1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
initname(struct filename * name,const char __user * uptr)128 static inline void initname(struct filename *name, const char __user *uptr)
129 {
130 name->uptr = uptr;
131 name->aname = NULL;
132 atomic_set(&name->refcnt, 1);
133 }
134
135 struct filename *
getname_flags(const char __user * filename,int flags)136 getname_flags(const char __user *filename, int flags)
137 {
138 struct filename *result;
139 char *kname;
140 int len;
141
142 result = audit_reusename(filename);
143 if (result)
144 return result;
145
146 result = __getname();
147 if (unlikely(!result))
148 return ERR_PTR(-ENOMEM);
149
150 /*
151 * First, try to embed the struct filename inside the names_cache
152 * allocation
153 */
154 kname = (char *)result->iname;
155 result->name = kname;
156
157 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 /*
159 * Handle both empty path and copy failure in one go.
160 */
161 if (unlikely(len <= 0)) {
162 if (unlikely(len < 0)) {
163 __putname(result);
164 return ERR_PTR(len);
165 }
166
167 /* The empty path is special. */
168 if (!(flags & LOOKUP_EMPTY)) {
169 __putname(result);
170 return ERR_PTR(-ENOENT);
171 }
172 }
173
174 /*
175 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 * separate struct filename so we can dedicate the entire
177 * names_cache allocation for the pathname, and re-do the copy from
178 * userland.
179 */
180 if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 const size_t size = offsetof(struct filename, iname[1]);
182 kname = (char *)result;
183
184 /*
185 * size is chosen that way we to guarantee that
186 * result->iname[0] is within the same object and that
187 * kname can't be equal to result->iname, no matter what.
188 */
189 result = kzalloc(size, GFP_KERNEL);
190 if (unlikely(!result)) {
191 __putname(kname);
192 return ERR_PTR(-ENOMEM);
193 }
194 result->name = kname;
195 len = strncpy_from_user(kname, filename, PATH_MAX);
196 if (unlikely(len < 0)) {
197 __putname(kname);
198 kfree(result);
199 return ERR_PTR(len);
200 }
201 /* The empty path is special. */
202 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 __putname(kname);
204 kfree(result);
205 return ERR_PTR(-ENOENT);
206 }
207 if (unlikely(len == PATH_MAX)) {
208 __putname(kname);
209 kfree(result);
210 return ERR_PTR(-ENAMETOOLONG);
211 }
212 }
213 initname(result, filename);
214 audit_getname(result);
215 return result;
216 }
217
getname_uflags(const char __user * filename,int uflags)218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221
222 return getname_flags(filename, flags);
223 }
224
__getname_maybe_null(const char __user * pathname)225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 struct filename *name;
228 char c;
229
230 /* try to save on allocations; loss on um, though */
231 if (get_user(c, pathname))
232 return ERR_PTR(-EFAULT);
233 if (!c)
234 return NULL;
235
236 name = getname_flags(pathname, LOOKUP_EMPTY);
237 if (!IS_ERR(name) && !(name->name[0])) {
238 putname(name);
239 name = NULL;
240 }
241 return name;
242 }
243
getname_kernel(const char * filename)244 struct filename *getname_kernel(const char * filename)
245 {
246 struct filename *result;
247 int len = strlen(filename) + 1;
248
249 result = __getname();
250 if (unlikely(!result))
251 return ERR_PTR(-ENOMEM);
252
253 if (len <= EMBEDDED_NAME_MAX) {
254 result->name = (char *)result->iname;
255 } else if (len <= PATH_MAX) {
256 const size_t size = offsetof(struct filename, iname[1]);
257 struct filename *tmp;
258
259 tmp = kmalloc(size, GFP_KERNEL);
260 if (unlikely(!tmp)) {
261 __putname(result);
262 return ERR_PTR(-ENOMEM);
263 }
264 tmp->name = (char *)result;
265 result = tmp;
266 } else {
267 __putname(result);
268 return ERR_PTR(-ENAMETOOLONG);
269 }
270 memcpy((char *)result->name, filename, len);
271 initname(result, NULL);
272 audit_getname(result);
273 return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276
putname(struct filename * name)277 void putname(struct filename *name)
278 {
279 int refcnt;
280
281 if (IS_ERR_OR_NULL(name))
282 return;
283
284 refcnt = atomic_read(&name->refcnt);
285 if (refcnt != 1) {
286 if (WARN_ON_ONCE(!refcnt))
287 return;
288
289 if (!atomic_dec_and_test(&name->refcnt))
290 return;
291 }
292
293 if (name->name != name->iname) {
294 __putname(name->name);
295 kfree(name);
296 } else
297 __putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300
301 /**
302 * check_acl - perform ACL permission checking
303 * @idmap: idmap of the mount the inode was found from
304 * @inode: inode to check permissions on
305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306 *
307 * This function performs the ACL permission checking. Since this function
308 * retrieve POSIX acls it needs to know whether it is called from a blocking or
309 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310 *
311 * If the inode has been found through an idmapped mount the idmap of
312 * the vfsmount must be passed through @idmap. This function will then take
313 * care to map the inode according to @idmap before checking permissions.
314 * On non-idmapped mounts or if permission checking is to be performed on the
315 * raw inode simply pass @nop_mnt_idmap.
316 */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)317 static int check_acl(struct mnt_idmap *idmap,
318 struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 struct posix_acl *acl;
322
323 if (mask & MAY_NOT_BLOCK) {
324 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 if (!acl)
326 return -EAGAIN;
327 /* no ->get_inode_acl() calls in RCU mode... */
328 if (is_uncached_acl(acl))
329 return -ECHILD;
330 return posix_acl_permission(idmap, inode, acl, mask);
331 }
332
333 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 if (IS_ERR(acl))
335 return PTR_ERR(acl);
336 if (acl) {
337 int error = posix_acl_permission(idmap, inode, acl, mask);
338 posix_acl_release(acl);
339 return error;
340 }
341 #endif
342
343 return -EAGAIN;
344 }
345
346 /*
347 * Very quick optimistic "we know we have no ACL's" check.
348 *
349 * Note that this is purely for ACL_TYPE_ACCESS, and purely
350 * for the "we have cached that there are no ACLs" case.
351 *
352 * If this returns true, we know there are no ACLs. But if
353 * it returns false, we might still not have ACLs (it could
354 * be the is_uncached_acl() case).
355 */
no_acl_inode(struct inode * inode)356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 return likely(!READ_ONCE(inode->i_acl));
360 #else
361 return true;
362 #endif
363 }
364
365 /**
366 * acl_permission_check - perform basic UNIX permission checking
367 * @idmap: idmap of the mount the inode was found from
368 * @inode: inode to check permissions on
369 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370 *
371 * This function performs the basic UNIX permission checking. Since this
372 * function may retrieve POSIX acls it needs to know whether it is called from a
373 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374 *
375 * If the inode has been found through an idmapped mount the idmap of
376 * the vfsmount must be passed through @idmap. This function will then take
377 * care to map the inode according to @idmap before checking permissions.
378 * On non-idmapped mounts or if permission checking is to be performed on the
379 * raw inode simply pass @nop_mnt_idmap.
380 */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)381 static int acl_permission_check(struct mnt_idmap *idmap,
382 struct inode *inode, int mask)
383 {
384 unsigned int mode = inode->i_mode;
385 vfsuid_t vfsuid;
386
387 /*
388 * Common cheap case: everybody has the requested
389 * rights, and there are no ACLs to check. No need
390 * to do any owner/group checks in that case.
391 *
392 * - 'mask&7' is the requested permission bit set
393 * - multiplying by 0111 spreads them out to all of ugo
394 * - '& ~mode' looks for missing inode permission bits
395 * - the '!' is for "no missing permissions"
396 *
397 * After that, we just need to check that there are no
398 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 * because it will dereference the ->i_sb pointer and we
400 * want to avoid that if at all possible.
401 */
402 if (!((mask & 7) * 0111 & ~mode)) {
403 if (no_acl_inode(inode))
404 return 0;
405 if (!IS_POSIXACL(inode))
406 return 0;
407 }
408
409 /* Are we the owner? If so, ACL's don't matter */
410 vfsuid = i_uid_into_vfsuid(idmap, inode);
411 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 mask &= 7;
413 mode >>= 6;
414 return (mask & ~mode) ? -EACCES : 0;
415 }
416
417 /* Do we have ACL's? */
418 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 int error = check_acl(idmap, inode, mask);
420 if (error != -EAGAIN)
421 return error;
422 }
423
424 /* Only RWX matters for group/other mode bits */
425 mask &= 7;
426
427 /*
428 * Are the group permissions different from
429 * the other permissions in the bits we care
430 * about? Need to check group ownership if so.
431 */
432 if (mask & (mode ^ (mode >> 3))) {
433 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 if (vfsgid_in_group_p(vfsgid))
435 mode >>= 3;
436 }
437
438 /* Bits in 'mode' clear that we require? */
439 return (mask & ~mode) ? -EACCES : 0;
440 }
441
442 /**
443 * generic_permission - check for access rights on a Posix-like filesystem
444 * @idmap: idmap of the mount the inode was found from
445 * @inode: inode to check access rights for
446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447 * %MAY_NOT_BLOCK ...)
448 *
449 * Used to check for read/write/execute permissions on a file.
450 * We use "fsuid" for this, letting us set arbitrary permissions
451 * for filesystem access without changing the "normal" uids which
452 * are used for other things.
453 *
454 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455 * request cannot be satisfied (eg. requires blocking or too much complexity).
456 * It would then be called again in ref-walk mode.
457 *
458 * If the inode has been found through an idmapped mount the idmap of
459 * the vfsmount must be passed through @idmap. This function will then take
460 * care to map the inode according to @idmap before checking permissions.
461 * On non-idmapped mounts or if permission checking is to be performed on the
462 * raw inode simply pass @nop_mnt_idmap.
463 */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 int mask)
466 {
467 int ret;
468
469 /*
470 * Do the basic permission checks.
471 */
472 ret = acl_permission_check(idmap, inode, mask);
473 if (ret != -EACCES)
474 return ret;
475
476 if (S_ISDIR(inode->i_mode)) {
477 /* DACs are overridable for directories */
478 if (!(mask & MAY_WRITE))
479 if (capable_wrt_inode_uidgid(idmap, inode,
480 CAP_DAC_READ_SEARCH))
481 return 0;
482 if (capable_wrt_inode_uidgid(idmap, inode,
483 CAP_DAC_OVERRIDE))
484 return 0;
485 return -EACCES;
486 }
487
488 /*
489 * Searching includes executable on directories, else just read.
490 */
491 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 if (mask == MAY_READ)
493 if (capable_wrt_inode_uidgid(idmap, inode,
494 CAP_DAC_READ_SEARCH))
495 return 0;
496 /*
497 * Read/write DACs are always overridable.
498 * Executable DACs are overridable when there is
499 * at least one exec bit set.
500 */
501 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 if (capable_wrt_inode_uidgid(idmap, inode,
503 CAP_DAC_OVERRIDE))
504 return 0;
505
506 return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509
510 /**
511 * do_inode_permission - UNIX permission checking
512 * @idmap: idmap of the mount the inode was found from
513 * @inode: inode to check permissions on
514 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515 *
516 * We _really_ want to just do "generic_permission()" without
517 * even looking at the inode->i_op values. So we keep a cache
518 * flag in inode->i_opflags, that says "this has not special
519 * permission function, use the fast case".
520 */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 struct inode *inode, int mask)
523 {
524 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 if (likely(inode->i_op->permission))
526 return inode->i_op->permission(idmap, inode, mask);
527
528 /* This gets set once for the inode lifetime */
529 spin_lock(&inode->i_lock);
530 inode->i_opflags |= IOP_FASTPERM;
531 spin_unlock(&inode->i_lock);
532 }
533 return generic_permission(idmap, inode, mask);
534 }
535
536 /**
537 * sb_permission - Check superblock-level permissions
538 * @sb: Superblock of inode to check permission on
539 * @inode: Inode to check permission on
540 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541 *
542 * Separate out file-system wide checks from inode-specific permission checks.
543 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
545 {
546 if (unlikely(mask & MAY_WRITE)) {
547 umode_t mode = inode->i_mode;
548
549 /* Nobody gets write access to a read-only fs. */
550 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
551 return -EROFS;
552 }
553 return 0;
554 }
555
556 /**
557 * inode_permission - Check for access rights to a given inode
558 * @idmap: idmap of the mount the inode was found from
559 * @inode: Inode to check permission on
560 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
561 *
562 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
563 * this, letting us set arbitrary permissions for filesystem access without
564 * changing the "normal" UIDs which are used for other things.
565 *
566 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
567 */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)568 int inode_permission(struct mnt_idmap *idmap,
569 struct inode *inode, int mask)
570 {
571 int retval;
572
573 retval = sb_permission(inode->i_sb, inode, mask);
574 if (unlikely(retval))
575 return retval;
576
577 if (unlikely(mask & MAY_WRITE)) {
578 /*
579 * Nobody gets write access to an immutable file.
580 */
581 if (unlikely(IS_IMMUTABLE(inode)))
582 return -EPERM;
583
584 /*
585 * Updating mtime will likely cause i_uid and i_gid to be
586 * written back improperly if their true value is unknown
587 * to the vfs.
588 */
589 if (unlikely(HAS_UNMAPPED_ID(idmap, inode)))
590 return -EACCES;
591 }
592
593 retval = do_inode_permission(idmap, inode, mask);
594 if (unlikely(retval))
595 return retval;
596
597 retval = devcgroup_inode_permission(inode, mask);
598 if (unlikely(retval))
599 return retval;
600
601 return security_inode_permission(inode, mask);
602 }
603 EXPORT_SYMBOL(inode_permission);
604
605 /**
606 * path_get - get a reference to a path
607 * @path: path to get the reference to
608 *
609 * Given a path increment the reference count to the dentry and the vfsmount.
610 */
path_get(const struct path * path)611 void path_get(const struct path *path)
612 {
613 mntget(path->mnt);
614 dget(path->dentry);
615 }
616 EXPORT_SYMBOL(path_get);
617
618 /**
619 * path_put - put a reference to a path
620 * @path: path to put the reference to
621 *
622 * Given a path decrement the reference count to the dentry and the vfsmount.
623 */
path_put(const struct path * path)624 void path_put(const struct path *path)
625 {
626 dput(path->dentry);
627 mntput(path->mnt);
628 }
629 EXPORT_SYMBOL(path_put);
630
631 #define EMBEDDED_LEVELS 2
632 struct nameidata {
633 struct path path;
634 struct qstr last;
635 struct path root;
636 struct inode *inode; /* path.dentry.d_inode */
637 unsigned int flags, state;
638 unsigned seq, next_seq, m_seq, r_seq;
639 int last_type;
640 unsigned depth;
641 int total_link_count;
642 struct saved {
643 struct path link;
644 struct delayed_call done;
645 const char *name;
646 unsigned seq;
647 } *stack, internal[EMBEDDED_LEVELS];
648 struct filename *name;
649 const char *pathname;
650 struct nameidata *saved;
651 unsigned root_seq;
652 int dfd;
653 vfsuid_t dir_vfsuid;
654 umode_t dir_mode;
655 } __randomize_layout;
656
657 #define ND_ROOT_PRESET 1
658 #define ND_ROOT_GRABBED 2
659 #define ND_JUMPED 4
660
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
662 {
663 struct nameidata *old = current->nameidata;
664 p->stack = p->internal;
665 p->depth = 0;
666 p->dfd = dfd;
667 p->name = name;
668 p->pathname = likely(name) ? name->name : "";
669 p->path.mnt = NULL;
670 p->path.dentry = NULL;
671 p->total_link_count = old ? old->total_link_count : 0;
672 p->saved = old;
673 current->nameidata = p;
674 }
675
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
677 const struct path *root)
678 {
679 __set_nameidata(p, dfd, name);
680 p->state = 0;
681 if (unlikely(root)) {
682 p->state = ND_ROOT_PRESET;
683 p->root = *root;
684 }
685 }
686
restore_nameidata(void)687 static void restore_nameidata(void)
688 {
689 struct nameidata *now = current->nameidata, *old = now->saved;
690
691 current->nameidata = old;
692 if (old)
693 old->total_link_count = now->total_link_count;
694 if (now->stack != now->internal)
695 kfree(now->stack);
696 }
697
nd_alloc_stack(struct nameidata * nd)698 static bool nd_alloc_stack(struct nameidata *nd)
699 {
700 struct saved *p;
701
702 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
703 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
704 if (unlikely(!p))
705 return false;
706 memcpy(p, nd->internal, sizeof(nd->internal));
707 nd->stack = p;
708 return true;
709 }
710
711 /**
712 * path_connected - Verify that a dentry is below mnt.mnt_root
713 * @mnt: The mountpoint to check.
714 * @dentry: The dentry to check.
715 *
716 * Rename can sometimes move a file or directory outside of a bind
717 * mount, path_connected allows those cases to be detected.
718 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
720 {
721 struct super_block *sb = mnt->mnt_sb;
722
723 /* Bind mounts can have disconnected paths */
724 if (mnt->mnt_root == sb->s_root)
725 return true;
726
727 return is_subdir(dentry, mnt->mnt_root);
728 }
729
drop_links(struct nameidata * nd)730 static void drop_links(struct nameidata *nd)
731 {
732 int i = nd->depth;
733 while (i--) {
734 struct saved *last = nd->stack + i;
735 do_delayed_call(&last->done);
736 clear_delayed_call(&last->done);
737 }
738 }
739
leave_rcu(struct nameidata * nd)740 static void leave_rcu(struct nameidata *nd)
741 {
742 nd->flags &= ~LOOKUP_RCU;
743 nd->seq = nd->next_seq = 0;
744 rcu_read_unlock();
745 }
746
terminate_walk(struct nameidata * nd)747 static void terminate_walk(struct nameidata *nd)
748 {
749 drop_links(nd);
750 if (!(nd->flags & LOOKUP_RCU)) {
751 int i;
752 path_put(&nd->path);
753 for (i = 0; i < nd->depth; i++)
754 path_put(&nd->stack[i].link);
755 if (nd->state & ND_ROOT_GRABBED) {
756 path_put(&nd->root);
757 nd->state &= ~ND_ROOT_GRABBED;
758 }
759 } else {
760 leave_rcu(nd);
761 }
762 nd->depth = 0;
763 nd->path.mnt = NULL;
764 nd->path.dentry = NULL;
765 }
766
767 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
769 {
770 int res = __legitimize_mnt(path->mnt, mseq);
771 if (unlikely(res)) {
772 if (res > 0)
773 path->mnt = NULL;
774 path->dentry = NULL;
775 return false;
776 }
777 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
778 path->dentry = NULL;
779 return false;
780 }
781 return !read_seqcount_retry(&path->dentry->d_seq, seq);
782 }
783
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)784 static inline bool legitimize_path(struct nameidata *nd,
785 struct path *path, unsigned seq)
786 {
787 return __legitimize_path(path, seq, nd->m_seq);
788 }
789
legitimize_links(struct nameidata * nd)790 static bool legitimize_links(struct nameidata *nd)
791 {
792 int i;
793 if (unlikely(nd->flags & LOOKUP_CACHED)) {
794 drop_links(nd);
795 nd->depth = 0;
796 return false;
797 }
798 for (i = 0; i < nd->depth; i++) {
799 struct saved *last = nd->stack + i;
800 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
801 drop_links(nd);
802 nd->depth = i + 1;
803 return false;
804 }
805 }
806 return true;
807 }
808
legitimize_root(struct nameidata * nd)809 static bool legitimize_root(struct nameidata *nd)
810 {
811 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
812 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
813 return true;
814 nd->state |= ND_ROOT_GRABBED;
815 return legitimize_path(nd, &nd->root, nd->root_seq);
816 }
817
818 /*
819 * Path walking has 2 modes, rcu-walk and ref-walk (see
820 * Documentation/filesystems/path-lookup.txt). In situations when we can't
821 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
822 * normal reference counts on dentries and vfsmounts to transition to ref-walk
823 * mode. Refcounts are grabbed at the last known good point before rcu-walk
824 * got stuck, so ref-walk may continue from there. If this is not successful
825 * (eg. a seqcount has changed), then failure is returned and it's up to caller
826 * to restart the path walk from the beginning in ref-walk mode.
827 */
828
829 /**
830 * try_to_unlazy - try to switch to ref-walk mode.
831 * @nd: nameidata pathwalk data
832 * Returns: true on success, false on failure
833 *
834 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
835 * for ref-walk mode.
836 * Must be called from rcu-walk context.
837 * Nothing should touch nameidata between try_to_unlazy() failure and
838 * terminate_walk().
839 */
try_to_unlazy(struct nameidata * nd)840 static bool try_to_unlazy(struct nameidata *nd)
841 {
842 struct dentry *parent = nd->path.dentry;
843
844 BUG_ON(!(nd->flags & LOOKUP_RCU));
845
846 if (unlikely(!legitimize_links(nd)))
847 goto out1;
848 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
849 goto out;
850 if (unlikely(!legitimize_root(nd)))
851 goto out;
852 leave_rcu(nd);
853 BUG_ON(nd->inode != parent->d_inode);
854 return true;
855
856 out1:
857 nd->path.mnt = NULL;
858 nd->path.dentry = NULL;
859 out:
860 leave_rcu(nd);
861 return false;
862 }
863
864 /**
865 * try_to_unlazy_next - try to switch to ref-walk mode.
866 * @nd: nameidata pathwalk data
867 * @dentry: next dentry to step into
868 * Returns: true on success, false on failure
869 *
870 * Similar to try_to_unlazy(), but here we have the next dentry already
871 * picked by rcu-walk and want to legitimize that in addition to the current
872 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
873 * Nothing should touch nameidata between try_to_unlazy_next() failure and
874 * terminate_walk().
875 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
877 {
878 int res;
879 BUG_ON(!(nd->flags & LOOKUP_RCU));
880
881 if (unlikely(!legitimize_links(nd)))
882 goto out2;
883 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
884 if (unlikely(res)) {
885 if (res > 0)
886 goto out2;
887 goto out1;
888 }
889 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
890 goto out1;
891
892 /*
893 * We need to move both the parent and the dentry from the RCU domain
894 * to be properly refcounted. And the sequence number in the dentry
895 * validates *both* dentry counters, since we checked the sequence
896 * number of the parent after we got the child sequence number. So we
897 * know the parent must still be valid if the child sequence number is
898 */
899 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
900 goto out;
901 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
902 goto out_dput;
903 /*
904 * Sequence counts matched. Now make sure that the root is
905 * still valid and get it if required.
906 */
907 if (unlikely(!legitimize_root(nd)))
908 goto out_dput;
909 leave_rcu(nd);
910 return true;
911
912 out2:
913 nd->path.mnt = NULL;
914 out1:
915 nd->path.dentry = NULL;
916 out:
917 leave_rcu(nd);
918 return false;
919 out_dput:
920 leave_rcu(nd);
921 dput(dentry);
922 return false;
923 }
924
d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)925 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
926 struct dentry *dentry, unsigned int flags)
927 {
928 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
929 return dentry->d_op->d_revalidate(dir, name, dentry, flags);
930 else
931 return 1;
932 }
933
934 /**
935 * complete_walk - successful completion of path walk
936 * @nd: pointer nameidata
937 *
938 * If we had been in RCU mode, drop out of it and legitimize nd->path.
939 * Revalidate the final result, unless we'd already done that during
940 * the path walk or the filesystem doesn't ask for it. Return 0 on
941 * success, -error on failure. In case of failure caller does not
942 * need to drop nd->path.
943 */
complete_walk(struct nameidata * nd)944 static int complete_walk(struct nameidata *nd)
945 {
946 struct dentry *dentry = nd->path.dentry;
947 int status;
948
949 if (nd->flags & LOOKUP_RCU) {
950 /*
951 * We don't want to zero nd->root for scoped-lookups or
952 * externally-managed nd->root.
953 */
954 if (!(nd->state & ND_ROOT_PRESET))
955 if (!(nd->flags & LOOKUP_IS_SCOPED))
956 nd->root.mnt = NULL;
957 nd->flags &= ~LOOKUP_CACHED;
958 if (!try_to_unlazy(nd))
959 return -ECHILD;
960 }
961
962 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
963 /*
964 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
965 * ever step outside the root during lookup" and should already
966 * be guaranteed by the rest of namei, we want to avoid a namei
967 * BUG resulting in userspace being given a path that was not
968 * scoped within the root at some point during the lookup.
969 *
970 * So, do a final sanity-check to make sure that in the
971 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
972 * we won't silently return an fd completely outside of the
973 * requested root to userspace.
974 *
975 * Userspace could move the path outside the root after this
976 * check, but as discussed elsewhere this is not a concern (the
977 * resolved file was inside the root at some point).
978 */
979 if (!path_is_under(&nd->path, &nd->root))
980 return -EXDEV;
981 }
982
983 if (likely(!(nd->state & ND_JUMPED)))
984 return 0;
985
986 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
987 return 0;
988
989 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
990 if (status > 0)
991 return 0;
992
993 if (!status)
994 status = -ESTALE;
995
996 return status;
997 }
998
set_root(struct nameidata * nd)999 static int set_root(struct nameidata *nd)
1000 {
1001 struct fs_struct *fs = current->fs;
1002
1003 /*
1004 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1005 * still have to ensure it doesn't happen because it will cause a breakout
1006 * from the dirfd.
1007 */
1008 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1009 return -ENOTRECOVERABLE;
1010
1011 if (nd->flags & LOOKUP_RCU) {
1012 unsigned seq;
1013
1014 do {
1015 seq = read_seqbegin(&fs->seq);
1016 nd->root = fs->root;
1017 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1018 } while (read_seqretry(&fs->seq, seq));
1019 } else {
1020 get_fs_root(fs, &nd->root);
1021 nd->state |= ND_ROOT_GRABBED;
1022 }
1023 return 0;
1024 }
1025
nd_jump_root(struct nameidata * nd)1026 static int nd_jump_root(struct nameidata *nd)
1027 {
1028 if (unlikely(nd->flags & LOOKUP_BENEATH))
1029 return -EXDEV;
1030 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1031 /* Absolute path arguments to path_init() are allowed. */
1032 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1033 return -EXDEV;
1034 }
1035 if (!nd->root.mnt) {
1036 int error = set_root(nd);
1037 if (error)
1038 return error;
1039 }
1040 if (nd->flags & LOOKUP_RCU) {
1041 struct dentry *d;
1042 nd->path = nd->root;
1043 d = nd->path.dentry;
1044 nd->inode = d->d_inode;
1045 nd->seq = nd->root_seq;
1046 if (read_seqcount_retry(&d->d_seq, nd->seq))
1047 return -ECHILD;
1048 } else {
1049 path_put(&nd->path);
1050 nd->path = nd->root;
1051 path_get(&nd->path);
1052 nd->inode = nd->path.dentry->d_inode;
1053 }
1054 nd->state |= ND_JUMPED;
1055 return 0;
1056 }
1057
1058 /*
1059 * Helper to directly jump to a known parsed path from ->get_link,
1060 * caller must have taken a reference to path beforehand.
1061 */
nd_jump_link(const struct path * path)1062 int nd_jump_link(const struct path *path)
1063 {
1064 int error = -ELOOP;
1065 struct nameidata *nd = current->nameidata;
1066
1067 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1068 goto err;
1069
1070 error = -EXDEV;
1071 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1072 if (nd->path.mnt != path->mnt)
1073 goto err;
1074 }
1075 /* Not currently safe for scoped-lookups. */
1076 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1077 goto err;
1078
1079 path_put(&nd->path);
1080 nd->path = *path;
1081 nd->inode = nd->path.dentry->d_inode;
1082 nd->state |= ND_JUMPED;
1083 return 0;
1084
1085 err:
1086 path_put(path);
1087 return error;
1088 }
1089
put_link(struct nameidata * nd)1090 static inline void put_link(struct nameidata *nd)
1091 {
1092 struct saved *last = nd->stack + --nd->depth;
1093 do_delayed_call(&last->done);
1094 if (!(nd->flags & LOOKUP_RCU))
1095 path_put(&last->link);
1096 }
1097
1098 static int sysctl_protected_symlinks __read_mostly;
1099 static int sysctl_protected_hardlinks __read_mostly;
1100 static int sysctl_protected_fifos __read_mostly;
1101 static int sysctl_protected_regular __read_mostly;
1102
1103 #ifdef CONFIG_SYSCTL
1104 static const struct ctl_table namei_sysctls[] = {
1105 {
1106 .procname = "protected_symlinks",
1107 .data = &sysctl_protected_symlinks,
1108 .maxlen = sizeof(int),
1109 .mode = 0644,
1110 .proc_handler = proc_dointvec_minmax,
1111 .extra1 = SYSCTL_ZERO,
1112 .extra2 = SYSCTL_ONE,
1113 },
1114 {
1115 .procname = "protected_hardlinks",
1116 .data = &sysctl_protected_hardlinks,
1117 .maxlen = sizeof(int),
1118 .mode = 0644,
1119 .proc_handler = proc_dointvec_minmax,
1120 .extra1 = SYSCTL_ZERO,
1121 .extra2 = SYSCTL_ONE,
1122 },
1123 {
1124 .procname = "protected_fifos",
1125 .data = &sysctl_protected_fifos,
1126 .maxlen = sizeof(int),
1127 .mode = 0644,
1128 .proc_handler = proc_dointvec_minmax,
1129 .extra1 = SYSCTL_ZERO,
1130 .extra2 = SYSCTL_TWO,
1131 },
1132 {
1133 .procname = "protected_regular",
1134 .data = &sysctl_protected_regular,
1135 .maxlen = sizeof(int),
1136 .mode = 0644,
1137 .proc_handler = proc_dointvec_minmax,
1138 .extra1 = SYSCTL_ZERO,
1139 .extra2 = SYSCTL_TWO,
1140 },
1141 };
1142
init_fs_namei_sysctls(void)1143 static int __init init_fs_namei_sysctls(void)
1144 {
1145 register_sysctl_init("fs", namei_sysctls);
1146 return 0;
1147 }
1148 fs_initcall(init_fs_namei_sysctls);
1149
1150 #endif /* CONFIG_SYSCTL */
1151
1152 /**
1153 * may_follow_link - Check symlink following for unsafe situations
1154 * @nd: nameidata pathwalk data
1155 * @inode: Used for idmapping.
1156 *
1157 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1158 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1159 * in a sticky world-writable directory. This is to protect privileged
1160 * processes from failing races against path names that may change out
1161 * from under them by way of other users creating malicious symlinks.
1162 * It will permit symlinks to be followed only when outside a sticky
1163 * world-writable directory, or when the uid of the symlink and follower
1164 * match, or when the directory owner matches the symlink's owner.
1165 *
1166 * Returns 0 if following the symlink is allowed, -ve on error.
1167 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1169 {
1170 struct mnt_idmap *idmap;
1171 vfsuid_t vfsuid;
1172
1173 if (!sysctl_protected_symlinks)
1174 return 0;
1175
1176 idmap = mnt_idmap(nd->path.mnt);
1177 vfsuid = i_uid_into_vfsuid(idmap, inode);
1178 /* Allowed if owner and follower match. */
1179 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1180 return 0;
1181
1182 /* Allowed if parent directory not sticky and world-writable. */
1183 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1184 return 0;
1185
1186 /* Allowed if parent directory and link owner match. */
1187 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1188 return 0;
1189
1190 if (nd->flags & LOOKUP_RCU)
1191 return -ECHILD;
1192
1193 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1194 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1195 return -EACCES;
1196 }
1197
1198 /**
1199 * safe_hardlink_source - Check for safe hardlink conditions
1200 * @idmap: idmap of the mount the inode was found from
1201 * @inode: the source inode to hardlink from
1202 *
1203 * Return false if at least one of the following conditions:
1204 * - inode is not a regular file
1205 * - inode is setuid
1206 * - inode is setgid and group-exec
1207 * - access failure for read and write
1208 *
1209 * Otherwise returns true.
1210 */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1211 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1212 struct inode *inode)
1213 {
1214 umode_t mode = inode->i_mode;
1215
1216 /* Special files should not get pinned to the filesystem. */
1217 if (!S_ISREG(mode))
1218 return false;
1219
1220 /* Setuid files should not get pinned to the filesystem. */
1221 if (mode & S_ISUID)
1222 return false;
1223
1224 /* Executable setgid files should not get pinned to the filesystem. */
1225 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1226 return false;
1227
1228 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1229 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1230 return false;
1231
1232 return true;
1233 }
1234
1235 /**
1236 * may_linkat - Check permissions for creating a hardlink
1237 * @idmap: idmap of the mount the inode was found from
1238 * @link: the source to hardlink from
1239 *
1240 * Block hardlink when all of:
1241 * - sysctl_protected_hardlinks enabled
1242 * - fsuid does not match inode
1243 * - hardlink source is unsafe (see safe_hardlink_source() above)
1244 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1245 *
1246 * If the inode has been found through an idmapped mount the idmap of
1247 * the vfsmount must be passed through @idmap. This function will then take
1248 * care to map the inode according to @idmap before checking permissions.
1249 * On non-idmapped mounts or if permission checking is to be performed on the
1250 * raw inode simply pass @nop_mnt_idmap.
1251 *
1252 * Returns 0 if successful, -ve on error.
1253 */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1255 {
1256 struct inode *inode = link->dentry->d_inode;
1257
1258 /* Inode writeback is not safe when the uid or gid are invalid. */
1259 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1260 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1261 return -EOVERFLOW;
1262
1263 if (!sysctl_protected_hardlinks)
1264 return 0;
1265
1266 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1267 * otherwise, it must be a safe source.
1268 */
1269 if (safe_hardlink_source(idmap, inode) ||
1270 inode_owner_or_capable(idmap, inode))
1271 return 0;
1272
1273 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1274 return -EPERM;
1275 }
1276
1277 /**
1278 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1279 * should be allowed, or not, on files that already
1280 * exist.
1281 * @idmap: idmap of the mount the inode was found from
1282 * @nd: nameidata pathwalk data
1283 * @inode: the inode of the file to open
1284 *
1285 * Block an O_CREAT open of a FIFO (or a regular file) when:
1286 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1287 * - the file already exists
1288 * - we are in a sticky directory
1289 * - we don't own the file
1290 * - the owner of the directory doesn't own the file
1291 * - the directory is world writable
1292 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1293 * the directory doesn't have to be world writable: being group writable will
1294 * be enough.
1295 *
1296 * If the inode has been found through an idmapped mount the idmap of
1297 * the vfsmount must be passed through @idmap. This function will then take
1298 * care to map the inode according to @idmap before checking permissions.
1299 * On non-idmapped mounts or if permission checking is to be performed on the
1300 * raw inode simply pass @nop_mnt_idmap.
1301 *
1302 * Returns 0 if the open is allowed, -ve on error.
1303 */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1305 struct inode *const inode)
1306 {
1307 umode_t dir_mode = nd->dir_mode;
1308 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1309
1310 if (likely(!(dir_mode & S_ISVTX)))
1311 return 0;
1312
1313 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1314 return 0;
1315
1316 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1317 return 0;
1318
1319 i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1320
1321 if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1322 return 0;
1323
1324 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1325 return 0;
1326
1327 if (likely(dir_mode & 0002)) {
1328 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1329 return -EACCES;
1330 }
1331
1332 if (dir_mode & 0020) {
1333 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1334 audit_log_path_denied(AUDIT_ANOM_CREAT,
1335 "sticky_create_fifo");
1336 return -EACCES;
1337 }
1338
1339 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1340 audit_log_path_denied(AUDIT_ANOM_CREAT,
1341 "sticky_create_regular");
1342 return -EACCES;
1343 }
1344 }
1345
1346 return 0;
1347 }
1348
1349 /*
1350 * follow_up - Find the mountpoint of path's vfsmount
1351 *
1352 * Given a path, find the mountpoint of its source file system.
1353 * Replace @path with the path of the mountpoint in the parent mount.
1354 * Up is towards /.
1355 *
1356 * Return 1 if we went up a level and 0 if we were already at the
1357 * root.
1358 */
follow_up(struct path * path)1359 int follow_up(struct path *path)
1360 {
1361 struct mount *mnt = real_mount(path->mnt);
1362 struct mount *parent;
1363 struct dentry *mountpoint;
1364
1365 read_seqlock_excl(&mount_lock);
1366 parent = mnt->mnt_parent;
1367 if (parent == mnt) {
1368 read_sequnlock_excl(&mount_lock);
1369 return 0;
1370 }
1371 mntget(&parent->mnt);
1372 mountpoint = dget(mnt->mnt_mountpoint);
1373 read_sequnlock_excl(&mount_lock);
1374 dput(path->dentry);
1375 path->dentry = mountpoint;
1376 mntput(path->mnt);
1377 path->mnt = &parent->mnt;
1378 return 1;
1379 }
1380 EXPORT_SYMBOL(follow_up);
1381
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1383 struct path *path, unsigned *seqp)
1384 {
1385 while (mnt_has_parent(m)) {
1386 struct dentry *mountpoint = m->mnt_mountpoint;
1387
1388 m = m->mnt_parent;
1389 if (unlikely(root->dentry == mountpoint &&
1390 root->mnt == &m->mnt))
1391 break;
1392 if (mountpoint != m->mnt.mnt_root) {
1393 path->mnt = &m->mnt;
1394 path->dentry = mountpoint;
1395 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1396 return true;
1397 }
1398 }
1399 return false;
1400 }
1401
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1402 static bool choose_mountpoint(struct mount *m, const struct path *root,
1403 struct path *path)
1404 {
1405 bool found;
1406
1407 rcu_read_lock();
1408 while (1) {
1409 unsigned seq, mseq = read_seqbegin(&mount_lock);
1410
1411 found = choose_mountpoint_rcu(m, root, path, &seq);
1412 if (unlikely(!found)) {
1413 if (!read_seqretry(&mount_lock, mseq))
1414 break;
1415 } else {
1416 if (likely(__legitimize_path(path, seq, mseq)))
1417 break;
1418 rcu_read_unlock();
1419 path_put(path);
1420 rcu_read_lock();
1421 }
1422 }
1423 rcu_read_unlock();
1424 return found;
1425 }
1426
1427 /*
1428 * Perform an automount
1429 * - return -EISDIR to tell follow_managed() to stop and return the path we
1430 * were called with.
1431 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1433 {
1434 struct dentry *dentry = path->dentry;
1435
1436 /* We don't want to mount if someone's just doing a stat -
1437 * unless they're stat'ing a directory and appended a '/' to
1438 * the name.
1439 *
1440 * We do, however, want to mount if someone wants to open or
1441 * create a file of any type under the mountpoint, wants to
1442 * traverse through the mountpoint or wants to open the
1443 * mounted directory. Also, autofs may mark negative dentries
1444 * as being automount points. These will need the attentions
1445 * of the daemon to instantiate them before they can be used.
1446 */
1447 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1448 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1449 dentry->d_inode)
1450 return -EISDIR;
1451
1452 /* No need to trigger automounts if mountpoint crossing is disabled. */
1453 if (lookup_flags & LOOKUP_NO_XDEV)
1454 return -EXDEV;
1455
1456 if (count && (*count)++ >= MAXSYMLINKS)
1457 return -ELOOP;
1458
1459 return finish_automount(dentry->d_op->d_automount(path), path);
1460 }
1461
1462 /*
1463 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1464 * dentries are pinned but not locked here, so negative dentry can go
1465 * positive right under us. Use of smp_load_acquire() provides a barrier
1466 * sufficient for ->d_inode and ->d_flags consistency.
1467 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1468 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1469 int *count, unsigned lookup_flags)
1470 {
1471 struct vfsmount *mnt = path->mnt;
1472 bool need_mntput = false;
1473 int ret = 0;
1474
1475 while (flags & DCACHE_MANAGED_DENTRY) {
1476 /* Allow the filesystem to manage the transit without i_rwsem
1477 * being held. */
1478 if (flags & DCACHE_MANAGE_TRANSIT) {
1479 if (lookup_flags & LOOKUP_NO_XDEV) {
1480 ret = -EXDEV;
1481 break;
1482 }
1483 ret = path->dentry->d_op->d_manage(path, false);
1484 flags = smp_load_acquire(&path->dentry->d_flags);
1485 if (ret < 0)
1486 break;
1487 }
1488
1489 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1490 struct vfsmount *mounted = lookup_mnt(path);
1491 if (mounted) { // ... in our namespace
1492 dput(path->dentry);
1493 if (need_mntput)
1494 mntput(path->mnt);
1495 path->mnt = mounted;
1496 path->dentry = dget(mounted->mnt_root);
1497 // here we know it's positive
1498 flags = path->dentry->d_flags;
1499 need_mntput = true;
1500 if (unlikely(lookup_flags & LOOKUP_NO_XDEV)) {
1501 ret = -EXDEV;
1502 break;
1503 }
1504 continue;
1505 }
1506 }
1507
1508 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1509 break;
1510
1511 // uncovered automount point
1512 ret = follow_automount(path, count, lookup_flags);
1513 flags = smp_load_acquire(&path->dentry->d_flags);
1514 if (ret < 0)
1515 break;
1516 }
1517
1518 if (ret == -EISDIR)
1519 ret = 0;
1520 // possible if you race with several mount --move
1521 if (need_mntput && path->mnt == mnt)
1522 mntput(path->mnt);
1523 if (!ret && unlikely(d_flags_negative(flags)))
1524 ret = -ENOENT;
1525 *jumped = need_mntput;
1526 return ret;
1527 }
1528
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1529 static inline int traverse_mounts(struct path *path, bool *jumped,
1530 int *count, unsigned lookup_flags)
1531 {
1532 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1533
1534 /* fastpath */
1535 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1536 *jumped = false;
1537 if (unlikely(d_flags_negative(flags)))
1538 return -ENOENT;
1539 return 0;
1540 }
1541 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1542 }
1543
follow_down_one(struct path * path)1544 int follow_down_one(struct path *path)
1545 {
1546 struct vfsmount *mounted;
1547
1548 mounted = lookup_mnt(path);
1549 if (mounted) {
1550 dput(path->dentry);
1551 mntput(path->mnt);
1552 path->mnt = mounted;
1553 path->dentry = dget(mounted->mnt_root);
1554 return 1;
1555 }
1556 return 0;
1557 }
1558 EXPORT_SYMBOL(follow_down_one);
1559
1560 /*
1561 * Follow down to the covering mount currently visible to userspace. At each
1562 * point, the filesystem owning that dentry may be queried as to whether the
1563 * caller is permitted to proceed or not.
1564 */
follow_down(struct path * path,unsigned int flags)1565 int follow_down(struct path *path, unsigned int flags)
1566 {
1567 struct vfsmount *mnt = path->mnt;
1568 bool jumped;
1569 int ret = traverse_mounts(path, &jumped, NULL, flags);
1570
1571 if (path->mnt != mnt)
1572 mntput(mnt);
1573 return ret;
1574 }
1575 EXPORT_SYMBOL(follow_down);
1576
1577 /*
1578 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1579 * we meet a managed dentry that would need blocking.
1580 */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1581 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1582 {
1583 struct dentry *dentry = path->dentry;
1584 unsigned int flags = dentry->d_flags;
1585
1586 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1587 return true;
1588
1589 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1590 return false;
1591
1592 for (;;) {
1593 /*
1594 * Don't forget we might have a non-mountpoint managed dentry
1595 * that wants to block transit.
1596 */
1597 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1598 int res = dentry->d_op->d_manage(path, true);
1599 if (res)
1600 return res == -EISDIR;
1601 flags = dentry->d_flags;
1602 }
1603
1604 if (flags & DCACHE_MOUNTED) {
1605 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1606 if (mounted) {
1607 path->mnt = &mounted->mnt;
1608 dentry = path->dentry = mounted->mnt.mnt_root;
1609 nd->state |= ND_JUMPED;
1610 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1611 flags = dentry->d_flags;
1612 // makes sure that non-RCU pathwalk could reach
1613 // this state.
1614 if (read_seqretry(&mount_lock, nd->m_seq))
1615 return false;
1616 continue;
1617 }
1618 if (read_seqretry(&mount_lock, nd->m_seq))
1619 return false;
1620 }
1621 return !(flags & DCACHE_NEED_AUTOMOUNT);
1622 }
1623 }
1624
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1625 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1626 struct path *path)
1627 {
1628 bool jumped;
1629 int ret;
1630
1631 path->mnt = nd->path.mnt;
1632 path->dentry = dentry;
1633 if (nd->flags & LOOKUP_RCU) {
1634 unsigned int seq = nd->next_seq;
1635 if (likely(__follow_mount_rcu(nd, path)))
1636 return 0;
1637 // *path and nd->next_seq might've been clobbered
1638 path->mnt = nd->path.mnt;
1639 path->dentry = dentry;
1640 nd->next_seq = seq;
1641 if (!try_to_unlazy_next(nd, dentry))
1642 return -ECHILD;
1643 }
1644 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1645 if (jumped)
1646 nd->state |= ND_JUMPED;
1647 if (unlikely(ret)) {
1648 dput(path->dentry);
1649 if (path->mnt != nd->path.mnt)
1650 mntput(path->mnt);
1651 }
1652 return ret;
1653 }
1654
1655 /*
1656 * This looks up the name in dcache and possibly revalidates the found dentry.
1657 * NULL is returned if the dentry does not exist in the cache.
1658 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1659 static struct dentry *lookup_dcache(const struct qstr *name,
1660 struct dentry *dir,
1661 unsigned int flags)
1662 {
1663 struct dentry *dentry = d_lookup(dir, name);
1664 if (dentry) {
1665 int error = d_revalidate(dir->d_inode, name, dentry, flags);
1666 if (unlikely(error <= 0)) {
1667 if (!error)
1668 d_invalidate(dentry);
1669 dput(dentry);
1670 return ERR_PTR(error);
1671 }
1672 }
1673 return dentry;
1674 }
1675
1676 /*
1677 * Parent directory has inode locked exclusive. This is one
1678 * and only case when ->lookup() gets called on non in-lookup
1679 * dentries - as the matter of fact, this only gets called
1680 * when directory is guaranteed to have no in-lookup children
1681 * at all.
1682 * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1683 * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1684 */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1685 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1686 struct dentry *base, unsigned int flags)
1687 {
1688 struct dentry *dentry;
1689 struct dentry *old;
1690 struct inode *dir;
1691
1692 dentry = lookup_dcache(name, base, flags);
1693 if (dentry)
1694 goto found;
1695
1696 /* Don't create child dentry for a dead directory. */
1697 dir = base->d_inode;
1698 if (unlikely(IS_DEADDIR(dir)))
1699 return ERR_PTR(-ENOENT);
1700
1701 dentry = d_alloc(base, name);
1702 if (unlikely(!dentry))
1703 return ERR_PTR(-ENOMEM);
1704
1705 old = dir->i_op->lookup(dir, dentry, flags);
1706 if (unlikely(old)) {
1707 dput(dentry);
1708 dentry = old;
1709 }
1710 found:
1711 if (IS_ERR(dentry))
1712 return dentry;
1713 if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1714 dput(dentry);
1715 return ERR_PTR(-ENOENT);
1716 }
1717 if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1718 dput(dentry);
1719 return ERR_PTR(-EEXIST);
1720 }
1721 return dentry;
1722 }
1723 EXPORT_SYMBOL(lookup_one_qstr_excl);
1724
1725 /**
1726 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1727 * @nd: current nameidata
1728 *
1729 * Do a fast, but racy lookup in the dcache for the given dentry, and
1730 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1731 * found. On error, an ERR_PTR will be returned.
1732 *
1733 * If this function returns a valid dentry and the walk is no longer
1734 * lazy, the dentry will carry a reference that must later be put. If
1735 * RCU mode is still in force, then this is not the case and the dentry
1736 * must be legitimized before use. If this returns NULL, then the walk
1737 * will no longer be in RCU mode.
1738 */
lookup_fast(struct nameidata * nd)1739 static struct dentry *lookup_fast(struct nameidata *nd)
1740 {
1741 struct dentry *dentry, *parent = nd->path.dentry;
1742 int status = 1;
1743
1744 /*
1745 * Rename seqlock is not required here because in the off chance
1746 * of a false negative due to a concurrent rename, the caller is
1747 * going to fall back to non-racy lookup.
1748 */
1749 if (nd->flags & LOOKUP_RCU) {
1750 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1751 if (unlikely(!dentry)) {
1752 if (!try_to_unlazy(nd))
1753 return ERR_PTR(-ECHILD);
1754 return NULL;
1755 }
1756
1757 /*
1758 * This sequence count validates that the parent had no
1759 * changes while we did the lookup of the dentry above.
1760 */
1761 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1762 return ERR_PTR(-ECHILD);
1763
1764 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1765 if (likely(status > 0))
1766 return dentry;
1767 if (!try_to_unlazy_next(nd, dentry))
1768 return ERR_PTR(-ECHILD);
1769 if (status == -ECHILD)
1770 /* we'd been told to redo it in non-rcu mode */
1771 status = d_revalidate(nd->inode, &nd->last,
1772 dentry, nd->flags);
1773 } else {
1774 dentry = __d_lookup(parent, &nd->last);
1775 if (unlikely(!dentry))
1776 return NULL;
1777 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1778 }
1779 if (unlikely(status <= 0)) {
1780 if (!status)
1781 d_invalidate(dentry);
1782 dput(dentry);
1783 return ERR_PTR(status);
1784 }
1785 return dentry;
1786 }
1787
1788 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1789 static struct dentry *__lookup_slow(const struct qstr *name,
1790 struct dentry *dir,
1791 unsigned int flags)
1792 {
1793 struct dentry *dentry, *old;
1794 struct inode *inode = dir->d_inode;
1795 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1796
1797 /* Don't go there if it's already dead */
1798 if (unlikely(IS_DEADDIR(inode)))
1799 return ERR_PTR(-ENOENT);
1800 again:
1801 dentry = d_alloc_parallel(dir, name, &wq);
1802 if (IS_ERR(dentry))
1803 return dentry;
1804 if (unlikely(!d_in_lookup(dentry))) {
1805 int error = d_revalidate(inode, name, dentry, flags);
1806 if (unlikely(error <= 0)) {
1807 if (!error) {
1808 d_invalidate(dentry);
1809 dput(dentry);
1810 goto again;
1811 }
1812 dput(dentry);
1813 dentry = ERR_PTR(error);
1814 }
1815 } else {
1816 old = inode->i_op->lookup(inode, dentry, flags);
1817 d_lookup_done(dentry);
1818 if (unlikely(old)) {
1819 dput(dentry);
1820 dentry = old;
1821 }
1822 }
1823 return dentry;
1824 }
1825
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1826 static struct dentry *lookup_slow(const struct qstr *name,
1827 struct dentry *dir,
1828 unsigned int flags)
1829 {
1830 struct inode *inode = dir->d_inode;
1831 struct dentry *res;
1832 inode_lock_shared(inode);
1833 res = __lookup_slow(name, dir, flags);
1834 inode_unlock_shared(inode);
1835 return res;
1836 }
1837
lookup_slow_killable(const struct qstr * name,struct dentry * dir,unsigned int flags)1838 static struct dentry *lookup_slow_killable(const struct qstr *name,
1839 struct dentry *dir,
1840 unsigned int flags)
1841 {
1842 struct inode *inode = dir->d_inode;
1843 struct dentry *res;
1844
1845 if (inode_lock_shared_killable(inode))
1846 return ERR_PTR(-EINTR);
1847 res = __lookup_slow(name, dir, flags);
1848 inode_unlock_shared(inode);
1849 return res;
1850 }
1851
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1852 static inline int may_lookup(struct mnt_idmap *idmap,
1853 struct nameidata *restrict nd)
1854 {
1855 int err, mask;
1856
1857 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1858 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1859 if (likely(!err))
1860 return 0;
1861
1862 // If we failed, and we weren't in LOOKUP_RCU, it's final
1863 if (!(nd->flags & LOOKUP_RCU))
1864 return err;
1865
1866 // Drop out of RCU mode to make sure it wasn't transient
1867 if (!try_to_unlazy(nd))
1868 return -ECHILD; // redo it all non-lazy
1869
1870 if (err != -ECHILD) // hard error
1871 return err;
1872
1873 return inode_permission(idmap, nd->inode, MAY_EXEC);
1874 }
1875
reserve_stack(struct nameidata * nd,struct path * link)1876 static int reserve_stack(struct nameidata *nd, struct path *link)
1877 {
1878 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1879 return -ELOOP;
1880
1881 if (likely(nd->depth != EMBEDDED_LEVELS))
1882 return 0;
1883 if (likely(nd->stack != nd->internal))
1884 return 0;
1885 if (likely(nd_alloc_stack(nd)))
1886 return 0;
1887
1888 if (nd->flags & LOOKUP_RCU) {
1889 // we need to grab link before we do unlazy. And we can't skip
1890 // unlazy even if we fail to grab the link - cleanup needs it
1891 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1892
1893 if (!try_to_unlazy(nd) || !grabbed_link)
1894 return -ECHILD;
1895
1896 if (nd_alloc_stack(nd))
1897 return 0;
1898 }
1899 return -ENOMEM;
1900 }
1901
1902 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1903
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1904 static const char *pick_link(struct nameidata *nd, struct path *link,
1905 struct inode *inode, int flags)
1906 {
1907 struct saved *last;
1908 const char *res;
1909 int error = reserve_stack(nd, link);
1910
1911 if (unlikely(error)) {
1912 if (!(nd->flags & LOOKUP_RCU))
1913 path_put(link);
1914 return ERR_PTR(error);
1915 }
1916 last = nd->stack + nd->depth++;
1917 last->link = *link;
1918 clear_delayed_call(&last->done);
1919 last->seq = nd->next_seq;
1920
1921 if (flags & WALK_TRAILING) {
1922 error = may_follow_link(nd, inode);
1923 if (unlikely(error))
1924 return ERR_PTR(error);
1925 }
1926
1927 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1928 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1929 return ERR_PTR(-ELOOP);
1930
1931 if (unlikely(atime_needs_update(&last->link, inode))) {
1932 if (nd->flags & LOOKUP_RCU) {
1933 if (!try_to_unlazy(nd))
1934 return ERR_PTR(-ECHILD);
1935 }
1936 touch_atime(&last->link);
1937 cond_resched();
1938 }
1939
1940 error = security_inode_follow_link(link->dentry, inode,
1941 nd->flags & LOOKUP_RCU);
1942 if (unlikely(error))
1943 return ERR_PTR(error);
1944
1945 res = READ_ONCE(inode->i_link);
1946 if (!res) {
1947 const char * (*get)(struct dentry *, struct inode *,
1948 struct delayed_call *);
1949 get = inode->i_op->get_link;
1950 if (nd->flags & LOOKUP_RCU) {
1951 res = get(NULL, inode, &last->done);
1952 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1953 res = get(link->dentry, inode, &last->done);
1954 } else {
1955 res = get(link->dentry, inode, &last->done);
1956 }
1957 if (!res)
1958 goto all_done;
1959 if (IS_ERR(res))
1960 return res;
1961 }
1962 if (*res == '/') {
1963 error = nd_jump_root(nd);
1964 if (unlikely(error))
1965 return ERR_PTR(error);
1966 while (unlikely(*++res == '/'))
1967 ;
1968 }
1969 if (*res)
1970 return res;
1971 all_done: // pure jump
1972 put_link(nd);
1973 return NULL;
1974 }
1975
1976 /*
1977 * Do we need to follow links? We _really_ want to be able
1978 * to do this check without having to look at inode->i_op,
1979 * so we keep a cache of "no, this doesn't need follow_link"
1980 * for the common case.
1981 *
1982 * NOTE: dentry must be what nd->next_seq had been sampled from.
1983 */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1984 static const char *step_into(struct nameidata *nd, int flags,
1985 struct dentry *dentry)
1986 {
1987 struct path path;
1988 struct inode *inode;
1989 int err = handle_mounts(nd, dentry, &path);
1990
1991 if (err < 0)
1992 return ERR_PTR(err);
1993 inode = path.dentry->d_inode;
1994 if (likely(!d_is_symlink(path.dentry)) ||
1995 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1996 (flags & WALK_NOFOLLOW)) {
1997 /* not a symlink or should not follow */
1998 if (nd->flags & LOOKUP_RCU) {
1999 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2000 return ERR_PTR(-ECHILD);
2001 if (unlikely(!inode))
2002 return ERR_PTR(-ENOENT);
2003 } else {
2004 dput(nd->path.dentry);
2005 if (nd->path.mnt != path.mnt)
2006 mntput(nd->path.mnt);
2007 }
2008 nd->path = path;
2009 nd->inode = inode;
2010 nd->seq = nd->next_seq;
2011 return NULL;
2012 }
2013 if (nd->flags & LOOKUP_RCU) {
2014 /* make sure that d_is_symlink above matches inode */
2015 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2016 return ERR_PTR(-ECHILD);
2017 } else {
2018 if (path.mnt == nd->path.mnt)
2019 mntget(path.mnt);
2020 }
2021 return pick_link(nd, &path, inode, flags);
2022 }
2023
follow_dotdot_rcu(struct nameidata * nd)2024 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2025 {
2026 struct dentry *parent, *old;
2027
2028 if (path_equal(&nd->path, &nd->root))
2029 goto in_root;
2030 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2031 struct path path;
2032 unsigned seq;
2033 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2034 &nd->root, &path, &seq))
2035 goto in_root;
2036 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2037 return ERR_PTR(-ECHILD);
2038 nd->path = path;
2039 nd->inode = path.dentry->d_inode;
2040 nd->seq = seq;
2041 // makes sure that non-RCU pathwalk could reach this state
2042 if (read_seqretry(&mount_lock, nd->m_seq))
2043 return ERR_PTR(-ECHILD);
2044 /* we know that mountpoint was pinned */
2045 }
2046 old = nd->path.dentry;
2047 parent = old->d_parent;
2048 nd->next_seq = read_seqcount_begin(&parent->d_seq);
2049 // makes sure that non-RCU pathwalk could reach this state
2050 if (read_seqcount_retry(&old->d_seq, nd->seq))
2051 return ERR_PTR(-ECHILD);
2052 if (unlikely(!path_connected(nd->path.mnt, parent)))
2053 return ERR_PTR(-ECHILD);
2054 return parent;
2055 in_root:
2056 if (read_seqretry(&mount_lock, nd->m_seq))
2057 return ERR_PTR(-ECHILD);
2058 if (unlikely(nd->flags & LOOKUP_BENEATH))
2059 return ERR_PTR(-ECHILD);
2060 nd->next_seq = nd->seq;
2061 return nd->path.dentry;
2062 }
2063
follow_dotdot(struct nameidata * nd)2064 static struct dentry *follow_dotdot(struct nameidata *nd)
2065 {
2066 struct dentry *parent;
2067
2068 if (path_equal(&nd->path, &nd->root))
2069 goto in_root;
2070 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2071 struct path path;
2072
2073 if (!choose_mountpoint(real_mount(nd->path.mnt),
2074 &nd->root, &path))
2075 goto in_root;
2076 path_put(&nd->path);
2077 nd->path = path;
2078 nd->inode = path.dentry->d_inode;
2079 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2080 return ERR_PTR(-EXDEV);
2081 }
2082 /* rare case of legitimate dget_parent()... */
2083 parent = dget_parent(nd->path.dentry);
2084 if (unlikely(!path_connected(nd->path.mnt, parent))) {
2085 dput(parent);
2086 return ERR_PTR(-ENOENT);
2087 }
2088 return parent;
2089
2090 in_root:
2091 if (unlikely(nd->flags & LOOKUP_BENEATH))
2092 return ERR_PTR(-EXDEV);
2093 return dget(nd->path.dentry);
2094 }
2095
handle_dots(struct nameidata * nd,int type)2096 static const char *handle_dots(struct nameidata *nd, int type)
2097 {
2098 if (type == LAST_DOTDOT) {
2099 const char *error = NULL;
2100 struct dentry *parent;
2101
2102 if (!nd->root.mnt) {
2103 error = ERR_PTR(set_root(nd));
2104 if (error)
2105 return error;
2106 }
2107 if (nd->flags & LOOKUP_RCU)
2108 parent = follow_dotdot_rcu(nd);
2109 else
2110 parent = follow_dotdot(nd);
2111 if (IS_ERR(parent))
2112 return ERR_CAST(parent);
2113 error = step_into(nd, WALK_NOFOLLOW, parent);
2114 if (unlikely(error))
2115 return error;
2116
2117 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2118 /*
2119 * If there was a racing rename or mount along our
2120 * path, then we can't be sure that ".." hasn't jumped
2121 * above nd->root (and so userspace should retry or use
2122 * some fallback).
2123 */
2124 smp_rmb();
2125 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2126 return ERR_PTR(-EAGAIN);
2127 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2128 return ERR_PTR(-EAGAIN);
2129 }
2130 }
2131 return NULL;
2132 }
2133
walk_component(struct nameidata * nd,int flags)2134 static const char *walk_component(struct nameidata *nd, int flags)
2135 {
2136 struct dentry *dentry;
2137 /*
2138 * "." and ".." are special - ".." especially so because it has
2139 * to be able to know about the current root directory and
2140 * parent relationships.
2141 */
2142 if (unlikely(nd->last_type != LAST_NORM)) {
2143 if (!(flags & WALK_MORE) && nd->depth)
2144 put_link(nd);
2145 return handle_dots(nd, nd->last_type);
2146 }
2147 dentry = lookup_fast(nd);
2148 if (IS_ERR(dentry))
2149 return ERR_CAST(dentry);
2150 if (unlikely(!dentry)) {
2151 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2152 if (IS_ERR(dentry))
2153 return ERR_CAST(dentry);
2154 }
2155 if (!(flags & WALK_MORE) && nd->depth)
2156 put_link(nd);
2157 return step_into(nd, flags, dentry);
2158 }
2159
2160 /*
2161 * We can do the critical dentry name comparison and hashing
2162 * operations one word at a time, but we are limited to:
2163 *
2164 * - Architectures with fast unaligned word accesses. We could
2165 * do a "get_unaligned()" if this helps and is sufficiently
2166 * fast.
2167 *
2168 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2169 * do not trap on the (extremely unlikely) case of a page
2170 * crossing operation.
2171 *
2172 * - Furthermore, we need an efficient 64-bit compile for the
2173 * 64-bit case in order to generate the "number of bytes in
2174 * the final mask". Again, that could be replaced with a
2175 * efficient population count instruction or similar.
2176 */
2177 #ifdef CONFIG_DCACHE_WORD_ACCESS
2178
2179 #include <asm/word-at-a-time.h>
2180
2181 #ifdef HASH_MIX
2182
2183 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2184
2185 #elif defined(CONFIG_64BIT)
2186 /*
2187 * Register pressure in the mixing function is an issue, particularly
2188 * on 32-bit x86, but almost any function requires one state value and
2189 * one temporary. Instead, use a function designed for two state values
2190 * and no temporaries.
2191 *
2192 * This function cannot create a collision in only two iterations, so
2193 * we have two iterations to achieve avalanche. In those two iterations,
2194 * we have six layers of mixing, which is enough to spread one bit's
2195 * influence out to 2^6 = 64 state bits.
2196 *
2197 * Rotate constants are scored by considering either 64 one-bit input
2198 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2199 * probability of that delta causing a change to each of the 128 output
2200 * bits, using a sample of random initial states.
2201 *
2202 * The Shannon entropy of the computed probabilities is then summed
2203 * to produce a score. Ideally, any input change has a 50% chance of
2204 * toggling any given output bit.
2205 *
2206 * Mixing scores (in bits) for (12,45):
2207 * Input delta: 1-bit 2-bit
2208 * 1 round: 713.3 42542.6
2209 * 2 rounds: 2753.7 140389.8
2210 * 3 rounds: 5954.1 233458.2
2211 * 4 rounds: 7862.6 256672.2
2212 * Perfect: 8192 258048
2213 * (64*128) (64*63/2 * 128)
2214 */
2215 #define HASH_MIX(x, y, a) \
2216 ( x ^= (a), \
2217 y ^= x, x = rol64(x,12),\
2218 x += y, y = rol64(y,45),\
2219 y *= 9 )
2220
2221 /*
2222 * Fold two longs into one 32-bit hash value. This must be fast, but
2223 * latency isn't quite as critical, as there is a fair bit of additional
2224 * work done before the hash value is used.
2225 */
fold_hash(unsigned long x,unsigned long y)2226 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2227 {
2228 y ^= x * GOLDEN_RATIO_64;
2229 y *= GOLDEN_RATIO_64;
2230 return y >> 32;
2231 }
2232
2233 #else /* 32-bit case */
2234
2235 /*
2236 * Mixing scores (in bits) for (7,20):
2237 * Input delta: 1-bit 2-bit
2238 * 1 round: 330.3 9201.6
2239 * 2 rounds: 1246.4 25475.4
2240 * 3 rounds: 1907.1 31295.1
2241 * 4 rounds: 2042.3 31718.6
2242 * Perfect: 2048 31744
2243 * (32*64) (32*31/2 * 64)
2244 */
2245 #define HASH_MIX(x, y, a) \
2246 ( x ^= (a), \
2247 y ^= x, x = rol32(x, 7),\
2248 x += y, y = rol32(y,20),\
2249 y *= 9 )
2250
fold_hash(unsigned long x,unsigned long y)2251 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2252 {
2253 /* Use arch-optimized multiply if one exists */
2254 return __hash_32(y ^ __hash_32(x));
2255 }
2256
2257 #endif
2258
2259 /*
2260 * Return the hash of a string of known length. This is carfully
2261 * designed to match hash_name(), which is the more critical function.
2262 * In particular, we must end by hashing a final word containing 0..7
2263 * payload bytes, to match the way that hash_name() iterates until it
2264 * finds the delimiter after the name.
2265 */
full_name_hash(const void * salt,const char * name,unsigned int len)2266 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2267 {
2268 unsigned long a, x = 0, y = (unsigned long)salt;
2269
2270 for (;;) {
2271 if (!len)
2272 goto done;
2273 a = load_unaligned_zeropad(name);
2274 if (len < sizeof(unsigned long))
2275 break;
2276 HASH_MIX(x, y, a);
2277 name += sizeof(unsigned long);
2278 len -= sizeof(unsigned long);
2279 }
2280 x ^= a & bytemask_from_count(len);
2281 done:
2282 return fold_hash(x, y);
2283 }
2284 EXPORT_SYMBOL(full_name_hash);
2285
2286 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2287 u64 hashlen_string(const void *salt, const char *name)
2288 {
2289 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2290 unsigned long adata, mask, len;
2291 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2292
2293 len = 0;
2294 goto inside;
2295
2296 do {
2297 HASH_MIX(x, y, a);
2298 len += sizeof(unsigned long);
2299 inside:
2300 a = load_unaligned_zeropad(name+len);
2301 } while (!has_zero(a, &adata, &constants));
2302
2303 adata = prep_zero_mask(a, adata, &constants);
2304 mask = create_zero_mask(adata);
2305 x ^= a & zero_bytemask(mask);
2306
2307 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2308 }
2309 EXPORT_SYMBOL(hashlen_string);
2310
2311 /*
2312 * Calculate the length and hash of the path component, and
2313 * return the length as the result.
2314 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2315 static inline const char *hash_name(struct nameidata *nd,
2316 const char *name,
2317 unsigned long *lastword)
2318 {
2319 unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2320 unsigned long adata, bdata, mask, len;
2321 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2322
2323 /*
2324 * The first iteration is special, because it can result in
2325 * '.' and '..' and has no mixing other than the final fold.
2326 */
2327 a = load_unaligned_zeropad(name);
2328 b = a ^ REPEAT_BYTE('/');
2329 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2330 adata = prep_zero_mask(a, adata, &constants);
2331 bdata = prep_zero_mask(b, bdata, &constants);
2332 mask = create_zero_mask(adata | bdata);
2333 a &= zero_bytemask(mask);
2334 *lastword = a;
2335 len = find_zero(mask);
2336 nd->last.hash = fold_hash(a, y);
2337 nd->last.len = len;
2338 return name + len;
2339 }
2340
2341 len = 0;
2342 x = 0;
2343 do {
2344 HASH_MIX(x, y, a);
2345 len += sizeof(unsigned long);
2346 a = load_unaligned_zeropad(name+len);
2347 b = a ^ REPEAT_BYTE('/');
2348 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2349
2350 adata = prep_zero_mask(a, adata, &constants);
2351 bdata = prep_zero_mask(b, bdata, &constants);
2352 mask = create_zero_mask(adata | bdata);
2353 a &= zero_bytemask(mask);
2354 x ^= a;
2355 len += find_zero(mask);
2356 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT
2357
2358 nd->last.hash = fold_hash(x, y);
2359 nd->last.len = len;
2360 return name + len;
2361 }
2362
2363 /*
2364 * Note that the 'last' word is always zero-masked, but
2365 * was loaded as a possibly big-endian word.
2366 */
2367 #ifdef __BIG_ENDIAN
2368 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8))
2369 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16))
2370 #endif
2371
2372 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2373
2374 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2375 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2376 {
2377 unsigned long hash = init_name_hash(salt);
2378 while (len--)
2379 hash = partial_name_hash((unsigned char)*name++, hash);
2380 return end_name_hash(hash);
2381 }
2382 EXPORT_SYMBOL(full_name_hash);
2383
2384 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2385 u64 hashlen_string(const void *salt, const char *name)
2386 {
2387 unsigned long hash = init_name_hash(salt);
2388 unsigned long len = 0, c;
2389
2390 c = (unsigned char)*name;
2391 while (c) {
2392 len++;
2393 hash = partial_name_hash(c, hash);
2394 c = (unsigned char)name[len];
2395 }
2396 return hashlen_create(end_name_hash(hash), len);
2397 }
2398 EXPORT_SYMBOL(hashlen_string);
2399
2400 /*
2401 * We know there's a real path component here of at least
2402 * one character.
2403 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2404 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2405 {
2406 unsigned long hash = init_name_hash(nd->path.dentry);
2407 unsigned long len = 0, c, last = 0;
2408
2409 c = (unsigned char)*name;
2410 do {
2411 last = (last << 8) + c;
2412 len++;
2413 hash = partial_name_hash(c, hash);
2414 c = (unsigned char)name[len];
2415 } while (c && c != '/');
2416
2417 // This is reliable for DOT or DOTDOT, since the component
2418 // cannot contain NUL characters - top bits being zero means
2419 // we cannot have had any other pathnames.
2420 *lastword = last;
2421 nd->last.hash = end_name_hash(hash);
2422 nd->last.len = len;
2423 return name + len;
2424 }
2425
2426 #endif
2427
2428 #ifndef LAST_WORD_IS_DOT
2429 #define LAST_WORD_IS_DOT 0x2e
2430 #define LAST_WORD_IS_DOTDOT 0x2e2e
2431 #endif
2432
2433 /*
2434 * Name resolution.
2435 * This is the basic name resolution function, turning a pathname into
2436 * the final dentry. We expect 'base' to be positive and a directory.
2437 *
2438 * Returns 0 and nd will have valid dentry and mnt on success.
2439 * Returns error and drops reference to input namei data on failure.
2440 */
link_path_walk(const char * name,struct nameidata * nd)2441 static int link_path_walk(const char *name, struct nameidata *nd)
2442 {
2443 int depth = 0; // depth <= nd->depth
2444 int err;
2445
2446 nd->last_type = LAST_ROOT;
2447 nd->flags |= LOOKUP_PARENT;
2448 if (IS_ERR(name))
2449 return PTR_ERR(name);
2450 if (*name == '/') {
2451 do {
2452 name++;
2453 } while (unlikely(*name == '/'));
2454 }
2455 if (unlikely(!*name)) {
2456 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2457 return 0;
2458 }
2459
2460 /* At this point we know we have a real path component. */
2461 for(;;) {
2462 struct mnt_idmap *idmap;
2463 const char *link;
2464 unsigned long lastword;
2465
2466 idmap = mnt_idmap(nd->path.mnt);
2467 err = may_lookup(idmap, nd);
2468 if (unlikely(err))
2469 return err;
2470
2471 nd->last.name = name;
2472 name = hash_name(nd, name, &lastword);
2473
2474 switch(lastword) {
2475 case LAST_WORD_IS_DOTDOT:
2476 nd->last_type = LAST_DOTDOT;
2477 nd->state |= ND_JUMPED;
2478 break;
2479
2480 case LAST_WORD_IS_DOT:
2481 nd->last_type = LAST_DOT;
2482 break;
2483
2484 default:
2485 nd->last_type = LAST_NORM;
2486 nd->state &= ~ND_JUMPED;
2487
2488 struct dentry *parent = nd->path.dentry;
2489 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2490 err = parent->d_op->d_hash(parent, &nd->last);
2491 if (err < 0)
2492 return err;
2493 }
2494 }
2495
2496 if (!*name)
2497 goto OK;
2498 /*
2499 * If it wasn't NUL, we know it was '/'. Skip that
2500 * slash, and continue until no more slashes.
2501 */
2502 do {
2503 name++;
2504 } while (unlikely(*name == '/'));
2505 if (unlikely(!*name)) {
2506 OK:
2507 /* pathname or trailing symlink, done */
2508 if (!depth) {
2509 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2510 nd->dir_mode = nd->inode->i_mode;
2511 nd->flags &= ~LOOKUP_PARENT;
2512 return 0;
2513 }
2514 /* last component of nested symlink */
2515 name = nd->stack[--depth].name;
2516 link = walk_component(nd, 0);
2517 } else {
2518 /* not the last component */
2519 link = walk_component(nd, WALK_MORE);
2520 }
2521 if (unlikely(link)) {
2522 if (IS_ERR(link))
2523 return PTR_ERR(link);
2524 /* a symlink to follow */
2525 nd->stack[depth++].name = name;
2526 name = link;
2527 continue;
2528 }
2529 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2530 if (nd->flags & LOOKUP_RCU) {
2531 if (!try_to_unlazy(nd))
2532 return -ECHILD;
2533 }
2534 return -ENOTDIR;
2535 }
2536 }
2537 }
2538
2539 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2540 static const char *path_init(struct nameidata *nd, unsigned flags)
2541 {
2542 int error;
2543 const char *s = nd->pathname;
2544
2545 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2546 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2547 return ERR_PTR(-EAGAIN);
2548
2549 if (!*s)
2550 flags &= ~LOOKUP_RCU;
2551 if (flags & LOOKUP_RCU)
2552 rcu_read_lock();
2553 else
2554 nd->seq = nd->next_seq = 0;
2555
2556 nd->flags = flags;
2557 nd->state |= ND_JUMPED;
2558
2559 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2560 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2561 smp_rmb();
2562
2563 if (nd->state & ND_ROOT_PRESET) {
2564 struct dentry *root = nd->root.dentry;
2565 struct inode *inode = root->d_inode;
2566 if (*s && unlikely(!d_can_lookup(root)))
2567 return ERR_PTR(-ENOTDIR);
2568 nd->path = nd->root;
2569 nd->inode = inode;
2570 if (flags & LOOKUP_RCU) {
2571 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2572 nd->root_seq = nd->seq;
2573 } else {
2574 path_get(&nd->path);
2575 }
2576 return s;
2577 }
2578
2579 nd->root.mnt = NULL;
2580
2581 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2582 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2583 error = nd_jump_root(nd);
2584 if (unlikely(error))
2585 return ERR_PTR(error);
2586 return s;
2587 }
2588
2589 /* Relative pathname -- get the starting-point it is relative to. */
2590 if (nd->dfd == AT_FDCWD) {
2591 if (flags & LOOKUP_RCU) {
2592 struct fs_struct *fs = current->fs;
2593 unsigned seq;
2594
2595 do {
2596 seq = read_seqbegin(&fs->seq);
2597 nd->path = fs->pwd;
2598 nd->inode = nd->path.dentry->d_inode;
2599 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2600 } while (read_seqretry(&fs->seq, seq));
2601 } else {
2602 get_fs_pwd(current->fs, &nd->path);
2603 nd->inode = nd->path.dentry->d_inode;
2604 }
2605 } else {
2606 /* Caller must check execute permissions on the starting path component */
2607 CLASS(fd_raw, f)(nd->dfd);
2608 struct dentry *dentry;
2609
2610 if (fd_empty(f))
2611 return ERR_PTR(-EBADF);
2612
2613 if (flags & LOOKUP_LINKAT_EMPTY) {
2614 if (fd_file(f)->f_cred != current_cred() &&
2615 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2616 return ERR_PTR(-ENOENT);
2617 }
2618
2619 dentry = fd_file(f)->f_path.dentry;
2620
2621 if (*s && unlikely(!d_can_lookup(dentry)))
2622 return ERR_PTR(-ENOTDIR);
2623
2624 nd->path = fd_file(f)->f_path;
2625 if (flags & LOOKUP_RCU) {
2626 nd->inode = nd->path.dentry->d_inode;
2627 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2628 } else {
2629 path_get(&nd->path);
2630 nd->inode = nd->path.dentry->d_inode;
2631 }
2632 }
2633
2634 /* For scoped-lookups we need to set the root to the dirfd as well. */
2635 if (flags & LOOKUP_IS_SCOPED) {
2636 nd->root = nd->path;
2637 if (flags & LOOKUP_RCU) {
2638 nd->root_seq = nd->seq;
2639 } else {
2640 path_get(&nd->root);
2641 nd->state |= ND_ROOT_GRABBED;
2642 }
2643 }
2644 return s;
2645 }
2646
lookup_last(struct nameidata * nd)2647 static inline const char *lookup_last(struct nameidata *nd)
2648 {
2649 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2650 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2651
2652 return walk_component(nd, WALK_TRAILING);
2653 }
2654
handle_lookup_down(struct nameidata * nd)2655 static int handle_lookup_down(struct nameidata *nd)
2656 {
2657 if (!(nd->flags & LOOKUP_RCU))
2658 dget(nd->path.dentry);
2659 nd->next_seq = nd->seq;
2660 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2661 }
2662
2663 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2664 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2665 {
2666 const char *s = path_init(nd, flags);
2667 int err;
2668
2669 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2670 err = handle_lookup_down(nd);
2671 if (unlikely(err < 0))
2672 s = ERR_PTR(err);
2673 }
2674
2675 while (!(err = link_path_walk(s, nd)) &&
2676 (s = lookup_last(nd)) != NULL)
2677 ;
2678 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2679 err = handle_lookup_down(nd);
2680 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2681 }
2682 if (!err)
2683 err = complete_walk(nd);
2684
2685 if (!err && nd->flags & LOOKUP_DIRECTORY)
2686 if (!d_can_lookup(nd->path.dentry))
2687 err = -ENOTDIR;
2688 if (!err) {
2689 *path = nd->path;
2690 nd->path.mnt = NULL;
2691 nd->path.dentry = NULL;
2692 }
2693 terminate_walk(nd);
2694 return err;
2695 }
2696
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,const struct path * root)2697 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2698 struct path *path, const struct path *root)
2699 {
2700 int retval;
2701 struct nameidata nd;
2702 if (IS_ERR(name))
2703 return PTR_ERR(name);
2704 set_nameidata(&nd, dfd, name, root);
2705 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2706 if (unlikely(retval == -ECHILD))
2707 retval = path_lookupat(&nd, flags, path);
2708 if (unlikely(retval == -ESTALE))
2709 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2710
2711 if (likely(!retval))
2712 audit_inode(name, path->dentry,
2713 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2714 restore_nameidata();
2715 return retval;
2716 }
2717
2718 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2719 static int path_parentat(struct nameidata *nd, unsigned flags,
2720 struct path *parent)
2721 {
2722 const char *s = path_init(nd, flags);
2723 int err = link_path_walk(s, nd);
2724 if (!err)
2725 err = complete_walk(nd);
2726 if (!err) {
2727 *parent = nd->path;
2728 nd->path.mnt = NULL;
2729 nd->path.dentry = NULL;
2730 }
2731 terminate_walk(nd);
2732 return err;
2733 }
2734
2735 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2736 static int __filename_parentat(int dfd, struct filename *name,
2737 unsigned int flags, struct path *parent,
2738 struct qstr *last, int *type,
2739 const struct path *root)
2740 {
2741 int retval;
2742 struct nameidata nd;
2743
2744 if (IS_ERR(name))
2745 return PTR_ERR(name);
2746 set_nameidata(&nd, dfd, name, root);
2747 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2748 if (unlikely(retval == -ECHILD))
2749 retval = path_parentat(&nd, flags, parent);
2750 if (unlikely(retval == -ESTALE))
2751 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2752 if (likely(!retval)) {
2753 *last = nd.last;
2754 *type = nd.last_type;
2755 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2756 }
2757 restore_nameidata();
2758 return retval;
2759 }
2760
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2761 static int filename_parentat(int dfd, struct filename *name,
2762 unsigned int flags, struct path *parent,
2763 struct qstr *last, int *type)
2764 {
2765 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2766 }
2767
2768 /* does lookup, returns the object with parent locked */
__start_removing_path(int dfd,struct filename * name,struct path * path)2769 static struct dentry *__start_removing_path(int dfd, struct filename *name,
2770 struct path *path)
2771 {
2772 struct path parent_path __free(path_put) = {};
2773 struct dentry *d;
2774 struct qstr last;
2775 int type, error;
2776
2777 error = filename_parentat(dfd, name, 0, &parent_path, &last, &type);
2778 if (error)
2779 return ERR_PTR(error);
2780 if (unlikely(type != LAST_NORM))
2781 return ERR_PTR(-EINVAL);
2782 /* don't fail immediately if it's r/o, at least try to report other errors */
2783 error = mnt_want_write(parent_path.mnt);
2784 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT);
2785 d = lookup_one_qstr_excl(&last, parent_path.dentry, 0);
2786 if (IS_ERR(d))
2787 goto unlock;
2788 if (error)
2789 goto fail;
2790 path->dentry = no_free_ptr(parent_path.dentry);
2791 path->mnt = no_free_ptr(parent_path.mnt);
2792 return d;
2793
2794 fail:
2795 dput(d);
2796 d = ERR_PTR(error);
2797 unlock:
2798 inode_unlock(parent_path.dentry->d_inode);
2799 if (!error)
2800 mnt_drop_write(parent_path.mnt);
2801 return d;
2802 }
2803
2804 /**
2805 * kern_path_parent: lookup path returning parent and target
2806 * @name: path name
2807 * @path: path to store parent in
2808 *
2809 * The path @name should end with a normal component, not "." or ".." or "/".
2810 * A lookup is performed and if successful the parent information
2811 * is store in @parent and the dentry is returned.
2812 *
2813 * The dentry maybe negative, the parent will be positive.
2814 *
2815 * Returns: dentry or error.
2816 */
kern_path_parent(const char * name,struct path * path)2817 struct dentry *kern_path_parent(const char *name, struct path *path)
2818 {
2819 struct path parent_path __free(path_put) = {};
2820 struct filename *filename __free(putname) = getname_kernel(name);
2821 struct dentry *d;
2822 struct qstr last;
2823 int type, error;
2824
2825 error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type);
2826 if (error)
2827 return ERR_PTR(error);
2828 if (unlikely(type != LAST_NORM))
2829 return ERR_PTR(-EINVAL);
2830
2831 d = lookup_noperm_unlocked(&last, parent_path.dentry);
2832 if (IS_ERR(d))
2833 return d;
2834 path->dentry = no_free_ptr(parent_path.dentry);
2835 path->mnt = no_free_ptr(parent_path.mnt);
2836 return d;
2837 }
2838
start_removing_path(const char * name,struct path * path)2839 struct dentry *start_removing_path(const char *name, struct path *path)
2840 {
2841 struct filename *filename = getname_kernel(name);
2842 struct dentry *res = __start_removing_path(AT_FDCWD, filename, path);
2843
2844 putname(filename);
2845 return res;
2846 }
2847
start_removing_user_path_at(int dfd,const char __user * name,struct path * path)2848 struct dentry *start_removing_user_path_at(int dfd,
2849 const char __user *name,
2850 struct path *path)
2851 {
2852 struct filename *filename = getname(name);
2853 struct dentry *res = __start_removing_path(dfd, filename, path);
2854
2855 putname(filename);
2856 return res;
2857 }
2858 EXPORT_SYMBOL(start_removing_user_path_at);
2859
kern_path(const char * name,unsigned int flags,struct path * path)2860 int kern_path(const char *name, unsigned int flags, struct path *path)
2861 {
2862 struct filename *filename = getname_kernel(name);
2863 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2864
2865 putname(filename);
2866 return ret;
2867
2868 }
2869 EXPORT_SYMBOL(kern_path);
2870
2871 /**
2872 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2873 * @filename: filename structure
2874 * @flags: lookup flags
2875 * @parent: pointer to struct path to fill
2876 * @last: last component
2877 * @type: type of the last component
2878 * @root: pointer to struct path of the base directory
2879 */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2880 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2881 struct path *parent, struct qstr *last, int *type,
2882 const struct path *root)
2883 {
2884 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2885 type, root);
2886 }
2887 EXPORT_SYMBOL(vfs_path_parent_lookup);
2888
2889 /**
2890 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2891 * @dentry: pointer to dentry of the base directory
2892 * @mnt: pointer to vfs mount of the base directory
2893 * @name: pointer to file name
2894 * @flags: lookup flags
2895 * @path: pointer to struct path to fill
2896 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2897 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2898 const char *name, unsigned int flags,
2899 struct path *path)
2900 {
2901 struct filename *filename;
2902 struct path root = {.mnt = mnt, .dentry = dentry};
2903 int ret;
2904
2905 filename = getname_kernel(name);
2906 /* the first argument of filename_lookup() is ignored with root */
2907 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2908 putname(filename);
2909 return ret;
2910 }
2911 EXPORT_SYMBOL(vfs_path_lookup);
2912
lookup_noperm_common(struct qstr * qname,struct dentry * base)2913 static int lookup_noperm_common(struct qstr *qname, struct dentry *base)
2914 {
2915 const char *name = qname->name;
2916 u32 len = qname->len;
2917
2918 qname->hash = full_name_hash(base, name, len);
2919 if (!len)
2920 return -EACCES;
2921
2922 if (is_dot_dotdot(name, len))
2923 return -EACCES;
2924
2925 while (len--) {
2926 unsigned int c = *(const unsigned char *)name++;
2927 if (c == '/' || c == '\0')
2928 return -EACCES;
2929 }
2930 /*
2931 * See if the low-level filesystem might want
2932 * to use its own hash..
2933 */
2934 if (base->d_flags & DCACHE_OP_HASH) {
2935 int err = base->d_op->d_hash(base, qname);
2936 if (err < 0)
2937 return err;
2938 }
2939 return 0;
2940 }
2941
lookup_one_common(struct mnt_idmap * idmap,struct qstr * qname,struct dentry * base)2942 static int lookup_one_common(struct mnt_idmap *idmap,
2943 struct qstr *qname, struct dentry *base)
2944 {
2945 int err;
2946 err = lookup_noperm_common(qname, base);
2947 if (err < 0)
2948 return err;
2949 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2950 }
2951
2952 /**
2953 * try_lookup_noperm - filesystem helper to lookup single pathname component
2954 * @name: qstr storing pathname component to lookup
2955 * @base: base directory to lookup from
2956 *
2957 * Look up a dentry by name in the dcache, returning NULL if it does not
2958 * currently exist. The function does not try to create a dentry and if one
2959 * is found it doesn't try to revalidate it.
2960 *
2961 * Note that this routine is purely a helper for filesystem usage and should
2962 * not be called by generic code. It does no permission checking.
2963 *
2964 * No locks need be held - only a counted reference to @base is needed.
2965 *
2966 */
try_lookup_noperm(struct qstr * name,struct dentry * base)2967 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base)
2968 {
2969 int err;
2970
2971 err = lookup_noperm_common(name, base);
2972 if (err)
2973 return ERR_PTR(err);
2974
2975 return d_lookup(base, name);
2976 }
2977 EXPORT_SYMBOL(try_lookup_noperm);
2978
2979 /**
2980 * lookup_noperm - filesystem helper to lookup single pathname component
2981 * @name: qstr storing pathname component to lookup
2982 * @base: base directory to lookup from
2983 *
2984 * Note that this routine is purely a helper for filesystem usage and should
2985 * not be called by generic code. It does no permission checking.
2986 *
2987 * The caller must hold base->i_rwsem.
2988 */
lookup_noperm(struct qstr * name,struct dentry * base)2989 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base)
2990 {
2991 struct dentry *dentry;
2992 int err;
2993
2994 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2995
2996 err = lookup_noperm_common(name, base);
2997 if (err)
2998 return ERR_PTR(err);
2999
3000 dentry = lookup_dcache(name, base, 0);
3001 return dentry ? dentry : __lookup_slow(name, base, 0);
3002 }
3003 EXPORT_SYMBOL(lookup_noperm);
3004
3005 /**
3006 * lookup_one - lookup single pathname component
3007 * @idmap: idmap of the mount the lookup is performed from
3008 * @name: qstr holding pathname component to lookup
3009 * @base: base directory to lookup from
3010 *
3011 * This can be used for in-kernel filesystem clients such as file servers.
3012 *
3013 * The caller must hold base->i_rwsem.
3014 */
lookup_one(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3015 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name,
3016 struct dentry *base)
3017 {
3018 struct dentry *dentry;
3019 int err;
3020
3021 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
3022
3023 err = lookup_one_common(idmap, name, base);
3024 if (err)
3025 return ERR_PTR(err);
3026
3027 dentry = lookup_dcache(name, base, 0);
3028 return dentry ? dentry : __lookup_slow(name, base, 0);
3029 }
3030 EXPORT_SYMBOL(lookup_one);
3031
3032 /**
3033 * lookup_one_unlocked - lookup single pathname component
3034 * @idmap: idmap of the mount the lookup is performed from
3035 * @name: qstr olding pathname component to lookup
3036 * @base: base directory to lookup from
3037 *
3038 * This can be used for in-kernel filesystem clients such as file servers.
3039 *
3040 * Unlike lookup_one, it should be called without the parent
3041 * i_rwsem held, and will take the i_rwsem itself if necessary.
3042 */
lookup_one_unlocked(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3043 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name,
3044 struct dentry *base)
3045 {
3046 int err;
3047 struct dentry *ret;
3048
3049 err = lookup_one_common(idmap, name, base);
3050 if (err)
3051 return ERR_PTR(err);
3052
3053 ret = lookup_dcache(name, base, 0);
3054 if (!ret)
3055 ret = lookup_slow(name, base, 0);
3056 return ret;
3057 }
3058 EXPORT_SYMBOL(lookup_one_unlocked);
3059
3060 /**
3061 * lookup_one_positive_killable - lookup single pathname component
3062 * @idmap: idmap of the mount the lookup is performed from
3063 * @name: qstr olding pathname component to lookup
3064 * @base: base directory to lookup from
3065 *
3066 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3067 * known positive or ERR_PTR(). This is what most of the users want.
3068 *
3069 * Note that pinned negative with unlocked parent _can_ become positive at any
3070 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3071 * positives have >d_inode stable, so this one avoids such problems.
3072 *
3073 * This can be used for in-kernel filesystem clients such as file servers.
3074 *
3075 * It should be called without the parent i_rwsem held, and will take
3076 * the i_rwsem itself if necessary. If a fatal signal is pending or
3077 * delivered, it will return %-EINTR if the lock is needed.
3078 */
lookup_one_positive_killable(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3079 struct dentry *lookup_one_positive_killable(struct mnt_idmap *idmap,
3080 struct qstr *name,
3081 struct dentry *base)
3082 {
3083 int err;
3084 struct dentry *ret;
3085
3086 err = lookup_one_common(idmap, name, base);
3087 if (err)
3088 return ERR_PTR(err);
3089
3090 ret = lookup_dcache(name, base, 0);
3091 if (!ret)
3092 ret = lookup_slow_killable(name, base, 0);
3093 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3094 dput(ret);
3095 ret = ERR_PTR(-ENOENT);
3096 }
3097 return ret;
3098 }
3099 EXPORT_SYMBOL(lookup_one_positive_killable);
3100
3101 /**
3102 * lookup_one_positive_unlocked - lookup single pathname component
3103 * @idmap: idmap of the mount the lookup is performed from
3104 * @name: qstr holding pathname component to lookup
3105 * @base: base directory to lookup from
3106 *
3107 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3108 * known positive or ERR_PTR(). This is what most of the users want.
3109 *
3110 * Note that pinned negative with unlocked parent _can_ become positive at any
3111 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3112 * positives have >d_inode stable, so this one avoids such problems.
3113 *
3114 * This can be used for in-kernel filesystem clients such as file servers.
3115 *
3116 * The helper should be called without i_rwsem held.
3117 */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3118 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3119 struct qstr *name,
3120 struct dentry *base)
3121 {
3122 struct dentry *ret = lookup_one_unlocked(idmap, name, base);
3123
3124 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3125 dput(ret);
3126 ret = ERR_PTR(-ENOENT);
3127 }
3128 return ret;
3129 }
3130 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3131
3132 /**
3133 * lookup_noperm_unlocked - filesystem helper to lookup single pathname component
3134 * @name: pathname component to lookup
3135 * @base: base directory to lookup from
3136 *
3137 * Note that this routine is purely a helper for filesystem usage and should
3138 * not be called by generic code. It does no permission checking.
3139 *
3140 * Unlike lookup_noperm(), it should be called without the parent
3141 * i_rwsem held, and will take the i_rwsem itself if necessary.
3142 *
3143 * Unlike try_lookup_noperm() it *does* revalidate the dentry if it already
3144 * existed.
3145 */
lookup_noperm_unlocked(struct qstr * name,struct dentry * base)3146 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base)
3147 {
3148 struct dentry *ret;
3149 int err;
3150
3151 err = lookup_noperm_common(name, base);
3152 if (err)
3153 return ERR_PTR(err);
3154
3155 ret = lookup_dcache(name, base, 0);
3156 if (!ret)
3157 ret = lookup_slow(name, base, 0);
3158 return ret;
3159 }
3160 EXPORT_SYMBOL(lookup_noperm_unlocked);
3161
3162 /*
3163 * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT)
3164 * on negatives. Returns known positive or ERR_PTR(); that's what
3165 * most of the users want. Note that pinned negative with unlocked parent
3166 * _can_ become positive at any time, so callers of lookup_noperm_unlocked()
3167 * need to be very careful; pinned positives have ->d_inode stable, so
3168 * this one avoids such problems.
3169 */
lookup_noperm_positive_unlocked(struct qstr * name,struct dentry * base)3170 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name,
3171 struct dentry *base)
3172 {
3173 struct dentry *ret;
3174
3175 ret = lookup_noperm_unlocked(name, base);
3176 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3177 dput(ret);
3178 ret = ERR_PTR(-ENOENT);
3179 }
3180 return ret;
3181 }
3182 EXPORT_SYMBOL(lookup_noperm_positive_unlocked);
3183
3184 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)3185 int path_pts(struct path *path)
3186 {
3187 /* Find something mounted on "pts" in the same directory as
3188 * the input path.
3189 */
3190 struct dentry *parent = dget_parent(path->dentry);
3191 struct dentry *child;
3192 struct qstr this = QSTR_INIT("pts", 3);
3193
3194 if (unlikely(!path_connected(path->mnt, parent))) {
3195 dput(parent);
3196 return -ENOENT;
3197 }
3198 dput(path->dentry);
3199 path->dentry = parent;
3200 child = d_hash_and_lookup(parent, &this);
3201 if (IS_ERR_OR_NULL(child))
3202 return -ENOENT;
3203
3204 path->dentry = child;
3205 dput(parent);
3206 follow_down(path, 0);
3207 return 0;
3208 }
3209 #endif
3210
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3211 int user_path_at(int dfd, const char __user *name, unsigned flags,
3212 struct path *path)
3213 {
3214 struct filename *filename = getname_flags(name, flags);
3215 int ret = filename_lookup(dfd, filename, flags, path, NULL);
3216
3217 putname(filename);
3218 return ret;
3219 }
3220 EXPORT_SYMBOL(user_path_at);
3221
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3222 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3223 struct inode *inode)
3224 {
3225 kuid_t fsuid = current_fsuid();
3226
3227 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3228 return 0;
3229 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3230 return 0;
3231 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3232 }
3233 EXPORT_SYMBOL(__check_sticky);
3234
3235 /*
3236 * Check whether we can remove a link victim from directory dir, check
3237 * whether the type of victim is right.
3238 * 1. We can't do it if dir is read-only (done in permission())
3239 * 2. We should have write and exec permissions on dir
3240 * 3. We can't remove anything from append-only dir
3241 * 4. We can't do anything with immutable dir (done in permission())
3242 * 5. If the sticky bit on dir is set we should either
3243 * a. be owner of dir, or
3244 * b. be owner of victim, or
3245 * c. have CAP_FOWNER capability
3246 * 6. If the victim is append-only or immutable we can't do antyhing with
3247 * links pointing to it.
3248 * 7. If the victim has an unknown uid or gid we can't change the inode.
3249 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3250 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3251 * 10. We can't remove a root or mountpoint.
3252 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3253 * nfs_async_unlink().
3254 */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3255 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3256 struct dentry *victim, bool isdir)
3257 {
3258 struct inode *inode = d_backing_inode(victim);
3259 int error;
3260
3261 if (d_is_negative(victim))
3262 return -ENOENT;
3263 BUG_ON(!inode);
3264
3265 BUG_ON(victim->d_parent->d_inode != dir);
3266
3267 /* Inode writeback is not safe when the uid or gid are invalid. */
3268 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3269 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3270 return -EOVERFLOW;
3271
3272 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3273
3274 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3275 if (error)
3276 return error;
3277 if (IS_APPEND(dir))
3278 return -EPERM;
3279
3280 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3281 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3282 HAS_UNMAPPED_ID(idmap, inode))
3283 return -EPERM;
3284 if (isdir) {
3285 if (!d_is_dir(victim))
3286 return -ENOTDIR;
3287 if (IS_ROOT(victim))
3288 return -EBUSY;
3289 } else if (d_is_dir(victim))
3290 return -EISDIR;
3291 if (IS_DEADDIR(dir))
3292 return -ENOENT;
3293 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3294 return -EBUSY;
3295 return 0;
3296 }
3297
3298 /* Check whether we can create an object with dentry child in directory
3299 * dir.
3300 * 1. We can't do it if child already exists (open has special treatment for
3301 * this case, but since we are inlined it's OK)
3302 * 2. We can't do it if dir is read-only (done in permission())
3303 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3304 * 4. We should have write and exec permissions on dir
3305 * 5. We can't do it if dir is immutable (done in permission())
3306 */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3307 static inline int may_create(struct mnt_idmap *idmap,
3308 struct inode *dir, struct dentry *child)
3309 {
3310 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3311 if (child->d_inode)
3312 return -EEXIST;
3313 if (IS_DEADDIR(dir))
3314 return -ENOENT;
3315 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3316 return -EOVERFLOW;
3317
3318 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3319 }
3320
3321 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3322 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3323 {
3324 struct dentry *p = p1, *q = p2, *r;
3325
3326 while ((r = p->d_parent) != p2 && r != p)
3327 p = r;
3328 if (r == p2) {
3329 // p is a child of p2 and an ancestor of p1 or p1 itself
3330 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3331 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3332 return p;
3333 }
3334 // p is the root of connected component that contains p1
3335 // p2 does not occur on the path from p to p1
3336 while ((r = q->d_parent) != p1 && r != p && r != q)
3337 q = r;
3338 if (r == p1) {
3339 // q is a child of p1 and an ancestor of p2 or p2 itself
3340 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3341 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3342 return q;
3343 } else if (likely(r == p)) {
3344 // both p2 and p1 are descendents of p
3345 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3346 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3347 return NULL;
3348 } else { // no common ancestor at the time we'd been called
3349 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3350 return ERR_PTR(-EXDEV);
3351 }
3352 }
3353
3354 /*
3355 * p1 and p2 should be directories on the same fs.
3356 */
lock_rename(struct dentry * p1,struct dentry * p2)3357 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3358 {
3359 if (p1 == p2) {
3360 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3361 return NULL;
3362 }
3363
3364 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3365 return lock_two_directories(p1, p2);
3366 }
3367 EXPORT_SYMBOL(lock_rename);
3368
3369 /*
3370 * c1 and p2 should be on the same fs.
3371 */
lock_rename_child(struct dentry * c1,struct dentry * p2)3372 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3373 {
3374 if (READ_ONCE(c1->d_parent) == p2) {
3375 /*
3376 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3377 */
3378 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3379 /*
3380 * now that p2 is locked, nobody can move in or out of it,
3381 * so the test below is safe.
3382 */
3383 if (likely(c1->d_parent == p2))
3384 return NULL;
3385
3386 /*
3387 * c1 got moved out of p2 while we'd been taking locks;
3388 * unlock and fall back to slow case.
3389 */
3390 inode_unlock(p2->d_inode);
3391 }
3392
3393 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3394 /*
3395 * nobody can move out of any directories on this fs.
3396 */
3397 if (likely(c1->d_parent != p2))
3398 return lock_two_directories(c1->d_parent, p2);
3399
3400 /*
3401 * c1 got moved into p2 while we were taking locks;
3402 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3403 * for consistency with lock_rename().
3404 */
3405 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3406 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3407 return NULL;
3408 }
3409 EXPORT_SYMBOL(lock_rename_child);
3410
unlock_rename(struct dentry * p1,struct dentry * p2)3411 void unlock_rename(struct dentry *p1, struct dentry *p2)
3412 {
3413 inode_unlock(p1->d_inode);
3414 if (p1 != p2) {
3415 inode_unlock(p2->d_inode);
3416 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3417 }
3418 }
3419 EXPORT_SYMBOL(unlock_rename);
3420
3421 /**
3422 * vfs_prepare_mode - prepare the mode to be used for a new inode
3423 * @idmap: idmap of the mount the inode was found from
3424 * @dir: parent directory of the new inode
3425 * @mode: mode of the new inode
3426 * @mask_perms: allowed permission by the vfs
3427 * @type: type of file to be created
3428 *
3429 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3430 * object to be created.
3431 *
3432 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3433 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3434 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3435 * POSIX ACL supporting filesystems.
3436 *
3437 * Note that it's currently valid for @type to be 0 if a directory is created.
3438 * Filesystems raise that flag individually and we need to check whether each
3439 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3440 * non-zero type.
3441 *
3442 * Returns: mode to be passed to the filesystem
3443 */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3444 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3445 const struct inode *dir, umode_t mode,
3446 umode_t mask_perms, umode_t type)
3447 {
3448 mode = mode_strip_sgid(idmap, dir, mode);
3449 mode = mode_strip_umask(dir, mode);
3450
3451 /*
3452 * Apply the vfs mandated allowed permission mask and set the type of
3453 * file to be created before we call into the filesystem.
3454 */
3455 mode &= (mask_perms & ~S_IFMT);
3456 mode |= (type & S_IFMT);
3457
3458 return mode;
3459 }
3460
3461 /**
3462 * vfs_create - create new file
3463 * @idmap: idmap of the mount the inode was found from
3464 * @dir: inode of the parent directory
3465 * @dentry: dentry of the child file
3466 * @mode: mode of the child file
3467 * @want_excl: whether the file must not yet exist
3468 *
3469 * Create a new file.
3470 *
3471 * If the inode has been found through an idmapped mount the idmap of
3472 * the vfsmount must be passed through @idmap. This function will then take
3473 * care to map the inode according to @idmap before checking permissions.
3474 * On non-idmapped mounts or if permission checking is to be performed on the
3475 * raw inode simply pass @nop_mnt_idmap.
3476 */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3477 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3478 struct dentry *dentry, umode_t mode, bool want_excl)
3479 {
3480 int error;
3481
3482 error = may_create(idmap, dir, dentry);
3483 if (error)
3484 return error;
3485
3486 if (!dir->i_op->create)
3487 return -EACCES; /* shouldn't it be ENOSYS? */
3488
3489 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3490 error = security_inode_create(dir, dentry, mode);
3491 if (error)
3492 return error;
3493 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3494 if (!error)
3495 fsnotify_create(dir, dentry);
3496 return error;
3497 }
3498 EXPORT_SYMBOL(vfs_create);
3499
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3500 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3501 int (*f)(struct dentry *, umode_t, void *),
3502 void *arg)
3503 {
3504 struct inode *dir = dentry->d_parent->d_inode;
3505 int error = may_create(&nop_mnt_idmap, dir, dentry);
3506 if (error)
3507 return error;
3508
3509 mode &= S_IALLUGO;
3510 mode |= S_IFREG;
3511 error = security_inode_create(dir, dentry, mode);
3512 if (error)
3513 return error;
3514 error = f(dentry, mode, arg);
3515 if (!error)
3516 fsnotify_create(dir, dentry);
3517 return error;
3518 }
3519 EXPORT_SYMBOL(vfs_mkobj);
3520
may_open_dev(const struct path * path)3521 bool may_open_dev(const struct path *path)
3522 {
3523 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3524 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3525 }
3526
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3527 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3528 int acc_mode, int flag)
3529 {
3530 struct dentry *dentry = path->dentry;
3531 struct inode *inode = dentry->d_inode;
3532 int error;
3533
3534 if (!inode)
3535 return -ENOENT;
3536
3537 switch (inode->i_mode & S_IFMT) {
3538 case S_IFLNK:
3539 return -ELOOP;
3540 case S_IFDIR:
3541 if (acc_mode & MAY_WRITE)
3542 return -EISDIR;
3543 if (acc_mode & MAY_EXEC)
3544 return -EACCES;
3545 break;
3546 case S_IFBLK:
3547 case S_IFCHR:
3548 if (!may_open_dev(path))
3549 return -EACCES;
3550 fallthrough;
3551 case S_IFIFO:
3552 case S_IFSOCK:
3553 if (acc_mode & MAY_EXEC)
3554 return -EACCES;
3555 flag &= ~O_TRUNC;
3556 break;
3557 case S_IFREG:
3558 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3559 return -EACCES;
3560 break;
3561 default:
3562 VFS_BUG_ON_INODE(!IS_ANON_FILE(inode), inode);
3563 }
3564
3565 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3566 if (error)
3567 return error;
3568
3569 /*
3570 * An append-only file must be opened in append mode for writing.
3571 */
3572 if (IS_APPEND(inode)) {
3573 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3574 return -EPERM;
3575 if (flag & O_TRUNC)
3576 return -EPERM;
3577 }
3578
3579 /* O_NOATIME can only be set by the owner or superuser */
3580 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3581 return -EPERM;
3582
3583 return 0;
3584 }
3585
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3586 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3587 {
3588 const struct path *path = &filp->f_path;
3589 struct inode *inode = path->dentry->d_inode;
3590 int error = get_write_access(inode);
3591 if (error)
3592 return error;
3593
3594 error = security_file_truncate(filp);
3595 if (!error) {
3596 error = do_truncate(idmap, path->dentry, 0,
3597 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3598 filp);
3599 }
3600 put_write_access(inode);
3601 return error;
3602 }
3603
open_to_namei_flags(int flag)3604 static inline int open_to_namei_flags(int flag)
3605 {
3606 if ((flag & O_ACCMODE) == 3)
3607 flag--;
3608 return flag;
3609 }
3610
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3611 static int may_o_create(struct mnt_idmap *idmap,
3612 const struct path *dir, struct dentry *dentry,
3613 umode_t mode)
3614 {
3615 int error = security_path_mknod(dir, dentry, mode, 0);
3616 if (error)
3617 return error;
3618
3619 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3620 return -EOVERFLOW;
3621
3622 error = inode_permission(idmap, dir->dentry->d_inode,
3623 MAY_WRITE | MAY_EXEC);
3624 if (error)
3625 return error;
3626
3627 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3628 }
3629
3630 /*
3631 * Attempt to atomically look up, create and open a file from a negative
3632 * dentry.
3633 *
3634 * Returns 0 if successful. The file will have been created and attached to
3635 * @file by the filesystem calling finish_open().
3636 *
3637 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3638 * be set. The caller will need to perform the open themselves. @path will
3639 * have been updated to point to the new dentry. This may be negative.
3640 *
3641 * Returns an error code otherwise.
3642 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3643 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3644 struct file *file,
3645 int open_flag, umode_t mode)
3646 {
3647 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3648 struct inode *dir = nd->path.dentry->d_inode;
3649 int error;
3650
3651 if (nd->flags & LOOKUP_DIRECTORY)
3652 open_flag |= O_DIRECTORY;
3653
3654 file->__f_path.dentry = DENTRY_NOT_SET;
3655 file->__f_path.mnt = nd->path.mnt;
3656 error = dir->i_op->atomic_open(dir, dentry, file,
3657 open_to_namei_flags(open_flag), mode);
3658 d_lookup_done(dentry);
3659 if (!error) {
3660 if (file->f_mode & FMODE_OPENED) {
3661 if (unlikely(dentry != file->f_path.dentry)) {
3662 dput(dentry);
3663 dentry = dget(file->f_path.dentry);
3664 }
3665 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3666 error = -EIO;
3667 } else {
3668 if (file->f_path.dentry) {
3669 dput(dentry);
3670 dentry = file->f_path.dentry;
3671 }
3672 if (unlikely(d_is_negative(dentry)))
3673 error = -ENOENT;
3674 }
3675 }
3676 if (error) {
3677 dput(dentry);
3678 dentry = ERR_PTR(error);
3679 }
3680 return dentry;
3681 }
3682
3683 /*
3684 * Look up and maybe create and open the last component.
3685 *
3686 * Must be called with parent locked (exclusive in O_CREAT case).
3687 *
3688 * Returns 0 on success, that is, if
3689 * the file was successfully atomically created (if necessary) and opened, or
3690 * the file was not completely opened at this time, though lookups and
3691 * creations were performed.
3692 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3693 * In the latter case dentry returned in @path might be negative if O_CREAT
3694 * hadn't been specified.
3695 *
3696 * An error code is returned on failure.
3697 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3698 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3699 const struct open_flags *op,
3700 bool got_write)
3701 {
3702 struct mnt_idmap *idmap;
3703 struct dentry *dir = nd->path.dentry;
3704 struct inode *dir_inode = dir->d_inode;
3705 int open_flag = op->open_flag;
3706 struct dentry *dentry;
3707 int error, create_error = 0;
3708 umode_t mode = op->mode;
3709 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3710
3711 if (unlikely(IS_DEADDIR(dir_inode)))
3712 return ERR_PTR(-ENOENT);
3713
3714 file->f_mode &= ~FMODE_CREATED;
3715 dentry = d_lookup(dir, &nd->last);
3716 for (;;) {
3717 if (!dentry) {
3718 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3719 if (IS_ERR(dentry))
3720 return dentry;
3721 }
3722 if (d_in_lookup(dentry))
3723 break;
3724
3725 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
3726 if (likely(error > 0))
3727 break;
3728 if (error)
3729 goto out_dput;
3730 d_invalidate(dentry);
3731 dput(dentry);
3732 dentry = NULL;
3733 }
3734 if (dentry->d_inode) {
3735 /* Cached positive dentry: will open in f_op->open */
3736 return dentry;
3737 }
3738
3739 if (open_flag & O_CREAT)
3740 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3741
3742 /*
3743 * Checking write permission is tricky, bacuse we don't know if we are
3744 * going to actually need it: O_CREAT opens should work as long as the
3745 * file exists. But checking existence breaks atomicity. The trick is
3746 * to check access and if not granted clear O_CREAT from the flags.
3747 *
3748 * Another problem is returing the "right" error value (e.g. for an
3749 * O_EXCL open we want to return EEXIST not EROFS).
3750 */
3751 if (unlikely(!got_write))
3752 open_flag &= ~O_TRUNC;
3753 idmap = mnt_idmap(nd->path.mnt);
3754 if (open_flag & O_CREAT) {
3755 if (open_flag & O_EXCL)
3756 open_flag &= ~O_TRUNC;
3757 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3758 if (likely(got_write))
3759 create_error = may_o_create(idmap, &nd->path,
3760 dentry, mode);
3761 else
3762 create_error = -EROFS;
3763 }
3764 if (create_error)
3765 open_flag &= ~O_CREAT;
3766 if (dir_inode->i_op->atomic_open) {
3767 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3768 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3769 dentry = ERR_PTR(create_error);
3770 return dentry;
3771 }
3772
3773 if (d_in_lookup(dentry)) {
3774 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3775 nd->flags);
3776 d_lookup_done(dentry);
3777 if (unlikely(res)) {
3778 if (IS_ERR(res)) {
3779 error = PTR_ERR(res);
3780 goto out_dput;
3781 }
3782 dput(dentry);
3783 dentry = res;
3784 }
3785 }
3786
3787 /* Negative dentry, just create the file */
3788 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3789 file->f_mode |= FMODE_CREATED;
3790 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3791 if (!dir_inode->i_op->create) {
3792 error = -EACCES;
3793 goto out_dput;
3794 }
3795
3796 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3797 mode, open_flag & O_EXCL);
3798 if (error)
3799 goto out_dput;
3800 }
3801 if (unlikely(create_error) && !dentry->d_inode) {
3802 error = create_error;
3803 goto out_dput;
3804 }
3805 return dentry;
3806
3807 out_dput:
3808 dput(dentry);
3809 return ERR_PTR(error);
3810 }
3811
trailing_slashes(struct nameidata * nd)3812 static inline bool trailing_slashes(struct nameidata *nd)
3813 {
3814 return (bool)nd->last.name[nd->last.len];
3815 }
3816
lookup_fast_for_open(struct nameidata * nd,int open_flag)3817 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3818 {
3819 struct dentry *dentry;
3820
3821 if (open_flag & O_CREAT) {
3822 if (trailing_slashes(nd))
3823 return ERR_PTR(-EISDIR);
3824
3825 /* Don't bother on an O_EXCL create */
3826 if (open_flag & O_EXCL)
3827 return NULL;
3828 }
3829
3830 if (trailing_slashes(nd))
3831 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3832
3833 dentry = lookup_fast(nd);
3834 if (IS_ERR_OR_NULL(dentry))
3835 return dentry;
3836
3837 if (open_flag & O_CREAT) {
3838 /* Discard negative dentries. Need inode_lock to do the create */
3839 if (!dentry->d_inode) {
3840 if (!(nd->flags & LOOKUP_RCU))
3841 dput(dentry);
3842 dentry = NULL;
3843 }
3844 }
3845 return dentry;
3846 }
3847
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3848 static const char *open_last_lookups(struct nameidata *nd,
3849 struct file *file, const struct open_flags *op)
3850 {
3851 struct dentry *dir = nd->path.dentry;
3852 int open_flag = op->open_flag;
3853 bool got_write = false;
3854 struct dentry *dentry;
3855 const char *res;
3856
3857 nd->flags |= op->intent;
3858
3859 if (nd->last_type != LAST_NORM) {
3860 if (nd->depth)
3861 put_link(nd);
3862 return handle_dots(nd, nd->last_type);
3863 }
3864
3865 /* We _can_ be in RCU mode here */
3866 dentry = lookup_fast_for_open(nd, open_flag);
3867 if (IS_ERR(dentry))
3868 return ERR_CAST(dentry);
3869
3870 if (likely(dentry))
3871 goto finish_lookup;
3872
3873 if (!(open_flag & O_CREAT)) {
3874 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3875 return ERR_PTR(-ECHILD);
3876 } else {
3877 if (nd->flags & LOOKUP_RCU) {
3878 if (!try_to_unlazy(nd))
3879 return ERR_PTR(-ECHILD);
3880 }
3881 }
3882
3883 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3884 got_write = !mnt_want_write(nd->path.mnt);
3885 /*
3886 * do _not_ fail yet - we might not need that or fail with
3887 * a different error; let lookup_open() decide; we'll be
3888 * dropping this one anyway.
3889 */
3890 }
3891 if (open_flag & O_CREAT)
3892 inode_lock(dir->d_inode);
3893 else
3894 inode_lock_shared(dir->d_inode);
3895 dentry = lookup_open(nd, file, op, got_write);
3896 if (!IS_ERR(dentry)) {
3897 if (file->f_mode & FMODE_CREATED)
3898 fsnotify_create(dir->d_inode, dentry);
3899 if (file->f_mode & FMODE_OPENED)
3900 fsnotify_open(file);
3901 }
3902 if (open_flag & O_CREAT)
3903 inode_unlock(dir->d_inode);
3904 else
3905 inode_unlock_shared(dir->d_inode);
3906
3907 if (got_write)
3908 mnt_drop_write(nd->path.mnt);
3909
3910 if (IS_ERR(dentry))
3911 return ERR_CAST(dentry);
3912
3913 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3914 dput(nd->path.dentry);
3915 nd->path.dentry = dentry;
3916 return NULL;
3917 }
3918
3919 finish_lookup:
3920 if (nd->depth)
3921 put_link(nd);
3922 res = step_into(nd, WALK_TRAILING, dentry);
3923 if (unlikely(res))
3924 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3925 return res;
3926 }
3927
3928 /*
3929 * Handle the last step of open()
3930 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3931 static int do_open(struct nameidata *nd,
3932 struct file *file, const struct open_flags *op)
3933 {
3934 struct mnt_idmap *idmap;
3935 int open_flag = op->open_flag;
3936 bool do_truncate;
3937 int acc_mode;
3938 int error;
3939
3940 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3941 error = complete_walk(nd);
3942 if (error)
3943 return error;
3944 }
3945 if (!(file->f_mode & FMODE_CREATED))
3946 audit_inode(nd->name, nd->path.dentry, 0);
3947 idmap = mnt_idmap(nd->path.mnt);
3948 if (open_flag & O_CREAT) {
3949 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3950 return -EEXIST;
3951 if (d_is_dir(nd->path.dentry))
3952 return -EISDIR;
3953 error = may_create_in_sticky(idmap, nd,
3954 d_backing_inode(nd->path.dentry));
3955 if (unlikely(error))
3956 return error;
3957 }
3958 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3959 return -ENOTDIR;
3960
3961 do_truncate = false;
3962 acc_mode = op->acc_mode;
3963 if (file->f_mode & FMODE_CREATED) {
3964 /* Don't check for write permission, don't truncate */
3965 open_flag &= ~O_TRUNC;
3966 acc_mode = 0;
3967 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3968 error = mnt_want_write(nd->path.mnt);
3969 if (error)
3970 return error;
3971 do_truncate = true;
3972 }
3973 error = may_open(idmap, &nd->path, acc_mode, open_flag);
3974 if (!error && !(file->f_mode & FMODE_OPENED))
3975 error = vfs_open(&nd->path, file);
3976 if (!error)
3977 error = security_file_post_open(file, op->acc_mode);
3978 if (!error && do_truncate)
3979 error = handle_truncate(idmap, file);
3980 if (unlikely(error > 0)) {
3981 WARN_ON(1);
3982 error = -EINVAL;
3983 }
3984 if (do_truncate)
3985 mnt_drop_write(nd->path.mnt);
3986 return error;
3987 }
3988
3989 /**
3990 * vfs_tmpfile - create tmpfile
3991 * @idmap: idmap of the mount the inode was found from
3992 * @parentpath: pointer to the path of the base directory
3993 * @file: file descriptor of the new tmpfile
3994 * @mode: mode of the new tmpfile
3995 *
3996 * Create a temporary file.
3997 *
3998 * If the inode has been found through an idmapped mount the idmap of
3999 * the vfsmount must be passed through @idmap. This function will then take
4000 * care to map the inode according to @idmap before checking permissions.
4001 * On non-idmapped mounts or if permission checking is to be performed on the
4002 * raw inode simply pass @nop_mnt_idmap.
4003 */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)4004 int vfs_tmpfile(struct mnt_idmap *idmap,
4005 const struct path *parentpath,
4006 struct file *file, umode_t mode)
4007 {
4008 struct dentry *child;
4009 struct inode *dir = d_inode(parentpath->dentry);
4010 struct inode *inode;
4011 int error;
4012 int open_flag = file->f_flags;
4013
4014 /* we want directory to be writable */
4015 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
4016 if (error)
4017 return error;
4018 if (!dir->i_op->tmpfile)
4019 return -EOPNOTSUPP;
4020 child = d_alloc(parentpath->dentry, &slash_name);
4021 if (unlikely(!child))
4022 return -ENOMEM;
4023 file->__f_path.mnt = parentpath->mnt;
4024 file->__f_path.dentry = child;
4025 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4026 error = dir->i_op->tmpfile(idmap, dir, file, mode);
4027 dput(child);
4028 if (file->f_mode & FMODE_OPENED)
4029 fsnotify_open(file);
4030 if (error)
4031 return error;
4032 /* Don't check for other permissions, the inode was just created */
4033 error = may_open(idmap, &file->f_path, 0, file->f_flags);
4034 if (error)
4035 return error;
4036 inode = file_inode(file);
4037 if (!(open_flag & O_EXCL)) {
4038 spin_lock(&inode->i_lock);
4039 inode->i_state |= I_LINKABLE;
4040 spin_unlock(&inode->i_lock);
4041 }
4042 security_inode_post_create_tmpfile(idmap, inode);
4043 return 0;
4044 }
4045
4046 /**
4047 * kernel_tmpfile_open - open a tmpfile for kernel internal use
4048 * @idmap: idmap of the mount the inode was found from
4049 * @parentpath: path of the base directory
4050 * @mode: mode of the new tmpfile
4051 * @open_flag: flags
4052 * @cred: credentials for open
4053 *
4054 * Create and open a temporary file. The file is not accounted in nr_files,
4055 * hence this is only for kernel internal use, and must not be installed into
4056 * file tables or such.
4057 */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)4058 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
4059 const struct path *parentpath,
4060 umode_t mode, int open_flag,
4061 const struct cred *cred)
4062 {
4063 struct file *file;
4064 int error;
4065
4066 file = alloc_empty_file_noaccount(open_flag, cred);
4067 if (IS_ERR(file))
4068 return file;
4069
4070 error = vfs_tmpfile(idmap, parentpath, file, mode);
4071 if (error) {
4072 fput(file);
4073 file = ERR_PTR(error);
4074 }
4075 return file;
4076 }
4077 EXPORT_SYMBOL(kernel_tmpfile_open);
4078
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)4079 static int do_tmpfile(struct nameidata *nd, unsigned flags,
4080 const struct open_flags *op,
4081 struct file *file)
4082 {
4083 struct path path;
4084 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
4085
4086 if (unlikely(error))
4087 return error;
4088 error = mnt_want_write(path.mnt);
4089 if (unlikely(error))
4090 goto out;
4091 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
4092 if (error)
4093 goto out2;
4094 audit_inode(nd->name, file->f_path.dentry, 0);
4095 out2:
4096 mnt_drop_write(path.mnt);
4097 out:
4098 path_put(&path);
4099 return error;
4100 }
4101
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)4102 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
4103 {
4104 struct path path;
4105 int error = path_lookupat(nd, flags, &path);
4106 if (!error) {
4107 audit_inode(nd->name, path.dentry, 0);
4108 error = vfs_open(&path, file);
4109 path_put(&path);
4110 }
4111 return error;
4112 }
4113
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)4114 static struct file *path_openat(struct nameidata *nd,
4115 const struct open_flags *op, unsigned flags)
4116 {
4117 struct file *file;
4118 int error;
4119
4120 file = alloc_empty_file(op->open_flag, current_cred());
4121 if (IS_ERR(file))
4122 return file;
4123
4124 if (unlikely(file->f_flags & __O_TMPFILE)) {
4125 error = do_tmpfile(nd, flags, op, file);
4126 } else if (unlikely(file->f_flags & O_PATH)) {
4127 error = do_o_path(nd, flags, file);
4128 } else {
4129 const char *s = path_init(nd, flags);
4130 while (!(error = link_path_walk(s, nd)) &&
4131 (s = open_last_lookups(nd, file, op)) != NULL)
4132 ;
4133 if (!error)
4134 error = do_open(nd, file, op);
4135 terminate_walk(nd);
4136 }
4137 if (likely(!error)) {
4138 if (likely(file->f_mode & FMODE_OPENED))
4139 return file;
4140 WARN_ON(1);
4141 error = -EINVAL;
4142 }
4143 fput_close(file);
4144 if (error == -EOPENSTALE) {
4145 if (flags & LOOKUP_RCU)
4146 error = -ECHILD;
4147 else
4148 error = -ESTALE;
4149 }
4150 return ERR_PTR(error);
4151 }
4152
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)4153 struct file *do_filp_open(int dfd, struct filename *pathname,
4154 const struct open_flags *op)
4155 {
4156 struct nameidata nd;
4157 int flags = op->lookup_flags;
4158 struct file *filp;
4159
4160 set_nameidata(&nd, dfd, pathname, NULL);
4161 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4162 if (unlikely(filp == ERR_PTR(-ECHILD)))
4163 filp = path_openat(&nd, op, flags);
4164 if (unlikely(filp == ERR_PTR(-ESTALE)))
4165 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4166 restore_nameidata();
4167 return filp;
4168 }
4169
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)4170 struct file *do_file_open_root(const struct path *root,
4171 const char *name, const struct open_flags *op)
4172 {
4173 struct nameidata nd;
4174 struct file *file;
4175 struct filename *filename;
4176 int flags = op->lookup_flags;
4177
4178 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4179 return ERR_PTR(-ELOOP);
4180
4181 filename = getname_kernel(name);
4182 if (IS_ERR(filename))
4183 return ERR_CAST(filename);
4184
4185 set_nameidata(&nd, -1, filename, root);
4186 file = path_openat(&nd, op, flags | LOOKUP_RCU);
4187 if (unlikely(file == ERR_PTR(-ECHILD)))
4188 file = path_openat(&nd, op, flags);
4189 if (unlikely(file == ERR_PTR(-ESTALE)))
4190 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4191 restore_nameidata();
4192 putname(filename);
4193 return file;
4194 }
4195
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)4196 static struct dentry *filename_create(int dfd, struct filename *name,
4197 struct path *path, unsigned int lookup_flags)
4198 {
4199 struct dentry *dentry = ERR_PTR(-EEXIST);
4200 struct qstr last;
4201 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4202 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4203 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4204 int type;
4205 int error;
4206
4207 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4208 if (error)
4209 return ERR_PTR(error);
4210
4211 /*
4212 * Yucky last component or no last component at all?
4213 * (foo/., foo/.., /////)
4214 */
4215 if (unlikely(type != LAST_NORM))
4216 goto out;
4217
4218 /* don't fail immediately if it's r/o, at least try to report other errors */
4219 error = mnt_want_write(path->mnt);
4220 /*
4221 * Do the final lookup. Suppress 'create' if there is a trailing
4222 * '/', and a directory wasn't requested.
4223 */
4224 if (last.name[last.len] && !want_dir)
4225 create_flags &= ~LOOKUP_CREATE;
4226 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4227 dentry = lookup_one_qstr_excl(&last, path->dentry,
4228 reval_flag | create_flags);
4229 if (IS_ERR(dentry))
4230 goto unlock;
4231
4232 if (unlikely(error))
4233 goto fail;
4234
4235 return dentry;
4236 fail:
4237 dput(dentry);
4238 dentry = ERR_PTR(error);
4239 unlock:
4240 inode_unlock(path->dentry->d_inode);
4241 if (!error)
4242 mnt_drop_write(path->mnt);
4243 out:
4244 path_put(path);
4245 return dentry;
4246 }
4247
start_creating_path(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4248 struct dentry *start_creating_path(int dfd, const char *pathname,
4249 struct path *path, unsigned int lookup_flags)
4250 {
4251 struct filename *filename = getname_kernel(pathname);
4252 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4253
4254 putname(filename);
4255 return res;
4256 }
4257 EXPORT_SYMBOL(start_creating_path);
4258
end_creating_path(const struct path * path,struct dentry * dentry)4259 void end_creating_path(const struct path *path, struct dentry *dentry)
4260 {
4261 if (!IS_ERR(dentry))
4262 dput(dentry);
4263 inode_unlock(path->dentry->d_inode);
4264 mnt_drop_write(path->mnt);
4265 path_put(path);
4266 }
4267 EXPORT_SYMBOL(end_creating_path);
4268
start_creating_user_path(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4269 inline struct dentry *start_creating_user_path(
4270 int dfd, const char __user *pathname,
4271 struct path *path, unsigned int lookup_flags)
4272 {
4273 struct filename *filename = getname(pathname);
4274 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4275
4276 putname(filename);
4277 return res;
4278 }
4279 EXPORT_SYMBOL(start_creating_user_path);
4280
4281 /**
4282 * vfs_mknod - create device node or file
4283 * @idmap: idmap of the mount the inode was found from
4284 * @dir: inode of the parent directory
4285 * @dentry: dentry of the child device node
4286 * @mode: mode of the child device node
4287 * @dev: device number of device to create
4288 *
4289 * Create a device node or file.
4290 *
4291 * If the inode has been found through an idmapped mount the idmap of
4292 * the vfsmount must be passed through @idmap. This function will then take
4293 * care to map the inode according to @idmap before checking permissions.
4294 * On non-idmapped mounts or if permission checking is to be performed on the
4295 * raw inode simply pass @nop_mnt_idmap.
4296 */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)4297 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4298 struct dentry *dentry, umode_t mode, dev_t dev)
4299 {
4300 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4301 int error = may_create(idmap, dir, dentry);
4302
4303 if (error)
4304 return error;
4305
4306 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4307 !capable(CAP_MKNOD))
4308 return -EPERM;
4309
4310 if (!dir->i_op->mknod)
4311 return -EPERM;
4312
4313 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4314 error = devcgroup_inode_mknod(mode, dev);
4315 if (error)
4316 return error;
4317
4318 error = security_inode_mknod(dir, dentry, mode, dev);
4319 if (error)
4320 return error;
4321
4322 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4323 if (!error)
4324 fsnotify_create(dir, dentry);
4325 return error;
4326 }
4327 EXPORT_SYMBOL(vfs_mknod);
4328
may_mknod(umode_t mode)4329 static int may_mknod(umode_t mode)
4330 {
4331 switch (mode & S_IFMT) {
4332 case S_IFREG:
4333 case S_IFCHR:
4334 case S_IFBLK:
4335 case S_IFIFO:
4336 case S_IFSOCK:
4337 case 0: /* zero mode translates to S_IFREG */
4338 return 0;
4339 case S_IFDIR:
4340 return -EPERM;
4341 default:
4342 return -EINVAL;
4343 }
4344 }
4345
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4346 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4347 unsigned int dev)
4348 {
4349 struct mnt_idmap *idmap;
4350 struct dentry *dentry;
4351 struct path path;
4352 int error;
4353 unsigned int lookup_flags = 0;
4354
4355 error = may_mknod(mode);
4356 if (error)
4357 goto out1;
4358 retry:
4359 dentry = filename_create(dfd, name, &path, lookup_flags);
4360 error = PTR_ERR(dentry);
4361 if (IS_ERR(dentry))
4362 goto out1;
4363
4364 error = security_path_mknod(&path, dentry,
4365 mode_strip_umask(path.dentry->d_inode, mode), dev);
4366 if (error)
4367 goto out2;
4368
4369 idmap = mnt_idmap(path.mnt);
4370 switch (mode & S_IFMT) {
4371 case 0: case S_IFREG:
4372 error = vfs_create(idmap, path.dentry->d_inode,
4373 dentry, mode, true);
4374 if (!error)
4375 security_path_post_mknod(idmap, dentry);
4376 break;
4377 case S_IFCHR: case S_IFBLK:
4378 error = vfs_mknod(idmap, path.dentry->d_inode,
4379 dentry, mode, new_decode_dev(dev));
4380 break;
4381 case S_IFIFO: case S_IFSOCK:
4382 error = vfs_mknod(idmap, path.dentry->d_inode,
4383 dentry, mode, 0);
4384 break;
4385 }
4386 out2:
4387 end_creating_path(&path, dentry);
4388 if (retry_estale(error, lookup_flags)) {
4389 lookup_flags |= LOOKUP_REVAL;
4390 goto retry;
4391 }
4392 out1:
4393 putname(name);
4394 return error;
4395 }
4396
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4397 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4398 unsigned int, dev)
4399 {
4400 return do_mknodat(dfd, getname(filename), mode, dev);
4401 }
4402
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4403 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4404 {
4405 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4406 }
4407
4408 /**
4409 * vfs_mkdir - create directory returning correct dentry if possible
4410 * @idmap: idmap of the mount the inode was found from
4411 * @dir: inode of the parent directory
4412 * @dentry: dentry of the child directory
4413 * @mode: mode of the child directory
4414 *
4415 * Create a directory.
4416 *
4417 * If the inode has been found through an idmapped mount the idmap of
4418 * the vfsmount must be passed through @idmap. This function will then take
4419 * care to map the inode according to @idmap before checking permissions.
4420 * On non-idmapped mounts or if permission checking is to be performed on the
4421 * raw inode simply pass @nop_mnt_idmap.
4422 *
4423 * In the event that the filesystem does not use the *@dentry but leaves it
4424 * negative or unhashes it and possibly splices a different one returning it,
4425 * the original dentry is dput() and the alternate is returned.
4426 *
4427 * In case of an error the dentry is dput() and an ERR_PTR() is returned.
4428 */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4429 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4430 struct dentry *dentry, umode_t mode)
4431 {
4432 int error;
4433 unsigned max_links = dir->i_sb->s_max_links;
4434 struct dentry *de;
4435
4436 error = may_create(idmap, dir, dentry);
4437 if (error)
4438 goto err;
4439
4440 error = -EPERM;
4441 if (!dir->i_op->mkdir)
4442 goto err;
4443
4444 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4445 error = security_inode_mkdir(dir, dentry, mode);
4446 if (error)
4447 goto err;
4448
4449 error = -EMLINK;
4450 if (max_links && dir->i_nlink >= max_links)
4451 goto err;
4452
4453 de = dir->i_op->mkdir(idmap, dir, dentry, mode);
4454 error = PTR_ERR(de);
4455 if (IS_ERR(de))
4456 goto err;
4457 if (de) {
4458 dput(dentry);
4459 dentry = de;
4460 }
4461 fsnotify_mkdir(dir, dentry);
4462 return dentry;
4463
4464 err:
4465 dput(dentry);
4466 return ERR_PTR(error);
4467 }
4468 EXPORT_SYMBOL(vfs_mkdir);
4469
do_mkdirat(int dfd,struct filename * name,umode_t mode)4470 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4471 {
4472 struct dentry *dentry;
4473 struct path path;
4474 int error;
4475 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4476
4477 retry:
4478 dentry = filename_create(dfd, name, &path, lookup_flags);
4479 error = PTR_ERR(dentry);
4480 if (IS_ERR(dentry))
4481 goto out_putname;
4482
4483 error = security_path_mkdir(&path, dentry,
4484 mode_strip_umask(path.dentry->d_inode, mode));
4485 if (!error) {
4486 dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4487 dentry, mode);
4488 if (IS_ERR(dentry))
4489 error = PTR_ERR(dentry);
4490 }
4491 end_creating_path(&path, dentry);
4492 if (retry_estale(error, lookup_flags)) {
4493 lookup_flags |= LOOKUP_REVAL;
4494 goto retry;
4495 }
4496 out_putname:
4497 putname(name);
4498 return error;
4499 }
4500
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4501 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4502 {
4503 return do_mkdirat(dfd, getname(pathname), mode);
4504 }
4505
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4506 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4507 {
4508 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4509 }
4510
4511 /**
4512 * vfs_rmdir - remove directory
4513 * @idmap: idmap of the mount the inode was found from
4514 * @dir: inode of the parent directory
4515 * @dentry: dentry of the child directory
4516 *
4517 * Remove a directory.
4518 *
4519 * If the inode has been found through an idmapped mount the idmap of
4520 * the vfsmount must be passed through @idmap. This function will then take
4521 * care to map the inode according to @idmap before checking permissions.
4522 * On non-idmapped mounts or if permission checking is to be performed on the
4523 * raw inode simply pass @nop_mnt_idmap.
4524 */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4525 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4526 struct dentry *dentry)
4527 {
4528 int error = may_delete(idmap, dir, dentry, 1);
4529
4530 if (error)
4531 return error;
4532
4533 if (!dir->i_op->rmdir)
4534 return -EPERM;
4535
4536 dget(dentry);
4537 inode_lock(dentry->d_inode);
4538
4539 error = -EBUSY;
4540 if (is_local_mountpoint(dentry) ||
4541 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4542 goto out;
4543
4544 error = security_inode_rmdir(dir, dentry);
4545 if (error)
4546 goto out;
4547
4548 error = dir->i_op->rmdir(dir, dentry);
4549 if (error)
4550 goto out;
4551
4552 shrink_dcache_parent(dentry);
4553 dentry->d_inode->i_flags |= S_DEAD;
4554 dont_mount(dentry);
4555 detach_mounts(dentry);
4556
4557 out:
4558 inode_unlock(dentry->d_inode);
4559 dput(dentry);
4560 if (!error)
4561 d_delete_notify(dir, dentry);
4562 return error;
4563 }
4564 EXPORT_SYMBOL(vfs_rmdir);
4565
do_rmdir(int dfd,struct filename * name)4566 int do_rmdir(int dfd, struct filename *name)
4567 {
4568 int error;
4569 struct dentry *dentry;
4570 struct path path;
4571 struct qstr last;
4572 int type;
4573 unsigned int lookup_flags = 0;
4574 retry:
4575 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4576 if (error)
4577 goto exit1;
4578
4579 switch (type) {
4580 case LAST_DOTDOT:
4581 error = -ENOTEMPTY;
4582 goto exit2;
4583 case LAST_DOT:
4584 error = -EINVAL;
4585 goto exit2;
4586 case LAST_ROOT:
4587 error = -EBUSY;
4588 goto exit2;
4589 }
4590
4591 error = mnt_want_write(path.mnt);
4592 if (error)
4593 goto exit2;
4594
4595 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4596 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4597 error = PTR_ERR(dentry);
4598 if (IS_ERR(dentry))
4599 goto exit3;
4600 error = security_path_rmdir(&path, dentry);
4601 if (error)
4602 goto exit4;
4603 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4604 exit4:
4605 dput(dentry);
4606 exit3:
4607 inode_unlock(path.dentry->d_inode);
4608 mnt_drop_write(path.mnt);
4609 exit2:
4610 path_put(&path);
4611 if (retry_estale(error, lookup_flags)) {
4612 lookup_flags |= LOOKUP_REVAL;
4613 goto retry;
4614 }
4615 exit1:
4616 putname(name);
4617 return error;
4618 }
4619
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4620 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4621 {
4622 return do_rmdir(AT_FDCWD, getname(pathname));
4623 }
4624
4625 /**
4626 * vfs_unlink - unlink a filesystem object
4627 * @idmap: idmap of the mount the inode was found from
4628 * @dir: parent directory
4629 * @dentry: victim
4630 * @delegated_inode: returns victim inode, if the inode is delegated.
4631 *
4632 * The caller must hold dir->i_rwsem exclusively.
4633 *
4634 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4635 * return a reference to the inode in delegated_inode. The caller
4636 * should then break the delegation on that inode and retry. Because
4637 * breaking a delegation may take a long time, the caller should drop
4638 * dir->i_rwsem before doing so.
4639 *
4640 * Alternatively, a caller may pass NULL for delegated_inode. This may
4641 * be appropriate for callers that expect the underlying filesystem not
4642 * to be NFS exported.
4643 *
4644 * If the inode has been found through an idmapped mount the idmap of
4645 * the vfsmount must be passed through @idmap. This function will then take
4646 * care to map the inode according to @idmap before checking permissions.
4647 * On non-idmapped mounts or if permission checking is to be performed on the
4648 * raw inode simply pass @nop_mnt_idmap.
4649 */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4650 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4651 struct dentry *dentry, struct inode **delegated_inode)
4652 {
4653 struct inode *target = dentry->d_inode;
4654 int error = may_delete(idmap, dir, dentry, 0);
4655
4656 if (error)
4657 return error;
4658
4659 if (!dir->i_op->unlink)
4660 return -EPERM;
4661
4662 inode_lock(target);
4663 if (IS_SWAPFILE(target))
4664 error = -EPERM;
4665 else if (is_local_mountpoint(dentry))
4666 error = -EBUSY;
4667 else {
4668 error = security_inode_unlink(dir, dentry);
4669 if (!error) {
4670 error = try_break_deleg(target, delegated_inode);
4671 if (error)
4672 goto out;
4673 error = dir->i_op->unlink(dir, dentry);
4674 if (!error) {
4675 dont_mount(dentry);
4676 detach_mounts(dentry);
4677 }
4678 }
4679 }
4680 out:
4681 inode_unlock(target);
4682
4683 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4684 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4685 fsnotify_unlink(dir, dentry);
4686 } else if (!error) {
4687 fsnotify_link_count(target);
4688 d_delete_notify(dir, dentry);
4689 }
4690
4691 return error;
4692 }
4693 EXPORT_SYMBOL(vfs_unlink);
4694
4695 /*
4696 * Make sure that the actual truncation of the file will occur outside its
4697 * directory's i_rwsem. Truncate can take a long time if there is a lot of
4698 * writeout happening, and we don't want to prevent access to the directory
4699 * while waiting on the I/O.
4700 */
do_unlinkat(int dfd,struct filename * name)4701 int do_unlinkat(int dfd, struct filename *name)
4702 {
4703 int error;
4704 struct dentry *dentry;
4705 struct path path;
4706 struct qstr last;
4707 int type;
4708 struct inode *inode = NULL;
4709 struct inode *delegated_inode = NULL;
4710 unsigned int lookup_flags = 0;
4711 retry:
4712 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4713 if (error)
4714 goto exit1;
4715
4716 error = -EISDIR;
4717 if (type != LAST_NORM)
4718 goto exit2;
4719
4720 error = mnt_want_write(path.mnt);
4721 if (error)
4722 goto exit2;
4723 retry_deleg:
4724 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4725 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4726 error = PTR_ERR(dentry);
4727 if (!IS_ERR(dentry)) {
4728
4729 /* Why not before? Because we want correct error value */
4730 if (last.name[last.len])
4731 goto slashes;
4732 inode = dentry->d_inode;
4733 ihold(inode);
4734 error = security_path_unlink(&path, dentry);
4735 if (error)
4736 goto exit3;
4737 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4738 dentry, &delegated_inode);
4739 exit3:
4740 dput(dentry);
4741 }
4742 inode_unlock(path.dentry->d_inode);
4743 if (inode)
4744 iput(inode); /* truncate the inode here */
4745 inode = NULL;
4746 if (delegated_inode) {
4747 error = break_deleg_wait(&delegated_inode);
4748 if (!error)
4749 goto retry_deleg;
4750 }
4751 mnt_drop_write(path.mnt);
4752 exit2:
4753 path_put(&path);
4754 if (retry_estale(error, lookup_flags)) {
4755 lookup_flags |= LOOKUP_REVAL;
4756 inode = NULL;
4757 goto retry;
4758 }
4759 exit1:
4760 putname(name);
4761 return error;
4762
4763 slashes:
4764 if (d_is_dir(dentry))
4765 error = -EISDIR;
4766 else
4767 error = -ENOTDIR;
4768 goto exit3;
4769 }
4770
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4771 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4772 {
4773 if ((flag & ~AT_REMOVEDIR) != 0)
4774 return -EINVAL;
4775
4776 if (flag & AT_REMOVEDIR)
4777 return do_rmdir(dfd, getname(pathname));
4778 return do_unlinkat(dfd, getname(pathname));
4779 }
4780
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4781 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4782 {
4783 return do_unlinkat(AT_FDCWD, getname(pathname));
4784 }
4785
4786 /**
4787 * vfs_symlink - create symlink
4788 * @idmap: idmap of the mount the inode was found from
4789 * @dir: inode of the parent directory
4790 * @dentry: dentry of the child symlink file
4791 * @oldname: name of the file to link to
4792 *
4793 * Create a symlink.
4794 *
4795 * If the inode has been found through an idmapped mount the idmap of
4796 * the vfsmount must be passed through @idmap. This function will then take
4797 * care to map the inode according to @idmap before checking permissions.
4798 * On non-idmapped mounts or if permission checking is to be performed on the
4799 * raw inode simply pass @nop_mnt_idmap.
4800 */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4801 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4802 struct dentry *dentry, const char *oldname)
4803 {
4804 int error;
4805
4806 error = may_create(idmap, dir, dentry);
4807 if (error)
4808 return error;
4809
4810 if (!dir->i_op->symlink)
4811 return -EPERM;
4812
4813 error = security_inode_symlink(dir, dentry, oldname);
4814 if (error)
4815 return error;
4816
4817 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4818 if (!error)
4819 fsnotify_create(dir, dentry);
4820 return error;
4821 }
4822 EXPORT_SYMBOL(vfs_symlink);
4823
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4824 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4825 {
4826 int error;
4827 struct dentry *dentry;
4828 struct path path;
4829 unsigned int lookup_flags = 0;
4830
4831 if (IS_ERR(from)) {
4832 error = PTR_ERR(from);
4833 goto out_putnames;
4834 }
4835 retry:
4836 dentry = filename_create(newdfd, to, &path, lookup_flags);
4837 error = PTR_ERR(dentry);
4838 if (IS_ERR(dentry))
4839 goto out_putnames;
4840
4841 error = security_path_symlink(&path, dentry, from->name);
4842 if (!error)
4843 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4844 dentry, from->name);
4845 end_creating_path(&path, dentry);
4846 if (retry_estale(error, lookup_flags)) {
4847 lookup_flags |= LOOKUP_REVAL;
4848 goto retry;
4849 }
4850 out_putnames:
4851 putname(to);
4852 putname(from);
4853 return error;
4854 }
4855
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4856 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4857 int, newdfd, const char __user *, newname)
4858 {
4859 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4860 }
4861
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4862 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4863 {
4864 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4865 }
4866
4867 /**
4868 * vfs_link - create a new link
4869 * @old_dentry: object to be linked
4870 * @idmap: idmap of the mount
4871 * @dir: new parent
4872 * @new_dentry: where to create the new link
4873 * @delegated_inode: returns inode needing a delegation break
4874 *
4875 * The caller must hold dir->i_rwsem exclusively.
4876 *
4877 * If vfs_link discovers a delegation on the to-be-linked file in need
4878 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4879 * inode in delegated_inode. The caller should then break the delegation
4880 * and retry. Because breaking a delegation may take a long time, the
4881 * caller should drop the i_rwsem before doing so.
4882 *
4883 * Alternatively, a caller may pass NULL for delegated_inode. This may
4884 * be appropriate for callers that expect the underlying filesystem not
4885 * to be NFS exported.
4886 *
4887 * If the inode has been found through an idmapped mount the idmap of
4888 * the vfsmount must be passed through @idmap. This function will then take
4889 * care to map the inode according to @idmap before checking permissions.
4890 * On non-idmapped mounts or if permission checking is to be performed on the
4891 * raw inode simply pass @nop_mnt_idmap.
4892 */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4893 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4894 struct inode *dir, struct dentry *new_dentry,
4895 struct inode **delegated_inode)
4896 {
4897 struct inode *inode = old_dentry->d_inode;
4898 unsigned max_links = dir->i_sb->s_max_links;
4899 int error;
4900
4901 if (!inode)
4902 return -ENOENT;
4903
4904 error = may_create(idmap, dir, new_dentry);
4905 if (error)
4906 return error;
4907
4908 if (dir->i_sb != inode->i_sb)
4909 return -EXDEV;
4910
4911 /*
4912 * A link to an append-only or immutable file cannot be created.
4913 */
4914 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4915 return -EPERM;
4916 /*
4917 * Updating the link count will likely cause i_uid and i_gid to
4918 * be written back improperly if their true value is unknown to
4919 * the vfs.
4920 */
4921 if (HAS_UNMAPPED_ID(idmap, inode))
4922 return -EPERM;
4923 if (!dir->i_op->link)
4924 return -EPERM;
4925 if (S_ISDIR(inode->i_mode))
4926 return -EPERM;
4927
4928 error = security_inode_link(old_dentry, dir, new_dentry);
4929 if (error)
4930 return error;
4931
4932 inode_lock(inode);
4933 /* Make sure we don't allow creating hardlink to an unlinked file */
4934 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4935 error = -ENOENT;
4936 else if (max_links && inode->i_nlink >= max_links)
4937 error = -EMLINK;
4938 else {
4939 error = try_break_deleg(inode, delegated_inode);
4940 if (!error)
4941 error = dir->i_op->link(old_dentry, dir, new_dentry);
4942 }
4943
4944 if (!error && (inode->i_state & I_LINKABLE)) {
4945 spin_lock(&inode->i_lock);
4946 inode->i_state &= ~I_LINKABLE;
4947 spin_unlock(&inode->i_lock);
4948 }
4949 inode_unlock(inode);
4950 if (!error)
4951 fsnotify_link(dir, inode, new_dentry);
4952 return error;
4953 }
4954 EXPORT_SYMBOL(vfs_link);
4955
4956 /*
4957 * Hardlinks are often used in delicate situations. We avoid
4958 * security-related surprises by not following symlinks on the
4959 * newname. --KAB
4960 *
4961 * We don't follow them on the oldname either to be compatible
4962 * with linux 2.0, and to avoid hard-linking to directories
4963 * and other special files. --ADM
4964 */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4965 int do_linkat(int olddfd, struct filename *old, int newdfd,
4966 struct filename *new, int flags)
4967 {
4968 struct mnt_idmap *idmap;
4969 struct dentry *new_dentry;
4970 struct path old_path, new_path;
4971 struct inode *delegated_inode = NULL;
4972 int how = 0;
4973 int error;
4974
4975 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4976 error = -EINVAL;
4977 goto out_putnames;
4978 }
4979 /*
4980 * To use null names we require CAP_DAC_READ_SEARCH or
4981 * that the open-time creds of the dfd matches current.
4982 * This ensures that not everyone will be able to create
4983 * a hardlink using the passed file descriptor.
4984 */
4985 if (flags & AT_EMPTY_PATH)
4986 how |= LOOKUP_LINKAT_EMPTY;
4987
4988 if (flags & AT_SYMLINK_FOLLOW)
4989 how |= LOOKUP_FOLLOW;
4990 retry:
4991 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4992 if (error)
4993 goto out_putnames;
4994
4995 new_dentry = filename_create(newdfd, new, &new_path,
4996 (how & LOOKUP_REVAL));
4997 error = PTR_ERR(new_dentry);
4998 if (IS_ERR(new_dentry))
4999 goto out_putpath;
5000
5001 error = -EXDEV;
5002 if (old_path.mnt != new_path.mnt)
5003 goto out_dput;
5004 idmap = mnt_idmap(new_path.mnt);
5005 error = may_linkat(idmap, &old_path);
5006 if (unlikely(error))
5007 goto out_dput;
5008 error = security_path_link(old_path.dentry, &new_path, new_dentry);
5009 if (error)
5010 goto out_dput;
5011 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
5012 new_dentry, &delegated_inode);
5013 out_dput:
5014 end_creating_path(&new_path, new_dentry);
5015 if (delegated_inode) {
5016 error = break_deleg_wait(&delegated_inode);
5017 if (!error) {
5018 path_put(&old_path);
5019 goto retry;
5020 }
5021 }
5022 if (retry_estale(error, how)) {
5023 path_put(&old_path);
5024 how |= LOOKUP_REVAL;
5025 goto retry;
5026 }
5027 out_putpath:
5028 path_put(&old_path);
5029 out_putnames:
5030 putname(old);
5031 putname(new);
5032
5033 return error;
5034 }
5035
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)5036 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
5037 int, newdfd, const char __user *, newname, int, flags)
5038 {
5039 return do_linkat(olddfd, getname_uflags(oldname, flags),
5040 newdfd, getname(newname), flags);
5041 }
5042
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)5043 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
5044 {
5045 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
5046 }
5047
5048 /**
5049 * vfs_rename - rename a filesystem object
5050 * @rd: pointer to &struct renamedata info
5051 *
5052 * The caller must hold multiple mutexes--see lock_rename()).
5053 *
5054 * If vfs_rename discovers a delegation in need of breaking at either
5055 * the source or destination, it will return -EWOULDBLOCK and return a
5056 * reference to the inode in delegated_inode. The caller should then
5057 * break the delegation and retry. Because breaking a delegation may
5058 * take a long time, the caller should drop all locks before doing
5059 * so.
5060 *
5061 * Alternatively, a caller may pass NULL for delegated_inode. This may
5062 * be appropriate for callers that expect the underlying filesystem not
5063 * to be NFS exported.
5064 *
5065 * The worst of all namespace operations - renaming directory. "Perverted"
5066 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
5067 * Problems:
5068 *
5069 * a) we can get into loop creation.
5070 * b) race potential - two innocent renames can create a loop together.
5071 * That's where 4.4BSD screws up. Current fix: serialization on
5072 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
5073 * story.
5074 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
5075 * and source (if it's a non-directory or a subdirectory that moves to
5076 * different parent).
5077 * And that - after we got ->i_rwsem on parents (until then we don't know
5078 * whether the target exists). Solution: try to be smart with locking
5079 * order for inodes. We rely on the fact that tree topology may change
5080 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
5081 * move will be locked. Thus we can rank directories by the tree
5082 * (ancestors first) and rank all non-directories after them.
5083 * That works since everybody except rename does "lock parent, lookup,
5084 * lock child" and rename is under ->s_vfs_rename_mutex.
5085 * HOWEVER, it relies on the assumption that any object with ->lookup()
5086 * has no more than 1 dentry. If "hybrid" objects will ever appear,
5087 * we'd better make sure that there's no link(2) for them.
5088 * d) conversion from fhandle to dentry may come in the wrong moment - when
5089 * we are removing the target. Solution: we will have to grab ->i_rwsem
5090 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
5091 * ->i_rwsem on parents, which works but leads to some truly excessive
5092 * locking].
5093 */
vfs_rename(struct renamedata * rd)5094 int vfs_rename(struct renamedata *rd)
5095 {
5096 int error;
5097 struct inode *old_dir = d_inode(rd->old_parent);
5098 struct inode *new_dir = d_inode(rd->new_parent);
5099 struct dentry *old_dentry = rd->old_dentry;
5100 struct dentry *new_dentry = rd->new_dentry;
5101 struct inode **delegated_inode = rd->delegated_inode;
5102 unsigned int flags = rd->flags;
5103 bool is_dir = d_is_dir(old_dentry);
5104 struct inode *source = old_dentry->d_inode;
5105 struct inode *target = new_dentry->d_inode;
5106 bool new_is_dir = false;
5107 unsigned max_links = new_dir->i_sb->s_max_links;
5108 struct name_snapshot old_name;
5109 bool lock_old_subdir, lock_new_subdir;
5110
5111 if (source == target)
5112 return 0;
5113
5114 error = may_delete(rd->mnt_idmap, old_dir, old_dentry, is_dir);
5115 if (error)
5116 return error;
5117
5118 if (!target) {
5119 error = may_create(rd->mnt_idmap, new_dir, new_dentry);
5120 } else {
5121 new_is_dir = d_is_dir(new_dentry);
5122
5123 if (!(flags & RENAME_EXCHANGE))
5124 error = may_delete(rd->mnt_idmap, new_dir,
5125 new_dentry, is_dir);
5126 else
5127 error = may_delete(rd->mnt_idmap, new_dir,
5128 new_dentry, new_is_dir);
5129 }
5130 if (error)
5131 return error;
5132
5133 if (!old_dir->i_op->rename)
5134 return -EPERM;
5135
5136 /*
5137 * If we are going to change the parent - check write permissions,
5138 * we'll need to flip '..'.
5139 */
5140 if (new_dir != old_dir) {
5141 if (is_dir) {
5142 error = inode_permission(rd->mnt_idmap, source,
5143 MAY_WRITE);
5144 if (error)
5145 return error;
5146 }
5147 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5148 error = inode_permission(rd->mnt_idmap, target,
5149 MAY_WRITE);
5150 if (error)
5151 return error;
5152 }
5153 }
5154
5155 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5156 flags);
5157 if (error)
5158 return error;
5159
5160 take_dentry_name_snapshot(&old_name, old_dentry);
5161 dget(new_dentry);
5162 /*
5163 * Lock children.
5164 * The source subdirectory needs to be locked on cross-directory
5165 * rename or cross-directory exchange since its parent changes.
5166 * The target subdirectory needs to be locked on cross-directory
5167 * exchange due to parent change and on any rename due to becoming
5168 * a victim.
5169 * Non-directories need locking in all cases (for NFS reasons);
5170 * they get locked after any subdirectories (in inode address order).
5171 *
5172 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5173 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5174 */
5175 lock_old_subdir = new_dir != old_dir;
5176 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5177 if (is_dir) {
5178 if (lock_old_subdir)
5179 inode_lock_nested(source, I_MUTEX_CHILD);
5180 if (target && (!new_is_dir || lock_new_subdir))
5181 inode_lock(target);
5182 } else if (new_is_dir) {
5183 if (lock_new_subdir)
5184 inode_lock_nested(target, I_MUTEX_CHILD);
5185 inode_lock(source);
5186 } else {
5187 lock_two_nondirectories(source, target);
5188 }
5189
5190 error = -EPERM;
5191 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5192 goto out;
5193
5194 error = -EBUSY;
5195 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5196 goto out;
5197
5198 if (max_links && new_dir != old_dir) {
5199 error = -EMLINK;
5200 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5201 goto out;
5202 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5203 old_dir->i_nlink >= max_links)
5204 goto out;
5205 }
5206 if (!is_dir) {
5207 error = try_break_deleg(source, delegated_inode);
5208 if (error)
5209 goto out;
5210 }
5211 if (target && !new_is_dir) {
5212 error = try_break_deleg(target, delegated_inode);
5213 if (error)
5214 goto out;
5215 }
5216 error = old_dir->i_op->rename(rd->mnt_idmap, old_dir, old_dentry,
5217 new_dir, new_dentry, flags);
5218 if (error)
5219 goto out;
5220
5221 if (!(flags & RENAME_EXCHANGE) && target) {
5222 if (is_dir) {
5223 shrink_dcache_parent(new_dentry);
5224 target->i_flags |= S_DEAD;
5225 }
5226 dont_mount(new_dentry);
5227 detach_mounts(new_dentry);
5228 }
5229 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5230 if (!(flags & RENAME_EXCHANGE))
5231 d_move(old_dentry, new_dentry);
5232 else
5233 d_exchange(old_dentry, new_dentry);
5234 }
5235 out:
5236 if (!is_dir || lock_old_subdir)
5237 inode_unlock(source);
5238 if (target && (!new_is_dir || lock_new_subdir))
5239 inode_unlock(target);
5240 dput(new_dentry);
5241 if (!error) {
5242 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5243 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5244 if (flags & RENAME_EXCHANGE) {
5245 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5246 new_is_dir, NULL, new_dentry);
5247 }
5248 }
5249 release_dentry_name_snapshot(&old_name);
5250
5251 return error;
5252 }
5253 EXPORT_SYMBOL(vfs_rename);
5254
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5255 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5256 struct filename *to, unsigned int flags)
5257 {
5258 struct renamedata rd;
5259 struct dentry *old_dentry, *new_dentry;
5260 struct dentry *trap;
5261 struct path old_path, new_path;
5262 struct qstr old_last, new_last;
5263 int old_type, new_type;
5264 struct inode *delegated_inode = NULL;
5265 unsigned int lookup_flags = 0, target_flags =
5266 LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
5267 bool should_retry = false;
5268 int error = -EINVAL;
5269
5270 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5271 goto put_names;
5272
5273 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5274 (flags & RENAME_EXCHANGE))
5275 goto put_names;
5276
5277 if (flags & RENAME_EXCHANGE)
5278 target_flags = 0;
5279 if (flags & RENAME_NOREPLACE)
5280 target_flags |= LOOKUP_EXCL;
5281
5282 retry:
5283 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5284 &old_last, &old_type);
5285 if (error)
5286 goto put_names;
5287
5288 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5289 &new_type);
5290 if (error)
5291 goto exit1;
5292
5293 error = -EXDEV;
5294 if (old_path.mnt != new_path.mnt)
5295 goto exit2;
5296
5297 error = -EBUSY;
5298 if (old_type != LAST_NORM)
5299 goto exit2;
5300
5301 if (flags & RENAME_NOREPLACE)
5302 error = -EEXIST;
5303 if (new_type != LAST_NORM)
5304 goto exit2;
5305
5306 error = mnt_want_write(old_path.mnt);
5307 if (error)
5308 goto exit2;
5309
5310 retry_deleg:
5311 trap = lock_rename(new_path.dentry, old_path.dentry);
5312 if (IS_ERR(trap)) {
5313 error = PTR_ERR(trap);
5314 goto exit_lock_rename;
5315 }
5316
5317 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5318 lookup_flags);
5319 error = PTR_ERR(old_dentry);
5320 if (IS_ERR(old_dentry))
5321 goto exit3;
5322 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5323 lookup_flags | target_flags);
5324 error = PTR_ERR(new_dentry);
5325 if (IS_ERR(new_dentry))
5326 goto exit4;
5327 if (flags & RENAME_EXCHANGE) {
5328 if (!d_is_dir(new_dentry)) {
5329 error = -ENOTDIR;
5330 if (new_last.name[new_last.len])
5331 goto exit5;
5332 }
5333 }
5334 /* unless the source is a directory trailing slashes give -ENOTDIR */
5335 if (!d_is_dir(old_dentry)) {
5336 error = -ENOTDIR;
5337 if (old_last.name[old_last.len])
5338 goto exit5;
5339 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5340 goto exit5;
5341 }
5342 /* source should not be ancestor of target */
5343 error = -EINVAL;
5344 if (old_dentry == trap)
5345 goto exit5;
5346 /* target should not be an ancestor of source */
5347 if (!(flags & RENAME_EXCHANGE))
5348 error = -ENOTEMPTY;
5349 if (new_dentry == trap)
5350 goto exit5;
5351
5352 error = security_path_rename(&old_path, old_dentry,
5353 &new_path, new_dentry, flags);
5354 if (error)
5355 goto exit5;
5356
5357 rd.old_parent = old_path.dentry;
5358 rd.old_dentry = old_dentry;
5359 rd.mnt_idmap = mnt_idmap(old_path.mnt);
5360 rd.new_parent = new_path.dentry;
5361 rd.new_dentry = new_dentry;
5362 rd.delegated_inode = &delegated_inode;
5363 rd.flags = flags;
5364 error = vfs_rename(&rd);
5365 exit5:
5366 dput(new_dentry);
5367 exit4:
5368 dput(old_dentry);
5369 exit3:
5370 unlock_rename(new_path.dentry, old_path.dentry);
5371 exit_lock_rename:
5372 if (delegated_inode) {
5373 error = break_deleg_wait(&delegated_inode);
5374 if (!error)
5375 goto retry_deleg;
5376 }
5377 mnt_drop_write(old_path.mnt);
5378 exit2:
5379 if (retry_estale(error, lookup_flags))
5380 should_retry = true;
5381 path_put(&new_path);
5382 exit1:
5383 path_put(&old_path);
5384 if (should_retry) {
5385 should_retry = false;
5386 lookup_flags |= LOOKUP_REVAL;
5387 goto retry;
5388 }
5389 put_names:
5390 putname(from);
5391 putname(to);
5392 return error;
5393 }
5394
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5395 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5396 int, newdfd, const char __user *, newname, unsigned int, flags)
5397 {
5398 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5399 flags);
5400 }
5401
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5402 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5403 int, newdfd, const char __user *, newname)
5404 {
5405 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5406 0);
5407 }
5408
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5409 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5410 {
5411 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5412 getname(newname), 0);
5413 }
5414
readlink_copy(char __user * buffer,int buflen,const char * link,int linklen)5415 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
5416 {
5417 int copylen;
5418
5419 copylen = linklen;
5420 if (unlikely(copylen > (unsigned) buflen))
5421 copylen = buflen;
5422 if (copy_to_user(buffer, link, copylen))
5423 copylen = -EFAULT;
5424 return copylen;
5425 }
5426
5427 /**
5428 * vfs_readlink - copy symlink body into userspace buffer
5429 * @dentry: dentry on which to get symbolic link
5430 * @buffer: user memory pointer
5431 * @buflen: size of buffer
5432 *
5433 * Does not touch atime. That's up to the caller if necessary
5434 *
5435 * Does not call security hook.
5436 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5437 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5438 {
5439 struct inode *inode = d_inode(dentry);
5440 DEFINE_DELAYED_CALL(done);
5441 const char *link;
5442 int res;
5443
5444 if (inode->i_opflags & IOP_CACHED_LINK)
5445 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
5446
5447 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5448 if (unlikely(inode->i_op->readlink))
5449 return inode->i_op->readlink(dentry, buffer, buflen);
5450
5451 if (!d_is_symlink(dentry))
5452 return -EINVAL;
5453
5454 spin_lock(&inode->i_lock);
5455 inode->i_opflags |= IOP_DEFAULT_READLINK;
5456 spin_unlock(&inode->i_lock);
5457 }
5458
5459 link = READ_ONCE(inode->i_link);
5460 if (!link) {
5461 link = inode->i_op->get_link(dentry, inode, &done);
5462 if (IS_ERR(link))
5463 return PTR_ERR(link);
5464 }
5465 res = readlink_copy(buffer, buflen, link, strlen(link));
5466 do_delayed_call(&done);
5467 return res;
5468 }
5469 EXPORT_SYMBOL(vfs_readlink);
5470
5471 /**
5472 * vfs_get_link - get symlink body
5473 * @dentry: dentry on which to get symbolic link
5474 * @done: caller needs to free returned data with this
5475 *
5476 * Calls security hook and i_op->get_link() on the supplied inode.
5477 *
5478 * It does not touch atime. That's up to the caller if necessary.
5479 *
5480 * Does not work on "special" symlinks like /proc/$$/fd/N
5481 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5482 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5483 {
5484 const char *res = ERR_PTR(-EINVAL);
5485 struct inode *inode = d_inode(dentry);
5486
5487 if (d_is_symlink(dentry)) {
5488 res = ERR_PTR(security_inode_readlink(dentry));
5489 if (!res)
5490 res = inode->i_op->get_link(dentry, inode, done);
5491 }
5492 return res;
5493 }
5494 EXPORT_SYMBOL(vfs_get_link);
5495
5496 /* get the link contents into pagecache */
__page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5497 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
5498 struct delayed_call *callback)
5499 {
5500 struct folio *folio;
5501 struct address_space *mapping = inode->i_mapping;
5502
5503 if (!dentry) {
5504 folio = filemap_get_folio(mapping, 0);
5505 if (IS_ERR(folio))
5506 return ERR_PTR(-ECHILD);
5507 if (!folio_test_uptodate(folio)) {
5508 folio_put(folio);
5509 return ERR_PTR(-ECHILD);
5510 }
5511 } else {
5512 folio = read_mapping_folio(mapping, 0, NULL);
5513 if (IS_ERR(folio))
5514 return ERR_CAST(folio);
5515 }
5516 set_delayed_call(callback, page_put_link, folio);
5517 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5518 return folio_address(folio);
5519 }
5520
page_get_link_raw(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5521 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
5522 struct delayed_call *callback)
5523 {
5524 return __page_get_link(dentry, inode, callback);
5525 }
5526 EXPORT_SYMBOL_GPL(page_get_link_raw);
5527
5528 /**
5529 * page_get_link() - An implementation of the get_link inode_operation.
5530 * @dentry: The directory entry which is the symlink.
5531 * @inode: The inode for the symlink.
5532 * @callback: Used to drop the reference to the symlink.
5533 *
5534 * Filesystems which store their symlinks in the page cache should use
5535 * this to implement the get_link() member of their inode_operations.
5536 *
5537 * Return: A pointer to the NUL-terminated symlink.
5538 */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5539 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5540 struct delayed_call *callback)
5541 {
5542 char *kaddr = __page_get_link(dentry, inode, callback);
5543
5544 if (!IS_ERR(kaddr))
5545 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5546 return kaddr;
5547 }
5548 EXPORT_SYMBOL(page_get_link);
5549
5550 /**
5551 * page_put_link() - Drop the reference to the symlink.
5552 * @arg: The folio which contains the symlink.
5553 *
5554 * This is used internally by page_get_link(). It is exported for use
5555 * by filesystems which need to implement a variant of page_get_link()
5556 * themselves. Despite the apparent symmetry, filesystems which use
5557 * page_get_link() do not need to call page_put_link().
5558 *
5559 * The argument, while it has a void pointer type, must be a pointer to
5560 * the folio which was retrieved from the page cache. The delayed_call
5561 * infrastructure is used to drop the reference count once the caller
5562 * is done with the symlink.
5563 */
page_put_link(void * arg)5564 void page_put_link(void *arg)
5565 {
5566 folio_put(arg);
5567 }
5568 EXPORT_SYMBOL(page_put_link);
5569
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5570 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5571 {
5572 const char *link;
5573 int res;
5574
5575 DEFINE_DELAYED_CALL(done);
5576 link = page_get_link(dentry, d_inode(dentry), &done);
5577 res = PTR_ERR(link);
5578 if (!IS_ERR(link))
5579 res = readlink_copy(buffer, buflen, link, strlen(link));
5580 do_delayed_call(&done);
5581 return res;
5582 }
5583 EXPORT_SYMBOL(page_readlink);
5584
page_symlink(struct inode * inode,const char * symname,int len)5585 int page_symlink(struct inode *inode, const char *symname, int len)
5586 {
5587 struct address_space *mapping = inode->i_mapping;
5588 const struct address_space_operations *aops = mapping->a_ops;
5589 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5590 struct folio *folio;
5591 void *fsdata = NULL;
5592 int err;
5593 unsigned int flags;
5594
5595 retry:
5596 if (nofs)
5597 flags = memalloc_nofs_save();
5598 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5599 if (nofs)
5600 memalloc_nofs_restore(flags);
5601 if (err)
5602 goto fail;
5603
5604 memcpy(folio_address(folio), symname, len - 1);
5605
5606 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5607 folio, fsdata);
5608 if (err < 0)
5609 goto fail;
5610 if (err < len-1)
5611 goto retry;
5612
5613 mark_inode_dirty(inode);
5614 return 0;
5615 fail:
5616 return err;
5617 }
5618 EXPORT_SYMBOL(page_symlink);
5619
5620 const struct inode_operations page_symlink_inode_operations = {
5621 .get_link = page_get_link,
5622 };
5623 EXPORT_SYMBOL(page_symlink_inode_operations);
5624