1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic hugetlb support. 4 * (C) Nadia Yvette Chambers, April 2004 5 */ 6 #include <linux/list.h> 7 #include <linux/init.h> 8 #include <linux/mm.h> 9 #include <linux/seq_file.h> 10 #include <linux/highmem.h> 11 #include <linux/mmu_notifier.h> 12 #include <linux/nodemask.h> 13 #include <linux/pagemap.h> 14 #include <linux/mempolicy.h> 15 #include <linux/compiler.h> 16 #include <linux/cpumask.h> 17 #include <linux/cpuset.h> 18 #include <linux/mutex.h> 19 #include <linux/memblock.h> 20 #include <linux/minmax.h> 21 #include <linux/slab.h> 22 #include <linux/sched/mm.h> 23 #include <linux/mmdebug.h> 24 #include <linux/sched/signal.h> 25 #include <linux/rmap.h> 26 #include <linux/string_choices.h> 27 #include <linux/string_helpers.h> 28 #include <linux/swap.h> 29 #include <linux/leafops.h> 30 #include <linux/jhash.h> 31 #include <linux/numa.h> 32 #include <linux/llist.h> 33 #include <linux/cma.h> 34 #include <linux/migrate.h> 35 #include <linux/nospec.h> 36 #include <linux/delayacct.h> 37 #include <linux/memory.h> 38 #include <linux/mm_inline.h> 39 #include <linux/padata.h> 40 #include <linux/pgalloc.h> 41 42 #include <asm/page.h> 43 #include <asm/tlb.h> 44 #include <asm/setup.h> 45 46 #include <linux/io.h> 47 #include <linux/node.h> 48 #include <linux/page_owner.h> 49 #include "internal.h" 50 #include "hugetlb_vmemmap.h" 51 #include "hugetlb_cma.h" 52 #include "hugetlb_internal.h" 53 #include <linux/page-isolation.h> 54 55 int hugetlb_max_hstate __read_mostly; 56 unsigned int default_hstate_idx; 57 struct hstate hstates[HUGE_MAX_HSTATE]; 58 59 __initdata nodemask_t hugetlb_bootmem_nodes; 60 __initdata struct list_head huge_boot_pages[MAX_NUMNODES]; 61 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata; 62 63 /* 64 * Due to ordering constraints across the init code for various 65 * architectures, hugetlb hstate cmdline parameters can't simply 66 * be early_param. early_param might call the setup function 67 * before valid hugetlb page sizes are determined, leading to 68 * incorrect rejection of valid hugepagesz= options. 69 * 70 * So, record the parameters early and consume them whenever the 71 * init code is ready for them, by calling hugetlb_parse_params(). 72 */ 73 74 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */ 75 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1) 76 struct hugetlb_cmdline { 77 char *val; 78 int (*setup)(char *val); 79 }; 80 81 /* for command line parsing */ 82 static struct hstate * __initdata parsed_hstate; 83 static unsigned long __initdata default_hstate_max_huge_pages; 84 static bool __initdata parsed_valid_hugepagesz = true; 85 static bool __initdata parsed_default_hugepagesz; 86 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata; 87 static unsigned long hugepage_allocation_threads __initdata; 88 89 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata; 90 static int hstate_cmdline_index __initdata; 91 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata; 92 static int hugetlb_param_index __initdata; 93 static __init int hugetlb_add_param(char *s, int (*setup)(char *val)); 94 static __init void hugetlb_parse_params(void); 95 96 #define hugetlb_early_param(str, func) \ 97 static __init int func##args(char *s) \ 98 { \ 99 return hugetlb_add_param(s, func); \ 100 } \ 101 early_param(str, func##args) 102 103 /* 104 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, 105 * free_huge_pages, and surplus_huge_pages. 106 */ 107 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock); 108 109 /* 110 * Serializes faults on the same logical page. This is used to 111 * prevent spurious OOMs when the hugepage pool is fully utilized. 112 */ 113 static int num_fault_mutexes __ro_after_init; 114 struct mutex *hugetlb_fault_mutex_table __ro_after_init; 115 116 /* Forward declaration */ 117 static int hugetlb_acct_memory(struct hstate *h, long delta); 118 static void hugetlb_vma_lock_free(struct vm_area_struct *vma); 119 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma); 120 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 121 unsigned long start, unsigned long end, bool take_locks); 122 static struct resv_map *vma_resv_map(struct vm_area_struct *vma); 123 124 static inline bool subpool_is_free(struct hugepage_subpool *spool) 125 { 126 if (spool->count) 127 return false; 128 if (spool->max_hpages != -1) 129 return spool->used_hpages == 0; 130 if (spool->min_hpages != -1) 131 return spool->rsv_hpages == spool->min_hpages; 132 133 return true; 134 } 135 136 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool, 137 unsigned long irq_flags) 138 { 139 spin_unlock_irqrestore(&spool->lock, irq_flags); 140 141 /* If no pages are used, and no other handles to the subpool 142 * remain, give up any reservations based on minimum size and 143 * free the subpool */ 144 if (subpool_is_free(spool)) { 145 if (spool->min_hpages != -1) 146 hugetlb_acct_memory(spool->hstate, 147 -spool->min_hpages); 148 kfree(spool); 149 } 150 } 151 152 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages, 153 long min_hpages) 154 { 155 struct hugepage_subpool *spool; 156 157 spool = kzalloc(sizeof(*spool), GFP_KERNEL); 158 if (!spool) 159 return NULL; 160 161 spin_lock_init(&spool->lock); 162 spool->count = 1; 163 spool->max_hpages = max_hpages; 164 spool->hstate = h; 165 spool->min_hpages = min_hpages; 166 167 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) { 168 kfree(spool); 169 return NULL; 170 } 171 spool->rsv_hpages = min_hpages; 172 173 return spool; 174 } 175 176 void hugepage_put_subpool(struct hugepage_subpool *spool) 177 { 178 unsigned long flags; 179 180 spin_lock_irqsave(&spool->lock, flags); 181 BUG_ON(!spool->count); 182 spool->count--; 183 unlock_or_release_subpool(spool, flags); 184 } 185 186 /* 187 * Subpool accounting for allocating and reserving pages. 188 * Return -ENOMEM if there are not enough resources to satisfy the 189 * request. Otherwise, return the number of pages by which the 190 * global pools must be adjusted (upward). The returned value may 191 * only be different than the passed value (delta) in the case where 192 * a subpool minimum size must be maintained. 193 */ 194 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool, 195 long delta) 196 { 197 long ret = delta; 198 199 if (!spool) 200 return ret; 201 202 spin_lock_irq(&spool->lock); 203 204 if (spool->max_hpages != -1) { /* maximum size accounting */ 205 if ((spool->used_hpages + delta) <= spool->max_hpages) 206 spool->used_hpages += delta; 207 else { 208 ret = -ENOMEM; 209 goto unlock_ret; 210 } 211 } 212 213 /* minimum size accounting */ 214 if (spool->min_hpages != -1 && spool->rsv_hpages) { 215 if (delta > spool->rsv_hpages) { 216 /* 217 * Asking for more reserves than those already taken on 218 * behalf of subpool. Return difference. 219 */ 220 ret = delta - spool->rsv_hpages; 221 spool->rsv_hpages = 0; 222 } else { 223 ret = 0; /* reserves already accounted for */ 224 spool->rsv_hpages -= delta; 225 } 226 } 227 228 unlock_ret: 229 spin_unlock_irq(&spool->lock); 230 return ret; 231 } 232 233 /* 234 * Subpool accounting for freeing and unreserving pages. 235 * Return the number of global page reservations that must be dropped. 236 * The return value may only be different than the passed value (delta) 237 * in the case where a subpool minimum size must be maintained. 238 */ 239 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool, 240 long delta) 241 { 242 long ret = delta; 243 unsigned long flags; 244 245 if (!spool) 246 return delta; 247 248 spin_lock_irqsave(&spool->lock, flags); 249 250 if (spool->max_hpages != -1) /* maximum size accounting */ 251 spool->used_hpages -= delta; 252 253 /* minimum size accounting */ 254 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) { 255 if (spool->rsv_hpages + delta <= spool->min_hpages) 256 ret = 0; 257 else 258 ret = spool->rsv_hpages + delta - spool->min_hpages; 259 260 spool->rsv_hpages += delta; 261 if (spool->rsv_hpages > spool->min_hpages) 262 spool->rsv_hpages = spool->min_hpages; 263 } 264 265 /* 266 * If hugetlbfs_put_super couldn't free spool due to an outstanding 267 * quota reference, free it now. 268 */ 269 unlock_or_release_subpool(spool, flags); 270 271 return ret; 272 } 273 274 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) 275 { 276 return subpool_inode(file_inode(vma->vm_file)); 277 } 278 279 /* 280 * hugetlb vma_lock helper routines 281 */ 282 void hugetlb_vma_lock_read(struct vm_area_struct *vma) 283 { 284 if (__vma_shareable_lock(vma)) { 285 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 286 287 down_read(&vma_lock->rw_sema); 288 } else if (__vma_private_lock(vma)) { 289 struct resv_map *resv_map = vma_resv_map(vma); 290 291 down_read(&resv_map->rw_sema); 292 } 293 } 294 295 void hugetlb_vma_unlock_read(struct vm_area_struct *vma) 296 { 297 if (__vma_shareable_lock(vma)) { 298 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 299 300 up_read(&vma_lock->rw_sema); 301 } else if (__vma_private_lock(vma)) { 302 struct resv_map *resv_map = vma_resv_map(vma); 303 304 up_read(&resv_map->rw_sema); 305 } 306 } 307 308 void hugetlb_vma_lock_write(struct vm_area_struct *vma) 309 { 310 if (__vma_shareable_lock(vma)) { 311 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 312 313 down_write(&vma_lock->rw_sema); 314 } else if (__vma_private_lock(vma)) { 315 struct resv_map *resv_map = vma_resv_map(vma); 316 317 down_write(&resv_map->rw_sema); 318 } 319 } 320 321 void hugetlb_vma_unlock_write(struct vm_area_struct *vma) 322 { 323 if (__vma_shareable_lock(vma)) { 324 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 325 326 up_write(&vma_lock->rw_sema); 327 } else if (__vma_private_lock(vma)) { 328 struct resv_map *resv_map = vma_resv_map(vma); 329 330 up_write(&resv_map->rw_sema); 331 } 332 } 333 334 int hugetlb_vma_trylock_write(struct vm_area_struct *vma) 335 { 336 337 if (__vma_shareable_lock(vma)) { 338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 339 340 return down_write_trylock(&vma_lock->rw_sema); 341 } else if (__vma_private_lock(vma)) { 342 struct resv_map *resv_map = vma_resv_map(vma); 343 344 return down_write_trylock(&resv_map->rw_sema); 345 } 346 347 return 1; 348 } 349 350 void hugetlb_vma_assert_locked(struct vm_area_struct *vma) 351 { 352 if (__vma_shareable_lock(vma)) { 353 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 354 355 lockdep_assert_held(&vma_lock->rw_sema); 356 } else if (__vma_private_lock(vma)) { 357 struct resv_map *resv_map = vma_resv_map(vma); 358 359 lockdep_assert_held(&resv_map->rw_sema); 360 } 361 } 362 363 void hugetlb_vma_lock_release(struct kref *kref) 364 { 365 struct hugetlb_vma_lock *vma_lock = container_of(kref, 366 struct hugetlb_vma_lock, refs); 367 368 kfree(vma_lock); 369 } 370 371 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock) 372 { 373 struct vm_area_struct *vma = vma_lock->vma; 374 375 /* 376 * vma_lock structure may or not be released as a result of put, 377 * it certainly will no longer be attached to vma so clear pointer. 378 * Semaphore synchronizes access to vma_lock->vma field. 379 */ 380 vma_lock->vma = NULL; 381 vma->vm_private_data = NULL; 382 up_write(&vma_lock->rw_sema); 383 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 384 } 385 386 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma) 387 { 388 if (__vma_shareable_lock(vma)) { 389 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 390 391 __hugetlb_vma_unlock_write_put(vma_lock); 392 } else if (__vma_private_lock(vma)) { 393 struct resv_map *resv_map = vma_resv_map(vma); 394 395 /* no free for anon vmas, but still need to unlock */ 396 up_write(&resv_map->rw_sema); 397 } 398 } 399 400 static void hugetlb_vma_lock_free(struct vm_area_struct *vma) 401 { 402 /* 403 * Only present in sharable vmas. 404 */ 405 if (!vma || !__vma_shareable_lock(vma)) 406 return; 407 408 if (vma->vm_private_data) { 409 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 410 411 down_write(&vma_lock->rw_sema); 412 __hugetlb_vma_unlock_write_put(vma_lock); 413 } 414 } 415 416 /* 417 * vma specific semaphore used for pmd sharing and fault/truncation 418 * synchronization 419 */ 420 int hugetlb_vma_lock_alloc(struct vm_area_struct *vma) 421 { 422 struct hugetlb_vma_lock *vma_lock; 423 424 /* Only establish in (flags) sharable vmas */ 425 if (!vma || !(vma->vm_flags & VM_MAYSHARE)) 426 return 0; 427 428 /* Should never get here with non-NULL vm_private_data */ 429 if (vma->vm_private_data) 430 return -EINVAL; 431 432 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL); 433 if (!vma_lock) { 434 /* 435 * If we can not allocate structure, then vma can not 436 * participate in pmd sharing. This is only a possible 437 * performance enhancement and memory saving issue. 438 * However, the lock is also used to synchronize page 439 * faults with truncation. If the lock is not present, 440 * unlikely races could leave pages in a file past i_size 441 * until the file is removed. Warn in the unlikely case of 442 * allocation failure. 443 */ 444 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n"); 445 return -EINVAL; 446 } 447 448 kref_init(&vma_lock->refs); 449 init_rwsem(&vma_lock->rw_sema); 450 vma_lock->vma = vma; 451 vma->vm_private_data = vma_lock; 452 453 return 0; 454 } 455 456 /* Helper that removes a struct file_region from the resv_map cache and returns 457 * it for use. 458 */ 459 static struct file_region * 460 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to) 461 { 462 struct file_region *nrg; 463 464 VM_BUG_ON(resv->region_cache_count <= 0); 465 466 resv->region_cache_count--; 467 nrg = list_first_entry(&resv->region_cache, struct file_region, link); 468 list_del(&nrg->link); 469 470 nrg->from = from; 471 nrg->to = to; 472 473 return nrg; 474 } 475 476 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg, 477 struct file_region *rg) 478 { 479 #ifdef CONFIG_CGROUP_HUGETLB 480 nrg->reservation_counter = rg->reservation_counter; 481 nrg->css = rg->css; 482 if (rg->css) 483 css_get(rg->css); 484 #endif 485 } 486 487 /* Helper that records hugetlb_cgroup uncharge info. */ 488 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg, 489 struct hstate *h, 490 struct resv_map *resv, 491 struct file_region *nrg) 492 { 493 #ifdef CONFIG_CGROUP_HUGETLB 494 if (h_cg) { 495 nrg->reservation_counter = 496 &h_cg->rsvd_hugepage[hstate_index(h)]; 497 nrg->css = &h_cg->css; 498 /* 499 * The caller will hold exactly one h_cg->css reference for the 500 * whole contiguous reservation region. But this area might be 501 * scattered when there are already some file_regions reside in 502 * it. As a result, many file_regions may share only one css 503 * reference. In order to ensure that one file_region must hold 504 * exactly one h_cg->css reference, we should do css_get for 505 * each file_region and leave the reference held by caller 506 * untouched. 507 */ 508 css_get(&h_cg->css); 509 if (!resv->pages_per_hpage) 510 resv->pages_per_hpage = pages_per_huge_page(h); 511 /* pages_per_hpage should be the same for all entries in 512 * a resv_map. 513 */ 514 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h)); 515 } else { 516 nrg->reservation_counter = NULL; 517 nrg->css = NULL; 518 } 519 #endif 520 } 521 522 static void put_uncharge_info(struct file_region *rg) 523 { 524 #ifdef CONFIG_CGROUP_HUGETLB 525 if (rg->css) 526 css_put(rg->css); 527 #endif 528 } 529 530 static bool has_same_uncharge_info(struct file_region *rg, 531 struct file_region *org) 532 { 533 #ifdef CONFIG_CGROUP_HUGETLB 534 return rg->reservation_counter == org->reservation_counter && 535 rg->css == org->css; 536 537 #else 538 return true; 539 #endif 540 } 541 542 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg) 543 { 544 struct file_region *nrg, *prg; 545 546 prg = list_prev_entry(rg, link); 547 if (&prg->link != &resv->regions && prg->to == rg->from && 548 has_same_uncharge_info(prg, rg)) { 549 prg->to = rg->to; 550 551 list_del(&rg->link); 552 put_uncharge_info(rg); 553 kfree(rg); 554 555 rg = prg; 556 } 557 558 nrg = list_next_entry(rg, link); 559 if (&nrg->link != &resv->regions && nrg->from == rg->to && 560 has_same_uncharge_info(nrg, rg)) { 561 nrg->from = rg->from; 562 563 list_del(&rg->link); 564 put_uncharge_info(rg); 565 kfree(rg); 566 } 567 } 568 569 static inline long 570 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from, 571 long to, struct hstate *h, struct hugetlb_cgroup *cg, 572 long *regions_needed) 573 { 574 struct file_region *nrg; 575 576 if (!regions_needed) { 577 nrg = get_file_region_entry_from_cache(map, from, to); 578 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg); 579 list_add(&nrg->link, rg); 580 coalesce_file_region(map, nrg); 581 } else { 582 *regions_needed += 1; 583 } 584 585 return to - from; 586 } 587 588 /* 589 * Must be called with resv->lock held. 590 * 591 * Calling this with regions_needed != NULL will count the number of pages 592 * to be added but will not modify the linked list. And regions_needed will 593 * indicate the number of file_regions needed in the cache to carry out to add 594 * the regions for this range. 595 */ 596 static long add_reservation_in_range(struct resv_map *resv, long f, long t, 597 struct hugetlb_cgroup *h_cg, 598 struct hstate *h, long *regions_needed) 599 { 600 long add = 0; 601 struct list_head *head = &resv->regions; 602 long last_accounted_offset = f; 603 struct file_region *iter, *trg = NULL; 604 struct list_head *rg = NULL; 605 606 if (regions_needed) 607 *regions_needed = 0; 608 609 /* In this loop, we essentially handle an entry for the range 610 * [last_accounted_offset, iter->from), at every iteration, with some 611 * bounds checking. 612 */ 613 list_for_each_entry_safe(iter, trg, head, link) { 614 /* Skip irrelevant regions that start before our range. */ 615 if (iter->from < f) { 616 /* If this region ends after the last accounted offset, 617 * then we need to update last_accounted_offset. 618 */ 619 if (iter->to > last_accounted_offset) 620 last_accounted_offset = iter->to; 621 continue; 622 } 623 624 /* When we find a region that starts beyond our range, we've 625 * finished. 626 */ 627 if (iter->from >= t) { 628 rg = iter->link.prev; 629 break; 630 } 631 632 /* Add an entry for last_accounted_offset -> iter->from, and 633 * update last_accounted_offset. 634 */ 635 if (iter->from > last_accounted_offset) 636 add += hugetlb_resv_map_add(resv, iter->link.prev, 637 last_accounted_offset, 638 iter->from, h, h_cg, 639 regions_needed); 640 641 last_accounted_offset = iter->to; 642 } 643 644 /* Handle the case where our range extends beyond 645 * last_accounted_offset. 646 */ 647 if (!rg) 648 rg = head->prev; 649 if (last_accounted_offset < t) 650 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset, 651 t, h, h_cg, regions_needed); 652 653 return add; 654 } 655 656 /* Must be called with resv->lock acquired. Will drop lock to allocate entries. 657 */ 658 static int allocate_file_region_entries(struct resv_map *resv, 659 int regions_needed) 660 __must_hold(&resv->lock) 661 { 662 LIST_HEAD(allocated_regions); 663 int to_allocate = 0, i = 0; 664 struct file_region *trg = NULL, *rg = NULL; 665 666 VM_BUG_ON(regions_needed < 0); 667 668 /* 669 * Check for sufficient descriptors in the cache to accommodate 670 * the number of in progress add operations plus regions_needed. 671 * 672 * This is a while loop because when we drop the lock, some other call 673 * to region_add or region_del may have consumed some region_entries, 674 * so we keep looping here until we finally have enough entries for 675 * (adds_in_progress + regions_needed). 676 */ 677 while (resv->region_cache_count < 678 (resv->adds_in_progress + regions_needed)) { 679 to_allocate = resv->adds_in_progress + regions_needed - 680 resv->region_cache_count; 681 682 /* At this point, we should have enough entries in the cache 683 * for all the existing adds_in_progress. We should only be 684 * needing to allocate for regions_needed. 685 */ 686 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress); 687 688 spin_unlock(&resv->lock); 689 for (i = 0; i < to_allocate; i++) { 690 trg = kmalloc(sizeof(*trg), GFP_KERNEL); 691 if (!trg) 692 goto out_of_memory; 693 list_add(&trg->link, &allocated_regions); 694 } 695 696 spin_lock(&resv->lock); 697 698 list_splice(&allocated_regions, &resv->region_cache); 699 resv->region_cache_count += to_allocate; 700 } 701 702 return 0; 703 704 out_of_memory: 705 list_for_each_entry_safe(rg, trg, &allocated_regions, link) { 706 list_del(&rg->link); 707 kfree(rg); 708 } 709 return -ENOMEM; 710 } 711 712 /* 713 * Add the huge page range represented by [f, t) to the reserve 714 * map. Regions will be taken from the cache to fill in this range. 715 * Sufficient regions should exist in the cache due to the previous 716 * call to region_chg with the same range, but in some cases the cache will not 717 * have sufficient entries due to races with other code doing region_add or 718 * region_del. The extra needed entries will be allocated. 719 * 720 * regions_needed is the out value provided by a previous call to region_chg. 721 * 722 * Return the number of new huge pages added to the map. This number is greater 723 * than or equal to zero. If file_region entries needed to be allocated for 724 * this operation and we were not able to allocate, it returns -ENOMEM. 725 * region_add of regions of length 1 never allocate file_regions and cannot 726 * fail; region_chg will always allocate at least 1 entry and a region_add for 727 * 1 page will only require at most 1 entry. 728 */ 729 static long region_add(struct resv_map *resv, long f, long t, 730 long in_regions_needed, struct hstate *h, 731 struct hugetlb_cgroup *h_cg) 732 { 733 long add = 0, actual_regions_needed = 0; 734 735 spin_lock(&resv->lock); 736 retry: 737 738 /* Count how many regions are actually needed to execute this add. */ 739 add_reservation_in_range(resv, f, t, NULL, NULL, 740 &actual_regions_needed); 741 742 /* 743 * Check for sufficient descriptors in the cache to accommodate 744 * this add operation. Note that actual_regions_needed may be greater 745 * than in_regions_needed, as the resv_map may have been modified since 746 * the region_chg call. In this case, we need to make sure that we 747 * allocate extra entries, such that we have enough for all the 748 * existing adds_in_progress, plus the excess needed for this 749 * operation. 750 */ 751 if (actual_regions_needed > in_regions_needed && 752 resv->region_cache_count < 753 resv->adds_in_progress + 754 (actual_regions_needed - in_regions_needed)) { 755 /* region_add operation of range 1 should never need to 756 * allocate file_region entries. 757 */ 758 VM_BUG_ON(t - f <= 1); 759 760 if (allocate_file_region_entries( 761 resv, actual_regions_needed - in_regions_needed)) { 762 return -ENOMEM; 763 } 764 765 goto retry; 766 } 767 768 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL); 769 770 resv->adds_in_progress -= in_regions_needed; 771 772 spin_unlock(&resv->lock); 773 return add; 774 } 775 776 /* 777 * Examine the existing reserve map and determine how many 778 * huge pages in the specified range [f, t) are NOT currently 779 * represented. This routine is called before a subsequent 780 * call to region_add that will actually modify the reserve 781 * map to add the specified range [f, t). region_chg does 782 * not change the number of huge pages represented by the 783 * map. A number of new file_region structures is added to the cache as a 784 * placeholder, for the subsequent region_add call to use. At least 1 785 * file_region structure is added. 786 * 787 * out_regions_needed is the number of regions added to the 788 * resv->adds_in_progress. This value needs to be provided to a follow up call 789 * to region_add or region_abort for proper accounting. 790 * 791 * Returns the number of huge pages that need to be added to the existing 792 * reservation map for the range [f, t). This number is greater or equal to 793 * zero. -ENOMEM is returned if a new file_region structure or cache entry 794 * is needed and can not be allocated. 795 */ 796 static long region_chg(struct resv_map *resv, long f, long t, 797 long *out_regions_needed) 798 { 799 long chg = 0; 800 801 spin_lock(&resv->lock); 802 803 /* Count how many hugepages in this range are NOT represented. */ 804 chg = add_reservation_in_range(resv, f, t, NULL, NULL, 805 out_regions_needed); 806 807 if (*out_regions_needed == 0) 808 *out_regions_needed = 1; 809 810 if (allocate_file_region_entries(resv, *out_regions_needed)) 811 return -ENOMEM; 812 813 resv->adds_in_progress += *out_regions_needed; 814 815 spin_unlock(&resv->lock); 816 return chg; 817 } 818 819 /* 820 * Abort the in progress add operation. The adds_in_progress field 821 * of the resv_map keeps track of the operations in progress between 822 * calls to region_chg and region_add. Operations are sometimes 823 * aborted after the call to region_chg. In such cases, region_abort 824 * is called to decrement the adds_in_progress counter. regions_needed 825 * is the value returned by the region_chg call, it is used to decrement 826 * the adds_in_progress counter. 827 * 828 * NOTE: The range arguments [f, t) are not needed or used in this 829 * routine. They are kept to make reading the calling code easier as 830 * arguments will match the associated region_chg call. 831 */ 832 static void region_abort(struct resv_map *resv, long f, long t, 833 long regions_needed) 834 { 835 spin_lock(&resv->lock); 836 VM_BUG_ON(!resv->region_cache_count); 837 resv->adds_in_progress -= regions_needed; 838 spin_unlock(&resv->lock); 839 } 840 841 /* 842 * Delete the specified range [f, t) from the reserve map. If the 843 * t parameter is LONG_MAX, this indicates that ALL regions after f 844 * should be deleted. Locate the regions which intersect [f, t) 845 * and either trim, delete or split the existing regions. 846 * 847 * Returns the number of huge pages deleted from the reserve map. 848 * In the normal case, the return value is zero or more. In the 849 * case where a region must be split, a new region descriptor must 850 * be allocated. If the allocation fails, -ENOMEM will be returned. 851 * NOTE: If the parameter t == LONG_MAX, then we will never split 852 * a region and possibly return -ENOMEM. Callers specifying 853 * t == LONG_MAX do not need to check for -ENOMEM error. 854 */ 855 static long region_del(struct resv_map *resv, long f, long t) 856 { 857 struct list_head *head = &resv->regions; 858 struct file_region *rg, *trg; 859 struct file_region *nrg = NULL; 860 long del = 0; 861 862 retry: 863 spin_lock(&resv->lock); 864 list_for_each_entry_safe(rg, trg, head, link) { 865 /* 866 * Skip regions before the range to be deleted. file_region 867 * ranges are normally of the form [from, to). However, there 868 * may be a "placeholder" entry in the map which is of the form 869 * (from, to) with from == to. Check for placeholder entries 870 * at the beginning of the range to be deleted. 871 */ 872 if (rg->to <= f && (rg->to != rg->from || rg->to != f)) 873 continue; 874 875 if (rg->from >= t) 876 break; 877 878 if (f > rg->from && t < rg->to) { /* Must split region */ 879 /* 880 * Check for an entry in the cache before dropping 881 * lock and attempting allocation. 882 */ 883 if (!nrg && 884 resv->region_cache_count > resv->adds_in_progress) { 885 nrg = list_first_entry(&resv->region_cache, 886 struct file_region, 887 link); 888 list_del(&nrg->link); 889 resv->region_cache_count--; 890 } 891 892 if (!nrg) { 893 spin_unlock(&resv->lock); 894 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL); 895 if (!nrg) 896 return -ENOMEM; 897 goto retry; 898 } 899 900 del += t - f; 901 hugetlb_cgroup_uncharge_file_region( 902 resv, rg, t - f, false); 903 904 /* New entry for end of split region */ 905 nrg->from = t; 906 nrg->to = rg->to; 907 908 copy_hugetlb_cgroup_uncharge_info(nrg, rg); 909 910 INIT_LIST_HEAD(&nrg->link); 911 912 /* Original entry is trimmed */ 913 rg->to = f; 914 915 list_add(&nrg->link, &rg->link); 916 nrg = NULL; 917 break; 918 } 919 920 if (f <= rg->from && t >= rg->to) { /* Remove entire region */ 921 del += rg->to - rg->from; 922 hugetlb_cgroup_uncharge_file_region(resv, rg, 923 rg->to - rg->from, true); 924 list_del(&rg->link); 925 kfree(rg); 926 continue; 927 } 928 929 if (f <= rg->from) { /* Trim beginning of region */ 930 hugetlb_cgroup_uncharge_file_region(resv, rg, 931 t - rg->from, false); 932 933 del += t - rg->from; 934 rg->from = t; 935 } else { /* Trim end of region */ 936 hugetlb_cgroup_uncharge_file_region(resv, rg, 937 rg->to - f, false); 938 939 del += rg->to - f; 940 rg->to = f; 941 } 942 } 943 944 spin_unlock(&resv->lock); 945 kfree(nrg); 946 return del; 947 } 948 949 /* 950 * A rare out of memory error was encountered which prevented removal of 951 * the reserve map region for a page. The huge page itself was free'ed 952 * and removed from the page cache. This routine will adjust the subpool 953 * usage count, and the global reserve count if needed. By incrementing 954 * these counts, the reserve map entry which could not be deleted will 955 * appear as a "reserved" entry instead of simply dangling with incorrect 956 * counts. 957 */ 958 void hugetlb_fix_reserve_counts(struct inode *inode) 959 { 960 struct hugepage_subpool *spool = subpool_inode(inode); 961 long rsv_adjust; 962 bool reserved = false; 963 964 rsv_adjust = hugepage_subpool_get_pages(spool, 1); 965 if (rsv_adjust > 0) { 966 struct hstate *h = hstate_inode(inode); 967 968 if (!hugetlb_acct_memory(h, 1)) 969 reserved = true; 970 } else if (!rsv_adjust) { 971 reserved = true; 972 } 973 974 if (!reserved) 975 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n"); 976 } 977 978 /* 979 * Count and return the number of huge pages in the reserve map 980 * that intersect with the range [f, t). 981 */ 982 static long region_count(struct resv_map *resv, long f, long t) 983 { 984 struct list_head *head = &resv->regions; 985 struct file_region *rg; 986 long chg = 0; 987 988 spin_lock(&resv->lock); 989 /* Locate each segment we overlap with, and count that overlap. */ 990 list_for_each_entry(rg, head, link) { 991 long seg_from; 992 long seg_to; 993 994 if (rg->to <= f) 995 continue; 996 if (rg->from >= t) 997 break; 998 999 seg_from = max(rg->from, f); 1000 seg_to = min(rg->to, t); 1001 1002 chg += seg_to - seg_from; 1003 } 1004 spin_unlock(&resv->lock); 1005 1006 return chg; 1007 } 1008 1009 /* 1010 * Convert the address within this vma to the page offset within 1011 * the mapping, huge page units here. 1012 */ 1013 static pgoff_t vma_hugecache_offset(struct hstate *h, 1014 struct vm_area_struct *vma, unsigned long address) 1015 { 1016 return ((address - vma->vm_start) >> huge_page_shift(h)) + 1017 (vma->vm_pgoff >> huge_page_order(h)); 1018 } 1019 1020 /** 1021 * vma_kernel_pagesize - Page size granularity for this VMA. 1022 * @vma: The user mapping. 1023 * 1024 * Folios in this VMA will be aligned to, and at least the size of the 1025 * number of bytes returned by this function. 1026 * 1027 * Return: The default size of the folios allocated when backing a VMA. 1028 */ 1029 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma) 1030 { 1031 if (vma->vm_ops && vma->vm_ops->pagesize) 1032 return vma->vm_ops->pagesize(vma); 1033 return PAGE_SIZE; 1034 } 1035 EXPORT_SYMBOL_GPL(vma_kernel_pagesize); 1036 1037 /* 1038 * Return the page size being used by the MMU to back a VMA. In the majority 1039 * of cases, the page size used by the kernel matches the MMU size. On 1040 * architectures where it differs, an architecture-specific 'strong' 1041 * version of this symbol is required. 1042 */ 1043 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma) 1044 { 1045 return vma_kernel_pagesize(vma); 1046 } 1047 1048 /* 1049 * Flags for MAP_PRIVATE reservations. These are stored in the bottom 1050 * bits of the reservation map pointer, which are always clear due to 1051 * alignment. 1052 */ 1053 #define HPAGE_RESV_OWNER (1UL << 0) 1054 #define HPAGE_RESV_UNMAPPED (1UL << 1) 1055 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED) 1056 1057 /* 1058 * These helpers are used to track how many pages are reserved for 1059 * faults in a MAP_PRIVATE mapping. Only the process that called mmap() 1060 * is guaranteed to have their future faults succeed. 1061 * 1062 * With the exception of hugetlb_dup_vma_private() which is called at fork(), 1063 * the reserve counters are updated with the hugetlb_lock held. It is safe 1064 * to reset the VMA at fork() time as it is not in use yet and there is no 1065 * chance of the global counters getting corrupted as a result of the values. 1066 * 1067 * The private mapping reservation is represented in a subtly different 1068 * manner to a shared mapping. A shared mapping has a region map associated 1069 * with the underlying file, this region map represents the backing file 1070 * pages which have ever had a reservation assigned which this persists even 1071 * after the page is instantiated. A private mapping has a region map 1072 * associated with the original mmap which is attached to all VMAs which 1073 * reference it, this region map represents those offsets which have consumed 1074 * reservation ie. where pages have been instantiated. 1075 */ 1076 static unsigned long get_vma_private_data(struct vm_area_struct *vma) 1077 { 1078 return (unsigned long)vma->vm_private_data; 1079 } 1080 1081 static void set_vma_private_data(struct vm_area_struct *vma, 1082 unsigned long value) 1083 { 1084 vma->vm_private_data = (void *)value; 1085 } 1086 1087 static void 1088 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map, 1089 struct hugetlb_cgroup *h_cg, 1090 struct hstate *h) 1091 { 1092 #ifdef CONFIG_CGROUP_HUGETLB 1093 if (!h_cg || !h) { 1094 resv_map->reservation_counter = NULL; 1095 resv_map->pages_per_hpage = 0; 1096 resv_map->css = NULL; 1097 } else { 1098 resv_map->reservation_counter = 1099 &h_cg->rsvd_hugepage[hstate_index(h)]; 1100 resv_map->pages_per_hpage = pages_per_huge_page(h); 1101 resv_map->css = &h_cg->css; 1102 } 1103 #endif 1104 } 1105 1106 struct resv_map *resv_map_alloc(void) 1107 { 1108 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL); 1109 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL); 1110 1111 if (!resv_map || !rg) { 1112 kfree(resv_map); 1113 kfree(rg); 1114 return NULL; 1115 } 1116 1117 kref_init(&resv_map->refs); 1118 spin_lock_init(&resv_map->lock); 1119 INIT_LIST_HEAD(&resv_map->regions); 1120 init_rwsem(&resv_map->rw_sema); 1121 1122 resv_map->adds_in_progress = 0; 1123 /* 1124 * Initialize these to 0. On shared mappings, 0's here indicate these 1125 * fields don't do cgroup accounting. On private mappings, these will be 1126 * re-initialized to the proper values, to indicate that hugetlb cgroup 1127 * reservations are to be un-charged from here. 1128 */ 1129 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL); 1130 1131 INIT_LIST_HEAD(&resv_map->region_cache); 1132 list_add(&rg->link, &resv_map->region_cache); 1133 resv_map->region_cache_count = 1; 1134 1135 return resv_map; 1136 } 1137 1138 void resv_map_release(struct kref *ref) 1139 { 1140 struct resv_map *resv_map = container_of(ref, struct resv_map, refs); 1141 struct list_head *head = &resv_map->region_cache; 1142 struct file_region *rg, *trg; 1143 1144 /* Clear out any active regions before we release the map. */ 1145 region_del(resv_map, 0, LONG_MAX); 1146 1147 /* ... and any entries left in the cache */ 1148 list_for_each_entry_safe(rg, trg, head, link) { 1149 list_del(&rg->link); 1150 kfree(rg); 1151 } 1152 1153 VM_BUG_ON(resv_map->adds_in_progress); 1154 1155 kfree(resv_map); 1156 } 1157 1158 static inline struct resv_map *inode_resv_map(struct inode *inode) 1159 { 1160 /* 1161 * At inode evict time, i_mapping may not point to the original 1162 * address space within the inode. This original address space 1163 * contains the pointer to the resv_map. So, always use the 1164 * address space embedded within the inode. 1165 * The VERY common case is inode->mapping == &inode->i_data but, 1166 * this may not be true for device special inodes. 1167 */ 1168 return (struct resv_map *)(&inode->i_data)->i_private_data; 1169 } 1170 1171 static struct resv_map *vma_resv_map(struct vm_area_struct *vma) 1172 { 1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1174 if (vma->vm_flags & VM_MAYSHARE) { 1175 struct address_space *mapping = vma->vm_file->f_mapping; 1176 struct inode *inode = mapping->host; 1177 1178 return inode_resv_map(inode); 1179 1180 } else { 1181 return (struct resv_map *)(get_vma_private_data(vma) & 1182 ~HPAGE_RESV_MASK); 1183 } 1184 } 1185 1186 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags) 1187 { 1188 VM_WARN_ON_ONCE_VMA(!is_vm_hugetlb_page(vma), vma); 1189 VM_WARN_ON_ONCE_VMA(vma->vm_flags & VM_MAYSHARE, vma); 1190 1191 set_vma_private_data(vma, get_vma_private_data(vma) | flags); 1192 } 1193 1194 static void set_vma_desc_resv_map(struct vm_area_desc *desc, struct resv_map *map) 1195 { 1196 VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); 1197 VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE); 1198 1199 desc->private_data = map; 1200 } 1201 1202 static void set_vma_desc_resv_flags(struct vm_area_desc *desc, unsigned long flags) 1203 { 1204 VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); 1205 VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE); 1206 1207 desc->private_data = (void *)((unsigned long)desc->private_data | flags); 1208 } 1209 1210 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) 1211 { 1212 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1213 1214 return (get_vma_private_data(vma) & flag) != 0; 1215 } 1216 1217 static bool is_vma_desc_resv_set(struct vm_area_desc *desc, unsigned long flag) 1218 { 1219 VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags)); 1220 1221 return ((unsigned long)desc->private_data) & flag; 1222 } 1223 1224 bool __vma_private_lock(struct vm_area_struct *vma) 1225 { 1226 return !(vma->vm_flags & VM_MAYSHARE) && 1227 get_vma_private_data(vma) & ~HPAGE_RESV_MASK && 1228 is_vma_resv_set(vma, HPAGE_RESV_OWNER); 1229 } 1230 1231 void hugetlb_dup_vma_private(struct vm_area_struct *vma) 1232 { 1233 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma); 1234 /* 1235 * Clear vm_private_data 1236 * - For shared mappings this is a per-vma semaphore that may be 1237 * allocated in a subsequent call to hugetlb_vm_op_open. 1238 * Before clearing, make sure pointer is not associated with vma 1239 * as this will leak the structure. This is the case when called 1240 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already 1241 * been called to allocate a new structure. 1242 * - For MAP_PRIVATE mappings, this is the reserve map which does 1243 * not apply to children. Faults generated by the children are 1244 * not guaranteed to succeed, even if read-only. 1245 */ 1246 if (vma->vm_flags & VM_MAYSHARE) { 1247 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 1248 1249 if (vma_lock && vma_lock->vma != vma) 1250 vma->vm_private_data = NULL; 1251 } else { 1252 vma->vm_private_data = NULL; 1253 } 1254 } 1255 1256 /* 1257 * Reset and decrement one ref on hugepage private reservation. 1258 * Called with mm->mmap_lock writer semaphore held. 1259 * This function should be only used by mremap and operate on 1260 * same sized vma. It should never come here with last ref on the 1261 * reservation. 1262 */ 1263 void clear_vma_resv_huge_pages(struct vm_area_struct *vma) 1264 { 1265 /* 1266 * Clear the old hugetlb private page reservation. 1267 * It has already been transferred to new_vma. 1268 * 1269 * During a mremap() operation of a hugetlb vma we call move_vma() 1270 * which copies vma into new_vma and unmaps vma. After the copy 1271 * operation both new_vma and vma share a reference to the resv_map 1272 * struct, and at that point vma is about to be unmapped. We don't 1273 * want to return the reservation to the pool at unmap of vma because 1274 * the reservation still lives on in new_vma, so simply decrement the 1275 * ref here and remove the resv_map reference from this vma. 1276 */ 1277 struct resv_map *reservations = vma_resv_map(vma); 1278 1279 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 1280 resv_map_put_hugetlb_cgroup_uncharge_info(reservations); 1281 kref_put(&reservations->refs, resv_map_release); 1282 } 1283 1284 hugetlb_dup_vma_private(vma); 1285 } 1286 1287 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio) 1288 { 1289 int nid = folio_nid(folio); 1290 1291 lockdep_assert_held(&hugetlb_lock); 1292 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1293 1294 list_move(&folio->lru, &h->hugepage_freelists[nid]); 1295 h->free_huge_pages++; 1296 h->free_huge_pages_node[nid]++; 1297 folio_set_hugetlb_freed(folio); 1298 } 1299 1300 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h, 1301 int nid) 1302 { 1303 struct folio *folio; 1304 bool pin = !!(current->flags & PF_MEMALLOC_PIN); 1305 1306 lockdep_assert_held(&hugetlb_lock); 1307 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) { 1308 if (pin && !folio_is_longterm_pinnable(folio)) 1309 continue; 1310 1311 if (folio_test_hwpoison(folio)) 1312 continue; 1313 1314 if (is_migrate_isolate_page(&folio->page)) 1315 continue; 1316 1317 list_move(&folio->lru, &h->hugepage_activelist); 1318 folio_ref_unfreeze(folio, 1); 1319 folio_clear_hugetlb_freed(folio); 1320 h->free_huge_pages--; 1321 h->free_huge_pages_node[nid]--; 1322 return folio; 1323 } 1324 1325 return NULL; 1326 } 1327 1328 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask, 1329 int nid, nodemask_t *nmask) 1330 { 1331 unsigned int cpuset_mems_cookie; 1332 struct zonelist *zonelist; 1333 struct zone *zone; 1334 struct zoneref *z; 1335 int node = NUMA_NO_NODE; 1336 1337 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */ 1338 if (nid == NUMA_NO_NODE) 1339 nid = numa_node_id(); 1340 1341 zonelist = node_zonelist(nid, gfp_mask); 1342 1343 retry_cpuset: 1344 cpuset_mems_cookie = read_mems_allowed_begin(); 1345 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) { 1346 struct folio *folio; 1347 1348 if (!cpuset_zone_allowed(zone, gfp_mask)) 1349 continue; 1350 /* 1351 * no need to ask again on the same node. Pool is node rather than 1352 * zone aware 1353 */ 1354 if (zone_to_nid(zone) == node) 1355 continue; 1356 node = zone_to_nid(zone); 1357 1358 folio = dequeue_hugetlb_folio_node_exact(h, node); 1359 if (folio) 1360 return folio; 1361 } 1362 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie))) 1363 goto retry_cpuset; 1364 1365 return NULL; 1366 } 1367 1368 static unsigned long available_huge_pages(struct hstate *h) 1369 { 1370 return h->free_huge_pages - h->resv_huge_pages; 1371 } 1372 1373 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h, 1374 struct vm_area_struct *vma, 1375 unsigned long address, long gbl_chg) 1376 { 1377 struct folio *folio = NULL; 1378 struct mempolicy *mpol; 1379 gfp_t gfp_mask; 1380 nodemask_t *nodemask; 1381 int nid; 1382 1383 /* 1384 * gbl_chg==1 means the allocation requires a new page that was not 1385 * reserved before. Making sure there's at least one free page. 1386 */ 1387 if (gbl_chg && !available_huge_pages(h)) 1388 goto err; 1389 1390 gfp_mask = htlb_alloc_mask(h); 1391 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 1392 1393 if (mpol_is_preferred_many(mpol)) { 1394 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1395 nid, nodemask); 1396 1397 /* Fallback to all nodes if page==NULL */ 1398 nodemask = NULL; 1399 } 1400 1401 if (!folio) 1402 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 1403 nid, nodemask); 1404 1405 mpol_cond_put(mpol); 1406 return folio; 1407 1408 err: 1409 return NULL; 1410 } 1411 1412 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && defined(CONFIG_CONTIG_ALLOC) 1413 static struct folio *alloc_gigantic_frozen_folio(int order, gfp_t gfp_mask, 1414 int nid, nodemask_t *nodemask) 1415 { 1416 struct folio *folio; 1417 1418 folio = hugetlb_cma_alloc_frozen_folio(order, gfp_mask, nid, nodemask); 1419 if (folio) 1420 return folio; 1421 1422 if (hugetlb_cma_exclusive_alloc()) 1423 return NULL; 1424 1425 folio = (struct folio *)alloc_contig_frozen_pages(1 << order, gfp_mask, 1426 nid, nodemask); 1427 return folio; 1428 } 1429 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE || !CONFIG_CONTIG_ALLOC */ 1430 static struct folio *alloc_gigantic_frozen_folio(int order, gfp_t gfp_mask, int nid, 1431 nodemask_t *nodemask) 1432 { 1433 return NULL; 1434 } 1435 #endif 1436 1437 /* 1438 * Remove hugetlb folio from lists. 1439 * If vmemmap exists for the folio, clear the hugetlb flag so that the 1440 * folio appears as just a compound page. Otherwise, wait until after 1441 * allocating vmemmap to clear the flag. 1442 * 1443 * Must be called with hugetlb lock held. 1444 */ 1445 void remove_hugetlb_folio(struct hstate *h, struct folio *folio, 1446 bool adjust_surplus) 1447 { 1448 int nid = folio_nid(folio); 1449 1450 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio); 1451 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio); 1452 1453 lockdep_assert_held(&hugetlb_lock); 1454 if (hstate_is_gigantic_no_runtime(h)) 1455 return; 1456 1457 list_del(&folio->lru); 1458 1459 if (folio_test_hugetlb_freed(folio)) { 1460 folio_clear_hugetlb_freed(folio); 1461 h->free_huge_pages--; 1462 h->free_huge_pages_node[nid]--; 1463 } 1464 if (adjust_surplus) { 1465 h->surplus_huge_pages--; 1466 h->surplus_huge_pages_node[nid]--; 1467 } 1468 1469 /* 1470 * We can only clear the hugetlb flag after allocating vmemmap 1471 * pages. Otherwise, someone (memory error handling) may try to write 1472 * to tail struct pages. 1473 */ 1474 if (!folio_test_hugetlb_vmemmap_optimized(folio)) 1475 __folio_clear_hugetlb(folio); 1476 1477 h->nr_huge_pages--; 1478 h->nr_huge_pages_node[nid]--; 1479 } 1480 1481 void add_hugetlb_folio(struct hstate *h, struct folio *folio, 1482 bool adjust_surplus) 1483 { 1484 int nid = folio_nid(folio); 1485 1486 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio); 1487 1488 lockdep_assert_held(&hugetlb_lock); 1489 1490 INIT_LIST_HEAD(&folio->lru); 1491 h->nr_huge_pages++; 1492 h->nr_huge_pages_node[nid]++; 1493 1494 if (adjust_surplus) { 1495 h->surplus_huge_pages++; 1496 h->surplus_huge_pages_node[nid]++; 1497 } 1498 1499 __folio_set_hugetlb(folio); 1500 folio_change_private(folio, NULL); 1501 /* 1502 * We have to set hugetlb_vmemmap_optimized again as above 1503 * folio_change_private(folio, NULL) cleared it. 1504 */ 1505 folio_set_hugetlb_vmemmap_optimized(folio); 1506 1507 arch_clear_hugetlb_flags(folio); 1508 enqueue_hugetlb_folio(h, folio); 1509 } 1510 1511 static void __update_and_free_hugetlb_folio(struct hstate *h, 1512 struct folio *folio) 1513 { 1514 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio); 1515 1516 if (hstate_is_gigantic_no_runtime(h)) 1517 return; 1518 1519 /* 1520 * If we don't know which subpages are hwpoisoned, we can't free 1521 * the hugepage, so it's leaked intentionally. 1522 */ 1523 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1524 return; 1525 1526 /* 1527 * If folio is not vmemmap optimized (!clear_flag), then the folio 1528 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio 1529 * can only be passed hugetlb pages and will BUG otherwise. 1530 */ 1531 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) { 1532 spin_lock_irq(&hugetlb_lock); 1533 /* 1534 * If we cannot allocate vmemmap pages, just refuse to free the 1535 * page and put the page back on the hugetlb free list and treat 1536 * as a surplus page. 1537 */ 1538 add_hugetlb_folio(h, folio, true); 1539 spin_unlock_irq(&hugetlb_lock); 1540 return; 1541 } 1542 1543 /* 1544 * If vmemmap pages were allocated above, then we need to clear the 1545 * hugetlb flag under the hugetlb lock. 1546 */ 1547 if (folio_test_hugetlb(folio)) { 1548 spin_lock_irq(&hugetlb_lock); 1549 __folio_clear_hugetlb(folio); 1550 spin_unlock_irq(&hugetlb_lock); 1551 } 1552 1553 /* 1554 * Move PageHWPoison flag from head page to the raw error pages, 1555 * which makes any healthy subpages reusable. 1556 */ 1557 if (unlikely(folio_test_hwpoison(folio))) 1558 folio_clear_hugetlb_hwpoison(folio); 1559 1560 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1561 if (folio_test_hugetlb_cma(folio)) 1562 hugetlb_cma_free_frozen_folio(folio); 1563 else 1564 free_frozen_pages(&folio->page, folio_order(folio)); 1565 } 1566 1567 /* 1568 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot 1569 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the 1570 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate 1571 * the vmemmap pages. 1572 * 1573 * free_hpage_workfn() locklessly retrieves the linked list of pages to be 1574 * freed and frees them one-by-one. As the page->mapping pointer is going 1575 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node 1576 * structure of a lockless linked list of huge pages to be freed. 1577 */ 1578 static LLIST_HEAD(hpage_freelist); 1579 1580 static void free_hpage_workfn(struct work_struct *work) 1581 { 1582 struct llist_node *node; 1583 1584 node = llist_del_all(&hpage_freelist); 1585 1586 while (node) { 1587 struct folio *folio; 1588 struct hstate *h; 1589 1590 folio = container_of((struct address_space **)node, 1591 struct folio, mapping); 1592 node = node->next; 1593 folio->mapping = NULL; 1594 /* 1595 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in 1596 * folio_hstate() is going to trigger because a previous call to 1597 * remove_hugetlb_folio() will clear the hugetlb bit, so do 1598 * not use folio_hstate() directly. 1599 */ 1600 h = size_to_hstate(folio_size(folio)); 1601 1602 __update_and_free_hugetlb_folio(h, folio); 1603 1604 cond_resched(); 1605 } 1606 } 1607 static DECLARE_WORK(free_hpage_work, free_hpage_workfn); 1608 1609 static inline void flush_free_hpage_work(struct hstate *h) 1610 { 1611 if (hugetlb_vmemmap_optimizable(h)) 1612 flush_work(&free_hpage_work); 1613 } 1614 1615 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio, 1616 bool atomic) 1617 { 1618 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) { 1619 __update_and_free_hugetlb_folio(h, folio); 1620 return; 1621 } 1622 1623 /* 1624 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages. 1625 * 1626 * Only call schedule_work() if hpage_freelist is previously 1627 * empty. Otherwise, schedule_work() had been called but the workfn 1628 * hasn't retrieved the list yet. 1629 */ 1630 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist)) 1631 schedule_work(&free_hpage_work); 1632 } 1633 1634 static void bulk_vmemmap_restore_error(struct hstate *h, 1635 struct list_head *folio_list, 1636 struct list_head *non_hvo_folios) 1637 { 1638 struct folio *folio, *t_folio; 1639 1640 if (!list_empty(non_hvo_folios)) { 1641 /* 1642 * Free any restored hugetlb pages so that restore of the 1643 * entire list can be retried. 1644 * The idea is that in the common case of ENOMEM errors freeing 1645 * hugetlb pages with vmemmap we will free up memory so that we 1646 * can allocate vmemmap for more hugetlb pages. 1647 */ 1648 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) { 1649 list_del(&folio->lru); 1650 spin_lock_irq(&hugetlb_lock); 1651 __folio_clear_hugetlb(folio); 1652 spin_unlock_irq(&hugetlb_lock); 1653 update_and_free_hugetlb_folio(h, folio, false); 1654 cond_resched(); 1655 } 1656 } else { 1657 /* 1658 * In the case where there are no folios which can be 1659 * immediately freed, we loop through the list trying to restore 1660 * vmemmap individually in the hope that someone elsewhere may 1661 * have done something to cause success (such as freeing some 1662 * memory). If unable to restore a hugetlb page, the hugetlb 1663 * page is made a surplus page and removed from the list. 1664 * If are able to restore vmemmap and free one hugetlb page, we 1665 * quit processing the list to retry the bulk operation. 1666 */ 1667 list_for_each_entry_safe(folio, t_folio, folio_list, lru) 1668 if (hugetlb_vmemmap_restore_folio(h, folio)) { 1669 list_del(&folio->lru); 1670 spin_lock_irq(&hugetlb_lock); 1671 add_hugetlb_folio(h, folio, true); 1672 spin_unlock_irq(&hugetlb_lock); 1673 } else { 1674 list_del(&folio->lru); 1675 spin_lock_irq(&hugetlb_lock); 1676 __folio_clear_hugetlb(folio); 1677 spin_unlock_irq(&hugetlb_lock); 1678 update_and_free_hugetlb_folio(h, folio, false); 1679 cond_resched(); 1680 break; 1681 } 1682 } 1683 } 1684 1685 static void update_and_free_pages_bulk(struct hstate *h, 1686 struct list_head *folio_list) 1687 { 1688 long ret; 1689 struct folio *folio, *t_folio; 1690 LIST_HEAD(non_hvo_folios); 1691 1692 /* 1693 * First allocate required vmemmmap (if necessary) for all folios. 1694 * Carefully handle errors and free up any available hugetlb pages 1695 * in an effort to make forward progress. 1696 */ 1697 retry: 1698 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios); 1699 if (ret < 0) { 1700 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios); 1701 goto retry; 1702 } 1703 1704 /* 1705 * At this point, list should be empty, ret should be >= 0 and there 1706 * should only be pages on the non_hvo_folios list. 1707 * Do note that the non_hvo_folios list could be empty. 1708 * Without HVO enabled, ret will be 0 and there is no need to call 1709 * __folio_clear_hugetlb as this was done previously. 1710 */ 1711 VM_WARN_ON(!list_empty(folio_list)); 1712 VM_WARN_ON(ret < 0); 1713 if (!list_empty(&non_hvo_folios) && ret) { 1714 spin_lock_irq(&hugetlb_lock); 1715 list_for_each_entry(folio, &non_hvo_folios, lru) 1716 __folio_clear_hugetlb(folio); 1717 spin_unlock_irq(&hugetlb_lock); 1718 } 1719 1720 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) { 1721 update_and_free_hugetlb_folio(h, folio, false); 1722 cond_resched(); 1723 } 1724 } 1725 1726 struct hstate *size_to_hstate(unsigned long size) 1727 { 1728 struct hstate *h; 1729 1730 for_each_hstate(h) { 1731 if (huge_page_size(h) == size) 1732 return h; 1733 } 1734 return NULL; 1735 } 1736 1737 void free_huge_folio(struct folio *folio) 1738 { 1739 /* 1740 * Can't pass hstate in here because it is called from the 1741 * generic mm code. 1742 */ 1743 struct hstate *h = folio_hstate(folio); 1744 int nid = folio_nid(folio); 1745 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio); 1746 bool restore_reserve; 1747 unsigned long flags; 1748 1749 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 1750 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio); 1751 1752 hugetlb_set_folio_subpool(folio, NULL); 1753 if (folio_test_anon(folio)) 1754 __ClearPageAnonExclusive(&folio->page); 1755 folio->mapping = NULL; 1756 restore_reserve = folio_test_hugetlb_restore_reserve(folio); 1757 folio_clear_hugetlb_restore_reserve(folio); 1758 1759 /* 1760 * If HPageRestoreReserve was set on page, page allocation consumed a 1761 * reservation. If the page was associated with a subpool, there 1762 * would have been a page reserved in the subpool before allocation 1763 * via hugepage_subpool_get_pages(). Since we are 'restoring' the 1764 * reservation, do not call hugepage_subpool_put_pages() as this will 1765 * remove the reserved page from the subpool. 1766 */ 1767 if (!restore_reserve) { 1768 /* 1769 * A return code of zero implies that the subpool will be 1770 * under its minimum size if the reservation is not restored 1771 * after page is free. Therefore, force restore_reserve 1772 * operation. 1773 */ 1774 if (hugepage_subpool_put_pages(spool, 1) == 0) 1775 restore_reserve = true; 1776 } 1777 1778 spin_lock_irqsave(&hugetlb_lock, flags); 1779 folio_clear_hugetlb_migratable(folio); 1780 hugetlb_cgroup_uncharge_folio(hstate_index(h), 1781 pages_per_huge_page(h), folio); 1782 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h), 1783 pages_per_huge_page(h), folio); 1784 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h)); 1785 mem_cgroup_uncharge(folio); 1786 if (restore_reserve) 1787 h->resv_huge_pages++; 1788 1789 if (folio_test_hugetlb_temporary(folio)) { 1790 remove_hugetlb_folio(h, folio, false); 1791 spin_unlock_irqrestore(&hugetlb_lock, flags); 1792 update_and_free_hugetlb_folio(h, folio, true); 1793 } else if (h->surplus_huge_pages_node[nid]) { 1794 /* remove the page from active list */ 1795 remove_hugetlb_folio(h, folio, true); 1796 spin_unlock_irqrestore(&hugetlb_lock, flags); 1797 update_and_free_hugetlb_folio(h, folio, true); 1798 } else { 1799 arch_clear_hugetlb_flags(folio); 1800 enqueue_hugetlb_folio(h, folio); 1801 spin_unlock_irqrestore(&hugetlb_lock, flags); 1802 } 1803 } 1804 1805 /* 1806 * Must be called with the hugetlb lock held 1807 */ 1808 static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio) 1809 { 1810 lockdep_assert_held(&hugetlb_lock); 1811 h->nr_huge_pages++; 1812 h->nr_huge_pages_node[folio_nid(folio)]++; 1813 } 1814 1815 void init_new_hugetlb_folio(struct folio *folio) 1816 { 1817 __folio_set_hugetlb(folio); 1818 INIT_LIST_HEAD(&folio->lru); 1819 hugetlb_set_folio_subpool(folio, NULL); 1820 set_hugetlb_cgroup(folio, NULL); 1821 set_hugetlb_cgroup_rsvd(folio, NULL); 1822 } 1823 1824 /* 1825 * Find and lock address space (mapping) in write mode. 1826 * 1827 * Upon entry, the folio is locked which means that folio_mapping() is 1828 * stable. Due to locking order, we can only trylock_write. If we can 1829 * not get the lock, simply return NULL to caller. 1830 */ 1831 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio) 1832 { 1833 struct address_space *mapping = folio_mapping(folio); 1834 1835 if (!mapping) 1836 return mapping; 1837 1838 if (i_mmap_trylock_write(mapping)) 1839 return mapping; 1840 1841 return NULL; 1842 } 1843 1844 static struct folio *alloc_buddy_frozen_folio(int order, gfp_t gfp_mask, 1845 int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry) 1846 { 1847 struct folio *folio; 1848 bool alloc_try_hard = true; 1849 1850 /* 1851 * By default we always try hard to allocate the folio with 1852 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in 1853 * a loop (to adjust global huge page counts) and previous allocation 1854 * failed, do not continue to try hard on the same node. Use the 1855 * node_alloc_noretry bitmap to manage this state information. 1856 */ 1857 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry)) 1858 alloc_try_hard = false; 1859 if (alloc_try_hard) 1860 gfp_mask |= __GFP_RETRY_MAYFAIL; 1861 1862 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask); 1863 1864 /* 1865 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a 1866 * folio this indicates an overall state change. Clear bit so 1867 * that we resume normal 'try hard' allocations. 1868 */ 1869 if (node_alloc_noretry && folio && !alloc_try_hard) 1870 node_clear(nid, *node_alloc_noretry); 1871 1872 /* 1873 * If we tried hard to get a folio but failed, set bit so that 1874 * subsequent attempts will not try as hard until there is an 1875 * overall state change. 1876 */ 1877 if (node_alloc_noretry && !folio && alloc_try_hard) 1878 node_set(nid, *node_alloc_noretry); 1879 1880 if (!folio) { 1881 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); 1882 return NULL; 1883 } 1884 1885 __count_vm_event(HTLB_BUDDY_PGALLOC); 1886 return folio; 1887 } 1888 1889 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h, 1890 gfp_t gfp_mask, int nid, nodemask_t *nmask, 1891 nodemask_t *node_alloc_noretry) 1892 { 1893 struct folio *folio; 1894 int order = huge_page_order(h); 1895 1896 if (nid == NUMA_NO_NODE) 1897 nid = numa_mem_id(); 1898 1899 if (order_is_gigantic(order)) 1900 folio = alloc_gigantic_frozen_folio(order, gfp_mask, nid, nmask); 1901 else 1902 folio = alloc_buddy_frozen_folio(order, gfp_mask, nid, nmask, 1903 node_alloc_noretry); 1904 if (folio) 1905 init_new_hugetlb_folio(folio); 1906 return folio; 1907 } 1908 1909 /* 1910 * Common helper to allocate a fresh hugetlb folio. All specific allocators 1911 * should use this function to get new hugetlb folio 1912 * 1913 * Note that returned folio is 'frozen': ref count of head page and all tail 1914 * pages is zero, and the accounting must be done in the caller. 1915 */ 1916 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h, 1917 gfp_t gfp_mask, int nid, nodemask_t *nmask) 1918 { 1919 struct folio *folio; 1920 1921 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL); 1922 if (folio) 1923 hugetlb_vmemmap_optimize_folio(h, folio); 1924 return folio; 1925 } 1926 1927 void prep_and_add_allocated_folios(struct hstate *h, 1928 struct list_head *folio_list) 1929 { 1930 unsigned long flags; 1931 struct folio *folio, *tmp_f; 1932 1933 /* Send list for bulk vmemmap optimization processing */ 1934 hugetlb_vmemmap_optimize_folios(h, folio_list); 1935 1936 /* Add all new pool pages to free lists in one lock cycle */ 1937 spin_lock_irqsave(&hugetlb_lock, flags); 1938 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 1939 account_new_hugetlb_folio(h, folio); 1940 enqueue_hugetlb_folio(h, folio); 1941 } 1942 spin_unlock_irqrestore(&hugetlb_lock, flags); 1943 } 1944 1945 /* 1946 * Allocates a fresh hugetlb page in a node interleaved manner. The page 1947 * will later be added to the appropriate hugetlb pool. 1948 */ 1949 static struct folio *alloc_pool_huge_folio(struct hstate *h, 1950 nodemask_t *nodes_allowed, 1951 nodemask_t *node_alloc_noretry, 1952 int *next_node) 1953 { 1954 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 1955 int nr_nodes, node; 1956 1957 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) { 1958 struct folio *folio; 1959 1960 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node, 1961 nodes_allowed, node_alloc_noretry); 1962 if (folio) 1963 return folio; 1964 } 1965 1966 return NULL; 1967 } 1968 1969 /* 1970 * Remove huge page from pool from next node to free. Attempt to keep 1971 * persistent huge pages more or less balanced over allowed nodes. 1972 * This routine only 'removes' the hugetlb page. The caller must make 1973 * an additional call to free the page to low level allocators. 1974 * Called with hugetlb_lock locked. 1975 */ 1976 static struct folio *remove_pool_hugetlb_folio(struct hstate *h, 1977 nodemask_t *nodes_allowed, bool acct_surplus) 1978 { 1979 int nr_nodes, node; 1980 struct folio *folio = NULL; 1981 1982 lockdep_assert_held(&hugetlb_lock); 1983 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 1984 /* 1985 * If we're returning unused surplus pages, only examine 1986 * nodes with surplus pages. 1987 */ 1988 if ((!acct_surplus || h->surplus_huge_pages_node[node]) && 1989 !list_empty(&h->hugepage_freelists[node])) { 1990 folio = list_entry(h->hugepage_freelists[node].next, 1991 struct folio, lru); 1992 remove_hugetlb_folio(h, folio, acct_surplus); 1993 break; 1994 } 1995 } 1996 1997 return folio; 1998 } 1999 2000 /* 2001 * Dissolve a given free hugetlb folio into free buddy pages. This function 2002 * does nothing for in-use hugetlb folios and non-hugetlb folios. 2003 * This function returns values like below: 2004 * 2005 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages 2006 * when the system is under memory pressure and the feature of 2007 * freeing unused vmemmap pages associated with each hugetlb page 2008 * is enabled. 2009 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use 2010 * (allocated or reserved.) 2011 * 0: successfully dissolved free hugepages or the page is not a 2012 * hugepage (considered as already dissolved) 2013 */ 2014 int dissolve_free_hugetlb_folio(struct folio *folio) 2015 { 2016 int rc = -EBUSY; 2017 2018 retry: 2019 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2020 if (!folio_test_hugetlb(folio)) 2021 return 0; 2022 2023 spin_lock_irq(&hugetlb_lock); 2024 if (!folio_test_hugetlb(folio)) { 2025 rc = 0; 2026 goto out; 2027 } 2028 2029 if (!folio_ref_count(folio)) { 2030 struct hstate *h = folio_hstate(folio); 2031 bool adjust_surplus = false; 2032 2033 if (!available_huge_pages(h)) 2034 goto out; 2035 2036 /* 2037 * We should make sure that the page is already on the free list 2038 * when it is dissolved. 2039 */ 2040 if (unlikely(!folio_test_hugetlb_freed(folio))) { 2041 spin_unlock_irq(&hugetlb_lock); 2042 cond_resched(); 2043 2044 /* 2045 * Theoretically, we should return -EBUSY when we 2046 * encounter this race. In fact, we have a chance 2047 * to successfully dissolve the page if we do a 2048 * retry. Because the race window is quite small. 2049 * If we seize this opportunity, it is an optimization 2050 * for increasing the success rate of dissolving page. 2051 */ 2052 goto retry; 2053 } 2054 2055 if (h->surplus_huge_pages_node[folio_nid(folio)]) 2056 adjust_surplus = true; 2057 remove_hugetlb_folio(h, folio, adjust_surplus); 2058 h->max_huge_pages--; 2059 spin_unlock_irq(&hugetlb_lock); 2060 2061 /* 2062 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap 2063 * before freeing the page. update_and_free_hugtlb_folio will fail to 2064 * free the page if it can not allocate required vmemmap. We 2065 * need to adjust max_huge_pages if the page is not freed. 2066 * Attempt to allocate vmemmmap here so that we can take 2067 * appropriate action on failure. 2068 * 2069 * The folio_test_hugetlb check here is because 2070 * remove_hugetlb_folio will clear hugetlb folio flag for 2071 * non-vmemmap optimized hugetlb folios. 2072 */ 2073 if (folio_test_hugetlb(folio)) { 2074 rc = hugetlb_vmemmap_restore_folio(h, folio); 2075 if (rc) { 2076 spin_lock_irq(&hugetlb_lock); 2077 add_hugetlb_folio(h, folio, adjust_surplus); 2078 h->max_huge_pages++; 2079 goto out; 2080 } 2081 } else { 2082 rc = 0; 2083 } 2084 2085 update_and_free_hugetlb_folio(h, folio, false); 2086 return rc; 2087 } 2088 out: 2089 spin_unlock_irq(&hugetlb_lock); 2090 return rc; 2091 } 2092 2093 /* 2094 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to 2095 * make specified memory blocks removable from the system. 2096 * Note that this will dissolve a free gigantic hugepage completely, if any 2097 * part of it lies within the given range. 2098 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all 2099 * free hugetlb folios that were dissolved before that error are lost. 2100 */ 2101 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn) 2102 { 2103 unsigned long pfn; 2104 struct folio *folio; 2105 int rc = 0; 2106 unsigned int order; 2107 struct hstate *h; 2108 2109 if (!hugepages_supported()) 2110 return rc; 2111 2112 order = huge_page_order(&default_hstate); 2113 for_each_hstate(h) 2114 order = min(order, huge_page_order(h)); 2115 2116 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) { 2117 folio = pfn_folio(pfn); 2118 rc = dissolve_free_hugetlb_folio(folio); 2119 if (rc) 2120 break; 2121 } 2122 2123 return rc; 2124 } 2125 2126 /* 2127 * Allocates a fresh surplus page from the page allocator. 2128 */ 2129 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h, 2130 gfp_t gfp_mask, int nid, nodemask_t *nmask) 2131 { 2132 struct folio *folio = NULL; 2133 2134 if (hstate_is_gigantic_no_runtime(h)) 2135 return NULL; 2136 2137 spin_lock_irq(&hugetlb_lock); 2138 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) 2139 goto out_unlock; 2140 spin_unlock_irq(&hugetlb_lock); 2141 2142 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2143 if (!folio) 2144 return NULL; 2145 2146 spin_lock_irq(&hugetlb_lock); 2147 /* 2148 * nr_huge_pages needs to be adjusted within the same lock cycle 2149 * as surplus_pages, otherwise it might confuse 2150 * persistent_huge_pages() momentarily. 2151 */ 2152 account_new_hugetlb_folio(h, folio); 2153 2154 /* 2155 * We could have raced with the pool size change. 2156 * Double check that and simply deallocate the new page 2157 * if we would end up overcommiting the surpluses. Abuse 2158 * temporary page to workaround the nasty free_huge_folio 2159 * codeflow 2160 */ 2161 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) { 2162 folio_set_hugetlb_temporary(folio); 2163 spin_unlock_irq(&hugetlb_lock); 2164 free_huge_folio(folio); 2165 return NULL; 2166 } 2167 2168 h->surplus_huge_pages++; 2169 h->surplus_huge_pages_node[folio_nid(folio)]++; 2170 2171 out_unlock: 2172 spin_unlock_irq(&hugetlb_lock); 2173 2174 return folio; 2175 } 2176 2177 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask, 2178 int nid, nodemask_t *nmask) 2179 { 2180 struct folio *folio; 2181 2182 if (hstate_is_gigantic(h)) 2183 return NULL; 2184 2185 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask); 2186 if (!folio) 2187 return NULL; 2188 2189 spin_lock_irq(&hugetlb_lock); 2190 account_new_hugetlb_folio(h, folio); 2191 spin_unlock_irq(&hugetlb_lock); 2192 2193 /* fresh huge pages are frozen */ 2194 folio_ref_unfreeze(folio, 1); 2195 /* 2196 * We do not account these pages as surplus because they are only 2197 * temporary and will be released properly on the last reference 2198 */ 2199 folio_set_hugetlb_temporary(folio); 2200 2201 return folio; 2202 } 2203 2204 /* 2205 * Use the VMA's mpolicy to allocate a huge page from the buddy. 2206 */ 2207 static 2208 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h, 2209 struct vm_area_struct *vma, unsigned long addr) 2210 { 2211 struct folio *folio = NULL; 2212 struct mempolicy *mpol; 2213 gfp_t gfp_mask = htlb_alloc_mask(h); 2214 int nid; 2215 nodemask_t *nodemask; 2216 2217 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask); 2218 if (mpol_is_preferred_many(mpol)) { 2219 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL); 2220 2221 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask); 2222 2223 /* Fallback to all nodes if page==NULL */ 2224 nodemask = NULL; 2225 } 2226 2227 if (!folio) 2228 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask); 2229 mpol_cond_put(mpol); 2230 return folio; 2231 } 2232 2233 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid, 2234 nodemask_t *nmask, gfp_t gfp_mask) 2235 { 2236 struct folio *folio; 2237 2238 spin_lock_irq(&hugetlb_lock); 2239 if (!h->resv_huge_pages) { 2240 spin_unlock_irq(&hugetlb_lock); 2241 return NULL; 2242 } 2243 2244 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid, 2245 nmask); 2246 if (folio) 2247 h->resv_huge_pages--; 2248 2249 spin_unlock_irq(&hugetlb_lock); 2250 return folio; 2251 } 2252 2253 /* folio migration callback function */ 2254 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid, 2255 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback) 2256 { 2257 spin_lock_irq(&hugetlb_lock); 2258 if (available_huge_pages(h)) { 2259 struct folio *folio; 2260 2261 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, 2262 preferred_nid, nmask); 2263 if (folio) { 2264 spin_unlock_irq(&hugetlb_lock); 2265 return folio; 2266 } 2267 } 2268 spin_unlock_irq(&hugetlb_lock); 2269 2270 /* We cannot fallback to other nodes, as we could break the per-node pool. */ 2271 if (!allow_alloc_fallback) 2272 gfp_mask |= __GFP_THISNODE; 2273 2274 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask); 2275 } 2276 2277 static nodemask_t *policy_mbind_nodemask(gfp_t gfp) 2278 { 2279 #ifdef CONFIG_NUMA 2280 struct mempolicy *mpol = get_task_policy(current); 2281 2282 /* 2283 * Only enforce MPOL_BIND policy which overlaps with cpuset policy 2284 * (from policy_nodemask) specifically for hugetlb case 2285 */ 2286 if (mpol->mode == MPOL_BIND && 2287 (apply_policy_zone(mpol, gfp_zone(gfp)) && 2288 cpuset_nodemask_valid_mems_allowed(&mpol->nodes))) 2289 return &mpol->nodes; 2290 #endif 2291 return NULL; 2292 } 2293 2294 /* 2295 * Increase the hugetlb pool such that it can accommodate a reservation 2296 * of size 'delta'. 2297 */ 2298 static int gather_surplus_pages(struct hstate *h, long delta) 2299 __must_hold(&hugetlb_lock) 2300 { 2301 LIST_HEAD(surplus_list); 2302 struct folio *folio, *tmp; 2303 int ret; 2304 long i; 2305 long needed, allocated; 2306 bool alloc_ok = true; 2307 nodemask_t *mbind_nodemask, alloc_nodemask; 2308 2309 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h)); 2310 if (mbind_nodemask) 2311 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed); 2312 else 2313 alloc_nodemask = cpuset_current_mems_allowed; 2314 2315 lockdep_assert_held(&hugetlb_lock); 2316 needed = (h->resv_huge_pages + delta) - h->free_huge_pages; 2317 if (needed <= 0) { 2318 h->resv_huge_pages += delta; 2319 return 0; 2320 } 2321 2322 allocated = 0; 2323 2324 ret = -ENOMEM; 2325 retry: 2326 spin_unlock_irq(&hugetlb_lock); 2327 for (i = 0; i < needed; i++) { 2328 folio = NULL; 2329 2330 /* 2331 * It is okay to use NUMA_NO_NODE because we use numa_mem_id() 2332 * down the road to pick the current node if that is the case. 2333 */ 2334 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h), 2335 NUMA_NO_NODE, &alloc_nodemask); 2336 if (!folio) { 2337 alloc_ok = false; 2338 break; 2339 } 2340 list_add(&folio->lru, &surplus_list); 2341 cond_resched(); 2342 } 2343 allocated += i; 2344 2345 /* 2346 * After retaking hugetlb_lock, we need to recalculate 'needed' 2347 * because either resv_huge_pages or free_huge_pages may have changed. 2348 */ 2349 spin_lock_irq(&hugetlb_lock); 2350 needed = (h->resv_huge_pages + delta) - 2351 (h->free_huge_pages + allocated); 2352 if (needed > 0) { 2353 if (alloc_ok) 2354 goto retry; 2355 /* 2356 * We were not able to allocate enough pages to 2357 * satisfy the entire reservation so we free what 2358 * we've allocated so far. 2359 */ 2360 goto free; 2361 } 2362 /* 2363 * The surplus_list now contains _at_least_ the number of extra pages 2364 * needed to accommodate the reservation. Add the appropriate number 2365 * of pages to the hugetlb pool and free the extras back to the buddy 2366 * allocator. Commit the entire reservation here to prevent another 2367 * process from stealing the pages as they are added to the pool but 2368 * before they are reserved. 2369 */ 2370 needed += allocated; 2371 h->resv_huge_pages += delta; 2372 ret = 0; 2373 2374 /* Free the needed pages to the hugetlb pool */ 2375 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) { 2376 if ((--needed) < 0) 2377 break; 2378 /* Add the page to the hugetlb allocator */ 2379 enqueue_hugetlb_folio(h, folio); 2380 } 2381 free: 2382 spin_unlock_irq(&hugetlb_lock); 2383 2384 /* 2385 * Free unnecessary surplus pages to the buddy allocator. 2386 * Pages have no ref count, call free_huge_folio directly. 2387 */ 2388 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) 2389 free_huge_folio(folio); 2390 spin_lock_irq(&hugetlb_lock); 2391 2392 return ret; 2393 } 2394 2395 /* 2396 * This routine has two main purposes: 2397 * 1) Decrement the reservation count (resv_huge_pages) by the value passed 2398 * in unused_resv_pages. This corresponds to the prior adjustments made 2399 * to the associated reservation map. 2400 * 2) Free any unused surplus pages that may have been allocated to satisfy 2401 * the reservation. As many as unused_resv_pages may be freed. 2402 */ 2403 static void return_unused_surplus_pages(struct hstate *h, 2404 unsigned long unused_resv_pages) 2405 { 2406 unsigned long nr_pages; 2407 LIST_HEAD(page_list); 2408 2409 lockdep_assert_held(&hugetlb_lock); 2410 /* Uncommit the reservation */ 2411 h->resv_huge_pages -= unused_resv_pages; 2412 2413 if (hstate_is_gigantic_no_runtime(h)) 2414 goto out; 2415 2416 /* 2417 * Part (or even all) of the reservation could have been backed 2418 * by pre-allocated pages. Only free surplus pages. 2419 */ 2420 nr_pages = min(unused_resv_pages, h->surplus_huge_pages); 2421 2422 /* 2423 * We want to release as many surplus pages as possible, spread 2424 * evenly across all nodes with memory. Iterate across these nodes 2425 * until we can no longer free unreserved surplus pages. This occurs 2426 * when the nodes with surplus pages have no free pages. 2427 * remove_pool_hugetlb_folio() will balance the freed pages across the 2428 * on-line nodes with memory and will handle the hstate accounting. 2429 */ 2430 while (nr_pages--) { 2431 struct folio *folio; 2432 2433 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1); 2434 if (!folio) 2435 goto out; 2436 2437 list_add(&folio->lru, &page_list); 2438 } 2439 2440 out: 2441 spin_unlock_irq(&hugetlb_lock); 2442 update_and_free_pages_bulk(h, &page_list); 2443 spin_lock_irq(&hugetlb_lock); 2444 } 2445 2446 2447 /* 2448 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation 2449 * are used by the huge page allocation routines to manage reservations. 2450 * 2451 * vma_needs_reservation is called to determine if the huge page at addr 2452 * within the vma has an associated reservation. If a reservation is 2453 * needed, the value 1 is returned. The caller is then responsible for 2454 * managing the global reservation and subpool usage counts. After 2455 * the huge page has been allocated, vma_commit_reservation is called 2456 * to add the page to the reservation map. If the page allocation fails, 2457 * the reservation must be ended instead of committed. vma_end_reservation 2458 * is called in such cases. 2459 * 2460 * In the normal case, vma_commit_reservation returns the same value 2461 * as the preceding vma_needs_reservation call. The only time this 2462 * is not the case is if a reserve map was changed between calls. It 2463 * is the responsibility of the caller to notice the difference and 2464 * take appropriate action. 2465 * 2466 * vma_add_reservation is used in error paths where a reservation must 2467 * be restored when a newly allocated huge page must be freed. It is 2468 * to be called after calling vma_needs_reservation to determine if a 2469 * reservation exists. 2470 * 2471 * vma_del_reservation is used in error paths where an entry in the reserve 2472 * map was created during huge page allocation and must be removed. It is to 2473 * be called after calling vma_needs_reservation to determine if a reservation 2474 * exists. 2475 */ 2476 enum vma_resv_mode { 2477 VMA_NEEDS_RESV, 2478 VMA_COMMIT_RESV, 2479 VMA_END_RESV, 2480 VMA_ADD_RESV, 2481 VMA_DEL_RESV, 2482 }; 2483 static long __vma_reservation_common(struct hstate *h, 2484 struct vm_area_struct *vma, unsigned long addr, 2485 enum vma_resv_mode mode) 2486 { 2487 struct resv_map *resv; 2488 pgoff_t idx; 2489 long ret; 2490 long dummy_out_regions_needed; 2491 2492 resv = vma_resv_map(vma); 2493 if (!resv) 2494 return 1; 2495 2496 idx = vma_hugecache_offset(h, vma, addr); 2497 switch (mode) { 2498 case VMA_NEEDS_RESV: 2499 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed); 2500 /* We assume that vma_reservation_* routines always operate on 2501 * 1 page, and that adding to resv map a 1 page entry can only 2502 * ever require 1 region. 2503 */ 2504 VM_BUG_ON(dummy_out_regions_needed != 1); 2505 break; 2506 case VMA_COMMIT_RESV: 2507 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2508 /* region_add calls of range 1 should never fail. */ 2509 VM_BUG_ON(ret < 0); 2510 break; 2511 case VMA_END_RESV: 2512 region_abort(resv, idx, idx + 1, 1); 2513 ret = 0; 2514 break; 2515 case VMA_ADD_RESV: 2516 if (vma->vm_flags & VM_MAYSHARE) { 2517 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2518 /* region_add calls of range 1 should never fail. */ 2519 VM_BUG_ON(ret < 0); 2520 } else { 2521 region_abort(resv, idx, idx + 1, 1); 2522 ret = region_del(resv, idx, idx + 1); 2523 } 2524 break; 2525 case VMA_DEL_RESV: 2526 if (vma->vm_flags & VM_MAYSHARE) { 2527 region_abort(resv, idx, idx + 1, 1); 2528 ret = region_del(resv, idx, idx + 1); 2529 } else { 2530 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL); 2531 /* region_add calls of range 1 should never fail. */ 2532 VM_BUG_ON(ret < 0); 2533 } 2534 break; 2535 default: 2536 BUG(); 2537 } 2538 2539 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV) 2540 return ret; 2541 /* 2542 * We know private mapping must have HPAGE_RESV_OWNER set. 2543 * 2544 * In most cases, reserves always exist for private mappings. 2545 * However, a file associated with mapping could have been 2546 * hole punched or truncated after reserves were consumed. 2547 * As subsequent fault on such a range will not use reserves. 2548 * Subtle - The reserve map for private mappings has the 2549 * opposite meaning than that of shared mappings. If NO 2550 * entry is in the reserve map, it means a reservation exists. 2551 * If an entry exists in the reserve map, it means the 2552 * reservation has already been consumed. As a result, the 2553 * return value of this routine is the opposite of the 2554 * value returned from reserve map manipulation routines above. 2555 */ 2556 if (ret > 0) 2557 return 0; 2558 if (ret == 0) 2559 return 1; 2560 return ret; 2561 } 2562 2563 static long vma_needs_reservation(struct hstate *h, 2564 struct vm_area_struct *vma, unsigned long addr) 2565 { 2566 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV); 2567 } 2568 2569 static long vma_commit_reservation(struct hstate *h, 2570 struct vm_area_struct *vma, unsigned long addr) 2571 { 2572 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV); 2573 } 2574 2575 static void vma_end_reservation(struct hstate *h, 2576 struct vm_area_struct *vma, unsigned long addr) 2577 { 2578 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV); 2579 } 2580 2581 static long vma_add_reservation(struct hstate *h, 2582 struct vm_area_struct *vma, unsigned long addr) 2583 { 2584 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV); 2585 } 2586 2587 static long vma_del_reservation(struct hstate *h, 2588 struct vm_area_struct *vma, unsigned long addr) 2589 { 2590 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV); 2591 } 2592 2593 /* 2594 * This routine is called to restore reservation information on error paths. 2595 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(), 2596 * and the hugetlb mutex should remain held when calling this routine. 2597 * 2598 * It handles two specific cases: 2599 * 1) A reservation was in place and the folio consumed the reservation. 2600 * hugetlb_restore_reserve is set in the folio. 2601 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is 2602 * not set. However, alloc_hugetlb_folio always updates the reserve map. 2603 * 2604 * In case 1, free_huge_folio later in the error path will increment the 2605 * global reserve count. But, free_huge_folio does not have enough context 2606 * to adjust the reservation map. This case deals primarily with private 2607 * mappings. Adjust the reserve map here to be consistent with global 2608 * reserve count adjustments to be made by free_huge_folio. Make sure the 2609 * reserve map indicates there is a reservation present. 2610 * 2611 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio. 2612 */ 2613 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma, 2614 unsigned long address, struct folio *folio) 2615 { 2616 long rc = vma_needs_reservation(h, vma, address); 2617 2618 if (folio_test_hugetlb_restore_reserve(folio)) { 2619 if (unlikely(rc < 0)) 2620 /* 2621 * Rare out of memory condition in reserve map 2622 * manipulation. Clear hugetlb_restore_reserve so 2623 * that global reserve count will not be incremented 2624 * by free_huge_folio. This will make it appear 2625 * as though the reservation for this folio was 2626 * consumed. This may prevent the task from 2627 * faulting in the folio at a later time. This 2628 * is better than inconsistent global huge page 2629 * accounting of reserve counts. 2630 */ 2631 folio_clear_hugetlb_restore_reserve(folio); 2632 else if (rc) 2633 (void)vma_add_reservation(h, vma, address); 2634 else 2635 vma_end_reservation(h, vma, address); 2636 } else { 2637 if (!rc) { 2638 /* 2639 * This indicates there is an entry in the reserve map 2640 * not added by alloc_hugetlb_folio. We know it was added 2641 * before the alloc_hugetlb_folio call, otherwise 2642 * hugetlb_restore_reserve would be set on the folio. 2643 * Remove the entry so that a subsequent allocation 2644 * does not consume a reservation. 2645 */ 2646 rc = vma_del_reservation(h, vma, address); 2647 if (rc < 0) 2648 /* 2649 * VERY rare out of memory condition. Since 2650 * we can not delete the entry, set 2651 * hugetlb_restore_reserve so that the reserve 2652 * count will be incremented when the folio 2653 * is freed. This reserve will be consumed 2654 * on a subsequent allocation. 2655 */ 2656 folio_set_hugetlb_restore_reserve(folio); 2657 } else if (rc < 0) { 2658 /* 2659 * Rare out of memory condition from 2660 * vma_needs_reservation call. Memory allocation is 2661 * only attempted if a new entry is needed. Therefore, 2662 * this implies there is not an entry in the 2663 * reserve map. 2664 * 2665 * For shared mappings, no entry in the map indicates 2666 * no reservation. We are done. 2667 */ 2668 if (!(vma->vm_flags & VM_MAYSHARE)) 2669 /* 2670 * For private mappings, no entry indicates 2671 * a reservation is present. Since we can 2672 * not add an entry, set hugetlb_restore_reserve 2673 * on the folio so reserve count will be 2674 * incremented when freed. This reserve will 2675 * be consumed on a subsequent allocation. 2676 */ 2677 folio_set_hugetlb_restore_reserve(folio); 2678 } else { 2679 /* 2680 * No reservation present, do nothing 2681 */ 2682 vma_end_reservation(h, vma, address); 2683 } 2684 } 2685 } 2686 2687 /* 2688 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve 2689 * the old one 2690 * @old_folio: Old folio to dissolve 2691 * @list: List to isolate the page in case we need to 2692 * Returns 0 on success, otherwise negated error. 2693 */ 2694 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio, 2695 struct list_head *list) 2696 { 2697 gfp_t gfp_mask; 2698 struct hstate *h; 2699 int nid = folio_nid(old_folio); 2700 struct folio *new_folio = NULL; 2701 int ret = 0; 2702 2703 retry: 2704 /* 2705 * The old_folio might have been dissolved from under our feet, so make sure 2706 * to carefully check the state under the lock. 2707 */ 2708 spin_lock_irq(&hugetlb_lock); 2709 if (!folio_test_hugetlb(old_folio)) { 2710 /* 2711 * Freed from under us. Drop new_folio too. 2712 */ 2713 goto free_new; 2714 } else if (folio_ref_count(old_folio)) { 2715 bool isolated; 2716 2717 /* 2718 * Someone has grabbed the folio, try to isolate it here. 2719 * Fail with -EBUSY if not possible. 2720 */ 2721 spin_unlock_irq(&hugetlb_lock); 2722 isolated = folio_isolate_hugetlb(old_folio, list); 2723 ret = isolated ? 0 : -EBUSY; 2724 spin_lock_irq(&hugetlb_lock); 2725 goto free_new; 2726 } else if (!folio_test_hugetlb_freed(old_folio)) { 2727 /* 2728 * Folio's refcount is 0 but it has not been enqueued in the 2729 * freelist yet. Race window is small, so we can succeed here if 2730 * we retry. 2731 */ 2732 spin_unlock_irq(&hugetlb_lock); 2733 cond_resched(); 2734 goto retry; 2735 } else { 2736 h = folio_hstate(old_folio); 2737 if (!new_folio) { 2738 spin_unlock_irq(&hugetlb_lock); 2739 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 2740 new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask, 2741 nid, NULL); 2742 if (!new_folio) 2743 return -ENOMEM; 2744 goto retry; 2745 } 2746 2747 /* 2748 * Ok, old_folio is still a genuine free hugepage. Remove it from 2749 * the freelist and decrease the counters. These will be 2750 * incremented again when calling account_new_hugetlb_folio() 2751 * and enqueue_hugetlb_folio() for new_folio. The counters will 2752 * remain stable since this happens under the lock. 2753 */ 2754 remove_hugetlb_folio(h, old_folio, false); 2755 2756 /* 2757 * Ref count on new_folio is already zero as it was dropped 2758 * earlier. It can be directly added to the pool free list. 2759 */ 2760 account_new_hugetlb_folio(h, new_folio); 2761 enqueue_hugetlb_folio(h, new_folio); 2762 2763 /* 2764 * Folio has been replaced, we can safely free the old one. 2765 */ 2766 spin_unlock_irq(&hugetlb_lock); 2767 update_and_free_hugetlb_folio(h, old_folio, false); 2768 } 2769 2770 return ret; 2771 2772 free_new: 2773 spin_unlock_irq(&hugetlb_lock); 2774 if (new_folio) 2775 update_and_free_hugetlb_folio(h, new_folio, false); 2776 2777 return ret; 2778 } 2779 2780 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list) 2781 { 2782 int ret = -EBUSY; 2783 2784 /* Not to disrupt normal path by vainly holding hugetlb_lock */ 2785 if (!folio_test_hugetlb(folio)) 2786 return 0; 2787 2788 /* 2789 * Fence off gigantic pages as there is a cyclic dependency between 2790 * alloc_contig_range and them. Return -ENOMEM as this has the effect 2791 * of bailing out right away without further retrying. 2792 */ 2793 if (order_is_gigantic(folio_order(folio))) 2794 return -ENOMEM; 2795 2796 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list)) 2797 ret = 0; 2798 else if (!folio_ref_count(folio)) 2799 ret = alloc_and_dissolve_hugetlb_folio(folio, list); 2800 2801 return ret; 2802 } 2803 2804 /* 2805 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn 2806 * range with new folios. 2807 * @start_pfn: start pfn of the given pfn range 2808 * @end_pfn: end pfn of the given pfn range 2809 * Returns 0 on success, otherwise negated error. 2810 */ 2811 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn) 2812 { 2813 unsigned long nr = 0; 2814 struct page *page; 2815 struct hstate *h; 2816 LIST_HEAD(list); 2817 int ret = 0; 2818 2819 /* Avoid pfn iterations if no free non-gigantic huge pages */ 2820 for_each_hstate(h) { 2821 if (hstate_is_gigantic(h)) 2822 continue; 2823 2824 nr += h->free_huge_pages; 2825 if (nr) 2826 break; 2827 } 2828 2829 if (!nr) 2830 return 0; 2831 2832 while (start_pfn < end_pfn) { 2833 page = pfn_to_page(start_pfn); 2834 nr = 1; 2835 2836 if (PageHuge(page) || PageCompound(page)) { 2837 struct folio *folio = page_folio(page); 2838 2839 nr = folio_nr_pages(folio) - folio_page_idx(folio, page); 2840 2841 /* 2842 * Don't disrupt normal path by vainly holding 2843 * hugetlb_lock 2844 */ 2845 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) { 2846 if (order_is_gigantic(folio_order(folio))) { 2847 ret = -ENOMEM; 2848 break; 2849 } 2850 2851 ret = alloc_and_dissolve_hugetlb_folio(folio, &list); 2852 if (ret) 2853 break; 2854 2855 putback_movable_pages(&list); 2856 } 2857 } else if (PageBuddy(page)) { 2858 /* 2859 * Buddy order check without zone lock is unsafe and 2860 * the order is maybe invalid, but race should be 2861 * small, and the worst thing is skipping free hugetlb. 2862 */ 2863 const unsigned int order = buddy_order_unsafe(page); 2864 2865 if (order <= MAX_PAGE_ORDER) 2866 nr = 1UL << order; 2867 } 2868 start_pfn += nr; 2869 } 2870 2871 return ret; 2872 } 2873 2874 void wait_for_freed_hugetlb_folios(void) 2875 { 2876 if (llist_empty(&hpage_freelist)) 2877 return; 2878 2879 flush_work(&free_hpage_work); 2880 } 2881 2882 typedef enum { 2883 /* 2884 * For either 0/1: we checked the per-vma resv map, and one resv 2885 * count either can be reused (0), or an extra needed (1). 2886 */ 2887 MAP_CHG_REUSE = 0, 2888 MAP_CHG_NEEDED = 1, 2889 /* 2890 * Cannot use per-vma resv count can be used, hence a new resv 2891 * count is enforced. 2892 * 2893 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except 2894 * that currently vma_needs_reservation() has an unwanted side 2895 * effect to either use end() or commit() to complete the 2896 * transaction. Hence it needs to differentiate from NEEDED. 2897 */ 2898 MAP_CHG_ENFORCED = 2, 2899 } map_chg_state; 2900 2901 /* 2902 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW 2903 * faults of hugetlb private mappings on top of a non-page-cache folio (in 2904 * which case even if there's a private vma resv map it won't cover such 2905 * allocation). New call sites should (probably) never set it to true!! 2906 * When it's set, the allocation will bypass all vma level reservations. 2907 */ 2908 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma, 2909 unsigned long addr, bool cow_from_owner) 2910 { 2911 struct hugepage_subpool *spool = subpool_vma(vma); 2912 struct hstate *h = hstate_vma(vma); 2913 struct folio *folio; 2914 long retval, gbl_chg, gbl_reserve; 2915 map_chg_state map_chg; 2916 int ret, idx; 2917 struct hugetlb_cgroup *h_cg = NULL; 2918 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL; 2919 2920 idx = hstate_index(h); 2921 2922 /* Whether we need a separate per-vma reservation? */ 2923 if (cow_from_owner) { 2924 /* 2925 * Special case! Since it's a CoW on top of a reserved 2926 * page, the private resv map doesn't count. So it cannot 2927 * consume the per-vma resv map even if it's reserved. 2928 */ 2929 map_chg = MAP_CHG_ENFORCED; 2930 } else { 2931 /* 2932 * Examine the region/reserve map to determine if the process 2933 * has a reservation for the page to be allocated. A return 2934 * code of zero indicates a reservation exists (no change). 2935 */ 2936 retval = vma_needs_reservation(h, vma, addr); 2937 if (retval < 0) 2938 return ERR_PTR(-ENOMEM); 2939 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE; 2940 } 2941 2942 /* 2943 * Whether we need a separate global reservation? 2944 * 2945 * Processes that did not create the mapping will have no 2946 * reserves as indicated by the region/reserve map. Check 2947 * that the allocation will not exceed the subpool limit. 2948 * Or if it can get one from the pool reservation directly. 2949 */ 2950 if (map_chg) { 2951 gbl_chg = hugepage_subpool_get_pages(spool, 1); 2952 if (gbl_chg < 0) 2953 goto out_end_reservation; 2954 } else { 2955 /* 2956 * If we have the vma reservation ready, no need for extra 2957 * global reservation. 2958 */ 2959 gbl_chg = 0; 2960 } 2961 2962 /* 2963 * If this allocation is not consuming a per-vma reservation, 2964 * charge the hugetlb cgroup now. 2965 */ 2966 if (map_chg) { 2967 ret = hugetlb_cgroup_charge_cgroup_rsvd( 2968 idx, pages_per_huge_page(h), &h_cg); 2969 if (ret) 2970 goto out_subpool_put; 2971 } 2972 2973 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); 2974 if (ret) 2975 goto out_uncharge_cgroup_reservation; 2976 2977 spin_lock_irq(&hugetlb_lock); 2978 /* 2979 * glb_chg is passed to indicate whether or not a page must be taken 2980 * from the global free pool (global change). gbl_chg == 0 indicates 2981 * a reservation exists for the allocation. 2982 */ 2983 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg); 2984 if (!folio) { 2985 spin_unlock_irq(&hugetlb_lock); 2986 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr); 2987 if (!folio) 2988 goto out_uncharge_cgroup; 2989 spin_lock_irq(&hugetlb_lock); 2990 list_add(&folio->lru, &h->hugepage_activelist); 2991 folio_ref_unfreeze(folio, 1); 2992 /* Fall through */ 2993 } 2994 2995 /* 2996 * Either dequeued or buddy-allocated folio needs to add special 2997 * mark to the folio when it consumes a global reservation. 2998 */ 2999 if (!gbl_chg) { 3000 folio_set_hugetlb_restore_reserve(folio); 3001 h->resv_huge_pages--; 3002 } 3003 3004 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio); 3005 /* If allocation is not consuming a reservation, also store the 3006 * hugetlb_cgroup pointer on the page. 3007 */ 3008 if (map_chg) { 3009 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h), 3010 h_cg, folio); 3011 } 3012 3013 spin_unlock_irq(&hugetlb_lock); 3014 3015 hugetlb_set_folio_subpool(folio, spool); 3016 3017 if (map_chg != MAP_CHG_ENFORCED) { 3018 /* commit() is only needed if the map_chg is not enforced */ 3019 retval = vma_commit_reservation(h, vma, addr); 3020 /* 3021 * Check for possible race conditions. When it happens.. 3022 * The page was added to the reservation map between 3023 * vma_needs_reservation and vma_commit_reservation. 3024 * This indicates a race with hugetlb_reserve_pages. 3025 * Adjust for the subpool count incremented above AND 3026 * in hugetlb_reserve_pages for the same page. Also, 3027 * the reservation count added in hugetlb_reserve_pages 3028 * no longer applies. 3029 */ 3030 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) { 3031 long rsv_adjust; 3032 3033 rsv_adjust = hugepage_subpool_put_pages(spool, 1); 3034 hugetlb_acct_memory(h, -rsv_adjust); 3035 spin_lock_irq(&hugetlb_lock); 3036 hugetlb_cgroup_uncharge_folio_rsvd( 3037 hstate_index(h), pages_per_huge_page(h), folio); 3038 spin_unlock_irq(&hugetlb_lock); 3039 } 3040 } 3041 3042 ret = mem_cgroup_charge_hugetlb(folio, gfp); 3043 /* 3044 * Unconditionally increment NR_HUGETLB here. If it turns out that 3045 * mem_cgroup_charge_hugetlb failed, then immediately free the page and 3046 * decrement NR_HUGETLB. 3047 */ 3048 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h)); 3049 3050 if (ret == -ENOMEM) { 3051 free_huge_folio(folio); 3052 return ERR_PTR(-ENOMEM); 3053 } 3054 3055 return folio; 3056 3057 out_uncharge_cgroup: 3058 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); 3059 out_uncharge_cgroup_reservation: 3060 if (map_chg) 3061 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h), 3062 h_cg); 3063 out_subpool_put: 3064 /* 3065 * put page to subpool iff the quota of subpool's rsv_hpages is used 3066 * during hugepage_subpool_get_pages. 3067 */ 3068 if (map_chg && !gbl_chg) { 3069 gbl_reserve = hugepage_subpool_put_pages(spool, 1); 3070 hugetlb_acct_memory(h, -gbl_reserve); 3071 } 3072 3073 3074 out_end_reservation: 3075 if (map_chg != MAP_CHG_ENFORCED) 3076 vma_end_reservation(h, vma, addr); 3077 return ERR_PTR(-ENOSPC); 3078 } 3079 3080 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact) 3081 { 3082 struct huge_bootmem_page *m; 3083 int listnode = nid; 3084 3085 if (hugetlb_early_cma(h)) 3086 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact); 3087 else { 3088 if (node_exact) 3089 m = memblock_alloc_exact_nid_raw(huge_page_size(h), 3090 huge_page_size(h), 0, 3091 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3092 else { 3093 m = memblock_alloc_try_nid_raw(huge_page_size(h), 3094 huge_page_size(h), 0, 3095 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 3096 /* 3097 * For pre-HVO to work correctly, pages need to be on 3098 * the list for the node they were actually allocated 3099 * from. That node may be different in the case of 3100 * fallback by memblock_alloc_try_nid_raw. So, 3101 * extract the actual node first. 3102 */ 3103 if (m) 3104 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m))); 3105 } 3106 3107 if (m) { 3108 m->flags = 0; 3109 m->cma = NULL; 3110 } 3111 } 3112 3113 if (m) { 3114 /* 3115 * Use the beginning of the huge page to store the 3116 * huge_bootmem_page struct (until gather_bootmem 3117 * puts them into the mem_map). 3118 * 3119 * Put them into a private list first because mem_map 3120 * is not up yet. 3121 */ 3122 INIT_LIST_HEAD(&m->list); 3123 list_add(&m->list, &huge_boot_pages[listnode]); 3124 m->hstate = h; 3125 } 3126 3127 return m; 3128 } 3129 3130 int alloc_bootmem_huge_page(struct hstate *h, int nid) 3131 __attribute__ ((weak, alias("__alloc_bootmem_huge_page"))); 3132 int __alloc_bootmem_huge_page(struct hstate *h, int nid) 3133 { 3134 struct huge_bootmem_page *m = NULL; /* initialize for clang */ 3135 int nr_nodes, node = nid; 3136 3137 /* do node specific alloc */ 3138 if (nid != NUMA_NO_NODE) { 3139 m = alloc_bootmem(h, node, true); 3140 if (!m) 3141 return 0; 3142 goto found; 3143 } 3144 3145 /* allocate from next node when distributing huge pages */ 3146 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, 3147 &hugetlb_bootmem_nodes) { 3148 m = alloc_bootmem(h, node, false); 3149 if (!m) 3150 return 0; 3151 goto found; 3152 } 3153 3154 found: 3155 3156 /* 3157 * Only initialize the head struct page in memmap_init_reserved_pages, 3158 * rest of the struct pages will be initialized by the HugeTLB 3159 * subsystem itself. 3160 * The head struct page is used to get folio information by the HugeTLB 3161 * subsystem like zone id and node id. 3162 */ 3163 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE), 3164 huge_page_size(h) - PAGE_SIZE); 3165 3166 return 1; 3167 } 3168 3169 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */ 3170 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio, 3171 unsigned long start_page_number, 3172 unsigned long end_page_number) 3173 { 3174 enum zone_type zone = folio_zonenum(folio); 3175 int nid = folio_nid(folio); 3176 struct page *page = folio_page(folio, start_page_number); 3177 unsigned long head_pfn = folio_pfn(folio); 3178 unsigned long pfn, end_pfn = head_pfn + end_page_number; 3179 3180 /* 3181 * As we marked all tail pages with memblock_reserved_mark_noinit(), 3182 * we must initialize them ourselves here. 3183 */ 3184 for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) { 3185 __init_single_page(page, pfn, zone, nid); 3186 prep_compound_tail((struct page *)folio, pfn - head_pfn); 3187 set_page_count(page, 0); 3188 } 3189 } 3190 3191 static void __init hugetlb_folio_init_vmemmap(struct folio *folio, 3192 struct hstate *h, 3193 unsigned long nr_pages) 3194 { 3195 int ret; 3196 3197 /* 3198 * This is an open-coded prep_compound_page() whereby we avoid 3199 * walking pages twice by initializing/preparing+freezing them in the 3200 * same go. 3201 */ 3202 __folio_clear_reserved(folio); 3203 __folio_set_head(folio); 3204 ret = folio_ref_freeze(folio, 1); 3205 VM_BUG_ON(!ret); 3206 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages); 3207 prep_compound_head(&folio->page, huge_page_order(h)); 3208 } 3209 3210 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m) 3211 { 3212 return m->flags & HUGE_BOOTMEM_HVO; 3213 } 3214 3215 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m) 3216 { 3217 return m->flags & HUGE_BOOTMEM_CMA; 3218 } 3219 3220 /* 3221 * memblock-allocated pageblocks might not have the migrate type set 3222 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE) 3223 * here, or MIGRATE_CMA if this was a page allocated through an early CMA 3224 * reservation. 3225 * 3226 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped 3227 * read-only, but that's ok - for sparse vmemmap this does not write to 3228 * the page structure. 3229 */ 3230 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio, 3231 struct hstate *h) 3232 { 3233 unsigned long nr_pages = pages_per_huge_page(h), i; 3234 3235 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio))); 3236 3237 for (i = 0; i < nr_pages; i += pageblock_nr_pages) { 3238 if (folio_test_hugetlb_cma(folio)) 3239 init_cma_pageblock(folio_page(folio, i)); 3240 else 3241 init_pageblock_migratetype(folio_page(folio, i), 3242 MIGRATE_MOVABLE, false); 3243 } 3244 } 3245 3246 static void __init prep_and_add_bootmem_folios(struct hstate *h, 3247 struct list_head *folio_list) 3248 { 3249 unsigned long flags; 3250 struct folio *folio, *tmp_f; 3251 3252 /* Send list for bulk vmemmap optimization processing */ 3253 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list); 3254 3255 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) { 3256 if (!folio_test_hugetlb_vmemmap_optimized(folio)) { 3257 /* 3258 * If HVO fails, initialize all tail struct pages 3259 * We do not worry about potential long lock hold 3260 * time as this is early in boot and there should 3261 * be no contention. 3262 */ 3263 hugetlb_folio_init_tail_vmemmap(folio, 3264 HUGETLB_VMEMMAP_RESERVE_PAGES, 3265 pages_per_huge_page(h)); 3266 } 3267 hugetlb_bootmem_init_migratetype(folio, h); 3268 /* Subdivide locks to achieve better parallel performance */ 3269 spin_lock_irqsave(&hugetlb_lock, flags); 3270 account_new_hugetlb_folio(h, folio); 3271 enqueue_hugetlb_folio(h, folio); 3272 spin_unlock_irqrestore(&hugetlb_lock, flags); 3273 } 3274 } 3275 3276 bool __init hugetlb_bootmem_page_zones_valid(int nid, 3277 struct huge_bootmem_page *m) 3278 { 3279 unsigned long start_pfn; 3280 bool valid; 3281 3282 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) { 3283 /* 3284 * Already validated, skip check. 3285 */ 3286 return true; 3287 } 3288 3289 if (hugetlb_bootmem_page_earlycma(m)) { 3290 valid = cma_validate_zones(m->cma); 3291 goto out; 3292 } 3293 3294 start_pfn = virt_to_phys(m) >> PAGE_SHIFT; 3295 3296 valid = !pfn_range_intersects_zones(nid, start_pfn, 3297 pages_per_huge_page(m->hstate)); 3298 out: 3299 if (!valid) 3300 hstate_boot_nrinvalid[hstate_index(m->hstate)]++; 3301 3302 return valid; 3303 } 3304 3305 /* 3306 * Free a bootmem page that was found to be invalid (intersecting with 3307 * multiple zones). 3308 * 3309 * Since it intersects with multiple zones, we can't just do a free 3310 * operation on all pages at once, but instead have to walk all 3311 * pages, freeing them one by one. 3312 */ 3313 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page, 3314 struct hstate *h) 3315 { 3316 unsigned long npages = pages_per_huge_page(h); 3317 unsigned long pfn; 3318 3319 while (npages--) { 3320 pfn = page_to_pfn(page); 3321 __init_page_from_nid(pfn, nid); 3322 free_reserved_page(page); 3323 page++; 3324 } 3325 } 3326 3327 /* 3328 * Put bootmem huge pages into the standard lists after mem_map is up. 3329 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages. 3330 */ 3331 static void __init gather_bootmem_prealloc_node(unsigned long nid) 3332 { 3333 LIST_HEAD(folio_list); 3334 struct huge_bootmem_page *m, *tm; 3335 struct hstate *h = NULL, *prev_h = NULL; 3336 3337 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) { 3338 struct page *page = virt_to_page(m); 3339 struct folio *folio = (void *)page; 3340 3341 h = m->hstate; 3342 if (!hugetlb_bootmem_page_zones_valid(nid, m)) { 3343 /* 3344 * Can't use this page. Initialize the 3345 * page structures if that hasn't already 3346 * been done, and give them to the page 3347 * allocator. 3348 */ 3349 hugetlb_bootmem_free_invalid_page(nid, page, h); 3350 continue; 3351 } 3352 3353 /* 3354 * It is possible to have multiple huge page sizes (hstates) 3355 * in this list. If so, process each size separately. 3356 */ 3357 if (h != prev_h && prev_h != NULL) 3358 prep_and_add_bootmem_folios(prev_h, &folio_list); 3359 prev_h = h; 3360 3361 VM_BUG_ON(!hstate_is_gigantic(h)); 3362 WARN_ON(folio_ref_count(folio) != 1); 3363 3364 hugetlb_folio_init_vmemmap(folio, h, 3365 HUGETLB_VMEMMAP_RESERVE_PAGES); 3366 init_new_hugetlb_folio(folio); 3367 3368 if (hugetlb_bootmem_page_prehvo(m)) 3369 /* 3370 * If pre-HVO was done, just set the 3371 * flag, the HVO code will then skip 3372 * this folio. 3373 */ 3374 folio_set_hugetlb_vmemmap_optimized(folio); 3375 3376 if (hugetlb_bootmem_page_earlycma(m)) 3377 folio_set_hugetlb_cma(folio); 3378 3379 list_add(&folio->lru, &folio_list); 3380 3381 /* 3382 * We need to restore the 'stolen' pages to totalram_pages 3383 * in order to fix confusing memory reports from free(1) and 3384 * other side-effects, like CommitLimit going negative. 3385 * 3386 * For CMA pages, this is done in init_cma_pageblock 3387 * (via hugetlb_bootmem_init_migratetype), so skip it here. 3388 */ 3389 if (!folio_test_hugetlb_cma(folio)) 3390 adjust_managed_page_count(page, pages_per_huge_page(h)); 3391 cond_resched(); 3392 } 3393 3394 prep_and_add_bootmem_folios(h, &folio_list); 3395 } 3396 3397 static void __init gather_bootmem_prealloc_parallel(unsigned long start, 3398 unsigned long end, void *arg) 3399 { 3400 int nid; 3401 3402 for (nid = start; nid < end; nid++) 3403 gather_bootmem_prealloc_node(nid); 3404 } 3405 3406 static void __init gather_bootmem_prealloc(void) 3407 { 3408 struct padata_mt_job job = { 3409 .thread_fn = gather_bootmem_prealloc_parallel, 3410 .fn_arg = NULL, 3411 .start = 0, 3412 .size = nr_node_ids, 3413 .align = 1, 3414 .min_chunk = 1, 3415 .max_threads = num_node_state(N_MEMORY), 3416 .numa_aware = true, 3417 }; 3418 3419 padata_do_multithreaded(&job); 3420 } 3421 3422 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid) 3423 { 3424 unsigned long i; 3425 char buf[32]; 3426 LIST_HEAD(folio_list); 3427 3428 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) { 3429 if (hstate_is_gigantic(h)) { 3430 if (!alloc_bootmem_huge_page(h, nid)) 3431 break; 3432 } else { 3433 struct folio *folio; 3434 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE; 3435 3436 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3437 &node_states[N_MEMORY], NULL); 3438 if (!folio && !list_empty(&folio_list) && 3439 hugetlb_vmemmap_optimizable_size(h)) { 3440 prep_and_add_allocated_folios(h, &folio_list); 3441 INIT_LIST_HEAD(&folio_list); 3442 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, 3443 &node_states[N_MEMORY], NULL); 3444 } 3445 if (!folio) 3446 break; 3447 list_add(&folio->lru, &folio_list); 3448 } 3449 cond_resched(); 3450 } 3451 3452 if (!list_empty(&folio_list)) 3453 prep_and_add_allocated_folios(h, &folio_list); 3454 3455 if (i == h->max_huge_pages_node[nid]) 3456 return; 3457 3458 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3459 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n", 3460 h->max_huge_pages_node[nid], buf, nid, i); 3461 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i); 3462 h->max_huge_pages_node[nid] = i; 3463 } 3464 3465 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h) 3466 { 3467 int i; 3468 bool node_specific_alloc = false; 3469 3470 for_each_online_node(i) { 3471 if (h->max_huge_pages_node[i] > 0) { 3472 hugetlb_hstate_alloc_pages_onenode(h, i); 3473 node_specific_alloc = true; 3474 } 3475 } 3476 3477 return node_specific_alloc; 3478 } 3479 3480 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h) 3481 { 3482 if (allocated < h->max_huge_pages) { 3483 char buf[32]; 3484 3485 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3486 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n", 3487 h->max_huge_pages, buf, allocated); 3488 h->max_huge_pages = allocated; 3489 } 3490 } 3491 3492 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg) 3493 { 3494 struct hstate *h = (struct hstate *)arg; 3495 int i, num = end - start; 3496 nodemask_t node_alloc_noretry; 3497 LIST_HEAD(folio_list); 3498 int next_node = first_online_node; 3499 3500 /* Bit mask controlling how hard we retry per-node allocations.*/ 3501 nodes_clear(node_alloc_noretry); 3502 3503 for (i = 0; i < num; ++i) { 3504 struct folio *folio; 3505 3506 if (hugetlb_vmemmap_optimizable_size(h) && 3507 (si_mem_available() == 0) && !list_empty(&folio_list)) { 3508 prep_and_add_allocated_folios(h, &folio_list); 3509 INIT_LIST_HEAD(&folio_list); 3510 } 3511 folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY], 3512 &node_alloc_noretry, &next_node); 3513 if (!folio) 3514 break; 3515 3516 list_move(&folio->lru, &folio_list); 3517 cond_resched(); 3518 } 3519 3520 prep_and_add_allocated_folios(h, &folio_list); 3521 } 3522 3523 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h) 3524 { 3525 unsigned long i; 3526 3527 for (i = 0; i < h->max_huge_pages; ++i) { 3528 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE)) 3529 break; 3530 cond_resched(); 3531 } 3532 3533 return i; 3534 } 3535 3536 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h) 3537 { 3538 struct padata_mt_job job = { 3539 .fn_arg = h, 3540 .align = 1, 3541 .numa_aware = true 3542 }; 3543 3544 unsigned long jiffies_start; 3545 unsigned long jiffies_end; 3546 unsigned long remaining; 3547 3548 job.thread_fn = hugetlb_pages_alloc_boot_node; 3549 3550 /* 3551 * job.max_threads is 25% of the available cpu threads by default. 3552 * 3553 * On large servers with terabytes of memory, huge page allocation 3554 * can consume a considerably amount of time. 3555 * 3556 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages. 3557 * 2MiB huge pages. Using more threads can significantly improve allocation time. 3558 * 3559 * +-----------------------+-------+-------+-------+-------+-------+ 3560 * | threads | 8 | 16 | 32 | 64 | 128 | 3561 * +-----------------------+-------+-------+-------+-------+-------+ 3562 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s | 3563 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s | 3564 * +-----------------------+-------+-------+-------+-------+-------+ 3565 */ 3566 if (hugepage_allocation_threads == 0) { 3567 hugepage_allocation_threads = num_online_cpus() / 4; 3568 hugepage_allocation_threads = max(hugepage_allocation_threads, 1); 3569 } 3570 3571 job.max_threads = hugepage_allocation_threads; 3572 3573 jiffies_start = jiffies; 3574 do { 3575 remaining = h->max_huge_pages - h->nr_huge_pages; 3576 3577 job.start = h->nr_huge_pages; 3578 job.size = remaining; 3579 job.min_chunk = remaining / hugepage_allocation_threads; 3580 padata_do_multithreaded(&job); 3581 3582 if (h->nr_huge_pages == h->max_huge_pages) 3583 break; 3584 3585 /* 3586 * Retry only if the vmemmap optimization might have been able to free 3587 * some memory back to the system. 3588 */ 3589 if (!hugetlb_vmemmap_optimizable(h)) 3590 break; 3591 3592 /* Continue if progress was made in last iteration */ 3593 } while (remaining != (h->max_huge_pages - h->nr_huge_pages)); 3594 3595 jiffies_end = jiffies; 3596 3597 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n", 3598 jiffies_to_msecs(jiffies_end - jiffies_start), 3599 hugepage_allocation_threads); 3600 3601 return h->nr_huge_pages; 3602 } 3603 3604 /* 3605 * NOTE: this routine is called in different contexts for gigantic and 3606 * non-gigantic pages. 3607 * - For gigantic pages, this is called early in the boot process and 3608 * pages are allocated from memblock allocated or something similar. 3609 * Gigantic pages are actually added to pools later with the routine 3610 * gather_bootmem_prealloc. 3611 * - For non-gigantic pages, this is called later in the boot process after 3612 * all of mm is up and functional. Pages are allocated from buddy and 3613 * then added to hugetlb pools. 3614 */ 3615 static void __init hugetlb_hstate_alloc_pages(struct hstate *h) 3616 { 3617 unsigned long allocated; 3618 3619 /* 3620 * Skip gigantic hugepages allocation if early CMA 3621 * reservations are not available. 3622 */ 3623 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() && 3624 !hugetlb_early_cma(h)) { 3625 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n"); 3626 return; 3627 } 3628 3629 if (!h->max_huge_pages) 3630 return; 3631 3632 /* do node specific alloc */ 3633 if (hugetlb_hstate_alloc_pages_specific_nodes(h)) 3634 return; 3635 3636 /* below will do all node balanced alloc */ 3637 if (hstate_is_gigantic(h)) 3638 allocated = hugetlb_gigantic_pages_alloc_boot(h); 3639 else 3640 allocated = hugetlb_pages_alloc_boot(h); 3641 3642 hugetlb_hstate_alloc_pages_errcheck(allocated, h); 3643 } 3644 3645 static void __init hugetlb_init_hstates(void) 3646 { 3647 struct hstate *h, *h2; 3648 3649 for_each_hstate(h) { 3650 /* 3651 * Always reset to first_memory_node here, even if 3652 * next_nid_to_alloc was set before - we can't 3653 * reference hugetlb_bootmem_nodes after init, and 3654 * first_memory_node is right for all further allocations. 3655 */ 3656 h->next_nid_to_alloc = first_memory_node; 3657 h->next_nid_to_free = first_memory_node; 3658 3659 /* oversize hugepages were init'ed in early boot */ 3660 if (!hstate_is_gigantic(h)) 3661 hugetlb_hstate_alloc_pages(h); 3662 3663 /* 3664 * Set demote order for each hstate. Note that 3665 * h->demote_order is initially 0. 3666 * - We can not demote gigantic pages if runtime freeing 3667 * is not supported, so skip this. 3668 * - If CMA allocation is possible, we can not demote 3669 * HUGETLB_PAGE_ORDER or smaller size pages. 3670 */ 3671 if (hstate_is_gigantic_no_runtime(h)) 3672 continue; 3673 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER) 3674 continue; 3675 for_each_hstate(h2) { 3676 if (h2 == h) 3677 continue; 3678 if (h2->order < h->order && 3679 h2->order > h->demote_order) 3680 h->demote_order = h2->order; 3681 } 3682 } 3683 } 3684 3685 static void __init report_hugepages(void) 3686 { 3687 struct hstate *h; 3688 unsigned long nrinvalid; 3689 3690 for_each_hstate(h) { 3691 char buf[32]; 3692 3693 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)]; 3694 h->max_huge_pages -= nrinvalid; 3695 3696 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32); 3697 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n", 3698 buf, h->nr_huge_pages); 3699 if (nrinvalid) 3700 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n", 3701 buf, nrinvalid, str_plural(nrinvalid)); 3702 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n", 3703 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf); 3704 } 3705 } 3706 3707 #ifdef CONFIG_HIGHMEM 3708 static void try_to_free_low(struct hstate *h, unsigned long count, 3709 nodemask_t *nodes_allowed) 3710 { 3711 int i; 3712 LIST_HEAD(page_list); 3713 3714 lockdep_assert_held(&hugetlb_lock); 3715 if (hstate_is_gigantic(h)) 3716 return; 3717 3718 /* 3719 * Collect pages to be freed on a list, and free after dropping lock 3720 */ 3721 for_each_node_mask(i, *nodes_allowed) { 3722 struct folio *folio, *next; 3723 struct list_head *freel = &h->hugepage_freelists[i]; 3724 list_for_each_entry_safe(folio, next, freel, lru) { 3725 if (count >= h->nr_huge_pages) 3726 goto out; 3727 if (folio_test_highmem(folio)) 3728 continue; 3729 remove_hugetlb_folio(h, folio, false); 3730 list_add(&folio->lru, &page_list); 3731 } 3732 } 3733 3734 out: 3735 spin_unlock_irq(&hugetlb_lock); 3736 update_and_free_pages_bulk(h, &page_list); 3737 spin_lock_irq(&hugetlb_lock); 3738 } 3739 #else 3740 static inline void try_to_free_low(struct hstate *h, unsigned long count, 3741 nodemask_t *nodes_allowed) 3742 { 3743 } 3744 #endif 3745 3746 /* 3747 * Increment or decrement surplus_huge_pages. Keep node-specific counters 3748 * balanced by operating on them in a round-robin fashion. 3749 * Returns 1 if an adjustment was made. 3750 */ 3751 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, 3752 int delta) 3753 { 3754 int nr_nodes, node; 3755 3756 lockdep_assert_held(&hugetlb_lock); 3757 VM_BUG_ON(delta != -1 && delta != 1); 3758 3759 if (delta < 0) { 3760 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) { 3761 if (h->surplus_huge_pages_node[node]) 3762 goto found; 3763 } 3764 } else { 3765 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { 3766 if (h->surplus_huge_pages_node[node] < 3767 h->nr_huge_pages_node[node]) 3768 goto found; 3769 } 3770 } 3771 return 0; 3772 3773 found: 3774 h->surplus_huge_pages += delta; 3775 h->surplus_huge_pages_node[node] += delta; 3776 return 1; 3777 } 3778 3779 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) 3780 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid, 3781 nodemask_t *nodes_allowed) 3782 { 3783 unsigned long persistent_free_count; 3784 unsigned long min_count; 3785 unsigned long allocated; 3786 struct folio *folio; 3787 LIST_HEAD(page_list); 3788 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL); 3789 3790 /* 3791 * Bit mask controlling how hard we retry per-node allocations. 3792 * If we can not allocate the bit mask, do not attempt to allocate 3793 * the requested huge pages. 3794 */ 3795 if (node_alloc_noretry) 3796 nodes_clear(*node_alloc_noretry); 3797 else 3798 return -ENOMEM; 3799 3800 /* 3801 * resize_lock mutex prevents concurrent adjustments to number of 3802 * pages in hstate via the proc/sysfs interfaces. 3803 */ 3804 mutex_lock(&h->resize_lock); 3805 flush_free_hpage_work(h); 3806 spin_lock_irq(&hugetlb_lock); 3807 3808 /* 3809 * Check for a node specific request. 3810 * Changing node specific huge page count may require a corresponding 3811 * change to the global count. In any case, the passed node mask 3812 * (nodes_allowed) will restrict alloc/free to the specified node. 3813 */ 3814 if (nid != NUMA_NO_NODE) { 3815 unsigned long old_count = count; 3816 3817 count += persistent_huge_pages(h) - 3818 (h->nr_huge_pages_node[nid] - 3819 h->surplus_huge_pages_node[nid]); 3820 /* 3821 * User may have specified a large count value which caused the 3822 * above calculation to overflow. In this case, they wanted 3823 * to allocate as many huge pages as possible. Set count to 3824 * largest possible value to align with their intention. 3825 */ 3826 if (count < old_count) 3827 count = ULONG_MAX; 3828 } 3829 3830 /* 3831 * Gigantic pages runtime allocation depend on the capability for large 3832 * page range allocation. 3833 * If the system does not provide this feature, return an error when 3834 * the user tries to allocate gigantic pages but let the user free the 3835 * boottime allocated gigantic pages. 3836 */ 3837 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) { 3838 if (count > persistent_huge_pages(h)) { 3839 spin_unlock_irq(&hugetlb_lock); 3840 mutex_unlock(&h->resize_lock); 3841 NODEMASK_FREE(node_alloc_noretry); 3842 return -EINVAL; 3843 } 3844 /* Fall through to decrease pool */ 3845 } 3846 3847 /* 3848 * Increase the pool size 3849 * First take pages out of surplus state. Then make up the 3850 * remaining difference by allocating fresh huge pages. 3851 * 3852 * We might race with alloc_surplus_hugetlb_folio() here and be unable 3853 * to convert a surplus huge page to a normal huge page. That is 3854 * not critical, though, it just means the overall size of the 3855 * pool might be one hugepage larger than it needs to be, but 3856 * within all the constraints specified by the sysctls. 3857 */ 3858 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) { 3859 if (!adjust_pool_surplus(h, nodes_allowed, -1)) 3860 break; 3861 } 3862 3863 allocated = 0; 3864 while (count > (persistent_huge_pages(h) + allocated)) { 3865 /* 3866 * If this allocation races such that we no longer need the 3867 * page, free_huge_folio will handle it by freeing the page 3868 * and reducing the surplus. 3869 */ 3870 spin_unlock_irq(&hugetlb_lock); 3871 3872 /* yield cpu to avoid soft lockup */ 3873 cond_resched(); 3874 3875 folio = alloc_pool_huge_folio(h, nodes_allowed, 3876 node_alloc_noretry, 3877 &h->next_nid_to_alloc); 3878 if (!folio) { 3879 prep_and_add_allocated_folios(h, &page_list); 3880 spin_lock_irq(&hugetlb_lock); 3881 goto out; 3882 } 3883 3884 list_add(&folio->lru, &page_list); 3885 allocated++; 3886 3887 /* Bail for signals. Probably ctrl-c from user */ 3888 if (signal_pending(current)) { 3889 prep_and_add_allocated_folios(h, &page_list); 3890 spin_lock_irq(&hugetlb_lock); 3891 goto out; 3892 } 3893 3894 spin_lock_irq(&hugetlb_lock); 3895 } 3896 3897 /* Add allocated pages to the pool */ 3898 if (!list_empty(&page_list)) { 3899 spin_unlock_irq(&hugetlb_lock); 3900 prep_and_add_allocated_folios(h, &page_list); 3901 spin_lock_irq(&hugetlb_lock); 3902 } 3903 3904 /* 3905 * Decrease the pool size 3906 * First return free pages to the buddy allocator (being careful 3907 * to keep enough around to satisfy reservations). Then place 3908 * pages into surplus state as needed so the pool will shrink 3909 * to the desired size as pages become free. 3910 * 3911 * By placing pages into the surplus state independent of the 3912 * overcommit value, we are allowing the surplus pool size to 3913 * exceed overcommit. There are few sane options here. Since 3914 * alloc_surplus_hugetlb_folio() is checking the global counter, 3915 * though, we'll note that we're not allowed to exceed surplus 3916 * and won't grow the pool anywhere else. Not until one of the 3917 * sysctls are changed, or the surplus pages go out of use. 3918 * 3919 * min_count is the expected number of persistent pages, we 3920 * shouldn't calculate min_count by using 3921 * resv_huge_pages + persistent_huge_pages() - free_huge_pages, 3922 * because there may exist free surplus huge pages, and this will 3923 * lead to subtracting twice. Free surplus huge pages come from HVO 3924 * failing to restore vmemmap, see comments in the callers of 3925 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate 3926 * persistent free count first. 3927 */ 3928 persistent_free_count = h->free_huge_pages; 3929 if (h->free_huge_pages > persistent_huge_pages(h)) { 3930 if (h->free_huge_pages > h->surplus_huge_pages) 3931 persistent_free_count -= h->surplus_huge_pages; 3932 else 3933 persistent_free_count = 0; 3934 } 3935 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count; 3936 min_count = max(count, min_count); 3937 try_to_free_low(h, min_count, nodes_allowed); 3938 3939 /* 3940 * Collect pages to be removed on list without dropping lock 3941 */ 3942 while (min_count < persistent_huge_pages(h)) { 3943 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0); 3944 if (!folio) 3945 break; 3946 3947 list_add(&folio->lru, &page_list); 3948 } 3949 /* free the pages after dropping lock */ 3950 spin_unlock_irq(&hugetlb_lock); 3951 update_and_free_pages_bulk(h, &page_list); 3952 flush_free_hpage_work(h); 3953 spin_lock_irq(&hugetlb_lock); 3954 3955 while (count < persistent_huge_pages(h)) { 3956 if (!adjust_pool_surplus(h, nodes_allowed, 1)) 3957 break; 3958 } 3959 out: 3960 h->max_huge_pages = persistent_huge_pages(h); 3961 spin_unlock_irq(&hugetlb_lock); 3962 mutex_unlock(&h->resize_lock); 3963 3964 NODEMASK_FREE(node_alloc_noretry); 3965 3966 return 0; 3967 } 3968 3969 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst, 3970 struct list_head *src_list) 3971 { 3972 long rc; 3973 struct folio *folio, *next; 3974 LIST_HEAD(dst_list); 3975 LIST_HEAD(ret_list); 3976 3977 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list); 3978 list_splice_init(&ret_list, src_list); 3979 3980 /* 3981 * Taking target hstate mutex synchronizes with set_max_huge_pages. 3982 * Without the mutex, pages added to target hstate could be marked 3983 * as surplus. 3984 * 3985 * Note that we already hold src->resize_lock. To prevent deadlock, 3986 * use the convention of always taking larger size hstate mutex first. 3987 */ 3988 mutex_lock(&dst->resize_lock); 3989 3990 list_for_each_entry_safe(folio, next, src_list, lru) { 3991 int i; 3992 bool cma; 3993 3994 if (folio_test_hugetlb_vmemmap_optimized(folio)) 3995 continue; 3996 3997 cma = folio_test_hugetlb_cma(folio); 3998 3999 list_del(&folio->lru); 4000 4001 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst)); 4002 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst)); 4003 4004 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) { 4005 struct page *page = folio_page(folio, i); 4006 /* Careful: see __split_huge_page_tail() */ 4007 struct folio *new_folio = (struct folio *)page; 4008 4009 clear_compound_head(page); 4010 prep_compound_page(page, dst->order); 4011 4012 new_folio->mapping = NULL; 4013 init_new_hugetlb_folio(new_folio); 4014 /* Copy the CMA flag so that it is freed correctly */ 4015 if (cma) 4016 folio_set_hugetlb_cma(new_folio); 4017 list_add(&new_folio->lru, &dst_list); 4018 } 4019 } 4020 4021 prep_and_add_allocated_folios(dst, &dst_list); 4022 4023 mutex_unlock(&dst->resize_lock); 4024 4025 return rc; 4026 } 4027 4028 long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed, 4029 unsigned long nr_to_demote) 4030 __must_hold(&hugetlb_lock) 4031 { 4032 int nr_nodes, node; 4033 struct hstate *dst; 4034 long rc = 0; 4035 long nr_demoted = 0; 4036 4037 lockdep_assert_held(&hugetlb_lock); 4038 4039 /* We should never get here if no demote order */ 4040 if (!src->demote_order) { 4041 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n"); 4042 return -EINVAL; /* internal error */ 4043 } 4044 dst = size_to_hstate(PAGE_SIZE << src->demote_order); 4045 4046 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) { 4047 LIST_HEAD(list); 4048 struct folio *folio, *next; 4049 4050 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) { 4051 if (folio_test_hwpoison(folio)) 4052 continue; 4053 4054 remove_hugetlb_folio(src, folio, false); 4055 list_add(&folio->lru, &list); 4056 4057 if (++nr_demoted == nr_to_demote) 4058 break; 4059 } 4060 4061 spin_unlock_irq(&hugetlb_lock); 4062 4063 rc = demote_free_hugetlb_folios(src, dst, &list); 4064 4065 spin_lock_irq(&hugetlb_lock); 4066 4067 list_for_each_entry_safe(folio, next, &list, lru) { 4068 list_del(&folio->lru); 4069 add_hugetlb_folio(src, folio, false); 4070 4071 nr_demoted--; 4072 } 4073 4074 if (rc < 0 || nr_demoted == nr_to_demote) 4075 break; 4076 } 4077 4078 /* 4079 * Not absolutely necessary, but for consistency update max_huge_pages 4080 * based on pool changes for the demoted page. 4081 */ 4082 src->max_huge_pages -= nr_demoted; 4083 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst)); 4084 4085 if (rc < 0) 4086 return rc; 4087 4088 if (nr_demoted) 4089 return nr_demoted; 4090 /* 4091 * Only way to get here is if all pages on free lists are poisoned. 4092 * Return -EBUSY so that caller will not retry. 4093 */ 4094 return -EBUSY; 4095 } 4096 4097 ssize_t __nr_hugepages_store_common(bool obey_mempolicy, 4098 struct hstate *h, int nid, 4099 unsigned long count, size_t len) 4100 { 4101 int err; 4102 nodemask_t nodes_allowed, *n_mask; 4103 4104 if (hstate_is_gigantic_no_runtime(h)) 4105 return -EINVAL; 4106 4107 if (nid == NUMA_NO_NODE) { 4108 /* 4109 * global hstate attribute 4110 */ 4111 if (!(obey_mempolicy && 4112 init_nodemask_of_mempolicy(&nodes_allowed))) 4113 n_mask = &node_states[N_MEMORY]; 4114 else 4115 n_mask = &nodes_allowed; 4116 } else { 4117 /* 4118 * Node specific request. count adjustment happens in 4119 * set_max_huge_pages() after acquiring hugetlb_lock. 4120 */ 4121 init_nodemask_of_node(&nodes_allowed, nid); 4122 n_mask = &nodes_allowed; 4123 } 4124 4125 err = set_max_huge_pages(h, count, nid, n_mask); 4126 4127 return err ? err : len; 4128 } 4129 4130 static int __init hugetlb_init(void) 4131 { 4132 int i; 4133 4134 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE < 4135 __NR_HPAGEFLAGS); 4136 BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER); 4137 4138 if (!hugepages_supported()) { 4139 if (hugetlb_max_hstate || default_hstate_max_huge_pages) 4140 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n"); 4141 return 0; 4142 } 4143 4144 /* 4145 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some 4146 * architectures depend on setup being done here. 4147 */ 4148 hugetlb_add_hstate(HUGETLB_PAGE_ORDER); 4149 if (!parsed_default_hugepagesz) { 4150 /* 4151 * If we did not parse a default huge page size, set 4152 * default_hstate_idx to HPAGE_SIZE hstate. And, if the 4153 * number of huge pages for this default size was implicitly 4154 * specified, set that here as well. 4155 * Note that the implicit setting will overwrite an explicit 4156 * setting. A warning will be printed in this case. 4157 */ 4158 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE)); 4159 if (default_hstate_max_huge_pages) { 4160 if (default_hstate.max_huge_pages) { 4161 char buf[32]; 4162 4163 string_get_size(huge_page_size(&default_hstate), 4164 1, STRING_UNITS_2, buf, 32); 4165 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n", 4166 default_hstate.max_huge_pages, buf); 4167 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n", 4168 default_hstate_max_huge_pages); 4169 } 4170 default_hstate.max_huge_pages = 4171 default_hstate_max_huge_pages; 4172 4173 for_each_online_node(i) 4174 default_hstate.max_huge_pages_node[i] = 4175 default_hugepages_in_node[i]; 4176 } 4177 } 4178 4179 hugetlb_init_hstates(); 4180 gather_bootmem_prealloc(); 4181 report_hugepages(); 4182 4183 hugetlb_sysfs_init(); 4184 hugetlb_cgroup_file_init(); 4185 hugetlb_sysctl_init(); 4186 4187 #ifdef CONFIG_SMP 4188 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus()); 4189 #else 4190 num_fault_mutexes = 1; 4191 #endif 4192 hugetlb_fault_mutex_table = 4193 kmalloc_array(num_fault_mutexes, sizeof(struct mutex), 4194 GFP_KERNEL); 4195 BUG_ON(!hugetlb_fault_mutex_table); 4196 4197 for (i = 0; i < num_fault_mutexes; i++) 4198 mutex_init(&hugetlb_fault_mutex_table[i]); 4199 return 0; 4200 } 4201 subsys_initcall(hugetlb_init); 4202 4203 /* Overwritten by architectures with more huge page sizes */ 4204 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size) 4205 { 4206 return size == HPAGE_SIZE; 4207 } 4208 4209 void __init hugetlb_add_hstate(unsigned int order) 4210 { 4211 struct hstate *h; 4212 unsigned long i; 4213 4214 if (size_to_hstate(PAGE_SIZE << order)) { 4215 return; 4216 } 4217 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE); 4218 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE)); 4219 WARN_ON(order > MAX_FOLIO_ORDER); 4220 h = &hstates[hugetlb_max_hstate++]; 4221 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key); 4222 h->order = order; 4223 h->mask = ~(huge_page_size(h) - 1); 4224 for (i = 0; i < MAX_NUMNODES; ++i) 4225 INIT_LIST_HEAD(&h->hugepage_freelists[i]); 4226 INIT_LIST_HEAD(&h->hugepage_activelist); 4227 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB", 4228 huge_page_size(h)/SZ_1K); 4229 4230 parsed_hstate = h; 4231 } 4232 4233 bool __init __weak hugetlb_node_alloc_supported(void) 4234 { 4235 return true; 4236 } 4237 4238 static void __init hugepages_clear_pages_in_node(void) 4239 { 4240 if (!hugetlb_max_hstate) { 4241 default_hstate_max_huge_pages = 0; 4242 memset(default_hugepages_in_node, 0, 4243 sizeof(default_hugepages_in_node)); 4244 } else { 4245 parsed_hstate->max_huge_pages = 0; 4246 memset(parsed_hstate->max_huge_pages_node, 0, 4247 sizeof(parsed_hstate->max_huge_pages_node)); 4248 } 4249 } 4250 4251 static __init int hugetlb_add_param(char *s, int (*setup)(char *)) 4252 { 4253 size_t len; 4254 char *p; 4255 4256 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS) 4257 return -EINVAL; 4258 4259 len = strlen(s) + 1; 4260 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf)) 4261 return -EINVAL; 4262 4263 p = &hstate_cmdline_buf[hstate_cmdline_index]; 4264 memcpy(p, s, len); 4265 hstate_cmdline_index += len; 4266 4267 hugetlb_params[hugetlb_param_index].val = p; 4268 hugetlb_params[hugetlb_param_index].setup = setup; 4269 4270 hugetlb_param_index++; 4271 4272 return 0; 4273 } 4274 4275 static __init void hugetlb_parse_params(void) 4276 { 4277 int i; 4278 struct hugetlb_cmdline *hcp; 4279 4280 for (i = 0; i < hugetlb_param_index; i++) { 4281 hcp = &hugetlb_params[i]; 4282 4283 hcp->setup(hcp->val); 4284 } 4285 4286 hugetlb_cma_validate_params(); 4287 } 4288 4289 /* 4290 * hugepages command line processing 4291 * hugepages normally follows a valid hugepagsz or default_hugepagsz 4292 * specification. If not, ignore the hugepages value. hugepages can also 4293 * be the first huge page command line option in which case it implicitly 4294 * specifies the number of huge pages for the default size. 4295 */ 4296 static int __init hugepages_setup(char *s) 4297 { 4298 unsigned long *mhp; 4299 static unsigned long *last_mhp; 4300 int node = NUMA_NO_NODE; 4301 int count; 4302 unsigned long tmp; 4303 char *p = s; 4304 4305 if (!hugepages_supported()) { 4306 pr_warn("HugeTLB: hugepages unsupported, ignoring hugepages=%s cmdline\n", s); 4307 return 0; 4308 } 4309 4310 if (!parsed_valid_hugepagesz) { 4311 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s); 4312 parsed_valid_hugepagesz = true; 4313 return -EINVAL; 4314 } 4315 4316 /* 4317 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter 4318 * yet, so this hugepages= parameter goes to the "default hstate". 4319 * Otherwise, it goes with the previously parsed hugepagesz or 4320 * default_hugepagesz. 4321 */ 4322 else if (!hugetlb_max_hstate) 4323 mhp = &default_hstate_max_huge_pages; 4324 else 4325 mhp = &parsed_hstate->max_huge_pages; 4326 4327 if (mhp == last_mhp) { 4328 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s); 4329 return 1; 4330 } 4331 4332 while (*p) { 4333 count = 0; 4334 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4335 goto invalid; 4336 /* Parameter is node format */ 4337 if (p[count] == ':') { 4338 if (!hugetlb_node_alloc_supported()) { 4339 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n"); 4340 return 1; 4341 } 4342 if (tmp >= MAX_NUMNODES || !node_online(tmp)) 4343 goto invalid; 4344 node = array_index_nospec(tmp, MAX_NUMNODES); 4345 p += count + 1; 4346 /* Parse hugepages */ 4347 if (sscanf(p, "%lu%n", &tmp, &count) != 1) 4348 goto invalid; 4349 if (!hugetlb_max_hstate) 4350 default_hugepages_in_node[node] = tmp; 4351 else 4352 parsed_hstate->max_huge_pages_node[node] = tmp; 4353 *mhp += tmp; 4354 /* Go to parse next node*/ 4355 if (p[count] == ',') 4356 p += count + 1; 4357 else 4358 break; 4359 } else { 4360 if (p != s) 4361 goto invalid; 4362 *mhp = tmp; 4363 break; 4364 } 4365 } 4366 4367 last_mhp = mhp; 4368 4369 return 0; 4370 4371 invalid: 4372 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p); 4373 hugepages_clear_pages_in_node(); 4374 return -EINVAL; 4375 } 4376 hugetlb_early_param("hugepages", hugepages_setup); 4377 4378 /* 4379 * hugepagesz command line processing 4380 * A specific huge page size can only be specified once with hugepagesz. 4381 * hugepagesz is followed by hugepages on the command line. The global 4382 * variable 'parsed_valid_hugepagesz' is used to determine if prior 4383 * hugepagesz argument was valid. 4384 */ 4385 static int __init hugepagesz_setup(char *s) 4386 { 4387 unsigned long size; 4388 struct hstate *h; 4389 4390 if (!hugepages_supported()) { 4391 pr_warn("HugeTLB: hugepages unsupported, ignoring hugepagesz=%s cmdline\n", s); 4392 return 0; 4393 } 4394 4395 parsed_valid_hugepagesz = false; 4396 size = (unsigned long)memparse(s, NULL); 4397 4398 if (!arch_hugetlb_valid_size(size)) { 4399 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s); 4400 return -EINVAL; 4401 } 4402 4403 h = size_to_hstate(size); 4404 if (h) { 4405 /* 4406 * hstate for this size already exists. This is normally 4407 * an error, but is allowed if the existing hstate is the 4408 * default hstate. More specifically, it is only allowed if 4409 * the number of huge pages for the default hstate was not 4410 * previously specified. 4411 */ 4412 if (!parsed_default_hugepagesz || h != &default_hstate || 4413 default_hstate.max_huge_pages) { 4414 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s); 4415 return -EINVAL; 4416 } 4417 4418 /* 4419 * No need to call hugetlb_add_hstate() as hstate already 4420 * exists. But, do set parsed_hstate so that a following 4421 * hugepages= parameter will be applied to this hstate. 4422 */ 4423 parsed_hstate = h; 4424 parsed_valid_hugepagesz = true; 4425 return 0; 4426 } 4427 4428 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4429 parsed_valid_hugepagesz = true; 4430 return 0; 4431 } 4432 hugetlb_early_param("hugepagesz", hugepagesz_setup); 4433 4434 /* 4435 * default_hugepagesz command line input 4436 * Only one instance of default_hugepagesz allowed on command line. 4437 */ 4438 static int __init default_hugepagesz_setup(char *s) 4439 { 4440 unsigned long size; 4441 int i; 4442 4443 if (!hugepages_supported()) { 4444 pr_warn("HugeTLB: hugepages unsupported, ignoring default_hugepagesz=%s cmdline\n", 4445 s); 4446 return 0; 4447 } 4448 4449 parsed_valid_hugepagesz = false; 4450 if (parsed_default_hugepagesz) { 4451 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s); 4452 return -EINVAL; 4453 } 4454 4455 size = (unsigned long)memparse(s, NULL); 4456 4457 if (!arch_hugetlb_valid_size(size)) { 4458 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s); 4459 return -EINVAL; 4460 } 4461 4462 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT); 4463 parsed_valid_hugepagesz = true; 4464 parsed_default_hugepagesz = true; 4465 default_hstate_idx = hstate_index(size_to_hstate(size)); 4466 4467 /* 4468 * The number of default huge pages (for this size) could have been 4469 * specified as the first hugetlb parameter: hugepages=X. If so, 4470 * then default_hstate_max_huge_pages is set. If the default huge 4471 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be 4472 * allocated here from bootmem allocator. 4473 */ 4474 if (default_hstate_max_huge_pages) { 4475 default_hstate.max_huge_pages = default_hstate_max_huge_pages; 4476 /* 4477 * Since this is an early parameter, we can't check 4478 * NUMA node state yet, so loop through MAX_NUMNODES. 4479 */ 4480 for (i = 0; i < MAX_NUMNODES; i++) { 4481 if (default_hugepages_in_node[i] != 0) 4482 default_hstate.max_huge_pages_node[i] = 4483 default_hugepages_in_node[i]; 4484 } 4485 default_hstate_max_huge_pages = 0; 4486 } 4487 4488 return 0; 4489 } 4490 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup); 4491 4492 void __init hugetlb_bootmem_set_nodes(void) 4493 { 4494 int i, nid; 4495 unsigned long start_pfn, end_pfn; 4496 4497 if (!nodes_empty(hugetlb_bootmem_nodes)) 4498 return; 4499 4500 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4501 if (end_pfn > start_pfn) 4502 node_set(nid, hugetlb_bootmem_nodes); 4503 } 4504 } 4505 4506 void __init hugetlb_bootmem_alloc(void) 4507 { 4508 struct hstate *h; 4509 int i; 4510 4511 hugetlb_bootmem_set_nodes(); 4512 4513 for (i = 0; i < MAX_NUMNODES; i++) 4514 INIT_LIST_HEAD(&huge_boot_pages[i]); 4515 4516 hugetlb_parse_params(); 4517 4518 for_each_hstate(h) { 4519 h->next_nid_to_alloc = first_online_node; 4520 4521 if (hstate_is_gigantic(h)) 4522 hugetlb_hstate_alloc_pages(h); 4523 } 4524 } 4525 4526 /* 4527 * hugepage_alloc_threads command line parsing. 4528 * 4529 * When set, use this specific number of threads for the boot 4530 * allocation of hugepages. 4531 */ 4532 static int __init hugepage_alloc_threads_setup(char *s) 4533 { 4534 unsigned long allocation_threads; 4535 4536 if (kstrtoul(s, 0, &allocation_threads) != 0) 4537 return 1; 4538 4539 if (allocation_threads == 0) 4540 return 1; 4541 4542 hugepage_allocation_threads = allocation_threads; 4543 4544 return 1; 4545 } 4546 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup); 4547 4548 static unsigned int allowed_mems_nr(struct hstate *h) 4549 { 4550 int node; 4551 unsigned int nr = 0; 4552 nodemask_t *mbind_nodemask; 4553 unsigned int *array = h->free_huge_pages_node; 4554 gfp_t gfp_mask = htlb_alloc_mask(h); 4555 4556 mbind_nodemask = policy_mbind_nodemask(gfp_mask); 4557 for_each_node_mask(node, cpuset_current_mems_allowed) { 4558 if (!mbind_nodemask || node_isset(node, *mbind_nodemask)) 4559 nr += array[node]; 4560 } 4561 4562 return nr; 4563 } 4564 4565 void hugetlb_report_meminfo(struct seq_file *m) 4566 { 4567 struct hstate *h; 4568 unsigned long total = 0; 4569 4570 if (!hugepages_supported()) 4571 return; 4572 4573 for_each_hstate(h) { 4574 unsigned long count = h->nr_huge_pages; 4575 4576 total += huge_page_size(h) * count; 4577 4578 if (h == &default_hstate) 4579 seq_printf(m, 4580 "HugePages_Total: %5lu\n" 4581 "HugePages_Free: %5lu\n" 4582 "HugePages_Rsvd: %5lu\n" 4583 "HugePages_Surp: %5lu\n" 4584 "Hugepagesize: %8lu kB\n", 4585 count, 4586 h->free_huge_pages, 4587 h->resv_huge_pages, 4588 h->surplus_huge_pages, 4589 huge_page_size(h) / SZ_1K); 4590 } 4591 4592 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K); 4593 } 4594 4595 int hugetlb_report_node_meminfo(char *buf, int len, int nid) 4596 { 4597 struct hstate *h = &default_hstate; 4598 4599 if (!hugepages_supported()) 4600 return 0; 4601 4602 return sysfs_emit_at(buf, len, 4603 "Node %d HugePages_Total: %5u\n" 4604 "Node %d HugePages_Free: %5u\n" 4605 "Node %d HugePages_Surp: %5u\n", 4606 nid, h->nr_huge_pages_node[nid], 4607 nid, h->free_huge_pages_node[nid], 4608 nid, h->surplus_huge_pages_node[nid]); 4609 } 4610 4611 void hugetlb_show_meminfo_node(int nid) 4612 { 4613 struct hstate *h; 4614 4615 if (!hugepages_supported()) 4616 return; 4617 4618 for_each_hstate(h) 4619 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n", 4620 nid, 4621 h->nr_huge_pages_node[nid], 4622 h->free_huge_pages_node[nid], 4623 h->surplus_huge_pages_node[nid], 4624 huge_page_size(h) / SZ_1K); 4625 } 4626 4627 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm) 4628 { 4629 seq_printf(m, "HugetlbPages:\t%8lu kB\n", 4630 K(atomic_long_read(&mm->hugetlb_usage))); 4631 } 4632 4633 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */ 4634 unsigned long hugetlb_total_pages(void) 4635 { 4636 struct hstate *h; 4637 unsigned long nr_total_pages = 0; 4638 4639 for_each_hstate(h) 4640 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h); 4641 return nr_total_pages; 4642 } 4643 4644 static int hugetlb_acct_memory(struct hstate *h, long delta) 4645 { 4646 int ret = -ENOMEM; 4647 4648 if (!delta) 4649 return 0; 4650 4651 spin_lock_irq(&hugetlb_lock); 4652 /* 4653 * When cpuset is configured, it breaks the strict hugetlb page 4654 * reservation as the accounting is done on a global variable. Such 4655 * reservation is completely rubbish in the presence of cpuset because 4656 * the reservation is not checked against page availability for the 4657 * current cpuset. Application can still potentially OOM'ed by kernel 4658 * with lack of free htlb page in cpuset that the task is in. 4659 * Attempt to enforce strict accounting with cpuset is almost 4660 * impossible (or too ugly) because cpuset is too fluid that 4661 * task or memory node can be dynamically moved between cpusets. 4662 * 4663 * The change of semantics for shared hugetlb mapping with cpuset is 4664 * undesirable. However, in order to preserve some of the semantics, 4665 * we fall back to check against current free page availability as 4666 * a best attempt and hopefully to minimize the impact of changing 4667 * semantics that cpuset has. 4668 * 4669 * Apart from cpuset, we also have memory policy mechanism that 4670 * also determines from which node the kernel will allocate memory 4671 * in a NUMA system. So similar to cpuset, we also should consider 4672 * the memory policy of the current task. Similar to the description 4673 * above. 4674 */ 4675 if (delta > 0) { 4676 if (gather_surplus_pages(h, delta) < 0) 4677 goto out; 4678 4679 if (delta > allowed_mems_nr(h)) { 4680 return_unused_surplus_pages(h, delta); 4681 goto out; 4682 } 4683 } 4684 4685 ret = 0; 4686 if (delta < 0) 4687 return_unused_surplus_pages(h, (unsigned long) -delta); 4688 4689 out: 4690 spin_unlock_irq(&hugetlb_lock); 4691 return ret; 4692 } 4693 4694 static void hugetlb_vm_op_open(struct vm_area_struct *vma) 4695 { 4696 struct resv_map *resv = vma_resv_map(vma); 4697 4698 /* 4699 * HPAGE_RESV_OWNER indicates a private mapping. 4700 * This new VMA should share its siblings reservation map if present. 4701 * The VMA will only ever have a valid reservation map pointer where 4702 * it is being copied for another still existing VMA. As that VMA 4703 * has a reference to the reservation map it cannot disappear until 4704 * after this open call completes. It is therefore safe to take a 4705 * new reference here without additional locking. 4706 */ 4707 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { 4708 resv_map_dup_hugetlb_cgroup_uncharge_info(resv); 4709 kref_get(&resv->refs); 4710 } 4711 4712 /* 4713 * vma_lock structure for sharable mappings is vma specific. 4714 * Clear old pointer (if copied via vm_area_dup) and allocate 4715 * new structure. Before clearing, make sure vma_lock is not 4716 * for this vma. 4717 */ 4718 if (vma->vm_flags & VM_MAYSHARE) { 4719 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data; 4720 4721 if (vma_lock) { 4722 if (vma_lock->vma != vma) { 4723 vma->vm_private_data = NULL; 4724 hugetlb_vma_lock_alloc(vma); 4725 } else { 4726 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__); 4727 } 4728 } else { 4729 hugetlb_vma_lock_alloc(vma); 4730 } 4731 } 4732 } 4733 4734 static void hugetlb_vm_op_close(struct vm_area_struct *vma) 4735 { 4736 struct hstate *h = hstate_vma(vma); 4737 struct resv_map *resv; 4738 struct hugepage_subpool *spool = subpool_vma(vma); 4739 unsigned long reserve, start, end; 4740 long gbl_reserve; 4741 4742 hugetlb_vma_lock_free(vma); 4743 4744 resv = vma_resv_map(vma); 4745 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER)) 4746 return; 4747 4748 start = vma_hugecache_offset(h, vma, vma->vm_start); 4749 end = vma_hugecache_offset(h, vma, vma->vm_end); 4750 4751 reserve = (end - start) - region_count(resv, start, end); 4752 hugetlb_cgroup_uncharge_counter(resv, start, end); 4753 if (reserve) { 4754 /* 4755 * Decrement reserve counts. The global reserve count may be 4756 * adjusted if the subpool has a minimum size. 4757 */ 4758 gbl_reserve = hugepage_subpool_put_pages(spool, reserve); 4759 hugetlb_acct_memory(h, -gbl_reserve); 4760 } 4761 4762 kref_put(&resv->refs, resv_map_release); 4763 } 4764 4765 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr) 4766 { 4767 if (addr & ~(huge_page_mask(hstate_vma(vma)))) 4768 return -EINVAL; 4769 return 0; 4770 } 4771 4772 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) 4773 { 4774 /* 4775 * PMD sharing is only possible for PUD_SIZE-aligned address ranges 4776 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this 4777 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now. 4778 * This function is called in the middle of a VMA split operation, with 4779 * MM, VMA and rmap all write-locked to prevent concurrent page table 4780 * walks (except hardware and gup_fast()). 4781 */ 4782 vma_assert_write_locked(vma); 4783 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 4784 4785 if (addr & ~PUD_MASK) { 4786 unsigned long floor = addr & PUD_MASK; 4787 unsigned long ceil = floor + PUD_SIZE; 4788 4789 if (floor >= vma->vm_start && ceil <= vma->vm_end) { 4790 /* 4791 * Locking: 4792 * Use take_locks=false here. 4793 * The file rmap lock is already held. 4794 * The hugetlb VMA lock can't be taken when we already 4795 * hold the file rmap lock, and we don't need it because 4796 * its purpose is to synchronize against concurrent page 4797 * table walks, which are not possible thanks to the 4798 * locks held by our caller. 4799 */ 4800 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false); 4801 } 4802 } 4803 } 4804 4805 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma) 4806 { 4807 return huge_page_size(hstate_vma(vma)); 4808 } 4809 4810 /* 4811 * We cannot handle pagefaults against hugetlb pages at all. They cause 4812 * handle_mm_fault() to try to instantiate regular-sized pages in the 4813 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get 4814 * this far. 4815 */ 4816 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf) 4817 { 4818 BUG(); 4819 return 0; 4820 } 4821 4822 /* 4823 * When a new function is introduced to vm_operations_struct and added 4824 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops. 4825 * This is because under System V memory model, mappings created via 4826 * shmget/shmat with "huge page" specified are backed by hugetlbfs files, 4827 * their original vm_ops are overwritten with shm_vm_ops. 4828 */ 4829 const struct vm_operations_struct hugetlb_vm_ops = { 4830 .fault = hugetlb_vm_op_fault, 4831 .open = hugetlb_vm_op_open, 4832 .close = hugetlb_vm_op_close, 4833 .may_split = hugetlb_vm_op_split, 4834 .pagesize = hugetlb_vm_op_pagesize, 4835 }; 4836 4837 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio, 4838 bool try_mkwrite) 4839 { 4840 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot); 4841 unsigned int shift = huge_page_shift(hstate_vma(vma)); 4842 4843 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) { 4844 entry = pte_mkwrite_novma(pte_mkdirty(entry)); 4845 } else { 4846 entry = pte_wrprotect(entry); 4847 } 4848 entry = pte_mkyoung(entry); 4849 entry = arch_make_huge_pte(entry, shift, vma->vm_flags); 4850 4851 return entry; 4852 } 4853 4854 static void set_huge_ptep_writable(struct vm_area_struct *vma, 4855 unsigned long address, pte_t *ptep) 4856 { 4857 pte_t entry; 4858 4859 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep))); 4860 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) 4861 update_mmu_cache(vma, address, ptep); 4862 } 4863 4864 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma, 4865 unsigned long address, pte_t *ptep) 4866 { 4867 if (vma->vm_flags & VM_WRITE) 4868 set_huge_ptep_writable(vma, address, ptep); 4869 } 4870 4871 static void 4872 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr, 4873 struct folio *new_folio, pte_t old, unsigned long sz) 4874 { 4875 pte_t newpte = make_huge_pte(vma, new_folio, true); 4876 4877 __folio_mark_uptodate(new_folio); 4878 hugetlb_add_new_anon_rmap(new_folio, vma, addr); 4879 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old)) 4880 newpte = huge_pte_mkuffd_wp(newpte); 4881 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz); 4882 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm); 4883 folio_set_hugetlb_migratable(new_folio); 4884 } 4885 4886 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, 4887 struct vm_area_struct *dst_vma, 4888 struct vm_area_struct *src_vma) 4889 { 4890 pte_t *src_pte, *dst_pte, entry; 4891 struct folio *pte_folio; 4892 unsigned long addr; 4893 bool cow = is_cow_mapping(src_vma->vm_flags); 4894 struct hstate *h = hstate_vma(src_vma); 4895 unsigned long sz = huge_page_size(h); 4896 unsigned long npages = pages_per_huge_page(h); 4897 struct mmu_notifier_range range; 4898 unsigned long last_addr_mask; 4899 softleaf_t softleaf; 4900 int ret = 0; 4901 4902 if (cow) { 4903 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src, 4904 src_vma->vm_start, 4905 src_vma->vm_end); 4906 mmu_notifier_invalidate_range_start(&range); 4907 vma_assert_write_locked(src_vma); 4908 raw_write_seqcount_begin(&src->write_protect_seq); 4909 } else { 4910 /* 4911 * For shared mappings the vma lock must be held before 4912 * calling hugetlb_walk() in the src vma. Otherwise, the 4913 * returned ptep could go away if part of a shared pmd and 4914 * another thread calls huge_pmd_unshare. 4915 */ 4916 hugetlb_vma_lock_read(src_vma); 4917 } 4918 4919 last_addr_mask = hugetlb_mask_last_page(h); 4920 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) { 4921 spinlock_t *src_ptl, *dst_ptl; 4922 src_pte = hugetlb_walk(src_vma, addr, sz); 4923 if (!src_pte) { 4924 addr |= last_addr_mask; 4925 continue; 4926 } 4927 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz); 4928 if (!dst_pte) { 4929 ret = -ENOMEM; 4930 break; 4931 } 4932 4933 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 4934 /* If the pagetables are shared, there is nothing to do */ 4935 if (ptdesc_pmd_is_shared(virt_to_ptdesc(dst_pte))) { 4936 addr |= last_addr_mask; 4937 continue; 4938 } 4939 #endif 4940 4941 dst_ptl = huge_pte_lock(h, dst, dst_pte); 4942 src_ptl = huge_pte_lockptr(h, src, src_pte); 4943 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 4944 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 4945 again: 4946 if (huge_pte_none(entry)) { 4947 /* Skip if src entry none. */ 4948 goto next; 4949 } 4950 4951 softleaf = softleaf_from_pte(entry); 4952 if (unlikely(softleaf_is_hwpoison(softleaf))) { 4953 if (!userfaultfd_wp(dst_vma)) 4954 entry = huge_pte_clear_uffd_wp(entry); 4955 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 4956 } else if (unlikely(softleaf_is_migration(softleaf))) { 4957 bool uffd_wp = pte_swp_uffd_wp(entry); 4958 4959 if (!softleaf_is_migration_read(softleaf) && cow) { 4960 /* 4961 * COW mappings require pages in both 4962 * parent and child to be set to read. 4963 */ 4964 softleaf = make_readable_migration_entry( 4965 swp_offset(softleaf)); 4966 entry = swp_entry_to_pte(softleaf); 4967 if (userfaultfd_wp(src_vma) && uffd_wp) 4968 entry = pte_swp_mkuffd_wp(entry); 4969 set_huge_pte_at(src, addr, src_pte, entry, sz); 4970 } 4971 if (!userfaultfd_wp(dst_vma)) 4972 entry = huge_pte_clear_uffd_wp(entry); 4973 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 4974 } else if (unlikely(pte_is_marker(entry))) { 4975 const pte_marker marker = copy_pte_marker(softleaf, dst_vma); 4976 4977 if (marker) 4978 set_huge_pte_at(dst, addr, dst_pte, 4979 make_pte_marker(marker), sz); 4980 } else { 4981 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 4982 pte_folio = page_folio(pte_page(entry)); 4983 folio_get(pte_folio); 4984 4985 /* 4986 * Failing to duplicate the anon rmap is a rare case 4987 * where we see pinned hugetlb pages while they're 4988 * prone to COW. We need to do the COW earlier during 4989 * fork. 4990 * 4991 * When pre-allocating the page or copying data, we 4992 * need to be without the pgtable locks since we could 4993 * sleep during the process. 4994 */ 4995 if (!folio_test_anon(pte_folio)) { 4996 hugetlb_add_file_rmap(pte_folio); 4997 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) { 4998 pte_t src_pte_old = entry; 4999 struct folio *new_folio; 5000 5001 spin_unlock(src_ptl); 5002 spin_unlock(dst_ptl); 5003 /* Do not use reserve as it's private owned */ 5004 new_folio = alloc_hugetlb_folio(dst_vma, addr, false); 5005 if (IS_ERR(new_folio)) { 5006 folio_put(pte_folio); 5007 ret = PTR_ERR(new_folio); 5008 break; 5009 } 5010 ret = copy_user_large_folio(new_folio, pte_folio, 5011 addr, dst_vma); 5012 folio_put(pte_folio); 5013 if (ret) { 5014 folio_put(new_folio); 5015 break; 5016 } 5017 5018 /* Install the new hugetlb folio if src pte stable */ 5019 dst_ptl = huge_pte_lock(h, dst, dst_pte); 5020 src_ptl = huge_pte_lockptr(h, src, src_pte); 5021 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5022 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte); 5023 if (!pte_same(src_pte_old, entry)) { 5024 restore_reserve_on_error(h, dst_vma, addr, 5025 new_folio); 5026 folio_put(new_folio); 5027 /* huge_ptep of dst_pte won't change as in child */ 5028 goto again; 5029 } 5030 hugetlb_install_folio(dst_vma, dst_pte, addr, 5031 new_folio, src_pte_old, sz); 5032 goto next; 5033 } 5034 5035 if (cow) { 5036 /* 5037 * No need to notify as we are downgrading page 5038 * table protection not changing it to point 5039 * to a new page. 5040 * 5041 * See Documentation/mm/mmu_notifier.rst 5042 */ 5043 huge_ptep_set_wrprotect(src, addr, src_pte); 5044 entry = huge_pte_wrprotect(entry); 5045 } 5046 5047 if (!userfaultfd_wp(dst_vma)) 5048 entry = huge_pte_clear_uffd_wp(entry); 5049 5050 set_huge_pte_at(dst, addr, dst_pte, entry, sz); 5051 hugetlb_count_add(npages, dst); 5052 } 5053 5054 next: 5055 spin_unlock(src_ptl); 5056 spin_unlock(dst_ptl); 5057 } 5058 5059 if (cow) { 5060 raw_write_seqcount_end(&src->write_protect_seq); 5061 mmu_notifier_invalidate_range_end(&range); 5062 } else { 5063 hugetlb_vma_unlock_read(src_vma); 5064 } 5065 5066 return ret; 5067 } 5068 5069 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr, 5070 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte, 5071 unsigned long sz) 5072 { 5073 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma); 5074 struct hstate *h = hstate_vma(vma); 5075 struct mm_struct *mm = vma->vm_mm; 5076 spinlock_t *src_ptl, *dst_ptl; 5077 pte_t pte; 5078 5079 dst_ptl = huge_pte_lock(h, mm, dst_pte); 5080 src_ptl = huge_pte_lockptr(h, mm, src_pte); 5081 5082 /* 5083 * We don't have to worry about the ordering of src and dst ptlocks 5084 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock. 5085 */ 5086 if (src_ptl != dst_ptl) 5087 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 5088 5089 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz); 5090 5091 if (need_clear_uffd_wp && pte_is_uffd_wp_marker(pte)) { 5092 huge_pte_clear(mm, new_addr, dst_pte, sz); 5093 } else { 5094 if (need_clear_uffd_wp) { 5095 if (pte_present(pte)) 5096 pte = huge_pte_clear_uffd_wp(pte); 5097 else 5098 pte = pte_swp_clear_uffd_wp(pte); 5099 } 5100 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz); 5101 } 5102 5103 if (src_ptl != dst_ptl) 5104 spin_unlock(src_ptl); 5105 spin_unlock(dst_ptl); 5106 } 5107 5108 int move_hugetlb_page_tables(struct vm_area_struct *vma, 5109 struct vm_area_struct *new_vma, 5110 unsigned long old_addr, unsigned long new_addr, 5111 unsigned long len) 5112 { 5113 struct hstate *h = hstate_vma(vma); 5114 struct address_space *mapping = vma->vm_file->f_mapping; 5115 unsigned long sz = huge_page_size(h); 5116 struct mm_struct *mm = vma->vm_mm; 5117 unsigned long old_end = old_addr + len; 5118 unsigned long last_addr_mask; 5119 pte_t *src_pte, *dst_pte; 5120 struct mmu_notifier_range range; 5121 struct mmu_gather tlb; 5122 5123 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr, 5124 old_end); 5125 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5126 /* 5127 * In case of shared PMDs, we should cover the maximum possible 5128 * range. 5129 */ 5130 flush_cache_range(vma, range.start, range.end); 5131 tlb_gather_mmu_vma(&tlb, vma); 5132 5133 mmu_notifier_invalidate_range_start(&range); 5134 last_addr_mask = hugetlb_mask_last_page(h); 5135 /* Prevent race with file truncation */ 5136 hugetlb_vma_lock_write(vma); 5137 i_mmap_lock_write(mapping); 5138 for (; old_addr < old_end; old_addr += sz, new_addr += sz) { 5139 src_pte = hugetlb_walk(vma, old_addr, sz); 5140 if (!src_pte) { 5141 old_addr |= last_addr_mask; 5142 new_addr |= last_addr_mask; 5143 continue; 5144 } 5145 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte))) 5146 continue; 5147 5148 if (huge_pmd_unshare(&tlb, vma, old_addr, src_pte)) { 5149 old_addr |= last_addr_mask; 5150 new_addr |= last_addr_mask; 5151 continue; 5152 } 5153 5154 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz); 5155 if (!dst_pte) 5156 break; 5157 5158 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz); 5159 tlb_remove_huge_tlb_entry(h, &tlb, src_pte, old_addr); 5160 } 5161 5162 tlb_flush_mmu_tlbonly(&tlb); 5163 huge_pmd_unshare_flush(&tlb, vma); 5164 5165 mmu_notifier_invalidate_range_end(&range); 5166 i_mmap_unlock_write(mapping); 5167 hugetlb_vma_unlock_write(vma); 5168 tlb_finish_mmu(&tlb); 5169 5170 return len + old_addr - old_end; 5171 } 5172 5173 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma, 5174 unsigned long start, unsigned long end, 5175 struct folio *folio, zap_flags_t zap_flags) 5176 { 5177 struct mm_struct *mm = vma->vm_mm; 5178 const bool folio_provided = !!folio; 5179 unsigned long address; 5180 pte_t *ptep; 5181 pte_t pte; 5182 spinlock_t *ptl; 5183 struct hstate *h = hstate_vma(vma); 5184 unsigned long sz = huge_page_size(h); 5185 bool adjust_reservation; 5186 unsigned long last_addr_mask; 5187 5188 WARN_ON(!is_vm_hugetlb_page(vma)); 5189 BUG_ON(start & ~huge_page_mask(h)); 5190 BUG_ON(end & ~huge_page_mask(h)); 5191 5192 /* 5193 * This is a hugetlb vma, all the pte entries should point 5194 * to huge page. 5195 */ 5196 tlb_change_page_size(tlb, sz); 5197 tlb_start_vma(tlb, vma); 5198 5199 last_addr_mask = hugetlb_mask_last_page(h); 5200 address = start; 5201 for (; address < end; address += sz) { 5202 ptep = hugetlb_walk(vma, address, sz); 5203 if (!ptep) { 5204 address |= last_addr_mask; 5205 continue; 5206 } 5207 5208 ptl = huge_pte_lock(h, mm, ptep); 5209 if (huge_pmd_unshare(tlb, vma, address, ptep)) { 5210 spin_unlock(ptl); 5211 address |= last_addr_mask; 5212 continue; 5213 } 5214 5215 pte = huge_ptep_get(mm, address, ptep); 5216 if (huge_pte_none(pte)) { 5217 spin_unlock(ptl); 5218 continue; 5219 } 5220 5221 /* 5222 * Migrating hugepage or HWPoisoned hugepage is already 5223 * unmapped and its refcount is dropped, so just clear pte here. 5224 */ 5225 if (unlikely(!pte_present(pte))) { 5226 /* 5227 * If the pte was wr-protected by uffd-wp in any of the 5228 * swap forms, meanwhile the caller does not want to 5229 * drop the uffd-wp bit in this zap, then replace the 5230 * pte with a marker. 5231 */ 5232 if (pte_swp_uffd_wp_any(pte) && 5233 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5234 set_huge_pte_at(mm, address, ptep, 5235 make_pte_marker(PTE_MARKER_UFFD_WP), 5236 sz); 5237 else 5238 huge_pte_clear(mm, address, ptep, sz); 5239 spin_unlock(ptl); 5240 continue; 5241 } 5242 5243 /* 5244 * If a folio is supplied, it is because a specific 5245 * folio is being unmapped, not a range. Ensure the folio we 5246 * are about to unmap is the actual folio of interest. 5247 */ 5248 if (folio_provided) { 5249 if (folio != page_folio(pte_page(pte))) { 5250 spin_unlock(ptl); 5251 continue; 5252 } 5253 /* 5254 * Mark the VMA as having unmapped its page so that 5255 * future faults in this VMA will fail rather than 5256 * looking like data was lost 5257 */ 5258 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED); 5259 } else { 5260 folio = page_folio(pte_page(pte)); 5261 } 5262 5263 pte = huge_ptep_get_and_clear(mm, address, ptep, sz); 5264 tlb_remove_huge_tlb_entry(h, tlb, ptep, address); 5265 if (huge_pte_dirty(pte)) 5266 folio_mark_dirty(folio); 5267 /* Leave a uffd-wp pte marker if needed */ 5268 if (huge_pte_uffd_wp(pte) && 5269 !(zap_flags & ZAP_FLAG_DROP_MARKER)) 5270 set_huge_pte_at(mm, address, ptep, 5271 make_pte_marker(PTE_MARKER_UFFD_WP), 5272 sz); 5273 hugetlb_count_sub(pages_per_huge_page(h), mm); 5274 hugetlb_remove_rmap(folio); 5275 spin_unlock(ptl); 5276 5277 /* 5278 * Restore the reservation for anonymous page, otherwise the 5279 * backing page could be stolen by someone. 5280 * If there we are freeing a surplus, do not set the restore 5281 * reservation bit. 5282 */ 5283 adjust_reservation = false; 5284 5285 spin_lock_irq(&hugetlb_lock); 5286 if (!h->surplus_huge_pages && __vma_private_lock(vma) && 5287 folio_test_anon(folio)) { 5288 folio_set_hugetlb_restore_reserve(folio); 5289 /* Reservation to be adjusted after the spin lock */ 5290 adjust_reservation = true; 5291 } 5292 spin_unlock_irq(&hugetlb_lock); 5293 5294 /* 5295 * Adjust the reservation for the region that will have the 5296 * reserve restored. Keep in mind that vma_needs_reservation() changes 5297 * resv->adds_in_progress if it succeeds. If this is not done, 5298 * do_exit() will not see it, and will keep the reservation 5299 * forever. 5300 */ 5301 if (adjust_reservation) { 5302 int rc = vma_needs_reservation(h, vma, address); 5303 5304 if (rc < 0) 5305 /* Pressumably allocate_file_region_entries failed 5306 * to allocate a file_region struct. Clear 5307 * hugetlb_restore_reserve so that global reserve 5308 * count will not be incremented by free_huge_folio. 5309 * Act as if we consumed the reservation. 5310 */ 5311 folio_clear_hugetlb_restore_reserve(folio); 5312 else if (rc) 5313 vma_add_reservation(h, vma, address); 5314 } 5315 5316 tlb_remove_page_size(tlb, folio_page(folio, 0), 5317 folio_size(folio)); 5318 /* 5319 * If we were instructed to unmap a specific folio, we're done. 5320 */ 5321 if (folio_provided) 5322 break; 5323 } 5324 tlb_end_vma(tlb, vma); 5325 5326 huge_pmd_unshare_flush(tlb, vma); 5327 } 5328 5329 void __hugetlb_zap_begin(struct vm_area_struct *vma, 5330 unsigned long *start, unsigned long *end) 5331 { 5332 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5333 return; 5334 5335 adjust_range_if_pmd_sharing_possible(vma, start, end); 5336 hugetlb_vma_lock_write(vma); 5337 if (vma->vm_file) 5338 i_mmap_lock_write(vma->vm_file->f_mapping); 5339 } 5340 5341 void __hugetlb_zap_end(struct vm_area_struct *vma, 5342 struct zap_details *details) 5343 { 5344 zap_flags_t zap_flags = details ? details->zap_flags : 0; 5345 5346 if (!vma->vm_file) /* hugetlbfs_file_mmap error */ 5347 return; 5348 5349 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */ 5350 /* 5351 * Unlock and free the vma lock before releasing i_mmap_rwsem. 5352 * When the vma_lock is freed, this makes the vma ineligible 5353 * for pmd sharing. And, i_mmap_rwsem is required to set up 5354 * pmd sharing. This is important as page tables for this 5355 * unmapped range will be asynchrously deleted. If the page 5356 * tables are shared, there will be issues when accessed by 5357 * someone else. 5358 */ 5359 __hugetlb_vma_unlock_write_free(vma); 5360 } else { 5361 hugetlb_vma_unlock_write(vma); 5362 } 5363 5364 if (vma->vm_file) 5365 i_mmap_unlock_write(vma->vm_file->f_mapping); 5366 } 5367 5368 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, 5369 unsigned long end, struct folio *folio, 5370 zap_flags_t zap_flags) 5371 { 5372 struct mmu_notifier_range range; 5373 struct mmu_gather tlb; 5374 5375 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 5376 start, end); 5377 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 5378 mmu_notifier_invalidate_range_start(&range); 5379 tlb_gather_mmu(&tlb, vma->vm_mm); 5380 5381 __unmap_hugepage_range(&tlb, vma, start, end, 5382 folio, zap_flags); 5383 5384 mmu_notifier_invalidate_range_end(&range); 5385 tlb_finish_mmu(&tlb); 5386 } 5387 5388 /* 5389 * This is called when the original mapper is failing to COW a MAP_PRIVATE 5390 * mapping it owns the reserve page for. The intention is to unmap the page 5391 * from other VMAs and let the children be SIGKILLed if they are faulting the 5392 * same region. 5393 */ 5394 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma, 5395 struct folio *folio, unsigned long address) 5396 { 5397 struct hstate *h = hstate_vma(vma); 5398 struct vm_area_struct *iter_vma; 5399 struct address_space *mapping; 5400 pgoff_t pgoff; 5401 5402 /* 5403 * vm_pgoff is in PAGE_SIZE units, hence the different calculation 5404 * from page cache lookup which is in HPAGE_SIZE units. 5405 */ 5406 address = address & huge_page_mask(h); 5407 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + 5408 vma->vm_pgoff; 5409 mapping = vma->vm_file->f_mapping; 5410 5411 /* 5412 * Take the mapping lock for the duration of the table walk. As 5413 * this mapping should be shared between all the VMAs, 5414 * __unmap_hugepage_range() is called as the lock is already held 5415 */ 5416 i_mmap_lock_write(mapping); 5417 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) { 5418 /* Do not unmap the current VMA */ 5419 if (iter_vma == vma) 5420 continue; 5421 5422 /* 5423 * Shared VMAs have their own reserves and do not affect 5424 * MAP_PRIVATE accounting but it is possible that a shared 5425 * VMA is using the same page so check and skip such VMAs. 5426 */ 5427 if (iter_vma->vm_flags & VM_MAYSHARE) 5428 continue; 5429 5430 /* 5431 * Unmap the page from other VMAs without their own reserves. 5432 * They get marked to be SIGKILLed if they fault in these 5433 * areas. This is because a future no-page fault on this VMA 5434 * could insert a zeroed page instead of the data existing 5435 * from the time of fork. This would look like data corruption 5436 */ 5437 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER)) 5438 unmap_hugepage_range(iter_vma, address, 5439 address + huge_page_size(h), 5440 folio, 0); 5441 } 5442 i_mmap_unlock_write(mapping); 5443 } 5444 5445 /* 5446 * hugetlb_wp() should be called with page lock of the original hugepage held. 5447 * Called with hugetlb_fault_mutex_table held and pte_page locked so we 5448 * cannot race with other handlers or page migration. 5449 * Keep the pte_same checks anyway to make transition from the mutex easier. 5450 */ 5451 static vm_fault_t hugetlb_wp(struct vm_fault *vmf) 5452 { 5453 struct vm_area_struct *vma = vmf->vma; 5454 struct mm_struct *mm = vma->vm_mm; 5455 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5456 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte); 5457 struct hstate *h = hstate_vma(vma); 5458 struct folio *old_folio; 5459 struct folio *new_folio; 5460 bool cow_from_owner = 0; 5461 vm_fault_t ret = 0; 5462 struct mmu_notifier_range range; 5463 5464 /* 5465 * Never handle CoW for uffd-wp protected pages. It should be only 5466 * handled when the uffd-wp protection is removed. 5467 * 5468 * Note that only the CoW optimization path (in hugetlb_no_page()) 5469 * can trigger this, because hugetlb_fault() will always resolve 5470 * uffd-wp bit first. 5471 */ 5472 if (!unshare && huge_pte_uffd_wp(pte)) 5473 return 0; 5474 5475 /* Let's take out MAP_SHARED mappings first. */ 5476 if (vma->vm_flags & VM_MAYSHARE) { 5477 set_huge_ptep_writable(vma, vmf->address, vmf->pte); 5478 return 0; 5479 } 5480 5481 old_folio = page_folio(pte_page(pte)); 5482 5483 delayacct_wpcopy_start(); 5484 5485 retry_avoidcopy: 5486 /* 5487 * If no-one else is actually using this page, we're the exclusive 5488 * owner and can reuse this page. 5489 * 5490 * Note that we don't rely on the (safer) folio refcount here, because 5491 * copying the hugetlb folio when there are unexpected (temporary) 5492 * folio references could harm simple fork()+exit() users when 5493 * we run out of free hugetlb folios: we would have to kill processes 5494 * in scenarios that used to work. As a side effect, there can still 5495 * be leaks between processes, for example, with FOLL_GET users. 5496 */ 5497 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) { 5498 if (!PageAnonExclusive(&old_folio->page)) { 5499 folio_move_anon_rmap(old_folio, vma); 5500 SetPageAnonExclusive(&old_folio->page); 5501 } 5502 if (likely(!unshare)) 5503 set_huge_ptep_maybe_writable(vma, vmf->address, 5504 vmf->pte); 5505 5506 delayacct_wpcopy_end(); 5507 return 0; 5508 } 5509 VM_BUG_ON_PAGE(folio_test_anon(old_folio) && 5510 PageAnonExclusive(&old_folio->page), &old_folio->page); 5511 5512 /* 5513 * If the process that created a MAP_PRIVATE mapping is about to perform 5514 * a COW due to a shared page count, attempt to satisfy the allocation 5515 * without using the existing reserves. 5516 * In order to determine where this is a COW on a MAP_PRIVATE mapping it 5517 * is enough to check whether the old_folio is anonymous. This means that 5518 * the reserve for this address was consumed. If reserves were used, a 5519 * partial faulted mapping at the fime of fork() could consume its reserves 5520 * on COW instead of the full address range. 5521 */ 5522 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && 5523 folio_test_anon(old_folio)) 5524 cow_from_owner = true; 5525 5526 folio_get(old_folio); 5527 5528 /* 5529 * Drop page table lock as buddy allocator may be called. It will 5530 * be acquired again before returning to the caller, as expected. 5531 */ 5532 spin_unlock(vmf->ptl); 5533 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner); 5534 5535 if (IS_ERR(new_folio)) { 5536 /* 5537 * If a process owning a MAP_PRIVATE mapping fails to COW, 5538 * it is due to references held by a child and an insufficient 5539 * huge page pool. To guarantee the original mappers 5540 * reliability, unmap the page from child processes. The child 5541 * may get SIGKILLed if it later faults. 5542 */ 5543 if (cow_from_owner) { 5544 struct address_space *mapping = vma->vm_file->f_mapping; 5545 pgoff_t idx; 5546 u32 hash; 5547 5548 folio_put(old_folio); 5549 /* 5550 * Drop hugetlb_fault_mutex and vma_lock before 5551 * unmapping. unmapping needs to hold vma_lock 5552 * in write mode. Dropping vma_lock in read mode 5553 * here is OK as COW mappings do not interact with 5554 * PMD sharing. 5555 * 5556 * Reacquire both after unmap operation. 5557 */ 5558 idx = vma_hugecache_offset(h, vma, vmf->address); 5559 hash = hugetlb_fault_mutex_hash(mapping, idx); 5560 hugetlb_vma_unlock_read(vma); 5561 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5562 5563 unmap_ref_private(mm, vma, old_folio, vmf->address); 5564 5565 mutex_lock(&hugetlb_fault_mutex_table[hash]); 5566 hugetlb_vma_lock_read(vma); 5567 spin_lock(vmf->ptl); 5568 vmf->pte = hugetlb_walk(vma, vmf->address, 5569 huge_page_size(h)); 5570 if (likely(vmf->pte && 5571 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) 5572 goto retry_avoidcopy; 5573 /* 5574 * race occurs while re-acquiring page table 5575 * lock, and our job is done. 5576 */ 5577 delayacct_wpcopy_end(); 5578 return 0; 5579 } 5580 5581 ret = vmf_error(PTR_ERR(new_folio)); 5582 goto out_release_old; 5583 } 5584 5585 /* 5586 * When the original hugepage is shared one, it does not have 5587 * anon_vma prepared. 5588 */ 5589 ret = __vmf_anon_prepare(vmf); 5590 if (unlikely(ret)) 5591 goto out_release_all; 5592 5593 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) { 5594 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h)); 5595 goto out_release_all; 5596 } 5597 __folio_mark_uptodate(new_folio); 5598 5599 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address, 5600 vmf->address + huge_page_size(h)); 5601 mmu_notifier_invalidate_range_start(&range); 5602 5603 /* 5604 * Retake the page table lock to check for racing updates 5605 * before the page tables are altered 5606 */ 5607 spin_lock(vmf->ptl); 5608 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h)); 5609 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) { 5610 pte_t newpte = make_huge_pte(vma, new_folio, !unshare); 5611 5612 /* Break COW or unshare */ 5613 huge_ptep_clear_flush(vma, vmf->address, vmf->pte); 5614 hugetlb_remove_rmap(old_folio); 5615 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address); 5616 if (huge_pte_uffd_wp(pte)) 5617 newpte = huge_pte_mkuffd_wp(newpte); 5618 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte, 5619 huge_page_size(h)); 5620 folio_set_hugetlb_migratable(new_folio); 5621 /* Make the old page be freed below */ 5622 new_folio = old_folio; 5623 } 5624 spin_unlock(vmf->ptl); 5625 mmu_notifier_invalidate_range_end(&range); 5626 out_release_all: 5627 /* 5628 * No restore in case of successful pagetable update (Break COW or 5629 * unshare) 5630 */ 5631 if (new_folio != old_folio) 5632 restore_reserve_on_error(h, vma, vmf->address, new_folio); 5633 folio_put(new_folio); 5634 out_release_old: 5635 folio_put(old_folio); 5636 5637 spin_lock(vmf->ptl); /* Caller expects lock to be held */ 5638 5639 delayacct_wpcopy_end(); 5640 return ret; 5641 } 5642 5643 /* 5644 * Return whether there is a pagecache page to back given address within VMA. 5645 */ 5646 bool hugetlbfs_pagecache_present(struct hstate *h, 5647 struct vm_area_struct *vma, unsigned long address) 5648 { 5649 struct address_space *mapping = vma->vm_file->f_mapping; 5650 pgoff_t idx = linear_page_index(vma, address); 5651 struct folio *folio; 5652 5653 folio = filemap_get_folio(mapping, idx); 5654 if (IS_ERR(folio)) 5655 return false; 5656 folio_put(folio); 5657 return true; 5658 } 5659 5660 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping, 5661 pgoff_t idx) 5662 { 5663 struct inode *inode = mapping->host; 5664 struct hstate *h = hstate_inode(inode); 5665 int err; 5666 5667 idx <<= huge_page_order(h); 5668 __folio_set_locked(folio); 5669 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL); 5670 5671 if (unlikely(err)) { 5672 __folio_clear_locked(folio); 5673 return err; 5674 } 5675 folio_clear_hugetlb_restore_reserve(folio); 5676 5677 /* 5678 * mark folio dirty so that it will not be removed from cache/file 5679 * by non-hugetlbfs specific code paths. 5680 */ 5681 folio_mark_dirty(folio); 5682 5683 spin_lock(&inode->i_lock); 5684 inode->i_blocks += blocks_per_huge_page(h); 5685 spin_unlock(&inode->i_lock); 5686 return 0; 5687 } 5688 5689 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf, 5690 struct address_space *mapping, 5691 unsigned long reason) 5692 { 5693 u32 hash; 5694 5695 /* 5696 * vma_lock and hugetlb_fault_mutex must be dropped before handling 5697 * userfault. Also mmap_lock could be dropped due to handling 5698 * userfault, any vma operation should be careful from here. 5699 */ 5700 hugetlb_vma_unlock_read(vmf->vma); 5701 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 5702 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5703 return handle_userfault(vmf, reason); 5704 } 5705 5706 /* 5707 * Recheck pte with pgtable lock. Returns true if pte didn't change, or 5708 * false if pte changed or is changing. 5709 */ 5710 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr, 5711 pte_t *ptep, pte_t old_pte) 5712 { 5713 spinlock_t *ptl; 5714 bool same; 5715 5716 ptl = huge_pte_lock(h, mm, ptep); 5717 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte); 5718 spin_unlock(ptl); 5719 5720 return same; 5721 } 5722 5723 static vm_fault_t hugetlb_no_page(struct address_space *mapping, 5724 struct vm_fault *vmf) 5725 { 5726 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff); 5727 bool new_folio, new_anon_folio = false; 5728 struct vm_area_struct *vma = vmf->vma; 5729 struct mm_struct *mm = vma->vm_mm; 5730 struct hstate *h = hstate_vma(vma); 5731 vm_fault_t ret = VM_FAULT_SIGBUS; 5732 bool folio_locked = true; 5733 struct folio *folio; 5734 unsigned long size; 5735 pte_t new_pte; 5736 5737 /* 5738 * Currently, we are forced to kill the process in the event the 5739 * original mapper has unmapped pages from the child due to a failed 5740 * COW/unsharing. Warn that such a situation has occurred as it may not 5741 * be obvious. 5742 */ 5743 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) { 5744 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n", 5745 current->pid); 5746 goto out; 5747 } 5748 5749 /* 5750 * Use page lock to guard against racing truncation 5751 * before we get page_table_lock. 5752 */ 5753 new_folio = false; 5754 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff); 5755 if (IS_ERR(folio)) { 5756 size = i_size_read(mapping->host) >> huge_page_shift(h); 5757 if (vmf->pgoff >= size) 5758 goto out; 5759 /* Check for page in userfault range */ 5760 if (userfaultfd_missing(vma)) { 5761 /* 5762 * Since hugetlb_no_page() was examining pte 5763 * without pgtable lock, we need to re-test under 5764 * lock because the pte may not be stable and could 5765 * have changed from under us. Try to detect 5766 * either changed or during-changing ptes and retry 5767 * properly when needed. 5768 * 5769 * Note that userfaultfd is actually fine with 5770 * false positives (e.g. caused by pte changed), 5771 * but not wrong logical events (e.g. caused by 5772 * reading a pte during changing). The latter can 5773 * confuse the userspace, so the strictness is very 5774 * much preferred. E.g., MISSING event should 5775 * never happen on the page after UFFDIO_COPY has 5776 * correctly installed the page and returned. 5777 */ 5778 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 5779 ret = 0; 5780 goto out; 5781 } 5782 5783 return hugetlb_handle_userfault(vmf, mapping, 5784 VM_UFFD_MISSING); 5785 } 5786 5787 if (!(vma->vm_flags & VM_MAYSHARE)) { 5788 ret = __vmf_anon_prepare(vmf); 5789 if (unlikely(ret)) 5790 goto out; 5791 } 5792 5793 folio = alloc_hugetlb_folio(vma, vmf->address, false); 5794 if (IS_ERR(folio)) { 5795 /* 5796 * Returning error will result in faulting task being 5797 * sent SIGBUS. The hugetlb fault mutex prevents two 5798 * tasks from racing to fault in the same page which 5799 * could result in false unable to allocate errors. 5800 * Page migration does not take the fault mutex, but 5801 * does a clear then write of pte's under page table 5802 * lock. Page fault code could race with migration, 5803 * notice the clear pte and try to allocate a page 5804 * here. Before returning error, get ptl and make 5805 * sure there really is no pte entry. 5806 */ 5807 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) 5808 ret = vmf_error(PTR_ERR(folio)); 5809 else 5810 ret = 0; 5811 goto out; 5812 } 5813 folio_zero_user(folio, vmf->real_address); 5814 __folio_mark_uptodate(folio); 5815 new_folio = true; 5816 5817 if (vma->vm_flags & VM_MAYSHARE) { 5818 int err = hugetlb_add_to_page_cache(folio, mapping, 5819 vmf->pgoff); 5820 if (err) { 5821 /* 5822 * err can't be -EEXIST which implies someone 5823 * else consumed the reservation since hugetlb 5824 * fault mutex is held when add a hugetlb page 5825 * to the page cache. So it's safe to call 5826 * restore_reserve_on_error() here. 5827 */ 5828 restore_reserve_on_error(h, vma, vmf->address, 5829 folio); 5830 folio_put(folio); 5831 ret = VM_FAULT_SIGBUS; 5832 goto out; 5833 } 5834 } else { 5835 new_anon_folio = true; 5836 folio_lock(folio); 5837 } 5838 } else { 5839 /* 5840 * If memory error occurs between mmap() and fault, some process 5841 * don't have hwpoisoned swap entry for errored virtual address. 5842 * So we need to block hugepage fault by PG_hwpoison bit check. 5843 */ 5844 if (unlikely(folio_test_hwpoison(folio))) { 5845 ret = VM_FAULT_HWPOISON_LARGE | 5846 VM_FAULT_SET_HINDEX(hstate_index(h)); 5847 goto backout_unlocked; 5848 } 5849 5850 /* Check for page in userfault range. */ 5851 if (userfaultfd_minor(vma)) { 5852 folio_unlock(folio); 5853 folio_put(folio); 5854 /* See comment in userfaultfd_missing() block above */ 5855 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) { 5856 ret = 0; 5857 goto out; 5858 } 5859 return hugetlb_handle_userfault(vmf, mapping, 5860 VM_UFFD_MINOR); 5861 } 5862 } 5863 5864 /* 5865 * If we are going to COW a private mapping later, we examine the 5866 * pending reservations for this page now. This will ensure that 5867 * any allocations necessary to record that reservation occur outside 5868 * the spinlock. 5869 */ 5870 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5871 if (vma_needs_reservation(h, vma, vmf->address) < 0) { 5872 ret = VM_FAULT_OOM; 5873 goto backout_unlocked; 5874 } 5875 /* Just decrements count, does not deallocate */ 5876 vma_end_reservation(h, vma, vmf->address); 5877 } 5878 5879 vmf->ptl = huge_pte_lock(h, mm, vmf->pte); 5880 ret = 0; 5881 /* If pte changed from under us, retry */ 5882 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte)) 5883 goto backout; 5884 5885 if (new_anon_folio) 5886 hugetlb_add_new_anon_rmap(folio, vma, vmf->address); 5887 else 5888 hugetlb_add_file_rmap(folio); 5889 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED); 5890 /* 5891 * If this pte was previously wr-protected, keep it wr-protected even 5892 * if populated. 5893 */ 5894 if (unlikely(pte_is_uffd_wp_marker(vmf->orig_pte))) 5895 new_pte = huge_pte_mkuffd_wp(new_pte); 5896 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h)); 5897 5898 hugetlb_count_add(pages_per_huge_page(h), mm); 5899 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 5900 /* 5901 * No need to keep file folios locked. See comment in 5902 * hugetlb_fault(). 5903 */ 5904 if (!new_anon_folio) { 5905 folio_locked = false; 5906 folio_unlock(folio); 5907 } 5908 /* Optimization, do the COW without a second fault */ 5909 ret = hugetlb_wp(vmf); 5910 } 5911 5912 spin_unlock(vmf->ptl); 5913 5914 /* 5915 * Only set hugetlb_migratable in newly allocated pages. Existing pages 5916 * found in the pagecache may not have hugetlb_migratable if they have 5917 * been isolated for migration. 5918 */ 5919 if (new_folio) 5920 folio_set_hugetlb_migratable(folio); 5921 5922 if (folio_locked) 5923 folio_unlock(folio); 5924 out: 5925 hugetlb_vma_unlock_read(vma); 5926 5927 /* 5928 * We must check to release the per-VMA lock. __vmf_anon_prepare() is 5929 * the only way ret can be set to VM_FAULT_RETRY. 5930 */ 5931 if (unlikely(ret & VM_FAULT_RETRY)) 5932 vma_end_read(vma); 5933 5934 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 5935 return ret; 5936 5937 backout: 5938 spin_unlock(vmf->ptl); 5939 backout_unlocked: 5940 /* We only need to restore reservations for private mappings */ 5941 if (new_anon_folio) 5942 restore_reserve_on_error(h, vma, vmf->address, folio); 5943 5944 folio_unlock(folio); 5945 folio_put(folio); 5946 goto out; 5947 } 5948 5949 #ifdef CONFIG_SMP 5950 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5951 { 5952 unsigned long key[2]; 5953 u32 hash; 5954 5955 key[0] = (unsigned long) mapping; 5956 key[1] = idx; 5957 5958 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0); 5959 5960 return hash & (num_fault_mutexes - 1); 5961 } 5962 #else 5963 /* 5964 * For uniprocessor systems we always use a single mutex, so just 5965 * return 0 and avoid the hashing overhead. 5966 */ 5967 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx) 5968 { 5969 return 0; 5970 } 5971 #endif 5972 5973 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, 5974 unsigned long address, unsigned int flags) 5975 { 5976 vm_fault_t ret; 5977 u32 hash; 5978 struct folio *folio = NULL; 5979 struct hstate *h = hstate_vma(vma); 5980 struct address_space *mapping; 5981 bool need_wait_lock = false; 5982 struct vm_fault vmf = { 5983 .vma = vma, 5984 .address = address & huge_page_mask(h), 5985 .real_address = address, 5986 .flags = flags, 5987 .pgoff = vma_hugecache_offset(h, vma, 5988 address & huge_page_mask(h)), 5989 /* TODO: Track hugetlb faults using vm_fault */ 5990 5991 /* 5992 * Some fields may not be initialized, be careful as it may 5993 * be hard to debug if called functions make assumptions 5994 */ 5995 }; 5996 5997 /* 5998 * Serialize hugepage allocation and instantiation, so that we don't 5999 * get spurious allocation failures if two CPUs race to instantiate 6000 * the same page in the page cache. 6001 */ 6002 mapping = vma->vm_file->f_mapping; 6003 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff); 6004 mutex_lock(&hugetlb_fault_mutex_table[hash]); 6005 6006 /* 6007 * Acquire vma lock before calling huge_pte_alloc and hold 6008 * until finished with vmf.pte. This prevents huge_pmd_unshare from 6009 * being called elsewhere and making the vmf.pte no longer valid. 6010 */ 6011 hugetlb_vma_lock_read(vma); 6012 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h)); 6013 if (!vmf.pte) { 6014 hugetlb_vma_unlock_read(vma); 6015 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6016 return VM_FAULT_OOM; 6017 } 6018 6019 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte); 6020 if (huge_pte_none(vmf.orig_pte)) 6021 /* 6022 * hugetlb_no_page will drop vma lock and hugetlb fault 6023 * mutex internally, which make us return immediately. 6024 */ 6025 return hugetlb_no_page(mapping, &vmf); 6026 6027 if (pte_is_marker(vmf.orig_pte)) { 6028 const pte_marker marker = 6029 softleaf_to_marker(softleaf_from_pte(vmf.orig_pte)); 6030 6031 if (marker & PTE_MARKER_POISONED) { 6032 ret = VM_FAULT_HWPOISON_LARGE | 6033 VM_FAULT_SET_HINDEX(hstate_index(h)); 6034 goto out_mutex; 6035 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) { 6036 /* This isn't supported in hugetlb. */ 6037 ret = VM_FAULT_SIGSEGV; 6038 goto out_mutex; 6039 } 6040 6041 return hugetlb_no_page(mapping, &vmf); 6042 } 6043 6044 ret = 0; 6045 6046 /* Not present, either a migration or a hwpoisoned entry */ 6047 if (!pte_present(vmf.orig_pte) && !huge_pte_none(vmf.orig_pte)) { 6048 const softleaf_t softleaf = softleaf_from_pte(vmf.orig_pte); 6049 6050 if (softleaf_is_migration(softleaf)) { 6051 /* 6052 * Release the hugetlb fault lock now, but retain 6053 * the vma lock, because it is needed to guard the 6054 * huge_pte_lockptr() later in 6055 * migration_entry_wait_huge(). The vma lock will 6056 * be released there. 6057 */ 6058 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6059 migration_entry_wait_huge(vma, vmf.address, vmf.pte); 6060 return 0; 6061 } 6062 if (softleaf_is_hwpoison(softleaf)) { 6063 ret = VM_FAULT_HWPOISON_LARGE | 6064 VM_FAULT_SET_HINDEX(hstate_index(h)); 6065 } 6066 6067 goto out_mutex; 6068 } 6069 6070 /* 6071 * If we are going to COW/unshare the mapping later, we examine the 6072 * pending reservations for this page now. This will ensure that any 6073 * allocations necessary to record that reservation occur outside the 6074 * spinlock. 6075 */ 6076 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6077 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) { 6078 if (vma_needs_reservation(h, vma, vmf.address) < 0) { 6079 ret = VM_FAULT_OOM; 6080 goto out_mutex; 6081 } 6082 /* Just decrements count, does not deallocate */ 6083 vma_end_reservation(h, vma, vmf.address); 6084 } 6085 6086 vmf.ptl = huge_pte_lock(h, mm, vmf.pte); 6087 6088 /* Check for a racing update before calling hugetlb_wp() */ 6089 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte)))) 6090 goto out_ptl; 6091 6092 /* Handle userfault-wp first, before trying to lock more pages */ 6093 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) && 6094 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) { 6095 if (!userfaultfd_wp_async(vma)) { 6096 spin_unlock(vmf.ptl); 6097 hugetlb_vma_unlock_read(vma); 6098 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6099 return handle_userfault(&vmf, VM_UFFD_WP); 6100 } 6101 6102 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte); 6103 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte, 6104 huge_page_size(hstate_vma(vma))); 6105 /* Fallthrough to CoW */ 6106 } 6107 6108 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6109 if (!huge_pte_write(vmf.orig_pte)) { 6110 /* 6111 * Anonymous folios need to be lock since hugetlb_wp() 6112 * checks whether we can re-use the folio exclusively 6113 * for us in case we are the only user of it. 6114 */ 6115 folio = page_folio(pte_page(vmf.orig_pte)); 6116 if (folio_test_anon(folio) && !folio_trylock(folio)) { 6117 need_wait_lock = true; 6118 goto out_ptl; 6119 } 6120 folio_get(folio); 6121 ret = hugetlb_wp(&vmf); 6122 if (folio_test_anon(folio)) 6123 folio_unlock(folio); 6124 folio_put(folio); 6125 goto out_ptl; 6126 } else if (likely(flags & FAULT_FLAG_WRITE)) { 6127 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte); 6128 } 6129 } 6130 vmf.orig_pte = pte_mkyoung(vmf.orig_pte); 6131 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte, 6132 flags & FAULT_FLAG_WRITE)) 6133 update_mmu_cache(vma, vmf.address, vmf.pte); 6134 out_ptl: 6135 spin_unlock(vmf.ptl); 6136 out_mutex: 6137 hugetlb_vma_unlock_read(vma); 6138 6139 /* 6140 * We must check to release the per-VMA lock. __vmf_anon_prepare() in 6141 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY. 6142 */ 6143 if (unlikely(ret & VM_FAULT_RETRY)) 6144 vma_end_read(vma); 6145 6146 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 6147 /* 6148 * hugetlb_wp drops all the locks, but the folio lock, before trying to 6149 * unmap the folio from other processes. During that window, if another 6150 * process mapping that folio faults in, it will take the mutex and then 6151 * it will wait on folio_lock, causing an ABBA deadlock. 6152 * Use trylock instead and bail out if we fail. 6153 * 6154 * Ideally, we should hold a refcount on the folio we wait for, but we do 6155 * not want to use the folio after it becomes unlocked, but rather just 6156 * wait for it to become unlocked, so hopefully next fault successes on 6157 * the trylock. 6158 */ 6159 if (need_wait_lock) 6160 folio_wait_locked(folio); 6161 return ret; 6162 } 6163 6164 #ifdef CONFIG_USERFAULTFD 6165 /* 6166 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte(). 6167 */ 6168 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h, 6169 struct vm_area_struct *vma, unsigned long address) 6170 { 6171 struct mempolicy *mpol; 6172 nodemask_t *nodemask; 6173 struct folio *folio; 6174 gfp_t gfp_mask; 6175 int node; 6176 6177 gfp_mask = htlb_alloc_mask(h); 6178 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask); 6179 /* 6180 * This is used to allocate a temporary hugetlb to hold the copied 6181 * content, which will then be copied again to the final hugetlb 6182 * consuming a reservation. Set the alloc_fallback to false to indicate 6183 * that breaking the per-node hugetlb pool is not allowed in this case. 6184 */ 6185 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false); 6186 mpol_cond_put(mpol); 6187 6188 return folio; 6189 } 6190 6191 /* 6192 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte 6193 * with modifications for hugetlb pages. 6194 */ 6195 int hugetlb_mfill_atomic_pte(pte_t *dst_pte, 6196 struct vm_area_struct *dst_vma, 6197 unsigned long dst_addr, 6198 unsigned long src_addr, 6199 uffd_flags_t flags, 6200 struct folio **foliop) 6201 { 6202 struct mm_struct *dst_mm = dst_vma->vm_mm; 6203 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE); 6204 bool wp_enabled = (flags & MFILL_ATOMIC_WP); 6205 struct hstate *h = hstate_vma(dst_vma); 6206 struct address_space *mapping = dst_vma->vm_file->f_mapping; 6207 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr); 6208 unsigned long size = huge_page_size(h); 6209 int vm_shared = dst_vma->vm_flags & VM_SHARED; 6210 pte_t _dst_pte; 6211 spinlock_t *ptl; 6212 int ret = -ENOMEM; 6213 struct folio *folio; 6214 bool folio_in_pagecache = false; 6215 pte_t dst_ptep; 6216 6217 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) { 6218 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6219 6220 /* Don't overwrite any existing PTEs (even markers) */ 6221 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) { 6222 spin_unlock(ptl); 6223 return -EEXIST; 6224 } 6225 6226 _dst_pte = make_pte_marker(PTE_MARKER_POISONED); 6227 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6228 6229 /* No need to invalidate - it was non-present before */ 6230 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6231 6232 spin_unlock(ptl); 6233 return 0; 6234 } 6235 6236 if (is_continue) { 6237 ret = -EFAULT; 6238 folio = filemap_lock_hugetlb_folio(h, mapping, idx); 6239 if (IS_ERR(folio)) 6240 goto out; 6241 folio_in_pagecache = true; 6242 } else if (!*foliop) { 6243 /* If a folio already exists, then it's UFFDIO_COPY for 6244 * a non-missing case. Return -EEXIST. 6245 */ 6246 if (vm_shared && 6247 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6248 ret = -EEXIST; 6249 goto out; 6250 } 6251 6252 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6253 if (IS_ERR(folio)) { 6254 pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE); 6255 if (actual_pte) { 6256 ret = -EEXIST; 6257 goto out; 6258 } 6259 ret = -ENOMEM; 6260 goto out; 6261 } 6262 6263 ret = copy_folio_from_user(folio, (const void __user *) src_addr, 6264 false); 6265 6266 /* fallback to copy_from_user outside mmap_lock */ 6267 if (unlikely(ret)) { 6268 ret = -ENOENT; 6269 /* Free the allocated folio which may have 6270 * consumed a reservation. 6271 */ 6272 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6273 folio_put(folio); 6274 6275 /* Allocate a temporary folio to hold the copied 6276 * contents. 6277 */ 6278 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr); 6279 if (!folio) { 6280 ret = -ENOMEM; 6281 goto out; 6282 } 6283 *foliop = folio; 6284 /* Set the outparam foliop and return to the caller to 6285 * copy the contents outside the lock. Don't free the 6286 * folio. 6287 */ 6288 goto out; 6289 } 6290 } else { 6291 if (vm_shared && 6292 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) { 6293 folio_put(*foliop); 6294 ret = -EEXIST; 6295 *foliop = NULL; 6296 goto out; 6297 } 6298 6299 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false); 6300 if (IS_ERR(folio)) { 6301 folio_put(*foliop); 6302 ret = -ENOMEM; 6303 *foliop = NULL; 6304 goto out; 6305 } 6306 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma); 6307 folio_put(*foliop); 6308 *foliop = NULL; 6309 if (ret) { 6310 folio_put(folio); 6311 goto out; 6312 } 6313 } 6314 6315 /* 6316 * If we just allocated a new page, we need a memory barrier to ensure 6317 * that preceding stores to the page become visible before the 6318 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate 6319 * is what we need. 6320 * 6321 * In the case where we have not allocated a new page (is_continue), 6322 * the page must already be uptodate. UFFDIO_CONTINUE already includes 6323 * an earlier smp_wmb() to ensure that prior stores will be visible 6324 * before the set_pte_at() write. 6325 */ 6326 if (!is_continue) 6327 __folio_mark_uptodate(folio); 6328 else 6329 WARN_ON_ONCE(!folio_test_uptodate(folio)); 6330 6331 /* Add shared, newly allocated pages to the page cache. */ 6332 if (vm_shared && !is_continue) { 6333 ret = -EFAULT; 6334 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h))) 6335 goto out_release_nounlock; 6336 6337 /* 6338 * Serialization between remove_inode_hugepages() and 6339 * hugetlb_add_to_page_cache() below happens through the 6340 * hugetlb_fault_mutex_table that here must be hold by 6341 * the caller. 6342 */ 6343 ret = hugetlb_add_to_page_cache(folio, mapping, idx); 6344 if (ret) 6345 goto out_release_nounlock; 6346 folio_in_pagecache = true; 6347 } 6348 6349 ptl = huge_pte_lock(h, dst_mm, dst_pte); 6350 6351 ret = -EIO; 6352 if (folio_test_hwpoison(folio)) 6353 goto out_release_unlock; 6354 6355 ret = -EEXIST; 6356 6357 dst_ptep = huge_ptep_get(dst_mm, dst_addr, dst_pte); 6358 /* 6359 * See comment about UFFD marker overwriting in 6360 * mfill_atomic_install_pte(). 6361 */ 6362 if (!huge_pte_none(dst_ptep) && !pte_is_uffd_marker(dst_ptep)) 6363 goto out_release_unlock; 6364 6365 if (folio_in_pagecache) 6366 hugetlb_add_file_rmap(folio); 6367 else 6368 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr); 6369 6370 /* 6371 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY 6372 * with wp flag set, don't set pte write bit. 6373 */ 6374 _dst_pte = make_huge_pte(dst_vma, folio, 6375 !wp_enabled && !(is_continue && !vm_shared)); 6376 /* 6377 * Always mark UFFDIO_COPY page dirty; note that this may not be 6378 * extremely important for hugetlbfs for now since swapping is not 6379 * supported, but we should still be clear in that this page cannot be 6380 * thrown away at will, even if write bit not set. 6381 */ 6382 _dst_pte = huge_pte_mkdirty(_dst_pte); 6383 _dst_pte = pte_mkyoung(_dst_pte); 6384 6385 if (wp_enabled) 6386 _dst_pte = huge_pte_mkuffd_wp(_dst_pte); 6387 6388 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size); 6389 6390 hugetlb_count_add(pages_per_huge_page(h), dst_mm); 6391 6392 /* No need to invalidate - it was non-present before */ 6393 update_mmu_cache(dst_vma, dst_addr, dst_pte); 6394 6395 spin_unlock(ptl); 6396 if (!is_continue) 6397 folio_set_hugetlb_migratable(folio); 6398 if (vm_shared || is_continue) 6399 folio_unlock(folio); 6400 ret = 0; 6401 out: 6402 return ret; 6403 out_release_unlock: 6404 spin_unlock(ptl); 6405 if (vm_shared || is_continue) 6406 folio_unlock(folio); 6407 out_release_nounlock: 6408 if (!folio_in_pagecache) 6409 restore_reserve_on_error(h, dst_vma, dst_addr, folio); 6410 folio_put(folio); 6411 goto out; 6412 } 6413 #endif /* CONFIG_USERFAULTFD */ 6414 6415 long hugetlb_change_protection(struct vm_area_struct *vma, 6416 unsigned long address, unsigned long end, 6417 pgprot_t newprot, unsigned long cp_flags) 6418 { 6419 struct mm_struct *mm = vma->vm_mm; 6420 unsigned long start = address; 6421 pte_t *ptep; 6422 pte_t pte; 6423 struct hstate *h = hstate_vma(vma); 6424 long pages = 0, psize = huge_page_size(h); 6425 struct mmu_notifier_range range; 6426 unsigned long last_addr_mask; 6427 bool uffd_wp = cp_flags & MM_CP_UFFD_WP; 6428 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE; 6429 struct mmu_gather tlb; 6430 6431 /* 6432 * In the case of shared PMDs, the area to flush could be beyond 6433 * start/end. Set range.start/range.end to cover the maximum possible 6434 * range if PMD sharing is possible. 6435 */ 6436 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 6437 0, mm, start, end); 6438 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end); 6439 6440 BUG_ON(address >= end); 6441 flush_cache_range(vma, range.start, range.end); 6442 tlb_gather_mmu_vma(&tlb, vma); 6443 6444 mmu_notifier_invalidate_range_start(&range); 6445 hugetlb_vma_lock_write(vma); 6446 i_mmap_lock_write(vma->vm_file->f_mapping); 6447 last_addr_mask = hugetlb_mask_last_page(h); 6448 for (; address < end; address += psize) { 6449 softleaf_t entry; 6450 spinlock_t *ptl; 6451 6452 ptep = hugetlb_walk(vma, address, psize); 6453 if (!ptep) { 6454 if (!uffd_wp) { 6455 address |= last_addr_mask; 6456 continue; 6457 } 6458 /* 6459 * Userfaultfd wr-protect requires pgtable 6460 * pre-allocations to install pte markers. 6461 */ 6462 ptep = huge_pte_alloc(mm, vma, address, psize); 6463 if (!ptep) { 6464 pages = -ENOMEM; 6465 break; 6466 } 6467 } 6468 ptl = huge_pte_lock(h, mm, ptep); 6469 if (huge_pmd_unshare(&tlb, vma, address, ptep)) { 6470 /* 6471 * When uffd-wp is enabled on the vma, unshare 6472 * shouldn't happen at all. Warn about it if it 6473 * happened due to some reason. 6474 */ 6475 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve); 6476 pages++; 6477 spin_unlock(ptl); 6478 address |= last_addr_mask; 6479 continue; 6480 } 6481 pte = huge_ptep_get(mm, address, ptep); 6482 if (huge_pte_none(pte)) { 6483 if (unlikely(uffd_wp)) 6484 /* Safe to modify directly (none->non-present). */ 6485 set_huge_pte_at(mm, address, ptep, 6486 make_pte_marker(PTE_MARKER_UFFD_WP), 6487 psize); 6488 goto next; 6489 } 6490 6491 entry = softleaf_from_pte(pte); 6492 if (unlikely(softleaf_is_hwpoison(entry))) { 6493 /* Nothing to do. */ 6494 } else if (unlikely(softleaf_is_migration(entry))) { 6495 struct folio *folio = softleaf_to_folio(entry); 6496 pte_t newpte = pte; 6497 6498 if (softleaf_is_migration_write(entry)) { 6499 if (folio_test_anon(folio)) 6500 entry = make_readable_exclusive_migration_entry( 6501 swp_offset(entry)); 6502 else 6503 entry = make_readable_migration_entry( 6504 swp_offset(entry)); 6505 newpte = swp_entry_to_pte(entry); 6506 pages++; 6507 } 6508 6509 if (uffd_wp) 6510 newpte = pte_swp_mkuffd_wp(newpte); 6511 else if (uffd_wp_resolve) 6512 newpte = pte_swp_clear_uffd_wp(newpte); 6513 if (!pte_same(pte, newpte)) 6514 set_huge_pte_at(mm, address, ptep, newpte, psize); 6515 } else if (unlikely(pte_is_marker(pte))) { 6516 /* 6517 * Do nothing on a poison marker; page is 6518 * corrupted, permissions do not apply. Here 6519 * pte_marker_uffd_wp()==true implies !poison 6520 * because they're mutual exclusive. 6521 */ 6522 if (pte_is_uffd_wp_marker(pte) && uffd_wp_resolve) 6523 /* Safe to modify directly (non-present->none). */ 6524 huge_pte_clear(mm, address, ptep, psize); 6525 } else { 6526 pte_t old_pte; 6527 unsigned int shift = huge_page_shift(hstate_vma(vma)); 6528 6529 old_pte = huge_ptep_modify_prot_start(vma, address, ptep); 6530 pte = huge_pte_modify(old_pte, newprot); 6531 pte = arch_make_huge_pte(pte, shift, vma->vm_flags); 6532 if (uffd_wp) 6533 pte = huge_pte_mkuffd_wp(pte); 6534 else if (uffd_wp_resolve) 6535 pte = huge_pte_clear_uffd_wp(pte); 6536 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte); 6537 pages++; 6538 tlb_remove_huge_tlb_entry(h, &tlb, ptep, address); 6539 } 6540 6541 next: 6542 spin_unlock(ptl); 6543 cond_resched(); 6544 } 6545 6546 tlb_flush_mmu_tlbonly(&tlb); 6547 huge_pmd_unshare_flush(&tlb, vma); 6548 /* 6549 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are 6550 * downgrading page table protection not changing it to point to a new 6551 * page. 6552 * 6553 * See Documentation/mm/mmu_notifier.rst 6554 */ 6555 i_mmap_unlock_write(vma->vm_file->f_mapping); 6556 hugetlb_vma_unlock_write(vma); 6557 mmu_notifier_invalidate_range_end(&range); 6558 tlb_finish_mmu(&tlb); 6559 6560 return pages > 0 ? (pages << h->order) : pages; 6561 } 6562 6563 /* 6564 * Update the reservation map for the range [from, to]. 6565 * 6566 * Returns the number of entries that would be added to the reservation map 6567 * associated with the range [from, to]. This number is greater or equal to 6568 * zero. -EINVAL or -ENOMEM is returned in case of any errors. 6569 */ 6570 6571 long hugetlb_reserve_pages(struct inode *inode, 6572 long from, long to, 6573 struct vm_area_desc *desc, 6574 vm_flags_t vm_flags) 6575 { 6576 long chg = -1, add = -1, spool_resv, gbl_resv; 6577 struct hstate *h = hstate_inode(inode); 6578 struct hugepage_subpool *spool = subpool_inode(inode); 6579 struct resv_map *resv_map; 6580 struct hugetlb_cgroup *h_cg = NULL; 6581 long gbl_reserve, regions_needed = 0; 6582 int err; 6583 6584 /* This should never happen */ 6585 if (from > to) { 6586 VM_WARN(1, "%s called with a negative range\n", __func__); 6587 return -EINVAL; 6588 } 6589 6590 /* 6591 * Only apply hugepage reservation if asked. At fault time, an 6592 * attempt will be made for VM_NORESERVE to allocate a page 6593 * without using reserves 6594 */ 6595 if (vm_flags & VM_NORESERVE) 6596 return 0; 6597 6598 /* 6599 * Shared mappings base their reservation on the number of pages that 6600 * are already allocated on behalf of the file. Private mappings need 6601 * to reserve the full area even if read-only as mprotect() may be 6602 * called to make the mapping read-write. Assume !desc is a shm mapping 6603 */ 6604 if (!desc || desc->vm_flags & VM_MAYSHARE) { 6605 /* 6606 * resv_map can not be NULL as hugetlb_reserve_pages is only 6607 * called for inodes for which resv_maps were created (see 6608 * hugetlbfs_get_inode). 6609 */ 6610 resv_map = inode_resv_map(inode); 6611 6612 chg = region_chg(resv_map, from, to, ®ions_needed); 6613 } else { 6614 /* Private mapping. */ 6615 resv_map = resv_map_alloc(); 6616 if (!resv_map) { 6617 err = -ENOMEM; 6618 goto out_err; 6619 } 6620 6621 chg = to - from; 6622 6623 set_vma_desc_resv_map(desc, resv_map); 6624 set_vma_desc_resv_flags(desc, HPAGE_RESV_OWNER); 6625 } 6626 6627 if (chg < 0) { 6628 /* region_chg() above can return -ENOMEM */ 6629 err = (chg == -ENOMEM) ? -ENOMEM : -EINVAL; 6630 goto out_err; 6631 } 6632 6633 err = hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h), 6634 chg * pages_per_huge_page(h), &h_cg); 6635 if (err < 0) 6636 goto out_err; 6637 6638 if (desc && !(desc->vm_flags & VM_MAYSHARE) && h_cg) { 6639 /* For private mappings, the hugetlb_cgroup uncharge info hangs 6640 * of the resv_map. 6641 */ 6642 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h); 6643 } 6644 6645 /* 6646 * There must be enough pages in the subpool for the mapping. If 6647 * the subpool has a minimum size, there may be some global 6648 * reservations already in place (gbl_reserve). 6649 */ 6650 gbl_reserve = hugepage_subpool_get_pages(spool, chg); 6651 if (gbl_reserve < 0) { 6652 err = gbl_reserve; 6653 goto out_uncharge_cgroup; 6654 } 6655 6656 /* 6657 * Check enough hugepages are available for the reservation. 6658 * Hand the pages back to the subpool if there are not 6659 */ 6660 err = hugetlb_acct_memory(h, gbl_reserve); 6661 if (err < 0) 6662 goto out_put_pages; 6663 6664 /* 6665 * Account for the reservations made. Shared mappings record regions 6666 * that have reservations as they are shared by multiple VMAs. 6667 * When the last VMA disappears, the region map says how much 6668 * the reservation was and the page cache tells how much of 6669 * the reservation was consumed. Private mappings are per-VMA and 6670 * only the consumed reservations are tracked. When the VMA 6671 * disappears, the original reservation is the VMA size and the 6672 * consumed reservations are stored in the map. Hence, nothing 6673 * else has to be done for private mappings here 6674 */ 6675 if (!desc || desc->vm_flags & VM_MAYSHARE) { 6676 add = region_add(resv_map, from, to, regions_needed, h, h_cg); 6677 6678 if (unlikely(add < 0)) { 6679 hugetlb_acct_memory(h, -gbl_reserve); 6680 err = add; 6681 goto out_put_pages; 6682 } else if (unlikely(chg > add)) { 6683 /* 6684 * pages in this range were added to the reserve 6685 * map between region_chg and region_add. This 6686 * indicates a race with alloc_hugetlb_folio. Adjust 6687 * the subpool and reserve counts modified above 6688 * based on the difference. 6689 */ 6690 long rsv_adjust; 6691 6692 /* 6693 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the 6694 * reference to h_cg->css. See comment below for detail. 6695 */ 6696 hugetlb_cgroup_uncharge_cgroup_rsvd( 6697 hstate_index(h), 6698 (chg - add) * pages_per_huge_page(h), h_cg); 6699 6700 rsv_adjust = hugepage_subpool_put_pages(spool, 6701 chg - add); 6702 hugetlb_acct_memory(h, -rsv_adjust); 6703 } else if (h_cg) { 6704 /* 6705 * The file_regions will hold their own reference to 6706 * h_cg->css. So we should release the reference held 6707 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are 6708 * done. 6709 */ 6710 hugetlb_cgroup_put_rsvd_cgroup(h_cg); 6711 } 6712 } 6713 return chg; 6714 6715 out_put_pages: 6716 spool_resv = chg - gbl_reserve; 6717 if (spool_resv) { 6718 /* put sub pool's reservation back, chg - gbl_reserve */ 6719 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv); 6720 /* 6721 * subpool's reserved pages can not be put back due to race, 6722 * return to hstate. 6723 */ 6724 hugetlb_acct_memory(h, -gbl_resv); 6725 } 6726 /* Restore used_hpages for pages that failed global reservation */ 6727 if (gbl_reserve && spool) { 6728 unsigned long flags; 6729 6730 spin_lock_irqsave(&spool->lock, flags); 6731 if (spool->max_hpages != -1) 6732 spool->used_hpages -= gbl_reserve; 6733 unlock_or_release_subpool(spool, flags); 6734 } 6735 out_uncharge_cgroup: 6736 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h), 6737 chg * pages_per_huge_page(h), h_cg); 6738 out_err: 6739 if (!desc || desc->vm_flags & VM_MAYSHARE) 6740 /* Only call region_abort if the region_chg succeeded but the 6741 * region_add failed or didn't run. 6742 */ 6743 if (chg >= 0 && add < 0) 6744 region_abort(resv_map, from, to, regions_needed); 6745 if (desc && is_vma_desc_resv_set(desc, HPAGE_RESV_OWNER)) { 6746 kref_put(&resv_map->refs, resv_map_release); 6747 set_vma_desc_resv_map(desc, NULL); 6748 } 6749 return err; 6750 } 6751 6752 long hugetlb_unreserve_pages(struct inode *inode, long start, long end, 6753 long freed) 6754 { 6755 struct hstate *h = hstate_inode(inode); 6756 struct resv_map *resv_map = inode_resv_map(inode); 6757 long chg = 0; 6758 struct hugepage_subpool *spool = subpool_inode(inode); 6759 long gbl_reserve; 6760 6761 /* 6762 * Since this routine can be called in the evict inode path for all 6763 * hugetlbfs inodes, resv_map could be NULL. 6764 */ 6765 if (resv_map) { 6766 chg = region_del(resv_map, start, end); 6767 /* 6768 * region_del() can fail in the rare case where a region 6769 * must be split and another region descriptor can not be 6770 * allocated. If end == LONG_MAX, it will not fail. 6771 */ 6772 if (chg < 0) 6773 return chg; 6774 } 6775 6776 spin_lock(&inode->i_lock); 6777 inode->i_blocks -= (blocks_per_huge_page(h) * freed); 6778 spin_unlock(&inode->i_lock); 6779 6780 /* 6781 * If the subpool has a minimum size, the number of global 6782 * reservations to be released may be adjusted. 6783 * 6784 * Note that !resv_map implies freed == 0. So (chg - freed) 6785 * won't go negative. 6786 */ 6787 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed)); 6788 hugetlb_acct_memory(h, -gbl_reserve); 6789 6790 return 0; 6791 } 6792 6793 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 6794 static unsigned long page_table_shareable(struct vm_area_struct *svma, 6795 struct vm_area_struct *vma, 6796 unsigned long addr, pgoff_t idx) 6797 { 6798 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) + 6799 svma->vm_start; 6800 unsigned long sbase = saddr & PUD_MASK; 6801 unsigned long s_end = sbase + PUD_SIZE; 6802 6803 /* Allow segments to share if only one is marked locked */ 6804 vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK; 6805 vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK; 6806 6807 /* 6808 * match the virtual addresses, permission and the alignment of the 6809 * page table page. 6810 * 6811 * Also, vma_lock (vm_private_data) is required for sharing. 6812 */ 6813 if (pmd_index(addr) != pmd_index(saddr) || 6814 vm_flags != svm_flags || 6815 !range_in_vma(svma, sbase, s_end) || 6816 !svma->vm_private_data) 6817 return 0; 6818 6819 return saddr; 6820 } 6821 6822 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 6823 { 6824 unsigned long start = addr & PUD_MASK; 6825 unsigned long end = start + PUD_SIZE; 6826 6827 #ifdef CONFIG_USERFAULTFD 6828 if (uffd_disable_huge_pmd_share(vma)) 6829 return false; 6830 #endif 6831 /* 6832 * check on proper vm_flags and page table alignment 6833 */ 6834 if (!(vma->vm_flags & VM_MAYSHARE)) 6835 return false; 6836 if (!vma->vm_private_data) /* vma lock required for sharing */ 6837 return false; 6838 if (!range_in_vma(vma, start, end)) 6839 return false; 6840 return true; 6841 } 6842 6843 /* 6844 * Determine if start,end range within vma could be mapped by shared pmd. 6845 * If yes, adjust start and end to cover range associated with possible 6846 * shared pmd mappings. 6847 */ 6848 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 6849 unsigned long *start, unsigned long *end) 6850 { 6851 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE), 6852 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE); 6853 6854 /* 6855 * vma needs to span at least one aligned PUD size, and the range 6856 * must be at least partially within in. 6857 */ 6858 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) || 6859 (*end <= v_start) || (*start >= v_end)) 6860 return; 6861 6862 /* Extend the range to be PUD aligned for a worst case scenario */ 6863 if (*start > v_start) 6864 *start = ALIGN_DOWN(*start, PUD_SIZE); 6865 6866 if (*end < v_end) 6867 *end = ALIGN(*end, PUD_SIZE); 6868 } 6869 6870 /* 6871 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() 6872 * and returns the corresponding pte. While this is not necessary for the 6873 * !shared pmd case because we can allocate the pmd later as well, it makes the 6874 * code much cleaner. pmd allocation is essential for the shared case because 6875 * pud has to be populated inside the same i_mmap_rwsem section - otherwise 6876 * racing tasks could either miss the sharing (see huge_pte_offset) or select a 6877 * bad pmd for sharing. 6878 */ 6879 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6880 unsigned long addr, pud_t *pud) 6881 { 6882 struct address_space *mapping = vma->vm_file->f_mapping; 6883 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) + 6884 vma->vm_pgoff; 6885 struct vm_area_struct *svma; 6886 unsigned long saddr; 6887 pte_t *spte = NULL; 6888 pte_t *pte; 6889 6890 i_mmap_lock_read(mapping); 6891 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { 6892 if (svma == vma) 6893 continue; 6894 6895 saddr = page_table_shareable(svma, vma, addr, idx); 6896 if (saddr) { 6897 spte = hugetlb_walk(svma, saddr, 6898 vma_mmu_pagesize(svma)); 6899 if (spte) { 6900 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte)); 6901 break; 6902 } 6903 } 6904 } 6905 6906 if (!spte) 6907 goto out; 6908 6909 spin_lock(&mm->page_table_lock); 6910 if (pud_none(*pud)) { 6911 pud_populate(mm, pud, 6912 (pmd_t *)((unsigned long)spte & PAGE_MASK)); 6913 mm_inc_nr_pmds(mm); 6914 } else { 6915 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte)); 6916 } 6917 spin_unlock(&mm->page_table_lock); 6918 out: 6919 pte = (pte_t *)pmd_alloc(mm, pud, addr); 6920 i_mmap_unlock_read(mapping); 6921 return pte; 6922 } 6923 6924 /** 6925 * huge_pmd_unshare - Unmap a pmd table if it is shared by multiple users 6926 * @tlb: the current mmu_gather. 6927 * @vma: the vma covering the pmd table. 6928 * @addr: the address we are trying to unshare. 6929 * @ptep: pointer into the (pmd) page table. 6930 * 6931 * Called with the page table lock held, the i_mmap_rwsem held in write mode 6932 * and the hugetlb vma lock held in write mode. 6933 * 6934 * Note: The caller must call huge_pmd_unshare_flush() before dropping the 6935 * i_mmap_rwsem. 6936 * 6937 * Returns: 1 if it was a shared PMD table and it got unmapped, or 0 if it 6938 * was not a shared PMD table. 6939 */ 6940 int huge_pmd_unshare(struct mmu_gather *tlb, struct vm_area_struct *vma, 6941 unsigned long addr, pte_t *ptep) 6942 { 6943 unsigned long sz = huge_page_size(hstate_vma(vma)); 6944 struct mm_struct *mm = vma->vm_mm; 6945 pgd_t *pgd = pgd_offset(mm, addr); 6946 p4d_t *p4d = p4d_offset(pgd, addr); 6947 pud_t *pud = pud_offset(p4d, addr); 6948 6949 if (sz != PMD_SIZE) 6950 return 0; 6951 if (!ptdesc_pmd_is_shared(virt_to_ptdesc(ptep))) 6952 return 0; 6953 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 6954 hugetlb_vma_assert_locked(vma); 6955 pud_clear(pud); 6956 6957 tlb_unshare_pmd_ptdesc(tlb, virt_to_ptdesc(ptep), addr); 6958 6959 mm_dec_nr_pmds(mm); 6960 return 1; 6961 } 6962 6963 /* 6964 * huge_pmd_unshare_flush - Complete a sequence of huge_pmd_unshare() calls 6965 * @tlb: the current mmu_gather. 6966 * @vma: the vma covering the pmd table. 6967 * 6968 * Perform necessary TLB flushes or IPI broadcasts to synchronize PMD table 6969 * unsharing with concurrent page table walkers. 6970 * 6971 * This function must be called after a sequence of huge_pmd_unshare() 6972 * calls while still holding the i_mmap_rwsem. 6973 */ 6974 void huge_pmd_unshare_flush(struct mmu_gather *tlb, struct vm_area_struct *vma) 6975 { 6976 /* 6977 * We must synchronize page table unsharing such that nobody will 6978 * try reusing a previously-shared page table while it might still 6979 * be in use by previous sharers (TLB, GUP_fast). 6980 */ 6981 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 6982 6983 tlb_flush_unshared_tables(tlb); 6984 } 6985 6986 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 6987 6988 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, 6989 unsigned long addr, pud_t *pud) 6990 { 6991 return NULL; 6992 } 6993 6994 int huge_pmd_unshare(struct mmu_gather *tlb, struct vm_area_struct *vma, 6995 unsigned long addr, pte_t *ptep) 6996 { 6997 return 0; 6998 } 6999 7000 void huge_pmd_unshare_flush(struct mmu_gather *tlb, struct vm_area_struct *vma) 7001 { 7002 } 7003 7004 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, 7005 unsigned long *start, unsigned long *end) 7006 { 7007 } 7008 7009 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr) 7010 { 7011 return false; 7012 } 7013 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */ 7014 7015 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB 7016 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 7017 unsigned long addr, unsigned long sz) 7018 { 7019 pgd_t *pgd; 7020 p4d_t *p4d; 7021 pud_t *pud; 7022 pte_t *pte = NULL; 7023 7024 pgd = pgd_offset(mm, addr); 7025 p4d = p4d_alloc(mm, pgd, addr); 7026 if (!p4d) 7027 return NULL; 7028 pud = pud_alloc(mm, p4d, addr); 7029 if (pud) { 7030 if (sz == PUD_SIZE) { 7031 pte = (pte_t *)pud; 7032 } else { 7033 BUG_ON(sz != PMD_SIZE); 7034 if (want_pmd_share(vma, addr) && pud_none(*pud)) 7035 pte = huge_pmd_share(mm, vma, addr, pud); 7036 else 7037 pte = (pte_t *)pmd_alloc(mm, pud, addr); 7038 } 7039 } 7040 7041 if (pte) { 7042 pte_t pteval = ptep_get_lockless(pte); 7043 7044 BUG_ON(pte_present(pteval) && !pte_huge(pteval)); 7045 } 7046 7047 return pte; 7048 } 7049 7050 /* 7051 * huge_pte_offset() - Walk the page table to resolve the hugepage 7052 * entry at address @addr 7053 * 7054 * Return: Pointer to page table entry (PUD or PMD) for 7055 * address @addr, or NULL if a !p*d_present() entry is encountered and the 7056 * size @sz doesn't match the hugepage size at this level of the page 7057 * table. 7058 */ 7059 pte_t *huge_pte_offset(struct mm_struct *mm, 7060 unsigned long addr, unsigned long sz) 7061 { 7062 pgd_t *pgd; 7063 p4d_t *p4d; 7064 pud_t *pud; 7065 pmd_t *pmd; 7066 7067 pgd = pgd_offset(mm, addr); 7068 if (!pgd_present(*pgd)) 7069 return NULL; 7070 p4d = p4d_offset(pgd, addr); 7071 if (!p4d_present(*p4d)) 7072 return NULL; 7073 7074 pud = pud_offset(p4d, addr); 7075 if (sz == PUD_SIZE) 7076 /* must be pud huge, non-present or none */ 7077 return (pte_t *)pud; 7078 if (!pud_present(*pud)) 7079 return NULL; 7080 /* must have a valid entry and size to go further */ 7081 7082 pmd = pmd_offset(pud, addr); 7083 /* must be pmd huge, non-present or none */ 7084 return (pte_t *)pmd; 7085 } 7086 7087 /* 7088 * Return a mask that can be used to update an address to the last huge 7089 * page in a page table page mapping size. Used to skip non-present 7090 * page table entries when linearly scanning address ranges. Architectures 7091 * with unique huge page to page table relationships can define their own 7092 * version of this routine. 7093 */ 7094 unsigned long hugetlb_mask_last_page(struct hstate *h) 7095 { 7096 unsigned long hp_size = huge_page_size(h); 7097 7098 if (hp_size == PUD_SIZE) 7099 return P4D_SIZE - PUD_SIZE; 7100 else if (hp_size == PMD_SIZE) 7101 return PUD_SIZE - PMD_SIZE; 7102 else 7103 return 0UL; 7104 } 7105 7106 #else 7107 7108 /* See description above. Architectures can provide their own version. */ 7109 __weak unsigned long hugetlb_mask_last_page(struct hstate *h) 7110 { 7111 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING 7112 if (huge_page_size(h) == PMD_SIZE) 7113 return PUD_SIZE - PMD_SIZE; 7114 #endif 7115 return 0UL; 7116 } 7117 7118 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */ 7119 7120 /** 7121 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio 7122 * @folio: the folio to isolate 7123 * @list: the list to add the folio to on success 7124 * 7125 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as 7126 * isolated/non-migratable, and moving it from the active list to the 7127 * given list. 7128 * 7129 * Isolation will fail if @folio is not an allocated hugetlb folio, or if 7130 * it is already isolated/non-migratable. 7131 * 7132 * On success, an additional folio reference is taken that must be dropped 7133 * using folio_putback_hugetlb() to undo the isolation. 7134 * 7135 * Return: True if isolation worked, otherwise False. 7136 */ 7137 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list) 7138 { 7139 bool ret = true; 7140 7141 spin_lock_irq(&hugetlb_lock); 7142 if (!folio_test_hugetlb(folio) || 7143 !folio_test_hugetlb_migratable(folio) || 7144 !folio_try_get(folio)) { 7145 ret = false; 7146 goto unlock; 7147 } 7148 folio_clear_hugetlb_migratable(folio); 7149 list_move_tail(&folio->lru, list); 7150 unlock: 7151 spin_unlock_irq(&hugetlb_lock); 7152 return ret; 7153 } 7154 7155 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison) 7156 { 7157 int ret = 0; 7158 7159 *hugetlb = false; 7160 spin_lock_irq(&hugetlb_lock); 7161 if (folio_test_hugetlb(folio)) { 7162 *hugetlb = true; 7163 if (folio_test_hugetlb_freed(folio)) 7164 ret = 0; 7165 else if (folio_test_hugetlb_migratable(folio) || unpoison) 7166 ret = folio_try_get(folio); 7167 else 7168 ret = -EBUSY; 7169 } 7170 spin_unlock_irq(&hugetlb_lock); 7171 return ret; 7172 } 7173 7174 int get_huge_page_for_hwpoison(unsigned long pfn, int flags, 7175 bool *migratable_cleared) 7176 { 7177 int ret; 7178 7179 spin_lock_irq(&hugetlb_lock); 7180 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared); 7181 spin_unlock_irq(&hugetlb_lock); 7182 return ret; 7183 } 7184 7185 /** 7186 * folio_putback_hugetlb - unisolate a hugetlb folio 7187 * @folio: the isolated hugetlb folio 7188 * 7189 * Putback/un-isolate the hugetlb folio that was previous isolated using 7190 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it 7191 * back onto the active list. 7192 * 7193 * Will drop the additional folio reference obtained through 7194 * folio_isolate_hugetlb(). 7195 */ 7196 void folio_putback_hugetlb(struct folio *folio) 7197 { 7198 spin_lock_irq(&hugetlb_lock); 7199 folio_set_hugetlb_migratable(folio); 7200 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist); 7201 spin_unlock_irq(&hugetlb_lock); 7202 folio_put(folio); 7203 } 7204 7205 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason) 7206 { 7207 struct hstate *h = folio_hstate(old_folio); 7208 7209 hugetlb_cgroup_migrate(old_folio, new_folio); 7210 folio_set_owner_migrate_reason(new_folio, reason); 7211 7212 /* 7213 * transfer temporary state of the new hugetlb folio. This is 7214 * reverse to other transitions because the newpage is going to 7215 * be final while the old one will be freed so it takes over 7216 * the temporary status. 7217 * 7218 * Also note that we have to transfer the per-node surplus state 7219 * here as well otherwise the global surplus count will not match 7220 * the per-node's. 7221 */ 7222 if (folio_test_hugetlb_temporary(new_folio)) { 7223 int old_nid = folio_nid(old_folio); 7224 int new_nid = folio_nid(new_folio); 7225 7226 folio_set_hugetlb_temporary(old_folio); 7227 folio_clear_hugetlb_temporary(new_folio); 7228 7229 7230 /* 7231 * There is no need to transfer the per-node surplus state 7232 * when we do not cross the node. 7233 */ 7234 if (new_nid == old_nid) 7235 return; 7236 spin_lock_irq(&hugetlb_lock); 7237 if (h->surplus_huge_pages_node[old_nid]) { 7238 h->surplus_huge_pages_node[old_nid]--; 7239 h->surplus_huge_pages_node[new_nid]++; 7240 } 7241 spin_unlock_irq(&hugetlb_lock); 7242 } 7243 7244 /* 7245 * Our old folio is isolated and has "migratable" cleared until it 7246 * is putback. As migration succeeded, set the new folio "migratable" 7247 * and add it to the active list. 7248 */ 7249 spin_lock_irq(&hugetlb_lock); 7250 folio_set_hugetlb_migratable(new_folio); 7251 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist); 7252 spin_unlock_irq(&hugetlb_lock); 7253 } 7254 7255 /* 7256 * If @take_locks is false, the caller must ensure that no concurrent page table 7257 * access can happen (except for gup_fast() and hardware page walks). 7258 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like 7259 * concurrent page fault handling) and the file rmap lock. 7260 */ 7261 static void hugetlb_unshare_pmds(struct vm_area_struct *vma, 7262 unsigned long start, 7263 unsigned long end, 7264 bool take_locks) 7265 { 7266 struct hstate *h = hstate_vma(vma); 7267 unsigned long sz = huge_page_size(h); 7268 struct mm_struct *mm = vma->vm_mm; 7269 struct mmu_notifier_range range; 7270 struct mmu_gather tlb; 7271 unsigned long address; 7272 spinlock_t *ptl; 7273 pte_t *ptep; 7274 7275 if (!(vma->vm_flags & VM_MAYSHARE)) 7276 return; 7277 7278 if (start >= end) 7279 return; 7280 7281 flush_cache_range(vma, start, end); 7282 tlb_gather_mmu_vma(&tlb, vma); 7283 7284 /* 7285 * No need to call adjust_range_if_pmd_sharing_possible(), because 7286 * we have already done the PUD_SIZE alignment. 7287 */ 7288 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 7289 start, end); 7290 mmu_notifier_invalidate_range_start(&range); 7291 if (take_locks) { 7292 hugetlb_vma_lock_write(vma); 7293 i_mmap_lock_write(vma->vm_file->f_mapping); 7294 } else { 7295 i_mmap_assert_write_locked(vma->vm_file->f_mapping); 7296 } 7297 for (address = start; address < end; address += PUD_SIZE) { 7298 ptep = hugetlb_walk(vma, address, sz); 7299 if (!ptep) 7300 continue; 7301 ptl = huge_pte_lock(h, mm, ptep); 7302 huge_pmd_unshare(&tlb, vma, address, ptep); 7303 spin_unlock(ptl); 7304 } 7305 huge_pmd_unshare_flush(&tlb, vma); 7306 if (take_locks) { 7307 i_mmap_unlock_write(vma->vm_file->f_mapping); 7308 hugetlb_vma_unlock_write(vma); 7309 } 7310 /* 7311 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see 7312 * Documentation/mm/mmu_notifier.rst. 7313 */ 7314 mmu_notifier_invalidate_range_end(&range); 7315 tlb_finish_mmu(&tlb); 7316 } 7317 7318 /* 7319 * This function will unconditionally remove all the shared pmd pgtable entries 7320 * within the specific vma for a hugetlbfs memory range. 7321 */ 7322 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) 7323 { 7324 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE), 7325 ALIGN_DOWN(vma->vm_end, PUD_SIZE), 7326 /* take_locks = */ true); 7327 } 7328 7329 /* 7330 * For hugetlb, mremap() is an odd edge case - while the VMA copying is 7331 * performed, we permit both the old and new VMAs to reference the same 7332 * reservation. 7333 * 7334 * We fix this up after the operation succeeds, or if a newly allocated VMA 7335 * is closed as a result of a failure to allocate memory. 7336 */ 7337 void fixup_hugetlb_reservations(struct vm_area_struct *vma) 7338 { 7339 if (is_vm_hugetlb_page(vma)) 7340 clear_vma_resv_huge_pages(vma); 7341 } 7342