1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * AArch64 code
4 *
5 * Copyright (C) 2018, Red Hat, Inc.
6 */
7
8 #include <linux/compiler.h>
9 #include <assert.h>
10
11 #include "guest_modes.h"
12 #include "kvm_util.h"
13 #include "processor.h"
14 #include "ucall_common.h"
15 #include "vgic.h"
16
17 #include <linux/bitfield.h>
18 #include <linux/sizes.h>
19
20 #define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN 0xac0000
21
22 static vm_vaddr_t exception_handlers;
23
page_align(struct kvm_vm * vm,uint64_t v)24 static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
25 {
26 return (v + vm->page_size) & ~(vm->page_size - 1);
27 }
28
pgd_index(struct kvm_vm * vm,vm_vaddr_t gva)29 static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva)
30 {
31 unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
32 uint64_t mask = (1UL << (vm->va_bits - shift)) - 1;
33
34 return (gva >> shift) & mask;
35 }
36
pud_index(struct kvm_vm * vm,vm_vaddr_t gva)37 static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva)
38 {
39 unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift;
40 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
41
42 TEST_ASSERT(vm->pgtable_levels == 4,
43 "Mode %d does not have 4 page table levels", vm->mode);
44
45 return (gva >> shift) & mask;
46 }
47
pmd_index(struct kvm_vm * vm,vm_vaddr_t gva)48 static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva)
49 {
50 unsigned int shift = (vm->page_shift - 3) + vm->page_shift;
51 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
52
53 TEST_ASSERT(vm->pgtable_levels >= 3,
54 "Mode %d does not have >= 3 page table levels", vm->mode);
55
56 return (gva >> shift) & mask;
57 }
58
pte_index(struct kvm_vm * vm,vm_vaddr_t gva)59 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva)
60 {
61 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
62 return (gva >> vm->page_shift) & mask;
63 }
64
use_lpa2_pte_format(struct kvm_vm * vm)65 static inline bool use_lpa2_pte_format(struct kvm_vm *vm)
66 {
67 return (vm->page_size == SZ_4K || vm->page_size == SZ_16K) &&
68 (vm->pa_bits > 48 || vm->va_bits > 48);
69 }
70
addr_pte(struct kvm_vm * vm,uint64_t pa,uint64_t attrs)71 static uint64_t addr_pte(struct kvm_vm *vm, uint64_t pa, uint64_t attrs)
72 {
73 uint64_t pte;
74
75 if (use_lpa2_pte_format(vm)) {
76 pte = pa & PTE_ADDR_MASK_LPA2(vm->page_shift);
77 pte |= FIELD_GET(GENMASK(51, 50), pa) << PTE_ADDR_51_50_LPA2_SHIFT;
78 attrs &= ~PTE_ADDR_51_50_LPA2;
79 } else {
80 pte = pa & PTE_ADDR_MASK(vm->page_shift);
81 if (vm->page_shift == 16)
82 pte |= FIELD_GET(GENMASK(51, 48), pa) << PTE_ADDR_51_48_SHIFT;
83 }
84 pte |= attrs;
85
86 return pte;
87 }
88
pte_addr(struct kvm_vm * vm,uint64_t pte)89 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t pte)
90 {
91 uint64_t pa;
92
93 if (use_lpa2_pte_format(vm)) {
94 pa = pte & PTE_ADDR_MASK_LPA2(vm->page_shift);
95 pa |= FIELD_GET(PTE_ADDR_51_50_LPA2, pte) << 50;
96 } else {
97 pa = pte & PTE_ADDR_MASK(vm->page_shift);
98 if (vm->page_shift == 16)
99 pa |= FIELD_GET(PTE_ADDR_51_48, pte) << 48;
100 }
101
102 return pa;
103 }
104
ptrs_per_pgd(struct kvm_vm * vm)105 static uint64_t ptrs_per_pgd(struct kvm_vm *vm)
106 {
107 unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
108 return 1 << (vm->va_bits - shift);
109 }
110
ptrs_per_pte(struct kvm_vm * vm)111 static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm)
112 {
113 return 1 << (vm->page_shift - 3);
114 }
115
virt_arch_pgd_alloc(struct kvm_vm * vm)116 void virt_arch_pgd_alloc(struct kvm_vm *vm)
117 {
118 size_t nr_pages = page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size;
119
120 if (vm->pgd_created)
121 return;
122
123 vm->pgd = vm_phy_pages_alloc(vm, nr_pages,
124 KVM_GUEST_PAGE_TABLE_MIN_PADDR,
125 vm->memslots[MEM_REGION_PT]);
126 vm->pgd_created = true;
127 }
128
_virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,uint64_t flags)129 static void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
130 uint64_t flags)
131 {
132 uint8_t attr_idx = flags & (PTE_ATTRINDX_MASK >> PTE_ATTRINDX_SHIFT);
133 uint64_t pg_attr;
134 uint64_t *ptep;
135
136 TEST_ASSERT((vaddr % vm->page_size) == 0,
137 "Virtual address not on page boundary,\n"
138 " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
139 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
140 (vaddr >> vm->page_shift)),
141 "Invalid virtual address, vaddr: 0x%lx", vaddr);
142 TEST_ASSERT((paddr % vm->page_size) == 0,
143 "Physical address not on page boundary,\n"
144 " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
145 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
146 "Physical address beyond beyond maximum supported,\n"
147 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
148 paddr, vm->max_gfn, vm->page_size);
149
150 ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, vaddr) * 8;
151 if (!*ptep)
152 *ptep = addr_pte(vm, vm_alloc_page_table(vm),
153 PGD_TYPE_TABLE | PTE_VALID);
154
155 switch (vm->pgtable_levels) {
156 case 4:
157 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8;
158 if (!*ptep)
159 *ptep = addr_pte(vm, vm_alloc_page_table(vm),
160 PUD_TYPE_TABLE | PTE_VALID);
161 /* fall through */
162 case 3:
163 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8;
164 if (!*ptep)
165 *ptep = addr_pte(vm, vm_alloc_page_table(vm),
166 PMD_TYPE_TABLE | PTE_VALID);
167 /* fall through */
168 case 2:
169 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8;
170 break;
171 default:
172 TEST_FAIL("Page table levels must be 2, 3, or 4");
173 }
174
175 pg_attr = PTE_AF | PTE_ATTRINDX(attr_idx) | PTE_TYPE_PAGE | PTE_VALID;
176 if (!use_lpa2_pte_format(vm))
177 pg_attr |= PTE_SHARED;
178
179 *ptep = addr_pte(vm, paddr, pg_attr);
180 }
181
virt_arch_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)182 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
183 {
184 uint64_t attr_idx = MT_NORMAL;
185
186 _virt_pg_map(vm, vaddr, paddr, attr_idx);
187 }
188
virt_get_pte_hva_at_level(struct kvm_vm * vm,vm_vaddr_t gva,int level)189 uint64_t *virt_get_pte_hva_at_level(struct kvm_vm *vm, vm_vaddr_t gva, int level)
190 {
191 uint64_t *ptep;
192
193 if (!vm->pgd_created)
194 goto unmapped_gva;
195
196 ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, gva) * 8;
197 if (!ptep)
198 goto unmapped_gva;
199 if (level == 0)
200 return ptep;
201
202 switch (vm->pgtable_levels) {
203 case 4:
204 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8;
205 if (!ptep)
206 goto unmapped_gva;
207 if (level == 1)
208 break;
209 /* fall through */
210 case 3:
211 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8;
212 if (!ptep)
213 goto unmapped_gva;
214 if (level == 2)
215 break;
216 /* fall through */
217 case 2:
218 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8;
219 if (!ptep)
220 goto unmapped_gva;
221 break;
222 default:
223 TEST_FAIL("Page table levels must be 2, 3, or 4");
224 }
225
226 return ptep;
227
228 unmapped_gva:
229 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
230 exit(EXIT_FAILURE);
231 }
232
virt_get_pte_hva(struct kvm_vm * vm,vm_vaddr_t gva)233 uint64_t *virt_get_pte_hva(struct kvm_vm *vm, vm_vaddr_t gva)
234 {
235 return virt_get_pte_hva_at_level(vm, gva, 3);
236 }
237
addr_arch_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)238 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
239 {
240 uint64_t *ptep = virt_get_pte_hva(vm, gva);
241
242 return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
243 }
244
pte_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent,uint64_t page,int level)245 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level)
246 {
247 #ifdef DEBUG
248 static const char * const type[] = { "", "pud", "pmd", "pte" };
249 uint64_t pte, *ptep;
250
251 if (level == 4)
252 return;
253
254 for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
255 ptep = addr_gpa2hva(vm, pte);
256 if (!*ptep)
257 continue;
258 fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep);
259 pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1);
260 }
261 #endif
262 }
263
virt_arch_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)264 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
265 {
266 int level = 4 - (vm->pgtable_levels - 1);
267 uint64_t pgd, *ptep;
268
269 if (!vm->pgd_created)
270 return;
271
272 for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pgd(vm) * 8; pgd += 8) {
273 ptep = addr_gpa2hva(vm, pgd);
274 if (!*ptep)
275 continue;
276 fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep);
277 pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level);
278 }
279 }
280
vm_supports_el2(struct kvm_vm * vm)281 bool vm_supports_el2(struct kvm_vm *vm)
282 {
283 const char *value = getenv("NV");
284
285 if (value && *value == '0')
286 return false;
287
288 return vm_check_cap(vm, KVM_CAP_ARM_EL2) && vm->arch.has_gic;
289 }
290
kvm_get_default_vcpu_target(struct kvm_vm * vm,struct kvm_vcpu_init * init)291 void kvm_get_default_vcpu_target(struct kvm_vm *vm, struct kvm_vcpu_init *init)
292 {
293 struct kvm_vcpu_init preferred = {};
294
295 vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred);
296 if (vm_supports_el2(vm))
297 preferred.features[0] |= BIT(KVM_ARM_VCPU_HAS_EL2);
298
299 *init = preferred;
300 }
301
aarch64_vcpu_setup(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)302 void aarch64_vcpu_setup(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init)
303 {
304 struct kvm_vcpu_init default_init = { .target = -1, };
305 struct kvm_vm *vm = vcpu->vm;
306 uint64_t sctlr_el1, tcr_el1, ttbr0_el1;
307
308 if (!init) {
309 kvm_get_default_vcpu_target(vm, &default_init);
310 init = &default_init;
311 }
312
313 vcpu_ioctl(vcpu, KVM_ARM_VCPU_INIT, init);
314 vcpu->init = *init;
315
316 /*
317 * Enable FP/ASIMD to avoid trapping when accessing Q0-Q15
318 * registers, which the variable argument list macros do.
319 */
320 vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_CPACR_EL1), 3 << 20);
321
322 sctlr_el1 = vcpu_get_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SCTLR_EL1));
323 tcr_el1 = vcpu_get_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TCR_EL1));
324
325 /* Configure base granule size */
326 switch (vm->mode) {
327 case VM_MODE_PXXV48_4K:
328 TEST_FAIL("AArch64 does not support 4K sized pages "
329 "with ANY-bit physical address ranges");
330 case VM_MODE_P52V48_64K:
331 case VM_MODE_P48V48_64K:
332 case VM_MODE_P40V48_64K:
333 case VM_MODE_P36V48_64K:
334 tcr_el1 |= TCR_TG0_64K;
335 break;
336 case VM_MODE_P52V48_16K:
337 case VM_MODE_P48V48_16K:
338 case VM_MODE_P40V48_16K:
339 case VM_MODE_P36V48_16K:
340 case VM_MODE_P36V47_16K:
341 tcr_el1 |= TCR_TG0_16K;
342 break;
343 case VM_MODE_P52V48_4K:
344 case VM_MODE_P48V48_4K:
345 case VM_MODE_P40V48_4K:
346 case VM_MODE_P36V48_4K:
347 tcr_el1 |= TCR_TG0_4K;
348 break;
349 default:
350 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
351 }
352
353 ttbr0_el1 = vm->pgd & GENMASK(47, vm->page_shift);
354
355 /* Configure output size */
356 switch (vm->mode) {
357 case VM_MODE_P52V48_4K:
358 case VM_MODE_P52V48_16K:
359 case VM_MODE_P52V48_64K:
360 tcr_el1 |= TCR_IPS_52_BITS;
361 ttbr0_el1 |= FIELD_GET(GENMASK(51, 48), vm->pgd) << 2;
362 break;
363 case VM_MODE_P48V48_4K:
364 case VM_MODE_P48V48_16K:
365 case VM_MODE_P48V48_64K:
366 tcr_el1 |= TCR_IPS_48_BITS;
367 break;
368 case VM_MODE_P40V48_4K:
369 case VM_MODE_P40V48_16K:
370 case VM_MODE_P40V48_64K:
371 tcr_el1 |= TCR_IPS_40_BITS;
372 break;
373 case VM_MODE_P36V48_4K:
374 case VM_MODE_P36V48_16K:
375 case VM_MODE_P36V48_64K:
376 case VM_MODE_P36V47_16K:
377 tcr_el1 |= TCR_IPS_36_BITS;
378 break;
379 default:
380 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
381 }
382
383 sctlr_el1 |= SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_I;
384
385 tcr_el1 |= TCR_IRGN0_WBWA | TCR_ORGN0_WBWA | TCR_SH0_INNER;
386 tcr_el1 |= TCR_T0SZ(vm->va_bits);
387 if (use_lpa2_pte_format(vm))
388 tcr_el1 |= TCR_DS;
389
390 vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SCTLR_EL1), sctlr_el1);
391 vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TCR_EL1), tcr_el1);
392 vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_MAIR_EL1), DEFAULT_MAIR_EL1);
393 vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TTBR0_EL1), ttbr0_el1);
394 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TPIDR_EL1), vcpu->id);
395
396 if (!vcpu_has_el2(vcpu))
397 return;
398
399 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_HCR_EL2),
400 HCR_EL2_RW | HCR_EL2_TGE | HCR_EL2_E2H);
401 }
402
vcpu_arch_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)403 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
404 {
405 uint64_t pstate, pc;
406
407 pstate = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate));
408 pc = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc));
409
410 fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n",
411 indent, "", pstate, pc);
412 }
413
vcpu_arch_set_entry_point(struct kvm_vcpu * vcpu,void * guest_code)414 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
415 {
416 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
417 }
418
__aarch64_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,struct kvm_vcpu_init * init)419 static struct kvm_vcpu *__aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
420 struct kvm_vcpu_init *init)
421 {
422 size_t stack_size;
423 uint64_t stack_vaddr;
424 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
425
426 stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
427 vm->page_size;
428 stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
429 DEFAULT_ARM64_GUEST_STACK_VADDR_MIN,
430 MEM_REGION_DATA);
431
432 aarch64_vcpu_setup(vcpu, init);
433
434 vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SP_EL1), stack_vaddr + stack_size);
435 return vcpu;
436 }
437
aarch64_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,struct kvm_vcpu_init * init,void * guest_code)438 struct kvm_vcpu *aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
439 struct kvm_vcpu_init *init, void *guest_code)
440 {
441 struct kvm_vcpu *vcpu = __aarch64_vcpu_add(vm, vcpu_id, init);
442
443 vcpu_arch_set_entry_point(vcpu, guest_code);
444
445 return vcpu;
446 }
447
vm_arch_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id)448 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
449 {
450 return __aarch64_vcpu_add(vm, vcpu_id, NULL);
451 }
452
vcpu_args_set(struct kvm_vcpu * vcpu,unsigned int num,...)453 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
454 {
455 va_list ap;
456 int i;
457
458 TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
459 " num: %u", num);
460
461 va_start(ap, num);
462
463 for (i = 0; i < num; i++) {
464 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.regs[i]),
465 va_arg(ap, uint64_t));
466 }
467
468 va_end(ap);
469 }
470
kvm_exit_unexpected_exception(int vector,uint64_t ec,bool valid_ec)471 void kvm_exit_unexpected_exception(int vector, uint64_t ec, bool valid_ec)
472 {
473 ucall(UCALL_UNHANDLED, 3, vector, ec, valid_ec);
474 while (1)
475 ;
476 }
477
assert_on_unhandled_exception(struct kvm_vcpu * vcpu)478 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
479 {
480 struct ucall uc;
481
482 if (get_ucall(vcpu, &uc) != UCALL_UNHANDLED)
483 return;
484
485 if (uc.args[2]) /* valid_ec */ {
486 assert(VECTOR_IS_SYNC(uc.args[0]));
487 TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
488 uc.args[0], uc.args[1]);
489 } else {
490 assert(!VECTOR_IS_SYNC(uc.args[0]));
491 TEST_FAIL("Unexpected exception (vector:0x%lx)",
492 uc.args[0]);
493 }
494 }
495
496 struct handlers {
497 handler_fn exception_handlers[VECTOR_NUM][ESR_ELx_EC_MAX + 1];
498 };
499
vcpu_init_descriptor_tables(struct kvm_vcpu * vcpu)500 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
501 {
502 extern char vectors;
503
504 vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_VBAR_EL1), (uint64_t)&vectors);
505 }
506
route_exception(struct ex_regs * regs,int vector)507 void route_exception(struct ex_regs *regs, int vector)
508 {
509 struct handlers *handlers = (struct handlers *)exception_handlers;
510 bool valid_ec;
511 int ec = 0;
512
513 switch (vector) {
514 case VECTOR_SYNC_CURRENT:
515 case VECTOR_SYNC_LOWER_64:
516 ec = ESR_ELx_EC(read_sysreg(esr_el1));
517 valid_ec = true;
518 break;
519 case VECTOR_IRQ_CURRENT:
520 case VECTOR_IRQ_LOWER_64:
521 case VECTOR_FIQ_CURRENT:
522 case VECTOR_FIQ_LOWER_64:
523 case VECTOR_ERROR_CURRENT:
524 case VECTOR_ERROR_LOWER_64:
525 ec = 0;
526 valid_ec = false;
527 break;
528 default:
529 valid_ec = false;
530 goto unexpected_exception;
531 }
532
533 if (handlers && handlers->exception_handlers[vector][ec])
534 return handlers->exception_handlers[vector][ec](regs);
535
536 unexpected_exception:
537 kvm_exit_unexpected_exception(vector, ec, valid_ec);
538 }
539
vm_init_descriptor_tables(struct kvm_vm * vm)540 void vm_init_descriptor_tables(struct kvm_vm *vm)
541 {
542 vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
543 vm->page_size, MEM_REGION_DATA);
544
545 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
546 }
547
vm_install_sync_handler(struct kvm_vm * vm,int vector,int ec,void (* handler)(struct ex_regs *))548 void vm_install_sync_handler(struct kvm_vm *vm, int vector, int ec,
549 void (*handler)(struct ex_regs *))
550 {
551 struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
552
553 assert(VECTOR_IS_SYNC(vector));
554 assert(vector < VECTOR_NUM);
555 assert(ec <= ESR_ELx_EC_MAX);
556 handlers->exception_handlers[vector][ec] = handler;
557 }
558
vm_install_exception_handler(struct kvm_vm * vm,int vector,void (* handler)(struct ex_regs *))559 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
560 void (*handler)(struct ex_regs *))
561 {
562 struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
563
564 assert(!VECTOR_IS_SYNC(vector));
565 assert(vector < VECTOR_NUM);
566 handlers->exception_handlers[vector][0] = handler;
567 }
568
guest_get_vcpuid(void)569 uint32_t guest_get_vcpuid(void)
570 {
571 return read_sysreg(tpidr_el1);
572 }
573
max_ipa_for_page_size(uint32_t vm_ipa,uint32_t gran,uint32_t not_sup_val,uint32_t ipa52_min_val)574 static uint32_t max_ipa_for_page_size(uint32_t vm_ipa, uint32_t gran,
575 uint32_t not_sup_val, uint32_t ipa52_min_val)
576 {
577 if (gran == not_sup_val)
578 return 0;
579 else if (gran >= ipa52_min_val && vm_ipa >= 52)
580 return 52;
581 else
582 return min(vm_ipa, 48U);
583 }
584
aarch64_get_supported_page_sizes(uint32_t ipa,uint32_t * ipa4k,uint32_t * ipa16k,uint32_t * ipa64k)585 void aarch64_get_supported_page_sizes(uint32_t ipa, uint32_t *ipa4k,
586 uint32_t *ipa16k, uint32_t *ipa64k)
587 {
588 struct kvm_vcpu_init preferred_init;
589 int kvm_fd, vm_fd, vcpu_fd, err;
590 uint64_t val;
591 uint32_t gran;
592 struct kvm_one_reg reg = {
593 .id = KVM_ARM64_SYS_REG(SYS_ID_AA64MMFR0_EL1),
594 .addr = (uint64_t)&val,
595 };
596
597 kvm_fd = open_kvm_dev_path_or_exit();
598 vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, (void *)(unsigned long)ipa);
599 TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd));
600
601 vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0);
602 TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd));
603
604 err = ioctl(vm_fd, KVM_ARM_PREFERRED_TARGET, &preferred_init);
605 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_PREFERRED_TARGET, err));
606 err = ioctl(vcpu_fd, KVM_ARM_VCPU_INIT, &preferred_init);
607 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_VCPU_INIT, err));
608
609 err = ioctl(vcpu_fd, KVM_GET_ONE_REG, ®);
610 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd));
611
612 gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN4, val);
613 *ipa4k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN4_NI,
614 ID_AA64MMFR0_EL1_TGRAN4_52_BIT);
615
616 gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN64, val);
617 *ipa64k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN64_NI,
618 ID_AA64MMFR0_EL1_TGRAN64_IMP);
619
620 gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN16, val);
621 *ipa16k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN16_NI,
622 ID_AA64MMFR0_EL1_TGRAN16_52_BIT);
623
624 close(vcpu_fd);
625 close(vm_fd);
626 close(kvm_fd);
627 }
628
629 #define __smccc_call(insn, function_id, arg0, arg1, arg2, arg3, arg4, arg5, \
630 arg6, res) \
631 asm volatile("mov w0, %w[function_id]\n" \
632 "mov x1, %[arg0]\n" \
633 "mov x2, %[arg1]\n" \
634 "mov x3, %[arg2]\n" \
635 "mov x4, %[arg3]\n" \
636 "mov x5, %[arg4]\n" \
637 "mov x6, %[arg5]\n" \
638 "mov x7, %[arg6]\n" \
639 #insn "#0\n" \
640 "mov %[res0], x0\n" \
641 "mov %[res1], x1\n" \
642 "mov %[res2], x2\n" \
643 "mov %[res3], x3\n" \
644 : [res0] "=r"(res->a0), [res1] "=r"(res->a1), \
645 [res2] "=r"(res->a2), [res3] "=r"(res->a3) \
646 : [function_id] "r"(function_id), [arg0] "r"(arg0), \
647 [arg1] "r"(arg1), [arg2] "r"(arg2), [arg3] "r"(arg3), \
648 [arg4] "r"(arg4), [arg5] "r"(arg5), [arg6] "r"(arg6) \
649 : "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7")
650
651
smccc_hvc(uint32_t function_id,uint64_t arg0,uint64_t arg1,uint64_t arg2,uint64_t arg3,uint64_t arg4,uint64_t arg5,uint64_t arg6,struct arm_smccc_res * res)652 void smccc_hvc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
653 uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
654 uint64_t arg6, struct arm_smccc_res *res)
655 {
656 __smccc_call(hvc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
657 arg6, res);
658 }
659
smccc_smc(uint32_t function_id,uint64_t arg0,uint64_t arg1,uint64_t arg2,uint64_t arg3,uint64_t arg4,uint64_t arg5,uint64_t arg6,struct arm_smccc_res * res)660 void smccc_smc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
661 uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
662 uint64_t arg6, struct arm_smccc_res *res)
663 {
664 __smccc_call(smc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
665 arg6, res);
666 }
667
kvm_selftest_arch_init(void)668 void kvm_selftest_arch_init(void)
669 {
670 /*
671 * arm64 doesn't have a true default mode, so start by computing the
672 * available IPA space and page sizes early.
673 */
674 guest_modes_append_default();
675 }
676
vm_vaddr_populate_bitmap(struct kvm_vm * vm)677 void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
678 {
679 /*
680 * arm64 selftests use only TTBR0_EL1, meaning that the valid VA space
681 * is [0, 2^(64 - TCR_EL1.T0SZ)).
682 */
683 sparsebit_set_num(vm->vpages_valid, 0,
684 (1ULL << vm->va_bits) >> vm->page_shift);
685 }
686
687 /* Helper to call wfi instruction. */
wfi(void)688 void wfi(void)
689 {
690 asm volatile("wfi");
691 }
692
693 static bool request_mte;
694 static bool request_vgic = true;
695
test_wants_mte(void)696 void test_wants_mte(void)
697 {
698 request_mte = true;
699 }
700
test_disable_default_vgic(void)701 void test_disable_default_vgic(void)
702 {
703 request_vgic = false;
704 }
705
kvm_arch_vm_post_create(struct kvm_vm * vm,unsigned int nr_vcpus)706 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
707 {
708 if (request_mte && vm_check_cap(vm, KVM_CAP_ARM_MTE))
709 vm_enable_cap(vm, KVM_CAP_ARM_MTE, 0);
710
711 if (request_vgic && kvm_supports_vgic_v3()) {
712 vm->arch.gic_fd = __vgic_v3_setup(vm, nr_vcpus, 64);
713 vm->arch.has_gic = true;
714 }
715 }
716
kvm_arch_vm_finalize_vcpus(struct kvm_vm * vm)717 void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm)
718 {
719 if (vm->arch.has_gic)
720 __vgic_v3_init(vm->arch.gic_fd);
721 }
722
kvm_arch_vm_release(struct kvm_vm * vm)723 void kvm_arch_vm_release(struct kvm_vm *vm)
724 {
725 if (vm->arch.has_gic)
726 close(vm->arch.gic_fd);
727 }
728