1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/cpuid/api.h>
33 #include <asm/perf_event.h>
34 #include <asm/mmu_context.h>
35 #include <asm/doublefault.h>
36 #include <asm/archrandom.h>
37 #include <asm/hypervisor.h>
38 #include <asm/processor.h>
39 #include <asm/tlbflush.h>
40 #include <asm/debugreg.h>
41 #include <asm/sections.h>
42 #include <asm/vsyscall.h>
43 #include <linux/topology.h>
44 #include <linux/cpumask.h>
45 #include <linux/atomic.h>
46 #include <asm/proto.h>
47 #include <asm/setup.h>
48 #include <asm/apic.h>
49 #include <asm/desc.h>
50 #include <asm/fpu/api.h>
51 #include <asm/mtrr.h>
52 #include <asm/hwcap2.h>
53 #include <linux/numa.h>
54 #include <asm/numa.h>
55 #include <asm/asm.h>
56 #include <asm/bugs.h>
57 #include <asm/cpu.h>
58 #include <asm/mce.h>
59 #include <asm/msr.h>
60 #include <asm/cacheinfo.h>
61 #include <asm/memtype.h>
62 #include <asm/microcode.h>
63 #include <asm/intel-family.h>
64 #include <asm/cpu_device_id.h>
65 #include <asm/fred.h>
66 #include <asm/uv/uv.h>
67 #include <asm/ia32.h>
68 #include <asm/set_memory.h>
69 #include <asm/traps.h>
70 #include <asm/sev.h>
71 #include <asm/tdx.h>
72 #include <asm/posted_intr.h>
73 #include <asm/runtime-const.h>
74
75 #include "cpu.h"
76
77 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
78 EXPORT_PER_CPU_SYMBOL(cpu_info);
79
80 u32 elf_hwcap2 __read_mostly;
81
82 /* Number of siblings per CPU package */
83 unsigned int __max_threads_per_core __ro_after_init = 1;
84 EXPORT_SYMBOL(__max_threads_per_core);
85
86 unsigned int __max_dies_per_package __ro_after_init = 1;
87 EXPORT_SYMBOL(__max_dies_per_package);
88
89 unsigned int __max_logical_packages __ro_after_init = 1;
90 EXPORT_SYMBOL(__max_logical_packages);
91
92 unsigned int __num_cores_per_package __ro_after_init = 1;
93 EXPORT_SYMBOL(__num_cores_per_package);
94
95 unsigned int __num_threads_per_package __ro_after_init = 1;
96 EXPORT_SYMBOL(__num_threads_per_package);
97
98 static struct ppin_info {
99 int feature;
100 int msr_ppin_ctl;
101 int msr_ppin;
102 } ppin_info[] = {
103 [X86_VENDOR_INTEL] = {
104 .feature = X86_FEATURE_INTEL_PPIN,
105 .msr_ppin_ctl = MSR_PPIN_CTL,
106 .msr_ppin = MSR_PPIN
107 },
108 [X86_VENDOR_AMD] = {
109 .feature = X86_FEATURE_AMD_PPIN,
110 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
111 .msr_ppin = MSR_AMD_PPIN
112 },
113 };
114
115 static const struct x86_cpu_id ppin_cpuids[] = {
116 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
117 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
118
119 /* Legacy models without CPUID enumeration */
120 X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
123 X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
124 X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
125 X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
126 X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
127 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
128 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
129 X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
130 X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
131
132 {}
133 };
134
ppin_init(struct cpuinfo_x86 * c)135 static void ppin_init(struct cpuinfo_x86 *c)
136 {
137 const struct x86_cpu_id *id;
138 unsigned long long val;
139 struct ppin_info *info;
140
141 id = x86_match_cpu(ppin_cpuids);
142 if (!id)
143 return;
144
145 /*
146 * Testing the presence of the MSR is not enough. Need to check
147 * that the PPIN_CTL allows reading of the PPIN.
148 */
149 info = (struct ppin_info *)id->driver_data;
150
151 if (rdmsrq_safe(info->msr_ppin_ctl, &val))
152 goto clear_ppin;
153
154 if ((val & 3UL) == 1UL) {
155 /* PPIN locked in disabled mode */
156 goto clear_ppin;
157 }
158
159 /* If PPIN is disabled, try to enable */
160 if (!(val & 2UL)) {
161 wrmsrq_safe(info->msr_ppin_ctl, val | 2UL);
162 rdmsrq_safe(info->msr_ppin_ctl, &val);
163 }
164
165 /* Is the enable bit set? */
166 if (val & 2UL) {
167 c->ppin = native_rdmsrq(info->msr_ppin);
168 set_cpu_cap(c, info->feature);
169 return;
170 }
171
172 clear_ppin:
173 setup_clear_cpu_cap(info->feature);
174 }
175
default_init(struct cpuinfo_x86 * c)176 static void default_init(struct cpuinfo_x86 *c)
177 {
178 #ifdef CONFIG_X86_64
179 cpu_detect_cache_sizes(c);
180 #else
181 /* Not much we can do here... */
182 /* Check if at least it has cpuid */
183 if (c->cpuid_level == -1) {
184 /* No cpuid. It must be an ancient CPU */
185 if (c->x86 == 4)
186 strcpy(c->x86_model_id, "486");
187 else if (c->x86 == 3)
188 strcpy(c->x86_model_id, "386");
189 }
190 #endif
191 }
192
193 static const struct cpu_dev default_cpu = {
194 .c_init = default_init,
195 .c_vendor = "Unknown",
196 .c_x86_vendor = X86_VENDOR_UNKNOWN,
197 };
198
199 static const struct cpu_dev *this_cpu = &default_cpu;
200
201 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
202 #ifdef CONFIG_X86_64
203 /*
204 * We need valid kernel segments for data and code in long mode too
205 * IRET will check the segment types kkeil 2000/10/28
206 * Also sysret mandates a special GDT layout
207 *
208 * TLS descriptors are currently at a different place compared to i386.
209 * Hopefully nobody expects them at a fixed place (Wine?)
210 */
211 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
212 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
213 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
214 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
215 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
216 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
217 #else
218 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
219 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
220 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
221 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
222 /*
223 * Segments used for calling PnP BIOS have byte granularity.
224 * They code segments and data segments have fixed 64k limits,
225 * the transfer segment sizes are set at run time.
226 */
227 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
228 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
229 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
230 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
231 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
232 /*
233 * The APM segments have byte granularity and their bases
234 * are set at run time. All have 64k limits.
235 */
236 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
237 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
238 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
239
240 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
241 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
242 #endif
243 } };
244 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
245 SYM_PIC_ALIAS(gdt_page);
246
247 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)248 static int __init x86_nopcid_setup(char *s)
249 {
250 /* nopcid doesn't accept parameters */
251 if (s)
252 return -EINVAL;
253
254 /* do not emit a message if the feature is not present */
255 if (!boot_cpu_has(X86_FEATURE_PCID))
256 return 0;
257
258 setup_clear_cpu_cap(X86_FEATURE_PCID);
259 pr_info("nopcid: PCID feature disabled\n");
260 return 0;
261 }
262 early_param("nopcid", x86_nopcid_setup);
263 #endif
264
x86_noinvpcid_setup(char * s)265 static int __init x86_noinvpcid_setup(char *s)
266 {
267 /* noinvpcid doesn't accept parameters */
268 if (s)
269 return -EINVAL;
270
271 /* do not emit a message if the feature is not present */
272 if (!boot_cpu_has(X86_FEATURE_INVPCID))
273 return 0;
274
275 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
276 pr_info("noinvpcid: INVPCID feature disabled\n");
277 return 0;
278 }
279 early_param("noinvpcid", x86_noinvpcid_setup);
280
281 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(unsigned long flag)282 static inline bool flag_is_changeable_p(unsigned long flag)
283 {
284 unsigned long f1, f2;
285
286 if (!IS_ENABLED(CONFIG_X86_32))
287 return true;
288
289 /*
290 * Cyrix and IDT cpus allow disabling of CPUID
291 * so the code below may return different results
292 * when it is executed before and after enabling
293 * the CPUID. Add "volatile" to not allow gcc to
294 * optimize the subsequent calls to this function.
295 */
296 asm volatile ("pushfl \n\t"
297 "pushfl \n\t"
298 "popl %0 \n\t"
299 "movl %0, %1 \n\t"
300 "xorl %2, %0 \n\t"
301 "pushl %0 \n\t"
302 "popfl \n\t"
303 "pushfl \n\t"
304 "popl %0 \n\t"
305 "popfl \n\t"
306
307 : "=&r" (f1), "=&r" (f2)
308 : "ir" (flag));
309
310 return (f1 ^ f2) & flag;
311 }
312
313 #ifdef CONFIG_X86_32
314 static int cachesize_override = -1;
315 static int disable_x86_serial_nr = 1;
316
cachesize_setup(char * str)317 static int __init cachesize_setup(char *str)
318 {
319 get_option(&str, &cachesize_override);
320 return 1;
321 }
322 __setup("cachesize=", cachesize_setup);
323
324 /* Probe for the CPUID instruction */
cpuid_feature(void)325 bool cpuid_feature(void)
326 {
327 return flag_is_changeable_p(X86_EFLAGS_ID);
328 }
329
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)330 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
331 {
332 unsigned long lo, hi;
333
334 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
335 return;
336
337 /* Disable processor serial number: */
338
339 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
340 lo |= 0x200000;
341 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
342
343 pr_notice("CPU serial number disabled.\n");
344 clear_cpu_cap(c, X86_FEATURE_PN);
345
346 /* Disabling the serial number may affect the cpuid level */
347 c->cpuid_level = cpuid_eax(0);
348 }
349
x86_serial_nr_setup(char * s)350 static int __init x86_serial_nr_setup(char *s)
351 {
352 disable_x86_serial_nr = 0;
353 return 1;
354 }
355 __setup("serialnumber", x86_serial_nr_setup);
356 #else
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)357 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
358 {
359 }
360 #endif
361
setup_smep(struct cpuinfo_x86 * c)362 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
363 {
364 if (cpu_has(c, X86_FEATURE_SMEP))
365 cr4_set_bits(X86_CR4_SMEP);
366 }
367
setup_smap(struct cpuinfo_x86 * c)368 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
369 {
370 unsigned long eflags = native_save_fl();
371
372 /* This should have been cleared long ago */
373 BUG_ON(eflags & X86_EFLAGS_AC);
374
375 if (cpu_has(c, X86_FEATURE_SMAP))
376 cr4_set_bits(X86_CR4_SMAP);
377 }
378
setup_umip(struct cpuinfo_x86 * c)379 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
380 {
381 /* Check the boot processor, plus build option for UMIP. */
382 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
383 goto out;
384
385 /* Check the current processor's cpuid bits. */
386 if (!cpu_has(c, X86_FEATURE_UMIP))
387 goto out;
388
389 cr4_set_bits(X86_CR4_UMIP);
390
391 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
392
393 return;
394
395 out:
396 /*
397 * Make sure UMIP is disabled in case it was enabled in a
398 * previous boot (e.g., via kexec).
399 */
400 cr4_clear_bits(X86_CR4_UMIP);
401 }
402
403 /* These bits should not change their value after CPU init is finished. */
404 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
405 X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
406 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
407 static unsigned long cr4_pinned_bits __ro_after_init;
408
native_write_cr0(unsigned long val)409 void native_write_cr0(unsigned long val)
410 {
411 unsigned long bits_missing = 0;
412
413 set_register:
414 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
415
416 if (static_branch_likely(&cr_pinning)) {
417 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
418 bits_missing = X86_CR0_WP;
419 val |= bits_missing;
420 goto set_register;
421 }
422 /* Warn after we've set the missing bits. */
423 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
424 }
425 }
426 EXPORT_SYMBOL(native_write_cr0);
427
native_write_cr4(unsigned long val)428 void __no_profile native_write_cr4(unsigned long val)
429 {
430 unsigned long bits_changed = 0;
431
432 set_register:
433 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
434
435 if (static_branch_likely(&cr_pinning)) {
436 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
437 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
438 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
439 goto set_register;
440 }
441 /* Warn after we've corrected the changed bits. */
442 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
443 bits_changed);
444 }
445 }
446 #if IS_MODULE(CONFIG_LKDTM)
447 EXPORT_SYMBOL_GPL(native_write_cr4);
448 #endif
449
cr4_update_irqsoff(unsigned long set,unsigned long clear)450 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
451 {
452 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
453
454 lockdep_assert_irqs_disabled();
455
456 newval = (cr4 & ~clear) | set;
457 if (newval != cr4) {
458 this_cpu_write(cpu_tlbstate.cr4, newval);
459 __write_cr4(newval);
460 }
461 }
462 EXPORT_SYMBOL(cr4_update_irqsoff);
463
464 /* Read the CR4 shadow. */
cr4_read_shadow(void)465 unsigned long cr4_read_shadow(void)
466 {
467 return this_cpu_read(cpu_tlbstate.cr4);
468 }
469 EXPORT_SYMBOL_GPL(cr4_read_shadow);
470
cr4_init(void)471 void cr4_init(void)
472 {
473 unsigned long cr4 = __read_cr4();
474
475 if (boot_cpu_has(X86_FEATURE_PCID))
476 cr4 |= X86_CR4_PCIDE;
477 if (static_branch_likely(&cr_pinning))
478 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
479
480 __write_cr4(cr4);
481
482 /* Initialize cr4 shadow for this CPU. */
483 this_cpu_write(cpu_tlbstate.cr4, cr4);
484 }
485
486 /*
487 * Once CPU feature detection is finished (and boot params have been
488 * parsed), record any of the sensitive CR bits that are set, and
489 * enable CR pinning.
490 */
setup_cr_pinning(void)491 static void __init setup_cr_pinning(void)
492 {
493 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
494 static_key_enable(&cr_pinning.key);
495 }
496
x86_nofsgsbase_setup(char * arg)497 static __init int x86_nofsgsbase_setup(char *arg)
498 {
499 /* Require an exact match without trailing characters. */
500 if (strlen(arg))
501 return 0;
502
503 /* Do not emit a message if the feature is not present. */
504 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
505 return 1;
506
507 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
508 pr_info("FSGSBASE disabled via kernel command line\n");
509 return 1;
510 }
511 __setup("nofsgsbase", x86_nofsgsbase_setup);
512
513 /*
514 * Protection Keys are not available in 32-bit mode.
515 */
516 static bool pku_disabled;
517
setup_pku(struct cpuinfo_x86 * c)518 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
519 {
520 if (c == &boot_cpu_data) {
521 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
522 return;
523 /*
524 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
525 * bit to be set. Enforce it.
526 */
527 setup_force_cpu_cap(X86_FEATURE_OSPKE);
528
529 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
530 return;
531 }
532
533 cr4_set_bits(X86_CR4_PKE);
534 /* Load the default PKRU value */
535 pkru_write_default();
536 }
537
538 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)539 static __init int setup_disable_pku(char *arg)
540 {
541 /*
542 * Do not clear the X86_FEATURE_PKU bit. All of the
543 * runtime checks are against OSPKE so clearing the
544 * bit does nothing.
545 *
546 * This way, we will see "pku" in cpuinfo, but not
547 * "ospke", which is exactly what we want. It shows
548 * that the CPU has PKU, but the OS has not enabled it.
549 * This happens to be exactly how a system would look
550 * if we disabled the config option.
551 */
552 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
553 pku_disabled = true;
554 return 1;
555 }
556 __setup("nopku", setup_disable_pku);
557 #endif
558
559 #ifdef CONFIG_X86_KERNEL_IBT
560
ibt_save(bool disable)561 __noendbr u64 ibt_save(bool disable)
562 {
563 u64 msr = 0;
564
565 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
566 rdmsrq(MSR_IA32_S_CET, msr);
567 if (disable)
568 wrmsrq(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
569 }
570
571 return msr;
572 }
573
ibt_restore(u64 save)574 __noendbr void ibt_restore(u64 save)
575 {
576 u64 msr;
577
578 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579 rdmsrq(MSR_IA32_S_CET, msr);
580 msr &= ~CET_ENDBR_EN;
581 msr |= (save & CET_ENDBR_EN);
582 wrmsrq(MSR_IA32_S_CET, msr);
583 }
584 }
585
586 #endif
587
setup_cet(struct cpuinfo_x86 * c)588 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
589 {
590 bool user_shstk, kernel_ibt;
591
592 if (!IS_ENABLED(CONFIG_X86_CET))
593 return;
594
595 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
596 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
597 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
598
599 if (!kernel_ibt && !user_shstk)
600 return;
601
602 if (user_shstk)
603 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
604
605 if (kernel_ibt)
606 wrmsrq(MSR_IA32_S_CET, CET_ENDBR_EN);
607 else
608 wrmsrq(MSR_IA32_S_CET, 0);
609
610 cr4_set_bits(X86_CR4_CET);
611
612 if (kernel_ibt && ibt_selftest()) {
613 pr_err("IBT selftest: Failed!\n");
614 wrmsrq(MSR_IA32_S_CET, 0);
615 setup_clear_cpu_cap(X86_FEATURE_IBT);
616 }
617 }
618
cet_disable(void)619 __noendbr void cet_disable(void)
620 {
621 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
622 cpu_feature_enabled(X86_FEATURE_SHSTK)))
623 return;
624
625 wrmsrq(MSR_IA32_S_CET, 0);
626 wrmsrq(MSR_IA32_U_CET, 0);
627 }
628
629 /*
630 * Some CPU features depend on higher CPUID levels, which may not always
631 * be available due to CPUID level capping or broken virtualization
632 * software. Add those features to this table to auto-disable them.
633 */
634 struct cpuid_dependent_feature {
635 u32 feature;
636 u32 level;
637 };
638
639 static const struct cpuid_dependent_feature
640 cpuid_dependent_features[] = {
641 { X86_FEATURE_MWAIT, CPUID_LEAF_MWAIT },
642 { X86_FEATURE_DCA, CPUID_LEAF_DCA },
643 { X86_FEATURE_XSAVE, CPUID_LEAF_XSTATE },
644 { 0, 0 }
645 };
646
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)647 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
648 {
649 const struct cpuid_dependent_feature *df;
650
651 for (df = cpuid_dependent_features; df->feature; df++) {
652
653 if (!cpu_has(c, df->feature))
654 continue;
655 /*
656 * Note: cpuid_level is set to -1 if unavailable, but
657 * extended_extended_level is set to 0 if unavailable
658 * and the legitimate extended levels are all negative
659 * when signed; hence the weird messing around with
660 * signs here...
661 */
662 if (!((s32)df->level < 0 ?
663 (u32)df->level > (u32)c->extended_cpuid_level :
664 (s32)df->level > (s32)c->cpuid_level))
665 continue;
666
667 clear_cpu_cap(c, df->feature);
668 if (!warn)
669 continue;
670
671 pr_warn("CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
672 x86_cap_flags[df->feature], df->level);
673 }
674 }
675
676 /*
677 * Naming convention should be: <Name> [(<Codename>)]
678 * This table only is used unless init_<vendor>() below doesn't set it;
679 * in particular, if CPUID levels 0x80000002..4 are supported, this
680 * isn't used
681 */
682
683 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)684 static const char *table_lookup_model(struct cpuinfo_x86 *c)
685 {
686 #ifdef CONFIG_X86_32
687 const struct legacy_cpu_model_info *info;
688
689 if (c->x86_model >= 16)
690 return NULL; /* Range check */
691
692 if (!this_cpu)
693 return NULL;
694
695 info = this_cpu->legacy_models;
696
697 while (info->family) {
698 if (info->family == c->x86)
699 return info->model_names[c->x86_model];
700 info++;
701 }
702 #endif
703 return NULL; /* Not found */
704 }
705
706 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
707 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
708 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
709
710 #ifdef CONFIG_X86_32
711 /* The 32-bit entry code needs to find cpu_entry_area. */
712 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
713 #endif
714
715 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)716 void load_direct_gdt(int cpu)
717 {
718 struct desc_ptr gdt_descr;
719
720 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
721 gdt_descr.size = GDT_SIZE - 1;
722 load_gdt(&gdt_descr);
723 }
724 EXPORT_SYMBOL_GPL(load_direct_gdt);
725
726 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)727 void load_fixmap_gdt(int cpu)
728 {
729 struct desc_ptr gdt_descr;
730
731 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
732 gdt_descr.size = GDT_SIZE - 1;
733 load_gdt(&gdt_descr);
734 }
735 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
736
737 /**
738 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
739 * @cpu: The CPU number for which this is invoked
740 *
741 * Invoked during early boot to switch from early GDT and early per CPU to
742 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
743 * switch is implicit by loading the direct GDT. On 64bit this requires
744 * to update GSBASE.
745 */
switch_gdt_and_percpu_base(int cpu)746 void __init switch_gdt_and_percpu_base(int cpu)
747 {
748 load_direct_gdt(cpu);
749
750 #ifdef CONFIG_X86_64
751 /*
752 * No need to load %gs. It is already correct.
753 *
754 * Writing %gs on 64bit would zero GSBASE which would make any per
755 * CPU operation up to the point of the wrmsrq() fault.
756 *
757 * Set GSBASE to the new offset. Until the wrmsrq() happens the
758 * early mapping is still valid. That means the GSBASE update will
759 * lose any prior per CPU data which was not copied over in
760 * setup_per_cpu_areas().
761 *
762 * This works even with stackprotector enabled because the
763 * per CPU stack canary is 0 in both per CPU areas.
764 */
765 wrmsrq(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
766 #else
767 /*
768 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
769 * it is required to load FS again so that the 'hidden' part is
770 * updated from the new GDT. Up to this point the early per CPU
771 * translation is active. Any content of the early per CPU data
772 * which was not copied over in setup_per_cpu_areas() is lost.
773 */
774 loadsegment(fs, __KERNEL_PERCPU);
775 #endif
776 }
777
778 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
779
get_model_name(struct cpuinfo_x86 * c)780 static void get_model_name(struct cpuinfo_x86 *c)
781 {
782 unsigned int *v;
783 char *p, *q, *s;
784
785 if (c->extended_cpuid_level < 0x80000004)
786 return;
787
788 v = (unsigned int *)c->x86_model_id;
789 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
790 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
791 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
792 c->x86_model_id[48] = 0;
793
794 /* Trim whitespace */
795 p = q = s = &c->x86_model_id[0];
796
797 while (*p == ' ')
798 p++;
799
800 while (*p) {
801 /* Note the last non-whitespace index */
802 if (!isspace(*p))
803 s = q;
804
805 *q++ = *p++;
806 }
807
808 *(s + 1) = '\0';
809 }
810
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)811 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
812 {
813 unsigned int n, dummy, ebx, ecx, edx, l2size;
814
815 n = c->extended_cpuid_level;
816
817 if (n >= 0x80000005) {
818 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
819 c->x86_cache_size = (ecx>>24) + (edx>>24);
820 #ifdef CONFIG_X86_64
821 /* On K8 L1 TLB is inclusive, so don't count it */
822 c->x86_tlbsize = 0;
823 #endif
824 }
825
826 if (n < 0x80000006) /* Some chips just has a large L1. */
827 return;
828
829 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
830 l2size = ecx >> 16;
831
832 #ifdef CONFIG_X86_64
833 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
834 #else
835 /* do processor-specific cache resizing */
836 if (this_cpu->legacy_cache_size)
837 l2size = this_cpu->legacy_cache_size(c, l2size);
838
839 /* Allow user to override all this if necessary. */
840 if (cachesize_override != -1)
841 l2size = cachesize_override;
842
843 if (l2size == 0)
844 return; /* Again, no L2 cache is possible */
845 #endif
846
847 c->x86_cache_size = l2size;
848 }
849
850 u16 __read_mostly tlb_lli_4k;
851 u16 __read_mostly tlb_lli_2m;
852 u16 __read_mostly tlb_lli_4m;
853 u16 __read_mostly tlb_lld_4k;
854 u16 __read_mostly tlb_lld_2m;
855 u16 __read_mostly tlb_lld_4m;
856 u16 __read_mostly tlb_lld_1g;
857
cpu_detect_tlb(struct cpuinfo_x86 * c)858 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
859 {
860 if (this_cpu->c_detect_tlb)
861 this_cpu->c_detect_tlb(c);
862
863 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
864 tlb_lli_4k, tlb_lli_2m, tlb_lli_4m);
865
866 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
867 tlb_lld_4k, tlb_lld_2m, tlb_lld_4m, tlb_lld_1g);
868 }
869
get_cpu_vendor(struct cpuinfo_x86 * c)870 void get_cpu_vendor(struct cpuinfo_x86 *c)
871 {
872 char *v = c->x86_vendor_id;
873 int i;
874
875 for (i = 0; i < X86_VENDOR_NUM; i++) {
876 if (!cpu_devs[i])
877 break;
878
879 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
880 (cpu_devs[i]->c_ident[1] &&
881 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
882
883 this_cpu = cpu_devs[i];
884 c->x86_vendor = this_cpu->c_x86_vendor;
885 return;
886 }
887 }
888
889 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
890 "CPU: Your system may be unstable.\n", v);
891
892 c->x86_vendor = X86_VENDOR_UNKNOWN;
893 this_cpu = &default_cpu;
894 }
895
cpu_detect(struct cpuinfo_x86 * c)896 void cpu_detect(struct cpuinfo_x86 *c)
897 {
898 /* Get vendor name */
899 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
900 (unsigned int *)&c->x86_vendor_id[0],
901 (unsigned int *)&c->x86_vendor_id[8],
902 (unsigned int *)&c->x86_vendor_id[4]);
903
904 c->x86 = 4;
905 /* Intel-defined flags: level 0x00000001 */
906 if (c->cpuid_level >= 0x00000001) {
907 u32 junk, tfms, cap0, misc;
908
909 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
910 c->x86 = x86_family(tfms);
911 c->x86_model = x86_model(tfms);
912 c->x86_stepping = x86_stepping(tfms);
913
914 if (cap0 & (1<<19)) {
915 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
916 c->x86_cache_alignment = c->x86_clflush_size;
917 }
918 }
919 }
920
apply_forced_caps(struct cpuinfo_x86 * c)921 static void apply_forced_caps(struct cpuinfo_x86 *c)
922 {
923 int i;
924
925 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
926 c->x86_capability[i] &= ~cpu_caps_cleared[i];
927 c->x86_capability[i] |= cpu_caps_set[i];
928 }
929 }
930
init_speculation_control(struct cpuinfo_x86 * c)931 static void init_speculation_control(struct cpuinfo_x86 *c)
932 {
933 /*
934 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
935 * and they also have a different bit for STIBP support. Also,
936 * a hypervisor might have set the individual AMD bits even on
937 * Intel CPUs, for finer-grained selection of what's available.
938 */
939 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
940 set_cpu_cap(c, X86_FEATURE_IBRS);
941 set_cpu_cap(c, X86_FEATURE_IBPB);
942 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
943 }
944
945 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
946 set_cpu_cap(c, X86_FEATURE_STIBP);
947
948 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
949 cpu_has(c, X86_FEATURE_VIRT_SSBD))
950 set_cpu_cap(c, X86_FEATURE_SSBD);
951
952 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
953 set_cpu_cap(c, X86_FEATURE_IBRS);
954 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
955 }
956
957 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
958 set_cpu_cap(c, X86_FEATURE_IBPB);
959
960 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
961 set_cpu_cap(c, X86_FEATURE_STIBP);
962 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
963 }
964
965 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
966 set_cpu_cap(c, X86_FEATURE_SSBD);
967 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
968 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
969 }
970 }
971
get_cpu_cap(struct cpuinfo_x86 * c)972 void get_cpu_cap(struct cpuinfo_x86 *c)
973 {
974 u32 eax, ebx, ecx, edx;
975
976 /* Intel-defined flags: level 0x00000001 */
977 if (c->cpuid_level >= 0x00000001) {
978 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
979
980 c->x86_capability[CPUID_1_ECX] = ecx;
981 c->x86_capability[CPUID_1_EDX] = edx;
982 }
983
984 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
985 if (c->cpuid_level >= 0x00000006)
986 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
987
988 /* Additional Intel-defined flags: level 0x00000007 */
989 if (c->cpuid_level >= 0x00000007) {
990 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
991 c->x86_capability[CPUID_7_0_EBX] = ebx;
992 c->x86_capability[CPUID_7_ECX] = ecx;
993 c->x86_capability[CPUID_7_EDX] = edx;
994
995 /* Check valid sub-leaf index before accessing it */
996 if (eax >= 1) {
997 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
998 c->x86_capability[CPUID_7_1_EAX] = eax;
999 }
1000 }
1001
1002 /* Extended state features: level 0x0000000d */
1003 if (c->cpuid_level >= 0x0000000d) {
1004 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1005
1006 c->x86_capability[CPUID_D_1_EAX] = eax;
1007 }
1008
1009 /*
1010 * Check if extended CPUID leaves are implemented: Max extended
1011 * CPUID leaf must be in the 0x80000001-0x8000ffff range.
1012 */
1013 eax = cpuid_eax(0x80000000);
1014 c->extended_cpuid_level = ((eax & 0xffff0000) == 0x80000000) ? eax : 0;
1015
1016 if (c->extended_cpuid_level >= 0x80000001) {
1017 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1018
1019 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1020 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1021 }
1022
1023 if (c->extended_cpuid_level >= 0x80000007) {
1024 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1025
1026 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1027 c->x86_power = edx;
1028 }
1029
1030 if (c->extended_cpuid_level >= 0x80000008) {
1031 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1032 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1033 }
1034
1035 if (c->extended_cpuid_level >= 0x8000000a)
1036 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1037
1038 if (c->extended_cpuid_level >= 0x8000001f)
1039 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1040
1041 if (c->extended_cpuid_level >= 0x80000021)
1042 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1043
1044 init_scattered_cpuid_features(c);
1045 init_speculation_control(c);
1046
1047 /*
1048 * Clear/Set all flags overridden by options, after probe.
1049 * This needs to happen each time we re-probe, which may happen
1050 * several times during CPU initialization.
1051 */
1052 apply_forced_caps(c);
1053 }
1054
get_cpu_address_sizes(struct cpuinfo_x86 * c)1055 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1056 {
1057 u32 eax, ebx, ecx, edx;
1058
1059 if (!cpu_has(c, X86_FEATURE_CPUID) ||
1060 (c->extended_cpuid_level < 0x80000008)) {
1061 if (IS_ENABLED(CONFIG_X86_64)) {
1062 c->x86_clflush_size = 64;
1063 c->x86_phys_bits = 36;
1064 c->x86_virt_bits = 48;
1065 } else {
1066 c->x86_clflush_size = 32;
1067 c->x86_virt_bits = 32;
1068 c->x86_phys_bits = 32;
1069
1070 if (cpu_has(c, X86_FEATURE_PAE) ||
1071 cpu_has(c, X86_FEATURE_PSE36))
1072 c->x86_phys_bits = 36;
1073 }
1074 } else {
1075 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1076
1077 c->x86_virt_bits = (eax >> 8) & 0xff;
1078 c->x86_phys_bits = eax & 0xff;
1079
1080 /* Provide a sane default if not enumerated: */
1081 if (!c->x86_clflush_size)
1082 c->x86_clflush_size = 32;
1083 }
1084
1085 c->x86_cache_bits = c->x86_phys_bits;
1086 c->x86_cache_alignment = c->x86_clflush_size;
1087 }
1088
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1089 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1090 {
1091 int i;
1092
1093 /*
1094 * First of all, decide if this is a 486 or higher
1095 * It's a 486 if we can modify the AC flag
1096 */
1097 if (flag_is_changeable_p(X86_EFLAGS_AC))
1098 c->x86 = 4;
1099 else
1100 c->x86 = 3;
1101
1102 for (i = 0; i < X86_VENDOR_NUM; i++)
1103 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1104 c->x86_vendor_id[0] = 0;
1105 cpu_devs[i]->c_identify(c);
1106 if (c->x86_vendor_id[0]) {
1107 get_cpu_vendor(c);
1108 break;
1109 }
1110 }
1111 }
1112
1113 #define NO_SPECULATION BIT(0)
1114 #define NO_MELTDOWN BIT(1)
1115 #define NO_SSB BIT(2)
1116 #define NO_L1TF BIT(3)
1117 #define NO_MDS BIT(4)
1118 #define MSBDS_ONLY BIT(5)
1119 #define NO_SWAPGS BIT(6)
1120 #define NO_ITLB_MULTIHIT BIT(7)
1121 #define NO_SPECTRE_V2 BIT(8)
1122 #define NO_MMIO BIT(9)
1123 #define NO_EIBRS_PBRSB BIT(10)
1124 #define NO_BHI BIT(11)
1125
1126 #define VULNWL(vendor, family, model, whitelist) \
1127 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1128
1129 #define VULNWL_INTEL(vfm, whitelist) \
1130 X86_MATCH_VFM(vfm, whitelist)
1131
1132 #define VULNWL_AMD(family, whitelist) \
1133 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1134
1135 #define VULNWL_HYGON(family, whitelist) \
1136 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1137
1138 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1139 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1140 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1141 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1142 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1143 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1144 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1145
1146 /* Intel Family 6 */
1147 VULNWL_INTEL(INTEL_TIGERLAKE, NO_MMIO),
1148 VULNWL_INTEL(INTEL_TIGERLAKE_L, NO_MMIO),
1149 VULNWL_INTEL(INTEL_ALDERLAKE, NO_MMIO),
1150 VULNWL_INTEL(INTEL_ALDERLAKE_L, NO_MMIO),
1151
1152 VULNWL_INTEL(INTEL_ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1153 VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1154 VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1155 VULNWL_INTEL(INTEL_ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1156 VULNWL_INTEL(INTEL_ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1157
1158 VULNWL_INTEL(INTEL_ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1159 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161 VULNWL_INTEL(INTEL_ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162 VULNWL_INTEL(INTEL_XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163 VULNWL_INTEL(INTEL_XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1164
1165 VULNWL_INTEL(INTEL_CORE_YONAH, NO_SSB),
1166
1167 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID2,NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
1168 VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1169
1170 VULNWL_INTEL(INTEL_ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1171 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1172 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1173
1174 /*
1175 * Technically, swapgs isn't serializing on AMD (despite it previously
1176 * being documented as such in the APM). But according to AMD, %gs is
1177 * updated non-speculatively, and the issuing of %gs-relative memory
1178 * operands will be blocked until the %gs update completes, which is
1179 * good enough for our purposes.
1180 */
1181
1182 VULNWL_INTEL(INTEL_ATOM_TREMONT, NO_EIBRS_PBRSB),
1183 VULNWL_INTEL(INTEL_ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1184 VULNWL_INTEL(INTEL_ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1185
1186 /* AMD Family 0xf - 0x12 */
1187 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1188 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1191
1192 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1193 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1194 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1195
1196 /* Zhaoxin Family 7 */
1197 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1198 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1199 {}
1200 };
1201
1202 #define VULNBL(vendor, family, model, blacklist) \
1203 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1204
1205 #define VULNBL_INTEL_STEPS(vfm, max_stepping, issues) \
1206 X86_MATCH_VFM_STEPS(vfm, X86_STEP_MIN, max_stepping, issues)
1207
1208 #define VULNBL_INTEL_TYPE(vfm, cpu_type, issues) \
1209 X86_MATCH_VFM_CPU_TYPE(vfm, INTEL_CPU_TYPE_##cpu_type, issues)
1210
1211 #define VULNBL_AMD(family, blacklist) \
1212 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1213
1214 #define VULNBL_HYGON(family, blacklist) \
1215 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1216
1217 #define SRBDS BIT(0)
1218 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1219 #define MMIO BIT(1)
1220 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1221 #define MMIO_SBDS BIT(2)
1222 /* CPU is affected by RETbleed, speculating where you would not expect it */
1223 #define RETBLEED BIT(3)
1224 /* CPU is affected by SMT (cross-thread) return predictions */
1225 #define SMT_RSB BIT(4)
1226 /* CPU is affected by SRSO */
1227 #define SRSO BIT(5)
1228 /* CPU is affected by GDS */
1229 #define GDS BIT(6)
1230 /* CPU is affected by Register File Data Sampling */
1231 #define RFDS BIT(7)
1232 /* CPU is affected by Indirect Target Selection */
1233 #define ITS BIT(8)
1234 /* CPU is affected by Indirect Target Selection, but guest-host isolation is not affected */
1235 #define ITS_NATIVE_ONLY BIT(9)
1236
1237 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1238 VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE, X86_STEP_MAX, SRBDS),
1239 VULNBL_INTEL_STEPS(INTEL_HASWELL, X86_STEP_MAX, SRBDS),
1240 VULNBL_INTEL_STEPS(INTEL_HASWELL_L, X86_STEP_MAX, SRBDS),
1241 VULNBL_INTEL_STEPS(INTEL_HASWELL_G, X86_STEP_MAX, SRBDS),
1242 VULNBL_INTEL_STEPS(INTEL_HASWELL_X, X86_STEP_MAX, MMIO),
1243 VULNBL_INTEL_STEPS(INTEL_BROADWELL_D, X86_STEP_MAX, MMIO),
1244 VULNBL_INTEL_STEPS(INTEL_BROADWELL_G, X86_STEP_MAX, SRBDS),
1245 VULNBL_INTEL_STEPS(INTEL_BROADWELL_X, X86_STEP_MAX, MMIO),
1246 VULNBL_INTEL_STEPS(INTEL_BROADWELL, X86_STEP_MAX, SRBDS),
1247 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X, 0x5, MMIO | RETBLEED | GDS),
1248 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X, X86_STEP_MAX, MMIO | RETBLEED | GDS | ITS),
1249 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_L, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS),
1250 VULNBL_INTEL_STEPS(INTEL_SKYLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS),
1251 VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L, 0xb, MMIO | RETBLEED | GDS | SRBDS),
1252 VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | ITS),
1253 VULNBL_INTEL_STEPS(INTEL_KABYLAKE, 0xc, MMIO | RETBLEED | GDS | SRBDS),
1254 VULNBL_INTEL_STEPS(INTEL_KABYLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | ITS),
1255 VULNBL_INTEL_STEPS(INTEL_CANNONLAKE_L, X86_STEP_MAX, RETBLEED),
1256 VULNBL_INTEL_STEPS(INTEL_ICELAKE_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1257 VULNBL_INTEL_STEPS(INTEL_ICELAKE_D, X86_STEP_MAX, MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1258 VULNBL_INTEL_STEPS(INTEL_ICELAKE_X, X86_STEP_MAX, MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1259 VULNBL_INTEL_STEPS(INTEL_COMETLAKE, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
1260 VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L, 0x0, MMIO | RETBLEED | ITS),
1261 VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
1262 VULNBL_INTEL_STEPS(INTEL_TIGERLAKE_L, X86_STEP_MAX, GDS | ITS | ITS_NATIVE_ONLY),
1263 VULNBL_INTEL_STEPS(INTEL_TIGERLAKE, X86_STEP_MAX, GDS | ITS | ITS_NATIVE_ONLY),
1264 VULNBL_INTEL_STEPS(INTEL_LAKEFIELD, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED),
1265 VULNBL_INTEL_STEPS(INTEL_ROCKETLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1266 VULNBL_INTEL_TYPE(INTEL_ALDERLAKE, ATOM, RFDS),
1267 VULNBL_INTEL_STEPS(INTEL_ALDERLAKE_L, X86_STEP_MAX, RFDS),
1268 VULNBL_INTEL_TYPE(INTEL_RAPTORLAKE, ATOM, RFDS),
1269 VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_P, X86_STEP_MAX, RFDS),
1270 VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_S, X86_STEP_MAX, RFDS),
1271 VULNBL_INTEL_STEPS(INTEL_ATOM_GRACEMONT, X86_STEP_MAX, RFDS),
1272 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT, X86_STEP_MAX, MMIO | MMIO_SBDS | RFDS),
1273 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_D, X86_STEP_MAX, MMIO | RFDS),
1274 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RFDS),
1275 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT, X86_STEP_MAX, RFDS),
1276 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_D, X86_STEP_MAX, RFDS),
1277 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEP_MAX, RFDS),
1278
1279 VULNBL_AMD(0x15, RETBLEED),
1280 VULNBL_AMD(0x16, RETBLEED),
1281 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1282 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1283 VULNBL_AMD(0x19, SRSO),
1284 VULNBL_AMD(0x1a, SRSO),
1285 {}
1286 };
1287
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1288 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1289 {
1290 const struct x86_cpu_id *m = x86_match_cpu(table);
1291
1292 return m && !!(m->driver_data & which);
1293 }
1294
x86_read_arch_cap_msr(void)1295 u64 x86_read_arch_cap_msr(void)
1296 {
1297 u64 x86_arch_cap_msr = 0;
1298
1299 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1300 rdmsrq(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1301
1302 return x86_arch_cap_msr;
1303 }
1304
arch_cap_mmio_immune(u64 x86_arch_cap_msr)1305 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1306 {
1307 return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1308 x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1309 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1310 }
1311
vulnerable_to_rfds(u64 x86_arch_cap_msr)1312 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1313 {
1314 /* The "immunity" bit trumps everything else: */
1315 if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1316 return false;
1317
1318 /*
1319 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1320 * indicate that mitigation is needed because guest is running on a
1321 * vulnerable hardware or may migrate to such hardware:
1322 */
1323 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1324 return true;
1325
1326 /* Only consult the blacklist when there is no enumeration: */
1327 return cpu_matches(cpu_vuln_blacklist, RFDS);
1328 }
1329
vulnerable_to_its(u64 x86_arch_cap_msr)1330 static bool __init vulnerable_to_its(u64 x86_arch_cap_msr)
1331 {
1332 /* The "immunity" bit trumps everything else: */
1333 if (x86_arch_cap_msr & ARCH_CAP_ITS_NO)
1334 return false;
1335 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1336 return false;
1337
1338 /* None of the affected CPUs have BHI_CTRL */
1339 if (boot_cpu_has(X86_FEATURE_BHI_CTRL))
1340 return false;
1341
1342 /*
1343 * If a VMM did not expose ITS_NO, assume that a guest could
1344 * be running on a vulnerable hardware or may migrate to such
1345 * hardware.
1346 */
1347 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1348 return true;
1349
1350 if (cpu_matches(cpu_vuln_blacklist, ITS))
1351 return true;
1352
1353 return false;
1354 }
1355
1356 static struct x86_cpu_id cpu_latest_microcode[] = {
1357 #include "microcode/intel-ucode-defs.h"
1358 {}
1359 };
1360
cpu_has_old_microcode(void)1361 static bool __init cpu_has_old_microcode(void)
1362 {
1363 const struct x86_cpu_id *m = x86_match_cpu(cpu_latest_microcode);
1364
1365 /* Give unknown CPUs a pass: */
1366 if (!m) {
1367 /* Intel CPUs should be in the list. Warn if not: */
1368 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1369 pr_info("x86/CPU: Model not found in latest microcode list\n");
1370 return false;
1371 }
1372
1373 /*
1374 * Hosts usually lie to guests with a super high microcode
1375 * version. Just ignore what hosts tell guests:
1376 */
1377 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1378 return false;
1379
1380 /* Consider all debug microcode to be old: */
1381 if (boot_cpu_data.microcode & BIT(31))
1382 return true;
1383
1384 /* Give new microcode a pass: */
1385 if (boot_cpu_data.microcode >= m->driver_data)
1386 return false;
1387
1388 /* Uh oh, too old: */
1389 return true;
1390 }
1391
cpu_set_bug_bits(struct cpuinfo_x86 * c)1392 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1393 {
1394 u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1395
1396 if (cpu_has_old_microcode()) {
1397 pr_warn("x86/CPU: Running old microcode\n");
1398 setup_force_cpu_bug(X86_BUG_OLD_MICROCODE);
1399 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1400 }
1401
1402 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1403 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1404 !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1405 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1406
1407 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1408 return;
1409
1410 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1411
1412 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) {
1413 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1414 setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER);
1415 }
1416
1417 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1418 !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1419 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1420 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1421
1422 /*
1423 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1424 * flag and protect from vendor-specific bugs via the whitelist.
1425 *
1426 * Don't use AutoIBRS when SNP is enabled because it degrades host
1427 * userspace indirect branch performance.
1428 */
1429 if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1430 (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1431 !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1432 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1433 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1434 !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1435 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1436 }
1437
1438 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1439 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1440 setup_force_cpu_bug(X86_BUG_MDS);
1441 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1442 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1443 }
1444
1445 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1446 setup_force_cpu_bug(X86_BUG_SWAPGS);
1447
1448 /*
1449 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1450 * - TSX is supported or
1451 * - TSX_CTRL is present
1452 *
1453 * TSX_CTRL check is needed for cases when TSX could be disabled before
1454 * the kernel boot e.g. kexec.
1455 * TSX_CTRL check alone is not sufficient for cases when the microcode
1456 * update is not present or running as guest that don't get TSX_CTRL.
1457 */
1458 if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1459 (cpu_has(c, X86_FEATURE_RTM) ||
1460 (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1461 setup_force_cpu_bug(X86_BUG_TAA);
1462
1463 /*
1464 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1465 * in the vulnerability blacklist.
1466 *
1467 * Some of the implications and mitigation of Shared Buffers Data
1468 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1469 * SRBDS.
1470 */
1471 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1472 cpu_has(c, X86_FEATURE_RDSEED)) &&
1473 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1474 setup_force_cpu_bug(X86_BUG_SRBDS);
1475
1476 /*
1477 * Processor MMIO Stale Data bug enumeration
1478 *
1479 * Affected CPU list is generally enough to enumerate the vulnerability,
1480 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1481 * not want the guest to enumerate the bug.
1482 */
1483 if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1484 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1485 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1486 }
1487
1488 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1489 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1490 setup_force_cpu_bug(X86_BUG_RETBLEED);
1491 }
1492
1493 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1494 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1495
1496 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1497 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1498 setup_force_cpu_bug(X86_BUG_SRSO);
1499 }
1500
1501 /*
1502 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1503 * an affected processor, the VMM may have disabled the use of GATHER by
1504 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1505 * which means that AVX will be disabled.
1506 */
1507 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1508 boot_cpu_has(X86_FEATURE_AVX))
1509 setup_force_cpu_bug(X86_BUG_GDS);
1510
1511 if (vulnerable_to_rfds(x86_arch_cap_msr))
1512 setup_force_cpu_bug(X86_BUG_RFDS);
1513
1514 /*
1515 * Intel parts with eIBRS are vulnerable to BHI attacks. Parts with
1516 * BHI_NO still need to use the BHI mitigation to prevent Intra-mode
1517 * attacks. When virtualized, eIBRS could be hidden, assume vulnerable.
1518 */
1519 if (!cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1520 (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1521 boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1522 setup_force_cpu_bug(X86_BUG_BHI);
1523
1524 if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
1525 setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
1526
1527 if (vulnerable_to_its(x86_arch_cap_msr)) {
1528 setup_force_cpu_bug(X86_BUG_ITS);
1529 if (cpu_matches(cpu_vuln_blacklist, ITS_NATIVE_ONLY))
1530 setup_force_cpu_bug(X86_BUG_ITS_NATIVE_ONLY);
1531 }
1532
1533 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1534 return;
1535
1536 /* Rogue Data Cache Load? No! */
1537 if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1538 return;
1539
1540 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1541
1542 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1543 return;
1544
1545 setup_force_cpu_bug(X86_BUG_L1TF);
1546 }
1547
1548 /*
1549 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1550 * unfortunately, that's not true in practice because of early VIA
1551 * chips and (more importantly) broken virtualizers that are not easy
1552 * to detect. In the latter case it doesn't even *fail* reliably, so
1553 * probing for it doesn't even work. Disable it completely on 32-bit
1554 * unless we can find a reliable way to detect all the broken cases.
1555 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1556 */
detect_nopl(void)1557 static void detect_nopl(void)
1558 {
1559 #ifdef CONFIG_X86_32
1560 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1561 #else
1562 setup_force_cpu_cap(X86_FEATURE_NOPL);
1563 #endif
1564 }
1565
parse_set_clear_cpuid(char * arg,bool set)1566 static inline bool parse_set_clear_cpuid(char *arg, bool set)
1567 {
1568 char *opt;
1569 int taint = 0;
1570
1571 while (arg) {
1572 bool found __maybe_unused = false;
1573 unsigned int bit;
1574
1575 opt = strsep(&arg, ",");
1576
1577 /*
1578 * Handle naked numbers first for feature flags which don't
1579 * have names. It doesn't make sense for a bug not to have a
1580 * name so don't handle bug flags here.
1581 */
1582 if (!kstrtouint(opt, 10, &bit)) {
1583 if (bit < NCAPINTS * 32) {
1584
1585 if (set) {
1586 pr_warn("setcpuid: force-enabling CPU feature flag:");
1587 setup_force_cpu_cap(bit);
1588 } else {
1589 pr_warn("clearcpuid: force-disabling CPU feature flag:");
1590 setup_clear_cpu_cap(bit);
1591 }
1592 /* empty-string, i.e., ""-defined feature flags */
1593 if (!x86_cap_flags[bit])
1594 pr_cont(" %d:%d\n", bit >> 5, bit & 31);
1595 else
1596 pr_cont(" %s\n", x86_cap_flags[bit]);
1597
1598 taint++;
1599 }
1600 /*
1601 * The assumption is that there are no feature names with only
1602 * numbers in the name thus go to the next argument.
1603 */
1604 continue;
1605 }
1606
1607 for (bit = 0; bit < 32 * (NCAPINTS + NBUGINTS); bit++) {
1608 const char *flag;
1609 const char *kind;
1610
1611 if (bit < 32 * NCAPINTS) {
1612 flag = x86_cap_flags[bit];
1613 kind = "feature";
1614 } else {
1615 kind = "bug";
1616 flag = x86_bug_flags[bit - (32 * NCAPINTS)];
1617 }
1618
1619 if (!flag)
1620 continue;
1621
1622 if (strcmp(flag, opt))
1623 continue;
1624
1625 if (set) {
1626 pr_warn("setcpuid: force-enabling CPU %s flag: %s\n",
1627 kind, flag);
1628 setup_force_cpu_cap(bit);
1629 } else {
1630 pr_warn("clearcpuid: force-disabling CPU %s flag: %s\n",
1631 kind, flag);
1632 setup_clear_cpu_cap(bit);
1633 }
1634 taint++;
1635 found = true;
1636 break;
1637 }
1638
1639 if (!found)
1640 pr_warn("%s: unknown CPU flag: %s", set ? "setcpuid" : "clearcpuid", opt);
1641 }
1642
1643 return taint;
1644 }
1645
1646
1647 /*
1648 * We parse cpu parameters early because fpu__init_system() is executed
1649 * before parse_early_param().
1650 */
cpu_parse_early_param(void)1651 static void __init cpu_parse_early_param(void)
1652 {
1653 bool cpuid_taint = false;
1654 char arg[128];
1655 int arglen;
1656
1657 #ifdef CONFIG_X86_32
1658 if (cmdline_find_option_bool(boot_command_line, "no387"))
1659 #ifdef CONFIG_MATH_EMULATION
1660 setup_clear_cpu_cap(X86_FEATURE_FPU);
1661 #else
1662 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1663 #endif
1664
1665 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1666 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1667 #endif
1668
1669 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1670 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1671
1672 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1673 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1674
1675 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1676 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1677
1678 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1679 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1680
1681 /* Minimize the gap between FRED is available and available but disabled. */
1682 arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
1683 if (arglen != 2 || strncmp(arg, "on", 2))
1684 setup_clear_cpu_cap(X86_FEATURE_FRED);
1685
1686 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1687 if (arglen > 0)
1688 cpuid_taint |= parse_set_clear_cpuid(arg, false);
1689
1690 arglen = cmdline_find_option(boot_command_line, "setcpuid", arg, sizeof(arg));
1691 if (arglen > 0)
1692 cpuid_taint |= parse_set_clear_cpuid(arg, true);
1693
1694 if (cpuid_taint) {
1695 pr_warn("!!! setcpuid=/clearcpuid= in use, this is for TESTING ONLY, may break things horribly. Tainting kernel.\n");
1696 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1697 }
1698 }
1699
1700 /*
1701 * Do minimum CPU detection early.
1702 * Fields really needed: vendor, cpuid_level, family, model, mask,
1703 * cache alignment.
1704 * The others are not touched to avoid unwanted side effects.
1705 *
1706 * WARNING: this function is only called on the boot CPU. Don't add code
1707 * here that is supposed to run on all CPUs.
1708 */
early_identify_cpu(struct cpuinfo_x86 * c)1709 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1710 {
1711 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1712 c->extended_cpuid_level = 0;
1713
1714 if (!cpuid_feature())
1715 identify_cpu_without_cpuid(c);
1716
1717 /* cyrix could have cpuid enabled via c_identify()*/
1718 if (cpuid_feature()) {
1719 cpu_detect(c);
1720 get_cpu_vendor(c);
1721 intel_unlock_cpuid_leafs(c);
1722 get_cpu_cap(c);
1723 setup_force_cpu_cap(X86_FEATURE_CPUID);
1724 get_cpu_address_sizes(c);
1725 cpu_parse_early_param();
1726
1727 cpu_init_topology(c);
1728
1729 if (this_cpu->c_early_init)
1730 this_cpu->c_early_init(c);
1731
1732 c->cpu_index = 0;
1733 filter_cpuid_features(c, false);
1734 check_cpufeature_deps(c);
1735
1736 if (this_cpu->c_bsp_init)
1737 this_cpu->c_bsp_init(c);
1738 } else {
1739 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1740 get_cpu_address_sizes(c);
1741 cpu_init_topology(c);
1742 }
1743
1744 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1745
1746 cpu_set_bug_bits(c);
1747
1748 sld_setup(c);
1749
1750 #ifdef CONFIG_X86_32
1751 /*
1752 * Regardless of whether PCID is enumerated, the SDM says
1753 * that it can't be enabled in 32-bit mode.
1754 */
1755 setup_clear_cpu_cap(X86_FEATURE_PCID);
1756 #endif
1757
1758 /*
1759 * Later in the boot process pgtable_l5_enabled() relies on
1760 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1761 * enabled by this point we need to clear the feature bit to avoid
1762 * false-positives at the later stage.
1763 *
1764 * pgtable_l5_enabled() can be false here for several reasons:
1765 * - 5-level paging is disabled compile-time;
1766 * - it's 32-bit kernel;
1767 * - machine doesn't support 5-level paging;
1768 * - user specified 'no5lvl' in kernel command line.
1769 */
1770 if (!pgtable_l5_enabled())
1771 setup_clear_cpu_cap(X86_FEATURE_LA57);
1772
1773 detect_nopl();
1774 }
1775
init_cpu_devs(void)1776 void __init init_cpu_devs(void)
1777 {
1778 const struct cpu_dev *const *cdev;
1779 int count = 0;
1780
1781 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1782 const struct cpu_dev *cpudev = *cdev;
1783
1784 if (count >= X86_VENDOR_NUM)
1785 break;
1786 cpu_devs[count] = cpudev;
1787 count++;
1788 }
1789 }
1790
early_cpu_init(void)1791 void __init early_cpu_init(void)
1792 {
1793 #ifdef CONFIG_PROCESSOR_SELECT
1794 unsigned int i, j;
1795
1796 pr_info("KERNEL supported cpus:\n");
1797 #endif
1798
1799 init_cpu_devs();
1800
1801 #ifdef CONFIG_PROCESSOR_SELECT
1802 for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) {
1803 for (j = 0; j < 2; j++) {
1804 if (!cpu_devs[i]->c_ident[j])
1805 continue;
1806 pr_info(" %s %s\n", cpu_devs[i]->c_vendor,
1807 cpu_devs[i]->c_ident[j]);
1808 }
1809 }
1810 #endif
1811
1812 early_identify_cpu(&boot_cpu_data);
1813 }
1814
detect_null_seg_behavior(void)1815 static bool detect_null_seg_behavior(void)
1816 {
1817 /*
1818 * Empirically, writing zero to a segment selector on AMD does
1819 * not clear the base, whereas writing zero to a segment
1820 * selector on Intel does clear the base. Intel's behavior
1821 * allows slightly faster context switches in the common case
1822 * where GS is unused by the prev and next threads.
1823 *
1824 * Since neither vendor documents this anywhere that I can see,
1825 * detect it directly instead of hard-coding the choice by
1826 * vendor.
1827 *
1828 * I've designated AMD's behavior as the "bug" because it's
1829 * counterintuitive and less friendly.
1830 */
1831
1832 unsigned long old_base, tmp;
1833 rdmsrq(MSR_FS_BASE, old_base);
1834 wrmsrq(MSR_FS_BASE, 1);
1835 loadsegment(fs, 0);
1836 rdmsrq(MSR_FS_BASE, tmp);
1837 wrmsrq(MSR_FS_BASE, old_base);
1838 return tmp == 0;
1839 }
1840
check_null_seg_clears_base(struct cpuinfo_x86 * c)1841 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1842 {
1843 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1844 if (!IS_ENABLED(CONFIG_X86_64))
1845 return;
1846
1847 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1848 return;
1849
1850 /*
1851 * CPUID bit above wasn't set. If this kernel is still running
1852 * as a HV guest, then the HV has decided not to advertize
1853 * that CPUID bit for whatever reason. For example, one
1854 * member of the migration pool might be vulnerable. Which
1855 * means, the bug is present: set the BUG flag and return.
1856 */
1857 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1858 set_cpu_bug(c, X86_BUG_NULL_SEG);
1859 return;
1860 }
1861
1862 /*
1863 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1864 * 0x18 is the respective family for Hygon.
1865 */
1866 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1867 detect_null_seg_behavior())
1868 return;
1869
1870 /* All the remaining ones are affected */
1871 set_cpu_bug(c, X86_BUG_NULL_SEG);
1872 }
1873
generic_identify(struct cpuinfo_x86 * c)1874 static void generic_identify(struct cpuinfo_x86 *c)
1875 {
1876 c->extended_cpuid_level = 0;
1877
1878 if (!cpuid_feature())
1879 identify_cpu_without_cpuid(c);
1880
1881 /* cyrix could have cpuid enabled via c_identify()*/
1882 if (!cpuid_feature())
1883 return;
1884
1885 cpu_detect(c);
1886
1887 get_cpu_vendor(c);
1888 intel_unlock_cpuid_leafs(c);
1889 get_cpu_cap(c);
1890
1891 get_cpu_address_sizes(c);
1892
1893 get_model_name(c); /* Default name */
1894
1895 /*
1896 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1897 * systems that run Linux at CPL > 0 may or may not have the
1898 * issue, but, even if they have the issue, there's absolutely
1899 * nothing we can do about it because we can't use the real IRET
1900 * instruction.
1901 *
1902 * NB: For the time being, only 32-bit kernels support
1903 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1904 * whether to apply espfix using paravirt hooks. If any
1905 * non-paravirt system ever shows up that does *not* have the
1906 * ESPFIX issue, we can change this.
1907 */
1908 #ifdef CONFIG_X86_32
1909 set_cpu_bug(c, X86_BUG_ESPFIX);
1910 #endif
1911 }
1912
1913 /*
1914 * This does the hard work of actually picking apart the CPU stuff...
1915 */
identify_cpu(struct cpuinfo_x86 * c)1916 static void identify_cpu(struct cpuinfo_x86 *c)
1917 {
1918 int i;
1919
1920 c->loops_per_jiffy = loops_per_jiffy;
1921 c->x86_cache_size = 0;
1922 c->x86_vendor = X86_VENDOR_UNKNOWN;
1923 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1924 c->x86_vendor_id[0] = '\0'; /* Unset */
1925 c->x86_model_id[0] = '\0'; /* Unset */
1926 #ifdef CONFIG_X86_64
1927 c->x86_clflush_size = 64;
1928 c->x86_phys_bits = 36;
1929 c->x86_virt_bits = 48;
1930 #else
1931 c->cpuid_level = -1; /* CPUID not detected */
1932 c->x86_clflush_size = 32;
1933 c->x86_phys_bits = 32;
1934 c->x86_virt_bits = 32;
1935 #endif
1936 c->x86_cache_alignment = c->x86_clflush_size;
1937 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1938 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1939 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1940 #endif
1941
1942 generic_identify(c);
1943
1944 cpu_parse_topology(c);
1945
1946 if (this_cpu->c_identify)
1947 this_cpu->c_identify(c);
1948
1949 /* Clear/Set all flags overridden by options, after probe */
1950 apply_forced_caps(c);
1951
1952 /*
1953 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1954 * Hygon will clear it in ->c_init() below.
1955 */
1956 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1957
1958 /*
1959 * Vendor-specific initialization. In this section we
1960 * canonicalize the feature flags, meaning if there are
1961 * features a certain CPU supports which CPUID doesn't
1962 * tell us, CPUID claiming incorrect flags, or other bugs,
1963 * we handle them here.
1964 *
1965 * At the end of this section, c->x86_capability better
1966 * indicate the features this CPU genuinely supports!
1967 */
1968 if (this_cpu->c_init)
1969 this_cpu->c_init(c);
1970
1971 bus_lock_init();
1972
1973 /* Disable the PN if appropriate */
1974 squash_the_stupid_serial_number(c);
1975
1976 /* Set up SMEP/SMAP/UMIP */
1977 setup_smep(c);
1978 setup_smap(c);
1979 setup_umip(c);
1980
1981 /* Enable FSGSBASE instructions if available. */
1982 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1983 cr4_set_bits(X86_CR4_FSGSBASE);
1984 elf_hwcap2 |= HWCAP2_FSGSBASE;
1985 }
1986
1987 /*
1988 * The vendor-specific functions might have changed features.
1989 * Now we do "generic changes."
1990 */
1991
1992 /* Filter out anything that depends on CPUID levels we don't have */
1993 filter_cpuid_features(c, true);
1994
1995 /* Check for unmet dependencies based on the CPUID dependency table */
1996 check_cpufeature_deps(c);
1997
1998 /* If the model name is still unset, do table lookup. */
1999 if (!c->x86_model_id[0]) {
2000 const char *p;
2001 p = table_lookup_model(c);
2002 if (p)
2003 strcpy(c->x86_model_id, p);
2004 else
2005 /* Last resort... */
2006 sprintf(c->x86_model_id, "%02x/%02x",
2007 c->x86, c->x86_model);
2008 }
2009
2010 x86_init_rdrand(c);
2011 setup_pku(c);
2012 setup_cet(c);
2013
2014 /*
2015 * Clear/Set all flags overridden by options, need do it
2016 * before following smp all cpus cap AND.
2017 */
2018 apply_forced_caps(c);
2019
2020 /*
2021 * On SMP, boot_cpu_data holds the common feature set between
2022 * all CPUs; so make sure that we indicate which features are
2023 * common between the CPUs. The first time this routine gets
2024 * executed, c == &boot_cpu_data.
2025 */
2026 if (c != &boot_cpu_data) {
2027 /* AND the already accumulated flags with these */
2028 for (i = 0; i < NCAPINTS; i++)
2029 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
2030
2031 /* OR, i.e. replicate the bug flags */
2032 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
2033 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
2034 }
2035
2036 ppin_init(c);
2037
2038 /* Init Machine Check Exception if available. */
2039 mcheck_cpu_init(c);
2040
2041 numa_add_cpu(smp_processor_id());
2042 }
2043
2044 /*
2045 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
2046 * on 32-bit kernels:
2047 */
2048 #ifdef CONFIG_X86_32
enable_sep_cpu(void)2049 void enable_sep_cpu(void)
2050 {
2051 struct tss_struct *tss;
2052 int cpu;
2053
2054 if (!boot_cpu_has(X86_FEATURE_SEP))
2055 return;
2056
2057 cpu = get_cpu();
2058 tss = &per_cpu(cpu_tss_rw, cpu);
2059
2060 /*
2061 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
2062 * see the big comment in struct x86_hw_tss's definition.
2063 */
2064
2065 tss->x86_tss.ss1 = __KERNEL_CS;
2066 wrmsrq(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1);
2067 wrmsrq(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
2068 wrmsrq(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32);
2069
2070 put_cpu();
2071 }
2072 #endif
2073
identify_boot_cpu(void)2074 static __init void identify_boot_cpu(void)
2075 {
2076 identify_cpu(&boot_cpu_data);
2077 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
2078 pr_info("CET detected: Indirect Branch Tracking enabled\n");
2079 #ifdef CONFIG_X86_32
2080 enable_sep_cpu();
2081 #endif
2082 cpu_detect_tlb(&boot_cpu_data);
2083 setup_cr_pinning();
2084
2085 tsx_init();
2086 tdx_init();
2087 lkgs_init();
2088 }
2089
identify_secondary_cpu(unsigned int cpu)2090 void identify_secondary_cpu(unsigned int cpu)
2091 {
2092 struct cpuinfo_x86 *c = &cpu_data(cpu);
2093
2094 /* Copy boot_cpu_data only on the first bringup */
2095 if (!c->initialized)
2096 *c = boot_cpu_data;
2097 c->cpu_index = cpu;
2098
2099 identify_cpu(c);
2100 #ifdef CONFIG_X86_32
2101 enable_sep_cpu();
2102 #endif
2103 x86_spec_ctrl_setup_ap();
2104 update_srbds_msr();
2105 if (boot_cpu_has_bug(X86_BUG_GDS))
2106 update_gds_msr();
2107
2108 tsx_ap_init();
2109 c->initialized = true;
2110 }
2111
print_cpu_info(struct cpuinfo_x86 * c)2112 void print_cpu_info(struct cpuinfo_x86 *c)
2113 {
2114 const char *vendor = NULL;
2115
2116 if (c->x86_vendor < X86_VENDOR_NUM) {
2117 vendor = this_cpu->c_vendor;
2118 } else {
2119 if (c->cpuid_level >= 0)
2120 vendor = c->x86_vendor_id;
2121 }
2122
2123 if (vendor && !strstr(c->x86_model_id, vendor))
2124 pr_cont("%s ", vendor);
2125
2126 if (c->x86_model_id[0])
2127 pr_cont("%s", c->x86_model_id);
2128 else
2129 pr_cont("%d86", c->x86);
2130
2131 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2132
2133 if (c->x86_stepping || c->cpuid_level >= 0)
2134 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2135 else
2136 pr_cont(")\n");
2137 }
2138
2139 /*
2140 * clearcpuid= and setcpuid= were already parsed in cpu_parse_early_param().
2141 * These dummy functions prevent them from becoming an environment variable for
2142 * init.
2143 */
2144
setup_clearcpuid(char * arg)2145 static __init int setup_clearcpuid(char *arg)
2146 {
2147 return 1;
2148 }
2149 __setup("clearcpuid=", setup_clearcpuid);
2150
setup_setcpuid(char * arg)2151 static __init int setup_setcpuid(char *arg)
2152 {
2153 return 1;
2154 }
2155 __setup("setcpuid=", setup_setcpuid);
2156
2157 DEFINE_PER_CPU_CACHE_HOT(struct task_struct *, current_task) = &init_task;
2158 EXPORT_PER_CPU_SYMBOL(current_task);
2159 EXPORT_PER_CPU_SYMBOL(const_current_task);
2160
2161 DEFINE_PER_CPU_CACHE_HOT(int, __preempt_count) = INIT_PREEMPT_COUNT;
2162 EXPORT_PER_CPU_SYMBOL(__preempt_count);
2163
2164 DEFINE_PER_CPU_CACHE_HOT(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
2165
2166 #ifdef CONFIG_X86_64
2167 /*
2168 * Note: Do not make this dependant on CONFIG_MITIGATION_CALL_DEPTH_TRACKING
2169 * so that this space is reserved in the hot cache section even when the
2170 * mitigation is disabled.
2171 */
2172 DEFINE_PER_CPU_CACHE_HOT(u64, __x86_call_depth);
2173 EXPORT_PER_CPU_SYMBOL(__x86_call_depth);
2174
wrmsrq_cstar(unsigned long val)2175 static void wrmsrq_cstar(unsigned long val)
2176 {
2177 /*
2178 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2179 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2180 * guest. Avoid the pointless write on all Intel CPUs.
2181 */
2182 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2183 wrmsrq(MSR_CSTAR, val);
2184 }
2185
idt_syscall_init(void)2186 static inline void idt_syscall_init(void)
2187 {
2188 wrmsrq(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2189
2190 if (ia32_enabled()) {
2191 wrmsrq_cstar((unsigned long)entry_SYSCALL_compat);
2192 /*
2193 * This only works on Intel CPUs.
2194 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2195 * This does not cause SYSENTER to jump to the wrong location, because
2196 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2197 */
2198 wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2199 wrmsrq_safe(MSR_IA32_SYSENTER_ESP,
2200 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2201 wrmsrq_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2202 } else {
2203 wrmsrq_cstar((unsigned long)entry_SYSCALL32_ignore);
2204 wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2205 wrmsrq_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2206 wrmsrq_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2207 }
2208
2209 /*
2210 * Flags to clear on syscall; clear as much as possible
2211 * to minimize user space-kernel interference.
2212 */
2213 wrmsrq(MSR_SYSCALL_MASK,
2214 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2215 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2216 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2217 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2218 X86_EFLAGS_AC|X86_EFLAGS_ID);
2219 }
2220
2221 /* May not be marked __init: used by software suspend */
syscall_init(void)2222 void syscall_init(void)
2223 {
2224 /* The default user and kernel segments */
2225 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2226
2227 /*
2228 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2229 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2230 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2231 * instruction to return to ring 3 (both sysexit and sysret cause
2232 * #UD when FRED is enabled).
2233 */
2234 if (!cpu_feature_enabled(X86_FEATURE_FRED))
2235 idt_syscall_init();
2236 }
2237 #endif /* CONFIG_X86_64 */
2238
2239 #ifdef CONFIG_STACKPROTECTOR
2240 DEFINE_PER_CPU_CACHE_HOT(unsigned long, __stack_chk_guard);
2241 #ifndef CONFIG_SMP
2242 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2243 #endif
2244 #endif
2245
2246 /*
2247 * Clear all 6 debug registers:
2248 */
clear_all_debug_regs(void)2249 static void clear_all_debug_regs(void)
2250 {
2251 int i;
2252
2253 for (i = 0; i < 8; i++) {
2254 /* Ignore db4, db5 */
2255 if ((i == 4) || (i == 5))
2256 continue;
2257
2258 set_debugreg(0, i);
2259 }
2260 }
2261
2262 #ifdef CONFIG_KGDB
2263 /*
2264 * Restore debug regs if using kgdbwait and you have a kernel debugger
2265 * connection established.
2266 */
dbg_restore_debug_regs(void)2267 static void dbg_restore_debug_regs(void)
2268 {
2269 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2270 arch_kgdb_ops.correct_hw_break();
2271 }
2272 #else /* ! CONFIG_KGDB */
2273 #define dbg_restore_debug_regs()
2274 #endif /* ! CONFIG_KGDB */
2275
setup_getcpu(int cpu)2276 static inline void setup_getcpu(int cpu)
2277 {
2278 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2279 struct desc_struct d = { };
2280
2281 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2282 wrmsrq(MSR_TSC_AUX, cpudata);
2283
2284 /* Store CPU and node number in limit. */
2285 d.limit0 = cpudata;
2286 d.limit1 = cpudata >> 16;
2287
2288 d.type = 5; /* RO data, expand down, accessed */
2289 d.dpl = 3; /* Visible to user code */
2290 d.s = 1; /* Not a system segment */
2291 d.p = 1; /* Present */
2292 d.d = 1; /* 32-bit */
2293
2294 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2295 }
2296
2297 #ifdef CONFIG_X86_64
tss_setup_ist(struct tss_struct * tss)2298 static inline void tss_setup_ist(struct tss_struct *tss)
2299 {
2300 /* Set up the per-CPU TSS IST stacks */
2301 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2302 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2303 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2304 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2305 /* Only mapped when SEV-ES is active */
2306 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2307 }
2308 #else /* CONFIG_X86_64 */
tss_setup_ist(struct tss_struct * tss)2309 static inline void tss_setup_ist(struct tss_struct *tss) { }
2310 #endif /* !CONFIG_X86_64 */
2311
tss_setup_io_bitmap(struct tss_struct * tss)2312 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2313 {
2314 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2315
2316 #ifdef CONFIG_X86_IOPL_IOPERM
2317 tss->io_bitmap.prev_max = 0;
2318 tss->io_bitmap.prev_sequence = 0;
2319 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2320 /*
2321 * Invalidate the extra array entry past the end of the all
2322 * permission bitmap as required by the hardware.
2323 */
2324 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2325 #endif
2326 }
2327
2328 /*
2329 * Setup everything needed to handle exceptions from the IDT, including the IST
2330 * exceptions which use paranoid_entry().
2331 */
cpu_init_exception_handling(bool boot_cpu)2332 void cpu_init_exception_handling(bool boot_cpu)
2333 {
2334 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2335 int cpu = raw_smp_processor_id();
2336
2337 /* paranoid_entry() gets the CPU number from the GDT */
2338 setup_getcpu(cpu);
2339
2340 /* For IDT mode, IST vectors need to be set in TSS. */
2341 if (!cpu_feature_enabled(X86_FEATURE_FRED))
2342 tss_setup_ist(tss);
2343 tss_setup_io_bitmap(tss);
2344 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2345
2346 load_TR_desc();
2347
2348 /* GHCB needs to be setup to handle #VC. */
2349 setup_ghcb();
2350
2351 if (cpu_feature_enabled(X86_FEATURE_FRED)) {
2352 /* The boot CPU has enabled FRED during early boot */
2353 if (!boot_cpu)
2354 cpu_init_fred_exceptions();
2355
2356 cpu_init_fred_rsps();
2357 } else {
2358 load_current_idt();
2359 }
2360 }
2361
cpu_init_replace_early_idt(void)2362 void __init cpu_init_replace_early_idt(void)
2363 {
2364 if (cpu_feature_enabled(X86_FEATURE_FRED))
2365 cpu_init_fred_exceptions();
2366 else
2367 idt_setup_early_pf();
2368 }
2369
2370 /*
2371 * cpu_init() initializes state that is per-CPU. Some data is already
2372 * initialized (naturally) in the bootstrap process, such as the GDT. We
2373 * reload it nevertheless, this function acts as a 'CPU state barrier',
2374 * nothing should get across.
2375 */
cpu_init(void)2376 void cpu_init(void)
2377 {
2378 struct task_struct *cur = current;
2379 int cpu = raw_smp_processor_id();
2380
2381 #ifdef CONFIG_NUMA
2382 if (this_cpu_read(numa_node) == 0 &&
2383 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2384 set_numa_node(early_cpu_to_node(cpu));
2385 #endif
2386 pr_debug("Initializing CPU#%d\n", cpu);
2387
2388 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2389 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2390 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2391
2392 if (IS_ENABLED(CONFIG_X86_64)) {
2393 loadsegment(fs, 0);
2394 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2395 syscall_init();
2396
2397 wrmsrq(MSR_FS_BASE, 0);
2398 wrmsrq(MSR_KERNEL_GS_BASE, 0);
2399 barrier();
2400
2401 x2apic_setup();
2402
2403 intel_posted_msi_init();
2404 }
2405
2406 mmgrab(&init_mm);
2407 cur->active_mm = &init_mm;
2408 BUG_ON(cur->mm);
2409 initialize_tlbstate_and_flush();
2410 enter_lazy_tlb(&init_mm, cur);
2411
2412 /*
2413 * sp0 points to the entry trampoline stack regardless of what task
2414 * is running.
2415 */
2416 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2417
2418 load_mm_ldt(&init_mm);
2419
2420 clear_all_debug_regs();
2421 dbg_restore_debug_regs();
2422
2423 doublefault_init_cpu_tss();
2424
2425 if (is_uv_system())
2426 uv_cpu_init();
2427
2428 load_fixmap_gdt(cpu);
2429 }
2430
2431 #ifdef CONFIG_MICROCODE_LATE_LOADING
2432 /**
2433 * store_cpu_caps() - Store a snapshot of CPU capabilities
2434 * @curr_info: Pointer where to store it
2435 *
2436 * Returns: None
2437 */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2438 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2439 {
2440 /* Reload CPUID max function as it might've changed. */
2441 curr_info->cpuid_level = cpuid_eax(0);
2442
2443 /* Copy all capability leafs and pick up the synthetic ones. */
2444 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2445 sizeof(curr_info->x86_capability));
2446
2447 /* Get the hardware CPUID leafs */
2448 get_cpu_cap(curr_info);
2449 }
2450
2451 /**
2452 * microcode_check() - Check if any CPU capabilities changed after an update.
2453 * @prev_info: CPU capabilities stored before an update.
2454 *
2455 * The microcode loader calls this upon late microcode load to recheck features,
2456 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2457 *
2458 * Return: None
2459 */
microcode_check(struct cpuinfo_x86 * prev_info)2460 void microcode_check(struct cpuinfo_x86 *prev_info)
2461 {
2462 struct cpuinfo_x86 curr_info;
2463
2464 perf_check_microcode();
2465
2466 amd_check_microcode();
2467
2468 store_cpu_caps(&curr_info);
2469
2470 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2471 sizeof(prev_info->x86_capability)))
2472 return;
2473
2474 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2475 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2476 }
2477 #endif
2478
2479 /*
2480 * Invoked from core CPU hotplug code after hotplug operations
2481 */
arch_smt_update(void)2482 void arch_smt_update(void)
2483 {
2484 /* Handle the speculative execution misfeatures */
2485 cpu_bugs_smt_update();
2486 /* Check whether IPI broadcasting can be enabled */
2487 apic_smt_update();
2488 }
2489
arch_cpu_finalize_init(void)2490 void __init arch_cpu_finalize_init(void)
2491 {
2492 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2493
2494 identify_boot_cpu();
2495
2496 select_idle_routine();
2497
2498 /*
2499 * identify_boot_cpu() initialized SMT support information, let the
2500 * core code know.
2501 */
2502 cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2503
2504 if (!IS_ENABLED(CONFIG_SMP)) {
2505 pr_info("CPU: ");
2506 print_cpu_info(&boot_cpu_data);
2507 }
2508
2509 cpu_select_mitigations();
2510
2511 arch_smt_update();
2512
2513 if (IS_ENABLED(CONFIG_X86_32)) {
2514 /*
2515 * Check whether this is a real i386 which is not longer
2516 * supported and fixup the utsname.
2517 */
2518 if (boot_cpu_data.x86 < 4)
2519 panic("Kernel requires i486+ for 'invlpg' and other features");
2520
2521 init_utsname()->machine[1] =
2522 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2523 }
2524
2525 /*
2526 * Must be before alternatives because it might set or clear
2527 * feature bits.
2528 */
2529 fpu__init_system();
2530 fpu__init_cpu();
2531
2532 /*
2533 * Ensure that access to the per CPU representation has the initial
2534 * boot CPU configuration.
2535 */
2536 *c = boot_cpu_data;
2537 c->initialized = true;
2538
2539 alternative_instructions();
2540
2541 if (IS_ENABLED(CONFIG_X86_64)) {
2542 unsigned long USER_PTR_MAX = TASK_SIZE_MAX;
2543
2544 /*
2545 * Enable this when LAM is gated on LASS support
2546 if (cpu_feature_enabled(X86_FEATURE_LAM))
2547 USER_PTR_MAX = (1ul << 63) - PAGE_SIZE;
2548 */
2549 runtime_const_init(ptr, USER_PTR_MAX);
2550
2551 /*
2552 * Make sure the first 2MB area is not mapped by huge pages
2553 * There are typically fixed size MTRRs in there and overlapping
2554 * MTRRs into large pages causes slow downs.
2555 *
2556 * Right now we don't do that with gbpages because there seems
2557 * very little benefit for that case.
2558 */
2559 if (!direct_gbpages)
2560 set_memory_4k((unsigned long)__va(0), 1);
2561 } else {
2562 fpu__init_check_bugs();
2563 }
2564
2565 /*
2566 * This needs to be called before any devices perform DMA
2567 * operations that might use the SWIOTLB bounce buffers. It will
2568 * mark the bounce buffers as decrypted so that their usage will
2569 * not cause "plain-text" data to be decrypted when accessed. It
2570 * must be called after late_time_init() so that Hyper-V x86/x64
2571 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2572 */
2573 mem_encrypt_init();
2574 }
2575