1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/mem_encrypt.h>
22 #include <linux/smp.h>
23 #include <linux/cpu.h>
24 #include <linux/io.h>
25 #include <linux/syscore_ops.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackprotector.h>
28 #include <linux/utsname.h>
29
30 #include <asm/alternative.h>
31 #include <asm/cmdline.h>
32 #include <asm/cpuid/api.h>
33 #include <asm/perf_event.h>
34 #include <asm/mmu_context.h>
35 #include <asm/doublefault.h>
36 #include <asm/archrandom.h>
37 #include <asm/hypervisor.h>
38 #include <asm/processor.h>
39 #include <asm/tlbflush.h>
40 #include <asm/debugreg.h>
41 #include <asm/sections.h>
42 #include <asm/vsyscall.h>
43 #include <linux/topology.h>
44 #include <linux/cpumask.h>
45 #include <linux/atomic.h>
46 #include <asm/proto.h>
47 #include <asm/setup.h>
48 #include <asm/apic.h>
49 #include <asm/desc.h>
50 #include <asm/fpu/api.h>
51 #include <asm/mtrr.h>
52 #include <asm/hwcap2.h>
53 #include <linux/numa.h>
54 #include <asm/numa.h>
55 #include <asm/asm.h>
56 #include <asm/bugs.h>
57 #include <asm/cpu.h>
58 #include <asm/mce.h>
59 #include <asm/msr.h>
60 #include <asm/cacheinfo.h>
61 #include <asm/memtype.h>
62 #include <asm/microcode.h>
63 #include <asm/intel-family.h>
64 #include <asm/cpu_device_id.h>
65 #include <asm/fred.h>
66 #include <asm/uv/uv.h>
67 #include <asm/ia32.h>
68 #include <asm/set_memory.h>
69 #include <asm/traps.h>
70 #include <asm/sev.h>
71 #include <asm/tdx.h>
72 #include <asm/posted_intr.h>
73 #include <asm/runtime-const.h>
74
75 #include "cpu.h"
76
77 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
78 EXPORT_PER_CPU_SYMBOL(cpu_info);
79
80 u32 elf_hwcap2 __read_mostly;
81
82 /* Number of siblings per CPU package */
83 unsigned int __max_threads_per_core __ro_after_init = 1;
84 EXPORT_SYMBOL(__max_threads_per_core);
85
86 unsigned int __max_dies_per_package __ro_after_init = 1;
87 EXPORT_SYMBOL(__max_dies_per_package);
88
89 unsigned int __max_logical_packages __ro_after_init = 1;
90 EXPORT_SYMBOL(__max_logical_packages);
91
92 unsigned int __num_cores_per_package __ro_after_init = 1;
93 EXPORT_SYMBOL(__num_cores_per_package);
94
95 unsigned int __num_threads_per_package __ro_after_init = 1;
96 EXPORT_SYMBOL(__num_threads_per_package);
97
98 static struct ppin_info {
99 int feature;
100 int msr_ppin_ctl;
101 int msr_ppin;
102 } ppin_info[] = {
103 [X86_VENDOR_INTEL] = {
104 .feature = X86_FEATURE_INTEL_PPIN,
105 .msr_ppin_ctl = MSR_PPIN_CTL,
106 .msr_ppin = MSR_PPIN
107 },
108 [X86_VENDOR_AMD] = {
109 .feature = X86_FEATURE_AMD_PPIN,
110 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
111 .msr_ppin = MSR_AMD_PPIN
112 },
113 };
114
115 static const struct x86_cpu_id ppin_cpuids[] = {
116 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
117 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
118
119 /* Legacy models without CPUID enumeration */
120 X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_VFM(INTEL_HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_VFM(INTEL_BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
123 X86_MATCH_VFM(INTEL_BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
124 X86_MATCH_VFM(INTEL_SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
125 X86_MATCH_VFM(INTEL_ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
126 X86_MATCH_VFM(INTEL_ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
127 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
128 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
129 X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
130 X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
131
132 {}
133 };
134
ppin_init(struct cpuinfo_x86 * c)135 static void ppin_init(struct cpuinfo_x86 *c)
136 {
137 const struct x86_cpu_id *id;
138 unsigned long long val;
139 struct ppin_info *info;
140
141 id = x86_match_cpu(ppin_cpuids);
142 if (!id)
143 return;
144
145 /*
146 * Testing the presence of the MSR is not enough. Need to check
147 * that the PPIN_CTL allows reading of the PPIN.
148 */
149 info = (struct ppin_info *)id->driver_data;
150
151 if (rdmsrq_safe(info->msr_ppin_ctl, &val))
152 goto clear_ppin;
153
154 if ((val & 3UL) == 1UL) {
155 /* PPIN locked in disabled mode */
156 goto clear_ppin;
157 }
158
159 /* If PPIN is disabled, try to enable */
160 if (!(val & 2UL)) {
161 wrmsrq_safe(info->msr_ppin_ctl, val | 2UL);
162 rdmsrq_safe(info->msr_ppin_ctl, &val);
163 }
164
165 /* Is the enable bit set? */
166 if (val & 2UL) {
167 c->ppin = native_rdmsrq(info->msr_ppin);
168 set_cpu_cap(c, info->feature);
169 return;
170 }
171
172 clear_ppin:
173 setup_clear_cpu_cap(info->feature);
174 }
175
default_init(struct cpuinfo_x86 * c)176 static void default_init(struct cpuinfo_x86 *c)
177 {
178 #ifdef CONFIG_X86_64
179 cpu_detect_cache_sizes(c);
180 #else
181 /* Not much we can do here... */
182 /* Check if at least it has cpuid */
183 if (c->cpuid_level == -1) {
184 /* No cpuid. It must be an ancient CPU */
185 if (c->x86 == 4)
186 strcpy(c->x86_model_id, "486");
187 else if (c->x86 == 3)
188 strcpy(c->x86_model_id, "386");
189 }
190 #endif
191 }
192
193 static const struct cpu_dev default_cpu = {
194 .c_init = default_init,
195 .c_vendor = "Unknown",
196 .c_x86_vendor = X86_VENDOR_UNKNOWN,
197 };
198
199 static const struct cpu_dev *this_cpu = &default_cpu;
200
201 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
202 #ifdef CONFIG_X86_64
203 /*
204 * We need valid kernel segments for data and code in long mode too
205 * IRET will check the segment types kkeil 2000/10/28
206 * Also sysret mandates a special GDT layout
207 *
208 * TLS descriptors are currently at a different place compared to i386.
209 * Hopefully nobody expects them at a fixed place (Wine?)
210 */
211 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
212 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE64, 0, 0xfffff),
213 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA64, 0, 0xfffff),
214 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
215 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA64 | DESC_USER, 0, 0xfffff),
216 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE64 | DESC_USER, 0, 0xfffff),
217 #else
218 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(DESC_CODE32, 0, 0xfffff),
219 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
220 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(DESC_CODE32 | DESC_USER, 0, 0xfffff),
221 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(DESC_DATA32 | DESC_USER, 0, 0xfffff),
222 /*
223 * Segments used for calling PnP BIOS have byte granularity.
224 * They code segments and data segments have fixed 64k limits,
225 * the transfer segment sizes are set at run time.
226 */
227 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
228 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
229 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0xffff),
230 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
231 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(DESC_DATA16, 0, 0),
232 /*
233 * The APM segments have byte granularity and their bases
234 * are set at run time. All have 64k limits.
235 */
236 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(DESC_CODE32_BIOS, 0, 0xffff),
237 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(DESC_CODE16, 0, 0xffff),
238 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(DESC_DATA32_BIOS, 0, 0xffff),
239
240 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
241 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(DESC_DATA32, 0, 0xfffff),
242 #endif
243 } };
244 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
245 SYM_PIC_ALIAS(gdt_page);
246
247 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)248 static int __init x86_nopcid_setup(char *s)
249 {
250 /* nopcid doesn't accept parameters */
251 if (s)
252 return -EINVAL;
253
254 /* do not emit a message if the feature is not present */
255 if (!boot_cpu_has(X86_FEATURE_PCID))
256 return 0;
257
258 setup_clear_cpu_cap(X86_FEATURE_PCID);
259 pr_info("nopcid: PCID feature disabled\n");
260 return 0;
261 }
262 early_param("nopcid", x86_nopcid_setup);
263 #endif
264
x86_noinvpcid_setup(char * s)265 static int __init x86_noinvpcid_setup(char *s)
266 {
267 /* noinvpcid doesn't accept parameters */
268 if (s)
269 return -EINVAL;
270
271 /* do not emit a message if the feature is not present */
272 if (!boot_cpu_has(X86_FEATURE_INVPCID))
273 return 0;
274
275 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
276 pr_info("noinvpcid: INVPCID feature disabled\n");
277 return 0;
278 }
279 early_param("noinvpcid", x86_noinvpcid_setup);
280
281 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(unsigned long flag)282 static inline bool flag_is_changeable_p(unsigned long flag)
283 {
284 unsigned long f1, f2;
285
286 if (!IS_ENABLED(CONFIG_X86_32))
287 return true;
288
289 /*
290 * Cyrix and IDT cpus allow disabling of CPUID
291 * so the code below may return different results
292 * when it is executed before and after enabling
293 * the CPUID. Add "volatile" to not allow gcc to
294 * optimize the subsequent calls to this function.
295 */
296 asm volatile ("pushfl \n\t"
297 "pushfl \n\t"
298 "popl %0 \n\t"
299 "movl %0, %1 \n\t"
300 "xorl %2, %0 \n\t"
301 "pushl %0 \n\t"
302 "popfl \n\t"
303 "pushfl \n\t"
304 "popl %0 \n\t"
305 "popfl \n\t"
306
307 : "=&r" (f1), "=&r" (f2)
308 : "ir" (flag));
309
310 return (f1 ^ f2) & flag;
311 }
312
313 #ifdef CONFIG_X86_32
314 static int cachesize_override = -1;
315 static int disable_x86_serial_nr = 1;
316
cachesize_setup(char * str)317 static int __init cachesize_setup(char *str)
318 {
319 get_option(&str, &cachesize_override);
320 return 1;
321 }
322 __setup("cachesize=", cachesize_setup);
323
324 /* Probe for the CPUID instruction */
cpuid_feature(void)325 bool cpuid_feature(void)
326 {
327 return flag_is_changeable_p(X86_EFLAGS_ID);
328 }
329
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)330 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
331 {
332 unsigned long lo, hi;
333
334 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
335 return;
336
337 /* Disable processor serial number: */
338
339 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
340 lo |= 0x200000;
341 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
342
343 pr_notice("CPU serial number disabled.\n");
344 clear_cpu_cap(c, X86_FEATURE_PN);
345
346 /* Disabling the serial number may affect the cpuid level */
347 c->cpuid_level = cpuid_eax(0);
348 }
349
x86_serial_nr_setup(char * s)350 static int __init x86_serial_nr_setup(char *s)
351 {
352 disable_x86_serial_nr = 0;
353 return 1;
354 }
355 __setup("serialnumber", x86_serial_nr_setup);
356 #else
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)357 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
358 {
359 }
360 #endif
361
setup_smep(struct cpuinfo_x86 * c)362 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
363 {
364 if (cpu_has(c, X86_FEATURE_SMEP))
365 cr4_set_bits(X86_CR4_SMEP);
366 }
367
setup_smap(struct cpuinfo_x86 * c)368 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
369 {
370 unsigned long eflags = native_save_fl();
371
372 /* This should have been cleared long ago */
373 BUG_ON(eflags & X86_EFLAGS_AC);
374
375 if (cpu_has(c, X86_FEATURE_SMAP))
376 cr4_set_bits(X86_CR4_SMAP);
377 }
378
setup_umip(struct cpuinfo_x86 * c)379 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
380 {
381 /* Check the boot processor, plus build option for UMIP. */
382 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
383 goto out;
384
385 /* Check the current processor's cpuid bits. */
386 if (!cpu_has(c, X86_FEATURE_UMIP))
387 goto out;
388
389 cr4_set_bits(X86_CR4_UMIP);
390
391 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
392
393 return;
394
395 out:
396 /*
397 * Make sure UMIP is disabled in case it was enabled in a
398 * previous boot (e.g., via kexec).
399 */
400 cr4_clear_bits(X86_CR4_UMIP);
401 }
402
403 /* These bits should not change their value after CPU init is finished. */
404 static const unsigned long cr4_pinned_mask = X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
405 X86_CR4_FSGSBASE | X86_CR4_CET | X86_CR4_FRED;
406 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
407 static unsigned long cr4_pinned_bits __ro_after_init;
408
native_write_cr0(unsigned long val)409 void native_write_cr0(unsigned long val)
410 {
411 unsigned long bits_missing = 0;
412
413 set_register:
414 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
415
416 if (static_branch_likely(&cr_pinning)) {
417 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
418 bits_missing = X86_CR0_WP;
419 val |= bits_missing;
420 goto set_register;
421 }
422 /* Warn after we've set the missing bits. */
423 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
424 }
425 }
426 EXPORT_SYMBOL(native_write_cr0);
427
native_write_cr4(unsigned long val)428 void __no_profile native_write_cr4(unsigned long val)
429 {
430 unsigned long bits_changed = 0;
431
432 set_register:
433 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
434
435 if (static_branch_likely(&cr_pinning)) {
436 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
437 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
438 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
439 goto set_register;
440 }
441 /* Warn after we've corrected the changed bits. */
442 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
443 bits_changed);
444 }
445 }
446 #if IS_MODULE(CONFIG_LKDTM)
447 EXPORT_SYMBOL_GPL(native_write_cr4);
448 #endif
449
cr4_update_irqsoff(unsigned long set,unsigned long clear)450 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
451 {
452 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
453
454 lockdep_assert_irqs_disabled();
455
456 newval = (cr4 & ~clear) | set;
457 if (newval != cr4) {
458 this_cpu_write(cpu_tlbstate.cr4, newval);
459 __write_cr4(newval);
460 }
461 }
462 EXPORT_SYMBOL(cr4_update_irqsoff);
463
464 /* Read the CR4 shadow. */
cr4_read_shadow(void)465 unsigned long cr4_read_shadow(void)
466 {
467 return this_cpu_read(cpu_tlbstate.cr4);
468 }
469 EXPORT_SYMBOL_GPL(cr4_read_shadow);
470
cr4_init(void)471 void cr4_init(void)
472 {
473 unsigned long cr4 = __read_cr4();
474
475 if (boot_cpu_has(X86_FEATURE_PCID))
476 cr4 |= X86_CR4_PCIDE;
477 if (static_branch_likely(&cr_pinning))
478 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
479
480 __write_cr4(cr4);
481
482 /* Initialize cr4 shadow for this CPU. */
483 this_cpu_write(cpu_tlbstate.cr4, cr4);
484 }
485
486 /*
487 * Once CPU feature detection is finished (and boot params have been
488 * parsed), record any of the sensitive CR bits that are set, and
489 * enable CR pinning.
490 */
setup_cr_pinning(void)491 static void __init setup_cr_pinning(void)
492 {
493 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
494 static_key_enable(&cr_pinning.key);
495 }
496
x86_nofsgsbase_setup(char * arg)497 static __init int x86_nofsgsbase_setup(char *arg)
498 {
499 /* Require an exact match without trailing characters. */
500 if (strlen(arg))
501 return 0;
502
503 /* Do not emit a message if the feature is not present. */
504 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
505 return 1;
506
507 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
508 pr_info("FSGSBASE disabled via kernel command line\n");
509 return 1;
510 }
511 __setup("nofsgsbase", x86_nofsgsbase_setup);
512
513 /*
514 * Protection Keys are not available in 32-bit mode.
515 */
516 static bool pku_disabled;
517
setup_pku(struct cpuinfo_x86 * c)518 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
519 {
520 if (c == &boot_cpu_data) {
521 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
522 return;
523 /*
524 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
525 * bit to be set. Enforce it.
526 */
527 setup_force_cpu_cap(X86_FEATURE_OSPKE);
528
529 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
530 return;
531 }
532
533 cr4_set_bits(X86_CR4_PKE);
534 /* Load the default PKRU value */
535 pkru_write_default();
536 }
537
538 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)539 static __init int setup_disable_pku(char *arg)
540 {
541 /*
542 * Do not clear the X86_FEATURE_PKU bit. All of the
543 * runtime checks are against OSPKE so clearing the
544 * bit does nothing.
545 *
546 * This way, we will see "pku" in cpuinfo, but not
547 * "ospke", which is exactly what we want. It shows
548 * that the CPU has PKU, but the OS has not enabled it.
549 * This happens to be exactly how a system would look
550 * if we disabled the config option.
551 */
552 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
553 pku_disabled = true;
554 return 1;
555 }
556 __setup("nopku", setup_disable_pku);
557 #endif
558
559 #ifdef CONFIG_X86_KERNEL_IBT
560
ibt_save(bool disable)561 __noendbr u64 ibt_save(bool disable)
562 {
563 u64 msr = 0;
564
565 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
566 rdmsrq(MSR_IA32_S_CET, msr);
567 if (disable)
568 wrmsrq(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
569 }
570
571 return msr;
572 }
573
ibt_restore(u64 save)574 __noendbr void ibt_restore(u64 save)
575 {
576 u64 msr;
577
578 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579 rdmsrq(MSR_IA32_S_CET, msr);
580 msr &= ~CET_ENDBR_EN;
581 msr |= (save & CET_ENDBR_EN);
582 wrmsrq(MSR_IA32_S_CET, msr);
583 }
584 }
585
586 #endif
587
setup_cet(struct cpuinfo_x86 * c)588 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
589 {
590 bool user_shstk, kernel_ibt;
591
592 if (!IS_ENABLED(CONFIG_X86_CET))
593 return;
594
595 kernel_ibt = HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT);
596 user_shstk = cpu_feature_enabled(X86_FEATURE_SHSTK) &&
597 IS_ENABLED(CONFIG_X86_USER_SHADOW_STACK);
598
599 if (!kernel_ibt && !user_shstk)
600 return;
601
602 if (user_shstk)
603 set_cpu_cap(c, X86_FEATURE_USER_SHSTK);
604
605 if (kernel_ibt)
606 wrmsrq(MSR_IA32_S_CET, CET_ENDBR_EN);
607 else
608 wrmsrq(MSR_IA32_S_CET, 0);
609
610 cr4_set_bits(X86_CR4_CET);
611
612 if (kernel_ibt && ibt_selftest()) {
613 pr_err("IBT selftest: Failed!\n");
614 wrmsrq(MSR_IA32_S_CET, 0);
615 setup_clear_cpu_cap(X86_FEATURE_IBT);
616 }
617 }
618
cet_disable(void)619 __noendbr void cet_disable(void)
620 {
621 if (!(cpu_feature_enabled(X86_FEATURE_IBT) ||
622 cpu_feature_enabled(X86_FEATURE_SHSTK)))
623 return;
624
625 wrmsrq(MSR_IA32_S_CET, 0);
626 wrmsrq(MSR_IA32_U_CET, 0);
627 }
628
629 /*
630 * Some CPU features depend on higher CPUID levels, which may not always
631 * be available due to CPUID level capping or broken virtualization
632 * software. Add those features to this table to auto-disable them.
633 */
634 struct cpuid_dependent_feature {
635 u32 feature;
636 u32 level;
637 };
638
639 static const struct cpuid_dependent_feature
640 cpuid_dependent_features[] = {
641 { X86_FEATURE_MWAIT, CPUID_LEAF_MWAIT },
642 { X86_FEATURE_DCA, CPUID_LEAF_DCA },
643 { X86_FEATURE_XSAVE, CPUID_LEAF_XSTATE },
644 { 0, 0 }
645 };
646
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)647 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
648 {
649 const struct cpuid_dependent_feature *df;
650
651 for (df = cpuid_dependent_features; df->feature; df++) {
652
653 if (!cpu_has(c, df->feature))
654 continue;
655 /*
656 * Note: cpuid_level is set to -1 if unavailable, but
657 * extended_extended_level is set to 0 if unavailable
658 * and the legitimate extended levels are all negative
659 * when signed; hence the weird messing around with
660 * signs here...
661 */
662 if (!((s32)df->level < 0 ?
663 (u32)df->level > (u32)c->extended_cpuid_level :
664 (s32)df->level > (s32)c->cpuid_level))
665 continue;
666
667 clear_cpu_cap(c, df->feature);
668 if (!warn)
669 continue;
670
671 pr_warn("CPU: CPU feature %s disabled, no CPUID level 0x%x\n",
672 x86_cap_flags[df->feature], df->level);
673 }
674 }
675
676 /*
677 * Naming convention should be: <Name> [(<Codename>)]
678 * This table only is used unless init_<vendor>() below doesn't set it;
679 * in particular, if CPUID levels 0x80000002..4 are supported, this
680 * isn't used
681 */
682
683 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)684 static const char *table_lookup_model(struct cpuinfo_x86 *c)
685 {
686 #ifdef CONFIG_X86_32
687 const struct legacy_cpu_model_info *info;
688
689 if (c->x86_model >= 16)
690 return NULL; /* Range check */
691
692 if (!this_cpu)
693 return NULL;
694
695 info = this_cpu->legacy_models;
696
697 while (info->family) {
698 if (info->family == c->x86)
699 return info->model_names[c->x86_model];
700 info++;
701 }
702 #endif
703 return NULL; /* Not found */
704 }
705
706 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
707 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
708 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
709
710 #ifdef CONFIG_X86_32
711 /* The 32-bit entry code needs to find cpu_entry_area. */
712 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
713 #endif
714
715 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)716 void load_direct_gdt(int cpu)
717 {
718 struct desc_ptr gdt_descr;
719
720 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
721 gdt_descr.size = GDT_SIZE - 1;
722 load_gdt(&gdt_descr);
723 }
724 EXPORT_SYMBOL_GPL(load_direct_gdt);
725
726 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)727 void load_fixmap_gdt(int cpu)
728 {
729 struct desc_ptr gdt_descr;
730
731 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
732 gdt_descr.size = GDT_SIZE - 1;
733 load_gdt(&gdt_descr);
734 }
735 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
736
737 /**
738 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
739 * @cpu: The CPU number for which this is invoked
740 *
741 * Invoked during early boot to switch from early GDT and early per CPU to
742 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
743 * switch is implicit by loading the direct GDT. On 64bit this requires
744 * to update GSBASE.
745 */
switch_gdt_and_percpu_base(int cpu)746 void __init switch_gdt_and_percpu_base(int cpu)
747 {
748 load_direct_gdt(cpu);
749
750 #ifdef CONFIG_X86_64
751 /*
752 * No need to load %gs. It is already correct.
753 *
754 * Writing %gs on 64bit would zero GSBASE which would make any per
755 * CPU operation up to the point of the wrmsrq() fault.
756 *
757 * Set GSBASE to the new offset. Until the wrmsrq() happens the
758 * early mapping is still valid. That means the GSBASE update will
759 * lose any prior per CPU data which was not copied over in
760 * setup_per_cpu_areas().
761 *
762 * This works even with stackprotector enabled because the
763 * per CPU stack canary is 0 in both per CPU areas.
764 */
765 wrmsrq(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
766 #else
767 /*
768 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
769 * it is required to load FS again so that the 'hidden' part is
770 * updated from the new GDT. Up to this point the early per CPU
771 * translation is active. Any content of the early per CPU data
772 * which was not copied over in setup_per_cpu_areas() is lost.
773 */
774 loadsegment(fs, __KERNEL_PERCPU);
775 #endif
776 }
777
778 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
779
get_model_name(struct cpuinfo_x86 * c)780 static void get_model_name(struct cpuinfo_x86 *c)
781 {
782 unsigned int *v;
783 char *p, *q, *s;
784
785 if (c->extended_cpuid_level < 0x80000004)
786 return;
787
788 v = (unsigned int *)c->x86_model_id;
789 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
790 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
791 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
792 c->x86_model_id[48] = 0;
793
794 /* Trim whitespace */
795 p = q = s = &c->x86_model_id[0];
796
797 while (*p == ' ')
798 p++;
799
800 while (*p) {
801 /* Note the last non-whitespace index */
802 if (!isspace(*p))
803 s = q;
804
805 *q++ = *p++;
806 }
807
808 *(s + 1) = '\0';
809 }
810
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)811 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
812 {
813 unsigned int n, dummy, ebx, ecx, edx, l2size;
814
815 n = c->extended_cpuid_level;
816
817 if (n >= 0x80000005) {
818 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
819 c->x86_cache_size = (ecx>>24) + (edx>>24);
820 #ifdef CONFIG_X86_64
821 /* On K8 L1 TLB is inclusive, so don't count it */
822 c->x86_tlbsize = 0;
823 #endif
824 }
825
826 if (n < 0x80000006) /* Some chips just has a large L1. */
827 return;
828
829 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
830 l2size = ecx >> 16;
831
832 #ifdef CONFIG_X86_64
833 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
834 #else
835 /* do processor-specific cache resizing */
836 if (this_cpu->legacy_cache_size)
837 l2size = this_cpu->legacy_cache_size(c, l2size);
838
839 /* Allow user to override all this if necessary. */
840 if (cachesize_override != -1)
841 l2size = cachesize_override;
842
843 if (l2size == 0)
844 return; /* Again, no L2 cache is possible */
845 #endif
846
847 c->x86_cache_size = l2size;
848 }
849
850 u16 __read_mostly tlb_lli_4k;
851 u16 __read_mostly tlb_lli_2m;
852 u16 __read_mostly tlb_lli_4m;
853 u16 __read_mostly tlb_lld_4k;
854 u16 __read_mostly tlb_lld_2m;
855 u16 __read_mostly tlb_lld_4m;
856 u16 __read_mostly tlb_lld_1g;
857
cpu_detect_tlb(struct cpuinfo_x86 * c)858 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
859 {
860 if (this_cpu->c_detect_tlb)
861 this_cpu->c_detect_tlb(c);
862
863 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
864 tlb_lli_4k, tlb_lli_2m, tlb_lli_4m);
865
866 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
867 tlb_lld_4k, tlb_lld_2m, tlb_lld_4m, tlb_lld_1g);
868 }
869
get_cpu_vendor(struct cpuinfo_x86 * c)870 void get_cpu_vendor(struct cpuinfo_x86 *c)
871 {
872 char *v = c->x86_vendor_id;
873 int i;
874
875 for (i = 0; i < X86_VENDOR_NUM; i++) {
876 if (!cpu_devs[i])
877 break;
878
879 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
880 (cpu_devs[i]->c_ident[1] &&
881 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
882
883 this_cpu = cpu_devs[i];
884 c->x86_vendor = this_cpu->c_x86_vendor;
885 return;
886 }
887 }
888
889 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
890 "CPU: Your system may be unstable.\n", v);
891
892 c->x86_vendor = X86_VENDOR_UNKNOWN;
893 this_cpu = &default_cpu;
894 }
895
cpu_detect(struct cpuinfo_x86 * c)896 void cpu_detect(struct cpuinfo_x86 *c)
897 {
898 /* Get vendor name */
899 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
900 (unsigned int *)&c->x86_vendor_id[0],
901 (unsigned int *)&c->x86_vendor_id[8],
902 (unsigned int *)&c->x86_vendor_id[4]);
903
904 c->x86 = 4;
905 /* Intel-defined flags: level 0x00000001 */
906 if (c->cpuid_level >= 0x00000001) {
907 u32 junk, tfms, cap0, misc;
908
909 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
910 c->x86 = x86_family(tfms);
911 c->x86_model = x86_model(tfms);
912 c->x86_stepping = x86_stepping(tfms);
913
914 if (cap0 & (1<<19)) {
915 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
916 c->x86_cache_alignment = c->x86_clflush_size;
917 }
918 }
919 }
920
apply_forced_caps(struct cpuinfo_x86 * c)921 static void apply_forced_caps(struct cpuinfo_x86 *c)
922 {
923 int i;
924
925 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
926 c->x86_capability[i] &= ~cpu_caps_cleared[i];
927 c->x86_capability[i] |= cpu_caps_set[i];
928 }
929 }
930
init_speculation_control(struct cpuinfo_x86 * c)931 static void init_speculation_control(struct cpuinfo_x86 *c)
932 {
933 /*
934 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
935 * and they also have a different bit for STIBP support. Also,
936 * a hypervisor might have set the individual AMD bits even on
937 * Intel CPUs, for finer-grained selection of what's available.
938 */
939 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
940 set_cpu_cap(c, X86_FEATURE_IBRS);
941 set_cpu_cap(c, X86_FEATURE_IBPB);
942 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
943 }
944
945 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
946 set_cpu_cap(c, X86_FEATURE_STIBP);
947
948 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
949 cpu_has(c, X86_FEATURE_VIRT_SSBD))
950 set_cpu_cap(c, X86_FEATURE_SSBD);
951
952 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
953 set_cpu_cap(c, X86_FEATURE_IBRS);
954 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
955 }
956
957 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
958 set_cpu_cap(c, X86_FEATURE_IBPB);
959
960 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
961 set_cpu_cap(c, X86_FEATURE_STIBP);
962 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
963 }
964
965 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
966 set_cpu_cap(c, X86_FEATURE_SSBD);
967 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
968 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
969 }
970 }
971
get_cpu_cap(struct cpuinfo_x86 * c)972 void get_cpu_cap(struct cpuinfo_x86 *c)
973 {
974 u32 eax, ebx, ecx, edx;
975
976 /* Intel-defined flags: level 0x00000001 */
977 if (c->cpuid_level >= 0x00000001) {
978 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
979
980 c->x86_capability[CPUID_1_ECX] = ecx;
981 c->x86_capability[CPUID_1_EDX] = edx;
982 }
983
984 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
985 if (c->cpuid_level >= 0x00000006)
986 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
987
988 /* Additional Intel-defined flags: level 0x00000007 */
989 if (c->cpuid_level >= 0x00000007) {
990 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
991 c->x86_capability[CPUID_7_0_EBX] = ebx;
992 c->x86_capability[CPUID_7_ECX] = ecx;
993 c->x86_capability[CPUID_7_EDX] = edx;
994
995 /* Check valid sub-leaf index before accessing it */
996 if (eax >= 1) {
997 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
998 c->x86_capability[CPUID_7_1_EAX] = eax;
999 }
1000 }
1001
1002 /* Extended state features: level 0x0000000d */
1003 if (c->cpuid_level >= 0x0000000d) {
1004 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1005
1006 c->x86_capability[CPUID_D_1_EAX] = eax;
1007 }
1008
1009 /*
1010 * Check if extended CPUID leaves are implemented: Max extended
1011 * CPUID leaf must be in the 0x80000001-0x8000ffff range.
1012 */
1013 eax = cpuid_eax(0x80000000);
1014 c->extended_cpuid_level = ((eax & 0xffff0000) == 0x80000000) ? eax : 0;
1015
1016 if (c->extended_cpuid_level >= 0x80000001) {
1017 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1018
1019 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1020 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1021 }
1022
1023 if (c->extended_cpuid_level >= 0x80000007) {
1024 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1025
1026 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1027 c->x86_power = edx;
1028 }
1029
1030 if (c->extended_cpuid_level >= 0x80000008) {
1031 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1032 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1033 }
1034
1035 if (c->extended_cpuid_level >= 0x8000000a)
1036 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1037
1038 if (c->extended_cpuid_level >= 0x8000001f)
1039 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1040
1041 if (c->extended_cpuid_level >= 0x80000021)
1042 c->x86_capability[CPUID_8000_0021_EAX] = cpuid_eax(0x80000021);
1043
1044 init_scattered_cpuid_features(c);
1045 init_speculation_control(c);
1046
1047 /*
1048 * Clear/Set all flags overridden by options, after probe.
1049 * This needs to happen each time we re-probe, which may happen
1050 * several times during CPU initialization.
1051 */
1052 apply_forced_caps(c);
1053 }
1054
get_cpu_address_sizes(struct cpuinfo_x86 * c)1055 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1056 {
1057 u32 eax, ebx, ecx, edx;
1058
1059 if (!cpu_has(c, X86_FEATURE_CPUID) ||
1060 (c->extended_cpuid_level < 0x80000008)) {
1061 if (IS_ENABLED(CONFIG_X86_64)) {
1062 c->x86_clflush_size = 64;
1063 c->x86_phys_bits = 36;
1064 c->x86_virt_bits = 48;
1065 } else {
1066 c->x86_clflush_size = 32;
1067 c->x86_virt_bits = 32;
1068 c->x86_phys_bits = 32;
1069
1070 if (cpu_has(c, X86_FEATURE_PAE) ||
1071 cpu_has(c, X86_FEATURE_PSE36))
1072 c->x86_phys_bits = 36;
1073 }
1074 } else {
1075 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1076
1077 c->x86_virt_bits = (eax >> 8) & 0xff;
1078 c->x86_phys_bits = eax & 0xff;
1079
1080 /* Provide a sane default if not enumerated: */
1081 if (!c->x86_clflush_size)
1082 c->x86_clflush_size = 32;
1083 }
1084
1085 c->x86_cache_bits = c->x86_phys_bits;
1086 c->x86_cache_alignment = c->x86_clflush_size;
1087 }
1088
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)1089 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1090 {
1091 int i;
1092
1093 /*
1094 * First of all, decide if this is a 486 or higher
1095 * It's a 486 if we can modify the AC flag
1096 */
1097 if (flag_is_changeable_p(X86_EFLAGS_AC))
1098 c->x86 = 4;
1099 else
1100 c->x86 = 3;
1101
1102 for (i = 0; i < X86_VENDOR_NUM; i++)
1103 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1104 c->x86_vendor_id[0] = 0;
1105 cpu_devs[i]->c_identify(c);
1106 if (c->x86_vendor_id[0]) {
1107 get_cpu_vendor(c);
1108 break;
1109 }
1110 }
1111 }
1112
1113 #define NO_SPECULATION BIT(0)
1114 #define NO_MELTDOWN BIT(1)
1115 #define NO_SSB BIT(2)
1116 #define NO_L1TF BIT(3)
1117 #define NO_MDS BIT(4)
1118 #define MSBDS_ONLY BIT(5)
1119 #define NO_SWAPGS BIT(6)
1120 #define NO_ITLB_MULTIHIT BIT(7)
1121 #define NO_SPECTRE_V2 BIT(8)
1122 #define NO_MMIO BIT(9)
1123 #define NO_EIBRS_PBRSB BIT(10)
1124 #define NO_BHI BIT(11)
1125
1126 #define VULNWL(vendor, family, model, whitelist) \
1127 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1128
1129 #define VULNWL_INTEL(vfm, whitelist) \
1130 X86_MATCH_VFM(vfm, whitelist)
1131
1132 #define VULNWL_AMD(family, whitelist) \
1133 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1134
1135 #define VULNWL_HYGON(family, whitelist) \
1136 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1137
1138 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1139 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1140 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1141 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1142 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1143 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1144 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1145
1146 /* Intel Family 6 */
1147 VULNWL_INTEL(INTEL_TIGERLAKE, NO_MMIO),
1148 VULNWL_INTEL(INTEL_TIGERLAKE_L, NO_MMIO),
1149 VULNWL_INTEL(INTEL_ALDERLAKE, NO_MMIO),
1150 VULNWL_INTEL(INTEL_ALDERLAKE_L, NO_MMIO),
1151
1152 VULNWL_INTEL(INTEL_ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1153 VULNWL_INTEL(INTEL_ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1154 VULNWL_INTEL(INTEL_ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1155 VULNWL_INTEL(INTEL_ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1156 VULNWL_INTEL(INTEL_ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1157
1158 VULNWL_INTEL(INTEL_ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1159 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1160 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1161 VULNWL_INTEL(INTEL_ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1162 VULNWL_INTEL(INTEL_XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1163 VULNWL_INTEL(INTEL_XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1164
1165 VULNWL_INTEL(INTEL_CORE_YONAH, NO_SSB),
1166
1167 VULNWL_INTEL(INTEL_ATOM_SILVERMONT_MID2,NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | MSBDS_ONLY),
1168 VULNWL_INTEL(INTEL_ATOM_AIRMONT_NP, NO_SSB | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1169
1170 VULNWL_INTEL(INTEL_ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1171 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1172 VULNWL_INTEL(INTEL_ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1173
1174 /*
1175 * Technically, swapgs isn't serializing on AMD (despite it previously
1176 * being documented as such in the APM). But according to AMD, %gs is
1177 * updated non-speculatively, and the issuing of %gs-relative memory
1178 * operands will be blocked until the %gs update completes, which is
1179 * good enough for our purposes.
1180 */
1181
1182 VULNWL_INTEL(INTEL_ATOM_TREMONT, NO_EIBRS_PBRSB),
1183 VULNWL_INTEL(INTEL_ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1184 VULNWL_INTEL(INTEL_ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1185
1186 /* AMD Family 0xf - 0x12 */
1187 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1188 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1189 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1190 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_BHI),
1191
1192 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1193 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1194 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB | NO_BHI),
1195
1196 /* Zhaoxin Family 7 */
1197 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1198 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO | NO_BHI),
1199 {}
1200 };
1201
1202 #define VULNBL(vendor, family, model, blacklist) \
1203 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1204
1205 #define VULNBL_INTEL_STEPS(vfm, max_stepping, issues) \
1206 X86_MATCH_VFM_STEPS(vfm, X86_STEP_MIN, max_stepping, issues)
1207
1208 #define VULNBL_INTEL_TYPE(vfm, cpu_type, issues) \
1209 X86_MATCH_VFM_CPU_TYPE(vfm, INTEL_CPU_TYPE_##cpu_type, issues)
1210
1211 #define VULNBL_AMD(family, blacklist) \
1212 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1213
1214 #define VULNBL_HYGON(family, blacklist) \
1215 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1216
1217 #define SRBDS BIT(0)
1218 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1219 #define MMIO BIT(1)
1220 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1221 #define MMIO_SBDS BIT(2)
1222 /* CPU is affected by RETbleed, speculating where you would not expect it */
1223 #define RETBLEED BIT(3)
1224 /* CPU is affected by SMT (cross-thread) return predictions */
1225 #define SMT_RSB BIT(4)
1226 /* CPU is affected by SRSO */
1227 #define SRSO BIT(5)
1228 /* CPU is affected by GDS */
1229 #define GDS BIT(6)
1230 /* CPU is affected by Register File Data Sampling */
1231 #define RFDS BIT(7)
1232 /* CPU is affected by Indirect Target Selection */
1233 #define ITS BIT(8)
1234 /* CPU is affected by Indirect Target Selection, but guest-host isolation is not affected */
1235 #define ITS_NATIVE_ONLY BIT(9)
1236 /* CPU is affected by Transient Scheduler Attacks */
1237 #define TSA BIT(10)
1238
1239 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1240 VULNBL_INTEL_STEPS(INTEL_IVYBRIDGE, X86_STEP_MAX, SRBDS),
1241 VULNBL_INTEL_STEPS(INTEL_HASWELL, X86_STEP_MAX, SRBDS),
1242 VULNBL_INTEL_STEPS(INTEL_HASWELL_L, X86_STEP_MAX, SRBDS),
1243 VULNBL_INTEL_STEPS(INTEL_HASWELL_G, X86_STEP_MAX, SRBDS),
1244 VULNBL_INTEL_STEPS(INTEL_HASWELL_X, X86_STEP_MAX, MMIO),
1245 VULNBL_INTEL_STEPS(INTEL_BROADWELL_D, X86_STEP_MAX, MMIO),
1246 VULNBL_INTEL_STEPS(INTEL_BROADWELL_G, X86_STEP_MAX, SRBDS),
1247 VULNBL_INTEL_STEPS(INTEL_BROADWELL_X, X86_STEP_MAX, MMIO),
1248 VULNBL_INTEL_STEPS(INTEL_BROADWELL, X86_STEP_MAX, SRBDS),
1249 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X, 0x5, MMIO | RETBLEED | GDS),
1250 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_X, X86_STEP_MAX, MMIO | RETBLEED | GDS | ITS),
1251 VULNBL_INTEL_STEPS(INTEL_SKYLAKE_L, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS),
1252 VULNBL_INTEL_STEPS(INTEL_SKYLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS),
1253 VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L, 0xb, MMIO | RETBLEED | GDS | SRBDS),
1254 VULNBL_INTEL_STEPS(INTEL_KABYLAKE_L, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | ITS),
1255 VULNBL_INTEL_STEPS(INTEL_KABYLAKE, 0xc, MMIO | RETBLEED | GDS | SRBDS),
1256 VULNBL_INTEL_STEPS(INTEL_KABYLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | SRBDS | ITS),
1257 VULNBL_INTEL_STEPS(INTEL_CANNONLAKE_L, X86_STEP_MAX, RETBLEED),
1258 VULNBL_INTEL_STEPS(INTEL_ICELAKE_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1259 VULNBL_INTEL_STEPS(INTEL_ICELAKE_D, X86_STEP_MAX, MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1260 VULNBL_INTEL_STEPS(INTEL_ICELAKE_X, X86_STEP_MAX, MMIO | GDS | ITS | ITS_NATIVE_ONLY),
1261 VULNBL_INTEL_STEPS(INTEL_COMETLAKE, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
1262 VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L, 0x0, MMIO | RETBLEED | ITS),
1263 VULNBL_INTEL_STEPS(INTEL_COMETLAKE_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED | GDS | ITS),
1264 VULNBL_INTEL_STEPS(INTEL_TIGERLAKE_L, X86_STEP_MAX, GDS | ITS | ITS_NATIVE_ONLY),
1265 VULNBL_INTEL_STEPS(INTEL_TIGERLAKE, X86_STEP_MAX, GDS | ITS | ITS_NATIVE_ONLY),
1266 VULNBL_INTEL_STEPS(INTEL_LAKEFIELD, X86_STEP_MAX, MMIO | MMIO_SBDS | RETBLEED),
1267 VULNBL_INTEL_STEPS(INTEL_ROCKETLAKE, X86_STEP_MAX, MMIO | RETBLEED | GDS | ITS | ITS_NATIVE_ONLY),
1268 VULNBL_INTEL_TYPE(INTEL_ALDERLAKE, ATOM, RFDS),
1269 VULNBL_INTEL_STEPS(INTEL_ALDERLAKE_L, X86_STEP_MAX, RFDS),
1270 VULNBL_INTEL_TYPE(INTEL_RAPTORLAKE, ATOM, RFDS),
1271 VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_P, X86_STEP_MAX, RFDS),
1272 VULNBL_INTEL_STEPS(INTEL_RAPTORLAKE_S, X86_STEP_MAX, RFDS),
1273 VULNBL_INTEL_STEPS(INTEL_ATOM_GRACEMONT, X86_STEP_MAX, RFDS),
1274 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT, X86_STEP_MAX, MMIO | MMIO_SBDS | RFDS),
1275 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_D, X86_STEP_MAX, MMIO | RFDS),
1276 VULNBL_INTEL_STEPS(INTEL_ATOM_TREMONT_L, X86_STEP_MAX, MMIO | MMIO_SBDS | RFDS),
1277 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT, X86_STEP_MAX, RFDS),
1278 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_D, X86_STEP_MAX, RFDS),
1279 VULNBL_INTEL_STEPS(INTEL_ATOM_GOLDMONT_PLUS, X86_STEP_MAX, RFDS),
1280
1281 VULNBL_AMD(0x15, RETBLEED),
1282 VULNBL_AMD(0x16, RETBLEED),
1283 VULNBL_AMD(0x17, RETBLEED | SMT_RSB | SRSO),
1284 VULNBL_HYGON(0x18, RETBLEED | SMT_RSB | SRSO),
1285 VULNBL_AMD(0x19, SRSO | TSA),
1286 VULNBL_AMD(0x1a, SRSO),
1287 {}
1288 };
1289
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1290 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1291 {
1292 const struct x86_cpu_id *m = x86_match_cpu(table);
1293
1294 return m && !!(m->driver_data & which);
1295 }
1296
x86_read_arch_cap_msr(void)1297 u64 x86_read_arch_cap_msr(void)
1298 {
1299 u64 x86_arch_cap_msr = 0;
1300
1301 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1302 rdmsrq(MSR_IA32_ARCH_CAPABILITIES, x86_arch_cap_msr);
1303
1304 return x86_arch_cap_msr;
1305 }
1306
arch_cap_mmio_immune(u64 x86_arch_cap_msr)1307 static bool arch_cap_mmio_immune(u64 x86_arch_cap_msr)
1308 {
1309 return (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO &&
1310 x86_arch_cap_msr & ARCH_CAP_PSDP_NO &&
1311 x86_arch_cap_msr & ARCH_CAP_SBDR_SSDP_NO);
1312 }
1313
vulnerable_to_rfds(u64 x86_arch_cap_msr)1314 static bool __init vulnerable_to_rfds(u64 x86_arch_cap_msr)
1315 {
1316 /* The "immunity" bit trumps everything else: */
1317 if (x86_arch_cap_msr & ARCH_CAP_RFDS_NO)
1318 return false;
1319
1320 /*
1321 * VMMs set ARCH_CAP_RFDS_CLEAR for processors not in the blacklist to
1322 * indicate that mitigation is needed because guest is running on a
1323 * vulnerable hardware or may migrate to such hardware:
1324 */
1325 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
1326 return true;
1327
1328 /* Only consult the blacklist when there is no enumeration: */
1329 return cpu_matches(cpu_vuln_blacklist, RFDS);
1330 }
1331
vulnerable_to_its(u64 x86_arch_cap_msr)1332 static bool __init vulnerable_to_its(u64 x86_arch_cap_msr)
1333 {
1334 /* The "immunity" bit trumps everything else: */
1335 if (x86_arch_cap_msr & ARCH_CAP_ITS_NO)
1336 return false;
1337 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
1338 return false;
1339
1340 /* None of the affected CPUs have BHI_CTRL */
1341 if (boot_cpu_has(X86_FEATURE_BHI_CTRL))
1342 return false;
1343
1344 /*
1345 * If a VMM did not expose ITS_NO, assume that a guest could
1346 * be running on a vulnerable hardware or may migrate to such
1347 * hardware.
1348 */
1349 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1350 return true;
1351
1352 if (cpu_matches(cpu_vuln_blacklist, ITS))
1353 return true;
1354
1355 return false;
1356 }
1357
1358 static struct x86_cpu_id cpu_latest_microcode[] = {
1359 #include "microcode/intel-ucode-defs.h"
1360 {}
1361 };
1362
cpu_has_old_microcode(void)1363 static bool __init cpu_has_old_microcode(void)
1364 {
1365 const struct x86_cpu_id *m = x86_match_cpu(cpu_latest_microcode);
1366
1367 /* Give unknown CPUs a pass: */
1368 if (!m) {
1369 /* Intel CPUs should be in the list. Warn if not: */
1370 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1371 pr_info("x86/CPU: Model not found in latest microcode list\n");
1372 return false;
1373 }
1374
1375 /*
1376 * Hosts usually lie to guests with a super high microcode
1377 * version. Just ignore what hosts tell guests:
1378 */
1379 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
1380 return false;
1381
1382 /* Consider all debug microcode to be old: */
1383 if (boot_cpu_data.microcode & BIT(31))
1384 return true;
1385
1386 /* Give new microcode a pass: */
1387 if (boot_cpu_data.microcode >= m->driver_data)
1388 return false;
1389
1390 /* Uh oh, too old: */
1391 return true;
1392 }
1393
cpu_set_bug_bits(struct cpuinfo_x86 * c)1394 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1395 {
1396 u64 x86_arch_cap_msr = x86_read_arch_cap_msr();
1397
1398 if (cpu_has_old_microcode()) {
1399 pr_warn("x86/CPU: Running old microcode\n");
1400 setup_force_cpu_bug(X86_BUG_OLD_MICROCODE);
1401 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1402 }
1403
1404 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1405 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1406 !(x86_arch_cap_msr & ARCH_CAP_PSCHANGE_MC_NO))
1407 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1408
1409 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1410 return;
1411
1412 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1413
1414 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2)) {
1415 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1416 setup_force_cpu_bug(X86_BUG_SPECTRE_V2_USER);
1417 }
1418
1419 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1420 !(x86_arch_cap_msr & ARCH_CAP_SSB_NO) &&
1421 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1422 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1423
1424 /*
1425 * AMD's AutoIBRS is equivalent to Intel's eIBRS - use the Intel feature
1426 * flag and protect from vendor-specific bugs via the whitelist.
1427 *
1428 * Don't use AutoIBRS when SNP is enabled because it degrades host
1429 * userspace indirect branch performance.
1430 */
1431 if ((x86_arch_cap_msr & ARCH_CAP_IBRS_ALL) ||
1432 (cpu_has(c, X86_FEATURE_AUTOIBRS) &&
1433 !cpu_feature_enabled(X86_FEATURE_SEV_SNP))) {
1434 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1435 if (!cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1436 !(x86_arch_cap_msr & ARCH_CAP_PBRSB_NO))
1437 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1438 }
1439
1440 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1441 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)) {
1442 setup_force_cpu_bug(X86_BUG_MDS);
1443 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1444 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1445 }
1446
1447 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1448 setup_force_cpu_bug(X86_BUG_SWAPGS);
1449
1450 /*
1451 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1452 * - TSX is supported or
1453 * - TSX_CTRL is present
1454 *
1455 * TSX_CTRL check is needed for cases when TSX could be disabled before
1456 * the kernel boot e.g. kexec.
1457 * TSX_CTRL check alone is not sufficient for cases when the microcode
1458 * update is not present or running as guest that don't get TSX_CTRL.
1459 */
1460 if (!(x86_arch_cap_msr & ARCH_CAP_TAA_NO) &&
1461 (cpu_has(c, X86_FEATURE_RTM) ||
1462 (x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR)))
1463 setup_force_cpu_bug(X86_BUG_TAA);
1464
1465 /*
1466 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1467 * in the vulnerability blacklist.
1468 *
1469 * Some of the implications and mitigation of Shared Buffers Data
1470 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1471 * SRBDS.
1472 */
1473 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1474 cpu_has(c, X86_FEATURE_RDSEED)) &&
1475 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1476 setup_force_cpu_bug(X86_BUG_SRBDS);
1477
1478 /*
1479 * Processor MMIO Stale Data bug enumeration
1480 *
1481 * Affected CPU list is generally enough to enumerate the vulnerability,
1482 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1483 * not want the guest to enumerate the bug.
1484 */
1485 if (!arch_cap_mmio_immune(x86_arch_cap_msr)) {
1486 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1487 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1488 }
1489
1490 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1491 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (x86_arch_cap_msr & ARCH_CAP_RSBA))
1492 setup_force_cpu_bug(X86_BUG_RETBLEED);
1493 }
1494
1495 if (cpu_matches(cpu_vuln_blacklist, SMT_RSB))
1496 setup_force_cpu_bug(X86_BUG_SMT_RSB);
1497
1498 if (!cpu_has(c, X86_FEATURE_SRSO_NO)) {
1499 if (cpu_matches(cpu_vuln_blacklist, SRSO))
1500 setup_force_cpu_bug(X86_BUG_SRSO);
1501 }
1502
1503 /*
1504 * Check if CPU is vulnerable to GDS. If running in a virtual machine on
1505 * an affected processor, the VMM may have disabled the use of GATHER by
1506 * disabling AVX2. The only way to do this in HW is to clear XCR0[2],
1507 * which means that AVX will be disabled.
1508 */
1509 if (cpu_matches(cpu_vuln_blacklist, GDS) && !(x86_arch_cap_msr & ARCH_CAP_GDS_NO) &&
1510 boot_cpu_has(X86_FEATURE_AVX))
1511 setup_force_cpu_bug(X86_BUG_GDS);
1512
1513 if (vulnerable_to_rfds(x86_arch_cap_msr))
1514 setup_force_cpu_bug(X86_BUG_RFDS);
1515
1516 /*
1517 * Intel parts with eIBRS are vulnerable to BHI attacks. Parts with
1518 * BHI_NO still need to use the BHI mitigation to prevent Intra-mode
1519 * attacks. When virtualized, eIBRS could be hidden, assume vulnerable.
1520 */
1521 if (!cpu_matches(cpu_vuln_whitelist, NO_BHI) &&
1522 (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED) ||
1523 boot_cpu_has(X86_FEATURE_HYPERVISOR)))
1524 setup_force_cpu_bug(X86_BUG_BHI);
1525
1526 if (cpu_has(c, X86_FEATURE_AMD_IBPB) && !cpu_has(c, X86_FEATURE_AMD_IBPB_RET))
1527 setup_force_cpu_bug(X86_BUG_IBPB_NO_RET);
1528
1529 if (vulnerable_to_its(x86_arch_cap_msr)) {
1530 setup_force_cpu_bug(X86_BUG_ITS);
1531 if (cpu_matches(cpu_vuln_blacklist, ITS_NATIVE_ONLY))
1532 setup_force_cpu_bug(X86_BUG_ITS_NATIVE_ONLY);
1533 }
1534
1535 if (c->x86_vendor == X86_VENDOR_AMD) {
1536 if (!cpu_has(c, X86_FEATURE_TSA_SQ_NO) ||
1537 !cpu_has(c, X86_FEATURE_TSA_L1_NO)) {
1538 if (cpu_matches(cpu_vuln_blacklist, TSA) ||
1539 /* Enable bug on Zen guests to allow for live migration. */
1540 (cpu_has(c, X86_FEATURE_HYPERVISOR) && cpu_has(c, X86_FEATURE_ZEN)))
1541 setup_force_cpu_bug(X86_BUG_TSA);
1542 }
1543 }
1544
1545 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1546 return;
1547
1548 /* Rogue Data Cache Load? No! */
1549 if (x86_arch_cap_msr & ARCH_CAP_RDCL_NO)
1550 return;
1551
1552 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1553
1554 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1555 return;
1556
1557 setup_force_cpu_bug(X86_BUG_L1TF);
1558 }
1559
1560 /*
1561 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1562 * unfortunately, that's not true in practice because of early VIA
1563 * chips and (more importantly) broken virtualizers that are not easy
1564 * to detect. In the latter case it doesn't even *fail* reliably, so
1565 * probing for it doesn't even work. Disable it completely on 32-bit
1566 * unless we can find a reliable way to detect all the broken cases.
1567 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1568 */
detect_nopl(void)1569 static void detect_nopl(void)
1570 {
1571 #ifdef CONFIG_X86_32
1572 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1573 #else
1574 setup_force_cpu_cap(X86_FEATURE_NOPL);
1575 #endif
1576 }
1577
parse_set_clear_cpuid(char * arg,bool set)1578 static inline bool parse_set_clear_cpuid(char *arg, bool set)
1579 {
1580 char *opt;
1581 int taint = 0;
1582
1583 while (arg) {
1584 bool found __maybe_unused = false;
1585 unsigned int bit;
1586
1587 opt = strsep(&arg, ",");
1588
1589 /*
1590 * Handle naked numbers first for feature flags which don't
1591 * have names. It doesn't make sense for a bug not to have a
1592 * name so don't handle bug flags here.
1593 */
1594 if (!kstrtouint(opt, 10, &bit)) {
1595 if (bit < NCAPINTS * 32) {
1596
1597 if (set) {
1598 pr_warn("setcpuid: force-enabling CPU feature flag:");
1599 setup_force_cpu_cap(bit);
1600 } else {
1601 pr_warn("clearcpuid: force-disabling CPU feature flag:");
1602 setup_clear_cpu_cap(bit);
1603 }
1604 /* empty-string, i.e., ""-defined feature flags */
1605 if (!x86_cap_flags[bit])
1606 pr_cont(" %d:%d\n", bit >> 5, bit & 31);
1607 else
1608 pr_cont(" %s\n", x86_cap_flags[bit]);
1609
1610 taint++;
1611 }
1612 /*
1613 * The assumption is that there are no feature names with only
1614 * numbers in the name thus go to the next argument.
1615 */
1616 continue;
1617 }
1618
1619 for (bit = 0; bit < 32 * (NCAPINTS + NBUGINTS); bit++) {
1620 const char *flag;
1621 const char *kind;
1622
1623 if (bit < 32 * NCAPINTS) {
1624 flag = x86_cap_flags[bit];
1625 kind = "feature";
1626 } else {
1627 kind = "bug";
1628 flag = x86_bug_flags[bit - (32 * NCAPINTS)];
1629 }
1630
1631 if (!flag)
1632 continue;
1633
1634 if (strcmp(flag, opt))
1635 continue;
1636
1637 if (set) {
1638 pr_warn("setcpuid: force-enabling CPU %s flag: %s\n",
1639 kind, flag);
1640 setup_force_cpu_cap(bit);
1641 } else {
1642 pr_warn("clearcpuid: force-disabling CPU %s flag: %s\n",
1643 kind, flag);
1644 setup_clear_cpu_cap(bit);
1645 }
1646 taint++;
1647 found = true;
1648 break;
1649 }
1650
1651 if (!found)
1652 pr_warn("%s: unknown CPU flag: %s", set ? "setcpuid" : "clearcpuid", opt);
1653 }
1654
1655 return taint;
1656 }
1657
1658
1659 /*
1660 * We parse cpu parameters early because fpu__init_system() is executed
1661 * before parse_early_param().
1662 */
cpu_parse_early_param(void)1663 static void __init cpu_parse_early_param(void)
1664 {
1665 bool cpuid_taint = false;
1666 char arg[128];
1667 int arglen;
1668
1669 #ifdef CONFIG_X86_32
1670 if (cmdline_find_option_bool(boot_command_line, "no387"))
1671 #ifdef CONFIG_MATH_EMULATION
1672 setup_clear_cpu_cap(X86_FEATURE_FPU);
1673 #else
1674 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1675 #endif
1676
1677 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1678 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1679 #endif
1680
1681 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1682 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1683
1684 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1685 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1686
1687 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1688 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1689
1690 if (cmdline_find_option_bool(boot_command_line, "nousershstk"))
1691 setup_clear_cpu_cap(X86_FEATURE_USER_SHSTK);
1692
1693 /* Minimize the gap between FRED is available and available but disabled. */
1694 arglen = cmdline_find_option(boot_command_line, "fred", arg, sizeof(arg));
1695 if (arglen != 2 || strncmp(arg, "on", 2))
1696 setup_clear_cpu_cap(X86_FEATURE_FRED);
1697
1698 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1699 if (arglen > 0)
1700 cpuid_taint |= parse_set_clear_cpuid(arg, false);
1701
1702 arglen = cmdline_find_option(boot_command_line, "setcpuid", arg, sizeof(arg));
1703 if (arglen > 0)
1704 cpuid_taint |= parse_set_clear_cpuid(arg, true);
1705
1706 if (cpuid_taint) {
1707 pr_warn("!!! setcpuid=/clearcpuid= in use, this is for TESTING ONLY, may break things horribly. Tainting kernel.\n");
1708 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1709 }
1710 }
1711
1712 /*
1713 * Do minimum CPU detection early.
1714 * Fields really needed: vendor, cpuid_level, family, model, mask,
1715 * cache alignment.
1716 * The others are not touched to avoid unwanted side effects.
1717 *
1718 * WARNING: this function is only called on the boot CPU. Don't add code
1719 * here that is supposed to run on all CPUs.
1720 */
early_identify_cpu(struct cpuinfo_x86 * c)1721 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1722 {
1723 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1724 c->extended_cpuid_level = 0;
1725
1726 if (!cpuid_feature())
1727 identify_cpu_without_cpuid(c);
1728
1729 /* cyrix could have cpuid enabled via c_identify()*/
1730 if (cpuid_feature()) {
1731 cpu_detect(c);
1732 get_cpu_vendor(c);
1733 intel_unlock_cpuid_leafs(c);
1734 get_cpu_cap(c);
1735 setup_force_cpu_cap(X86_FEATURE_CPUID);
1736 get_cpu_address_sizes(c);
1737 cpu_parse_early_param();
1738
1739 cpu_init_topology(c);
1740
1741 if (this_cpu->c_early_init)
1742 this_cpu->c_early_init(c);
1743
1744 c->cpu_index = 0;
1745 filter_cpuid_features(c, false);
1746 check_cpufeature_deps(c);
1747
1748 if (this_cpu->c_bsp_init)
1749 this_cpu->c_bsp_init(c);
1750 } else {
1751 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1752 get_cpu_address_sizes(c);
1753 cpu_init_topology(c);
1754 }
1755
1756 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1757
1758 cpu_set_bug_bits(c);
1759
1760 sld_setup(c);
1761
1762 #ifdef CONFIG_X86_32
1763 /*
1764 * Regardless of whether PCID is enumerated, the SDM says
1765 * that it can't be enabled in 32-bit mode.
1766 */
1767 setup_clear_cpu_cap(X86_FEATURE_PCID);
1768 #endif
1769
1770 /*
1771 * Later in the boot process pgtable_l5_enabled() relies on
1772 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1773 * enabled by this point we need to clear the feature bit to avoid
1774 * false-positives at the later stage.
1775 *
1776 * pgtable_l5_enabled() can be false here for several reasons:
1777 * - 5-level paging is disabled compile-time;
1778 * - it's 32-bit kernel;
1779 * - machine doesn't support 5-level paging;
1780 * - user specified 'no5lvl' in kernel command line.
1781 */
1782 if (!pgtable_l5_enabled())
1783 setup_clear_cpu_cap(X86_FEATURE_LA57);
1784
1785 detect_nopl();
1786 }
1787
init_cpu_devs(void)1788 void __init init_cpu_devs(void)
1789 {
1790 const struct cpu_dev *const *cdev;
1791 int count = 0;
1792
1793 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1794 const struct cpu_dev *cpudev = *cdev;
1795
1796 if (count >= X86_VENDOR_NUM)
1797 break;
1798 cpu_devs[count] = cpudev;
1799 count++;
1800 }
1801 }
1802
early_cpu_init(void)1803 void __init early_cpu_init(void)
1804 {
1805 #ifdef CONFIG_PROCESSOR_SELECT
1806 unsigned int i, j;
1807
1808 pr_info("KERNEL supported cpus:\n");
1809 #endif
1810
1811 init_cpu_devs();
1812
1813 #ifdef CONFIG_PROCESSOR_SELECT
1814 for (i = 0; i < X86_VENDOR_NUM && cpu_devs[i]; i++) {
1815 for (j = 0; j < 2; j++) {
1816 if (!cpu_devs[i]->c_ident[j])
1817 continue;
1818 pr_info(" %s %s\n", cpu_devs[i]->c_vendor,
1819 cpu_devs[i]->c_ident[j]);
1820 }
1821 }
1822 #endif
1823
1824 early_identify_cpu(&boot_cpu_data);
1825 }
1826
detect_null_seg_behavior(void)1827 static bool detect_null_seg_behavior(void)
1828 {
1829 /*
1830 * Empirically, writing zero to a segment selector on AMD does
1831 * not clear the base, whereas writing zero to a segment
1832 * selector on Intel does clear the base. Intel's behavior
1833 * allows slightly faster context switches in the common case
1834 * where GS is unused by the prev and next threads.
1835 *
1836 * Since neither vendor documents this anywhere that I can see,
1837 * detect it directly instead of hard-coding the choice by
1838 * vendor.
1839 *
1840 * I've designated AMD's behavior as the "bug" because it's
1841 * counterintuitive and less friendly.
1842 */
1843
1844 unsigned long old_base, tmp;
1845 rdmsrq(MSR_FS_BASE, old_base);
1846 wrmsrq(MSR_FS_BASE, 1);
1847 loadsegment(fs, 0);
1848 rdmsrq(MSR_FS_BASE, tmp);
1849 wrmsrq(MSR_FS_BASE, old_base);
1850 return tmp == 0;
1851 }
1852
check_null_seg_clears_base(struct cpuinfo_x86 * c)1853 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1854 {
1855 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1856 if (!IS_ENABLED(CONFIG_X86_64))
1857 return;
1858
1859 if (cpu_has(c, X86_FEATURE_NULL_SEL_CLR_BASE))
1860 return;
1861
1862 /*
1863 * CPUID bit above wasn't set. If this kernel is still running
1864 * as a HV guest, then the HV has decided not to advertize
1865 * that CPUID bit for whatever reason. For example, one
1866 * member of the migration pool might be vulnerable. Which
1867 * means, the bug is present: set the BUG flag and return.
1868 */
1869 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1870 set_cpu_bug(c, X86_BUG_NULL_SEG);
1871 return;
1872 }
1873
1874 /*
1875 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1876 * 0x18 is the respective family for Hygon.
1877 */
1878 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1879 detect_null_seg_behavior())
1880 return;
1881
1882 /* All the remaining ones are affected */
1883 set_cpu_bug(c, X86_BUG_NULL_SEG);
1884 }
1885
generic_identify(struct cpuinfo_x86 * c)1886 static void generic_identify(struct cpuinfo_x86 *c)
1887 {
1888 c->extended_cpuid_level = 0;
1889
1890 if (!cpuid_feature())
1891 identify_cpu_without_cpuid(c);
1892
1893 /* cyrix could have cpuid enabled via c_identify()*/
1894 if (!cpuid_feature())
1895 return;
1896
1897 cpu_detect(c);
1898
1899 get_cpu_vendor(c);
1900 intel_unlock_cpuid_leafs(c);
1901 get_cpu_cap(c);
1902
1903 get_cpu_address_sizes(c);
1904
1905 get_model_name(c); /* Default name */
1906
1907 /*
1908 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1909 * systems that run Linux at CPL > 0 may or may not have the
1910 * issue, but, even if they have the issue, there's absolutely
1911 * nothing we can do about it because we can't use the real IRET
1912 * instruction.
1913 *
1914 * NB: For the time being, only 32-bit kernels support
1915 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1916 * whether to apply espfix using paravirt hooks. If any
1917 * non-paravirt system ever shows up that does *not* have the
1918 * ESPFIX issue, we can change this.
1919 */
1920 #ifdef CONFIG_X86_32
1921 set_cpu_bug(c, X86_BUG_ESPFIX);
1922 #endif
1923 }
1924
1925 /*
1926 * This does the hard work of actually picking apart the CPU stuff...
1927 */
identify_cpu(struct cpuinfo_x86 * c)1928 static void identify_cpu(struct cpuinfo_x86 *c)
1929 {
1930 int i;
1931
1932 c->loops_per_jiffy = loops_per_jiffy;
1933 c->x86_cache_size = 0;
1934 c->x86_vendor = X86_VENDOR_UNKNOWN;
1935 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1936 c->x86_vendor_id[0] = '\0'; /* Unset */
1937 c->x86_model_id[0] = '\0'; /* Unset */
1938 #ifdef CONFIG_X86_64
1939 c->x86_clflush_size = 64;
1940 c->x86_phys_bits = 36;
1941 c->x86_virt_bits = 48;
1942 #else
1943 c->cpuid_level = -1; /* CPUID not detected */
1944 c->x86_clflush_size = 32;
1945 c->x86_phys_bits = 32;
1946 c->x86_virt_bits = 32;
1947 #endif
1948 c->x86_cache_alignment = c->x86_clflush_size;
1949 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1950 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1951 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1952 #endif
1953
1954 generic_identify(c);
1955
1956 cpu_parse_topology(c);
1957
1958 if (this_cpu->c_identify)
1959 this_cpu->c_identify(c);
1960
1961 /* Clear/Set all flags overridden by options, after probe */
1962 apply_forced_caps(c);
1963
1964 /*
1965 * Set default APIC and TSC_DEADLINE MSR fencing flag. AMD and
1966 * Hygon will clear it in ->c_init() below.
1967 */
1968 set_cpu_cap(c, X86_FEATURE_APIC_MSRS_FENCE);
1969
1970 /*
1971 * Vendor-specific initialization. In this section we
1972 * canonicalize the feature flags, meaning if there are
1973 * features a certain CPU supports which CPUID doesn't
1974 * tell us, CPUID claiming incorrect flags, or other bugs,
1975 * we handle them here.
1976 *
1977 * At the end of this section, c->x86_capability better
1978 * indicate the features this CPU genuinely supports!
1979 */
1980 if (this_cpu->c_init)
1981 this_cpu->c_init(c);
1982
1983 bus_lock_init();
1984
1985 /* Disable the PN if appropriate */
1986 squash_the_stupid_serial_number(c);
1987
1988 /* Set up SMEP/SMAP/UMIP */
1989 setup_smep(c);
1990 setup_smap(c);
1991 setup_umip(c);
1992
1993 /* Enable FSGSBASE instructions if available. */
1994 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1995 cr4_set_bits(X86_CR4_FSGSBASE);
1996 elf_hwcap2 |= HWCAP2_FSGSBASE;
1997 }
1998
1999 /*
2000 * The vendor-specific functions might have changed features.
2001 * Now we do "generic changes."
2002 */
2003
2004 /* Filter out anything that depends on CPUID levels we don't have */
2005 filter_cpuid_features(c, true);
2006
2007 /* Check for unmet dependencies based on the CPUID dependency table */
2008 check_cpufeature_deps(c);
2009
2010 /* If the model name is still unset, do table lookup. */
2011 if (!c->x86_model_id[0]) {
2012 const char *p;
2013 p = table_lookup_model(c);
2014 if (p)
2015 strcpy(c->x86_model_id, p);
2016 else
2017 /* Last resort... */
2018 sprintf(c->x86_model_id, "%02x/%02x",
2019 c->x86, c->x86_model);
2020 }
2021
2022 x86_init_rdrand(c);
2023 setup_pku(c);
2024 setup_cet(c);
2025
2026 /*
2027 * Clear/Set all flags overridden by options, need do it
2028 * before following smp all cpus cap AND.
2029 */
2030 apply_forced_caps(c);
2031
2032 /*
2033 * On SMP, boot_cpu_data holds the common feature set between
2034 * all CPUs; so make sure that we indicate which features are
2035 * common between the CPUs. The first time this routine gets
2036 * executed, c == &boot_cpu_data.
2037 */
2038 if (c != &boot_cpu_data) {
2039 /* AND the already accumulated flags with these */
2040 for (i = 0; i < NCAPINTS; i++)
2041 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
2042
2043 /* OR, i.e. replicate the bug flags */
2044 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
2045 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
2046 }
2047
2048 ppin_init(c);
2049
2050 /* Init Machine Check Exception if available. */
2051 mcheck_cpu_init(c);
2052
2053 numa_add_cpu(smp_processor_id());
2054 }
2055
2056 /*
2057 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
2058 * on 32-bit kernels:
2059 */
2060 #ifdef CONFIG_X86_32
enable_sep_cpu(void)2061 void enable_sep_cpu(void)
2062 {
2063 struct tss_struct *tss;
2064 int cpu;
2065
2066 if (!boot_cpu_has(X86_FEATURE_SEP))
2067 return;
2068
2069 cpu = get_cpu();
2070 tss = &per_cpu(cpu_tss_rw, cpu);
2071
2072 /*
2073 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
2074 * see the big comment in struct x86_hw_tss's definition.
2075 */
2076
2077 tss->x86_tss.ss1 = __KERNEL_CS;
2078 wrmsrq(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1);
2079 wrmsrq(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
2080 wrmsrq(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32);
2081
2082 put_cpu();
2083 }
2084 #endif
2085
identify_boot_cpu(void)2086 static __init void identify_boot_cpu(void)
2087 {
2088 identify_cpu(&boot_cpu_data);
2089 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
2090 pr_info("CET detected: Indirect Branch Tracking enabled\n");
2091 #ifdef CONFIG_X86_32
2092 enable_sep_cpu();
2093 #endif
2094 cpu_detect_tlb(&boot_cpu_data);
2095 setup_cr_pinning();
2096
2097 tsx_init();
2098 tdx_init();
2099 lkgs_init();
2100 }
2101
identify_secondary_cpu(unsigned int cpu)2102 void identify_secondary_cpu(unsigned int cpu)
2103 {
2104 struct cpuinfo_x86 *c = &cpu_data(cpu);
2105
2106 /* Copy boot_cpu_data only on the first bringup */
2107 if (!c->initialized)
2108 *c = boot_cpu_data;
2109 c->cpu_index = cpu;
2110
2111 identify_cpu(c);
2112 #ifdef CONFIG_X86_32
2113 enable_sep_cpu();
2114 #endif
2115 x86_spec_ctrl_setup_ap();
2116 update_srbds_msr();
2117 if (boot_cpu_has_bug(X86_BUG_GDS))
2118 update_gds_msr();
2119
2120 tsx_ap_init();
2121 c->initialized = true;
2122 }
2123
print_cpu_info(struct cpuinfo_x86 * c)2124 void print_cpu_info(struct cpuinfo_x86 *c)
2125 {
2126 const char *vendor = NULL;
2127
2128 if (c->x86_vendor < X86_VENDOR_NUM) {
2129 vendor = this_cpu->c_vendor;
2130 } else {
2131 if (c->cpuid_level >= 0)
2132 vendor = c->x86_vendor_id;
2133 }
2134
2135 if (vendor && !strstr(c->x86_model_id, vendor))
2136 pr_cont("%s ", vendor);
2137
2138 if (c->x86_model_id[0])
2139 pr_cont("%s", c->x86_model_id);
2140 else
2141 pr_cont("%d86", c->x86);
2142
2143 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2144
2145 if (c->x86_stepping || c->cpuid_level >= 0)
2146 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2147 else
2148 pr_cont(")\n");
2149 }
2150
2151 /*
2152 * clearcpuid= and setcpuid= were already parsed in cpu_parse_early_param().
2153 * These dummy functions prevent them from becoming an environment variable for
2154 * init.
2155 */
2156
setup_clearcpuid(char * arg)2157 static __init int setup_clearcpuid(char *arg)
2158 {
2159 return 1;
2160 }
2161 __setup("clearcpuid=", setup_clearcpuid);
2162
setup_setcpuid(char * arg)2163 static __init int setup_setcpuid(char *arg)
2164 {
2165 return 1;
2166 }
2167 __setup("setcpuid=", setup_setcpuid);
2168
2169 DEFINE_PER_CPU_CACHE_HOT(struct task_struct *, current_task) = &init_task;
2170 EXPORT_PER_CPU_SYMBOL(current_task);
2171 EXPORT_PER_CPU_SYMBOL(const_current_task);
2172
2173 DEFINE_PER_CPU_CACHE_HOT(int, __preempt_count) = INIT_PREEMPT_COUNT;
2174 EXPORT_PER_CPU_SYMBOL(__preempt_count);
2175
2176 DEFINE_PER_CPU_CACHE_HOT(unsigned long, cpu_current_top_of_stack) = TOP_OF_INIT_STACK;
2177
2178 #ifdef CONFIG_X86_64
2179 /*
2180 * Note: Do not make this dependant on CONFIG_MITIGATION_CALL_DEPTH_TRACKING
2181 * so that this space is reserved in the hot cache section even when the
2182 * mitigation is disabled.
2183 */
2184 DEFINE_PER_CPU_CACHE_HOT(u64, __x86_call_depth);
2185 EXPORT_PER_CPU_SYMBOL(__x86_call_depth);
2186
wrmsrq_cstar(unsigned long val)2187 static void wrmsrq_cstar(unsigned long val)
2188 {
2189 /*
2190 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2191 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2192 * guest. Avoid the pointless write on all Intel CPUs.
2193 */
2194 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2195 wrmsrq(MSR_CSTAR, val);
2196 }
2197
idt_syscall_init(void)2198 static inline void idt_syscall_init(void)
2199 {
2200 wrmsrq(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2201
2202 if (ia32_enabled()) {
2203 wrmsrq_cstar((unsigned long)entry_SYSCALL_compat);
2204 /*
2205 * This only works on Intel CPUs.
2206 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2207 * This does not cause SYSENTER to jump to the wrong location, because
2208 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2209 */
2210 wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2211 wrmsrq_safe(MSR_IA32_SYSENTER_ESP,
2212 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2213 wrmsrq_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2214 } else {
2215 wrmsrq_cstar((unsigned long)entry_SYSCALL32_ignore);
2216 wrmsrq_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2217 wrmsrq_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2218 wrmsrq_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2219 }
2220
2221 /*
2222 * Flags to clear on syscall; clear as much as possible
2223 * to minimize user space-kernel interference.
2224 */
2225 wrmsrq(MSR_SYSCALL_MASK,
2226 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2227 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2228 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2229 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2230 X86_EFLAGS_AC|X86_EFLAGS_ID);
2231 }
2232
2233 /* May not be marked __init: used by software suspend */
syscall_init(void)2234 void syscall_init(void)
2235 {
2236 /* The default user and kernel segments */
2237 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2238
2239 /*
2240 * Except the IA32_STAR MSR, there is NO need to setup SYSCALL and
2241 * SYSENTER MSRs for FRED, because FRED uses the ring 3 FRED
2242 * entrypoint for SYSCALL and SYSENTER, and ERETU is the only legit
2243 * instruction to return to ring 3 (both sysexit and sysret cause
2244 * #UD when FRED is enabled).
2245 */
2246 if (!cpu_feature_enabled(X86_FEATURE_FRED))
2247 idt_syscall_init();
2248 }
2249 #endif /* CONFIG_X86_64 */
2250
2251 #ifdef CONFIG_STACKPROTECTOR
2252 DEFINE_PER_CPU_CACHE_HOT(unsigned long, __stack_chk_guard);
2253 #ifndef CONFIG_SMP
2254 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2255 #endif
2256 #endif
2257
initialize_debug_regs(void)2258 static void initialize_debug_regs(void)
2259 {
2260 /* Control register first -- to make sure everything is disabled. */
2261 set_debugreg(DR7_FIXED_1, 7);
2262 set_debugreg(DR6_RESERVED, 6);
2263 /* dr5 and dr4 don't exist */
2264 set_debugreg(0, 3);
2265 set_debugreg(0, 2);
2266 set_debugreg(0, 1);
2267 set_debugreg(0, 0);
2268 }
2269
2270 #ifdef CONFIG_KGDB
2271 /*
2272 * Restore debug regs if using kgdbwait and you have a kernel debugger
2273 * connection established.
2274 */
dbg_restore_debug_regs(void)2275 static void dbg_restore_debug_regs(void)
2276 {
2277 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2278 arch_kgdb_ops.correct_hw_break();
2279 }
2280 #else /* ! CONFIG_KGDB */
2281 #define dbg_restore_debug_regs()
2282 #endif /* ! CONFIG_KGDB */
2283
setup_getcpu(int cpu)2284 static inline void setup_getcpu(int cpu)
2285 {
2286 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2287 struct desc_struct d = { };
2288
2289 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2290 wrmsrq(MSR_TSC_AUX, cpudata);
2291
2292 /* Store CPU and node number in limit. */
2293 d.limit0 = cpudata;
2294 d.limit1 = cpudata >> 16;
2295
2296 d.type = 5; /* RO data, expand down, accessed */
2297 d.dpl = 3; /* Visible to user code */
2298 d.s = 1; /* Not a system segment */
2299 d.p = 1; /* Present */
2300 d.d = 1; /* 32-bit */
2301
2302 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2303 }
2304
2305 #ifdef CONFIG_X86_64
tss_setup_ist(struct tss_struct * tss)2306 static inline void tss_setup_ist(struct tss_struct *tss)
2307 {
2308 /* Set up the per-CPU TSS IST stacks */
2309 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2310 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2311 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2312 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2313 /* Only mapped when SEV-ES is active */
2314 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2315 }
2316 #else /* CONFIG_X86_64 */
tss_setup_ist(struct tss_struct * tss)2317 static inline void tss_setup_ist(struct tss_struct *tss) { }
2318 #endif /* !CONFIG_X86_64 */
2319
tss_setup_io_bitmap(struct tss_struct * tss)2320 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2321 {
2322 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2323
2324 #ifdef CONFIG_X86_IOPL_IOPERM
2325 tss->io_bitmap.prev_max = 0;
2326 tss->io_bitmap.prev_sequence = 0;
2327 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2328 /*
2329 * Invalidate the extra array entry past the end of the all
2330 * permission bitmap as required by the hardware.
2331 */
2332 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2333 #endif
2334 }
2335
2336 /*
2337 * Setup everything needed to handle exceptions from the IDT, including the IST
2338 * exceptions which use paranoid_entry().
2339 */
cpu_init_exception_handling(bool boot_cpu)2340 void cpu_init_exception_handling(bool boot_cpu)
2341 {
2342 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2343 int cpu = raw_smp_processor_id();
2344
2345 /* paranoid_entry() gets the CPU number from the GDT */
2346 setup_getcpu(cpu);
2347
2348 /* For IDT mode, IST vectors need to be set in TSS. */
2349 if (!cpu_feature_enabled(X86_FEATURE_FRED))
2350 tss_setup_ist(tss);
2351 tss_setup_io_bitmap(tss);
2352 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2353
2354 load_TR_desc();
2355
2356 /* GHCB needs to be setup to handle #VC. */
2357 setup_ghcb();
2358
2359 if (cpu_feature_enabled(X86_FEATURE_FRED)) {
2360 /* The boot CPU has enabled FRED during early boot */
2361 if (!boot_cpu)
2362 cpu_init_fred_exceptions();
2363
2364 cpu_init_fred_rsps();
2365 } else {
2366 load_current_idt();
2367 }
2368 }
2369
cpu_init_replace_early_idt(void)2370 void __init cpu_init_replace_early_idt(void)
2371 {
2372 if (cpu_feature_enabled(X86_FEATURE_FRED))
2373 cpu_init_fred_exceptions();
2374 else
2375 idt_setup_early_pf();
2376 }
2377
2378 /*
2379 * cpu_init() initializes state that is per-CPU. Some data is already
2380 * initialized (naturally) in the bootstrap process, such as the GDT. We
2381 * reload it nevertheless, this function acts as a 'CPU state barrier',
2382 * nothing should get across.
2383 */
cpu_init(void)2384 void cpu_init(void)
2385 {
2386 struct task_struct *cur = current;
2387 int cpu = raw_smp_processor_id();
2388
2389 #ifdef CONFIG_NUMA
2390 if (this_cpu_read(numa_node) == 0 &&
2391 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2392 set_numa_node(early_cpu_to_node(cpu));
2393 #endif
2394 pr_debug("Initializing CPU#%d\n", cpu);
2395
2396 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2397 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2398 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2399
2400 if (IS_ENABLED(CONFIG_X86_64)) {
2401 loadsegment(fs, 0);
2402 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2403 syscall_init();
2404
2405 wrmsrq(MSR_FS_BASE, 0);
2406 wrmsrq(MSR_KERNEL_GS_BASE, 0);
2407 barrier();
2408
2409 x2apic_setup();
2410
2411 intel_posted_msi_init();
2412 }
2413
2414 mmgrab(&init_mm);
2415 cur->active_mm = &init_mm;
2416 BUG_ON(cur->mm);
2417 initialize_tlbstate_and_flush();
2418 enter_lazy_tlb(&init_mm, cur);
2419
2420 /*
2421 * sp0 points to the entry trampoline stack regardless of what task
2422 * is running.
2423 */
2424 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2425
2426 load_mm_ldt(&init_mm);
2427
2428 initialize_debug_regs();
2429 dbg_restore_debug_regs();
2430
2431 doublefault_init_cpu_tss();
2432
2433 if (is_uv_system())
2434 uv_cpu_init();
2435
2436 load_fixmap_gdt(cpu);
2437 }
2438
2439 #ifdef CONFIG_MICROCODE_LATE_LOADING
2440 /**
2441 * store_cpu_caps() - Store a snapshot of CPU capabilities
2442 * @curr_info: Pointer where to store it
2443 *
2444 * Returns: None
2445 */
store_cpu_caps(struct cpuinfo_x86 * curr_info)2446 void store_cpu_caps(struct cpuinfo_x86 *curr_info)
2447 {
2448 /* Reload CPUID max function as it might've changed. */
2449 curr_info->cpuid_level = cpuid_eax(0);
2450
2451 /* Copy all capability leafs and pick up the synthetic ones. */
2452 memcpy(&curr_info->x86_capability, &boot_cpu_data.x86_capability,
2453 sizeof(curr_info->x86_capability));
2454
2455 /* Get the hardware CPUID leafs */
2456 get_cpu_cap(curr_info);
2457 }
2458
2459 /**
2460 * microcode_check() - Check if any CPU capabilities changed after an update.
2461 * @prev_info: CPU capabilities stored before an update.
2462 *
2463 * The microcode loader calls this upon late microcode load to recheck features,
2464 * only when microcode has been updated. Caller holds and CPU hotplug lock.
2465 *
2466 * Return: None
2467 */
microcode_check(struct cpuinfo_x86 * prev_info)2468 void microcode_check(struct cpuinfo_x86 *prev_info)
2469 {
2470 struct cpuinfo_x86 curr_info;
2471
2472 perf_check_microcode();
2473
2474 amd_check_microcode();
2475
2476 store_cpu_caps(&curr_info);
2477
2478 if (!memcmp(&prev_info->x86_capability, &curr_info.x86_capability,
2479 sizeof(prev_info->x86_capability)))
2480 return;
2481
2482 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2483 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2484 }
2485 #endif
2486
2487 /*
2488 * Invoked from core CPU hotplug code after hotplug operations
2489 */
arch_smt_update(void)2490 void arch_smt_update(void)
2491 {
2492 /* Handle the speculative execution misfeatures */
2493 cpu_bugs_smt_update();
2494 /* Check whether IPI broadcasting can be enabled */
2495 apic_smt_update();
2496 }
2497
arch_cpu_finalize_init(void)2498 void __init arch_cpu_finalize_init(void)
2499 {
2500 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
2501
2502 identify_boot_cpu();
2503
2504 select_idle_routine();
2505
2506 /*
2507 * identify_boot_cpu() initialized SMT support information, let the
2508 * core code know.
2509 */
2510 cpu_smt_set_num_threads(__max_threads_per_core, __max_threads_per_core);
2511
2512 if (!IS_ENABLED(CONFIG_SMP)) {
2513 pr_info("CPU: ");
2514 print_cpu_info(&boot_cpu_data);
2515 }
2516
2517 cpu_select_mitigations();
2518
2519 arch_smt_update();
2520
2521 if (IS_ENABLED(CONFIG_X86_32)) {
2522 /*
2523 * Check whether this is a real i386 which is not longer
2524 * supported and fixup the utsname.
2525 */
2526 if (boot_cpu_data.x86 < 4)
2527 panic("Kernel requires i486+ for 'invlpg' and other features");
2528
2529 init_utsname()->machine[1] =
2530 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
2531 }
2532
2533 /*
2534 * Must be before alternatives because it might set or clear
2535 * feature bits.
2536 */
2537 fpu__init_system();
2538 fpu__init_cpu();
2539
2540 /*
2541 * Ensure that access to the per CPU representation has the initial
2542 * boot CPU configuration.
2543 */
2544 *c = boot_cpu_data;
2545 c->initialized = true;
2546
2547 alternative_instructions();
2548
2549 if (IS_ENABLED(CONFIG_X86_64)) {
2550 unsigned long USER_PTR_MAX = TASK_SIZE_MAX;
2551
2552 /*
2553 * Enable this when LAM is gated on LASS support
2554 if (cpu_feature_enabled(X86_FEATURE_LAM))
2555 USER_PTR_MAX = (1ul << 63) - PAGE_SIZE;
2556 */
2557 runtime_const_init(ptr, USER_PTR_MAX);
2558
2559 /*
2560 * Make sure the first 2MB area is not mapped by huge pages
2561 * There are typically fixed size MTRRs in there and overlapping
2562 * MTRRs into large pages causes slow downs.
2563 *
2564 * Right now we don't do that with gbpages because there seems
2565 * very little benefit for that case.
2566 */
2567 if (!direct_gbpages)
2568 set_memory_4k((unsigned long)__va(0), 1);
2569 } else {
2570 fpu__init_check_bugs();
2571 }
2572
2573 /*
2574 * This needs to be called before any devices perform DMA
2575 * operations that might use the SWIOTLB bounce buffers. It will
2576 * mark the bounce buffers as decrypted so that their usage will
2577 * not cause "plain-text" data to be decrypted when accessed. It
2578 * must be called after late_time_init() so that Hyper-V x86/x64
2579 * hypercalls work when the SWIOTLB bounce buffers are decrypted.
2580 */
2581 mem_encrypt_init();
2582 }
2583