1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * OMAP Remote Processor driver
4 *
5 * Copyright (C) 2011-2020 Texas Instruments Incorporated - http://www.ti.com/
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Mark Grosen <mgrosen@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Hari Kanigeri <h-kanigeri2@ti.com>
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/clk.h>
19 #include <linux/clk/ti.h>
20 #include <linux/err.h>
21 #include <linux/io.h>
22 #include <linux/of.h>
23 #include <linux/of_platform.h>
24 #include <linux/of_reserved_mem.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/interrupt.h>
29 #include <linux/remoteproc.h>
30 #include <linux/mailbox_client.h>
31 #include <linux/omap-iommu.h>
32 #include <linux/omap-mailbox.h>
33 #include <linux/regmap.h>
34 #include <linux/mfd/syscon.h>
35 #include <linux/reset.h>
36 #include <clocksource/timer-ti-dm.h>
37
38 #include <linux/platform_data/dmtimer-omap.h>
39
40 #ifdef CONFIG_ARM_DMA_USE_IOMMU
41 #include <asm/dma-iommu.h>
42 #endif
43
44 #include "omap_remoteproc.h"
45 #include "remoteproc_internal.h"
46
47 /* default auto-suspend delay (ms) */
48 #define DEFAULT_AUTOSUSPEND_DELAY 10000
49
50 /**
51 * struct omap_rproc_boot_data - boot data structure for the DSP omap rprocs
52 * @syscon: regmap handle for the system control configuration module
53 * @boot_reg: boot register offset within the @syscon regmap
54 * @boot_reg_shift: bit-field shift required for the boot address value in
55 * @boot_reg
56 */
57 struct omap_rproc_boot_data {
58 struct regmap *syscon;
59 unsigned int boot_reg;
60 unsigned int boot_reg_shift;
61 };
62
63 /**
64 * struct omap_rproc_mem - internal memory structure
65 * @cpu_addr: MPU virtual address of the memory region
66 * @bus_addr: bus address used to access the memory region
67 * @dev_addr: device address of the memory region from DSP view
68 * @size: size of the memory region
69 */
70 struct omap_rproc_mem {
71 void __iomem *cpu_addr;
72 phys_addr_t bus_addr;
73 u32 dev_addr;
74 size_t size;
75 };
76
77 /**
78 * struct omap_rproc_timer - data structure for a timer used by a omap rproc
79 * @odt: timer pointer
80 * @timer_ops: OMAP dmtimer ops for @odt timer
81 * @irq: timer irq
82 */
83 struct omap_rproc_timer {
84 struct omap_dm_timer *odt;
85 const struct omap_dm_timer_ops *timer_ops;
86 int irq;
87 };
88
89 /**
90 * struct omap_rproc - omap remote processor state
91 * @mbox: mailbox channel handle
92 * @client: mailbox client to request the mailbox channel
93 * @boot_data: boot data structure for setting processor boot address
94 * @mem: internal memory regions data
95 * @num_mems: number of internal memory regions
96 * @num_timers: number of rproc timer(s)
97 * @num_wd_timers: number of rproc watchdog timers
98 * @timers: timer(s) info used by rproc
99 * @autosuspend_delay: auto-suspend delay value to be used for runtime pm
100 * @need_resume: if true a resume is needed in the system resume callback
101 * @rproc: rproc handle
102 * @reset: reset handle
103 * @pm_comp: completion primitive to sync for suspend response
104 * @fck: functional clock for the remoteproc
105 * @suspend_acked: state machine flag to store the suspend request ack
106 */
107 struct omap_rproc {
108 struct mbox_chan *mbox;
109 struct mbox_client client;
110 struct omap_rproc_boot_data *boot_data;
111 struct omap_rproc_mem *mem;
112 int num_mems;
113 int num_timers;
114 int num_wd_timers;
115 struct omap_rproc_timer *timers;
116 int autosuspend_delay;
117 bool need_resume;
118 struct rproc *rproc;
119 struct reset_control *reset;
120 struct completion pm_comp;
121 struct clk *fck;
122 bool suspend_acked;
123 };
124
125 /**
126 * struct omap_rproc_mem_data - memory definitions for an omap remote processor
127 * @name: name for this memory entry
128 * @dev_addr: device address for the memory entry
129 */
130 struct omap_rproc_mem_data {
131 const char *name;
132 const u32 dev_addr;
133 };
134
135 /**
136 * struct omap_rproc_dev_data - device data for the omap remote processor
137 * @device_name: device name of the remote processor
138 * @mems: memory definitions for this remote processor
139 */
140 struct omap_rproc_dev_data {
141 const char *device_name;
142 const struct omap_rproc_mem_data *mems;
143 };
144
145 /**
146 * omap_rproc_request_timer() - request a timer for a remoteproc
147 * @dev: device requesting the timer
148 * @np: device node pointer to the desired timer
149 * @timer: handle to a struct omap_rproc_timer to return the timer handle
150 *
151 * This helper function is used primarily to request a timer associated with
152 * a remoteproc. The returned handle is stored in the .odt field of the
153 * @timer structure passed in, and is used to invoke other timer specific
154 * ops (like starting a timer either during device initialization or during
155 * a resume operation, or for stopping/freeing a timer).
156 *
157 * Return: 0 on success, otherwise an appropriate failure
158 */
omap_rproc_request_timer(struct device * dev,struct device_node * np,struct omap_rproc_timer * timer)159 static int omap_rproc_request_timer(struct device *dev, struct device_node *np,
160 struct omap_rproc_timer *timer)
161 {
162 int ret;
163
164 timer->odt = timer->timer_ops->request_by_node(np);
165 if (!timer->odt) {
166 dev_err(dev, "request for timer node %p failed\n", np);
167 return -EBUSY;
168 }
169
170 ret = timer->timer_ops->set_source(timer->odt, OMAP_TIMER_SRC_SYS_CLK);
171 if (ret) {
172 dev_err(dev, "error setting OMAP_TIMER_SRC_SYS_CLK as source for timer node %p\n",
173 np);
174 timer->timer_ops->free(timer->odt);
175 return ret;
176 }
177
178 /* clean counter, remoteproc code will set the value */
179 timer->timer_ops->set_load(timer->odt, 0);
180
181 return 0;
182 }
183
184 /**
185 * omap_rproc_start_timer() - start a timer for a remoteproc
186 * @timer: handle to a OMAP rproc timer
187 *
188 * This helper function is used to start a timer associated with a remoteproc,
189 * obtained using the request_timer ops. The helper function needs to be
190 * invoked by the driver to start the timer (during device initialization)
191 * or to just resume the timer.
192 *
193 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
194 */
omap_rproc_start_timer(struct omap_rproc_timer * timer)195 static inline int omap_rproc_start_timer(struct omap_rproc_timer *timer)
196 {
197 return timer->timer_ops->start(timer->odt);
198 }
199
200 /**
201 * omap_rproc_stop_timer() - stop a timer for a remoteproc
202 * @timer: handle to a OMAP rproc timer
203 *
204 * This helper function is used to disable a timer associated with a
205 * remoteproc, and needs to be called either during a device shutdown
206 * or suspend operation. The separate helper function allows the driver
207 * to just stop a timer without having to release the timer during a
208 * suspend operation.
209 *
210 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
211 */
omap_rproc_stop_timer(struct omap_rproc_timer * timer)212 static inline int omap_rproc_stop_timer(struct omap_rproc_timer *timer)
213 {
214 return timer->timer_ops->stop(timer->odt);
215 }
216
217 /**
218 * omap_rproc_release_timer() - release a timer for a remoteproc
219 * @timer: handle to a OMAP rproc timer
220 *
221 * This helper function is used primarily to release a timer associated
222 * with a remoteproc. The dmtimer will be available for other clients to
223 * use once released.
224 *
225 * Return: 0 on success, otherwise a failure as returned by DMTimer ops
226 */
omap_rproc_release_timer(struct omap_rproc_timer * timer)227 static inline int omap_rproc_release_timer(struct omap_rproc_timer *timer)
228 {
229 return timer->timer_ops->free(timer->odt);
230 }
231
232 /**
233 * omap_rproc_get_timer_irq() - get the irq for a timer
234 * @timer: handle to a OMAP rproc timer
235 *
236 * This function is used to get the irq associated with a watchdog timer. The
237 * function is called by the OMAP remoteproc driver to register a interrupt
238 * handler to handle watchdog events on the remote processor.
239 *
240 * Return: irq id on success, otherwise a failure as returned by DMTimer ops
241 */
omap_rproc_get_timer_irq(struct omap_rproc_timer * timer)242 static inline int omap_rproc_get_timer_irq(struct omap_rproc_timer *timer)
243 {
244 return timer->timer_ops->get_irq(timer->odt);
245 }
246
247 /**
248 * omap_rproc_ack_timer_irq() - acknowledge a timer irq
249 * @timer: handle to a OMAP rproc timer
250 *
251 * This function is used to clear the irq associated with a watchdog timer.
252 * The function is called by the OMAP remoteproc upon a watchdog event on the
253 * remote processor to clear the interrupt status of the watchdog timer.
254 */
omap_rproc_ack_timer_irq(struct omap_rproc_timer * timer)255 static inline void omap_rproc_ack_timer_irq(struct omap_rproc_timer *timer)
256 {
257 timer->timer_ops->write_status(timer->odt, OMAP_TIMER_INT_OVERFLOW);
258 }
259
260 /**
261 * omap_rproc_watchdog_isr() - Watchdog ISR handler for remoteproc device
262 * @irq: IRQ number associated with a watchdog timer
263 * @data: IRQ handler data
264 *
265 * This ISR routine executes the required necessary low-level code to
266 * acknowledge a watchdog timer interrupt. There can be multiple watchdog
267 * timers associated with a rproc (like IPUs which have 2 watchdog timers,
268 * one per Cortex M3/M4 core), so a lookup has to be performed to identify
269 * the timer to acknowledge its interrupt.
270 *
271 * The function also invokes rproc_report_crash to report the watchdog event
272 * to the remoteproc driver core, to trigger a recovery.
273 *
274 * Return: IRQ_HANDLED on success, otherwise IRQ_NONE
275 */
omap_rproc_watchdog_isr(int irq,void * data)276 static irqreturn_t omap_rproc_watchdog_isr(int irq, void *data)
277 {
278 struct rproc *rproc = data;
279 struct omap_rproc *oproc = rproc->priv;
280 struct device *dev = rproc->dev.parent;
281 struct omap_rproc_timer *timers = oproc->timers;
282 struct omap_rproc_timer *wd_timer = NULL;
283 int num_timers = oproc->num_timers + oproc->num_wd_timers;
284 int i;
285
286 for (i = oproc->num_timers; i < num_timers; i++) {
287 if (timers[i].irq > 0 && irq == timers[i].irq) {
288 wd_timer = &timers[i];
289 break;
290 }
291 }
292
293 if (!wd_timer) {
294 dev_err(dev, "invalid timer\n");
295 return IRQ_NONE;
296 }
297
298 omap_rproc_ack_timer_irq(wd_timer);
299
300 rproc_report_crash(rproc, RPROC_WATCHDOG);
301
302 return IRQ_HANDLED;
303 }
304
305 /**
306 * omap_rproc_enable_timers() - enable the timers for a remoteproc
307 * @rproc: handle of a remote processor
308 * @configure: boolean flag used to acquire and configure the timer handle
309 *
310 * This function is used primarily to enable the timers associated with
311 * a remoteproc. The configure flag is provided to allow the driver
312 * to either acquire and start a timer (during device initialization) or
313 * to just start a timer (during a resume operation).
314 *
315 * Return: 0 on success, otherwise an appropriate failure
316 */
omap_rproc_enable_timers(struct rproc * rproc,bool configure)317 static int omap_rproc_enable_timers(struct rproc *rproc, bool configure)
318 {
319 int i;
320 int ret = 0;
321 struct platform_device *tpdev;
322 struct dmtimer_platform_data *tpdata;
323 const struct omap_dm_timer_ops *timer_ops;
324 struct omap_rproc *oproc = rproc->priv;
325 struct omap_rproc_timer *timers = oproc->timers;
326 struct device *dev = rproc->dev.parent;
327 struct device_node *np = NULL;
328 int num_timers = oproc->num_timers + oproc->num_wd_timers;
329
330 if (!num_timers)
331 return 0;
332
333 if (!configure)
334 goto start_timers;
335
336 for (i = 0; i < num_timers; i++) {
337 if (i < oproc->num_timers)
338 np = of_parse_phandle(dev->of_node, "ti,timers", i);
339 else
340 np = of_parse_phandle(dev->of_node,
341 "ti,watchdog-timers",
342 (i - oproc->num_timers));
343 if (!np) {
344 ret = -ENXIO;
345 dev_err(dev, "device node lookup for timer at index %d failed: %d\n",
346 i < oproc->num_timers ? i :
347 i - oproc->num_timers, ret);
348 goto free_timers;
349 }
350
351 tpdev = of_find_device_by_node(np);
352 if (!tpdev) {
353 ret = -ENODEV;
354 dev_err(dev, "could not get timer platform device\n");
355 goto put_node;
356 }
357
358 tpdata = dev_get_platdata(&tpdev->dev);
359 put_device(&tpdev->dev);
360 if (!tpdata) {
361 ret = -EINVAL;
362 dev_err(dev, "dmtimer pdata structure NULL\n");
363 goto put_node;
364 }
365
366 timer_ops = tpdata->timer_ops;
367 if (!timer_ops || !timer_ops->request_by_node ||
368 !timer_ops->set_source || !timer_ops->set_load ||
369 !timer_ops->free || !timer_ops->start ||
370 !timer_ops->stop || !timer_ops->get_irq ||
371 !timer_ops->write_status) {
372 ret = -EINVAL;
373 dev_err(dev, "device does not have required timer ops\n");
374 goto put_node;
375 }
376
377 timers[i].irq = -1;
378 timers[i].timer_ops = timer_ops;
379 ret = omap_rproc_request_timer(dev, np, &timers[i]);
380 if (ret) {
381 dev_err(dev, "request for timer %p failed: %d\n", np,
382 ret);
383 goto put_node;
384 }
385 of_node_put(np);
386
387 if (i >= oproc->num_timers) {
388 timers[i].irq = omap_rproc_get_timer_irq(&timers[i]);
389 if (timers[i].irq < 0) {
390 dev_err(dev, "get_irq for timer %p failed: %d\n",
391 np, timers[i].irq);
392 ret = -EBUSY;
393 goto free_timers;
394 }
395
396 ret = request_irq(timers[i].irq,
397 omap_rproc_watchdog_isr, IRQF_SHARED,
398 "rproc-wdt", rproc);
399 if (ret) {
400 dev_err(dev, "error requesting irq for timer %p\n",
401 np);
402 omap_rproc_release_timer(&timers[i]);
403 timers[i].odt = NULL;
404 timers[i].timer_ops = NULL;
405 timers[i].irq = -1;
406 goto free_timers;
407 }
408 }
409 }
410
411 start_timers:
412 for (i = 0; i < num_timers; i++) {
413 ret = omap_rproc_start_timer(&timers[i]);
414 if (ret) {
415 dev_err(dev, "start timer %p failed failed: %d\n", np,
416 ret);
417 break;
418 }
419 }
420 if (ret) {
421 while (i >= 0) {
422 omap_rproc_stop_timer(&timers[i]);
423 i--;
424 }
425 goto put_node;
426 }
427 return 0;
428
429 put_node:
430 if (configure)
431 of_node_put(np);
432 free_timers:
433 while (i--) {
434 if (i >= oproc->num_timers)
435 free_irq(timers[i].irq, rproc);
436 omap_rproc_release_timer(&timers[i]);
437 timers[i].odt = NULL;
438 timers[i].timer_ops = NULL;
439 timers[i].irq = -1;
440 }
441
442 return ret;
443 }
444
445 /**
446 * omap_rproc_disable_timers() - disable the timers for a remoteproc
447 * @rproc: handle of a remote processor
448 * @configure: boolean flag used to release the timer handle
449 *
450 * This function is used primarily to disable the timers associated with
451 * a remoteproc. The configure flag is provided to allow the driver
452 * to either stop and release a timer (during device shutdown) or to just
453 * stop a timer (during a suspend operation).
454 *
455 * Return: 0 on success or no timers
456 */
omap_rproc_disable_timers(struct rproc * rproc,bool configure)457 static int omap_rproc_disable_timers(struct rproc *rproc, bool configure)
458 {
459 int i;
460 struct omap_rproc *oproc = rproc->priv;
461 struct omap_rproc_timer *timers = oproc->timers;
462 int num_timers = oproc->num_timers + oproc->num_wd_timers;
463
464 if (!num_timers)
465 return 0;
466
467 for (i = 0; i < num_timers; i++) {
468 omap_rproc_stop_timer(&timers[i]);
469 if (configure) {
470 if (i >= oproc->num_timers)
471 free_irq(timers[i].irq, rproc);
472 omap_rproc_release_timer(&timers[i]);
473 timers[i].odt = NULL;
474 timers[i].timer_ops = NULL;
475 timers[i].irq = -1;
476 }
477 }
478
479 return 0;
480 }
481
482 /**
483 * omap_rproc_mbox_callback() - inbound mailbox message handler
484 * @client: mailbox client pointer used for requesting the mailbox channel
485 * @data: mailbox payload
486 *
487 * This handler is invoked by omap's mailbox driver whenever a mailbox
488 * message is received. Usually, the mailbox payload simply contains
489 * the index of the virtqueue that is kicked by the remote processor,
490 * and we let remoteproc core handle it.
491 *
492 * In addition to virtqueue indices, we also have some out-of-band values
493 * that indicates different events. Those values are deliberately very
494 * big so they don't coincide with virtqueue indices.
495 */
omap_rproc_mbox_callback(struct mbox_client * client,void * data)496 static void omap_rproc_mbox_callback(struct mbox_client *client, void *data)
497 {
498 struct omap_rproc *oproc = container_of(client, struct omap_rproc,
499 client);
500 struct device *dev = oproc->rproc->dev.parent;
501 const char *name = oproc->rproc->name;
502 u32 msg = (u32)data;
503
504 dev_dbg(dev, "mbox msg: 0x%x\n", msg);
505
506 switch (msg) {
507 case RP_MBOX_CRASH:
508 /*
509 * remoteproc detected an exception, notify the rproc core.
510 * The remoteproc core will handle the recovery.
511 */
512 dev_err(dev, "omap rproc %s crashed\n", name);
513 rproc_report_crash(oproc->rproc, RPROC_FATAL_ERROR);
514 break;
515 case RP_MBOX_ECHO_REPLY:
516 dev_info(dev, "received echo reply from %s\n", name);
517 break;
518 case RP_MBOX_SUSPEND_ACK:
519 case RP_MBOX_SUSPEND_CANCEL:
520 oproc->suspend_acked = msg == RP_MBOX_SUSPEND_ACK;
521 complete(&oproc->pm_comp);
522 break;
523 default:
524 if (msg >= RP_MBOX_READY && msg < RP_MBOX_END_MSG)
525 return;
526 if (msg > oproc->rproc->max_notifyid) {
527 dev_dbg(dev, "dropping unknown message 0x%x", msg);
528 return;
529 }
530 /* msg contains the index of the triggered vring */
531 if (rproc_vq_interrupt(oproc->rproc, msg) == IRQ_NONE)
532 dev_dbg(dev, "no message was found in vqid %d\n", msg);
533 }
534 }
535
536 /* kick a virtqueue */
omap_rproc_kick(struct rproc * rproc,int vqid)537 static void omap_rproc_kick(struct rproc *rproc, int vqid)
538 {
539 struct omap_rproc *oproc = rproc->priv;
540 struct device *dev = rproc->dev.parent;
541 int ret;
542
543 /* wake up the rproc before kicking it */
544 ret = pm_runtime_get_sync(dev);
545 if (WARN_ON(ret < 0)) {
546 dev_err(dev, "pm_runtime_get_sync() failed during kick, ret = %d\n",
547 ret);
548 pm_runtime_put_noidle(dev);
549 return;
550 }
551
552 /* send the index of the triggered virtqueue in the mailbox payload */
553 ret = mbox_send_message(oproc->mbox, (void *)vqid);
554 if (ret < 0)
555 dev_err(dev, "failed to send mailbox message, status = %d\n",
556 ret);
557
558 pm_runtime_put_autosuspend(dev);
559 }
560
561 /**
562 * omap_rproc_write_dsp_boot_addr() - set boot address for DSP remote processor
563 * @rproc: handle of a remote processor
564 *
565 * Set boot address for a supported DSP remote processor.
566 *
567 * Return: 0 on success, or -EINVAL if boot address is not aligned properly
568 */
omap_rproc_write_dsp_boot_addr(struct rproc * rproc)569 static int omap_rproc_write_dsp_boot_addr(struct rproc *rproc)
570 {
571 struct device *dev = rproc->dev.parent;
572 struct omap_rproc *oproc = rproc->priv;
573 struct omap_rproc_boot_data *bdata = oproc->boot_data;
574 u32 offset = bdata->boot_reg;
575 u32 value;
576 u32 mask;
577
578 if (rproc->bootaddr & (SZ_1K - 1)) {
579 dev_err(dev, "invalid boot address 0x%llx, must be aligned on a 1KB boundary\n",
580 rproc->bootaddr);
581 return -EINVAL;
582 }
583
584 value = rproc->bootaddr >> bdata->boot_reg_shift;
585 mask = ~(SZ_1K - 1) >> bdata->boot_reg_shift;
586
587 return regmap_update_bits(bdata->syscon, offset, mask, value);
588 }
589
590 /*
591 * Power up the remote processor.
592 *
593 * This function will be invoked only after the firmware for this rproc
594 * was loaded, parsed successfully, and all of its resource requirements
595 * were met.
596 */
omap_rproc_start(struct rproc * rproc)597 static int omap_rproc_start(struct rproc *rproc)
598 {
599 struct omap_rproc *oproc = rproc->priv;
600 struct device *dev = rproc->dev.parent;
601 int ret;
602 struct mbox_client *client = &oproc->client;
603
604 if (oproc->boot_data) {
605 ret = omap_rproc_write_dsp_boot_addr(rproc);
606 if (ret)
607 return ret;
608 }
609
610 client->dev = dev;
611 client->tx_done = NULL;
612 client->rx_callback = omap_rproc_mbox_callback;
613 client->tx_block = false;
614 client->knows_txdone = false;
615
616 oproc->mbox = mbox_request_channel(client, 0);
617 if (IS_ERR(oproc->mbox)) {
618 ret = -EBUSY;
619 dev_err(dev, "mbox_request_channel failed: %ld\n",
620 PTR_ERR(oproc->mbox));
621 return ret;
622 }
623
624 /*
625 * Ping the remote processor. this is only for sanity-sake;
626 * there is no functional effect whatsoever.
627 *
628 * Note that the reply will _not_ arrive immediately: this message
629 * will wait in the mailbox fifo until the remote processor is booted.
630 */
631 ret = mbox_send_message(oproc->mbox, (void *)RP_MBOX_ECHO_REQUEST);
632 if (ret < 0) {
633 dev_err(dev, "mbox_send_message failed: %d\n", ret);
634 goto put_mbox;
635 }
636
637 ret = omap_rproc_enable_timers(rproc, true);
638 if (ret) {
639 dev_err(dev, "omap_rproc_enable_timers failed: %d\n", ret);
640 goto put_mbox;
641 }
642
643 ret = reset_control_deassert(oproc->reset);
644 if (ret) {
645 dev_err(dev, "reset control deassert failed: %d\n", ret);
646 goto disable_timers;
647 }
648
649 /*
650 * remote processor is up, so update the runtime pm status and
651 * enable the auto-suspend. The device usage count is incremented
652 * manually for balancing it for auto-suspend
653 */
654 pm_runtime_set_active(dev);
655 pm_runtime_use_autosuspend(dev);
656 pm_runtime_get_noresume(dev);
657 pm_runtime_enable(dev);
658 pm_runtime_put_autosuspend(dev);
659
660 return 0;
661
662 disable_timers:
663 omap_rproc_disable_timers(rproc, true);
664 put_mbox:
665 mbox_free_channel(oproc->mbox);
666 return ret;
667 }
668
669 /* power off the remote processor */
omap_rproc_stop(struct rproc * rproc)670 static int omap_rproc_stop(struct rproc *rproc)
671 {
672 struct device *dev = rproc->dev.parent;
673 struct omap_rproc *oproc = rproc->priv;
674 int ret;
675
676 /*
677 * cancel any possible scheduled runtime suspend by incrementing
678 * the device usage count, and resuming the device. The remoteproc
679 * also needs to be woken up if suspended, to avoid the remoteproc
680 * OS to continue to remember any context that it has saved, and
681 * avoid potential issues in misindentifying a subsequent device
682 * reboot as a power restore boot
683 */
684 ret = pm_runtime_get_sync(dev);
685 if (ret < 0) {
686 pm_runtime_put_noidle(dev);
687 return ret;
688 }
689
690 ret = reset_control_assert(oproc->reset);
691 if (ret)
692 goto out;
693
694 ret = omap_rproc_disable_timers(rproc, true);
695 if (ret)
696 goto enable_device;
697
698 mbox_free_channel(oproc->mbox);
699
700 /*
701 * update the runtime pm states and status now that the remoteproc
702 * has stopped
703 */
704 pm_runtime_disable(dev);
705 pm_runtime_dont_use_autosuspend(dev);
706 pm_runtime_put_noidle(dev);
707 pm_runtime_set_suspended(dev);
708
709 return 0;
710
711 enable_device:
712 reset_control_deassert(oproc->reset);
713 out:
714 /* schedule the next auto-suspend */
715 pm_runtime_put_autosuspend(dev);
716 return ret;
717 }
718
719 /**
720 * omap_rproc_da_to_va() - internal memory translation helper
721 * @rproc: remote processor to apply the address translation for
722 * @da: device address to translate
723 * @len: length of the memory buffer
724 * @is_iomem: pointer filled in to indicate if @da is iomapped memory
725 *
726 * Custom function implementing the rproc .da_to_va ops to provide address
727 * translation (device address to kernel virtual address) for internal RAMs
728 * present in a DSP or IPU device). The translated addresses can be used
729 * either by the remoteproc core for loading, or by any rpmsg bus drivers.
730 *
731 * Return: translated virtual address in kernel memory space on success,
732 * or NULL on failure.
733 */
omap_rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)734 static void *omap_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
735 {
736 struct omap_rproc *oproc = rproc->priv;
737 int i;
738 u32 offset;
739
740 if (len <= 0)
741 return NULL;
742
743 if (!oproc->num_mems)
744 return NULL;
745
746 for (i = 0; i < oproc->num_mems; i++) {
747 if (da >= oproc->mem[i].dev_addr && da + len <=
748 oproc->mem[i].dev_addr + oproc->mem[i].size) {
749 offset = da - oproc->mem[i].dev_addr;
750 /* __force to make sparse happy with type conversion */
751 return (__force void *)(oproc->mem[i].cpu_addr +
752 offset);
753 }
754 }
755
756 return NULL;
757 }
758
759 static const struct rproc_ops omap_rproc_ops = {
760 .start = omap_rproc_start,
761 .stop = omap_rproc_stop,
762 .kick = omap_rproc_kick,
763 .da_to_va = omap_rproc_da_to_va,
764 };
765
766 #ifdef CONFIG_PM
_is_rproc_in_standby(struct omap_rproc * oproc)767 static bool _is_rproc_in_standby(struct omap_rproc *oproc)
768 {
769 return ti_clk_is_in_standby(oproc->fck);
770 }
771
772 /* 1 sec is long enough time to let the remoteproc side suspend the device */
773 #define DEF_SUSPEND_TIMEOUT 1000
_omap_rproc_suspend(struct rproc * rproc,bool auto_suspend)774 static int _omap_rproc_suspend(struct rproc *rproc, bool auto_suspend)
775 {
776 struct device *dev = rproc->dev.parent;
777 struct omap_rproc *oproc = rproc->priv;
778 unsigned long to = msecs_to_jiffies(DEF_SUSPEND_TIMEOUT);
779 unsigned long ta = jiffies + to;
780 u32 suspend_msg = auto_suspend ?
781 RP_MBOX_SUSPEND_AUTO : RP_MBOX_SUSPEND_SYSTEM;
782 int ret;
783
784 reinit_completion(&oproc->pm_comp);
785 oproc->suspend_acked = false;
786 ret = mbox_send_message(oproc->mbox, (void *)suspend_msg);
787 if (ret < 0) {
788 dev_err(dev, "PM mbox_send_message failed: %d\n", ret);
789 return ret;
790 }
791
792 ret = wait_for_completion_timeout(&oproc->pm_comp, to);
793 if (!oproc->suspend_acked)
794 return -EBUSY;
795
796 /*
797 * The remoteproc side is returning the ACK message before saving the
798 * context, because the context saving is performed within a SYS/BIOS
799 * function, and it cannot have any inter-dependencies against the IPC
800 * layer. Also, as the SYS/BIOS needs to preserve properly the processor
801 * register set, sending this ACK or signalling the completion of the
802 * context save through a shared memory variable can never be the
803 * absolute last thing to be executed on the remoteproc side, and the
804 * MPU cannot use the ACK message as a sync point to put the remoteproc
805 * into reset. The only way to ensure that the remote processor has
806 * completed saving the context is to check that the module has reached
807 * STANDBY state (after saving the context, the SYS/BIOS executes the
808 * appropriate target-specific WFI instruction causing the module to
809 * enter STANDBY).
810 */
811 while (!_is_rproc_in_standby(oproc)) {
812 if (time_after(jiffies, ta))
813 return -ETIME;
814 schedule();
815 }
816
817 ret = reset_control_assert(oproc->reset);
818 if (ret) {
819 dev_err(dev, "reset assert during suspend failed %d\n", ret);
820 return ret;
821 }
822
823 ret = omap_rproc_disable_timers(rproc, false);
824 if (ret) {
825 dev_err(dev, "disabling timers during suspend failed %d\n",
826 ret);
827 goto enable_device;
828 }
829
830 /*
831 * IOMMUs would have to be disabled specifically for runtime suspend.
832 * They are handled automatically through System PM callbacks for
833 * regular system suspend
834 */
835 if (auto_suspend) {
836 ret = omap_iommu_domain_deactivate(rproc->domain);
837 if (ret) {
838 dev_err(dev, "iommu domain deactivate failed %d\n",
839 ret);
840 goto enable_timers;
841 }
842 }
843
844 return 0;
845
846 enable_timers:
847 /* ignore errors on re-enabling code */
848 omap_rproc_enable_timers(rproc, false);
849 enable_device:
850 reset_control_deassert(oproc->reset);
851 return ret;
852 }
853
_omap_rproc_resume(struct rproc * rproc,bool auto_suspend)854 static int _omap_rproc_resume(struct rproc *rproc, bool auto_suspend)
855 {
856 struct device *dev = rproc->dev.parent;
857 struct omap_rproc *oproc = rproc->priv;
858 int ret;
859
860 /*
861 * IOMMUs would have to be enabled specifically for runtime resume.
862 * They would have been already enabled automatically through System
863 * PM callbacks for regular system resume
864 */
865 if (auto_suspend) {
866 ret = omap_iommu_domain_activate(rproc->domain);
867 if (ret) {
868 dev_err(dev, "omap_iommu activate failed %d\n", ret);
869 goto out;
870 }
871 }
872
873 /* boot address could be lost after suspend, so restore it */
874 if (oproc->boot_data) {
875 ret = omap_rproc_write_dsp_boot_addr(rproc);
876 if (ret) {
877 dev_err(dev, "boot address restore failed %d\n", ret);
878 goto suspend_iommu;
879 }
880 }
881
882 ret = omap_rproc_enable_timers(rproc, false);
883 if (ret) {
884 dev_err(dev, "enabling timers during resume failed %d\n", ret);
885 goto suspend_iommu;
886 }
887
888 ret = reset_control_deassert(oproc->reset);
889 if (ret) {
890 dev_err(dev, "reset deassert during resume failed %d\n", ret);
891 goto disable_timers;
892 }
893
894 return 0;
895
896 disable_timers:
897 omap_rproc_disable_timers(rproc, false);
898 suspend_iommu:
899 if (auto_suspend)
900 omap_iommu_domain_deactivate(rproc->domain);
901 out:
902 return ret;
903 }
904
omap_rproc_suspend(struct device * dev)905 static int __maybe_unused omap_rproc_suspend(struct device *dev)
906 {
907 struct rproc *rproc = dev_get_drvdata(dev);
908 struct omap_rproc *oproc = rproc->priv;
909 int ret = 0;
910
911 mutex_lock(&rproc->lock);
912 if (rproc->state == RPROC_OFFLINE)
913 goto out;
914
915 if (rproc->state == RPROC_SUSPENDED)
916 goto out;
917
918 if (rproc->state != RPROC_RUNNING) {
919 ret = -EBUSY;
920 goto out;
921 }
922
923 ret = _omap_rproc_suspend(rproc, false);
924 if (ret) {
925 dev_err(dev, "suspend failed %d\n", ret);
926 goto out;
927 }
928
929 /*
930 * remoteproc is running at the time of system suspend, so remember
931 * it so as to wake it up during system resume
932 */
933 oproc->need_resume = true;
934 rproc->state = RPROC_SUSPENDED;
935
936 out:
937 mutex_unlock(&rproc->lock);
938 return ret;
939 }
940
omap_rproc_resume(struct device * dev)941 static int __maybe_unused omap_rproc_resume(struct device *dev)
942 {
943 struct rproc *rproc = dev_get_drvdata(dev);
944 struct omap_rproc *oproc = rproc->priv;
945 int ret = 0;
946
947 mutex_lock(&rproc->lock);
948 if (rproc->state == RPROC_OFFLINE)
949 goto out;
950
951 if (rproc->state != RPROC_SUSPENDED) {
952 ret = -EBUSY;
953 goto out;
954 }
955
956 /*
957 * remoteproc was auto-suspended at the time of system suspend,
958 * so no need to wake-up the processor (leave it in suspended
959 * state, will be woken up during a subsequent runtime_resume)
960 */
961 if (!oproc->need_resume)
962 goto out;
963
964 ret = _omap_rproc_resume(rproc, false);
965 if (ret) {
966 dev_err(dev, "resume failed %d\n", ret);
967 goto out;
968 }
969
970 oproc->need_resume = false;
971 rproc->state = RPROC_RUNNING;
972
973 pm_runtime_mark_last_busy(dev);
974 out:
975 mutex_unlock(&rproc->lock);
976 return ret;
977 }
978
omap_rproc_runtime_suspend(struct device * dev)979 static int omap_rproc_runtime_suspend(struct device *dev)
980 {
981 struct rproc *rproc = dev_get_drvdata(dev);
982 struct omap_rproc *oproc = rproc->priv;
983 int ret;
984
985 mutex_lock(&rproc->lock);
986 if (rproc->state == RPROC_CRASHED) {
987 dev_dbg(dev, "rproc cannot be runtime suspended when crashed!\n");
988 ret = -EBUSY;
989 goto out;
990 }
991
992 if (WARN_ON(rproc->state != RPROC_RUNNING)) {
993 dev_err(dev, "rproc cannot be runtime suspended when not running!\n");
994 ret = -EBUSY;
995 goto out;
996 }
997
998 /*
999 * do not even attempt suspend if the remote processor is not
1000 * idled for runtime auto-suspend
1001 */
1002 if (!_is_rproc_in_standby(oproc)) {
1003 ret = -EBUSY;
1004 goto abort;
1005 }
1006
1007 ret = _omap_rproc_suspend(rproc, true);
1008 if (ret)
1009 goto abort;
1010
1011 rproc->state = RPROC_SUSPENDED;
1012 mutex_unlock(&rproc->lock);
1013 return 0;
1014
1015 abort:
1016 pm_runtime_mark_last_busy(dev);
1017 out:
1018 mutex_unlock(&rproc->lock);
1019 return ret;
1020 }
1021
omap_rproc_runtime_resume(struct device * dev)1022 static int omap_rproc_runtime_resume(struct device *dev)
1023 {
1024 struct rproc *rproc = dev_get_drvdata(dev);
1025 int ret;
1026
1027 mutex_lock(&rproc->lock);
1028 if (WARN_ON(rproc->state != RPROC_SUSPENDED)) {
1029 dev_err(dev, "rproc cannot be runtime resumed if not suspended! state=%d\n",
1030 rproc->state);
1031 ret = -EBUSY;
1032 goto out;
1033 }
1034
1035 ret = _omap_rproc_resume(rproc, true);
1036 if (ret) {
1037 dev_err(dev, "runtime resume failed %d\n", ret);
1038 goto out;
1039 }
1040
1041 rproc->state = RPROC_RUNNING;
1042 out:
1043 mutex_unlock(&rproc->lock);
1044 return ret;
1045 }
1046 #endif /* CONFIG_PM */
1047
1048 static const struct omap_rproc_mem_data ipu_mems[] = {
1049 { .name = "l2ram", .dev_addr = 0x20000000 },
1050 { },
1051 };
1052
1053 static const struct omap_rproc_mem_data dra7_dsp_mems[] = {
1054 { .name = "l2ram", .dev_addr = 0x800000 },
1055 { .name = "l1pram", .dev_addr = 0xe00000 },
1056 { .name = "l1dram", .dev_addr = 0xf00000 },
1057 { },
1058 };
1059
1060 static const struct omap_rproc_dev_data omap4_dsp_dev_data = {
1061 .device_name = "dsp",
1062 };
1063
1064 static const struct omap_rproc_dev_data omap4_ipu_dev_data = {
1065 .device_name = "ipu",
1066 .mems = ipu_mems,
1067 };
1068
1069 static const struct omap_rproc_dev_data omap5_dsp_dev_data = {
1070 .device_name = "dsp",
1071 };
1072
1073 static const struct omap_rproc_dev_data omap5_ipu_dev_data = {
1074 .device_name = "ipu",
1075 .mems = ipu_mems,
1076 };
1077
1078 static const struct omap_rproc_dev_data dra7_dsp_dev_data = {
1079 .device_name = "dsp",
1080 .mems = dra7_dsp_mems,
1081 };
1082
1083 static const struct omap_rproc_dev_data dra7_ipu_dev_data = {
1084 .device_name = "ipu",
1085 .mems = ipu_mems,
1086 };
1087
1088 static const struct of_device_id omap_rproc_of_match[] = {
1089 {
1090 .compatible = "ti,omap4-dsp",
1091 .data = &omap4_dsp_dev_data,
1092 },
1093 {
1094 .compatible = "ti,omap4-ipu",
1095 .data = &omap4_ipu_dev_data,
1096 },
1097 {
1098 .compatible = "ti,omap5-dsp",
1099 .data = &omap5_dsp_dev_data,
1100 },
1101 {
1102 .compatible = "ti,omap5-ipu",
1103 .data = &omap5_ipu_dev_data,
1104 },
1105 {
1106 .compatible = "ti,dra7-dsp",
1107 .data = &dra7_dsp_dev_data,
1108 },
1109 {
1110 .compatible = "ti,dra7-ipu",
1111 .data = &dra7_ipu_dev_data,
1112 },
1113 {
1114 /* end */
1115 },
1116 };
1117 MODULE_DEVICE_TABLE(of, omap_rproc_of_match);
1118
omap_rproc_get_firmware(struct platform_device * pdev)1119 static const char *omap_rproc_get_firmware(struct platform_device *pdev)
1120 {
1121 const char *fw_name;
1122 int ret;
1123
1124 ret = of_property_read_string(pdev->dev.of_node, "firmware-name",
1125 &fw_name);
1126 if (ret)
1127 return ERR_PTR(ret);
1128
1129 return fw_name;
1130 }
1131
omap_rproc_get_boot_data(struct platform_device * pdev,struct rproc * rproc)1132 static int omap_rproc_get_boot_data(struct platform_device *pdev,
1133 struct rproc *rproc)
1134 {
1135 struct device_node *np = pdev->dev.of_node;
1136 struct omap_rproc *oproc = rproc->priv;
1137 const struct omap_rproc_dev_data *data;
1138
1139 data = of_device_get_match_data(&pdev->dev);
1140 if (!data)
1141 return -ENODEV;
1142
1143 if (!of_property_read_bool(np, "ti,bootreg"))
1144 return 0;
1145
1146 oproc->boot_data = devm_kzalloc(&pdev->dev, sizeof(*oproc->boot_data),
1147 GFP_KERNEL);
1148 if (!oproc->boot_data)
1149 return -ENOMEM;
1150
1151 oproc->boot_data->syscon =
1152 syscon_regmap_lookup_by_phandle(np, "ti,bootreg");
1153 if (IS_ERR(oproc->boot_data->syscon))
1154 return PTR_ERR(oproc->boot_data->syscon);
1155
1156 if (of_property_read_u32_index(np, "ti,bootreg", 1,
1157 &oproc->boot_data->boot_reg)) {
1158 dev_err(&pdev->dev, "couldn't get the boot register\n");
1159 return -EINVAL;
1160 }
1161
1162 of_property_read_u32_index(np, "ti,bootreg", 2,
1163 &oproc->boot_data->boot_reg_shift);
1164
1165 return 0;
1166 }
1167
omap_rproc_of_get_internal_memories(struct platform_device * pdev,struct rproc * rproc)1168 static int omap_rproc_of_get_internal_memories(struct platform_device *pdev,
1169 struct rproc *rproc)
1170 {
1171 struct omap_rproc *oproc = rproc->priv;
1172 struct device *dev = &pdev->dev;
1173 const struct omap_rproc_dev_data *data;
1174 struct resource *res;
1175 int num_mems;
1176 int i;
1177
1178 data = of_device_get_match_data(dev);
1179 if (!data)
1180 return -ENODEV;
1181
1182 if (!data->mems)
1183 return 0;
1184
1185 num_mems = of_property_count_elems_of_size(dev->of_node, "reg",
1186 sizeof(u32)) / 2;
1187
1188 oproc->mem = devm_kcalloc(dev, num_mems, sizeof(*oproc->mem),
1189 GFP_KERNEL);
1190 if (!oproc->mem)
1191 return -ENOMEM;
1192
1193 for (i = 0; data->mems[i].name; i++) {
1194 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1195 data->mems[i].name);
1196 if (!res) {
1197 dev_err(dev, "no memory defined for %s\n",
1198 data->mems[i].name);
1199 return -ENOMEM;
1200 }
1201 oproc->mem[i].cpu_addr = devm_ioremap_resource(dev, res);
1202 if (IS_ERR(oproc->mem[i].cpu_addr)) {
1203 dev_err(dev, "failed to parse and map %s memory\n",
1204 data->mems[i].name);
1205 return PTR_ERR(oproc->mem[i].cpu_addr);
1206 }
1207 oproc->mem[i].bus_addr = res->start;
1208 oproc->mem[i].dev_addr = data->mems[i].dev_addr;
1209 oproc->mem[i].size = resource_size(res);
1210
1211 dev_dbg(dev, "memory %8s: bus addr %pa size 0x%x va %p da 0x%x\n",
1212 data->mems[i].name, &oproc->mem[i].bus_addr,
1213 oproc->mem[i].size, oproc->mem[i].cpu_addr,
1214 oproc->mem[i].dev_addr);
1215 }
1216 oproc->num_mems = num_mems;
1217
1218 return 0;
1219 }
1220
1221 #ifdef CONFIG_OMAP_REMOTEPROC_WATCHDOG
omap_rproc_count_wdog_timers(struct device * dev)1222 static int omap_rproc_count_wdog_timers(struct device *dev)
1223 {
1224 struct device_node *np = dev->of_node;
1225 int ret;
1226
1227 ret = of_count_phandle_with_args(np, "ti,watchdog-timers", NULL);
1228 if (ret <= 0) {
1229 dev_dbg(dev, "device does not have watchdog timers, status = %d\n",
1230 ret);
1231 ret = 0;
1232 }
1233
1234 return ret;
1235 }
1236 #else
omap_rproc_count_wdog_timers(struct device * dev)1237 static int omap_rproc_count_wdog_timers(struct device *dev)
1238 {
1239 return 0;
1240 }
1241 #endif
1242
omap_rproc_of_get_timers(struct platform_device * pdev,struct rproc * rproc)1243 static int omap_rproc_of_get_timers(struct platform_device *pdev,
1244 struct rproc *rproc)
1245 {
1246 struct device_node *np = pdev->dev.of_node;
1247 struct omap_rproc *oproc = rproc->priv;
1248 struct device *dev = &pdev->dev;
1249 int num_timers;
1250
1251 /*
1252 * Timer nodes are directly used in client nodes as phandles, so
1253 * retrieve the count using appropriate size
1254 */
1255 oproc->num_timers = of_count_phandle_with_args(np, "ti,timers", NULL);
1256 if (oproc->num_timers <= 0) {
1257 dev_dbg(dev, "device does not have timers, status = %d\n",
1258 oproc->num_timers);
1259 oproc->num_timers = 0;
1260 }
1261
1262 oproc->num_wd_timers = omap_rproc_count_wdog_timers(dev);
1263
1264 num_timers = oproc->num_timers + oproc->num_wd_timers;
1265 if (num_timers) {
1266 oproc->timers = devm_kcalloc(dev, num_timers,
1267 sizeof(*oproc->timers),
1268 GFP_KERNEL);
1269 if (!oproc->timers)
1270 return -ENOMEM;
1271
1272 dev_dbg(dev, "device has %d tick timers and %d watchdog timers\n",
1273 oproc->num_timers, oproc->num_wd_timers);
1274 }
1275
1276 return 0;
1277 }
1278
omap_rproc_mem_release(void * data)1279 static void omap_rproc_mem_release(void *data)
1280 {
1281 struct device *dev = data;
1282
1283 of_reserved_mem_device_release(dev);
1284 }
1285
omap_rproc_probe(struct platform_device * pdev)1286 static int omap_rproc_probe(struct platform_device *pdev)
1287 {
1288 struct device_node *np = pdev->dev.of_node;
1289 struct omap_rproc *oproc;
1290 struct rproc *rproc;
1291 const char *firmware;
1292 int ret;
1293 struct reset_control *reset;
1294
1295 if (!np) {
1296 dev_err(&pdev->dev, "only DT-based devices are supported\n");
1297 return -ENODEV;
1298 }
1299
1300 reset = devm_reset_control_array_get_exclusive(&pdev->dev);
1301 if (IS_ERR(reset))
1302 return PTR_ERR(reset);
1303
1304 firmware = omap_rproc_get_firmware(pdev);
1305 if (IS_ERR(firmware))
1306 return PTR_ERR(firmware);
1307
1308 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1309 if (ret) {
1310 dev_err(&pdev->dev, "dma_set_coherent_mask: %d\n", ret);
1311 return ret;
1312 }
1313
1314 rproc = devm_rproc_alloc(&pdev->dev, dev_name(&pdev->dev), &omap_rproc_ops,
1315 firmware, sizeof(*oproc));
1316 if (!rproc)
1317 return -ENOMEM;
1318
1319 oproc = rproc->priv;
1320 oproc->rproc = rproc;
1321 oproc->reset = reset;
1322 /* All existing OMAP IPU and DSP processors have an MMU */
1323 rproc->has_iommu = true;
1324
1325 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1326 /*
1327 * Throw away the ARM DMA mapping that we'll never use, so it doesn't
1328 * interfere with the core rproc->domain and we get the right DMA ops.
1329 */
1330 if (pdev->dev.archdata.mapping) {
1331 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(&pdev->dev);
1332
1333 arm_iommu_detach_device(&pdev->dev);
1334 arm_iommu_release_mapping(mapping);
1335 }
1336 #endif
1337
1338 ret = omap_rproc_of_get_internal_memories(pdev, rproc);
1339 if (ret)
1340 return ret;
1341
1342 ret = omap_rproc_get_boot_data(pdev, rproc);
1343 if (ret)
1344 return ret;
1345
1346 ret = omap_rproc_of_get_timers(pdev, rproc);
1347 if (ret)
1348 return ret;
1349
1350 init_completion(&oproc->pm_comp);
1351 oproc->autosuspend_delay = DEFAULT_AUTOSUSPEND_DELAY;
1352
1353 of_property_read_u32(pdev->dev.of_node, "ti,autosuspend-delay-ms",
1354 &oproc->autosuspend_delay);
1355
1356 pm_runtime_set_autosuspend_delay(&pdev->dev, oproc->autosuspend_delay);
1357
1358 oproc->fck = devm_clk_get(&pdev->dev, 0);
1359 if (IS_ERR(oproc->fck))
1360 return PTR_ERR(oproc->fck);
1361
1362 ret = of_reserved_mem_device_init(&pdev->dev);
1363 if (ret) {
1364 dev_warn(&pdev->dev, "device does not have specific CMA pool.\n");
1365 dev_warn(&pdev->dev, "Typically this should be provided,\n");
1366 dev_warn(&pdev->dev, "only omit if you know what you are doing.\n");
1367 }
1368 ret = devm_add_action_or_reset(&pdev->dev, omap_rproc_mem_release, &pdev->dev);
1369 if (ret)
1370 return ret;
1371
1372 platform_set_drvdata(pdev, rproc);
1373
1374 ret = devm_rproc_add(&pdev->dev, rproc);
1375 if (ret)
1376 return ret;
1377
1378 return 0;
1379 }
1380
1381 static const struct dev_pm_ops omap_rproc_pm_ops = {
1382 SET_SYSTEM_SLEEP_PM_OPS(omap_rproc_suspend, omap_rproc_resume)
1383 SET_RUNTIME_PM_OPS(omap_rproc_runtime_suspend,
1384 omap_rproc_runtime_resume, NULL)
1385 };
1386
1387 static struct platform_driver omap_rproc_driver = {
1388 .probe = omap_rproc_probe,
1389 .driver = {
1390 .name = "omap-rproc",
1391 .pm = &omap_rproc_pm_ops,
1392 .of_match_table = omap_rproc_of_match,
1393 },
1394 };
1395
1396 module_platform_driver(omap_rproc_driver);
1397
1398 MODULE_LICENSE("GPL v2");
1399 MODULE_DESCRIPTION("OMAP Remote Processor control driver");
1400