 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
1023 GUC_HXG_TYPE_RESPONSE_FAILURE) {
1024 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
1025 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
1026
1027 xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
1028 request[0], error, hint);
1029 return -ENXIO;
1030 }
1031
1032 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
1033 GUC_HXG_TYPE_RESPONSE_SUCCESS) {
1034 proto:
1035 xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
1036 request[0], header);
1037 return -EPROTO;
1038 }
1039
1040 /* Just copy entire possible message response */
1041 if (response_buf) {
1042 response_buf[0] = header;
1043
1044 for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
1045 reply_reg.addr += sizeof(u32);
1046 response_buf[i] = xe_mmio_read32(mmio, reply_reg);
1047 }
1048 }
1049
1050 /* Use data from the GuC response as our return value */
1051 return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
1052 }
1053
xe_guc_mmio_send(struct xe_guc * guc,const u32 * request,u32 len)1054 int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
1055 {
1056 return xe_guc_mmio_send_recv(guc, request, len, NULL);
1057 }
1058
guc_self_cfg(struct xe_guc * guc,u16 key,u16 len,u64 val)1059 static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
1060 {
1061 struct xe_device *xe = guc_to_xe(guc);
1062 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
1063 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
1064 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
1065 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
1066 GUC_ACTION_HOST2GUC_SELF_CFG),
1067 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
1068 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
1069 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
1070 lower_32_bits(val)),
1071 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
1072 upper_32_bits(val)),
1073 };
1074 int ret;
1075
1076 xe_assert(xe, len <= 2);
1077 xe_assert(xe, len != 1 || !upper_32_bits(val));
1078
1079 /* Self config must go over MMIO */
1080 ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
1081
1082 if (unlikely(ret < 0))
1083 return ret;
1084 if (unlikely(ret > 1))
1085 return -EPROTO;
1086 if (unlikely(!ret))
1087 return -ENOKEY;
1088
1089 return 0;
1090 }
1091
xe_guc_self_cfg32(struct xe_guc * guc,u16 key,u32 val)1092 int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
1093 {
1094 return guc_self_cfg(guc, key, 1, val);
1095 }
1096
xe_guc_self_cfg64(struct xe_guc * guc,u16 key,u64 val)1097 int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
1098 {
1099 return guc_self_cfg(guc, key, 2, val);
1100 }
1101
xe_guc_irq_handler(struct xe_guc * guc,const u16 iir)1102 void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
1103 {
1104 if (iir & GUC_INTR_GUC2HOST)
1105 xe_guc_ct_irq_handler(&guc->ct);
1106 }
1107
xe_guc_sanitize(struct xe_guc * guc)1108 void xe_guc_sanitize(struct xe_guc *guc)
1109 {
1110 xe_uc_fw_sanitize(&guc->fw);
1111 xe_guc_ct_disable(&guc->ct);
1112 guc->submission_state.enabled = false;
1113 }
1114
xe_guc_reset_prepare(struct xe_guc * guc)1115 int xe_guc_reset_prepare(struct xe_guc *guc)
1116 {
1117 return xe_guc_submit_reset_prepare(guc);
1118 }
1119
xe_guc_reset_wait(struct xe_guc * guc)1120 void xe_guc_reset_wait(struct xe_guc *guc)
1121 {
1122 xe_guc_submit_reset_wait(guc);
1123 }
1124
xe_guc_stop_prepare(struct xe_guc * guc)1125 void xe_guc_stop_prepare(struct xe_guc *guc)
1126 {
1127 if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1128 int err;
1129
1130 err = xe_guc_pc_stop(&guc->pc);
1131 xe_gt_WARN(guc_to_gt(guc), err, "Failed to stop GuC PC: %pe\n",
1132 ERR_PTR(err));
1133 }
1134 }
1135
xe_guc_stop(struct xe_guc * guc)1136 void xe_guc_stop(struct xe_guc *guc)
1137 {
1138 xe_guc_ct_stop(&guc->ct);
1139
1140 xe_guc_submit_stop(guc);
1141 }
1142
xe_guc_start(struct xe_guc * guc)1143 int xe_guc_start(struct xe_guc *guc)
1144 {
1145 if (!IS_SRIOV_VF(guc_to_xe(guc))) {
1146 int err;
1147
1148 err = xe_guc_pc_start(&guc->pc);
1149 xe_gt_WARN(guc_to_gt(guc), err, "Failed to start GuC PC: %pe\n",
1150 ERR_PTR(err));
1151 }
1152
1153 return xe_guc_submit_start(guc);
1154 }
1155
xe_guc_print_info(struct xe_guc * guc,struct drm_printer * p)1156 void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
1157 {
1158 struct xe_gt *gt = guc_to_gt(guc);
1159 unsigned int fw_ref;
1160 u32 status;
1161 int i;
1162
1163 xe_uc_fw_print(&guc->fw, p);
1164
1165 fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
1166 if (!fw_ref)
1167 return;
1168
1169 status = xe_mmio_read32(>->mmio, GUC_STATUS);
1170
1171 drm_printf(p, "\nGuC status 0x%08x:\n", status);
1172 drm_printf(p, "\tBootrom status = 0x%x\n",
1173 REG_FIELD_GET(GS_BOOTROM_MASK, status));
1174 drm_printf(p, "\tuKernel status = 0x%x\n",
1175 REG_FIELD_GET(GS_UKERNEL_MASK, status));
1176 drm_printf(p, "\tMIA Core status = 0x%x\n",
1177 REG_FIELD_GET(GS_MIA_MASK, status));
1178 drm_printf(p, "\tLog level = %d\n",
1179 xe_guc_log_get_level(&guc->log));
1180
1181 drm_puts(p, "\nScratch registers:\n");
1182 for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
1183 drm_printf(p, "\t%2d: \t0x%x\n",
1184 i, xe_mmio_read32(>->mmio, SOFT_SCRATCH(i)));
1185 }
1186
1187 xe_force_wake_put(gt_to_fw(gt), fw_ref);
1188
1189 drm_puts(p, "\n");
1190 xe_guc_ct_print(&guc->ct, p, false);
1191
1192 drm_puts(p, "\n");
1193 xe_guc_submit_print(guc, p);
1194 }
1195
1196 /**
1197 * xe_guc_declare_wedged() - Declare GuC wedged
1198 * @guc: the GuC object
1199 *
1200 * Wedge the GuC which stops all submission, saves desired debug state, and
1201 * cleans up anything which could timeout.
1202 */
xe_guc_declare_wedged(struct xe_guc * guc)1203 void xe_guc_declare_wedged(struct xe_guc *guc)
1204 {
1205 xe_gt_assert(guc_to_gt(guc), guc_to_xe(guc)->wedged.mode);
1206
1207 xe_guc_reset_prepare(guc);
1208 xe_guc_ct_stop(&guc->ct);
1209 xe_guc_submit_wedge(guc);
1210 }
1211