1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Codec driver for ST STA350 2.1-channel high-efficiency digital audio system 4 * 5 * Copyright: 2014 Raumfeld GmbH 6 * Author: Sven Brandau <info@brandau.biz> 7 * 8 * based on code from: 9 * Raumfeld GmbH 10 * Johannes Stezenbach <js@sig21.net> 11 * Wolfson Microelectronics PLC. 12 * Mark Brown <broonie@opensource.wolfsonmicro.com> 13 * Freescale Semiconductor, Inc. 14 * Timur Tabi <timur@freescale.com> 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__ 18 19 #include <linux/module.h> 20 #include <linux/moduleparam.h> 21 #include <linux/init.h> 22 #include <linux/delay.h> 23 #include <linux/pm.h> 24 #include <linux/i2c.h> 25 #include <linux/of.h> 26 #include <linux/regmap.h> 27 #include <linux/regulator/consumer.h> 28 #include <linux/gpio/consumer.h> 29 #include <linux/slab.h> 30 #include <sound/core.h> 31 #include <sound/pcm.h> 32 #include <sound/pcm_params.h> 33 #include <sound/soc.h> 34 #include <sound/soc-dapm.h> 35 #include <sound/initval.h> 36 #include <sound/tlv.h> 37 38 #include <sound/sta350.h> 39 #include "sta350.h" 40 41 #define STA350_RATES (SNDRV_PCM_RATE_32000 | \ 42 SNDRV_PCM_RATE_44100 | \ 43 SNDRV_PCM_RATE_48000 | \ 44 SNDRV_PCM_RATE_88200 | \ 45 SNDRV_PCM_RATE_96000 | \ 46 SNDRV_PCM_RATE_176400 | \ 47 SNDRV_PCM_RATE_192000) 48 49 #define STA350_FORMATS \ 50 (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S18_3LE | \ 51 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S24_3LE | \ 52 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE) 53 54 /* Power-up register defaults */ 55 static const struct reg_default sta350_regs[] = { 56 { 0x0, 0x63 }, 57 { 0x1, 0x80 }, 58 { 0x2, 0xdf }, 59 { 0x3, 0x40 }, 60 { 0x4, 0xc2 }, 61 { 0x5, 0x5c }, 62 { 0x6, 0x00 }, 63 { 0x7, 0xff }, 64 { 0x8, 0x60 }, 65 { 0x9, 0x60 }, 66 { 0xa, 0x60 }, 67 { 0xb, 0x00 }, 68 { 0xc, 0x00 }, 69 { 0xd, 0x00 }, 70 { 0xe, 0x00 }, 71 { 0xf, 0x40 }, 72 { 0x10, 0x80 }, 73 { 0x11, 0x77 }, 74 { 0x12, 0x6a }, 75 { 0x13, 0x69 }, 76 { 0x14, 0x6a }, 77 { 0x15, 0x69 }, 78 { 0x16, 0x00 }, 79 { 0x17, 0x00 }, 80 { 0x18, 0x00 }, 81 { 0x19, 0x00 }, 82 { 0x1a, 0x00 }, 83 { 0x1b, 0x00 }, 84 { 0x1c, 0x00 }, 85 { 0x1d, 0x00 }, 86 { 0x1e, 0x00 }, 87 { 0x1f, 0x00 }, 88 { 0x20, 0x00 }, 89 { 0x21, 0x00 }, 90 { 0x22, 0x00 }, 91 { 0x23, 0x00 }, 92 { 0x24, 0x00 }, 93 { 0x25, 0x00 }, 94 { 0x26, 0x00 }, 95 { 0x27, 0x2a }, 96 { 0x28, 0xc0 }, 97 { 0x29, 0xf3 }, 98 { 0x2a, 0x33 }, 99 { 0x2b, 0x00 }, 100 { 0x2c, 0x0c }, 101 { 0x31, 0x00 }, 102 { 0x36, 0x00 }, 103 { 0x37, 0x00 }, 104 { 0x38, 0x00 }, 105 { 0x39, 0x01 }, 106 { 0x3a, 0xee }, 107 { 0x3b, 0xff }, 108 { 0x3c, 0x7e }, 109 { 0x3d, 0xc0 }, 110 { 0x3e, 0x26 }, 111 { 0x3f, 0x00 }, 112 { 0x48, 0x00 }, 113 { 0x49, 0x00 }, 114 { 0x4a, 0x00 }, 115 { 0x4b, 0x04 }, 116 { 0x4c, 0x00 }, 117 }; 118 119 static const struct regmap_range sta350_write_regs_range[] = { 120 regmap_reg_range(STA350_CONFA, STA350_AUTO2), 121 regmap_reg_range(STA350_C1CFG, STA350_FDRC2), 122 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES), 123 regmap_reg_range(STA350_NSHAPE, STA350_MISC2), 124 }; 125 126 static const struct regmap_range sta350_read_regs_range[] = { 127 regmap_reg_range(STA350_CONFA, STA350_AUTO2), 128 regmap_reg_range(STA350_C1CFG, STA350_STATUS), 129 regmap_reg_range(STA350_EQCFG, STA350_EVOLRES), 130 regmap_reg_range(STA350_NSHAPE, STA350_MISC2), 131 }; 132 133 static const struct regmap_range sta350_volatile_regs_range[] = { 134 regmap_reg_range(STA350_CFADDR2, STA350_CFUD), 135 regmap_reg_range(STA350_STATUS, STA350_STATUS), 136 }; 137 138 static const struct regmap_access_table sta350_write_regs = { 139 .yes_ranges = sta350_write_regs_range, 140 .n_yes_ranges = ARRAY_SIZE(sta350_write_regs_range), 141 }; 142 143 static const struct regmap_access_table sta350_read_regs = { 144 .yes_ranges = sta350_read_regs_range, 145 .n_yes_ranges = ARRAY_SIZE(sta350_read_regs_range), 146 }; 147 148 static const struct regmap_access_table sta350_volatile_regs = { 149 .yes_ranges = sta350_volatile_regs_range, 150 .n_yes_ranges = ARRAY_SIZE(sta350_volatile_regs_range), 151 }; 152 153 /* regulator power supply names */ 154 static const char * const sta350_supply_names[] = { 155 "vdd-dig", /* digital supply, 3.3V */ 156 "vdd-pll", /* pll supply, 3.3V */ 157 "vcc" /* power amp supply, 5V - 26V */ 158 }; 159 160 /* codec private data */ 161 struct sta350_priv { 162 struct regmap *regmap; 163 struct regulator_bulk_data supplies[ARRAY_SIZE(sta350_supply_names)]; 164 struct sta350_platform_data *pdata; 165 166 unsigned int mclk; 167 unsigned int format; 168 169 u32 coef_shadow[STA350_COEF_COUNT]; 170 int shutdown; 171 172 struct gpio_desc *gpiod_nreset; 173 struct gpio_desc *gpiod_power_down; 174 175 struct mutex coeff_lock; 176 }; 177 178 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12750, 50, 1); 179 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1); 180 static const DECLARE_TLV_DB_SCALE(tone_tlv, -1200, 200, 0); 181 182 static const char * const sta350_drc_ac[] = { 183 "Anti-Clipping", "Dynamic Range Compression" 184 }; 185 static const char * const sta350_auto_gc_mode[] = { 186 "User", "AC no clipping", "AC limited clipping (10%)", 187 "DRC nighttime listening mode" 188 }; 189 static const char * const sta350_auto_xo_mode[] = { 190 "User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", 191 "200Hz", "220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", 192 "340Hz", "360Hz" 193 }; 194 static const char * const sta350_binary_output[] = { 195 "FFX 3-state output - normal operation", "Binary output" 196 }; 197 static const char * const sta350_limiter_select[] = { 198 "Limiter Disabled", "Limiter #1", "Limiter #2" 199 }; 200 static const char * const sta350_limiter_attack_rate[] = { 201 "3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024", 202 "0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752", 203 "0.0645", "0.0564", "0.0501", "0.0451" 204 }; 205 static const char * const sta350_limiter_release_rate[] = { 206 "0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299", 207 "0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137", 208 "0.0134", "0.0117", "0.0110", "0.0104" 209 }; 210 static const char * const sta350_noise_shaper_type[] = { 211 "Third order", "Fourth order" 212 }; 213 214 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_attack_tlv, 215 0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0), 216 8, 16, TLV_DB_SCALE_ITEM(300, 100, 0), 217 ); 218 219 static DECLARE_TLV_DB_RANGE(sta350_limiter_ac_release_tlv, 220 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 221 1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0), 222 2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0), 223 3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0), 224 8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0), 225 ); 226 227 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_attack_tlv, 228 0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0), 229 8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0), 230 14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0), 231 ); 232 233 static DECLARE_TLV_DB_RANGE(sta350_limiter_drc_release_tlv, 234 0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0), 235 1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0), 236 3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0), 237 5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0), 238 13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0), 239 ); 240 241 static SOC_ENUM_SINGLE_DECL(sta350_drc_ac_enum, 242 STA350_CONFD, STA350_CONFD_DRC_SHIFT, 243 sta350_drc_ac); 244 static SOC_ENUM_SINGLE_DECL(sta350_noise_shaper_enum, 245 STA350_CONFE, STA350_CONFE_NSBW_SHIFT, 246 sta350_noise_shaper_type); 247 static SOC_ENUM_SINGLE_DECL(sta350_auto_gc_enum, 248 STA350_AUTO1, STA350_AUTO1_AMGC_SHIFT, 249 sta350_auto_gc_mode); 250 static SOC_ENUM_SINGLE_DECL(sta350_auto_xo_enum, 251 STA350_AUTO2, STA350_AUTO2_XO_SHIFT, 252 sta350_auto_xo_mode); 253 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch1_enum, 254 STA350_C1CFG, STA350_CxCFG_BO_SHIFT, 255 sta350_binary_output); 256 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch2_enum, 257 STA350_C2CFG, STA350_CxCFG_BO_SHIFT, 258 sta350_binary_output); 259 static SOC_ENUM_SINGLE_DECL(sta350_binary_output_ch3_enum, 260 STA350_C3CFG, STA350_CxCFG_BO_SHIFT, 261 sta350_binary_output); 262 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch1_enum, 263 STA350_C1CFG, STA350_CxCFG_LS_SHIFT, 264 sta350_limiter_select); 265 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch2_enum, 266 STA350_C2CFG, STA350_CxCFG_LS_SHIFT, 267 sta350_limiter_select); 268 static SOC_ENUM_SINGLE_DECL(sta350_limiter_ch3_enum, 269 STA350_C3CFG, STA350_CxCFG_LS_SHIFT, 270 sta350_limiter_select); 271 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_attack_rate_enum, 272 STA350_L1AR, STA350_LxA_SHIFT, 273 sta350_limiter_attack_rate); 274 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_attack_rate_enum, 275 STA350_L2AR, STA350_LxA_SHIFT, 276 sta350_limiter_attack_rate); 277 static SOC_ENUM_SINGLE_DECL(sta350_limiter1_release_rate_enum, 278 STA350_L1AR, STA350_LxR_SHIFT, 279 sta350_limiter_release_rate); 280 static SOC_ENUM_SINGLE_DECL(sta350_limiter2_release_rate_enum, 281 STA350_L2AR, STA350_LxR_SHIFT, 282 sta350_limiter_release_rate); 283 284 /* 285 * byte array controls for setting biquad, mixer, scaling coefficients; 286 * for biquads all five coefficients need to be set in one go, 287 * mixer and pre/postscale coefs can be set individually; 288 * each coef is 24bit, the bytes are ordered in the same way 289 * as given in the STA350 data sheet (big endian; b1, b2, a1, a2, b0) 290 */ 291 292 static int sta350_coefficient_info(struct snd_kcontrol *kcontrol, 293 struct snd_ctl_elem_info *uinfo) 294 { 295 int numcoef = kcontrol->private_value >> 16; 296 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; 297 uinfo->count = 3 * numcoef; 298 return 0; 299 } 300 301 static int sta350_coefficient_get(struct snd_kcontrol *kcontrol, 302 struct snd_ctl_elem_value *ucontrol) 303 { 304 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 305 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 306 int numcoef = kcontrol->private_value >> 16; 307 int index = kcontrol->private_value & 0xffff; 308 unsigned int cfud, val; 309 int i, ret = 0; 310 311 mutex_lock(&sta350->coeff_lock); 312 313 /* preserve reserved bits in STA350_CFUD */ 314 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 315 cfud &= 0xf0; 316 /* 317 * chip documentation does not say if the bits are self clearing, 318 * so do it explicitly 319 */ 320 regmap_write(sta350->regmap, STA350_CFUD, cfud); 321 322 regmap_write(sta350->regmap, STA350_CFADDR2, index); 323 if (numcoef == 1) { 324 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x04); 325 } else if (numcoef == 5) { 326 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x08); 327 } else { 328 ret = -EINVAL; 329 goto exit_unlock; 330 } 331 332 for (i = 0; i < 3 * numcoef; i++) { 333 regmap_read(sta350->regmap, STA350_B1CF1 + i, &val); 334 ucontrol->value.bytes.data[i] = val; 335 } 336 337 exit_unlock: 338 mutex_unlock(&sta350->coeff_lock); 339 340 return ret; 341 } 342 343 static int sta350_coefficient_put(struct snd_kcontrol *kcontrol, 344 struct snd_ctl_elem_value *ucontrol) 345 { 346 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); 347 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 348 int numcoef = kcontrol->private_value >> 16; 349 int index = kcontrol->private_value & 0xffff; 350 unsigned int cfud; 351 int i; 352 353 /* preserve reserved bits in STA350_CFUD */ 354 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 355 cfud &= 0xf0; 356 /* 357 * chip documentation does not say if the bits are self clearing, 358 * so do it explicitly 359 */ 360 regmap_write(sta350->regmap, STA350_CFUD, cfud); 361 362 regmap_write(sta350->regmap, STA350_CFADDR2, index); 363 for (i = 0; i < numcoef && (index + i < STA350_COEF_COUNT); i++) 364 sta350->coef_shadow[index + i] = 365 (ucontrol->value.bytes.data[3 * i] << 16) 366 | (ucontrol->value.bytes.data[3 * i + 1] << 8) 367 | (ucontrol->value.bytes.data[3 * i + 2]); 368 for (i = 0; i < 3 * numcoef; i++) 369 regmap_write(sta350->regmap, STA350_B1CF1 + i, 370 ucontrol->value.bytes.data[i]); 371 if (numcoef == 1) 372 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01); 373 else if (numcoef == 5) 374 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x02); 375 else 376 return -EINVAL; 377 378 return 0; 379 } 380 381 static int sta350_sync_coef_shadow(struct snd_soc_component *component) 382 { 383 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 384 unsigned int cfud; 385 int i; 386 387 /* preserve reserved bits in STA350_CFUD */ 388 regmap_read(sta350->regmap, STA350_CFUD, &cfud); 389 cfud &= 0xf0; 390 391 for (i = 0; i < STA350_COEF_COUNT; i++) { 392 regmap_write(sta350->regmap, STA350_CFADDR2, i); 393 regmap_write(sta350->regmap, STA350_B1CF1, 394 (sta350->coef_shadow[i] >> 16) & 0xff); 395 regmap_write(sta350->regmap, STA350_B1CF2, 396 (sta350->coef_shadow[i] >> 8) & 0xff); 397 regmap_write(sta350->regmap, STA350_B1CF3, 398 (sta350->coef_shadow[i]) & 0xff); 399 /* 400 * chip documentation does not say if the bits are 401 * self-clearing, so do it explicitly 402 */ 403 regmap_write(sta350->regmap, STA350_CFUD, cfud); 404 regmap_write(sta350->regmap, STA350_CFUD, cfud | 0x01); 405 } 406 return 0; 407 } 408 409 static int sta350_cache_sync(struct snd_soc_component *component) 410 { 411 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 412 unsigned int mute; 413 int rc; 414 415 /* mute during register sync */ 416 regmap_read(sta350->regmap, STA350_CFUD, &mute); 417 regmap_write(sta350->regmap, STA350_MMUTE, mute | STA350_MMUTE_MMUTE); 418 sta350_sync_coef_shadow(component); 419 rc = regcache_sync(sta350->regmap); 420 regmap_write(sta350->regmap, STA350_MMUTE, mute); 421 return rc; 422 } 423 424 #define SINGLE_COEF(xname, index) \ 425 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 426 .info = sta350_coefficient_info, \ 427 .get = sta350_coefficient_get,\ 428 .put = sta350_coefficient_put, \ 429 .private_value = index | (1 << 16) } 430 431 #define BIQUAD_COEFS(xname, index) \ 432 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 433 .info = sta350_coefficient_info, \ 434 .get = sta350_coefficient_get,\ 435 .put = sta350_coefficient_put, \ 436 .private_value = index | (5 << 16) } 437 438 static const struct snd_kcontrol_new sta350_snd_controls[] = { 439 SOC_SINGLE_TLV("Master Volume", STA350_MVOL, 0, 0xff, 1, mvol_tlv), 440 /* VOL */ 441 SOC_SINGLE_TLV("Ch1 Volume", STA350_C1VOL, 0, 0xff, 1, chvol_tlv), 442 SOC_SINGLE_TLV("Ch2 Volume", STA350_C2VOL, 0, 0xff, 1, chvol_tlv), 443 SOC_SINGLE_TLV("Ch3 Volume", STA350_C3VOL, 0, 0xff, 1, chvol_tlv), 444 /* CONFD */ 445 SOC_SINGLE("High Pass Filter Bypass Switch", 446 STA350_CONFD, STA350_CONFD_HPB_SHIFT, 1, 1), 447 SOC_SINGLE("De-emphasis Filter Switch", 448 STA350_CONFD, STA350_CONFD_DEMP_SHIFT, 1, 0), 449 SOC_SINGLE("DSP Bypass Switch", 450 STA350_CONFD, STA350_CONFD_DSPB_SHIFT, 1, 0), 451 SOC_SINGLE("Post-scale Link Switch", 452 STA350_CONFD, STA350_CONFD_PSL_SHIFT, 1, 0), 453 SOC_SINGLE("Biquad Coefficient Link Switch", 454 STA350_CONFD, STA350_CONFD_BQL_SHIFT, 1, 0), 455 SOC_ENUM("Compressor/Limiter Switch", sta350_drc_ac_enum), 456 SOC_ENUM("Noise Shaper Bandwidth", sta350_noise_shaper_enum), 457 SOC_SINGLE("Zero-detect Mute Enable Switch", 458 STA350_CONFD, STA350_CONFD_ZDE_SHIFT, 1, 0), 459 SOC_SINGLE("Submix Mode Switch", 460 STA350_CONFD, STA350_CONFD_SME_SHIFT, 1, 0), 461 /* CONFE */ 462 SOC_SINGLE("Zero Cross Switch", STA350_CONFE, STA350_CONFE_ZCE_SHIFT, 1, 0), 463 SOC_SINGLE("Soft Ramp Switch", STA350_CONFE, STA350_CONFE_SVE_SHIFT, 1, 0), 464 /* MUTE */ 465 SOC_SINGLE("Master Switch", STA350_MMUTE, STA350_MMUTE_MMUTE_SHIFT, 1, 1), 466 SOC_SINGLE("Ch1 Switch", STA350_MMUTE, STA350_MMUTE_C1M_SHIFT, 1, 1), 467 SOC_SINGLE("Ch2 Switch", STA350_MMUTE, STA350_MMUTE_C2M_SHIFT, 1, 1), 468 SOC_SINGLE("Ch3 Switch", STA350_MMUTE, STA350_MMUTE_C3M_SHIFT, 1, 1), 469 /* AUTOx */ 470 SOC_ENUM("Automode GC", sta350_auto_gc_enum), 471 SOC_ENUM("Automode XO", sta350_auto_xo_enum), 472 /* CxCFG */ 473 SOC_SINGLE("Ch1 Tone Control Bypass Switch", 474 STA350_C1CFG, STA350_CxCFG_TCB_SHIFT, 1, 0), 475 SOC_SINGLE("Ch2 Tone Control Bypass Switch", 476 STA350_C2CFG, STA350_CxCFG_TCB_SHIFT, 1, 0), 477 SOC_SINGLE("Ch1 EQ Bypass Switch", 478 STA350_C1CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0), 479 SOC_SINGLE("Ch2 EQ Bypass Switch", 480 STA350_C2CFG, STA350_CxCFG_EQBP_SHIFT, 1, 0), 481 SOC_SINGLE("Ch1 Master Volume Bypass Switch", 482 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 483 SOC_SINGLE("Ch2 Master Volume Bypass Switch", 484 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 485 SOC_SINGLE("Ch3 Master Volume Bypass Switch", 486 STA350_C1CFG, STA350_CxCFG_VBP_SHIFT, 1, 0), 487 SOC_ENUM("Ch1 Binary Output Select", sta350_binary_output_ch1_enum), 488 SOC_ENUM("Ch2 Binary Output Select", sta350_binary_output_ch2_enum), 489 SOC_ENUM("Ch3 Binary Output Select", sta350_binary_output_ch3_enum), 490 SOC_ENUM("Ch1 Limiter Select", sta350_limiter_ch1_enum), 491 SOC_ENUM("Ch2 Limiter Select", sta350_limiter_ch2_enum), 492 SOC_ENUM("Ch3 Limiter Select", sta350_limiter_ch3_enum), 493 /* TONE */ 494 SOC_SINGLE_RANGE_TLV("Bass Tone Control Volume", 495 STA350_TONE, STA350_TONE_BTC_SHIFT, 1, 13, 0, tone_tlv), 496 SOC_SINGLE_RANGE_TLV("Treble Tone Control Volume", 497 STA350_TONE, STA350_TONE_TTC_SHIFT, 1, 13, 0, tone_tlv), 498 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta350_limiter1_attack_rate_enum), 499 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta350_limiter2_attack_rate_enum), 500 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta350_limiter1_release_rate_enum), 501 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta350_limiter2_release_rate_enum), 502 503 /* 504 * depending on mode, the attack/release thresholds have 505 * two different enum definitions; provide both 506 */ 507 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", 508 STA350_L1ATRT, STA350_LxA_SHIFT, 509 16, 0, sta350_limiter_ac_attack_tlv), 510 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", 511 STA350_L2ATRT, STA350_LxA_SHIFT, 512 16, 0, sta350_limiter_ac_attack_tlv), 513 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", 514 STA350_L1ATRT, STA350_LxR_SHIFT, 515 16, 0, sta350_limiter_ac_release_tlv), 516 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", 517 STA350_L2ATRT, STA350_LxR_SHIFT, 518 16, 0, sta350_limiter_ac_release_tlv), 519 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", 520 STA350_L1ATRT, STA350_LxA_SHIFT, 521 16, 0, sta350_limiter_drc_attack_tlv), 522 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", 523 STA350_L2ATRT, STA350_LxA_SHIFT, 524 16, 0, sta350_limiter_drc_attack_tlv), 525 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", 526 STA350_L1ATRT, STA350_LxR_SHIFT, 527 16, 0, sta350_limiter_drc_release_tlv), 528 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", 529 STA350_L2ATRT, STA350_LxR_SHIFT, 530 16, 0, sta350_limiter_drc_release_tlv), 531 532 BIQUAD_COEFS("Ch1 - Biquad 1", 0), 533 BIQUAD_COEFS("Ch1 - Biquad 2", 5), 534 BIQUAD_COEFS("Ch1 - Biquad 3", 10), 535 BIQUAD_COEFS("Ch1 - Biquad 4", 15), 536 BIQUAD_COEFS("Ch2 - Biquad 1", 20), 537 BIQUAD_COEFS("Ch2 - Biquad 2", 25), 538 BIQUAD_COEFS("Ch2 - Biquad 3", 30), 539 BIQUAD_COEFS("Ch2 - Biquad 4", 35), 540 BIQUAD_COEFS("High-pass", 40), 541 BIQUAD_COEFS("Low-pass", 45), 542 SINGLE_COEF("Ch1 - Prescale", 50), 543 SINGLE_COEF("Ch2 - Prescale", 51), 544 SINGLE_COEF("Ch1 - Postscale", 52), 545 SINGLE_COEF("Ch2 - Postscale", 53), 546 SINGLE_COEF("Ch3 - Postscale", 54), 547 SINGLE_COEF("Thermal warning - Postscale", 55), 548 SINGLE_COEF("Ch1 - Mix 1", 56), 549 SINGLE_COEF("Ch1 - Mix 2", 57), 550 SINGLE_COEF("Ch2 - Mix 1", 58), 551 SINGLE_COEF("Ch2 - Mix 2", 59), 552 SINGLE_COEF("Ch3 - Mix 1", 60), 553 SINGLE_COEF("Ch3 - Mix 2", 61), 554 }; 555 556 static const struct snd_soc_dapm_widget sta350_dapm_widgets[] = { 557 SND_SOC_DAPM_DAC("DAC", NULL, SND_SOC_NOPM, 0, 0), 558 SND_SOC_DAPM_OUTPUT("LEFT"), 559 SND_SOC_DAPM_OUTPUT("RIGHT"), 560 SND_SOC_DAPM_OUTPUT("SUB"), 561 }; 562 563 static const struct snd_soc_dapm_route sta350_dapm_routes[] = { 564 { "LEFT", NULL, "DAC" }, 565 { "RIGHT", NULL, "DAC" }, 566 { "SUB", NULL, "DAC" }, 567 { "DAC", NULL, "Playback" }, 568 }; 569 570 /* MCLK interpolation ratio per fs */ 571 static struct { 572 int fs; 573 int ir; 574 } interpolation_ratios[] = { 575 { 32000, 0 }, 576 { 44100, 0 }, 577 { 48000, 0 }, 578 { 88200, 1 }, 579 { 96000, 1 }, 580 { 176400, 2 }, 581 { 192000, 2 }, 582 }; 583 584 /* MCLK to fs clock ratios */ 585 static int mcs_ratio_table[3][6] = { 586 { 768, 512, 384, 256, 128, 576 }, 587 { 384, 256, 192, 128, 64, 0 }, 588 { 192, 128, 96, 64, 32, 0 }, 589 }; 590 591 /** 592 * sta350_set_dai_sysclk - configure MCLK 593 * @codec_dai: the codec DAI 594 * @clk_id: the clock ID (ignored) 595 * @freq: the MCLK input frequency 596 * @dir: the clock direction (ignored) 597 * 598 * The value of MCLK is used to determine which sample rates are supported 599 * by the STA350, based on the mcs_ratio_table. 600 * 601 * This function must be called by the machine driver's 'startup' function, 602 * otherwise the list of supported sample rates will not be available in 603 * time for ALSA. 604 */ 605 static int sta350_set_dai_sysclk(struct snd_soc_dai *codec_dai, 606 int clk_id, unsigned int freq, int dir) 607 { 608 struct snd_soc_component *component = codec_dai->component; 609 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 610 611 dev_dbg(component->dev, "mclk=%u\n", freq); 612 sta350->mclk = freq; 613 614 return 0; 615 } 616 617 /** 618 * sta350_set_dai_fmt - configure the codec for the selected audio format 619 * @codec_dai: the codec DAI 620 * @fmt: a SND_SOC_DAIFMT_x value indicating the data format 621 * 622 * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the 623 * codec accordingly. 624 */ 625 static int sta350_set_dai_fmt(struct snd_soc_dai *codec_dai, 626 unsigned int fmt) 627 { 628 struct snd_soc_component *component = codec_dai->component; 629 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 630 unsigned int confb = 0; 631 632 switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) { 633 case SND_SOC_DAIFMT_CBC_CFC: 634 break; 635 default: 636 return -EINVAL; 637 } 638 639 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { 640 case SND_SOC_DAIFMT_I2S: 641 case SND_SOC_DAIFMT_RIGHT_J: 642 case SND_SOC_DAIFMT_LEFT_J: 643 sta350->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK; 644 break; 645 default: 646 return -EINVAL; 647 } 648 649 switch (fmt & SND_SOC_DAIFMT_INV_MASK) { 650 case SND_SOC_DAIFMT_NB_NF: 651 confb |= STA350_CONFB_C2IM; 652 break; 653 case SND_SOC_DAIFMT_NB_IF: 654 confb |= STA350_CONFB_C1IM; 655 break; 656 default: 657 return -EINVAL; 658 } 659 660 return regmap_update_bits(sta350->regmap, STA350_CONFB, 661 STA350_CONFB_C1IM | STA350_CONFB_C2IM, confb); 662 } 663 664 /** 665 * sta350_hw_params - program the STA350 with the given hardware parameters. 666 * @substream: the audio stream 667 * @params: the hardware parameters to set 668 * @dai: the SOC DAI (ignored) 669 * 670 * This function programs the hardware with the values provided. 671 * Specifically, the sample rate and the data format. 672 */ 673 static int sta350_hw_params(struct snd_pcm_substream *substream, 674 struct snd_pcm_hw_params *params, 675 struct snd_soc_dai *dai) 676 { 677 struct snd_soc_component *component = dai->component; 678 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 679 int i, mcs = -EINVAL, ir = -EINVAL; 680 unsigned int confa, confb; 681 unsigned int rate, ratio; 682 int ret; 683 684 if (!sta350->mclk) { 685 dev_err(component->dev, 686 "sta350->mclk is unset. Unable to determine ratio\n"); 687 return -EIO; 688 } 689 690 rate = params_rate(params); 691 ratio = sta350->mclk / rate; 692 dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio); 693 694 for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) { 695 if (interpolation_ratios[i].fs == rate) { 696 ir = interpolation_ratios[i].ir; 697 break; 698 } 699 } 700 701 if (ir < 0) { 702 dev_err(component->dev, "Unsupported samplerate: %u\n", rate); 703 return -EINVAL; 704 } 705 706 for (i = 0; i < 6; i++) { 707 if (mcs_ratio_table[ir][i] == ratio) { 708 mcs = i; 709 break; 710 } 711 } 712 713 if (mcs < 0) { 714 dev_err(component->dev, "Unresolvable ratio: %u\n", ratio); 715 return -EINVAL; 716 } 717 718 confa = (ir << STA350_CONFA_IR_SHIFT) | 719 (mcs << STA350_CONFA_MCS_SHIFT); 720 confb = 0; 721 722 switch (params_width(params)) { 723 case 24: 724 dev_dbg(component->dev, "24bit\n"); 725 fallthrough; 726 case 32: 727 dev_dbg(component->dev, "24bit or 32bit\n"); 728 switch (sta350->format) { 729 case SND_SOC_DAIFMT_I2S: 730 confb |= 0x0; 731 break; 732 case SND_SOC_DAIFMT_LEFT_J: 733 confb |= 0x1; 734 break; 735 case SND_SOC_DAIFMT_RIGHT_J: 736 confb |= 0x2; 737 break; 738 } 739 740 break; 741 case 20: 742 dev_dbg(component->dev, "20bit\n"); 743 switch (sta350->format) { 744 case SND_SOC_DAIFMT_I2S: 745 confb |= 0x4; 746 break; 747 case SND_SOC_DAIFMT_LEFT_J: 748 confb |= 0x5; 749 break; 750 case SND_SOC_DAIFMT_RIGHT_J: 751 confb |= 0x6; 752 break; 753 } 754 755 break; 756 case 18: 757 dev_dbg(component->dev, "18bit\n"); 758 switch (sta350->format) { 759 case SND_SOC_DAIFMT_I2S: 760 confb |= 0x8; 761 break; 762 case SND_SOC_DAIFMT_LEFT_J: 763 confb |= 0x9; 764 break; 765 case SND_SOC_DAIFMT_RIGHT_J: 766 confb |= 0xa; 767 break; 768 } 769 770 break; 771 case 16: 772 dev_dbg(component->dev, "16bit\n"); 773 switch (sta350->format) { 774 case SND_SOC_DAIFMT_I2S: 775 confb |= 0x0; 776 break; 777 case SND_SOC_DAIFMT_LEFT_J: 778 confb |= 0xd; 779 break; 780 case SND_SOC_DAIFMT_RIGHT_J: 781 confb |= 0xe; 782 break; 783 } 784 785 break; 786 default: 787 return -EINVAL; 788 } 789 790 ret = regmap_update_bits(sta350->regmap, STA350_CONFA, 791 STA350_CONFA_MCS_MASK | STA350_CONFA_IR_MASK, 792 confa); 793 if (ret < 0) 794 return ret; 795 796 ret = regmap_update_bits(sta350->regmap, STA350_CONFB, 797 STA350_CONFB_SAI_MASK | STA350_CONFB_SAIFB, 798 confb); 799 if (ret < 0) 800 return ret; 801 802 return 0; 803 } 804 805 static int sta350_startup_sequence(struct sta350_priv *sta350) 806 { 807 if (sta350->gpiod_power_down) 808 gpiod_set_value(sta350->gpiod_power_down, 1); 809 810 if (sta350->gpiod_nreset) { 811 gpiod_set_value(sta350->gpiod_nreset, 0); 812 mdelay(1); 813 gpiod_set_value(sta350->gpiod_nreset, 1); 814 mdelay(1); 815 } 816 817 return 0; 818 } 819 820 /** 821 * sta350_set_bias_level - DAPM callback 822 * @component: the component device 823 * @level: DAPM power level 824 * 825 * This is called by ALSA to put the component into low power mode 826 * or to wake it up. If the component is powered off completely 827 * all registers must be restored after power on. 828 */ 829 static int sta350_set_bias_level(struct snd_soc_component *component, 830 enum snd_soc_bias_level level) 831 { 832 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 833 struct snd_soc_dapm_context *dapm = snd_soc_component_to_dapm(component); 834 int ret; 835 836 dev_dbg(component->dev, "level = %d\n", level); 837 switch (level) { 838 case SND_SOC_BIAS_ON: 839 break; 840 841 case SND_SOC_BIAS_PREPARE: 842 /* Full power on */ 843 regmap_update_bits(sta350->regmap, STA350_CONFF, 844 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 845 STA350_CONFF_PWDN | STA350_CONFF_EAPD); 846 break; 847 848 case SND_SOC_BIAS_STANDBY: 849 if (snd_soc_dapm_get_bias_level(dapm) == SND_SOC_BIAS_OFF) { 850 ret = regulator_bulk_enable( 851 ARRAY_SIZE(sta350->supplies), 852 sta350->supplies); 853 if (ret < 0) { 854 dev_err(component->dev, 855 "Failed to enable supplies: %d\n", 856 ret); 857 return ret; 858 } 859 sta350_startup_sequence(sta350); 860 sta350_cache_sync(component); 861 } 862 863 /* Power down */ 864 regmap_update_bits(sta350->regmap, STA350_CONFF, 865 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 866 0); 867 868 break; 869 870 case SND_SOC_BIAS_OFF: 871 /* The chip runs through the power down sequence for us */ 872 regmap_update_bits(sta350->regmap, STA350_CONFF, 873 STA350_CONFF_PWDN | STA350_CONFF_EAPD, 0); 874 875 /* power down: low */ 876 if (sta350->gpiod_power_down) 877 gpiod_set_value(sta350->gpiod_power_down, 0); 878 879 if (sta350->gpiod_nreset) 880 gpiod_set_value(sta350->gpiod_nreset, 0); 881 882 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), 883 sta350->supplies); 884 break; 885 } 886 return 0; 887 } 888 889 static const struct snd_soc_dai_ops sta350_dai_ops = { 890 .hw_params = sta350_hw_params, 891 .set_sysclk = sta350_set_dai_sysclk, 892 .set_fmt = sta350_set_dai_fmt, 893 }; 894 895 static struct snd_soc_dai_driver sta350_dai = { 896 .name = "sta350-hifi", 897 .playback = { 898 .stream_name = "Playback", 899 .channels_min = 2, 900 .channels_max = 2, 901 .rates = STA350_RATES, 902 .formats = STA350_FORMATS, 903 }, 904 .ops = &sta350_dai_ops, 905 }; 906 907 static int sta350_probe(struct snd_soc_component *component) 908 { 909 struct snd_soc_dapm_context *dapm = snd_soc_component_to_dapm(component); 910 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 911 struct sta350_platform_data *pdata = sta350->pdata; 912 int i, ret = 0, thermal = 0; 913 914 ret = regulator_bulk_enable(ARRAY_SIZE(sta350->supplies), 915 sta350->supplies); 916 if (ret < 0) { 917 dev_err(component->dev, "Failed to enable supplies: %d\n", ret); 918 return ret; 919 } 920 921 ret = sta350_startup_sequence(sta350); 922 if (ret < 0) { 923 dev_err(component->dev, "Failed to startup device\n"); 924 return ret; 925 } 926 927 /* CONFA */ 928 if (!pdata->thermal_warning_recovery) 929 thermal |= STA350_CONFA_TWAB; 930 if (!pdata->thermal_warning_adjustment) 931 thermal |= STA350_CONFA_TWRB; 932 if (!pdata->fault_detect_recovery) 933 thermal |= STA350_CONFA_FDRB; 934 regmap_update_bits(sta350->regmap, STA350_CONFA, 935 STA350_CONFA_TWAB | STA350_CONFA_TWRB | 936 STA350_CONFA_FDRB, 937 thermal); 938 939 /* CONFC */ 940 regmap_update_bits(sta350->regmap, STA350_CONFC, 941 STA350_CONFC_OM_MASK, 942 pdata->ffx_power_output_mode 943 << STA350_CONFC_OM_SHIFT); 944 regmap_update_bits(sta350->regmap, STA350_CONFC, 945 STA350_CONFC_CSZ_MASK, 946 pdata->drop_compensation_ns 947 << STA350_CONFC_CSZ_SHIFT); 948 regmap_update_bits(sta350->regmap, 949 STA350_CONFC, 950 STA350_CONFC_OCRB, 951 pdata->oc_warning_adjustment ? 952 STA350_CONFC_OCRB : 0); 953 954 /* CONFE */ 955 regmap_update_bits(sta350->regmap, STA350_CONFE, 956 STA350_CONFE_MPCV, 957 pdata->max_power_use_mpcc ? 958 STA350_CONFE_MPCV : 0); 959 regmap_update_bits(sta350->regmap, STA350_CONFE, 960 STA350_CONFE_MPC, 961 pdata->max_power_correction ? 962 STA350_CONFE_MPC : 0); 963 regmap_update_bits(sta350->regmap, STA350_CONFE, 964 STA350_CONFE_AME, 965 pdata->am_reduction_mode ? 966 STA350_CONFE_AME : 0); 967 regmap_update_bits(sta350->regmap, STA350_CONFE, 968 STA350_CONFE_PWMS, 969 pdata->odd_pwm_speed_mode ? 970 STA350_CONFE_PWMS : 0); 971 regmap_update_bits(sta350->regmap, STA350_CONFE, 972 STA350_CONFE_DCCV, 973 pdata->distortion_compensation ? 974 STA350_CONFE_DCCV : 0); 975 /* CONFF */ 976 regmap_update_bits(sta350->regmap, STA350_CONFF, 977 STA350_CONFF_IDE, 978 pdata->invalid_input_detect_mute ? 979 STA350_CONFF_IDE : 0); 980 regmap_update_bits(sta350->regmap, STA350_CONFF, 981 STA350_CONFF_OCFG_MASK, 982 pdata->output_conf 983 << STA350_CONFF_OCFG_SHIFT); 984 985 /* channel to output mapping */ 986 regmap_update_bits(sta350->regmap, STA350_C1CFG, 987 STA350_CxCFG_OM_MASK, 988 pdata->ch1_output_mapping 989 << STA350_CxCFG_OM_SHIFT); 990 regmap_update_bits(sta350->regmap, STA350_C2CFG, 991 STA350_CxCFG_OM_MASK, 992 pdata->ch2_output_mapping 993 << STA350_CxCFG_OM_SHIFT); 994 regmap_update_bits(sta350->regmap, STA350_C3CFG, 995 STA350_CxCFG_OM_MASK, 996 pdata->ch3_output_mapping 997 << STA350_CxCFG_OM_SHIFT); 998 999 /* miscellaneous registers */ 1000 regmap_update_bits(sta350->regmap, STA350_MISC1, 1001 STA350_MISC1_CPWMEN, 1002 pdata->activate_mute_output ? 1003 STA350_MISC1_CPWMEN : 0); 1004 regmap_update_bits(sta350->regmap, STA350_MISC1, 1005 STA350_MISC1_BRIDGOFF, 1006 pdata->bridge_immediate_off ? 1007 STA350_MISC1_BRIDGOFF : 0); 1008 regmap_update_bits(sta350->regmap, STA350_MISC1, 1009 STA350_MISC1_NSHHPEN, 1010 pdata->noise_shape_dc_cut ? 1011 STA350_MISC1_NSHHPEN : 0); 1012 regmap_update_bits(sta350->regmap, STA350_MISC1, 1013 STA350_MISC1_RPDNEN, 1014 pdata->powerdown_master_vol ? 1015 STA350_MISC1_RPDNEN: 0); 1016 1017 regmap_update_bits(sta350->regmap, STA350_MISC2, 1018 STA350_MISC2_PNDLSL_MASK, 1019 pdata->powerdown_delay_divider 1020 << STA350_MISC2_PNDLSL_SHIFT); 1021 1022 /* initialize coefficient shadow RAM with reset values */ 1023 for (i = 4; i <= 49; i += 5) 1024 sta350->coef_shadow[i] = 0x400000; 1025 for (i = 50; i <= 54; i++) 1026 sta350->coef_shadow[i] = 0x7fffff; 1027 sta350->coef_shadow[55] = 0x5a9df7; 1028 sta350->coef_shadow[56] = 0x7fffff; 1029 sta350->coef_shadow[59] = 0x7fffff; 1030 sta350->coef_shadow[60] = 0x400000; 1031 sta350->coef_shadow[61] = 0x400000; 1032 1033 snd_soc_dapm_force_bias_level(dapm, SND_SOC_BIAS_STANDBY); 1034 /* Bias level configuration will have done an extra enable */ 1035 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); 1036 1037 return 0; 1038 } 1039 1040 static void sta350_remove(struct snd_soc_component *component) 1041 { 1042 struct sta350_priv *sta350 = snd_soc_component_get_drvdata(component); 1043 1044 regulator_bulk_disable(ARRAY_SIZE(sta350->supplies), sta350->supplies); 1045 } 1046 1047 static const struct snd_soc_component_driver sta350_component = { 1048 .probe = sta350_probe, 1049 .remove = sta350_remove, 1050 .set_bias_level = sta350_set_bias_level, 1051 .controls = sta350_snd_controls, 1052 .num_controls = ARRAY_SIZE(sta350_snd_controls), 1053 .dapm_widgets = sta350_dapm_widgets, 1054 .num_dapm_widgets = ARRAY_SIZE(sta350_dapm_widgets), 1055 .dapm_routes = sta350_dapm_routes, 1056 .num_dapm_routes = ARRAY_SIZE(sta350_dapm_routes), 1057 .suspend_bias_off = 1, 1058 .idle_bias_on = 1, 1059 .use_pmdown_time = 1, 1060 .endianness = 1, 1061 }; 1062 1063 static const struct regmap_config sta350_regmap = { 1064 .reg_bits = 8, 1065 .val_bits = 8, 1066 .max_register = STA350_MISC2, 1067 .reg_defaults = sta350_regs, 1068 .num_reg_defaults = ARRAY_SIZE(sta350_regs), 1069 .cache_type = REGCACHE_MAPLE, 1070 .wr_table = &sta350_write_regs, 1071 .rd_table = &sta350_read_regs, 1072 .volatile_table = &sta350_volatile_regs, 1073 }; 1074 1075 #ifdef CONFIG_OF 1076 static const struct of_device_id st350_dt_ids[] = { 1077 { .compatible = "st,sta350", }, 1078 { } 1079 }; 1080 MODULE_DEVICE_TABLE(of, st350_dt_ids); 1081 1082 static const char * const sta350_ffx_modes[] = { 1083 [STA350_FFX_PM_DROP_COMP] = "drop-compensation", 1084 [STA350_FFX_PM_TAPERED_COMP] = "tapered-compensation", 1085 [STA350_FFX_PM_FULL_POWER] = "full-power-mode", 1086 [STA350_FFX_PM_VARIABLE_DROP_COMP] = "variable-drop-compensation", 1087 }; 1088 1089 static int sta350_probe_dt(struct device *dev, struct sta350_priv *sta350) 1090 { 1091 struct device_node *np = dev->of_node; 1092 struct sta350_platform_data *pdata; 1093 const char *ffx_power_mode; 1094 u16 tmp; 1095 u8 tmp8; 1096 1097 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1098 if (!pdata) 1099 return -ENOMEM; 1100 1101 of_property_read_u8(np, "st,output-conf", 1102 &pdata->output_conf); 1103 of_property_read_u8(np, "st,ch1-output-mapping", 1104 &pdata->ch1_output_mapping); 1105 of_property_read_u8(np, "st,ch2-output-mapping", 1106 &pdata->ch2_output_mapping); 1107 of_property_read_u8(np, "st,ch3-output-mapping", 1108 &pdata->ch3_output_mapping); 1109 1110 pdata->thermal_warning_recovery = 1111 of_property_read_bool(np, "st,thermal-warning-recovery"); 1112 pdata->thermal_warning_adjustment = 1113 of_property_read_bool(np, "st,thermal-warning-adjustment"); 1114 pdata->fault_detect_recovery = 1115 of_property_read_bool(np, "st,fault-detect-recovery"); 1116 1117 pdata->ffx_power_output_mode = STA350_FFX_PM_VARIABLE_DROP_COMP; 1118 if (!of_property_read_string(np, "st,ffx-power-output-mode", 1119 &ffx_power_mode)) { 1120 int i, mode = -EINVAL; 1121 1122 for (i = 0; i < ARRAY_SIZE(sta350_ffx_modes); i++) 1123 if (!strcasecmp(ffx_power_mode, sta350_ffx_modes[i])) 1124 mode = i; 1125 1126 if (mode < 0) 1127 dev_warn(dev, "Unsupported ffx output mode: %s\n", 1128 ffx_power_mode); 1129 else 1130 pdata->ffx_power_output_mode = mode; 1131 } 1132 1133 tmp = 140; 1134 of_property_read_u16(np, "st,drop-compensation-ns", &tmp); 1135 pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20; 1136 1137 pdata->oc_warning_adjustment = 1138 of_property_read_bool(np, "st,overcurrent-warning-adjustment"); 1139 1140 /* CONFE */ 1141 pdata->max_power_use_mpcc = 1142 of_property_read_bool(np, "st,max-power-use-mpcc"); 1143 pdata->max_power_correction = 1144 of_property_read_bool(np, "st,max-power-correction"); 1145 pdata->am_reduction_mode = 1146 of_property_read_bool(np, "st,am-reduction-mode"); 1147 pdata->odd_pwm_speed_mode = 1148 of_property_read_bool(np, "st,odd-pwm-speed-mode"); 1149 pdata->distortion_compensation = 1150 of_property_read_bool(np, "st,distortion-compensation"); 1151 1152 /* CONFF */ 1153 pdata->invalid_input_detect_mute = 1154 of_property_read_bool(np, "st,invalid-input-detect-mute"); 1155 1156 /* MISC */ 1157 pdata->activate_mute_output = 1158 of_property_read_bool(np, "st,activate-mute-output"); 1159 pdata->bridge_immediate_off = 1160 of_property_read_bool(np, "st,bridge-immediate-off"); 1161 pdata->noise_shape_dc_cut = 1162 of_property_read_bool(np, "st,noise-shape-dc-cut"); 1163 pdata->powerdown_master_vol = 1164 of_property_read_bool(np, "st,powerdown-master-volume"); 1165 1166 if (!of_property_read_u8(np, "st,powerdown-delay-divider", &tmp8)) { 1167 if (is_power_of_2(tmp8) && tmp8 >= 1 && tmp8 <= 128) 1168 pdata->powerdown_delay_divider = ilog2(tmp8); 1169 else 1170 dev_warn(dev, "Unsupported powerdown delay divider %d\n", 1171 tmp8); 1172 } 1173 1174 sta350->pdata = pdata; 1175 1176 return 0; 1177 } 1178 #endif 1179 1180 static int sta350_i2c_probe(struct i2c_client *i2c) 1181 { 1182 struct device *dev = &i2c->dev; 1183 struct sta350_priv *sta350; 1184 int ret, i; 1185 1186 sta350 = devm_kzalloc(dev, sizeof(struct sta350_priv), GFP_KERNEL); 1187 if (!sta350) 1188 return -ENOMEM; 1189 1190 mutex_init(&sta350->coeff_lock); 1191 sta350->pdata = dev_get_platdata(dev); 1192 1193 #ifdef CONFIG_OF 1194 if (dev->of_node) { 1195 ret = sta350_probe_dt(dev, sta350); 1196 if (ret < 0) 1197 return ret; 1198 } 1199 #endif 1200 1201 /* GPIOs */ 1202 sta350->gpiod_nreset = devm_gpiod_get_optional(dev, "reset", 1203 GPIOD_OUT_LOW); 1204 if (IS_ERR(sta350->gpiod_nreset)) 1205 return PTR_ERR(sta350->gpiod_nreset); 1206 1207 sta350->gpiod_power_down = devm_gpiod_get_optional(dev, "power-down", 1208 GPIOD_OUT_LOW); 1209 if (IS_ERR(sta350->gpiod_power_down)) 1210 return PTR_ERR(sta350->gpiod_power_down); 1211 1212 /* regulators */ 1213 for (i = 0; i < ARRAY_SIZE(sta350->supplies); i++) 1214 sta350->supplies[i].supply = sta350_supply_names[i]; 1215 1216 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(sta350->supplies), 1217 sta350->supplies); 1218 if (ret < 0) { 1219 dev_err(dev, "Failed to request supplies: %d\n", ret); 1220 return ret; 1221 } 1222 1223 sta350->regmap = devm_regmap_init_i2c(i2c, &sta350_regmap); 1224 if (IS_ERR(sta350->regmap)) { 1225 ret = PTR_ERR(sta350->regmap); 1226 dev_err(dev, "Failed to init regmap: %d\n", ret); 1227 return ret; 1228 } 1229 1230 i2c_set_clientdata(i2c, sta350); 1231 1232 ret = devm_snd_soc_register_component(dev, &sta350_component, &sta350_dai, 1); 1233 if (ret < 0) 1234 dev_err(dev, "Failed to register component (%d)\n", ret); 1235 1236 return ret; 1237 } 1238 1239 static void sta350_i2c_remove(struct i2c_client *client) 1240 {} 1241 1242 static const struct i2c_device_id sta350_i2c_id[] = { 1243 { "sta350" }, 1244 { } 1245 }; 1246 MODULE_DEVICE_TABLE(i2c, sta350_i2c_id); 1247 1248 static struct i2c_driver sta350_i2c_driver = { 1249 .driver = { 1250 .name = "sta350", 1251 .of_match_table = of_match_ptr(st350_dt_ids), 1252 }, 1253 .probe = sta350_i2c_probe, 1254 .remove = sta350_i2c_remove, 1255 .id_table = sta350_i2c_id, 1256 }; 1257 1258 module_i2c_driver(sta350_i2c_driver); 1259 1260 MODULE_DESCRIPTION("ASoC STA350 driver"); 1261 MODULE_AUTHOR("Sven Brandau <info@brandau.biz>"); 1262 MODULE_LICENSE("GPL"); 1263