xref: /linux/tools/testing/selftests/kvm/lib/arm64/processor.c (revision a0c468eda4386c67082973d21d811fd777a798ed)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * AArch64 code
4  *
5  * Copyright (C) 2018, Red Hat, Inc.
6  */
7 
8 #include <linux/compiler.h>
9 #include <assert.h>
10 
11 #include "guest_modes.h"
12 #include "kvm_util.h"
13 #include "processor.h"
14 #include "ucall_common.h"
15 #include "vgic.h"
16 
17 #include <linux/bitfield.h>
18 #include <linux/sizes.h>
19 
20 #define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN	0xac0000
21 
22 static vm_vaddr_t exception_handlers;
23 
24 static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva)
25 {
26 	unsigned int shift = (vm->mmu.pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
27 	uint64_t mask = (1UL << (vm->va_bits - shift)) - 1;
28 
29 	return (gva >> shift) & mask;
30 }
31 
32 static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva)
33 {
34 	unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift;
35 	uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
36 
37 	TEST_ASSERT(vm->mmu.pgtable_levels == 4,
38 		"Mode %d does not have 4 page table levels", vm->mode);
39 
40 	return (gva >> shift) & mask;
41 }
42 
43 static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva)
44 {
45 	unsigned int shift = (vm->page_shift - 3) + vm->page_shift;
46 	uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
47 
48 	TEST_ASSERT(vm->mmu.pgtable_levels >= 3,
49 		"Mode %d does not have >= 3 page table levels", vm->mode);
50 
51 	return (gva >> shift) & mask;
52 }
53 
54 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva)
55 {
56 	uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
57 	return (gva >> vm->page_shift) & mask;
58 }
59 
60 static inline bool use_lpa2_pte_format(struct kvm_vm *vm)
61 {
62 	return (vm->page_size == SZ_4K || vm->page_size == SZ_16K) &&
63 	    (vm->pa_bits > 48 || vm->va_bits > 48);
64 }
65 
66 static uint64_t addr_pte(struct kvm_vm *vm, uint64_t pa, uint64_t attrs)
67 {
68 	uint64_t pte;
69 
70 	if (use_lpa2_pte_format(vm)) {
71 		pte = pa & PTE_ADDR_MASK_LPA2(vm->page_shift);
72 		pte |= FIELD_GET(GENMASK(51, 50), pa) << PTE_ADDR_51_50_LPA2_SHIFT;
73 		attrs &= ~PTE_ADDR_51_50_LPA2;
74 	} else {
75 		pte = pa & PTE_ADDR_MASK(vm->page_shift);
76 		if (vm->page_shift == 16)
77 			pte |= FIELD_GET(GENMASK(51, 48), pa) << PTE_ADDR_51_48_SHIFT;
78 	}
79 	pte |= attrs;
80 
81 	return pte;
82 }
83 
84 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t pte)
85 {
86 	uint64_t pa;
87 
88 	if (use_lpa2_pte_format(vm)) {
89 		pa = pte & PTE_ADDR_MASK_LPA2(vm->page_shift);
90 		pa |= FIELD_GET(PTE_ADDR_51_50_LPA2, pte) << 50;
91 	} else {
92 		pa = pte & PTE_ADDR_MASK(vm->page_shift);
93 		if (vm->page_shift == 16)
94 			pa |= FIELD_GET(PTE_ADDR_51_48, pte) << 48;
95 	}
96 
97 	return pa;
98 }
99 
100 static uint64_t ptrs_per_pgd(struct kvm_vm *vm)
101 {
102 	unsigned int shift = (vm->mmu.pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
103 	return 1 << (vm->va_bits - shift);
104 }
105 
106 static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm)
107 {
108 	return 1 << (vm->page_shift - 3);
109 }
110 
111 void virt_arch_pgd_alloc(struct kvm_vm *vm)
112 {
113 	size_t nr_pages = vm_page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size;
114 
115 	if (vm->mmu.pgd_created)
116 		return;
117 
118 	vm->mmu.pgd = vm_phy_pages_alloc(vm, nr_pages,
119 					 KVM_GUEST_PAGE_TABLE_MIN_PADDR,
120 					 vm->memslots[MEM_REGION_PT]);
121 	vm->mmu.pgd_created = true;
122 }
123 
124 static void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
125 			 uint64_t flags)
126 {
127 	uint8_t attr_idx = flags & (PTE_ATTRINDX_MASK >> PTE_ATTRINDX_SHIFT);
128 	uint64_t pg_attr;
129 	uint64_t *ptep;
130 
131 	TEST_ASSERT((vaddr % vm->page_size) == 0,
132 		"Virtual address not on page boundary,\n"
133 		"  vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
134 	TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
135 		(vaddr >> vm->page_shift)),
136 		"Invalid virtual address, vaddr: 0x%lx", vaddr);
137 	TEST_ASSERT((paddr % vm->page_size) == 0,
138 		"Physical address not on page boundary,\n"
139 		"  paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
140 	TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
141 		"Physical address beyond beyond maximum supported,\n"
142 		"  paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
143 		paddr, vm->max_gfn, vm->page_size);
144 
145 	ptep = addr_gpa2hva(vm, vm->mmu.pgd) + pgd_index(vm, vaddr) * 8;
146 	if (!*ptep)
147 		*ptep = addr_pte(vm, vm_alloc_page_table(vm),
148 				 PGD_TYPE_TABLE | PTE_VALID);
149 
150 	switch (vm->mmu.pgtable_levels) {
151 	case 4:
152 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8;
153 		if (!*ptep)
154 			*ptep = addr_pte(vm, vm_alloc_page_table(vm),
155 					 PUD_TYPE_TABLE | PTE_VALID);
156 		/* fall through */
157 	case 3:
158 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8;
159 		if (!*ptep)
160 			*ptep = addr_pte(vm, vm_alloc_page_table(vm),
161 					 PMD_TYPE_TABLE | PTE_VALID);
162 		/* fall through */
163 	case 2:
164 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8;
165 		break;
166 	default:
167 		TEST_FAIL("Page table levels must be 2, 3, or 4");
168 	}
169 
170 	pg_attr = PTE_AF | PTE_ATTRINDX(attr_idx) | PTE_TYPE_PAGE | PTE_VALID;
171 	if (!use_lpa2_pte_format(vm))
172 		pg_attr |= PTE_SHARED;
173 
174 	*ptep = addr_pte(vm, paddr, pg_attr);
175 }
176 
177 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
178 {
179 	uint64_t attr_idx = MT_NORMAL;
180 
181 	_virt_pg_map(vm, vaddr, paddr, attr_idx);
182 }
183 
184 uint64_t *virt_get_pte_hva_at_level(struct kvm_vm *vm, vm_vaddr_t gva, int level)
185 {
186 	uint64_t *ptep;
187 
188 	if (!vm->mmu.pgd_created)
189 		goto unmapped_gva;
190 
191 	ptep = addr_gpa2hva(vm, vm->mmu.pgd) + pgd_index(vm, gva) * 8;
192 	if (!ptep)
193 		goto unmapped_gva;
194 	if (level == 0)
195 		return ptep;
196 
197 	switch (vm->mmu.pgtable_levels) {
198 	case 4:
199 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8;
200 		if (!ptep)
201 			goto unmapped_gva;
202 		if (level == 1)
203 			break;
204 		/* fall through */
205 	case 3:
206 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8;
207 		if (!ptep)
208 			goto unmapped_gva;
209 		if (level == 2)
210 			break;
211 		/* fall through */
212 	case 2:
213 		ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8;
214 		if (!ptep)
215 			goto unmapped_gva;
216 		break;
217 	default:
218 		TEST_FAIL("Page table levels must be 2, 3, or 4");
219 	}
220 
221 	return ptep;
222 
223 unmapped_gva:
224 	TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
225 	exit(EXIT_FAILURE);
226 }
227 
228 uint64_t *virt_get_pte_hva(struct kvm_vm *vm, vm_vaddr_t gva)
229 {
230 	return virt_get_pte_hva_at_level(vm, gva, 3);
231 }
232 
233 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
234 {
235 	uint64_t *ptep = virt_get_pte_hva(vm, gva);
236 
237 	return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
238 }
239 
240 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level)
241 {
242 #ifdef DEBUG
243 	static const char * const type[] = { "", "pud", "pmd", "pte" };
244 	uint64_t pte, *ptep;
245 
246 	if (level == 4)
247 		return;
248 
249 	for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
250 		ptep = addr_gpa2hva(vm, pte);
251 		if (!*ptep)
252 			continue;
253 		fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep);
254 		pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1);
255 	}
256 #endif
257 }
258 
259 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
260 {
261 	int level = 4 - (vm->mmu.pgtable_levels - 1);
262 	uint64_t pgd, *ptep;
263 
264 	if (!vm->mmu.pgd_created)
265 		return;
266 
267 	for (pgd = vm->mmu.pgd; pgd < vm->mmu.pgd + ptrs_per_pgd(vm) * 8; pgd += 8) {
268 		ptep = addr_gpa2hva(vm, pgd);
269 		if (!*ptep)
270 			continue;
271 		fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep);
272 		pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level);
273 	}
274 }
275 
276 bool vm_supports_el2(struct kvm_vm *vm)
277 {
278 	const char *value = getenv("NV");
279 
280 	if (value && *value == '0')
281 		return false;
282 
283 	return vm_check_cap(vm, KVM_CAP_ARM_EL2) && vm->arch.has_gic;
284 }
285 
286 void kvm_get_default_vcpu_target(struct kvm_vm *vm, struct kvm_vcpu_init *init)
287 {
288 	struct kvm_vcpu_init preferred = {};
289 
290 	vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred);
291 	if (vm_supports_el2(vm))
292 		preferred.features[0] |= BIT(KVM_ARM_VCPU_HAS_EL2);
293 
294 	*init = preferred;
295 }
296 
297 void aarch64_vcpu_setup(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init)
298 {
299 	struct kvm_vcpu_init default_init = { .target = -1, };
300 	struct kvm_vm *vm = vcpu->vm;
301 	uint64_t sctlr_el1, tcr_el1, ttbr0_el1;
302 
303 	if (!init) {
304 		kvm_get_default_vcpu_target(vm, &default_init);
305 		init = &default_init;
306 	}
307 
308 	vcpu_ioctl(vcpu, KVM_ARM_VCPU_INIT, init);
309 	vcpu->init = *init;
310 
311 	/*
312 	 * Enable FP/ASIMD to avoid trapping when accessing Q0-Q15
313 	 * registers, which the variable argument list macros do.
314 	 */
315 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_CPACR_EL1), 3 << 20);
316 
317 	sctlr_el1 = vcpu_get_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SCTLR_EL1));
318 	tcr_el1 = vcpu_get_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TCR_EL1));
319 
320 	/* Configure base granule size */
321 	switch (vm->mode) {
322 	case VM_MODE_PXXVYY_4K:
323 		TEST_FAIL("AArch64 does not support 4K sized pages "
324 			  "with ANY-bit physical address ranges");
325 	case VM_MODE_P52V48_64K:
326 	case VM_MODE_P48V48_64K:
327 	case VM_MODE_P40V48_64K:
328 	case VM_MODE_P36V48_64K:
329 		tcr_el1 |= TCR_TG0_64K;
330 		break;
331 	case VM_MODE_P52V48_16K:
332 	case VM_MODE_P48V48_16K:
333 	case VM_MODE_P40V48_16K:
334 	case VM_MODE_P36V48_16K:
335 	case VM_MODE_P36V47_16K:
336 		tcr_el1 |= TCR_TG0_16K;
337 		break;
338 	case VM_MODE_P52V48_4K:
339 	case VM_MODE_P48V48_4K:
340 	case VM_MODE_P40V48_4K:
341 	case VM_MODE_P36V48_4K:
342 		tcr_el1 |= TCR_TG0_4K;
343 		break;
344 	default:
345 		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
346 	}
347 
348 	ttbr0_el1 = vm->mmu.pgd & GENMASK(47, vm->page_shift);
349 
350 	/* Configure output size */
351 	switch (vm->mode) {
352 	case VM_MODE_P52V48_4K:
353 	case VM_MODE_P52V48_16K:
354 	case VM_MODE_P52V48_64K:
355 		tcr_el1 |= TCR_IPS_52_BITS;
356 		ttbr0_el1 |= FIELD_GET(GENMASK(51, 48), vm->mmu.pgd) << 2;
357 		break;
358 	case VM_MODE_P48V48_4K:
359 	case VM_MODE_P48V48_16K:
360 	case VM_MODE_P48V48_64K:
361 		tcr_el1 |= TCR_IPS_48_BITS;
362 		break;
363 	case VM_MODE_P40V48_4K:
364 	case VM_MODE_P40V48_16K:
365 	case VM_MODE_P40V48_64K:
366 		tcr_el1 |= TCR_IPS_40_BITS;
367 		break;
368 	case VM_MODE_P36V48_4K:
369 	case VM_MODE_P36V48_16K:
370 	case VM_MODE_P36V48_64K:
371 	case VM_MODE_P36V47_16K:
372 		tcr_el1 |= TCR_IPS_36_BITS;
373 		break;
374 	default:
375 		TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
376 	}
377 
378 	sctlr_el1 |= SCTLR_ELx_M | SCTLR_ELx_C | SCTLR_ELx_I;
379 
380 	tcr_el1 |= TCR_IRGN0_WBWA | TCR_ORGN0_WBWA | TCR_SH0_INNER;
381 	tcr_el1 |= TCR_T0SZ(vm->va_bits);
382 	tcr_el1 |= TCR_TBI1;
383 	tcr_el1 |= TCR_EPD1_MASK;
384 	if (use_lpa2_pte_format(vm))
385 		tcr_el1 |= TCR_DS;
386 
387 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SCTLR_EL1), sctlr_el1);
388 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TCR_EL1), tcr_el1);
389 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_MAIR_EL1), DEFAULT_MAIR_EL1);
390 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_TTBR0_EL1), ttbr0_el1);
391 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TPIDR_EL1), vcpu->id);
392 
393 	if (!vcpu_has_el2(vcpu))
394 		return;
395 
396 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_HCR_EL2),
397 		     HCR_EL2_RW | HCR_EL2_TGE | HCR_EL2_E2H);
398 }
399 
400 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
401 {
402 	uint64_t pstate, pc;
403 
404 	pstate = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate));
405 	pc = vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc));
406 
407 	fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n",
408 		indent, "", pstate, pc);
409 }
410 
411 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code)
412 {
413 	vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
414 }
415 
416 static struct kvm_vcpu *__aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
417 					   struct kvm_vcpu_init *init)
418 {
419 	size_t stack_size;
420 	uint64_t stack_vaddr;
421 	struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
422 
423 	stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
424 					     vm->page_size;
425 	stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
426 				       DEFAULT_ARM64_GUEST_STACK_VADDR_MIN,
427 				       MEM_REGION_DATA);
428 
429 	aarch64_vcpu_setup(vcpu, init);
430 
431 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_SP_EL1), stack_vaddr + stack_size);
432 	return vcpu;
433 }
434 
435 struct kvm_vcpu *aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
436 				  struct kvm_vcpu_init *init, void *guest_code)
437 {
438 	struct kvm_vcpu *vcpu = __aarch64_vcpu_add(vm, vcpu_id, init);
439 
440 	vcpu_arch_set_entry_point(vcpu, guest_code);
441 
442 	return vcpu;
443 }
444 
445 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id)
446 {
447 	return __aarch64_vcpu_add(vm, vcpu_id, NULL);
448 }
449 
450 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
451 {
452 	va_list ap;
453 	int i;
454 
455 	TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
456 		    "  num: %u", num);
457 
458 	va_start(ap, num);
459 
460 	for (i = 0; i < num; i++) {
461 		vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.regs[i]),
462 			     va_arg(ap, uint64_t));
463 	}
464 
465 	va_end(ap);
466 }
467 
468 void kvm_exit_unexpected_exception(int vector, uint64_t ec, bool valid_ec)
469 {
470 	ucall(UCALL_UNHANDLED, 3, vector, ec, valid_ec);
471 	while (1)
472 		;
473 }
474 
475 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
476 {
477 	struct ucall uc;
478 
479 	if (get_ucall(vcpu, &uc) != UCALL_UNHANDLED)
480 		return;
481 
482 	if (uc.args[2]) /* valid_ec */ {
483 		assert(VECTOR_IS_SYNC(uc.args[0]));
484 		TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
485 			  uc.args[0], uc.args[1]);
486 	} else {
487 		assert(!VECTOR_IS_SYNC(uc.args[0]));
488 		TEST_FAIL("Unexpected exception (vector:0x%lx)",
489 			  uc.args[0]);
490 	}
491 }
492 
493 struct handlers {
494 	handler_fn exception_handlers[VECTOR_NUM][ESR_ELx_EC_MAX + 1];
495 };
496 
497 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
498 {
499 	extern char vectors;
500 
501 	vcpu_set_reg(vcpu, ctxt_reg_alias(vcpu, SYS_VBAR_EL1), (uint64_t)&vectors);
502 }
503 
504 void route_exception(struct ex_regs *regs, int vector)
505 {
506 	struct handlers *handlers = (struct handlers *)exception_handlers;
507 	bool valid_ec;
508 	int ec = 0;
509 
510 	switch (vector) {
511 	case VECTOR_SYNC_CURRENT:
512 	case VECTOR_SYNC_LOWER_64:
513 		ec = ESR_ELx_EC(read_sysreg(esr_el1));
514 		valid_ec = true;
515 		break;
516 	case VECTOR_IRQ_CURRENT:
517 	case VECTOR_IRQ_LOWER_64:
518 	case VECTOR_FIQ_CURRENT:
519 	case VECTOR_FIQ_LOWER_64:
520 	case VECTOR_ERROR_CURRENT:
521 	case VECTOR_ERROR_LOWER_64:
522 		ec = 0;
523 		valid_ec = false;
524 		break;
525 	default:
526 		valid_ec = false;
527 		goto unexpected_exception;
528 	}
529 
530 	if (handlers && handlers->exception_handlers[vector][ec])
531 		return handlers->exception_handlers[vector][ec](regs);
532 
533 unexpected_exception:
534 	kvm_exit_unexpected_exception(vector, ec, valid_ec);
535 }
536 
537 void vm_init_descriptor_tables(struct kvm_vm *vm)
538 {
539 	vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
540 					vm->page_size, MEM_REGION_DATA);
541 
542 	*(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
543 }
544 
545 void vm_install_sync_handler(struct kvm_vm *vm, int vector, int ec,
546 			 void (*handler)(struct ex_regs *))
547 {
548 	struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
549 
550 	assert(VECTOR_IS_SYNC(vector));
551 	assert(vector < VECTOR_NUM);
552 	assert(ec <= ESR_ELx_EC_MAX);
553 	handlers->exception_handlers[vector][ec] = handler;
554 }
555 
556 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
557 			 void (*handler)(struct ex_regs *))
558 {
559 	struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
560 
561 	assert(!VECTOR_IS_SYNC(vector));
562 	assert(vector < VECTOR_NUM);
563 	handlers->exception_handlers[vector][0] = handler;
564 }
565 
566 uint32_t guest_get_vcpuid(void)
567 {
568 	return read_sysreg(tpidr_el1);
569 }
570 
571 static uint32_t max_ipa_for_page_size(uint32_t vm_ipa, uint32_t gran,
572 				uint32_t not_sup_val, uint32_t ipa52_min_val)
573 {
574 	if (gran == not_sup_val)
575 		return 0;
576 	else if (gran >= ipa52_min_val && vm_ipa >= 52)
577 		return 52;
578 	else
579 		return min(vm_ipa, 48U);
580 }
581 
582 void aarch64_get_supported_page_sizes(uint32_t ipa, uint32_t *ipa4k,
583 					uint32_t *ipa16k, uint32_t *ipa64k)
584 {
585 	struct kvm_vcpu_init preferred_init;
586 	int kvm_fd, vm_fd, vcpu_fd, err;
587 	uint64_t val;
588 	uint32_t gran;
589 	struct kvm_one_reg reg = {
590 		.id	= KVM_ARM64_SYS_REG(SYS_ID_AA64MMFR0_EL1),
591 		.addr	= (uint64_t)&val,
592 	};
593 
594 	kvm_fd = open_kvm_dev_path_or_exit();
595 	vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, (void *)(unsigned long)ipa);
596 	TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd));
597 
598 	vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0);
599 	TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd));
600 
601 	err = ioctl(vm_fd, KVM_ARM_PREFERRED_TARGET, &preferred_init);
602 	TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_PREFERRED_TARGET, err));
603 	err = ioctl(vcpu_fd, KVM_ARM_VCPU_INIT, &preferred_init);
604 	TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_VCPU_INIT, err));
605 
606 	err = ioctl(vcpu_fd, KVM_GET_ONE_REG, &reg);
607 	TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd));
608 
609 	gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN4, val);
610 	*ipa4k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN4_NI,
611 					ID_AA64MMFR0_EL1_TGRAN4_52_BIT);
612 
613 	gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN64, val);
614 	*ipa64k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN64_NI,
615 					ID_AA64MMFR0_EL1_TGRAN64_IMP);
616 
617 	gran = FIELD_GET(ID_AA64MMFR0_EL1_TGRAN16, val);
618 	*ipa16k = max_ipa_for_page_size(ipa, gran, ID_AA64MMFR0_EL1_TGRAN16_NI,
619 					ID_AA64MMFR0_EL1_TGRAN16_52_BIT);
620 
621 	close(vcpu_fd);
622 	close(vm_fd);
623 	close(kvm_fd);
624 }
625 
626 #define __smccc_call(insn, function_id, arg0, arg1, arg2, arg3, arg4, arg5,	\
627 		     arg6, res)							\
628 	asm volatile("mov   w0, %w[function_id]\n"				\
629 		     "mov   x1, %[arg0]\n"					\
630 		     "mov   x2, %[arg1]\n"					\
631 		     "mov   x3, %[arg2]\n"					\
632 		     "mov   x4, %[arg3]\n"					\
633 		     "mov   x5, %[arg4]\n"					\
634 		     "mov   x6, %[arg5]\n"					\
635 		     "mov   x7, %[arg6]\n"					\
636 		     #insn  "#0\n"						\
637 		     "mov   %[res0], x0\n"					\
638 		     "mov   %[res1], x1\n"					\
639 		     "mov   %[res2], x2\n"					\
640 		     "mov   %[res3], x3\n"					\
641 		     : [res0] "=r"(res->a0), [res1] "=r"(res->a1),		\
642 		       [res2] "=r"(res->a2), [res3] "=r"(res->a3)		\
643 		     : [function_id] "r"(function_id), [arg0] "r"(arg0),	\
644 		       [arg1] "r"(arg1), [arg2] "r"(arg2), [arg3] "r"(arg3),	\
645 		       [arg4] "r"(arg4), [arg5] "r"(arg5), [arg6] "r"(arg6)	\
646 		     : "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7")
647 
648 
649 void smccc_hvc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
650 	       uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
651 	       uint64_t arg6, struct arm_smccc_res *res)
652 {
653 	__smccc_call(hvc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
654 		     arg6, res);
655 }
656 
657 void smccc_smc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
658 	       uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
659 	       uint64_t arg6, struct arm_smccc_res *res)
660 {
661 	__smccc_call(smc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
662 		     arg6, res);
663 }
664 
665 void kvm_selftest_arch_init(void)
666 {
667 	/*
668 	 * arm64 doesn't have a true default mode, so start by computing the
669 	 * available IPA space and page sizes early.
670 	 */
671 	guest_modes_append_default();
672 }
673 
674 void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
675 {
676 	/*
677 	 * arm64 selftests use only TTBR0_EL1, meaning that the valid VA space
678 	 * is [0, 2^(64 - TCR_EL1.T0SZ)).
679 	 */
680 	sparsebit_set_num(vm->vpages_valid, 0,
681 			  (1ULL << vm->va_bits) >> vm->page_shift);
682 }
683 
684 /* Helper to call wfi instruction. */
685 void wfi(void)
686 {
687 	asm volatile("wfi");
688 }
689 
690 static bool request_mte;
691 static bool request_vgic = true;
692 
693 void test_wants_mte(void)
694 {
695 	request_mte = true;
696 }
697 
698 void test_disable_default_vgic(void)
699 {
700 	request_vgic = false;
701 }
702 
703 void kvm_arch_vm_post_create(struct kvm_vm *vm, unsigned int nr_vcpus)
704 {
705 	if (request_mte && vm_check_cap(vm, KVM_CAP_ARM_MTE))
706 		vm_enable_cap(vm, KVM_CAP_ARM_MTE, 0);
707 
708 	if (request_vgic && kvm_supports_vgic_v3()) {
709 		vm->arch.gic_fd = __vgic_v3_setup(vm, nr_vcpus, 64);
710 		vm->arch.has_gic = true;
711 	}
712 }
713 
714 void kvm_arch_vm_finalize_vcpus(struct kvm_vm *vm)
715 {
716 	if (vm->arch.has_gic)
717 		__vgic_v3_init(vm->arch.gic_fd);
718 }
719 
720 void kvm_arch_vm_release(struct kvm_vm *vm)
721 {
722 	if (vm->arch.has_gic)
723 		close(vm->arch.gic_fd);
724 }
725 
726 bool kvm_arch_has_default_irqchip(void)
727 {
728 	return request_vgic && kvm_supports_vgic_v3();
729 }
730