1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/sched/mm.h>
8 #include <linux/slab.h>
9 #include <linux/ratelimit.h>
10 #include <linux/kthread.h>
11 #include <linux/semaphore.h>
12 #include <linux/uuid.h>
13 #include <linux/list_sort.h>
14 #include <linux/namei.h>
15 #include "misc.h"
16 #include "disk-io.h"
17 #include "extent-tree.h"
18 #include "transaction.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "dev-replace.h"
22 #include "sysfs.h"
23 #include "tree-checker.h"
24 #include "space-info.h"
25 #include "block-group.h"
26 #include "discard.h"
27 #include "zoned.h"
28 #include "fs.h"
29 #include "accessors.h"
30 #include "uuid-tree.h"
31 #include "ioctl.h"
32 #include "relocation.h"
33 #include "scrub.h"
34 #include "super.h"
35 #include "raid-stripe-tree.h"
36
37 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
38 BTRFS_BLOCK_GROUP_RAID10 | \
39 BTRFS_BLOCK_GROUP_RAID56_MASK)
40
41 struct btrfs_io_geometry {
42 u32 stripe_index;
43 u32 stripe_nr;
44 int mirror_num;
45 int num_stripes;
46 u64 stripe_offset;
47 u64 raid56_full_stripe_start;
48 int max_errors;
49 enum btrfs_map_op op;
50 bool use_rst;
51 };
52
53 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
54 [BTRFS_RAID_RAID10] = {
55 .sub_stripes = 2,
56 .dev_stripes = 1,
57 .devs_max = 0, /* 0 == as many as possible */
58 .devs_min = 2,
59 .tolerated_failures = 1,
60 .devs_increment = 2,
61 .ncopies = 2,
62 .nparity = 0,
63 .raid_name = "raid10",
64 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
65 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
66 },
67 [BTRFS_RAID_RAID1] = {
68 .sub_stripes = 1,
69 .dev_stripes = 1,
70 .devs_max = 2,
71 .devs_min = 2,
72 .tolerated_failures = 1,
73 .devs_increment = 2,
74 .ncopies = 2,
75 .nparity = 0,
76 .raid_name = "raid1",
77 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
78 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
79 },
80 [BTRFS_RAID_RAID1C3] = {
81 .sub_stripes = 1,
82 .dev_stripes = 1,
83 .devs_max = 3,
84 .devs_min = 3,
85 .tolerated_failures = 2,
86 .devs_increment = 3,
87 .ncopies = 3,
88 .nparity = 0,
89 .raid_name = "raid1c3",
90 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
91 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
92 },
93 [BTRFS_RAID_RAID1C4] = {
94 .sub_stripes = 1,
95 .dev_stripes = 1,
96 .devs_max = 4,
97 .devs_min = 4,
98 .tolerated_failures = 3,
99 .devs_increment = 4,
100 .ncopies = 4,
101 .nparity = 0,
102 .raid_name = "raid1c4",
103 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
104 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
105 },
106 [BTRFS_RAID_DUP] = {
107 .sub_stripes = 1,
108 .dev_stripes = 2,
109 .devs_max = 1,
110 .devs_min = 1,
111 .tolerated_failures = 0,
112 .devs_increment = 1,
113 .ncopies = 2,
114 .nparity = 0,
115 .raid_name = "dup",
116 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
117 .mindev_error = 0,
118 },
119 [BTRFS_RAID_RAID0] = {
120 .sub_stripes = 1,
121 .dev_stripes = 1,
122 .devs_max = 0,
123 .devs_min = 1,
124 .tolerated_failures = 0,
125 .devs_increment = 1,
126 .ncopies = 1,
127 .nparity = 0,
128 .raid_name = "raid0",
129 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
130 .mindev_error = 0,
131 },
132 [BTRFS_RAID_SINGLE] = {
133 .sub_stripes = 1,
134 .dev_stripes = 1,
135 .devs_max = 1,
136 .devs_min = 1,
137 .tolerated_failures = 0,
138 .devs_increment = 1,
139 .ncopies = 1,
140 .nparity = 0,
141 .raid_name = "single",
142 .bg_flag = 0,
143 .mindev_error = 0,
144 },
145 [BTRFS_RAID_RAID5] = {
146 .sub_stripes = 1,
147 .dev_stripes = 1,
148 .devs_max = 0,
149 .devs_min = 2,
150 .tolerated_failures = 1,
151 .devs_increment = 1,
152 .ncopies = 1,
153 .nparity = 1,
154 .raid_name = "raid5",
155 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
156 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
157 },
158 [BTRFS_RAID_RAID6] = {
159 .sub_stripes = 1,
160 .dev_stripes = 1,
161 .devs_max = 0,
162 .devs_min = 3,
163 .tolerated_failures = 2,
164 .devs_increment = 1,
165 .ncopies = 1,
166 .nparity = 2,
167 .raid_name = "raid6",
168 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
169 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
170 },
171 };
172
173 /*
174 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which
175 * can be used as index to access btrfs_raid_array[].
176 */
btrfs_bg_flags_to_raid_index(u64 flags)177 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags)
178 {
179 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK);
180
181 if (!profile)
182 return BTRFS_RAID_SINGLE;
183
184 return BTRFS_BG_FLAG_TO_INDEX(profile);
185 }
186
btrfs_bg_type_to_raid_name(u64 flags)187 const char *btrfs_bg_type_to_raid_name(u64 flags)
188 {
189 const int index = btrfs_bg_flags_to_raid_index(flags);
190
191 if (index >= BTRFS_NR_RAID_TYPES)
192 return NULL;
193
194 return btrfs_raid_array[index].raid_name;
195 }
196
btrfs_nr_parity_stripes(u64 type)197 int btrfs_nr_parity_stripes(u64 type)
198 {
199 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type);
200
201 return btrfs_raid_array[index].nparity;
202 }
203
204 /*
205 * Fill @buf with textual description of @bg_flags, no more than @size_buf
206 * bytes including terminating null byte.
207 */
btrfs_describe_block_groups(u64 bg_flags,char * buf,u32 size_buf)208 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
209 {
210 int i;
211 int ret;
212 char *bp = buf;
213 u64 flags = bg_flags;
214 u32 size_bp = size_buf;
215
216 if (!flags)
217 return;
218
219 #define DESCRIBE_FLAG(flag, desc) \
220 do { \
221 if (flags & (flag)) { \
222 ret = snprintf(bp, size_bp, "%s|", (desc)); \
223 if (ret < 0 || ret >= size_bp) \
224 goto out_overflow; \
225 size_bp -= ret; \
226 bp += ret; \
227 flags &= ~(flag); \
228 } \
229 } while (0)
230
231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
232 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
233 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
234
235 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
238 btrfs_raid_array[i].raid_name);
239 #undef DESCRIBE_FLAG
240
241 if (flags) {
242 ret = snprintf(bp, size_bp, "0x%llx|", flags);
243 size_bp -= ret;
244 }
245
246 if (size_bp < size_buf)
247 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
248
249 /*
250 * The text is trimmed, it's up to the caller to provide sufficiently
251 * large buffer
252 */
253 out_overflow:;
254 }
255
256 static int init_first_rw_device(struct btrfs_trans_handle *trans);
257 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
258 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
259
260 /*
261 * Device locking
262 * ==============
263 *
264 * There are several mutexes that protect manipulation of devices and low-level
265 * structures like chunks but not block groups, extents or files
266 *
267 * uuid_mutex (global lock)
268 * ------------------------
269 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
270 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
271 * device) or requested by the device= mount option
272 *
273 * the mutex can be very coarse and can cover long-running operations
274 *
275 * protects: updates to fs_devices counters like missing devices, rw devices,
276 * seeding, structure cloning, opening/closing devices at mount/umount time
277 *
278 * global::fs_devs - add, remove, updates to the global list
279 *
280 * does not protect: manipulation of the fs_devices::devices list in general
281 * but in mount context it could be used to exclude list modifications by eg.
282 * scan ioctl
283 *
284 * btrfs_device::name - renames (write side), read is RCU
285 *
286 * fs_devices::device_list_mutex (per-fs, with RCU)
287 * ------------------------------------------------
288 * protects updates to fs_devices::devices, ie. adding and deleting
289 *
290 * simple list traversal with read-only actions can be done with RCU protection
291 *
292 * may be used to exclude some operations from running concurrently without any
293 * modifications to the list (see write_all_supers)
294 *
295 * Is not required at mount and close times, because our device list is
296 * protected by the uuid_mutex at that point.
297 *
298 * balance_mutex
299 * -------------
300 * protects balance structures (status, state) and context accessed from
301 * several places (internally, ioctl)
302 *
303 * chunk_mutex
304 * -----------
305 * protects chunks, adding or removing during allocation, trim or when a new
306 * device is added/removed. Additionally it also protects post_commit_list of
307 * individual devices, since they can be added to the transaction's
308 * post_commit_list only with chunk_mutex held.
309 *
310 * cleaner_mutex
311 * -------------
312 * a big lock that is held by the cleaner thread and prevents running subvolume
313 * cleaning together with relocation or delayed iputs
314 *
315 *
316 * Lock nesting
317 * ============
318 *
319 * uuid_mutex
320 * device_list_mutex
321 * chunk_mutex
322 * balance_mutex
323 *
324 *
325 * Exclusive operations
326 * ====================
327 *
328 * Maintains the exclusivity of the following operations that apply to the
329 * whole filesystem and cannot run in parallel.
330 *
331 * - Balance (*)
332 * - Device add
333 * - Device remove
334 * - Device replace (*)
335 * - Resize
336 *
337 * The device operations (as above) can be in one of the following states:
338 *
339 * - Running state
340 * - Paused state
341 * - Completed state
342 *
343 * Only device operations marked with (*) can go into the Paused state for the
344 * following reasons:
345 *
346 * - ioctl (only Balance can be Paused through ioctl)
347 * - filesystem remounted as read-only
348 * - filesystem unmounted and mounted as read-only
349 * - system power-cycle and filesystem mounted as read-only
350 * - filesystem or device errors leading to forced read-only
351 *
352 * The status of exclusive operation is set and cleared atomically.
353 * During the course of Paused state, fs_info::exclusive_operation remains set.
354 * A device operation in Paused or Running state can be canceled or resumed
355 * either by ioctl (Balance only) or when remounted as read-write.
356 * The exclusive status is cleared when the device operation is canceled or
357 * completed.
358 */
359
360 DEFINE_MUTEX(uuid_mutex);
361 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)362 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
363 {
364 return &fs_uuids;
365 }
366
367 /*
368 * Allocate new btrfs_fs_devices structure identified by a fsid.
369 *
370 * @fsid: if not NULL, copy the UUID to fs_devices::fsid and to
371 * fs_devices::metadata_fsid
372 *
373 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
374 * The returned struct is not linked onto any lists and can be destroyed with
375 * kfree() right away.
376 */
alloc_fs_devices(const u8 * fsid)377 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
378 {
379 struct btrfs_fs_devices *fs_devs;
380
381 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
382 if (!fs_devs)
383 return ERR_PTR(-ENOMEM);
384
385 mutex_init(&fs_devs->device_list_mutex);
386
387 INIT_LIST_HEAD(&fs_devs->devices);
388 INIT_LIST_HEAD(&fs_devs->alloc_list);
389 INIT_LIST_HEAD(&fs_devs->fs_list);
390 INIT_LIST_HEAD(&fs_devs->seed_list);
391
392 if (fsid) {
393 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
394 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
395 }
396
397 return fs_devs;
398 }
399
btrfs_free_device(struct btrfs_device * device)400 static void btrfs_free_device(struct btrfs_device *device)
401 {
402 WARN_ON(!list_empty(&device->post_commit_list));
403 /*
404 * No need to call kfree_rcu() nor do RCU lock/unlock, nothing is
405 * reading the device name.
406 */
407 kfree(rcu_dereference_raw(device->name));
408 btrfs_extent_io_tree_release(&device->alloc_state);
409 btrfs_destroy_dev_zone_info(device);
410 kfree(device);
411 }
412
free_fs_devices(struct btrfs_fs_devices * fs_devices)413 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
414 {
415 struct btrfs_device *device;
416
417 WARN_ON(fs_devices->opened);
418 WARN_ON(fs_devices->holding);
419 while (!list_empty(&fs_devices->devices)) {
420 device = list_first_entry(&fs_devices->devices,
421 struct btrfs_device, dev_list);
422 list_del(&device->dev_list);
423 btrfs_free_device(device);
424 }
425 kfree(fs_devices);
426 }
427
btrfs_cleanup_fs_uuids(void)428 void __exit btrfs_cleanup_fs_uuids(void)
429 {
430 struct btrfs_fs_devices *fs_devices;
431
432 while (!list_empty(&fs_uuids)) {
433 fs_devices = list_first_entry(&fs_uuids, struct btrfs_fs_devices,
434 fs_list);
435 list_del(&fs_devices->fs_list);
436 free_fs_devices(fs_devices);
437 }
438 }
439
match_fsid_fs_devices(const struct btrfs_fs_devices * fs_devices,const u8 * fsid,const u8 * metadata_fsid)440 static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices,
441 const u8 *fsid, const u8 *metadata_fsid)
442 {
443 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0)
444 return false;
445
446 if (!metadata_fsid)
447 return true;
448
449 if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0)
450 return false;
451
452 return true;
453 }
454
find_fsid(const u8 * fsid,const u8 * metadata_fsid)455 static noinline struct btrfs_fs_devices *find_fsid(
456 const u8 *fsid, const u8 *metadata_fsid)
457 {
458 struct btrfs_fs_devices *fs_devices;
459
460 ASSERT(fsid);
461
462 /* Handle non-split brain cases */
463 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
464 if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid))
465 return fs_devices;
466 }
467 return NULL;
468 }
469
470 static int
btrfs_get_bdev_and_sb(const char * device_path,blk_mode_t flags,void * holder,int flush,struct file ** bdev_file,struct btrfs_super_block ** disk_super)471 btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder,
472 int flush, struct file **bdev_file,
473 struct btrfs_super_block **disk_super)
474 {
475 struct block_device *bdev;
476 int ret;
477
478 *bdev_file = bdev_file_open_by_path(device_path, flags, holder, &fs_holder_ops);
479
480 if (IS_ERR(*bdev_file)) {
481 ret = PTR_ERR(*bdev_file);
482 btrfs_err(NULL, "failed to open device for path %s with flags 0x%x: %d",
483 device_path, flags, ret);
484 goto error;
485 }
486 bdev = file_bdev(*bdev_file);
487
488 if (flush)
489 sync_blockdev(bdev);
490 if (holder) {
491 ret = set_blocksize(*bdev_file, BTRFS_BDEV_BLOCKSIZE);
492 if (ret) {
493 bdev_fput(*bdev_file);
494 goto error;
495 }
496 }
497 invalidate_bdev(bdev);
498 *disk_super = btrfs_read_disk_super(bdev, 0, false);
499 if (IS_ERR(*disk_super)) {
500 ret = PTR_ERR(*disk_super);
501 bdev_fput(*bdev_file);
502 goto error;
503 }
504
505 return 0;
506
507 error:
508 *disk_super = NULL;
509 *bdev_file = NULL;
510 return ret;
511 }
512
513 /*
514 * Search and remove all stale devices (which are not mounted). When both
515 * inputs are NULL, it will search and release all stale devices.
516 *
517 * @devt: Optional. When provided will it release all unmounted devices
518 * matching this devt only.
519 * @skip_device: Optional. Will skip this device when searching for the stale
520 * devices.
521 *
522 * Return: 0 for success or if @devt is 0.
523 * -EBUSY if @devt is a mounted device.
524 * -ENOENT if @devt does not match any device in the list.
525 */
btrfs_free_stale_devices(dev_t devt,struct btrfs_device * skip_device)526 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device)
527 {
528 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
529 struct btrfs_device *device, *tmp_device;
530 int ret;
531 bool freed = false;
532
533 lockdep_assert_held(&uuid_mutex);
534
535 /* Return good status if there is no instance of devt. */
536 ret = 0;
537 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
538
539 mutex_lock(&fs_devices->device_list_mutex);
540 list_for_each_entry_safe(device, tmp_device,
541 &fs_devices->devices, dev_list) {
542 if (skip_device && skip_device == device)
543 continue;
544 if (devt && devt != device->devt)
545 continue;
546 if (fs_devices->opened || fs_devices->holding) {
547 if (devt)
548 ret = -EBUSY;
549 break;
550 }
551
552 /* delete the stale device */
553 fs_devices->num_devices--;
554 list_del(&device->dev_list);
555 btrfs_free_device(device);
556
557 freed = true;
558 }
559 mutex_unlock(&fs_devices->device_list_mutex);
560
561 if (fs_devices->num_devices == 0) {
562 btrfs_sysfs_remove_fsid(fs_devices);
563 list_del(&fs_devices->fs_list);
564 free_fs_devices(fs_devices);
565 }
566 }
567
568 /* If there is at least one freed device return 0. */
569 if (freed)
570 return 0;
571
572 return ret;
573 }
574
find_fsid_by_device(struct btrfs_super_block * disk_super,dev_t devt,bool * same_fsid_diff_dev)575 static struct btrfs_fs_devices *find_fsid_by_device(
576 struct btrfs_super_block *disk_super,
577 dev_t devt, bool *same_fsid_diff_dev)
578 {
579 struct btrfs_fs_devices *fsid_fs_devices;
580 struct btrfs_fs_devices *devt_fs_devices;
581 const bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
582 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
583 bool found_by_devt = false;
584
585 /* Find the fs_device by the usual method, if found use it. */
586 fsid_fs_devices = find_fsid(disk_super->fsid,
587 has_metadata_uuid ? disk_super->metadata_uuid : NULL);
588
589 /* The temp_fsid feature is supported only with single device filesystem. */
590 if (btrfs_super_num_devices(disk_super) != 1)
591 return fsid_fs_devices;
592
593 /*
594 * A seed device is an integral component of the sprout device, which
595 * functions as a multi-device filesystem. So, temp-fsid feature is
596 * not supported.
597 */
598 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING)
599 return fsid_fs_devices;
600
601 /* Try to find a fs_devices by matching devt. */
602 list_for_each_entry(devt_fs_devices, &fs_uuids, fs_list) {
603 struct btrfs_device *device;
604
605 list_for_each_entry(device, &devt_fs_devices->devices, dev_list) {
606 if (device->devt == devt) {
607 found_by_devt = true;
608 break;
609 }
610 }
611 if (found_by_devt)
612 break;
613 }
614
615 if (found_by_devt) {
616 /* Existing device. */
617 if (fsid_fs_devices == NULL) {
618 if (devt_fs_devices->opened == 0) {
619 /* Stale device. */
620 return NULL;
621 } else {
622 /* temp_fsid is mounting a subvol. */
623 return devt_fs_devices;
624 }
625 } else {
626 /* Regular or temp_fsid device mounting a subvol. */
627 return devt_fs_devices;
628 }
629 } else {
630 /* New device. */
631 if (fsid_fs_devices == NULL) {
632 return NULL;
633 } else {
634 /* sb::fsid is already used create a new temp_fsid. */
635 *same_fsid_diff_dev = true;
636 return NULL;
637 }
638 }
639
640 /* Not reached. */
641 }
642
643 /*
644 * This is only used on mount, and we are protected from competing things
645 * messing with our fs_devices by the uuid_mutex, thus we do not need the
646 * fs_devices->device_list_mutex here.
647 */
btrfs_open_one_device(struct btrfs_fs_devices * fs_devices,struct btrfs_device * device,blk_mode_t flags,void * holder)648 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
649 struct btrfs_device *device, blk_mode_t flags,
650 void *holder)
651 {
652 struct file *bdev_file;
653 struct btrfs_super_block *disk_super;
654 u64 devid;
655 int ret;
656
657 if (device->bdev)
658 return -EINVAL;
659 if (!device->name)
660 return -EINVAL;
661
662 ret = btrfs_get_bdev_and_sb(rcu_dereference_raw(device->name), flags, holder, 1,
663 &bdev_file, &disk_super);
664 if (ret)
665 return ret;
666
667 devid = btrfs_stack_device_id(&disk_super->dev_item);
668 if (devid != device->devid)
669 goto error_free_page;
670
671 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
672 goto error_free_page;
673
674 device->generation = btrfs_super_generation(disk_super);
675
676 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
677 if (btrfs_super_incompat_flags(disk_super) &
678 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
679 btrfs_err(NULL,
680 "invalid seeding and uuid-changed device detected");
681 goto error_free_page;
682 }
683
684 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
685 fs_devices->seeding = true;
686 } else {
687 if (bdev_read_only(file_bdev(bdev_file)))
688 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
689 else
690 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
691 }
692
693 if (!bdev_nonrot(file_bdev(bdev_file)))
694 fs_devices->rotating = true;
695
696 if (bdev_max_discard_sectors(file_bdev(bdev_file)))
697 fs_devices->discardable = true;
698
699 device->bdev_file = bdev_file;
700 device->bdev = file_bdev(bdev_file);
701 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
702
703 if (device->devt != device->bdev->bd_dev) {
704 btrfs_warn(NULL,
705 "device %s maj:min changed from %d:%d to %d:%d",
706 rcu_dereference_raw(device->name), MAJOR(device->devt),
707 MINOR(device->devt), MAJOR(device->bdev->bd_dev),
708 MINOR(device->bdev->bd_dev));
709
710 device->devt = device->bdev->bd_dev;
711 }
712
713 fs_devices->open_devices++;
714 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
715 device->devid != BTRFS_DEV_REPLACE_DEVID) {
716 fs_devices->rw_devices++;
717 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
718 }
719 btrfs_release_disk_super(disk_super);
720
721 return 0;
722
723 error_free_page:
724 btrfs_release_disk_super(disk_super);
725 bdev_fput(bdev_file);
726
727 return -EINVAL;
728 }
729
btrfs_sb_fsid_ptr(const struct btrfs_super_block * sb)730 const u8 *btrfs_sb_fsid_ptr(const struct btrfs_super_block *sb)
731 {
732 bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) &
733 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
734
735 return has_metadata_uuid ? sb->metadata_uuid : sb->fsid;
736 }
737
is_same_device(struct btrfs_device * device,const char * new_path)738 static bool is_same_device(struct btrfs_device *device, const char *new_path)
739 {
740 struct path old = { .mnt = NULL, .dentry = NULL };
741 struct path new = { .mnt = NULL, .dentry = NULL };
742 char *old_path = NULL;
743 bool is_same = false;
744 int ret;
745
746 if (!device->name)
747 goto out;
748
749 old_path = kzalloc(PATH_MAX, GFP_NOFS);
750 if (!old_path)
751 goto out;
752
753 rcu_read_lock();
754 ret = strscpy(old_path, rcu_dereference(device->name), PATH_MAX);
755 rcu_read_unlock();
756 if (ret < 0)
757 goto out;
758
759 ret = kern_path(old_path, LOOKUP_FOLLOW, &old);
760 if (ret)
761 goto out;
762 ret = kern_path(new_path, LOOKUP_FOLLOW, &new);
763 if (ret)
764 goto out;
765 if (path_equal(&old, &new))
766 is_same = true;
767 out:
768 kfree(old_path);
769 path_put(&old);
770 path_put(&new);
771 return is_same;
772 }
773
774 /*
775 * Add new device to list of registered devices
776 *
777 * Returns:
778 * device pointer which was just added or updated when successful
779 * error pointer when failed
780 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,bool * new_device_added)781 static noinline struct btrfs_device *device_list_add(const char *path,
782 struct btrfs_super_block *disk_super,
783 bool *new_device_added)
784 {
785 struct btrfs_device *device;
786 struct btrfs_fs_devices *fs_devices = NULL;
787 const char *name;
788 u64 found_transid = btrfs_super_generation(disk_super);
789 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
790 dev_t path_devt;
791 int ret;
792 bool same_fsid_diff_dev = false;
793 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
794 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
795
796 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
797 btrfs_err(NULL,
798 "device %s has incomplete metadata_uuid change, please use btrfstune to complete",
799 path);
800 return ERR_PTR(-EAGAIN);
801 }
802
803 ret = lookup_bdev(path, &path_devt);
804 if (ret) {
805 btrfs_err(NULL, "failed to lookup block device for path %s: %d",
806 path, ret);
807 return ERR_PTR(ret);
808 }
809
810 fs_devices = find_fsid_by_device(disk_super, path_devt, &same_fsid_diff_dev);
811
812 if (!fs_devices) {
813 fs_devices = alloc_fs_devices(disk_super->fsid);
814 if (IS_ERR(fs_devices))
815 return ERR_CAST(fs_devices);
816
817 if (has_metadata_uuid)
818 memcpy(fs_devices->metadata_uuid,
819 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
820
821 if (same_fsid_diff_dev) {
822 generate_random_uuid(fs_devices->fsid);
823 fs_devices->temp_fsid = true;
824 btrfs_info(NULL, "device %s (%d:%d) using temp-fsid %pU",
825 path, MAJOR(path_devt), MINOR(path_devt),
826 fs_devices->fsid);
827 }
828
829 mutex_lock(&fs_devices->device_list_mutex);
830 list_add(&fs_devices->fs_list, &fs_uuids);
831
832 device = NULL;
833 } else {
834 struct btrfs_dev_lookup_args args = {
835 .devid = devid,
836 .uuid = disk_super->dev_item.uuid,
837 };
838
839 mutex_lock(&fs_devices->device_list_mutex);
840 device = btrfs_find_device(fs_devices, &args);
841
842 if (found_transid > fs_devices->latest_generation) {
843 memcpy(fs_devices->fsid, disk_super->fsid,
844 BTRFS_FSID_SIZE);
845 memcpy(fs_devices->metadata_uuid,
846 btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE);
847 }
848 }
849
850 if (!device) {
851 unsigned int nofs_flag;
852
853 if (fs_devices->opened) {
854 btrfs_err(NULL,
855 "device %s (%d:%d) belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)",
856 path, MAJOR(path_devt), MINOR(path_devt),
857 fs_devices->fsid, current->comm,
858 task_pid_nr(current));
859 mutex_unlock(&fs_devices->device_list_mutex);
860 return ERR_PTR(-EBUSY);
861 }
862
863 nofs_flag = memalloc_nofs_save();
864 device = btrfs_alloc_device(NULL, &devid,
865 disk_super->dev_item.uuid, path);
866 memalloc_nofs_restore(nofs_flag);
867 if (IS_ERR(device)) {
868 mutex_unlock(&fs_devices->device_list_mutex);
869 /* we can safely leave the fs_devices entry around */
870 return device;
871 }
872
873 device->devt = path_devt;
874
875 list_add_rcu(&device->dev_list, &fs_devices->devices);
876 fs_devices->num_devices++;
877
878 device->fs_devices = fs_devices;
879 *new_device_added = true;
880
881 if (disk_super->label[0])
882 pr_info(
883 "BTRFS: device label %s devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
884 disk_super->label, devid, found_transid, path,
885 MAJOR(path_devt), MINOR(path_devt),
886 current->comm, task_pid_nr(current));
887 else
888 pr_info(
889 "BTRFS: device fsid %pU devid %llu transid %llu %s (%d:%d) scanned by %s (%d)\n",
890 disk_super->fsid, devid, found_transid, path,
891 MAJOR(path_devt), MINOR(path_devt),
892 current->comm, task_pid_nr(current));
893
894 } else if (!device->name || !is_same_device(device, path)) {
895 const char *old_name;
896
897 /*
898 * When FS is already mounted.
899 * 1. If you are here and if the device->name is NULL that
900 * means this device was missing at time of FS mount.
901 * 2. If you are here and if the device->name is different
902 * from 'path' that means either
903 * a. The same device disappeared and reappeared with
904 * different name. or
905 * b. The missing-disk-which-was-replaced, has
906 * reappeared now.
907 *
908 * We must allow 1 and 2a above. But 2b would be a spurious
909 * and unintentional.
910 *
911 * Further in case of 1 and 2a above, the disk at 'path'
912 * would have missed some transaction when it was away and
913 * in case of 2a the stale bdev has to be updated as well.
914 * 2b must not be allowed at all time.
915 */
916
917 /*
918 * For now, we do allow update to btrfs_fs_device through the
919 * btrfs dev scan cli after FS has been mounted. We're still
920 * tracking a problem where systems fail mount by subvolume id
921 * when we reject replacement on a mounted FS.
922 */
923 if (!fs_devices->opened && found_transid < device->generation) {
924 /*
925 * That is if the FS is _not_ mounted and if you
926 * are here, that means there is more than one
927 * disk with same uuid and devid.We keep the one
928 * with larger generation number or the last-in if
929 * generation are equal.
930 */
931 mutex_unlock(&fs_devices->device_list_mutex);
932 btrfs_err(NULL,
933 "device %s already registered with a higher generation, found %llu expect %llu",
934 path, found_transid, device->generation);
935 return ERR_PTR(-EEXIST);
936 }
937
938 /*
939 * We are going to replace the device path for a given devid,
940 * make sure it's the same device if the device is mounted
941 *
942 * NOTE: the device->fs_info may not be reliable here so pass
943 * in a NULL to message helpers instead. This avoids a possible
944 * use-after-free when the fs_info and fs_info->sb are already
945 * torn down.
946 */
947 if (device->bdev) {
948 if (device->devt != path_devt) {
949 mutex_unlock(&fs_devices->device_list_mutex);
950 btrfs_warn(NULL,
951 "duplicate device %s devid %llu generation %llu scanned by %s (%d)",
952 path, devid, found_transid,
953 current->comm,
954 task_pid_nr(current));
955 return ERR_PTR(-EEXIST);
956 }
957 btrfs_info(NULL,
958 "devid %llu device path %s changed to %s scanned by %s (%d)",
959 devid, btrfs_dev_name(device),
960 path, current->comm,
961 task_pid_nr(current));
962 }
963
964 name = kstrdup(path, GFP_NOFS);
965 if (!name) {
966 mutex_unlock(&fs_devices->device_list_mutex);
967 return ERR_PTR(-ENOMEM);
968 }
969 rcu_read_lock();
970 old_name = rcu_dereference(device->name);
971 rcu_read_unlock();
972 rcu_assign_pointer(device->name, name);
973 kfree_rcu_mightsleep(old_name);
974
975 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
976 fs_devices->missing_devices--;
977 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
978 }
979 device->devt = path_devt;
980 }
981
982 /*
983 * Unmount does not free the btrfs_device struct but would zero
984 * generation along with most of the other members. So just update
985 * it back. We need it to pick the disk with largest generation
986 * (as above).
987 */
988 if (!fs_devices->opened) {
989 device->generation = found_transid;
990 fs_devices->latest_generation = max_t(u64, found_transid,
991 fs_devices->latest_generation);
992 }
993
994 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
995
996 mutex_unlock(&fs_devices->device_list_mutex);
997 return device;
998 }
999
clone_fs_devices(struct btrfs_fs_devices * orig)1000 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1001 {
1002 struct btrfs_fs_devices *fs_devices;
1003 struct btrfs_device *device;
1004 struct btrfs_device *orig_dev;
1005 int ret = 0;
1006
1007 lockdep_assert_held(&uuid_mutex);
1008
1009 fs_devices = alloc_fs_devices(orig->fsid);
1010 if (IS_ERR(fs_devices))
1011 return fs_devices;
1012
1013 fs_devices->total_devices = orig->total_devices;
1014
1015 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1016 const char *dev_path = NULL;
1017
1018 /*
1019 * This is ok to do without RCU read locked because we hold the
1020 * uuid mutex so nothing we touch in here is going to disappear.
1021 */
1022 if (orig_dev->name)
1023 dev_path = rcu_dereference_raw(orig_dev->name);
1024
1025 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1026 orig_dev->uuid, dev_path);
1027 if (IS_ERR(device)) {
1028 ret = PTR_ERR(device);
1029 goto error;
1030 }
1031
1032 if (orig_dev->zone_info) {
1033 struct btrfs_zoned_device_info *zone_info;
1034
1035 zone_info = btrfs_clone_dev_zone_info(orig_dev);
1036 if (!zone_info) {
1037 btrfs_free_device(device);
1038 ret = -ENOMEM;
1039 goto error;
1040 }
1041 device->zone_info = zone_info;
1042 }
1043
1044 list_add(&device->dev_list, &fs_devices->devices);
1045 device->fs_devices = fs_devices;
1046 fs_devices->num_devices++;
1047 }
1048 return fs_devices;
1049 error:
1050 free_fs_devices(fs_devices);
1051 return ERR_PTR(ret);
1052 }
1053
__btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices,struct btrfs_device ** latest_dev)1054 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices,
1055 struct btrfs_device **latest_dev)
1056 {
1057 struct btrfs_device *device, *next;
1058
1059 /* This is the initialized path, it is safe to release the devices. */
1060 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1061 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) {
1062 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1063 &device->dev_state) &&
1064 !test_bit(BTRFS_DEV_STATE_MISSING,
1065 &device->dev_state) &&
1066 (!*latest_dev ||
1067 device->generation > (*latest_dev)->generation)) {
1068 *latest_dev = device;
1069 }
1070 continue;
1071 }
1072
1073 /*
1074 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID,
1075 * in btrfs_init_dev_replace() so just continue.
1076 */
1077 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1078 continue;
1079
1080 if (device->bdev_file) {
1081 bdev_fput(device->bdev_file);
1082 device->bdev = NULL;
1083 device->bdev_file = NULL;
1084 fs_devices->open_devices--;
1085 }
1086 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1087 list_del_init(&device->dev_alloc_list);
1088 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1089 fs_devices->rw_devices--;
1090 }
1091 list_del_init(&device->dev_list);
1092 fs_devices->num_devices--;
1093 btrfs_free_device(device);
1094 }
1095
1096 }
1097
1098 /*
1099 * After we have read the system tree and know devids belonging to this
1100 * filesystem, remove the device which does not belong there.
1101 */
btrfs_free_extra_devids(struct btrfs_fs_devices * fs_devices)1102 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices)
1103 {
1104 struct btrfs_device *latest_dev = NULL;
1105 struct btrfs_fs_devices *seed_dev;
1106
1107 mutex_lock(&uuid_mutex);
1108 __btrfs_free_extra_devids(fs_devices, &latest_dev);
1109
1110 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list)
1111 __btrfs_free_extra_devids(seed_dev, &latest_dev);
1112
1113 fs_devices->latest_dev = latest_dev;
1114
1115 mutex_unlock(&uuid_mutex);
1116 }
1117
btrfs_close_bdev(struct btrfs_device * device)1118 static void btrfs_close_bdev(struct btrfs_device *device)
1119 {
1120 if (!device->bdev)
1121 return;
1122
1123 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1124 sync_blockdev(device->bdev);
1125 invalidate_bdev(device->bdev);
1126 }
1127
1128 bdev_fput(device->bdev_file);
1129 }
1130
btrfs_close_one_device(struct btrfs_device * device)1131 static void btrfs_close_one_device(struct btrfs_device *device)
1132 {
1133 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1134
1135 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1136 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1137 list_del_init(&device->dev_alloc_list);
1138 fs_devices->rw_devices--;
1139 }
1140
1141 if (device->devid == BTRFS_DEV_REPLACE_DEVID)
1142 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
1143
1144 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1145 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1146 fs_devices->missing_devices--;
1147 }
1148
1149 btrfs_close_bdev(device);
1150 if (device->bdev) {
1151 fs_devices->open_devices--;
1152 device->bdev = NULL;
1153 device->bdev_file = NULL;
1154 }
1155 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1156 btrfs_destroy_dev_zone_info(device);
1157
1158 device->fs_info = NULL;
1159 atomic_set(&device->dev_stats_ccnt, 0);
1160 btrfs_extent_io_tree_release(&device->alloc_state);
1161
1162 /*
1163 * Reset the flush error record. We might have a transient flush error
1164 * in this mount, and if so we aborted the current transaction and set
1165 * the fs to an error state, guaranteeing no super blocks can be further
1166 * committed. However that error might be transient and if we unmount the
1167 * filesystem and mount it again, we should allow the mount to succeed
1168 * (btrfs_check_rw_degradable() should not fail) - if after mounting the
1169 * filesystem again we still get flush errors, then we will again abort
1170 * any transaction and set the error state, guaranteeing no commits of
1171 * unsafe super blocks.
1172 */
1173 device->last_flush_error = 0;
1174
1175 /* Verify the device is back in a pristine state */
1176 WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1177 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1178 WARN_ON(!list_empty(&device->dev_alloc_list));
1179 WARN_ON(!list_empty(&device->post_commit_list));
1180 }
1181
close_fs_devices(struct btrfs_fs_devices * fs_devices)1182 static void close_fs_devices(struct btrfs_fs_devices *fs_devices)
1183 {
1184 struct btrfs_device *device, *tmp;
1185
1186 lockdep_assert_held(&uuid_mutex);
1187
1188 if (--fs_devices->opened > 0)
1189 return;
1190
1191 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list)
1192 btrfs_close_one_device(device);
1193
1194 WARN_ON(fs_devices->open_devices);
1195 WARN_ON(fs_devices->rw_devices);
1196 fs_devices->opened = 0;
1197 fs_devices->seeding = false;
1198 fs_devices->fs_info = NULL;
1199 }
1200
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)1201 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1202 {
1203 LIST_HEAD(list);
1204 struct btrfs_fs_devices *tmp;
1205
1206 mutex_lock(&uuid_mutex);
1207 close_fs_devices(fs_devices);
1208 if (!fs_devices->opened && !fs_devices->holding) {
1209 list_splice_init(&fs_devices->seed_list, &list);
1210
1211 /*
1212 * If the struct btrfs_fs_devices is not assembled with any
1213 * other device, it can be re-initialized during the next mount
1214 * without the needing device-scan step. Therefore, it can be
1215 * fully freed.
1216 */
1217 if (fs_devices->num_devices == 1) {
1218 list_del(&fs_devices->fs_list);
1219 free_fs_devices(fs_devices);
1220 }
1221 }
1222
1223
1224 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) {
1225 close_fs_devices(fs_devices);
1226 list_del(&fs_devices->seed_list);
1227 free_fs_devices(fs_devices);
1228 }
1229 mutex_unlock(&uuid_mutex);
1230 }
1231
open_fs_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1232 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1233 blk_mode_t flags, void *holder)
1234 {
1235 struct btrfs_device *device;
1236 struct btrfs_device *latest_dev = NULL;
1237 struct btrfs_device *tmp_device;
1238 s64 __maybe_unused value = 0;
1239 int ret = 0;
1240
1241 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices,
1242 dev_list) {
1243 int ret2;
1244
1245 ret2 = btrfs_open_one_device(fs_devices, device, flags, holder);
1246 if (ret2 == 0 &&
1247 (!latest_dev || device->generation > latest_dev->generation)) {
1248 latest_dev = device;
1249 } else if (ret2 == -ENODATA) {
1250 fs_devices->num_devices--;
1251 list_del(&device->dev_list);
1252 btrfs_free_device(device);
1253 }
1254 if (ret == 0 && ret2 != 0)
1255 ret = ret2;
1256 }
1257
1258 if (fs_devices->open_devices == 0) {
1259 if (ret)
1260 return ret;
1261 return -EINVAL;
1262 }
1263
1264 fs_devices->opened = 1;
1265 fs_devices->latest_dev = latest_dev;
1266 fs_devices->total_rw_bytes = 0;
1267 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR;
1268 #ifdef CONFIG_BTRFS_EXPERIMENTAL
1269 fs_devices->rr_min_contig_read = BTRFS_DEFAULT_RR_MIN_CONTIG_READ;
1270 fs_devices->read_devid = latest_dev->devid;
1271 fs_devices->read_policy = btrfs_read_policy_to_enum(btrfs_get_mod_read_policy(),
1272 &value);
1273 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR)
1274 fs_devices->collect_fs_stats = true;
1275
1276 if (value) {
1277 if (fs_devices->read_policy == BTRFS_READ_POLICY_RR)
1278 fs_devices->rr_min_contig_read = value;
1279 if (fs_devices->read_policy == BTRFS_READ_POLICY_DEVID)
1280 fs_devices->read_devid = value;
1281 }
1282 #else
1283 fs_devices->read_policy = BTRFS_READ_POLICY_PID;
1284 #endif
1285
1286 return 0;
1287 }
1288
devid_cmp(void * priv,const struct list_head * a,const struct list_head * b)1289 static int devid_cmp(void *priv, const struct list_head *a,
1290 const struct list_head *b)
1291 {
1292 const struct btrfs_device *dev1, *dev2;
1293
1294 dev1 = list_entry(a, struct btrfs_device, dev_list);
1295 dev2 = list_entry(b, struct btrfs_device, dev_list);
1296
1297 if (dev1->devid < dev2->devid)
1298 return -1;
1299 else if (dev1->devid > dev2->devid)
1300 return 1;
1301 return 0;
1302 }
1303
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,blk_mode_t flags,void * holder)1304 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1305 blk_mode_t flags, void *holder)
1306 {
1307 int ret;
1308
1309 lockdep_assert_held(&uuid_mutex);
1310 /*
1311 * The device_list_mutex cannot be taken here in case opening the
1312 * underlying device takes further locks like open_mutex.
1313 *
1314 * We also don't need the lock here as this is called during mount and
1315 * exclusion is provided by uuid_mutex
1316 */
1317
1318 if (fs_devices->opened) {
1319 fs_devices->opened++;
1320 ret = 0;
1321 } else {
1322 list_sort(NULL, &fs_devices->devices, devid_cmp);
1323 ret = open_fs_devices(fs_devices, flags, holder);
1324 }
1325
1326 return ret;
1327 }
1328
btrfs_release_disk_super(struct btrfs_super_block * super)1329 void btrfs_release_disk_super(struct btrfs_super_block *super)
1330 {
1331 struct page *page = virt_to_page(super);
1332
1333 put_page(page);
1334 }
1335
btrfs_read_disk_super(struct block_device * bdev,int copy_num,bool drop_cache)1336 struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev,
1337 int copy_num, bool drop_cache)
1338 {
1339 struct btrfs_super_block *super;
1340 struct page *page;
1341 u64 bytenr, bytenr_orig;
1342 struct address_space *mapping = bdev->bd_mapping;
1343 int ret;
1344
1345 bytenr_orig = btrfs_sb_offset(copy_num);
1346 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
1347 if (ret < 0) {
1348 if (ret == -ENOENT)
1349 ret = -EINVAL;
1350 return ERR_PTR(ret);
1351 }
1352
1353 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
1354 return ERR_PTR(-EINVAL);
1355
1356 if (drop_cache) {
1357 /* This should only be called with the primary sb. */
1358 ASSERT(copy_num == 0);
1359
1360 /*
1361 * Drop the page of the primary superblock, so later read will
1362 * always read from the device.
1363 */
1364 invalidate_inode_pages2_range(mapping, bytenr >> PAGE_SHIFT,
1365 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
1366 }
1367
1368 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
1369 if (IS_ERR(page))
1370 return ERR_CAST(page);
1371
1372 super = page_address(page);
1373 if (btrfs_super_magic(super) != BTRFS_MAGIC ||
1374 btrfs_super_bytenr(super) != bytenr_orig) {
1375 btrfs_release_disk_super(super);
1376 return ERR_PTR(-EINVAL);
1377 }
1378
1379 /*
1380 * Make sure the last byte of label is properly NUL termiated. We use
1381 * '%s' to print the label, if not properly NUL termiated we can access
1382 * beyond the label.
1383 */
1384 if (super->label[0] && super->label[BTRFS_LABEL_SIZE - 1])
1385 super->label[BTRFS_LABEL_SIZE - 1] = 0;
1386
1387 return super;
1388 }
1389
btrfs_forget_devices(dev_t devt)1390 int btrfs_forget_devices(dev_t devt)
1391 {
1392 int ret;
1393
1394 mutex_lock(&uuid_mutex);
1395 ret = btrfs_free_stale_devices(devt, NULL);
1396 mutex_unlock(&uuid_mutex);
1397
1398 return ret;
1399 }
1400
btrfs_skip_registration(struct btrfs_super_block * disk_super,const char * path,dev_t devt,bool mount_arg_dev)1401 static bool btrfs_skip_registration(struct btrfs_super_block *disk_super,
1402 const char *path, dev_t devt,
1403 bool mount_arg_dev)
1404 {
1405 struct btrfs_fs_devices *fs_devices;
1406
1407 /*
1408 * Do not skip device registration for mounted devices with matching
1409 * maj:min but different paths. Booting without initrd relies on
1410 * /dev/root initially, later replaced with the actual root device.
1411 * A successful scan ensures grub2-probe selects the correct device.
1412 */
1413 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
1414 struct btrfs_device *device;
1415
1416 mutex_lock(&fs_devices->device_list_mutex);
1417
1418 if (!fs_devices->opened) {
1419 mutex_unlock(&fs_devices->device_list_mutex);
1420 continue;
1421 }
1422
1423 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1424 if (device->bdev && (device->bdev->bd_dev == devt) &&
1425 strcmp(rcu_dereference_raw(device->name), path) != 0) {
1426 mutex_unlock(&fs_devices->device_list_mutex);
1427
1428 /* Do not skip registration. */
1429 return false;
1430 }
1431 }
1432 mutex_unlock(&fs_devices->device_list_mutex);
1433 }
1434
1435 if (!mount_arg_dev && btrfs_super_num_devices(disk_super) == 1 &&
1436 !(btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING))
1437 return true;
1438
1439 return false;
1440 }
1441
1442 /*
1443 * Look for a btrfs signature on a device. This may be called out of the mount path
1444 * and we are not allowed to call set_blocksize during the scan. The superblock
1445 * is read via pagecache.
1446 *
1447 * With @mount_arg_dev it's a scan during mount time that will always register
1448 * the device or return an error. Multi-device and seeding devices are registered
1449 * in both cases.
1450 */
btrfs_scan_one_device(const char * path,bool mount_arg_dev)1451 struct btrfs_device *btrfs_scan_one_device(const char *path,
1452 bool mount_arg_dev)
1453 {
1454 struct btrfs_super_block *disk_super;
1455 bool new_device_added = false;
1456 struct btrfs_device *device = NULL;
1457 struct file *bdev_file;
1458 dev_t devt;
1459
1460 lockdep_assert_held(&uuid_mutex);
1461
1462 /*
1463 * Avoid an exclusive open here, as the systemd-udev may initiate the
1464 * device scan which may race with the user's mount or mkfs command,
1465 * resulting in failure.
1466 * Since the device scan is solely for reading purposes, there is no
1467 * need for an exclusive open. Additionally, the devices are read again
1468 * during the mount process. It is ok to get some inconsistent
1469 * values temporarily, as the device paths of the fsid are the only
1470 * required information for assembling the volume.
1471 */
1472 bdev_file = bdev_file_open_by_path(path, BLK_OPEN_READ, NULL, NULL);
1473 if (IS_ERR(bdev_file))
1474 return ERR_CAST(bdev_file);
1475
1476 disk_super = btrfs_read_disk_super(file_bdev(bdev_file), 0, false);
1477 if (IS_ERR(disk_super)) {
1478 device = ERR_CAST(disk_super);
1479 goto error_bdev_put;
1480 }
1481
1482 devt = file_bdev(bdev_file)->bd_dev;
1483 if (btrfs_skip_registration(disk_super, path, devt, mount_arg_dev)) {
1484 btrfs_debug(NULL, "skip registering single non-seed device %s (%d:%d)",
1485 path, MAJOR(devt), MINOR(devt));
1486
1487 btrfs_free_stale_devices(devt, NULL);
1488
1489 device = NULL;
1490 goto free_disk_super;
1491 }
1492
1493 device = device_list_add(path, disk_super, &new_device_added);
1494 if (!IS_ERR(device) && new_device_added)
1495 btrfs_free_stale_devices(device->devt, device);
1496
1497 free_disk_super:
1498 btrfs_release_disk_super(disk_super);
1499
1500 error_bdev_put:
1501 bdev_fput(bdev_file);
1502
1503 return device;
1504 }
1505
1506 /*
1507 * Try to find a chunk that intersects [start, start + len] range and when one
1508 * such is found, record the end of it in *start
1509 */
contains_pending_extent(struct btrfs_device * device,u64 * start,u64 len)1510 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1511 u64 len)
1512 {
1513 u64 physical_start, physical_end;
1514
1515 lockdep_assert_held(&device->fs_info->chunk_mutex);
1516
1517 if (btrfs_find_first_extent_bit(&device->alloc_state, *start,
1518 &physical_start, &physical_end,
1519 CHUNK_ALLOCATED, NULL)) {
1520
1521 if (in_range(physical_start, *start, len) ||
1522 in_range(*start, physical_start,
1523 physical_end + 1 - physical_start)) {
1524 *start = physical_end + 1;
1525 return true;
1526 }
1527 }
1528 return false;
1529 }
1530
dev_extent_search_start(struct btrfs_device * device)1531 static u64 dev_extent_search_start(struct btrfs_device *device)
1532 {
1533 switch (device->fs_devices->chunk_alloc_policy) {
1534 default:
1535 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy);
1536 fallthrough;
1537 case BTRFS_CHUNK_ALLOC_REGULAR:
1538 return BTRFS_DEVICE_RANGE_RESERVED;
1539 case BTRFS_CHUNK_ALLOC_ZONED:
1540 /*
1541 * We don't care about the starting region like regular
1542 * allocator, because we anyway use/reserve the first two zones
1543 * for superblock logging.
1544 */
1545 return 0;
1546 }
1547 }
1548
dev_extent_hole_check_zoned(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1549 static bool dev_extent_hole_check_zoned(struct btrfs_device *device,
1550 u64 *hole_start, u64 *hole_size,
1551 u64 num_bytes)
1552 {
1553 u64 zone_size = device->zone_info->zone_size;
1554 u64 pos;
1555 int ret;
1556 bool changed = false;
1557
1558 ASSERT(IS_ALIGNED(*hole_start, zone_size),
1559 "hole_start=%llu zone_size=%llu", *hole_start, zone_size);
1560
1561 while (*hole_size > 0) {
1562 pos = btrfs_find_allocatable_zones(device, *hole_start,
1563 *hole_start + *hole_size,
1564 num_bytes);
1565 if (pos != *hole_start) {
1566 *hole_size = *hole_start + *hole_size - pos;
1567 *hole_start = pos;
1568 changed = true;
1569 if (*hole_size < num_bytes)
1570 break;
1571 }
1572
1573 ret = btrfs_ensure_empty_zones(device, pos, num_bytes);
1574
1575 /* Range is ensured to be empty */
1576 if (!ret)
1577 return changed;
1578
1579 /* Given hole range was invalid (outside of device) */
1580 if (ret == -ERANGE) {
1581 *hole_start += *hole_size;
1582 *hole_size = 0;
1583 return true;
1584 }
1585
1586 *hole_start += zone_size;
1587 *hole_size -= zone_size;
1588 changed = true;
1589 }
1590
1591 return changed;
1592 }
1593
1594 /*
1595 * Check if specified hole is suitable for allocation.
1596 *
1597 * @device: the device which we have the hole
1598 * @hole_start: starting position of the hole
1599 * @hole_size: the size of the hole
1600 * @num_bytes: the size of the free space that we need
1601 *
1602 * This function may modify @hole_start and @hole_size to reflect the suitable
1603 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1604 */
dev_extent_hole_check(struct btrfs_device * device,u64 * hole_start,u64 * hole_size,u64 num_bytes)1605 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start,
1606 u64 *hole_size, u64 num_bytes)
1607 {
1608 bool changed = false;
1609 u64 hole_end = *hole_start + *hole_size;
1610
1611 for (;;) {
1612 /*
1613 * Check before we set max_hole_start, otherwise we could end up
1614 * sending back this offset anyway.
1615 */
1616 if (contains_pending_extent(device, hole_start, *hole_size)) {
1617 if (hole_end >= *hole_start)
1618 *hole_size = hole_end - *hole_start;
1619 else
1620 *hole_size = 0;
1621 changed = true;
1622 }
1623
1624 switch (device->fs_devices->chunk_alloc_policy) {
1625 default:
1626 btrfs_warn_unknown_chunk_allocation(device->fs_devices->chunk_alloc_policy);
1627 fallthrough;
1628 case BTRFS_CHUNK_ALLOC_REGULAR:
1629 /* No extra check */
1630 break;
1631 case BTRFS_CHUNK_ALLOC_ZONED:
1632 if (dev_extent_hole_check_zoned(device, hole_start,
1633 hole_size, num_bytes)) {
1634 changed = true;
1635 /*
1636 * The changed hole can contain pending extent.
1637 * Loop again to check that.
1638 */
1639 continue;
1640 }
1641 break;
1642 }
1643
1644 break;
1645 }
1646
1647 return changed;
1648 }
1649
1650 /*
1651 * Find free space in the specified device.
1652 *
1653 * @device: the device which we search the free space in
1654 * @num_bytes: the size of the free space that we need
1655 * @search_start: the position from which to begin the search
1656 * @start: store the start of the free space.
1657 * @len: the size of the free space. that we find, or the size
1658 * of the max free space if we don't find suitable free space
1659 *
1660 * This does a pretty simple search, the expectation is that it is called very
1661 * infrequently and that a given device has a small number of extents.
1662 *
1663 * @start is used to store the start of the free space if we find. But if we
1664 * don't find suitable free space, it will be used to store the start position
1665 * of the max free space.
1666 *
1667 * @len is used to store the size of the free space that we find.
1668 * But if we don't find suitable free space, it is used to store the size of
1669 * the max free space.
1670 *
1671 * NOTE: This function will search *commit* root of device tree, and does extra
1672 * check to ensure dev extents are not double allocated.
1673 * This makes the function safe to allocate dev extents but may not report
1674 * correct usable device space, as device extent freed in current transaction
1675 * is not reported as available.
1676 */
find_free_dev_extent(struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1677 static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1678 u64 *start, u64 *len)
1679 {
1680 struct btrfs_fs_info *fs_info = device->fs_info;
1681 struct btrfs_root *root = fs_info->dev_root;
1682 struct btrfs_key key;
1683 struct btrfs_dev_extent *dev_extent;
1684 struct btrfs_path *path;
1685 u64 search_start;
1686 u64 hole_size;
1687 u64 max_hole_start;
1688 u64 max_hole_size = 0;
1689 u64 extent_end;
1690 u64 search_end = device->total_bytes;
1691 int ret;
1692 int slot;
1693 struct extent_buffer *l;
1694
1695 search_start = dev_extent_search_start(device);
1696 max_hole_start = search_start;
1697
1698 WARN_ON(device->zone_info &&
1699 !IS_ALIGNED(num_bytes, device->zone_info->zone_size));
1700
1701 path = btrfs_alloc_path();
1702 if (!path) {
1703 ret = -ENOMEM;
1704 goto out;
1705 }
1706 again:
1707 if (search_start >= search_end ||
1708 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1709 ret = -ENOSPC;
1710 goto out;
1711 }
1712
1713 path->reada = READA_FORWARD;
1714 path->search_commit_root = 1;
1715 path->skip_locking = 1;
1716
1717 key.objectid = device->devid;
1718 key.type = BTRFS_DEV_EXTENT_KEY;
1719 key.offset = search_start;
1720
1721 ret = btrfs_search_backwards(root, &key, path);
1722 if (ret < 0)
1723 goto out;
1724
1725 while (search_start < search_end) {
1726 l = path->nodes[0];
1727 slot = path->slots[0];
1728 if (slot >= btrfs_header_nritems(l)) {
1729 ret = btrfs_next_leaf(root, path);
1730 if (ret == 0)
1731 continue;
1732 if (ret < 0)
1733 goto out;
1734
1735 break;
1736 }
1737 btrfs_item_key_to_cpu(l, &key, slot);
1738
1739 if (key.objectid < device->devid)
1740 goto next;
1741
1742 if (key.objectid > device->devid)
1743 break;
1744
1745 if (key.type != BTRFS_DEV_EXTENT_KEY)
1746 goto next;
1747
1748 if (key.offset > search_end)
1749 break;
1750
1751 if (key.offset > search_start) {
1752 hole_size = key.offset - search_start;
1753 dev_extent_hole_check(device, &search_start, &hole_size,
1754 num_bytes);
1755
1756 if (hole_size > max_hole_size) {
1757 max_hole_start = search_start;
1758 max_hole_size = hole_size;
1759 }
1760
1761 /*
1762 * If this free space is greater than which we need,
1763 * it must be the max free space that we have found
1764 * until now, so max_hole_start must point to the start
1765 * of this free space and the length of this free space
1766 * is stored in max_hole_size. Thus, we return
1767 * max_hole_start and max_hole_size and go back to the
1768 * caller.
1769 */
1770 if (hole_size >= num_bytes) {
1771 ret = 0;
1772 goto out;
1773 }
1774 }
1775
1776 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1777 extent_end = key.offset + btrfs_dev_extent_length(l,
1778 dev_extent);
1779 if (extent_end > search_start)
1780 search_start = extent_end;
1781 next:
1782 path->slots[0]++;
1783 cond_resched();
1784 }
1785
1786 /*
1787 * At this point, search_start should be the end of
1788 * allocated dev extents, and when shrinking the device,
1789 * search_end may be smaller than search_start.
1790 */
1791 if (search_end > search_start) {
1792 hole_size = search_end - search_start;
1793 if (dev_extent_hole_check(device, &search_start, &hole_size,
1794 num_bytes)) {
1795 btrfs_release_path(path);
1796 goto again;
1797 }
1798
1799 if (hole_size > max_hole_size) {
1800 max_hole_start = search_start;
1801 max_hole_size = hole_size;
1802 }
1803 }
1804
1805 /* See above. */
1806 if (max_hole_size < num_bytes)
1807 ret = -ENOSPC;
1808 else
1809 ret = 0;
1810
1811 ASSERT(max_hole_start + max_hole_size <= search_end,
1812 "max_hole_start=%llu max_hole_size=%llu search_end=%llu",
1813 max_hole_start, max_hole_size, search_end);
1814 out:
1815 btrfs_free_path(path);
1816 *start = max_hole_start;
1817 if (len)
1818 *len = max_hole_size;
1819 return ret;
1820 }
1821
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1822 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1823 struct btrfs_device *device,
1824 u64 start, u64 *dev_extent_len)
1825 {
1826 struct btrfs_fs_info *fs_info = device->fs_info;
1827 struct btrfs_root *root = fs_info->dev_root;
1828 int ret;
1829 struct btrfs_path *path;
1830 struct btrfs_key key;
1831 struct btrfs_key found_key;
1832 struct extent_buffer *leaf = NULL;
1833 struct btrfs_dev_extent *extent = NULL;
1834
1835 path = btrfs_alloc_path();
1836 if (!path)
1837 return -ENOMEM;
1838
1839 key.objectid = device->devid;
1840 key.type = BTRFS_DEV_EXTENT_KEY;
1841 key.offset = start;
1842 again:
1843 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1844 if (ret > 0) {
1845 ret = btrfs_previous_item(root, path, key.objectid,
1846 BTRFS_DEV_EXTENT_KEY);
1847 if (ret)
1848 goto out;
1849 leaf = path->nodes[0];
1850 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1851 extent = btrfs_item_ptr(leaf, path->slots[0],
1852 struct btrfs_dev_extent);
1853 BUG_ON(found_key.offset > start || found_key.offset +
1854 btrfs_dev_extent_length(leaf, extent) < start);
1855 key = found_key;
1856 btrfs_release_path(path);
1857 goto again;
1858 } else if (ret == 0) {
1859 leaf = path->nodes[0];
1860 extent = btrfs_item_ptr(leaf, path->slots[0],
1861 struct btrfs_dev_extent);
1862 } else {
1863 goto out;
1864 }
1865
1866 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1867
1868 ret = btrfs_del_item(trans, root, path);
1869 if (ret == 0)
1870 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1871 out:
1872 btrfs_free_path(path);
1873 return ret;
1874 }
1875
find_next_chunk(struct btrfs_fs_info * fs_info)1876 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1877 {
1878 struct rb_node *n;
1879 u64 ret = 0;
1880
1881 read_lock(&fs_info->mapping_tree_lock);
1882 n = rb_last(&fs_info->mapping_tree.rb_root);
1883 if (n) {
1884 struct btrfs_chunk_map *map;
1885
1886 map = rb_entry(n, struct btrfs_chunk_map, rb_node);
1887 ret = map->start + map->chunk_len;
1888 }
1889 read_unlock(&fs_info->mapping_tree_lock);
1890
1891 return ret;
1892 }
1893
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1894 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1895 u64 *devid_ret)
1896 {
1897 int ret;
1898 struct btrfs_key key;
1899 struct btrfs_key found_key;
1900 struct btrfs_path *path;
1901
1902 path = btrfs_alloc_path();
1903 if (!path)
1904 return -ENOMEM;
1905
1906 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1907 key.type = BTRFS_DEV_ITEM_KEY;
1908 key.offset = (u64)-1;
1909
1910 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1911 if (ret < 0)
1912 goto error;
1913
1914 if (ret == 0) {
1915 /* Corruption */
1916 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1917 ret = -EUCLEAN;
1918 goto error;
1919 }
1920
1921 ret = btrfs_previous_item(fs_info->chunk_root, path,
1922 BTRFS_DEV_ITEMS_OBJECTID,
1923 BTRFS_DEV_ITEM_KEY);
1924 if (ret) {
1925 *devid_ret = 1;
1926 } else {
1927 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1928 path->slots[0]);
1929 *devid_ret = found_key.offset + 1;
1930 }
1931 ret = 0;
1932 error:
1933 btrfs_free_path(path);
1934 return ret;
1935 }
1936
1937 /*
1938 * the device information is stored in the chunk root
1939 * the btrfs_device struct should be fully filled in
1940 */
btrfs_add_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)1941 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1942 struct btrfs_device *device)
1943 {
1944 int ret;
1945 struct btrfs_path *path;
1946 struct btrfs_dev_item *dev_item;
1947 struct extent_buffer *leaf;
1948 struct btrfs_key key;
1949 unsigned long ptr;
1950
1951 path = btrfs_alloc_path();
1952 if (!path)
1953 return -ENOMEM;
1954
1955 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1956 key.type = BTRFS_DEV_ITEM_KEY;
1957 key.offset = device->devid;
1958
1959 btrfs_reserve_chunk_metadata(trans, true);
1960 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1961 &key, sizeof(*dev_item));
1962 btrfs_trans_release_chunk_metadata(trans);
1963 if (ret)
1964 goto out;
1965
1966 leaf = path->nodes[0];
1967 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1968
1969 btrfs_set_device_id(leaf, dev_item, device->devid);
1970 btrfs_set_device_generation(leaf, dev_item, 0);
1971 btrfs_set_device_type(leaf, dev_item, device->type);
1972 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1973 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1974 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1975 btrfs_set_device_total_bytes(leaf, dev_item,
1976 btrfs_device_get_disk_total_bytes(device));
1977 btrfs_set_device_bytes_used(leaf, dev_item,
1978 btrfs_device_get_bytes_used(device));
1979 btrfs_set_device_group(leaf, dev_item, 0);
1980 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1981 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1982 btrfs_set_device_start_offset(leaf, dev_item, 0);
1983
1984 ptr = btrfs_device_uuid(dev_item);
1985 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1986 ptr = btrfs_device_fsid(dev_item);
1987 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1988 ptr, BTRFS_FSID_SIZE);
1989
1990 ret = 0;
1991 out:
1992 btrfs_free_path(path);
1993 return ret;
1994 }
1995
1996 /*
1997 * Function to update ctime/mtime for a given device path.
1998 * Mainly used for ctime/mtime based probe like libblkid.
1999 *
2000 * We don't care about errors here, this is just to be kind to userspace.
2001 */
update_dev_time(const char * device_path)2002 static void update_dev_time(const char *device_path)
2003 {
2004 struct path path;
2005 int ret;
2006
2007 ret = kern_path(device_path, LOOKUP_FOLLOW, &path);
2008 if (ret)
2009 return;
2010
2011 inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION);
2012 path_put(&path);
2013 }
2014
btrfs_rm_dev_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)2015 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans,
2016 struct btrfs_device *device)
2017 {
2018 struct btrfs_root *root = device->fs_info->chunk_root;
2019 int ret;
2020 struct btrfs_path *path;
2021 struct btrfs_key key;
2022
2023 path = btrfs_alloc_path();
2024 if (!path)
2025 return -ENOMEM;
2026
2027 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2028 key.type = BTRFS_DEV_ITEM_KEY;
2029 key.offset = device->devid;
2030
2031 btrfs_reserve_chunk_metadata(trans, false);
2032 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2033 btrfs_trans_release_chunk_metadata(trans);
2034 if (ret) {
2035 if (ret > 0)
2036 ret = -ENOENT;
2037 goto out;
2038 }
2039
2040 ret = btrfs_del_item(trans, root, path);
2041 out:
2042 btrfs_free_path(path);
2043 return ret;
2044 }
2045
2046 /*
2047 * Verify that @num_devices satisfies the RAID profile constraints in the whole
2048 * filesystem. It's up to the caller to adjust that number regarding eg. device
2049 * replace.
2050 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)2051 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
2052 u64 num_devices)
2053 {
2054 u64 all_avail;
2055 unsigned seq;
2056 int i;
2057
2058 do {
2059 seq = read_seqbegin(&fs_info->profiles_lock);
2060
2061 all_avail = fs_info->avail_data_alloc_bits |
2062 fs_info->avail_system_alloc_bits |
2063 fs_info->avail_metadata_alloc_bits;
2064 } while (read_seqretry(&fs_info->profiles_lock, seq));
2065
2066 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2067 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2068 continue;
2069
2070 if (num_devices < btrfs_raid_array[i].devs_min)
2071 return btrfs_raid_array[i].mindev_error;
2072 }
2073
2074 return 0;
2075 }
2076
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)2077 static struct btrfs_device * btrfs_find_next_active_device(
2078 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2079 {
2080 struct btrfs_device *next_device;
2081
2082 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2083 if (next_device != device &&
2084 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2085 && next_device->bdev)
2086 return next_device;
2087 }
2088
2089 return NULL;
2090 }
2091
2092 /*
2093 * Helper function to check if the given device is part of s_bdev / latest_dev
2094 * and replace it with the provided or the next active device, in the context
2095 * where this function called, there should be always be another device (or
2096 * this_dev) which is active.
2097 */
btrfs_assign_next_active_device(struct btrfs_device * device,struct btrfs_device * next_device)2098 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
2099 struct btrfs_device *next_device)
2100 {
2101 struct btrfs_fs_info *fs_info = device->fs_info;
2102
2103 if (!next_device)
2104 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2105 device);
2106 ASSERT(next_device);
2107
2108 if (fs_info->sb->s_bdev &&
2109 (fs_info->sb->s_bdev == device->bdev))
2110 fs_info->sb->s_bdev = next_device->bdev;
2111
2112 if (fs_info->fs_devices->latest_dev->bdev == device->bdev)
2113 fs_info->fs_devices->latest_dev = next_device;
2114 }
2115
2116 /*
2117 * Return btrfs_fs_devices::num_devices excluding the device that's being
2118 * currently replaced.
2119 */
btrfs_num_devices(struct btrfs_fs_info * fs_info)2120 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2121 {
2122 u64 num_devices = fs_info->fs_devices->num_devices;
2123
2124 down_read(&fs_info->dev_replace.rwsem);
2125 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2126 ASSERT(num_devices > 1, "num_devices=%llu", num_devices);
2127 num_devices--;
2128 }
2129 up_read(&fs_info->dev_replace.rwsem);
2130
2131 return num_devices;
2132 }
2133
btrfs_scratch_superblock(struct btrfs_fs_info * fs_info,struct block_device * bdev,int copy_num)2134 static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info,
2135 struct block_device *bdev, int copy_num)
2136 {
2137 struct btrfs_super_block *disk_super;
2138 const size_t len = sizeof(disk_super->magic);
2139 const u64 bytenr = btrfs_sb_offset(copy_num);
2140 int ret;
2141
2142 disk_super = btrfs_read_disk_super(bdev, copy_num, false);
2143 if (IS_ERR(disk_super))
2144 return;
2145
2146 memset(&disk_super->magic, 0, len);
2147 folio_mark_dirty(virt_to_folio(disk_super));
2148 btrfs_release_disk_super(disk_super);
2149
2150 ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1);
2151 if (ret)
2152 btrfs_warn(fs_info, "error clearing superblock number %d (%d)",
2153 copy_num, ret);
2154 }
2155
btrfs_scratch_superblocks(struct btrfs_fs_info * fs_info,struct btrfs_device * device)2156 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, struct btrfs_device *device)
2157 {
2158 int copy_num;
2159 struct block_device *bdev = device->bdev;
2160
2161 if (!bdev)
2162 return;
2163
2164 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) {
2165 if (bdev_is_zoned(bdev))
2166 btrfs_reset_sb_log_zones(bdev, copy_num);
2167 else
2168 btrfs_scratch_superblock(fs_info, bdev, copy_num);
2169 }
2170
2171 /* Notify udev that device has changed */
2172 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
2173
2174 /* Update ctime/mtime for device path for libblkid */
2175 update_dev_time(rcu_dereference_raw(device->name));
2176 }
2177
btrfs_rm_device(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,struct file ** bdev_file)2178 int btrfs_rm_device(struct btrfs_fs_info *fs_info,
2179 struct btrfs_dev_lookup_args *args,
2180 struct file **bdev_file)
2181 {
2182 struct btrfs_trans_handle *trans;
2183 struct btrfs_device *device;
2184 struct btrfs_fs_devices *cur_devices;
2185 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2186 u64 num_devices;
2187 int ret = 0;
2188
2189 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2190 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet");
2191 return -EINVAL;
2192 }
2193
2194 /*
2195 * The device list in fs_devices is accessed without locks (neither
2196 * uuid_mutex nor device_list_mutex) as it won't change on a mounted
2197 * filesystem and another device rm cannot run.
2198 */
2199 num_devices = btrfs_num_devices(fs_info);
2200
2201 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2202 if (ret)
2203 return ret;
2204
2205 device = btrfs_find_device(fs_info->fs_devices, args);
2206 if (!device) {
2207 if (args->missing)
2208 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2209 else
2210 ret = -ENOENT;
2211 return ret;
2212 }
2213
2214 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2215 btrfs_warn(fs_info,
2216 "cannot remove device %s (devid %llu) due to active swapfile",
2217 btrfs_dev_name(device), device->devid);
2218 return -ETXTBSY;
2219 }
2220
2221 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
2222 return BTRFS_ERROR_DEV_TGT_REPLACE;
2223
2224 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2225 fs_info->fs_devices->rw_devices == 1)
2226 return BTRFS_ERROR_DEV_ONLY_WRITABLE;
2227
2228 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2229 mutex_lock(&fs_info->chunk_mutex);
2230 list_del_init(&device->dev_alloc_list);
2231 device->fs_devices->rw_devices--;
2232 mutex_unlock(&fs_info->chunk_mutex);
2233 }
2234
2235 ret = btrfs_shrink_device(device, 0);
2236 if (ret)
2237 goto error_undo;
2238
2239 trans = btrfs_start_transaction(fs_info->chunk_root, 0);
2240 if (IS_ERR(trans)) {
2241 ret = PTR_ERR(trans);
2242 goto error_undo;
2243 }
2244
2245 ret = btrfs_rm_dev_item(trans, device);
2246 if (ret) {
2247 /* Any error in dev item removal is critical */
2248 btrfs_crit(fs_info,
2249 "failed to remove device item for devid %llu: %d",
2250 device->devid, ret);
2251 btrfs_abort_transaction(trans, ret);
2252 btrfs_end_transaction(trans);
2253 return ret;
2254 }
2255
2256 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2257 btrfs_scrub_cancel_dev(device);
2258
2259 /*
2260 * the device list mutex makes sure that we don't change
2261 * the device list while someone else is writing out all
2262 * the device supers. Whoever is writing all supers, should
2263 * lock the device list mutex before getting the number of
2264 * devices in the super block (super_copy). Conversely,
2265 * whoever updates the number of devices in the super block
2266 * (super_copy) should hold the device list mutex.
2267 */
2268
2269 /*
2270 * In normal cases the cur_devices == fs_devices. But in case
2271 * of deleting a seed device, the cur_devices should point to
2272 * its own fs_devices listed under the fs_devices->seed_list.
2273 */
2274 cur_devices = device->fs_devices;
2275 mutex_lock(&fs_devices->device_list_mutex);
2276 list_del_rcu(&device->dev_list);
2277
2278 cur_devices->num_devices--;
2279 cur_devices->total_devices--;
2280 /* Update total_devices of the parent fs_devices if it's seed */
2281 if (cur_devices != fs_devices)
2282 fs_devices->total_devices--;
2283
2284 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2285 cur_devices->missing_devices--;
2286
2287 btrfs_assign_next_active_device(device, NULL);
2288
2289 if (device->bdev_file) {
2290 cur_devices->open_devices--;
2291 /* remove sysfs entry */
2292 btrfs_sysfs_remove_device(device);
2293 }
2294
2295 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2296 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2297 mutex_unlock(&fs_devices->device_list_mutex);
2298
2299 /*
2300 * At this point, the device is zero sized and detached from the
2301 * devices list. All that's left is to zero out the old supers and
2302 * free the device.
2303 *
2304 * We cannot call btrfs_close_bdev() here because we're holding the sb
2305 * write lock, and bdev_fput() on the block device will pull in the
2306 * ->open_mutex on the block device and it's dependencies. Instead
2307 * just flush the device and let the caller do the final bdev_release.
2308 */
2309 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2310 btrfs_scratch_superblocks(fs_info, device);
2311 if (device->bdev) {
2312 sync_blockdev(device->bdev);
2313 invalidate_bdev(device->bdev);
2314 }
2315 }
2316
2317 *bdev_file = device->bdev_file;
2318 synchronize_rcu();
2319 btrfs_free_device(device);
2320
2321 /*
2322 * This can happen if cur_devices is the private seed devices list. We
2323 * cannot call close_fs_devices() here because it expects the uuid_mutex
2324 * to be held, but in fact we don't need that for the private
2325 * seed_devices, we can simply decrement cur_devices->opened and then
2326 * remove it from our list and free the fs_devices.
2327 */
2328 if (cur_devices->num_devices == 0) {
2329 list_del_init(&cur_devices->seed_list);
2330 ASSERT(cur_devices->opened == 1, "opened=%d", cur_devices->opened);
2331 cur_devices->opened--;
2332 free_fs_devices(cur_devices);
2333 }
2334
2335 ret = btrfs_commit_transaction(trans);
2336
2337 return ret;
2338
2339 error_undo:
2340 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2341 mutex_lock(&fs_info->chunk_mutex);
2342 list_add(&device->dev_alloc_list,
2343 &fs_devices->alloc_list);
2344 device->fs_devices->rw_devices++;
2345 mutex_unlock(&fs_info->chunk_mutex);
2346 }
2347 return ret;
2348 }
2349
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device * srcdev)2350 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2351 {
2352 struct btrfs_fs_devices *fs_devices;
2353
2354 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2355
2356 /*
2357 * in case of fs with no seed, srcdev->fs_devices will point
2358 * to fs_devices of fs_info. However when the dev being replaced is
2359 * a seed dev it will point to the seed's local fs_devices. In short
2360 * srcdev will have its correct fs_devices in both the cases.
2361 */
2362 fs_devices = srcdev->fs_devices;
2363
2364 list_del_rcu(&srcdev->dev_list);
2365 list_del(&srcdev->dev_alloc_list);
2366 fs_devices->num_devices--;
2367 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2368 fs_devices->missing_devices--;
2369
2370 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2371 fs_devices->rw_devices--;
2372
2373 if (srcdev->bdev)
2374 fs_devices->open_devices--;
2375 }
2376
btrfs_rm_dev_replace_free_srcdev(struct btrfs_device * srcdev)2377 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2378 {
2379 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2380
2381 mutex_lock(&uuid_mutex);
2382
2383 btrfs_close_bdev(srcdev);
2384 synchronize_rcu();
2385 btrfs_free_device(srcdev);
2386
2387 /* if this is no devs we rather delete the fs_devices */
2388 if (!fs_devices->num_devices) {
2389 /*
2390 * On a mounted FS, num_devices can't be zero unless it's a
2391 * seed. In case of a seed device being replaced, the replace
2392 * target added to the sprout FS, so there will be no more
2393 * device left under the seed FS.
2394 */
2395 ASSERT(fs_devices->seeding);
2396
2397 list_del_init(&fs_devices->seed_list);
2398 close_fs_devices(fs_devices);
2399 free_fs_devices(fs_devices);
2400 }
2401 mutex_unlock(&uuid_mutex);
2402 }
2403
btrfs_destroy_dev_replace_tgtdev(struct btrfs_device * tgtdev)2404 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2405 {
2406 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2407
2408 mutex_lock(&fs_devices->device_list_mutex);
2409
2410 btrfs_sysfs_remove_device(tgtdev);
2411
2412 if (tgtdev->bdev)
2413 fs_devices->open_devices--;
2414
2415 fs_devices->num_devices--;
2416
2417 btrfs_assign_next_active_device(tgtdev, NULL);
2418
2419 list_del_rcu(&tgtdev->dev_list);
2420
2421 mutex_unlock(&fs_devices->device_list_mutex);
2422
2423 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev);
2424
2425 btrfs_close_bdev(tgtdev);
2426 synchronize_rcu();
2427 btrfs_free_device(tgtdev);
2428 }
2429
2430 /*
2431 * Populate args from device at path.
2432 *
2433 * @fs_info: the filesystem
2434 * @args: the args to populate
2435 * @path: the path to the device
2436 *
2437 * This will read the super block of the device at @path and populate @args with
2438 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to
2439 * lookup a device to operate on, but need to do it before we take any locks.
2440 * This properly handles the special case of "missing" that a user may pass in,
2441 * and does some basic sanity checks. The caller must make sure that @path is
2442 * properly NUL terminated before calling in, and must call
2443 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and
2444 * uuid buffers.
2445 *
2446 * Return: 0 for success, -errno for failure
2447 */
btrfs_get_dev_args_from_path(struct btrfs_fs_info * fs_info,struct btrfs_dev_lookup_args * args,const char * path)2448 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info,
2449 struct btrfs_dev_lookup_args *args,
2450 const char *path)
2451 {
2452 struct btrfs_super_block *disk_super;
2453 struct file *bdev_file;
2454 int ret;
2455
2456 if (!path || !path[0])
2457 return -EINVAL;
2458 if (!strcmp(path, "missing")) {
2459 args->missing = true;
2460 return 0;
2461 }
2462
2463 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL);
2464 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL);
2465 if (!args->uuid || !args->fsid) {
2466 btrfs_put_dev_args_from_path(args);
2467 return -ENOMEM;
2468 }
2469
2470 ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0,
2471 &bdev_file, &disk_super);
2472 if (ret) {
2473 btrfs_put_dev_args_from_path(args);
2474 return ret;
2475 }
2476
2477 args->devid = btrfs_stack_device_id(&disk_super->dev_item);
2478 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE);
2479 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2480 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE);
2481 else
2482 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
2483 btrfs_release_disk_super(disk_super);
2484 bdev_fput(bdev_file);
2485 return 0;
2486 }
2487
2488 /*
2489 * Only use this jointly with btrfs_get_dev_args_from_path() because we will
2490 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables
2491 * that don't need to be freed.
2492 */
btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args * args)2493 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args)
2494 {
2495 kfree(args->uuid);
2496 kfree(args->fsid);
2497 args->uuid = NULL;
2498 args->fsid = NULL;
2499 }
2500
btrfs_find_device_by_devspec(struct btrfs_fs_info * fs_info,u64 devid,const char * device_path)2501 struct btrfs_device *btrfs_find_device_by_devspec(
2502 struct btrfs_fs_info *fs_info, u64 devid,
2503 const char *device_path)
2504 {
2505 BTRFS_DEV_LOOKUP_ARGS(args);
2506 struct btrfs_device *device;
2507 int ret;
2508
2509 if (devid) {
2510 args.devid = devid;
2511 device = btrfs_find_device(fs_info->fs_devices, &args);
2512 if (!device)
2513 return ERR_PTR(-ENOENT);
2514 return device;
2515 }
2516
2517 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path);
2518 if (ret)
2519 return ERR_PTR(ret);
2520 device = btrfs_find_device(fs_info->fs_devices, &args);
2521 btrfs_put_dev_args_from_path(&args);
2522 if (!device)
2523 return ERR_PTR(-ENOENT);
2524 return device;
2525 }
2526
btrfs_init_sprout(struct btrfs_fs_info * fs_info)2527 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info)
2528 {
2529 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2530 struct btrfs_fs_devices *old_devices;
2531 struct btrfs_fs_devices *seed_devices;
2532
2533 lockdep_assert_held(&uuid_mutex);
2534 if (!fs_devices->seeding)
2535 return ERR_PTR(-EINVAL);
2536
2537 /*
2538 * Private copy of the seed devices, anchored at
2539 * fs_info->fs_devices->seed_list
2540 */
2541 seed_devices = alloc_fs_devices(NULL);
2542 if (IS_ERR(seed_devices))
2543 return seed_devices;
2544
2545 /*
2546 * It's necessary to retain a copy of the original seed fs_devices in
2547 * fs_uuids so that filesystems which have been seeded can successfully
2548 * reference the seed device from open_seed_devices. This also supports
2549 * multiple fs seed.
2550 */
2551 old_devices = clone_fs_devices(fs_devices);
2552 if (IS_ERR(old_devices)) {
2553 kfree(seed_devices);
2554 return old_devices;
2555 }
2556
2557 list_add(&old_devices->fs_list, &fs_uuids);
2558
2559 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2560 seed_devices->opened = 1;
2561 INIT_LIST_HEAD(&seed_devices->devices);
2562 INIT_LIST_HEAD(&seed_devices->alloc_list);
2563 mutex_init(&seed_devices->device_list_mutex);
2564
2565 return seed_devices;
2566 }
2567
2568 /*
2569 * Splice seed devices into the sprout fs_devices.
2570 * Generate a new fsid for the sprouted read-write filesystem.
2571 */
btrfs_setup_sprout(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * seed_devices)2572 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info,
2573 struct btrfs_fs_devices *seed_devices)
2574 {
2575 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2576 struct btrfs_super_block *disk_super = fs_info->super_copy;
2577 struct btrfs_device *device;
2578 u64 super_flags;
2579
2580 /*
2581 * We are updating the fsid, the thread leading to device_list_add()
2582 * could race, so uuid_mutex is needed.
2583 */
2584 lockdep_assert_held(&uuid_mutex);
2585
2586 /*
2587 * The threads listed below may traverse dev_list but can do that without
2588 * device_list_mutex:
2589 * - All device ops and balance - as we are in btrfs_exclop_start.
2590 * - Various dev_list readers - are using RCU.
2591 * - btrfs_ioctl_fitrim() - is using RCU.
2592 *
2593 * For-read threads as below are using device_list_mutex:
2594 * - Readonly scrub btrfs_scrub_dev()
2595 * - Readonly scrub btrfs_scrub_progress()
2596 * - btrfs_get_dev_stats()
2597 */
2598 lockdep_assert_held(&fs_devices->device_list_mutex);
2599
2600 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2601 synchronize_rcu);
2602 list_for_each_entry(device, &seed_devices->devices, dev_list)
2603 device->fs_devices = seed_devices;
2604
2605 fs_devices->seeding = false;
2606 fs_devices->num_devices = 0;
2607 fs_devices->open_devices = 0;
2608 fs_devices->missing_devices = 0;
2609 fs_devices->rotating = false;
2610 list_add(&seed_devices->seed_list, &fs_devices->seed_list);
2611
2612 generate_random_uuid(fs_devices->fsid);
2613 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2614 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2615
2616 super_flags = btrfs_super_flags(disk_super) &
2617 ~BTRFS_SUPER_FLAG_SEEDING;
2618 btrfs_set_super_flags(disk_super, super_flags);
2619 }
2620
2621 /*
2622 * Store the expected generation for seed devices in device items.
2623 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans)2624 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2625 {
2626 BTRFS_DEV_LOOKUP_ARGS(args);
2627 struct btrfs_fs_info *fs_info = trans->fs_info;
2628 struct btrfs_root *root = fs_info->chunk_root;
2629 struct btrfs_path *path;
2630 struct extent_buffer *leaf;
2631 struct btrfs_dev_item *dev_item;
2632 struct btrfs_device *device;
2633 struct btrfs_key key;
2634 u8 fs_uuid[BTRFS_FSID_SIZE];
2635 u8 dev_uuid[BTRFS_UUID_SIZE];
2636 int ret;
2637
2638 path = btrfs_alloc_path();
2639 if (!path)
2640 return -ENOMEM;
2641
2642 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2643 key.type = BTRFS_DEV_ITEM_KEY;
2644 key.offset = 0;
2645
2646 while (1) {
2647 btrfs_reserve_chunk_metadata(trans, false);
2648 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2649 btrfs_trans_release_chunk_metadata(trans);
2650 if (ret < 0)
2651 goto error;
2652
2653 leaf = path->nodes[0];
2654 next_slot:
2655 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2656 ret = btrfs_next_leaf(root, path);
2657 if (ret > 0)
2658 break;
2659 if (ret < 0)
2660 goto error;
2661 leaf = path->nodes[0];
2662 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2663 btrfs_release_path(path);
2664 continue;
2665 }
2666
2667 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2668 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2669 key.type != BTRFS_DEV_ITEM_KEY)
2670 break;
2671
2672 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2673 struct btrfs_dev_item);
2674 args.devid = btrfs_device_id(leaf, dev_item);
2675 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2676 BTRFS_UUID_SIZE);
2677 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2678 BTRFS_FSID_SIZE);
2679 args.uuid = dev_uuid;
2680 args.fsid = fs_uuid;
2681 device = btrfs_find_device(fs_info->fs_devices, &args);
2682 BUG_ON(!device); /* Logic error */
2683
2684 if (device->fs_devices->seeding)
2685 btrfs_set_device_generation(leaf, dev_item,
2686 device->generation);
2687
2688 path->slots[0]++;
2689 goto next_slot;
2690 }
2691 ret = 0;
2692 error:
2693 btrfs_free_path(path);
2694 return ret;
2695 }
2696
btrfs_init_new_device(struct btrfs_fs_info * fs_info,const char * device_path)2697 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2698 {
2699 struct btrfs_root *root = fs_info->dev_root;
2700 struct btrfs_trans_handle *trans;
2701 struct btrfs_device *device;
2702 struct file *bdev_file;
2703 struct super_block *sb = fs_info->sb;
2704 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2705 struct btrfs_fs_devices *seed_devices = NULL;
2706 u64 orig_super_total_bytes;
2707 u64 orig_super_num_devices;
2708 int ret = 0;
2709 bool seeding_dev = false;
2710 bool locked = false;
2711
2712 if (sb_rdonly(sb) && !fs_devices->seeding)
2713 return -EROFS;
2714
2715 bdev_file = bdev_file_open_by_path(device_path, BLK_OPEN_WRITE,
2716 fs_info->sb, &fs_holder_ops);
2717 if (IS_ERR(bdev_file))
2718 return PTR_ERR(bdev_file);
2719
2720 if (!btrfs_check_device_zone_type(fs_info, file_bdev(bdev_file))) {
2721 ret = -EINVAL;
2722 goto error;
2723 }
2724
2725 if (fs_devices->seeding) {
2726 seeding_dev = true;
2727 down_write(&sb->s_umount);
2728 mutex_lock(&uuid_mutex);
2729 locked = true;
2730 }
2731
2732 sync_blockdev(file_bdev(bdev_file));
2733
2734 rcu_read_lock();
2735 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2736 if (device->bdev == file_bdev(bdev_file)) {
2737 ret = -EEXIST;
2738 rcu_read_unlock();
2739 goto error;
2740 }
2741 }
2742 rcu_read_unlock();
2743
2744 device = btrfs_alloc_device(fs_info, NULL, NULL, device_path);
2745 if (IS_ERR(device)) {
2746 /* we can safely leave the fs_devices entry around */
2747 ret = PTR_ERR(device);
2748 goto error;
2749 }
2750
2751 device->fs_info = fs_info;
2752 device->bdev_file = bdev_file;
2753 device->bdev = file_bdev(bdev_file);
2754 ret = lookup_bdev(device_path, &device->devt);
2755 if (ret)
2756 goto error_free_device;
2757
2758 ret = btrfs_get_dev_zone_info(device, false);
2759 if (ret)
2760 goto error_free_device;
2761
2762 trans = btrfs_start_transaction(root, 0);
2763 if (IS_ERR(trans)) {
2764 ret = PTR_ERR(trans);
2765 goto error_free_zone;
2766 }
2767
2768 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2769 device->generation = trans->transid;
2770 device->io_width = fs_info->sectorsize;
2771 device->io_align = fs_info->sectorsize;
2772 device->sector_size = fs_info->sectorsize;
2773 device->total_bytes =
2774 round_down(bdev_nr_bytes(device->bdev), fs_info->sectorsize);
2775 device->disk_total_bytes = device->total_bytes;
2776 device->commit_total_bytes = device->total_bytes;
2777 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2778 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2779 device->dev_stats_valid = 1;
2780 set_blocksize(device->bdev_file, BTRFS_BDEV_BLOCKSIZE);
2781
2782 if (seeding_dev) {
2783 /* GFP_KERNEL allocation must not be under device_list_mutex */
2784 seed_devices = btrfs_init_sprout(fs_info);
2785 if (IS_ERR(seed_devices)) {
2786 ret = PTR_ERR(seed_devices);
2787 btrfs_abort_transaction(trans, ret);
2788 goto error_trans;
2789 }
2790 }
2791
2792 mutex_lock(&fs_devices->device_list_mutex);
2793 if (seeding_dev) {
2794 btrfs_setup_sprout(fs_info, seed_devices);
2795 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev,
2796 device);
2797 }
2798
2799 device->fs_devices = fs_devices;
2800
2801 mutex_lock(&fs_info->chunk_mutex);
2802 list_add_rcu(&device->dev_list, &fs_devices->devices);
2803 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2804 fs_devices->num_devices++;
2805 fs_devices->open_devices++;
2806 fs_devices->rw_devices++;
2807 fs_devices->total_devices++;
2808 fs_devices->total_rw_bytes += device->total_bytes;
2809
2810 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2811
2812 if (!bdev_nonrot(device->bdev))
2813 fs_devices->rotating = true;
2814
2815 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2816 btrfs_set_super_total_bytes(fs_info->super_copy,
2817 round_down(orig_super_total_bytes + device->total_bytes,
2818 fs_info->sectorsize));
2819
2820 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2821 btrfs_set_super_num_devices(fs_info->super_copy,
2822 orig_super_num_devices + 1);
2823
2824 /*
2825 * we've got more storage, clear any full flags on the space
2826 * infos
2827 */
2828 btrfs_clear_space_info_full(fs_info);
2829
2830 mutex_unlock(&fs_info->chunk_mutex);
2831
2832 /* Add sysfs device entry */
2833 btrfs_sysfs_add_device(device);
2834
2835 mutex_unlock(&fs_devices->device_list_mutex);
2836
2837 if (seeding_dev) {
2838 mutex_lock(&fs_info->chunk_mutex);
2839 ret = init_first_rw_device(trans);
2840 mutex_unlock(&fs_info->chunk_mutex);
2841 if (ret) {
2842 btrfs_abort_transaction(trans, ret);
2843 goto error_sysfs;
2844 }
2845 }
2846
2847 ret = btrfs_add_dev_item(trans, device);
2848 if (ret) {
2849 btrfs_abort_transaction(trans, ret);
2850 goto error_sysfs;
2851 }
2852
2853 if (seeding_dev) {
2854 ret = btrfs_finish_sprout(trans);
2855 if (ret) {
2856 btrfs_abort_transaction(trans, ret);
2857 goto error_sysfs;
2858 }
2859
2860 /*
2861 * fs_devices now represents the newly sprouted filesystem and
2862 * its fsid has been changed by btrfs_sprout_splice().
2863 */
2864 btrfs_sysfs_update_sprout_fsid(fs_devices);
2865 }
2866
2867 ret = btrfs_commit_transaction(trans);
2868
2869 if (seeding_dev) {
2870 mutex_unlock(&uuid_mutex);
2871 up_write(&sb->s_umount);
2872 locked = false;
2873
2874 if (ret) /* transaction commit */
2875 return ret;
2876
2877 ret = btrfs_relocate_sys_chunks(fs_info);
2878 if (ret < 0)
2879 btrfs_handle_fs_error(fs_info, ret,
2880 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2881 trans = btrfs_attach_transaction(root);
2882 if (IS_ERR(trans)) {
2883 if (PTR_ERR(trans) == -ENOENT)
2884 return 0;
2885 ret = PTR_ERR(trans);
2886 trans = NULL;
2887 goto error_sysfs;
2888 }
2889 ret = btrfs_commit_transaction(trans);
2890 }
2891
2892 /*
2893 * Now that we have written a new super block to this device, check all
2894 * other fs_devices list if device_path alienates any other scanned
2895 * device.
2896 * We can ignore the return value as it typically returns -EINVAL and
2897 * only succeeds if the device was an alien.
2898 */
2899 btrfs_forget_devices(device->devt);
2900
2901 /* Update ctime/mtime for blkid or udev */
2902 update_dev_time(device_path);
2903
2904 return ret;
2905
2906 error_sysfs:
2907 btrfs_sysfs_remove_device(device);
2908 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2909 mutex_lock(&fs_info->chunk_mutex);
2910 list_del_rcu(&device->dev_list);
2911 list_del(&device->dev_alloc_list);
2912 fs_info->fs_devices->num_devices--;
2913 fs_info->fs_devices->open_devices--;
2914 fs_info->fs_devices->rw_devices--;
2915 fs_info->fs_devices->total_devices--;
2916 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2917 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2918 btrfs_set_super_total_bytes(fs_info->super_copy,
2919 orig_super_total_bytes);
2920 btrfs_set_super_num_devices(fs_info->super_copy,
2921 orig_super_num_devices);
2922 mutex_unlock(&fs_info->chunk_mutex);
2923 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2924 error_trans:
2925 if (trans)
2926 btrfs_end_transaction(trans);
2927 error_free_zone:
2928 btrfs_destroy_dev_zone_info(device);
2929 error_free_device:
2930 btrfs_free_device(device);
2931 error:
2932 bdev_fput(bdev_file);
2933 if (locked) {
2934 mutex_unlock(&uuid_mutex);
2935 up_write(&sb->s_umount);
2936 }
2937 return ret;
2938 }
2939
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2940 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2941 struct btrfs_device *device)
2942 {
2943 int ret;
2944 struct btrfs_path *path;
2945 struct btrfs_root *root = device->fs_info->chunk_root;
2946 struct btrfs_dev_item *dev_item;
2947 struct extent_buffer *leaf;
2948 struct btrfs_key key;
2949
2950 path = btrfs_alloc_path();
2951 if (!path)
2952 return -ENOMEM;
2953
2954 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2955 key.type = BTRFS_DEV_ITEM_KEY;
2956 key.offset = device->devid;
2957
2958 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2959 if (ret < 0)
2960 goto out;
2961
2962 if (ret > 0) {
2963 ret = -ENOENT;
2964 goto out;
2965 }
2966
2967 leaf = path->nodes[0];
2968 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2969
2970 btrfs_set_device_id(leaf, dev_item, device->devid);
2971 btrfs_set_device_type(leaf, dev_item, device->type);
2972 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2973 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2974 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2975 btrfs_set_device_total_bytes(leaf, dev_item,
2976 btrfs_device_get_disk_total_bytes(device));
2977 btrfs_set_device_bytes_used(leaf, dev_item,
2978 btrfs_device_get_bytes_used(device));
2979 out:
2980 btrfs_free_path(path);
2981 return ret;
2982 }
2983
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2984 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2985 struct btrfs_device *device, u64 new_size)
2986 {
2987 struct btrfs_fs_info *fs_info = device->fs_info;
2988 struct btrfs_super_block *super_copy = fs_info->super_copy;
2989 u64 old_total;
2990 u64 diff;
2991 int ret;
2992
2993 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2994 return -EACCES;
2995
2996 new_size = round_down(new_size, fs_info->sectorsize);
2997
2998 mutex_lock(&fs_info->chunk_mutex);
2999 old_total = btrfs_super_total_bytes(super_copy);
3000 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
3001
3002 if (new_size <= device->total_bytes ||
3003 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
3004 mutex_unlock(&fs_info->chunk_mutex);
3005 return -EINVAL;
3006 }
3007
3008 btrfs_set_super_total_bytes(super_copy,
3009 round_down(old_total + diff, fs_info->sectorsize));
3010 device->fs_devices->total_rw_bytes += diff;
3011 atomic64_add(diff, &fs_info->free_chunk_space);
3012
3013 btrfs_device_set_total_bytes(device, new_size);
3014 btrfs_device_set_disk_total_bytes(device, new_size);
3015 btrfs_clear_space_info_full(device->fs_info);
3016 if (list_empty(&device->post_commit_list))
3017 list_add_tail(&device->post_commit_list,
3018 &trans->transaction->dev_update_list);
3019 mutex_unlock(&fs_info->chunk_mutex);
3020
3021 btrfs_reserve_chunk_metadata(trans, false);
3022 ret = btrfs_update_device(trans, device);
3023 btrfs_trans_release_chunk_metadata(trans);
3024
3025 return ret;
3026 }
3027
btrfs_free_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3028 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3029 {
3030 struct btrfs_fs_info *fs_info = trans->fs_info;
3031 struct btrfs_root *root = fs_info->chunk_root;
3032 int ret;
3033 struct btrfs_path *path;
3034 struct btrfs_key key;
3035
3036 path = btrfs_alloc_path();
3037 if (!path)
3038 return -ENOMEM;
3039
3040 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3041 key.type = BTRFS_CHUNK_ITEM_KEY;
3042 key.offset = chunk_offset;
3043
3044 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3045 if (ret < 0)
3046 goto out;
3047 else if (ret > 0) { /* Logic error or corruption */
3048 btrfs_err(fs_info, "failed to lookup chunk %llu when freeing",
3049 chunk_offset);
3050 btrfs_abort_transaction(trans, -ENOENT);
3051 ret = -EUCLEAN;
3052 goto out;
3053 }
3054
3055 ret = btrfs_del_item(trans, root, path);
3056 if (ret < 0) {
3057 btrfs_err(fs_info, "failed to delete chunk %llu item", chunk_offset);
3058 btrfs_abort_transaction(trans, ret);
3059 goto out;
3060 }
3061 out:
3062 btrfs_free_path(path);
3063 return ret;
3064 }
3065
btrfs_del_sys_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3066 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3067 {
3068 struct btrfs_super_block *super_copy = fs_info->super_copy;
3069 struct btrfs_disk_key *disk_key;
3070 struct btrfs_chunk *chunk;
3071 u8 *ptr;
3072 int ret = 0;
3073 u32 num_stripes;
3074 u32 array_size;
3075 u32 len = 0;
3076 u32 cur;
3077 struct btrfs_key key;
3078
3079 lockdep_assert_held(&fs_info->chunk_mutex);
3080 array_size = btrfs_super_sys_array_size(super_copy);
3081
3082 ptr = super_copy->sys_chunk_array;
3083 cur = 0;
3084
3085 while (cur < array_size) {
3086 disk_key = (struct btrfs_disk_key *)ptr;
3087 btrfs_disk_key_to_cpu(&key, disk_key);
3088
3089 len = sizeof(*disk_key);
3090
3091 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3092 chunk = (struct btrfs_chunk *)(ptr + len);
3093 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
3094 len += btrfs_chunk_item_size(num_stripes);
3095 } else {
3096 ret = -EIO;
3097 break;
3098 }
3099 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
3100 key.offset == chunk_offset) {
3101 memmove(ptr, ptr + len, array_size - (cur + len));
3102 array_size -= len;
3103 btrfs_set_super_sys_array_size(super_copy, array_size);
3104 } else {
3105 ptr += len;
3106 cur += len;
3107 }
3108 }
3109 return ret;
3110 }
3111
btrfs_find_chunk_map_nolock(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3112 struct btrfs_chunk_map *btrfs_find_chunk_map_nolock(struct btrfs_fs_info *fs_info,
3113 u64 logical, u64 length)
3114 {
3115 struct rb_node *node = fs_info->mapping_tree.rb_root.rb_node;
3116 struct rb_node *prev = NULL;
3117 struct rb_node *orig_prev;
3118 struct btrfs_chunk_map *map;
3119 struct btrfs_chunk_map *prev_map = NULL;
3120
3121 while (node) {
3122 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
3123 prev = node;
3124 prev_map = map;
3125
3126 if (logical < map->start) {
3127 node = node->rb_left;
3128 } else if (logical >= map->start + map->chunk_len) {
3129 node = node->rb_right;
3130 } else {
3131 refcount_inc(&map->refs);
3132 return map;
3133 }
3134 }
3135
3136 if (!prev)
3137 return NULL;
3138
3139 orig_prev = prev;
3140 while (prev && logical >= prev_map->start + prev_map->chunk_len) {
3141 prev = rb_next(prev);
3142 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3143 }
3144
3145 if (!prev) {
3146 prev = orig_prev;
3147 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3148 while (prev && logical < prev_map->start) {
3149 prev = rb_prev(prev);
3150 prev_map = rb_entry(prev, struct btrfs_chunk_map, rb_node);
3151 }
3152 }
3153
3154 if (prev) {
3155 u64 end = logical + length;
3156
3157 /*
3158 * Caller can pass a U64_MAX length when it wants to get any
3159 * chunk starting at an offset of 'logical' or higher, so deal
3160 * with underflow by resetting the end offset to U64_MAX.
3161 */
3162 if (end < logical)
3163 end = U64_MAX;
3164
3165 if (end > prev_map->start &&
3166 logical < prev_map->start + prev_map->chunk_len) {
3167 refcount_inc(&prev_map->refs);
3168 return prev_map;
3169 }
3170 }
3171
3172 return NULL;
3173 }
3174
btrfs_find_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3175 struct btrfs_chunk_map *btrfs_find_chunk_map(struct btrfs_fs_info *fs_info,
3176 u64 logical, u64 length)
3177 {
3178 struct btrfs_chunk_map *map;
3179
3180 read_lock(&fs_info->mapping_tree_lock);
3181 map = btrfs_find_chunk_map_nolock(fs_info, logical, length);
3182 read_unlock(&fs_info->mapping_tree_lock);
3183
3184 return map;
3185 }
3186
3187 /*
3188 * Find the mapping containing the given logical extent.
3189 *
3190 * @logical: Logical block offset in bytes.
3191 * @length: Length of extent in bytes.
3192 *
3193 * Return: Chunk mapping or ERR_PTR.
3194 */
btrfs_get_chunk_map(struct btrfs_fs_info * fs_info,u64 logical,u64 length)3195 struct btrfs_chunk_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
3196 u64 logical, u64 length)
3197 {
3198 struct btrfs_chunk_map *map;
3199
3200 map = btrfs_find_chunk_map(fs_info, logical, length);
3201
3202 if (unlikely(!map)) {
3203 btrfs_crit(fs_info,
3204 "unable to find chunk map for logical %llu length %llu",
3205 logical, length);
3206 return ERR_PTR(-EINVAL);
3207 }
3208
3209 if (unlikely(map->start > logical || map->start + map->chunk_len <= logical)) {
3210 btrfs_crit(fs_info,
3211 "found a bad chunk map, wanted %llu-%llu, found %llu-%llu",
3212 logical, logical + length, map->start,
3213 map->start + map->chunk_len);
3214 btrfs_free_chunk_map(map);
3215 return ERR_PTR(-EINVAL);
3216 }
3217
3218 /* Callers are responsible for dropping the reference. */
3219 return map;
3220 }
3221
remove_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_chunk_map * map,u64 chunk_offset)3222 static int remove_chunk_item(struct btrfs_trans_handle *trans,
3223 struct btrfs_chunk_map *map, u64 chunk_offset)
3224 {
3225 int i;
3226
3227 /*
3228 * Removing chunk items and updating the device items in the chunks btree
3229 * requires holding the chunk_mutex.
3230 * See the comment at btrfs_chunk_alloc() for the details.
3231 */
3232 lockdep_assert_held(&trans->fs_info->chunk_mutex);
3233
3234 for (i = 0; i < map->num_stripes; i++) {
3235 int ret;
3236
3237 ret = btrfs_update_device(trans, map->stripes[i].dev);
3238 if (ret)
3239 return ret;
3240 }
3241
3242 return btrfs_free_chunk(trans, chunk_offset);
3243 }
3244
btrfs_remove_chunk(struct btrfs_trans_handle * trans,u64 chunk_offset)3245 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
3246 {
3247 struct btrfs_fs_info *fs_info = trans->fs_info;
3248 struct btrfs_chunk_map *map;
3249 u64 dev_extent_len = 0;
3250 int i, ret = 0;
3251 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3252
3253 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
3254 if (IS_ERR(map)) {
3255 /*
3256 * This is a logic error, but we don't want to just rely on the
3257 * user having built with ASSERT enabled, so if ASSERT doesn't
3258 * do anything we still error out.
3259 */
3260 DEBUG_WARN("errr %ld reading chunk map at offset %llu",
3261 PTR_ERR(map), chunk_offset);
3262 return PTR_ERR(map);
3263 }
3264
3265 /*
3266 * First delete the device extent items from the devices btree.
3267 * We take the device_list_mutex to avoid racing with the finishing phase
3268 * of a device replace operation. See the comment below before acquiring
3269 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex
3270 * because that can result in a deadlock when deleting the device extent
3271 * items from the devices btree - COWing an extent buffer from the btree
3272 * may result in allocating a new metadata chunk, which would attempt to
3273 * lock again fs_info->chunk_mutex.
3274 */
3275 mutex_lock(&fs_devices->device_list_mutex);
3276 for (i = 0; i < map->num_stripes; i++) {
3277 struct btrfs_device *device = map->stripes[i].dev;
3278 ret = btrfs_free_dev_extent(trans, device,
3279 map->stripes[i].physical,
3280 &dev_extent_len);
3281 if (ret) {
3282 mutex_unlock(&fs_devices->device_list_mutex);
3283 btrfs_abort_transaction(trans, ret);
3284 goto out;
3285 }
3286
3287 if (device->bytes_used > 0) {
3288 mutex_lock(&fs_info->chunk_mutex);
3289 btrfs_device_set_bytes_used(device,
3290 device->bytes_used - dev_extent_len);
3291 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3292 btrfs_clear_space_info_full(fs_info);
3293
3294 if (list_empty(&device->post_commit_list)) {
3295 list_add_tail(&device->post_commit_list,
3296 &trans->transaction->dev_update_list);
3297 }
3298
3299 mutex_unlock(&fs_info->chunk_mutex);
3300 }
3301 }
3302 mutex_unlock(&fs_devices->device_list_mutex);
3303
3304 /*
3305 * We acquire fs_info->chunk_mutex for 2 reasons:
3306 *
3307 * 1) Just like with the first phase of the chunk allocation, we must
3308 * reserve system space, do all chunk btree updates and deletions, and
3309 * update the system chunk array in the superblock while holding this
3310 * mutex. This is for similar reasons as explained on the comment at
3311 * the top of btrfs_chunk_alloc();
3312 *
3313 * 2) Prevent races with the final phase of a device replace operation
3314 * that replaces the device object associated with the map's stripes,
3315 * because the device object's id can change at any time during that
3316 * final phase of the device replace operation
3317 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
3318 * replaced device and then see it with an ID of
3319 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating
3320 * the device item, which does not exists on the chunk btree.
3321 * The finishing phase of device replace acquires both the
3322 * device_list_mutex and the chunk_mutex, in that order, so we are
3323 * safe by just acquiring the chunk_mutex.
3324 */
3325 trans->removing_chunk = true;
3326 mutex_lock(&fs_info->chunk_mutex);
3327
3328 check_system_chunk(trans, map->type);
3329
3330 ret = remove_chunk_item(trans, map, chunk_offset);
3331 /*
3332 * Normally we should not get -ENOSPC since we reserved space before
3333 * through the call to check_system_chunk().
3334 *
3335 * Despite our system space_info having enough free space, we may not
3336 * be able to allocate extents from its block groups, because all have
3337 * an incompatible profile, which will force us to allocate a new system
3338 * block group with the right profile, or right after we called
3339 * check_system_space() above, a scrub turned the only system block group
3340 * with enough free space into RO mode.
3341 * This is explained with more detail at do_chunk_alloc().
3342 *
3343 * So if we get -ENOSPC, allocate a new system chunk and retry once.
3344 */
3345 if (ret == -ENOSPC) {
3346 const u64 sys_flags = btrfs_system_alloc_profile(fs_info);
3347 struct btrfs_block_group *sys_bg;
3348 struct btrfs_space_info *space_info;
3349
3350 space_info = btrfs_find_space_info(fs_info, sys_flags);
3351 if (!space_info) {
3352 ret = -EINVAL;
3353 btrfs_abort_transaction(trans, ret);
3354 goto out;
3355 }
3356
3357 sys_bg = btrfs_create_chunk(trans, space_info, sys_flags);
3358 if (IS_ERR(sys_bg)) {
3359 ret = PTR_ERR(sys_bg);
3360 btrfs_abort_transaction(trans, ret);
3361 goto out;
3362 }
3363
3364 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3365 if (ret) {
3366 btrfs_abort_transaction(trans, ret);
3367 goto out;
3368 }
3369
3370 ret = remove_chunk_item(trans, map, chunk_offset);
3371 if (ret) {
3372 btrfs_abort_transaction(trans, ret);
3373 goto out;
3374 }
3375 } else if (ret) {
3376 btrfs_abort_transaction(trans, ret);
3377 goto out;
3378 }
3379
3380 trace_btrfs_chunk_free(fs_info, map, chunk_offset, map->chunk_len);
3381
3382 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3383 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3384 if (ret) {
3385 btrfs_abort_transaction(trans, ret);
3386 goto out;
3387 }
3388 }
3389
3390 mutex_unlock(&fs_info->chunk_mutex);
3391 trans->removing_chunk = false;
3392
3393 /*
3394 * We are done with chunk btree updates and deletions, so release the
3395 * system space we previously reserved (with check_system_chunk()).
3396 */
3397 btrfs_trans_release_chunk_metadata(trans);
3398
3399 ret = btrfs_remove_block_group(trans, map);
3400 if (ret) {
3401 btrfs_abort_transaction(trans, ret);
3402 goto out;
3403 }
3404
3405 out:
3406 if (trans->removing_chunk) {
3407 mutex_unlock(&fs_info->chunk_mutex);
3408 trans->removing_chunk = false;
3409 }
3410 /* once for us */
3411 btrfs_free_chunk_map(map);
3412 return ret;
3413 }
3414
btrfs_relocate_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset,bool verbose)3415 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3416 bool verbose)
3417 {
3418 struct btrfs_root *root = fs_info->chunk_root;
3419 struct btrfs_trans_handle *trans;
3420 struct btrfs_block_group *block_group;
3421 u64 length;
3422 int ret;
3423
3424 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3425 btrfs_err(fs_info,
3426 "relocate: not supported on extent tree v2 yet");
3427 return -EINVAL;
3428 }
3429
3430 /*
3431 * Prevent races with automatic removal of unused block groups.
3432 * After we relocate and before we remove the chunk with offset
3433 * chunk_offset, automatic removal of the block group can kick in,
3434 * resulting in a failure when calling btrfs_remove_chunk() below.
3435 *
3436 * Make sure to acquire this mutex before doing a tree search (dev
3437 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3438 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3439 * we release the path used to search the chunk/dev tree and before
3440 * the current task acquires this mutex and calls us.
3441 */
3442 lockdep_assert_held(&fs_info->reclaim_bgs_lock);
3443
3444 /* step one, relocate all the extents inside this chunk */
3445 btrfs_scrub_pause(fs_info);
3446 ret = btrfs_relocate_block_group(fs_info, chunk_offset, true);
3447 btrfs_scrub_continue(fs_info);
3448 if (ret) {
3449 /*
3450 * If we had a transaction abort, stop all running scrubs.
3451 * See transaction.c:cleanup_transaction() why we do it here.
3452 */
3453 if (BTRFS_FS_ERROR(fs_info))
3454 btrfs_scrub_cancel(fs_info);
3455 return ret;
3456 }
3457
3458 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
3459 if (!block_group)
3460 return -ENOENT;
3461 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
3462 length = block_group->length;
3463 btrfs_put_block_group(block_group);
3464
3465 /*
3466 * On a zoned file system, discard the whole block group, this will
3467 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If
3468 * resetting the zone fails, don't treat it as a fatal problem from the
3469 * filesystem's point of view.
3470 */
3471 if (btrfs_is_zoned(fs_info)) {
3472 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL);
3473 if (ret)
3474 btrfs_info(fs_info,
3475 "failed to reset zone %llu after relocation",
3476 chunk_offset);
3477 }
3478
3479 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3480 chunk_offset);
3481 if (IS_ERR(trans)) {
3482 ret = PTR_ERR(trans);
3483 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3484 return ret;
3485 }
3486
3487 /*
3488 * step two, delete the device extents and the
3489 * chunk tree entries
3490 */
3491 ret = btrfs_remove_chunk(trans, chunk_offset);
3492 btrfs_end_transaction(trans);
3493 return ret;
3494 }
3495
btrfs_relocate_sys_chunks(struct btrfs_fs_info * fs_info)3496 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3497 {
3498 struct btrfs_root *chunk_root = fs_info->chunk_root;
3499 struct btrfs_path *path;
3500 struct extent_buffer *leaf;
3501 struct btrfs_chunk *chunk;
3502 struct btrfs_key key;
3503 struct btrfs_key found_key;
3504 u64 chunk_type;
3505 bool retried = false;
3506 int failed = 0;
3507 int ret;
3508
3509 path = btrfs_alloc_path();
3510 if (!path)
3511 return -ENOMEM;
3512
3513 again:
3514 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3515 key.type = BTRFS_CHUNK_ITEM_KEY;
3516 key.offset = (u64)-1;
3517
3518 while (1) {
3519 mutex_lock(&fs_info->reclaim_bgs_lock);
3520 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3521 if (ret < 0) {
3522 mutex_unlock(&fs_info->reclaim_bgs_lock);
3523 goto error;
3524 }
3525 if (ret == 0) {
3526 /*
3527 * On the first search we would find chunk tree with
3528 * offset -1, which is not possible. On subsequent
3529 * loops this would find an existing item on an invalid
3530 * offset (one less than the previous one, wrong
3531 * alignment and size).
3532 */
3533 ret = -EUCLEAN;
3534 mutex_unlock(&fs_info->reclaim_bgs_lock);
3535 goto error;
3536 }
3537
3538 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3539 key.type);
3540 if (ret)
3541 mutex_unlock(&fs_info->reclaim_bgs_lock);
3542 if (ret < 0)
3543 goto error;
3544 if (ret > 0)
3545 break;
3546
3547 leaf = path->nodes[0];
3548 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3549
3550 chunk = btrfs_item_ptr(leaf, path->slots[0],
3551 struct btrfs_chunk);
3552 chunk_type = btrfs_chunk_type(leaf, chunk);
3553 btrfs_release_path(path);
3554
3555 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3556 ret = btrfs_relocate_chunk(fs_info, found_key.offset,
3557 true);
3558 if (ret == -ENOSPC)
3559 failed++;
3560 else
3561 BUG_ON(ret);
3562 }
3563 mutex_unlock(&fs_info->reclaim_bgs_lock);
3564
3565 if (found_key.offset == 0)
3566 break;
3567 key.offset = found_key.offset - 1;
3568 }
3569 ret = 0;
3570 if (failed && !retried) {
3571 failed = 0;
3572 retried = true;
3573 goto again;
3574 } else if (WARN_ON(failed && retried)) {
3575 ret = -ENOSPC;
3576 }
3577 error:
3578 btrfs_free_path(path);
3579 return ret;
3580 }
3581
3582 /*
3583 * return 1 : allocate a data chunk successfully,
3584 * return <0: errors during allocating a data chunk,
3585 * return 0 : no need to allocate a data chunk.
3586 */
btrfs_may_alloc_data_chunk(struct btrfs_fs_info * fs_info,u64 chunk_offset)3587 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3588 u64 chunk_offset)
3589 {
3590 struct btrfs_block_group *cache;
3591 u64 bytes_used;
3592 u64 chunk_type;
3593
3594 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3595 ASSERT(cache);
3596 chunk_type = cache->flags;
3597 btrfs_put_block_group(cache);
3598
3599 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3600 return 0;
3601
3602 spin_lock(&fs_info->data_sinfo->lock);
3603 bytes_used = fs_info->data_sinfo->bytes_used;
3604 spin_unlock(&fs_info->data_sinfo->lock);
3605
3606 if (!bytes_used) {
3607 struct btrfs_trans_handle *trans;
3608 int ret;
3609
3610 trans = btrfs_join_transaction(fs_info->tree_root);
3611 if (IS_ERR(trans))
3612 return PTR_ERR(trans);
3613
3614 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3615 btrfs_end_transaction(trans);
3616 if (ret < 0)
3617 return ret;
3618 return 1;
3619 }
3620
3621 return 0;
3622 }
3623
btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args * cpu,const struct btrfs_disk_balance_args * disk)3624 static void btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
3625 const struct btrfs_disk_balance_args *disk)
3626 {
3627 memset(cpu, 0, sizeof(*cpu));
3628
3629 cpu->profiles = le64_to_cpu(disk->profiles);
3630 cpu->usage = le64_to_cpu(disk->usage);
3631 cpu->devid = le64_to_cpu(disk->devid);
3632 cpu->pstart = le64_to_cpu(disk->pstart);
3633 cpu->pend = le64_to_cpu(disk->pend);
3634 cpu->vstart = le64_to_cpu(disk->vstart);
3635 cpu->vend = le64_to_cpu(disk->vend);
3636 cpu->target = le64_to_cpu(disk->target);
3637 cpu->flags = le64_to_cpu(disk->flags);
3638 cpu->limit = le64_to_cpu(disk->limit);
3639 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
3640 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
3641 }
3642
btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args * disk,const struct btrfs_balance_args * cpu)3643 static void btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
3644 const struct btrfs_balance_args *cpu)
3645 {
3646 memset(disk, 0, sizeof(*disk));
3647
3648 disk->profiles = cpu_to_le64(cpu->profiles);
3649 disk->usage = cpu_to_le64(cpu->usage);
3650 disk->devid = cpu_to_le64(cpu->devid);
3651 disk->pstart = cpu_to_le64(cpu->pstart);
3652 disk->pend = cpu_to_le64(cpu->pend);
3653 disk->vstart = cpu_to_le64(cpu->vstart);
3654 disk->vend = cpu_to_le64(cpu->vend);
3655 disk->target = cpu_to_le64(cpu->target);
3656 disk->flags = cpu_to_le64(cpu->flags);
3657 disk->limit = cpu_to_le64(cpu->limit);
3658 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
3659 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
3660 }
3661
insert_balance_item(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl)3662 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3663 struct btrfs_balance_control *bctl)
3664 {
3665 struct btrfs_root *root = fs_info->tree_root;
3666 struct btrfs_trans_handle *trans;
3667 struct btrfs_balance_item *item;
3668 struct btrfs_disk_balance_args disk_bargs;
3669 struct btrfs_path *path;
3670 struct extent_buffer *leaf;
3671 struct btrfs_key key;
3672 int ret, err;
3673
3674 path = btrfs_alloc_path();
3675 if (!path)
3676 return -ENOMEM;
3677
3678 trans = btrfs_start_transaction(root, 0);
3679 if (IS_ERR(trans)) {
3680 btrfs_free_path(path);
3681 return PTR_ERR(trans);
3682 }
3683
3684 key.objectid = BTRFS_BALANCE_OBJECTID;
3685 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3686 key.offset = 0;
3687
3688 ret = btrfs_insert_empty_item(trans, root, path, &key,
3689 sizeof(*item));
3690 if (ret)
3691 goto out;
3692
3693 leaf = path->nodes[0];
3694 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3695
3696 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3697
3698 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3699 btrfs_set_balance_data(leaf, item, &disk_bargs);
3700 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3701 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3702 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3703 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3704 btrfs_set_balance_flags(leaf, item, bctl->flags);
3705 out:
3706 btrfs_free_path(path);
3707 err = btrfs_commit_transaction(trans);
3708 if (err && !ret)
3709 ret = err;
3710 return ret;
3711 }
3712
del_balance_item(struct btrfs_fs_info * fs_info)3713 static int del_balance_item(struct btrfs_fs_info *fs_info)
3714 {
3715 struct btrfs_root *root = fs_info->tree_root;
3716 struct btrfs_trans_handle *trans;
3717 struct btrfs_path *path;
3718 struct btrfs_key key;
3719 int ret, err;
3720
3721 path = btrfs_alloc_path();
3722 if (!path)
3723 return -ENOMEM;
3724
3725 trans = btrfs_start_transaction_fallback_global_rsv(root, 0);
3726 if (IS_ERR(trans)) {
3727 btrfs_free_path(path);
3728 return PTR_ERR(trans);
3729 }
3730
3731 key.objectid = BTRFS_BALANCE_OBJECTID;
3732 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3733 key.offset = 0;
3734
3735 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3736 if (ret < 0)
3737 goto out;
3738 if (ret > 0) {
3739 ret = -ENOENT;
3740 goto out;
3741 }
3742
3743 ret = btrfs_del_item(trans, root, path);
3744 out:
3745 btrfs_free_path(path);
3746 err = btrfs_commit_transaction(trans);
3747 if (err && !ret)
3748 ret = err;
3749 return ret;
3750 }
3751
3752 /*
3753 * This is a heuristic used to reduce the number of chunks balanced on
3754 * resume after balance was interrupted.
3755 */
update_balance_args(struct btrfs_balance_control * bctl)3756 static void update_balance_args(struct btrfs_balance_control *bctl)
3757 {
3758 /*
3759 * Turn on soft mode for chunk types that were being converted.
3760 */
3761 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3762 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3763 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3764 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3765 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3766 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3767
3768 /*
3769 * Turn on usage filter if is not already used. The idea is
3770 * that chunks that we have already balanced should be
3771 * reasonably full. Don't do it for chunks that are being
3772 * converted - that will keep us from relocating unconverted
3773 * (albeit full) chunks.
3774 */
3775 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3776 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3777 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3778 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3779 bctl->data.usage = 90;
3780 }
3781 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3782 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3783 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3784 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3785 bctl->sys.usage = 90;
3786 }
3787 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3788 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3789 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3790 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3791 bctl->meta.usage = 90;
3792 }
3793 }
3794
3795 /*
3796 * Clear the balance status in fs_info and delete the balance item from disk.
3797 */
reset_balance_state(struct btrfs_fs_info * fs_info)3798 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3799 {
3800 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3801 int ret;
3802
3803 ASSERT(fs_info->balance_ctl);
3804
3805 spin_lock(&fs_info->balance_lock);
3806 fs_info->balance_ctl = NULL;
3807 spin_unlock(&fs_info->balance_lock);
3808
3809 kfree(bctl);
3810 ret = del_balance_item(fs_info);
3811 if (ret)
3812 btrfs_handle_fs_error(fs_info, ret, NULL);
3813 }
3814
3815 /*
3816 * Balance filters. Return 1 if chunk should be filtered out
3817 * (should not be balanced).
3818 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3819 static bool chunk_profiles_filter(u64 chunk_type, struct btrfs_balance_args *bargs)
3820 {
3821 chunk_type = chunk_to_extended(chunk_type) &
3822 BTRFS_EXTENDED_PROFILE_MASK;
3823
3824 if (bargs->profiles & chunk_type)
3825 return false;
3826
3827 return true;
3828 }
3829
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3830 static bool chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3831 struct btrfs_balance_args *bargs)
3832 {
3833 struct btrfs_block_group *cache;
3834 u64 chunk_used;
3835 u64 user_thresh_min;
3836 u64 user_thresh_max;
3837 bool ret = true;
3838
3839 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3840 chunk_used = cache->used;
3841
3842 if (bargs->usage_min == 0)
3843 user_thresh_min = 0;
3844 else
3845 user_thresh_min = mult_perc(cache->length, bargs->usage_min);
3846
3847 if (bargs->usage_max == 0)
3848 user_thresh_max = 1;
3849 else if (bargs->usage_max > 100)
3850 user_thresh_max = cache->length;
3851 else
3852 user_thresh_max = mult_perc(cache->length, bargs->usage_max);
3853
3854 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3855 ret = false;
3856
3857 btrfs_put_block_group(cache);
3858 return ret;
3859 }
3860
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3861 static bool chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3862 struct btrfs_balance_args *bargs)
3863 {
3864 struct btrfs_block_group *cache;
3865 u64 chunk_used, user_thresh;
3866 bool ret = true;
3867
3868 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3869 chunk_used = cache->used;
3870
3871 if (bargs->usage_min == 0)
3872 user_thresh = 1;
3873 else if (bargs->usage > 100)
3874 user_thresh = cache->length;
3875 else
3876 user_thresh = mult_perc(cache->length, bargs->usage);
3877
3878 if (chunk_used < user_thresh)
3879 ret = false;
3880
3881 btrfs_put_block_group(cache);
3882 return ret;
3883 }
3884
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3885 static bool chunk_devid_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3886 struct btrfs_balance_args *bargs)
3887 {
3888 struct btrfs_stripe *stripe;
3889 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3890 int i;
3891
3892 for (i = 0; i < num_stripes; i++) {
3893 stripe = btrfs_stripe_nr(chunk, i);
3894 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3895 return false;
3896 }
3897
3898 return true;
3899 }
3900
calc_data_stripes(u64 type,int num_stripes)3901 static u64 calc_data_stripes(u64 type, int num_stripes)
3902 {
3903 const int index = btrfs_bg_flags_to_raid_index(type);
3904 const int ncopies = btrfs_raid_array[index].ncopies;
3905 const int nparity = btrfs_raid_array[index].nparity;
3906
3907 return (num_stripes - nparity) / ncopies;
3908 }
3909
3910 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3911 static bool chunk_drange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3912 struct btrfs_balance_args *bargs)
3913 {
3914 struct btrfs_stripe *stripe;
3915 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3916 u64 stripe_offset;
3917 u64 stripe_length;
3918 u64 type;
3919 int factor;
3920 int i;
3921
3922 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3923 return false;
3924
3925 type = btrfs_chunk_type(leaf, chunk);
3926 factor = calc_data_stripes(type, num_stripes);
3927
3928 for (i = 0; i < num_stripes; i++) {
3929 stripe = btrfs_stripe_nr(chunk, i);
3930 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3931 continue;
3932
3933 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3934 stripe_length = btrfs_chunk_length(leaf, chunk);
3935 stripe_length = div_u64(stripe_length, factor);
3936
3937 if (stripe_offset < bargs->pend &&
3938 stripe_offset + stripe_length > bargs->pstart)
3939 return false;
3940 }
3941
3942 return true;
3943 }
3944
3945 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3946 static bool chunk_vrange_filter(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3947 u64 chunk_offset, struct btrfs_balance_args *bargs)
3948 {
3949 if (chunk_offset < bargs->vend &&
3950 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3951 /* at least part of the chunk is inside this vrange */
3952 return false;
3953
3954 return true;
3955 }
3956
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3957 static bool chunk_stripes_range_filter(struct extent_buffer *leaf,
3958 struct btrfs_chunk *chunk,
3959 struct btrfs_balance_args *bargs)
3960 {
3961 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3962
3963 if (bargs->stripes_min <= num_stripes
3964 && num_stripes <= bargs->stripes_max)
3965 return false;
3966
3967 return true;
3968 }
3969
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3970 static bool chunk_soft_convert_filter(u64 chunk_type, struct btrfs_balance_args *bargs)
3971 {
3972 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3973 return false;
3974
3975 chunk_type = chunk_to_extended(chunk_type) &
3976 BTRFS_EXTENDED_PROFILE_MASK;
3977
3978 if (bargs->target == chunk_type)
3979 return true;
3980
3981 return false;
3982 }
3983
should_balance_chunk(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3984 static bool should_balance_chunk(struct extent_buffer *leaf, struct btrfs_chunk *chunk,
3985 u64 chunk_offset)
3986 {
3987 struct btrfs_fs_info *fs_info = leaf->fs_info;
3988 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3989 struct btrfs_balance_args *bargs = NULL;
3990 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3991
3992 /* type filter */
3993 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3994 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3995 return false;
3996 }
3997
3998 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3999 bargs = &bctl->data;
4000 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4001 bargs = &bctl->sys;
4002 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4003 bargs = &bctl->meta;
4004
4005 /* profiles filter */
4006 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
4007 chunk_profiles_filter(chunk_type, bargs)) {
4008 return false;
4009 }
4010
4011 /* usage filter */
4012 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
4013 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
4014 return false;
4015 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
4016 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
4017 return false;
4018 }
4019
4020 /* devid filter */
4021 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
4022 chunk_devid_filter(leaf, chunk, bargs)) {
4023 return false;
4024 }
4025
4026 /* drange filter, makes sense only with devid filter */
4027 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
4028 chunk_drange_filter(leaf, chunk, bargs)) {
4029 return false;
4030 }
4031
4032 /* vrange filter */
4033 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
4034 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
4035 return false;
4036 }
4037
4038 /* stripes filter */
4039 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
4040 chunk_stripes_range_filter(leaf, chunk, bargs)) {
4041 return false;
4042 }
4043
4044 /* soft profile changing mode */
4045 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
4046 chunk_soft_convert_filter(chunk_type, bargs)) {
4047 return false;
4048 }
4049
4050 /*
4051 * limited by count, must be the last filter
4052 */
4053 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
4054 if (bargs->limit == 0)
4055 return false;
4056 else
4057 bargs->limit--;
4058 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
4059 /*
4060 * Same logic as the 'limit' filter; the minimum cannot be
4061 * determined here because we do not have the global information
4062 * about the count of all chunks that satisfy the filters.
4063 */
4064 if (bargs->limit_max == 0)
4065 return false;
4066 else
4067 bargs->limit_max--;
4068 }
4069
4070 return true;
4071 }
4072
__btrfs_balance(struct btrfs_fs_info * fs_info)4073 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
4074 {
4075 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4076 struct btrfs_root *chunk_root = fs_info->chunk_root;
4077 u64 chunk_type;
4078 struct btrfs_chunk *chunk;
4079 struct btrfs_path *path = NULL;
4080 struct btrfs_key key;
4081 struct btrfs_key found_key;
4082 struct extent_buffer *leaf;
4083 int slot;
4084 int ret;
4085 int enospc_errors = 0;
4086 bool counting = true;
4087 /* The single value limit and min/max limits use the same bytes in the */
4088 u64 limit_data = bctl->data.limit;
4089 u64 limit_meta = bctl->meta.limit;
4090 u64 limit_sys = bctl->sys.limit;
4091 u32 count_data = 0;
4092 u32 count_meta = 0;
4093 u32 count_sys = 0;
4094 int chunk_reserved = 0;
4095
4096 path = btrfs_alloc_path();
4097 if (!path) {
4098 ret = -ENOMEM;
4099 goto error;
4100 }
4101
4102 /* zero out stat counters */
4103 spin_lock(&fs_info->balance_lock);
4104 memset(&bctl->stat, 0, sizeof(bctl->stat));
4105 spin_unlock(&fs_info->balance_lock);
4106 again:
4107 if (!counting) {
4108 /*
4109 * The single value limit and min/max limits use the same bytes
4110 * in the
4111 */
4112 bctl->data.limit = limit_data;
4113 bctl->meta.limit = limit_meta;
4114 bctl->sys.limit = limit_sys;
4115 }
4116 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4117 key.type = BTRFS_CHUNK_ITEM_KEY;
4118 key.offset = (u64)-1;
4119
4120 while (1) {
4121 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
4122 atomic_read(&fs_info->balance_cancel_req)) {
4123 ret = -ECANCELED;
4124 goto error;
4125 }
4126
4127 mutex_lock(&fs_info->reclaim_bgs_lock);
4128 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
4129 if (ret < 0) {
4130 mutex_unlock(&fs_info->reclaim_bgs_lock);
4131 goto error;
4132 }
4133
4134 /*
4135 * this shouldn't happen, it means the last relocate
4136 * failed
4137 */
4138 if (ret == 0)
4139 BUG(); /* FIXME break ? */
4140
4141 ret = btrfs_previous_item(chunk_root, path, 0,
4142 BTRFS_CHUNK_ITEM_KEY);
4143 if (ret) {
4144 mutex_unlock(&fs_info->reclaim_bgs_lock);
4145 ret = 0;
4146 break;
4147 }
4148
4149 leaf = path->nodes[0];
4150 slot = path->slots[0];
4151 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4152
4153 if (found_key.objectid != key.objectid) {
4154 mutex_unlock(&fs_info->reclaim_bgs_lock);
4155 break;
4156 }
4157
4158 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4159 chunk_type = btrfs_chunk_type(leaf, chunk);
4160
4161 if (!counting) {
4162 spin_lock(&fs_info->balance_lock);
4163 bctl->stat.considered++;
4164 spin_unlock(&fs_info->balance_lock);
4165 }
4166
4167 ret = should_balance_chunk(leaf, chunk, found_key.offset);
4168
4169 btrfs_release_path(path);
4170 if (!ret) {
4171 mutex_unlock(&fs_info->reclaim_bgs_lock);
4172 goto loop;
4173 }
4174
4175 if (counting) {
4176 mutex_unlock(&fs_info->reclaim_bgs_lock);
4177 spin_lock(&fs_info->balance_lock);
4178 bctl->stat.expected++;
4179 spin_unlock(&fs_info->balance_lock);
4180
4181 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
4182 count_data++;
4183 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
4184 count_sys++;
4185 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
4186 count_meta++;
4187
4188 goto loop;
4189 }
4190
4191 /*
4192 * Apply limit_min filter, no need to check if the LIMITS
4193 * filter is used, limit_min is 0 by default
4194 */
4195 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
4196 count_data < bctl->data.limit_min)
4197 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
4198 count_meta < bctl->meta.limit_min)
4199 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
4200 count_sys < bctl->sys.limit_min)) {
4201 mutex_unlock(&fs_info->reclaim_bgs_lock);
4202 goto loop;
4203 }
4204
4205 if (!chunk_reserved) {
4206 /*
4207 * We may be relocating the only data chunk we have,
4208 * which could potentially end up with losing data's
4209 * raid profile, so lets allocate an empty one in
4210 * advance.
4211 */
4212 ret = btrfs_may_alloc_data_chunk(fs_info,
4213 found_key.offset);
4214 if (ret < 0) {
4215 mutex_unlock(&fs_info->reclaim_bgs_lock);
4216 goto error;
4217 } else if (ret == 1) {
4218 chunk_reserved = 1;
4219 }
4220 }
4221
4222 ret = btrfs_relocate_chunk(fs_info, found_key.offset, true);
4223 mutex_unlock(&fs_info->reclaim_bgs_lock);
4224 if (ret == -ENOSPC) {
4225 enospc_errors++;
4226 } else if (ret == -ETXTBSY) {
4227 btrfs_info(fs_info,
4228 "skipping relocation of block group %llu due to active swapfile",
4229 found_key.offset);
4230 ret = 0;
4231 } else if (ret) {
4232 goto error;
4233 } else {
4234 spin_lock(&fs_info->balance_lock);
4235 bctl->stat.completed++;
4236 spin_unlock(&fs_info->balance_lock);
4237 }
4238 loop:
4239 if (found_key.offset == 0)
4240 break;
4241 key.offset = found_key.offset - 1;
4242 }
4243
4244 if (counting) {
4245 btrfs_release_path(path);
4246 counting = false;
4247 goto again;
4248 }
4249 error:
4250 btrfs_free_path(path);
4251 if (enospc_errors) {
4252 btrfs_info(fs_info, "%d enospc errors during balance",
4253 enospc_errors);
4254 if (!ret)
4255 ret = -ENOSPC;
4256 }
4257
4258 return ret;
4259 }
4260
4261 /*
4262 * See if a given profile is valid and reduced.
4263 *
4264 * @flags: profile to validate
4265 * @extended: if true @flags is treated as an extended profile
4266 */
alloc_profile_is_valid(u64 flags,int extended)4267 static int alloc_profile_is_valid(u64 flags, int extended)
4268 {
4269 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
4270 BTRFS_BLOCK_GROUP_PROFILE_MASK);
4271
4272 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
4273
4274 /* 1) check that all other bits are zeroed */
4275 if (flags & ~mask)
4276 return 0;
4277
4278 /* 2) see if profile is reduced */
4279 if (flags == 0)
4280 return !extended; /* "0" is valid for usual profiles */
4281
4282 return has_single_bit_set(flags);
4283 }
4284
4285 /*
4286 * Validate target profile against allowed profiles and return true if it's OK.
4287 * Otherwise print the error message and return false.
4288 */
validate_convert_profile(struct btrfs_fs_info * fs_info,const struct btrfs_balance_args * bargs,u64 allowed,const char * type)4289 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info,
4290 const struct btrfs_balance_args *bargs,
4291 u64 allowed, const char *type)
4292 {
4293 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
4294 return true;
4295
4296 /* Profile is valid and does not have bits outside of the allowed set */
4297 if (alloc_profile_is_valid(bargs->target, 1) &&
4298 (bargs->target & ~allowed) == 0)
4299 return true;
4300
4301 btrfs_err(fs_info, "balance: invalid convert %s profile %s",
4302 type, btrfs_bg_type_to_raid_name(bargs->target));
4303 return false;
4304 }
4305
4306 /*
4307 * Fill @buf with textual description of balance filter flags @bargs, up to
4308 * @size_buf including the terminating null. The output may be trimmed if it
4309 * does not fit into the provided buffer.
4310 */
describe_balance_args(struct btrfs_balance_args * bargs,char * buf,u32 size_buf)4311 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
4312 u32 size_buf)
4313 {
4314 int ret;
4315 u32 size_bp = size_buf;
4316 char *bp = buf;
4317 u64 flags = bargs->flags;
4318 char tmp_buf[128] = {'\0'};
4319
4320 if (!flags)
4321 return;
4322
4323 #define CHECK_APPEND_NOARG(a) \
4324 do { \
4325 ret = snprintf(bp, size_bp, (a)); \
4326 if (ret < 0 || ret >= size_bp) \
4327 goto out_overflow; \
4328 size_bp -= ret; \
4329 bp += ret; \
4330 } while (0)
4331
4332 #define CHECK_APPEND_1ARG(a, v1) \
4333 do { \
4334 ret = snprintf(bp, size_bp, (a), (v1)); \
4335 if (ret < 0 || ret >= size_bp) \
4336 goto out_overflow; \
4337 size_bp -= ret; \
4338 bp += ret; \
4339 } while (0)
4340
4341 #define CHECK_APPEND_2ARG(a, v1, v2) \
4342 do { \
4343 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
4344 if (ret < 0 || ret >= size_bp) \
4345 goto out_overflow; \
4346 size_bp -= ret; \
4347 bp += ret; \
4348 } while (0)
4349
4350 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
4351 CHECK_APPEND_1ARG("convert=%s,",
4352 btrfs_bg_type_to_raid_name(bargs->target));
4353
4354 if (flags & BTRFS_BALANCE_ARGS_SOFT)
4355 CHECK_APPEND_NOARG("soft,");
4356
4357 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
4358 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
4359 sizeof(tmp_buf));
4360 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
4361 }
4362
4363 if (flags & BTRFS_BALANCE_ARGS_USAGE)
4364 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
4365
4366 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
4367 CHECK_APPEND_2ARG("usage=%u..%u,",
4368 bargs->usage_min, bargs->usage_max);
4369
4370 if (flags & BTRFS_BALANCE_ARGS_DEVID)
4371 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
4372
4373 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
4374 CHECK_APPEND_2ARG("drange=%llu..%llu,",
4375 bargs->pstart, bargs->pend);
4376
4377 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
4378 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
4379 bargs->vstart, bargs->vend);
4380
4381 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
4382 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
4383
4384 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
4385 CHECK_APPEND_2ARG("limit=%u..%u,",
4386 bargs->limit_min, bargs->limit_max);
4387
4388 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
4389 CHECK_APPEND_2ARG("stripes=%u..%u,",
4390 bargs->stripes_min, bargs->stripes_max);
4391
4392 #undef CHECK_APPEND_2ARG
4393 #undef CHECK_APPEND_1ARG
4394 #undef CHECK_APPEND_NOARG
4395
4396 out_overflow:
4397
4398 if (size_bp < size_buf)
4399 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
4400 else
4401 buf[0] = '\0';
4402 }
4403
describe_balance_start_or_resume(struct btrfs_fs_info * fs_info)4404 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
4405 {
4406 u32 size_buf = 1024;
4407 char tmp_buf[192] = {'\0'};
4408 char *buf;
4409 char *bp;
4410 u32 size_bp = size_buf;
4411 int ret;
4412 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4413
4414 buf = kzalloc(size_buf, GFP_KERNEL);
4415 if (!buf)
4416 return;
4417
4418 bp = buf;
4419
4420 #define CHECK_APPEND_1ARG(a, v1) \
4421 do { \
4422 ret = snprintf(bp, size_bp, (a), (v1)); \
4423 if (ret < 0 || ret >= size_bp) \
4424 goto out_overflow; \
4425 size_bp -= ret; \
4426 bp += ret; \
4427 } while (0)
4428
4429 if (bctl->flags & BTRFS_BALANCE_FORCE)
4430 CHECK_APPEND_1ARG("%s", "-f ");
4431
4432 if (bctl->flags & BTRFS_BALANCE_DATA) {
4433 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4434 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4435 }
4436
4437 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4438 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4439 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4440 }
4441
4442 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4443 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4444 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4445 }
4446
4447 #undef CHECK_APPEND_1ARG
4448
4449 out_overflow:
4450
4451 if (size_bp < size_buf)
4452 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4453 btrfs_info(fs_info, "balance: %s %s",
4454 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4455 "resume" : "start", buf);
4456
4457 kfree(buf);
4458 }
4459
4460 /*
4461 * Should be called with balance mutexe held
4462 */
btrfs_balance(struct btrfs_fs_info * fs_info,struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)4463 int btrfs_balance(struct btrfs_fs_info *fs_info,
4464 struct btrfs_balance_control *bctl,
4465 struct btrfs_ioctl_balance_args *bargs)
4466 {
4467 u64 meta_target, data_target;
4468 u64 allowed;
4469 int mixed = 0;
4470 int ret;
4471 u64 num_devices;
4472 unsigned seq;
4473 bool reducing_redundancy;
4474 bool paused = false;
4475 int i;
4476
4477 if (btrfs_fs_closing(fs_info) ||
4478 atomic_read(&fs_info->balance_pause_req) ||
4479 btrfs_should_cancel_balance(fs_info)) {
4480 ret = -EINVAL;
4481 goto out;
4482 }
4483
4484 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4485 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4486 mixed = 1;
4487
4488 /*
4489 * In case of mixed groups both data and meta should be picked,
4490 * and identical options should be given for both of them.
4491 */
4492 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4493 if (mixed && (bctl->flags & allowed)) {
4494 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4495 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4496 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4497 btrfs_err(fs_info,
4498 "balance: mixed groups data and metadata options must be the same");
4499 ret = -EINVAL;
4500 goto out;
4501 }
4502 }
4503
4504 /*
4505 * rw_devices will not change at the moment, device add/delete/replace
4506 * are exclusive
4507 */
4508 num_devices = fs_info->fs_devices->rw_devices;
4509
4510 /*
4511 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4512 * special bit for it, to make it easier to distinguish. Thus we need
4513 * to set it manually, or balance would refuse the profile.
4514 */
4515 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
4516 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4517 if (num_devices >= btrfs_raid_array[i].devs_min)
4518 allowed |= btrfs_raid_array[i].bg_flag;
4519
4520 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") ||
4521 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") ||
4522 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) {
4523 ret = -EINVAL;
4524 goto out;
4525 }
4526
4527 /*
4528 * Allow to reduce metadata or system integrity only if force set for
4529 * profiles with redundancy (copies, parity)
4530 */
4531 allowed = 0;
4532 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4533 if (btrfs_raid_array[i].ncopies >= 2 ||
4534 btrfs_raid_array[i].tolerated_failures >= 1)
4535 allowed |= btrfs_raid_array[i].bg_flag;
4536 }
4537 do {
4538 seq = read_seqbegin(&fs_info->profiles_lock);
4539
4540 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4541 (fs_info->avail_system_alloc_bits & allowed) &&
4542 !(bctl->sys.target & allowed)) ||
4543 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4544 (fs_info->avail_metadata_alloc_bits & allowed) &&
4545 !(bctl->meta.target & allowed)))
4546 reducing_redundancy = true;
4547 else
4548 reducing_redundancy = false;
4549
4550 /* if we're not converting, the target field is uninitialized */
4551 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4552 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4553 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4554 bctl->data.target : fs_info->avail_data_alloc_bits;
4555 } while (read_seqretry(&fs_info->profiles_lock, seq));
4556
4557 if (reducing_redundancy) {
4558 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4559 btrfs_info(fs_info,
4560 "balance: force reducing metadata redundancy");
4561 } else {
4562 btrfs_err(fs_info,
4563 "balance: reduces metadata redundancy, use --force if you want this");
4564 ret = -EINVAL;
4565 goto out;
4566 }
4567 }
4568
4569 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4570 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4571 btrfs_warn(fs_info,
4572 "balance: metadata profile %s has lower redundancy than data profile %s",
4573 btrfs_bg_type_to_raid_name(meta_target),
4574 btrfs_bg_type_to_raid_name(data_target));
4575 }
4576
4577 ret = insert_balance_item(fs_info, bctl);
4578 if (ret && ret != -EEXIST)
4579 goto out;
4580
4581 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4582 BUG_ON(ret == -EEXIST);
4583 BUG_ON(fs_info->balance_ctl);
4584 spin_lock(&fs_info->balance_lock);
4585 fs_info->balance_ctl = bctl;
4586 spin_unlock(&fs_info->balance_lock);
4587 } else {
4588 BUG_ON(ret != -EEXIST);
4589 spin_lock(&fs_info->balance_lock);
4590 update_balance_args(bctl);
4591 spin_unlock(&fs_info->balance_lock);
4592 }
4593
4594 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4595 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4596 describe_balance_start_or_resume(fs_info);
4597 mutex_unlock(&fs_info->balance_mutex);
4598
4599 ret = __btrfs_balance(fs_info);
4600
4601 mutex_lock(&fs_info->balance_mutex);
4602 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) {
4603 btrfs_info(fs_info, "balance: paused");
4604 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
4605 paused = true;
4606 }
4607 /*
4608 * Balance can be canceled by:
4609 *
4610 * - Regular cancel request
4611 * Then ret == -ECANCELED and balance_cancel_req > 0
4612 *
4613 * - Fatal signal to "btrfs" process
4614 * Either the signal caught by wait_reserve_ticket() and callers
4615 * got -EINTR, or caught by btrfs_should_cancel_balance() and
4616 * got -ECANCELED.
4617 * Either way, in this case balance_cancel_req = 0, and
4618 * ret == -EINTR or ret == -ECANCELED.
4619 *
4620 * So here we only check the return value to catch canceled balance.
4621 */
4622 else if (ret == -ECANCELED || ret == -EINTR)
4623 btrfs_info(fs_info, "balance: canceled");
4624 else
4625 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4626
4627 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4628
4629 if (bargs) {
4630 memset(bargs, 0, sizeof(*bargs));
4631 btrfs_update_ioctl_balance_args(fs_info, bargs);
4632 }
4633
4634 /* We didn't pause, we can clean everything up. */
4635 if (!paused) {
4636 reset_balance_state(fs_info);
4637 btrfs_exclop_finish(fs_info);
4638 }
4639
4640 wake_up(&fs_info->balance_wait_q);
4641
4642 return ret;
4643 out:
4644 if (bctl->flags & BTRFS_BALANCE_RESUME)
4645 reset_balance_state(fs_info);
4646 else
4647 kfree(bctl);
4648 btrfs_exclop_finish(fs_info);
4649
4650 return ret;
4651 }
4652
balance_kthread(void * data)4653 static int balance_kthread(void *data)
4654 {
4655 struct btrfs_fs_info *fs_info = data;
4656 int ret = 0;
4657
4658 sb_start_write(fs_info->sb);
4659 mutex_lock(&fs_info->balance_mutex);
4660 if (fs_info->balance_ctl)
4661 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4662 mutex_unlock(&fs_info->balance_mutex);
4663 sb_end_write(fs_info->sb);
4664
4665 return ret;
4666 }
4667
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)4668 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4669 {
4670 struct task_struct *tsk;
4671
4672 mutex_lock(&fs_info->balance_mutex);
4673 if (!fs_info->balance_ctl) {
4674 mutex_unlock(&fs_info->balance_mutex);
4675 return 0;
4676 }
4677 mutex_unlock(&fs_info->balance_mutex);
4678
4679 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4680 btrfs_info(fs_info, "balance: resume skipped");
4681 return 0;
4682 }
4683
4684 spin_lock(&fs_info->super_lock);
4685 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED,
4686 "exclusive_operation=%d", fs_info->exclusive_operation);
4687 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
4688 spin_unlock(&fs_info->super_lock);
4689 /*
4690 * A ro->rw remount sequence should continue with the paused balance
4691 * regardless of who pauses it, system or the user as of now, so set
4692 * the resume flag.
4693 */
4694 spin_lock(&fs_info->balance_lock);
4695 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4696 spin_unlock(&fs_info->balance_lock);
4697
4698 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4699 return PTR_ERR_OR_ZERO(tsk);
4700 }
4701
btrfs_recover_balance(struct btrfs_fs_info * fs_info)4702 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4703 {
4704 struct btrfs_balance_control *bctl;
4705 struct btrfs_balance_item *item;
4706 struct btrfs_disk_balance_args disk_bargs;
4707 struct btrfs_path *path;
4708 struct extent_buffer *leaf;
4709 struct btrfs_key key;
4710 int ret;
4711
4712 path = btrfs_alloc_path();
4713 if (!path)
4714 return -ENOMEM;
4715
4716 key.objectid = BTRFS_BALANCE_OBJECTID;
4717 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4718 key.offset = 0;
4719
4720 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4721 if (ret < 0)
4722 goto out;
4723 if (ret > 0) { /* ret = -ENOENT; */
4724 ret = 0;
4725 goto out;
4726 }
4727
4728 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4729 if (!bctl) {
4730 ret = -ENOMEM;
4731 goto out;
4732 }
4733
4734 leaf = path->nodes[0];
4735 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4736
4737 bctl->flags = btrfs_balance_flags(leaf, item);
4738 bctl->flags |= BTRFS_BALANCE_RESUME;
4739
4740 btrfs_balance_data(leaf, item, &disk_bargs);
4741 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4742 btrfs_balance_meta(leaf, item, &disk_bargs);
4743 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4744 btrfs_balance_sys(leaf, item, &disk_bargs);
4745 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4746
4747 /*
4748 * This should never happen, as the paused balance state is recovered
4749 * during mount without any chance of other exclusive ops to collide.
4750 *
4751 * This gives the exclusive op status to balance and keeps in paused
4752 * state until user intervention (cancel or umount). If the ownership
4753 * cannot be assigned, show a message but do not fail. The balance
4754 * is in a paused state and must have fs_info::balance_ctl properly
4755 * set up.
4756 */
4757 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED))
4758 btrfs_warn(fs_info,
4759 "balance: cannot set exclusive op status, resume manually");
4760
4761 btrfs_release_path(path);
4762
4763 mutex_lock(&fs_info->balance_mutex);
4764 BUG_ON(fs_info->balance_ctl);
4765 spin_lock(&fs_info->balance_lock);
4766 fs_info->balance_ctl = bctl;
4767 spin_unlock(&fs_info->balance_lock);
4768 mutex_unlock(&fs_info->balance_mutex);
4769 out:
4770 btrfs_free_path(path);
4771 return ret;
4772 }
4773
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4774 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4775 {
4776 int ret = 0;
4777
4778 mutex_lock(&fs_info->balance_mutex);
4779 if (!fs_info->balance_ctl) {
4780 mutex_unlock(&fs_info->balance_mutex);
4781 return -ENOTCONN;
4782 }
4783
4784 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4785 atomic_inc(&fs_info->balance_pause_req);
4786 mutex_unlock(&fs_info->balance_mutex);
4787
4788 wait_event(fs_info->balance_wait_q,
4789 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4790
4791 mutex_lock(&fs_info->balance_mutex);
4792 /* we are good with balance_ctl ripped off from under us */
4793 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4794 atomic_dec(&fs_info->balance_pause_req);
4795 } else {
4796 ret = -ENOTCONN;
4797 }
4798
4799 mutex_unlock(&fs_info->balance_mutex);
4800 return ret;
4801 }
4802
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4803 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4804 {
4805 mutex_lock(&fs_info->balance_mutex);
4806 if (!fs_info->balance_ctl) {
4807 mutex_unlock(&fs_info->balance_mutex);
4808 return -ENOTCONN;
4809 }
4810
4811 /*
4812 * A paused balance with the item stored on disk can be resumed at
4813 * mount time if the mount is read-write. Otherwise it's still paused
4814 * and we must not allow cancelling as it deletes the item.
4815 */
4816 if (sb_rdonly(fs_info->sb)) {
4817 mutex_unlock(&fs_info->balance_mutex);
4818 return -EROFS;
4819 }
4820
4821 atomic_inc(&fs_info->balance_cancel_req);
4822 /*
4823 * if we are running just wait and return, balance item is
4824 * deleted in btrfs_balance in this case
4825 */
4826 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4827 mutex_unlock(&fs_info->balance_mutex);
4828 wait_event(fs_info->balance_wait_q,
4829 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4830 mutex_lock(&fs_info->balance_mutex);
4831 } else {
4832 mutex_unlock(&fs_info->balance_mutex);
4833 /*
4834 * Lock released to allow other waiters to continue, we'll
4835 * reexamine the status again.
4836 */
4837 mutex_lock(&fs_info->balance_mutex);
4838
4839 if (fs_info->balance_ctl) {
4840 reset_balance_state(fs_info);
4841 btrfs_exclop_finish(fs_info);
4842 btrfs_info(fs_info, "balance: canceled");
4843 }
4844 }
4845
4846 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4847 atomic_dec(&fs_info->balance_cancel_req);
4848 mutex_unlock(&fs_info->balance_mutex);
4849 return 0;
4850 }
4851
4852 /*
4853 * shrinking a device means finding all of the device extents past
4854 * the new size, and then following the back refs to the chunks.
4855 * The chunk relocation code actually frees the device extent
4856 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4857 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4858 {
4859 struct btrfs_fs_info *fs_info = device->fs_info;
4860 struct btrfs_root *root = fs_info->dev_root;
4861 struct btrfs_trans_handle *trans;
4862 struct btrfs_dev_extent *dev_extent = NULL;
4863 struct btrfs_path *path;
4864 u64 length;
4865 u64 chunk_offset;
4866 int ret;
4867 int slot;
4868 int failed = 0;
4869 bool retried = false;
4870 struct extent_buffer *l;
4871 struct btrfs_key key;
4872 struct btrfs_super_block *super_copy = fs_info->super_copy;
4873 u64 old_total = btrfs_super_total_bytes(super_copy);
4874 u64 old_size = btrfs_device_get_total_bytes(device);
4875 u64 diff;
4876 u64 start;
4877 u64 free_diff = 0;
4878
4879 new_size = round_down(new_size, fs_info->sectorsize);
4880 start = new_size;
4881 diff = round_down(old_size - new_size, fs_info->sectorsize);
4882
4883 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4884 return -EINVAL;
4885
4886 path = btrfs_alloc_path();
4887 if (!path)
4888 return -ENOMEM;
4889
4890 path->reada = READA_BACK;
4891
4892 trans = btrfs_start_transaction(root, 0);
4893 if (IS_ERR(trans)) {
4894 btrfs_free_path(path);
4895 return PTR_ERR(trans);
4896 }
4897
4898 mutex_lock(&fs_info->chunk_mutex);
4899
4900 btrfs_device_set_total_bytes(device, new_size);
4901 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4902 device->fs_devices->total_rw_bytes -= diff;
4903
4904 /*
4905 * The new free_chunk_space is new_size - used, so we have to
4906 * subtract the delta of the old free_chunk_space which included
4907 * old_size - used. If used > new_size then just subtract this
4908 * entire device's free space.
4909 */
4910 if (device->bytes_used < new_size)
4911 free_diff = (old_size - device->bytes_used) -
4912 (new_size - device->bytes_used);
4913 else
4914 free_diff = old_size - device->bytes_used;
4915 atomic64_sub(free_diff, &fs_info->free_chunk_space);
4916 }
4917
4918 /*
4919 * Once the device's size has been set to the new size, ensure all
4920 * in-memory chunks are synced to disk so that the loop below sees them
4921 * and relocates them accordingly.
4922 */
4923 if (contains_pending_extent(device, &start, diff)) {
4924 mutex_unlock(&fs_info->chunk_mutex);
4925 ret = btrfs_commit_transaction(trans);
4926 if (ret)
4927 goto done;
4928 } else {
4929 mutex_unlock(&fs_info->chunk_mutex);
4930 btrfs_end_transaction(trans);
4931 }
4932
4933 again:
4934 key.objectid = device->devid;
4935 key.type = BTRFS_DEV_EXTENT_KEY;
4936 key.offset = (u64)-1;
4937
4938 do {
4939 mutex_lock(&fs_info->reclaim_bgs_lock);
4940 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4941 if (ret < 0) {
4942 mutex_unlock(&fs_info->reclaim_bgs_lock);
4943 goto done;
4944 }
4945
4946 ret = btrfs_previous_item(root, path, 0, key.type);
4947 if (ret) {
4948 mutex_unlock(&fs_info->reclaim_bgs_lock);
4949 if (ret < 0)
4950 goto done;
4951 ret = 0;
4952 btrfs_release_path(path);
4953 break;
4954 }
4955
4956 l = path->nodes[0];
4957 slot = path->slots[0];
4958 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4959
4960 if (key.objectid != device->devid) {
4961 mutex_unlock(&fs_info->reclaim_bgs_lock);
4962 btrfs_release_path(path);
4963 break;
4964 }
4965
4966 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4967 length = btrfs_dev_extent_length(l, dev_extent);
4968
4969 if (key.offset + length <= new_size) {
4970 mutex_unlock(&fs_info->reclaim_bgs_lock);
4971 btrfs_release_path(path);
4972 break;
4973 }
4974
4975 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4976 btrfs_release_path(path);
4977
4978 /*
4979 * We may be relocating the only data chunk we have,
4980 * which could potentially end up with losing data's
4981 * raid profile, so lets allocate an empty one in
4982 * advance.
4983 */
4984 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4985 if (ret < 0) {
4986 mutex_unlock(&fs_info->reclaim_bgs_lock);
4987 goto done;
4988 }
4989
4990 ret = btrfs_relocate_chunk(fs_info, chunk_offset, true);
4991 mutex_unlock(&fs_info->reclaim_bgs_lock);
4992 if (ret == -ENOSPC) {
4993 failed++;
4994 } else if (ret) {
4995 if (ret == -ETXTBSY) {
4996 btrfs_warn(fs_info,
4997 "could not shrink block group %llu due to active swapfile",
4998 chunk_offset);
4999 }
5000 goto done;
5001 }
5002 } while (key.offset-- > 0);
5003
5004 if (failed && !retried) {
5005 failed = 0;
5006 retried = true;
5007 goto again;
5008 } else if (failed && retried) {
5009 ret = -ENOSPC;
5010 goto done;
5011 }
5012
5013 /* Shrinking succeeded, else we would be at "done". */
5014 trans = btrfs_start_transaction(root, 0);
5015 if (IS_ERR(trans)) {
5016 ret = PTR_ERR(trans);
5017 goto done;
5018 }
5019
5020 mutex_lock(&fs_info->chunk_mutex);
5021 /* Clear all state bits beyond the shrunk device size */
5022 btrfs_clear_extent_bit(&device->alloc_state, new_size, (u64)-1,
5023 CHUNK_STATE_MASK, NULL);
5024
5025 btrfs_device_set_disk_total_bytes(device, new_size);
5026 if (list_empty(&device->post_commit_list))
5027 list_add_tail(&device->post_commit_list,
5028 &trans->transaction->dev_update_list);
5029
5030 WARN_ON(diff > old_total);
5031 btrfs_set_super_total_bytes(super_copy,
5032 round_down(old_total - diff, fs_info->sectorsize));
5033 mutex_unlock(&fs_info->chunk_mutex);
5034
5035 btrfs_reserve_chunk_metadata(trans, false);
5036 /* Now btrfs_update_device() will change the on-disk size. */
5037 ret = btrfs_update_device(trans, device);
5038 btrfs_trans_release_chunk_metadata(trans);
5039 if (ret < 0) {
5040 btrfs_abort_transaction(trans, ret);
5041 btrfs_end_transaction(trans);
5042 } else {
5043 ret = btrfs_commit_transaction(trans);
5044 }
5045 done:
5046 btrfs_free_path(path);
5047 if (ret) {
5048 mutex_lock(&fs_info->chunk_mutex);
5049 btrfs_device_set_total_bytes(device, old_size);
5050 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5051 device->fs_devices->total_rw_bytes += diff;
5052 atomic64_add(free_diff, &fs_info->free_chunk_space);
5053 }
5054 mutex_unlock(&fs_info->chunk_mutex);
5055 }
5056 return ret;
5057 }
5058
btrfs_add_system_chunk(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)5059 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
5060 struct btrfs_key *key,
5061 struct btrfs_chunk *chunk, int item_size)
5062 {
5063 struct btrfs_super_block *super_copy = fs_info->super_copy;
5064 struct btrfs_disk_key disk_key;
5065 u32 array_size;
5066 u8 *ptr;
5067
5068 lockdep_assert_held(&fs_info->chunk_mutex);
5069
5070 array_size = btrfs_super_sys_array_size(super_copy);
5071 if (array_size + item_size + sizeof(disk_key)
5072 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
5073 return -EFBIG;
5074
5075 ptr = super_copy->sys_chunk_array + array_size;
5076 btrfs_cpu_key_to_disk(&disk_key, key);
5077 memcpy(ptr, &disk_key, sizeof(disk_key));
5078 ptr += sizeof(disk_key);
5079 memcpy(ptr, chunk, item_size);
5080 item_size += sizeof(disk_key);
5081 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
5082
5083 return 0;
5084 }
5085
5086 /*
5087 * sort the devices in descending order by max_avail, total_avail
5088 */
btrfs_cmp_device_info(const void * a,const void * b)5089 static int btrfs_cmp_device_info(const void *a, const void *b)
5090 {
5091 const struct btrfs_device_info *di_a = a;
5092 const struct btrfs_device_info *di_b = b;
5093
5094 if (di_a->max_avail > di_b->max_avail)
5095 return -1;
5096 if (di_a->max_avail < di_b->max_avail)
5097 return 1;
5098 if (di_a->total_avail > di_b->total_avail)
5099 return -1;
5100 if (di_a->total_avail < di_b->total_avail)
5101 return 1;
5102 return 0;
5103 }
5104
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)5105 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
5106 {
5107 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
5108 return;
5109
5110 btrfs_set_fs_incompat(info, RAID56);
5111 }
5112
check_raid1c34_incompat_flag(struct btrfs_fs_info * info,u64 type)5113 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
5114 {
5115 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
5116 return;
5117
5118 btrfs_set_fs_incompat(info, RAID1C34);
5119 }
5120
5121 /*
5122 * Structure used internally for btrfs_create_chunk() function.
5123 * Wraps needed parameters.
5124 */
5125 struct alloc_chunk_ctl {
5126 u64 start;
5127 u64 type;
5128 /* Total number of stripes to allocate */
5129 int num_stripes;
5130 /* sub_stripes info for map */
5131 int sub_stripes;
5132 /* Stripes per device */
5133 int dev_stripes;
5134 /* Maximum number of devices to use */
5135 int devs_max;
5136 /* Minimum number of devices to use */
5137 int devs_min;
5138 /* ndevs has to be a multiple of this */
5139 int devs_increment;
5140 /* Number of copies */
5141 int ncopies;
5142 /* Number of stripes worth of bytes to store parity information */
5143 int nparity;
5144 u64 max_stripe_size;
5145 u64 max_chunk_size;
5146 u64 dev_extent_min;
5147 u64 stripe_size;
5148 u64 chunk_size;
5149 int ndevs;
5150 /* Space_info the block group is going to belong. */
5151 struct btrfs_space_info *space_info;
5152 };
5153
init_alloc_chunk_ctl_policy_regular(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5154 static void init_alloc_chunk_ctl_policy_regular(
5155 struct btrfs_fs_devices *fs_devices,
5156 struct alloc_chunk_ctl *ctl)
5157 {
5158 struct btrfs_space_info *space_info;
5159
5160 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type);
5161 ASSERT(space_info);
5162
5163 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size);
5164 ctl->max_stripe_size = min_t(u64, ctl->max_chunk_size, SZ_1G);
5165
5166 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM)
5167 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
5168
5169 /* We don't want a chunk larger than 10% of writable space */
5170 ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10),
5171 ctl->max_chunk_size);
5172 ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes);
5173 }
5174
init_alloc_chunk_ctl_policy_zoned(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5175 static void init_alloc_chunk_ctl_policy_zoned(
5176 struct btrfs_fs_devices *fs_devices,
5177 struct alloc_chunk_ctl *ctl)
5178 {
5179 u64 zone_size = fs_devices->fs_info->zone_size;
5180 u64 limit;
5181 int min_num_stripes = ctl->devs_min * ctl->dev_stripes;
5182 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies;
5183 u64 min_chunk_size = min_data_stripes * zone_size;
5184 u64 type = ctl->type;
5185
5186 ctl->max_stripe_size = zone_size;
5187 if (type & BTRFS_BLOCK_GROUP_DATA) {
5188 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE,
5189 zone_size);
5190 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
5191 ctl->max_chunk_size = ctl->max_stripe_size;
5192 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
5193 ctl->max_chunk_size = 2 * ctl->max_stripe_size;
5194 ctl->devs_max = min_t(int, ctl->devs_max,
5195 BTRFS_MAX_DEVS_SYS_CHUNK);
5196 } else {
5197 BUG();
5198 }
5199
5200 /* We don't want a chunk larger than 10% of writable space */
5201 limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10),
5202 zone_size),
5203 min_chunk_size);
5204 ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
5205 ctl->dev_extent_min = zone_size * ctl->dev_stripes;
5206 }
5207
init_alloc_chunk_ctl(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl)5208 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices,
5209 struct alloc_chunk_ctl *ctl)
5210 {
5211 int index = btrfs_bg_flags_to_raid_index(ctl->type);
5212
5213 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes;
5214 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes;
5215 ctl->devs_max = btrfs_raid_array[index].devs_max;
5216 if (!ctl->devs_max)
5217 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info);
5218 ctl->devs_min = btrfs_raid_array[index].devs_min;
5219 ctl->devs_increment = btrfs_raid_array[index].devs_increment;
5220 ctl->ncopies = btrfs_raid_array[index].ncopies;
5221 ctl->nparity = btrfs_raid_array[index].nparity;
5222 ctl->ndevs = 0;
5223
5224 switch (fs_devices->chunk_alloc_policy) {
5225 default:
5226 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy);
5227 fallthrough;
5228 case BTRFS_CHUNK_ALLOC_REGULAR:
5229 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl);
5230 break;
5231 case BTRFS_CHUNK_ALLOC_ZONED:
5232 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl);
5233 break;
5234 }
5235 }
5236
gather_device_info(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5237 static int gather_device_info(struct btrfs_fs_devices *fs_devices,
5238 struct alloc_chunk_ctl *ctl,
5239 struct btrfs_device_info *devices_info)
5240 {
5241 struct btrfs_fs_info *info = fs_devices->fs_info;
5242 struct btrfs_device *device;
5243 u64 total_avail;
5244 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes;
5245 int ret;
5246 int ndevs = 0;
5247 u64 max_avail;
5248 u64 dev_offset;
5249
5250 /*
5251 * in the first pass through the devices list, we gather information
5252 * about the available holes on each device.
5253 */
5254 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5255 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5256 WARN(1, KERN_ERR
5257 "BTRFS: read-only device in alloc_list\n");
5258 continue;
5259 }
5260
5261 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5262 &device->dev_state) ||
5263 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5264 continue;
5265
5266 if (device->total_bytes > device->bytes_used)
5267 total_avail = device->total_bytes - device->bytes_used;
5268 else
5269 total_avail = 0;
5270
5271 /* If there is no space on this device, skip it. */
5272 if (total_avail < ctl->dev_extent_min)
5273 continue;
5274
5275 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset,
5276 &max_avail);
5277 if (ret && ret != -ENOSPC)
5278 return ret;
5279
5280 if (ret == 0)
5281 max_avail = dev_extent_want;
5282
5283 if (max_avail < ctl->dev_extent_min) {
5284 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5285 btrfs_debug(info,
5286 "%s: devid %llu has no free space, have=%llu want=%llu",
5287 __func__, device->devid, max_avail,
5288 ctl->dev_extent_min);
5289 continue;
5290 }
5291
5292 if (ndevs == fs_devices->rw_devices) {
5293 WARN(1, "%s: found more than %llu devices\n",
5294 __func__, fs_devices->rw_devices);
5295 break;
5296 }
5297 devices_info[ndevs].dev_offset = dev_offset;
5298 devices_info[ndevs].max_avail = max_avail;
5299 devices_info[ndevs].total_avail = total_avail;
5300 devices_info[ndevs].dev = device;
5301 ++ndevs;
5302 }
5303 ctl->ndevs = ndevs;
5304
5305 /*
5306 * now sort the devices by hole size / available space
5307 */
5308 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5309 btrfs_cmp_device_info, NULL);
5310
5311 return 0;
5312 }
5313
decide_stripe_size_regular(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5314 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl,
5315 struct btrfs_device_info *devices_info)
5316 {
5317 /* Number of stripes that count for block group size */
5318 int data_stripes;
5319
5320 /*
5321 * The primary goal is to maximize the number of stripes, so use as
5322 * many devices as possible, even if the stripes are not maximum sized.
5323 *
5324 * The DUP profile stores more than one stripe per device, the
5325 * max_avail is the total size so we have to adjust.
5326 */
5327 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail,
5328 ctl->dev_stripes);
5329 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5330
5331 /* This will have to be fixed for RAID1 and RAID10 over more drives */
5332 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5333
5334 /*
5335 * Use the number of data stripes to figure out how big this chunk is
5336 * really going to be in terms of logical address space, and compare
5337 * that answer with the max chunk size. If it's higher, we try to
5338 * reduce stripe_size.
5339 */
5340 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5341 /*
5342 * Reduce stripe_size, round it up to a 16MB boundary again and
5343 * then use it, unless it ends up being even bigger than the
5344 * previous value we had already.
5345 */
5346 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size,
5347 data_stripes), SZ_16M),
5348 ctl->stripe_size);
5349 }
5350
5351 /* Stripe size should not go beyond 1G. */
5352 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G);
5353
5354 /* Align to BTRFS_STRIPE_LEN */
5355 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN);
5356 ctl->chunk_size = ctl->stripe_size * data_stripes;
5357
5358 return 0;
5359 }
5360
decide_stripe_size_zoned(struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5361 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl,
5362 struct btrfs_device_info *devices_info)
5363 {
5364 u64 zone_size = devices_info[0].dev->zone_info->zone_size;
5365 /* Number of stripes that count for block group size */
5366 int data_stripes;
5367
5368 /*
5369 * It should hold because:
5370 * dev_extent_min == dev_extent_want == zone_size * dev_stripes
5371 */
5372 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min,
5373 "ndevs=%d max_avail=%llu dev_extent_min=%llu", ctl->ndevs,
5374 devices_info[ctl->ndevs - 1].max_avail, ctl->dev_extent_min);
5375
5376 ctl->stripe_size = zone_size;
5377 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5378 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5379
5380 /* stripe_size is fixed in zoned filesystem. Reduce ndevs instead. */
5381 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) {
5382 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies,
5383 ctl->stripe_size) + ctl->nparity,
5384 ctl->dev_stripes);
5385 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes;
5386 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies;
5387 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size,
5388 "stripe_size=%llu data_stripes=%d max_chunk_size=%llu",
5389 ctl->stripe_size, data_stripes, ctl->max_chunk_size);
5390 }
5391
5392 ctl->chunk_size = ctl->stripe_size * data_stripes;
5393
5394 return 0;
5395 }
5396
decide_stripe_size(struct btrfs_fs_devices * fs_devices,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5397 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices,
5398 struct alloc_chunk_ctl *ctl,
5399 struct btrfs_device_info *devices_info)
5400 {
5401 struct btrfs_fs_info *info = fs_devices->fs_info;
5402
5403 /*
5404 * Round down to number of usable stripes, devs_increment can be any
5405 * number so we can't use round_down() that requires power of 2, while
5406 * rounddown is safe.
5407 */
5408 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment);
5409
5410 if (ctl->ndevs < ctl->devs_min) {
5411 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5412 btrfs_debug(info,
5413 "%s: not enough devices with free space: have=%d minimum required=%d",
5414 __func__, ctl->ndevs, ctl->devs_min);
5415 }
5416 return -ENOSPC;
5417 }
5418
5419 ctl->ndevs = min(ctl->ndevs, ctl->devs_max);
5420
5421 switch (fs_devices->chunk_alloc_policy) {
5422 default:
5423 btrfs_warn_unknown_chunk_allocation(fs_devices->chunk_alloc_policy);
5424 fallthrough;
5425 case BTRFS_CHUNK_ALLOC_REGULAR:
5426 return decide_stripe_size_regular(ctl, devices_info);
5427 case BTRFS_CHUNK_ALLOC_ZONED:
5428 return decide_stripe_size_zoned(ctl, devices_info);
5429 }
5430 }
5431
chunk_map_device_set_bits(struct btrfs_chunk_map * map,unsigned int bits)5432 static void chunk_map_device_set_bits(struct btrfs_chunk_map *map, unsigned int bits)
5433 {
5434 for (int i = 0; i < map->num_stripes; i++) {
5435 struct btrfs_io_stripe *stripe = &map->stripes[i];
5436 struct btrfs_device *device = stripe->dev;
5437
5438 btrfs_set_extent_bit(&device->alloc_state, stripe->physical,
5439 stripe->physical + map->stripe_size - 1,
5440 bits | EXTENT_NOWAIT, NULL);
5441 }
5442 }
5443
chunk_map_device_clear_bits(struct btrfs_chunk_map * map,unsigned int bits)5444 static void chunk_map_device_clear_bits(struct btrfs_chunk_map *map, unsigned int bits)
5445 {
5446 for (int i = 0; i < map->num_stripes; i++) {
5447 struct btrfs_io_stripe *stripe = &map->stripes[i];
5448 struct btrfs_device *device = stripe->dev;
5449
5450 btrfs_clear_extent_bit(&device->alloc_state, stripe->physical,
5451 stripe->physical + map->stripe_size - 1,
5452 bits | EXTENT_NOWAIT, NULL);
5453 }
5454 }
5455
btrfs_remove_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5456 void btrfs_remove_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5457 {
5458 write_lock(&fs_info->mapping_tree_lock);
5459 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5460 RB_CLEAR_NODE(&map->rb_node);
5461 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5462 write_unlock(&fs_info->mapping_tree_lock);
5463
5464 /* Once for the tree reference. */
5465 btrfs_free_chunk_map(map);
5466 }
5467
btrfs_chunk_map_cmp(const struct rb_node * new,const struct rb_node * exist)5468 static int btrfs_chunk_map_cmp(const struct rb_node *new,
5469 const struct rb_node *exist)
5470 {
5471 const struct btrfs_chunk_map *new_map =
5472 rb_entry(new, struct btrfs_chunk_map, rb_node);
5473 const struct btrfs_chunk_map *exist_map =
5474 rb_entry(exist, struct btrfs_chunk_map, rb_node);
5475
5476 if (new_map->start == exist_map->start)
5477 return 0;
5478 if (new_map->start < exist_map->start)
5479 return -1;
5480 return 1;
5481 }
5482
5483 EXPORT_FOR_TESTS
btrfs_add_chunk_map(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map)5484 int btrfs_add_chunk_map(struct btrfs_fs_info *fs_info, struct btrfs_chunk_map *map)
5485 {
5486 struct rb_node *exist;
5487
5488 write_lock(&fs_info->mapping_tree_lock);
5489 exist = rb_find_add_cached(&map->rb_node, &fs_info->mapping_tree,
5490 btrfs_chunk_map_cmp);
5491
5492 if (exist) {
5493 write_unlock(&fs_info->mapping_tree_lock);
5494 return -EEXIST;
5495 }
5496 chunk_map_device_set_bits(map, CHUNK_ALLOCATED);
5497 chunk_map_device_clear_bits(map, CHUNK_TRIMMED);
5498 write_unlock(&fs_info->mapping_tree_lock);
5499
5500 return 0;
5501 }
5502
5503 EXPORT_FOR_TESTS
btrfs_alloc_chunk_map(int num_stripes,gfp_t gfp)5504 struct btrfs_chunk_map *btrfs_alloc_chunk_map(int num_stripes, gfp_t gfp)
5505 {
5506 struct btrfs_chunk_map *map;
5507
5508 map = kmalloc(btrfs_chunk_map_size(num_stripes), gfp);
5509 if (!map)
5510 return NULL;
5511
5512 refcount_set(&map->refs, 1);
5513 RB_CLEAR_NODE(&map->rb_node);
5514
5515 return map;
5516 }
5517
create_chunk(struct btrfs_trans_handle * trans,struct alloc_chunk_ctl * ctl,struct btrfs_device_info * devices_info)5518 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans,
5519 struct alloc_chunk_ctl *ctl,
5520 struct btrfs_device_info *devices_info)
5521 {
5522 struct btrfs_fs_info *info = trans->fs_info;
5523 struct btrfs_chunk_map *map;
5524 struct btrfs_block_group *block_group;
5525 u64 start = ctl->start;
5526 u64 type = ctl->type;
5527 int ret;
5528
5529 map = btrfs_alloc_chunk_map(ctl->num_stripes, GFP_NOFS);
5530 if (!map)
5531 return ERR_PTR(-ENOMEM);
5532
5533 map->start = start;
5534 map->chunk_len = ctl->chunk_size;
5535 map->stripe_size = ctl->stripe_size;
5536 map->type = type;
5537 map->io_align = BTRFS_STRIPE_LEN;
5538 map->io_width = BTRFS_STRIPE_LEN;
5539 map->sub_stripes = ctl->sub_stripes;
5540 map->num_stripes = ctl->num_stripes;
5541
5542 for (int i = 0; i < ctl->ndevs; i++) {
5543 for (int j = 0; j < ctl->dev_stripes; j++) {
5544 int s = i * ctl->dev_stripes + j;
5545 map->stripes[s].dev = devices_info[i].dev;
5546 map->stripes[s].physical = devices_info[i].dev_offset +
5547 j * ctl->stripe_size;
5548 }
5549 }
5550
5551 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size);
5552
5553 ret = btrfs_add_chunk_map(info, map);
5554 if (ret) {
5555 btrfs_free_chunk_map(map);
5556 return ERR_PTR(ret);
5557 }
5558
5559 block_group = btrfs_make_block_group(trans, ctl->space_info, type, start,
5560 ctl->chunk_size);
5561 if (IS_ERR(block_group)) {
5562 btrfs_remove_chunk_map(info, map);
5563 return block_group;
5564 }
5565
5566 for (int i = 0; i < map->num_stripes; i++) {
5567 struct btrfs_device *dev = map->stripes[i].dev;
5568
5569 btrfs_device_set_bytes_used(dev,
5570 dev->bytes_used + ctl->stripe_size);
5571 if (list_empty(&dev->post_commit_list))
5572 list_add_tail(&dev->post_commit_list,
5573 &trans->transaction->dev_update_list);
5574 }
5575
5576 atomic64_sub(ctl->stripe_size * map->num_stripes,
5577 &info->free_chunk_space);
5578
5579 check_raid56_incompat_flag(info, type);
5580 check_raid1c34_incompat_flag(info, type);
5581
5582 return block_group;
5583 }
5584
btrfs_create_chunk(struct btrfs_trans_handle * trans,struct btrfs_space_info * space_info,u64 type)5585 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans,
5586 struct btrfs_space_info *space_info,
5587 u64 type)
5588 {
5589 struct btrfs_fs_info *info = trans->fs_info;
5590 struct btrfs_fs_devices *fs_devices = info->fs_devices;
5591 struct btrfs_device_info *devices_info = NULL;
5592 struct alloc_chunk_ctl ctl;
5593 struct btrfs_block_group *block_group;
5594 int ret;
5595
5596 lockdep_assert_held(&info->chunk_mutex);
5597
5598 if (!alloc_profile_is_valid(type, 0)) {
5599 DEBUG_WARN("invalid alloc profile for type %llu", type);
5600 return ERR_PTR(-EINVAL);
5601 }
5602
5603 if (list_empty(&fs_devices->alloc_list)) {
5604 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5605 btrfs_debug(info, "%s: no writable device", __func__);
5606 return ERR_PTR(-ENOSPC);
5607 }
5608
5609 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
5610 btrfs_err(info, "invalid chunk type 0x%llx requested", type);
5611 DEBUG_WARN();
5612 return ERR_PTR(-EINVAL);
5613 }
5614
5615 ctl.start = find_next_chunk(info);
5616 ctl.type = type;
5617 ctl.space_info = space_info;
5618 init_alloc_chunk_ctl(fs_devices, &ctl);
5619
5620 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
5621 GFP_NOFS);
5622 if (!devices_info)
5623 return ERR_PTR(-ENOMEM);
5624
5625 ret = gather_device_info(fs_devices, &ctl, devices_info);
5626 if (ret < 0) {
5627 block_group = ERR_PTR(ret);
5628 goto out;
5629 }
5630
5631 ret = decide_stripe_size(fs_devices, &ctl, devices_info);
5632 if (ret < 0) {
5633 block_group = ERR_PTR(ret);
5634 goto out;
5635 }
5636
5637 block_group = create_chunk(trans, &ctl, devices_info);
5638
5639 out:
5640 kfree(devices_info);
5641 return block_group;
5642 }
5643
5644 /*
5645 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the
5646 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system
5647 * chunks.
5648 *
5649 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
5650 * phases.
5651 */
btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)5652 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans,
5653 struct btrfs_block_group *bg)
5654 {
5655 struct btrfs_fs_info *fs_info = trans->fs_info;
5656 struct btrfs_root *chunk_root = fs_info->chunk_root;
5657 struct btrfs_key key;
5658 struct btrfs_chunk *chunk;
5659 struct btrfs_stripe *stripe;
5660 struct btrfs_chunk_map *map;
5661 size_t item_size;
5662 int i;
5663 int ret;
5664
5665 /*
5666 * We take the chunk_mutex for 2 reasons:
5667 *
5668 * 1) Updates and insertions in the chunk btree must be done while holding
5669 * the chunk_mutex, as well as updating the system chunk array in the
5670 * superblock. See the comment on top of btrfs_chunk_alloc() for the
5671 * details;
5672 *
5673 * 2) To prevent races with the final phase of a device replace operation
5674 * that replaces the device object associated with the map's stripes,
5675 * because the device object's id can change at any time during that
5676 * final phase of the device replace operation
5677 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
5678 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
5679 * which would cause a failure when updating the device item, which does
5680 * not exists, or persisting a stripe of the chunk item with such ID.
5681 * Here we can't use the device_list_mutex because our caller already
5682 * has locked the chunk_mutex, and the final phase of device replace
5683 * acquires both mutexes - first the device_list_mutex and then the
5684 * chunk_mutex. Using any of those two mutexes protects us from a
5685 * concurrent device replace.
5686 */
5687 lockdep_assert_held(&fs_info->chunk_mutex);
5688
5689 map = btrfs_get_chunk_map(fs_info, bg->start, bg->length);
5690 if (IS_ERR(map)) {
5691 ret = PTR_ERR(map);
5692 btrfs_abort_transaction(trans, ret);
5693 return ret;
5694 }
5695
5696 item_size = btrfs_chunk_item_size(map->num_stripes);
5697
5698 chunk = kzalloc(item_size, GFP_NOFS);
5699 if (!chunk) {
5700 ret = -ENOMEM;
5701 btrfs_abort_transaction(trans, ret);
5702 goto out;
5703 }
5704
5705 for (i = 0; i < map->num_stripes; i++) {
5706 struct btrfs_device *device = map->stripes[i].dev;
5707
5708 ret = btrfs_update_device(trans, device);
5709 if (ret)
5710 goto out;
5711 }
5712
5713 stripe = &chunk->stripe;
5714 for (i = 0; i < map->num_stripes; i++) {
5715 struct btrfs_device *device = map->stripes[i].dev;
5716 const u64 dev_offset = map->stripes[i].physical;
5717
5718 btrfs_set_stack_stripe_devid(stripe, device->devid);
5719 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5720 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5721 stripe++;
5722 }
5723
5724 btrfs_set_stack_chunk_length(chunk, bg->length);
5725 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID);
5726 btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN);
5727 btrfs_set_stack_chunk_type(chunk, map->type);
5728 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5729 btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN);
5730 btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN);
5731 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5732 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5733
5734 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5735 key.type = BTRFS_CHUNK_ITEM_KEY;
5736 key.offset = bg->start;
5737
5738 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5739 if (ret)
5740 goto out;
5741
5742 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags);
5743
5744 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5745 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5746 if (ret)
5747 goto out;
5748 }
5749
5750 out:
5751 kfree(chunk);
5752 btrfs_free_chunk_map(map);
5753 return ret;
5754 }
5755
init_first_rw_device(struct btrfs_trans_handle * trans)5756 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5757 {
5758 struct btrfs_fs_info *fs_info = trans->fs_info;
5759 u64 alloc_profile;
5760 struct btrfs_block_group *meta_bg;
5761 struct btrfs_space_info *meta_space_info;
5762 struct btrfs_block_group *sys_bg;
5763 struct btrfs_space_info *sys_space_info;
5764
5765 /*
5766 * When adding a new device for sprouting, the seed device is read-only
5767 * so we must first allocate a metadata and a system chunk. But before
5768 * adding the block group items to the extent, device and chunk btrees,
5769 * we must first:
5770 *
5771 * 1) Create both chunks without doing any changes to the btrees, as
5772 * otherwise we would get -ENOSPC since the block groups from the
5773 * seed device are read-only;
5774 *
5775 * 2) Add the device item for the new sprout device - finishing the setup
5776 * of a new block group requires updating the device item in the chunk
5777 * btree, so it must exist when we attempt to do it. The previous step
5778 * ensures this does not fail with -ENOSPC.
5779 *
5780 * After that we can add the block group items to their btrees:
5781 * update existing device item in the chunk btree, add a new block group
5782 * item to the extent btree, add a new chunk item to the chunk btree and
5783 * finally add the new device extent items to the devices btree.
5784 */
5785
5786 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5787 meta_space_info = btrfs_find_space_info(fs_info, alloc_profile);
5788 if (!meta_space_info) {
5789 DEBUG_WARN();
5790 return -EINVAL;
5791 }
5792 meta_bg = btrfs_create_chunk(trans, meta_space_info, alloc_profile);
5793 if (IS_ERR(meta_bg))
5794 return PTR_ERR(meta_bg);
5795
5796 alloc_profile = btrfs_system_alloc_profile(fs_info);
5797 sys_space_info = btrfs_find_space_info(fs_info, alloc_profile);
5798 if (!sys_space_info) {
5799 DEBUG_WARN();
5800 return -EINVAL;
5801 }
5802 sys_bg = btrfs_create_chunk(trans, sys_space_info, alloc_profile);
5803 if (IS_ERR(sys_bg))
5804 return PTR_ERR(sys_bg);
5805
5806 return 0;
5807 }
5808
btrfs_chunk_max_errors(struct btrfs_chunk_map * map)5809 static inline int btrfs_chunk_max_errors(struct btrfs_chunk_map *map)
5810 {
5811 const int index = btrfs_bg_flags_to_raid_index(map->type);
5812
5813 return btrfs_raid_array[index].tolerated_failures;
5814 }
5815
btrfs_chunk_writeable(struct btrfs_fs_info * fs_info,u64 chunk_offset)5816 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5817 {
5818 struct btrfs_chunk_map *map;
5819 int miss_ndevs = 0;
5820 int i;
5821 bool ret = true;
5822
5823 map = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5824 if (IS_ERR(map))
5825 return false;
5826
5827 for (i = 0; i < map->num_stripes; i++) {
5828 if (test_bit(BTRFS_DEV_STATE_MISSING,
5829 &map->stripes[i].dev->dev_state)) {
5830 miss_ndevs++;
5831 continue;
5832 }
5833 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5834 &map->stripes[i].dev->dev_state)) {
5835 ret = false;
5836 goto end;
5837 }
5838 }
5839
5840 /*
5841 * If the number of missing devices is larger than max errors, we can
5842 * not write the data into that chunk successfully.
5843 */
5844 if (miss_ndevs > btrfs_chunk_max_errors(map))
5845 ret = false;
5846 end:
5847 btrfs_free_chunk_map(map);
5848 return ret;
5849 }
5850
btrfs_mapping_tree_free(struct btrfs_fs_info * fs_info)5851 void btrfs_mapping_tree_free(struct btrfs_fs_info *fs_info)
5852 {
5853 write_lock(&fs_info->mapping_tree_lock);
5854 while (!RB_EMPTY_ROOT(&fs_info->mapping_tree.rb_root)) {
5855 struct btrfs_chunk_map *map;
5856 struct rb_node *node;
5857
5858 node = rb_first_cached(&fs_info->mapping_tree);
5859 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
5860 rb_erase_cached(&map->rb_node, &fs_info->mapping_tree);
5861 RB_CLEAR_NODE(&map->rb_node);
5862 chunk_map_device_clear_bits(map, CHUNK_ALLOCATED);
5863 /* Once for the tree ref. */
5864 btrfs_free_chunk_map(map);
5865 cond_resched_rwlock_write(&fs_info->mapping_tree_lock);
5866 }
5867 write_unlock(&fs_info->mapping_tree_lock);
5868 }
5869
btrfs_chunk_map_num_copies(const struct btrfs_chunk_map * map)5870 static int btrfs_chunk_map_num_copies(const struct btrfs_chunk_map *map)
5871 {
5872 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(map->type);
5873
5874 if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5875 return 2;
5876
5877 /*
5878 * There could be two corrupted data stripes, we need to loop retry in
5879 * order to rebuild the correct data.
5880 *
5881 * Fail a stripe at a time on every retry except the stripe under
5882 * reconstruction.
5883 */
5884 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5885 return map->num_stripes;
5886
5887 /* Non-RAID56, use their ncopies from btrfs_raid_array. */
5888 return btrfs_raid_array[index].ncopies;
5889 }
5890
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5891 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5892 {
5893 struct btrfs_chunk_map *map;
5894 int ret;
5895
5896 map = btrfs_get_chunk_map(fs_info, logical, len);
5897 if (IS_ERR(map))
5898 /*
5899 * We could return errors for these cases, but that could get
5900 * ugly and we'd probably do the same thing which is just not do
5901 * anything else and exit, so return 1 so the callers don't try
5902 * to use other copies.
5903 */
5904 return 1;
5905
5906 ret = btrfs_chunk_map_num_copies(map);
5907 btrfs_free_chunk_map(map);
5908 return ret;
5909 }
5910
btrfs_full_stripe_len(struct btrfs_fs_info * fs_info,u64 logical)5911 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5912 u64 logical)
5913 {
5914 struct btrfs_chunk_map *map;
5915 unsigned long len = fs_info->sectorsize;
5916
5917 if (!btrfs_fs_incompat(fs_info, RAID56))
5918 return len;
5919
5920 map = btrfs_get_chunk_map(fs_info, logical, len);
5921
5922 if (!WARN_ON(IS_ERR(map))) {
5923 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5924 len = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
5925 btrfs_free_chunk_map(map);
5926 }
5927 return len;
5928 }
5929
5930 #ifdef CONFIG_BTRFS_EXPERIMENTAL
btrfs_read_preferred(struct btrfs_chunk_map * map,int first,int num_stripes)5931 static int btrfs_read_preferred(struct btrfs_chunk_map *map, int first, int num_stripes)
5932 {
5933 for (int index = first; index < first + num_stripes; index++) {
5934 const struct btrfs_device *device = map->stripes[index].dev;
5935
5936 if (device->devid == READ_ONCE(device->fs_devices->read_devid))
5937 return index;
5938 }
5939
5940 /* If no read-preferred device is set use the first stripe. */
5941 return first;
5942 }
5943
5944 struct stripe_mirror {
5945 u64 devid;
5946 int num;
5947 };
5948
btrfs_cmp_devid(const void * a,const void * b)5949 static int btrfs_cmp_devid(const void *a, const void *b)
5950 {
5951 const struct stripe_mirror *s1 = (const struct stripe_mirror *)a;
5952 const struct stripe_mirror *s2 = (const struct stripe_mirror *)b;
5953
5954 if (s1->devid < s2->devid)
5955 return -1;
5956 if (s1->devid > s2->devid)
5957 return 1;
5958 return 0;
5959 }
5960
5961 /*
5962 * Select a stripe for reading using the round-robin algorithm.
5963 *
5964 * 1. Compute the read cycle as the total sectors read divided by the minimum
5965 * sectors per device.
5966 * 2. Determine the stripe number for the current read by taking the modulus
5967 * of the read cycle with the total number of stripes:
5968 *
5969 * stripe index = (total sectors / min sectors per dev) % num stripes
5970 *
5971 * The calculated stripe index is then used to select the corresponding device
5972 * from the list of devices, which is ordered by devid.
5973 */
btrfs_read_rr(const struct btrfs_chunk_map * map,int first,int num_stripes)5974 static int btrfs_read_rr(const struct btrfs_chunk_map *map, int first, int num_stripes)
5975 {
5976 struct stripe_mirror stripes[BTRFS_RAID1_MAX_MIRRORS] = { 0 };
5977 struct btrfs_device *device = map->stripes[first].dev;
5978 struct btrfs_fs_info *fs_info = device->fs_devices->fs_info;
5979 unsigned int read_cycle;
5980 unsigned int total_reads;
5981 unsigned int min_reads_per_dev;
5982
5983 total_reads = percpu_counter_sum(&fs_info->stats_read_blocks);
5984 min_reads_per_dev = READ_ONCE(fs_info->fs_devices->rr_min_contig_read) >>
5985 fs_info->sectorsize_bits;
5986
5987 for (int index = 0, i = first; i < first + num_stripes; i++) {
5988 stripes[index].devid = map->stripes[i].dev->devid;
5989 stripes[index].num = i;
5990 index++;
5991 }
5992 sort(stripes, num_stripes, sizeof(struct stripe_mirror),
5993 btrfs_cmp_devid, NULL);
5994
5995 read_cycle = total_reads / min_reads_per_dev;
5996 return stripes[read_cycle % num_stripes].num;
5997 }
5998 #endif
5999
find_live_mirror(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,int first,bool dev_replace_is_ongoing)6000 static int find_live_mirror(struct btrfs_fs_info *fs_info,
6001 struct btrfs_chunk_map *map, int first,
6002 bool dev_replace_is_ongoing)
6003 {
6004 const enum btrfs_read_policy policy = READ_ONCE(fs_info->fs_devices->read_policy);
6005 int i;
6006 int num_stripes;
6007 int preferred_mirror;
6008 int tolerance;
6009 struct btrfs_device *srcdev;
6010
6011 ASSERT((map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)),
6012 "type=%llu", map->type);
6013
6014 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6015 num_stripes = map->sub_stripes;
6016 else
6017 num_stripes = map->num_stripes;
6018
6019 switch (policy) {
6020 default:
6021 /* Shouldn't happen, just warn and use pid instead of failing */
6022 btrfs_warn_rl(fs_info, "unknown read_policy type %u, reset to pid",
6023 policy);
6024 WRITE_ONCE(fs_info->fs_devices->read_policy, BTRFS_READ_POLICY_PID);
6025 fallthrough;
6026 case BTRFS_READ_POLICY_PID:
6027 preferred_mirror = first + (current->pid % num_stripes);
6028 break;
6029 #ifdef CONFIG_BTRFS_EXPERIMENTAL
6030 case BTRFS_READ_POLICY_RR:
6031 preferred_mirror = btrfs_read_rr(map, first, num_stripes);
6032 break;
6033 case BTRFS_READ_POLICY_DEVID:
6034 preferred_mirror = btrfs_read_preferred(map, first, num_stripes);
6035 break;
6036 #endif
6037 }
6038
6039 if (dev_replace_is_ongoing &&
6040 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
6041 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
6042 srcdev = fs_info->dev_replace.srcdev;
6043 else
6044 srcdev = NULL;
6045
6046 /*
6047 * try to avoid the drive that is the source drive for a
6048 * dev-replace procedure, only choose it if no other non-missing
6049 * mirror is available
6050 */
6051 for (tolerance = 0; tolerance < 2; tolerance++) {
6052 if (map->stripes[preferred_mirror].dev->bdev &&
6053 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
6054 return preferred_mirror;
6055 for (i = first; i < first + num_stripes; i++) {
6056 if (map->stripes[i].dev->bdev &&
6057 (tolerance || map->stripes[i].dev != srcdev))
6058 return i;
6059 }
6060 }
6061
6062 /* we couldn't find one that doesn't fail. Just return something
6063 * and the io error handling code will clean up eventually
6064 */
6065 return preferred_mirror;
6066 }
6067
6068 EXPORT_FOR_TESTS
alloc_btrfs_io_context(struct btrfs_fs_info * fs_info,u64 logical,u16 total_stripes)6069 struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info,
6070 u64 logical, u16 total_stripes)
6071 {
6072 struct btrfs_io_context *bioc;
6073
6074 bioc = kzalloc(
6075 /* The size of btrfs_io_context */
6076 sizeof(struct btrfs_io_context) +
6077 /* Plus the variable array for the stripes */
6078 sizeof(struct btrfs_io_stripe) * (total_stripes),
6079 GFP_NOFS);
6080
6081 if (!bioc)
6082 return NULL;
6083
6084 refcount_set(&bioc->refs, 1);
6085
6086 bioc->fs_info = fs_info;
6087 bioc->replace_stripe_src = -1;
6088 bioc->full_stripe_logical = (u64)-1;
6089 bioc->logical = logical;
6090
6091 return bioc;
6092 }
6093
btrfs_get_bioc(struct btrfs_io_context * bioc)6094 void btrfs_get_bioc(struct btrfs_io_context *bioc)
6095 {
6096 WARN_ON(!refcount_read(&bioc->refs));
6097 refcount_inc(&bioc->refs);
6098 }
6099
btrfs_put_bioc(struct btrfs_io_context * bioc)6100 void btrfs_put_bioc(struct btrfs_io_context *bioc)
6101 {
6102 if (!bioc)
6103 return;
6104 if (refcount_dec_and_test(&bioc->refs))
6105 kfree(bioc);
6106 }
6107
6108 /*
6109 * Please note that, discard won't be sent to target device of device
6110 * replace.
6111 */
btrfs_map_discard(struct btrfs_fs_info * fs_info,u64 logical,u64 * length_ret,u32 * num_stripes)6112 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info,
6113 u64 logical, u64 *length_ret,
6114 u32 *num_stripes)
6115 {
6116 struct btrfs_chunk_map *map;
6117 struct btrfs_discard_stripe *stripes;
6118 u64 length = *length_ret;
6119 u64 offset;
6120 u32 stripe_nr;
6121 u32 stripe_nr_end;
6122 u32 stripe_cnt;
6123 u64 stripe_end_offset;
6124 u64 stripe_offset;
6125 u32 stripe_index;
6126 u32 factor = 0;
6127 u32 sub_stripes = 0;
6128 u32 stripes_per_dev = 0;
6129 u32 remaining_stripes = 0;
6130 u32 last_stripe = 0;
6131 int ret;
6132 int i;
6133
6134 map = btrfs_get_chunk_map(fs_info, logical, length);
6135 if (IS_ERR(map))
6136 return ERR_CAST(map);
6137
6138 /* we don't discard raid56 yet */
6139 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6140 ret = -EOPNOTSUPP;
6141 goto out_free_map;
6142 }
6143
6144 offset = logical - map->start;
6145 length = min_t(u64, map->start + map->chunk_len - logical, length);
6146 *length_ret = length;
6147
6148 /*
6149 * stripe_nr counts the total number of stripes we have to stride
6150 * to get to this block
6151 */
6152 stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6153
6154 /* stripe_offset is the offset of this block in its stripe */
6155 stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr);
6156
6157 stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >>
6158 BTRFS_STRIPE_LEN_SHIFT;
6159 stripe_cnt = stripe_nr_end - stripe_nr;
6160 stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) -
6161 (offset + length);
6162 /*
6163 * after this, stripe_nr is the number of stripes on this
6164 * device we have to walk to find the data, and stripe_index is
6165 * the number of our device in the stripe array
6166 */
6167 *num_stripes = 1;
6168 stripe_index = 0;
6169 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6170 BTRFS_BLOCK_GROUP_RAID10)) {
6171 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6172 sub_stripes = 1;
6173 else
6174 sub_stripes = map->sub_stripes;
6175
6176 factor = map->num_stripes / sub_stripes;
6177 *num_stripes = min_t(u64, map->num_stripes,
6178 sub_stripes * stripe_cnt);
6179 stripe_index = stripe_nr % factor;
6180 stripe_nr /= factor;
6181 stripe_index *= sub_stripes;
6182
6183 remaining_stripes = stripe_cnt % factor;
6184 stripes_per_dev = stripe_cnt / factor;
6185 last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes;
6186 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
6187 BTRFS_BLOCK_GROUP_DUP)) {
6188 *num_stripes = map->num_stripes;
6189 } else {
6190 stripe_index = stripe_nr % map->num_stripes;
6191 stripe_nr /= map->num_stripes;
6192 }
6193
6194 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS);
6195 if (!stripes) {
6196 ret = -ENOMEM;
6197 goto out_free_map;
6198 }
6199
6200 for (i = 0; i < *num_stripes; i++) {
6201 stripes[i].physical =
6202 map->stripes[stripe_index].physical +
6203 stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr);
6204 stripes[i].dev = map->stripes[stripe_index].dev;
6205
6206 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
6207 BTRFS_BLOCK_GROUP_RAID10)) {
6208 stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev);
6209
6210 if (i / sub_stripes < remaining_stripes)
6211 stripes[i].length += BTRFS_STRIPE_LEN;
6212
6213 /*
6214 * Special for the first stripe and
6215 * the last stripe:
6216 *
6217 * |-------|...|-------|
6218 * |----------|
6219 * off end_off
6220 */
6221 if (i < sub_stripes)
6222 stripes[i].length -= stripe_offset;
6223
6224 if (stripe_index >= last_stripe &&
6225 stripe_index <= (last_stripe +
6226 sub_stripes - 1))
6227 stripes[i].length -= stripe_end_offset;
6228
6229 if (i == sub_stripes - 1)
6230 stripe_offset = 0;
6231 } else {
6232 stripes[i].length = length;
6233 }
6234
6235 stripe_index++;
6236 if (stripe_index == map->num_stripes) {
6237 stripe_index = 0;
6238 stripe_nr++;
6239 }
6240 }
6241
6242 btrfs_free_chunk_map(map);
6243 return stripes;
6244 out_free_map:
6245 btrfs_free_chunk_map(map);
6246 return ERR_PTR(ret);
6247 }
6248
is_block_group_to_copy(struct btrfs_fs_info * fs_info,u64 logical)6249 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical)
6250 {
6251 struct btrfs_block_group *cache;
6252 bool ret;
6253
6254 /* Non zoned filesystem does not use "to_copy" flag */
6255 if (!btrfs_is_zoned(fs_info))
6256 return false;
6257
6258 cache = btrfs_lookup_block_group(fs_info, logical);
6259
6260 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags);
6261
6262 btrfs_put_block_group(cache);
6263 return ret;
6264 }
6265
handle_ops_on_dev_replace(struct btrfs_io_context * bioc,struct btrfs_dev_replace * dev_replace,u64 logical,struct btrfs_io_geometry * io_geom)6266 static void handle_ops_on_dev_replace(struct btrfs_io_context *bioc,
6267 struct btrfs_dev_replace *dev_replace,
6268 u64 logical,
6269 struct btrfs_io_geometry *io_geom)
6270 {
6271 u64 srcdev_devid = dev_replace->srcdev->devid;
6272 /*
6273 * At this stage, num_stripes is still the real number of stripes,
6274 * excluding the duplicated stripes.
6275 */
6276 int num_stripes = io_geom->num_stripes;
6277 int max_errors = io_geom->max_errors;
6278 int nr_extra_stripes = 0;
6279 int i;
6280
6281 /*
6282 * A block group which has "to_copy" set will eventually be copied by
6283 * the dev-replace process. We can avoid cloning IO here.
6284 */
6285 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical))
6286 return;
6287
6288 /*
6289 * Duplicate the write operations while the dev-replace procedure is
6290 * running. Since the copying of the old disk to the new disk takes
6291 * place at run time while the filesystem is mounted writable, the
6292 * regular write operations to the old disk have to be duplicated to go
6293 * to the new disk as well.
6294 *
6295 * Note that device->missing is handled by the caller, and that the
6296 * write to the old disk is already set up in the stripes array.
6297 */
6298 for (i = 0; i < num_stripes; i++) {
6299 struct btrfs_io_stripe *old = &bioc->stripes[i];
6300 struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes];
6301
6302 if (old->dev->devid != srcdev_devid)
6303 continue;
6304
6305 new->physical = old->physical;
6306 new->dev = dev_replace->tgtdev;
6307 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK)
6308 bioc->replace_stripe_src = i;
6309 nr_extra_stripes++;
6310 }
6311
6312 /* We can only have at most 2 extra nr_stripes (for DUP). */
6313 ASSERT(nr_extra_stripes <= 2, "nr_extra_stripes=%d", nr_extra_stripes);
6314 /*
6315 * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for
6316 * replace.
6317 * If we have 2 extra stripes, only choose the one with smaller physical.
6318 */
6319 if (io_geom->op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) {
6320 struct btrfs_io_stripe *first = &bioc->stripes[num_stripes];
6321 struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1];
6322
6323 /* Only DUP can have two extra stripes. */
6324 ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP,
6325 "map_type=%llu", bioc->map_type);
6326
6327 /*
6328 * Swap the last stripe stripes and reduce @nr_extra_stripes.
6329 * The extra stripe would still be there, but won't be accessed.
6330 */
6331 if (first->physical > second->physical) {
6332 swap(second->physical, first->physical);
6333 swap(second->dev, first->dev);
6334 nr_extra_stripes--;
6335 }
6336 }
6337
6338 io_geom->num_stripes = num_stripes + nr_extra_stripes;
6339 io_geom->max_errors = max_errors + nr_extra_stripes;
6340 bioc->replace_nr_stripes = nr_extra_stripes;
6341 }
6342
btrfs_max_io_len(struct btrfs_chunk_map * map,u64 offset,struct btrfs_io_geometry * io_geom)6343 static u64 btrfs_max_io_len(struct btrfs_chunk_map *map, u64 offset,
6344 struct btrfs_io_geometry *io_geom)
6345 {
6346 /*
6347 * Stripe_nr is the stripe where this block falls. stripe_offset is
6348 * the offset of this block in its stripe.
6349 */
6350 io_geom->stripe_offset = offset & BTRFS_STRIPE_LEN_MASK;
6351 io_geom->stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT;
6352 ASSERT(io_geom->stripe_offset < U32_MAX,
6353 "stripe_offset=%llu", io_geom->stripe_offset);
6354
6355 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6356 unsigned long full_stripe_len =
6357 btrfs_stripe_nr_to_offset(nr_data_stripes(map));
6358
6359 /*
6360 * For full stripe start, we use previously calculated
6361 * @stripe_nr. Align it to nr_data_stripes, then multiply with
6362 * STRIPE_LEN.
6363 *
6364 * By this we can avoid u64 division completely. And we have
6365 * to go rounddown(), not round_down(), as nr_data_stripes is
6366 * not ensured to be power of 2.
6367 */
6368 io_geom->raid56_full_stripe_start = btrfs_stripe_nr_to_offset(
6369 rounddown(io_geom->stripe_nr, nr_data_stripes(map)));
6370
6371 ASSERT(io_geom->raid56_full_stripe_start + full_stripe_len > offset,
6372 "raid56_full_stripe_start=%llu full_stripe_len=%lu offset=%llu",
6373 io_geom->raid56_full_stripe_start, full_stripe_len, offset);
6374 ASSERT(io_geom->raid56_full_stripe_start <= offset,
6375 "raid56_full_stripe_start=%llu offset=%llu",
6376 io_geom->raid56_full_stripe_start, offset);
6377 /*
6378 * For writes to RAID56, allow to write a full stripe set, but
6379 * no straddling of stripe sets.
6380 */
6381 if (io_geom->op == BTRFS_MAP_WRITE)
6382 return full_stripe_len - (offset - io_geom->raid56_full_stripe_start);
6383 }
6384
6385 /*
6386 * For other RAID types and for RAID56 reads, allow a single stripe (on
6387 * a single disk).
6388 */
6389 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK)
6390 return BTRFS_STRIPE_LEN - io_geom->stripe_offset;
6391 return U64_MAX;
6392 }
6393
set_io_stripe(struct btrfs_fs_info * fs_info,u64 logical,u64 * length,struct btrfs_io_stripe * dst,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6394 static int set_io_stripe(struct btrfs_fs_info *fs_info, u64 logical,
6395 u64 *length, struct btrfs_io_stripe *dst,
6396 struct btrfs_chunk_map *map,
6397 struct btrfs_io_geometry *io_geom)
6398 {
6399 dst->dev = map->stripes[io_geom->stripe_index].dev;
6400
6401 if (io_geom->op == BTRFS_MAP_READ && io_geom->use_rst)
6402 return btrfs_get_raid_extent_offset(fs_info, logical, length,
6403 map->type,
6404 io_geom->stripe_index, dst);
6405
6406 dst->physical = map->stripes[io_geom->stripe_index].physical +
6407 io_geom->stripe_offset +
6408 btrfs_stripe_nr_to_offset(io_geom->stripe_nr);
6409 return 0;
6410 }
6411
is_single_device_io(struct btrfs_fs_info * fs_info,const struct btrfs_io_stripe * smap,const struct btrfs_chunk_map * map,int num_alloc_stripes,struct btrfs_io_geometry * io_geom)6412 static bool is_single_device_io(struct btrfs_fs_info *fs_info,
6413 const struct btrfs_io_stripe *smap,
6414 const struct btrfs_chunk_map *map,
6415 int num_alloc_stripes,
6416 struct btrfs_io_geometry *io_geom)
6417 {
6418 if (!smap)
6419 return false;
6420
6421 if (num_alloc_stripes != 1)
6422 return false;
6423
6424 if (io_geom->use_rst && io_geom->op != BTRFS_MAP_READ)
6425 return false;
6426
6427 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && io_geom->mirror_num > 1)
6428 return false;
6429
6430 return true;
6431 }
6432
map_blocks_raid0(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6433 static void map_blocks_raid0(const struct btrfs_chunk_map *map,
6434 struct btrfs_io_geometry *io_geom)
6435 {
6436 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6437 io_geom->stripe_nr /= map->num_stripes;
6438 if (io_geom->op == BTRFS_MAP_READ)
6439 io_geom->mirror_num = 1;
6440 }
6441
map_blocks_raid1(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6442 static void map_blocks_raid1(struct btrfs_fs_info *fs_info,
6443 struct btrfs_chunk_map *map,
6444 struct btrfs_io_geometry *io_geom,
6445 bool dev_replace_is_ongoing)
6446 {
6447 if (io_geom->op != BTRFS_MAP_READ) {
6448 io_geom->num_stripes = map->num_stripes;
6449 return;
6450 }
6451
6452 if (io_geom->mirror_num) {
6453 io_geom->stripe_index = io_geom->mirror_num - 1;
6454 return;
6455 }
6456
6457 io_geom->stripe_index = find_live_mirror(fs_info, map, 0,
6458 dev_replace_is_ongoing);
6459 io_geom->mirror_num = io_geom->stripe_index + 1;
6460 }
6461
map_blocks_dup(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6462 static void map_blocks_dup(const struct btrfs_chunk_map *map,
6463 struct btrfs_io_geometry *io_geom)
6464 {
6465 if (io_geom->op != BTRFS_MAP_READ) {
6466 io_geom->num_stripes = map->num_stripes;
6467 return;
6468 }
6469
6470 if (io_geom->mirror_num) {
6471 io_geom->stripe_index = io_geom->mirror_num - 1;
6472 return;
6473 }
6474
6475 io_geom->mirror_num = 1;
6476 }
6477
map_blocks_raid10(struct btrfs_fs_info * fs_info,struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,bool dev_replace_is_ongoing)6478 static void map_blocks_raid10(struct btrfs_fs_info *fs_info,
6479 struct btrfs_chunk_map *map,
6480 struct btrfs_io_geometry *io_geom,
6481 bool dev_replace_is_ongoing)
6482 {
6483 u32 factor = map->num_stripes / map->sub_stripes;
6484 int old_stripe_index;
6485
6486 io_geom->stripe_index = (io_geom->stripe_nr % factor) * map->sub_stripes;
6487 io_geom->stripe_nr /= factor;
6488
6489 if (io_geom->op != BTRFS_MAP_READ) {
6490 io_geom->num_stripes = map->sub_stripes;
6491 return;
6492 }
6493
6494 if (io_geom->mirror_num) {
6495 io_geom->stripe_index += io_geom->mirror_num - 1;
6496 return;
6497 }
6498
6499 old_stripe_index = io_geom->stripe_index;
6500 io_geom->stripe_index = find_live_mirror(fs_info, map,
6501 io_geom->stripe_index,
6502 dev_replace_is_ongoing);
6503 io_geom->mirror_num = io_geom->stripe_index - old_stripe_index + 1;
6504 }
6505
map_blocks_raid56_write(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom,u64 logical,u64 * length)6506 static void map_blocks_raid56_write(struct btrfs_chunk_map *map,
6507 struct btrfs_io_geometry *io_geom,
6508 u64 logical, u64 *length)
6509 {
6510 int data_stripes = nr_data_stripes(map);
6511
6512 /*
6513 * Needs full stripe mapping.
6514 *
6515 * Push stripe_nr back to the start of the full stripe For those cases
6516 * needing a full stripe, @stripe_nr is the full stripe number.
6517 *
6518 * Originally we go raid56_full_stripe_start / full_stripe_len, but
6519 * that can be expensive. Here we just divide @stripe_nr with
6520 * @data_stripes.
6521 */
6522 io_geom->stripe_nr /= data_stripes;
6523
6524 /* RAID[56] write or recovery. Return all stripes */
6525 io_geom->num_stripes = map->num_stripes;
6526 io_geom->max_errors = btrfs_chunk_max_errors(map);
6527
6528 /* Return the length to the full stripe end. */
6529 *length = min(logical + *length,
6530 io_geom->raid56_full_stripe_start + map->start +
6531 btrfs_stripe_nr_to_offset(data_stripes)) -
6532 logical;
6533 io_geom->stripe_index = 0;
6534 io_geom->stripe_offset = 0;
6535 }
6536
map_blocks_raid56_read(struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6537 static void map_blocks_raid56_read(struct btrfs_chunk_map *map,
6538 struct btrfs_io_geometry *io_geom)
6539 {
6540 int data_stripes = nr_data_stripes(map);
6541
6542 ASSERT(io_geom->mirror_num <= 1, "mirror_num=%d", io_geom->mirror_num);
6543 /* Just grab the data stripe directly. */
6544 io_geom->stripe_index = io_geom->stripe_nr % data_stripes;
6545 io_geom->stripe_nr /= data_stripes;
6546
6547 /* We distribute the parity blocks across stripes. */
6548 io_geom->stripe_index =
6549 (io_geom->stripe_nr + io_geom->stripe_index) % map->num_stripes;
6550
6551 if (io_geom->op == BTRFS_MAP_READ && io_geom->mirror_num < 1)
6552 io_geom->mirror_num = 1;
6553 }
6554
map_blocks_single(const struct btrfs_chunk_map * map,struct btrfs_io_geometry * io_geom)6555 static void map_blocks_single(const struct btrfs_chunk_map *map,
6556 struct btrfs_io_geometry *io_geom)
6557 {
6558 io_geom->stripe_index = io_geom->stripe_nr % map->num_stripes;
6559 io_geom->stripe_nr /= map->num_stripes;
6560 io_geom->mirror_num = io_geom->stripe_index + 1;
6561 }
6562
6563 /*
6564 * Map one logical range to one or more physical ranges.
6565 *
6566 * @length: (Mandatory) mapped length of this run.
6567 * One logical range can be split into different segments
6568 * due to factors like zones and RAID0/5/6/10 stripe
6569 * boundaries.
6570 *
6571 * @bioc_ret: (Mandatory) returned btrfs_io_context structure.
6572 * which has one or more physical ranges (btrfs_io_stripe)
6573 * recorded inside.
6574 * Caller should call btrfs_put_bioc() to free it after use.
6575 *
6576 * @smap: (Optional) single physical range optimization.
6577 * If the map request can be fulfilled by one single
6578 * physical range, and this is parameter is not NULL,
6579 * then @bioc_ret would be NULL, and @smap would be
6580 * updated.
6581 *
6582 * @mirror_num_ret: (Mandatory) returned mirror number if the original
6583 * value is 0.
6584 *
6585 * Mirror number 0 means to choose any live mirrors.
6586 *
6587 * For non-RAID56 profiles, non-zero mirror_num means
6588 * the Nth mirror. (e.g. mirror_num 1 means the first
6589 * copy).
6590 *
6591 * For RAID56 profile, mirror 1 means rebuild from P and
6592 * the remaining data stripes.
6593 *
6594 * For RAID6 profile, mirror > 2 means mark another
6595 * data/P stripe error and rebuild from the remaining
6596 * stripes..
6597 */
btrfs_map_block(struct btrfs_fs_info * fs_info,enum btrfs_map_op op,u64 logical,u64 * length,struct btrfs_io_context ** bioc_ret,struct btrfs_io_stripe * smap,int * mirror_num_ret)6598 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6599 u64 logical, u64 *length,
6600 struct btrfs_io_context **bioc_ret,
6601 struct btrfs_io_stripe *smap, int *mirror_num_ret)
6602 {
6603 struct btrfs_chunk_map *map;
6604 struct btrfs_io_geometry io_geom = { 0 };
6605 u64 map_offset;
6606 int ret = 0;
6607 int num_copies;
6608 struct btrfs_io_context *bioc = NULL;
6609 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6610 bool dev_replace_is_ongoing = false;
6611 u16 num_alloc_stripes;
6612 u64 max_len;
6613
6614 ASSERT(bioc_ret);
6615
6616 io_geom.mirror_num = (mirror_num_ret ? *mirror_num_ret : 0);
6617 io_geom.num_stripes = 1;
6618 io_geom.stripe_index = 0;
6619 io_geom.op = op;
6620
6621 map = btrfs_get_chunk_map(fs_info, logical, *length);
6622 if (IS_ERR(map))
6623 return PTR_ERR(map);
6624
6625 num_copies = btrfs_chunk_map_num_copies(map);
6626 if (io_geom.mirror_num > num_copies)
6627 return -EINVAL;
6628
6629 map_offset = logical - map->start;
6630 io_geom.raid56_full_stripe_start = (u64)-1;
6631 max_len = btrfs_max_io_len(map, map_offset, &io_geom);
6632 *length = min_t(u64, map->chunk_len - map_offset, max_len);
6633 io_geom.use_rst = btrfs_need_stripe_tree_update(fs_info, map->type);
6634
6635 if (dev_replace->replace_task != current)
6636 down_read(&dev_replace->rwsem);
6637
6638 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6639 /*
6640 * Hold the semaphore for read during the whole operation, write is
6641 * requested at commit time but must wait.
6642 */
6643 if (!dev_replace_is_ongoing && dev_replace->replace_task != current)
6644 up_read(&dev_replace->rwsem);
6645
6646 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6647 case BTRFS_BLOCK_GROUP_RAID0:
6648 map_blocks_raid0(map, &io_geom);
6649 break;
6650 case BTRFS_BLOCK_GROUP_RAID1:
6651 case BTRFS_BLOCK_GROUP_RAID1C3:
6652 case BTRFS_BLOCK_GROUP_RAID1C4:
6653 map_blocks_raid1(fs_info, map, &io_geom, dev_replace_is_ongoing);
6654 break;
6655 case BTRFS_BLOCK_GROUP_DUP:
6656 map_blocks_dup(map, &io_geom);
6657 break;
6658 case BTRFS_BLOCK_GROUP_RAID10:
6659 map_blocks_raid10(fs_info, map, &io_geom, dev_replace_is_ongoing);
6660 break;
6661 case BTRFS_BLOCK_GROUP_RAID5:
6662 case BTRFS_BLOCK_GROUP_RAID6:
6663 if (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)
6664 map_blocks_raid56_write(map, &io_geom, logical, length);
6665 else
6666 map_blocks_raid56_read(map, &io_geom);
6667 break;
6668 default:
6669 /*
6670 * After this, stripe_nr is the number of stripes on this
6671 * device we have to walk to find the data, and stripe_index is
6672 * the number of our device in the stripe array
6673 */
6674 map_blocks_single(map, &io_geom);
6675 break;
6676 }
6677 if (io_geom.stripe_index >= map->num_stripes) {
6678 btrfs_crit(fs_info,
6679 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6680 io_geom.stripe_index, map->num_stripes);
6681 ret = -EINVAL;
6682 goto out;
6683 }
6684
6685 num_alloc_stripes = io_geom.num_stripes;
6686 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6687 op != BTRFS_MAP_READ)
6688 /*
6689 * For replace case, we need to add extra stripes for extra
6690 * duplicated stripes.
6691 *
6692 * For both WRITE and GET_READ_MIRRORS, we may have at most
6693 * 2 more stripes (DUP types, otherwise 1).
6694 */
6695 num_alloc_stripes += 2;
6696
6697 /*
6698 * If this I/O maps to a single device, try to return the device and
6699 * physical block information on the stack instead of allocating an
6700 * I/O context structure.
6701 */
6702 if (is_single_device_io(fs_info, smap, map, num_alloc_stripes, &io_geom)) {
6703 ret = set_io_stripe(fs_info, logical, length, smap, map, &io_geom);
6704 if (mirror_num_ret)
6705 *mirror_num_ret = io_geom.mirror_num;
6706 *bioc_ret = NULL;
6707 goto out;
6708 }
6709
6710 bioc = alloc_btrfs_io_context(fs_info, logical, num_alloc_stripes);
6711 if (!bioc) {
6712 ret = -ENOMEM;
6713 goto out;
6714 }
6715 bioc->map_type = map->type;
6716 bioc->use_rst = io_geom.use_rst;
6717
6718 /*
6719 * For RAID56 full map, we need to make sure the stripes[] follows the
6720 * rule that data stripes are all ordered, then followed with P and Q
6721 * (if we have).
6722 *
6723 * It's still mostly the same as other profiles, just with extra rotation.
6724 */
6725 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
6726 (op != BTRFS_MAP_READ || io_geom.mirror_num > 1)) {
6727 /*
6728 * For RAID56 @stripe_nr is already the number of full stripes
6729 * before us, which is also the rotation value (needs to modulo
6730 * with num_stripes).
6731 *
6732 * In this case, we just add @stripe_nr with @i, then do the
6733 * modulo, to reduce one modulo call.
6734 */
6735 bioc->full_stripe_logical = map->start +
6736 btrfs_stripe_nr_to_offset(io_geom.stripe_nr *
6737 nr_data_stripes(map));
6738 for (int i = 0; i < io_geom.num_stripes; i++) {
6739 struct btrfs_io_stripe *dst = &bioc->stripes[i];
6740 u32 stripe_index;
6741
6742 stripe_index = (i + io_geom.stripe_nr) % io_geom.num_stripes;
6743 dst->dev = map->stripes[stripe_index].dev;
6744 dst->physical =
6745 map->stripes[stripe_index].physical +
6746 io_geom.stripe_offset +
6747 btrfs_stripe_nr_to_offset(io_geom.stripe_nr);
6748 }
6749 } else {
6750 /*
6751 * For all other non-RAID56 profiles, just copy the target
6752 * stripe into the bioc.
6753 */
6754 for (int i = 0; i < io_geom.num_stripes; i++) {
6755 ret = set_io_stripe(fs_info, logical, length,
6756 &bioc->stripes[i], map, &io_geom);
6757 if (ret < 0)
6758 break;
6759 io_geom.stripe_index++;
6760 }
6761 }
6762
6763 if (ret) {
6764 *bioc_ret = NULL;
6765 btrfs_put_bioc(bioc);
6766 goto out;
6767 }
6768
6769 if (op != BTRFS_MAP_READ)
6770 io_geom.max_errors = btrfs_chunk_max_errors(map);
6771
6772 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6773 op != BTRFS_MAP_READ) {
6774 handle_ops_on_dev_replace(bioc, dev_replace, logical, &io_geom);
6775 }
6776
6777 *bioc_ret = bioc;
6778 bioc->num_stripes = io_geom.num_stripes;
6779 bioc->max_errors = io_geom.max_errors;
6780 bioc->mirror_num = io_geom.mirror_num;
6781
6782 out:
6783 if (dev_replace_is_ongoing && dev_replace->replace_task != current) {
6784 lockdep_assert_held(&dev_replace->rwsem);
6785 /* Unlock and let waiting writers proceed */
6786 up_read(&dev_replace->rwsem);
6787 }
6788 btrfs_free_chunk_map(map);
6789 return ret;
6790 }
6791
dev_args_match_fs_devices(const struct btrfs_dev_lookup_args * args,const struct btrfs_fs_devices * fs_devices)6792 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args,
6793 const struct btrfs_fs_devices *fs_devices)
6794 {
6795 if (args->fsid == NULL)
6796 return true;
6797 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0)
6798 return true;
6799 return false;
6800 }
6801
dev_args_match_device(const struct btrfs_dev_lookup_args * args,const struct btrfs_device * device)6802 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args,
6803 const struct btrfs_device *device)
6804 {
6805 if (args->missing) {
6806 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) &&
6807 !device->bdev)
6808 return true;
6809 return false;
6810 }
6811
6812 if (device->devid != args->devid)
6813 return false;
6814 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0)
6815 return false;
6816 return true;
6817 }
6818
6819 /*
6820 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6821 * return NULL.
6822 *
6823 * If devid and uuid are both specified, the match must be exact, otherwise
6824 * only devid is used.
6825 */
btrfs_find_device(const struct btrfs_fs_devices * fs_devices,const struct btrfs_dev_lookup_args * args)6826 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices,
6827 const struct btrfs_dev_lookup_args *args)
6828 {
6829 struct btrfs_device *device;
6830 struct btrfs_fs_devices *seed_devs;
6831
6832 if (dev_args_match_fs_devices(args, fs_devices)) {
6833 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6834 if (dev_args_match_device(args, device))
6835 return device;
6836 }
6837 }
6838
6839 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
6840 if (!dev_args_match_fs_devices(args, seed_devs))
6841 continue;
6842 list_for_each_entry(device, &seed_devs->devices, dev_list) {
6843 if (dev_args_match_device(args, device))
6844 return device;
6845 }
6846 }
6847
6848 return NULL;
6849 }
6850
add_missing_dev(struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6851 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6852 u64 devid, u8 *dev_uuid)
6853 {
6854 struct btrfs_device *device;
6855 unsigned int nofs_flag;
6856
6857 /*
6858 * We call this under the chunk_mutex, so we want to use NOFS for this
6859 * allocation, however we don't want to change btrfs_alloc_device() to
6860 * always do NOFS because we use it in a lot of other GFP_KERNEL safe
6861 * places.
6862 */
6863
6864 nofs_flag = memalloc_nofs_save();
6865 device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL);
6866 memalloc_nofs_restore(nofs_flag);
6867 if (IS_ERR(device))
6868 return device;
6869
6870 list_add(&device->dev_list, &fs_devices->devices);
6871 device->fs_devices = fs_devices;
6872 fs_devices->num_devices++;
6873
6874 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6875 fs_devices->missing_devices++;
6876
6877 return device;
6878 }
6879
6880 /*
6881 * Allocate new device struct, set up devid and UUID.
6882 *
6883 * @fs_info: used only for generating a new devid, can be NULL if
6884 * devid is provided (i.e. @devid != NULL).
6885 * @devid: a pointer to devid for this device. If NULL a new devid
6886 * is generated.
6887 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6888 * is generated.
6889 * @path: a pointer to device path if available, NULL otherwise.
6890 *
6891 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6892 * on error. Returned struct is not linked onto any lists and must be
6893 * destroyed with btrfs_free_device.
6894 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid,const char * path)6895 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6896 const u64 *devid, const u8 *uuid,
6897 const char *path)
6898 {
6899 struct btrfs_device *dev;
6900 u64 tmp;
6901
6902 if (WARN_ON(!devid && !fs_info))
6903 return ERR_PTR(-EINVAL);
6904
6905 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
6906 if (!dev)
6907 return ERR_PTR(-ENOMEM);
6908
6909 INIT_LIST_HEAD(&dev->dev_list);
6910 INIT_LIST_HEAD(&dev->dev_alloc_list);
6911 INIT_LIST_HEAD(&dev->post_commit_list);
6912
6913 atomic_set(&dev->dev_stats_ccnt, 0);
6914 btrfs_device_data_ordered_init(dev);
6915 btrfs_extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE);
6916
6917 if (devid)
6918 tmp = *devid;
6919 else {
6920 int ret;
6921
6922 ret = find_next_devid(fs_info, &tmp);
6923 if (ret) {
6924 btrfs_free_device(dev);
6925 return ERR_PTR(ret);
6926 }
6927 }
6928 dev->devid = tmp;
6929
6930 if (uuid)
6931 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6932 else
6933 generate_random_uuid(dev->uuid);
6934
6935 if (path) {
6936 const char *name;
6937
6938 name = kstrdup(path, GFP_KERNEL);
6939 if (!name) {
6940 btrfs_free_device(dev);
6941 return ERR_PTR(-ENOMEM);
6942 }
6943 rcu_assign_pointer(dev->name, name);
6944 }
6945
6946 return dev;
6947 }
6948
btrfs_report_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,bool error)6949 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6950 u64 devid, u8 *uuid, bool error)
6951 {
6952 if (error)
6953 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6954 devid, uuid);
6955 else
6956 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6957 devid, uuid);
6958 }
6959
btrfs_calc_stripe_length(const struct btrfs_chunk_map * map)6960 u64 btrfs_calc_stripe_length(const struct btrfs_chunk_map *map)
6961 {
6962 const int data_stripes = calc_data_stripes(map->type, map->num_stripes);
6963
6964 return div_u64(map->chunk_len, data_stripes);
6965 }
6966
6967 #if BITS_PER_LONG == 32
6968 /*
6969 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE
6970 * can't be accessed on 32bit systems.
6971 *
6972 * This function do mount time check to reject the fs if it already has
6973 * metadata chunk beyond that limit.
6974 */
check_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6975 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6976 u64 logical, u64 length, u64 type)
6977 {
6978 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6979 return 0;
6980
6981 if (logical + length < MAX_LFS_FILESIZE)
6982 return 0;
6983
6984 btrfs_err_32bit_limit(fs_info);
6985 return -EOVERFLOW;
6986 }
6987
6988 /*
6989 * This is to give early warning for any metadata chunk reaching
6990 * BTRFS_32BIT_EARLY_WARN_THRESHOLD.
6991 * Although we can still access the metadata, it's not going to be possible
6992 * once the limit is reached.
6993 */
warn_32bit_meta_chunk(struct btrfs_fs_info * fs_info,u64 logical,u64 length,u64 type)6994 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info,
6995 u64 logical, u64 length, u64 type)
6996 {
6997 if (!(type & BTRFS_BLOCK_GROUP_METADATA))
6998 return;
6999
7000 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD)
7001 return;
7002
7003 btrfs_warn_32bit_limit(fs_info);
7004 }
7005 #endif
7006
handle_missing_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid)7007 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info,
7008 u64 devid, u8 *uuid)
7009 {
7010 struct btrfs_device *dev;
7011
7012 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7013 btrfs_report_missing_device(fs_info, devid, uuid, true);
7014 return ERR_PTR(-ENOENT);
7015 }
7016
7017 dev = add_missing_dev(fs_info->fs_devices, devid, uuid);
7018 if (IS_ERR(dev)) {
7019 btrfs_err(fs_info, "failed to init missing device %llu: %ld",
7020 devid, PTR_ERR(dev));
7021 return dev;
7022 }
7023 btrfs_report_missing_device(fs_info, devid, uuid, false);
7024
7025 return dev;
7026 }
7027
read_one_chunk(struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)7028 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
7029 struct btrfs_chunk *chunk)
7030 {
7031 BTRFS_DEV_LOOKUP_ARGS(args);
7032 struct btrfs_fs_info *fs_info = leaf->fs_info;
7033 struct btrfs_chunk_map *map;
7034 u64 logical;
7035 u64 length;
7036 u64 devid;
7037 u64 type;
7038 u8 uuid[BTRFS_UUID_SIZE];
7039 int index;
7040 int num_stripes;
7041 int ret;
7042 int i;
7043
7044 logical = key->offset;
7045 length = btrfs_chunk_length(leaf, chunk);
7046 type = btrfs_chunk_type(leaf, chunk);
7047 index = btrfs_bg_flags_to_raid_index(type);
7048 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
7049
7050 #if BITS_PER_LONG == 32
7051 ret = check_32bit_meta_chunk(fs_info, logical, length, type);
7052 if (ret < 0)
7053 return ret;
7054 warn_32bit_meta_chunk(fs_info, logical, length, type);
7055 #endif
7056
7057 map = btrfs_find_chunk_map(fs_info, logical, 1);
7058
7059 /* already mapped? */
7060 if (map && map->start <= logical && map->start + map->chunk_len > logical) {
7061 btrfs_free_chunk_map(map);
7062 return 0;
7063 } else if (map) {
7064 btrfs_free_chunk_map(map);
7065 }
7066
7067 map = btrfs_alloc_chunk_map(num_stripes, GFP_NOFS);
7068 if (!map)
7069 return -ENOMEM;
7070
7071 map->start = logical;
7072 map->chunk_len = length;
7073 map->num_stripes = num_stripes;
7074 map->io_width = btrfs_chunk_io_width(leaf, chunk);
7075 map->io_align = btrfs_chunk_io_align(leaf, chunk);
7076 map->type = type;
7077 /*
7078 * We can't use the sub_stripes value, as for profiles other than
7079 * RAID10, they may have 0 as sub_stripes for filesystems created by
7080 * older mkfs (<v5.4).
7081 * In that case, it can cause divide-by-zero errors later.
7082 * Since currently sub_stripes is fixed for each profile, let's
7083 * use the trusted value instead.
7084 */
7085 map->sub_stripes = btrfs_raid_array[index].sub_stripes;
7086 map->verified_stripes = 0;
7087 map->stripe_size = btrfs_calc_stripe_length(map);
7088 for (i = 0; i < num_stripes; i++) {
7089 map->stripes[i].physical =
7090 btrfs_stripe_offset_nr(leaf, chunk, i);
7091 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
7092 args.devid = devid;
7093 read_extent_buffer(leaf, uuid, (unsigned long)
7094 btrfs_stripe_dev_uuid_nr(chunk, i),
7095 BTRFS_UUID_SIZE);
7096 args.uuid = uuid;
7097 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args);
7098 if (!map->stripes[i].dev) {
7099 map->stripes[i].dev = handle_missing_device(fs_info,
7100 devid, uuid);
7101 if (IS_ERR(map->stripes[i].dev)) {
7102 ret = PTR_ERR(map->stripes[i].dev);
7103 btrfs_free_chunk_map(map);
7104 return ret;
7105 }
7106 }
7107
7108 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
7109 &(map->stripes[i].dev->dev_state));
7110 }
7111
7112 ret = btrfs_add_chunk_map(fs_info, map);
7113 if (ret < 0) {
7114 btrfs_err(fs_info,
7115 "failed to add chunk map, start=%llu len=%llu: %d",
7116 map->start, map->chunk_len, ret);
7117 btrfs_free_chunk_map(map);
7118 }
7119
7120 return ret;
7121 }
7122
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)7123 static void fill_device_from_item(struct extent_buffer *leaf,
7124 struct btrfs_dev_item *dev_item,
7125 struct btrfs_device *device)
7126 {
7127 unsigned long ptr;
7128
7129 device->devid = btrfs_device_id(leaf, dev_item);
7130 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
7131 device->total_bytes = device->disk_total_bytes;
7132 device->commit_total_bytes = device->disk_total_bytes;
7133 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
7134 device->commit_bytes_used = device->bytes_used;
7135 device->type = btrfs_device_type(leaf, dev_item);
7136 device->io_align = btrfs_device_io_align(leaf, dev_item);
7137 device->io_width = btrfs_device_io_width(leaf, dev_item);
7138 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
7139 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
7140 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
7141
7142 ptr = btrfs_device_uuid(dev_item);
7143 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
7144 }
7145
open_seed_devices(struct btrfs_fs_info * fs_info,u8 * fsid)7146 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
7147 u8 *fsid)
7148 {
7149 struct btrfs_fs_devices *fs_devices;
7150 int ret;
7151
7152 lockdep_assert_held(&uuid_mutex);
7153 ASSERT(fsid);
7154
7155 /* This will match only for multi-device seed fs */
7156 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list)
7157 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
7158 return fs_devices;
7159
7160
7161 fs_devices = find_fsid(fsid, NULL);
7162 if (!fs_devices) {
7163 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7164 btrfs_err(fs_info,
7165 "failed to find fsid %pU when attempting to open seed devices",
7166 fsid);
7167 return ERR_PTR(-ENOENT);
7168 }
7169
7170 fs_devices = alloc_fs_devices(fsid);
7171 if (IS_ERR(fs_devices))
7172 return fs_devices;
7173
7174 fs_devices->seeding = true;
7175 fs_devices->opened = 1;
7176 return fs_devices;
7177 }
7178
7179 /*
7180 * Upon first call for a seed fs fsid, just create a private copy of the
7181 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list
7182 */
7183 fs_devices = clone_fs_devices(fs_devices);
7184 if (IS_ERR(fs_devices))
7185 return fs_devices;
7186
7187 ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->sb);
7188 if (ret) {
7189 free_fs_devices(fs_devices);
7190 return ERR_PTR(ret);
7191 }
7192
7193 if (!fs_devices->seeding) {
7194 close_fs_devices(fs_devices);
7195 free_fs_devices(fs_devices);
7196 return ERR_PTR(-EINVAL);
7197 }
7198
7199 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list);
7200
7201 return fs_devices;
7202 }
7203
read_one_dev(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)7204 static int read_one_dev(struct extent_buffer *leaf,
7205 struct btrfs_dev_item *dev_item)
7206 {
7207 BTRFS_DEV_LOOKUP_ARGS(args);
7208 struct btrfs_fs_info *fs_info = leaf->fs_info;
7209 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7210 struct btrfs_device *device;
7211 u64 devid;
7212 int ret;
7213 u8 fs_uuid[BTRFS_FSID_SIZE];
7214 u8 dev_uuid[BTRFS_UUID_SIZE];
7215
7216 devid = btrfs_device_id(leaf, dev_item);
7217 args.devid = devid;
7218 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
7219 BTRFS_UUID_SIZE);
7220 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
7221 BTRFS_FSID_SIZE);
7222 args.uuid = dev_uuid;
7223 args.fsid = fs_uuid;
7224
7225 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
7226 fs_devices = open_seed_devices(fs_info, fs_uuid);
7227 if (IS_ERR(fs_devices))
7228 return PTR_ERR(fs_devices);
7229 }
7230
7231 device = btrfs_find_device(fs_info->fs_devices, &args);
7232 if (!device) {
7233 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7234 btrfs_report_missing_device(fs_info, devid,
7235 dev_uuid, true);
7236 return -ENOENT;
7237 }
7238
7239 device = add_missing_dev(fs_devices, devid, dev_uuid);
7240 if (IS_ERR(device)) {
7241 btrfs_err(fs_info,
7242 "failed to add missing dev %llu: %ld",
7243 devid, PTR_ERR(device));
7244 return PTR_ERR(device);
7245 }
7246 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
7247 } else {
7248 if (!device->bdev) {
7249 if (!btrfs_test_opt(fs_info, DEGRADED)) {
7250 btrfs_report_missing_device(fs_info,
7251 devid, dev_uuid, true);
7252 return -ENOENT;
7253 }
7254 btrfs_report_missing_device(fs_info, devid,
7255 dev_uuid, false);
7256 }
7257
7258 if (!device->bdev &&
7259 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
7260 /*
7261 * this happens when a device that was properly setup
7262 * in the device info lists suddenly goes bad.
7263 * device->bdev is NULL, and so we have to set
7264 * device->missing to one here
7265 */
7266 device->fs_devices->missing_devices++;
7267 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
7268 }
7269
7270 /* Move the device to its own fs_devices */
7271 if (device->fs_devices != fs_devices) {
7272 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
7273 &device->dev_state));
7274
7275 list_move(&device->dev_list, &fs_devices->devices);
7276 device->fs_devices->num_devices--;
7277 fs_devices->num_devices++;
7278
7279 device->fs_devices->missing_devices--;
7280 fs_devices->missing_devices++;
7281
7282 device->fs_devices = fs_devices;
7283 }
7284 }
7285
7286 if (device->fs_devices != fs_info->fs_devices) {
7287 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
7288 if (device->generation !=
7289 btrfs_device_generation(leaf, dev_item))
7290 return -EINVAL;
7291 }
7292
7293 fill_device_from_item(leaf, dev_item, device);
7294 if (device->bdev) {
7295 u64 max_total_bytes = bdev_nr_bytes(device->bdev);
7296
7297 if (device->total_bytes > max_total_bytes) {
7298 btrfs_err(fs_info,
7299 "device total_bytes should be at most %llu but found %llu",
7300 max_total_bytes, device->total_bytes);
7301 return -EINVAL;
7302 }
7303 }
7304 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7305 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7306 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7307 device->fs_devices->total_rw_bytes += device->total_bytes;
7308 atomic64_add(device->total_bytes - device->bytes_used,
7309 &fs_info->free_chunk_space);
7310 }
7311 ret = 0;
7312 return ret;
7313 }
7314
btrfs_read_sys_array(struct btrfs_fs_info * fs_info)7315 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7316 {
7317 struct btrfs_super_block *super_copy = fs_info->super_copy;
7318 struct extent_buffer *sb;
7319 u8 *array_ptr;
7320 unsigned long sb_array_offset;
7321 int ret = 0;
7322 u32 array_size;
7323 u32 cur_offset;
7324 struct btrfs_key key;
7325
7326 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7327
7328 /*
7329 * We allocated a dummy extent, just to use extent buffer accessors.
7330 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but
7331 * that's fine, we will not go beyond system chunk array anyway.
7332 */
7333 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET);
7334 if (!sb)
7335 return -ENOMEM;
7336 set_extent_buffer_uptodate(sb);
7337
7338 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7339 array_size = btrfs_super_sys_array_size(super_copy);
7340
7341 array_ptr = super_copy->sys_chunk_array;
7342 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7343 cur_offset = 0;
7344
7345 while (cur_offset < array_size) {
7346 struct btrfs_chunk *chunk;
7347 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)array_ptr;
7348 u32 len = sizeof(*disk_key);
7349
7350 /*
7351 * The sys_chunk_array has been already verified at super block
7352 * read time. Only do ASSERT()s for basic checks.
7353 */
7354 ASSERT(cur_offset + len <= array_size);
7355
7356 btrfs_disk_key_to_cpu(&key, disk_key);
7357
7358 array_ptr += len;
7359 sb_array_offset += len;
7360 cur_offset += len;
7361
7362 ASSERT(key.type == BTRFS_CHUNK_ITEM_KEY);
7363
7364 chunk = (struct btrfs_chunk *)sb_array_offset;
7365 ASSERT(btrfs_chunk_type(sb, chunk) & BTRFS_BLOCK_GROUP_SYSTEM);
7366
7367 len = btrfs_chunk_item_size(btrfs_chunk_num_stripes(sb, chunk));
7368
7369 ASSERT(cur_offset + len <= array_size);
7370
7371 ret = read_one_chunk(&key, sb, chunk);
7372 if (ret)
7373 break;
7374
7375 array_ptr += len;
7376 sb_array_offset += len;
7377 cur_offset += len;
7378 }
7379 clear_extent_buffer_uptodate(sb);
7380 free_extent_buffer_stale(sb);
7381 return ret;
7382 }
7383
7384 /*
7385 * Check if all chunks in the fs are OK for read-write degraded mount
7386 *
7387 * If the @failing_dev is specified, it's accounted as missing.
7388 *
7389 * Return true if all chunks meet the minimal RW mount requirements.
7390 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7391 */
btrfs_check_rw_degradable(struct btrfs_fs_info * fs_info,struct btrfs_device * failing_dev)7392 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7393 struct btrfs_device *failing_dev)
7394 {
7395 struct btrfs_chunk_map *map;
7396 u64 next_start;
7397 bool ret = true;
7398
7399 map = btrfs_find_chunk_map(fs_info, 0, U64_MAX);
7400 /* No chunk at all? Return false anyway */
7401 if (!map) {
7402 ret = false;
7403 goto out;
7404 }
7405 while (map) {
7406 int missing = 0;
7407 int max_tolerated;
7408 int i;
7409
7410 max_tolerated =
7411 btrfs_get_num_tolerated_disk_barrier_failures(
7412 map->type);
7413 for (i = 0; i < map->num_stripes; i++) {
7414 struct btrfs_device *dev = map->stripes[i].dev;
7415
7416 if (!dev || !dev->bdev ||
7417 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7418 dev->last_flush_error)
7419 missing++;
7420 else if (failing_dev && failing_dev == dev)
7421 missing++;
7422 }
7423 if (missing > max_tolerated) {
7424 if (!failing_dev)
7425 btrfs_warn(fs_info,
7426 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7427 map->start, missing, max_tolerated);
7428 btrfs_free_chunk_map(map);
7429 ret = false;
7430 goto out;
7431 }
7432 next_start = map->start + map->chunk_len;
7433 btrfs_free_chunk_map(map);
7434
7435 map = btrfs_find_chunk_map(fs_info, next_start, U64_MAX - next_start);
7436 }
7437 out:
7438 return ret;
7439 }
7440
readahead_tree_node_children(struct extent_buffer * node)7441 static void readahead_tree_node_children(struct extent_buffer *node)
7442 {
7443 int i;
7444 const int nr_items = btrfs_header_nritems(node);
7445
7446 for (i = 0; i < nr_items; i++)
7447 btrfs_readahead_node_child(node, i);
7448 }
7449
btrfs_read_chunk_tree(struct btrfs_fs_info * fs_info)7450 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7451 {
7452 struct btrfs_root *root = fs_info->chunk_root;
7453 struct btrfs_path *path;
7454 struct extent_buffer *leaf;
7455 struct btrfs_key key;
7456 struct btrfs_key found_key;
7457 int ret;
7458 int slot;
7459 int iter_ret = 0;
7460 u64 total_dev = 0;
7461 u64 last_ra_node = 0;
7462
7463 path = btrfs_alloc_path();
7464 if (!path)
7465 return -ENOMEM;
7466
7467 /*
7468 * uuid_mutex is needed only if we are mounting a sprout FS
7469 * otherwise we don't need it.
7470 */
7471 mutex_lock(&uuid_mutex);
7472
7473 /*
7474 * It is possible for mount and umount to race in such a way that
7475 * we execute this code path, but open_fs_devices failed to clear
7476 * total_rw_bytes. We certainly want it cleared before reading the
7477 * device items, so clear it here.
7478 */
7479 fs_info->fs_devices->total_rw_bytes = 0;
7480
7481 /*
7482 * Lockdep complains about possible circular locking dependency between
7483 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores
7484 * used for freeze procection of a fs (struct super_block.s_writers),
7485 * which we take when starting a transaction, and extent buffers of the
7486 * chunk tree if we call read_one_dev() while holding a lock on an
7487 * extent buffer of the chunk tree. Since we are mounting the filesystem
7488 * and at this point there can't be any concurrent task modifying the
7489 * chunk tree, to keep it simple, just skip locking on the chunk tree.
7490 */
7491 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags));
7492 path->skip_locking = 1;
7493
7494 /*
7495 * Read all device items, and then all the chunk items. All
7496 * device items are found before any chunk item (their object id
7497 * is smaller than the lowest possible object id for a chunk
7498 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7499 */
7500 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7501 key.type = 0;
7502 key.offset = 0;
7503 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
7504 struct extent_buffer *node = path->nodes[1];
7505
7506 leaf = path->nodes[0];
7507 slot = path->slots[0];
7508
7509 if (node) {
7510 if (last_ra_node != node->start) {
7511 readahead_tree_node_children(node);
7512 last_ra_node = node->start;
7513 }
7514 }
7515 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7516 struct btrfs_dev_item *dev_item;
7517 dev_item = btrfs_item_ptr(leaf, slot,
7518 struct btrfs_dev_item);
7519 ret = read_one_dev(leaf, dev_item);
7520 if (ret)
7521 goto error;
7522 total_dev++;
7523 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7524 struct btrfs_chunk *chunk;
7525
7526 /*
7527 * We are only called at mount time, so no need to take
7528 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings,
7529 * we always lock first fs_info->chunk_mutex before
7530 * acquiring any locks on the chunk tree. This is a
7531 * requirement for chunk allocation, see the comment on
7532 * top of btrfs_chunk_alloc() for details.
7533 */
7534 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7535 ret = read_one_chunk(&found_key, leaf, chunk);
7536 if (ret)
7537 goto error;
7538 }
7539 }
7540 /* Catch error found during iteration */
7541 if (iter_ret < 0) {
7542 ret = iter_ret;
7543 goto error;
7544 }
7545
7546 /*
7547 * After loading chunk tree, we've got all device information,
7548 * do another round of validation checks.
7549 */
7550 if (total_dev != fs_info->fs_devices->total_devices) {
7551 btrfs_warn(fs_info,
7552 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit",
7553 btrfs_super_num_devices(fs_info->super_copy),
7554 total_dev);
7555 fs_info->fs_devices->total_devices = total_dev;
7556 btrfs_set_super_num_devices(fs_info->super_copy, total_dev);
7557 }
7558 if (btrfs_super_total_bytes(fs_info->super_copy) <
7559 fs_info->fs_devices->total_rw_bytes) {
7560 btrfs_err(fs_info,
7561 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7562 btrfs_super_total_bytes(fs_info->super_copy),
7563 fs_info->fs_devices->total_rw_bytes);
7564 ret = -EINVAL;
7565 goto error;
7566 }
7567 ret = 0;
7568 error:
7569 mutex_unlock(&uuid_mutex);
7570
7571 btrfs_free_path(path);
7572 return ret;
7573 }
7574
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)7575 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7576 {
7577 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7578 struct btrfs_device *device;
7579 int ret = 0;
7580
7581 mutex_lock(&fs_devices->device_list_mutex);
7582 list_for_each_entry(device, &fs_devices->devices, dev_list)
7583 device->fs_info = fs_info;
7584
7585 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7586 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7587 device->fs_info = fs_info;
7588 ret = btrfs_get_dev_zone_info(device, false);
7589 if (ret)
7590 break;
7591 }
7592
7593 seed_devs->fs_info = fs_info;
7594 }
7595 mutex_unlock(&fs_devices->device_list_mutex);
7596
7597 return ret;
7598 }
7599
btrfs_dev_stats_value(const struct extent_buffer * eb,const struct btrfs_dev_stats_item * ptr,int index)7600 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7601 const struct btrfs_dev_stats_item *ptr,
7602 int index)
7603 {
7604 u64 val;
7605
7606 read_extent_buffer(eb, &val,
7607 offsetof(struct btrfs_dev_stats_item, values) +
7608 ((unsigned long)ptr) + (index * sizeof(u64)),
7609 sizeof(val));
7610 return val;
7611 }
7612
btrfs_set_dev_stats_value(struct extent_buffer * eb,struct btrfs_dev_stats_item * ptr,int index,u64 val)7613 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7614 struct btrfs_dev_stats_item *ptr,
7615 int index, u64 val)
7616 {
7617 write_extent_buffer(eb, &val,
7618 offsetof(struct btrfs_dev_stats_item, values) +
7619 ((unsigned long)ptr) + (index * sizeof(u64)),
7620 sizeof(val));
7621 }
7622
btrfs_device_init_dev_stats(struct btrfs_device * device,struct btrfs_path * path)7623 static int btrfs_device_init_dev_stats(struct btrfs_device *device,
7624 struct btrfs_path *path)
7625 {
7626 struct btrfs_dev_stats_item *ptr;
7627 struct extent_buffer *eb;
7628 struct btrfs_key key;
7629 int item_size;
7630 int i, ret, slot;
7631
7632 if (!device->fs_info->dev_root)
7633 return 0;
7634
7635 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7636 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7637 key.offset = device->devid;
7638 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0);
7639 if (ret) {
7640 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7641 btrfs_dev_stat_set(device, i, 0);
7642 device->dev_stats_valid = 1;
7643 btrfs_release_path(path);
7644 return ret < 0 ? ret : 0;
7645 }
7646 slot = path->slots[0];
7647 eb = path->nodes[0];
7648 item_size = btrfs_item_size(eb, slot);
7649
7650 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item);
7651
7652 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7653 if (item_size >= (1 + i) * sizeof(__le64))
7654 btrfs_dev_stat_set(device, i,
7655 btrfs_dev_stats_value(eb, ptr, i));
7656 else
7657 btrfs_dev_stat_set(device, i, 0);
7658 }
7659
7660 device->dev_stats_valid = 1;
7661 btrfs_dev_stat_print_on_load(device);
7662 btrfs_release_path(path);
7663
7664 return 0;
7665 }
7666
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)7667 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7668 {
7669 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
7670 struct btrfs_device *device;
7671 struct btrfs_path *path = NULL;
7672 int ret = 0;
7673
7674 path = btrfs_alloc_path();
7675 if (!path)
7676 return -ENOMEM;
7677
7678 mutex_lock(&fs_devices->device_list_mutex);
7679 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7680 ret = btrfs_device_init_dev_stats(device, path);
7681 if (ret)
7682 goto out;
7683 }
7684 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) {
7685 list_for_each_entry(device, &seed_devs->devices, dev_list) {
7686 ret = btrfs_device_init_dev_stats(device, path);
7687 if (ret)
7688 goto out;
7689 }
7690 }
7691 out:
7692 mutex_unlock(&fs_devices->device_list_mutex);
7693
7694 btrfs_free_path(path);
7695 return ret;
7696 }
7697
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_device * device)7698 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7699 struct btrfs_device *device)
7700 {
7701 struct btrfs_fs_info *fs_info = trans->fs_info;
7702 struct btrfs_root *dev_root = fs_info->dev_root;
7703 struct btrfs_path *path;
7704 struct btrfs_key key;
7705 struct extent_buffer *eb;
7706 struct btrfs_dev_stats_item *ptr;
7707 int ret;
7708 int i;
7709
7710 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7711 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7712 key.offset = device->devid;
7713
7714 path = btrfs_alloc_path();
7715 if (!path)
7716 return -ENOMEM;
7717 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7718 if (ret < 0) {
7719 btrfs_warn(fs_info,
7720 "error %d while searching for dev_stats item for device %s",
7721 ret, btrfs_dev_name(device));
7722 goto out;
7723 }
7724
7725 if (ret == 0 &&
7726 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7727 /* need to delete old one and insert a new one */
7728 ret = btrfs_del_item(trans, dev_root, path);
7729 if (ret != 0) {
7730 btrfs_warn(fs_info,
7731 "delete too small dev_stats item for device %s failed %d",
7732 btrfs_dev_name(device), ret);
7733 goto out;
7734 }
7735 ret = 1;
7736 }
7737
7738 if (ret == 1) {
7739 /* need to insert a new item */
7740 btrfs_release_path(path);
7741 ret = btrfs_insert_empty_item(trans, dev_root, path,
7742 &key, sizeof(*ptr));
7743 if (ret < 0) {
7744 btrfs_warn(fs_info,
7745 "insert dev_stats item for device %s failed %d",
7746 btrfs_dev_name(device), ret);
7747 goto out;
7748 }
7749 }
7750
7751 eb = path->nodes[0];
7752 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7753 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7754 btrfs_set_dev_stats_value(eb, ptr, i,
7755 btrfs_dev_stat_read(device, i));
7756 out:
7757 btrfs_free_path(path);
7758 return ret;
7759 }
7760
7761 /*
7762 * called from commit_transaction. Writes all changed device stats to disk.
7763 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans)7764 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7765 {
7766 struct btrfs_fs_info *fs_info = trans->fs_info;
7767 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7768 struct btrfs_device *device;
7769 int stats_cnt;
7770 int ret = 0;
7771
7772 mutex_lock(&fs_devices->device_list_mutex);
7773 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7774 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7775 if (!device->dev_stats_valid || stats_cnt == 0)
7776 continue;
7777
7778
7779 /*
7780 * There is a LOAD-LOAD control dependency between the value of
7781 * dev_stats_ccnt and updating the on-disk values which requires
7782 * reading the in-memory counters. Such control dependencies
7783 * require explicit read memory barriers.
7784 *
7785 * This memory barriers pairs with smp_mb__before_atomic in
7786 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7787 * barrier implied by atomic_xchg in
7788 * btrfs_dev_stats_read_and_reset
7789 */
7790 smp_rmb();
7791
7792 ret = update_dev_stat_item(trans, device);
7793 if (!ret)
7794 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7795 }
7796 mutex_unlock(&fs_devices->device_list_mutex);
7797
7798 return ret;
7799 }
7800
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7801 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7802 {
7803 btrfs_dev_stat_inc(dev, index);
7804
7805 if (!dev->dev_stats_valid)
7806 return;
7807 btrfs_err_rl(dev->fs_info,
7808 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7809 btrfs_dev_name(dev),
7810 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7811 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7812 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7813 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7814 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7815 }
7816
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7817 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7818 {
7819 int i;
7820
7821 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7822 if (btrfs_dev_stat_read(dev, i) != 0)
7823 break;
7824 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7825 return; /* all values == 0, suppress message */
7826
7827 btrfs_info(dev->fs_info,
7828 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7829 btrfs_dev_name(dev),
7830 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7831 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7832 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7833 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7834 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7835 }
7836
btrfs_get_dev_stats(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_get_dev_stats * stats)7837 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7838 struct btrfs_ioctl_get_dev_stats *stats)
7839 {
7840 BTRFS_DEV_LOOKUP_ARGS(args);
7841 struct btrfs_device *dev;
7842 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7843 int i;
7844
7845 mutex_lock(&fs_devices->device_list_mutex);
7846 args.devid = stats->devid;
7847 dev = btrfs_find_device(fs_info->fs_devices, &args);
7848 mutex_unlock(&fs_devices->device_list_mutex);
7849
7850 if (!dev) {
7851 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7852 return -ENODEV;
7853 } else if (!dev->dev_stats_valid) {
7854 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7855 return -ENODEV;
7856 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7857 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7858 if (stats->nr_items > i)
7859 stats->values[i] =
7860 btrfs_dev_stat_read_and_reset(dev, i);
7861 else
7862 btrfs_dev_stat_set(dev, i, 0);
7863 }
7864 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7865 current->comm, task_pid_nr(current));
7866 } else {
7867 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7868 if (stats->nr_items > i)
7869 stats->values[i] = btrfs_dev_stat_read(dev, i);
7870 }
7871 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7872 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7873 return 0;
7874 }
7875
7876 /*
7877 * Update the size and bytes used for each device where it changed. This is
7878 * delayed since we would otherwise get errors while writing out the
7879 * superblocks.
7880 *
7881 * Must be invoked during transaction commit.
7882 */
btrfs_commit_device_sizes(struct btrfs_transaction * trans)7883 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7884 {
7885 struct btrfs_device *curr, *next;
7886
7887 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING, "state=%d" , trans->state);
7888
7889 if (list_empty(&trans->dev_update_list))
7890 return;
7891
7892 /*
7893 * We don't need the device_list_mutex here. This list is owned by the
7894 * transaction and the transaction must complete before the device is
7895 * released.
7896 */
7897 mutex_lock(&trans->fs_info->chunk_mutex);
7898 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7899 post_commit_list) {
7900 list_del_init(&curr->post_commit_list);
7901 curr->commit_total_bytes = curr->disk_total_bytes;
7902 curr->commit_bytes_used = curr->bytes_used;
7903 }
7904 mutex_unlock(&trans->fs_info->chunk_mutex);
7905 }
7906
7907 /*
7908 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7909 */
btrfs_bg_type_to_factor(u64 flags)7910 int btrfs_bg_type_to_factor(u64 flags)
7911 {
7912 const int index = btrfs_bg_flags_to_raid_index(flags);
7913
7914 return btrfs_raid_array[index].ncopies;
7915 }
7916
7917
7918
verify_one_dev_extent(struct btrfs_fs_info * fs_info,u64 chunk_offset,u64 devid,u64 physical_offset,u64 physical_len)7919 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7920 u64 chunk_offset, u64 devid,
7921 u64 physical_offset, u64 physical_len)
7922 {
7923 struct btrfs_dev_lookup_args args = { .devid = devid };
7924 struct btrfs_chunk_map *map;
7925 struct btrfs_device *dev;
7926 u64 stripe_len;
7927 bool found = false;
7928 int ret = 0;
7929 int i;
7930
7931 map = btrfs_find_chunk_map(fs_info, chunk_offset, 1);
7932 if (!map) {
7933 btrfs_err(fs_info,
7934 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7935 physical_offset, devid);
7936 ret = -EUCLEAN;
7937 goto out;
7938 }
7939
7940 stripe_len = btrfs_calc_stripe_length(map);
7941 if (physical_len != stripe_len) {
7942 btrfs_err(fs_info,
7943 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7944 physical_offset, devid, map->start, physical_len,
7945 stripe_len);
7946 ret = -EUCLEAN;
7947 goto out;
7948 }
7949
7950 /*
7951 * Very old mkfs.btrfs (before v4.15) will not respect the reserved
7952 * space. Although kernel can handle it without problem, better to warn
7953 * the users.
7954 */
7955 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED)
7956 btrfs_warn(fs_info,
7957 "devid %llu physical %llu len %llu inside the reserved space",
7958 devid, physical_offset, physical_len);
7959
7960 for (i = 0; i < map->num_stripes; i++) {
7961 if (map->stripes[i].dev->devid == devid &&
7962 map->stripes[i].physical == physical_offset) {
7963 found = true;
7964 if (map->verified_stripes >= map->num_stripes) {
7965 btrfs_err(fs_info,
7966 "too many dev extents for chunk %llu found",
7967 map->start);
7968 ret = -EUCLEAN;
7969 goto out;
7970 }
7971 map->verified_stripes++;
7972 break;
7973 }
7974 }
7975 if (!found) {
7976 btrfs_err(fs_info,
7977 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7978 physical_offset, devid);
7979 ret = -EUCLEAN;
7980 }
7981
7982 /* Make sure no dev extent is beyond device boundary */
7983 dev = btrfs_find_device(fs_info->fs_devices, &args);
7984 if (!dev) {
7985 btrfs_err(fs_info, "failed to find devid %llu", devid);
7986 ret = -EUCLEAN;
7987 goto out;
7988 }
7989
7990 if (physical_offset + physical_len > dev->disk_total_bytes) {
7991 btrfs_err(fs_info,
7992 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7993 devid, physical_offset, physical_len,
7994 dev->disk_total_bytes);
7995 ret = -EUCLEAN;
7996 goto out;
7997 }
7998
7999 if (dev->zone_info) {
8000 u64 zone_size = dev->zone_info->zone_size;
8001
8002 if (!IS_ALIGNED(physical_offset, zone_size) ||
8003 !IS_ALIGNED(physical_len, zone_size)) {
8004 btrfs_err(fs_info,
8005 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone",
8006 devid, physical_offset, physical_len);
8007 ret = -EUCLEAN;
8008 goto out;
8009 }
8010 }
8011
8012 out:
8013 btrfs_free_chunk_map(map);
8014 return ret;
8015 }
8016
verify_chunk_dev_extent_mapping(struct btrfs_fs_info * fs_info)8017 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
8018 {
8019 struct rb_node *node;
8020 int ret = 0;
8021
8022 read_lock(&fs_info->mapping_tree_lock);
8023 for (node = rb_first_cached(&fs_info->mapping_tree); node; node = rb_next(node)) {
8024 struct btrfs_chunk_map *map;
8025
8026 map = rb_entry(node, struct btrfs_chunk_map, rb_node);
8027 if (map->num_stripes != map->verified_stripes) {
8028 btrfs_err(fs_info,
8029 "chunk %llu has missing dev extent, have %d expect %d",
8030 map->start, map->verified_stripes, map->num_stripes);
8031 ret = -EUCLEAN;
8032 goto out;
8033 }
8034 }
8035 out:
8036 read_unlock(&fs_info->mapping_tree_lock);
8037 return ret;
8038 }
8039
8040 /*
8041 * Ensure that all dev extents are mapped to correct chunk, otherwise
8042 * later chunk allocation/free would cause unexpected behavior.
8043 *
8044 * NOTE: This will iterate through the whole device tree, which should be of
8045 * the same size level as the chunk tree. This slightly increases mount time.
8046 */
btrfs_verify_dev_extents(struct btrfs_fs_info * fs_info)8047 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
8048 {
8049 struct btrfs_path *path;
8050 struct btrfs_root *root = fs_info->dev_root;
8051 struct btrfs_key key;
8052 u64 prev_devid = 0;
8053 u64 prev_dev_ext_end = 0;
8054 int ret = 0;
8055
8056 /*
8057 * We don't have a dev_root because we mounted with ignorebadroots and
8058 * failed to load the root, so we want to skip the verification in this
8059 * case for sure.
8060 *
8061 * However if the dev root is fine, but the tree itself is corrupted
8062 * we'd still fail to mount. This verification is only to make sure
8063 * writes can happen safely, so instead just bypass this check
8064 * completely in the case of IGNOREBADROOTS.
8065 */
8066 if (btrfs_test_opt(fs_info, IGNOREBADROOTS))
8067 return 0;
8068
8069 key.objectid = 1;
8070 key.type = BTRFS_DEV_EXTENT_KEY;
8071 key.offset = 0;
8072
8073 path = btrfs_alloc_path();
8074 if (!path)
8075 return -ENOMEM;
8076
8077 path->reada = READA_FORWARD;
8078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8079 if (ret < 0)
8080 goto out;
8081
8082 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
8083 ret = btrfs_next_leaf(root, path);
8084 if (ret < 0)
8085 goto out;
8086 /* No dev extents at all? Not good */
8087 if (ret > 0) {
8088 ret = -EUCLEAN;
8089 goto out;
8090 }
8091 }
8092 while (1) {
8093 struct extent_buffer *leaf = path->nodes[0];
8094 struct btrfs_dev_extent *dext;
8095 int slot = path->slots[0];
8096 u64 chunk_offset;
8097 u64 physical_offset;
8098 u64 physical_len;
8099 u64 devid;
8100
8101 btrfs_item_key_to_cpu(leaf, &key, slot);
8102 if (key.type != BTRFS_DEV_EXTENT_KEY)
8103 break;
8104 devid = key.objectid;
8105 physical_offset = key.offset;
8106
8107 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
8108 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
8109 physical_len = btrfs_dev_extent_length(leaf, dext);
8110
8111 /* Check if this dev extent overlaps with the previous one */
8112 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
8113 btrfs_err(fs_info,
8114 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
8115 devid, physical_offset, prev_dev_ext_end);
8116 ret = -EUCLEAN;
8117 goto out;
8118 }
8119
8120 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
8121 physical_offset, physical_len);
8122 if (ret < 0)
8123 goto out;
8124 prev_devid = devid;
8125 prev_dev_ext_end = physical_offset + physical_len;
8126
8127 ret = btrfs_next_item(root, path);
8128 if (ret < 0)
8129 goto out;
8130 if (ret > 0) {
8131 ret = 0;
8132 break;
8133 }
8134 }
8135
8136 /* Ensure all chunks have corresponding dev extents */
8137 ret = verify_chunk_dev_extent_mapping(fs_info);
8138 out:
8139 btrfs_free_path(path);
8140 return ret;
8141 }
8142
8143 /*
8144 * Check whether the given block group or device is pinned by any inode being
8145 * used as a swapfile.
8146 */
btrfs_pinned_by_swapfile(struct btrfs_fs_info * fs_info,void * ptr)8147 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
8148 {
8149 struct btrfs_swapfile_pin *sp;
8150 struct rb_node *node;
8151
8152 spin_lock(&fs_info->swapfile_pins_lock);
8153 node = fs_info->swapfile_pins.rb_node;
8154 while (node) {
8155 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
8156 if (ptr < sp->ptr)
8157 node = node->rb_left;
8158 else if (ptr > sp->ptr)
8159 node = node->rb_right;
8160 else
8161 break;
8162 }
8163 spin_unlock(&fs_info->swapfile_pins_lock);
8164 return node != NULL;
8165 }
8166
relocating_repair_kthread(void * data)8167 static int relocating_repair_kthread(void *data)
8168 {
8169 struct btrfs_block_group *cache = data;
8170 struct btrfs_fs_info *fs_info = cache->fs_info;
8171 u64 target;
8172 int ret = 0;
8173
8174 target = cache->start;
8175 btrfs_put_block_group(cache);
8176
8177 sb_start_write(fs_info->sb);
8178 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
8179 btrfs_info(fs_info,
8180 "zoned: skip relocating block group %llu to repair: EBUSY",
8181 target);
8182 sb_end_write(fs_info->sb);
8183 return -EBUSY;
8184 }
8185
8186 mutex_lock(&fs_info->reclaim_bgs_lock);
8187
8188 /* Ensure block group still exists */
8189 cache = btrfs_lookup_block_group(fs_info, target);
8190 if (!cache)
8191 goto out;
8192
8193 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags))
8194 goto out;
8195
8196 ret = btrfs_may_alloc_data_chunk(fs_info, target);
8197 if (ret < 0)
8198 goto out;
8199
8200 btrfs_info(fs_info,
8201 "zoned: relocating block group %llu to repair IO failure",
8202 target);
8203 ret = btrfs_relocate_chunk(fs_info, target, true);
8204
8205 out:
8206 if (cache)
8207 btrfs_put_block_group(cache);
8208 mutex_unlock(&fs_info->reclaim_bgs_lock);
8209 btrfs_exclop_finish(fs_info);
8210 sb_end_write(fs_info->sb);
8211
8212 return ret;
8213 }
8214
btrfs_repair_one_zone(struct btrfs_fs_info * fs_info,u64 logical)8215 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical)
8216 {
8217 struct btrfs_block_group *cache;
8218
8219 if (!btrfs_is_zoned(fs_info))
8220 return false;
8221
8222 /* Do not attempt to repair in degraded state */
8223 if (btrfs_test_opt(fs_info, DEGRADED))
8224 return true;
8225
8226 cache = btrfs_lookup_block_group(fs_info, logical);
8227 if (!cache)
8228 return true;
8229
8230 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) {
8231 btrfs_put_block_group(cache);
8232 return true;
8233 }
8234
8235 kthread_run(relocating_repair_kthread, cache,
8236 "btrfs-relocating-repair");
8237
8238 return true;
8239 }
8240
map_raid56_repair_block(struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,u64 logical)8241 static void map_raid56_repair_block(struct btrfs_io_context *bioc,
8242 struct btrfs_io_stripe *smap,
8243 u64 logical)
8244 {
8245 int data_stripes = nr_bioc_data_stripes(bioc);
8246 int i;
8247
8248 for (i = 0; i < data_stripes; i++) {
8249 u64 stripe_start = bioc->full_stripe_logical +
8250 btrfs_stripe_nr_to_offset(i);
8251
8252 if (logical >= stripe_start &&
8253 logical < stripe_start + BTRFS_STRIPE_LEN)
8254 break;
8255 }
8256 ASSERT(i < data_stripes, "i=%d data_stripes=%d", i, data_stripes);
8257 smap->dev = bioc->stripes[i].dev;
8258 smap->physical = bioc->stripes[i].physical +
8259 ((logical - bioc->full_stripe_logical) &
8260 BTRFS_STRIPE_LEN_MASK);
8261 }
8262
8263 /*
8264 * Map a repair write into a single device.
8265 *
8266 * A repair write is triggered by read time repair or scrub, which would only
8267 * update the contents of a single device.
8268 * Not update any other mirrors nor go through RMW path.
8269 *
8270 * Callers should ensure:
8271 *
8272 * - Call btrfs_bio_counter_inc_blocked() first
8273 * - The range does not cross stripe boundary
8274 * - Has a valid @mirror_num passed in.
8275 */
btrfs_map_repair_block(struct btrfs_fs_info * fs_info,struct btrfs_io_stripe * smap,u64 logical,u32 length,int mirror_num)8276 int btrfs_map_repair_block(struct btrfs_fs_info *fs_info,
8277 struct btrfs_io_stripe *smap, u64 logical,
8278 u32 length, int mirror_num)
8279 {
8280 struct btrfs_io_context *bioc = NULL;
8281 u64 map_length = length;
8282 int mirror_ret = mirror_num;
8283 int ret;
8284
8285 ASSERT(mirror_num > 0, "mirror_num=%d", mirror_num);
8286
8287 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length,
8288 &bioc, smap, &mirror_ret);
8289 if (ret < 0)
8290 return ret;
8291
8292 /* The map range should not cross stripe boundary. */
8293 ASSERT(map_length >= length, "map_length=%llu length=%u", map_length, length);
8294
8295 /* Already mapped to single stripe. */
8296 if (!bioc)
8297 goto out;
8298
8299 /* Map the RAID56 multi-stripe writes to a single one. */
8300 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
8301 map_raid56_repair_block(bioc, smap, logical);
8302 goto out;
8303 }
8304
8305 ASSERT(mirror_num <= bioc->num_stripes,
8306 "mirror_num=%d num_stripes=%d", mirror_num, bioc->num_stripes);
8307 smap->dev = bioc->stripes[mirror_num - 1].dev;
8308 smap->physical = bioc->stripes[mirror_num - 1].physical;
8309 out:
8310 btrfs_put_bioc(bioc);
8311 ASSERT(smap->dev);
8312 return 0;
8313 }
8314