xref: /linux/rust/kernel/error.rs (revision df02351331671abb26788bc13f6d276e26ae068f)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Kernel errors.
4 //!
5 //! C header: [`include/uapi/asm-generic/errno-base.h`](srctree/include/uapi/asm-generic/errno-base.h)
6 
7 use crate::{
8     alloc::{layout::LayoutError, AllocError},
9     str::CStr,
10 };
11 
12 use core::fmt;
13 use core::num::NonZeroI32;
14 use core::num::TryFromIntError;
15 use core::str::Utf8Error;
16 
17 /// Contains the C-compatible error codes.
18 #[rustfmt::skip]
19 pub mod code {
20     macro_rules! declare_err {
21         ($err:tt $(,)? $($doc:expr),+) => {
22             $(
23             #[doc = $doc]
24             )*
25             pub const $err: super::Error =
26                 match super::Error::try_from_errno(-(crate::bindings::$err as i32)) {
27                     Some(err) => err,
28                     None => panic!("Invalid errno in `declare_err!`"),
29                 };
30         };
31     }
32 
33     declare_err!(EPERM, "Operation not permitted.");
34     declare_err!(ENOENT, "No such file or directory.");
35     declare_err!(ESRCH, "No such process.");
36     declare_err!(EINTR, "Interrupted system call.");
37     declare_err!(EIO, "I/O error.");
38     declare_err!(ENXIO, "No such device or address.");
39     declare_err!(E2BIG, "Argument list too long.");
40     declare_err!(ENOEXEC, "Exec format error.");
41     declare_err!(EBADF, "Bad file number.");
42     declare_err!(ECHILD, "No child processes.");
43     declare_err!(EAGAIN, "Try again.");
44     declare_err!(ENOMEM, "Out of memory.");
45     declare_err!(EACCES, "Permission denied.");
46     declare_err!(EFAULT, "Bad address.");
47     declare_err!(ENOTBLK, "Block device required.");
48     declare_err!(EBUSY, "Device or resource busy.");
49     declare_err!(EEXIST, "File exists.");
50     declare_err!(EXDEV, "Cross-device link.");
51     declare_err!(ENODEV, "No such device.");
52     declare_err!(ENOTDIR, "Not a directory.");
53     declare_err!(EISDIR, "Is a directory.");
54     declare_err!(EINVAL, "Invalid argument.");
55     declare_err!(ENFILE, "File table overflow.");
56     declare_err!(EMFILE, "Too many open files.");
57     declare_err!(ENOTTY, "Not a typewriter.");
58     declare_err!(ETXTBSY, "Text file busy.");
59     declare_err!(EFBIG, "File too large.");
60     declare_err!(ENOSPC, "No space left on device.");
61     declare_err!(ESPIPE, "Illegal seek.");
62     declare_err!(EROFS, "Read-only file system.");
63     declare_err!(EMLINK, "Too many links.");
64     declare_err!(EPIPE, "Broken pipe.");
65     declare_err!(EDOM, "Math argument out of domain of func.");
66     declare_err!(ERANGE, "Math result not representable.");
67     declare_err!(EOVERFLOW, "Value too large for defined data type.");
68     declare_err!(ERESTARTSYS, "Restart the system call.");
69     declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted.");
70     declare_err!(ERESTARTNOHAND, "Restart if no handler.");
71     declare_err!(ENOIOCTLCMD, "No ioctl command.");
72     declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall.");
73     declare_err!(EPROBE_DEFER, "Driver requests probe retry.");
74     declare_err!(EOPENSTALE, "Open found a stale dentry.");
75     declare_err!(ENOPARAM, "Parameter not supported.");
76     declare_err!(EBADHANDLE, "Illegal NFS file handle.");
77     declare_err!(ENOTSYNC, "Update synchronization mismatch.");
78     declare_err!(EBADCOOKIE, "Cookie is stale.");
79     declare_err!(ENOTSUPP, "Operation is not supported.");
80     declare_err!(ETOOSMALL, "Buffer or request is too small.");
81     declare_err!(ESERVERFAULT, "An untranslatable error occurred.");
82     declare_err!(EBADTYPE, "Type not supported by server.");
83     declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout.");
84     declare_err!(EIOCBQUEUED, "iocb queued, will get completion event.");
85     declare_err!(ERECALLCONFLICT, "Conflict with recalled state.");
86     declare_err!(ENOGRACE, "NFS file lock reclaim refused.");
87 }
88 
89 /// Generic integer kernel error.
90 ///
91 /// The kernel defines a set of integer generic error codes based on C and
92 /// POSIX ones. These codes may have a more specific meaning in some contexts.
93 ///
94 /// # Invariants
95 ///
96 /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`).
97 #[derive(Clone, Copy, PartialEq, Eq)]
98 pub struct Error(NonZeroI32);
99 
100 impl Error {
101     /// Creates an [`Error`] from a kernel error code.
102     ///
103     /// It is a bug to pass an out-of-range `errno`. `EINVAL` would
104     /// be returned in such a case.
from_errno(errno: crate::ffi::c_int) -> Error105     pub fn from_errno(errno: crate::ffi::c_int) -> Error {
106         if let Some(error) = Self::try_from_errno(errno) {
107             error
108         } else {
109             // TODO: Make it a `WARN_ONCE` once available.
110             crate::pr_warn!(
111                 "attempted to create `Error` with out of range `errno`: {}\n",
112                 errno
113             );
114             code::EINVAL
115         }
116     }
117 
118     /// Creates an [`Error`] from a kernel error code.
119     ///
120     /// Returns [`None`] if `errno` is out-of-range.
try_from_errno(errno: crate::ffi::c_int) -> Option<Error>121     const fn try_from_errno(errno: crate::ffi::c_int) -> Option<Error> {
122         if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 {
123             return None;
124         }
125 
126         // SAFETY: `errno` is checked above to be in a valid range.
127         Some(unsafe { Error::from_errno_unchecked(errno) })
128     }
129 
130     /// Creates an [`Error`] from a kernel error code.
131     ///
132     /// # Safety
133     ///
134     /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`).
from_errno_unchecked(errno: crate::ffi::c_int) -> Error135     const unsafe fn from_errno_unchecked(errno: crate::ffi::c_int) -> Error {
136         // INVARIANT: The contract ensures the type invariant
137         // will hold.
138         // SAFETY: The caller guarantees `errno` is non-zero.
139         Error(unsafe { NonZeroI32::new_unchecked(errno) })
140     }
141 
142     /// Returns the kernel error code.
to_errno(self) -> crate::ffi::c_int143     pub fn to_errno(self) -> crate::ffi::c_int {
144         self.0.get()
145     }
146 
147     #[cfg(CONFIG_BLOCK)]
to_blk_status(self) -> bindings::blk_status_t148     pub(crate) fn to_blk_status(self) -> bindings::blk_status_t {
149         // SAFETY: `self.0` is a valid error due to its invariant.
150         unsafe { bindings::errno_to_blk_status(self.0.get()) }
151     }
152 
153     /// Returns the error encoded as a pointer.
to_ptr<T>(self) -> *mut T154     pub fn to_ptr<T>(self) -> *mut T {
155         // SAFETY: `self.0` is a valid error due to its invariant.
156         unsafe { bindings::ERR_PTR(self.0.get() as _) as *mut _ }
157     }
158 
159     /// Returns a string representing the error, if one exists.
160     #[cfg(not(any(test, testlib)))]
name(&self) -> Option<&'static CStr>161     pub fn name(&self) -> Option<&'static CStr> {
162         // SAFETY: Just an FFI call, there are no extra safety requirements.
163         let ptr = unsafe { bindings::errname(-self.0.get()) };
164         if ptr.is_null() {
165             None
166         } else {
167             // SAFETY: The string returned by `errname` is static and `NUL`-terminated.
168             Some(unsafe { CStr::from_char_ptr(ptr) })
169         }
170     }
171 
172     /// Returns a string representing the error, if one exists.
173     ///
174     /// When `testlib` is configured, this always returns `None` to avoid the dependency on a
175     /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still
176     /// run in userspace.
177     #[cfg(any(test, testlib))]
name(&self) -> Option<&'static CStr>178     pub fn name(&self) -> Option<&'static CStr> {
179         None
180     }
181 }
182 
183 impl fmt::Debug for Error {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result184     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
185         match self.name() {
186             // Print out number if no name can be found.
187             None => f.debug_tuple("Error").field(&-self.0).finish(),
188             Some(name) => f
189                 .debug_tuple(
190                     // SAFETY: These strings are ASCII-only.
191                     unsafe { core::str::from_utf8_unchecked(name) },
192                 )
193                 .finish(),
194         }
195     }
196 }
197 
198 impl From<AllocError> for Error {
from(_: AllocError) -> Error199     fn from(_: AllocError) -> Error {
200         code::ENOMEM
201     }
202 }
203 
204 impl From<TryFromIntError> for Error {
from(_: TryFromIntError) -> Error205     fn from(_: TryFromIntError) -> Error {
206         code::EINVAL
207     }
208 }
209 
210 impl From<Utf8Error> for Error {
from(_: Utf8Error) -> Error211     fn from(_: Utf8Error) -> Error {
212         code::EINVAL
213     }
214 }
215 
216 impl From<LayoutError> for Error {
from(_: LayoutError) -> Error217     fn from(_: LayoutError) -> Error {
218         code::ENOMEM
219     }
220 }
221 
222 impl From<core::fmt::Error> for Error {
from(_: core::fmt::Error) -> Error223     fn from(_: core::fmt::Error) -> Error {
224         code::EINVAL
225     }
226 }
227 
228 impl From<core::convert::Infallible> for Error {
from(e: core::convert::Infallible) -> Error229     fn from(e: core::convert::Infallible) -> Error {
230         match e {}
231     }
232 }
233 
234 /// A [`Result`] with an [`Error`] error type.
235 ///
236 /// To be used as the return type for functions that may fail.
237 ///
238 /// # Error codes in C and Rust
239 ///
240 /// In C, it is common that functions indicate success or failure through
241 /// their return value; modifying or returning extra data through non-`const`
242 /// pointer parameters. In particular, in the kernel, functions that may fail
243 /// typically return an `int` that represents a generic error code. We model
244 /// those as [`Error`].
245 ///
246 /// In Rust, it is idiomatic to model functions that may fail as returning
247 /// a [`Result`]. Since in the kernel many functions return an error code,
248 /// [`Result`] is a type alias for a [`core::result::Result`] that uses
249 /// [`Error`] as its error type.
250 ///
251 /// Note that even if a function does not return anything when it succeeds,
252 /// it should still be modeled as returning a [`Result`] rather than
253 /// just an [`Error`].
254 ///
255 /// Calling a function that returns [`Result`] forces the caller to handle
256 /// the returned [`Result`].
257 ///
258 /// This can be done "manually" by using [`match`]. Using [`match`] to decode
259 /// the [`Result`] is similar to C where all the return value decoding and the
260 /// error handling is done explicitly by writing handling code for each
261 /// error to cover. Using [`match`] the error and success handling can be
262 /// implemented in all detail as required. For example (inspired by
263 /// [`samples/rust/rust_minimal.rs`]):
264 ///
265 /// ```
266 /// # #[allow(clippy::single_match)]
267 /// fn example() -> Result {
268 ///     let mut numbers = KVec::new();
269 ///
270 ///     match numbers.push(72, GFP_KERNEL) {
271 ///         Err(e) => {
272 ///             pr_err!("Error pushing 72: {e:?}");
273 ///             return Err(e.into());
274 ///         }
275 ///         // Do nothing, continue.
276 ///         Ok(()) => (),
277 ///     }
278 ///
279 ///     match numbers.push(108, GFP_KERNEL) {
280 ///         Err(e) => {
281 ///             pr_err!("Error pushing 108: {e:?}");
282 ///             return Err(e.into());
283 ///         }
284 ///         // Do nothing, continue.
285 ///         Ok(()) => (),
286 ///     }
287 ///
288 ///     match numbers.push(200, GFP_KERNEL) {
289 ///         Err(e) => {
290 ///             pr_err!("Error pushing 200: {e:?}");
291 ///             return Err(e.into());
292 ///         }
293 ///         // Do nothing, continue.
294 ///         Ok(()) => (),
295 ///     }
296 ///
297 ///     Ok(())
298 /// }
299 /// # example()?;
300 /// # Ok::<(), Error>(())
301 /// ```
302 ///
303 /// An alternative to be more concise is the [`if let`] syntax:
304 ///
305 /// ```
306 /// fn example() -> Result {
307 ///     let mut numbers = KVec::new();
308 ///
309 ///     if let Err(e) = numbers.push(72, GFP_KERNEL) {
310 ///         pr_err!("Error pushing 72: {e:?}");
311 ///         return Err(e.into());
312 ///     }
313 ///
314 ///     if let Err(e) = numbers.push(108, GFP_KERNEL) {
315 ///         pr_err!("Error pushing 108: {e:?}");
316 ///         return Err(e.into());
317 ///     }
318 ///
319 ///     if let Err(e) = numbers.push(200, GFP_KERNEL) {
320 ///         pr_err!("Error pushing 200: {e:?}");
321 ///         return Err(e.into());
322 ///     }
323 ///
324 ///     Ok(())
325 /// }
326 /// # example()?;
327 /// # Ok::<(), Error>(())
328 /// ```
329 ///
330 /// Instead of these verbose [`match`]/[`if let`], the [`?`] operator can
331 /// be used to handle the [`Result`]. Using the [`?`] operator is often
332 /// the best choice to handle [`Result`] in a non-verbose way as done in
333 /// [`samples/rust/rust_minimal.rs`]:
334 ///
335 /// ```
336 /// fn example() -> Result {
337 ///     let mut numbers = KVec::new();
338 ///
339 ///     numbers.push(72, GFP_KERNEL)?;
340 ///     numbers.push(108, GFP_KERNEL)?;
341 ///     numbers.push(200, GFP_KERNEL)?;
342 ///
343 ///     Ok(())
344 /// }
345 /// # example()?;
346 /// # Ok::<(), Error>(())
347 /// ```
348 ///
349 /// Another possibility is to call [`unwrap()`](Result::unwrap) or
350 /// [`expect()`](Result::expect). However, use of these functions is
351 /// *heavily discouraged* in the kernel because they trigger a Rust
352 /// [`panic!`] if an error happens, which may destabilize the system or
353 /// entirely break it as a result -- just like the C [`BUG()`] macro.
354 /// Please see the documentation for the C macro [`BUG()`] for guidance
355 /// on when to use these functions.
356 ///
357 /// Alternatively, depending on the use case, using [`unwrap_or()`],
358 /// [`unwrap_or_else()`], [`unwrap_or_default()`] or [`unwrap_unchecked()`]
359 /// might be an option, as well.
360 ///
361 /// For even more details, please see the [Rust documentation].
362 ///
363 /// [`match`]: https://doc.rust-lang.org/reference/expressions/match-expr.html
364 /// [`samples/rust/rust_minimal.rs`]: srctree/samples/rust/rust_minimal.rs
365 /// [`if let`]: https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions
366 /// [`?`]: https://doc.rust-lang.org/reference/expressions/operator-expr.html#the-question-mark-operator
367 /// [`unwrap()`]: Result::unwrap
368 /// [`expect()`]: Result::expect
369 /// [`BUG()`]: https://docs.kernel.org/process/deprecated.html#bug-and-bug-on
370 /// [`unwrap_or()`]: Result::unwrap_or
371 /// [`unwrap_or_else()`]: Result::unwrap_or_else
372 /// [`unwrap_or_default()`]: Result::unwrap_or_default
373 /// [`unwrap_unchecked()`]: Result::unwrap_unchecked
374 /// [Rust documentation]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html
375 pub type Result<T = (), E = Error> = core::result::Result<T, E>;
376 
377 /// Converts an integer as returned by a C kernel function to an error if it's negative, and
378 /// `Ok(())` otherwise.
to_result(err: crate::ffi::c_int) -> Result379 pub fn to_result(err: crate::ffi::c_int) -> Result {
380     if err < 0 {
381         Err(Error::from_errno(err))
382     } else {
383         Ok(())
384     }
385 }
386 
387 /// Transform a kernel "error pointer" to a normal pointer.
388 ///
389 /// Some kernel C API functions return an "error pointer" which optionally
390 /// embeds an `errno`. Callers are supposed to check the returned pointer
391 /// for errors. This function performs the check and converts the "error pointer"
392 /// to a normal pointer in an idiomatic fashion.
393 ///
394 /// # Examples
395 ///
396 /// ```ignore
397 /// # use kernel::from_err_ptr;
398 /// # use kernel::bindings;
399 /// fn devm_platform_ioremap_resource(
400 ///     pdev: &mut PlatformDevice,
401 ///     index: u32,
402 /// ) -> Result<*mut kernel::ffi::c_void> {
403 ///     // SAFETY: `pdev` points to a valid platform device. There are no safety requirements
404 ///     // on `index`.
405 ///     from_err_ptr(unsafe { bindings::devm_platform_ioremap_resource(pdev.to_ptr(), index) })
406 /// }
407 /// ```
from_err_ptr<T>(ptr: *mut T) -> Result<*mut T>408 pub fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> {
409     // CAST: Casting a pointer to `*const crate::ffi::c_void` is always valid.
410     let const_ptr: *const crate::ffi::c_void = ptr.cast();
411     // SAFETY: The FFI function does not deref the pointer.
412     if unsafe { bindings::IS_ERR(const_ptr) } {
413         // SAFETY: The FFI function does not deref the pointer.
414         let err = unsafe { bindings::PTR_ERR(const_ptr) };
415 
416         #[allow(clippy::unnecessary_cast)]
417         // CAST: If `IS_ERR()` returns `true`,
418         // then `PTR_ERR()` is guaranteed to return a
419         // negative value greater-or-equal to `-bindings::MAX_ERRNO`,
420         // which always fits in an `i16`, as per the invariant above.
421         // And an `i16` always fits in an `i32`. So casting `err` to
422         // an `i32` can never overflow, and is always valid.
423         //
424         // SAFETY: `IS_ERR()` ensures `err` is a
425         // negative value greater-or-equal to `-bindings::MAX_ERRNO`.
426         return Err(unsafe { Error::from_errno_unchecked(err as crate::ffi::c_int) });
427     }
428     Ok(ptr)
429 }
430 
431 /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to
432 /// a C integer result.
433 ///
434 /// This is useful when calling Rust functions that return [`crate::error::Result<T>`]
435 /// from inside `extern "C"` functions that need to return an integer error result.
436 ///
437 /// `T` should be convertible from an `i16` via `From<i16>`.
438 ///
439 /// # Examples
440 ///
441 /// ```ignore
442 /// # use kernel::from_result;
443 /// # use kernel::bindings;
444 /// unsafe extern "C" fn probe_callback(
445 ///     pdev: *mut bindings::platform_device,
446 /// ) -> kernel::ffi::c_int {
447 ///     from_result(|| {
448 ///         let ptr = devm_alloc(pdev)?;
449 ///         bindings::platform_set_drvdata(pdev, ptr);
450 ///         Ok(0)
451 ///     })
452 /// }
453 /// ```
from_result<T, F>(f: F) -> T where T: From<i16>, F: FnOnce() -> Result<T>,454 pub fn from_result<T, F>(f: F) -> T
455 where
456     T: From<i16>,
457     F: FnOnce() -> Result<T>,
458 {
459     match f() {
460         Ok(v) => v,
461         // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`,
462         // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above,
463         // therefore a negative `errno` always fits in an `i16` and will not overflow.
464         Err(e) => T::from(e.to_errno() as i16),
465     }
466 }
467 
468 /// Error message for calling a default function of a [`#[vtable]`](macros::vtable) trait.
469 pub const VTABLE_DEFAULT_ERROR: &str =
470     "This function must not be called, see the #[vtable] documentation.";
471