1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string.h>
37 #include <linux/string_helpers.h>
38 #include <linux/delay.h>
39 #include <linux/capability.h>
40 #include <linux/compat.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/idr.h>
43 #include <linux/debugfs.h>
44 #include <linux/rpmb.h>
45
46 #include <linux/mmc/ioctl.h>
47 #include <linux/mmc/card.h>
48 #include <linux/mmc/host.h>
49 #include <linux/mmc/mmc.h>
50 #include <linux/mmc/sd.h>
51
52 #include <linux/uaccess.h>
53
54 #include "queue.h"
55 #include "block.h"
56 #include "core.h"
57 #include "card.h"
58 #include "crypto.h"
59 #include "host.h"
60 #include "bus.h"
61 #include "mmc_ops.h"
62 #include "quirks.h"
63 #include "sd_ops.h"
64
65 MODULE_ALIAS("mmc:block");
66 #ifdef MODULE_PARAM_PREFIX
67 #undef MODULE_PARAM_PREFIX
68 #endif
69 #define MODULE_PARAM_PREFIX "mmcblk."
70
71 /*
72 * Set a 10 second timeout for polling write request busy state. Note, mmc core
73 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
74 * second software timer to timeout the whole request, so 10 seconds should be
75 * ample.
76 */
77 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
78 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
79 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
80
81 /**
82 * struct rpmb_frame - rpmb frame as defined by eMMC 5.1 (JESD84-B51)
83 *
84 * @stuff : stuff bytes
85 * @key_mac : The authentication key or the message authentication
86 * code (MAC) depending on the request/response type.
87 * The MAC will be delivered in the last (or the only)
88 * block of data.
89 * @data : Data to be written or read by signed access.
90 * @nonce : Random number generated by the host for the requests
91 * and copied to the response by the RPMB engine.
92 * @write_counter: Counter value for the total amount of the successful
93 * authenticated data write requests made by the host.
94 * @addr : Address of the data to be programmed to or read
95 * from the RPMB. Address is the serial number of
96 * the accessed block (half sector 256B).
97 * @block_count : Number of blocks (half sectors, 256B) requested to be
98 * read/programmed.
99 * @result : Includes information about the status of the write counter
100 * (valid, expired) and result of the access made to the RPMB.
101 * @req_resp : Defines the type of request and response to/from the memory.
102 *
103 * The stuff bytes and big-endian properties are modeled to fit to the spec.
104 */
105 struct rpmb_frame {
106 u8 stuff[196];
107 u8 key_mac[32];
108 u8 data[256];
109 u8 nonce[16];
110 __be32 write_counter;
111 __be16 addr;
112 __be16 block_count;
113 __be16 result;
114 __be16 req_resp;
115 } __packed;
116
117 #define RPMB_PROGRAM_KEY 0x1 /* Program RPMB Authentication Key */
118 #define RPMB_GET_WRITE_COUNTER 0x2 /* Read RPMB write counter */
119 #define RPMB_WRITE_DATA 0x3 /* Write data to RPMB partition */
120 #define RPMB_READ_DATA 0x4 /* Read data from RPMB partition */
121 #define RPMB_RESULT_READ 0x5 /* Read result request (Internal) */
122
123 static DEFINE_MUTEX(block_mutex);
124
125 /*
126 * The defaults come from config options but can be overriden by module
127 * or bootarg options.
128 */
129 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
130
131 /*
132 * We've only got one major, so number of mmcblk devices is
133 * limited to (1 << 20) / number of minors per device. It is also
134 * limited by the MAX_DEVICES below.
135 */
136 static int max_devices;
137
138 #define MAX_DEVICES 256
139
140 static DEFINE_IDA(mmc_blk_ida);
141 static DEFINE_IDA(mmc_rpmb_ida);
142
143 struct mmc_blk_busy_data {
144 struct mmc_card *card;
145 u32 status;
146 };
147
148 /*
149 * There is one mmc_blk_data per slot.
150 */
151 struct mmc_blk_data {
152 struct device *parent;
153 struct gendisk *disk;
154 struct mmc_queue queue;
155 struct list_head part;
156 struct list_head rpmbs;
157
158 unsigned int flags;
159 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
160 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
161
162 struct kref kref;
163 unsigned int read_only;
164 unsigned int part_type;
165 unsigned int reset_done;
166 #define MMC_BLK_READ BIT(0)
167 #define MMC_BLK_WRITE BIT(1)
168 #define MMC_BLK_DISCARD BIT(2)
169 #define MMC_BLK_SECDISCARD BIT(3)
170 #define MMC_BLK_CQE_RECOVERY BIT(4)
171 #define MMC_BLK_TRIM BIT(5)
172
173 /*
174 * Only set in main mmc_blk_data associated
175 * with mmc_card with dev_set_drvdata, and keeps
176 * track of the current selected device partition.
177 */
178 unsigned int part_curr;
179 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
180 int area_type;
181
182 /* debugfs files (only in main mmc_blk_data) */
183 struct dentry *status_dentry;
184 struct dentry *ext_csd_dentry;
185 };
186
187 /* Device type for RPMB character devices */
188 static dev_t mmc_rpmb_devt;
189
190 /* Bus type for RPMB character devices */
191 static const struct bus_type mmc_rpmb_bus_type = {
192 .name = "mmc_rpmb",
193 };
194
195 /**
196 * struct mmc_rpmb_data - special RPMB device type for these areas
197 * @dev: the device for the RPMB area
198 * @chrdev: character device for the RPMB area
199 * @id: unique device ID number
200 * @part_index: partition index (0 on first)
201 * @md: parent MMC block device
202 * @rdev: registered RPMB device
203 * @node: list item, so we can put this device on a list
204 */
205 struct mmc_rpmb_data {
206 struct device dev;
207 struct cdev chrdev;
208 int id;
209 unsigned int part_index;
210 struct mmc_blk_data *md;
211 struct rpmb_dev *rdev;
212 struct list_head node;
213 };
214
215 static DEFINE_MUTEX(open_lock);
216
217 module_param(perdev_minors, int, 0444);
218 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
219
220 static inline int mmc_blk_part_switch(struct mmc_card *card,
221 unsigned int part_type);
222 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
223 struct mmc_card *card,
224 int recovery_mode,
225 struct mmc_queue *mq);
226 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
227 static int mmc_spi_err_check(struct mmc_card *card);
228 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
229
mmc_blk_get(struct gendisk * disk)230 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
231 {
232 struct mmc_blk_data *md;
233
234 mutex_lock(&open_lock);
235 md = disk->private_data;
236 if (md && !kref_get_unless_zero(&md->kref))
237 md = NULL;
238 mutex_unlock(&open_lock);
239
240 return md;
241 }
242
mmc_get_devidx(struct gendisk * disk)243 static inline int mmc_get_devidx(struct gendisk *disk)
244 {
245 int devidx = disk->first_minor / perdev_minors;
246 return devidx;
247 }
248
mmc_blk_kref_release(struct kref * ref)249 static void mmc_blk_kref_release(struct kref *ref)
250 {
251 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
252 int devidx;
253
254 devidx = mmc_get_devidx(md->disk);
255 ida_free(&mmc_blk_ida, devidx);
256
257 mutex_lock(&open_lock);
258 md->disk->private_data = NULL;
259 mutex_unlock(&open_lock);
260
261 put_disk(md->disk);
262 kfree(md);
263 }
264
mmc_blk_put(struct mmc_blk_data * md)265 static void mmc_blk_put(struct mmc_blk_data *md)
266 {
267 kref_put(&md->kref, mmc_blk_kref_release);
268 }
269
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)270 static ssize_t power_ro_lock_show(struct device *dev,
271 struct device_attribute *attr, char *buf)
272 {
273 int ret;
274 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
275 struct mmc_card *card = md->queue.card;
276 int locked = 0;
277
278 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
279 locked = 2;
280 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
281 locked = 1;
282
283 ret = sysfs_emit(buf, "%d\n", locked);
284
285 mmc_blk_put(md);
286
287 return ret;
288 }
289
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)290 static ssize_t power_ro_lock_store(struct device *dev,
291 struct device_attribute *attr, const char *buf, size_t count)
292 {
293 int ret;
294 struct mmc_blk_data *md, *part_md;
295 struct mmc_queue *mq;
296 struct request *req;
297 unsigned long set;
298
299 if (kstrtoul(buf, 0, &set))
300 return -EINVAL;
301
302 if (set != 1)
303 return count;
304
305 md = mmc_blk_get(dev_to_disk(dev));
306 mq = &md->queue;
307
308 /* Dispatch locking to the block layer */
309 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
310 if (IS_ERR(req)) {
311 count = PTR_ERR(req);
312 goto out_put;
313 }
314 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
315 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
316 blk_execute_rq(req, false);
317 ret = req_to_mmc_queue_req(req)->drv_op_result;
318 blk_mq_free_request(req);
319
320 if (!ret) {
321 pr_info("%s: Locking boot partition ro until next power on\n",
322 md->disk->disk_name);
323 set_disk_ro(md->disk, 1);
324
325 list_for_each_entry(part_md, &md->part, part)
326 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
327 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
328 set_disk_ro(part_md->disk, 1);
329 }
330 }
331 out_put:
332 mmc_blk_put(md);
333 return count;
334 }
335
336 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
337 power_ro_lock_show, power_ro_lock_store);
338
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)339 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
340 char *buf)
341 {
342 int ret;
343 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
344
345 ret = sysfs_emit(buf, "%d\n",
346 get_disk_ro(dev_to_disk(dev)) ^
347 md->read_only);
348 mmc_blk_put(md);
349 return ret;
350 }
351
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)352 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
353 const char *buf, size_t count)
354 {
355 int ret;
356 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
357 unsigned long set;
358
359 if (kstrtoul(buf, 0, &set)) {
360 ret = -EINVAL;
361 goto out;
362 }
363
364 set_disk_ro(dev_to_disk(dev), set || md->read_only);
365 ret = count;
366 out:
367 mmc_blk_put(md);
368 return ret;
369 }
370
371 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
372
373 static struct attribute *mmc_disk_attrs[] = {
374 &dev_attr_force_ro.attr,
375 &dev_attr_ro_lock_until_next_power_on.attr,
376 NULL,
377 };
378
mmc_disk_attrs_is_visible(struct kobject * kobj,struct attribute * a,int n)379 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
380 struct attribute *a, int n)
381 {
382 struct device *dev = kobj_to_dev(kobj);
383 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
384 umode_t mode = a->mode;
385
386 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
387 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
388 md->queue.card->ext_csd.boot_ro_lockable) {
389 mode = S_IRUGO;
390 if (!(md->queue.card->ext_csd.boot_ro_lock &
391 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
392 mode |= S_IWUSR;
393 }
394
395 mmc_blk_put(md);
396 return mode;
397 }
398
399 static const struct attribute_group mmc_disk_attr_group = {
400 .is_visible = mmc_disk_attrs_is_visible,
401 .attrs = mmc_disk_attrs,
402 };
403
404 static const struct attribute_group *mmc_disk_attr_groups[] = {
405 &mmc_disk_attr_group,
406 NULL,
407 };
408
mmc_blk_open(struct gendisk * disk,blk_mode_t mode)409 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
410 {
411 struct mmc_blk_data *md = mmc_blk_get(disk);
412 int ret = -ENXIO;
413
414 mutex_lock(&block_mutex);
415 if (md) {
416 ret = 0;
417 if ((mode & BLK_OPEN_WRITE) && md->read_only) {
418 mmc_blk_put(md);
419 ret = -EROFS;
420 }
421 }
422 mutex_unlock(&block_mutex);
423
424 return ret;
425 }
426
mmc_blk_release(struct gendisk * disk)427 static void mmc_blk_release(struct gendisk *disk)
428 {
429 struct mmc_blk_data *md = disk->private_data;
430
431 mutex_lock(&block_mutex);
432 mmc_blk_put(md);
433 mutex_unlock(&block_mutex);
434 }
435
436 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)437 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
438 {
439 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
440 geo->heads = 4;
441 geo->sectors = 16;
442 return 0;
443 }
444
445 struct mmc_blk_ioc_data {
446 struct mmc_ioc_cmd ic;
447 unsigned char *buf;
448 u64 buf_bytes;
449 unsigned int flags;
450 #define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */
451 #define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */
452
453 struct mmc_rpmb_data *rpmb;
454 };
455
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)456 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
457 struct mmc_ioc_cmd __user *user)
458 {
459 struct mmc_blk_ioc_data *idata;
460 int err;
461
462 idata = kzalloc(sizeof(*idata), GFP_KERNEL);
463 if (!idata) {
464 err = -ENOMEM;
465 goto out;
466 }
467
468 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
469 err = -EFAULT;
470 goto idata_err;
471 }
472
473 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
474 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
475 err = -EOVERFLOW;
476 goto idata_err;
477 }
478
479 if (!idata->buf_bytes) {
480 idata->buf = NULL;
481 return idata;
482 }
483
484 idata->buf = memdup_user((void __user *)(unsigned long)
485 idata->ic.data_ptr, idata->buf_bytes);
486 if (IS_ERR(idata->buf)) {
487 err = PTR_ERR(idata->buf);
488 goto idata_err;
489 }
490
491 return idata;
492
493 idata_err:
494 kfree(idata);
495 out:
496 return ERR_PTR(err);
497 }
498
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)499 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
500 struct mmc_blk_ioc_data *idata)
501 {
502 struct mmc_ioc_cmd *ic = &idata->ic;
503
504 if (copy_to_user(&(ic_ptr->response), ic->response,
505 sizeof(ic->response)))
506 return -EFAULT;
507
508 if (!idata->ic.write_flag) {
509 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
510 idata->buf, idata->buf_bytes))
511 return -EFAULT;
512 }
513
514 return 0;
515 }
516
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data ** idatas,int i)517 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
518 struct mmc_blk_ioc_data **idatas, int i)
519 {
520 struct mmc_command cmd = {}, sbc = {};
521 struct mmc_data data = {};
522 struct mmc_request mrq = {};
523 struct scatterlist sg;
524 bool r1b_resp;
525 unsigned int busy_timeout_ms;
526 int err;
527 unsigned int target_part;
528 struct mmc_blk_ioc_data *idata = idatas[i];
529 struct mmc_blk_ioc_data *prev_idata = NULL;
530
531 if (!card || !md || !idata)
532 return -EINVAL;
533
534 if (idata->flags & MMC_BLK_IOC_DROP)
535 return 0;
536
537 if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
538 prev_idata = idatas[i - 1];
539
540 /*
541 * The RPMB accesses comes in from the character device, so we
542 * need to target these explicitly. Else we just target the
543 * partition type for the block device the ioctl() was issued
544 * on.
545 */
546 if (idata->rpmb) {
547 /* Support multiple RPMB partitions */
548 target_part = idata->rpmb->part_index;
549 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
550 } else {
551 target_part = md->part_type;
552 }
553
554 cmd.opcode = idata->ic.opcode;
555 cmd.arg = idata->ic.arg;
556 cmd.flags = idata->ic.flags;
557
558 if (idata->buf_bytes) {
559 data.sg = &sg;
560 data.sg_len = 1;
561 data.blksz = idata->ic.blksz;
562 data.blocks = idata->ic.blocks;
563
564 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
565
566 if (idata->ic.write_flag)
567 data.flags = MMC_DATA_WRITE;
568 else
569 data.flags = MMC_DATA_READ;
570
571 /* data.flags must already be set before doing this. */
572 mmc_set_data_timeout(&data, card);
573
574 /* Allow overriding the timeout_ns for empirical tuning. */
575 if (idata->ic.data_timeout_ns)
576 data.timeout_ns = idata->ic.data_timeout_ns;
577
578 mrq.data = &data;
579 }
580
581 mrq.cmd = &cmd;
582
583 err = mmc_blk_part_switch(card, target_part);
584 if (err)
585 return err;
586
587 if (idata->ic.is_acmd) {
588 err = mmc_app_cmd(card->host, card);
589 if (err)
590 return err;
591 }
592
593 if (idata->rpmb || prev_idata) {
594 sbc.opcode = MMC_SET_BLOCK_COUNT;
595 /*
596 * We don't do any blockcount validation because the max size
597 * may be increased by a future standard. We just copy the
598 * 'Reliable Write' bit here.
599 */
600 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
601 if (prev_idata)
602 sbc.arg = prev_idata->ic.arg;
603 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
604 mrq.sbc = &sbc;
605 }
606
607 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
608 (cmd.opcode == MMC_SWITCH))
609 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
610
611 /* If it's an R1B response we need some more preparations. */
612 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
613 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
614 if (r1b_resp)
615 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
616
617 mmc_wait_for_req(card->host, &mrq);
618 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
619
620 if (prev_idata) {
621 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
622 if (sbc.error) {
623 dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
624 __func__, sbc.error);
625 return sbc.error;
626 }
627 }
628
629 if (cmd.error) {
630 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
631 __func__, cmd.error);
632 return cmd.error;
633 }
634 if (data.error) {
635 dev_err(mmc_dev(card->host), "%s: data error %d\n",
636 __func__, data.error);
637 return data.error;
638 }
639
640 /*
641 * Make sure the cache of the PARTITION_CONFIG register and
642 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
643 * changed it successfully.
644 */
645 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
646 (cmd.opcode == MMC_SWITCH)) {
647 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
648 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
649
650 /*
651 * Update cache so the next mmc_blk_part_switch call operates
652 * on up-to-date data.
653 */
654 card->ext_csd.part_config = value;
655 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
656 }
657
658 /*
659 * Make sure to update CACHE_CTRL in case it was changed. The cache
660 * will get turned back on if the card is re-initialized, e.g.
661 * suspend/resume or hw reset in recovery.
662 */
663 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
664 (cmd.opcode == MMC_SWITCH)) {
665 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
666
667 card->ext_csd.cache_ctrl = value;
668 }
669
670 /*
671 * According to the SD specs, some commands require a delay after
672 * issuing the command.
673 */
674 if (idata->ic.postsleep_min_us)
675 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
676
677 if (mmc_host_is_spi(card->host)) {
678 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
679 return mmc_spi_err_check(card);
680 return err;
681 }
682
683 /*
684 * Ensure RPMB, writes and R1B responses are completed by polling with
685 * CMD13. Note that, usually we don't need to poll when using HW busy
686 * detection, but here it's needed since some commands may indicate the
687 * error through the R1 status bits.
688 */
689 if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
690 struct mmc_blk_busy_data cb_data = {
691 .card = card,
692 };
693
694 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
695 &mmc_blk_busy_cb, &cb_data);
696
697 idata->ic.response[0] = cb_data.status;
698 }
699
700 return err;
701 }
702
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)703 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
704 struct mmc_ioc_cmd __user *ic_ptr,
705 struct mmc_rpmb_data *rpmb)
706 {
707 struct mmc_blk_ioc_data *idata;
708 struct mmc_blk_ioc_data *idatas[1];
709 struct mmc_queue *mq;
710 struct mmc_card *card;
711 int err = 0, ioc_err = 0;
712 struct request *req;
713
714 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
715 if (IS_ERR(idata))
716 return PTR_ERR(idata);
717 /* This will be NULL on non-RPMB ioctl():s */
718 idata->rpmb = rpmb;
719
720 card = md->queue.card;
721 if (IS_ERR(card)) {
722 err = PTR_ERR(card);
723 goto cmd_done;
724 }
725
726 /*
727 * Dispatch the ioctl() into the block request queue.
728 */
729 mq = &md->queue;
730 req = blk_mq_alloc_request(mq->queue,
731 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
732 if (IS_ERR(req)) {
733 err = PTR_ERR(req);
734 goto cmd_done;
735 }
736 idatas[0] = idata;
737 req_to_mmc_queue_req(req)->drv_op =
738 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
739 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
740 req_to_mmc_queue_req(req)->drv_op_data = idatas;
741 req_to_mmc_queue_req(req)->ioc_count = 1;
742 blk_execute_rq(req, false);
743 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
744 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
745 blk_mq_free_request(req);
746
747 cmd_done:
748 kfree(idata->buf);
749 kfree(idata);
750 return ioc_err ? ioc_err : err;
751 }
752
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)753 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
754 struct mmc_ioc_multi_cmd __user *user,
755 struct mmc_rpmb_data *rpmb)
756 {
757 struct mmc_blk_ioc_data **idata = NULL;
758 struct mmc_ioc_cmd __user *cmds = user->cmds;
759 struct mmc_card *card;
760 struct mmc_queue *mq;
761 int err = 0, ioc_err = 0;
762 __u64 num_of_cmds;
763 unsigned int i, n;
764 struct request *req;
765
766 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
767 sizeof(num_of_cmds)))
768 return -EFAULT;
769
770 if (!num_of_cmds)
771 return 0;
772
773 if (num_of_cmds > MMC_IOC_MAX_CMDS)
774 return -EINVAL;
775
776 n = num_of_cmds;
777 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
778 if (!idata)
779 return -ENOMEM;
780
781 for (i = 0; i < n; i++) {
782 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
783 if (IS_ERR(idata[i])) {
784 err = PTR_ERR(idata[i]);
785 n = i;
786 goto cmd_err;
787 }
788 /* This will be NULL on non-RPMB ioctl():s */
789 idata[i]->rpmb = rpmb;
790 }
791
792 card = md->queue.card;
793 if (IS_ERR(card)) {
794 err = PTR_ERR(card);
795 goto cmd_err;
796 }
797
798
799 /*
800 * Dispatch the ioctl()s into the block request queue.
801 */
802 mq = &md->queue;
803 req = blk_mq_alloc_request(mq->queue,
804 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
805 if (IS_ERR(req)) {
806 err = PTR_ERR(req);
807 goto cmd_err;
808 }
809 req_to_mmc_queue_req(req)->drv_op =
810 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
811 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
812 req_to_mmc_queue_req(req)->drv_op_data = idata;
813 req_to_mmc_queue_req(req)->ioc_count = n;
814 blk_execute_rq(req, false);
815 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
816
817 /* copy to user if data and response */
818 for (i = 0; i < n && !err; i++)
819 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
820
821 blk_mq_free_request(req);
822
823 cmd_err:
824 for (i = 0; i < n; i++) {
825 kfree(idata[i]->buf);
826 kfree(idata[i]);
827 }
828 kfree(idata);
829 return ioc_err ? ioc_err : err;
830 }
831
mmc_blk_check_blkdev(struct block_device * bdev)832 static int mmc_blk_check_blkdev(struct block_device *bdev)
833 {
834 /*
835 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
836 * whole block device, not on a partition. This prevents overspray
837 * between sibling partitions.
838 */
839 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
840 return -EPERM;
841 return 0;
842 }
843
mmc_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)844 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
845 unsigned int cmd, unsigned long arg)
846 {
847 struct mmc_blk_data *md;
848 int ret;
849
850 switch (cmd) {
851 case MMC_IOC_CMD:
852 ret = mmc_blk_check_blkdev(bdev);
853 if (ret)
854 return ret;
855 md = mmc_blk_get(bdev->bd_disk);
856 if (!md)
857 return -EINVAL;
858 ret = mmc_blk_ioctl_cmd(md,
859 (struct mmc_ioc_cmd __user *)arg,
860 NULL);
861 mmc_blk_put(md);
862 return ret;
863 case MMC_IOC_MULTI_CMD:
864 ret = mmc_blk_check_blkdev(bdev);
865 if (ret)
866 return ret;
867 md = mmc_blk_get(bdev->bd_disk);
868 if (!md)
869 return -EINVAL;
870 ret = mmc_blk_ioctl_multi_cmd(md,
871 (struct mmc_ioc_multi_cmd __user *)arg,
872 NULL);
873 mmc_blk_put(md);
874 return ret;
875 default:
876 return -EINVAL;
877 }
878 }
879
880 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)881 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
882 unsigned int cmd, unsigned long arg)
883 {
884 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
885 }
886 #endif
887
mmc_blk_alternative_gpt_sector(struct gendisk * disk,sector_t * sector)888 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
889 sector_t *sector)
890 {
891 struct mmc_blk_data *md;
892 int ret;
893
894 md = mmc_blk_get(disk);
895 if (!md)
896 return -EINVAL;
897
898 if (md->queue.card)
899 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
900 else
901 ret = -ENODEV;
902
903 mmc_blk_put(md);
904
905 return ret;
906 }
907
908 static const struct block_device_operations mmc_bdops = {
909 .open = mmc_blk_open,
910 .release = mmc_blk_release,
911 .getgeo = mmc_blk_getgeo,
912 .owner = THIS_MODULE,
913 .ioctl = mmc_blk_ioctl,
914 #ifdef CONFIG_COMPAT
915 .compat_ioctl = mmc_blk_compat_ioctl,
916 #endif
917 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
918 };
919
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)920 static int mmc_blk_part_switch_pre(struct mmc_card *card,
921 unsigned int part_type)
922 {
923 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
924 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
925 int ret = 0;
926
927 if ((part_type & mask) == rpmb) {
928 if (card->ext_csd.cmdq_en) {
929 ret = mmc_cmdq_disable(card);
930 if (ret)
931 return ret;
932 }
933 mmc_retune_pause(card->host);
934 }
935
936 return ret;
937 }
938
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)939 static int mmc_blk_part_switch_post(struct mmc_card *card,
940 unsigned int part_type)
941 {
942 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
943 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
944 int ret = 0;
945
946 if ((part_type & mask) == rpmb) {
947 mmc_retune_unpause(card->host);
948 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
949 ret = mmc_cmdq_enable(card);
950 }
951
952 return ret;
953 }
954
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)955 static inline int mmc_blk_part_switch(struct mmc_card *card,
956 unsigned int part_type)
957 {
958 int ret = 0;
959 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
960
961 if (main_md->part_curr == part_type)
962 return 0;
963
964 if (mmc_card_mmc(card)) {
965 u8 part_config = card->ext_csd.part_config;
966
967 ret = mmc_blk_part_switch_pre(card, part_type);
968 if (ret)
969 return ret;
970
971 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
972 part_config |= part_type;
973
974 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
975 EXT_CSD_PART_CONFIG, part_config,
976 card->ext_csd.part_time);
977 if (ret) {
978 mmc_blk_part_switch_post(card, part_type);
979 return ret;
980 }
981
982 card->ext_csd.part_config = part_config;
983
984 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
985 }
986
987 main_md->part_curr = part_type;
988 return ret;
989 }
990
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)991 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
992 {
993 int err;
994 u32 result;
995 __be32 *blocks;
996
997 struct mmc_request mrq = {};
998 struct mmc_command cmd = {};
999 struct mmc_data data = {};
1000
1001 struct scatterlist sg;
1002
1003 err = mmc_app_cmd(card->host, card);
1004 if (err)
1005 return err;
1006
1007 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
1008 cmd.arg = 0;
1009 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1010
1011 data.blksz = 4;
1012 data.blocks = 1;
1013 data.flags = MMC_DATA_READ;
1014 data.sg = &sg;
1015 data.sg_len = 1;
1016 mmc_set_data_timeout(&data, card);
1017
1018 mrq.cmd = &cmd;
1019 mrq.data = &data;
1020
1021 blocks = kmalloc(4, GFP_KERNEL);
1022 if (!blocks)
1023 return -ENOMEM;
1024
1025 sg_init_one(&sg, blocks, 4);
1026
1027 mmc_wait_for_req(card->host, &mrq);
1028
1029 result = ntohl(*blocks);
1030 kfree(blocks);
1031
1032 if (cmd.error || data.error)
1033 return -EIO;
1034
1035 *written_blocks = result;
1036
1037 return 0;
1038 }
1039
mmc_blk_clock_khz(struct mmc_host * host)1040 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
1041 {
1042 if (host->actual_clock)
1043 return host->actual_clock / 1000;
1044
1045 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
1046 if (host->ios.clock)
1047 return host->ios.clock / 2000;
1048
1049 /* How can there be no clock */
1050 WARN_ON_ONCE(1);
1051 return 100; /* 100 kHz is minimum possible value */
1052 }
1053
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)1054 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1055 struct mmc_data *data)
1056 {
1057 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1058 unsigned int khz;
1059
1060 if (data->timeout_clks) {
1061 khz = mmc_blk_clock_khz(host);
1062 ms += DIV_ROUND_UP(data->timeout_clks, khz);
1063 }
1064
1065 return ms;
1066 }
1067
1068 /*
1069 * Attempts to reset the card and get back to the requested partition.
1070 * Therefore any error here must result in cancelling the block layer
1071 * request, it must not be reattempted without going through the mmc_blk
1072 * partition sanity checks.
1073 */
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)1074 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1075 int type)
1076 {
1077 int err;
1078 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1079
1080 if (md->reset_done & type)
1081 return -EEXIST;
1082
1083 md->reset_done |= type;
1084 err = mmc_hw_reset(host->card);
1085 /*
1086 * A successful reset will leave the card in the main partition, but
1087 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1088 * in that case.
1089 */
1090 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1091 if (err)
1092 return err;
1093 /* Ensure we switch back to the correct partition */
1094 if (mmc_blk_part_switch(host->card, md->part_type))
1095 /*
1096 * We have failed to get back into the correct
1097 * partition, so we need to abort the whole request.
1098 */
1099 return -ENODEV;
1100 return 0;
1101 }
1102
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1103 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1104 {
1105 md->reset_done &= ~type;
1106 }
1107
mmc_blk_check_sbc(struct mmc_queue_req * mq_rq)1108 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1109 {
1110 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1111 int i;
1112
1113 for (i = 1; i < mq_rq->ioc_count; i++) {
1114 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1115 mmc_op_multi(idata[i]->ic.opcode)) {
1116 idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1117 idata[i]->flags |= MMC_BLK_IOC_SBC;
1118 }
1119 }
1120 }
1121
1122 /*
1123 * The non-block commands come back from the block layer after it queued it and
1124 * processed it with all other requests and then they get issued in this
1125 * function.
1126 */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1127 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1128 {
1129 struct mmc_queue_req *mq_rq;
1130 struct mmc_card *card = mq->card;
1131 struct mmc_blk_data *md = mq->blkdata;
1132 struct mmc_blk_ioc_data **idata;
1133 bool rpmb_ioctl;
1134 u8 **ext_csd;
1135 u32 status;
1136 int ret;
1137 int i;
1138
1139 mq_rq = req_to_mmc_queue_req(req);
1140 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1141
1142 switch (mq_rq->drv_op) {
1143 case MMC_DRV_OP_IOCTL:
1144 if (card->ext_csd.cmdq_en) {
1145 ret = mmc_cmdq_disable(card);
1146 if (ret)
1147 break;
1148 }
1149
1150 mmc_blk_check_sbc(mq_rq);
1151
1152 fallthrough;
1153 case MMC_DRV_OP_IOCTL_RPMB:
1154 idata = mq_rq->drv_op_data;
1155 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1156 ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1157 if (ret)
1158 break;
1159 }
1160 /* Always switch back to main area after RPMB access */
1161 if (rpmb_ioctl)
1162 mmc_blk_part_switch(card, 0);
1163 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1164 mmc_cmdq_enable(card);
1165 break;
1166 case MMC_DRV_OP_BOOT_WP:
1167 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1168 card->ext_csd.boot_ro_lock |
1169 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1170 card->ext_csd.part_time);
1171 if (ret)
1172 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1173 md->disk->disk_name, ret);
1174 else
1175 card->ext_csd.boot_ro_lock |=
1176 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1177 break;
1178 case MMC_DRV_OP_GET_CARD_STATUS:
1179 ret = mmc_send_status(card, &status);
1180 if (!ret)
1181 ret = status;
1182 break;
1183 case MMC_DRV_OP_GET_EXT_CSD:
1184 ext_csd = mq_rq->drv_op_data;
1185 ret = mmc_get_ext_csd(card, ext_csd);
1186 break;
1187 default:
1188 pr_err("%s: unknown driver specific operation\n",
1189 md->disk->disk_name);
1190 ret = -EINVAL;
1191 break;
1192 }
1193 mq_rq->drv_op_result = ret;
1194 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1195 }
1196
mmc_blk_issue_erase_rq(struct mmc_queue * mq,struct request * req,int type,unsigned int erase_arg)1197 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1198 int type, unsigned int erase_arg)
1199 {
1200 struct mmc_blk_data *md = mq->blkdata;
1201 struct mmc_card *card = md->queue.card;
1202 unsigned int from, nr;
1203 int err = 0;
1204 blk_status_t status = BLK_STS_OK;
1205
1206 if (!mmc_can_erase(card)) {
1207 status = BLK_STS_NOTSUPP;
1208 goto fail;
1209 }
1210
1211 from = blk_rq_pos(req);
1212 nr = blk_rq_sectors(req);
1213
1214 do {
1215 err = 0;
1216 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1217 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1218 INAND_CMD38_ARG_EXT_CSD,
1219 erase_arg == MMC_TRIM_ARG ?
1220 INAND_CMD38_ARG_TRIM :
1221 INAND_CMD38_ARG_ERASE,
1222 card->ext_csd.generic_cmd6_time);
1223 }
1224 if (!err)
1225 err = mmc_erase(card, from, nr, erase_arg);
1226 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1227 if (err)
1228 status = BLK_STS_IOERR;
1229 else
1230 mmc_blk_reset_success(md, type);
1231 fail:
1232 blk_mq_end_request(req, status);
1233 }
1234
mmc_blk_issue_trim_rq(struct mmc_queue * mq,struct request * req)1235 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1236 {
1237 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1238 }
1239
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1240 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1241 {
1242 struct mmc_blk_data *md = mq->blkdata;
1243 struct mmc_card *card = md->queue.card;
1244 unsigned int arg = card->erase_arg;
1245
1246 if (mmc_card_broken_sd_discard(card))
1247 arg = SD_ERASE_ARG;
1248
1249 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1250 }
1251
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1252 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1253 struct request *req)
1254 {
1255 struct mmc_blk_data *md = mq->blkdata;
1256 struct mmc_card *card = md->queue.card;
1257 unsigned int from, nr, arg;
1258 int err = 0, type = MMC_BLK_SECDISCARD;
1259 blk_status_t status = BLK_STS_OK;
1260
1261 if (!(mmc_can_secure_erase_trim(card))) {
1262 status = BLK_STS_NOTSUPP;
1263 goto out;
1264 }
1265
1266 from = blk_rq_pos(req);
1267 nr = blk_rq_sectors(req);
1268
1269 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1270 arg = MMC_SECURE_TRIM1_ARG;
1271 else
1272 arg = MMC_SECURE_ERASE_ARG;
1273
1274 retry:
1275 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1276 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1277 INAND_CMD38_ARG_EXT_CSD,
1278 arg == MMC_SECURE_TRIM1_ARG ?
1279 INAND_CMD38_ARG_SECTRIM1 :
1280 INAND_CMD38_ARG_SECERASE,
1281 card->ext_csd.generic_cmd6_time);
1282 if (err)
1283 goto out_retry;
1284 }
1285
1286 err = mmc_erase(card, from, nr, arg);
1287 if (err == -EIO)
1288 goto out_retry;
1289 if (err) {
1290 status = BLK_STS_IOERR;
1291 goto out;
1292 }
1293
1294 if (arg == MMC_SECURE_TRIM1_ARG) {
1295 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1296 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1297 INAND_CMD38_ARG_EXT_CSD,
1298 INAND_CMD38_ARG_SECTRIM2,
1299 card->ext_csd.generic_cmd6_time);
1300 if (err)
1301 goto out_retry;
1302 }
1303
1304 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1305 if (err == -EIO)
1306 goto out_retry;
1307 if (err) {
1308 status = BLK_STS_IOERR;
1309 goto out;
1310 }
1311 }
1312
1313 out_retry:
1314 if (err && !mmc_blk_reset(md, card->host, type))
1315 goto retry;
1316 if (!err)
1317 mmc_blk_reset_success(md, type);
1318 out:
1319 blk_mq_end_request(req, status);
1320 }
1321
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1322 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1323 {
1324 struct mmc_blk_data *md = mq->blkdata;
1325 struct mmc_card *card = md->queue.card;
1326 int ret = 0;
1327
1328 ret = mmc_flush_cache(card->host);
1329 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1330 }
1331
1332 /*
1333 * Reformat current write as a reliable write, supporting
1334 * both legacy and the enhanced reliable write MMC cards.
1335 * In each transfer we'll handle only as much as a single
1336 * reliable write can handle, thus finish the request in
1337 * partial completions.
1338 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1339 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1340 struct mmc_card *card,
1341 struct request *req)
1342 {
1343 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1344 /* Legacy mode imposes restrictions on transfers. */
1345 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1346 brq->data.blocks = 1;
1347
1348 if (brq->data.blocks > card->ext_csd.rel_sectors)
1349 brq->data.blocks = card->ext_csd.rel_sectors;
1350 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1351 brq->data.blocks = 1;
1352 }
1353 }
1354
1355 #define CMD_ERRORS_EXCL_OOR \
1356 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1357 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1358 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1359 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1360 R1_CC_ERROR | /* Card controller error */ \
1361 R1_ERROR) /* General/unknown error */
1362
1363 #define CMD_ERRORS \
1364 (CMD_ERRORS_EXCL_OOR | \
1365 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1366
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1367 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1368 {
1369 u32 val;
1370
1371 /*
1372 * Per the SD specification(physical layer version 4.10)[1],
1373 * section 4.3.3, it explicitly states that "When the last
1374 * block of user area is read using CMD18, the host should
1375 * ignore OUT_OF_RANGE error that may occur even the sequence
1376 * is correct". And JESD84-B51 for eMMC also has a similar
1377 * statement on section 6.8.3.
1378 *
1379 * Multiple block read/write could be done by either predefined
1380 * method, namely CMD23, or open-ending mode. For open-ending mode,
1381 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1382 *
1383 * However the spec[1] doesn't tell us whether we should also
1384 * ignore that for predefined method. But per the spec[1], section
1385 * 4.15 Set Block Count Command, it says"If illegal block count
1386 * is set, out of range error will be indicated during read/write
1387 * operation (For example, data transfer is stopped at user area
1388 * boundary)." In another word, we could expect a out of range error
1389 * in the response for the following CMD18/25. And if argument of
1390 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1391 * we could also expect to get a -ETIMEDOUT or any error number from
1392 * the host drivers due to missing data response(for write)/data(for
1393 * read), as the cards will stop the data transfer by itself per the
1394 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1395 */
1396
1397 if (!brq->stop.error) {
1398 bool oor_with_open_end;
1399 /* If there is no error yet, check R1 response */
1400
1401 val = brq->stop.resp[0] & CMD_ERRORS;
1402 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1403
1404 if (val && !oor_with_open_end)
1405 brq->stop.error = -EIO;
1406 }
1407 }
1408
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1409 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1410 int recovery_mode, bool *do_rel_wr_p,
1411 bool *do_data_tag_p)
1412 {
1413 struct mmc_blk_data *md = mq->blkdata;
1414 struct mmc_card *card = md->queue.card;
1415 struct mmc_blk_request *brq = &mqrq->brq;
1416 struct request *req = mmc_queue_req_to_req(mqrq);
1417 bool do_rel_wr, do_data_tag;
1418
1419 /*
1420 * Reliable writes are used to implement Forced Unit Access and
1421 * are supported only on MMCs.
1422 */
1423 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1424 rq_data_dir(req) == WRITE &&
1425 (md->flags & MMC_BLK_REL_WR);
1426
1427 memset(brq, 0, sizeof(struct mmc_blk_request));
1428
1429 mmc_crypto_prepare_req(mqrq);
1430
1431 brq->mrq.data = &brq->data;
1432 brq->mrq.tag = req->tag;
1433
1434 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1435 brq->stop.arg = 0;
1436
1437 if (rq_data_dir(req) == READ) {
1438 brq->data.flags = MMC_DATA_READ;
1439 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1440 } else {
1441 brq->data.flags = MMC_DATA_WRITE;
1442 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1443 }
1444
1445 brq->data.blksz = 512;
1446 brq->data.blocks = blk_rq_sectors(req);
1447 brq->data.blk_addr = blk_rq_pos(req);
1448
1449 /*
1450 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1451 * The eMMC will give "high" priority tasks priority over "simple"
1452 * priority tasks. Here we always set "simple" priority by not setting
1453 * MMC_DATA_PRIO.
1454 */
1455
1456 /*
1457 * The block layer doesn't support all sector count
1458 * restrictions, so we need to be prepared for too big
1459 * requests.
1460 */
1461 if (brq->data.blocks > card->host->max_blk_count)
1462 brq->data.blocks = card->host->max_blk_count;
1463
1464 if (brq->data.blocks > 1) {
1465 /*
1466 * Some SD cards in SPI mode return a CRC error or even lock up
1467 * completely when trying to read the last block using a
1468 * multiblock read command.
1469 */
1470 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1471 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1472 get_capacity(md->disk)))
1473 brq->data.blocks--;
1474
1475 /*
1476 * After a read error, we redo the request one (native) sector
1477 * at a time in order to accurately determine which
1478 * sectors can be read successfully.
1479 */
1480 if (recovery_mode)
1481 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1482
1483 /*
1484 * Some controllers have HW issues while operating
1485 * in multiple I/O mode
1486 */
1487 if (card->host->ops->multi_io_quirk)
1488 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1489 (rq_data_dir(req) == READ) ?
1490 MMC_DATA_READ : MMC_DATA_WRITE,
1491 brq->data.blocks);
1492 }
1493
1494 if (do_rel_wr) {
1495 mmc_apply_rel_rw(brq, card, req);
1496 brq->data.flags |= MMC_DATA_REL_WR;
1497 }
1498
1499 /*
1500 * Data tag is used only during writing meta data to speed
1501 * up write and any subsequent read of this meta data
1502 */
1503 do_data_tag = card->ext_csd.data_tag_unit_size &&
1504 (req->cmd_flags & REQ_META) &&
1505 (rq_data_dir(req) == WRITE) &&
1506 ((brq->data.blocks * brq->data.blksz) >=
1507 card->ext_csd.data_tag_unit_size);
1508
1509 if (do_data_tag)
1510 brq->data.flags |= MMC_DATA_DAT_TAG;
1511
1512 mmc_set_data_timeout(&brq->data, card);
1513
1514 brq->data.sg = mqrq->sg;
1515 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1516
1517 /*
1518 * Adjust the sg list so it is the same size as the
1519 * request.
1520 */
1521 if (brq->data.blocks != blk_rq_sectors(req)) {
1522 int i, data_size = brq->data.blocks << 9;
1523 struct scatterlist *sg;
1524
1525 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1526 data_size -= sg->length;
1527 if (data_size <= 0) {
1528 sg->length += data_size;
1529 i++;
1530 break;
1531 }
1532 }
1533 brq->data.sg_len = i;
1534 }
1535
1536 if (do_rel_wr_p)
1537 *do_rel_wr_p = do_rel_wr;
1538
1539 if (do_data_tag_p)
1540 *do_data_tag_p = do_data_tag;
1541 }
1542
1543 #define MMC_CQE_RETRIES 2
1544
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1545 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1546 {
1547 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1548 struct mmc_request *mrq = &mqrq->brq.mrq;
1549 struct request_queue *q = req->q;
1550 struct mmc_host *host = mq->card->host;
1551 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1552 unsigned long flags;
1553 bool put_card;
1554 int err;
1555
1556 mmc_cqe_post_req(host, mrq);
1557
1558 if (mrq->cmd && mrq->cmd->error)
1559 err = mrq->cmd->error;
1560 else if (mrq->data && mrq->data->error)
1561 err = mrq->data->error;
1562 else
1563 err = 0;
1564
1565 if (err) {
1566 if (mqrq->retries++ < MMC_CQE_RETRIES)
1567 blk_mq_requeue_request(req, true);
1568 else
1569 blk_mq_end_request(req, BLK_STS_IOERR);
1570 } else if (mrq->data) {
1571 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1572 blk_mq_requeue_request(req, true);
1573 else
1574 __blk_mq_end_request(req, BLK_STS_OK);
1575 } else if (mq->in_recovery) {
1576 blk_mq_requeue_request(req, true);
1577 } else {
1578 blk_mq_end_request(req, BLK_STS_OK);
1579 }
1580
1581 spin_lock_irqsave(&mq->lock, flags);
1582
1583 mq->in_flight[issue_type] -= 1;
1584
1585 put_card = (mmc_tot_in_flight(mq) == 0);
1586
1587 mmc_cqe_check_busy(mq);
1588
1589 spin_unlock_irqrestore(&mq->lock, flags);
1590
1591 if (!mq->cqe_busy)
1592 blk_mq_run_hw_queues(q, true);
1593
1594 if (put_card)
1595 mmc_put_card(mq->card, &mq->ctx);
1596 }
1597
mmc_blk_cqe_recovery(struct mmc_queue * mq)1598 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1599 {
1600 struct mmc_card *card = mq->card;
1601 struct mmc_host *host = card->host;
1602 int err;
1603
1604 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1605
1606 err = mmc_cqe_recovery(host);
1607 if (err)
1608 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1609 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1610
1611 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1612 }
1613
mmc_blk_cqe_req_done(struct mmc_request * mrq)1614 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1615 {
1616 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1617 brq.mrq);
1618 struct request *req = mmc_queue_req_to_req(mqrq);
1619 struct request_queue *q = req->q;
1620 struct mmc_queue *mq = q->queuedata;
1621
1622 /*
1623 * Block layer timeouts race with completions which means the normal
1624 * completion path cannot be used during recovery.
1625 */
1626 if (mq->in_recovery)
1627 mmc_blk_cqe_complete_rq(mq, req);
1628 else if (likely(!blk_should_fake_timeout(req->q)))
1629 blk_mq_complete_request(req);
1630 }
1631
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1632 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1633 {
1634 mrq->done = mmc_blk_cqe_req_done;
1635 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1636
1637 return mmc_cqe_start_req(host, mrq);
1638 }
1639
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1640 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1641 struct request *req)
1642 {
1643 struct mmc_blk_request *brq = &mqrq->brq;
1644
1645 memset(brq, 0, sizeof(*brq));
1646
1647 brq->mrq.cmd = &brq->cmd;
1648 brq->mrq.tag = req->tag;
1649
1650 return &brq->mrq;
1651 }
1652
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1653 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1654 {
1655 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1656 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1657
1658 mrq->cmd->opcode = MMC_SWITCH;
1659 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1660 (EXT_CSD_FLUSH_CACHE << 16) |
1661 (1 << 8) |
1662 EXT_CSD_CMD_SET_NORMAL;
1663 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1664
1665 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1666 }
1667
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1668 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1669 {
1670 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1671 struct mmc_host *host = mq->card->host;
1672 int err;
1673
1674 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1675 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1676 mmc_pre_req(host, &mqrq->brq.mrq);
1677
1678 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1679 if (err)
1680 mmc_post_req(host, &mqrq->brq.mrq, err);
1681
1682 return err;
1683 }
1684
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1685 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1686 {
1687 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1688 struct mmc_host *host = mq->card->host;
1689
1690 if (host->hsq_enabled)
1691 return mmc_blk_hsq_issue_rw_rq(mq, req);
1692
1693 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1694
1695 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1696 }
1697
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1698 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1699 struct mmc_card *card,
1700 int recovery_mode,
1701 struct mmc_queue *mq)
1702 {
1703 u32 readcmd, writecmd;
1704 struct mmc_blk_request *brq = &mqrq->brq;
1705 struct request *req = mmc_queue_req_to_req(mqrq);
1706 struct mmc_blk_data *md = mq->blkdata;
1707 bool do_rel_wr, do_data_tag;
1708
1709 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1710
1711 brq->mrq.cmd = &brq->cmd;
1712
1713 brq->cmd.arg = blk_rq_pos(req);
1714 if (!mmc_card_blockaddr(card))
1715 brq->cmd.arg <<= 9;
1716 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1717
1718 if (brq->data.blocks > 1 || do_rel_wr) {
1719 /* SPI multiblock writes terminate using a special
1720 * token, not a STOP_TRANSMISSION request.
1721 */
1722 if (!mmc_host_is_spi(card->host) ||
1723 rq_data_dir(req) == READ)
1724 brq->mrq.stop = &brq->stop;
1725 readcmd = MMC_READ_MULTIPLE_BLOCK;
1726 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1727 } else {
1728 brq->mrq.stop = NULL;
1729 readcmd = MMC_READ_SINGLE_BLOCK;
1730 writecmd = MMC_WRITE_BLOCK;
1731 }
1732 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1733
1734 /*
1735 * Pre-defined multi-block transfers are preferable to
1736 * open ended-ones (and necessary for reliable writes).
1737 * However, it is not sufficient to just send CMD23,
1738 * and avoid the final CMD12, as on an error condition
1739 * CMD12 (stop) needs to be sent anyway. This, coupled
1740 * with Auto-CMD23 enhancements provided by some
1741 * hosts, means that the complexity of dealing
1742 * with this is best left to the host. If CMD23 is
1743 * supported by card and host, we'll fill sbc in and let
1744 * the host deal with handling it correctly. This means
1745 * that for hosts that don't expose MMC_CAP_CMD23, no
1746 * change of behavior will be observed.
1747 *
1748 * N.B: Some MMC cards experience perf degradation.
1749 * We'll avoid using CMD23-bounded multiblock writes for
1750 * these, while retaining features like reliable writes.
1751 */
1752 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1753 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1754 do_data_tag)) {
1755 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1756 brq->sbc.arg = brq->data.blocks |
1757 (do_rel_wr ? (1 << 31) : 0) |
1758 (do_data_tag ? (1 << 29) : 0);
1759 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1760 brq->mrq.sbc = &brq->sbc;
1761 }
1762 }
1763
1764 #define MMC_MAX_RETRIES 5
1765 #define MMC_DATA_RETRIES 2
1766 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1767
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1768 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1769 {
1770 struct mmc_command cmd = {
1771 .opcode = MMC_STOP_TRANSMISSION,
1772 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1773 /* Some hosts wait for busy anyway, so provide a busy timeout */
1774 .busy_timeout = timeout,
1775 };
1776
1777 return mmc_wait_for_cmd(card->host, &cmd, 5);
1778 }
1779
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1780 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1781 {
1782 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1783 struct mmc_blk_request *brq = &mqrq->brq;
1784 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1785 int err;
1786
1787 mmc_retune_hold_now(card->host);
1788
1789 mmc_blk_send_stop(card, timeout);
1790
1791 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1792
1793 mmc_retune_release(card->host);
1794
1795 return err;
1796 }
1797
1798 #define MMC_READ_SINGLE_RETRIES 2
1799
1800 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1801 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1802 {
1803 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1804 struct mmc_request *mrq = &mqrq->brq.mrq;
1805 struct mmc_card *card = mq->card;
1806 struct mmc_host *host = card->host;
1807 blk_status_t error = BLK_STS_OK;
1808 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1809
1810 do {
1811 u32 status;
1812 int err;
1813 int retries = 0;
1814
1815 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1816 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1817
1818 mmc_wait_for_req(host, mrq);
1819
1820 err = mmc_send_status(card, &status);
1821 if (err)
1822 goto error_exit;
1823
1824 if (!mmc_host_is_spi(host) &&
1825 !mmc_ready_for_data(status)) {
1826 err = mmc_blk_fix_state(card, req);
1827 if (err)
1828 goto error_exit;
1829 }
1830
1831 if (!mrq->cmd->error)
1832 break;
1833 }
1834
1835 if (mrq->cmd->error ||
1836 mrq->data->error ||
1837 (!mmc_host_is_spi(host) &&
1838 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1839 error = BLK_STS_IOERR;
1840 else
1841 error = BLK_STS_OK;
1842
1843 } while (blk_update_request(req, error, bytes_per_read));
1844
1845 return;
1846
1847 error_exit:
1848 mrq->data->bytes_xfered = 0;
1849 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1850 /* Let it try the remaining request again */
1851 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1852 mqrq->retries = MMC_MAX_RETRIES - 1;
1853 }
1854
mmc_blk_oor_valid(struct mmc_blk_request * brq)1855 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1856 {
1857 return !!brq->mrq.sbc;
1858 }
1859
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1860 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1861 {
1862 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1863 }
1864
1865 /*
1866 * Check for errors the host controller driver might not have seen such as
1867 * response mode errors or invalid card state.
1868 */
mmc_blk_status_error(struct request * req,u32 status)1869 static bool mmc_blk_status_error(struct request *req, u32 status)
1870 {
1871 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1872 struct mmc_blk_request *brq = &mqrq->brq;
1873 struct mmc_queue *mq = req->q->queuedata;
1874 u32 stop_err_bits;
1875
1876 if (mmc_host_is_spi(mq->card->host))
1877 return false;
1878
1879 stop_err_bits = mmc_blk_stop_err_bits(brq);
1880
1881 return brq->cmd.resp[0] & CMD_ERRORS ||
1882 brq->stop.resp[0] & stop_err_bits ||
1883 status & stop_err_bits ||
1884 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1885 }
1886
mmc_blk_cmd_started(struct mmc_blk_request * brq)1887 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1888 {
1889 return !brq->sbc.error && !brq->cmd.error &&
1890 !(brq->cmd.resp[0] & CMD_ERRORS);
1891 }
1892
1893 /*
1894 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1895 * policy:
1896 * 1. A request that has transferred at least some data is considered
1897 * successful and will be requeued if there is remaining data to
1898 * transfer.
1899 * 2. Otherwise the number of retries is incremented and the request
1900 * will be requeued if there are remaining retries.
1901 * 3. Otherwise the request will be errored out.
1902 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1903 * mqrq->retries. So there are only 4 possible actions here:
1904 * 1. do not accept the bytes_xfered value i.e. set it to zero
1905 * 2. change mqrq->retries to determine the number of retries
1906 * 3. try to reset the card
1907 * 4. read one sector at a time
1908 */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1909 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1910 {
1911 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1912 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1913 struct mmc_blk_request *brq = &mqrq->brq;
1914 struct mmc_blk_data *md = mq->blkdata;
1915 struct mmc_card *card = mq->card;
1916 u32 status;
1917 u32 blocks;
1918 int err;
1919
1920 /*
1921 * Some errors the host driver might not have seen. Set the number of
1922 * bytes transferred to zero in that case.
1923 */
1924 err = __mmc_send_status(card, &status, 0);
1925 if (err || mmc_blk_status_error(req, status))
1926 brq->data.bytes_xfered = 0;
1927
1928 mmc_retune_release(card->host);
1929
1930 /*
1931 * Try again to get the status. This also provides an opportunity for
1932 * re-tuning.
1933 */
1934 if (err)
1935 err = __mmc_send_status(card, &status, 0);
1936
1937 /*
1938 * Nothing more to do after the number of bytes transferred has been
1939 * updated and there is no card.
1940 */
1941 if (err && mmc_detect_card_removed(card->host))
1942 return;
1943
1944 /* Try to get back to "tran" state */
1945 if (!mmc_host_is_spi(mq->card->host) &&
1946 (err || !mmc_ready_for_data(status)))
1947 err = mmc_blk_fix_state(mq->card, req);
1948
1949 /*
1950 * Special case for SD cards where the card might record the number of
1951 * blocks written.
1952 */
1953 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1954 rq_data_dir(req) == WRITE) {
1955 if (mmc_sd_num_wr_blocks(card, &blocks))
1956 brq->data.bytes_xfered = 0;
1957 else
1958 brq->data.bytes_xfered = blocks << 9;
1959 }
1960
1961 /* Reset if the card is in a bad state */
1962 if (!mmc_host_is_spi(mq->card->host) &&
1963 err && mmc_blk_reset(md, card->host, type)) {
1964 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1965 mqrq->retries = MMC_NO_RETRIES;
1966 return;
1967 }
1968
1969 /*
1970 * If anything was done, just return and if there is anything remaining
1971 * on the request it will get requeued.
1972 */
1973 if (brq->data.bytes_xfered)
1974 return;
1975
1976 /* Reset before last retry */
1977 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1978 mmc_blk_reset(md, card->host, type))
1979 return;
1980
1981 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1982 if (brq->sbc.error || brq->cmd.error)
1983 return;
1984
1985 /* Reduce the remaining retries for data errors */
1986 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1987 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1988 return;
1989 }
1990
1991 if (rq_data_dir(req) == READ && brq->data.blocks >
1992 queue_physical_block_size(mq->queue) >> 9) {
1993 /* Read one (native) sector at a time */
1994 mmc_blk_read_single(mq, req);
1995 return;
1996 }
1997 }
1998
mmc_blk_rq_error(struct mmc_blk_request * brq)1999 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
2000 {
2001 mmc_blk_eval_resp_error(brq);
2002
2003 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
2004 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
2005 }
2006
mmc_spi_err_check(struct mmc_card * card)2007 static int mmc_spi_err_check(struct mmc_card *card)
2008 {
2009 u32 status = 0;
2010 int err;
2011
2012 /*
2013 * SPI does not have a TRAN state we have to wait on, instead the
2014 * card is ready again when it no longer holds the line LOW.
2015 * We still have to ensure two things here before we know the write
2016 * was successful:
2017 * 1. The card has not disconnected during busy and we actually read our
2018 * own pull-up, thinking it was still connected, so ensure it
2019 * still responds.
2020 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
2021 * just reconnected card after being disconnected during busy.
2022 */
2023 err = __mmc_send_status(card, &status, 0);
2024 if (err)
2025 return err;
2026 /* All R1 and R2 bits of SPI are errors in our case */
2027 if (status)
2028 return -EIO;
2029 return 0;
2030 }
2031
mmc_blk_busy_cb(void * cb_data,bool * busy)2032 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
2033 {
2034 struct mmc_blk_busy_data *data = cb_data;
2035 u32 status = 0;
2036 int err;
2037
2038 err = mmc_send_status(data->card, &status);
2039 if (err)
2040 return err;
2041
2042 /* Accumulate response error bits. */
2043 data->status |= status;
2044
2045 *busy = !mmc_ready_for_data(status);
2046 return 0;
2047 }
2048
mmc_blk_card_busy(struct mmc_card * card,struct request * req)2049 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2050 {
2051 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2052 struct mmc_blk_busy_data cb_data;
2053 int err;
2054
2055 if (rq_data_dir(req) == READ)
2056 return 0;
2057
2058 if (mmc_host_is_spi(card->host)) {
2059 err = mmc_spi_err_check(card);
2060 if (err)
2061 mqrq->brq.data.bytes_xfered = 0;
2062 return err;
2063 }
2064
2065 cb_data.card = card;
2066 cb_data.status = 0;
2067 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2068 &mmc_blk_busy_cb, &cb_data);
2069
2070 /*
2071 * Do not assume data transferred correctly if there are any error bits
2072 * set.
2073 */
2074 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2075 mqrq->brq.data.bytes_xfered = 0;
2076 err = err ? err : -EIO;
2077 }
2078
2079 /* Copy the exception bit so it will be seen later on */
2080 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2081 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2082
2083 return err;
2084 }
2085
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)2086 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2087 struct request *req)
2088 {
2089 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2090
2091 mmc_blk_reset_success(mq->blkdata, type);
2092 }
2093
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)2094 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2095 {
2096 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2097 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2098
2099 if (nr_bytes) {
2100 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2101 blk_mq_requeue_request(req, true);
2102 else
2103 __blk_mq_end_request(req, BLK_STS_OK);
2104 } else if (!blk_rq_bytes(req)) {
2105 __blk_mq_end_request(req, BLK_STS_IOERR);
2106 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2107 blk_mq_requeue_request(req, true);
2108 } else {
2109 if (mmc_card_removed(mq->card))
2110 req->rq_flags |= RQF_QUIET;
2111 blk_mq_end_request(req, BLK_STS_IOERR);
2112 }
2113 }
2114
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2115 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2116 struct mmc_queue_req *mqrq)
2117 {
2118 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2119 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2120 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2121 }
2122
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2123 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2124 struct mmc_queue_req *mqrq)
2125 {
2126 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2127 mmc_run_bkops(mq->card);
2128 }
2129
mmc_blk_hsq_req_done(struct mmc_request * mrq)2130 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2131 {
2132 struct mmc_queue_req *mqrq =
2133 container_of(mrq, struct mmc_queue_req, brq.mrq);
2134 struct request *req = mmc_queue_req_to_req(mqrq);
2135 struct request_queue *q = req->q;
2136 struct mmc_queue *mq = q->queuedata;
2137 struct mmc_host *host = mq->card->host;
2138 unsigned long flags;
2139
2140 if (mmc_blk_rq_error(&mqrq->brq) ||
2141 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2142 spin_lock_irqsave(&mq->lock, flags);
2143 mq->recovery_needed = true;
2144 mq->recovery_req = req;
2145 spin_unlock_irqrestore(&mq->lock, flags);
2146
2147 host->cqe_ops->cqe_recovery_start(host);
2148
2149 schedule_work(&mq->recovery_work);
2150 return;
2151 }
2152
2153 mmc_blk_rw_reset_success(mq, req);
2154
2155 /*
2156 * Block layer timeouts race with completions which means the normal
2157 * completion path cannot be used during recovery.
2158 */
2159 if (mq->in_recovery)
2160 mmc_blk_cqe_complete_rq(mq, req);
2161 else if (likely(!blk_should_fake_timeout(req->q)))
2162 blk_mq_complete_request(req);
2163 }
2164
mmc_blk_mq_complete(struct request * req)2165 void mmc_blk_mq_complete(struct request *req)
2166 {
2167 struct mmc_queue *mq = req->q->queuedata;
2168 struct mmc_host *host = mq->card->host;
2169
2170 if (host->cqe_enabled)
2171 mmc_blk_cqe_complete_rq(mq, req);
2172 else if (likely(!blk_should_fake_timeout(req->q)))
2173 mmc_blk_mq_complete_rq(mq, req);
2174 }
2175
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)2176 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2177 struct request *req)
2178 {
2179 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2180 struct mmc_host *host = mq->card->host;
2181
2182 if (mmc_blk_rq_error(&mqrq->brq) ||
2183 mmc_blk_card_busy(mq->card, req)) {
2184 mmc_blk_mq_rw_recovery(mq, req);
2185 } else {
2186 mmc_blk_rw_reset_success(mq, req);
2187 mmc_retune_release(host);
2188 }
2189
2190 mmc_blk_urgent_bkops(mq, mqrq);
2191 }
2192
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,enum mmc_issue_type issue_type)2193 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2194 {
2195 unsigned long flags;
2196 bool put_card;
2197
2198 spin_lock_irqsave(&mq->lock, flags);
2199
2200 mq->in_flight[issue_type] -= 1;
2201
2202 put_card = (mmc_tot_in_flight(mq) == 0);
2203
2204 spin_unlock_irqrestore(&mq->lock, flags);
2205
2206 if (put_card)
2207 mmc_put_card(mq->card, &mq->ctx);
2208 }
2209
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req,bool can_sleep)2210 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2211 bool can_sleep)
2212 {
2213 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2214 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2215 struct mmc_request *mrq = &mqrq->brq.mrq;
2216 struct mmc_host *host = mq->card->host;
2217
2218 mmc_post_req(host, mrq, 0);
2219
2220 /*
2221 * Block layer timeouts race with completions which means the normal
2222 * completion path cannot be used during recovery.
2223 */
2224 if (mq->in_recovery) {
2225 mmc_blk_mq_complete_rq(mq, req);
2226 } else if (likely(!blk_should_fake_timeout(req->q))) {
2227 if (can_sleep)
2228 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2229 else
2230 blk_mq_complete_request(req);
2231 }
2232
2233 mmc_blk_mq_dec_in_flight(mq, issue_type);
2234 }
2235
mmc_blk_mq_recovery(struct mmc_queue * mq)2236 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2237 {
2238 struct request *req = mq->recovery_req;
2239 struct mmc_host *host = mq->card->host;
2240 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2241
2242 mq->recovery_req = NULL;
2243 mq->rw_wait = false;
2244
2245 if (mmc_blk_rq_error(&mqrq->brq)) {
2246 mmc_retune_hold_now(host);
2247 mmc_blk_mq_rw_recovery(mq, req);
2248 }
2249
2250 mmc_blk_urgent_bkops(mq, mqrq);
2251
2252 mmc_blk_mq_post_req(mq, req, true);
2253 }
2254
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2255 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2256 struct request **prev_req)
2257 {
2258 if (mmc_host_done_complete(mq->card->host))
2259 return;
2260
2261 mutex_lock(&mq->complete_lock);
2262
2263 if (!mq->complete_req)
2264 goto out_unlock;
2265
2266 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2267
2268 if (prev_req)
2269 *prev_req = mq->complete_req;
2270 else
2271 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2272
2273 mq->complete_req = NULL;
2274
2275 out_unlock:
2276 mutex_unlock(&mq->complete_lock);
2277 }
2278
mmc_blk_mq_complete_work(struct work_struct * work)2279 void mmc_blk_mq_complete_work(struct work_struct *work)
2280 {
2281 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2282 complete_work);
2283
2284 mmc_blk_mq_complete_prev_req(mq, NULL);
2285 }
2286
mmc_blk_mq_req_done(struct mmc_request * mrq)2287 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2288 {
2289 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2290 brq.mrq);
2291 struct request *req = mmc_queue_req_to_req(mqrq);
2292 struct request_queue *q = req->q;
2293 struct mmc_queue *mq = q->queuedata;
2294 struct mmc_host *host = mq->card->host;
2295 unsigned long flags;
2296
2297 if (!mmc_host_done_complete(host)) {
2298 bool waiting;
2299
2300 /*
2301 * We cannot complete the request in this context, so record
2302 * that there is a request to complete, and that a following
2303 * request does not need to wait (although it does need to
2304 * complete complete_req first).
2305 */
2306 spin_lock_irqsave(&mq->lock, flags);
2307 mq->complete_req = req;
2308 mq->rw_wait = false;
2309 waiting = mq->waiting;
2310 spin_unlock_irqrestore(&mq->lock, flags);
2311
2312 /*
2313 * If 'waiting' then the waiting task will complete this
2314 * request, otherwise queue a work to do it. Note that
2315 * complete_work may still race with the dispatch of a following
2316 * request.
2317 */
2318 if (waiting)
2319 wake_up(&mq->wait);
2320 else
2321 queue_work(mq->card->complete_wq, &mq->complete_work);
2322
2323 return;
2324 }
2325
2326 /* Take the recovery path for errors or urgent background operations */
2327 if (mmc_blk_rq_error(&mqrq->brq) ||
2328 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2329 spin_lock_irqsave(&mq->lock, flags);
2330 mq->recovery_needed = true;
2331 mq->recovery_req = req;
2332 spin_unlock_irqrestore(&mq->lock, flags);
2333 wake_up(&mq->wait);
2334 schedule_work(&mq->recovery_work);
2335 return;
2336 }
2337
2338 mmc_blk_rw_reset_success(mq, req);
2339
2340 mq->rw_wait = false;
2341 wake_up(&mq->wait);
2342
2343 /* context unknown */
2344 mmc_blk_mq_post_req(mq, req, false);
2345 }
2346
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2347 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2348 {
2349 unsigned long flags;
2350 bool done;
2351
2352 /*
2353 * Wait while there is another request in progress, but not if recovery
2354 * is needed. Also indicate whether there is a request waiting to start.
2355 */
2356 spin_lock_irqsave(&mq->lock, flags);
2357 if (mq->recovery_needed) {
2358 *err = -EBUSY;
2359 done = true;
2360 } else {
2361 done = !mq->rw_wait;
2362 }
2363 mq->waiting = !done;
2364 spin_unlock_irqrestore(&mq->lock, flags);
2365
2366 return done;
2367 }
2368
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2369 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2370 {
2371 int err = 0;
2372
2373 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2374
2375 /* Always complete the previous request if there is one */
2376 mmc_blk_mq_complete_prev_req(mq, prev_req);
2377
2378 return err;
2379 }
2380
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2381 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2382 struct request *req)
2383 {
2384 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2385 struct mmc_host *host = mq->card->host;
2386 struct request *prev_req = NULL;
2387 int err = 0;
2388
2389 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2390
2391 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2392
2393 mmc_pre_req(host, &mqrq->brq.mrq);
2394
2395 err = mmc_blk_rw_wait(mq, &prev_req);
2396 if (err)
2397 goto out_post_req;
2398
2399 mq->rw_wait = true;
2400
2401 err = mmc_start_request(host, &mqrq->brq.mrq);
2402
2403 if (prev_req)
2404 mmc_blk_mq_post_req(mq, prev_req, true);
2405
2406 if (err)
2407 mq->rw_wait = false;
2408
2409 /* Release re-tuning here where there is no synchronization required */
2410 if (err || mmc_host_done_complete(host))
2411 mmc_retune_release(host);
2412
2413 out_post_req:
2414 if (err)
2415 mmc_post_req(host, &mqrq->brq.mrq, err);
2416
2417 return err;
2418 }
2419
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2420 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2421 {
2422 if (host->cqe_enabled)
2423 return host->cqe_ops->cqe_wait_for_idle(host);
2424
2425 return mmc_blk_rw_wait(mq, NULL);
2426 }
2427
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2428 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2429 {
2430 struct mmc_blk_data *md = mq->blkdata;
2431 struct mmc_card *card = md->queue.card;
2432 struct mmc_host *host = card->host;
2433 int ret;
2434
2435 ret = mmc_blk_part_switch(card, md->part_type);
2436 if (ret)
2437 return MMC_REQ_FAILED_TO_START;
2438
2439 switch (mmc_issue_type(mq, req)) {
2440 case MMC_ISSUE_SYNC:
2441 ret = mmc_blk_wait_for_idle(mq, host);
2442 if (ret)
2443 return MMC_REQ_BUSY;
2444 switch (req_op(req)) {
2445 case REQ_OP_DRV_IN:
2446 case REQ_OP_DRV_OUT:
2447 mmc_blk_issue_drv_op(mq, req);
2448 break;
2449 case REQ_OP_DISCARD:
2450 mmc_blk_issue_discard_rq(mq, req);
2451 break;
2452 case REQ_OP_SECURE_ERASE:
2453 mmc_blk_issue_secdiscard_rq(mq, req);
2454 break;
2455 case REQ_OP_WRITE_ZEROES:
2456 mmc_blk_issue_trim_rq(mq, req);
2457 break;
2458 case REQ_OP_FLUSH:
2459 mmc_blk_issue_flush(mq, req);
2460 break;
2461 default:
2462 WARN_ON_ONCE(1);
2463 return MMC_REQ_FAILED_TO_START;
2464 }
2465 return MMC_REQ_FINISHED;
2466 case MMC_ISSUE_DCMD:
2467 case MMC_ISSUE_ASYNC:
2468 switch (req_op(req)) {
2469 case REQ_OP_FLUSH:
2470 if (!mmc_cache_enabled(host)) {
2471 blk_mq_end_request(req, BLK_STS_OK);
2472 return MMC_REQ_FINISHED;
2473 }
2474 ret = mmc_blk_cqe_issue_flush(mq, req);
2475 break;
2476 case REQ_OP_WRITE:
2477 card->written_flag = true;
2478 fallthrough;
2479 case REQ_OP_READ:
2480 if (host->cqe_enabled)
2481 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2482 else
2483 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2484 break;
2485 default:
2486 WARN_ON_ONCE(1);
2487 ret = -EINVAL;
2488 }
2489 if (!ret)
2490 return MMC_REQ_STARTED;
2491 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2492 default:
2493 WARN_ON_ONCE(1);
2494 return MMC_REQ_FAILED_TO_START;
2495 }
2496 }
2497
mmc_blk_readonly(struct mmc_card * card)2498 static inline int mmc_blk_readonly(struct mmc_card *card)
2499 {
2500 return mmc_card_readonly(card) ||
2501 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2502 }
2503
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type,unsigned int part_type)2504 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2505 struct device *parent,
2506 sector_t size,
2507 bool default_ro,
2508 const char *subname,
2509 int area_type,
2510 unsigned int part_type)
2511 {
2512 struct mmc_blk_data *md;
2513 int devidx, ret;
2514 char cap_str[10];
2515 unsigned int features = 0;
2516
2517 devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2518 if (devidx < 0) {
2519 /*
2520 * We get -ENOSPC because there are no more any available
2521 * devidx. The reason may be that, either userspace haven't yet
2522 * unmounted the partitions, which postpones mmc_blk_release()
2523 * from being called, or the device has more partitions than
2524 * what we support.
2525 */
2526 if (devidx == -ENOSPC)
2527 dev_err(mmc_dev(card->host),
2528 "no more device IDs available\n");
2529
2530 return ERR_PTR(devidx);
2531 }
2532
2533 md = kzalloc(sizeof(*md), GFP_KERNEL);
2534 if (!md) {
2535 ret = -ENOMEM;
2536 goto out;
2537 }
2538
2539 md->area_type = area_type;
2540
2541 /*
2542 * Set the read-only status based on the supported commands
2543 * and the write protect switch.
2544 */
2545 md->read_only = mmc_blk_readonly(card);
2546
2547 if (mmc_host_cmd23(card->host)) {
2548 if ((mmc_card_mmc(card) &&
2549 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2550 (mmc_card_sd(card) &&
2551 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2552 md->flags |= MMC_BLK_CMD23;
2553 }
2554
2555 if (md->flags & MMC_BLK_CMD23 &&
2556 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2557 card->ext_csd.rel_sectors)) {
2558 md->flags |= MMC_BLK_REL_WR;
2559 features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2560 } else if (mmc_cache_enabled(card->host)) {
2561 features |= BLK_FEAT_WRITE_CACHE;
2562 }
2563
2564 md->disk = mmc_init_queue(&md->queue, card, features);
2565 if (IS_ERR(md->disk)) {
2566 ret = PTR_ERR(md->disk);
2567 goto err_kfree;
2568 }
2569
2570 INIT_LIST_HEAD(&md->part);
2571 INIT_LIST_HEAD(&md->rpmbs);
2572 kref_init(&md->kref);
2573
2574 md->queue.blkdata = md;
2575 md->part_type = part_type;
2576
2577 md->disk->major = MMC_BLOCK_MAJOR;
2578 md->disk->minors = perdev_minors;
2579 md->disk->first_minor = devidx * perdev_minors;
2580 md->disk->fops = &mmc_bdops;
2581 md->disk->private_data = md;
2582 md->parent = parent;
2583 set_disk_ro(md->disk, md->read_only || default_ro);
2584 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2585 md->disk->flags |= GENHD_FL_NO_PART;
2586
2587 /*
2588 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2589 *
2590 * - be set for removable media with permanent block devices
2591 * - be unset for removable block devices with permanent media
2592 *
2593 * Since MMC block devices clearly fall under the second
2594 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2595 * should use the block device creation/destruction hotplug
2596 * messages to tell when the card is present.
2597 */
2598
2599 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2600 "mmcblk%u%s", card->host->index, subname ? subname : "");
2601
2602 set_capacity(md->disk, size);
2603
2604 string_get_size((u64)size, 512, STRING_UNITS_2,
2605 cap_str, sizeof(cap_str));
2606 pr_info("%s: %s %s %s%s\n",
2607 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2608 cap_str, md->read_only ? " (ro)" : "");
2609
2610 /* used in ->open, must be set before add_disk: */
2611 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2612 dev_set_drvdata(&card->dev, md);
2613 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2614 if (ret)
2615 goto err_put_disk;
2616 return md;
2617
2618 err_put_disk:
2619 put_disk(md->disk);
2620 blk_mq_free_tag_set(&md->queue.tag_set);
2621 err_kfree:
2622 kfree(md);
2623 out:
2624 ida_free(&mmc_blk_ida, devidx);
2625 return ERR_PTR(ret);
2626 }
2627
mmc_blk_alloc(struct mmc_card * card)2628 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2629 {
2630 sector_t size;
2631
2632 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2633 /*
2634 * The EXT_CSD sector count is in number or 512 byte
2635 * sectors.
2636 */
2637 size = card->ext_csd.sectors;
2638 } else {
2639 /*
2640 * The CSD capacity field is in units of read_blkbits.
2641 * set_capacity takes units of 512 bytes.
2642 */
2643 size = (typeof(sector_t))card->csd.capacity
2644 << (card->csd.read_blkbits - 9);
2645 }
2646
2647 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2648 MMC_BLK_DATA_AREA_MAIN, 0);
2649 }
2650
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2651 static int mmc_blk_alloc_part(struct mmc_card *card,
2652 struct mmc_blk_data *md,
2653 unsigned int part_type,
2654 sector_t size,
2655 bool default_ro,
2656 const char *subname,
2657 int area_type)
2658 {
2659 struct mmc_blk_data *part_md;
2660
2661 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2662 subname, area_type, part_type);
2663 if (IS_ERR(part_md))
2664 return PTR_ERR(part_md);
2665 list_add(&part_md->part, &md->part);
2666
2667 return 0;
2668 }
2669
2670 /**
2671 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2672 * @filp: the character device file
2673 * @cmd: the ioctl() command
2674 * @arg: the argument from userspace
2675 *
2676 * This will essentially just redirect the ioctl()s coming in over to
2677 * the main block device spawning the RPMB character device.
2678 */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2679 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2680 unsigned long arg)
2681 {
2682 struct mmc_rpmb_data *rpmb = filp->private_data;
2683 int ret;
2684
2685 switch (cmd) {
2686 case MMC_IOC_CMD:
2687 ret = mmc_blk_ioctl_cmd(rpmb->md,
2688 (struct mmc_ioc_cmd __user *)arg,
2689 rpmb);
2690 break;
2691 case MMC_IOC_MULTI_CMD:
2692 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2693 (struct mmc_ioc_multi_cmd __user *)arg,
2694 rpmb);
2695 break;
2696 default:
2697 ret = -EINVAL;
2698 break;
2699 }
2700
2701 return ret;
2702 }
2703
2704 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2705 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2706 unsigned long arg)
2707 {
2708 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2709 }
2710 #endif
2711
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2712 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2713 {
2714 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2715 struct mmc_rpmb_data, chrdev);
2716
2717 get_device(&rpmb->dev);
2718 filp->private_data = rpmb;
2719
2720 return nonseekable_open(inode, filp);
2721 }
2722
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2723 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2724 {
2725 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2726 struct mmc_rpmb_data, chrdev);
2727
2728 put_device(&rpmb->dev);
2729
2730 return 0;
2731 }
2732
2733 static const struct file_operations mmc_rpmb_fileops = {
2734 .release = mmc_rpmb_chrdev_release,
2735 .open = mmc_rpmb_chrdev_open,
2736 .owner = THIS_MODULE,
2737 .unlocked_ioctl = mmc_rpmb_ioctl,
2738 #ifdef CONFIG_COMPAT
2739 .compat_ioctl = mmc_rpmb_ioctl_compat,
2740 #endif
2741 };
2742
mmc_blk_rpmb_device_release(struct device * dev)2743 static void mmc_blk_rpmb_device_release(struct device *dev)
2744 {
2745 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2746
2747 rpmb_dev_unregister(rpmb->rdev);
2748 mmc_blk_put(rpmb->md);
2749 ida_free(&mmc_rpmb_ida, rpmb->id);
2750 kfree(rpmb);
2751 }
2752
free_idata(struct mmc_blk_ioc_data ** idata,unsigned int cmd_count)2753 static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count)
2754 {
2755 unsigned int n;
2756
2757 for (n = 0; n < cmd_count; n++)
2758 kfree(idata[n]);
2759 kfree(idata);
2760 }
2761
alloc_idata(struct mmc_rpmb_data * rpmb,unsigned int cmd_count)2762 static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb,
2763 unsigned int cmd_count)
2764 {
2765 struct mmc_blk_ioc_data **idata;
2766 unsigned int n;
2767
2768 idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL);
2769 if (!idata)
2770 return NULL;
2771
2772 for (n = 0; n < cmd_count; n++) {
2773 idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL);
2774 if (!idata[n]) {
2775 free_idata(idata, n);
2776 return NULL;
2777 }
2778 idata[n]->rpmb = rpmb;
2779 }
2780
2781 return idata;
2782 }
2783
set_idata(struct mmc_blk_ioc_data * idata,u32 opcode,int write_flag,u8 * buf,unsigned int buf_bytes)2784 static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode,
2785 int write_flag, u8 *buf, unsigned int buf_bytes)
2786 {
2787 /*
2788 * The size of an RPMB frame must match what's expected by the
2789 * hardware.
2790 */
2791 BUILD_BUG_ON(sizeof(struct rpmb_frame) != 512);
2792
2793 idata->ic.opcode = opcode;
2794 idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
2795 idata->ic.write_flag = write_flag;
2796 idata->ic.blksz = sizeof(struct rpmb_frame);
2797 idata->ic.blocks = buf_bytes / idata->ic.blksz;
2798 idata->buf = buf;
2799 idata->buf_bytes = buf_bytes;
2800 }
2801
mmc_route_rpmb_frames(struct device * dev,u8 * req,unsigned int req_len,u8 * resp,unsigned int resp_len)2802 static int mmc_route_rpmb_frames(struct device *dev, u8 *req,
2803 unsigned int req_len, u8 *resp,
2804 unsigned int resp_len)
2805 {
2806 struct rpmb_frame *frm = (struct rpmb_frame *)req;
2807 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2808 struct mmc_blk_data *md = rpmb->md;
2809 struct mmc_blk_ioc_data **idata;
2810 struct mmc_queue_req *mq_rq;
2811 unsigned int cmd_count;
2812 struct request *rq;
2813 u16 req_type;
2814 bool write;
2815 int ret;
2816
2817 if (IS_ERR(md->queue.card))
2818 return PTR_ERR(md->queue.card);
2819
2820 if (req_len < sizeof(*frm))
2821 return -EINVAL;
2822
2823 req_type = be16_to_cpu(frm->req_resp);
2824 switch (req_type) {
2825 case RPMB_PROGRAM_KEY:
2826 if (req_len != sizeof(struct rpmb_frame) ||
2827 resp_len != sizeof(struct rpmb_frame))
2828 return -EINVAL;
2829 write = true;
2830 break;
2831 case RPMB_GET_WRITE_COUNTER:
2832 if (req_len != sizeof(struct rpmb_frame) ||
2833 resp_len != sizeof(struct rpmb_frame))
2834 return -EINVAL;
2835 write = false;
2836 break;
2837 case RPMB_WRITE_DATA:
2838 if (req_len % sizeof(struct rpmb_frame) ||
2839 resp_len != sizeof(struct rpmb_frame))
2840 return -EINVAL;
2841 write = true;
2842 break;
2843 case RPMB_READ_DATA:
2844 if (req_len != sizeof(struct rpmb_frame) ||
2845 resp_len % sizeof(struct rpmb_frame))
2846 return -EINVAL;
2847 write = false;
2848 break;
2849 default:
2850 return -EINVAL;
2851 }
2852
2853 if (write)
2854 cmd_count = 3;
2855 else
2856 cmd_count = 2;
2857
2858 idata = alloc_idata(rpmb, cmd_count);
2859 if (!idata)
2860 return -ENOMEM;
2861
2862 if (write) {
2863 struct rpmb_frame *frm = (struct rpmb_frame *)resp;
2864
2865 /* Send write request frame(s) */
2866 set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK,
2867 1 | MMC_CMD23_ARG_REL_WR, req, req_len);
2868
2869 /* Send result request frame */
2870 memset(frm, 0, sizeof(*frm));
2871 frm->req_resp = cpu_to_be16(RPMB_RESULT_READ);
2872 set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp,
2873 resp_len);
2874
2875 /* Read response frame */
2876 set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2877 } else {
2878 /* Send write request frame(s) */
2879 set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len);
2880
2881 /* Read response frame */
2882 set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2883 }
2884
2885 rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0);
2886 if (IS_ERR(rq)) {
2887 ret = PTR_ERR(rq);
2888 goto out;
2889 }
2890
2891 mq_rq = req_to_mmc_queue_req(rq);
2892 mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB;
2893 mq_rq->drv_op_result = -EIO;
2894 mq_rq->drv_op_data = idata;
2895 mq_rq->ioc_count = cmd_count;
2896 blk_execute_rq(rq, false);
2897 ret = req_to_mmc_queue_req(rq)->drv_op_result;
2898
2899 blk_mq_free_request(rq);
2900
2901 out:
2902 free_idata(idata, cmd_count);
2903 return ret;
2904 }
2905
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2906 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2907 struct mmc_blk_data *md,
2908 unsigned int part_index,
2909 sector_t size,
2910 const char *subname)
2911 {
2912 int devidx, ret;
2913 char rpmb_name[DISK_NAME_LEN];
2914 char cap_str[10];
2915 struct mmc_rpmb_data *rpmb;
2916
2917 /* This creates the minor number for the RPMB char device */
2918 devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2919 if (devidx < 0)
2920 return devidx;
2921
2922 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2923 if (!rpmb) {
2924 ida_free(&mmc_rpmb_ida, devidx);
2925 return -ENOMEM;
2926 }
2927
2928 snprintf(rpmb_name, sizeof(rpmb_name),
2929 "mmcblk%u%s", card->host->index, subname ? subname : "");
2930
2931 rpmb->id = devidx;
2932 rpmb->part_index = part_index;
2933 rpmb->dev.init_name = rpmb_name;
2934 rpmb->dev.bus = &mmc_rpmb_bus_type;
2935 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2936 rpmb->dev.parent = &card->dev;
2937 rpmb->dev.release = mmc_blk_rpmb_device_release;
2938 device_initialize(&rpmb->dev);
2939 dev_set_drvdata(&rpmb->dev, rpmb);
2940 mmc_blk_get(md->disk);
2941 rpmb->md = md;
2942
2943 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2944 rpmb->chrdev.owner = THIS_MODULE;
2945 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2946 if (ret) {
2947 pr_err("%s: could not add character device\n", rpmb_name);
2948 goto out_put_device;
2949 }
2950
2951 list_add(&rpmb->node, &md->rpmbs);
2952
2953 string_get_size((u64)size, 512, STRING_UNITS_2,
2954 cap_str, sizeof(cap_str));
2955
2956 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2957 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2958 MAJOR(mmc_rpmb_devt), rpmb->id);
2959
2960 return 0;
2961
2962 out_put_device:
2963 put_device(&rpmb->dev);
2964 return ret;
2965 }
2966
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2967 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2968
2969 {
2970 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2971 put_device(&rpmb->dev);
2972 }
2973
2974 /* MMC Physical partitions consist of two boot partitions and
2975 * up to four general purpose partitions.
2976 * For each partition enabled in EXT_CSD a block device will be allocatedi
2977 * to provide access to the partition.
2978 */
2979
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2980 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2981 {
2982 int idx, ret;
2983
2984 if (!mmc_card_mmc(card))
2985 return 0;
2986
2987 for (idx = 0; idx < card->nr_parts; idx++) {
2988 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2989 /*
2990 * RPMB partitions does not provide block access, they
2991 * are only accessed using ioctl():s. Thus create
2992 * special RPMB block devices that do not have a
2993 * backing block queue for these.
2994 */
2995 ret = mmc_blk_alloc_rpmb_part(card, md,
2996 card->part[idx].part_cfg,
2997 card->part[idx].size >> 9,
2998 card->part[idx].name);
2999 if (ret)
3000 return ret;
3001 } else if (card->part[idx].size) {
3002 ret = mmc_blk_alloc_part(card, md,
3003 card->part[idx].part_cfg,
3004 card->part[idx].size >> 9,
3005 card->part[idx].force_ro,
3006 card->part[idx].name,
3007 card->part[idx].area_type);
3008 if (ret)
3009 return ret;
3010 }
3011 }
3012
3013 return 0;
3014 }
3015
mmc_blk_remove_req(struct mmc_blk_data * md)3016 static void mmc_blk_remove_req(struct mmc_blk_data *md)
3017 {
3018 /*
3019 * Flush remaining requests and free queues. It is freeing the queue
3020 * that stops new requests from being accepted.
3021 */
3022 del_gendisk(md->disk);
3023 mmc_cleanup_queue(&md->queue);
3024 mmc_blk_put(md);
3025 }
3026
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)3027 static void mmc_blk_remove_parts(struct mmc_card *card,
3028 struct mmc_blk_data *md)
3029 {
3030 struct list_head *pos, *q;
3031 struct mmc_blk_data *part_md;
3032 struct mmc_rpmb_data *rpmb;
3033
3034 /* Remove RPMB partitions */
3035 list_for_each_safe(pos, q, &md->rpmbs) {
3036 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
3037 list_del(pos);
3038 mmc_blk_remove_rpmb_part(rpmb);
3039 }
3040 /* Remove block partitions */
3041 list_for_each_safe(pos, q, &md->part) {
3042 part_md = list_entry(pos, struct mmc_blk_data, part);
3043 list_del(pos);
3044 mmc_blk_remove_req(part_md);
3045 }
3046 }
3047
3048 #ifdef CONFIG_DEBUG_FS
3049
mmc_dbg_card_status_get(void * data,u64 * val)3050 static int mmc_dbg_card_status_get(void *data, u64 *val)
3051 {
3052 struct mmc_card *card = data;
3053 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3054 struct mmc_queue *mq = &md->queue;
3055 struct request *req;
3056 int ret;
3057
3058 /* Ask the block layer about the card status */
3059 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3060 if (IS_ERR(req))
3061 return PTR_ERR(req);
3062 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
3063 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3064 blk_execute_rq(req, false);
3065 ret = req_to_mmc_queue_req(req)->drv_op_result;
3066 if (ret >= 0) {
3067 *val = ret;
3068 ret = 0;
3069 }
3070 blk_mq_free_request(req);
3071
3072 return ret;
3073 }
3074 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
3075 NULL, "%08llx\n");
3076
3077 /* That is two digits * 512 + 1 for newline */
3078 #define EXT_CSD_STR_LEN 1025
3079
mmc_ext_csd_open(struct inode * inode,struct file * filp)3080 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
3081 {
3082 struct mmc_card *card = inode->i_private;
3083 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3084 struct mmc_queue *mq = &md->queue;
3085 struct request *req;
3086 char *buf;
3087 ssize_t n = 0;
3088 u8 *ext_csd;
3089 int err, i;
3090
3091 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
3092 if (!buf)
3093 return -ENOMEM;
3094
3095 /* Ask the block layer for the EXT CSD */
3096 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3097 if (IS_ERR(req)) {
3098 err = PTR_ERR(req);
3099 goto out_free;
3100 }
3101 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
3102 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3103 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
3104 blk_execute_rq(req, false);
3105 err = req_to_mmc_queue_req(req)->drv_op_result;
3106 blk_mq_free_request(req);
3107 if (err) {
3108 pr_err("FAILED %d\n", err);
3109 goto out_free;
3110 }
3111
3112 for (i = 0; i < 512; i++)
3113 n += sprintf(buf + n, "%02x", ext_csd[i]);
3114 n += sprintf(buf + n, "\n");
3115
3116 if (n != EXT_CSD_STR_LEN) {
3117 err = -EINVAL;
3118 kfree(ext_csd);
3119 goto out_free;
3120 }
3121
3122 filp->private_data = buf;
3123 kfree(ext_csd);
3124 return 0;
3125
3126 out_free:
3127 kfree(buf);
3128 return err;
3129 }
3130
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)3131 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
3132 size_t cnt, loff_t *ppos)
3133 {
3134 char *buf = filp->private_data;
3135
3136 return simple_read_from_buffer(ubuf, cnt, ppos,
3137 buf, EXT_CSD_STR_LEN);
3138 }
3139
mmc_ext_csd_release(struct inode * inode,struct file * file)3140 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
3141 {
3142 kfree(file->private_data);
3143 return 0;
3144 }
3145
3146 static const struct file_operations mmc_dbg_ext_csd_fops = {
3147 .open = mmc_ext_csd_open,
3148 .read = mmc_ext_csd_read,
3149 .release = mmc_ext_csd_release,
3150 .llseek = default_llseek,
3151 };
3152
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3153 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3154 {
3155 struct dentry *root;
3156
3157 if (!card->debugfs_root)
3158 return;
3159
3160 root = card->debugfs_root;
3161
3162 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
3163 md->status_dentry =
3164 debugfs_create_file_unsafe("status", 0400, root,
3165 card,
3166 &mmc_dbg_card_status_fops);
3167 }
3168
3169 if (mmc_card_mmc(card)) {
3170 md->ext_csd_dentry =
3171 debugfs_create_file("ext_csd", S_IRUSR, root, card,
3172 &mmc_dbg_ext_csd_fops);
3173 }
3174 }
3175
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3176 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3177 struct mmc_blk_data *md)
3178 {
3179 if (!card->debugfs_root)
3180 return;
3181
3182 debugfs_remove(md->status_dentry);
3183 md->status_dentry = NULL;
3184
3185 debugfs_remove(md->ext_csd_dentry);
3186 md->ext_csd_dentry = NULL;
3187 }
3188
3189 #else
3190
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3191 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3192 {
3193 }
3194
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)3195 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3196 struct mmc_blk_data *md)
3197 {
3198 }
3199
3200 #endif /* CONFIG_DEBUG_FS */
3201
mmc_blk_rpmb_add(struct mmc_card * card)3202 static void mmc_blk_rpmb_add(struct mmc_card *card)
3203 {
3204 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3205 struct mmc_rpmb_data *rpmb;
3206 struct rpmb_dev *rdev;
3207 unsigned int n;
3208 u32 cid[4];
3209 struct rpmb_descr descr = {
3210 .type = RPMB_TYPE_EMMC,
3211 .route_frames = mmc_route_rpmb_frames,
3212 .reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ?
3213 2 : 32,
3214 .capacity = card->ext_csd.raw_rpmb_size_mult,
3215 .dev_id = (void *)cid,
3216 .dev_id_len = sizeof(cid),
3217 };
3218
3219 /*
3220 * Provice CID as an octet array. The CID needs to be interpreted
3221 * when used as input to derive the RPMB key since some fields
3222 * will change due to firmware updates.
3223 */
3224 for (n = 0; n < 4; n++)
3225 cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]);
3226
3227 list_for_each_entry(rpmb, &md->rpmbs, node) {
3228 rdev = rpmb_dev_register(&rpmb->dev, &descr);
3229 if (IS_ERR(rdev)) {
3230 pr_warn("%s: could not register RPMB device\n",
3231 dev_name(&rpmb->dev));
3232 continue;
3233 }
3234 rpmb->rdev = rdev;
3235 }
3236 }
3237
mmc_blk_probe(struct mmc_card * card)3238 static int mmc_blk_probe(struct mmc_card *card)
3239 {
3240 struct mmc_blk_data *md;
3241 int ret = 0;
3242
3243 /*
3244 * Check that the card supports the command class(es) we need.
3245 */
3246 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3247 return -ENODEV;
3248
3249 mmc_fixup_device(card, mmc_blk_fixups);
3250
3251 card->complete_wq = alloc_workqueue("mmc_complete",
3252 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3253 if (!card->complete_wq) {
3254 pr_err("Failed to create mmc completion workqueue");
3255 return -ENOMEM;
3256 }
3257
3258 md = mmc_blk_alloc(card);
3259 if (IS_ERR(md)) {
3260 ret = PTR_ERR(md);
3261 goto out_free;
3262 }
3263
3264 ret = mmc_blk_alloc_parts(card, md);
3265 if (ret)
3266 goto out;
3267
3268 /* Add two debugfs entries */
3269 mmc_blk_add_debugfs(card, md);
3270
3271 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3272 pm_runtime_use_autosuspend(&card->dev);
3273
3274 /*
3275 * Don't enable runtime PM for SD-combo cards here. Leave that
3276 * decision to be taken during the SDIO init sequence instead.
3277 */
3278 if (!mmc_card_sd_combo(card)) {
3279 pm_runtime_set_active(&card->dev);
3280 pm_runtime_enable(&card->dev);
3281 }
3282
3283 mmc_blk_rpmb_add(card);
3284
3285 return 0;
3286
3287 out:
3288 mmc_blk_remove_parts(card, md);
3289 mmc_blk_remove_req(md);
3290 out_free:
3291 destroy_workqueue(card->complete_wq);
3292 return ret;
3293 }
3294
mmc_blk_remove(struct mmc_card * card)3295 static void mmc_blk_remove(struct mmc_card *card)
3296 {
3297 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3298
3299 mmc_blk_remove_debugfs(card, md);
3300 mmc_blk_remove_parts(card, md);
3301 pm_runtime_get_sync(&card->dev);
3302 if (md->part_curr != md->part_type) {
3303 mmc_claim_host(card->host);
3304 mmc_blk_part_switch(card, md->part_type);
3305 mmc_release_host(card->host);
3306 }
3307 if (!mmc_card_sd_combo(card))
3308 pm_runtime_disable(&card->dev);
3309 pm_runtime_put_noidle(&card->dev);
3310 mmc_blk_remove_req(md);
3311 destroy_workqueue(card->complete_wq);
3312 }
3313
_mmc_blk_suspend(struct mmc_card * card)3314 static int _mmc_blk_suspend(struct mmc_card *card)
3315 {
3316 struct mmc_blk_data *part_md;
3317 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3318
3319 if (md) {
3320 mmc_queue_suspend(&md->queue);
3321 list_for_each_entry(part_md, &md->part, part) {
3322 mmc_queue_suspend(&part_md->queue);
3323 }
3324 }
3325 return 0;
3326 }
3327
mmc_blk_shutdown(struct mmc_card * card)3328 static void mmc_blk_shutdown(struct mmc_card *card)
3329 {
3330 _mmc_blk_suspend(card);
3331 }
3332
3333 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3334 static int mmc_blk_suspend(struct device *dev)
3335 {
3336 struct mmc_card *card = mmc_dev_to_card(dev);
3337
3338 return _mmc_blk_suspend(card);
3339 }
3340
mmc_blk_resume(struct device * dev)3341 static int mmc_blk_resume(struct device *dev)
3342 {
3343 struct mmc_blk_data *part_md;
3344 struct mmc_blk_data *md = dev_get_drvdata(dev);
3345
3346 if (md) {
3347 /*
3348 * Resume involves the card going into idle state,
3349 * so current partition is always the main one.
3350 */
3351 md->part_curr = md->part_type;
3352 mmc_queue_resume(&md->queue);
3353 list_for_each_entry(part_md, &md->part, part) {
3354 mmc_queue_resume(&part_md->queue);
3355 }
3356 }
3357 return 0;
3358 }
3359 #endif
3360
3361 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3362
3363 static struct mmc_driver mmc_driver = {
3364 .drv = {
3365 .name = "mmcblk",
3366 .pm = &mmc_blk_pm_ops,
3367 },
3368 .probe = mmc_blk_probe,
3369 .remove = mmc_blk_remove,
3370 .shutdown = mmc_blk_shutdown,
3371 };
3372
mmc_blk_init(void)3373 static int __init mmc_blk_init(void)
3374 {
3375 int res;
3376
3377 res = bus_register(&mmc_rpmb_bus_type);
3378 if (res < 0) {
3379 pr_err("mmcblk: could not register RPMB bus type\n");
3380 return res;
3381 }
3382 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3383 if (res < 0) {
3384 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3385 goto out_bus_unreg;
3386 }
3387
3388 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3389 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3390
3391 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3392
3393 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3394 if (res)
3395 goto out_chrdev_unreg;
3396
3397 res = mmc_register_driver(&mmc_driver);
3398 if (res)
3399 goto out_blkdev_unreg;
3400
3401 return 0;
3402
3403 out_blkdev_unreg:
3404 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3405 out_chrdev_unreg:
3406 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3407 out_bus_unreg:
3408 bus_unregister(&mmc_rpmb_bus_type);
3409 return res;
3410 }
3411
mmc_blk_exit(void)3412 static void __exit mmc_blk_exit(void)
3413 {
3414 mmc_unregister_driver(&mmc_driver);
3415 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3416 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3417 bus_unregister(&mmc_rpmb_bus_type);
3418 }
3419
3420 module_init(mmc_blk_init);
3421 module_exit(mmc_blk_exit);
3422
3423 MODULE_LICENSE("GPL");
3424 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3425