1 // SPDX-License-Identifier: GPL-2.0-only 2 /* cpu_feature_enabled() cannot be used this early */ 3 #define USE_EARLY_PGTABLE_L5 4 5 #include <linux/memblock.h> 6 #include <linux/linkage.h> 7 #include <linux/bitops.h> 8 #include <linux/kernel.h> 9 #include <linux/export.h> 10 #include <linux/kvm_types.h> 11 #include <linux/percpu.h> 12 #include <linux/string.h> 13 #include <linux/ctype.h> 14 #include <linux/delay.h> 15 #include <linux/sched/mm.h> 16 #include <linux/sched/clock.h> 17 #include <linux/sched/task.h> 18 #include <linux/sched/smt.h> 19 #include <linux/init.h> 20 #include <linux/kprobes.h> 21 #include <linux/kgdb.h> 22 #include <linux/mem_encrypt.h> 23 #include <linux/smp.h> 24 #include <linux/cpu.h> 25 #include <linux/io.h> 26 #include <linux/syscore_ops.h> 27 #include <linux/pgtable.h> 28 #include <linux/stackprotector.h> 29 #include <linux/utsname.h> 30 #include <linux/efi.h> 31 32 #include <asm/alternative.h> 33 #include <asm/cmdline.h> 34 #include <asm/cpuid/api.h> 35 #include <asm/perf_event.h> 36 #include <asm/mmu_context.h> 37 #include <asm/doublefault.h> 38 #include <asm/archrandom.h> 39 #include <asm/hypervisor.h> 40 #include <asm/processor.h> 41 #include <asm/tlbflush.h> 42 #include <asm/debugreg.h> 43 #include <asm/sections.h> 44 #include <asm/vsyscall.h> 45 #include <linux/topology.h> 46 #include <linux/cpumask.h> 47 #include <linux/atomic.h> 48 #include <asm/proto.h> 49 #include <asm/setup.h> 50 #include <asm/apic.h> 51 #include <asm/desc.h> 52 #include <asm/fpu/api.h> 53 #include <asm/mtrr.h> 54 #include <asm/hwcap2.h> 55 #include <linux/numa.h> 56 #include <asm/numa.h> 57 #include <asm/asm.h> 58 #include <asm/bugs.h> 59 #include <asm/cpu.h> 60 #include <asm/mce.h> 61 #include <asm/msr.h> 62 #include <asm/cacheinfo.h> 63 #include <asm/memtype.h> 64 #include <asm/microcode.h> 65 #include <asm/intel-family.h> 66 #include <asm/cpu_device_id.h> 67 #include <asm/fred.h> 68 #include <asm/uv/uv.h> 69 #include <asm/ia32.h> 70 #include <asm/set_memory.h> 71 #include <asm/traps.h> 72 #include <asm/sev.h> 73 #include <asm/tdx.h> 74 #include <asm/posted_intr.h> 75 #include <asm/runtime-const.h> 76 77 #include "cpu.h" 78 79 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info); 80 EXPORT_PER_CPU_SYMBOL(cpu_info); 81 82 /* Used for modules: built-in code uses runtime constants */ 83 unsigned long USER_PTR_MAX; 84 EXPORT_SYMBOL(USER_PTR_MAX); 85 86 u32 elf_hwcap2 __read_mostly; 87 88 /* Number of siblings per CPU package */ 89 unsigned int __max_threads_per_core __ro_after_init = 1; 90 EXPORT_SYMBOL(__max_threads_per_core); 91 92 unsigned int __max_dies_per_package __ro_after_init = 1; 93 EXPORT_SYMBOL(__max_dies_per_package); 94 95 unsigned int __max_logical_packages __ro_after_init = 1; 96 EXPORT_SYMBOL(__max_logical_packages); 97 98 unsigned int __num_cores_per_package __ro_after_init = 1; 99 EXPORT_SYMBOL(__num_cores_per_package); 100 101 unsigned int __num_threads_per_package __ro_after_init = 1; 102 EXPORT_SYMBOL(__num_threads_per_package); 103 104 static struct ppin_info { 105 int feature; 106 int msr_ppin_ctl; 107 int msr_ppin; 108 } ppin_info[] = { 109 [X86_VENDOR_INTEL] = { 110 .feature = X86_FEATURE_INTEL_PPIN, 111 .msr_ppin_ctl = MSR_PPIN_CTL, 112 .msr_ppin = MSR_PPIN 113 }, 114 [X86_VENDOR_AMD] = { 115 .feature = X86_FEATURE_AMD_PPIN, 116 .msr_ppin_ctl = MSR_AMD_PPIN_CTL, 117 .msr_ppin = MSR_AMD_PPIN 118 }, 119 }; 120 121 static const struct x86_cpu_id ppin_cpuids[] = { 122 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]), 123 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]), 124 125 /* Legacy models without CPUID enumeration */ 126 X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]), 127 X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]), 128 X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]), 129 X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]), 130 X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]), 131 X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]), 132 X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]), 133 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]), 134 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]), 135 X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]), 136 X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]), 137 138 {} 139 }; 140 141 static void ppin_init(struct cpuinfo_x86 *c) 142 { 143 const struct x86_cpu_id *id; 144 unsigned long long val; 145 struct ppin_info *info; 146 147 id = x86_match_cpu(ppin_cpuids); 148 if (!id) 149 return; 150 151 /* 152 * Testing the presence of the MSR is not enough. Need to check 153 * that the PPIN_CTL allows reading of the PPIN. 154 */ 155 info = (struct ppin_info *)id->driver_data; 156 157 if (rdmsrq_safe(info->msr_ppin_ctl, &val)) 158 goto clear_ppin; 159 160 if ((val & 3UL) == 1UL) { 161 /* PPIN locked in disabled mode */ 162 goto clear_ppin; 163 } 164 165 /* If PPIN is disabled, try to enable */ 166 if (!(val & 2UL)) { 167 wrmsrq_safe(info->msr_ppin_ctl, val | 2UL); 168 rdmsrq_safe(info->msr_ppin_ctl, &val); 169 } 170 171 /* Is the enable bit set? */ 172 if (val & 2UL) { 173 c->ppin = native_rdmsrq(info->msr_ppin); 174 set_cpu_cap(c, info->feature); 175 return; 176 } 177 178 clear_ppin: 179 setup_clear_cpu_cap(info->feature); 180 } 181 182 static void default_init(struct cpuinfo_x86 *c) 183 { 184 #ifdef CONFIG_X86_64 185 cpu_detect_cache_sizes(c); 186 #else 187 /* Not much we can do here... */ 188 /* Check if at least it has cpuid */ 189 if (c->cpuid_level == -1) { 190 /* No cpuid. It must be an ancient CPU */ 191 if (c->x86 == 4) 192 strcpy(c->x86_model_id, "486"); 193 else if (c->x86 == 3) 194 strcpy(c->x86_model_id, "386"); 195 } 196 #endif 197 } 198 199 static const struct cpu_dev default_cpu = { 200 .c_init = default_init, 201 .c_vendor = "Unknown", 202 .c_x86_vendor = X86_VENDOR_UNKNOWN, 203 }; 204 205 static const struct cpu_dev *this_cpu = &default_cpu; 206 207 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = { 208 #ifdef CONFIG_X86_64 209 /* 210 * We need valid kernel segments for data and code in long mode too 211 * IRET will check the segment types kkeil 2000/10/28 212 * Also sysret mandates a special GDT layout 213 * 214 * TLS descriptors are currently at a different place compared to i386. 215 * Hopefully nobody expects them at a fixed place (Wine?) 216 */ 217 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff), 218 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff), 219 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff), 220 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff), 221 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff), 222 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff), 223 #else 224 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff), 225 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), 226 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff), 227 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff), 228 /* 229 * Segments used for calling PnP BIOS have byte granularity. 230 * They code segments and data segments have fixed 64k limits, 231 * the transfer segment sizes are set at run time. 232 */ 233 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff), 234 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff), 235 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff), 236 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0), 237 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0), 238 /* 239 * The APM segments have byte granularity and their bases 240 * are set at run time. All have 64k limits. 241 */ 242 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff), 243 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff), 244 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff), 245 246 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), 247 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff), 248 #endif 249 } }; 250 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page); 251 SYM_PIC_ALIAS(gdt_page); 252 253 #ifdef CONFIG_X86_64 254 static int __init x86_nopcid_setup(char *s) 255 { 256 /* nopcid doesn't accept parameters */ 257 if (s) 258 return -EINVAL; 259 260 /* do not emit a message if the feature is not present */ 261 if (!boot_cpu_has(X86_FEATURE_PCID)) 262 return 0; 263 264 setup_clear_cpu_cap(X86_FEATURE_PCID); 265 pr_info("nopcid: PCID feature disabled\n"); 266 return 0; 267 } 268 early_param("nopcid", x86_nopcid_setup); 269 #endif 270 271 static int __init x86_noinvpcid_setup(char *s) 272 { 273 /* noinvpcid doesn't accept parameters */ 274 if (s) 275 return -EINVAL; 276 277 /* do not emit a message if the feature is not present */ 278 if (!boot_cpu_has(X86_FEATURE_INVPCID)) 279 return 0; 280 281 setup_clear_cpu_cap(X86_FEATURE_INVPCID); 282 pr_info("noinvpcid: INVPCID feature disabled\n"); 283 return 0; 284 } 285 early_param("noinvpcid", x86_noinvpcid_setup); 286 287 /* Standard macro to see if a specific flag is changeable */ 288 static inline bool flag_is_changeable_p(unsigned long flag) 289 { 290 unsigned long f1, f2; 291 292 if (!IS_ENABLED(CONFIG_X86_32)) 293 return true; 294 295 /* 296 * Cyrix and IDT cpus allow disabling of CPUID 297 * so the code below may return different results 298 * when it is executed before and after enabling 299 * the CPUID. Add "volatile" to not allow gcc to 300 * optimize the subsequent calls to this function. 301 */ 302 asm volatile ("pushfl \n\t" 303 "pushfl \n\t" 304 "popl %0 \n\t" 305 "movl %0, %1 \n\t" 306 "xorl %2, %0 \n\t" 307 "pushl %0 \n\t" 308 "popfl \n\t" 309 "pushfl \n\t" 310 "popl %0 \n\t" 311 "popfl \n\t" 312 313 : "=&r" (f1), "=&r" (f2) 314 : "ir" (flag)); 315 316 return (f1 ^ f2) & flag; 317 } 318 319 #ifdef CONFIG_X86_32 320 static int cachesize_override = -1; 321 static int disable_x86_serial_nr = 1; 322 323 static int __init cachesize_setup(char *str) 324 { 325 get_option(&str, &cachesize_override); 326 return 1; 327 } 328 __setup("cachesize=", cachesize_setup); 329 330 /* Probe for the CPUID instruction */ 331 bool cpuid_feature(void) 332 { 333 return flag_is_changeable_p(X86_EFLAGS_ID); 334 } 335 336 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 337 { 338 unsigned long lo, hi; 339 340 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr) 341 return; 342 343 /* Disable processor serial number: */ 344 345 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 346 lo |= 0x200000; 347 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi); 348 349 pr_notice("CPU serial number disabled.\n"); 350 clear_cpu_cap(c, X86_FEATURE_PN); 351 352 /* Disabling the serial number may affect the cpuid level */ 353 c->cpuid_level = cpuid_eax(0); 354 } 355 356 static int __init x86_serial_nr_setup(char *s) 357 { 358 disable_x86_serial_nr = 0; 359 return 1; 360 } 361 __setup("serialnumber", x86_serial_nr_setup); 362 #else 363 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c) 364 { 365 } 366 #endif 367 368 static __always_inline void setup_smep(struct cpuinfo_x86 *c) 369 { 370 if (cpu_has(c, X86_FEATURE_SMEP)) 371 cr4_set_bits(X86_CR4_SMEP); 372 } 373 374 static __always_inline void setup_smap(struct cpuinfo_x86 *c) 375 { 376 unsigned long eflags = native_save_fl(); 377 378 /* This should have been cleared long ago */ 379 BUG_ON(eflags & X86_EFLAGS_AC); 380 381 if (cpu_has(c, X86_FEATURE_SMAP)) 382 cr4_set_bits(X86_CR4_SMAP); 383 } 384 385 static __always_inline void setup_umip(struct cpuinfo_x86 *c) 386 { 387 /* Check the boot processor, plus build option for UMIP. */ 388 if (!cpu_feature_enabled(X86_FEATURE_UMIP)) 389 goto out; 390 391 /* Check the current processor's cpuid bits. */ 392 if (!cpu_has(c, X86_FEATURE_UMIP)) 393 goto out; 394 395 cr4_set_bits(X86_CR4_UMIP); 396 397 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n"); 398 399 return; 400 401 out: 402 /* 403 * Make sure UMIP is disabled in case it was enabled in a 404 * previous boot (e.g., via kexec). 405 */ 406 cr4_clear_bits(X86_CR4_UMIP); 407 } 408 409 static __always_inline void setup_lass(struct cpuinfo_x86 *c) 410 { 411 if (!cpu_feature_enabled(X86_FEATURE_LASS)) 412 return; 413 414 /* 415 * Legacy vsyscall page access causes a #GP when LASS is active. 416 * Disable LASS because the #GP handler doesn't support vsyscall 417 * emulation. 418 * 419 * Also disable LASS when running under EFI, as some runtime and 420 * boot services rely on 1:1 mappings in the lower half. 421 */ 422 if (IS_ENABLED(CONFIG_X86_VSYSCALL_EMULATION) || 423 IS_ENABLED(CONFIG_EFI)) { 424 setup_clear_cpu_cap(X86_FEATURE_LASS); 425 return; 426 } 427 428 cr4_set_bits(X86_CR4_LASS); 429 } 430 431 /* These bits should not change their value after CPU init is finished. */ 432 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | 433 X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED; 434 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning); 435 static unsigned long cr4_pinned_bits __ro_after_init; 436 437 void native_write_cr0(unsigned long val) 438 { 439 unsigned long bits_missing = 0; 440 441 set_register: 442 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory"); 443 444 if (static_branch_likely(&cr_pinning)) { 445 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) { 446 bits_missing = X86_CR0_WP; 447 val |= bits_missing; 448 goto set_register; 449 } 450 /* Warn after we've set the missing bits. */ 451 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n"); 452 } 453 } 454 EXPORT_SYMBOL(native_write_cr0); 455 456 void __no_profile native_write_cr4(unsigned long val) 457 { 458 unsigned long bits_changed = 0; 459 460 set_register: 461 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory"); 462 463 if (static_branch_likely(&cr_pinning)) { 464 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) { 465 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits; 466 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits; 467 goto set_register; 468 } 469 /* Warn after we've corrected the changed bits. */ 470 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n", 471 bits_changed); 472 } 473 } 474 #if IS_MODULE(CONFIG_LKDTM) 475 EXPORT_SYMBOL_GPL(native_write_cr4); 476 #endif 477 478 void cr4_update_irqsoff(unsigned long set, unsigned long clear) 479 { 480 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4); 481 482 lockdep_assert_irqs_disabled(); 483 484 newval = (cr4 & ~clear) | set; 485 if (newval != cr4) { 486 this_cpu_write(cpu_tlbstate.cr4, newval); 487 __write_cr4(newval); 488 } 489 } 490 EXPORT_SYMBOL_FOR_KVM(cr4_update_irqsoff); 491 492 /* Read the CR4 shadow. */ 493 unsigned long cr4_read_shadow(void) 494 { 495 return this_cpu_read(cpu_tlbstate.cr4); 496 } 497 EXPORT_SYMBOL_FOR_KVM(cr4_read_shadow); 498 499 void cr4_init(void) 500 { 501 unsigned long cr4 = __read_cr4(); 502 503 if (boot_cpu_has(X86_FEATURE_PCID)) 504 cr4 |= X86_CR4_PCIDE; 505 if (static_branch_likely(&cr_pinning)) 506 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits; 507 508 __write_cr4(cr4); 509 510 /* Initialize cr4 shadow for this CPU. */ 511 this_cpu_write(cpu_tlbstate.cr4, cr4); 512 } 513 514 /* 515 * Once CPU feature detection is finished (and boot params have been 516 * parsed), record any of the sensitive CR bits that are set, and 517 * enable CR pinning. 518 */ 519 static void __init setup_cr_pinning(void) 520 { 521 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask; 522 static_key_enable(&cr_pinning.key); 523 } 524 525 static __init int x86_nofsgsbase_setup(char *arg) 526 { 527 /* Require an exact match without trailing characters. */ 528 if (strlen(arg)) 529 return 0; 530 531 /* Do not emit a message if the feature is not present. */ 532 if (!boot_cpu_has(X86_FEATURE_FSGSBASE)) 533 return 1; 534 535 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE); 536 pr_info("FSGSBASE disabled via kernel command line\n"); 537 return 1; 538 } 539 __setup("nofsgsbase", x86_nofsgsbase_setup); 540 541 /* 542 * Protection Keys are not available in 32-bit mode. 543 */ 544 static bool pku_disabled; 545 546 static __always_inline void setup_pku(struct cpuinfo_x86 *c) 547 { 548 if (c == &boot_cpu_data) { 549 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU)) 550 return; 551 /* 552 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid 553 * bit to be set. Enforce it. 554 */ 555 setup_force_cpu_cap(X86_FEATURE_OSPKE); 556 557 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) { 558 return; 559 } 560 561 cr4_set_bits(X86_CR4_PKE); 562 /* Load the default PKRU value */ 563 pkru_write_default(); 564 } 565 566 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS 567 static __init int setup_disable_pku(char *arg) 568 { 569 /* 570 * Do not clear the X86_FEATURE_PKU bit. All of the 571 * runtime checks are against OSPKE so clearing the 572 * bit does nothing. 573 * 574 * This way, we will see "pku" in cpuinfo, but not 575 * "ospke", which is exactly what we want. It shows 576 * that the CPU has PKU, but the OS has not enabled it. 577 * This happens to be exactly how a system would look 578 * if we disabled the config option. 579 */ 580 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n"); 581 pku_disabled = true; 582 return 1; 583 } 584 __setup("nopku", setup_disable_pku); 585 #endif 586 587 #ifdef CONFIG_X86_KERNEL_IBT 588 589 __noendbr u64 ibt_save(bool disable) 590 { 591 u64 msr = 0; 592 593 if (cpu_feature_enabled(X86_FEATURE_IBT)) { 594 rdmsrq(MSR_IA32_S_CET, msr); 595 if (disable) 596 wrmsrq(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN); 597 } 598 599 return msr; 600 } 601 602 __noendbr void ibt_restore(u64 save) 603 { 604 u64 msr; 605 606 if (cpu_feature_enabled(X86_FEATURE_IBT)) { 607 rdmsrq(MSR_IA32_S_CET, msr); 608 msr &= ~CET_ENDBR_EN; 609 msr |= (save & CET_ENDBR_EN); 610 wrmsrq(MSR_IA32_S_CET, msr); 611 } 612 } 613 614 #endif 615 616 static __always_inline void setup_cet(struct cpuinfo_x86 *c) 617 { 618 bool user_shstk, kernel_ibt; 619 620 if (!IS_ENABLED(CONFIG_X86_CET)) 621 return; 622 623 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT); 624 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) && 625 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK); 626 627 if (!kernel_ibt && !user_shstk) 628 return; 629 630 if (user_shstk) 631 set_cpu_cap(c, X86_FEATURE_USER_SHSTK); 632 633 if (kernel_ibt) 634 wrmsrq(MSR_IA32_S_CET, CET_ENDBR_EN); 635 else 636 wrmsrq(MSR_IA32_S_CET, 0); 637 638 cr4_set_bits(X86_CR4_CET); 639 640 if (kernel_ibt && ibt_selftest()) { 641 pr_err("IBT selftest: Failed!\n"); 642 wrmsrq(MSR_IA32_S_CET, 0); 643 setup_clear_cpu_cap(X86_FEATURE_IBT); 644 } 645 } 646 647 __noendbr void cet_disable(void) 648 { 649 if (!(cpu_feature_enabled(X86_FEATURE_IBT) || 650 cpu_feature_enabled(X86_FEATURE_SHSTK))) 651 return; 652 653 wrmsrq(MSR_IA32_S_CET, 0); 654 wrmsrq(MSR_IA32_U_CET, 0); 655 } 656 657 /* 658 * Some CPU features depend on higher CPUID levels, which may not always 659 * be available due to CPUID level capping or broken virtualization 660 * software. Add those features to this table to auto-disable them. 661 */ 662 struct cpuid_dependent_feature { 663 u32 feature; 664 u32 level; 665 }; 666 667 static const struct cpuid_dependent_feature 668 cpuid_dependent_features[] = { 669 { X86_FEATURE_MWAIT, CPUID_LEAF_MWAIT }, 670 { X86_FEATURE_DCA, CPUID_LEAF_DCA }, 671 { X86_FEATURE_XSAVE, CPUID_LEAF_XSTATE }, 672 { 0, 0 } 673 }; 674 675 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn) 676 { 677 const struct cpuid_dependent_feature *df; 678 679 for (df = cpuid_dependent_features; df->feature; df++) { 680 681 if (!cpu_has(c, df->feature)) 682 continue; 683 /* 684 * Note: cpuid_level is set to -1 if unavailable, but 685 * extended_extended_level is set to 0 if unavailable 686 * and the legitimate extended levels are all negative 687 * when signed; hence the weird messing around with 688 * signs here... 689 */ 690 if (!((s32)df->level < 0 ? 691 (u32)df->level > (u32)c->extended_cpuid_level : 692 (s32)df->level > (s32)c->cpuid_level)) 693 continue; 694 695 clear_cpu_cap(c, df->feature); 696 if (!warn) 697 continue; 698 699 pr_warn("CPU: CPU feature %s disabled, no CPUID level 0x%x\n", 700 x86_cap_flags[df->feature], df->level); 701 } 702 } 703 704 /* 705 * Naming convention should be: <Name> [(<Codename>)] 706 * This table only is used unless init_<vendor>() below doesn't set it; 707 * in particular, if CPUID levels 0x80000002..4 are supported, this 708 * isn't used 709 */ 710 711 /* Look up CPU names by table lookup. */ 712 static const char *table_lookup_model(struct cpuinfo_x86 *c) 713 { 714 #ifdef CONFIG_X86_32 715 const struct legacy_cpu_model_info *info; 716 717 if (c->x86_model >= 16) 718 return NULL; /* Range check */ 719 720 if (!this_cpu) 721 return NULL; 722 723 info = this_cpu->legacy_models; 724 725 while (info->family) { 726 if (info->family == c->x86) 727 return info->model_names[c->x86_model]; 728 info++; 729 } 730 #endif 731 return NULL; /* Not found */ 732 } 733 734 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */ 735 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); 736 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long)); 737 738 #ifdef CONFIG_X86_32 739 /* The 32-bit entry code needs to find cpu_entry_area. */ 740 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area); 741 #endif 742 743 /* Load the original GDT from the per-cpu structure */ 744 void load_direct_gdt(int cpu) 745 { 746 struct desc_ptr gdt_descr; 747 748 gdt_descr.address = (long)get_cpu_gdt_rw(cpu); 749 gdt_descr.size = GDT_SIZE - 1; 750 load_gdt(&gdt_descr); 751 } 752 EXPORT_SYMBOL_FOR_KVM(load_direct_gdt); 753 754 /* Load a fixmap remapping of the per-cpu GDT */ 755 void load_fixmap_gdt(int cpu) 756 { 757 struct desc_ptr gdt_descr; 758 759 gdt_descr.address = (long)get_cpu_gdt_ro(cpu); 760 gdt_descr.size = GDT_SIZE - 1; 761 load_gdt(&gdt_descr); 762 } 763 EXPORT_SYMBOL_GPL(load_fixmap_gdt); 764 765 /** 766 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base 767 * @cpu: The CPU number for which this is invoked 768 * 769 * Invoked during early boot to switch from early GDT and early per CPU to 770 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base 771 * switch is implicit by loading the direct GDT. On 64bit this requires 772 * to update GSBASE. 773 */ 774 void __init switch_gdt_and_percpu_base(int cpu) 775 { 776 load_direct_gdt(cpu); 777 778 #ifdef CONFIG_X86_64 779 /* 780 * No need to load %gs. It is already correct. 781 * 782 * Writing %gs on 64bit would zero GSBASE which would make any per 783 * CPU operation up to the point of the wrmsrq() fault. 784 * 785 * Set GSBASE to the new offset. Until the wrmsrq() happens the 786 * early mapping is still valid. That means the GSBASE update will 787 * lose any prior per CPU data which was not copied over in 788 * setup_per_cpu_areas(). 789 * 790 * This works even with stackprotector enabled because the 791 * per CPU stack canary is 0 in both per CPU areas. 792 */ 793 wrmsrq(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu)); 794 #else 795 /* 796 * %fs is already set to __KERNEL_PERCPU, but after switching GDT 797 * it is required to load FS again so that the 'hidden' part is 798 * updated from the new GDT. Up to this point the early per CPU 799 * translation is active. Any content of the early per CPU data 800 * which was not copied over in setup_per_cpu_areas() is lost. 801 */ 802 loadsegment(fs, __KERNEL_PERCPU); 803 #endif 804 } 805 806 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {}; 807 808 static void get_model_name(struct cpuinfo_x86 *c) 809 { 810 unsigned int *v; 811 char *p, *q, *s; 812 813 if (c->extended_cpuid_level < 0x80000004) 814 return; 815 816 v = (unsigned int *)c->x86_model_id; 817 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); 818 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); 819 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); 820 c->x86_model_id[48] = 0; 821 822 /* Trim whitespace */ 823 p = q = s = &c->x86_model_id[0]; 824 825 while (*p == ' ') 826 p++; 827 828 while (*p) { 829 /* Note the last non-whitespace index */ 830 if (!isspace(*p)) 831 s = q; 832 833 *q++ = *p++; 834 } 835 836 *(s + 1) = '\0'; 837 } 838 839 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c) 840 { 841 unsigned int n, dummy, ebx, ecx, edx, l2size; 842 843 n = c->extended_cpuid_level; 844 845 if (n >= 0x80000005) { 846 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); 847 c->x86_cache_size = (ecx>>24) + (edx>>24); 848 #ifdef CONFIG_X86_64 849 /* On K8 L1 TLB is inclusive, so don't count it */ 850 c->x86_tlbsize = 0; 851 #endif 852 } 853 854 if (n < 0x80000006) /* Some chips just has a large L1. */ 855 return; 856 857 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); 858 l2size = ecx >> 16; 859 860 #ifdef CONFIG_X86_64 861 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); 862 #else 863 /* do processor-specific cache resizing */ 864 if (this_cpu->legacy_cache_size) 865 l2size = this_cpu->legacy_cache_size(c, l2size); 866 867 /* Allow user to override all this if necessary. */ 868 if (cachesize_override != -1) 869 l2size = cachesize_override; 870 871 if (l2size == 0) 872 return; /* Again, no L2 cache is possible */ 873 #endif 874 875 c->x86_cache_size = l2size; 876 } 877 878 u16 __read_mostly tlb_lli_4k; 879 u16 __read_mostly tlb_lli_2m; 880 u16 __read_mostly tlb_lli_4m; 881 u16 __read_mostly tlb_lld_4k; 882 u16 __read_mostly tlb_lld_2m; 883 u16 __read_mostly tlb_lld_4m; 884 u16 __read_mostly tlb_lld_1g; 885 886 static void cpu_detect_tlb(struct cpuinfo_x86 *c) 887 { 888 if (this_cpu->c_detect_tlb) 889 this_cpu->c_detect_tlb(c); 890 891 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n", 892 tlb_lli_4k, tlb_lli_2m, tlb_lli_4m); 893 894 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n", 895 tlb_lld_4k, tlb_lld_2m, tlb_lld_4m, tlb_lld_1g); 896 } 897 898 void get_cpu_vendor(struct cpuinfo_x86 *c) 899 { 900 char *v = c->x86_vendor_id; 901 int i; 902 903 for (i = 0; i < X86_VENDOR_NUM; i++) { 904 if (!cpu_devs[i]) 905 break; 906 907 if (!strcmp(v, cpu_devs[i]->c_ident[0]) || 908 (cpu_devs[i]->c_ident[1] && 909 !strcmp(v, cpu_devs[i]->c_ident[1]))) { 910 911 this_cpu = cpu_devs[i]; 912 c->x86_vendor = this_cpu->c_x86_vendor; 913 return; 914 } 915 } 916 917 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \ 918 "CPU: Your system may be unstable.\n", v); 919 920 c->x86_vendor = X86_VENDOR_UNKNOWN; 921 this_cpu = &default_cpu; 922 } 923 924 void cpu_detect(struct cpuinfo_x86 *c) 925 { 926 /* Get vendor name */ 927 cpuid(0x00000000, (unsigned int *)&c->cpuid_level, 928 (unsigned int *)&c->x86_vendor_id[0], 929 (unsigned int *)&c->x86_vendor_id[8], 930 (unsigned int *)&c->x86_vendor_id[4]); 931 932 c->x86 = 4; 933 /* Intel-defined flags: level 0x00000001 */ 934 if (c->cpuid_level >= 0x00000001) { 935 u32 junk, tfms, cap0, misc; 936 937 cpuid(0x00000001, &tfms, &misc, &junk, &cap0); 938 c->x86 = x86_family(tfms); 939 c->x86_model = x86_model(tfms); 940 c->x86_stepping = x86_stepping(tfms); 941 942 if (cap0 & (1<<19)) { 943 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; 944 c->x86_cache_alignment = c->x86_clflush_size; 945 } 946 } 947 } 948 949 static void apply_forced_caps(struct cpuinfo_x86 *c) 950 { 951 int i; 952 953 for (i = 0; i < NCAPINTS + NBUGINTS; i++) { 954 c->x86_capability[i] &= ~cpu_caps_cleared[i]; 955 c->x86_capability[i] |= cpu_caps_set[i]; 956 } 957 } 958 959 static void init_speculation_control(struct cpuinfo_x86 *c) 960 { 961 /* 962 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support, 963 * and they also have a different bit for STIBP support. Also, 964 * a hypervisor might have set the individual AMD bits even on 965 * Intel CPUs, for finer-grained selection of what's available. 966 */ 967 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) { 968 set_cpu_cap(c, X86_FEATURE_IBRS); 969 set_cpu_cap(c, X86_FEATURE_IBPB); 970 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 971 } 972 973 if (cpu_has(c, X86_FEATURE_INTEL_STIBP)) 974 set_cpu_cap(c, X86_FEATURE_STIBP); 975 976 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) || 977 cpu_has(c, X86_FEATURE_VIRT_SSBD)) 978 set_cpu_cap(c, X86_FEATURE_SSBD); 979 980 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) { 981 set_cpu_cap(c, X86_FEATURE_IBRS); 982 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 983 } 984 985 if (cpu_has(c, X86_FEATURE_AMD_IBPB)) 986 set_cpu_cap(c, X86_FEATURE_IBPB); 987 988 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) { 989 set_cpu_cap(c, X86_FEATURE_STIBP); 990 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 991 } 992 993 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) { 994 set_cpu_cap(c, X86_FEATURE_SSBD); 995 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL); 996 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD); 997 } 998 } 999 1000 void get_cpu_cap(struct cpuinfo_x86 *c) 1001 { 1002 u32 eax, ebx, ecx, edx; 1003 1004 /* Intel-defined flags: level 0x00000001 */ 1005 if (c->cpuid_level >= 0x00000001) { 1006 cpuid(0x00000001, &eax, &ebx, &ecx, &edx); 1007 1008 c->x86_capability[CPUID_1_ECX] = ecx; 1009 c->x86_capability[CPUID_1_EDX] = edx; 1010 } 1011 1012 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */ 1013 if (c->cpuid_level >= 0x00000006) 1014 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006); 1015 1016 /* Additional Intel-defined flags: level 0x00000007 */ 1017 if (c->cpuid_level >= 0x00000007) { 1018 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx); 1019 c->x86_capability[CPUID_7_0_EBX] = ebx; 1020 c->x86_capability[CPUID_7_ECX] = ecx; 1021 c->x86_capability[CPUID_7_EDX] = edx; 1022 1023 /* Check valid sub-leaf index before accessing it */ 1024 if (eax >= 1) { 1025 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx); 1026 c->x86_capability[CPUID_7_1_EAX] = eax; 1027 } 1028 } 1029 1030 /* Extended state features: level 0x0000000d */ 1031 if (c->cpuid_level >= 0x0000000d) { 1032 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx); 1033 1034 c->x86_capability[CPUID_D_1_EAX] = eax; 1035 } 1036 1037 /* 1038 * Check if extended CPUID leaves are implemented: Max extended 1039 * CPUID leaf must be in the 0x80000001-0x8000ffff range. 1040 */ 1041 eax = cpuid_eax(0x80000000); 1042 c->extended_cpuid_level = ((eax & 0xffff0000) == 0x80000000) ? eax : 0; 1043 1044 if (c->extended_cpuid_level >= 0x80000001) { 1045 cpuid(0x80000001, &eax, &ebx, &ecx, &edx); 1046 1047 c->x86_capability[CPUID_8000_0001_ECX] = ecx; 1048 c->x86_capability[CPUID_8000_0001_EDX] = edx; 1049 } 1050 1051 if (c->extended_cpuid_level >= 0x80000007) 1052 c->x86_power = cpuid_edx(0x80000007); 1053 1054 if (c->extended_cpuid_level >= 0x80000008) { 1055 cpuid(0x80000008, &eax, &ebx, &ecx, &edx); 1056 c->x86_capability[CPUID_8000_0008_EBX] = ebx; 1057 } 1058 1059 if (c->extended_cpuid_level >= 0x8000000a) 1060 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a); 1061 1062 if (c->extended_cpuid_level >= 0x8000001f) 1063 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f); 1064 1065 if (c->extended_cpuid_level >= 0x80000021) 1066 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021); 1067 1068 init_scattered_cpuid_features(c); 1069 init_speculation_control(c); 1070 1071 if (IS_ENABLED(CONFIG_X86_64) || cpu_has(c, X86_FEATURE_SEP)) 1072 set_cpu_cap(c, X86_FEATURE_SYSFAST32); 1073 1074 /* 1075 * Clear/Set all flags overridden by options, after probe. 1076 * This needs to happen each time we re-probe, which may happen 1077 * several times during CPU initialization. 1078 */ 1079 apply_forced_caps(c); 1080 } 1081 1082 void get_cpu_address_sizes(struct cpuinfo_x86 *c) 1083 { 1084 u32 eax, ebx, ecx, edx; 1085 1086 if (!cpu_has(c, X86_FEATURE_CPUID) || 1087 (c->extended_cpuid_level < 0x80000008)) { 1088 if (IS_ENABLED(CONFIG_X86_64)) { 1089 c->x86_clflush_size = 64; 1090 c->x86_phys_bits = 36; 1091 c->x86_virt_bits = 48; 1092 } else { 1093 c->x86_clflush_size = 32; 1094 c->x86_virt_bits = 32; 1095 c->x86_phys_bits = 32; 1096 1097 if (cpu_has(c, X86_FEATURE_PAE) || 1098 cpu_has(c, X86_FEATURE_PSE36)) 1099 c->x86_phys_bits = 36; 1100 } 1101 } else { 1102 cpuid(0x80000008, &eax, &ebx, &ecx, &edx); 1103 1104 c->x86_virt_bits = (eax >> 8) & 0xff; 1105 c->x86_phys_bits = eax & 0xff; 1106 1107 /* Provide a sane default if not enumerated: */ 1108 if (!c->x86_clflush_size) 1109 c->x86_clflush_size = 32; 1110 } 1111 1112 c->x86_cache_bits = c->x86_phys_bits; 1113 c->x86_cache_alignment = c->x86_clflush_size; 1114 } 1115 1116 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c) 1117 { 1118 int i; 1119 1120 /* 1121 * First of all, decide if this is a 486 or higher 1122 * It's a 486 if we can modify the AC flag 1123 */ 1124 if (flag_is_changeable_p(X86_EFLAGS_AC)) 1125 c->x86 = 4; 1126 else 1127 c->x86 = 3; 1128 1129 for (i = 0; i < X86_VENDOR_NUM; i++) 1130 if (cpu_devs[i] && cpu_devs[i]->c_identify) { 1131 c->x86_vendor_id[0] = 0; 1132 cpu_devs[i]->c_identify(c); 1133 if (c->x86_vendor_id[0]) { 1134 get_cpu_vendor(c); 1135 break; 1136 } 1137 } 1138 } 1139 1140 #define NO_SPECULATION BIT(0) 1141 #define NO_MELTDOWN BIT(1) 1142 #define NO_SSB BIT(2) 1143 #define NO_L1TF BIT(3) 1144 #define NO_MDS BIT(4) 1145 #define MSBDS_ONLY BIT(5) 1146 #define NO_SWAPGS BIT(6) 1147 #define NO_ITLB_MULTIHIT BIT(7) 1148 #define NO_SPECTRE_V2 BIT(8) 1149 #define NO_MMIO BIT(9) 1150 #define NO_EIBRS_PBRSB BIT(10) 1151 #define NO_BHI BIT(11) 1152 1153 #define VULNWL(vendor, family, model, whitelist) \ 1154 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist) 1155 1156 #define VULNWL_INTEL(vfm, whitelist) \ 1157 X86_MATCH_VFM(vfm, whitelist) 1158 1159 #define VULNWL_AMD(family, whitelist) \ 1160 VULNWL(AMD, family, X86_MODEL_ANY, whitelist) 1161 1162 #define VULNWL_HYGON(family, whitelist) \ 1163 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist) 1164 1165 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = { 1166 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION), 1167 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION), 1168 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION), 1169 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION), 1170 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION), 1171 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION), 1172 1173 /* Intel Family 6 */ 1174 VULNWL_INTEL(INTEL_TIGERLAKE, NO_MMIO), 1175 VULNWL_INTEL(INTEL_TIGERLAKE_L, NO_MMIO), 1176 VULNWL_INTEL(INTEL_ALDERLAKE, NO_MMIO), 1177 VULNWL_INTEL(INTEL_ALDERLAKE_L, NO_MMIO), 1178 1179 VULNWL_INTEL(INTEL_ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT), 1180 VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT), 1181 VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), 1182 VULNWL_INTEL(INTEL_ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT), 1183 VULNWL_INTEL(INTEL_ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT), 1184 1185 VULNWL_INTEL(INTEL_ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1186 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1187 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1188 VULNWL_INTEL(INTEL_ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1189 VULNWL_INTEL(INTEL_XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1190 VULNWL_INTEL(INTEL_XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT), 1191 1192 VULNWL_INTEL(INTEL_CORE_YONAH, NO_SSB), 1193 1194 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID2,NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY), 1195 VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT), 1196 1197 VULNWL_INTEL(INTEL_ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), 1198 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO), 1199 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB), 1200 1201 /* 1202 * Technically, swapgs isn't serializing on AMD (despite it previously 1203 * being documented as such in the APM). But according to AMD, %gs is 1204 * updated non-speculatively, and the issuing of %gs-relative memory 1205 * operands will be blocked until the %gs update completes, which is 1206 * good enough for our purposes. 1207 */ 1208 1209 VULNWL_INTEL(INTEL_ATOM_TREMONT, NO_EIBRS_PBRSB), 1210 VULNWL_INTEL(INTEL_ATOM_TREMONT_L, NO_EIBRS_PBRSB), 1211 VULNWL_INTEL(INTEL_ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB), 1212 1213 /* AMD Family 0xf - 0x12 */ 1214 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), 1215 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), 1216 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), 1217 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI), 1218 1219 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */ 1220 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI), 1221 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI), 1222 1223 /* Zhaoxin Family 7 */ 1224 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI), 1225 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI), 1226 {} 1227 }; 1228 1229 #define VULNBL(vendor, family, model, blacklist) \ 1230 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist) 1231 1232 #define VULNBL_INTEL_STEPS(vfm, max_stepping, issues) \ 1233 X86_MATCH_VFM_STEPS(vfm, X86_STEP_MIN, max_stepping, issues) 1234 1235 #define VULNBL_INTEL_TYPE(vfm, cpu_type, issues) \ 1236 X86_MATCH_VFM_CPU_TYPE(vfm, INTEL_CPU_TYPE_##cpu_type, issues) 1237 1238 #define VULNBL_AMD(family, blacklist) \ 1239 VULNBL(AMD, family, X86_MODEL_ANY, blacklist) 1240 1241 #define VULNBL_HYGON(family, blacklist) \ 1242 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist) 1243 1244 #define SRBDS BIT(0) 1245 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */ 1246 #define MMIO BIT(1) 1247 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */ 1248 #define MMIO_SBDS BIT(2) 1249 /* CPU is affected by RETbleed, speculating where you would not expect it */ 1250 #define RETBLEED BIT(3) 1251 /* CPU is affected by SMT (cross-thread) return predictions */ 1252 #define SMT_RSB BIT(4) 1253 /* CPU is affected by SRSO */ 1254 #define SRSO BIT(5) 1255 /* CPU is affected by GDS */ 1256 #define GDS BIT(6) 1257 /* CPU is affected by Register File Data Sampling */ 1258 #define RFDS BIT(7) 1259 /* CPU is affected by Indirect Target Selection */ 1260 #define ITS BIT(8) 1261 /* CPU is affected by Indirect Target Selection, but guest-host isolation is not affected */ 1262 #define ITS_NATIVE_ONLY BIT(9) 1263 /* CPU is affected by Transient Scheduler Attacks */ 1264 #define TSA BIT(10) 1265 /* CPU is affected by VMSCAPE */ 1266 #define VMSCAPE BIT(11) 1267 1268 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = { 1269 VULNBL_INTEL_STEPS(INTEL_SANDYBRIDGE_X, X86_STEP_MAX, VMSCAPE), 1270 VULNBL_INTEL_STEPS(INTEL_SANDYBRIDGE, X86_STEP_MAX, VMSCAPE), 1271 VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE_X, X86_STEP_MAX, VMSCAPE), 1272 VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE, X86_STEP_MAX, SRBDS | VMSCAPE), 1273 VULNBL_INTEL_STEPS(INTEL_HASWELL, X86_STEP_MAX, SRBDS | VMSCAPE), 1274 VULNBL_INTEL_STEPS(INTEL_HASWELL_L, X86_STEP_MAX, SRBDS | VMSCAPE), 1275 VULNBL_INTEL_STEPS(INTEL_HASWELL_G, X86_STEP_MAX, SRBDS | VMSCAPE), 1276 VULNBL_INTEL_STEPS(INTEL_HASWELL_X, X86_STEP_MAX, MMIO | VMSCAPE), 1277 VULNBL_INTEL_STEPS(INTEL_BROADWELL_D, X86_STEP_MAX, MMIO | VMSCAPE), 1278 VULNBL_INTEL_STEPS(INTEL_BROADWELL_X, X86_STEP_MAX, MMIO | VMSCAPE), 1279 VULNBL_INTEL_STEPS(INTEL_BROADWELL_G, X86_STEP_MAX, SRBDS | VMSCAPE), 1280 VULNBL_INTEL_STEPS(INTEL_BROADWELL, X86_STEP_MAX, SRBDS | VMSCAPE), 1281 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X, 0x5, MMIO | RETBLEED | GDS | VMSCAPE), 1282 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X, X86_STEP_MAX, MMIO | RETBLEED | GDS | ITS | VMSCAPE), 1283 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_L, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | VMSCAPE), 1284 VULNBL_INTEL_STEPS(INTEL_SKYLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | VMSCAPE), 1285 VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L, 0xb, MMIO | RETBLEED | GDS | SRBDS | VMSCAPE), 1286 VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | ITS | VMSCAPE), 1287 VULNBL_INTEL_STEPS(INTEL_KABYLAKE, 0xc, MMIO | RETBLEED | GDS | SRBDS | VMSCAPE), 1288 VULNBL_INTEL_STEPS(INTEL_KABYLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | ITS | VMSCAPE), 1289 VULNBL_INTEL_STEPS(INTEL_CANNONLAKE_L, X86_STEP_MAX, RETBLEED | VMSCAPE), 1290 VULNBL_INTEL_STEPS(INTEL_ICELAKE_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY), 1291 VULNBL_INTEL_STEPS(INTEL_ICELAKE_D, X86_STEP_MAX, MMIO | GDS | ITS | ITS_NATIVE_ONLY), 1292 VULNBL_INTEL_STEPS(INTEL_ICELAKE_X, X86_STEP_MAX, MMIO | GDS | ITS | ITS_NATIVE_ONLY), 1293 VULNBL_INTEL_STEPS(INTEL_COMETLAKE, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | VMSCAPE), 1294 VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L, 0x0, MMIO | RETBLEED | ITS | VMSCAPE), 1295 VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | VMSCAPE), 1296 VULNBL_INTEL_STEPS(INTEL_TIGERLAKE_L, X86_STEP_MAX, GDS | ITS | ITS_NATIVE_ONLY), 1297 VULNBL_INTEL_STEPS(INTEL_TIGERLAKE, X86_STEP_MAX, GDS | ITS | ITS_NATIVE_ONLY), 1298 VULNBL_INTEL_STEPS(INTEL_LAKEFIELD, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED), 1299 VULNBL_INTEL_STEPS(INTEL_ROCKETLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY), 1300 VULNBL_INTEL_TYPE(INTEL_ALDERLAKE, ATOM, RFDS | VMSCAPE), 1301 VULNBL_INTEL_STEPS(INTEL_ALDERLAKE, X86_STEP_MAX, VMSCAPE), 1302 VULNBL_INTEL_STEPS(INTEL_ALDERLAKE_L, X86_STEP_MAX, RFDS | VMSCAPE), 1303 VULNBL_INTEL_TYPE(INTEL_RAPTORLAKE, ATOM, RFDS | VMSCAPE), 1304 VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE, X86_STEP_MAX, VMSCAPE), 1305 VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_P, X86_STEP_MAX, RFDS | VMSCAPE), 1306 VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_S, X86_STEP_MAX, RFDS | VMSCAPE), 1307 VULNBL_INTEL_STEPS(INTEL_METEORLAKE_L, X86_STEP_MAX, VMSCAPE), 1308 VULNBL_INTEL_STEPS(INTEL_ARROWLAKE_H, X86_STEP_MAX, VMSCAPE), 1309 VULNBL_INTEL_STEPS(INTEL_ARROWLAKE, X86_STEP_MAX, VMSCAPE), 1310 VULNBL_INTEL_STEPS(INTEL_ARROWLAKE_U, X86_STEP_MAX, VMSCAPE), 1311 VULNBL_INTEL_STEPS(INTEL_LUNARLAKE_M, X86_STEP_MAX, VMSCAPE), 1312 VULNBL_INTEL_STEPS(INTEL_SAPPHIRERAPIDS_X, X86_STEP_MAX, VMSCAPE), 1313 VULNBL_INTEL_STEPS(INTEL_GRANITERAPIDS_X, X86_STEP_MAX, VMSCAPE), 1314 VULNBL_INTEL_STEPS(INTEL_EMERALDRAPIDS_X, X86_STEP_MAX, VMSCAPE), 1315 VULNBL_INTEL_STEPS(INTEL_ATOM_GRACEMONT, X86_STEP_MAX, RFDS | VMSCAPE), 1316 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT, X86_STEP_MAX, MMIO | MMIO_SBDS | RFDS), 1317 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_D, X86_STEP_MAX, MMIO | RFDS), 1318 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RFDS), 1319 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT, X86_STEP_MAX, RFDS), 1320 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_D, X86_STEP_MAX, RFDS), 1321 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEP_MAX, RFDS), 1322 VULNBL_INTEL_STEPS(INTEL_ATOM_CRESTMONT_X, X86_STEP_MAX, VMSCAPE), 1323 1324 VULNBL_AMD(0x15, RETBLEED), 1325 VULNBL_AMD(0x16, RETBLEED), 1326 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO | VMSCAPE), 1327 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO | VMSCAPE), 1328 VULNBL_AMD(0x19, SRSO | TSA | VMSCAPE), 1329 VULNBL_AMD(0x1a, SRSO | VMSCAPE), 1330 {} 1331 }; 1332 1333 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which) 1334 { 1335 const struct x86_cpu_id *m = x86_match_cpu(table); 1336 1337 return m && !!(m->driver_data & which); 1338 } 1339 1340 u64 x86_read_arch_cap_msr(void) 1341 { 1342 u64 x86_arch_cap_msr = 0; 1343 1344 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) 1345 rdmsrq(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr); 1346 1347 return x86_arch_cap_msr; 1348 } 1349 1350 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr) 1351 { 1352 return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO && 1353 x86_arch_cap_msr & ARCH_CAP_PSDP_NO && 1354 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO); 1355 } 1356 1357 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr) 1358 { 1359 /* The "immunity" bit trumps everything else: */ 1360 if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO) 1361 return false; 1362 1363 /* 1364 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to 1365 * indicate that mitigation is needed because guest is running on a 1366 * vulnerable hardware or may migrate to such hardware: 1367 */ 1368 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR) 1369 return true; 1370 1371 /* Only consult the blacklist when there is no enumeration: */ 1372 return cpu_matches(cpu_vuln_blacklist, RFDS); 1373 } 1374 1375 static bool __init vulnerable_to_its(u64 x86_arch_cap_msr) 1376 { 1377 /* The "immunity" bit trumps everything else: */ 1378 if (x86_arch_cap_msr & ARCH_CAP_ITS_NO) 1379 return false; 1380 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 1381 return false; 1382 1383 /* None of the affected CPUs have BHI_CTRL */ 1384 if (boot_cpu_has(X86_FEATURE_BHI_CTRL)) 1385 return false; 1386 1387 /* 1388 * If a VMM did not expose ITS_NO, assume that a guest could 1389 * be running on a vulnerable hardware or may migrate to such 1390 * hardware. 1391 */ 1392 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 1393 return true; 1394 1395 if (cpu_matches(cpu_vuln_blacklist, ITS)) 1396 return true; 1397 1398 return false; 1399 } 1400 1401 static struct x86_cpu_id cpu_latest_microcode[] = { 1402 #include "microcode/intel-ucode-defs.h" 1403 {} 1404 }; 1405 1406 static bool __init cpu_has_old_microcode(void) 1407 { 1408 const struct x86_cpu_id *m = x86_match_cpu(cpu_latest_microcode); 1409 1410 /* Give unknown CPUs a pass: */ 1411 if (!m) { 1412 /* Intel CPUs should be in the list. Warn if not: */ 1413 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) 1414 pr_info("x86/CPU: Model not found in latest microcode list\n"); 1415 return false; 1416 } 1417 1418 /* 1419 * Hosts usually lie to guests with a super high microcode 1420 * version. Just ignore what hosts tell guests: 1421 */ 1422 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) 1423 return false; 1424 1425 /* Consider all debug microcode to be old: */ 1426 if (boot_cpu_data.microcode & BIT(31)) 1427 return true; 1428 1429 /* Give new microcode a pass: */ 1430 if (boot_cpu_data.microcode >= m->driver_data) 1431 return false; 1432 1433 /* Uh oh, too old: */ 1434 return true; 1435 } 1436 1437 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c) 1438 { 1439 u64 x86_arch_cap_msr = x86_read_arch_cap_msr(); 1440 1441 if (cpu_has_old_microcode()) { 1442 pr_warn("x86/CPU: Running old microcode\n"); 1443 setup_force_cpu_bug(X86_BUG_OLD_MICROCODE); 1444 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1445 } 1446 1447 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */ 1448 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) && 1449 !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO)) 1450 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT); 1451 1452 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION)) 1453 return; 1454 1455 setup_force_cpu_bug(X86_BUG_SPECTRE_V1); 1456 1457 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) { 1458 setup_force_cpu_bug(X86_BUG_SPECTRE_V2); 1459 setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER); 1460 } 1461 1462 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) && 1463 !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) && 1464 !cpu_has(c, X86_FEATURE_AMD_SSB_NO)) 1465 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS); 1466 1467 /* 1468 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature 1469 * flag and protect from vendor-specific bugs via the whitelist. 1470 * 1471 * Don't use AutoIBRS when SNP is enabled because it degrades host 1472 * userspace indirect branch performance. 1473 */ 1474 if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) || 1475 (cpu_has(c, X86_FEATURE_AUTOIBRS) && 1476 !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) { 1477 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED); 1478 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) && 1479 !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO)) 1480 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB); 1481 } 1482 1483 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) && 1484 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) { 1485 setup_force_cpu_bug(X86_BUG_MDS); 1486 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY)) 1487 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY); 1488 } 1489 1490 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS)) 1491 setup_force_cpu_bug(X86_BUG_SWAPGS); 1492 1493 /* 1494 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when: 1495 * - TSX is supported or 1496 * - TSX_CTRL is present 1497 * 1498 * TSX_CTRL check is needed for cases when TSX could be disabled before 1499 * the kernel boot e.g. kexec. 1500 * TSX_CTRL check alone is not sufficient for cases when the microcode 1501 * update is not present or running as guest that don't get TSX_CTRL. 1502 */ 1503 if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) && 1504 (cpu_has(c, X86_FEATURE_RTM) || 1505 (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))) 1506 setup_force_cpu_bug(X86_BUG_TAA); 1507 1508 /* 1509 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed 1510 * in the vulnerability blacklist. 1511 * 1512 * Some of the implications and mitigation of Shared Buffers Data 1513 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as 1514 * SRBDS. 1515 */ 1516 if ((cpu_has(c, X86_FEATURE_RDRAND) || 1517 cpu_has(c, X86_FEATURE_RDSEED)) && 1518 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS)) 1519 setup_force_cpu_bug(X86_BUG_SRBDS); 1520 1521 /* 1522 * Processor MMIO Stale Data bug enumeration 1523 * 1524 * Affected CPU list is generally enough to enumerate the vulnerability, 1525 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may 1526 * not want the guest to enumerate the bug. 1527 */ 1528 if (!arch_cap_mmio_immune(x86_arch_cap_msr)) { 1529 if (cpu_matches(cpu_vuln_blacklist, MMIO)) 1530 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA); 1531 } 1532 1533 if (!cpu_has(c, X86_FEATURE_BTC_NO)) { 1534 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA)) 1535 setup_force_cpu_bug(X86_BUG_RETBLEED); 1536 } 1537 1538 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB)) 1539 setup_force_cpu_bug(X86_BUG_SMT_RSB); 1540 1541 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) { 1542 if (cpu_matches(cpu_vuln_blacklist, SRSO)) 1543 setup_force_cpu_bug(X86_BUG_SRSO); 1544 } 1545 1546 /* 1547 * Check if CPU is vulnerable to GDS. If running in a virtual machine on 1548 * an affected processor, the VMM may have disabled the use of GATHER by 1549 * disabling AVX2. The only way to do this in HW is to clear XCR0[2], 1550 * which means that AVX will be disabled. 1551 */ 1552 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) && 1553 boot_cpu_has(X86_FEATURE_AVX)) 1554 setup_force_cpu_bug(X86_BUG_GDS); 1555 1556 if (vulnerable_to_rfds(x86_arch_cap_msr)) 1557 setup_force_cpu_bug(X86_BUG_RFDS); 1558 1559 /* 1560 * Intel parts with eIBRS are vulnerable to BHI attacks. Parts with 1561 * BHI_NO still need to use the BHI mitigation to prevent Intra-mode 1562 * attacks. When virtualized, eIBRS could be hidden, assume vulnerable. 1563 */ 1564 if (!cpu_matches(cpu_vuln_whitelist, NO_BHI) && 1565 (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) || 1566 boot_cpu_has(X86_FEATURE_HYPERVISOR))) 1567 setup_force_cpu_bug(X86_BUG_BHI); 1568 1569 if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET)) 1570 setup_force_cpu_bug(X86_BUG_IBPB_NO_RET); 1571 1572 if (vulnerable_to_its(x86_arch_cap_msr)) { 1573 setup_force_cpu_bug(X86_BUG_ITS); 1574 if (cpu_matches(cpu_vuln_blacklist, ITS_NATIVE_ONLY)) 1575 setup_force_cpu_bug(X86_BUG_ITS_NATIVE_ONLY); 1576 } 1577 1578 if (c->x86_vendor == X86_VENDOR_AMD) { 1579 if (!cpu_has(c, X86_FEATURE_TSA_SQ_NO) || 1580 !cpu_has(c, X86_FEATURE_TSA_L1_NO)) { 1581 if (cpu_matches(cpu_vuln_blacklist, TSA) || 1582 /* Enable bug on Zen guests to allow for live migration. */ 1583 (cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_ZEN))) 1584 setup_force_cpu_bug(X86_BUG_TSA); 1585 } 1586 } 1587 1588 /* 1589 * Set the bug only on bare-metal. A nested hypervisor should already be 1590 * deploying IBPB to isolate itself from nested guests. 1591 */ 1592 if (cpu_matches(cpu_vuln_blacklist, VMSCAPE) && 1593 !boot_cpu_has(X86_FEATURE_HYPERVISOR)) 1594 setup_force_cpu_bug(X86_BUG_VMSCAPE); 1595 1596 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN)) 1597 return; 1598 1599 /* Rogue Data Cache Load? No! */ 1600 if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO) 1601 return; 1602 1603 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN); 1604 1605 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF)) 1606 return; 1607 1608 setup_force_cpu_bug(X86_BUG_L1TF); 1609 } 1610 1611 /* 1612 * The NOPL instruction is supposed to exist on all CPUs of family >= 6; 1613 * unfortunately, that's not true in practice because of early VIA 1614 * chips and (more importantly) broken virtualizers that are not easy 1615 * to detect. In the latter case it doesn't even *fail* reliably, so 1616 * probing for it doesn't even work. Disable it completely on 32-bit 1617 * unless we can find a reliable way to detect all the broken cases. 1618 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has(). 1619 */ 1620 static void detect_nopl(void) 1621 { 1622 #ifdef CONFIG_X86_32 1623 setup_clear_cpu_cap(X86_FEATURE_NOPL); 1624 #else 1625 setup_force_cpu_cap(X86_FEATURE_NOPL); 1626 #endif 1627 } 1628 1629 static inline bool parse_set_clear_cpuid(char *arg, bool set) 1630 { 1631 char *opt; 1632 int taint = 0; 1633 1634 while (arg) { 1635 bool found __maybe_unused = false; 1636 unsigned int bit; 1637 1638 opt = strsep(&arg, ","); 1639 1640 /* 1641 * Handle naked numbers first for feature flags which don't 1642 * have names. It doesn't make sense for a bug not to have a 1643 * name so don't handle bug flags here. 1644 */ 1645 if (!kstrtouint(opt, 10, &bit)) { 1646 if (bit < NCAPINTS * 32) { 1647 1648 if (set) { 1649 pr_warn("setcpuid: force-enabling CPU feature flag:"); 1650 setup_force_cpu_cap(bit); 1651 } else { 1652 pr_warn("clearcpuid: force-disabling CPU feature flag:"); 1653 setup_clear_cpu_cap(bit); 1654 } 1655 /* empty-string, i.e., ""-defined feature flags */ 1656 if (!x86_cap_flags[bit]) 1657 pr_cont(" %d:%d\n", bit >> 5, bit & 31); 1658 else 1659 pr_cont(" %s\n", x86_cap_flags[bit]); 1660 1661 taint++; 1662 } 1663 /* 1664 * The assumption is that there are no feature names with only 1665 * numbers in the name thus go to the next argument. 1666 */ 1667 continue; 1668 } 1669 1670 for (bit = 0; bit < 32 * (NCAPINTS + NBUGINTS); bit++) { 1671 const char *flag; 1672 const char *kind; 1673 1674 if (bit < 32 * NCAPINTS) { 1675 flag = x86_cap_flags[bit]; 1676 kind = "feature"; 1677 } else { 1678 kind = "bug"; 1679 flag = x86_bug_flags[bit - (32 * NCAPINTS)]; 1680 } 1681 1682 if (!flag) 1683 continue; 1684 1685 if (strcmp(flag, opt)) 1686 continue; 1687 1688 if (set) { 1689 pr_warn("setcpuid: force-enabling CPU %s flag: %s\n", 1690 kind, flag); 1691 setup_force_cpu_cap(bit); 1692 } else { 1693 pr_warn("clearcpuid: force-disabling CPU %s flag: %s\n", 1694 kind, flag); 1695 setup_clear_cpu_cap(bit); 1696 } 1697 taint++; 1698 found = true; 1699 break; 1700 } 1701 1702 if (!found) 1703 pr_warn("%s: unknown CPU flag: %s", set ? "setcpuid" : "clearcpuid", opt); 1704 } 1705 1706 return taint; 1707 } 1708 1709 1710 /* 1711 * We parse cpu parameters early because fpu__init_system() is executed 1712 * before parse_early_param(). 1713 */ 1714 static void __init cpu_parse_early_param(void) 1715 { 1716 bool cpuid_taint = false; 1717 char arg[128]; 1718 int arglen; 1719 1720 #ifdef CONFIG_X86_32 1721 if (cmdline_find_option_bool(boot_command_line, "no387")) 1722 #ifdef CONFIG_MATH_EMULATION 1723 setup_clear_cpu_cap(X86_FEATURE_FPU); 1724 #else 1725 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n"); 1726 #endif 1727 1728 if (cmdline_find_option_bool(boot_command_line, "nofxsr")) 1729 setup_clear_cpu_cap(X86_FEATURE_FXSR); 1730 #endif 1731 1732 if (cmdline_find_option_bool(boot_command_line, "noxsave")) 1733 setup_clear_cpu_cap(X86_FEATURE_XSAVE); 1734 1735 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt")) 1736 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); 1737 1738 if (cmdline_find_option_bool(boot_command_line, "noxsaves")) 1739 setup_clear_cpu_cap(X86_FEATURE_XSAVES); 1740 1741 if (cmdline_find_option_bool(boot_command_line, "nousershstk")) 1742 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK); 1743 1744 /* Minimize the gap between FRED is available and available but disabled. */ 1745 arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg)); 1746 if (arglen != 2 || strncmp(arg, "on", 2)) 1747 setup_clear_cpu_cap(X86_FEATURE_FRED); 1748 1749 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg)); 1750 if (arglen > 0) 1751 cpuid_taint |= parse_set_clear_cpuid(arg, false); 1752 1753 arglen = cmdline_find_option(boot_command_line, "setcpuid", arg, sizeof(arg)); 1754 if (arglen > 0) 1755 cpuid_taint |= parse_set_clear_cpuid(arg, true); 1756 1757 if (cpuid_taint) { 1758 pr_warn("!!! setcpuid=/clearcpuid= in use, this is for TESTING ONLY, may break things horribly. Tainting kernel.\n"); 1759 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); 1760 } 1761 } 1762 1763 /* 1764 * Do minimum CPU detection early. 1765 * Fields really needed: vendor, cpuid_level, family, model, mask, 1766 * cache alignment. 1767 * The others are not touched to avoid unwanted side effects. 1768 * 1769 * WARNING: this function is only called on the boot CPU. Don't add code 1770 * here that is supposed to run on all CPUs. 1771 */ 1772 static void __init early_identify_cpu(struct cpuinfo_x86 *c) 1773 { 1774 memset(&c->x86_capability, 0, sizeof(c->x86_capability)); 1775 c->extended_cpuid_level = 0; 1776 1777 if (!cpuid_feature()) 1778 identify_cpu_without_cpuid(c); 1779 1780 /* cyrix could have cpuid enabled via c_identify()*/ 1781 if (cpuid_feature()) { 1782 cpu_detect(c); 1783 get_cpu_vendor(c); 1784 intel_unlock_cpuid_leafs(c); 1785 get_cpu_cap(c); 1786 setup_force_cpu_cap(X86_FEATURE_CPUID); 1787 get_cpu_address_sizes(c); 1788 cpu_parse_early_param(); 1789 1790 cpu_init_topology(c); 1791 1792 if (this_cpu->c_early_init) 1793 this_cpu->c_early_init(c); 1794 1795 c->cpu_index = 0; 1796 filter_cpuid_features(c, false); 1797 check_cpufeature_deps(c); 1798 1799 if (this_cpu->c_bsp_init) 1800 this_cpu->c_bsp_init(c); 1801 } else { 1802 setup_clear_cpu_cap(X86_FEATURE_CPUID); 1803 get_cpu_address_sizes(c); 1804 cpu_init_topology(c); 1805 } 1806 1807 setup_force_cpu_cap(X86_FEATURE_ALWAYS); 1808 1809 cpu_set_bug_bits(c); 1810 1811 sld_setup(c); 1812 1813 #ifdef CONFIG_X86_32 1814 /* 1815 * Regardless of whether PCID is enumerated, the SDM says 1816 * that it can't be enabled in 32-bit mode. 1817 */ 1818 setup_clear_cpu_cap(X86_FEATURE_PCID); 1819 1820 /* 1821 * Never use SYSCALL on a 32-bit kernel 1822 */ 1823 setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); 1824 #endif 1825 1826 /* 1827 * Later in the boot process pgtable_l5_enabled() relies on 1828 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not 1829 * enabled by this point we need to clear the feature bit to avoid 1830 * false-positives at the later stage. 1831 * 1832 * pgtable_l5_enabled() can be false here for several reasons: 1833 * - 5-level paging is disabled compile-time; 1834 * - it's 32-bit kernel; 1835 * - machine doesn't support 5-level paging; 1836 * - user specified 'no5lvl' in kernel command line. 1837 */ 1838 if (!pgtable_l5_enabled()) 1839 setup_clear_cpu_cap(X86_FEATURE_LA57); 1840 1841 detect_nopl(); 1842 mca_bsp_init(c); 1843 } 1844 1845 void __init init_cpu_devs(void) 1846 { 1847 const struct cpu_dev *const *cdev; 1848 int count = 0; 1849 1850 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) { 1851 const struct cpu_dev *cpudev = *cdev; 1852 1853 if (count >= X86_VENDOR_NUM) 1854 break; 1855 cpu_devs[count] = cpudev; 1856 count++; 1857 } 1858 } 1859 1860 void __init early_cpu_init(void) 1861 { 1862 #ifdef CONFIG_PROCESSOR_SELECT 1863 unsigned int i, j; 1864 1865 pr_info("KERNEL supported cpus:\n"); 1866 #endif 1867 1868 init_cpu_devs(); 1869 1870 #ifdef CONFIG_PROCESSOR_SELECT 1871 for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) { 1872 for (j = 0; j < 2; j++) { 1873 if (!cpu_devs[i]->c_ident[j]) 1874 continue; 1875 pr_info(" %s %s\n", cpu_devs[i]->c_vendor, 1876 cpu_devs[i]->c_ident[j]); 1877 } 1878 } 1879 #endif 1880 1881 early_identify_cpu(&boot_cpu_data); 1882 } 1883 1884 static bool detect_null_seg_behavior(void) 1885 { 1886 /* 1887 * Empirically, writing zero to a segment selector on AMD does 1888 * not clear the base, whereas writing zero to a segment 1889 * selector on Intel does clear the base. Intel's behavior 1890 * allows slightly faster context switches in the common case 1891 * where GS is unused by the prev and next threads. 1892 * 1893 * Since neither vendor documents this anywhere that I can see, 1894 * detect it directly instead of hard-coding the choice by 1895 * vendor. 1896 * 1897 * I've designated AMD's behavior as the "bug" because it's 1898 * counterintuitive and less friendly. 1899 */ 1900 1901 unsigned long old_base, tmp; 1902 rdmsrq(MSR_FS_BASE, old_base); 1903 wrmsrq(MSR_FS_BASE, 1); 1904 loadsegment(fs, 0); 1905 rdmsrq(MSR_FS_BASE, tmp); 1906 wrmsrq(MSR_FS_BASE, old_base); 1907 return tmp == 0; 1908 } 1909 1910 void check_null_seg_clears_base(struct cpuinfo_x86 *c) 1911 { 1912 /* BUG_NULL_SEG is only relevant with 64bit userspace */ 1913 if (!IS_ENABLED(CONFIG_X86_64)) 1914 return; 1915 1916 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE)) 1917 return; 1918 1919 /* 1920 * CPUID bit above wasn't set. If this kernel is still running 1921 * as a HV guest, then the HV has decided not to advertize 1922 * that CPUID bit for whatever reason. For example, one 1923 * member of the migration pool might be vulnerable. Which 1924 * means, the bug is present: set the BUG flag and return. 1925 */ 1926 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) { 1927 set_cpu_bug(c, X86_BUG_NULL_SEG); 1928 return; 1929 } 1930 1931 /* 1932 * Zen2 CPUs also have this behaviour, but no CPUID bit. 1933 * 0x18 is the respective family for Hygon. 1934 */ 1935 if ((c->x86 == 0x17 || c->x86 == 0x18) && 1936 detect_null_seg_behavior()) 1937 return; 1938 1939 /* All the remaining ones are affected */ 1940 set_cpu_bug(c, X86_BUG_NULL_SEG); 1941 } 1942 1943 static void generic_identify(struct cpuinfo_x86 *c) 1944 { 1945 c->extended_cpuid_level = 0; 1946 1947 if (!cpuid_feature()) 1948 identify_cpu_without_cpuid(c); 1949 1950 /* cyrix could have cpuid enabled via c_identify()*/ 1951 if (!cpuid_feature()) 1952 return; 1953 1954 cpu_detect(c); 1955 1956 get_cpu_vendor(c); 1957 intel_unlock_cpuid_leafs(c); 1958 get_cpu_cap(c); 1959 1960 get_cpu_address_sizes(c); 1961 1962 get_model_name(c); /* Default name */ 1963 1964 /* 1965 * ESPFIX is a strange bug. All real CPUs have it. Paravirt 1966 * systems that run Linux at CPL > 0 may or may not have the 1967 * issue, but, even if they have the issue, there's absolutely 1968 * nothing we can do about it because we can't use the real IRET 1969 * instruction. 1970 * 1971 * NB: For the time being, only 32-bit kernels support 1972 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose 1973 * whether to apply espfix using paravirt hooks. If any 1974 * non-paravirt system ever shows up that does *not* have the 1975 * ESPFIX issue, we can change this. 1976 */ 1977 #ifdef CONFIG_X86_32 1978 set_cpu_bug(c, X86_BUG_ESPFIX); 1979 #endif 1980 } 1981 1982 /* 1983 * This does the hard work of actually picking apart the CPU stuff... 1984 */ 1985 static void identify_cpu(struct cpuinfo_x86 *c) 1986 { 1987 int i; 1988 1989 c->loops_per_jiffy = loops_per_jiffy; 1990 c->x86_cache_size = 0; 1991 c->x86_vendor = X86_VENDOR_UNKNOWN; 1992 c->x86_model = c->x86_stepping = 0; /* So far unknown... */ 1993 c->x86_vendor_id[0] = '\0'; /* Unset */ 1994 c->x86_model_id[0] = '\0'; /* Unset */ 1995 #ifdef CONFIG_X86_64 1996 c->x86_clflush_size = 64; 1997 c->x86_phys_bits = 36; 1998 c->x86_virt_bits = 48; 1999 #else 2000 c->cpuid_level = -1; /* CPUID not detected */ 2001 c->x86_clflush_size = 32; 2002 c->x86_phys_bits = 32; 2003 c->x86_virt_bits = 32; 2004 #endif 2005 c->x86_cache_alignment = c->x86_clflush_size; 2006 memset(&c->x86_capability, 0, sizeof(c->x86_capability)); 2007 #ifdef CONFIG_X86_VMX_FEATURE_NAMES 2008 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability)); 2009 #endif 2010 2011 generic_identify(c); 2012 2013 cpu_parse_topology(c); 2014 2015 if (this_cpu->c_identify) 2016 this_cpu->c_identify(c); 2017 2018 /* Clear/Set all flags overridden by options, after probe */ 2019 apply_forced_caps(c); 2020 2021 /* 2022 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and 2023 * Hygon will clear it in ->c_init() below. 2024 */ 2025 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE); 2026 2027 /* 2028 * Vendor-specific initialization. In this section we 2029 * canonicalize the feature flags, meaning if there are 2030 * features a certain CPU supports which CPUID doesn't 2031 * tell us, CPUID claiming incorrect flags, or other bugs, 2032 * we handle them here. 2033 * 2034 * At the end of this section, c->x86_capability better 2035 * indicate the features this CPU genuinely supports! 2036 */ 2037 if (this_cpu->c_init) 2038 this_cpu->c_init(c); 2039 2040 bus_lock_init(); 2041 2042 /* Disable the PN if appropriate */ 2043 squash_the_stupid_serial_number(c); 2044 2045 setup_smep(c); 2046 setup_smap(c); 2047 setup_umip(c); 2048 setup_lass(c); 2049 2050 /* Enable FSGSBASE instructions if available. */ 2051 if (cpu_has(c, X86_FEATURE_FSGSBASE)) { 2052 cr4_set_bits(X86_CR4_FSGSBASE); 2053 elf_hwcap2 |= HWCAP2_FSGSBASE; 2054 } 2055 2056 /* 2057 * The vendor-specific functions might have changed features. 2058 * Now we do "generic changes." 2059 */ 2060 2061 /* Filter out anything that depends on CPUID levels we don't have */ 2062 filter_cpuid_features(c, true); 2063 2064 /* Check for unmet dependencies based on the CPUID dependency table */ 2065 check_cpufeature_deps(c); 2066 2067 /* If the model name is still unset, do table lookup. */ 2068 if (!c->x86_model_id[0]) { 2069 const char *p; 2070 p = table_lookup_model(c); 2071 if (p) 2072 strcpy(c->x86_model_id, p); 2073 else 2074 /* Last resort... */ 2075 sprintf(c->x86_model_id, "%02x/%02x", 2076 c->x86, c->x86_model); 2077 } 2078 2079 x86_init_rdrand(c); 2080 setup_pku(c); 2081 setup_cet(c); 2082 2083 /* 2084 * Clear/Set all flags overridden by options, need do it 2085 * before following smp all cpus cap AND. 2086 */ 2087 apply_forced_caps(c); 2088 2089 /* 2090 * On SMP, boot_cpu_data holds the common feature set between 2091 * all CPUs; so make sure that we indicate which features are 2092 * common between the CPUs. The first time this routine gets 2093 * executed, c == &boot_cpu_data. 2094 */ 2095 if (c != &boot_cpu_data) { 2096 /* AND the already accumulated flags with these */ 2097 for (i = 0; i < NCAPINTS; i++) 2098 boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; 2099 2100 /* OR, i.e. replicate the bug flags */ 2101 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++) 2102 c->x86_capability[i] |= boot_cpu_data.x86_capability[i]; 2103 } 2104 2105 ppin_init(c); 2106 2107 /* Init Machine Check Exception if available. */ 2108 mcheck_cpu_init(c); 2109 2110 numa_add_cpu(smp_processor_id()); 2111 } 2112 2113 /* 2114 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions 2115 * on 32-bit kernels: 2116 */ 2117 #ifdef CONFIG_X86_32 2118 void enable_sep_cpu(void) 2119 { 2120 struct tss_struct *tss; 2121 int cpu; 2122 2123 if (!boot_cpu_has(X86_FEATURE_SEP)) 2124 return; 2125 2126 cpu = get_cpu(); 2127 tss = &per_cpu(cpu_tss_rw, cpu); 2128 2129 /* 2130 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field -- 2131 * see the big comment in struct x86_hw_tss's definition. 2132 */ 2133 2134 tss->x86_tss.ss1 = __KERNEL_CS; 2135 wrmsrq(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1); 2136 wrmsrq(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1)); 2137 wrmsrq(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32); 2138 2139 put_cpu(); 2140 } 2141 #endif 2142 2143 static __init void identify_boot_cpu(void) 2144 { 2145 identify_cpu(&boot_cpu_data); 2146 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) 2147 pr_info("CET detected: Indirect Branch Tracking enabled\n"); 2148 #ifdef CONFIG_X86_32 2149 enable_sep_cpu(); 2150 #endif 2151 cpu_detect_tlb(&boot_cpu_data); 2152 setup_cr_pinning(); 2153 2154 tsx_init(); 2155 tdx_init(); 2156 lkgs_init(); 2157 } 2158 2159 void identify_secondary_cpu(unsigned int cpu) 2160 { 2161 struct cpuinfo_x86 *c = &cpu_data(cpu); 2162 2163 /* Copy boot_cpu_data only on the first bringup */ 2164 if (!c->initialized) 2165 *c = boot_cpu_data; 2166 c->cpu_index = cpu; 2167 2168 identify_cpu(c); 2169 #ifdef CONFIG_X86_32 2170 enable_sep_cpu(); 2171 #endif 2172 x86_spec_ctrl_setup_ap(); 2173 update_srbds_msr(); 2174 if (boot_cpu_has_bug(X86_BUG_GDS)) 2175 update_gds_msr(); 2176 2177 tsx_ap_init(); 2178 c->initialized = true; 2179 } 2180 2181 void print_cpu_info(struct cpuinfo_x86 *c) 2182 { 2183 const char *vendor = NULL; 2184 2185 if (c->x86_vendor < X86_VENDOR_NUM) { 2186 vendor = this_cpu->c_vendor; 2187 } else { 2188 if (c->cpuid_level >= 0) 2189 vendor = c->x86_vendor_id; 2190 } 2191 2192 if (vendor && !strstr(c->x86_model_id, vendor)) 2193 pr_cont("%s ", vendor); 2194 2195 if (c->x86_model_id[0]) 2196 pr_cont("%s", c->x86_model_id); 2197 else 2198 pr_cont("%d86", c->x86); 2199 2200 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model); 2201 2202 if (c->x86_stepping || c->cpuid_level >= 0) 2203 pr_cont(", stepping: 0x%x)\n", c->x86_stepping); 2204 else 2205 pr_cont(")\n"); 2206 } 2207 2208 /* 2209 * clearcpuid= and setcpuid= were already parsed in cpu_parse_early_param(). 2210 * These dummy functions prevent them from becoming an environment variable for 2211 * init. 2212 */ 2213 2214 static __init int setup_clearcpuid(char *arg) 2215 { 2216 return 1; 2217 } 2218 __setup("clearcpuid=", setup_clearcpuid); 2219 2220 static __init int setup_setcpuid(char *arg) 2221 { 2222 return 1; 2223 } 2224 __setup("setcpuid=", setup_setcpuid); 2225 2226 DEFINE_PER_CPU_CACHE_HOT(struct task_struct *, current_task) = &init_task; 2227 EXPORT_PER_CPU_SYMBOL(current_task); 2228 EXPORT_PER_CPU_SYMBOL(const_current_task); 2229 2230 DEFINE_PER_CPU_CACHE_HOT(int, __preempt_count) = INIT_PREEMPT_COUNT; 2231 EXPORT_PER_CPU_SYMBOL(__preempt_count); 2232 2233 DEFINE_PER_CPU_CACHE_HOT(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK; 2234 2235 #ifdef CONFIG_X86_64 2236 /* 2237 * Note: Do not make this dependant on CONFIG_MITIGATION_CALL_DEPTH_TRACKING 2238 * so that this space is reserved in the hot cache section even when the 2239 * mitigation is disabled. 2240 */ 2241 DEFINE_PER_CPU_CACHE_HOT(u64, __x86_call_depth); 2242 EXPORT_PER_CPU_SYMBOL(__x86_call_depth); 2243 2244 static void wrmsrq_cstar(unsigned long val) 2245 { 2246 /* 2247 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR 2248 * is so far ignored by the CPU, but raises a #VE trap in a TDX 2249 * guest. Avoid the pointless write on all Intel CPUs. 2250 */ 2251 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) 2252 wrmsrq(MSR_CSTAR, val); 2253 } 2254 2255 static inline void idt_syscall_init(void) 2256 { 2257 wrmsrq(MSR_LSTAR, (unsigned long)entry_SYSCALL_64); 2258 2259 if (ia32_enabled()) { 2260 wrmsrq_cstar((unsigned long)entry_SYSCALL_compat); 2261 /* 2262 * This only works on Intel CPUs. 2263 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP. 2264 * This does not cause SYSENTER to jump to the wrong location, because 2265 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit). 2266 */ 2267 wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS); 2268 wrmsrq_safe(MSR_IA32_SYSENTER_ESP, 2269 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1)); 2270 wrmsrq_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat); 2271 } else { 2272 wrmsrq_cstar((unsigned long)entry_SYSCALL32_ignore); 2273 wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG); 2274 wrmsrq_safe(MSR_IA32_SYSENTER_ESP, 0ULL); 2275 wrmsrq_safe(MSR_IA32_SYSENTER_EIP, 0ULL); 2276 } 2277 2278 /* 2279 * Flags to clear on syscall; clear as much as possible 2280 * to minimize user space-kernel interference. 2281 */ 2282 wrmsrq(MSR_SYSCALL_MASK, 2283 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF| 2284 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF| 2285 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF| 2286 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF| 2287 X86_EFLAGS_AC|X86_EFLAGS_ID); 2288 } 2289 2290 /* May not be marked __init: used by software suspend */ 2291 void syscall_init(void) 2292 { 2293 /* The default user and kernel segments */ 2294 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS); 2295 2296 /* 2297 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and 2298 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED 2299 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit 2300 * instruction to return to ring 3 (both sysexit and sysret cause 2301 * #UD when FRED is enabled). 2302 */ 2303 if (!cpu_feature_enabled(X86_FEATURE_FRED)) 2304 idt_syscall_init(); 2305 } 2306 #endif /* CONFIG_X86_64 */ 2307 2308 #ifdef CONFIG_STACKPROTECTOR 2309 DEFINE_PER_CPU_CACHE_HOT(unsigned long, __stack_chk_guard); 2310 #ifndef CONFIG_SMP 2311 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard); 2312 #endif 2313 #endif 2314 2315 static void initialize_debug_regs(void) 2316 { 2317 /* Control register first -- to make sure everything is disabled. */ 2318 set_debugreg(DR7_FIXED_1, 7); 2319 set_debugreg(DR6_RESERVED, 6); 2320 /* dr5 and dr4 don't exist */ 2321 set_debugreg(0, 3); 2322 set_debugreg(0, 2); 2323 set_debugreg(0, 1); 2324 set_debugreg(0, 0); 2325 } 2326 2327 #ifdef CONFIG_KGDB 2328 /* 2329 * Restore debug regs if using kgdbwait and you have a kernel debugger 2330 * connection established. 2331 */ 2332 static void dbg_restore_debug_regs(void) 2333 { 2334 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break)) 2335 arch_kgdb_ops.correct_hw_break(); 2336 } 2337 #else /* ! CONFIG_KGDB */ 2338 #define dbg_restore_debug_regs() 2339 #endif /* ! CONFIG_KGDB */ 2340 2341 static inline void setup_getcpu(int cpu) 2342 { 2343 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu)); 2344 struct desc_struct d = { }; 2345 2346 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID)) 2347 wrmsrq(MSR_TSC_AUX, cpudata); 2348 2349 /* Store CPU and node number in limit. */ 2350 d.limit0 = cpudata; 2351 d.limit1 = cpudata >> 16; 2352 2353 d.type = 5; /* RO data, expand down, accessed */ 2354 d.dpl = 3; /* Visible to user code */ 2355 d.s = 1; /* Not a system segment */ 2356 d.p = 1; /* Present */ 2357 d.d = 1; /* 32-bit */ 2358 2359 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S); 2360 } 2361 2362 #ifdef CONFIG_X86_64 2363 static inline void tss_setup_ist(struct tss_struct *tss) 2364 { 2365 /* Set up the per-CPU TSS IST stacks */ 2366 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF); 2367 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI); 2368 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB); 2369 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE); 2370 /* Only mapped when SEV-ES is active */ 2371 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC); 2372 } 2373 #else /* CONFIG_X86_64 */ 2374 static inline void tss_setup_ist(struct tss_struct *tss) { } 2375 #endif /* !CONFIG_X86_64 */ 2376 2377 static inline void tss_setup_io_bitmap(struct tss_struct *tss) 2378 { 2379 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID; 2380 2381 #ifdef CONFIG_X86_IOPL_IOPERM 2382 tss->io_bitmap.prev_max = 0; 2383 tss->io_bitmap.prev_sequence = 0; 2384 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap)); 2385 /* 2386 * Invalidate the extra array entry past the end of the all 2387 * permission bitmap as required by the hardware. 2388 */ 2389 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL; 2390 #endif 2391 } 2392 2393 /* 2394 * Setup everything needed to handle exceptions from the IDT, including the IST 2395 * exceptions which use paranoid_entry(). 2396 */ 2397 void cpu_init_exception_handling(bool boot_cpu) 2398 { 2399 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); 2400 int cpu = raw_smp_processor_id(); 2401 2402 /* paranoid_entry() gets the CPU number from the GDT */ 2403 setup_getcpu(cpu); 2404 2405 /* For IDT mode, IST vectors need to be set in TSS. */ 2406 if (!cpu_feature_enabled(X86_FEATURE_FRED)) 2407 tss_setup_ist(tss); 2408 tss_setup_io_bitmap(tss); 2409 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); 2410 2411 load_TR_desc(); 2412 2413 /* GHCB needs to be setup to handle #VC. */ 2414 setup_ghcb(); 2415 2416 if (cpu_feature_enabled(X86_FEATURE_FRED)) { 2417 /* The boot CPU has enabled FRED during early boot */ 2418 if (!boot_cpu) 2419 cpu_init_fred_exceptions(); 2420 2421 cpu_init_fred_rsps(); 2422 } else { 2423 load_current_idt(); 2424 } 2425 } 2426 2427 void __init cpu_init_replace_early_idt(void) 2428 { 2429 if (cpu_feature_enabled(X86_FEATURE_FRED)) 2430 cpu_init_fred_exceptions(); 2431 else 2432 idt_setup_early_pf(); 2433 } 2434 2435 /* 2436 * cpu_init() initializes state that is per-CPU. Some data is already 2437 * initialized (naturally) in the bootstrap process, such as the GDT. We 2438 * reload it nevertheless, this function acts as a 'CPU state barrier', 2439 * nothing should get across. 2440 */ 2441 void cpu_init(void) 2442 { 2443 struct task_struct *cur = current; 2444 int cpu = raw_smp_processor_id(); 2445 2446 #ifdef CONFIG_NUMA 2447 if (this_cpu_read(numa_node) == 0 && 2448 early_cpu_to_node(cpu) != NUMA_NO_NODE) 2449 set_numa_node(early_cpu_to_node(cpu)); 2450 #endif 2451 pr_debug("Initializing CPU#%d\n", cpu); 2452 2453 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) || 2454 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE)) 2455 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE); 2456 2457 if (IS_ENABLED(CONFIG_X86_64)) { 2458 loadsegment(fs, 0); 2459 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8); 2460 syscall_init(); 2461 2462 wrmsrq(MSR_FS_BASE, 0); 2463 wrmsrq(MSR_KERNEL_GS_BASE, 0); 2464 barrier(); 2465 2466 x2apic_setup(); 2467 2468 intel_posted_msi_init(); 2469 } 2470 2471 mmgrab(&init_mm); 2472 cur->active_mm = &init_mm; 2473 BUG_ON(cur->mm); 2474 initialize_tlbstate_and_flush(); 2475 enter_lazy_tlb(&init_mm, cur); 2476 2477 /* 2478 * sp0 points to the entry trampoline stack regardless of what task 2479 * is running. 2480 */ 2481 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1)); 2482 2483 load_mm_ldt(&init_mm); 2484 2485 initialize_debug_regs(); 2486 dbg_restore_debug_regs(); 2487 2488 doublefault_init_cpu_tss(); 2489 2490 if (is_uv_system()) 2491 uv_cpu_init(); 2492 2493 load_fixmap_gdt(cpu); 2494 } 2495 2496 #ifdef CONFIG_MICROCODE_LATE_LOADING 2497 /** 2498 * store_cpu_caps() - Store a snapshot of CPU capabilities 2499 * @curr_info: Pointer where to store it 2500 * 2501 * Returns: None 2502 */ 2503 void store_cpu_caps(struct cpuinfo_x86 *curr_info) 2504 { 2505 /* Reload CPUID max function as it might've changed. */ 2506 curr_info->cpuid_level = cpuid_eax(0); 2507 2508 /* Copy all capability leafs and pick up the synthetic ones. */ 2509 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability, 2510 sizeof(curr_info->x86_capability)); 2511 2512 /* Get the hardware CPUID leafs */ 2513 get_cpu_cap(curr_info); 2514 } 2515 2516 /** 2517 * microcode_check() - Check if any CPU capabilities changed after an update. 2518 * @prev_info: CPU capabilities stored before an update. 2519 * 2520 * The microcode loader calls this upon late microcode load to recheck features, 2521 * only when microcode has been updated. Caller holds and CPU hotplug lock. 2522 * 2523 * Return: None 2524 */ 2525 void microcode_check(struct cpuinfo_x86 *prev_info) 2526 { 2527 struct cpuinfo_x86 curr_info; 2528 2529 perf_check_microcode(); 2530 2531 amd_check_microcode(); 2532 2533 store_cpu_caps(&curr_info); 2534 2535 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability, 2536 sizeof(prev_info->x86_capability))) 2537 return; 2538 2539 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n"); 2540 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n"); 2541 } 2542 #endif 2543 2544 /* 2545 * Invoked from core CPU hotplug code after hotplug operations 2546 */ 2547 void arch_smt_update(void) 2548 { 2549 /* Handle the speculative execution misfeatures */ 2550 cpu_bugs_smt_update(); 2551 /* Check whether IPI broadcasting can be enabled */ 2552 apic_smt_update(); 2553 } 2554 2555 void __init arch_cpu_finalize_init(void) 2556 { 2557 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info); 2558 2559 identify_boot_cpu(); 2560 2561 select_idle_routine(); 2562 2563 /* 2564 * identify_boot_cpu() initialized SMT support information, let the 2565 * core code know. 2566 */ 2567 cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core); 2568 2569 if (!IS_ENABLED(CONFIG_SMP)) { 2570 pr_info("CPU: "); 2571 print_cpu_info(&boot_cpu_data); 2572 } 2573 2574 cpu_select_mitigations(); 2575 2576 arch_smt_update(); 2577 2578 if (IS_ENABLED(CONFIG_X86_32)) { 2579 /* 2580 * Check whether this is a real i386 which is not longer 2581 * supported and fixup the utsname. 2582 */ 2583 if (boot_cpu_data.x86 < 4) 2584 panic("Kernel requires i486+ for 'invlpg' and other features"); 2585 2586 init_utsname()->machine[1] = 2587 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86); 2588 } 2589 2590 /* 2591 * Must be before alternatives because it might set or clear 2592 * feature bits. 2593 */ 2594 fpu__init_system(); 2595 fpu__init_cpu(); 2596 2597 /* 2598 * This needs to follow the FPU initializtion, since EFI depends on it. 2599 */ 2600 if (efi_enabled(EFI_RUNTIME_SERVICES)) 2601 efi_enter_virtual_mode(); 2602 2603 /* 2604 * Ensure that access to the per CPU representation has the initial 2605 * boot CPU configuration. 2606 */ 2607 *c = boot_cpu_data; 2608 c->initialized = true; 2609 2610 alternative_instructions(); 2611 2612 if (IS_ENABLED(CONFIG_X86_64)) { 2613 USER_PTR_MAX = TASK_SIZE_MAX; 2614 2615 /* 2616 * Enable this when LAM is gated on LASS support 2617 if (cpu_feature_enabled(X86_FEATURE_LAM)) 2618 USER_PTR_MAX = (1ul << 63) - PAGE_SIZE; 2619 */ 2620 runtime_const_init(ptr, USER_PTR_MAX); 2621 2622 /* 2623 * Make sure the first 2MB area is not mapped by huge pages 2624 * There are typically fixed size MTRRs in there and overlapping 2625 * MTRRs into large pages causes slow downs. 2626 * 2627 * Right now we don't do that with gbpages because there seems 2628 * very little benefit for that case. 2629 */ 2630 if (!direct_gbpages) 2631 set_memory_4k((unsigned long)__va(0), 1); 2632 } else { 2633 fpu__init_check_bugs(); 2634 } 2635 2636 /* 2637 * This needs to be called before any devices perform DMA 2638 * operations that might use the SWIOTLB bounce buffers. It will 2639 * mark the bounce buffers as decrypted so that their usage will 2640 * not cause "plain-text" data to be decrypted when accessed. It 2641 * must be called after late_time_init() so that Hyper-V x86/x64 2642 * hypercalls work when the SWIOTLB bounce buffers are decrypted. 2643 */ 2644 mem_encrypt_init(); 2645 } 2646