xref: /linux/fs/namei.c (revision 50647a1176b7abd1b4ae55b491eb2fbbeef89db9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
initname(struct filename * name,const char __user * uptr)128 static inline void initname(struct filename *name, const char __user *uptr)
129 {
130 	name->uptr = uptr;
131 	name->aname = NULL;
132 	atomic_set(&name->refcnt, 1);
133 }
134 
135 struct filename *
getname_flags(const char __user * filename,int flags)136 getname_flags(const char __user *filename, int flags)
137 {
138 	struct filename *result;
139 	char *kname;
140 	int len;
141 
142 	result = audit_reusename(filename);
143 	if (result)
144 		return result;
145 
146 	result = __getname();
147 	if (unlikely(!result))
148 		return ERR_PTR(-ENOMEM);
149 
150 	/*
151 	 * First, try to embed the struct filename inside the names_cache
152 	 * allocation
153 	 */
154 	kname = (char *)result->iname;
155 	result->name = kname;
156 
157 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 	/*
159 	 * Handle both empty path and copy failure in one go.
160 	 */
161 	if (unlikely(len <= 0)) {
162 		if (unlikely(len < 0)) {
163 			__putname(result);
164 			return ERR_PTR(len);
165 		}
166 
167 		/* The empty path is special. */
168 		if (!(flags & LOOKUP_EMPTY)) {
169 			__putname(result);
170 			return ERR_PTR(-ENOENT);
171 		}
172 	}
173 
174 	/*
175 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 	 * separate struct filename so we can dedicate the entire
177 	 * names_cache allocation for the pathname, and re-do the copy from
178 	 * userland.
179 	 */
180 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 		const size_t size = offsetof(struct filename, iname[1]);
182 		kname = (char *)result;
183 
184 		/*
185 		 * size is chosen that way we to guarantee that
186 		 * result->iname[0] is within the same object and that
187 		 * kname can't be equal to result->iname, no matter what.
188 		 */
189 		result = kzalloc(size, GFP_KERNEL);
190 		if (unlikely(!result)) {
191 			__putname(kname);
192 			return ERR_PTR(-ENOMEM);
193 		}
194 		result->name = kname;
195 		len = strncpy_from_user(kname, filename, PATH_MAX);
196 		if (unlikely(len < 0)) {
197 			__putname(kname);
198 			kfree(result);
199 			return ERR_PTR(len);
200 		}
201 		/* The empty path is special. */
202 		if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 			__putname(kname);
204 			kfree(result);
205 			return ERR_PTR(-ENOENT);
206 		}
207 		if (unlikely(len == PATH_MAX)) {
208 			__putname(kname);
209 			kfree(result);
210 			return ERR_PTR(-ENAMETOOLONG);
211 		}
212 	}
213 	initname(result, filename);
214 	audit_getname(result);
215 	return result;
216 }
217 
getname_uflags(const char __user * filename,int uflags)218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 	int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221 
222 	return getname_flags(filename, flags);
223 }
224 
__getname_maybe_null(const char __user * pathname)225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 	struct filename *name;
228 	char c;
229 
230 	/* try to save on allocations; loss on um, though */
231 	if (get_user(c, pathname))
232 		return ERR_PTR(-EFAULT);
233 	if (!c)
234 		return NULL;
235 
236 	name = getname_flags(pathname, LOOKUP_EMPTY);
237 	if (!IS_ERR(name) && !(name->name[0])) {
238 		putname(name);
239 		name = NULL;
240 	}
241 	return name;
242 }
243 
getname_kernel(const char * filename)244 struct filename *getname_kernel(const char * filename)
245 {
246 	struct filename *result;
247 	int len = strlen(filename) + 1;
248 
249 	result = __getname();
250 	if (unlikely(!result))
251 		return ERR_PTR(-ENOMEM);
252 
253 	if (len <= EMBEDDED_NAME_MAX) {
254 		result->name = (char *)result->iname;
255 	} else if (len <= PATH_MAX) {
256 		const size_t size = offsetof(struct filename, iname[1]);
257 		struct filename *tmp;
258 
259 		tmp = kmalloc(size, GFP_KERNEL);
260 		if (unlikely(!tmp)) {
261 			__putname(result);
262 			return ERR_PTR(-ENOMEM);
263 		}
264 		tmp->name = (char *)result;
265 		result = tmp;
266 	} else {
267 		__putname(result);
268 		return ERR_PTR(-ENAMETOOLONG);
269 	}
270 	memcpy((char *)result->name, filename, len);
271 	initname(result, NULL);
272 	audit_getname(result);
273 	return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276 
putname(struct filename * name)277 void putname(struct filename *name)
278 {
279 	int refcnt;
280 
281 	if (IS_ERR_OR_NULL(name))
282 		return;
283 
284 	refcnt = atomic_read(&name->refcnt);
285 	if (refcnt != 1) {
286 		if (WARN_ON_ONCE(!refcnt))
287 			return;
288 
289 		if (!atomic_dec_and_test(&name->refcnt))
290 			return;
291 	}
292 
293 	if (name->name != name->iname) {
294 		__putname(name->name);
295 		kfree(name);
296 	} else
297 		__putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300 
301 /**
302  * check_acl - perform ACL permission checking
303  * @idmap:	idmap of the mount the inode was found from
304  * @inode:	inode to check permissions on
305  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306  *
307  * This function performs the ACL permission checking. Since this function
308  * retrieve POSIX acls it needs to know whether it is called from a blocking or
309  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310  *
311  * If the inode has been found through an idmapped mount the idmap of
312  * the vfsmount must be passed through @idmap. This function will then take
313  * care to map the inode according to @idmap before checking permissions.
314  * On non-idmapped mounts or if permission checking is to be performed on the
315  * raw inode simply pass @nop_mnt_idmap.
316  */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)317 static int check_acl(struct mnt_idmap *idmap,
318 		     struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 	struct posix_acl *acl;
322 
323 	if (mask & MAY_NOT_BLOCK) {
324 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 	        if (!acl)
326 	                return -EAGAIN;
327 		/* no ->get_inode_acl() calls in RCU mode... */
328 		if (is_uncached_acl(acl))
329 			return -ECHILD;
330 	        return posix_acl_permission(idmap, inode, acl, mask);
331 	}
332 
333 	acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 	if (IS_ERR(acl))
335 		return PTR_ERR(acl);
336 	if (acl) {
337 	        int error = posix_acl_permission(idmap, inode, acl, mask);
338 	        posix_acl_release(acl);
339 	        return error;
340 	}
341 #endif
342 
343 	return -EAGAIN;
344 }
345 
346 /*
347  * Very quick optimistic "we know we have no ACL's" check.
348  *
349  * Note that this is purely for ACL_TYPE_ACCESS, and purely
350  * for the "we have cached that there are no ACLs" case.
351  *
352  * If this returns true, we know there are no ACLs. But if
353  * it returns false, we might still not have ACLs (it could
354  * be the is_uncached_acl() case).
355  */
no_acl_inode(struct inode * inode)356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 	return likely(!READ_ONCE(inode->i_acl));
360 #else
361 	return true;
362 #endif
363 }
364 
365 /**
366  * acl_permission_check - perform basic UNIX permission checking
367  * @idmap:	idmap of the mount the inode was found from
368  * @inode:	inode to check permissions on
369  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370  *
371  * This function performs the basic UNIX permission checking. Since this
372  * function may retrieve POSIX acls it needs to know whether it is called from a
373  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374  *
375  * If the inode has been found through an idmapped mount the idmap of
376  * the vfsmount must be passed through @idmap. This function will then take
377  * care to map the inode according to @idmap before checking permissions.
378  * On non-idmapped mounts or if permission checking is to be performed on the
379  * raw inode simply pass @nop_mnt_idmap.
380  */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)381 static int acl_permission_check(struct mnt_idmap *idmap,
382 				struct inode *inode, int mask)
383 {
384 	unsigned int mode = inode->i_mode;
385 	vfsuid_t vfsuid;
386 
387 	/*
388 	 * Common cheap case: everybody has the requested
389 	 * rights, and there are no ACLs to check. No need
390 	 * to do any owner/group checks in that case.
391 	 *
392 	 *  - 'mask&7' is the requested permission bit set
393 	 *  - multiplying by 0111 spreads them out to all of ugo
394 	 *  - '& ~mode' looks for missing inode permission bits
395 	 *  - the '!' is for "no missing permissions"
396 	 *
397 	 * After that, we just need to check that there are no
398 	 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 	 * because it will dereference the ->i_sb pointer and we
400 	 * want to avoid that if at all possible.
401 	 */
402 	if (!((mask & 7) * 0111 & ~mode)) {
403 		if (no_acl_inode(inode))
404 			return 0;
405 		if (!IS_POSIXACL(inode))
406 			return 0;
407 	}
408 
409 	/* Are we the owner? If so, ACL's don't matter */
410 	vfsuid = i_uid_into_vfsuid(idmap, inode);
411 	if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 		mask &= 7;
413 		mode >>= 6;
414 		return (mask & ~mode) ? -EACCES : 0;
415 	}
416 
417 	/* Do we have ACL's? */
418 	if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 		int error = check_acl(idmap, inode, mask);
420 		if (error != -EAGAIN)
421 			return error;
422 	}
423 
424 	/* Only RWX matters for group/other mode bits */
425 	mask &= 7;
426 
427 	/*
428 	 * Are the group permissions different from
429 	 * the other permissions in the bits we care
430 	 * about? Need to check group ownership if so.
431 	 */
432 	if (mask & (mode ^ (mode >> 3))) {
433 		vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 		if (vfsgid_in_group_p(vfsgid))
435 			mode >>= 3;
436 	}
437 
438 	/* Bits in 'mode' clear that we require? */
439 	return (mask & ~mode) ? -EACCES : 0;
440 }
441 
442 /**
443  * generic_permission -  check for access rights on a Posix-like filesystem
444  * @idmap:	idmap of the mount the inode was found from
445  * @inode:	inode to check access rights for
446  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447  *		%MAY_NOT_BLOCK ...)
448  *
449  * Used to check for read/write/execute permissions on a file.
450  * We use "fsuid" for this, letting us set arbitrary permissions
451  * for filesystem access without changing the "normal" uids which
452  * are used for other things.
453  *
454  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455  * request cannot be satisfied (eg. requires blocking or too much complexity).
456  * It would then be called again in ref-walk mode.
457  *
458  * If the inode has been found through an idmapped mount the idmap of
459  * the vfsmount must be passed through @idmap. This function will then take
460  * care to map the inode according to @idmap before checking permissions.
461  * On non-idmapped mounts or if permission checking is to be performed on the
462  * raw inode simply pass @nop_mnt_idmap.
463  */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 		       int mask)
466 {
467 	int ret;
468 
469 	/*
470 	 * Do the basic permission checks.
471 	 */
472 	ret = acl_permission_check(idmap, inode, mask);
473 	if (ret != -EACCES)
474 		return ret;
475 
476 	if (S_ISDIR(inode->i_mode)) {
477 		/* DACs are overridable for directories */
478 		if (!(mask & MAY_WRITE))
479 			if (capable_wrt_inode_uidgid(idmap, inode,
480 						     CAP_DAC_READ_SEARCH))
481 				return 0;
482 		if (capable_wrt_inode_uidgid(idmap, inode,
483 					     CAP_DAC_OVERRIDE))
484 			return 0;
485 		return -EACCES;
486 	}
487 
488 	/*
489 	 * Searching includes executable on directories, else just read.
490 	 */
491 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 	if (mask == MAY_READ)
493 		if (capable_wrt_inode_uidgid(idmap, inode,
494 					     CAP_DAC_READ_SEARCH))
495 			return 0;
496 	/*
497 	 * Read/write DACs are always overridable.
498 	 * Executable DACs are overridable when there is
499 	 * at least one exec bit set.
500 	 */
501 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 		if (capable_wrt_inode_uidgid(idmap, inode,
503 					     CAP_DAC_OVERRIDE))
504 			return 0;
505 
506 	return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509 
510 /**
511  * do_inode_permission - UNIX permission checking
512  * @idmap:	idmap of the mount the inode was found from
513  * @inode:	inode to check permissions on
514  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515  *
516  * We _really_ want to just do "generic_permission()" without
517  * even looking at the inode->i_op values. So we keep a cache
518  * flag in inode->i_opflags, that says "this has not special
519  * permission function, use the fast case".
520  */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 				      struct inode *inode, int mask)
523 {
524 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 		if (likely(inode->i_op->permission))
526 			return inode->i_op->permission(idmap, inode, mask);
527 
528 		/* This gets set once for the inode lifetime */
529 		spin_lock(&inode->i_lock);
530 		inode->i_opflags |= IOP_FASTPERM;
531 		spin_unlock(&inode->i_lock);
532 	}
533 	return generic_permission(idmap, inode, mask);
534 }
535 
536 /**
537  * sb_permission - Check superblock-level permissions
538  * @sb: Superblock of inode to check permission on
539  * @inode: Inode to check permission on
540  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541  *
542  * Separate out file-system wide checks from inode-specific permission checks.
543  */
sb_permission(struct super_block * sb,struct inode * inode,int mask)544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
545 {
546 	if (unlikely(mask & MAY_WRITE)) {
547 		umode_t mode = inode->i_mode;
548 
549 		/* Nobody gets write access to a read-only fs. */
550 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
551 			return -EROFS;
552 	}
553 	return 0;
554 }
555 
556 /**
557  * inode_permission - Check for access rights to a given inode
558  * @idmap:	idmap of the mount the inode was found from
559  * @inode:	Inode to check permission on
560  * @mask:	Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
561  *
562  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
563  * this, letting us set arbitrary permissions for filesystem access without
564  * changing the "normal" UIDs which are used for other things.
565  *
566  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
567  */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)568 int inode_permission(struct mnt_idmap *idmap,
569 		     struct inode *inode, int mask)
570 {
571 	int retval;
572 
573 	retval = sb_permission(inode->i_sb, inode, mask);
574 	if (unlikely(retval))
575 		return retval;
576 
577 	if (unlikely(mask & MAY_WRITE)) {
578 		/*
579 		 * Nobody gets write access to an immutable file.
580 		 */
581 		if (unlikely(IS_IMMUTABLE(inode)))
582 			return -EPERM;
583 
584 		/*
585 		 * Updating mtime will likely cause i_uid and i_gid to be
586 		 * written back improperly if their true value is unknown
587 		 * to the vfs.
588 		 */
589 		if (unlikely(HAS_UNMAPPED_ID(idmap, inode)))
590 			return -EACCES;
591 	}
592 
593 	retval = do_inode_permission(idmap, inode, mask);
594 	if (unlikely(retval))
595 		return retval;
596 
597 	retval = devcgroup_inode_permission(inode, mask);
598 	if (unlikely(retval))
599 		return retval;
600 
601 	return security_inode_permission(inode, mask);
602 }
603 EXPORT_SYMBOL(inode_permission);
604 
605 /**
606  * path_get - get a reference to a path
607  * @path: path to get the reference to
608  *
609  * Given a path increment the reference count to the dentry and the vfsmount.
610  */
path_get(const struct path * path)611 void path_get(const struct path *path)
612 {
613 	mntget(path->mnt);
614 	dget(path->dentry);
615 }
616 EXPORT_SYMBOL(path_get);
617 
618 /**
619  * path_put - put a reference to a path
620  * @path: path to put the reference to
621  *
622  * Given a path decrement the reference count to the dentry and the vfsmount.
623  */
path_put(const struct path * path)624 void path_put(const struct path *path)
625 {
626 	dput(path->dentry);
627 	mntput(path->mnt);
628 }
629 EXPORT_SYMBOL(path_put);
630 
631 #define EMBEDDED_LEVELS 2
632 struct nameidata {
633 	struct path	path;
634 	struct qstr	last;
635 	struct path	root;
636 	struct inode	*inode; /* path.dentry.d_inode */
637 	unsigned int	flags, state;
638 	unsigned	seq, next_seq, m_seq, r_seq;
639 	int		last_type;
640 	unsigned	depth;
641 	int		total_link_count;
642 	struct saved {
643 		struct path link;
644 		struct delayed_call done;
645 		const char *name;
646 		unsigned seq;
647 	} *stack, internal[EMBEDDED_LEVELS];
648 	struct filename	*name;
649 	const char *pathname;
650 	struct nameidata *saved;
651 	unsigned	root_seq;
652 	int		dfd;
653 	vfsuid_t	dir_vfsuid;
654 	umode_t		dir_mode;
655 } __randomize_layout;
656 
657 #define ND_ROOT_PRESET 1
658 #define ND_ROOT_GRABBED 2
659 #define ND_JUMPED 4
660 
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
662 {
663 	struct nameidata *old = current->nameidata;
664 	p->stack = p->internal;
665 	p->depth = 0;
666 	p->dfd = dfd;
667 	p->name = name;
668 	p->pathname = likely(name) ? name->name : "";
669 	p->path.mnt = NULL;
670 	p->path.dentry = NULL;
671 	p->total_link_count = old ? old->total_link_count : 0;
672 	p->saved = old;
673 	current->nameidata = p;
674 }
675 
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
677 			  const struct path *root)
678 {
679 	__set_nameidata(p, dfd, name);
680 	p->state = 0;
681 	if (unlikely(root)) {
682 		p->state = ND_ROOT_PRESET;
683 		p->root = *root;
684 	}
685 }
686 
restore_nameidata(void)687 static void restore_nameidata(void)
688 {
689 	struct nameidata *now = current->nameidata, *old = now->saved;
690 
691 	current->nameidata = old;
692 	if (old)
693 		old->total_link_count = now->total_link_count;
694 	if (now->stack != now->internal)
695 		kfree(now->stack);
696 }
697 
nd_alloc_stack(struct nameidata * nd)698 static bool nd_alloc_stack(struct nameidata *nd)
699 {
700 	struct saved *p;
701 
702 	p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
703 			 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
704 	if (unlikely(!p))
705 		return false;
706 	memcpy(p, nd->internal, sizeof(nd->internal));
707 	nd->stack = p;
708 	return true;
709 }
710 
711 /**
712  * path_connected - Verify that a dentry is below mnt.mnt_root
713  * @mnt: The mountpoint to check.
714  * @dentry: The dentry to check.
715  *
716  * Rename can sometimes move a file or directory outside of a bind
717  * mount, path_connected allows those cases to be detected.
718  */
path_connected(struct vfsmount * mnt,struct dentry * dentry)719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
720 {
721 	struct super_block *sb = mnt->mnt_sb;
722 
723 	/* Bind mounts can have disconnected paths */
724 	if (mnt->mnt_root == sb->s_root)
725 		return true;
726 
727 	return is_subdir(dentry, mnt->mnt_root);
728 }
729 
drop_links(struct nameidata * nd)730 static void drop_links(struct nameidata *nd)
731 {
732 	int i = nd->depth;
733 	while (i--) {
734 		struct saved *last = nd->stack + i;
735 		do_delayed_call(&last->done);
736 		clear_delayed_call(&last->done);
737 	}
738 }
739 
leave_rcu(struct nameidata * nd)740 static void leave_rcu(struct nameidata *nd)
741 {
742 	nd->flags &= ~LOOKUP_RCU;
743 	nd->seq = nd->next_seq = 0;
744 	rcu_read_unlock();
745 }
746 
terminate_walk(struct nameidata * nd)747 static void terminate_walk(struct nameidata *nd)
748 {
749 	drop_links(nd);
750 	if (!(nd->flags & LOOKUP_RCU)) {
751 		int i;
752 		path_put(&nd->path);
753 		for (i = 0; i < nd->depth; i++)
754 			path_put(&nd->stack[i].link);
755 		if (nd->state & ND_ROOT_GRABBED) {
756 			path_put(&nd->root);
757 			nd->state &= ~ND_ROOT_GRABBED;
758 		}
759 	} else {
760 		leave_rcu(nd);
761 	}
762 	nd->depth = 0;
763 	nd->path.mnt = NULL;
764 	nd->path.dentry = NULL;
765 }
766 
767 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
769 {
770 	int res = __legitimize_mnt(path->mnt, mseq);
771 	if (unlikely(res)) {
772 		if (res > 0)
773 			path->mnt = NULL;
774 		path->dentry = NULL;
775 		return false;
776 	}
777 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
778 		path->dentry = NULL;
779 		return false;
780 	}
781 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
782 }
783 
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)784 static inline bool legitimize_path(struct nameidata *nd,
785 			    struct path *path, unsigned seq)
786 {
787 	return __legitimize_path(path, seq, nd->m_seq);
788 }
789 
legitimize_links(struct nameidata * nd)790 static bool legitimize_links(struct nameidata *nd)
791 {
792 	int i;
793 	if (unlikely(nd->flags & LOOKUP_CACHED)) {
794 		drop_links(nd);
795 		nd->depth = 0;
796 		return false;
797 	}
798 	for (i = 0; i < nd->depth; i++) {
799 		struct saved *last = nd->stack + i;
800 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
801 			drop_links(nd);
802 			nd->depth = i + 1;
803 			return false;
804 		}
805 	}
806 	return true;
807 }
808 
legitimize_root(struct nameidata * nd)809 static bool legitimize_root(struct nameidata *nd)
810 {
811 	/* Nothing to do if nd->root is zero or is managed by the VFS user. */
812 	if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
813 		return true;
814 	nd->state |= ND_ROOT_GRABBED;
815 	return legitimize_path(nd, &nd->root, nd->root_seq);
816 }
817 
818 /*
819  * Path walking has 2 modes, rcu-walk and ref-walk (see
820  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
821  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
822  * normal reference counts on dentries and vfsmounts to transition to ref-walk
823  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
824  * got stuck, so ref-walk may continue from there. If this is not successful
825  * (eg. a seqcount has changed), then failure is returned and it's up to caller
826  * to restart the path walk from the beginning in ref-walk mode.
827  */
828 
829 /**
830  * try_to_unlazy - try to switch to ref-walk mode.
831  * @nd: nameidata pathwalk data
832  * Returns: true on success, false on failure
833  *
834  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
835  * for ref-walk mode.
836  * Must be called from rcu-walk context.
837  * Nothing should touch nameidata between try_to_unlazy() failure and
838  * terminate_walk().
839  */
try_to_unlazy(struct nameidata * nd)840 static bool try_to_unlazy(struct nameidata *nd)
841 {
842 	struct dentry *parent = nd->path.dentry;
843 
844 	BUG_ON(!(nd->flags & LOOKUP_RCU));
845 
846 	if (unlikely(!legitimize_links(nd)))
847 		goto out1;
848 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
849 		goto out;
850 	if (unlikely(!legitimize_root(nd)))
851 		goto out;
852 	leave_rcu(nd);
853 	BUG_ON(nd->inode != parent->d_inode);
854 	return true;
855 
856 out1:
857 	nd->path.mnt = NULL;
858 	nd->path.dentry = NULL;
859 out:
860 	leave_rcu(nd);
861 	return false;
862 }
863 
864 /**
865  * try_to_unlazy_next - try to switch to ref-walk mode.
866  * @nd: nameidata pathwalk data
867  * @dentry: next dentry to step into
868  * Returns: true on success, false on failure
869  *
870  * Similar to try_to_unlazy(), but here we have the next dentry already
871  * picked by rcu-walk and want to legitimize that in addition to the current
872  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
873  * Nothing should touch nameidata between try_to_unlazy_next() failure and
874  * terminate_walk().
875  */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
877 {
878 	int res;
879 	BUG_ON(!(nd->flags & LOOKUP_RCU));
880 
881 	if (unlikely(!legitimize_links(nd)))
882 		goto out2;
883 	res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
884 	if (unlikely(res)) {
885 		if (res > 0)
886 			goto out2;
887 		goto out1;
888 	}
889 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
890 		goto out1;
891 
892 	/*
893 	 * We need to move both the parent and the dentry from the RCU domain
894 	 * to be properly refcounted. And the sequence number in the dentry
895 	 * validates *both* dentry counters, since we checked the sequence
896 	 * number of the parent after we got the child sequence number. So we
897 	 * know the parent must still be valid if the child sequence number is
898 	 */
899 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
900 		goto out;
901 	if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
902 		goto out_dput;
903 	/*
904 	 * Sequence counts matched. Now make sure that the root is
905 	 * still valid and get it if required.
906 	 */
907 	if (unlikely(!legitimize_root(nd)))
908 		goto out_dput;
909 	leave_rcu(nd);
910 	return true;
911 
912 out2:
913 	nd->path.mnt = NULL;
914 out1:
915 	nd->path.dentry = NULL;
916 out:
917 	leave_rcu(nd);
918 	return false;
919 out_dput:
920 	leave_rcu(nd);
921 	dput(dentry);
922 	return false;
923 }
924 
d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)925 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
926 			       struct dentry *dentry, unsigned int flags)
927 {
928 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
929 		return dentry->d_op->d_revalidate(dir, name, dentry, flags);
930 	else
931 		return 1;
932 }
933 
934 /**
935  * complete_walk - successful completion of path walk
936  * @nd:  pointer nameidata
937  *
938  * If we had been in RCU mode, drop out of it and legitimize nd->path.
939  * Revalidate the final result, unless we'd already done that during
940  * the path walk or the filesystem doesn't ask for it.  Return 0 on
941  * success, -error on failure.  In case of failure caller does not
942  * need to drop nd->path.
943  */
complete_walk(struct nameidata * nd)944 static int complete_walk(struct nameidata *nd)
945 {
946 	struct dentry *dentry = nd->path.dentry;
947 	int status;
948 
949 	if (nd->flags & LOOKUP_RCU) {
950 		/*
951 		 * We don't want to zero nd->root for scoped-lookups or
952 		 * externally-managed nd->root.
953 		 */
954 		if (!(nd->state & ND_ROOT_PRESET))
955 			if (!(nd->flags & LOOKUP_IS_SCOPED))
956 				nd->root.mnt = NULL;
957 		nd->flags &= ~LOOKUP_CACHED;
958 		if (!try_to_unlazy(nd))
959 			return -ECHILD;
960 	}
961 
962 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
963 		/*
964 		 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
965 		 * ever step outside the root during lookup" and should already
966 		 * be guaranteed by the rest of namei, we want to avoid a namei
967 		 * BUG resulting in userspace being given a path that was not
968 		 * scoped within the root at some point during the lookup.
969 		 *
970 		 * So, do a final sanity-check to make sure that in the
971 		 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
972 		 * we won't silently return an fd completely outside of the
973 		 * requested root to userspace.
974 		 *
975 		 * Userspace could move the path outside the root after this
976 		 * check, but as discussed elsewhere this is not a concern (the
977 		 * resolved file was inside the root at some point).
978 		 */
979 		if (!path_is_under(&nd->path, &nd->root))
980 			return -EXDEV;
981 	}
982 
983 	if (likely(!(nd->state & ND_JUMPED)))
984 		return 0;
985 
986 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
987 		return 0;
988 
989 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
990 	if (status > 0)
991 		return 0;
992 
993 	if (!status)
994 		status = -ESTALE;
995 
996 	return status;
997 }
998 
set_root(struct nameidata * nd)999 static int set_root(struct nameidata *nd)
1000 {
1001 	struct fs_struct *fs = current->fs;
1002 
1003 	/*
1004 	 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1005 	 * still have to ensure it doesn't happen because it will cause a breakout
1006 	 * from the dirfd.
1007 	 */
1008 	if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1009 		return -ENOTRECOVERABLE;
1010 
1011 	if (nd->flags & LOOKUP_RCU) {
1012 		unsigned seq;
1013 
1014 		do {
1015 			seq = read_seqbegin(&fs->seq);
1016 			nd->root = fs->root;
1017 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1018 		} while (read_seqretry(&fs->seq, seq));
1019 	} else {
1020 		get_fs_root(fs, &nd->root);
1021 		nd->state |= ND_ROOT_GRABBED;
1022 	}
1023 	return 0;
1024 }
1025 
nd_jump_root(struct nameidata * nd)1026 static int nd_jump_root(struct nameidata *nd)
1027 {
1028 	if (unlikely(nd->flags & LOOKUP_BENEATH))
1029 		return -EXDEV;
1030 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1031 		/* Absolute path arguments to path_init() are allowed. */
1032 		if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1033 			return -EXDEV;
1034 	}
1035 	if (!nd->root.mnt) {
1036 		int error = set_root(nd);
1037 		if (error)
1038 			return error;
1039 	}
1040 	if (nd->flags & LOOKUP_RCU) {
1041 		struct dentry *d;
1042 		nd->path = nd->root;
1043 		d = nd->path.dentry;
1044 		nd->inode = d->d_inode;
1045 		nd->seq = nd->root_seq;
1046 		if (read_seqcount_retry(&d->d_seq, nd->seq))
1047 			return -ECHILD;
1048 	} else {
1049 		path_put(&nd->path);
1050 		nd->path = nd->root;
1051 		path_get(&nd->path);
1052 		nd->inode = nd->path.dentry->d_inode;
1053 	}
1054 	nd->state |= ND_JUMPED;
1055 	return 0;
1056 }
1057 
1058 /*
1059  * Helper to directly jump to a known parsed path from ->get_link,
1060  * caller must have taken a reference to path beforehand.
1061  */
nd_jump_link(const struct path * path)1062 int nd_jump_link(const struct path *path)
1063 {
1064 	int error = -ELOOP;
1065 	struct nameidata *nd = current->nameidata;
1066 
1067 	if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1068 		goto err;
1069 
1070 	error = -EXDEV;
1071 	if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1072 		if (nd->path.mnt != path->mnt)
1073 			goto err;
1074 	}
1075 	/* Not currently safe for scoped-lookups. */
1076 	if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1077 		goto err;
1078 
1079 	path_put(&nd->path);
1080 	nd->path = *path;
1081 	nd->inode = nd->path.dentry->d_inode;
1082 	nd->state |= ND_JUMPED;
1083 	return 0;
1084 
1085 err:
1086 	path_put(path);
1087 	return error;
1088 }
1089 
put_link(struct nameidata * nd)1090 static inline void put_link(struct nameidata *nd)
1091 {
1092 	struct saved *last = nd->stack + --nd->depth;
1093 	do_delayed_call(&last->done);
1094 	if (!(nd->flags & LOOKUP_RCU))
1095 		path_put(&last->link);
1096 }
1097 
1098 static int sysctl_protected_symlinks __read_mostly;
1099 static int sysctl_protected_hardlinks __read_mostly;
1100 static int sysctl_protected_fifos __read_mostly;
1101 static int sysctl_protected_regular __read_mostly;
1102 
1103 #ifdef CONFIG_SYSCTL
1104 static const struct ctl_table namei_sysctls[] = {
1105 	{
1106 		.procname	= "protected_symlinks",
1107 		.data		= &sysctl_protected_symlinks,
1108 		.maxlen		= sizeof(int),
1109 		.mode		= 0644,
1110 		.proc_handler	= proc_dointvec_minmax,
1111 		.extra1		= SYSCTL_ZERO,
1112 		.extra2		= SYSCTL_ONE,
1113 	},
1114 	{
1115 		.procname	= "protected_hardlinks",
1116 		.data		= &sysctl_protected_hardlinks,
1117 		.maxlen		= sizeof(int),
1118 		.mode		= 0644,
1119 		.proc_handler	= proc_dointvec_minmax,
1120 		.extra1		= SYSCTL_ZERO,
1121 		.extra2		= SYSCTL_ONE,
1122 	},
1123 	{
1124 		.procname	= "protected_fifos",
1125 		.data		= &sysctl_protected_fifos,
1126 		.maxlen		= sizeof(int),
1127 		.mode		= 0644,
1128 		.proc_handler	= proc_dointvec_minmax,
1129 		.extra1		= SYSCTL_ZERO,
1130 		.extra2		= SYSCTL_TWO,
1131 	},
1132 	{
1133 		.procname	= "protected_regular",
1134 		.data		= &sysctl_protected_regular,
1135 		.maxlen		= sizeof(int),
1136 		.mode		= 0644,
1137 		.proc_handler	= proc_dointvec_minmax,
1138 		.extra1		= SYSCTL_ZERO,
1139 		.extra2		= SYSCTL_TWO,
1140 	},
1141 };
1142 
init_fs_namei_sysctls(void)1143 static int __init init_fs_namei_sysctls(void)
1144 {
1145 	register_sysctl_init("fs", namei_sysctls);
1146 	return 0;
1147 }
1148 fs_initcall(init_fs_namei_sysctls);
1149 
1150 #endif /* CONFIG_SYSCTL */
1151 
1152 /**
1153  * may_follow_link - Check symlink following for unsafe situations
1154  * @nd: nameidata pathwalk data
1155  * @inode: Used for idmapping.
1156  *
1157  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1158  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1159  * in a sticky world-writable directory. This is to protect privileged
1160  * processes from failing races against path names that may change out
1161  * from under them by way of other users creating malicious symlinks.
1162  * It will permit symlinks to be followed only when outside a sticky
1163  * world-writable directory, or when the uid of the symlink and follower
1164  * match, or when the directory owner matches the symlink's owner.
1165  *
1166  * Returns 0 if following the symlink is allowed, -ve on error.
1167  */
may_follow_link(struct nameidata * nd,const struct inode * inode)1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1169 {
1170 	struct mnt_idmap *idmap;
1171 	vfsuid_t vfsuid;
1172 
1173 	if (!sysctl_protected_symlinks)
1174 		return 0;
1175 
1176 	idmap = mnt_idmap(nd->path.mnt);
1177 	vfsuid = i_uid_into_vfsuid(idmap, inode);
1178 	/* Allowed if owner and follower match. */
1179 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1180 		return 0;
1181 
1182 	/* Allowed if parent directory not sticky and world-writable. */
1183 	if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1184 		return 0;
1185 
1186 	/* Allowed if parent directory and link owner match. */
1187 	if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1188 		return 0;
1189 
1190 	if (nd->flags & LOOKUP_RCU)
1191 		return -ECHILD;
1192 
1193 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1194 	audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1195 	return -EACCES;
1196 }
1197 
1198 /**
1199  * safe_hardlink_source - Check for safe hardlink conditions
1200  * @idmap: idmap of the mount the inode was found from
1201  * @inode: the source inode to hardlink from
1202  *
1203  * Return false if at least one of the following conditions:
1204  *    - inode is not a regular file
1205  *    - inode is setuid
1206  *    - inode is setgid and group-exec
1207  *    - access failure for read and write
1208  *
1209  * Otherwise returns true.
1210  */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1211 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1212 				 struct inode *inode)
1213 {
1214 	umode_t mode = inode->i_mode;
1215 
1216 	/* Special files should not get pinned to the filesystem. */
1217 	if (!S_ISREG(mode))
1218 		return false;
1219 
1220 	/* Setuid files should not get pinned to the filesystem. */
1221 	if (mode & S_ISUID)
1222 		return false;
1223 
1224 	/* Executable setgid files should not get pinned to the filesystem. */
1225 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1226 		return false;
1227 
1228 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
1229 	if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1230 		return false;
1231 
1232 	return true;
1233 }
1234 
1235 /**
1236  * may_linkat - Check permissions for creating a hardlink
1237  * @idmap: idmap of the mount the inode was found from
1238  * @link:  the source to hardlink from
1239  *
1240  * Block hardlink when all of:
1241  *  - sysctl_protected_hardlinks enabled
1242  *  - fsuid does not match inode
1243  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1244  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1245  *
1246  * If the inode has been found through an idmapped mount the idmap of
1247  * the vfsmount must be passed through @idmap. This function will then take
1248  * care to map the inode according to @idmap before checking permissions.
1249  * On non-idmapped mounts or if permission checking is to be performed on the
1250  * raw inode simply pass @nop_mnt_idmap.
1251  *
1252  * Returns 0 if successful, -ve on error.
1253  */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1255 {
1256 	struct inode *inode = link->dentry->d_inode;
1257 
1258 	/* Inode writeback is not safe when the uid or gid are invalid. */
1259 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1260 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1261 		return -EOVERFLOW;
1262 
1263 	if (!sysctl_protected_hardlinks)
1264 		return 0;
1265 
1266 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1267 	 * otherwise, it must be a safe source.
1268 	 */
1269 	if (safe_hardlink_source(idmap, inode) ||
1270 	    inode_owner_or_capable(idmap, inode))
1271 		return 0;
1272 
1273 	audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1274 	return -EPERM;
1275 }
1276 
1277 /**
1278  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1279  *			  should be allowed, or not, on files that already
1280  *			  exist.
1281  * @idmap: idmap of the mount the inode was found from
1282  * @nd: nameidata pathwalk data
1283  * @inode: the inode of the file to open
1284  *
1285  * Block an O_CREAT open of a FIFO (or a regular file) when:
1286  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1287  *   - the file already exists
1288  *   - we are in a sticky directory
1289  *   - we don't own the file
1290  *   - the owner of the directory doesn't own the file
1291  *   - the directory is world writable
1292  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1293  * the directory doesn't have to be world writable: being group writable will
1294  * be enough.
1295  *
1296  * If the inode has been found through an idmapped mount the idmap of
1297  * the vfsmount must be passed through @idmap. This function will then take
1298  * care to map the inode according to @idmap before checking permissions.
1299  * On non-idmapped mounts or if permission checking is to be performed on the
1300  * raw inode simply pass @nop_mnt_idmap.
1301  *
1302  * Returns 0 if the open is allowed, -ve on error.
1303  */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1305 				struct inode *const inode)
1306 {
1307 	umode_t dir_mode = nd->dir_mode;
1308 	vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1309 
1310 	if (likely(!(dir_mode & S_ISVTX)))
1311 		return 0;
1312 
1313 	if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1314 		return 0;
1315 
1316 	if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1317 		return 0;
1318 
1319 	i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1320 
1321 	if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1322 		return 0;
1323 
1324 	if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1325 		return 0;
1326 
1327 	if (likely(dir_mode & 0002)) {
1328 		audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1329 		return -EACCES;
1330 	}
1331 
1332 	if (dir_mode & 0020) {
1333 		if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1334 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1335 					      "sticky_create_fifo");
1336 			return -EACCES;
1337 		}
1338 
1339 		if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1340 			audit_log_path_denied(AUDIT_ANOM_CREAT,
1341 					      "sticky_create_regular");
1342 			return -EACCES;
1343 		}
1344 	}
1345 
1346 	return 0;
1347 }
1348 
1349 /*
1350  * follow_up - Find the mountpoint of path's vfsmount
1351  *
1352  * Given a path, find the mountpoint of its source file system.
1353  * Replace @path with the path of the mountpoint in the parent mount.
1354  * Up is towards /.
1355  *
1356  * Return 1 if we went up a level and 0 if we were already at the
1357  * root.
1358  */
follow_up(struct path * path)1359 int follow_up(struct path *path)
1360 {
1361 	struct mount *mnt = real_mount(path->mnt);
1362 	struct mount *parent;
1363 	struct dentry *mountpoint;
1364 
1365 	read_seqlock_excl(&mount_lock);
1366 	parent = mnt->mnt_parent;
1367 	if (parent == mnt) {
1368 		read_sequnlock_excl(&mount_lock);
1369 		return 0;
1370 	}
1371 	mntget(&parent->mnt);
1372 	mountpoint = dget(mnt->mnt_mountpoint);
1373 	read_sequnlock_excl(&mount_lock);
1374 	dput(path->dentry);
1375 	path->dentry = mountpoint;
1376 	mntput(path->mnt);
1377 	path->mnt = &parent->mnt;
1378 	return 1;
1379 }
1380 EXPORT_SYMBOL(follow_up);
1381 
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1383 				  struct path *path, unsigned *seqp)
1384 {
1385 	while (mnt_has_parent(m)) {
1386 		struct dentry *mountpoint = m->mnt_mountpoint;
1387 
1388 		m = m->mnt_parent;
1389 		if (unlikely(root->dentry == mountpoint &&
1390 			     root->mnt == &m->mnt))
1391 			break;
1392 		if (mountpoint != m->mnt.mnt_root) {
1393 			path->mnt = &m->mnt;
1394 			path->dentry = mountpoint;
1395 			*seqp = read_seqcount_begin(&mountpoint->d_seq);
1396 			return true;
1397 		}
1398 	}
1399 	return false;
1400 }
1401 
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1402 static bool choose_mountpoint(struct mount *m, const struct path *root,
1403 			      struct path *path)
1404 {
1405 	bool found;
1406 
1407 	rcu_read_lock();
1408 	while (1) {
1409 		unsigned seq, mseq = read_seqbegin(&mount_lock);
1410 
1411 		found = choose_mountpoint_rcu(m, root, path, &seq);
1412 		if (unlikely(!found)) {
1413 			if (!read_seqretry(&mount_lock, mseq))
1414 				break;
1415 		} else {
1416 			if (likely(__legitimize_path(path, seq, mseq)))
1417 				break;
1418 			rcu_read_unlock();
1419 			path_put(path);
1420 			rcu_read_lock();
1421 		}
1422 	}
1423 	rcu_read_unlock();
1424 	return found;
1425 }
1426 
1427 /*
1428  * Perform an automount
1429  * - return -EISDIR to tell follow_managed() to stop and return the path we
1430  *   were called with.
1431  */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1433 {
1434 	struct dentry *dentry = path->dentry;
1435 
1436 	/* We don't want to mount if someone's just doing a stat -
1437 	 * unless they're stat'ing a directory and appended a '/' to
1438 	 * the name.
1439 	 *
1440 	 * We do, however, want to mount if someone wants to open or
1441 	 * create a file of any type under the mountpoint, wants to
1442 	 * traverse through the mountpoint or wants to open the
1443 	 * mounted directory.  Also, autofs may mark negative dentries
1444 	 * as being automount points.  These will need the attentions
1445 	 * of the daemon to instantiate them before they can be used.
1446 	 */
1447 	if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1448 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1449 	    dentry->d_inode)
1450 		return -EISDIR;
1451 
1452 	/* No need to trigger automounts if mountpoint crossing is disabled. */
1453 	if (lookup_flags & LOOKUP_NO_XDEV)
1454 		return -EXDEV;
1455 
1456 	if (count && (*count)++ >= MAXSYMLINKS)
1457 		return -ELOOP;
1458 
1459 	return finish_automount(dentry->d_op->d_automount(path), path);
1460 }
1461 
1462 /*
1463  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1464  * dentries are pinned but not locked here, so negative dentry can go
1465  * positive right under us.  Use of smp_load_acquire() provides a barrier
1466  * sufficient for ->d_inode and ->d_flags consistency.
1467  */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1468 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1469 			     int *count, unsigned lookup_flags)
1470 {
1471 	struct vfsmount *mnt = path->mnt;
1472 	bool need_mntput = false;
1473 	int ret = 0;
1474 
1475 	while (flags & DCACHE_MANAGED_DENTRY) {
1476 		/* Allow the filesystem to manage the transit without i_rwsem
1477 		 * being held. */
1478 		if (flags & DCACHE_MANAGE_TRANSIT) {
1479 			if (lookup_flags & LOOKUP_NO_XDEV) {
1480 				ret = -EXDEV;
1481 				break;
1482 			}
1483 			ret = path->dentry->d_op->d_manage(path, false);
1484 			flags = smp_load_acquire(&path->dentry->d_flags);
1485 			if (ret < 0)
1486 				break;
1487 		}
1488 
1489 		if (flags & DCACHE_MOUNTED) {	// something's mounted on it..
1490 			struct vfsmount *mounted = lookup_mnt(path);
1491 			if (mounted) {		// ... in our namespace
1492 				dput(path->dentry);
1493 				if (need_mntput)
1494 					mntput(path->mnt);
1495 				path->mnt = mounted;
1496 				path->dentry = dget(mounted->mnt_root);
1497 				// here we know it's positive
1498 				flags = path->dentry->d_flags;
1499 				need_mntput = true;
1500 				if (unlikely(lookup_flags & LOOKUP_NO_XDEV)) {
1501 					ret = -EXDEV;
1502 					break;
1503 				}
1504 				continue;
1505 			}
1506 		}
1507 
1508 		if (!(flags & DCACHE_NEED_AUTOMOUNT))
1509 			break;
1510 
1511 		// uncovered automount point
1512 		ret = follow_automount(path, count, lookup_flags);
1513 		flags = smp_load_acquire(&path->dentry->d_flags);
1514 		if (ret < 0)
1515 			break;
1516 	}
1517 
1518 	if (ret == -EISDIR)
1519 		ret = 0;
1520 	// possible if you race with several mount --move
1521 	if (need_mntput && path->mnt == mnt)
1522 		mntput(path->mnt);
1523 	if (!ret && unlikely(d_flags_negative(flags)))
1524 		ret = -ENOENT;
1525 	*jumped = need_mntput;
1526 	return ret;
1527 }
1528 
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1529 static inline int traverse_mounts(struct path *path, bool *jumped,
1530 				  int *count, unsigned lookup_flags)
1531 {
1532 	unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1533 
1534 	/* fastpath */
1535 	if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1536 		*jumped = false;
1537 		if (unlikely(d_flags_negative(flags)))
1538 			return -ENOENT;
1539 		return 0;
1540 	}
1541 	return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1542 }
1543 
follow_down_one(struct path * path)1544 int follow_down_one(struct path *path)
1545 {
1546 	struct vfsmount *mounted;
1547 
1548 	mounted = lookup_mnt(path);
1549 	if (mounted) {
1550 		dput(path->dentry);
1551 		mntput(path->mnt);
1552 		path->mnt = mounted;
1553 		path->dentry = dget(mounted->mnt_root);
1554 		return 1;
1555 	}
1556 	return 0;
1557 }
1558 EXPORT_SYMBOL(follow_down_one);
1559 
1560 /*
1561  * Follow down to the covering mount currently visible to userspace.  At each
1562  * point, the filesystem owning that dentry may be queried as to whether the
1563  * caller is permitted to proceed or not.
1564  */
follow_down(struct path * path,unsigned int flags)1565 int follow_down(struct path *path, unsigned int flags)
1566 {
1567 	struct vfsmount *mnt = path->mnt;
1568 	bool jumped;
1569 	int ret = traverse_mounts(path, &jumped, NULL, flags);
1570 
1571 	if (path->mnt != mnt)
1572 		mntput(mnt);
1573 	return ret;
1574 }
1575 EXPORT_SYMBOL(follow_down);
1576 
1577 /*
1578  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1579  * we meet a managed dentry that would need blocking.
1580  */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1581 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1582 {
1583 	struct dentry *dentry = path->dentry;
1584 	unsigned int flags = dentry->d_flags;
1585 
1586 	if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1587 		return true;
1588 
1589 	if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1590 		return false;
1591 
1592 	for (;;) {
1593 		/*
1594 		 * Don't forget we might have a non-mountpoint managed dentry
1595 		 * that wants to block transit.
1596 		 */
1597 		if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1598 			int res = dentry->d_op->d_manage(path, true);
1599 			if (res)
1600 				return res == -EISDIR;
1601 			flags = dentry->d_flags;
1602 		}
1603 
1604 		if (flags & DCACHE_MOUNTED) {
1605 			struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1606 			if (mounted) {
1607 				path->mnt = &mounted->mnt;
1608 				dentry = path->dentry = mounted->mnt.mnt_root;
1609 				nd->state |= ND_JUMPED;
1610 				nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1611 				flags = dentry->d_flags;
1612 				// makes sure that non-RCU pathwalk could reach
1613 				// this state.
1614 				if (read_seqretry(&mount_lock, nd->m_seq))
1615 					return false;
1616 				continue;
1617 			}
1618 			if (read_seqretry(&mount_lock, nd->m_seq))
1619 				return false;
1620 		}
1621 		return !(flags & DCACHE_NEED_AUTOMOUNT);
1622 	}
1623 }
1624 
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1625 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1626 			  struct path *path)
1627 {
1628 	bool jumped;
1629 	int ret;
1630 
1631 	path->mnt = nd->path.mnt;
1632 	path->dentry = dentry;
1633 	if (nd->flags & LOOKUP_RCU) {
1634 		unsigned int seq = nd->next_seq;
1635 		if (likely(__follow_mount_rcu(nd, path)))
1636 			return 0;
1637 		// *path and nd->next_seq might've been clobbered
1638 		path->mnt = nd->path.mnt;
1639 		path->dentry = dentry;
1640 		nd->next_seq = seq;
1641 		if (!try_to_unlazy_next(nd, dentry))
1642 			return -ECHILD;
1643 	}
1644 	ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1645 	if (jumped)
1646 		nd->state |= ND_JUMPED;
1647 	if (unlikely(ret)) {
1648 		dput(path->dentry);
1649 		if (path->mnt != nd->path.mnt)
1650 			mntput(path->mnt);
1651 	}
1652 	return ret;
1653 }
1654 
1655 /*
1656  * This looks up the name in dcache and possibly revalidates the found dentry.
1657  * NULL is returned if the dentry does not exist in the cache.
1658  */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1659 static struct dentry *lookup_dcache(const struct qstr *name,
1660 				    struct dentry *dir,
1661 				    unsigned int flags)
1662 {
1663 	struct dentry *dentry = d_lookup(dir, name);
1664 	if (dentry) {
1665 		int error = d_revalidate(dir->d_inode, name, dentry, flags);
1666 		if (unlikely(error <= 0)) {
1667 			if (!error)
1668 				d_invalidate(dentry);
1669 			dput(dentry);
1670 			return ERR_PTR(error);
1671 		}
1672 	}
1673 	return dentry;
1674 }
1675 
1676 /*
1677  * Parent directory has inode locked exclusive.  This is one
1678  * and only case when ->lookup() gets called on non in-lookup
1679  * dentries - as the matter of fact, this only gets called
1680  * when directory is guaranteed to have no in-lookup children
1681  * at all.
1682  * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1683  * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1684  */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1685 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1686 				    struct dentry *base, unsigned int flags)
1687 {
1688 	struct dentry *dentry;
1689 	struct dentry *old;
1690 	struct inode *dir;
1691 
1692 	dentry = lookup_dcache(name, base, flags);
1693 	if (dentry)
1694 		goto found;
1695 
1696 	/* Don't create child dentry for a dead directory. */
1697 	dir = base->d_inode;
1698 	if (unlikely(IS_DEADDIR(dir)))
1699 		return ERR_PTR(-ENOENT);
1700 
1701 	dentry = d_alloc(base, name);
1702 	if (unlikely(!dentry))
1703 		return ERR_PTR(-ENOMEM);
1704 
1705 	old = dir->i_op->lookup(dir, dentry, flags);
1706 	if (unlikely(old)) {
1707 		dput(dentry);
1708 		dentry = old;
1709 	}
1710 found:
1711 	if (IS_ERR(dentry))
1712 		return dentry;
1713 	if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1714 		dput(dentry);
1715 		return ERR_PTR(-ENOENT);
1716 	}
1717 	if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1718 		dput(dentry);
1719 		return ERR_PTR(-EEXIST);
1720 	}
1721 	return dentry;
1722 }
1723 EXPORT_SYMBOL(lookup_one_qstr_excl);
1724 
1725 /**
1726  * lookup_fast - do fast lockless (but racy) lookup of a dentry
1727  * @nd: current nameidata
1728  *
1729  * Do a fast, but racy lookup in the dcache for the given dentry, and
1730  * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1731  * found. On error, an ERR_PTR will be returned.
1732  *
1733  * If this function returns a valid dentry and the walk is no longer
1734  * lazy, the dentry will carry a reference that must later be put. If
1735  * RCU mode is still in force, then this is not the case and the dentry
1736  * must be legitimized before use. If this returns NULL, then the walk
1737  * will no longer be in RCU mode.
1738  */
lookup_fast(struct nameidata * nd)1739 static struct dentry *lookup_fast(struct nameidata *nd)
1740 {
1741 	struct dentry *dentry, *parent = nd->path.dentry;
1742 	int status = 1;
1743 
1744 	/*
1745 	 * Rename seqlock is not required here because in the off chance
1746 	 * of a false negative due to a concurrent rename, the caller is
1747 	 * going to fall back to non-racy lookup.
1748 	 */
1749 	if (nd->flags & LOOKUP_RCU) {
1750 		dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1751 		if (unlikely(!dentry)) {
1752 			if (!try_to_unlazy(nd))
1753 				return ERR_PTR(-ECHILD);
1754 			return NULL;
1755 		}
1756 
1757 		/*
1758 		 * This sequence count validates that the parent had no
1759 		 * changes while we did the lookup of the dentry above.
1760 		 */
1761 		if (read_seqcount_retry(&parent->d_seq, nd->seq))
1762 			return ERR_PTR(-ECHILD);
1763 
1764 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1765 		if (likely(status > 0))
1766 			return dentry;
1767 		if (!try_to_unlazy_next(nd, dentry))
1768 			return ERR_PTR(-ECHILD);
1769 		if (status == -ECHILD)
1770 			/* we'd been told to redo it in non-rcu mode */
1771 			status = d_revalidate(nd->inode, &nd->last,
1772 					      dentry, nd->flags);
1773 	} else {
1774 		dentry = __d_lookup(parent, &nd->last);
1775 		if (unlikely(!dentry))
1776 			return NULL;
1777 		status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1778 	}
1779 	if (unlikely(status <= 0)) {
1780 		if (!status)
1781 			d_invalidate(dentry);
1782 		dput(dentry);
1783 		return ERR_PTR(status);
1784 	}
1785 	return dentry;
1786 }
1787 
1788 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1789 static struct dentry *__lookup_slow(const struct qstr *name,
1790 				    struct dentry *dir,
1791 				    unsigned int flags)
1792 {
1793 	struct dentry *dentry, *old;
1794 	struct inode *inode = dir->d_inode;
1795 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1796 
1797 	/* Don't go there if it's already dead */
1798 	if (unlikely(IS_DEADDIR(inode)))
1799 		return ERR_PTR(-ENOENT);
1800 again:
1801 	dentry = d_alloc_parallel(dir, name, &wq);
1802 	if (IS_ERR(dentry))
1803 		return dentry;
1804 	if (unlikely(!d_in_lookup(dentry))) {
1805 		int error = d_revalidate(inode, name, dentry, flags);
1806 		if (unlikely(error <= 0)) {
1807 			if (!error) {
1808 				d_invalidate(dentry);
1809 				dput(dentry);
1810 				goto again;
1811 			}
1812 			dput(dentry);
1813 			dentry = ERR_PTR(error);
1814 		}
1815 	} else {
1816 		old = inode->i_op->lookup(inode, dentry, flags);
1817 		d_lookup_done(dentry);
1818 		if (unlikely(old)) {
1819 			dput(dentry);
1820 			dentry = old;
1821 		}
1822 	}
1823 	return dentry;
1824 }
1825 
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1826 static struct dentry *lookup_slow(const struct qstr *name,
1827 				  struct dentry *dir,
1828 				  unsigned int flags)
1829 {
1830 	struct inode *inode = dir->d_inode;
1831 	struct dentry *res;
1832 	inode_lock_shared(inode);
1833 	res = __lookup_slow(name, dir, flags);
1834 	inode_unlock_shared(inode);
1835 	return res;
1836 }
1837 
lookup_slow_killable(const struct qstr * name,struct dentry * dir,unsigned int flags)1838 static struct dentry *lookup_slow_killable(const struct qstr *name,
1839 					   struct dentry *dir,
1840 					   unsigned int flags)
1841 {
1842 	struct inode *inode = dir->d_inode;
1843 	struct dentry *res;
1844 
1845 	if (inode_lock_shared_killable(inode))
1846 		return ERR_PTR(-EINTR);
1847 	res = __lookup_slow(name, dir, flags);
1848 	inode_unlock_shared(inode);
1849 	return res;
1850 }
1851 
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1852 static inline int may_lookup(struct mnt_idmap *idmap,
1853 			     struct nameidata *restrict nd)
1854 {
1855 	int err, mask;
1856 
1857 	mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1858 	err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1859 	if (likely(!err))
1860 		return 0;
1861 
1862 	// If we failed, and we weren't in LOOKUP_RCU, it's final
1863 	if (!(nd->flags & LOOKUP_RCU))
1864 		return err;
1865 
1866 	// Drop out of RCU mode to make sure it wasn't transient
1867 	if (!try_to_unlazy(nd))
1868 		return -ECHILD;	// redo it all non-lazy
1869 
1870 	if (err != -ECHILD)	// hard error
1871 		return err;
1872 
1873 	return inode_permission(idmap, nd->inode, MAY_EXEC);
1874 }
1875 
reserve_stack(struct nameidata * nd,struct path * link)1876 static int reserve_stack(struct nameidata *nd, struct path *link)
1877 {
1878 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1879 		return -ELOOP;
1880 
1881 	if (likely(nd->depth != EMBEDDED_LEVELS))
1882 		return 0;
1883 	if (likely(nd->stack != nd->internal))
1884 		return 0;
1885 	if (likely(nd_alloc_stack(nd)))
1886 		return 0;
1887 
1888 	if (nd->flags & LOOKUP_RCU) {
1889 		// we need to grab link before we do unlazy.  And we can't skip
1890 		// unlazy even if we fail to grab the link - cleanup needs it
1891 		bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1892 
1893 		if (!try_to_unlazy(nd) || !grabbed_link)
1894 			return -ECHILD;
1895 
1896 		if (nd_alloc_stack(nd))
1897 			return 0;
1898 	}
1899 	return -ENOMEM;
1900 }
1901 
1902 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1903 
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1904 static const char *pick_link(struct nameidata *nd, struct path *link,
1905 		     struct inode *inode, int flags)
1906 {
1907 	struct saved *last;
1908 	const char *res;
1909 	int error = reserve_stack(nd, link);
1910 
1911 	if (unlikely(error)) {
1912 		if (!(nd->flags & LOOKUP_RCU))
1913 			path_put(link);
1914 		return ERR_PTR(error);
1915 	}
1916 	last = nd->stack + nd->depth++;
1917 	last->link = *link;
1918 	clear_delayed_call(&last->done);
1919 	last->seq = nd->next_seq;
1920 
1921 	if (flags & WALK_TRAILING) {
1922 		error = may_follow_link(nd, inode);
1923 		if (unlikely(error))
1924 			return ERR_PTR(error);
1925 	}
1926 
1927 	if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1928 			unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1929 		return ERR_PTR(-ELOOP);
1930 
1931 	if (unlikely(atime_needs_update(&last->link, inode))) {
1932 		if (nd->flags & LOOKUP_RCU) {
1933 			if (!try_to_unlazy(nd))
1934 				return ERR_PTR(-ECHILD);
1935 		}
1936 		touch_atime(&last->link);
1937 		cond_resched();
1938 	}
1939 
1940 	error = security_inode_follow_link(link->dentry, inode,
1941 					   nd->flags & LOOKUP_RCU);
1942 	if (unlikely(error))
1943 		return ERR_PTR(error);
1944 
1945 	res = READ_ONCE(inode->i_link);
1946 	if (!res) {
1947 		const char * (*get)(struct dentry *, struct inode *,
1948 				struct delayed_call *);
1949 		get = inode->i_op->get_link;
1950 		if (nd->flags & LOOKUP_RCU) {
1951 			res = get(NULL, inode, &last->done);
1952 			if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1953 				res = get(link->dentry, inode, &last->done);
1954 		} else {
1955 			res = get(link->dentry, inode, &last->done);
1956 		}
1957 		if (!res)
1958 			goto all_done;
1959 		if (IS_ERR(res))
1960 			return res;
1961 	}
1962 	if (*res == '/') {
1963 		error = nd_jump_root(nd);
1964 		if (unlikely(error))
1965 			return ERR_PTR(error);
1966 		while (unlikely(*++res == '/'))
1967 			;
1968 	}
1969 	if (*res)
1970 		return res;
1971 all_done: // pure jump
1972 	put_link(nd);
1973 	return NULL;
1974 }
1975 
1976 /*
1977  * Do we need to follow links? We _really_ want to be able
1978  * to do this check without having to look at inode->i_op,
1979  * so we keep a cache of "no, this doesn't need follow_link"
1980  * for the common case.
1981  *
1982  * NOTE: dentry must be what nd->next_seq had been sampled from.
1983  */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1984 static const char *step_into(struct nameidata *nd, int flags,
1985 		     struct dentry *dentry)
1986 {
1987 	struct path path;
1988 	struct inode *inode;
1989 	int err = handle_mounts(nd, dentry, &path);
1990 
1991 	if (err < 0)
1992 		return ERR_PTR(err);
1993 	inode = path.dentry->d_inode;
1994 	if (likely(!d_is_symlink(path.dentry)) ||
1995 	   ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1996 	   (flags & WALK_NOFOLLOW)) {
1997 		/* not a symlink or should not follow */
1998 		if (nd->flags & LOOKUP_RCU) {
1999 			if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2000 				return ERR_PTR(-ECHILD);
2001 			if (unlikely(!inode))
2002 				return ERR_PTR(-ENOENT);
2003 		} else {
2004 			dput(nd->path.dentry);
2005 			if (nd->path.mnt != path.mnt)
2006 				mntput(nd->path.mnt);
2007 		}
2008 		nd->path = path;
2009 		nd->inode = inode;
2010 		nd->seq = nd->next_seq;
2011 		return NULL;
2012 	}
2013 	if (nd->flags & LOOKUP_RCU) {
2014 		/* make sure that d_is_symlink above matches inode */
2015 		if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2016 			return ERR_PTR(-ECHILD);
2017 	} else {
2018 		if (path.mnt == nd->path.mnt)
2019 			mntget(path.mnt);
2020 	}
2021 	return pick_link(nd, &path, inode, flags);
2022 }
2023 
follow_dotdot_rcu(struct nameidata * nd)2024 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2025 {
2026 	struct dentry *parent, *old;
2027 
2028 	if (path_equal(&nd->path, &nd->root))
2029 		goto in_root;
2030 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2031 		struct path path;
2032 		unsigned seq;
2033 		if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2034 					   &nd->root, &path, &seq))
2035 			goto in_root;
2036 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2037 			return ERR_PTR(-ECHILD);
2038 		nd->path = path;
2039 		nd->inode = path.dentry->d_inode;
2040 		nd->seq = seq;
2041 		// makes sure that non-RCU pathwalk could reach this state
2042 		if (read_seqretry(&mount_lock, nd->m_seq))
2043 			return ERR_PTR(-ECHILD);
2044 		/* we know that mountpoint was pinned */
2045 	}
2046 	old = nd->path.dentry;
2047 	parent = old->d_parent;
2048 	nd->next_seq = read_seqcount_begin(&parent->d_seq);
2049 	// makes sure that non-RCU pathwalk could reach this state
2050 	if (read_seqcount_retry(&old->d_seq, nd->seq))
2051 		return ERR_PTR(-ECHILD);
2052 	if (unlikely(!path_connected(nd->path.mnt, parent)))
2053 		return ERR_PTR(-ECHILD);
2054 	return parent;
2055 in_root:
2056 	if (read_seqretry(&mount_lock, nd->m_seq))
2057 		return ERR_PTR(-ECHILD);
2058 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2059 		return ERR_PTR(-ECHILD);
2060 	nd->next_seq = nd->seq;
2061 	return nd->path.dentry;
2062 }
2063 
follow_dotdot(struct nameidata * nd)2064 static struct dentry *follow_dotdot(struct nameidata *nd)
2065 {
2066 	struct dentry *parent;
2067 
2068 	if (path_equal(&nd->path, &nd->root))
2069 		goto in_root;
2070 	if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2071 		struct path path;
2072 
2073 		if (!choose_mountpoint(real_mount(nd->path.mnt),
2074 				       &nd->root, &path))
2075 			goto in_root;
2076 		path_put(&nd->path);
2077 		nd->path = path;
2078 		nd->inode = path.dentry->d_inode;
2079 		if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2080 			return ERR_PTR(-EXDEV);
2081 	}
2082 	/* rare case of legitimate dget_parent()... */
2083 	parent = dget_parent(nd->path.dentry);
2084 	if (unlikely(!path_connected(nd->path.mnt, parent))) {
2085 		dput(parent);
2086 		return ERR_PTR(-ENOENT);
2087 	}
2088 	return parent;
2089 
2090 in_root:
2091 	if (unlikely(nd->flags & LOOKUP_BENEATH))
2092 		return ERR_PTR(-EXDEV);
2093 	return dget(nd->path.dentry);
2094 }
2095 
handle_dots(struct nameidata * nd,int type)2096 static const char *handle_dots(struct nameidata *nd, int type)
2097 {
2098 	if (type == LAST_DOTDOT) {
2099 		const char *error = NULL;
2100 		struct dentry *parent;
2101 
2102 		if (!nd->root.mnt) {
2103 			error = ERR_PTR(set_root(nd));
2104 			if (error)
2105 				return error;
2106 		}
2107 		if (nd->flags & LOOKUP_RCU)
2108 			parent = follow_dotdot_rcu(nd);
2109 		else
2110 			parent = follow_dotdot(nd);
2111 		if (IS_ERR(parent))
2112 			return ERR_CAST(parent);
2113 		error = step_into(nd, WALK_NOFOLLOW, parent);
2114 		if (unlikely(error))
2115 			return error;
2116 
2117 		if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2118 			/*
2119 			 * If there was a racing rename or mount along our
2120 			 * path, then we can't be sure that ".." hasn't jumped
2121 			 * above nd->root (and so userspace should retry or use
2122 			 * some fallback).
2123 			 */
2124 			smp_rmb();
2125 			if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2126 				return ERR_PTR(-EAGAIN);
2127 			if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2128 				return ERR_PTR(-EAGAIN);
2129 		}
2130 	}
2131 	return NULL;
2132 }
2133 
walk_component(struct nameidata * nd,int flags)2134 static const char *walk_component(struct nameidata *nd, int flags)
2135 {
2136 	struct dentry *dentry;
2137 	/*
2138 	 * "." and ".." are special - ".." especially so because it has
2139 	 * to be able to know about the current root directory and
2140 	 * parent relationships.
2141 	 */
2142 	if (unlikely(nd->last_type != LAST_NORM)) {
2143 		if (!(flags & WALK_MORE) && nd->depth)
2144 			put_link(nd);
2145 		return handle_dots(nd, nd->last_type);
2146 	}
2147 	dentry = lookup_fast(nd);
2148 	if (IS_ERR(dentry))
2149 		return ERR_CAST(dentry);
2150 	if (unlikely(!dentry)) {
2151 		dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2152 		if (IS_ERR(dentry))
2153 			return ERR_CAST(dentry);
2154 	}
2155 	if (!(flags & WALK_MORE) && nd->depth)
2156 		put_link(nd);
2157 	return step_into(nd, flags, dentry);
2158 }
2159 
2160 /*
2161  * We can do the critical dentry name comparison and hashing
2162  * operations one word at a time, but we are limited to:
2163  *
2164  * - Architectures with fast unaligned word accesses. We could
2165  *   do a "get_unaligned()" if this helps and is sufficiently
2166  *   fast.
2167  *
2168  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2169  *   do not trap on the (extremely unlikely) case of a page
2170  *   crossing operation.
2171  *
2172  * - Furthermore, we need an efficient 64-bit compile for the
2173  *   64-bit case in order to generate the "number of bytes in
2174  *   the final mask". Again, that could be replaced with a
2175  *   efficient population count instruction or similar.
2176  */
2177 #ifdef CONFIG_DCACHE_WORD_ACCESS
2178 
2179 #include <asm/word-at-a-time.h>
2180 
2181 #ifdef HASH_MIX
2182 
2183 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2184 
2185 #elif defined(CONFIG_64BIT)
2186 /*
2187  * Register pressure in the mixing function is an issue, particularly
2188  * on 32-bit x86, but almost any function requires one state value and
2189  * one temporary.  Instead, use a function designed for two state values
2190  * and no temporaries.
2191  *
2192  * This function cannot create a collision in only two iterations, so
2193  * we have two iterations to achieve avalanche.  In those two iterations,
2194  * we have six layers of mixing, which is enough to spread one bit's
2195  * influence out to 2^6 = 64 state bits.
2196  *
2197  * Rotate constants are scored by considering either 64 one-bit input
2198  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2199  * probability of that delta causing a change to each of the 128 output
2200  * bits, using a sample of random initial states.
2201  *
2202  * The Shannon entropy of the computed probabilities is then summed
2203  * to produce a score.  Ideally, any input change has a 50% chance of
2204  * toggling any given output bit.
2205  *
2206  * Mixing scores (in bits) for (12,45):
2207  * Input delta: 1-bit      2-bit
2208  * 1 round:     713.3    42542.6
2209  * 2 rounds:   2753.7   140389.8
2210  * 3 rounds:   5954.1   233458.2
2211  * 4 rounds:   7862.6   256672.2
2212  * Perfect:    8192     258048
2213  *            (64*128) (64*63/2 * 128)
2214  */
2215 #define HASH_MIX(x, y, a)	\
2216 	(	x ^= (a),	\
2217 	y ^= x,	x = rol64(x,12),\
2218 	x += y,	y = rol64(y,45),\
2219 	y *= 9			)
2220 
2221 /*
2222  * Fold two longs into one 32-bit hash value.  This must be fast, but
2223  * latency isn't quite as critical, as there is a fair bit of additional
2224  * work done before the hash value is used.
2225  */
fold_hash(unsigned long x,unsigned long y)2226 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2227 {
2228 	y ^= x * GOLDEN_RATIO_64;
2229 	y *= GOLDEN_RATIO_64;
2230 	return y >> 32;
2231 }
2232 
2233 #else	/* 32-bit case */
2234 
2235 /*
2236  * Mixing scores (in bits) for (7,20):
2237  * Input delta: 1-bit      2-bit
2238  * 1 round:     330.3     9201.6
2239  * 2 rounds:   1246.4    25475.4
2240  * 3 rounds:   1907.1    31295.1
2241  * 4 rounds:   2042.3    31718.6
2242  * Perfect:    2048      31744
2243  *            (32*64)   (32*31/2 * 64)
2244  */
2245 #define HASH_MIX(x, y, a)	\
2246 	(	x ^= (a),	\
2247 	y ^= x,	x = rol32(x, 7),\
2248 	x += y,	y = rol32(y,20),\
2249 	y *= 9			)
2250 
fold_hash(unsigned long x,unsigned long y)2251 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2252 {
2253 	/* Use arch-optimized multiply if one exists */
2254 	return __hash_32(y ^ __hash_32(x));
2255 }
2256 
2257 #endif
2258 
2259 /*
2260  * Return the hash of a string of known length.  This is carfully
2261  * designed to match hash_name(), which is the more critical function.
2262  * In particular, we must end by hashing a final word containing 0..7
2263  * payload bytes, to match the way that hash_name() iterates until it
2264  * finds the delimiter after the name.
2265  */
full_name_hash(const void * salt,const char * name,unsigned int len)2266 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2267 {
2268 	unsigned long a, x = 0, y = (unsigned long)salt;
2269 
2270 	for (;;) {
2271 		if (!len)
2272 			goto done;
2273 		a = load_unaligned_zeropad(name);
2274 		if (len < sizeof(unsigned long))
2275 			break;
2276 		HASH_MIX(x, y, a);
2277 		name += sizeof(unsigned long);
2278 		len -= sizeof(unsigned long);
2279 	}
2280 	x ^= a & bytemask_from_count(len);
2281 done:
2282 	return fold_hash(x, y);
2283 }
2284 EXPORT_SYMBOL(full_name_hash);
2285 
2286 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2287 u64 hashlen_string(const void *salt, const char *name)
2288 {
2289 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
2290 	unsigned long adata, mask, len;
2291 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2292 
2293 	len = 0;
2294 	goto inside;
2295 
2296 	do {
2297 		HASH_MIX(x, y, a);
2298 		len += sizeof(unsigned long);
2299 inside:
2300 		a = load_unaligned_zeropad(name+len);
2301 	} while (!has_zero(a, &adata, &constants));
2302 
2303 	adata = prep_zero_mask(a, adata, &constants);
2304 	mask = create_zero_mask(adata);
2305 	x ^= a & zero_bytemask(mask);
2306 
2307 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2308 }
2309 EXPORT_SYMBOL(hashlen_string);
2310 
2311 /*
2312  * Calculate the length and hash of the path component, and
2313  * return the length as the result.
2314  */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2315 static inline const char *hash_name(struct nameidata *nd,
2316 				    const char *name,
2317 				    unsigned long *lastword)
2318 {
2319 	unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2320 	unsigned long adata, bdata, mask, len;
2321 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2322 
2323 	/*
2324 	 * The first iteration is special, because it can result in
2325 	 * '.' and '..' and has no mixing other than the final fold.
2326 	 */
2327 	a = load_unaligned_zeropad(name);
2328 	b = a ^ REPEAT_BYTE('/');
2329 	if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2330 		adata = prep_zero_mask(a, adata, &constants);
2331 		bdata = prep_zero_mask(b, bdata, &constants);
2332 		mask = create_zero_mask(adata | bdata);
2333 		a &= zero_bytemask(mask);
2334 		*lastword = a;
2335 		len = find_zero(mask);
2336 		nd->last.hash = fold_hash(a, y);
2337 		nd->last.len = len;
2338 		return name + len;
2339 	}
2340 
2341 	len = 0;
2342 	x = 0;
2343 	do {
2344 		HASH_MIX(x, y, a);
2345 		len += sizeof(unsigned long);
2346 		a = load_unaligned_zeropad(name+len);
2347 		b = a ^ REPEAT_BYTE('/');
2348 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2349 
2350 	adata = prep_zero_mask(a, adata, &constants);
2351 	bdata = prep_zero_mask(b, bdata, &constants);
2352 	mask = create_zero_mask(adata | bdata);
2353 	a &= zero_bytemask(mask);
2354 	x ^= a;
2355 	len += find_zero(mask);
2356 	*lastword = 0;		// Multi-word components cannot be DOT or DOTDOT
2357 
2358 	nd->last.hash = fold_hash(x, y);
2359 	nd->last.len = len;
2360 	return name + len;
2361 }
2362 
2363 /*
2364  * Note that the 'last' word is always zero-masked, but
2365  * was loaded as a possibly big-endian word.
2366  */
2367 #ifdef __BIG_ENDIAN
2368   #define LAST_WORD_IS_DOT	(0x2eul << (BITS_PER_LONG-8))
2369   #define LAST_WORD_IS_DOTDOT	(0x2e2eul << (BITS_PER_LONG-16))
2370 #endif
2371 
2372 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2373 
2374 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2375 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2376 {
2377 	unsigned long hash = init_name_hash(salt);
2378 	while (len--)
2379 		hash = partial_name_hash((unsigned char)*name++, hash);
2380 	return end_name_hash(hash);
2381 }
2382 EXPORT_SYMBOL(full_name_hash);
2383 
2384 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2385 u64 hashlen_string(const void *salt, const char *name)
2386 {
2387 	unsigned long hash = init_name_hash(salt);
2388 	unsigned long len = 0, c;
2389 
2390 	c = (unsigned char)*name;
2391 	while (c) {
2392 		len++;
2393 		hash = partial_name_hash(c, hash);
2394 		c = (unsigned char)name[len];
2395 	}
2396 	return hashlen_create(end_name_hash(hash), len);
2397 }
2398 EXPORT_SYMBOL(hashlen_string);
2399 
2400 /*
2401  * We know there's a real path component here of at least
2402  * one character.
2403  */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2404 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2405 {
2406 	unsigned long hash = init_name_hash(nd->path.dentry);
2407 	unsigned long len = 0, c, last = 0;
2408 
2409 	c = (unsigned char)*name;
2410 	do {
2411 		last = (last << 8) + c;
2412 		len++;
2413 		hash = partial_name_hash(c, hash);
2414 		c = (unsigned char)name[len];
2415 	} while (c && c != '/');
2416 
2417 	// This is reliable for DOT or DOTDOT, since the component
2418 	// cannot contain NUL characters - top bits being zero means
2419 	// we cannot have had any other pathnames.
2420 	*lastword = last;
2421 	nd->last.hash = end_name_hash(hash);
2422 	nd->last.len = len;
2423 	return name + len;
2424 }
2425 
2426 #endif
2427 
2428 #ifndef LAST_WORD_IS_DOT
2429   #define LAST_WORD_IS_DOT	0x2e
2430   #define LAST_WORD_IS_DOTDOT	0x2e2e
2431 #endif
2432 
2433 /*
2434  * Name resolution.
2435  * This is the basic name resolution function, turning a pathname into
2436  * the final dentry. We expect 'base' to be positive and a directory.
2437  *
2438  * Returns 0 and nd will have valid dentry and mnt on success.
2439  * Returns error and drops reference to input namei data on failure.
2440  */
link_path_walk(const char * name,struct nameidata * nd)2441 static int link_path_walk(const char *name, struct nameidata *nd)
2442 {
2443 	int depth = 0; // depth <= nd->depth
2444 	int err;
2445 
2446 	nd->last_type = LAST_ROOT;
2447 	nd->flags |= LOOKUP_PARENT;
2448 	if (IS_ERR(name))
2449 		return PTR_ERR(name);
2450 	if (*name == '/') {
2451 		do {
2452 			name++;
2453 		} while (unlikely(*name == '/'));
2454 	}
2455 	if (unlikely(!*name)) {
2456 		nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2457 		return 0;
2458 	}
2459 
2460 	/* At this point we know we have a real path component. */
2461 	for(;;) {
2462 		struct mnt_idmap *idmap;
2463 		const char *link;
2464 		unsigned long lastword;
2465 
2466 		idmap = mnt_idmap(nd->path.mnt);
2467 		err = may_lookup(idmap, nd);
2468 		if (unlikely(err))
2469 			return err;
2470 
2471 		nd->last.name = name;
2472 		name = hash_name(nd, name, &lastword);
2473 
2474 		switch(lastword) {
2475 		case LAST_WORD_IS_DOTDOT:
2476 			nd->last_type = LAST_DOTDOT;
2477 			nd->state |= ND_JUMPED;
2478 			break;
2479 
2480 		case LAST_WORD_IS_DOT:
2481 			nd->last_type = LAST_DOT;
2482 			break;
2483 
2484 		default:
2485 			nd->last_type = LAST_NORM;
2486 			nd->state &= ~ND_JUMPED;
2487 
2488 			struct dentry *parent = nd->path.dentry;
2489 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2490 				err = parent->d_op->d_hash(parent, &nd->last);
2491 				if (err < 0)
2492 					return err;
2493 			}
2494 		}
2495 
2496 		if (!*name)
2497 			goto OK;
2498 		/*
2499 		 * If it wasn't NUL, we know it was '/'. Skip that
2500 		 * slash, and continue until no more slashes.
2501 		 */
2502 		do {
2503 			name++;
2504 		} while (unlikely(*name == '/'));
2505 		if (unlikely(!*name)) {
2506 OK:
2507 			/* pathname or trailing symlink, done */
2508 			if (!depth) {
2509 				nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2510 				nd->dir_mode = nd->inode->i_mode;
2511 				nd->flags &= ~LOOKUP_PARENT;
2512 				return 0;
2513 			}
2514 			/* last component of nested symlink */
2515 			name = nd->stack[--depth].name;
2516 			link = walk_component(nd, 0);
2517 		} else {
2518 			/* not the last component */
2519 			link = walk_component(nd, WALK_MORE);
2520 		}
2521 		if (unlikely(link)) {
2522 			if (IS_ERR(link))
2523 				return PTR_ERR(link);
2524 			/* a symlink to follow */
2525 			nd->stack[depth++].name = name;
2526 			name = link;
2527 			continue;
2528 		}
2529 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2530 			if (nd->flags & LOOKUP_RCU) {
2531 				if (!try_to_unlazy(nd))
2532 					return -ECHILD;
2533 			}
2534 			return -ENOTDIR;
2535 		}
2536 	}
2537 }
2538 
2539 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2540 static const char *path_init(struct nameidata *nd, unsigned flags)
2541 {
2542 	int error;
2543 	const char *s = nd->pathname;
2544 
2545 	/* LOOKUP_CACHED requires RCU, ask caller to retry */
2546 	if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2547 		return ERR_PTR(-EAGAIN);
2548 
2549 	if (!*s)
2550 		flags &= ~LOOKUP_RCU;
2551 	if (flags & LOOKUP_RCU)
2552 		rcu_read_lock();
2553 	else
2554 		nd->seq = nd->next_seq = 0;
2555 
2556 	nd->flags = flags;
2557 	nd->state |= ND_JUMPED;
2558 
2559 	nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2560 	nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2561 	smp_rmb();
2562 
2563 	if (nd->state & ND_ROOT_PRESET) {
2564 		struct dentry *root = nd->root.dentry;
2565 		struct inode *inode = root->d_inode;
2566 		if (*s && unlikely(!d_can_lookup(root)))
2567 			return ERR_PTR(-ENOTDIR);
2568 		nd->path = nd->root;
2569 		nd->inode = inode;
2570 		if (flags & LOOKUP_RCU) {
2571 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2572 			nd->root_seq = nd->seq;
2573 		} else {
2574 			path_get(&nd->path);
2575 		}
2576 		return s;
2577 	}
2578 
2579 	nd->root.mnt = NULL;
2580 
2581 	/* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2582 	if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2583 		error = nd_jump_root(nd);
2584 		if (unlikely(error))
2585 			return ERR_PTR(error);
2586 		return s;
2587 	}
2588 
2589 	/* Relative pathname -- get the starting-point it is relative to. */
2590 	if (nd->dfd == AT_FDCWD) {
2591 		if (flags & LOOKUP_RCU) {
2592 			struct fs_struct *fs = current->fs;
2593 			unsigned seq;
2594 
2595 			do {
2596 				seq = read_seqbegin(&fs->seq);
2597 				nd->path = fs->pwd;
2598 				nd->inode = nd->path.dentry->d_inode;
2599 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2600 			} while (read_seqretry(&fs->seq, seq));
2601 		} else {
2602 			get_fs_pwd(current->fs, &nd->path);
2603 			nd->inode = nd->path.dentry->d_inode;
2604 		}
2605 	} else {
2606 		/* Caller must check execute permissions on the starting path component */
2607 		CLASS(fd_raw, f)(nd->dfd);
2608 		struct dentry *dentry;
2609 
2610 		if (fd_empty(f))
2611 			return ERR_PTR(-EBADF);
2612 
2613 		if (flags & LOOKUP_LINKAT_EMPTY) {
2614 			if (fd_file(f)->f_cred != current_cred() &&
2615 			    !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2616 				return ERR_PTR(-ENOENT);
2617 		}
2618 
2619 		dentry = fd_file(f)->f_path.dentry;
2620 
2621 		if (*s && unlikely(!d_can_lookup(dentry)))
2622 			return ERR_PTR(-ENOTDIR);
2623 
2624 		nd->path = fd_file(f)->f_path;
2625 		if (flags & LOOKUP_RCU) {
2626 			nd->inode = nd->path.dentry->d_inode;
2627 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2628 		} else {
2629 			path_get(&nd->path);
2630 			nd->inode = nd->path.dentry->d_inode;
2631 		}
2632 	}
2633 
2634 	/* For scoped-lookups we need to set the root to the dirfd as well. */
2635 	if (flags & LOOKUP_IS_SCOPED) {
2636 		nd->root = nd->path;
2637 		if (flags & LOOKUP_RCU) {
2638 			nd->root_seq = nd->seq;
2639 		} else {
2640 			path_get(&nd->root);
2641 			nd->state |= ND_ROOT_GRABBED;
2642 		}
2643 	}
2644 	return s;
2645 }
2646 
lookup_last(struct nameidata * nd)2647 static inline const char *lookup_last(struct nameidata *nd)
2648 {
2649 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2650 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2651 
2652 	return walk_component(nd, WALK_TRAILING);
2653 }
2654 
handle_lookup_down(struct nameidata * nd)2655 static int handle_lookup_down(struct nameidata *nd)
2656 {
2657 	if (!(nd->flags & LOOKUP_RCU))
2658 		dget(nd->path.dentry);
2659 	nd->next_seq = nd->seq;
2660 	return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2661 }
2662 
2663 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2664 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2665 {
2666 	const char *s = path_init(nd, flags);
2667 	int err;
2668 
2669 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2670 		err = handle_lookup_down(nd);
2671 		if (unlikely(err < 0))
2672 			s = ERR_PTR(err);
2673 	}
2674 
2675 	while (!(err = link_path_walk(s, nd)) &&
2676 	       (s = lookup_last(nd)) != NULL)
2677 		;
2678 	if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2679 		err = handle_lookup_down(nd);
2680 		nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2681 	}
2682 	if (!err)
2683 		err = complete_walk(nd);
2684 
2685 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2686 		if (!d_can_lookup(nd->path.dentry))
2687 			err = -ENOTDIR;
2688 	if (!err) {
2689 		*path = nd->path;
2690 		nd->path.mnt = NULL;
2691 		nd->path.dentry = NULL;
2692 	}
2693 	terminate_walk(nd);
2694 	return err;
2695 }
2696 
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,const struct path * root)2697 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2698 		    struct path *path, const struct path *root)
2699 {
2700 	int retval;
2701 	struct nameidata nd;
2702 	if (IS_ERR(name))
2703 		return PTR_ERR(name);
2704 	set_nameidata(&nd, dfd, name, root);
2705 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2706 	if (unlikely(retval == -ECHILD))
2707 		retval = path_lookupat(&nd, flags, path);
2708 	if (unlikely(retval == -ESTALE))
2709 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2710 
2711 	if (likely(!retval))
2712 		audit_inode(name, path->dentry,
2713 			    flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2714 	restore_nameidata();
2715 	return retval;
2716 }
2717 
2718 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2719 static int path_parentat(struct nameidata *nd, unsigned flags,
2720 				struct path *parent)
2721 {
2722 	const char *s = path_init(nd, flags);
2723 	int err = link_path_walk(s, nd);
2724 	if (!err)
2725 		err = complete_walk(nd);
2726 	if (!err) {
2727 		*parent = nd->path;
2728 		nd->path.mnt = NULL;
2729 		nd->path.dentry = NULL;
2730 	}
2731 	terminate_walk(nd);
2732 	return err;
2733 }
2734 
2735 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2736 static int __filename_parentat(int dfd, struct filename *name,
2737 			       unsigned int flags, struct path *parent,
2738 			       struct qstr *last, int *type,
2739 			       const struct path *root)
2740 {
2741 	int retval;
2742 	struct nameidata nd;
2743 
2744 	if (IS_ERR(name))
2745 		return PTR_ERR(name);
2746 	set_nameidata(&nd, dfd, name, root);
2747 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2748 	if (unlikely(retval == -ECHILD))
2749 		retval = path_parentat(&nd, flags, parent);
2750 	if (unlikely(retval == -ESTALE))
2751 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2752 	if (likely(!retval)) {
2753 		*last = nd.last;
2754 		*type = nd.last_type;
2755 		audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2756 	}
2757 	restore_nameidata();
2758 	return retval;
2759 }
2760 
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2761 static int filename_parentat(int dfd, struct filename *name,
2762 			     unsigned int flags, struct path *parent,
2763 			     struct qstr *last, int *type)
2764 {
2765 	return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2766 }
2767 
2768 /* does lookup, returns the object with parent locked */
__start_removing_path(int dfd,struct filename * name,struct path * path)2769 static struct dentry *__start_removing_path(int dfd, struct filename *name,
2770 					   struct path *path)
2771 {
2772 	struct path parent_path __free(path_put) = {};
2773 	struct dentry *d;
2774 	struct qstr last;
2775 	int type, error;
2776 
2777 	error = filename_parentat(dfd, name, 0, &parent_path, &last, &type);
2778 	if (error)
2779 		return ERR_PTR(error);
2780 	if (unlikely(type != LAST_NORM))
2781 		return ERR_PTR(-EINVAL);
2782 	/* don't fail immediately if it's r/o, at least try to report other errors */
2783 	error = mnt_want_write(parent_path.mnt);
2784 	inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT);
2785 	d = lookup_one_qstr_excl(&last, parent_path.dentry, 0);
2786 	if (IS_ERR(d))
2787 		goto unlock;
2788 	if (error)
2789 		goto fail;
2790 	path->dentry = no_free_ptr(parent_path.dentry);
2791 	path->mnt = no_free_ptr(parent_path.mnt);
2792 	return d;
2793 
2794 fail:
2795 	dput(d);
2796 	d = ERR_PTR(error);
2797 unlock:
2798 	inode_unlock(parent_path.dentry->d_inode);
2799 	if (!error)
2800 		mnt_drop_write(parent_path.mnt);
2801 	return d;
2802 }
2803 
2804 /**
2805  * kern_path_parent: lookup path returning parent and target
2806  * @name: path name
2807  * @path: path to store parent in
2808  *
2809  * The path @name should end with a normal component, not "." or ".." or "/".
2810  * A lookup is performed and if successful the parent information
2811  * is store in @parent and the dentry is returned.
2812  *
2813  * The dentry maybe negative, the parent will be positive.
2814  *
2815  * Returns:  dentry or error.
2816  */
kern_path_parent(const char * name,struct path * path)2817 struct dentry *kern_path_parent(const char *name, struct path *path)
2818 {
2819 	struct path parent_path __free(path_put) = {};
2820 	struct filename *filename __free(putname) = getname_kernel(name);
2821 	struct dentry *d;
2822 	struct qstr last;
2823 	int type, error;
2824 
2825 	error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type);
2826 	if (error)
2827 		return ERR_PTR(error);
2828 	if (unlikely(type != LAST_NORM))
2829 		return ERR_PTR(-EINVAL);
2830 
2831 	d = lookup_noperm_unlocked(&last, parent_path.dentry);
2832 	if (IS_ERR(d))
2833 		return d;
2834 	path->dentry = no_free_ptr(parent_path.dentry);
2835 	path->mnt = no_free_ptr(parent_path.mnt);
2836 	return d;
2837 }
2838 
start_removing_path(const char * name,struct path * path)2839 struct dentry *start_removing_path(const char *name, struct path *path)
2840 {
2841 	struct filename *filename = getname_kernel(name);
2842 	struct dentry *res = __start_removing_path(AT_FDCWD, filename, path);
2843 
2844 	putname(filename);
2845 	return res;
2846 }
2847 
start_removing_user_path_at(int dfd,const char __user * name,struct path * path)2848 struct dentry *start_removing_user_path_at(int dfd,
2849 					   const char __user *name,
2850 					   struct path *path)
2851 {
2852 	struct filename *filename = getname(name);
2853 	struct dentry *res = __start_removing_path(dfd, filename, path);
2854 
2855 	putname(filename);
2856 	return res;
2857 }
2858 EXPORT_SYMBOL(start_removing_user_path_at);
2859 
kern_path(const char * name,unsigned int flags,struct path * path)2860 int kern_path(const char *name, unsigned int flags, struct path *path)
2861 {
2862 	struct filename *filename = getname_kernel(name);
2863 	int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2864 
2865 	putname(filename);
2866 	return ret;
2867 
2868 }
2869 EXPORT_SYMBOL(kern_path);
2870 
2871 /**
2872  * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2873  * @filename: filename structure
2874  * @flags: lookup flags
2875  * @parent: pointer to struct path to fill
2876  * @last: last component
2877  * @type: type of the last component
2878  * @root: pointer to struct path of the base directory
2879  */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2880 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2881 			   struct path *parent, struct qstr *last, int *type,
2882 			   const struct path *root)
2883 {
2884 	return  __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2885 				    type, root);
2886 }
2887 EXPORT_SYMBOL(vfs_path_parent_lookup);
2888 
2889 /**
2890  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2891  * @dentry:  pointer to dentry of the base directory
2892  * @mnt: pointer to vfs mount of the base directory
2893  * @name: pointer to file name
2894  * @flags: lookup flags
2895  * @path: pointer to struct path to fill
2896  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2897 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2898 		    const char *name, unsigned int flags,
2899 		    struct path *path)
2900 {
2901 	struct filename *filename;
2902 	struct path root = {.mnt = mnt, .dentry = dentry};
2903 	int ret;
2904 
2905 	filename = getname_kernel(name);
2906 	/* the first argument of filename_lookup() is ignored with root */
2907 	ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2908 	putname(filename);
2909 	return ret;
2910 }
2911 EXPORT_SYMBOL(vfs_path_lookup);
2912 
lookup_noperm_common(struct qstr * qname,struct dentry * base)2913 static int lookup_noperm_common(struct qstr *qname, struct dentry *base)
2914 {
2915 	const char *name = qname->name;
2916 	u32 len = qname->len;
2917 
2918 	qname->hash = full_name_hash(base, name, len);
2919 	if (!len)
2920 		return -EACCES;
2921 
2922 	if (is_dot_dotdot(name, len))
2923 		return -EACCES;
2924 
2925 	while (len--) {
2926 		unsigned int c = *(const unsigned char *)name++;
2927 		if (c == '/' || c == '\0')
2928 			return -EACCES;
2929 	}
2930 	/*
2931 	 * See if the low-level filesystem might want
2932 	 * to use its own hash..
2933 	 */
2934 	if (base->d_flags & DCACHE_OP_HASH) {
2935 		int err = base->d_op->d_hash(base, qname);
2936 		if (err < 0)
2937 			return err;
2938 	}
2939 	return 0;
2940 }
2941 
lookup_one_common(struct mnt_idmap * idmap,struct qstr * qname,struct dentry * base)2942 static int lookup_one_common(struct mnt_idmap *idmap,
2943 			     struct qstr *qname, struct dentry *base)
2944 {
2945 	int err;
2946 	err = lookup_noperm_common(qname, base);
2947 	if (err < 0)
2948 		return err;
2949 	return inode_permission(idmap, base->d_inode, MAY_EXEC);
2950 }
2951 
2952 /**
2953  * try_lookup_noperm - filesystem helper to lookup single pathname component
2954  * @name:	qstr storing pathname component to lookup
2955  * @base:	base directory to lookup from
2956  *
2957  * Look up a dentry by name in the dcache, returning NULL if it does not
2958  * currently exist.  The function does not try to create a dentry and if one
2959  * is found it doesn't try to revalidate it.
2960  *
2961  * Note that this routine is purely a helper for filesystem usage and should
2962  * not be called by generic code.  It does no permission checking.
2963  *
2964  * No locks need be held - only a counted reference to @base is needed.
2965  *
2966  */
try_lookup_noperm(struct qstr * name,struct dentry * base)2967 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base)
2968 {
2969 	int err;
2970 
2971 	err = lookup_noperm_common(name, base);
2972 	if (err)
2973 		return ERR_PTR(err);
2974 
2975 	return d_lookup(base, name);
2976 }
2977 EXPORT_SYMBOL(try_lookup_noperm);
2978 
2979 /**
2980  * lookup_noperm - filesystem helper to lookup single pathname component
2981  * @name:	qstr storing pathname component to lookup
2982  * @base:	base directory to lookup from
2983  *
2984  * Note that this routine is purely a helper for filesystem usage and should
2985  * not be called by generic code.  It does no permission checking.
2986  *
2987  * The caller must hold base->i_rwsem.
2988  */
lookup_noperm(struct qstr * name,struct dentry * base)2989 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base)
2990 {
2991 	struct dentry *dentry;
2992 	int err;
2993 
2994 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2995 
2996 	err = lookup_noperm_common(name, base);
2997 	if (err)
2998 		return ERR_PTR(err);
2999 
3000 	dentry = lookup_dcache(name, base, 0);
3001 	return dentry ? dentry : __lookup_slow(name, base, 0);
3002 }
3003 EXPORT_SYMBOL(lookup_noperm);
3004 
3005 /**
3006  * lookup_one - lookup single pathname component
3007  * @idmap:	idmap of the mount the lookup is performed from
3008  * @name:	qstr holding pathname component to lookup
3009  * @base:	base directory to lookup from
3010  *
3011  * This can be used for in-kernel filesystem clients such as file servers.
3012  *
3013  * The caller must hold base->i_rwsem.
3014  */
lookup_one(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3015 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name,
3016 			  struct dentry *base)
3017 {
3018 	struct dentry *dentry;
3019 	int err;
3020 
3021 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
3022 
3023 	err = lookup_one_common(idmap, name, base);
3024 	if (err)
3025 		return ERR_PTR(err);
3026 
3027 	dentry = lookup_dcache(name, base, 0);
3028 	return dentry ? dentry : __lookup_slow(name, base, 0);
3029 }
3030 EXPORT_SYMBOL(lookup_one);
3031 
3032 /**
3033  * lookup_one_unlocked - lookup single pathname component
3034  * @idmap:	idmap of the mount the lookup is performed from
3035  * @name:	qstr olding pathname component to lookup
3036  * @base:	base directory to lookup from
3037  *
3038  * This can be used for in-kernel filesystem clients such as file servers.
3039  *
3040  * Unlike lookup_one, it should be called without the parent
3041  * i_rwsem held, and will take the i_rwsem itself if necessary.
3042  */
lookup_one_unlocked(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3043 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name,
3044 				   struct dentry *base)
3045 {
3046 	int err;
3047 	struct dentry *ret;
3048 
3049 	err = lookup_one_common(idmap, name, base);
3050 	if (err)
3051 		return ERR_PTR(err);
3052 
3053 	ret = lookup_dcache(name, base, 0);
3054 	if (!ret)
3055 		ret = lookup_slow(name, base, 0);
3056 	return ret;
3057 }
3058 EXPORT_SYMBOL(lookup_one_unlocked);
3059 
3060 /**
3061  * lookup_one_positive_killable - lookup single pathname component
3062  * @idmap:	idmap of the mount the lookup is performed from
3063  * @name:	qstr olding pathname component to lookup
3064  * @base:	base directory to lookup from
3065  *
3066  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3067  * known positive or ERR_PTR(). This is what most of the users want.
3068  *
3069  * Note that pinned negative with unlocked parent _can_ become positive at any
3070  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3071  * positives have >d_inode stable, so this one avoids such problems.
3072  *
3073  * This can be used for in-kernel filesystem clients such as file servers.
3074  *
3075  * It should be called without the parent i_rwsem held, and will take
3076  * the i_rwsem itself if necessary.  If a fatal signal is pending or
3077  * delivered, it will return %-EINTR if the lock is needed.
3078  */
lookup_one_positive_killable(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3079 struct dentry *lookup_one_positive_killable(struct mnt_idmap *idmap,
3080 					    struct qstr *name,
3081 					    struct dentry *base)
3082 {
3083 	int err;
3084 	struct dentry *ret;
3085 
3086 	err = lookup_one_common(idmap, name, base);
3087 	if (err)
3088 		return ERR_PTR(err);
3089 
3090 	ret = lookup_dcache(name, base, 0);
3091 	if (!ret)
3092 		ret = lookup_slow_killable(name, base, 0);
3093 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3094 		dput(ret);
3095 		ret = ERR_PTR(-ENOENT);
3096 	}
3097 	return ret;
3098 }
3099 EXPORT_SYMBOL(lookup_one_positive_killable);
3100 
3101 /**
3102  * lookup_one_positive_unlocked - lookup single pathname component
3103  * @idmap:	idmap of the mount the lookup is performed from
3104  * @name:	qstr holding pathname component to lookup
3105  * @base:	base directory to lookup from
3106  *
3107  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3108  * known positive or ERR_PTR(). This is what most of the users want.
3109  *
3110  * Note that pinned negative with unlocked parent _can_ become positive at any
3111  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3112  * positives have >d_inode stable, so this one avoids such problems.
3113  *
3114  * This can be used for in-kernel filesystem clients such as file servers.
3115  *
3116  * The helper should be called without i_rwsem held.
3117  */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3118 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3119 					    struct qstr *name,
3120 					    struct dentry *base)
3121 {
3122 	struct dentry *ret = lookup_one_unlocked(idmap, name, base);
3123 
3124 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3125 		dput(ret);
3126 		ret = ERR_PTR(-ENOENT);
3127 	}
3128 	return ret;
3129 }
3130 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3131 
3132 /**
3133  * lookup_noperm_unlocked - filesystem helper to lookup single pathname component
3134  * @name:	pathname component to lookup
3135  * @base:	base directory to lookup from
3136  *
3137  * Note that this routine is purely a helper for filesystem usage and should
3138  * not be called by generic code. It does no permission checking.
3139  *
3140  * Unlike lookup_noperm(), it should be called without the parent
3141  * i_rwsem held, and will take the i_rwsem itself if necessary.
3142  *
3143  * Unlike try_lookup_noperm() it *does* revalidate the dentry if it already
3144  * existed.
3145  */
lookup_noperm_unlocked(struct qstr * name,struct dentry * base)3146 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base)
3147 {
3148 	struct dentry *ret;
3149 	int err;
3150 
3151 	err = lookup_noperm_common(name, base);
3152 	if (err)
3153 		return ERR_PTR(err);
3154 
3155 	ret = lookup_dcache(name, base, 0);
3156 	if (!ret)
3157 		ret = lookup_slow(name, base, 0);
3158 	return ret;
3159 }
3160 EXPORT_SYMBOL(lookup_noperm_unlocked);
3161 
3162 /*
3163  * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT)
3164  * on negatives.  Returns known positive or ERR_PTR(); that's what
3165  * most of the users want.  Note that pinned negative with unlocked parent
3166  * _can_ become positive at any time, so callers of lookup_noperm_unlocked()
3167  * need to be very careful; pinned positives have ->d_inode stable, so
3168  * this one avoids such problems.
3169  */
lookup_noperm_positive_unlocked(struct qstr * name,struct dentry * base)3170 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name,
3171 					       struct dentry *base)
3172 {
3173 	struct dentry *ret;
3174 
3175 	ret = lookup_noperm_unlocked(name, base);
3176 	if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3177 		dput(ret);
3178 		ret = ERR_PTR(-ENOENT);
3179 	}
3180 	return ret;
3181 }
3182 EXPORT_SYMBOL(lookup_noperm_positive_unlocked);
3183 
3184 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)3185 int path_pts(struct path *path)
3186 {
3187 	/* Find something mounted on "pts" in the same directory as
3188 	 * the input path.
3189 	 */
3190 	struct dentry *parent = dget_parent(path->dentry);
3191 	struct dentry *child;
3192 	struct qstr this = QSTR_INIT("pts", 3);
3193 
3194 	if (unlikely(!path_connected(path->mnt, parent))) {
3195 		dput(parent);
3196 		return -ENOENT;
3197 	}
3198 	dput(path->dentry);
3199 	path->dentry = parent;
3200 	child = d_hash_and_lookup(parent, &this);
3201 	if (IS_ERR_OR_NULL(child))
3202 		return -ENOENT;
3203 
3204 	path->dentry = child;
3205 	dput(parent);
3206 	follow_down(path, 0);
3207 	return 0;
3208 }
3209 #endif
3210 
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3211 int user_path_at(int dfd, const char __user *name, unsigned flags,
3212 		 struct path *path)
3213 {
3214 	struct filename *filename = getname_flags(name, flags);
3215 	int ret = filename_lookup(dfd, filename, flags, path, NULL);
3216 
3217 	putname(filename);
3218 	return ret;
3219 }
3220 EXPORT_SYMBOL(user_path_at);
3221 
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3222 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3223 		   struct inode *inode)
3224 {
3225 	kuid_t fsuid = current_fsuid();
3226 
3227 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3228 		return 0;
3229 	if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3230 		return 0;
3231 	return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3232 }
3233 EXPORT_SYMBOL(__check_sticky);
3234 
3235 /*
3236  *	Check whether we can remove a link victim from directory dir, check
3237  *  whether the type of victim is right.
3238  *  1. We can't do it if dir is read-only (done in permission())
3239  *  2. We should have write and exec permissions on dir
3240  *  3. We can't remove anything from append-only dir
3241  *  4. We can't do anything with immutable dir (done in permission())
3242  *  5. If the sticky bit on dir is set we should either
3243  *	a. be owner of dir, or
3244  *	b. be owner of victim, or
3245  *	c. have CAP_FOWNER capability
3246  *  6. If the victim is append-only or immutable we can't do antyhing with
3247  *     links pointing to it.
3248  *  7. If the victim has an unknown uid or gid we can't change the inode.
3249  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3250  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3251  * 10. We can't remove a root or mountpoint.
3252  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3253  *     nfs_async_unlink().
3254  */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3255 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3256 		      struct dentry *victim, bool isdir)
3257 {
3258 	struct inode *inode = d_backing_inode(victim);
3259 	int error;
3260 
3261 	if (d_is_negative(victim))
3262 		return -ENOENT;
3263 	BUG_ON(!inode);
3264 
3265 	BUG_ON(victim->d_parent->d_inode != dir);
3266 
3267 	/* Inode writeback is not safe when the uid or gid are invalid. */
3268 	if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3269 	    !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3270 		return -EOVERFLOW;
3271 
3272 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3273 
3274 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3275 	if (error)
3276 		return error;
3277 	if (IS_APPEND(dir))
3278 		return -EPERM;
3279 
3280 	if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3281 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3282 	    HAS_UNMAPPED_ID(idmap, inode))
3283 		return -EPERM;
3284 	if (isdir) {
3285 		if (!d_is_dir(victim))
3286 			return -ENOTDIR;
3287 		if (IS_ROOT(victim))
3288 			return -EBUSY;
3289 	} else if (d_is_dir(victim))
3290 		return -EISDIR;
3291 	if (IS_DEADDIR(dir))
3292 		return -ENOENT;
3293 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3294 		return -EBUSY;
3295 	return 0;
3296 }
3297 
3298 /*	Check whether we can create an object with dentry child in directory
3299  *  dir.
3300  *  1. We can't do it if child already exists (open has special treatment for
3301  *     this case, but since we are inlined it's OK)
3302  *  2. We can't do it if dir is read-only (done in permission())
3303  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
3304  *  4. We should have write and exec permissions on dir
3305  *  5. We can't do it if dir is immutable (done in permission())
3306  */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3307 static inline int may_create(struct mnt_idmap *idmap,
3308 			     struct inode *dir, struct dentry *child)
3309 {
3310 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3311 	if (child->d_inode)
3312 		return -EEXIST;
3313 	if (IS_DEADDIR(dir))
3314 		return -ENOENT;
3315 	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3316 		return -EOVERFLOW;
3317 
3318 	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3319 }
3320 
3321 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3322 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3323 {
3324 	struct dentry *p = p1, *q = p2, *r;
3325 
3326 	while ((r = p->d_parent) != p2 && r != p)
3327 		p = r;
3328 	if (r == p2) {
3329 		// p is a child of p2 and an ancestor of p1 or p1 itself
3330 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3331 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3332 		return p;
3333 	}
3334 	// p is the root of connected component that contains p1
3335 	// p2 does not occur on the path from p to p1
3336 	while ((r = q->d_parent) != p1 && r != p && r != q)
3337 		q = r;
3338 	if (r == p1) {
3339 		// q is a child of p1 and an ancestor of p2 or p2 itself
3340 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3341 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3342 		return q;
3343 	} else if (likely(r == p)) {
3344 		// both p2 and p1 are descendents of p
3345 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3346 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3347 		return NULL;
3348 	} else { // no common ancestor at the time we'd been called
3349 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3350 		return ERR_PTR(-EXDEV);
3351 	}
3352 }
3353 
3354 /*
3355  * p1 and p2 should be directories on the same fs.
3356  */
lock_rename(struct dentry * p1,struct dentry * p2)3357 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3358 {
3359 	if (p1 == p2) {
3360 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3361 		return NULL;
3362 	}
3363 
3364 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3365 	return lock_two_directories(p1, p2);
3366 }
3367 EXPORT_SYMBOL(lock_rename);
3368 
3369 /*
3370  * c1 and p2 should be on the same fs.
3371  */
lock_rename_child(struct dentry * c1,struct dentry * p2)3372 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3373 {
3374 	if (READ_ONCE(c1->d_parent) == p2) {
3375 		/*
3376 		 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3377 		 */
3378 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3379 		/*
3380 		 * now that p2 is locked, nobody can move in or out of it,
3381 		 * so the test below is safe.
3382 		 */
3383 		if (likely(c1->d_parent == p2))
3384 			return NULL;
3385 
3386 		/*
3387 		 * c1 got moved out of p2 while we'd been taking locks;
3388 		 * unlock and fall back to slow case.
3389 		 */
3390 		inode_unlock(p2->d_inode);
3391 	}
3392 
3393 	mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3394 	/*
3395 	 * nobody can move out of any directories on this fs.
3396 	 */
3397 	if (likely(c1->d_parent != p2))
3398 		return lock_two_directories(c1->d_parent, p2);
3399 
3400 	/*
3401 	 * c1 got moved into p2 while we were taking locks;
3402 	 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3403 	 * for consistency with lock_rename().
3404 	 */
3405 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3406 	mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3407 	return NULL;
3408 }
3409 EXPORT_SYMBOL(lock_rename_child);
3410 
unlock_rename(struct dentry * p1,struct dentry * p2)3411 void unlock_rename(struct dentry *p1, struct dentry *p2)
3412 {
3413 	inode_unlock(p1->d_inode);
3414 	if (p1 != p2) {
3415 		inode_unlock(p2->d_inode);
3416 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3417 	}
3418 }
3419 EXPORT_SYMBOL(unlock_rename);
3420 
3421 /**
3422  * vfs_prepare_mode - prepare the mode to be used for a new inode
3423  * @idmap:	idmap of the mount the inode was found from
3424  * @dir:	parent directory of the new inode
3425  * @mode:	mode of the new inode
3426  * @mask_perms:	allowed permission by the vfs
3427  * @type:	type of file to be created
3428  *
3429  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3430  * object to be created.
3431  *
3432  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3433  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3434  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3435  * POSIX ACL supporting filesystems.
3436  *
3437  * Note that it's currently valid for @type to be 0 if a directory is created.
3438  * Filesystems raise that flag individually and we need to check whether each
3439  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3440  * non-zero type.
3441  *
3442  * Returns: mode to be passed to the filesystem
3443  */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3444 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3445 				       const struct inode *dir, umode_t mode,
3446 				       umode_t mask_perms, umode_t type)
3447 {
3448 	mode = mode_strip_sgid(idmap, dir, mode);
3449 	mode = mode_strip_umask(dir, mode);
3450 
3451 	/*
3452 	 * Apply the vfs mandated allowed permission mask and set the type of
3453 	 * file to be created before we call into the filesystem.
3454 	 */
3455 	mode &= (mask_perms & ~S_IFMT);
3456 	mode |= (type & S_IFMT);
3457 
3458 	return mode;
3459 }
3460 
3461 /**
3462  * vfs_create - create new file
3463  * @idmap:	idmap of the mount the inode was found from
3464  * @dir:	inode of the parent directory
3465  * @dentry:	dentry of the child file
3466  * @mode:	mode of the child file
3467  * @want_excl:	whether the file must not yet exist
3468  *
3469  * Create a new file.
3470  *
3471  * If the inode has been found through an idmapped mount the idmap of
3472  * the vfsmount must be passed through @idmap. This function will then take
3473  * care to map the inode according to @idmap before checking permissions.
3474  * On non-idmapped mounts or if permission checking is to be performed on the
3475  * raw inode simply pass @nop_mnt_idmap.
3476  */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3477 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3478 	       struct dentry *dentry, umode_t mode, bool want_excl)
3479 {
3480 	int error;
3481 
3482 	error = may_create(idmap, dir, dentry);
3483 	if (error)
3484 		return error;
3485 
3486 	if (!dir->i_op->create)
3487 		return -EACCES;	/* shouldn't it be ENOSYS? */
3488 
3489 	mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3490 	error = security_inode_create(dir, dentry, mode);
3491 	if (error)
3492 		return error;
3493 	error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3494 	if (!error)
3495 		fsnotify_create(dir, dentry);
3496 	return error;
3497 }
3498 EXPORT_SYMBOL(vfs_create);
3499 
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3500 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3501 		int (*f)(struct dentry *, umode_t, void *),
3502 		void *arg)
3503 {
3504 	struct inode *dir = dentry->d_parent->d_inode;
3505 	int error = may_create(&nop_mnt_idmap, dir, dentry);
3506 	if (error)
3507 		return error;
3508 
3509 	mode &= S_IALLUGO;
3510 	mode |= S_IFREG;
3511 	error = security_inode_create(dir, dentry, mode);
3512 	if (error)
3513 		return error;
3514 	error = f(dentry, mode, arg);
3515 	if (!error)
3516 		fsnotify_create(dir, dentry);
3517 	return error;
3518 }
3519 EXPORT_SYMBOL(vfs_mkobj);
3520 
may_open_dev(const struct path * path)3521 bool may_open_dev(const struct path *path)
3522 {
3523 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
3524 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3525 }
3526 
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3527 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3528 		    int acc_mode, int flag)
3529 {
3530 	struct dentry *dentry = path->dentry;
3531 	struct inode *inode = dentry->d_inode;
3532 	int error;
3533 
3534 	if (!inode)
3535 		return -ENOENT;
3536 
3537 	switch (inode->i_mode & S_IFMT) {
3538 	case S_IFLNK:
3539 		return -ELOOP;
3540 	case S_IFDIR:
3541 		if (acc_mode & MAY_WRITE)
3542 			return -EISDIR;
3543 		if (acc_mode & MAY_EXEC)
3544 			return -EACCES;
3545 		break;
3546 	case S_IFBLK:
3547 	case S_IFCHR:
3548 		if (!may_open_dev(path))
3549 			return -EACCES;
3550 		fallthrough;
3551 	case S_IFIFO:
3552 	case S_IFSOCK:
3553 		if (acc_mode & MAY_EXEC)
3554 			return -EACCES;
3555 		flag &= ~O_TRUNC;
3556 		break;
3557 	case S_IFREG:
3558 		if ((acc_mode & MAY_EXEC) && path_noexec(path))
3559 			return -EACCES;
3560 		break;
3561 	default:
3562 		VFS_BUG_ON_INODE(!IS_ANON_FILE(inode), inode);
3563 	}
3564 
3565 	error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3566 	if (error)
3567 		return error;
3568 
3569 	/*
3570 	 * An append-only file must be opened in append mode for writing.
3571 	 */
3572 	if (IS_APPEND(inode)) {
3573 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3574 			return -EPERM;
3575 		if (flag & O_TRUNC)
3576 			return -EPERM;
3577 	}
3578 
3579 	/* O_NOATIME can only be set by the owner or superuser */
3580 	if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3581 		return -EPERM;
3582 
3583 	return 0;
3584 }
3585 
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3586 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3587 {
3588 	const struct path *path = &filp->f_path;
3589 	struct inode *inode = path->dentry->d_inode;
3590 	int error = get_write_access(inode);
3591 	if (error)
3592 		return error;
3593 
3594 	error = security_file_truncate(filp);
3595 	if (!error) {
3596 		error = do_truncate(idmap, path->dentry, 0,
3597 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3598 				    filp);
3599 	}
3600 	put_write_access(inode);
3601 	return error;
3602 }
3603 
open_to_namei_flags(int flag)3604 static inline int open_to_namei_flags(int flag)
3605 {
3606 	if ((flag & O_ACCMODE) == 3)
3607 		flag--;
3608 	return flag;
3609 }
3610 
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3611 static int may_o_create(struct mnt_idmap *idmap,
3612 			const struct path *dir, struct dentry *dentry,
3613 			umode_t mode)
3614 {
3615 	int error = security_path_mknod(dir, dentry, mode, 0);
3616 	if (error)
3617 		return error;
3618 
3619 	if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3620 		return -EOVERFLOW;
3621 
3622 	error = inode_permission(idmap, dir->dentry->d_inode,
3623 				 MAY_WRITE | MAY_EXEC);
3624 	if (error)
3625 		return error;
3626 
3627 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3628 }
3629 
3630 /*
3631  * Attempt to atomically look up, create and open a file from a negative
3632  * dentry.
3633  *
3634  * Returns 0 if successful.  The file will have been created and attached to
3635  * @file by the filesystem calling finish_open().
3636  *
3637  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3638  * be set.  The caller will need to perform the open themselves.  @path will
3639  * have been updated to point to the new dentry.  This may be negative.
3640  *
3641  * Returns an error code otherwise.
3642  */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3643 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3644 				  struct file *file,
3645 				  int open_flag, umode_t mode)
3646 {
3647 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3648 	struct inode *dir =  nd->path.dentry->d_inode;
3649 	int error;
3650 
3651 	if (nd->flags & LOOKUP_DIRECTORY)
3652 		open_flag |= O_DIRECTORY;
3653 
3654 	file->__f_path.dentry = DENTRY_NOT_SET;
3655 	file->__f_path.mnt = nd->path.mnt;
3656 	error = dir->i_op->atomic_open(dir, dentry, file,
3657 				       open_to_namei_flags(open_flag), mode);
3658 	d_lookup_done(dentry);
3659 	if (!error) {
3660 		if (file->f_mode & FMODE_OPENED) {
3661 			if (unlikely(dentry != file->f_path.dentry)) {
3662 				dput(dentry);
3663 				dentry = dget(file->f_path.dentry);
3664 			}
3665 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3666 			error = -EIO;
3667 		} else {
3668 			if (file->f_path.dentry) {
3669 				dput(dentry);
3670 				dentry = file->f_path.dentry;
3671 			}
3672 			if (unlikely(d_is_negative(dentry)))
3673 				error = -ENOENT;
3674 		}
3675 	}
3676 	if (error) {
3677 		dput(dentry);
3678 		dentry = ERR_PTR(error);
3679 	}
3680 	return dentry;
3681 }
3682 
3683 /*
3684  * Look up and maybe create and open the last component.
3685  *
3686  * Must be called with parent locked (exclusive in O_CREAT case).
3687  *
3688  * Returns 0 on success, that is, if
3689  *  the file was successfully atomically created (if necessary) and opened, or
3690  *  the file was not completely opened at this time, though lookups and
3691  *  creations were performed.
3692  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3693  * In the latter case dentry returned in @path might be negative if O_CREAT
3694  * hadn't been specified.
3695  *
3696  * An error code is returned on failure.
3697  */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3698 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3699 				  const struct open_flags *op,
3700 				  bool got_write)
3701 {
3702 	struct mnt_idmap *idmap;
3703 	struct dentry *dir = nd->path.dentry;
3704 	struct inode *dir_inode = dir->d_inode;
3705 	int open_flag = op->open_flag;
3706 	struct dentry *dentry;
3707 	int error, create_error = 0;
3708 	umode_t mode = op->mode;
3709 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3710 
3711 	if (unlikely(IS_DEADDIR(dir_inode)))
3712 		return ERR_PTR(-ENOENT);
3713 
3714 	file->f_mode &= ~FMODE_CREATED;
3715 	dentry = d_lookup(dir, &nd->last);
3716 	for (;;) {
3717 		if (!dentry) {
3718 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3719 			if (IS_ERR(dentry))
3720 				return dentry;
3721 		}
3722 		if (d_in_lookup(dentry))
3723 			break;
3724 
3725 		error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
3726 		if (likely(error > 0))
3727 			break;
3728 		if (error)
3729 			goto out_dput;
3730 		d_invalidate(dentry);
3731 		dput(dentry);
3732 		dentry = NULL;
3733 	}
3734 	if (dentry->d_inode) {
3735 		/* Cached positive dentry: will open in f_op->open */
3736 		return dentry;
3737 	}
3738 
3739 	if (open_flag & O_CREAT)
3740 		audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3741 
3742 	/*
3743 	 * Checking write permission is tricky, bacuse we don't know if we are
3744 	 * going to actually need it: O_CREAT opens should work as long as the
3745 	 * file exists.  But checking existence breaks atomicity.  The trick is
3746 	 * to check access and if not granted clear O_CREAT from the flags.
3747 	 *
3748 	 * Another problem is returing the "right" error value (e.g. for an
3749 	 * O_EXCL open we want to return EEXIST not EROFS).
3750 	 */
3751 	if (unlikely(!got_write))
3752 		open_flag &= ~O_TRUNC;
3753 	idmap = mnt_idmap(nd->path.mnt);
3754 	if (open_flag & O_CREAT) {
3755 		if (open_flag & O_EXCL)
3756 			open_flag &= ~O_TRUNC;
3757 		mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3758 		if (likely(got_write))
3759 			create_error = may_o_create(idmap, &nd->path,
3760 						    dentry, mode);
3761 		else
3762 			create_error = -EROFS;
3763 	}
3764 	if (create_error)
3765 		open_flag &= ~O_CREAT;
3766 	if (dir_inode->i_op->atomic_open) {
3767 		dentry = atomic_open(nd, dentry, file, open_flag, mode);
3768 		if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3769 			dentry = ERR_PTR(create_error);
3770 		return dentry;
3771 	}
3772 
3773 	if (d_in_lookup(dentry)) {
3774 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3775 							     nd->flags);
3776 		d_lookup_done(dentry);
3777 		if (unlikely(res)) {
3778 			if (IS_ERR(res)) {
3779 				error = PTR_ERR(res);
3780 				goto out_dput;
3781 			}
3782 			dput(dentry);
3783 			dentry = res;
3784 		}
3785 	}
3786 
3787 	/* Negative dentry, just create the file */
3788 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3789 		file->f_mode |= FMODE_CREATED;
3790 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3791 		if (!dir_inode->i_op->create) {
3792 			error = -EACCES;
3793 			goto out_dput;
3794 		}
3795 
3796 		error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3797 						mode, open_flag & O_EXCL);
3798 		if (error)
3799 			goto out_dput;
3800 	}
3801 	if (unlikely(create_error) && !dentry->d_inode) {
3802 		error = create_error;
3803 		goto out_dput;
3804 	}
3805 	return dentry;
3806 
3807 out_dput:
3808 	dput(dentry);
3809 	return ERR_PTR(error);
3810 }
3811 
trailing_slashes(struct nameidata * nd)3812 static inline bool trailing_slashes(struct nameidata *nd)
3813 {
3814 	return (bool)nd->last.name[nd->last.len];
3815 }
3816 
lookup_fast_for_open(struct nameidata * nd,int open_flag)3817 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3818 {
3819 	struct dentry *dentry;
3820 
3821 	if (open_flag & O_CREAT) {
3822 		if (trailing_slashes(nd))
3823 			return ERR_PTR(-EISDIR);
3824 
3825 		/* Don't bother on an O_EXCL create */
3826 		if (open_flag & O_EXCL)
3827 			return NULL;
3828 	}
3829 
3830 	if (trailing_slashes(nd))
3831 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3832 
3833 	dentry = lookup_fast(nd);
3834 	if (IS_ERR_OR_NULL(dentry))
3835 		return dentry;
3836 
3837 	if (open_flag & O_CREAT) {
3838 		/* Discard negative dentries. Need inode_lock to do the create */
3839 		if (!dentry->d_inode) {
3840 			if (!(nd->flags & LOOKUP_RCU))
3841 				dput(dentry);
3842 			dentry = NULL;
3843 		}
3844 	}
3845 	return dentry;
3846 }
3847 
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3848 static const char *open_last_lookups(struct nameidata *nd,
3849 		   struct file *file, const struct open_flags *op)
3850 {
3851 	struct dentry *dir = nd->path.dentry;
3852 	int open_flag = op->open_flag;
3853 	bool got_write = false;
3854 	struct dentry *dentry;
3855 	const char *res;
3856 
3857 	nd->flags |= op->intent;
3858 
3859 	if (nd->last_type != LAST_NORM) {
3860 		if (nd->depth)
3861 			put_link(nd);
3862 		return handle_dots(nd, nd->last_type);
3863 	}
3864 
3865 	/* We _can_ be in RCU mode here */
3866 	dentry = lookup_fast_for_open(nd, open_flag);
3867 	if (IS_ERR(dentry))
3868 		return ERR_CAST(dentry);
3869 
3870 	if (likely(dentry))
3871 		goto finish_lookup;
3872 
3873 	if (!(open_flag & O_CREAT)) {
3874 		if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3875 			return ERR_PTR(-ECHILD);
3876 	} else {
3877 		if (nd->flags & LOOKUP_RCU) {
3878 			if (!try_to_unlazy(nd))
3879 				return ERR_PTR(-ECHILD);
3880 		}
3881 	}
3882 
3883 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3884 		got_write = !mnt_want_write(nd->path.mnt);
3885 		/*
3886 		 * do _not_ fail yet - we might not need that or fail with
3887 		 * a different error; let lookup_open() decide; we'll be
3888 		 * dropping this one anyway.
3889 		 */
3890 	}
3891 	if (open_flag & O_CREAT)
3892 		inode_lock(dir->d_inode);
3893 	else
3894 		inode_lock_shared(dir->d_inode);
3895 	dentry = lookup_open(nd, file, op, got_write);
3896 	if (!IS_ERR(dentry)) {
3897 		if (file->f_mode & FMODE_CREATED)
3898 			fsnotify_create(dir->d_inode, dentry);
3899 		if (file->f_mode & FMODE_OPENED)
3900 			fsnotify_open(file);
3901 	}
3902 	if (open_flag & O_CREAT)
3903 		inode_unlock(dir->d_inode);
3904 	else
3905 		inode_unlock_shared(dir->d_inode);
3906 
3907 	if (got_write)
3908 		mnt_drop_write(nd->path.mnt);
3909 
3910 	if (IS_ERR(dentry))
3911 		return ERR_CAST(dentry);
3912 
3913 	if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3914 		dput(nd->path.dentry);
3915 		nd->path.dentry = dentry;
3916 		return NULL;
3917 	}
3918 
3919 finish_lookup:
3920 	if (nd->depth)
3921 		put_link(nd);
3922 	res = step_into(nd, WALK_TRAILING, dentry);
3923 	if (unlikely(res))
3924 		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3925 	return res;
3926 }
3927 
3928 /*
3929  * Handle the last step of open()
3930  */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3931 static int do_open(struct nameidata *nd,
3932 		   struct file *file, const struct open_flags *op)
3933 {
3934 	struct mnt_idmap *idmap;
3935 	int open_flag = op->open_flag;
3936 	bool do_truncate;
3937 	int acc_mode;
3938 	int error;
3939 
3940 	if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3941 		error = complete_walk(nd);
3942 		if (error)
3943 			return error;
3944 	}
3945 	if (!(file->f_mode & FMODE_CREATED))
3946 		audit_inode(nd->name, nd->path.dentry, 0);
3947 	idmap = mnt_idmap(nd->path.mnt);
3948 	if (open_flag & O_CREAT) {
3949 		if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3950 			return -EEXIST;
3951 		if (d_is_dir(nd->path.dentry))
3952 			return -EISDIR;
3953 		error = may_create_in_sticky(idmap, nd,
3954 					     d_backing_inode(nd->path.dentry));
3955 		if (unlikely(error))
3956 			return error;
3957 	}
3958 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3959 		return -ENOTDIR;
3960 
3961 	do_truncate = false;
3962 	acc_mode = op->acc_mode;
3963 	if (file->f_mode & FMODE_CREATED) {
3964 		/* Don't check for write permission, don't truncate */
3965 		open_flag &= ~O_TRUNC;
3966 		acc_mode = 0;
3967 	} else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3968 		error = mnt_want_write(nd->path.mnt);
3969 		if (error)
3970 			return error;
3971 		do_truncate = true;
3972 	}
3973 	error = may_open(idmap, &nd->path, acc_mode, open_flag);
3974 	if (!error && !(file->f_mode & FMODE_OPENED))
3975 		error = vfs_open(&nd->path, file);
3976 	if (!error)
3977 		error = security_file_post_open(file, op->acc_mode);
3978 	if (!error && do_truncate)
3979 		error = handle_truncate(idmap, file);
3980 	if (unlikely(error > 0)) {
3981 		WARN_ON(1);
3982 		error = -EINVAL;
3983 	}
3984 	if (do_truncate)
3985 		mnt_drop_write(nd->path.mnt);
3986 	return error;
3987 }
3988 
3989 /**
3990  * vfs_tmpfile - create tmpfile
3991  * @idmap:	idmap of the mount the inode was found from
3992  * @parentpath:	pointer to the path of the base directory
3993  * @file:	file descriptor of the new tmpfile
3994  * @mode:	mode of the new tmpfile
3995  *
3996  * Create a temporary file.
3997  *
3998  * If the inode has been found through an idmapped mount the idmap of
3999  * the vfsmount must be passed through @idmap. This function will then take
4000  * care to map the inode according to @idmap before checking permissions.
4001  * On non-idmapped mounts or if permission checking is to be performed on the
4002  * raw inode simply pass @nop_mnt_idmap.
4003  */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)4004 int vfs_tmpfile(struct mnt_idmap *idmap,
4005 		const struct path *parentpath,
4006 		struct file *file, umode_t mode)
4007 {
4008 	struct dentry *child;
4009 	struct inode *dir = d_inode(parentpath->dentry);
4010 	struct inode *inode;
4011 	int error;
4012 	int open_flag = file->f_flags;
4013 
4014 	/* we want directory to be writable */
4015 	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
4016 	if (error)
4017 		return error;
4018 	if (!dir->i_op->tmpfile)
4019 		return -EOPNOTSUPP;
4020 	child = d_alloc(parentpath->dentry, &slash_name);
4021 	if (unlikely(!child))
4022 		return -ENOMEM;
4023 	file->__f_path.mnt = parentpath->mnt;
4024 	file->__f_path.dentry = child;
4025 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4026 	error = dir->i_op->tmpfile(idmap, dir, file, mode);
4027 	dput(child);
4028 	if (file->f_mode & FMODE_OPENED)
4029 		fsnotify_open(file);
4030 	if (error)
4031 		return error;
4032 	/* Don't check for other permissions, the inode was just created */
4033 	error = may_open(idmap, &file->f_path, 0, file->f_flags);
4034 	if (error)
4035 		return error;
4036 	inode = file_inode(file);
4037 	if (!(open_flag & O_EXCL)) {
4038 		spin_lock(&inode->i_lock);
4039 		inode->i_state |= I_LINKABLE;
4040 		spin_unlock(&inode->i_lock);
4041 	}
4042 	security_inode_post_create_tmpfile(idmap, inode);
4043 	return 0;
4044 }
4045 
4046 /**
4047  * kernel_tmpfile_open - open a tmpfile for kernel internal use
4048  * @idmap:	idmap of the mount the inode was found from
4049  * @parentpath:	path of the base directory
4050  * @mode:	mode of the new tmpfile
4051  * @open_flag:	flags
4052  * @cred:	credentials for open
4053  *
4054  * Create and open a temporary file.  The file is not accounted in nr_files,
4055  * hence this is only for kernel internal use, and must not be installed into
4056  * file tables or such.
4057  */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)4058 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
4059 				 const struct path *parentpath,
4060 				 umode_t mode, int open_flag,
4061 				 const struct cred *cred)
4062 {
4063 	struct file *file;
4064 	int error;
4065 
4066 	file = alloc_empty_file_noaccount(open_flag, cred);
4067 	if (IS_ERR(file))
4068 		return file;
4069 
4070 	error = vfs_tmpfile(idmap, parentpath, file, mode);
4071 	if (error) {
4072 		fput(file);
4073 		file = ERR_PTR(error);
4074 	}
4075 	return file;
4076 }
4077 EXPORT_SYMBOL(kernel_tmpfile_open);
4078 
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)4079 static int do_tmpfile(struct nameidata *nd, unsigned flags,
4080 		const struct open_flags *op,
4081 		struct file *file)
4082 {
4083 	struct path path;
4084 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
4085 
4086 	if (unlikely(error))
4087 		return error;
4088 	error = mnt_want_write(path.mnt);
4089 	if (unlikely(error))
4090 		goto out;
4091 	error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
4092 	if (error)
4093 		goto out2;
4094 	audit_inode(nd->name, file->f_path.dentry, 0);
4095 out2:
4096 	mnt_drop_write(path.mnt);
4097 out:
4098 	path_put(&path);
4099 	return error;
4100 }
4101 
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)4102 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
4103 {
4104 	struct path path;
4105 	int error = path_lookupat(nd, flags, &path);
4106 	if (!error) {
4107 		audit_inode(nd->name, path.dentry, 0);
4108 		error = vfs_open(&path, file);
4109 		path_put(&path);
4110 	}
4111 	return error;
4112 }
4113 
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)4114 static struct file *path_openat(struct nameidata *nd,
4115 			const struct open_flags *op, unsigned flags)
4116 {
4117 	struct file *file;
4118 	int error;
4119 
4120 	file = alloc_empty_file(op->open_flag, current_cred());
4121 	if (IS_ERR(file))
4122 		return file;
4123 
4124 	if (unlikely(file->f_flags & __O_TMPFILE)) {
4125 		error = do_tmpfile(nd, flags, op, file);
4126 	} else if (unlikely(file->f_flags & O_PATH)) {
4127 		error = do_o_path(nd, flags, file);
4128 	} else {
4129 		const char *s = path_init(nd, flags);
4130 		while (!(error = link_path_walk(s, nd)) &&
4131 		       (s = open_last_lookups(nd, file, op)) != NULL)
4132 			;
4133 		if (!error)
4134 			error = do_open(nd, file, op);
4135 		terminate_walk(nd);
4136 	}
4137 	if (likely(!error)) {
4138 		if (likely(file->f_mode & FMODE_OPENED))
4139 			return file;
4140 		WARN_ON(1);
4141 		error = -EINVAL;
4142 	}
4143 	fput_close(file);
4144 	if (error == -EOPENSTALE) {
4145 		if (flags & LOOKUP_RCU)
4146 			error = -ECHILD;
4147 		else
4148 			error = -ESTALE;
4149 	}
4150 	return ERR_PTR(error);
4151 }
4152 
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)4153 struct file *do_filp_open(int dfd, struct filename *pathname,
4154 		const struct open_flags *op)
4155 {
4156 	struct nameidata nd;
4157 	int flags = op->lookup_flags;
4158 	struct file *filp;
4159 
4160 	set_nameidata(&nd, dfd, pathname, NULL);
4161 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4162 	if (unlikely(filp == ERR_PTR(-ECHILD)))
4163 		filp = path_openat(&nd, op, flags);
4164 	if (unlikely(filp == ERR_PTR(-ESTALE)))
4165 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4166 	restore_nameidata();
4167 	return filp;
4168 }
4169 
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)4170 struct file *do_file_open_root(const struct path *root,
4171 		const char *name, const struct open_flags *op)
4172 {
4173 	struct nameidata nd;
4174 	struct file *file;
4175 	struct filename *filename;
4176 	int flags = op->lookup_flags;
4177 
4178 	if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4179 		return ERR_PTR(-ELOOP);
4180 
4181 	filename = getname_kernel(name);
4182 	if (IS_ERR(filename))
4183 		return ERR_CAST(filename);
4184 
4185 	set_nameidata(&nd, -1, filename, root);
4186 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
4187 	if (unlikely(file == ERR_PTR(-ECHILD)))
4188 		file = path_openat(&nd, op, flags);
4189 	if (unlikely(file == ERR_PTR(-ESTALE)))
4190 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4191 	restore_nameidata();
4192 	putname(filename);
4193 	return file;
4194 }
4195 
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)4196 static struct dentry *filename_create(int dfd, struct filename *name,
4197 				      struct path *path, unsigned int lookup_flags)
4198 {
4199 	struct dentry *dentry = ERR_PTR(-EEXIST);
4200 	struct qstr last;
4201 	bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4202 	unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4203 	unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4204 	int type;
4205 	int error;
4206 
4207 	error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4208 	if (error)
4209 		return ERR_PTR(error);
4210 
4211 	/*
4212 	 * Yucky last component or no last component at all?
4213 	 * (foo/., foo/.., /////)
4214 	 */
4215 	if (unlikely(type != LAST_NORM))
4216 		goto out;
4217 
4218 	/* don't fail immediately if it's r/o, at least try to report other errors */
4219 	error = mnt_want_write(path->mnt);
4220 	/*
4221 	 * Do the final lookup.  Suppress 'create' if there is a trailing
4222 	 * '/', and a directory wasn't requested.
4223 	 */
4224 	if (last.name[last.len] && !want_dir)
4225 		create_flags &= ~LOOKUP_CREATE;
4226 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4227 	dentry = lookup_one_qstr_excl(&last, path->dentry,
4228 				      reval_flag | create_flags);
4229 	if (IS_ERR(dentry))
4230 		goto unlock;
4231 
4232 	if (unlikely(error))
4233 		goto fail;
4234 
4235 	return dentry;
4236 fail:
4237 	dput(dentry);
4238 	dentry = ERR_PTR(error);
4239 unlock:
4240 	inode_unlock(path->dentry->d_inode);
4241 	if (!error)
4242 		mnt_drop_write(path->mnt);
4243 out:
4244 	path_put(path);
4245 	return dentry;
4246 }
4247 
start_creating_path(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4248 struct dentry *start_creating_path(int dfd, const char *pathname,
4249 				   struct path *path, unsigned int lookup_flags)
4250 {
4251 	struct filename *filename = getname_kernel(pathname);
4252 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4253 
4254 	putname(filename);
4255 	return res;
4256 }
4257 EXPORT_SYMBOL(start_creating_path);
4258 
end_creating_path(const struct path * path,struct dentry * dentry)4259 void end_creating_path(const struct path *path, struct dentry *dentry)
4260 {
4261 	if (!IS_ERR(dentry))
4262 		dput(dentry);
4263 	inode_unlock(path->dentry->d_inode);
4264 	mnt_drop_write(path->mnt);
4265 	path_put(path);
4266 }
4267 EXPORT_SYMBOL(end_creating_path);
4268 
start_creating_user_path(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4269 inline struct dentry *start_creating_user_path(
4270 	int dfd, const char __user *pathname,
4271 	struct path *path, unsigned int lookup_flags)
4272 {
4273 	struct filename *filename = getname(pathname);
4274 	struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4275 
4276 	putname(filename);
4277 	return res;
4278 }
4279 EXPORT_SYMBOL(start_creating_user_path);
4280 
4281 /**
4282  * vfs_mknod - create device node or file
4283  * @idmap:	idmap of the mount the inode was found from
4284  * @dir:	inode of the parent directory
4285  * @dentry:	dentry of the child device node
4286  * @mode:	mode of the child device node
4287  * @dev:	device number of device to create
4288  *
4289  * Create a device node or file.
4290  *
4291  * If the inode has been found through an idmapped mount the idmap of
4292  * the vfsmount must be passed through @idmap. This function will then take
4293  * care to map the inode according to @idmap before checking permissions.
4294  * On non-idmapped mounts or if permission checking is to be performed on the
4295  * raw inode simply pass @nop_mnt_idmap.
4296  */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)4297 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4298 	      struct dentry *dentry, umode_t mode, dev_t dev)
4299 {
4300 	bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4301 	int error = may_create(idmap, dir, dentry);
4302 
4303 	if (error)
4304 		return error;
4305 
4306 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4307 	    !capable(CAP_MKNOD))
4308 		return -EPERM;
4309 
4310 	if (!dir->i_op->mknod)
4311 		return -EPERM;
4312 
4313 	mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4314 	error = devcgroup_inode_mknod(mode, dev);
4315 	if (error)
4316 		return error;
4317 
4318 	error = security_inode_mknod(dir, dentry, mode, dev);
4319 	if (error)
4320 		return error;
4321 
4322 	error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4323 	if (!error)
4324 		fsnotify_create(dir, dentry);
4325 	return error;
4326 }
4327 EXPORT_SYMBOL(vfs_mknod);
4328 
may_mknod(umode_t mode)4329 static int may_mknod(umode_t mode)
4330 {
4331 	switch (mode & S_IFMT) {
4332 	case S_IFREG:
4333 	case S_IFCHR:
4334 	case S_IFBLK:
4335 	case S_IFIFO:
4336 	case S_IFSOCK:
4337 	case 0: /* zero mode translates to S_IFREG */
4338 		return 0;
4339 	case S_IFDIR:
4340 		return -EPERM;
4341 	default:
4342 		return -EINVAL;
4343 	}
4344 }
4345 
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4346 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4347 		unsigned int dev)
4348 {
4349 	struct mnt_idmap *idmap;
4350 	struct dentry *dentry;
4351 	struct path path;
4352 	int error;
4353 	unsigned int lookup_flags = 0;
4354 
4355 	error = may_mknod(mode);
4356 	if (error)
4357 		goto out1;
4358 retry:
4359 	dentry = filename_create(dfd, name, &path, lookup_flags);
4360 	error = PTR_ERR(dentry);
4361 	if (IS_ERR(dentry))
4362 		goto out1;
4363 
4364 	error = security_path_mknod(&path, dentry,
4365 			mode_strip_umask(path.dentry->d_inode, mode), dev);
4366 	if (error)
4367 		goto out2;
4368 
4369 	idmap = mnt_idmap(path.mnt);
4370 	switch (mode & S_IFMT) {
4371 		case 0: case S_IFREG:
4372 			error = vfs_create(idmap, path.dentry->d_inode,
4373 					   dentry, mode, true);
4374 			if (!error)
4375 				security_path_post_mknod(idmap, dentry);
4376 			break;
4377 		case S_IFCHR: case S_IFBLK:
4378 			error = vfs_mknod(idmap, path.dentry->d_inode,
4379 					  dentry, mode, new_decode_dev(dev));
4380 			break;
4381 		case S_IFIFO: case S_IFSOCK:
4382 			error = vfs_mknod(idmap, path.dentry->d_inode,
4383 					  dentry, mode, 0);
4384 			break;
4385 	}
4386 out2:
4387 	end_creating_path(&path, dentry);
4388 	if (retry_estale(error, lookup_flags)) {
4389 		lookup_flags |= LOOKUP_REVAL;
4390 		goto retry;
4391 	}
4392 out1:
4393 	putname(name);
4394 	return error;
4395 }
4396 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4397 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4398 		unsigned int, dev)
4399 {
4400 	return do_mknodat(dfd, getname(filename), mode, dev);
4401 }
4402 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4403 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4404 {
4405 	return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4406 }
4407 
4408 /**
4409  * vfs_mkdir - create directory returning correct dentry if possible
4410  * @idmap:	idmap of the mount the inode was found from
4411  * @dir:	inode of the parent directory
4412  * @dentry:	dentry of the child directory
4413  * @mode:	mode of the child directory
4414  *
4415  * Create a directory.
4416  *
4417  * If the inode has been found through an idmapped mount the idmap of
4418  * the vfsmount must be passed through @idmap. This function will then take
4419  * care to map the inode according to @idmap before checking permissions.
4420  * On non-idmapped mounts or if permission checking is to be performed on the
4421  * raw inode simply pass @nop_mnt_idmap.
4422  *
4423  * In the event that the filesystem does not use the *@dentry but leaves it
4424  * negative or unhashes it and possibly splices a different one returning it,
4425  * the original dentry is dput() and the alternate is returned.
4426  *
4427  * In case of an error the dentry is dput() and an ERR_PTR() is returned.
4428  */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4429 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4430 			 struct dentry *dentry, umode_t mode)
4431 {
4432 	int error;
4433 	unsigned max_links = dir->i_sb->s_max_links;
4434 	struct dentry *de;
4435 
4436 	error = may_create(idmap, dir, dentry);
4437 	if (error)
4438 		goto err;
4439 
4440 	error = -EPERM;
4441 	if (!dir->i_op->mkdir)
4442 		goto err;
4443 
4444 	mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4445 	error = security_inode_mkdir(dir, dentry, mode);
4446 	if (error)
4447 		goto err;
4448 
4449 	error = -EMLINK;
4450 	if (max_links && dir->i_nlink >= max_links)
4451 		goto err;
4452 
4453 	de = dir->i_op->mkdir(idmap, dir, dentry, mode);
4454 	error = PTR_ERR(de);
4455 	if (IS_ERR(de))
4456 		goto err;
4457 	if (de) {
4458 		dput(dentry);
4459 		dentry = de;
4460 	}
4461 	fsnotify_mkdir(dir, dentry);
4462 	return dentry;
4463 
4464 err:
4465 	dput(dentry);
4466 	return ERR_PTR(error);
4467 }
4468 EXPORT_SYMBOL(vfs_mkdir);
4469 
do_mkdirat(int dfd,struct filename * name,umode_t mode)4470 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4471 {
4472 	struct dentry *dentry;
4473 	struct path path;
4474 	int error;
4475 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
4476 
4477 retry:
4478 	dentry = filename_create(dfd, name, &path, lookup_flags);
4479 	error = PTR_ERR(dentry);
4480 	if (IS_ERR(dentry))
4481 		goto out_putname;
4482 
4483 	error = security_path_mkdir(&path, dentry,
4484 			mode_strip_umask(path.dentry->d_inode, mode));
4485 	if (!error) {
4486 		dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4487 				  dentry, mode);
4488 		if (IS_ERR(dentry))
4489 			error = PTR_ERR(dentry);
4490 	}
4491 	end_creating_path(&path, dentry);
4492 	if (retry_estale(error, lookup_flags)) {
4493 		lookup_flags |= LOOKUP_REVAL;
4494 		goto retry;
4495 	}
4496 out_putname:
4497 	putname(name);
4498 	return error;
4499 }
4500 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4501 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4502 {
4503 	return do_mkdirat(dfd, getname(pathname), mode);
4504 }
4505 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4506 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4507 {
4508 	return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4509 }
4510 
4511 /**
4512  * vfs_rmdir - remove directory
4513  * @idmap:	idmap of the mount the inode was found from
4514  * @dir:	inode of the parent directory
4515  * @dentry:	dentry of the child directory
4516  *
4517  * Remove a directory.
4518  *
4519  * If the inode has been found through an idmapped mount the idmap of
4520  * the vfsmount must be passed through @idmap. This function will then take
4521  * care to map the inode according to @idmap before checking permissions.
4522  * On non-idmapped mounts or if permission checking is to be performed on the
4523  * raw inode simply pass @nop_mnt_idmap.
4524  */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4525 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4526 		     struct dentry *dentry)
4527 {
4528 	int error = may_delete(idmap, dir, dentry, 1);
4529 
4530 	if (error)
4531 		return error;
4532 
4533 	if (!dir->i_op->rmdir)
4534 		return -EPERM;
4535 
4536 	dget(dentry);
4537 	inode_lock(dentry->d_inode);
4538 
4539 	error = -EBUSY;
4540 	if (is_local_mountpoint(dentry) ||
4541 	    (dentry->d_inode->i_flags & S_KERNEL_FILE))
4542 		goto out;
4543 
4544 	error = security_inode_rmdir(dir, dentry);
4545 	if (error)
4546 		goto out;
4547 
4548 	error = dir->i_op->rmdir(dir, dentry);
4549 	if (error)
4550 		goto out;
4551 
4552 	shrink_dcache_parent(dentry);
4553 	dentry->d_inode->i_flags |= S_DEAD;
4554 	dont_mount(dentry);
4555 	detach_mounts(dentry);
4556 
4557 out:
4558 	inode_unlock(dentry->d_inode);
4559 	dput(dentry);
4560 	if (!error)
4561 		d_delete_notify(dir, dentry);
4562 	return error;
4563 }
4564 EXPORT_SYMBOL(vfs_rmdir);
4565 
do_rmdir(int dfd,struct filename * name)4566 int do_rmdir(int dfd, struct filename *name)
4567 {
4568 	int error;
4569 	struct dentry *dentry;
4570 	struct path path;
4571 	struct qstr last;
4572 	int type;
4573 	unsigned int lookup_flags = 0;
4574 retry:
4575 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4576 	if (error)
4577 		goto exit1;
4578 
4579 	switch (type) {
4580 	case LAST_DOTDOT:
4581 		error = -ENOTEMPTY;
4582 		goto exit2;
4583 	case LAST_DOT:
4584 		error = -EINVAL;
4585 		goto exit2;
4586 	case LAST_ROOT:
4587 		error = -EBUSY;
4588 		goto exit2;
4589 	}
4590 
4591 	error = mnt_want_write(path.mnt);
4592 	if (error)
4593 		goto exit2;
4594 
4595 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4596 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4597 	error = PTR_ERR(dentry);
4598 	if (IS_ERR(dentry))
4599 		goto exit3;
4600 	error = security_path_rmdir(&path, dentry);
4601 	if (error)
4602 		goto exit4;
4603 	error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4604 exit4:
4605 	dput(dentry);
4606 exit3:
4607 	inode_unlock(path.dentry->d_inode);
4608 	mnt_drop_write(path.mnt);
4609 exit2:
4610 	path_put(&path);
4611 	if (retry_estale(error, lookup_flags)) {
4612 		lookup_flags |= LOOKUP_REVAL;
4613 		goto retry;
4614 	}
4615 exit1:
4616 	putname(name);
4617 	return error;
4618 }
4619 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4620 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4621 {
4622 	return do_rmdir(AT_FDCWD, getname(pathname));
4623 }
4624 
4625 /**
4626  * vfs_unlink - unlink a filesystem object
4627  * @idmap:	idmap of the mount the inode was found from
4628  * @dir:	parent directory
4629  * @dentry:	victim
4630  * @delegated_inode: returns victim inode, if the inode is delegated.
4631  *
4632  * The caller must hold dir->i_rwsem exclusively.
4633  *
4634  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4635  * return a reference to the inode in delegated_inode.  The caller
4636  * should then break the delegation on that inode and retry.  Because
4637  * breaking a delegation may take a long time, the caller should drop
4638  * dir->i_rwsem before doing so.
4639  *
4640  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4641  * be appropriate for callers that expect the underlying filesystem not
4642  * to be NFS exported.
4643  *
4644  * If the inode has been found through an idmapped mount the idmap of
4645  * the vfsmount must be passed through @idmap. This function will then take
4646  * care to map the inode according to @idmap before checking permissions.
4647  * On non-idmapped mounts or if permission checking is to be performed on the
4648  * raw inode simply pass @nop_mnt_idmap.
4649  */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4650 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4651 	       struct dentry *dentry, struct inode **delegated_inode)
4652 {
4653 	struct inode *target = dentry->d_inode;
4654 	int error = may_delete(idmap, dir, dentry, 0);
4655 
4656 	if (error)
4657 		return error;
4658 
4659 	if (!dir->i_op->unlink)
4660 		return -EPERM;
4661 
4662 	inode_lock(target);
4663 	if (IS_SWAPFILE(target))
4664 		error = -EPERM;
4665 	else if (is_local_mountpoint(dentry))
4666 		error = -EBUSY;
4667 	else {
4668 		error = security_inode_unlink(dir, dentry);
4669 		if (!error) {
4670 			error = try_break_deleg(target, delegated_inode);
4671 			if (error)
4672 				goto out;
4673 			error = dir->i_op->unlink(dir, dentry);
4674 			if (!error) {
4675 				dont_mount(dentry);
4676 				detach_mounts(dentry);
4677 			}
4678 		}
4679 	}
4680 out:
4681 	inode_unlock(target);
4682 
4683 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4684 	if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4685 		fsnotify_unlink(dir, dentry);
4686 	} else if (!error) {
4687 		fsnotify_link_count(target);
4688 		d_delete_notify(dir, dentry);
4689 	}
4690 
4691 	return error;
4692 }
4693 EXPORT_SYMBOL(vfs_unlink);
4694 
4695 /*
4696  * Make sure that the actual truncation of the file will occur outside its
4697  * directory's i_rwsem.  Truncate can take a long time if there is a lot of
4698  * writeout happening, and we don't want to prevent access to the directory
4699  * while waiting on the I/O.
4700  */
do_unlinkat(int dfd,struct filename * name)4701 int do_unlinkat(int dfd, struct filename *name)
4702 {
4703 	int error;
4704 	struct dentry *dentry;
4705 	struct path path;
4706 	struct qstr last;
4707 	int type;
4708 	struct inode *inode = NULL;
4709 	struct inode *delegated_inode = NULL;
4710 	unsigned int lookup_flags = 0;
4711 retry:
4712 	error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4713 	if (error)
4714 		goto exit1;
4715 
4716 	error = -EISDIR;
4717 	if (type != LAST_NORM)
4718 		goto exit2;
4719 
4720 	error = mnt_want_write(path.mnt);
4721 	if (error)
4722 		goto exit2;
4723 retry_deleg:
4724 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4725 	dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4726 	error = PTR_ERR(dentry);
4727 	if (!IS_ERR(dentry)) {
4728 
4729 		/* Why not before? Because we want correct error value */
4730 		if (last.name[last.len])
4731 			goto slashes;
4732 		inode = dentry->d_inode;
4733 		ihold(inode);
4734 		error = security_path_unlink(&path, dentry);
4735 		if (error)
4736 			goto exit3;
4737 		error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4738 				   dentry, &delegated_inode);
4739 exit3:
4740 		dput(dentry);
4741 	}
4742 	inode_unlock(path.dentry->d_inode);
4743 	if (inode)
4744 		iput(inode);	/* truncate the inode here */
4745 	inode = NULL;
4746 	if (delegated_inode) {
4747 		error = break_deleg_wait(&delegated_inode);
4748 		if (!error)
4749 			goto retry_deleg;
4750 	}
4751 	mnt_drop_write(path.mnt);
4752 exit2:
4753 	path_put(&path);
4754 	if (retry_estale(error, lookup_flags)) {
4755 		lookup_flags |= LOOKUP_REVAL;
4756 		inode = NULL;
4757 		goto retry;
4758 	}
4759 exit1:
4760 	putname(name);
4761 	return error;
4762 
4763 slashes:
4764 	if (d_is_dir(dentry))
4765 		error = -EISDIR;
4766 	else
4767 		error = -ENOTDIR;
4768 	goto exit3;
4769 }
4770 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4771 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4772 {
4773 	if ((flag & ~AT_REMOVEDIR) != 0)
4774 		return -EINVAL;
4775 
4776 	if (flag & AT_REMOVEDIR)
4777 		return do_rmdir(dfd, getname(pathname));
4778 	return do_unlinkat(dfd, getname(pathname));
4779 }
4780 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4781 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4782 {
4783 	return do_unlinkat(AT_FDCWD, getname(pathname));
4784 }
4785 
4786 /**
4787  * vfs_symlink - create symlink
4788  * @idmap:	idmap of the mount the inode was found from
4789  * @dir:	inode of the parent directory
4790  * @dentry:	dentry of the child symlink file
4791  * @oldname:	name of the file to link to
4792  *
4793  * Create a symlink.
4794  *
4795  * If the inode has been found through an idmapped mount the idmap of
4796  * the vfsmount must be passed through @idmap. This function will then take
4797  * care to map the inode according to @idmap before checking permissions.
4798  * On non-idmapped mounts or if permission checking is to be performed on the
4799  * raw inode simply pass @nop_mnt_idmap.
4800  */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4801 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4802 		struct dentry *dentry, const char *oldname)
4803 {
4804 	int error;
4805 
4806 	error = may_create(idmap, dir, dentry);
4807 	if (error)
4808 		return error;
4809 
4810 	if (!dir->i_op->symlink)
4811 		return -EPERM;
4812 
4813 	error = security_inode_symlink(dir, dentry, oldname);
4814 	if (error)
4815 		return error;
4816 
4817 	error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4818 	if (!error)
4819 		fsnotify_create(dir, dentry);
4820 	return error;
4821 }
4822 EXPORT_SYMBOL(vfs_symlink);
4823 
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4824 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4825 {
4826 	int error;
4827 	struct dentry *dentry;
4828 	struct path path;
4829 	unsigned int lookup_flags = 0;
4830 
4831 	if (IS_ERR(from)) {
4832 		error = PTR_ERR(from);
4833 		goto out_putnames;
4834 	}
4835 retry:
4836 	dentry = filename_create(newdfd, to, &path, lookup_flags);
4837 	error = PTR_ERR(dentry);
4838 	if (IS_ERR(dentry))
4839 		goto out_putnames;
4840 
4841 	error = security_path_symlink(&path, dentry, from->name);
4842 	if (!error)
4843 		error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4844 				    dentry, from->name);
4845 	end_creating_path(&path, dentry);
4846 	if (retry_estale(error, lookup_flags)) {
4847 		lookup_flags |= LOOKUP_REVAL;
4848 		goto retry;
4849 	}
4850 out_putnames:
4851 	putname(to);
4852 	putname(from);
4853 	return error;
4854 }
4855 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4856 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4857 		int, newdfd, const char __user *, newname)
4858 {
4859 	return do_symlinkat(getname(oldname), newdfd, getname(newname));
4860 }
4861 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4862 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4863 {
4864 	return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4865 }
4866 
4867 /**
4868  * vfs_link - create a new link
4869  * @old_dentry:	object to be linked
4870  * @idmap:	idmap of the mount
4871  * @dir:	new parent
4872  * @new_dentry:	where to create the new link
4873  * @delegated_inode: returns inode needing a delegation break
4874  *
4875  * The caller must hold dir->i_rwsem exclusively.
4876  *
4877  * If vfs_link discovers a delegation on the to-be-linked file in need
4878  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4879  * inode in delegated_inode.  The caller should then break the delegation
4880  * and retry.  Because breaking a delegation may take a long time, the
4881  * caller should drop the i_rwsem before doing so.
4882  *
4883  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4884  * be appropriate for callers that expect the underlying filesystem not
4885  * to be NFS exported.
4886  *
4887  * If the inode has been found through an idmapped mount the idmap of
4888  * the vfsmount must be passed through @idmap. This function will then take
4889  * care to map the inode according to @idmap before checking permissions.
4890  * On non-idmapped mounts or if permission checking is to be performed on the
4891  * raw inode simply pass @nop_mnt_idmap.
4892  */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4893 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4894 	     struct inode *dir, struct dentry *new_dentry,
4895 	     struct inode **delegated_inode)
4896 {
4897 	struct inode *inode = old_dentry->d_inode;
4898 	unsigned max_links = dir->i_sb->s_max_links;
4899 	int error;
4900 
4901 	if (!inode)
4902 		return -ENOENT;
4903 
4904 	error = may_create(idmap, dir, new_dentry);
4905 	if (error)
4906 		return error;
4907 
4908 	if (dir->i_sb != inode->i_sb)
4909 		return -EXDEV;
4910 
4911 	/*
4912 	 * A link to an append-only or immutable file cannot be created.
4913 	 */
4914 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4915 		return -EPERM;
4916 	/*
4917 	 * Updating the link count will likely cause i_uid and i_gid to
4918 	 * be written back improperly if their true value is unknown to
4919 	 * the vfs.
4920 	 */
4921 	if (HAS_UNMAPPED_ID(idmap, inode))
4922 		return -EPERM;
4923 	if (!dir->i_op->link)
4924 		return -EPERM;
4925 	if (S_ISDIR(inode->i_mode))
4926 		return -EPERM;
4927 
4928 	error = security_inode_link(old_dentry, dir, new_dentry);
4929 	if (error)
4930 		return error;
4931 
4932 	inode_lock(inode);
4933 	/* Make sure we don't allow creating hardlink to an unlinked file */
4934 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4935 		error =  -ENOENT;
4936 	else if (max_links && inode->i_nlink >= max_links)
4937 		error = -EMLINK;
4938 	else {
4939 		error = try_break_deleg(inode, delegated_inode);
4940 		if (!error)
4941 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4942 	}
4943 
4944 	if (!error && (inode->i_state & I_LINKABLE)) {
4945 		spin_lock(&inode->i_lock);
4946 		inode->i_state &= ~I_LINKABLE;
4947 		spin_unlock(&inode->i_lock);
4948 	}
4949 	inode_unlock(inode);
4950 	if (!error)
4951 		fsnotify_link(dir, inode, new_dentry);
4952 	return error;
4953 }
4954 EXPORT_SYMBOL(vfs_link);
4955 
4956 /*
4957  * Hardlinks are often used in delicate situations.  We avoid
4958  * security-related surprises by not following symlinks on the
4959  * newname.  --KAB
4960  *
4961  * We don't follow them on the oldname either to be compatible
4962  * with linux 2.0, and to avoid hard-linking to directories
4963  * and other special files.  --ADM
4964  */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4965 int do_linkat(int olddfd, struct filename *old, int newdfd,
4966 	      struct filename *new, int flags)
4967 {
4968 	struct mnt_idmap *idmap;
4969 	struct dentry *new_dentry;
4970 	struct path old_path, new_path;
4971 	struct inode *delegated_inode = NULL;
4972 	int how = 0;
4973 	int error;
4974 
4975 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4976 		error = -EINVAL;
4977 		goto out_putnames;
4978 	}
4979 	/*
4980 	 * To use null names we require CAP_DAC_READ_SEARCH or
4981 	 * that the open-time creds of the dfd matches current.
4982 	 * This ensures that not everyone will be able to create
4983 	 * a hardlink using the passed file descriptor.
4984 	 */
4985 	if (flags & AT_EMPTY_PATH)
4986 		how |= LOOKUP_LINKAT_EMPTY;
4987 
4988 	if (flags & AT_SYMLINK_FOLLOW)
4989 		how |= LOOKUP_FOLLOW;
4990 retry:
4991 	error = filename_lookup(olddfd, old, how, &old_path, NULL);
4992 	if (error)
4993 		goto out_putnames;
4994 
4995 	new_dentry = filename_create(newdfd, new, &new_path,
4996 					(how & LOOKUP_REVAL));
4997 	error = PTR_ERR(new_dentry);
4998 	if (IS_ERR(new_dentry))
4999 		goto out_putpath;
5000 
5001 	error = -EXDEV;
5002 	if (old_path.mnt != new_path.mnt)
5003 		goto out_dput;
5004 	idmap = mnt_idmap(new_path.mnt);
5005 	error = may_linkat(idmap, &old_path);
5006 	if (unlikely(error))
5007 		goto out_dput;
5008 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
5009 	if (error)
5010 		goto out_dput;
5011 	error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
5012 			 new_dentry, &delegated_inode);
5013 out_dput:
5014 	end_creating_path(&new_path, new_dentry);
5015 	if (delegated_inode) {
5016 		error = break_deleg_wait(&delegated_inode);
5017 		if (!error) {
5018 			path_put(&old_path);
5019 			goto retry;
5020 		}
5021 	}
5022 	if (retry_estale(error, how)) {
5023 		path_put(&old_path);
5024 		how |= LOOKUP_REVAL;
5025 		goto retry;
5026 	}
5027 out_putpath:
5028 	path_put(&old_path);
5029 out_putnames:
5030 	putname(old);
5031 	putname(new);
5032 
5033 	return error;
5034 }
5035 
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)5036 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
5037 		int, newdfd, const char __user *, newname, int, flags)
5038 {
5039 	return do_linkat(olddfd, getname_uflags(oldname, flags),
5040 		newdfd, getname(newname), flags);
5041 }
5042 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)5043 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
5044 {
5045 	return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
5046 }
5047 
5048 /**
5049  * vfs_rename - rename a filesystem object
5050  * @rd:		pointer to &struct renamedata info
5051  *
5052  * The caller must hold multiple mutexes--see lock_rename()).
5053  *
5054  * If vfs_rename discovers a delegation in need of breaking at either
5055  * the source or destination, it will return -EWOULDBLOCK and return a
5056  * reference to the inode in delegated_inode.  The caller should then
5057  * break the delegation and retry.  Because breaking a delegation may
5058  * take a long time, the caller should drop all locks before doing
5059  * so.
5060  *
5061  * Alternatively, a caller may pass NULL for delegated_inode.  This may
5062  * be appropriate for callers that expect the underlying filesystem not
5063  * to be NFS exported.
5064  *
5065  * The worst of all namespace operations - renaming directory. "Perverted"
5066  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
5067  * Problems:
5068  *
5069  *	a) we can get into loop creation.
5070  *	b) race potential - two innocent renames can create a loop together.
5071  *	   That's where 4.4BSD screws up. Current fix: serialization on
5072  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
5073  *	   story.
5074  *	c) we may have to lock up to _four_ objects - parents and victim (if it exists),
5075  *	   and source (if it's a non-directory or a subdirectory that moves to
5076  *	   different parent).
5077  *	   And that - after we got ->i_rwsem on parents (until then we don't know
5078  *	   whether the target exists).  Solution: try to be smart with locking
5079  *	   order for inodes.  We rely on the fact that tree topology may change
5080  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
5081  *	   move will be locked.  Thus we can rank directories by the tree
5082  *	   (ancestors first) and rank all non-directories after them.
5083  *	   That works since everybody except rename does "lock parent, lookup,
5084  *	   lock child" and rename is under ->s_vfs_rename_mutex.
5085  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
5086  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
5087  *	   we'd better make sure that there's no link(2) for them.
5088  *	d) conversion from fhandle to dentry may come in the wrong moment - when
5089  *	   we are removing the target. Solution: we will have to grab ->i_rwsem
5090  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
5091  *	   ->i_rwsem on parents, which works but leads to some truly excessive
5092  *	   locking].
5093  */
vfs_rename(struct renamedata * rd)5094 int vfs_rename(struct renamedata *rd)
5095 {
5096 	int error;
5097 	struct inode *old_dir = d_inode(rd->old_parent);
5098 	struct inode *new_dir = d_inode(rd->new_parent);
5099 	struct dentry *old_dentry = rd->old_dentry;
5100 	struct dentry *new_dentry = rd->new_dentry;
5101 	struct inode **delegated_inode = rd->delegated_inode;
5102 	unsigned int flags = rd->flags;
5103 	bool is_dir = d_is_dir(old_dentry);
5104 	struct inode *source = old_dentry->d_inode;
5105 	struct inode *target = new_dentry->d_inode;
5106 	bool new_is_dir = false;
5107 	unsigned max_links = new_dir->i_sb->s_max_links;
5108 	struct name_snapshot old_name;
5109 	bool lock_old_subdir, lock_new_subdir;
5110 
5111 	if (source == target)
5112 		return 0;
5113 
5114 	error = may_delete(rd->mnt_idmap, old_dir, old_dentry, is_dir);
5115 	if (error)
5116 		return error;
5117 
5118 	if (!target) {
5119 		error = may_create(rd->mnt_idmap, new_dir, new_dentry);
5120 	} else {
5121 		new_is_dir = d_is_dir(new_dentry);
5122 
5123 		if (!(flags & RENAME_EXCHANGE))
5124 			error = may_delete(rd->mnt_idmap, new_dir,
5125 					   new_dentry, is_dir);
5126 		else
5127 			error = may_delete(rd->mnt_idmap, new_dir,
5128 					   new_dentry, new_is_dir);
5129 	}
5130 	if (error)
5131 		return error;
5132 
5133 	if (!old_dir->i_op->rename)
5134 		return -EPERM;
5135 
5136 	/*
5137 	 * If we are going to change the parent - check write permissions,
5138 	 * we'll need to flip '..'.
5139 	 */
5140 	if (new_dir != old_dir) {
5141 		if (is_dir) {
5142 			error = inode_permission(rd->mnt_idmap, source,
5143 						 MAY_WRITE);
5144 			if (error)
5145 				return error;
5146 		}
5147 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5148 			error = inode_permission(rd->mnt_idmap, target,
5149 						 MAY_WRITE);
5150 			if (error)
5151 				return error;
5152 		}
5153 	}
5154 
5155 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5156 				      flags);
5157 	if (error)
5158 		return error;
5159 
5160 	take_dentry_name_snapshot(&old_name, old_dentry);
5161 	dget(new_dentry);
5162 	/*
5163 	 * Lock children.
5164 	 * The source subdirectory needs to be locked on cross-directory
5165 	 * rename or cross-directory exchange since its parent changes.
5166 	 * The target subdirectory needs to be locked on cross-directory
5167 	 * exchange due to parent change and on any rename due to becoming
5168 	 * a victim.
5169 	 * Non-directories need locking in all cases (for NFS reasons);
5170 	 * they get locked after any subdirectories (in inode address order).
5171 	 *
5172 	 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5173 	 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5174 	 */
5175 	lock_old_subdir = new_dir != old_dir;
5176 	lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5177 	if (is_dir) {
5178 		if (lock_old_subdir)
5179 			inode_lock_nested(source, I_MUTEX_CHILD);
5180 		if (target && (!new_is_dir || lock_new_subdir))
5181 			inode_lock(target);
5182 	} else if (new_is_dir) {
5183 		if (lock_new_subdir)
5184 			inode_lock_nested(target, I_MUTEX_CHILD);
5185 		inode_lock(source);
5186 	} else {
5187 		lock_two_nondirectories(source, target);
5188 	}
5189 
5190 	error = -EPERM;
5191 	if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5192 		goto out;
5193 
5194 	error = -EBUSY;
5195 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5196 		goto out;
5197 
5198 	if (max_links && new_dir != old_dir) {
5199 		error = -EMLINK;
5200 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5201 			goto out;
5202 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5203 		    old_dir->i_nlink >= max_links)
5204 			goto out;
5205 	}
5206 	if (!is_dir) {
5207 		error = try_break_deleg(source, delegated_inode);
5208 		if (error)
5209 			goto out;
5210 	}
5211 	if (target && !new_is_dir) {
5212 		error = try_break_deleg(target, delegated_inode);
5213 		if (error)
5214 			goto out;
5215 	}
5216 	error = old_dir->i_op->rename(rd->mnt_idmap, old_dir, old_dentry,
5217 				      new_dir, new_dentry, flags);
5218 	if (error)
5219 		goto out;
5220 
5221 	if (!(flags & RENAME_EXCHANGE) && target) {
5222 		if (is_dir) {
5223 			shrink_dcache_parent(new_dentry);
5224 			target->i_flags |= S_DEAD;
5225 		}
5226 		dont_mount(new_dentry);
5227 		detach_mounts(new_dentry);
5228 	}
5229 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5230 		if (!(flags & RENAME_EXCHANGE))
5231 			d_move(old_dentry, new_dentry);
5232 		else
5233 			d_exchange(old_dentry, new_dentry);
5234 	}
5235 out:
5236 	if (!is_dir || lock_old_subdir)
5237 		inode_unlock(source);
5238 	if (target && (!new_is_dir || lock_new_subdir))
5239 		inode_unlock(target);
5240 	dput(new_dentry);
5241 	if (!error) {
5242 		fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5243 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5244 		if (flags & RENAME_EXCHANGE) {
5245 			fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5246 				      new_is_dir, NULL, new_dentry);
5247 		}
5248 	}
5249 	release_dentry_name_snapshot(&old_name);
5250 
5251 	return error;
5252 }
5253 EXPORT_SYMBOL(vfs_rename);
5254 
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5255 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5256 		 struct filename *to, unsigned int flags)
5257 {
5258 	struct renamedata rd;
5259 	struct dentry *old_dentry, *new_dentry;
5260 	struct dentry *trap;
5261 	struct path old_path, new_path;
5262 	struct qstr old_last, new_last;
5263 	int old_type, new_type;
5264 	struct inode *delegated_inode = NULL;
5265 	unsigned int lookup_flags = 0, target_flags =
5266 		LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
5267 	bool should_retry = false;
5268 	int error = -EINVAL;
5269 
5270 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5271 		goto put_names;
5272 
5273 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5274 	    (flags & RENAME_EXCHANGE))
5275 		goto put_names;
5276 
5277 	if (flags & RENAME_EXCHANGE)
5278 		target_flags = 0;
5279 	if (flags & RENAME_NOREPLACE)
5280 		target_flags |= LOOKUP_EXCL;
5281 
5282 retry:
5283 	error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5284 				  &old_last, &old_type);
5285 	if (error)
5286 		goto put_names;
5287 
5288 	error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5289 				  &new_type);
5290 	if (error)
5291 		goto exit1;
5292 
5293 	error = -EXDEV;
5294 	if (old_path.mnt != new_path.mnt)
5295 		goto exit2;
5296 
5297 	error = -EBUSY;
5298 	if (old_type != LAST_NORM)
5299 		goto exit2;
5300 
5301 	if (flags & RENAME_NOREPLACE)
5302 		error = -EEXIST;
5303 	if (new_type != LAST_NORM)
5304 		goto exit2;
5305 
5306 	error = mnt_want_write(old_path.mnt);
5307 	if (error)
5308 		goto exit2;
5309 
5310 retry_deleg:
5311 	trap = lock_rename(new_path.dentry, old_path.dentry);
5312 	if (IS_ERR(trap)) {
5313 		error = PTR_ERR(trap);
5314 		goto exit_lock_rename;
5315 	}
5316 
5317 	old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5318 					  lookup_flags);
5319 	error = PTR_ERR(old_dentry);
5320 	if (IS_ERR(old_dentry))
5321 		goto exit3;
5322 	new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5323 					  lookup_flags | target_flags);
5324 	error = PTR_ERR(new_dentry);
5325 	if (IS_ERR(new_dentry))
5326 		goto exit4;
5327 	if (flags & RENAME_EXCHANGE) {
5328 		if (!d_is_dir(new_dentry)) {
5329 			error = -ENOTDIR;
5330 			if (new_last.name[new_last.len])
5331 				goto exit5;
5332 		}
5333 	}
5334 	/* unless the source is a directory trailing slashes give -ENOTDIR */
5335 	if (!d_is_dir(old_dentry)) {
5336 		error = -ENOTDIR;
5337 		if (old_last.name[old_last.len])
5338 			goto exit5;
5339 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5340 			goto exit5;
5341 	}
5342 	/* source should not be ancestor of target */
5343 	error = -EINVAL;
5344 	if (old_dentry == trap)
5345 		goto exit5;
5346 	/* target should not be an ancestor of source */
5347 	if (!(flags & RENAME_EXCHANGE))
5348 		error = -ENOTEMPTY;
5349 	if (new_dentry == trap)
5350 		goto exit5;
5351 
5352 	error = security_path_rename(&old_path, old_dentry,
5353 				     &new_path, new_dentry, flags);
5354 	if (error)
5355 		goto exit5;
5356 
5357 	rd.old_parent	   = old_path.dentry;
5358 	rd.old_dentry	   = old_dentry;
5359 	rd.mnt_idmap	   = mnt_idmap(old_path.mnt);
5360 	rd.new_parent	   = new_path.dentry;
5361 	rd.new_dentry	   = new_dentry;
5362 	rd.delegated_inode = &delegated_inode;
5363 	rd.flags	   = flags;
5364 	error = vfs_rename(&rd);
5365 exit5:
5366 	dput(new_dentry);
5367 exit4:
5368 	dput(old_dentry);
5369 exit3:
5370 	unlock_rename(new_path.dentry, old_path.dentry);
5371 exit_lock_rename:
5372 	if (delegated_inode) {
5373 		error = break_deleg_wait(&delegated_inode);
5374 		if (!error)
5375 			goto retry_deleg;
5376 	}
5377 	mnt_drop_write(old_path.mnt);
5378 exit2:
5379 	if (retry_estale(error, lookup_flags))
5380 		should_retry = true;
5381 	path_put(&new_path);
5382 exit1:
5383 	path_put(&old_path);
5384 	if (should_retry) {
5385 		should_retry = false;
5386 		lookup_flags |= LOOKUP_REVAL;
5387 		goto retry;
5388 	}
5389 put_names:
5390 	putname(from);
5391 	putname(to);
5392 	return error;
5393 }
5394 
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5395 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5396 		int, newdfd, const char __user *, newname, unsigned int, flags)
5397 {
5398 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5399 				flags);
5400 }
5401 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5402 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5403 		int, newdfd, const char __user *, newname)
5404 {
5405 	return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5406 				0);
5407 }
5408 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5409 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5410 {
5411 	return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5412 				getname(newname), 0);
5413 }
5414 
readlink_copy(char __user * buffer,int buflen,const char * link,int linklen)5415 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
5416 {
5417 	int copylen;
5418 
5419 	copylen = linklen;
5420 	if (unlikely(copylen > (unsigned) buflen))
5421 		copylen = buflen;
5422 	if (copy_to_user(buffer, link, copylen))
5423 		copylen = -EFAULT;
5424 	return copylen;
5425 }
5426 
5427 /**
5428  * vfs_readlink - copy symlink body into userspace buffer
5429  * @dentry: dentry on which to get symbolic link
5430  * @buffer: user memory pointer
5431  * @buflen: size of buffer
5432  *
5433  * Does not touch atime.  That's up to the caller if necessary
5434  *
5435  * Does not call security hook.
5436  */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5437 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5438 {
5439 	struct inode *inode = d_inode(dentry);
5440 	DEFINE_DELAYED_CALL(done);
5441 	const char *link;
5442 	int res;
5443 
5444 	if (inode->i_opflags & IOP_CACHED_LINK)
5445 		return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
5446 
5447 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5448 		if (unlikely(inode->i_op->readlink))
5449 			return inode->i_op->readlink(dentry, buffer, buflen);
5450 
5451 		if (!d_is_symlink(dentry))
5452 			return -EINVAL;
5453 
5454 		spin_lock(&inode->i_lock);
5455 		inode->i_opflags |= IOP_DEFAULT_READLINK;
5456 		spin_unlock(&inode->i_lock);
5457 	}
5458 
5459 	link = READ_ONCE(inode->i_link);
5460 	if (!link) {
5461 		link = inode->i_op->get_link(dentry, inode, &done);
5462 		if (IS_ERR(link))
5463 			return PTR_ERR(link);
5464 	}
5465 	res = readlink_copy(buffer, buflen, link, strlen(link));
5466 	do_delayed_call(&done);
5467 	return res;
5468 }
5469 EXPORT_SYMBOL(vfs_readlink);
5470 
5471 /**
5472  * vfs_get_link - get symlink body
5473  * @dentry: dentry on which to get symbolic link
5474  * @done: caller needs to free returned data with this
5475  *
5476  * Calls security hook and i_op->get_link() on the supplied inode.
5477  *
5478  * It does not touch atime.  That's up to the caller if necessary.
5479  *
5480  * Does not work on "special" symlinks like /proc/$$/fd/N
5481  */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5482 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5483 {
5484 	const char *res = ERR_PTR(-EINVAL);
5485 	struct inode *inode = d_inode(dentry);
5486 
5487 	if (d_is_symlink(dentry)) {
5488 		res = ERR_PTR(security_inode_readlink(dentry));
5489 		if (!res)
5490 			res = inode->i_op->get_link(dentry, inode, done);
5491 	}
5492 	return res;
5493 }
5494 EXPORT_SYMBOL(vfs_get_link);
5495 
5496 /* get the link contents into pagecache */
__page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5497 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
5498 			     struct delayed_call *callback)
5499 {
5500 	struct folio *folio;
5501 	struct address_space *mapping = inode->i_mapping;
5502 
5503 	if (!dentry) {
5504 		folio = filemap_get_folio(mapping, 0);
5505 		if (IS_ERR(folio))
5506 			return ERR_PTR(-ECHILD);
5507 		if (!folio_test_uptodate(folio)) {
5508 			folio_put(folio);
5509 			return ERR_PTR(-ECHILD);
5510 		}
5511 	} else {
5512 		folio = read_mapping_folio(mapping, 0, NULL);
5513 		if (IS_ERR(folio))
5514 			return ERR_CAST(folio);
5515 	}
5516 	set_delayed_call(callback, page_put_link, folio);
5517 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5518 	return folio_address(folio);
5519 }
5520 
page_get_link_raw(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5521 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
5522 			      struct delayed_call *callback)
5523 {
5524 	return __page_get_link(dentry, inode, callback);
5525 }
5526 EXPORT_SYMBOL_GPL(page_get_link_raw);
5527 
5528 /**
5529  * page_get_link() - An implementation of the get_link inode_operation.
5530  * @dentry: The directory entry which is the symlink.
5531  * @inode: The inode for the symlink.
5532  * @callback: Used to drop the reference to the symlink.
5533  *
5534  * Filesystems which store their symlinks in the page cache should use
5535  * this to implement the get_link() member of their inode_operations.
5536  *
5537  * Return: A pointer to the NUL-terminated symlink.
5538  */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5539 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5540 					struct delayed_call *callback)
5541 {
5542 	char *kaddr = __page_get_link(dentry, inode, callback);
5543 
5544 	if (!IS_ERR(kaddr))
5545 		nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5546 	return kaddr;
5547 }
5548 EXPORT_SYMBOL(page_get_link);
5549 
5550 /**
5551  * page_put_link() - Drop the reference to the symlink.
5552  * @arg: The folio which contains the symlink.
5553  *
5554  * This is used internally by page_get_link().  It is exported for use
5555  * by filesystems which need to implement a variant of page_get_link()
5556  * themselves.  Despite the apparent symmetry, filesystems which use
5557  * page_get_link() do not need to call page_put_link().
5558  *
5559  * The argument, while it has a void pointer type, must be a pointer to
5560  * the folio which was retrieved from the page cache.  The delayed_call
5561  * infrastructure is used to drop the reference count once the caller
5562  * is done with the symlink.
5563  */
page_put_link(void * arg)5564 void page_put_link(void *arg)
5565 {
5566 	folio_put(arg);
5567 }
5568 EXPORT_SYMBOL(page_put_link);
5569 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5570 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5571 {
5572 	const char *link;
5573 	int res;
5574 
5575 	DEFINE_DELAYED_CALL(done);
5576 	link = page_get_link(dentry, d_inode(dentry), &done);
5577 	res = PTR_ERR(link);
5578 	if (!IS_ERR(link))
5579 		res = readlink_copy(buffer, buflen, link, strlen(link));
5580 	do_delayed_call(&done);
5581 	return res;
5582 }
5583 EXPORT_SYMBOL(page_readlink);
5584 
page_symlink(struct inode * inode,const char * symname,int len)5585 int page_symlink(struct inode *inode, const char *symname, int len)
5586 {
5587 	struct address_space *mapping = inode->i_mapping;
5588 	const struct address_space_operations *aops = mapping->a_ops;
5589 	bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5590 	struct folio *folio;
5591 	void *fsdata = NULL;
5592 	int err;
5593 	unsigned int flags;
5594 
5595 retry:
5596 	if (nofs)
5597 		flags = memalloc_nofs_save();
5598 	err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5599 	if (nofs)
5600 		memalloc_nofs_restore(flags);
5601 	if (err)
5602 		goto fail;
5603 
5604 	memcpy(folio_address(folio), symname, len - 1);
5605 
5606 	err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5607 						folio, fsdata);
5608 	if (err < 0)
5609 		goto fail;
5610 	if (err < len-1)
5611 		goto retry;
5612 
5613 	mark_inode_dirty(inode);
5614 	return 0;
5615 fail:
5616 	return err;
5617 }
5618 EXPORT_SYMBOL(page_symlink);
5619 
5620 const struct inode_operations page_symlink_inode_operations = {
5621 	.get_link	= page_get_link,
5622 };
5623 EXPORT_SYMBOL(page_symlink_inode_operations);
5624