xref: /linux/mm/hugetlb.c (revision 1110ce6a1e34fe1fdc1bfe4ad52405f327d5083b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39 
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43 
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 #include <linux/page-isolation.h>
52 
53 int hugetlb_max_hstate __read_mostly;
54 unsigned int default_hstate_idx;
55 struct hstate hstates[HUGE_MAX_HSTATE];
56 
57 #ifdef CONFIG_CMA
58 static struct cma *hugetlb_cma[MAX_NUMNODES];
59 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
60 #endif
61 static unsigned long hugetlb_cma_size __initdata;
62 
63 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
64 
65 /* for command line parsing */
66 static struct hstate * __initdata parsed_hstate;
67 static unsigned long __initdata default_hstate_max_huge_pages;
68 static bool __initdata parsed_valid_hugepagesz = true;
69 static bool __initdata parsed_default_hugepagesz;
70 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
71 
72 /*
73  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
74  * free_huge_pages, and surplus_huge_pages.
75  */
76 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
77 
78 /*
79  * Serializes faults on the same logical page.  This is used to
80  * prevent spurious OOMs when the hugepage pool is fully utilized.
81  */
82 static int num_fault_mutexes __ro_after_init;
83 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
84 
85 /* Forward declaration */
86 static int hugetlb_acct_memory(struct hstate *h, long delta);
87 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
88 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
89 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
90 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
91 		unsigned long start, unsigned long end);
92 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
93 
hugetlb_free_folio(struct folio * folio)94 static void hugetlb_free_folio(struct folio *folio)
95 {
96 #ifdef CONFIG_CMA
97 	int nid = folio_nid(folio);
98 
99 	if (cma_free_folio(hugetlb_cma[nid], folio))
100 		return;
101 #endif
102 	folio_put(folio);
103 }
104 
subpool_is_free(struct hugepage_subpool * spool)105 static inline bool subpool_is_free(struct hugepage_subpool *spool)
106 {
107 	if (spool->count)
108 		return false;
109 	if (spool->max_hpages != -1)
110 		return spool->used_hpages == 0;
111 	if (spool->min_hpages != -1)
112 		return spool->rsv_hpages == spool->min_hpages;
113 
114 	return true;
115 }
116 
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)117 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
118 						unsigned long irq_flags)
119 {
120 	spin_unlock_irqrestore(&spool->lock, irq_flags);
121 
122 	/* If no pages are used, and no other handles to the subpool
123 	 * remain, give up any reservations based on minimum size and
124 	 * free the subpool */
125 	if (subpool_is_free(spool)) {
126 		if (spool->min_hpages != -1)
127 			hugetlb_acct_memory(spool->hstate,
128 						-spool->min_hpages);
129 		kfree(spool);
130 	}
131 }
132 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)133 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
134 						long min_hpages)
135 {
136 	struct hugepage_subpool *spool;
137 
138 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
139 	if (!spool)
140 		return NULL;
141 
142 	spin_lock_init(&spool->lock);
143 	spool->count = 1;
144 	spool->max_hpages = max_hpages;
145 	spool->hstate = h;
146 	spool->min_hpages = min_hpages;
147 
148 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
149 		kfree(spool);
150 		return NULL;
151 	}
152 	spool->rsv_hpages = min_hpages;
153 
154 	return spool;
155 }
156 
hugepage_put_subpool(struct hugepage_subpool * spool)157 void hugepage_put_subpool(struct hugepage_subpool *spool)
158 {
159 	unsigned long flags;
160 
161 	spin_lock_irqsave(&spool->lock, flags);
162 	BUG_ON(!spool->count);
163 	spool->count--;
164 	unlock_or_release_subpool(spool, flags);
165 }
166 
167 /*
168  * Subpool accounting for allocating and reserving pages.
169  * Return -ENOMEM if there are not enough resources to satisfy the
170  * request.  Otherwise, return the number of pages by which the
171  * global pools must be adjusted (upward).  The returned value may
172  * only be different than the passed value (delta) in the case where
173  * a subpool minimum size must be maintained.
174  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)175 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
176 				      long delta)
177 {
178 	long ret = delta;
179 
180 	if (!spool)
181 		return ret;
182 
183 	spin_lock_irq(&spool->lock);
184 
185 	if (spool->max_hpages != -1) {		/* maximum size accounting */
186 		if ((spool->used_hpages + delta) <= spool->max_hpages)
187 			spool->used_hpages += delta;
188 		else {
189 			ret = -ENOMEM;
190 			goto unlock_ret;
191 		}
192 	}
193 
194 	/* minimum size accounting */
195 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
196 		if (delta > spool->rsv_hpages) {
197 			/*
198 			 * Asking for more reserves than those already taken on
199 			 * behalf of subpool.  Return difference.
200 			 */
201 			ret = delta - spool->rsv_hpages;
202 			spool->rsv_hpages = 0;
203 		} else {
204 			ret = 0;	/* reserves already accounted for */
205 			spool->rsv_hpages -= delta;
206 		}
207 	}
208 
209 unlock_ret:
210 	spin_unlock_irq(&spool->lock);
211 	return ret;
212 }
213 
214 /*
215  * Subpool accounting for freeing and unreserving pages.
216  * Return the number of global page reservations that must be dropped.
217  * The return value may only be different than the passed value (delta)
218  * in the case where a subpool minimum size must be maintained.
219  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)220 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
221 				       long delta)
222 {
223 	long ret = delta;
224 	unsigned long flags;
225 
226 	if (!spool)
227 		return delta;
228 
229 	spin_lock_irqsave(&spool->lock, flags);
230 
231 	if (spool->max_hpages != -1)		/* maximum size accounting */
232 		spool->used_hpages -= delta;
233 
234 	 /* minimum size accounting */
235 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
236 		if (spool->rsv_hpages + delta <= spool->min_hpages)
237 			ret = 0;
238 		else
239 			ret = spool->rsv_hpages + delta - spool->min_hpages;
240 
241 		spool->rsv_hpages += delta;
242 		if (spool->rsv_hpages > spool->min_hpages)
243 			spool->rsv_hpages = spool->min_hpages;
244 	}
245 
246 	/*
247 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
248 	 * quota reference, free it now.
249 	 */
250 	unlock_or_release_subpool(spool, flags);
251 
252 	return ret;
253 }
254 
subpool_inode(struct inode * inode)255 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
256 {
257 	return HUGETLBFS_SB(inode->i_sb)->spool;
258 }
259 
subpool_vma(struct vm_area_struct * vma)260 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
261 {
262 	return subpool_inode(file_inode(vma->vm_file));
263 }
264 
265 /*
266  * hugetlb vma_lock helper routines
267  */
hugetlb_vma_lock_read(struct vm_area_struct * vma)268 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
269 {
270 	if (__vma_shareable_lock(vma)) {
271 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
272 
273 		down_read(&vma_lock->rw_sema);
274 	} else if (__vma_private_lock(vma)) {
275 		struct resv_map *resv_map = vma_resv_map(vma);
276 
277 		down_read(&resv_map->rw_sema);
278 	}
279 }
280 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)281 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
282 {
283 	if (__vma_shareable_lock(vma)) {
284 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285 
286 		up_read(&vma_lock->rw_sema);
287 	} else if (__vma_private_lock(vma)) {
288 		struct resv_map *resv_map = vma_resv_map(vma);
289 
290 		up_read(&resv_map->rw_sema);
291 	}
292 }
293 
hugetlb_vma_lock_write(struct vm_area_struct * vma)294 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
295 {
296 	if (__vma_shareable_lock(vma)) {
297 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
298 
299 		down_write(&vma_lock->rw_sema);
300 	} else if (__vma_private_lock(vma)) {
301 		struct resv_map *resv_map = vma_resv_map(vma);
302 
303 		down_write(&resv_map->rw_sema);
304 	}
305 }
306 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)307 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
308 {
309 	if (__vma_shareable_lock(vma)) {
310 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
311 
312 		up_write(&vma_lock->rw_sema);
313 	} else if (__vma_private_lock(vma)) {
314 		struct resv_map *resv_map = vma_resv_map(vma);
315 
316 		up_write(&resv_map->rw_sema);
317 	}
318 }
319 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)320 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
321 {
322 
323 	if (__vma_shareable_lock(vma)) {
324 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
325 
326 		return down_write_trylock(&vma_lock->rw_sema);
327 	} else if (__vma_private_lock(vma)) {
328 		struct resv_map *resv_map = vma_resv_map(vma);
329 
330 		return down_write_trylock(&resv_map->rw_sema);
331 	}
332 
333 	return 1;
334 }
335 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)336 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
337 {
338 	if (__vma_shareable_lock(vma)) {
339 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
340 
341 		lockdep_assert_held(&vma_lock->rw_sema);
342 	} else if (__vma_private_lock(vma)) {
343 		struct resv_map *resv_map = vma_resv_map(vma);
344 
345 		lockdep_assert_held(&resv_map->rw_sema);
346 	}
347 }
348 
hugetlb_vma_lock_release(struct kref * kref)349 void hugetlb_vma_lock_release(struct kref *kref)
350 {
351 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
352 			struct hugetlb_vma_lock, refs);
353 
354 	kfree(vma_lock);
355 }
356 
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)357 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
358 {
359 	struct vm_area_struct *vma = vma_lock->vma;
360 
361 	/*
362 	 * vma_lock structure may or not be released as a result of put,
363 	 * it certainly will no longer be attached to vma so clear pointer.
364 	 * Semaphore synchronizes access to vma_lock->vma field.
365 	 */
366 	vma_lock->vma = NULL;
367 	vma->vm_private_data = NULL;
368 	up_write(&vma_lock->rw_sema);
369 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
370 }
371 
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)372 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
373 {
374 	if (__vma_shareable_lock(vma)) {
375 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
376 
377 		__hugetlb_vma_unlock_write_put(vma_lock);
378 	} else if (__vma_private_lock(vma)) {
379 		struct resv_map *resv_map = vma_resv_map(vma);
380 
381 		/* no free for anon vmas, but still need to unlock */
382 		up_write(&resv_map->rw_sema);
383 	}
384 }
385 
hugetlb_vma_lock_free(struct vm_area_struct * vma)386 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
387 {
388 	/*
389 	 * Only present in sharable vmas.
390 	 */
391 	if (!vma || !__vma_shareable_lock(vma))
392 		return;
393 
394 	if (vma->vm_private_data) {
395 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
396 
397 		down_write(&vma_lock->rw_sema);
398 		__hugetlb_vma_unlock_write_put(vma_lock);
399 	}
400 }
401 
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)402 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
403 {
404 	struct hugetlb_vma_lock *vma_lock;
405 
406 	/* Only establish in (flags) sharable vmas */
407 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
408 		return;
409 
410 	/* Should never get here with non-NULL vm_private_data */
411 	if (vma->vm_private_data)
412 		return;
413 
414 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
415 	if (!vma_lock) {
416 		/*
417 		 * If we can not allocate structure, then vma can not
418 		 * participate in pmd sharing.  This is only a possible
419 		 * performance enhancement and memory saving issue.
420 		 * However, the lock is also used to synchronize page
421 		 * faults with truncation.  If the lock is not present,
422 		 * unlikely races could leave pages in a file past i_size
423 		 * until the file is removed.  Warn in the unlikely case of
424 		 * allocation failure.
425 		 */
426 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
427 		return;
428 	}
429 
430 	kref_init(&vma_lock->refs);
431 	init_rwsem(&vma_lock->rw_sema);
432 	vma_lock->vma = vma;
433 	vma->vm_private_data = vma_lock;
434 }
435 
436 /* Helper that removes a struct file_region from the resv_map cache and returns
437  * it for use.
438  */
439 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)440 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
441 {
442 	struct file_region *nrg;
443 
444 	VM_BUG_ON(resv->region_cache_count <= 0);
445 
446 	resv->region_cache_count--;
447 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
448 	list_del(&nrg->link);
449 
450 	nrg->from = from;
451 	nrg->to = to;
452 
453 	return nrg;
454 }
455 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)456 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
457 					      struct file_region *rg)
458 {
459 #ifdef CONFIG_CGROUP_HUGETLB
460 	nrg->reservation_counter = rg->reservation_counter;
461 	nrg->css = rg->css;
462 	if (rg->css)
463 		css_get(rg->css);
464 #endif
465 }
466 
467 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)468 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
469 						struct hstate *h,
470 						struct resv_map *resv,
471 						struct file_region *nrg)
472 {
473 #ifdef CONFIG_CGROUP_HUGETLB
474 	if (h_cg) {
475 		nrg->reservation_counter =
476 			&h_cg->rsvd_hugepage[hstate_index(h)];
477 		nrg->css = &h_cg->css;
478 		/*
479 		 * The caller will hold exactly one h_cg->css reference for the
480 		 * whole contiguous reservation region. But this area might be
481 		 * scattered when there are already some file_regions reside in
482 		 * it. As a result, many file_regions may share only one css
483 		 * reference. In order to ensure that one file_region must hold
484 		 * exactly one h_cg->css reference, we should do css_get for
485 		 * each file_region and leave the reference held by caller
486 		 * untouched.
487 		 */
488 		css_get(&h_cg->css);
489 		if (!resv->pages_per_hpage)
490 			resv->pages_per_hpage = pages_per_huge_page(h);
491 		/* pages_per_hpage should be the same for all entries in
492 		 * a resv_map.
493 		 */
494 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
495 	} else {
496 		nrg->reservation_counter = NULL;
497 		nrg->css = NULL;
498 	}
499 #endif
500 }
501 
put_uncharge_info(struct file_region * rg)502 static void put_uncharge_info(struct file_region *rg)
503 {
504 #ifdef CONFIG_CGROUP_HUGETLB
505 	if (rg->css)
506 		css_put(rg->css);
507 #endif
508 }
509 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)510 static bool has_same_uncharge_info(struct file_region *rg,
511 				   struct file_region *org)
512 {
513 #ifdef CONFIG_CGROUP_HUGETLB
514 	return rg->reservation_counter == org->reservation_counter &&
515 	       rg->css == org->css;
516 
517 #else
518 	return true;
519 #endif
520 }
521 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)522 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
523 {
524 	struct file_region *nrg, *prg;
525 
526 	prg = list_prev_entry(rg, link);
527 	if (&prg->link != &resv->regions && prg->to == rg->from &&
528 	    has_same_uncharge_info(prg, rg)) {
529 		prg->to = rg->to;
530 
531 		list_del(&rg->link);
532 		put_uncharge_info(rg);
533 		kfree(rg);
534 
535 		rg = prg;
536 	}
537 
538 	nrg = list_next_entry(rg, link);
539 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
540 	    has_same_uncharge_info(nrg, rg)) {
541 		nrg->from = rg->from;
542 
543 		list_del(&rg->link);
544 		put_uncharge_info(rg);
545 		kfree(rg);
546 	}
547 }
548 
549 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)550 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
551 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
552 		     long *regions_needed)
553 {
554 	struct file_region *nrg;
555 
556 	if (!regions_needed) {
557 		nrg = get_file_region_entry_from_cache(map, from, to);
558 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
559 		list_add(&nrg->link, rg);
560 		coalesce_file_region(map, nrg);
561 	} else
562 		*regions_needed += 1;
563 
564 	return to - from;
565 }
566 
567 /*
568  * Must be called with resv->lock held.
569  *
570  * Calling this with regions_needed != NULL will count the number of pages
571  * to be added but will not modify the linked list. And regions_needed will
572  * indicate the number of file_regions needed in the cache to carry out to add
573  * the regions for this range.
574  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)575 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
576 				     struct hugetlb_cgroup *h_cg,
577 				     struct hstate *h, long *regions_needed)
578 {
579 	long add = 0;
580 	struct list_head *head = &resv->regions;
581 	long last_accounted_offset = f;
582 	struct file_region *iter, *trg = NULL;
583 	struct list_head *rg = NULL;
584 
585 	if (regions_needed)
586 		*regions_needed = 0;
587 
588 	/* In this loop, we essentially handle an entry for the range
589 	 * [last_accounted_offset, iter->from), at every iteration, with some
590 	 * bounds checking.
591 	 */
592 	list_for_each_entry_safe(iter, trg, head, link) {
593 		/* Skip irrelevant regions that start before our range. */
594 		if (iter->from < f) {
595 			/* If this region ends after the last accounted offset,
596 			 * then we need to update last_accounted_offset.
597 			 */
598 			if (iter->to > last_accounted_offset)
599 				last_accounted_offset = iter->to;
600 			continue;
601 		}
602 
603 		/* When we find a region that starts beyond our range, we've
604 		 * finished.
605 		 */
606 		if (iter->from >= t) {
607 			rg = iter->link.prev;
608 			break;
609 		}
610 
611 		/* Add an entry for last_accounted_offset -> iter->from, and
612 		 * update last_accounted_offset.
613 		 */
614 		if (iter->from > last_accounted_offset)
615 			add += hugetlb_resv_map_add(resv, iter->link.prev,
616 						    last_accounted_offset,
617 						    iter->from, h, h_cg,
618 						    regions_needed);
619 
620 		last_accounted_offset = iter->to;
621 	}
622 
623 	/* Handle the case where our range extends beyond
624 	 * last_accounted_offset.
625 	 */
626 	if (!rg)
627 		rg = head->prev;
628 	if (last_accounted_offset < t)
629 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
630 					    t, h, h_cg, regions_needed);
631 
632 	return add;
633 }
634 
635 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
636  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)637 static int allocate_file_region_entries(struct resv_map *resv,
638 					int regions_needed)
639 	__must_hold(&resv->lock)
640 {
641 	LIST_HEAD(allocated_regions);
642 	int to_allocate = 0, i = 0;
643 	struct file_region *trg = NULL, *rg = NULL;
644 
645 	VM_BUG_ON(regions_needed < 0);
646 
647 	/*
648 	 * Check for sufficient descriptors in the cache to accommodate
649 	 * the number of in progress add operations plus regions_needed.
650 	 *
651 	 * This is a while loop because when we drop the lock, some other call
652 	 * to region_add or region_del may have consumed some region_entries,
653 	 * so we keep looping here until we finally have enough entries for
654 	 * (adds_in_progress + regions_needed).
655 	 */
656 	while (resv->region_cache_count <
657 	       (resv->adds_in_progress + regions_needed)) {
658 		to_allocate = resv->adds_in_progress + regions_needed -
659 			      resv->region_cache_count;
660 
661 		/* At this point, we should have enough entries in the cache
662 		 * for all the existing adds_in_progress. We should only be
663 		 * needing to allocate for regions_needed.
664 		 */
665 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
666 
667 		spin_unlock(&resv->lock);
668 		for (i = 0; i < to_allocate; i++) {
669 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
670 			if (!trg)
671 				goto out_of_memory;
672 			list_add(&trg->link, &allocated_regions);
673 		}
674 
675 		spin_lock(&resv->lock);
676 
677 		list_splice(&allocated_regions, &resv->region_cache);
678 		resv->region_cache_count += to_allocate;
679 	}
680 
681 	return 0;
682 
683 out_of_memory:
684 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
685 		list_del(&rg->link);
686 		kfree(rg);
687 	}
688 	return -ENOMEM;
689 }
690 
691 /*
692  * Add the huge page range represented by [f, t) to the reserve
693  * map.  Regions will be taken from the cache to fill in this range.
694  * Sufficient regions should exist in the cache due to the previous
695  * call to region_chg with the same range, but in some cases the cache will not
696  * have sufficient entries due to races with other code doing region_add or
697  * region_del.  The extra needed entries will be allocated.
698  *
699  * regions_needed is the out value provided by a previous call to region_chg.
700  *
701  * Return the number of new huge pages added to the map.  This number is greater
702  * than or equal to zero.  If file_region entries needed to be allocated for
703  * this operation and we were not able to allocate, it returns -ENOMEM.
704  * region_add of regions of length 1 never allocate file_regions and cannot
705  * fail; region_chg will always allocate at least 1 entry and a region_add for
706  * 1 page will only require at most 1 entry.
707  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)708 static long region_add(struct resv_map *resv, long f, long t,
709 		       long in_regions_needed, struct hstate *h,
710 		       struct hugetlb_cgroup *h_cg)
711 {
712 	long add = 0, actual_regions_needed = 0;
713 
714 	spin_lock(&resv->lock);
715 retry:
716 
717 	/* Count how many regions are actually needed to execute this add. */
718 	add_reservation_in_range(resv, f, t, NULL, NULL,
719 				 &actual_regions_needed);
720 
721 	/*
722 	 * Check for sufficient descriptors in the cache to accommodate
723 	 * this add operation. Note that actual_regions_needed may be greater
724 	 * than in_regions_needed, as the resv_map may have been modified since
725 	 * the region_chg call. In this case, we need to make sure that we
726 	 * allocate extra entries, such that we have enough for all the
727 	 * existing adds_in_progress, plus the excess needed for this
728 	 * operation.
729 	 */
730 	if (actual_regions_needed > in_regions_needed &&
731 	    resv->region_cache_count <
732 		    resv->adds_in_progress +
733 			    (actual_regions_needed - in_regions_needed)) {
734 		/* region_add operation of range 1 should never need to
735 		 * allocate file_region entries.
736 		 */
737 		VM_BUG_ON(t - f <= 1);
738 
739 		if (allocate_file_region_entries(
740 			    resv, actual_regions_needed - in_regions_needed)) {
741 			return -ENOMEM;
742 		}
743 
744 		goto retry;
745 	}
746 
747 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
748 
749 	resv->adds_in_progress -= in_regions_needed;
750 
751 	spin_unlock(&resv->lock);
752 	return add;
753 }
754 
755 /*
756  * Examine the existing reserve map and determine how many
757  * huge pages in the specified range [f, t) are NOT currently
758  * represented.  This routine is called before a subsequent
759  * call to region_add that will actually modify the reserve
760  * map to add the specified range [f, t).  region_chg does
761  * not change the number of huge pages represented by the
762  * map.  A number of new file_region structures is added to the cache as a
763  * placeholder, for the subsequent region_add call to use. At least 1
764  * file_region structure is added.
765  *
766  * out_regions_needed is the number of regions added to the
767  * resv->adds_in_progress.  This value needs to be provided to a follow up call
768  * to region_add or region_abort for proper accounting.
769  *
770  * Returns the number of huge pages that need to be added to the existing
771  * reservation map for the range [f, t).  This number is greater or equal to
772  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
773  * is needed and can not be allocated.
774  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)775 static long region_chg(struct resv_map *resv, long f, long t,
776 		       long *out_regions_needed)
777 {
778 	long chg = 0;
779 
780 	spin_lock(&resv->lock);
781 
782 	/* Count how many hugepages in this range are NOT represented. */
783 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
784 				       out_regions_needed);
785 
786 	if (*out_regions_needed == 0)
787 		*out_regions_needed = 1;
788 
789 	if (allocate_file_region_entries(resv, *out_regions_needed))
790 		return -ENOMEM;
791 
792 	resv->adds_in_progress += *out_regions_needed;
793 
794 	spin_unlock(&resv->lock);
795 	return chg;
796 }
797 
798 /*
799  * Abort the in progress add operation.  The adds_in_progress field
800  * of the resv_map keeps track of the operations in progress between
801  * calls to region_chg and region_add.  Operations are sometimes
802  * aborted after the call to region_chg.  In such cases, region_abort
803  * is called to decrement the adds_in_progress counter. regions_needed
804  * is the value returned by the region_chg call, it is used to decrement
805  * the adds_in_progress counter.
806  *
807  * NOTE: The range arguments [f, t) are not needed or used in this
808  * routine.  They are kept to make reading the calling code easier as
809  * arguments will match the associated region_chg call.
810  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)811 static void region_abort(struct resv_map *resv, long f, long t,
812 			 long regions_needed)
813 {
814 	spin_lock(&resv->lock);
815 	VM_BUG_ON(!resv->region_cache_count);
816 	resv->adds_in_progress -= regions_needed;
817 	spin_unlock(&resv->lock);
818 }
819 
820 /*
821  * Delete the specified range [f, t) from the reserve map.  If the
822  * t parameter is LONG_MAX, this indicates that ALL regions after f
823  * should be deleted.  Locate the regions which intersect [f, t)
824  * and either trim, delete or split the existing regions.
825  *
826  * Returns the number of huge pages deleted from the reserve map.
827  * In the normal case, the return value is zero or more.  In the
828  * case where a region must be split, a new region descriptor must
829  * be allocated.  If the allocation fails, -ENOMEM will be returned.
830  * NOTE: If the parameter t == LONG_MAX, then we will never split
831  * a region and possibly return -ENOMEM.  Callers specifying
832  * t == LONG_MAX do not need to check for -ENOMEM error.
833  */
region_del(struct resv_map * resv,long f,long t)834 static long region_del(struct resv_map *resv, long f, long t)
835 {
836 	struct list_head *head = &resv->regions;
837 	struct file_region *rg, *trg;
838 	struct file_region *nrg = NULL;
839 	long del = 0;
840 
841 retry:
842 	spin_lock(&resv->lock);
843 	list_for_each_entry_safe(rg, trg, head, link) {
844 		/*
845 		 * Skip regions before the range to be deleted.  file_region
846 		 * ranges are normally of the form [from, to).  However, there
847 		 * may be a "placeholder" entry in the map which is of the form
848 		 * (from, to) with from == to.  Check for placeholder entries
849 		 * at the beginning of the range to be deleted.
850 		 */
851 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
852 			continue;
853 
854 		if (rg->from >= t)
855 			break;
856 
857 		if (f > rg->from && t < rg->to) { /* Must split region */
858 			/*
859 			 * Check for an entry in the cache before dropping
860 			 * lock and attempting allocation.
861 			 */
862 			if (!nrg &&
863 			    resv->region_cache_count > resv->adds_in_progress) {
864 				nrg = list_first_entry(&resv->region_cache,
865 							struct file_region,
866 							link);
867 				list_del(&nrg->link);
868 				resv->region_cache_count--;
869 			}
870 
871 			if (!nrg) {
872 				spin_unlock(&resv->lock);
873 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
874 				if (!nrg)
875 					return -ENOMEM;
876 				goto retry;
877 			}
878 
879 			del += t - f;
880 			hugetlb_cgroup_uncharge_file_region(
881 				resv, rg, t - f, false);
882 
883 			/* New entry for end of split region */
884 			nrg->from = t;
885 			nrg->to = rg->to;
886 
887 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
888 
889 			INIT_LIST_HEAD(&nrg->link);
890 
891 			/* Original entry is trimmed */
892 			rg->to = f;
893 
894 			list_add(&nrg->link, &rg->link);
895 			nrg = NULL;
896 			break;
897 		}
898 
899 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
900 			del += rg->to - rg->from;
901 			hugetlb_cgroup_uncharge_file_region(resv, rg,
902 							    rg->to - rg->from, true);
903 			list_del(&rg->link);
904 			kfree(rg);
905 			continue;
906 		}
907 
908 		if (f <= rg->from) {	/* Trim beginning of region */
909 			hugetlb_cgroup_uncharge_file_region(resv, rg,
910 							    t - rg->from, false);
911 
912 			del += t - rg->from;
913 			rg->from = t;
914 		} else {		/* Trim end of region */
915 			hugetlb_cgroup_uncharge_file_region(resv, rg,
916 							    rg->to - f, false);
917 
918 			del += rg->to - f;
919 			rg->to = f;
920 		}
921 	}
922 
923 	spin_unlock(&resv->lock);
924 	kfree(nrg);
925 	return del;
926 }
927 
928 /*
929  * A rare out of memory error was encountered which prevented removal of
930  * the reserve map region for a page.  The huge page itself was free'ed
931  * and removed from the page cache.  This routine will adjust the subpool
932  * usage count, and the global reserve count if needed.  By incrementing
933  * these counts, the reserve map entry which could not be deleted will
934  * appear as a "reserved" entry instead of simply dangling with incorrect
935  * counts.
936  */
hugetlb_fix_reserve_counts(struct inode * inode)937 void hugetlb_fix_reserve_counts(struct inode *inode)
938 {
939 	struct hugepage_subpool *spool = subpool_inode(inode);
940 	long rsv_adjust;
941 	bool reserved = false;
942 
943 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
944 	if (rsv_adjust > 0) {
945 		struct hstate *h = hstate_inode(inode);
946 
947 		if (!hugetlb_acct_memory(h, 1))
948 			reserved = true;
949 	} else if (!rsv_adjust) {
950 		reserved = true;
951 	}
952 
953 	if (!reserved)
954 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
955 }
956 
957 /*
958  * Count and return the number of huge pages in the reserve map
959  * that intersect with the range [f, t).
960  */
region_count(struct resv_map * resv,long f,long t)961 static long region_count(struct resv_map *resv, long f, long t)
962 {
963 	struct list_head *head = &resv->regions;
964 	struct file_region *rg;
965 	long chg = 0;
966 
967 	spin_lock(&resv->lock);
968 	/* Locate each segment we overlap with, and count that overlap. */
969 	list_for_each_entry(rg, head, link) {
970 		long seg_from;
971 		long seg_to;
972 
973 		if (rg->to <= f)
974 			continue;
975 		if (rg->from >= t)
976 			break;
977 
978 		seg_from = max(rg->from, f);
979 		seg_to = min(rg->to, t);
980 
981 		chg += seg_to - seg_from;
982 	}
983 	spin_unlock(&resv->lock);
984 
985 	return chg;
986 }
987 
988 /*
989  * Convert the address within this vma to the page offset within
990  * the mapping, huge page units here.
991  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)992 static pgoff_t vma_hugecache_offset(struct hstate *h,
993 			struct vm_area_struct *vma, unsigned long address)
994 {
995 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
996 			(vma->vm_pgoff >> huge_page_order(h));
997 }
998 
999 /**
1000  * vma_kernel_pagesize - Page size granularity for this VMA.
1001  * @vma: The user mapping.
1002  *
1003  * Folios in this VMA will be aligned to, and at least the size of the
1004  * number of bytes returned by this function.
1005  *
1006  * Return: The default size of the folios allocated when backing a VMA.
1007  */
vma_kernel_pagesize(struct vm_area_struct * vma)1008 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1009 {
1010 	if (vma->vm_ops && vma->vm_ops->pagesize)
1011 		return vma->vm_ops->pagesize(vma);
1012 	return PAGE_SIZE;
1013 }
1014 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1015 
1016 /*
1017  * Return the page size being used by the MMU to back a VMA. In the majority
1018  * of cases, the page size used by the kernel matches the MMU size. On
1019  * architectures where it differs, an architecture-specific 'strong'
1020  * version of this symbol is required.
1021  */
vma_mmu_pagesize(struct vm_area_struct * vma)1022 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1023 {
1024 	return vma_kernel_pagesize(vma);
1025 }
1026 
1027 /*
1028  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1029  * bits of the reservation map pointer, which are always clear due to
1030  * alignment.
1031  */
1032 #define HPAGE_RESV_OWNER    (1UL << 0)
1033 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1034 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1035 
1036 /*
1037  * These helpers are used to track how many pages are reserved for
1038  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1039  * is guaranteed to have their future faults succeed.
1040  *
1041  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1042  * the reserve counters are updated with the hugetlb_lock held. It is safe
1043  * to reset the VMA at fork() time as it is not in use yet and there is no
1044  * chance of the global counters getting corrupted as a result of the values.
1045  *
1046  * The private mapping reservation is represented in a subtly different
1047  * manner to a shared mapping.  A shared mapping has a region map associated
1048  * with the underlying file, this region map represents the backing file
1049  * pages which have ever had a reservation assigned which this persists even
1050  * after the page is instantiated.  A private mapping has a region map
1051  * associated with the original mmap which is attached to all VMAs which
1052  * reference it, this region map represents those offsets which have consumed
1053  * reservation ie. where pages have been instantiated.
1054  */
get_vma_private_data(struct vm_area_struct * vma)1055 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1056 {
1057 	return (unsigned long)vma->vm_private_data;
1058 }
1059 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1060 static void set_vma_private_data(struct vm_area_struct *vma,
1061 							unsigned long value)
1062 {
1063 	vma->vm_private_data = (void *)value;
1064 }
1065 
1066 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1067 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1068 					  struct hugetlb_cgroup *h_cg,
1069 					  struct hstate *h)
1070 {
1071 #ifdef CONFIG_CGROUP_HUGETLB
1072 	if (!h_cg || !h) {
1073 		resv_map->reservation_counter = NULL;
1074 		resv_map->pages_per_hpage = 0;
1075 		resv_map->css = NULL;
1076 	} else {
1077 		resv_map->reservation_counter =
1078 			&h_cg->rsvd_hugepage[hstate_index(h)];
1079 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1080 		resv_map->css = &h_cg->css;
1081 	}
1082 #endif
1083 }
1084 
resv_map_alloc(void)1085 struct resv_map *resv_map_alloc(void)
1086 {
1087 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1088 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1089 
1090 	if (!resv_map || !rg) {
1091 		kfree(resv_map);
1092 		kfree(rg);
1093 		return NULL;
1094 	}
1095 
1096 	kref_init(&resv_map->refs);
1097 	spin_lock_init(&resv_map->lock);
1098 	INIT_LIST_HEAD(&resv_map->regions);
1099 	init_rwsem(&resv_map->rw_sema);
1100 
1101 	resv_map->adds_in_progress = 0;
1102 	/*
1103 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1104 	 * fields don't do cgroup accounting. On private mappings, these will be
1105 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1106 	 * reservations are to be un-charged from here.
1107 	 */
1108 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1109 
1110 	INIT_LIST_HEAD(&resv_map->region_cache);
1111 	list_add(&rg->link, &resv_map->region_cache);
1112 	resv_map->region_cache_count = 1;
1113 
1114 	return resv_map;
1115 }
1116 
resv_map_release(struct kref * ref)1117 void resv_map_release(struct kref *ref)
1118 {
1119 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1120 	struct list_head *head = &resv_map->region_cache;
1121 	struct file_region *rg, *trg;
1122 
1123 	/* Clear out any active regions before we release the map. */
1124 	region_del(resv_map, 0, LONG_MAX);
1125 
1126 	/* ... and any entries left in the cache */
1127 	list_for_each_entry_safe(rg, trg, head, link) {
1128 		list_del(&rg->link);
1129 		kfree(rg);
1130 	}
1131 
1132 	VM_BUG_ON(resv_map->adds_in_progress);
1133 
1134 	kfree(resv_map);
1135 }
1136 
inode_resv_map(struct inode * inode)1137 static inline struct resv_map *inode_resv_map(struct inode *inode)
1138 {
1139 	/*
1140 	 * At inode evict time, i_mapping may not point to the original
1141 	 * address space within the inode.  This original address space
1142 	 * contains the pointer to the resv_map.  So, always use the
1143 	 * address space embedded within the inode.
1144 	 * The VERY common case is inode->mapping == &inode->i_data but,
1145 	 * this may not be true for device special inodes.
1146 	 */
1147 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1148 }
1149 
vma_resv_map(struct vm_area_struct * vma)1150 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1151 {
1152 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1153 	if (vma->vm_flags & VM_MAYSHARE) {
1154 		struct address_space *mapping = vma->vm_file->f_mapping;
1155 		struct inode *inode = mapping->host;
1156 
1157 		return inode_resv_map(inode);
1158 
1159 	} else {
1160 		return (struct resv_map *)(get_vma_private_data(vma) &
1161 							~HPAGE_RESV_MASK);
1162 	}
1163 }
1164 
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1165 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1166 {
1167 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1168 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1169 
1170 	set_vma_private_data(vma, (unsigned long)map);
1171 }
1172 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1173 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1174 {
1175 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1176 	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1177 
1178 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1179 }
1180 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1181 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1182 {
1183 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1184 
1185 	return (get_vma_private_data(vma) & flag) != 0;
1186 }
1187 
__vma_private_lock(struct vm_area_struct * vma)1188 bool __vma_private_lock(struct vm_area_struct *vma)
1189 {
1190 	return !(vma->vm_flags & VM_MAYSHARE) &&
1191 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1192 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1193 }
1194 
hugetlb_dup_vma_private(struct vm_area_struct * vma)1195 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1196 {
1197 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1198 	/*
1199 	 * Clear vm_private_data
1200 	 * - For shared mappings this is a per-vma semaphore that may be
1201 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1202 	 *   Before clearing, make sure pointer is not associated with vma
1203 	 *   as this will leak the structure.  This is the case when called
1204 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1205 	 *   been called to allocate a new structure.
1206 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1207 	 *   not apply to children.  Faults generated by the children are
1208 	 *   not guaranteed to succeed, even if read-only.
1209 	 */
1210 	if (vma->vm_flags & VM_MAYSHARE) {
1211 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1212 
1213 		if (vma_lock && vma_lock->vma != vma)
1214 			vma->vm_private_data = NULL;
1215 	} else
1216 		vma->vm_private_data = NULL;
1217 }
1218 
1219 /*
1220  * Reset and decrement one ref on hugepage private reservation.
1221  * Called with mm->mmap_lock writer semaphore held.
1222  * This function should be only used by move_vma() and operate on
1223  * same sized vma. It should never come here with last ref on the
1224  * reservation.
1225  */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1226 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1227 {
1228 	/*
1229 	 * Clear the old hugetlb private page reservation.
1230 	 * It has already been transferred to new_vma.
1231 	 *
1232 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1233 	 * which copies vma into new_vma and unmaps vma. After the copy
1234 	 * operation both new_vma and vma share a reference to the resv_map
1235 	 * struct, and at that point vma is about to be unmapped. We don't
1236 	 * want to return the reservation to the pool at unmap of vma because
1237 	 * the reservation still lives on in new_vma, so simply decrement the
1238 	 * ref here and remove the resv_map reference from this vma.
1239 	 */
1240 	struct resv_map *reservations = vma_resv_map(vma);
1241 
1242 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1243 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1244 		kref_put(&reservations->refs, resv_map_release);
1245 	}
1246 
1247 	hugetlb_dup_vma_private(vma);
1248 }
1249 
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1250 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1251 {
1252 	int nid = folio_nid(folio);
1253 
1254 	lockdep_assert_held(&hugetlb_lock);
1255 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1256 
1257 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1258 	h->free_huge_pages++;
1259 	h->free_huge_pages_node[nid]++;
1260 	folio_set_hugetlb_freed(folio);
1261 }
1262 
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1263 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1264 								int nid)
1265 {
1266 	struct folio *folio;
1267 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1268 
1269 	lockdep_assert_held(&hugetlb_lock);
1270 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1271 		if (pin && !folio_is_longterm_pinnable(folio))
1272 			continue;
1273 
1274 		if (folio_test_hwpoison(folio))
1275 			continue;
1276 
1277 		if (is_migrate_isolate_page(&folio->page))
1278 			continue;
1279 
1280 		list_move(&folio->lru, &h->hugepage_activelist);
1281 		folio_ref_unfreeze(folio, 1);
1282 		folio_clear_hugetlb_freed(folio);
1283 		h->free_huge_pages--;
1284 		h->free_huge_pages_node[nid]--;
1285 		return folio;
1286 	}
1287 
1288 	return NULL;
1289 }
1290 
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1291 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1292 							int nid, nodemask_t *nmask)
1293 {
1294 	unsigned int cpuset_mems_cookie;
1295 	struct zonelist *zonelist;
1296 	struct zone *zone;
1297 	struct zoneref *z;
1298 	int node = NUMA_NO_NODE;
1299 
1300 	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1301 	if (nid == NUMA_NO_NODE)
1302 		nid = numa_node_id();
1303 
1304 	zonelist = node_zonelist(nid, gfp_mask);
1305 
1306 retry_cpuset:
1307 	cpuset_mems_cookie = read_mems_allowed_begin();
1308 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1309 		struct folio *folio;
1310 
1311 		if (!cpuset_zone_allowed(zone, gfp_mask))
1312 			continue;
1313 		/*
1314 		 * no need to ask again on the same node. Pool is node rather than
1315 		 * zone aware
1316 		 */
1317 		if (zone_to_nid(zone) == node)
1318 			continue;
1319 		node = zone_to_nid(zone);
1320 
1321 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1322 		if (folio)
1323 			return folio;
1324 	}
1325 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1326 		goto retry_cpuset;
1327 
1328 	return NULL;
1329 }
1330 
available_huge_pages(struct hstate * h)1331 static unsigned long available_huge_pages(struct hstate *h)
1332 {
1333 	return h->free_huge_pages - h->resv_huge_pages;
1334 }
1335 
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1336 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1337 				struct vm_area_struct *vma,
1338 				unsigned long address, long gbl_chg)
1339 {
1340 	struct folio *folio = NULL;
1341 	struct mempolicy *mpol;
1342 	gfp_t gfp_mask;
1343 	nodemask_t *nodemask;
1344 	int nid;
1345 
1346 	/*
1347 	 * gbl_chg==1 means the allocation requires a new page that was not
1348 	 * reserved before.  Making sure there's at least one free page.
1349 	 */
1350 	if (gbl_chg && !available_huge_pages(h))
1351 		goto err;
1352 
1353 	gfp_mask = htlb_alloc_mask(h);
1354 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1355 
1356 	if (mpol_is_preferred_many(mpol)) {
1357 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1358 							nid, nodemask);
1359 
1360 		/* Fallback to all nodes if page==NULL */
1361 		nodemask = NULL;
1362 	}
1363 
1364 	if (!folio)
1365 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1366 							nid, nodemask);
1367 
1368 	mpol_cond_put(mpol);
1369 	return folio;
1370 
1371 err:
1372 	return NULL;
1373 }
1374 
1375 /*
1376  * common helper functions for hstate_next_node_to_{alloc|free}.
1377  * We may have allocated or freed a huge page based on a different
1378  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1379  * be outside of *nodes_allowed.  Ensure that we use an allowed
1380  * node for alloc or free.
1381  */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1382 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1383 {
1384 	nid = next_node_in(nid, *nodes_allowed);
1385 	VM_BUG_ON(nid >= MAX_NUMNODES);
1386 
1387 	return nid;
1388 }
1389 
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1390 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1391 {
1392 	if (!node_isset(nid, *nodes_allowed))
1393 		nid = next_node_allowed(nid, nodes_allowed);
1394 	return nid;
1395 }
1396 
1397 /*
1398  * returns the previously saved node ["this node"] from which to
1399  * allocate a persistent huge page for the pool and advance the
1400  * next node from which to allocate, handling wrap at end of node
1401  * mask.
1402  */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1403 static int hstate_next_node_to_alloc(int *next_node,
1404 					nodemask_t *nodes_allowed)
1405 {
1406 	int nid;
1407 
1408 	VM_BUG_ON(!nodes_allowed);
1409 
1410 	nid = get_valid_node_allowed(*next_node, nodes_allowed);
1411 	*next_node = next_node_allowed(nid, nodes_allowed);
1412 
1413 	return nid;
1414 }
1415 
1416 /*
1417  * helper for remove_pool_hugetlb_folio() - return the previously saved
1418  * node ["this node"] from which to free a huge page.  Advance the
1419  * next node id whether or not we find a free huge page to free so
1420  * that the next attempt to free addresses the next node.
1421  */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1422 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1423 {
1424 	int nid;
1425 
1426 	VM_BUG_ON(!nodes_allowed);
1427 
1428 	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1429 	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1430 
1431 	return nid;
1432 }
1433 
1434 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask)		\
1435 	for (nr_nodes = nodes_weight(*mask);				\
1436 		nr_nodes > 0 &&						\
1437 		((node = hstate_next_node_to_alloc(next_node, mask)) || 1);	\
1438 		nr_nodes--)
1439 
1440 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1441 	for (nr_nodes = nodes_weight(*mask);				\
1442 		nr_nodes > 0 &&						\
1443 		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1444 		nr_nodes--)
1445 
1446 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1447 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1448 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1449 		int nid, nodemask_t *nodemask)
1450 {
1451 	struct folio *folio;
1452 	int order = huge_page_order(h);
1453 	bool retried = false;
1454 
1455 	if (nid == NUMA_NO_NODE)
1456 		nid = numa_mem_id();
1457 retry:
1458 	folio = NULL;
1459 #ifdef CONFIG_CMA
1460 	{
1461 		int node;
1462 
1463 		if (hugetlb_cma[nid])
1464 			folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
1465 
1466 		if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1467 			for_each_node_mask(node, *nodemask) {
1468 				if (node == nid || !hugetlb_cma[node])
1469 					continue;
1470 
1471 				folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1472 				if (folio)
1473 					break;
1474 			}
1475 		}
1476 	}
1477 #endif
1478 	if (!folio) {
1479 		folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1480 		if (!folio)
1481 			return NULL;
1482 	}
1483 
1484 	if (folio_ref_freeze(folio, 1))
1485 		return folio;
1486 
1487 	pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1488 	hugetlb_free_folio(folio);
1489 	if (!retried) {
1490 		retried = true;
1491 		goto retry;
1492 	}
1493 	return NULL;
1494 }
1495 
1496 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1497 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1498 					int nid, nodemask_t *nodemask)
1499 {
1500 	return NULL;
1501 }
1502 #endif /* CONFIG_CONTIG_ALLOC */
1503 
1504 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1505 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1506 					int nid, nodemask_t *nodemask)
1507 {
1508 	return NULL;
1509 }
1510 #endif
1511 
1512 /*
1513  * Remove hugetlb folio from lists.
1514  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1515  * folio appears as just a compound page.  Otherwise, wait until after
1516  * allocating vmemmap to clear the flag.
1517  *
1518  * Must be called with hugetlb lock held.
1519  */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1520 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1521 							bool adjust_surplus)
1522 {
1523 	int nid = folio_nid(folio);
1524 
1525 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1526 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1527 
1528 	lockdep_assert_held(&hugetlb_lock);
1529 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1530 		return;
1531 
1532 	list_del(&folio->lru);
1533 
1534 	if (folio_test_hugetlb_freed(folio)) {
1535 		folio_clear_hugetlb_freed(folio);
1536 		h->free_huge_pages--;
1537 		h->free_huge_pages_node[nid]--;
1538 	}
1539 	if (adjust_surplus) {
1540 		h->surplus_huge_pages--;
1541 		h->surplus_huge_pages_node[nid]--;
1542 	}
1543 
1544 	/*
1545 	 * We can only clear the hugetlb flag after allocating vmemmap
1546 	 * pages.  Otherwise, someone (memory error handling) may try to write
1547 	 * to tail struct pages.
1548 	 */
1549 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1550 		__folio_clear_hugetlb(folio);
1551 
1552 	h->nr_huge_pages--;
1553 	h->nr_huge_pages_node[nid]--;
1554 }
1555 
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1556 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1557 			     bool adjust_surplus)
1558 {
1559 	int nid = folio_nid(folio);
1560 
1561 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1562 
1563 	lockdep_assert_held(&hugetlb_lock);
1564 
1565 	INIT_LIST_HEAD(&folio->lru);
1566 	h->nr_huge_pages++;
1567 	h->nr_huge_pages_node[nid]++;
1568 
1569 	if (adjust_surplus) {
1570 		h->surplus_huge_pages++;
1571 		h->surplus_huge_pages_node[nid]++;
1572 	}
1573 
1574 	__folio_set_hugetlb(folio);
1575 	folio_change_private(folio, NULL);
1576 	/*
1577 	 * We have to set hugetlb_vmemmap_optimized again as above
1578 	 * folio_change_private(folio, NULL) cleared it.
1579 	 */
1580 	folio_set_hugetlb_vmemmap_optimized(folio);
1581 
1582 	arch_clear_hugetlb_flags(folio);
1583 	enqueue_hugetlb_folio(h, folio);
1584 }
1585 
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1586 static void __update_and_free_hugetlb_folio(struct hstate *h,
1587 						struct folio *folio)
1588 {
1589 	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1590 
1591 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1592 		return;
1593 
1594 	/*
1595 	 * If we don't know which subpages are hwpoisoned, we can't free
1596 	 * the hugepage, so it's leaked intentionally.
1597 	 */
1598 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1599 		return;
1600 
1601 	/*
1602 	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1603 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1604 	 * can only be passed hugetlb pages and will BUG otherwise.
1605 	 */
1606 	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1607 		spin_lock_irq(&hugetlb_lock);
1608 		/*
1609 		 * If we cannot allocate vmemmap pages, just refuse to free the
1610 		 * page and put the page back on the hugetlb free list and treat
1611 		 * as a surplus page.
1612 		 */
1613 		add_hugetlb_folio(h, folio, true);
1614 		spin_unlock_irq(&hugetlb_lock);
1615 		return;
1616 	}
1617 
1618 	/*
1619 	 * If vmemmap pages were allocated above, then we need to clear the
1620 	 * hugetlb flag under the hugetlb lock.
1621 	 */
1622 	if (folio_test_hugetlb(folio)) {
1623 		spin_lock_irq(&hugetlb_lock);
1624 		__folio_clear_hugetlb(folio);
1625 		spin_unlock_irq(&hugetlb_lock);
1626 	}
1627 
1628 	/*
1629 	 * Move PageHWPoison flag from head page to the raw error pages,
1630 	 * which makes any healthy subpages reusable.
1631 	 */
1632 	if (unlikely(folio_test_hwpoison(folio)))
1633 		folio_clear_hugetlb_hwpoison(folio);
1634 
1635 	folio_ref_unfreeze(folio, 1);
1636 
1637 	INIT_LIST_HEAD(&folio->_deferred_list);
1638 	hugetlb_free_folio(folio);
1639 }
1640 
1641 /*
1642  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1643  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1644  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1645  * the vmemmap pages.
1646  *
1647  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1648  * freed and frees them one-by-one. As the page->mapping pointer is going
1649  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1650  * structure of a lockless linked list of huge pages to be freed.
1651  */
1652 static LLIST_HEAD(hpage_freelist);
1653 
free_hpage_workfn(struct work_struct * work)1654 static void free_hpage_workfn(struct work_struct *work)
1655 {
1656 	struct llist_node *node;
1657 
1658 	node = llist_del_all(&hpage_freelist);
1659 
1660 	while (node) {
1661 		struct folio *folio;
1662 		struct hstate *h;
1663 
1664 		folio = container_of((struct address_space **)node,
1665 				     struct folio, mapping);
1666 		node = node->next;
1667 		folio->mapping = NULL;
1668 		/*
1669 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1670 		 * folio_hstate() is going to trigger because a previous call to
1671 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1672 		 * not use folio_hstate() directly.
1673 		 */
1674 		h = size_to_hstate(folio_size(folio));
1675 
1676 		__update_and_free_hugetlb_folio(h, folio);
1677 
1678 		cond_resched();
1679 	}
1680 }
1681 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1682 
flush_free_hpage_work(struct hstate * h)1683 static inline void flush_free_hpage_work(struct hstate *h)
1684 {
1685 	if (hugetlb_vmemmap_optimizable(h))
1686 		flush_work(&free_hpage_work);
1687 }
1688 
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1689 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1690 				 bool atomic)
1691 {
1692 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1693 		__update_and_free_hugetlb_folio(h, folio);
1694 		return;
1695 	}
1696 
1697 	/*
1698 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1699 	 *
1700 	 * Only call schedule_work() if hpage_freelist is previously
1701 	 * empty. Otherwise, schedule_work() had been called but the workfn
1702 	 * hasn't retrieved the list yet.
1703 	 */
1704 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1705 		schedule_work(&free_hpage_work);
1706 }
1707 
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1708 static void bulk_vmemmap_restore_error(struct hstate *h,
1709 					struct list_head *folio_list,
1710 					struct list_head *non_hvo_folios)
1711 {
1712 	struct folio *folio, *t_folio;
1713 
1714 	if (!list_empty(non_hvo_folios)) {
1715 		/*
1716 		 * Free any restored hugetlb pages so that restore of the
1717 		 * entire list can be retried.
1718 		 * The idea is that in the common case of ENOMEM errors freeing
1719 		 * hugetlb pages with vmemmap we will free up memory so that we
1720 		 * can allocate vmemmap for more hugetlb pages.
1721 		 */
1722 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1723 			list_del(&folio->lru);
1724 			spin_lock_irq(&hugetlb_lock);
1725 			__folio_clear_hugetlb(folio);
1726 			spin_unlock_irq(&hugetlb_lock);
1727 			update_and_free_hugetlb_folio(h, folio, false);
1728 			cond_resched();
1729 		}
1730 	} else {
1731 		/*
1732 		 * In the case where there are no folios which can be
1733 		 * immediately freed, we loop through the list trying to restore
1734 		 * vmemmap individually in the hope that someone elsewhere may
1735 		 * have done something to cause success (such as freeing some
1736 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1737 		 * page is made a surplus page and removed from the list.
1738 		 * If are able to restore vmemmap and free one hugetlb page, we
1739 		 * quit processing the list to retry the bulk operation.
1740 		 */
1741 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1742 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1743 				list_del(&folio->lru);
1744 				spin_lock_irq(&hugetlb_lock);
1745 				add_hugetlb_folio(h, folio, true);
1746 				spin_unlock_irq(&hugetlb_lock);
1747 			} else {
1748 				list_del(&folio->lru);
1749 				spin_lock_irq(&hugetlb_lock);
1750 				__folio_clear_hugetlb(folio);
1751 				spin_unlock_irq(&hugetlb_lock);
1752 				update_and_free_hugetlb_folio(h, folio, false);
1753 				cond_resched();
1754 				break;
1755 			}
1756 	}
1757 }
1758 
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1759 static void update_and_free_pages_bulk(struct hstate *h,
1760 						struct list_head *folio_list)
1761 {
1762 	long ret;
1763 	struct folio *folio, *t_folio;
1764 	LIST_HEAD(non_hvo_folios);
1765 
1766 	/*
1767 	 * First allocate required vmemmmap (if necessary) for all folios.
1768 	 * Carefully handle errors and free up any available hugetlb pages
1769 	 * in an effort to make forward progress.
1770 	 */
1771 retry:
1772 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1773 	if (ret < 0) {
1774 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1775 		goto retry;
1776 	}
1777 
1778 	/*
1779 	 * At this point, list should be empty, ret should be >= 0 and there
1780 	 * should only be pages on the non_hvo_folios list.
1781 	 * Do note that the non_hvo_folios list could be empty.
1782 	 * Without HVO enabled, ret will be 0 and there is no need to call
1783 	 * __folio_clear_hugetlb as this was done previously.
1784 	 */
1785 	VM_WARN_ON(!list_empty(folio_list));
1786 	VM_WARN_ON(ret < 0);
1787 	if (!list_empty(&non_hvo_folios) && ret) {
1788 		spin_lock_irq(&hugetlb_lock);
1789 		list_for_each_entry(folio, &non_hvo_folios, lru)
1790 			__folio_clear_hugetlb(folio);
1791 		spin_unlock_irq(&hugetlb_lock);
1792 	}
1793 
1794 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1795 		update_and_free_hugetlb_folio(h, folio, false);
1796 		cond_resched();
1797 	}
1798 }
1799 
size_to_hstate(unsigned long size)1800 struct hstate *size_to_hstate(unsigned long size)
1801 {
1802 	struct hstate *h;
1803 
1804 	for_each_hstate(h) {
1805 		if (huge_page_size(h) == size)
1806 			return h;
1807 	}
1808 	return NULL;
1809 }
1810 
free_huge_folio(struct folio * folio)1811 void free_huge_folio(struct folio *folio)
1812 {
1813 	/*
1814 	 * Can't pass hstate in here because it is called from the
1815 	 * generic mm code.
1816 	 */
1817 	struct hstate *h = folio_hstate(folio);
1818 	int nid = folio_nid(folio);
1819 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1820 	bool restore_reserve;
1821 	unsigned long flags;
1822 
1823 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1824 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1825 
1826 	hugetlb_set_folio_subpool(folio, NULL);
1827 	if (folio_test_anon(folio))
1828 		__ClearPageAnonExclusive(&folio->page);
1829 	folio->mapping = NULL;
1830 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1831 	folio_clear_hugetlb_restore_reserve(folio);
1832 
1833 	/*
1834 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1835 	 * reservation.  If the page was associated with a subpool, there
1836 	 * would have been a page reserved in the subpool before allocation
1837 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1838 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1839 	 * remove the reserved page from the subpool.
1840 	 */
1841 	if (!restore_reserve) {
1842 		/*
1843 		 * A return code of zero implies that the subpool will be
1844 		 * under its minimum size if the reservation is not restored
1845 		 * after page is free.  Therefore, force restore_reserve
1846 		 * operation.
1847 		 */
1848 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1849 			restore_reserve = true;
1850 	}
1851 
1852 	spin_lock_irqsave(&hugetlb_lock, flags);
1853 	folio_clear_hugetlb_migratable(folio);
1854 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1855 				     pages_per_huge_page(h), folio);
1856 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1857 					  pages_per_huge_page(h), folio);
1858 	lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1859 	mem_cgroup_uncharge(folio);
1860 	if (restore_reserve)
1861 		h->resv_huge_pages++;
1862 
1863 	if (folio_test_hugetlb_temporary(folio)) {
1864 		remove_hugetlb_folio(h, folio, false);
1865 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1866 		update_and_free_hugetlb_folio(h, folio, true);
1867 	} else if (h->surplus_huge_pages_node[nid]) {
1868 		/* remove the page from active list */
1869 		remove_hugetlb_folio(h, folio, true);
1870 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1871 		update_and_free_hugetlb_folio(h, folio, true);
1872 	} else {
1873 		arch_clear_hugetlb_flags(folio);
1874 		enqueue_hugetlb_folio(h, folio);
1875 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1876 	}
1877 }
1878 
1879 /*
1880  * Must be called with the hugetlb lock held
1881  */
__prep_account_new_huge_page(struct hstate * h,int nid)1882 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1883 {
1884 	lockdep_assert_held(&hugetlb_lock);
1885 	h->nr_huge_pages++;
1886 	h->nr_huge_pages_node[nid]++;
1887 }
1888 
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1889 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1890 {
1891 	__folio_set_hugetlb(folio);
1892 	INIT_LIST_HEAD(&folio->lru);
1893 	hugetlb_set_folio_subpool(folio, NULL);
1894 	set_hugetlb_cgroup(folio, NULL);
1895 	set_hugetlb_cgroup_rsvd(folio, NULL);
1896 }
1897 
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1898 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1899 {
1900 	init_new_hugetlb_folio(h, folio);
1901 	hugetlb_vmemmap_optimize_folio(h, folio);
1902 }
1903 
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1904 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1905 {
1906 	__prep_new_hugetlb_folio(h, folio);
1907 	spin_lock_irq(&hugetlb_lock);
1908 	__prep_account_new_huge_page(h, nid);
1909 	spin_unlock_irq(&hugetlb_lock);
1910 }
1911 
1912 /*
1913  * Find and lock address space (mapping) in write mode.
1914  *
1915  * Upon entry, the folio is locked which means that folio_mapping() is
1916  * stable.  Due to locking order, we can only trylock_write.  If we can
1917  * not get the lock, simply return NULL to caller.
1918  */
hugetlb_folio_mapping_lock_write(struct folio * folio)1919 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1920 {
1921 	struct address_space *mapping = folio_mapping(folio);
1922 
1923 	if (!mapping)
1924 		return mapping;
1925 
1926 	if (i_mmap_trylock_write(mapping))
1927 		return mapping;
1928 
1929 	return NULL;
1930 }
1931 
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1932 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1933 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1934 		nodemask_t *node_alloc_noretry)
1935 {
1936 	int order = huge_page_order(h);
1937 	struct folio *folio;
1938 	bool alloc_try_hard = true;
1939 	bool retry = true;
1940 
1941 	/*
1942 	 * By default we always try hard to allocate the folio with
1943 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
1944 	 * a loop (to adjust global huge page counts) and previous allocation
1945 	 * failed, do not continue to try hard on the same node.  Use the
1946 	 * node_alloc_noretry bitmap to manage this state information.
1947 	 */
1948 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1949 		alloc_try_hard = false;
1950 	if (alloc_try_hard)
1951 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1952 	if (nid == NUMA_NO_NODE)
1953 		nid = numa_mem_id();
1954 retry:
1955 	folio = __folio_alloc(gfp_mask, order, nid, nmask);
1956 	/* Ensure hugetlb folio won't have large_rmappable flag set. */
1957 	if (folio)
1958 		folio_clear_large_rmappable(folio);
1959 
1960 	if (folio && !folio_ref_freeze(folio, 1)) {
1961 		folio_put(folio);
1962 		if (retry) {	/* retry once */
1963 			retry = false;
1964 			goto retry;
1965 		}
1966 		/* WOW!  twice in a row. */
1967 		pr_warn("HugeTLB unexpected inflated folio ref count\n");
1968 		folio = NULL;
1969 	}
1970 
1971 	/*
1972 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1973 	 * folio this indicates an overall state change.  Clear bit so
1974 	 * that we resume normal 'try hard' allocations.
1975 	 */
1976 	if (node_alloc_noretry && folio && !alloc_try_hard)
1977 		node_clear(nid, *node_alloc_noretry);
1978 
1979 	/*
1980 	 * If we tried hard to get a folio but failed, set bit so that
1981 	 * subsequent attempts will not try as hard until there is an
1982 	 * overall state change.
1983 	 */
1984 	if (node_alloc_noretry && !folio && alloc_try_hard)
1985 		node_set(nid, *node_alloc_noretry);
1986 
1987 	if (!folio) {
1988 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1989 		return NULL;
1990 	}
1991 
1992 	__count_vm_event(HTLB_BUDDY_PGALLOC);
1993 	return folio;
1994 }
1995 
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1996 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1997 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1998 		nodemask_t *node_alloc_noretry)
1999 {
2000 	struct folio *folio;
2001 
2002 	if (hstate_is_gigantic(h))
2003 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2004 	else
2005 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2006 	if (folio)
2007 		init_new_hugetlb_folio(h, folio);
2008 	return folio;
2009 }
2010 
2011 /*
2012  * Common helper to allocate a fresh hugetlb page. All specific allocators
2013  * should use this function to get new hugetlb pages
2014  *
2015  * Note that returned page is 'frozen':  ref count of head page and all tail
2016  * pages is zero.
2017  */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2018 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2019 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
2020 {
2021 	struct folio *folio;
2022 
2023 	if (hstate_is_gigantic(h))
2024 		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2025 	else
2026 		folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2027 	if (!folio)
2028 		return NULL;
2029 
2030 	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2031 	return folio;
2032 }
2033 
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2034 static void prep_and_add_allocated_folios(struct hstate *h,
2035 					struct list_head *folio_list)
2036 {
2037 	unsigned long flags;
2038 	struct folio *folio, *tmp_f;
2039 
2040 	/* Send list for bulk vmemmap optimization processing */
2041 	hugetlb_vmemmap_optimize_folios(h, folio_list);
2042 
2043 	/* Add all new pool pages to free lists in one lock cycle */
2044 	spin_lock_irqsave(&hugetlb_lock, flags);
2045 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2046 		__prep_account_new_huge_page(h, folio_nid(folio));
2047 		enqueue_hugetlb_folio(h, folio);
2048 	}
2049 	spin_unlock_irqrestore(&hugetlb_lock, flags);
2050 }
2051 
2052 /*
2053  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
2054  * will later be added to the appropriate hugetlb pool.
2055  */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2056 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2057 					nodemask_t *nodes_allowed,
2058 					nodemask_t *node_alloc_noretry,
2059 					int *next_node)
2060 {
2061 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2062 	int nr_nodes, node;
2063 
2064 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2065 		struct folio *folio;
2066 
2067 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2068 					nodes_allowed, node_alloc_noretry);
2069 		if (folio)
2070 			return folio;
2071 	}
2072 
2073 	return NULL;
2074 }
2075 
2076 /*
2077  * Remove huge page from pool from next node to free.  Attempt to keep
2078  * persistent huge pages more or less balanced over allowed nodes.
2079  * This routine only 'removes' the hugetlb page.  The caller must make
2080  * an additional call to free the page to low level allocators.
2081  * Called with hugetlb_lock locked.
2082  */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2083 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2084 		nodemask_t *nodes_allowed, bool acct_surplus)
2085 {
2086 	int nr_nodes, node;
2087 	struct folio *folio = NULL;
2088 
2089 	lockdep_assert_held(&hugetlb_lock);
2090 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2091 		/*
2092 		 * If we're returning unused surplus pages, only examine
2093 		 * nodes with surplus pages.
2094 		 */
2095 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2096 		    !list_empty(&h->hugepage_freelists[node])) {
2097 			folio = list_entry(h->hugepage_freelists[node].next,
2098 					  struct folio, lru);
2099 			remove_hugetlb_folio(h, folio, acct_surplus);
2100 			break;
2101 		}
2102 	}
2103 
2104 	return folio;
2105 }
2106 
2107 /*
2108  * Dissolve a given free hugetlb folio into free buddy pages. This function
2109  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2110  * This function returns values like below:
2111  *
2112  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2113  *           when the system is under memory pressure and the feature of
2114  *           freeing unused vmemmap pages associated with each hugetlb page
2115  *           is enabled.
2116  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2117  *           (allocated or reserved.)
2118  *       0:  successfully dissolved free hugepages or the page is not a
2119  *           hugepage (considered as already dissolved)
2120  */
dissolve_free_hugetlb_folio(struct folio * folio)2121 int dissolve_free_hugetlb_folio(struct folio *folio)
2122 {
2123 	int rc = -EBUSY;
2124 
2125 retry:
2126 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2127 	if (!folio_test_hugetlb(folio))
2128 		return 0;
2129 
2130 	spin_lock_irq(&hugetlb_lock);
2131 	if (!folio_test_hugetlb(folio)) {
2132 		rc = 0;
2133 		goto out;
2134 	}
2135 
2136 	if (!folio_ref_count(folio)) {
2137 		struct hstate *h = folio_hstate(folio);
2138 		if (!available_huge_pages(h))
2139 			goto out;
2140 
2141 		/*
2142 		 * We should make sure that the page is already on the free list
2143 		 * when it is dissolved.
2144 		 */
2145 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2146 			spin_unlock_irq(&hugetlb_lock);
2147 			cond_resched();
2148 
2149 			/*
2150 			 * Theoretically, we should return -EBUSY when we
2151 			 * encounter this race. In fact, we have a chance
2152 			 * to successfully dissolve the page if we do a
2153 			 * retry. Because the race window is quite small.
2154 			 * If we seize this opportunity, it is an optimization
2155 			 * for increasing the success rate of dissolving page.
2156 			 */
2157 			goto retry;
2158 		}
2159 
2160 		remove_hugetlb_folio(h, folio, false);
2161 		h->max_huge_pages--;
2162 		spin_unlock_irq(&hugetlb_lock);
2163 
2164 		/*
2165 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2166 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2167 		 * free the page if it can not allocate required vmemmap.  We
2168 		 * need to adjust max_huge_pages if the page is not freed.
2169 		 * Attempt to allocate vmemmmap here so that we can take
2170 		 * appropriate action on failure.
2171 		 *
2172 		 * The folio_test_hugetlb check here is because
2173 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2174 		 * non-vmemmap optimized hugetlb folios.
2175 		 */
2176 		if (folio_test_hugetlb(folio)) {
2177 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2178 			if (rc) {
2179 				spin_lock_irq(&hugetlb_lock);
2180 				add_hugetlb_folio(h, folio, false);
2181 				h->max_huge_pages++;
2182 				goto out;
2183 			}
2184 		} else
2185 			rc = 0;
2186 
2187 		update_and_free_hugetlb_folio(h, folio, false);
2188 		return rc;
2189 	}
2190 out:
2191 	spin_unlock_irq(&hugetlb_lock);
2192 	return rc;
2193 }
2194 
2195 /*
2196  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2197  * make specified memory blocks removable from the system.
2198  * Note that this will dissolve a free gigantic hugepage completely, if any
2199  * part of it lies within the given range.
2200  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2201  * free hugetlb folios that were dissolved before that error are lost.
2202  */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2203 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2204 {
2205 	unsigned long pfn;
2206 	struct folio *folio;
2207 	int rc = 0;
2208 	unsigned int order;
2209 	struct hstate *h;
2210 
2211 	if (!hugepages_supported())
2212 		return rc;
2213 
2214 	order = huge_page_order(&default_hstate);
2215 	for_each_hstate(h)
2216 		order = min(order, huge_page_order(h));
2217 
2218 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2219 		folio = pfn_folio(pfn);
2220 		rc = dissolve_free_hugetlb_folio(folio);
2221 		if (rc)
2222 			break;
2223 	}
2224 
2225 	return rc;
2226 }
2227 
2228 /*
2229  * Allocates a fresh surplus page from the page allocator.
2230  */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2231 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2232 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2233 {
2234 	struct folio *folio = NULL;
2235 
2236 	if (hstate_is_gigantic(h))
2237 		return NULL;
2238 
2239 	spin_lock_irq(&hugetlb_lock);
2240 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2241 		goto out_unlock;
2242 	spin_unlock_irq(&hugetlb_lock);
2243 
2244 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2245 	if (!folio)
2246 		return NULL;
2247 
2248 	spin_lock_irq(&hugetlb_lock);
2249 	/*
2250 	 * We could have raced with the pool size change.
2251 	 * Double check that and simply deallocate the new page
2252 	 * if we would end up overcommiting the surpluses. Abuse
2253 	 * temporary page to workaround the nasty free_huge_folio
2254 	 * codeflow
2255 	 */
2256 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2257 		folio_set_hugetlb_temporary(folio);
2258 		spin_unlock_irq(&hugetlb_lock);
2259 		free_huge_folio(folio);
2260 		return NULL;
2261 	}
2262 
2263 	h->surplus_huge_pages++;
2264 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2265 
2266 out_unlock:
2267 	spin_unlock_irq(&hugetlb_lock);
2268 
2269 	return folio;
2270 }
2271 
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2272 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2273 				     int nid, nodemask_t *nmask)
2274 {
2275 	struct folio *folio;
2276 
2277 	if (hstate_is_gigantic(h))
2278 		return NULL;
2279 
2280 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2281 	if (!folio)
2282 		return NULL;
2283 
2284 	/* fresh huge pages are frozen */
2285 	folio_ref_unfreeze(folio, 1);
2286 	/*
2287 	 * We do not account these pages as surplus because they are only
2288 	 * temporary and will be released properly on the last reference
2289 	 */
2290 	folio_set_hugetlb_temporary(folio);
2291 
2292 	return folio;
2293 }
2294 
2295 /*
2296  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2297  */
2298 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2299 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2300 		struct vm_area_struct *vma, unsigned long addr)
2301 {
2302 	struct folio *folio = NULL;
2303 	struct mempolicy *mpol;
2304 	gfp_t gfp_mask = htlb_alloc_mask(h);
2305 	int nid;
2306 	nodemask_t *nodemask;
2307 
2308 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2309 	if (mpol_is_preferred_many(mpol)) {
2310 		gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2311 
2312 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2313 
2314 		/* Fallback to all nodes if page==NULL */
2315 		nodemask = NULL;
2316 	}
2317 
2318 	if (!folio)
2319 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2320 	mpol_cond_put(mpol);
2321 	return folio;
2322 }
2323 
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2324 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2325 		nodemask_t *nmask, gfp_t gfp_mask)
2326 {
2327 	struct folio *folio;
2328 
2329 	spin_lock_irq(&hugetlb_lock);
2330 	folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2331 					       nmask);
2332 	if (folio) {
2333 		VM_BUG_ON(!h->resv_huge_pages);
2334 		h->resv_huge_pages--;
2335 	}
2336 
2337 	spin_unlock_irq(&hugetlb_lock);
2338 	return folio;
2339 }
2340 
2341 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2342 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2343 		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2344 {
2345 	spin_lock_irq(&hugetlb_lock);
2346 	if (available_huge_pages(h)) {
2347 		struct folio *folio;
2348 
2349 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2350 						preferred_nid, nmask);
2351 		if (folio) {
2352 			spin_unlock_irq(&hugetlb_lock);
2353 			return folio;
2354 		}
2355 	}
2356 	spin_unlock_irq(&hugetlb_lock);
2357 
2358 	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2359 	if (!allow_alloc_fallback)
2360 		gfp_mask |= __GFP_THISNODE;
2361 
2362 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2363 }
2364 
policy_mbind_nodemask(gfp_t gfp)2365 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2366 {
2367 #ifdef CONFIG_NUMA
2368 	struct mempolicy *mpol = get_task_policy(current);
2369 
2370 	/*
2371 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2372 	 * (from policy_nodemask) specifically for hugetlb case
2373 	 */
2374 	if (mpol->mode == MPOL_BIND &&
2375 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2376 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2377 		return &mpol->nodes;
2378 #endif
2379 	return NULL;
2380 }
2381 
2382 /*
2383  * Increase the hugetlb pool such that it can accommodate a reservation
2384  * of size 'delta'.
2385  */
gather_surplus_pages(struct hstate * h,long delta)2386 static int gather_surplus_pages(struct hstate *h, long delta)
2387 	__must_hold(&hugetlb_lock)
2388 {
2389 	LIST_HEAD(surplus_list);
2390 	struct folio *folio, *tmp;
2391 	int ret;
2392 	long i;
2393 	long needed, allocated;
2394 	bool alloc_ok = true;
2395 	int node;
2396 	nodemask_t *mbind_nodemask, alloc_nodemask;
2397 
2398 	mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2399 	if (mbind_nodemask)
2400 		nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2401 	else
2402 		alloc_nodemask = cpuset_current_mems_allowed;
2403 
2404 	lockdep_assert_held(&hugetlb_lock);
2405 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2406 	if (needed <= 0) {
2407 		h->resv_huge_pages += delta;
2408 		return 0;
2409 	}
2410 
2411 	allocated = 0;
2412 
2413 	ret = -ENOMEM;
2414 retry:
2415 	spin_unlock_irq(&hugetlb_lock);
2416 	for (i = 0; i < needed; i++) {
2417 		folio = NULL;
2418 
2419 		/* Prioritize current node */
2420 		if (node_isset(numa_mem_id(), alloc_nodemask))
2421 			folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2422 					numa_mem_id(), NULL);
2423 
2424 		if (!folio) {
2425 			for_each_node_mask(node, alloc_nodemask) {
2426 				if (node == numa_mem_id())
2427 					continue;
2428 				folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2429 						node, NULL);
2430 				if (folio)
2431 					break;
2432 			}
2433 		}
2434 		if (!folio) {
2435 			alloc_ok = false;
2436 			break;
2437 		}
2438 		list_add(&folio->lru, &surplus_list);
2439 		cond_resched();
2440 	}
2441 	allocated += i;
2442 
2443 	/*
2444 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2445 	 * because either resv_huge_pages or free_huge_pages may have changed.
2446 	 */
2447 	spin_lock_irq(&hugetlb_lock);
2448 	needed = (h->resv_huge_pages + delta) -
2449 			(h->free_huge_pages + allocated);
2450 	if (needed > 0) {
2451 		if (alloc_ok)
2452 			goto retry;
2453 		/*
2454 		 * We were not able to allocate enough pages to
2455 		 * satisfy the entire reservation so we free what
2456 		 * we've allocated so far.
2457 		 */
2458 		goto free;
2459 	}
2460 	/*
2461 	 * The surplus_list now contains _at_least_ the number of extra pages
2462 	 * needed to accommodate the reservation.  Add the appropriate number
2463 	 * of pages to the hugetlb pool and free the extras back to the buddy
2464 	 * allocator.  Commit the entire reservation here to prevent another
2465 	 * process from stealing the pages as they are added to the pool but
2466 	 * before they are reserved.
2467 	 */
2468 	needed += allocated;
2469 	h->resv_huge_pages += delta;
2470 	ret = 0;
2471 
2472 	/* Free the needed pages to the hugetlb pool */
2473 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2474 		if ((--needed) < 0)
2475 			break;
2476 		/* Add the page to the hugetlb allocator */
2477 		enqueue_hugetlb_folio(h, folio);
2478 	}
2479 free:
2480 	spin_unlock_irq(&hugetlb_lock);
2481 
2482 	/*
2483 	 * Free unnecessary surplus pages to the buddy allocator.
2484 	 * Pages have no ref count, call free_huge_folio directly.
2485 	 */
2486 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2487 		free_huge_folio(folio);
2488 	spin_lock_irq(&hugetlb_lock);
2489 
2490 	return ret;
2491 }
2492 
2493 /*
2494  * This routine has two main purposes:
2495  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2496  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2497  *    to the associated reservation map.
2498  * 2) Free any unused surplus pages that may have been allocated to satisfy
2499  *    the reservation.  As many as unused_resv_pages may be freed.
2500  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2501 static void return_unused_surplus_pages(struct hstate *h,
2502 					unsigned long unused_resv_pages)
2503 {
2504 	unsigned long nr_pages;
2505 	LIST_HEAD(page_list);
2506 
2507 	lockdep_assert_held(&hugetlb_lock);
2508 	/* Uncommit the reservation */
2509 	h->resv_huge_pages -= unused_resv_pages;
2510 
2511 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2512 		goto out;
2513 
2514 	/*
2515 	 * Part (or even all) of the reservation could have been backed
2516 	 * by pre-allocated pages. Only free surplus pages.
2517 	 */
2518 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2519 
2520 	/*
2521 	 * We want to release as many surplus pages as possible, spread
2522 	 * evenly across all nodes with memory. Iterate across these nodes
2523 	 * until we can no longer free unreserved surplus pages. This occurs
2524 	 * when the nodes with surplus pages have no free pages.
2525 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2526 	 * on-line nodes with memory and will handle the hstate accounting.
2527 	 */
2528 	while (nr_pages--) {
2529 		struct folio *folio;
2530 
2531 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2532 		if (!folio)
2533 			goto out;
2534 
2535 		list_add(&folio->lru, &page_list);
2536 	}
2537 
2538 out:
2539 	spin_unlock_irq(&hugetlb_lock);
2540 	update_and_free_pages_bulk(h, &page_list);
2541 	spin_lock_irq(&hugetlb_lock);
2542 }
2543 
2544 
2545 /*
2546  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2547  * are used by the huge page allocation routines to manage reservations.
2548  *
2549  * vma_needs_reservation is called to determine if the huge page at addr
2550  * within the vma has an associated reservation.  If a reservation is
2551  * needed, the value 1 is returned.  The caller is then responsible for
2552  * managing the global reservation and subpool usage counts.  After
2553  * the huge page has been allocated, vma_commit_reservation is called
2554  * to add the page to the reservation map.  If the page allocation fails,
2555  * the reservation must be ended instead of committed.  vma_end_reservation
2556  * is called in such cases.
2557  *
2558  * In the normal case, vma_commit_reservation returns the same value
2559  * as the preceding vma_needs_reservation call.  The only time this
2560  * is not the case is if a reserve map was changed between calls.  It
2561  * is the responsibility of the caller to notice the difference and
2562  * take appropriate action.
2563  *
2564  * vma_add_reservation is used in error paths where a reservation must
2565  * be restored when a newly allocated huge page must be freed.  It is
2566  * to be called after calling vma_needs_reservation to determine if a
2567  * reservation exists.
2568  *
2569  * vma_del_reservation is used in error paths where an entry in the reserve
2570  * map was created during huge page allocation and must be removed.  It is to
2571  * be called after calling vma_needs_reservation to determine if a reservation
2572  * exists.
2573  */
2574 enum vma_resv_mode {
2575 	VMA_NEEDS_RESV,
2576 	VMA_COMMIT_RESV,
2577 	VMA_END_RESV,
2578 	VMA_ADD_RESV,
2579 	VMA_DEL_RESV,
2580 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2581 static long __vma_reservation_common(struct hstate *h,
2582 				struct vm_area_struct *vma, unsigned long addr,
2583 				enum vma_resv_mode mode)
2584 {
2585 	struct resv_map *resv;
2586 	pgoff_t idx;
2587 	long ret;
2588 	long dummy_out_regions_needed;
2589 
2590 	resv = vma_resv_map(vma);
2591 	if (!resv)
2592 		return 1;
2593 
2594 	idx = vma_hugecache_offset(h, vma, addr);
2595 	switch (mode) {
2596 	case VMA_NEEDS_RESV:
2597 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2598 		/* We assume that vma_reservation_* routines always operate on
2599 		 * 1 page, and that adding to resv map a 1 page entry can only
2600 		 * ever require 1 region.
2601 		 */
2602 		VM_BUG_ON(dummy_out_regions_needed != 1);
2603 		break;
2604 	case VMA_COMMIT_RESV:
2605 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2606 		/* region_add calls of range 1 should never fail. */
2607 		VM_BUG_ON(ret < 0);
2608 		break;
2609 	case VMA_END_RESV:
2610 		region_abort(resv, idx, idx + 1, 1);
2611 		ret = 0;
2612 		break;
2613 	case VMA_ADD_RESV:
2614 		if (vma->vm_flags & VM_MAYSHARE) {
2615 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2616 			/* region_add calls of range 1 should never fail. */
2617 			VM_BUG_ON(ret < 0);
2618 		} else {
2619 			region_abort(resv, idx, idx + 1, 1);
2620 			ret = region_del(resv, idx, idx + 1);
2621 		}
2622 		break;
2623 	case VMA_DEL_RESV:
2624 		if (vma->vm_flags & VM_MAYSHARE) {
2625 			region_abort(resv, idx, idx + 1, 1);
2626 			ret = region_del(resv, idx, idx + 1);
2627 		} else {
2628 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2629 			/* region_add calls of range 1 should never fail. */
2630 			VM_BUG_ON(ret < 0);
2631 		}
2632 		break;
2633 	default:
2634 		BUG();
2635 	}
2636 
2637 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2638 		return ret;
2639 	/*
2640 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2641 	 *
2642 	 * In most cases, reserves always exist for private mappings.
2643 	 * However, a file associated with mapping could have been
2644 	 * hole punched or truncated after reserves were consumed.
2645 	 * As subsequent fault on such a range will not use reserves.
2646 	 * Subtle - The reserve map for private mappings has the
2647 	 * opposite meaning than that of shared mappings.  If NO
2648 	 * entry is in the reserve map, it means a reservation exists.
2649 	 * If an entry exists in the reserve map, it means the
2650 	 * reservation has already been consumed.  As a result, the
2651 	 * return value of this routine is the opposite of the
2652 	 * value returned from reserve map manipulation routines above.
2653 	 */
2654 	if (ret > 0)
2655 		return 0;
2656 	if (ret == 0)
2657 		return 1;
2658 	return ret;
2659 }
2660 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2661 static long vma_needs_reservation(struct hstate *h,
2662 			struct vm_area_struct *vma, unsigned long addr)
2663 {
2664 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2665 }
2666 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2667 static long vma_commit_reservation(struct hstate *h,
2668 			struct vm_area_struct *vma, unsigned long addr)
2669 {
2670 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2671 }
2672 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2673 static void vma_end_reservation(struct hstate *h,
2674 			struct vm_area_struct *vma, unsigned long addr)
2675 {
2676 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2677 }
2678 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2679 static long vma_add_reservation(struct hstate *h,
2680 			struct vm_area_struct *vma, unsigned long addr)
2681 {
2682 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2683 }
2684 
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2685 static long vma_del_reservation(struct hstate *h,
2686 			struct vm_area_struct *vma, unsigned long addr)
2687 {
2688 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2689 }
2690 
2691 /*
2692  * This routine is called to restore reservation information on error paths.
2693  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2694  * and the hugetlb mutex should remain held when calling this routine.
2695  *
2696  * It handles two specific cases:
2697  * 1) A reservation was in place and the folio consumed the reservation.
2698  *    hugetlb_restore_reserve is set in the folio.
2699  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2700  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2701  *
2702  * In case 1, free_huge_folio later in the error path will increment the
2703  * global reserve count.  But, free_huge_folio does not have enough context
2704  * to adjust the reservation map.  This case deals primarily with private
2705  * mappings.  Adjust the reserve map here to be consistent with global
2706  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2707  * reserve map indicates there is a reservation present.
2708  *
2709  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2710  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2711 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2712 			unsigned long address, struct folio *folio)
2713 {
2714 	long rc = vma_needs_reservation(h, vma, address);
2715 
2716 	if (folio_test_hugetlb_restore_reserve(folio)) {
2717 		if (unlikely(rc < 0))
2718 			/*
2719 			 * Rare out of memory condition in reserve map
2720 			 * manipulation.  Clear hugetlb_restore_reserve so
2721 			 * that global reserve count will not be incremented
2722 			 * by free_huge_folio.  This will make it appear
2723 			 * as though the reservation for this folio was
2724 			 * consumed.  This may prevent the task from
2725 			 * faulting in the folio at a later time.  This
2726 			 * is better than inconsistent global huge page
2727 			 * accounting of reserve counts.
2728 			 */
2729 			folio_clear_hugetlb_restore_reserve(folio);
2730 		else if (rc)
2731 			(void)vma_add_reservation(h, vma, address);
2732 		else
2733 			vma_end_reservation(h, vma, address);
2734 	} else {
2735 		if (!rc) {
2736 			/*
2737 			 * This indicates there is an entry in the reserve map
2738 			 * not added by alloc_hugetlb_folio.  We know it was added
2739 			 * before the alloc_hugetlb_folio call, otherwise
2740 			 * hugetlb_restore_reserve would be set on the folio.
2741 			 * Remove the entry so that a subsequent allocation
2742 			 * does not consume a reservation.
2743 			 */
2744 			rc = vma_del_reservation(h, vma, address);
2745 			if (rc < 0)
2746 				/*
2747 				 * VERY rare out of memory condition.  Since
2748 				 * we can not delete the entry, set
2749 				 * hugetlb_restore_reserve so that the reserve
2750 				 * count will be incremented when the folio
2751 				 * is freed.  This reserve will be consumed
2752 				 * on a subsequent allocation.
2753 				 */
2754 				folio_set_hugetlb_restore_reserve(folio);
2755 		} else if (rc < 0) {
2756 			/*
2757 			 * Rare out of memory condition from
2758 			 * vma_needs_reservation call.  Memory allocation is
2759 			 * only attempted if a new entry is needed.  Therefore,
2760 			 * this implies there is not an entry in the
2761 			 * reserve map.
2762 			 *
2763 			 * For shared mappings, no entry in the map indicates
2764 			 * no reservation.  We are done.
2765 			 */
2766 			if (!(vma->vm_flags & VM_MAYSHARE))
2767 				/*
2768 				 * For private mappings, no entry indicates
2769 				 * a reservation is present.  Since we can
2770 				 * not add an entry, set hugetlb_restore_reserve
2771 				 * on the folio so reserve count will be
2772 				 * incremented when freed.  This reserve will
2773 				 * be consumed on a subsequent allocation.
2774 				 */
2775 				folio_set_hugetlb_restore_reserve(folio);
2776 		} else
2777 			/*
2778 			 * No reservation present, do nothing
2779 			 */
2780 			 vma_end_reservation(h, vma, address);
2781 	}
2782 }
2783 
2784 /*
2785  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2786  * the old one
2787  * @h: struct hstate old page belongs to
2788  * @old_folio: Old folio to dissolve
2789  * @list: List to isolate the page in case we need to
2790  * Returns 0 on success, otherwise negated error.
2791  */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2792 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2793 			struct folio *old_folio, struct list_head *list)
2794 {
2795 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2796 	int nid = folio_nid(old_folio);
2797 	struct folio *new_folio = NULL;
2798 	int ret = 0;
2799 
2800 retry:
2801 	spin_lock_irq(&hugetlb_lock);
2802 	if (!folio_test_hugetlb(old_folio)) {
2803 		/*
2804 		 * Freed from under us. Drop new_folio too.
2805 		 */
2806 		goto free_new;
2807 	} else if (folio_ref_count(old_folio)) {
2808 		bool isolated;
2809 
2810 		/*
2811 		 * Someone has grabbed the folio, try to isolate it here.
2812 		 * Fail with -EBUSY if not possible.
2813 		 */
2814 		spin_unlock_irq(&hugetlb_lock);
2815 		isolated = folio_isolate_hugetlb(old_folio, list);
2816 		ret = isolated ? 0 : -EBUSY;
2817 		spin_lock_irq(&hugetlb_lock);
2818 		goto free_new;
2819 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2820 		/*
2821 		 * Folio's refcount is 0 but it has not been enqueued in the
2822 		 * freelist yet. Race window is small, so we can succeed here if
2823 		 * we retry.
2824 		 */
2825 		spin_unlock_irq(&hugetlb_lock);
2826 		cond_resched();
2827 		goto retry;
2828 	} else {
2829 		if (!new_folio) {
2830 			spin_unlock_irq(&hugetlb_lock);
2831 			new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2832 							      NULL, NULL);
2833 			if (!new_folio)
2834 				return -ENOMEM;
2835 			__prep_new_hugetlb_folio(h, new_folio);
2836 			goto retry;
2837 		}
2838 
2839 		/*
2840 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2841 		 * the freelist and decrease the counters. These will be
2842 		 * incremented again when calling __prep_account_new_huge_page()
2843 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2844 		 * remain stable since this happens under the lock.
2845 		 */
2846 		remove_hugetlb_folio(h, old_folio, false);
2847 
2848 		/*
2849 		 * Ref count on new_folio is already zero as it was dropped
2850 		 * earlier.  It can be directly added to the pool free list.
2851 		 */
2852 		__prep_account_new_huge_page(h, nid);
2853 		enqueue_hugetlb_folio(h, new_folio);
2854 
2855 		/*
2856 		 * Folio has been replaced, we can safely free the old one.
2857 		 */
2858 		spin_unlock_irq(&hugetlb_lock);
2859 		update_and_free_hugetlb_folio(h, old_folio, false);
2860 	}
2861 
2862 	return ret;
2863 
2864 free_new:
2865 	spin_unlock_irq(&hugetlb_lock);
2866 	if (new_folio)
2867 		update_and_free_hugetlb_folio(h, new_folio, false);
2868 
2869 	return ret;
2870 }
2871 
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2872 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2873 {
2874 	struct hstate *h;
2875 	struct folio *folio = page_folio(page);
2876 	int ret = -EBUSY;
2877 
2878 	/*
2879 	 * The page might have been dissolved from under our feet, so make sure
2880 	 * to carefully check the state under the lock.
2881 	 * Return success when racing as if we dissolved the page ourselves.
2882 	 */
2883 	spin_lock_irq(&hugetlb_lock);
2884 	if (folio_test_hugetlb(folio)) {
2885 		h = folio_hstate(folio);
2886 	} else {
2887 		spin_unlock_irq(&hugetlb_lock);
2888 		return 0;
2889 	}
2890 	spin_unlock_irq(&hugetlb_lock);
2891 
2892 	/*
2893 	 * Fence off gigantic pages as there is a cyclic dependency between
2894 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2895 	 * of bailing out right away without further retrying.
2896 	 */
2897 	if (hstate_is_gigantic(h))
2898 		return -ENOMEM;
2899 
2900 	if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2901 		ret = 0;
2902 	else if (!folio_ref_count(folio))
2903 		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2904 
2905 	return ret;
2906 }
2907 
2908 /*
2909  *  replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2910  *  range with new folios.
2911  *  @start_pfn: start pfn of the given pfn range
2912  *  @end_pfn: end pfn of the given pfn range
2913  *  Returns 0 on success, otherwise negated error.
2914  */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2915 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2916 {
2917 	struct hstate *h;
2918 	struct folio *folio;
2919 	int ret = 0;
2920 
2921 	LIST_HEAD(isolate_list);
2922 
2923 	while (start_pfn < end_pfn) {
2924 		folio = pfn_folio(start_pfn);
2925 		if (folio_test_hugetlb(folio)) {
2926 			h = folio_hstate(folio);
2927 		} else {
2928 			start_pfn++;
2929 			continue;
2930 		}
2931 
2932 		if (!folio_ref_count(folio)) {
2933 			ret = alloc_and_dissolve_hugetlb_folio(h, folio,
2934 							       &isolate_list);
2935 			if (ret)
2936 				break;
2937 
2938 			putback_movable_pages(&isolate_list);
2939 		}
2940 		start_pfn++;
2941 	}
2942 
2943 	return ret;
2944 }
2945 
wait_for_freed_hugetlb_folios(void)2946 void wait_for_freed_hugetlb_folios(void)
2947 {
2948 	if (llist_empty(&hpage_freelist))
2949 		return;
2950 
2951 	flush_work(&free_hpage_work);
2952 }
2953 
2954 typedef enum {
2955 	/*
2956 	 * For either 0/1: we checked the per-vma resv map, and one resv
2957 	 * count either can be reused (0), or an extra needed (1).
2958 	 */
2959 	MAP_CHG_REUSE = 0,
2960 	MAP_CHG_NEEDED = 1,
2961 	/*
2962 	 * Cannot use per-vma resv count can be used, hence a new resv
2963 	 * count is enforced.
2964 	 *
2965 	 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2966 	 * that currently vma_needs_reservation() has an unwanted side
2967 	 * effect to either use end() or commit() to complete the
2968 	 * transaction.	 Hence it needs to differenciate from NEEDED.
2969 	 */
2970 	MAP_CHG_ENFORCED = 2,
2971 } map_chg_state;
2972 
2973 /*
2974  * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2975  * faults of hugetlb private mappings on top of a non-page-cache folio (in
2976  * which case even if there's a private vma resv map it won't cover such
2977  * allocation).  New call sites should (probably) never set it to true!!
2978  * When it's set, the allocation will bypass all vma level reservations.
2979  */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)2980 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2981 				    unsigned long addr, bool cow_from_owner)
2982 {
2983 	struct hugepage_subpool *spool = subpool_vma(vma);
2984 	struct hstate *h = hstate_vma(vma);
2985 	struct folio *folio;
2986 	long retval, gbl_chg;
2987 	map_chg_state map_chg;
2988 	int ret, idx;
2989 	struct hugetlb_cgroup *h_cg = NULL;
2990 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2991 
2992 	idx = hstate_index(h);
2993 
2994 	/* Whether we need a separate per-vma reservation? */
2995 	if (cow_from_owner) {
2996 		/*
2997 		 * Special case!  Since it's a CoW on top of a reserved
2998 		 * page, the private resv map doesn't count.  So it cannot
2999 		 * consume the per-vma resv map even if it's reserved.
3000 		 */
3001 		map_chg = MAP_CHG_ENFORCED;
3002 	} else {
3003 		/*
3004 		 * Examine the region/reserve map to determine if the process
3005 		 * has a reservation for the page to be allocated.  A return
3006 		 * code of zero indicates a reservation exists (no change).
3007 		 */
3008 		retval = vma_needs_reservation(h, vma, addr);
3009 		if (retval < 0)
3010 			return ERR_PTR(-ENOMEM);
3011 		map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3012 	}
3013 
3014 	/*
3015 	 * Whether we need a separate global reservation?
3016 	 *
3017 	 * Processes that did not create the mapping will have no
3018 	 * reserves as indicated by the region/reserve map. Check
3019 	 * that the allocation will not exceed the subpool limit.
3020 	 * Or if it can get one from the pool reservation directly.
3021 	 */
3022 	if (map_chg) {
3023 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3024 		if (gbl_chg < 0)
3025 			goto out_end_reservation;
3026 	} else {
3027 		/*
3028 		 * If we have the vma reservation ready, no need for extra
3029 		 * global reservation.
3030 		 */
3031 		gbl_chg = 0;
3032 	}
3033 
3034 	/*
3035 	 * If this allocation is not consuming a per-vma reservation,
3036 	 * charge the hugetlb cgroup now.
3037 	 */
3038 	if (map_chg) {
3039 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3040 			idx, pages_per_huge_page(h), &h_cg);
3041 		if (ret)
3042 			goto out_subpool_put;
3043 	}
3044 
3045 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3046 	if (ret)
3047 		goto out_uncharge_cgroup_reservation;
3048 
3049 	spin_lock_irq(&hugetlb_lock);
3050 	/*
3051 	 * glb_chg is passed to indicate whether or not a page must be taken
3052 	 * from the global free pool (global change).  gbl_chg == 0 indicates
3053 	 * a reservation exists for the allocation.
3054 	 */
3055 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3056 	if (!folio) {
3057 		spin_unlock_irq(&hugetlb_lock);
3058 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3059 		if (!folio)
3060 			goto out_uncharge_cgroup;
3061 		spin_lock_irq(&hugetlb_lock);
3062 		list_add(&folio->lru, &h->hugepage_activelist);
3063 		folio_ref_unfreeze(folio, 1);
3064 		/* Fall through */
3065 	}
3066 
3067 	/*
3068 	 * Either dequeued or buddy-allocated folio needs to add special
3069 	 * mark to the folio when it consumes a global reservation.
3070 	 */
3071 	if (!gbl_chg) {
3072 		folio_set_hugetlb_restore_reserve(folio);
3073 		h->resv_huge_pages--;
3074 	}
3075 
3076 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3077 	/* If allocation is not consuming a reservation, also store the
3078 	 * hugetlb_cgroup pointer on the page.
3079 	 */
3080 	if (map_chg) {
3081 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3082 						  h_cg, folio);
3083 	}
3084 
3085 	spin_unlock_irq(&hugetlb_lock);
3086 
3087 	hugetlb_set_folio_subpool(folio, spool);
3088 
3089 	if (map_chg != MAP_CHG_ENFORCED) {
3090 		/* commit() is only needed if the map_chg is not enforced */
3091 		retval = vma_commit_reservation(h, vma, addr);
3092 		/*
3093 		 * Check for possible race conditions. When it happens..
3094 		 * The page was added to the reservation map between
3095 		 * vma_needs_reservation and vma_commit_reservation.
3096 		 * This indicates a race with hugetlb_reserve_pages.
3097 		 * Adjust for the subpool count incremented above AND
3098 		 * in hugetlb_reserve_pages for the same page.	Also,
3099 		 * the reservation count added in hugetlb_reserve_pages
3100 		 * no longer applies.
3101 		 */
3102 		if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3103 			long rsv_adjust;
3104 
3105 			rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3106 			hugetlb_acct_memory(h, -rsv_adjust);
3107 			if (map_chg) {
3108 				spin_lock_irq(&hugetlb_lock);
3109 				hugetlb_cgroup_uncharge_folio_rsvd(
3110 				    hstate_index(h), pages_per_huge_page(h),
3111 				    folio);
3112 				spin_unlock_irq(&hugetlb_lock);
3113 			}
3114 		}
3115 	}
3116 
3117 	ret = mem_cgroup_charge_hugetlb(folio, gfp);
3118 	/*
3119 	 * Unconditionally increment NR_HUGETLB here. If it turns out that
3120 	 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3121 	 * decrement NR_HUGETLB.
3122 	 */
3123 	lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3124 
3125 	if (ret == -ENOMEM) {
3126 		free_huge_folio(folio);
3127 		return ERR_PTR(-ENOMEM);
3128 	}
3129 
3130 	return folio;
3131 
3132 out_uncharge_cgroup:
3133 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3134 out_uncharge_cgroup_reservation:
3135 	if (map_chg)
3136 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3137 						    h_cg);
3138 out_subpool_put:
3139 	if (map_chg)
3140 		hugepage_subpool_put_pages(spool, 1);
3141 out_end_reservation:
3142 	if (map_chg != MAP_CHG_ENFORCED)
3143 		vma_end_reservation(h, vma, addr);
3144 	return ERR_PTR(-ENOSPC);
3145 }
3146 
3147 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3148 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3149 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3150 {
3151 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3152 	int nr_nodes, node = nid;
3153 
3154 	/* do node specific alloc */
3155 	if (nid != NUMA_NO_NODE) {
3156 		m = memblock_alloc_exact_nid_raw(huge_page_size(h), huge_page_size(h),
3157 				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3158 		if (!m)
3159 			return 0;
3160 		goto found;
3161 	}
3162 	/* allocate from next node when distributing huge pages */
3163 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3164 		m = memblock_alloc_try_nid_raw(
3165 				huge_page_size(h), huge_page_size(h),
3166 				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3167 		/*
3168 		 * Use the beginning of the huge page to store the
3169 		 * huge_bootmem_page struct (until gather_bootmem
3170 		 * puts them into the mem_map).
3171 		 */
3172 		if (!m)
3173 			return 0;
3174 		goto found;
3175 	}
3176 
3177 found:
3178 
3179 	/*
3180 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3181 	 * rest of the struct pages will be initialized by the HugeTLB
3182 	 * subsystem itself.
3183 	 * The head struct page is used to get folio information by the HugeTLB
3184 	 * subsystem like zone id and node id.
3185 	 */
3186 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3187 		huge_page_size(h) - PAGE_SIZE);
3188 	/* Put them into a private list first because mem_map is not up yet */
3189 	INIT_LIST_HEAD(&m->list);
3190 	list_add(&m->list, &huge_boot_pages[node]);
3191 	m->hstate = h;
3192 	return 1;
3193 }
3194 
3195 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3196 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3197 					unsigned long start_page_number,
3198 					unsigned long end_page_number)
3199 {
3200 	enum zone_type zone = zone_idx(folio_zone(folio));
3201 	int nid = folio_nid(folio);
3202 	unsigned long head_pfn = folio_pfn(folio);
3203 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3204 	int ret;
3205 
3206 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3207 		struct page *page = pfn_to_page(pfn);
3208 
3209 		__ClearPageReserved(folio_page(folio, pfn - head_pfn));
3210 		__init_single_page(page, pfn, zone, nid);
3211 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3212 		ret = page_ref_freeze(page, 1);
3213 		VM_BUG_ON(!ret);
3214 	}
3215 }
3216 
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3217 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3218 					      struct hstate *h,
3219 					      unsigned long nr_pages)
3220 {
3221 	int ret;
3222 
3223 	/* Prepare folio head */
3224 	__folio_clear_reserved(folio);
3225 	__folio_set_head(folio);
3226 	ret = folio_ref_freeze(folio, 1);
3227 	VM_BUG_ON(!ret);
3228 	/* Initialize the necessary tail struct pages */
3229 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3230 	prep_compound_head((struct page *)folio, huge_page_order(h));
3231 }
3232 
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3233 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3234 					struct list_head *folio_list)
3235 {
3236 	unsigned long flags;
3237 	struct folio *folio, *tmp_f;
3238 
3239 	/* Send list for bulk vmemmap optimization processing */
3240 	hugetlb_vmemmap_optimize_folios(h, folio_list);
3241 
3242 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3243 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3244 			/*
3245 			 * If HVO fails, initialize all tail struct pages
3246 			 * We do not worry about potential long lock hold
3247 			 * time as this is early in boot and there should
3248 			 * be no contention.
3249 			 */
3250 			hugetlb_folio_init_tail_vmemmap(folio,
3251 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3252 					pages_per_huge_page(h));
3253 		}
3254 		/* Subdivide locks to achieve better parallel performance */
3255 		spin_lock_irqsave(&hugetlb_lock, flags);
3256 		__prep_account_new_huge_page(h, folio_nid(folio));
3257 		enqueue_hugetlb_folio(h, folio);
3258 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3259 	}
3260 }
3261 
3262 /*
3263  * Put bootmem huge pages into the standard lists after mem_map is up.
3264  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3265  */
gather_bootmem_prealloc_node(unsigned long nid)3266 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3267 {
3268 	LIST_HEAD(folio_list);
3269 	struct huge_bootmem_page *m;
3270 	struct hstate *h = NULL, *prev_h = NULL;
3271 
3272 	list_for_each_entry(m, &huge_boot_pages[nid], list) {
3273 		struct page *page = virt_to_page(m);
3274 		struct folio *folio = (void *)page;
3275 
3276 		h = m->hstate;
3277 		/*
3278 		 * It is possible to have multiple huge page sizes (hstates)
3279 		 * in this list.  If so, process each size separately.
3280 		 */
3281 		if (h != prev_h && prev_h != NULL)
3282 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3283 		prev_h = h;
3284 
3285 		VM_BUG_ON(!hstate_is_gigantic(h));
3286 		WARN_ON(folio_ref_count(folio) != 1);
3287 
3288 		hugetlb_folio_init_vmemmap(folio, h,
3289 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3290 		init_new_hugetlb_folio(h, folio);
3291 		list_add(&folio->lru, &folio_list);
3292 
3293 		/*
3294 		 * We need to restore the 'stolen' pages to totalram_pages
3295 		 * in order to fix confusing memory reports from free(1) and
3296 		 * other side-effects, like CommitLimit going negative.
3297 		 */
3298 		adjust_managed_page_count(page, pages_per_huge_page(h));
3299 		cond_resched();
3300 	}
3301 
3302 	prep_and_add_bootmem_folios(h, &folio_list);
3303 }
3304 
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3305 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3306 						    unsigned long end, void *arg)
3307 {
3308 	int nid;
3309 
3310 	for (nid = start; nid < end; nid++)
3311 		gather_bootmem_prealloc_node(nid);
3312 }
3313 
gather_bootmem_prealloc(void)3314 static void __init gather_bootmem_prealloc(void)
3315 {
3316 	struct padata_mt_job job = {
3317 		.thread_fn	= gather_bootmem_prealloc_parallel,
3318 		.fn_arg		= NULL,
3319 		.start		= 0,
3320 		.size		= nr_node_ids,
3321 		.align		= 1,
3322 		.min_chunk	= 1,
3323 		.max_threads	= num_node_state(N_MEMORY),
3324 		.numa_aware	= true,
3325 	};
3326 
3327 	padata_do_multithreaded(&job);
3328 }
3329 
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3330 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3331 {
3332 	unsigned long i;
3333 	char buf[32];
3334 	LIST_HEAD(folio_list);
3335 
3336 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3337 		if (hstate_is_gigantic(h)) {
3338 			if (!alloc_bootmem_huge_page(h, nid))
3339 				break;
3340 		} else {
3341 			struct folio *folio;
3342 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3343 
3344 			folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3345 					&node_states[N_MEMORY], NULL);
3346 			if (!folio)
3347 				break;
3348 			list_add(&folio->lru, &folio_list);
3349 		}
3350 		cond_resched();
3351 	}
3352 
3353 	if (!list_empty(&folio_list))
3354 		prep_and_add_allocated_folios(h, &folio_list);
3355 
3356 	if (i == h->max_huge_pages_node[nid])
3357 		return;
3358 
3359 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3360 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3361 		h->max_huge_pages_node[nid], buf, nid, i);
3362 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3363 	h->max_huge_pages_node[nid] = i;
3364 }
3365 
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3366 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3367 {
3368 	int i;
3369 	bool node_specific_alloc = false;
3370 
3371 	for_each_online_node(i) {
3372 		if (h->max_huge_pages_node[i] > 0) {
3373 			hugetlb_hstate_alloc_pages_onenode(h, i);
3374 			node_specific_alloc = true;
3375 		}
3376 	}
3377 
3378 	return node_specific_alloc;
3379 }
3380 
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3381 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3382 {
3383 	if (allocated < h->max_huge_pages) {
3384 		char buf[32];
3385 
3386 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3387 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3388 			h->max_huge_pages, buf, allocated);
3389 		h->max_huge_pages = allocated;
3390 	}
3391 }
3392 
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3393 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3394 {
3395 	struct hstate *h = (struct hstate *)arg;
3396 	int i, num = end - start;
3397 	nodemask_t node_alloc_noretry;
3398 	LIST_HEAD(folio_list);
3399 	int next_node = first_online_node;
3400 
3401 	/* Bit mask controlling how hard we retry per-node allocations.*/
3402 	nodes_clear(node_alloc_noretry);
3403 
3404 	for (i = 0; i < num; ++i) {
3405 		struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3406 						&node_alloc_noretry, &next_node);
3407 		if (!folio)
3408 			break;
3409 
3410 		list_move(&folio->lru, &folio_list);
3411 		cond_resched();
3412 	}
3413 
3414 	prep_and_add_allocated_folios(h, &folio_list);
3415 }
3416 
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3417 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3418 {
3419 	unsigned long i;
3420 
3421 	for (i = 0; i < h->max_huge_pages; ++i) {
3422 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3423 			break;
3424 		cond_resched();
3425 	}
3426 
3427 	return i;
3428 }
3429 
hugetlb_pages_alloc_boot(struct hstate * h)3430 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3431 {
3432 	struct padata_mt_job job = {
3433 		.fn_arg		= h,
3434 		.align		= 1,
3435 		.numa_aware	= true
3436 	};
3437 
3438 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3439 	job.start	= 0;
3440 	job.size	= h->max_huge_pages;
3441 
3442 	/*
3443 	 * job.max_threads is twice the num_node_state(N_MEMORY),
3444 	 *
3445 	 * Tests below indicate that a multiplier of 2 significantly improves
3446 	 * performance, and although larger values also provide improvements,
3447 	 * the gains are marginal.
3448 	 *
3449 	 * Therefore, choosing 2 as the multiplier strikes a good balance between
3450 	 * enhancing parallel processing capabilities and maintaining efficient
3451 	 * resource management.
3452 	 *
3453 	 * +------------+-------+-------+-------+-------+-------+
3454 	 * | multiplier |   1   |   2   |   3   |   4   |   5   |
3455 	 * +------------+-------+-------+-------+-------+-------+
3456 	 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3457 	 * | 2T   4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3458 	 * | 50G  2node | 71ms  | 44ms  | 37ms  | 30ms  | 31ms  |
3459 	 * +------------+-------+-------+-------+-------+-------+
3460 	 */
3461 	job.max_threads	= num_node_state(N_MEMORY) * 2;
3462 	job.min_chunk	= h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3463 	padata_do_multithreaded(&job);
3464 
3465 	return h->nr_huge_pages;
3466 }
3467 
3468 /*
3469  * NOTE: this routine is called in different contexts for gigantic and
3470  * non-gigantic pages.
3471  * - For gigantic pages, this is called early in the boot process and
3472  *   pages are allocated from memblock allocated or something similar.
3473  *   Gigantic pages are actually added to pools later with the routine
3474  *   gather_bootmem_prealloc.
3475  * - For non-gigantic pages, this is called later in the boot process after
3476  *   all of mm is up and functional.  Pages are allocated from buddy and
3477  *   then added to hugetlb pools.
3478  */
hugetlb_hstate_alloc_pages(struct hstate * h)3479 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3480 {
3481 	unsigned long allocated;
3482 	static bool initialized __initdata;
3483 
3484 	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3485 	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3486 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3487 		return;
3488 	}
3489 
3490 	/* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3491 	if (!initialized) {
3492 		int i = 0;
3493 
3494 		for (i = 0; i < MAX_NUMNODES; i++)
3495 			INIT_LIST_HEAD(&huge_boot_pages[i]);
3496 		initialized = true;
3497 	}
3498 
3499 	/* do node specific alloc */
3500 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3501 		return;
3502 
3503 	/* below will do all node balanced alloc */
3504 	if (hstate_is_gigantic(h))
3505 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3506 	else
3507 		allocated = hugetlb_pages_alloc_boot(h);
3508 
3509 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3510 }
3511 
hugetlb_init_hstates(void)3512 static void __init hugetlb_init_hstates(void)
3513 {
3514 	struct hstate *h, *h2;
3515 
3516 	for_each_hstate(h) {
3517 		/* oversize hugepages were init'ed in early boot */
3518 		if (!hstate_is_gigantic(h))
3519 			hugetlb_hstate_alloc_pages(h);
3520 
3521 		/*
3522 		 * Set demote order for each hstate.  Note that
3523 		 * h->demote_order is initially 0.
3524 		 * - We can not demote gigantic pages if runtime freeing
3525 		 *   is not supported, so skip this.
3526 		 * - If CMA allocation is possible, we can not demote
3527 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3528 		 */
3529 		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3530 			continue;
3531 		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3532 			continue;
3533 		for_each_hstate(h2) {
3534 			if (h2 == h)
3535 				continue;
3536 			if (h2->order < h->order &&
3537 			    h2->order > h->demote_order)
3538 				h->demote_order = h2->order;
3539 		}
3540 	}
3541 }
3542 
report_hugepages(void)3543 static void __init report_hugepages(void)
3544 {
3545 	struct hstate *h;
3546 
3547 	for_each_hstate(h) {
3548 		char buf[32];
3549 
3550 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3551 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3552 			buf, h->free_huge_pages);
3553 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3554 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3555 	}
3556 }
3557 
3558 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3559 static void try_to_free_low(struct hstate *h, unsigned long count,
3560 						nodemask_t *nodes_allowed)
3561 {
3562 	int i;
3563 	LIST_HEAD(page_list);
3564 
3565 	lockdep_assert_held(&hugetlb_lock);
3566 	if (hstate_is_gigantic(h))
3567 		return;
3568 
3569 	/*
3570 	 * Collect pages to be freed on a list, and free after dropping lock
3571 	 */
3572 	for_each_node_mask(i, *nodes_allowed) {
3573 		struct folio *folio, *next;
3574 		struct list_head *freel = &h->hugepage_freelists[i];
3575 		list_for_each_entry_safe(folio, next, freel, lru) {
3576 			if (count >= h->nr_huge_pages)
3577 				goto out;
3578 			if (folio_test_highmem(folio))
3579 				continue;
3580 			remove_hugetlb_folio(h, folio, false);
3581 			list_add(&folio->lru, &page_list);
3582 		}
3583 	}
3584 
3585 out:
3586 	spin_unlock_irq(&hugetlb_lock);
3587 	update_and_free_pages_bulk(h, &page_list);
3588 	spin_lock_irq(&hugetlb_lock);
3589 }
3590 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3591 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3592 						nodemask_t *nodes_allowed)
3593 {
3594 }
3595 #endif
3596 
3597 /*
3598  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3599  * balanced by operating on them in a round-robin fashion.
3600  * Returns 1 if an adjustment was made.
3601  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3602 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3603 				int delta)
3604 {
3605 	int nr_nodes, node;
3606 
3607 	lockdep_assert_held(&hugetlb_lock);
3608 	VM_BUG_ON(delta != -1 && delta != 1);
3609 
3610 	if (delta < 0) {
3611 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3612 			if (h->surplus_huge_pages_node[node])
3613 				goto found;
3614 		}
3615 	} else {
3616 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3617 			if (h->surplus_huge_pages_node[node] <
3618 					h->nr_huge_pages_node[node])
3619 				goto found;
3620 		}
3621 	}
3622 	return 0;
3623 
3624 found:
3625 	h->surplus_huge_pages += delta;
3626 	h->surplus_huge_pages_node[node] += delta;
3627 	return 1;
3628 }
3629 
3630 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3631 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3632 			      nodemask_t *nodes_allowed)
3633 {
3634 	unsigned long min_count;
3635 	unsigned long allocated;
3636 	struct folio *folio;
3637 	LIST_HEAD(page_list);
3638 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3639 
3640 	/*
3641 	 * Bit mask controlling how hard we retry per-node allocations.
3642 	 * If we can not allocate the bit mask, do not attempt to allocate
3643 	 * the requested huge pages.
3644 	 */
3645 	if (node_alloc_noretry)
3646 		nodes_clear(*node_alloc_noretry);
3647 	else
3648 		return -ENOMEM;
3649 
3650 	/*
3651 	 * resize_lock mutex prevents concurrent adjustments to number of
3652 	 * pages in hstate via the proc/sysfs interfaces.
3653 	 */
3654 	mutex_lock(&h->resize_lock);
3655 	flush_free_hpage_work(h);
3656 	spin_lock_irq(&hugetlb_lock);
3657 
3658 	/*
3659 	 * Check for a node specific request.
3660 	 * Changing node specific huge page count may require a corresponding
3661 	 * change to the global count.  In any case, the passed node mask
3662 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3663 	 */
3664 	if (nid != NUMA_NO_NODE) {
3665 		unsigned long old_count = count;
3666 
3667 		count += persistent_huge_pages(h) -
3668 			 (h->nr_huge_pages_node[nid] -
3669 			  h->surplus_huge_pages_node[nid]);
3670 		/*
3671 		 * User may have specified a large count value which caused the
3672 		 * above calculation to overflow.  In this case, they wanted
3673 		 * to allocate as many huge pages as possible.  Set count to
3674 		 * largest possible value to align with their intention.
3675 		 */
3676 		if (count < old_count)
3677 			count = ULONG_MAX;
3678 	}
3679 
3680 	/*
3681 	 * Gigantic pages runtime allocation depend on the capability for large
3682 	 * page range allocation.
3683 	 * If the system does not provide this feature, return an error when
3684 	 * the user tries to allocate gigantic pages but let the user free the
3685 	 * boottime allocated gigantic pages.
3686 	 */
3687 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3688 		if (count > persistent_huge_pages(h)) {
3689 			spin_unlock_irq(&hugetlb_lock);
3690 			mutex_unlock(&h->resize_lock);
3691 			NODEMASK_FREE(node_alloc_noretry);
3692 			return -EINVAL;
3693 		}
3694 		/* Fall through to decrease pool */
3695 	}
3696 
3697 	/*
3698 	 * Increase the pool size
3699 	 * First take pages out of surplus state.  Then make up the
3700 	 * remaining difference by allocating fresh huge pages.
3701 	 *
3702 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3703 	 * to convert a surplus huge page to a normal huge page. That is
3704 	 * not critical, though, it just means the overall size of the
3705 	 * pool might be one hugepage larger than it needs to be, but
3706 	 * within all the constraints specified by the sysctls.
3707 	 */
3708 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3709 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3710 			break;
3711 	}
3712 
3713 	allocated = 0;
3714 	while (count > (persistent_huge_pages(h) + allocated)) {
3715 		/*
3716 		 * If this allocation races such that we no longer need the
3717 		 * page, free_huge_folio will handle it by freeing the page
3718 		 * and reducing the surplus.
3719 		 */
3720 		spin_unlock_irq(&hugetlb_lock);
3721 
3722 		/* yield cpu to avoid soft lockup */
3723 		cond_resched();
3724 
3725 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3726 						node_alloc_noretry,
3727 						&h->next_nid_to_alloc);
3728 		if (!folio) {
3729 			prep_and_add_allocated_folios(h, &page_list);
3730 			spin_lock_irq(&hugetlb_lock);
3731 			goto out;
3732 		}
3733 
3734 		list_add(&folio->lru, &page_list);
3735 		allocated++;
3736 
3737 		/* Bail for signals. Probably ctrl-c from user */
3738 		if (signal_pending(current)) {
3739 			prep_and_add_allocated_folios(h, &page_list);
3740 			spin_lock_irq(&hugetlb_lock);
3741 			goto out;
3742 		}
3743 
3744 		spin_lock_irq(&hugetlb_lock);
3745 	}
3746 
3747 	/* Add allocated pages to the pool */
3748 	if (!list_empty(&page_list)) {
3749 		spin_unlock_irq(&hugetlb_lock);
3750 		prep_and_add_allocated_folios(h, &page_list);
3751 		spin_lock_irq(&hugetlb_lock);
3752 	}
3753 
3754 	/*
3755 	 * Decrease the pool size
3756 	 * First return free pages to the buddy allocator (being careful
3757 	 * to keep enough around to satisfy reservations).  Then place
3758 	 * pages into surplus state as needed so the pool will shrink
3759 	 * to the desired size as pages become free.
3760 	 *
3761 	 * By placing pages into the surplus state independent of the
3762 	 * overcommit value, we are allowing the surplus pool size to
3763 	 * exceed overcommit. There are few sane options here. Since
3764 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3765 	 * though, we'll note that we're not allowed to exceed surplus
3766 	 * and won't grow the pool anywhere else. Not until one of the
3767 	 * sysctls are changed, or the surplus pages go out of use.
3768 	 */
3769 	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3770 	min_count = max(count, min_count);
3771 	try_to_free_low(h, min_count, nodes_allowed);
3772 
3773 	/*
3774 	 * Collect pages to be removed on list without dropping lock
3775 	 */
3776 	while (min_count < persistent_huge_pages(h)) {
3777 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3778 		if (!folio)
3779 			break;
3780 
3781 		list_add(&folio->lru, &page_list);
3782 	}
3783 	/* free the pages after dropping lock */
3784 	spin_unlock_irq(&hugetlb_lock);
3785 	update_and_free_pages_bulk(h, &page_list);
3786 	flush_free_hpage_work(h);
3787 	spin_lock_irq(&hugetlb_lock);
3788 
3789 	while (count < persistent_huge_pages(h)) {
3790 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3791 			break;
3792 	}
3793 out:
3794 	h->max_huge_pages = persistent_huge_pages(h);
3795 	spin_unlock_irq(&hugetlb_lock);
3796 	mutex_unlock(&h->resize_lock);
3797 
3798 	NODEMASK_FREE(node_alloc_noretry);
3799 
3800 	return 0;
3801 }
3802 
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3803 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3804 				       struct list_head *src_list)
3805 {
3806 	long rc;
3807 	struct folio *folio, *next;
3808 	LIST_HEAD(dst_list);
3809 	LIST_HEAD(ret_list);
3810 
3811 	rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3812 	list_splice_init(&ret_list, src_list);
3813 
3814 	/*
3815 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3816 	 * Without the mutex, pages added to target hstate could be marked
3817 	 * as surplus.
3818 	 *
3819 	 * Note that we already hold src->resize_lock.  To prevent deadlock,
3820 	 * use the convention of always taking larger size hstate mutex first.
3821 	 */
3822 	mutex_lock(&dst->resize_lock);
3823 
3824 	list_for_each_entry_safe(folio, next, src_list, lru) {
3825 		int i;
3826 
3827 		if (folio_test_hugetlb_vmemmap_optimized(folio))
3828 			continue;
3829 
3830 		list_del(&folio->lru);
3831 
3832 		split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3833 		pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3834 
3835 		for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3836 			struct page *page = folio_page(folio, i);
3837 			/* Careful: see __split_huge_page_tail() */
3838 			struct folio *new_folio = (struct folio *)page;
3839 
3840 			clear_compound_head(page);
3841 			prep_compound_page(page, dst->order);
3842 
3843 			new_folio->mapping = NULL;
3844 			init_new_hugetlb_folio(dst, new_folio);
3845 			list_add(&new_folio->lru, &dst_list);
3846 		}
3847 	}
3848 
3849 	prep_and_add_allocated_folios(dst, &dst_list);
3850 
3851 	mutex_unlock(&dst->resize_lock);
3852 
3853 	return rc;
3854 }
3855 
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)3856 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3857 				  unsigned long nr_to_demote)
3858 	__must_hold(&hugetlb_lock)
3859 {
3860 	int nr_nodes, node;
3861 	struct hstate *dst;
3862 	long rc = 0;
3863 	long nr_demoted = 0;
3864 
3865 	lockdep_assert_held(&hugetlb_lock);
3866 
3867 	/* We should never get here if no demote order */
3868 	if (!src->demote_order) {
3869 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3870 		return -EINVAL;		/* internal error */
3871 	}
3872 	dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3873 
3874 	for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3875 		LIST_HEAD(list);
3876 		struct folio *folio, *next;
3877 
3878 		list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3879 			if (folio_test_hwpoison(folio))
3880 				continue;
3881 
3882 			remove_hugetlb_folio(src, folio, false);
3883 			list_add(&folio->lru, &list);
3884 
3885 			if (++nr_demoted == nr_to_demote)
3886 				break;
3887 		}
3888 
3889 		spin_unlock_irq(&hugetlb_lock);
3890 
3891 		rc = demote_free_hugetlb_folios(src, dst, &list);
3892 
3893 		spin_lock_irq(&hugetlb_lock);
3894 
3895 		list_for_each_entry_safe(folio, next, &list, lru) {
3896 			list_del(&folio->lru);
3897 			add_hugetlb_folio(src, folio, false);
3898 
3899 			nr_demoted--;
3900 		}
3901 
3902 		if (rc < 0 || nr_demoted == nr_to_demote)
3903 			break;
3904 	}
3905 
3906 	/*
3907 	 * Not absolutely necessary, but for consistency update max_huge_pages
3908 	 * based on pool changes for the demoted page.
3909 	 */
3910 	src->max_huge_pages -= nr_demoted;
3911 	dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3912 
3913 	if (rc < 0)
3914 		return rc;
3915 
3916 	if (nr_demoted)
3917 		return nr_demoted;
3918 	/*
3919 	 * Only way to get here is if all pages on free lists are poisoned.
3920 	 * Return -EBUSY so that caller will not retry.
3921 	 */
3922 	return -EBUSY;
3923 }
3924 
3925 #define HSTATE_ATTR_RO(_name) \
3926 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3927 
3928 #define HSTATE_ATTR_WO(_name) \
3929 	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3930 
3931 #define HSTATE_ATTR(_name) \
3932 	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3933 
3934 static struct kobject *hugepages_kobj;
3935 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3936 
3937 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3938 
kobj_to_hstate(struct kobject * kobj,int * nidp)3939 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3940 {
3941 	int i;
3942 
3943 	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3944 		if (hstate_kobjs[i] == kobj) {
3945 			if (nidp)
3946 				*nidp = NUMA_NO_NODE;
3947 			return &hstates[i];
3948 		}
3949 
3950 	return kobj_to_node_hstate(kobj, nidp);
3951 }
3952 
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3953 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3954 					struct kobj_attribute *attr, char *buf)
3955 {
3956 	struct hstate *h;
3957 	unsigned long nr_huge_pages;
3958 	int nid;
3959 
3960 	h = kobj_to_hstate(kobj, &nid);
3961 	if (nid == NUMA_NO_NODE)
3962 		nr_huge_pages = h->nr_huge_pages;
3963 	else
3964 		nr_huge_pages = h->nr_huge_pages_node[nid];
3965 
3966 	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3967 }
3968 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3969 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3970 					   struct hstate *h, int nid,
3971 					   unsigned long count, size_t len)
3972 {
3973 	int err;
3974 	nodemask_t nodes_allowed, *n_mask;
3975 
3976 	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3977 		return -EINVAL;
3978 
3979 	if (nid == NUMA_NO_NODE) {
3980 		/*
3981 		 * global hstate attribute
3982 		 */
3983 		if (!(obey_mempolicy &&
3984 				init_nodemask_of_mempolicy(&nodes_allowed)))
3985 			n_mask = &node_states[N_MEMORY];
3986 		else
3987 			n_mask = &nodes_allowed;
3988 	} else {
3989 		/*
3990 		 * Node specific request.  count adjustment happens in
3991 		 * set_max_huge_pages() after acquiring hugetlb_lock.
3992 		 */
3993 		init_nodemask_of_node(&nodes_allowed, nid);
3994 		n_mask = &nodes_allowed;
3995 	}
3996 
3997 	err = set_max_huge_pages(h, count, nid, n_mask);
3998 
3999 	return err ? err : len;
4000 }
4001 
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4002 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4003 					 struct kobject *kobj, const char *buf,
4004 					 size_t len)
4005 {
4006 	struct hstate *h;
4007 	unsigned long count;
4008 	int nid;
4009 	int err;
4010 
4011 	err = kstrtoul(buf, 10, &count);
4012 	if (err)
4013 		return err;
4014 
4015 	h = kobj_to_hstate(kobj, &nid);
4016 	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4017 }
4018 
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4019 static ssize_t nr_hugepages_show(struct kobject *kobj,
4020 				       struct kobj_attribute *attr, char *buf)
4021 {
4022 	return nr_hugepages_show_common(kobj, attr, buf);
4023 }
4024 
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4025 static ssize_t nr_hugepages_store(struct kobject *kobj,
4026 	       struct kobj_attribute *attr, const char *buf, size_t len)
4027 {
4028 	return nr_hugepages_store_common(false, kobj, buf, len);
4029 }
4030 HSTATE_ATTR(nr_hugepages);
4031 
4032 #ifdef CONFIG_NUMA
4033 
4034 /*
4035  * hstate attribute for optionally mempolicy-based constraint on persistent
4036  * huge page alloc/free.
4037  */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4038 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4039 					   struct kobj_attribute *attr,
4040 					   char *buf)
4041 {
4042 	return nr_hugepages_show_common(kobj, attr, buf);
4043 }
4044 
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4045 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4046 	       struct kobj_attribute *attr, const char *buf, size_t len)
4047 {
4048 	return nr_hugepages_store_common(true, kobj, buf, len);
4049 }
4050 HSTATE_ATTR(nr_hugepages_mempolicy);
4051 #endif
4052 
4053 
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4054 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4055 					struct kobj_attribute *attr, char *buf)
4056 {
4057 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4058 	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4059 }
4060 
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4061 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4062 		struct kobj_attribute *attr, const char *buf, size_t count)
4063 {
4064 	int err;
4065 	unsigned long input;
4066 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4067 
4068 	if (hstate_is_gigantic(h))
4069 		return -EINVAL;
4070 
4071 	err = kstrtoul(buf, 10, &input);
4072 	if (err)
4073 		return err;
4074 
4075 	spin_lock_irq(&hugetlb_lock);
4076 	h->nr_overcommit_huge_pages = input;
4077 	spin_unlock_irq(&hugetlb_lock);
4078 
4079 	return count;
4080 }
4081 HSTATE_ATTR(nr_overcommit_hugepages);
4082 
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4083 static ssize_t free_hugepages_show(struct kobject *kobj,
4084 					struct kobj_attribute *attr, char *buf)
4085 {
4086 	struct hstate *h;
4087 	unsigned long free_huge_pages;
4088 	int nid;
4089 
4090 	h = kobj_to_hstate(kobj, &nid);
4091 	if (nid == NUMA_NO_NODE)
4092 		free_huge_pages = h->free_huge_pages;
4093 	else
4094 		free_huge_pages = h->free_huge_pages_node[nid];
4095 
4096 	return sysfs_emit(buf, "%lu\n", free_huge_pages);
4097 }
4098 HSTATE_ATTR_RO(free_hugepages);
4099 
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4100 static ssize_t resv_hugepages_show(struct kobject *kobj,
4101 					struct kobj_attribute *attr, char *buf)
4102 {
4103 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4104 	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4105 }
4106 HSTATE_ATTR_RO(resv_hugepages);
4107 
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4108 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4109 					struct kobj_attribute *attr, char *buf)
4110 {
4111 	struct hstate *h;
4112 	unsigned long surplus_huge_pages;
4113 	int nid;
4114 
4115 	h = kobj_to_hstate(kobj, &nid);
4116 	if (nid == NUMA_NO_NODE)
4117 		surplus_huge_pages = h->surplus_huge_pages;
4118 	else
4119 		surplus_huge_pages = h->surplus_huge_pages_node[nid];
4120 
4121 	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4122 }
4123 HSTATE_ATTR_RO(surplus_hugepages);
4124 
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4125 static ssize_t demote_store(struct kobject *kobj,
4126 	       struct kobj_attribute *attr, const char *buf, size_t len)
4127 {
4128 	unsigned long nr_demote;
4129 	unsigned long nr_available;
4130 	nodemask_t nodes_allowed, *n_mask;
4131 	struct hstate *h;
4132 	int err;
4133 	int nid;
4134 
4135 	err = kstrtoul(buf, 10, &nr_demote);
4136 	if (err)
4137 		return err;
4138 	h = kobj_to_hstate(kobj, &nid);
4139 
4140 	if (nid != NUMA_NO_NODE) {
4141 		init_nodemask_of_node(&nodes_allowed, nid);
4142 		n_mask = &nodes_allowed;
4143 	} else {
4144 		n_mask = &node_states[N_MEMORY];
4145 	}
4146 
4147 	/* Synchronize with other sysfs operations modifying huge pages */
4148 	mutex_lock(&h->resize_lock);
4149 	spin_lock_irq(&hugetlb_lock);
4150 
4151 	while (nr_demote) {
4152 		long rc;
4153 
4154 		/*
4155 		 * Check for available pages to demote each time thorough the
4156 		 * loop as demote_pool_huge_page will drop hugetlb_lock.
4157 		 */
4158 		if (nid != NUMA_NO_NODE)
4159 			nr_available = h->free_huge_pages_node[nid];
4160 		else
4161 			nr_available = h->free_huge_pages;
4162 		nr_available -= h->resv_huge_pages;
4163 		if (!nr_available)
4164 			break;
4165 
4166 		rc = demote_pool_huge_page(h, n_mask, nr_demote);
4167 		if (rc < 0) {
4168 			err = rc;
4169 			break;
4170 		}
4171 
4172 		nr_demote -= rc;
4173 	}
4174 
4175 	spin_unlock_irq(&hugetlb_lock);
4176 	mutex_unlock(&h->resize_lock);
4177 
4178 	if (err)
4179 		return err;
4180 	return len;
4181 }
4182 HSTATE_ATTR_WO(demote);
4183 
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4184 static ssize_t demote_size_show(struct kobject *kobj,
4185 					struct kobj_attribute *attr, char *buf)
4186 {
4187 	struct hstate *h = kobj_to_hstate(kobj, NULL);
4188 	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4189 
4190 	return sysfs_emit(buf, "%lukB\n", demote_size);
4191 }
4192 
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4193 static ssize_t demote_size_store(struct kobject *kobj,
4194 					struct kobj_attribute *attr,
4195 					const char *buf, size_t count)
4196 {
4197 	struct hstate *h, *demote_hstate;
4198 	unsigned long demote_size;
4199 	unsigned int demote_order;
4200 
4201 	demote_size = (unsigned long)memparse(buf, NULL);
4202 
4203 	demote_hstate = size_to_hstate(demote_size);
4204 	if (!demote_hstate)
4205 		return -EINVAL;
4206 	demote_order = demote_hstate->order;
4207 	if (demote_order < HUGETLB_PAGE_ORDER)
4208 		return -EINVAL;
4209 
4210 	/* demote order must be smaller than hstate order */
4211 	h = kobj_to_hstate(kobj, NULL);
4212 	if (demote_order >= h->order)
4213 		return -EINVAL;
4214 
4215 	/* resize_lock synchronizes access to demote size and writes */
4216 	mutex_lock(&h->resize_lock);
4217 	h->demote_order = demote_order;
4218 	mutex_unlock(&h->resize_lock);
4219 
4220 	return count;
4221 }
4222 HSTATE_ATTR(demote_size);
4223 
4224 static struct attribute *hstate_attrs[] = {
4225 	&nr_hugepages_attr.attr,
4226 	&nr_overcommit_hugepages_attr.attr,
4227 	&free_hugepages_attr.attr,
4228 	&resv_hugepages_attr.attr,
4229 	&surplus_hugepages_attr.attr,
4230 #ifdef CONFIG_NUMA
4231 	&nr_hugepages_mempolicy_attr.attr,
4232 #endif
4233 	NULL,
4234 };
4235 
4236 static const struct attribute_group hstate_attr_group = {
4237 	.attrs = hstate_attrs,
4238 };
4239 
4240 static struct attribute *hstate_demote_attrs[] = {
4241 	&demote_size_attr.attr,
4242 	&demote_attr.attr,
4243 	NULL,
4244 };
4245 
4246 static const struct attribute_group hstate_demote_attr_group = {
4247 	.attrs = hstate_demote_attrs,
4248 };
4249 
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4250 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4251 				    struct kobject **hstate_kobjs,
4252 				    const struct attribute_group *hstate_attr_group)
4253 {
4254 	int retval;
4255 	int hi = hstate_index(h);
4256 
4257 	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4258 	if (!hstate_kobjs[hi])
4259 		return -ENOMEM;
4260 
4261 	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4262 	if (retval) {
4263 		kobject_put(hstate_kobjs[hi]);
4264 		hstate_kobjs[hi] = NULL;
4265 		return retval;
4266 	}
4267 
4268 	if (h->demote_order) {
4269 		retval = sysfs_create_group(hstate_kobjs[hi],
4270 					    &hstate_demote_attr_group);
4271 		if (retval) {
4272 			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4273 			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4274 			kobject_put(hstate_kobjs[hi]);
4275 			hstate_kobjs[hi] = NULL;
4276 			return retval;
4277 		}
4278 	}
4279 
4280 	return 0;
4281 }
4282 
4283 #ifdef CONFIG_NUMA
4284 static bool hugetlb_sysfs_initialized __ro_after_init;
4285 
4286 /*
4287  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4288  * with node devices in node_devices[] using a parallel array.  The array
4289  * index of a node device or _hstate == node id.
4290  * This is here to avoid any static dependency of the node device driver, in
4291  * the base kernel, on the hugetlb module.
4292  */
4293 struct node_hstate {
4294 	struct kobject		*hugepages_kobj;
4295 	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4296 };
4297 static struct node_hstate node_hstates[MAX_NUMNODES];
4298 
4299 /*
4300  * A subset of global hstate attributes for node devices
4301  */
4302 static struct attribute *per_node_hstate_attrs[] = {
4303 	&nr_hugepages_attr.attr,
4304 	&free_hugepages_attr.attr,
4305 	&surplus_hugepages_attr.attr,
4306 	NULL,
4307 };
4308 
4309 static const struct attribute_group per_node_hstate_attr_group = {
4310 	.attrs = per_node_hstate_attrs,
4311 };
4312 
4313 /*
4314  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4315  * Returns node id via non-NULL nidp.
4316  */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4317 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4318 {
4319 	int nid;
4320 
4321 	for (nid = 0; nid < nr_node_ids; nid++) {
4322 		struct node_hstate *nhs = &node_hstates[nid];
4323 		int i;
4324 		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4325 			if (nhs->hstate_kobjs[i] == kobj) {
4326 				if (nidp)
4327 					*nidp = nid;
4328 				return &hstates[i];
4329 			}
4330 	}
4331 
4332 	BUG();
4333 	return NULL;
4334 }
4335 
4336 /*
4337  * Unregister hstate attributes from a single node device.
4338  * No-op if no hstate attributes attached.
4339  */
hugetlb_unregister_node(struct node * node)4340 void hugetlb_unregister_node(struct node *node)
4341 {
4342 	struct hstate *h;
4343 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4344 
4345 	if (!nhs->hugepages_kobj)
4346 		return;		/* no hstate attributes */
4347 
4348 	for_each_hstate(h) {
4349 		int idx = hstate_index(h);
4350 		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4351 
4352 		if (!hstate_kobj)
4353 			continue;
4354 		if (h->demote_order)
4355 			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4356 		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4357 		kobject_put(hstate_kobj);
4358 		nhs->hstate_kobjs[idx] = NULL;
4359 	}
4360 
4361 	kobject_put(nhs->hugepages_kobj);
4362 	nhs->hugepages_kobj = NULL;
4363 }
4364 
4365 
4366 /*
4367  * Register hstate attributes for a single node device.
4368  * No-op if attributes already registered.
4369  */
hugetlb_register_node(struct node * node)4370 void hugetlb_register_node(struct node *node)
4371 {
4372 	struct hstate *h;
4373 	struct node_hstate *nhs = &node_hstates[node->dev.id];
4374 	int err;
4375 
4376 	if (!hugetlb_sysfs_initialized)
4377 		return;
4378 
4379 	if (nhs->hugepages_kobj)
4380 		return;		/* already allocated */
4381 
4382 	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4383 							&node->dev.kobj);
4384 	if (!nhs->hugepages_kobj)
4385 		return;
4386 
4387 	for_each_hstate(h) {
4388 		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4389 						nhs->hstate_kobjs,
4390 						&per_node_hstate_attr_group);
4391 		if (err) {
4392 			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4393 				h->name, node->dev.id);
4394 			hugetlb_unregister_node(node);
4395 			break;
4396 		}
4397 	}
4398 }
4399 
4400 /*
4401  * hugetlb init time:  register hstate attributes for all registered node
4402  * devices of nodes that have memory.  All on-line nodes should have
4403  * registered their associated device by this time.
4404  */
hugetlb_register_all_nodes(void)4405 static void __init hugetlb_register_all_nodes(void)
4406 {
4407 	int nid;
4408 
4409 	for_each_online_node(nid)
4410 		hugetlb_register_node(node_devices[nid]);
4411 }
4412 #else	/* !CONFIG_NUMA */
4413 
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4414 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4415 {
4416 	BUG();
4417 	if (nidp)
4418 		*nidp = -1;
4419 	return NULL;
4420 }
4421 
hugetlb_register_all_nodes(void)4422 static void hugetlb_register_all_nodes(void) { }
4423 
4424 #endif
4425 
4426 #ifdef CONFIG_CMA
4427 static void __init hugetlb_cma_check(void);
4428 #else
hugetlb_cma_check(void)4429 static inline __init void hugetlb_cma_check(void)
4430 {
4431 }
4432 #endif
4433 
hugetlb_sysfs_init(void)4434 static void __init hugetlb_sysfs_init(void)
4435 {
4436 	struct hstate *h;
4437 	int err;
4438 
4439 	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4440 	if (!hugepages_kobj)
4441 		return;
4442 
4443 	for_each_hstate(h) {
4444 		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4445 					 hstate_kobjs, &hstate_attr_group);
4446 		if (err)
4447 			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4448 	}
4449 
4450 #ifdef CONFIG_NUMA
4451 	hugetlb_sysfs_initialized = true;
4452 #endif
4453 	hugetlb_register_all_nodes();
4454 }
4455 
4456 #ifdef CONFIG_SYSCTL
4457 static void hugetlb_sysctl_init(void);
4458 #else
hugetlb_sysctl_init(void)4459 static inline void hugetlb_sysctl_init(void) { }
4460 #endif
4461 
hugetlb_init(void)4462 static int __init hugetlb_init(void)
4463 {
4464 	int i;
4465 
4466 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4467 			__NR_HPAGEFLAGS);
4468 
4469 	if (!hugepages_supported()) {
4470 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4471 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4472 		return 0;
4473 	}
4474 
4475 	/*
4476 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4477 	 * architectures depend on setup being done here.
4478 	 */
4479 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4480 	if (!parsed_default_hugepagesz) {
4481 		/*
4482 		 * If we did not parse a default huge page size, set
4483 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4484 		 * number of huge pages for this default size was implicitly
4485 		 * specified, set that here as well.
4486 		 * Note that the implicit setting will overwrite an explicit
4487 		 * setting.  A warning will be printed in this case.
4488 		 */
4489 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4490 		if (default_hstate_max_huge_pages) {
4491 			if (default_hstate.max_huge_pages) {
4492 				char buf[32];
4493 
4494 				string_get_size(huge_page_size(&default_hstate),
4495 					1, STRING_UNITS_2, buf, 32);
4496 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4497 					default_hstate.max_huge_pages, buf);
4498 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4499 					default_hstate_max_huge_pages);
4500 			}
4501 			default_hstate.max_huge_pages =
4502 				default_hstate_max_huge_pages;
4503 
4504 			for_each_online_node(i)
4505 				default_hstate.max_huge_pages_node[i] =
4506 					default_hugepages_in_node[i];
4507 		}
4508 	}
4509 
4510 	hugetlb_cma_check();
4511 	hugetlb_init_hstates();
4512 	gather_bootmem_prealloc();
4513 	report_hugepages();
4514 
4515 	hugetlb_sysfs_init();
4516 	hugetlb_cgroup_file_init();
4517 	hugetlb_sysctl_init();
4518 
4519 #ifdef CONFIG_SMP
4520 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4521 #else
4522 	num_fault_mutexes = 1;
4523 #endif
4524 	hugetlb_fault_mutex_table =
4525 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4526 			      GFP_KERNEL);
4527 	BUG_ON(!hugetlb_fault_mutex_table);
4528 
4529 	for (i = 0; i < num_fault_mutexes; i++)
4530 		mutex_init(&hugetlb_fault_mutex_table[i]);
4531 	return 0;
4532 }
4533 subsys_initcall(hugetlb_init);
4534 
4535 /* Overwritten by architectures with more huge page sizes */
__init(weak)4536 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4537 {
4538 	return size == HPAGE_SIZE;
4539 }
4540 
hugetlb_add_hstate(unsigned int order)4541 void __init hugetlb_add_hstate(unsigned int order)
4542 {
4543 	struct hstate *h;
4544 	unsigned long i;
4545 
4546 	if (size_to_hstate(PAGE_SIZE << order)) {
4547 		return;
4548 	}
4549 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4550 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4551 	h = &hstates[hugetlb_max_hstate++];
4552 	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4553 	h->order = order;
4554 	h->mask = ~(huge_page_size(h) - 1);
4555 	for (i = 0; i < MAX_NUMNODES; ++i)
4556 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4557 	INIT_LIST_HEAD(&h->hugepage_activelist);
4558 	h->next_nid_to_alloc = first_memory_node;
4559 	h->next_nid_to_free = first_memory_node;
4560 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4561 					huge_page_size(h)/SZ_1K);
4562 
4563 	parsed_hstate = h;
4564 }
4565 
hugetlb_node_alloc_supported(void)4566 bool __init __weak hugetlb_node_alloc_supported(void)
4567 {
4568 	return true;
4569 }
4570 
hugepages_clear_pages_in_node(void)4571 static void __init hugepages_clear_pages_in_node(void)
4572 {
4573 	if (!hugetlb_max_hstate) {
4574 		default_hstate_max_huge_pages = 0;
4575 		memset(default_hugepages_in_node, 0,
4576 			sizeof(default_hugepages_in_node));
4577 	} else {
4578 		parsed_hstate->max_huge_pages = 0;
4579 		memset(parsed_hstate->max_huge_pages_node, 0,
4580 			sizeof(parsed_hstate->max_huge_pages_node));
4581 	}
4582 }
4583 
4584 /*
4585  * hugepages command line processing
4586  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4587  * specification.  If not, ignore the hugepages value.  hugepages can also
4588  * be the first huge page command line  option in which case it implicitly
4589  * specifies the number of huge pages for the default size.
4590  */
hugepages_setup(char * s)4591 static int __init hugepages_setup(char *s)
4592 {
4593 	unsigned long *mhp;
4594 	static unsigned long *last_mhp;
4595 	int node = NUMA_NO_NODE;
4596 	int count;
4597 	unsigned long tmp;
4598 	char *p = s;
4599 
4600 	if (!parsed_valid_hugepagesz) {
4601 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4602 		parsed_valid_hugepagesz = true;
4603 		return 1;
4604 	}
4605 
4606 	/*
4607 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4608 	 * yet, so this hugepages= parameter goes to the "default hstate".
4609 	 * Otherwise, it goes with the previously parsed hugepagesz or
4610 	 * default_hugepagesz.
4611 	 */
4612 	else if (!hugetlb_max_hstate)
4613 		mhp = &default_hstate_max_huge_pages;
4614 	else
4615 		mhp = &parsed_hstate->max_huge_pages;
4616 
4617 	if (mhp == last_mhp) {
4618 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4619 		return 1;
4620 	}
4621 
4622 	while (*p) {
4623 		count = 0;
4624 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4625 			goto invalid;
4626 		/* Parameter is node format */
4627 		if (p[count] == ':') {
4628 			if (!hugetlb_node_alloc_supported()) {
4629 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4630 				return 1;
4631 			}
4632 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4633 				goto invalid;
4634 			node = array_index_nospec(tmp, MAX_NUMNODES);
4635 			p += count + 1;
4636 			/* Parse hugepages */
4637 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4638 				goto invalid;
4639 			if (!hugetlb_max_hstate)
4640 				default_hugepages_in_node[node] = tmp;
4641 			else
4642 				parsed_hstate->max_huge_pages_node[node] = tmp;
4643 			*mhp += tmp;
4644 			/* Go to parse next node*/
4645 			if (p[count] == ',')
4646 				p += count + 1;
4647 			else
4648 				break;
4649 		} else {
4650 			if (p != s)
4651 				goto invalid;
4652 			*mhp = tmp;
4653 			break;
4654 		}
4655 	}
4656 
4657 	/*
4658 	 * Global state is always initialized later in hugetlb_init.
4659 	 * But we need to allocate gigantic hstates here early to still
4660 	 * use the bootmem allocator.
4661 	 */
4662 	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4663 		hugetlb_hstate_alloc_pages(parsed_hstate);
4664 
4665 	last_mhp = mhp;
4666 
4667 	return 1;
4668 
4669 invalid:
4670 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4671 	hugepages_clear_pages_in_node();
4672 	return 1;
4673 }
4674 __setup("hugepages=", hugepages_setup);
4675 
4676 /*
4677  * hugepagesz command line processing
4678  * A specific huge page size can only be specified once with hugepagesz.
4679  * hugepagesz is followed by hugepages on the command line.  The global
4680  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4681  * hugepagesz argument was valid.
4682  */
hugepagesz_setup(char * s)4683 static int __init hugepagesz_setup(char *s)
4684 {
4685 	unsigned long size;
4686 	struct hstate *h;
4687 
4688 	parsed_valid_hugepagesz = false;
4689 	size = (unsigned long)memparse(s, NULL);
4690 
4691 	if (!arch_hugetlb_valid_size(size)) {
4692 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4693 		return 1;
4694 	}
4695 
4696 	h = size_to_hstate(size);
4697 	if (h) {
4698 		/*
4699 		 * hstate for this size already exists.  This is normally
4700 		 * an error, but is allowed if the existing hstate is the
4701 		 * default hstate.  More specifically, it is only allowed if
4702 		 * the number of huge pages for the default hstate was not
4703 		 * previously specified.
4704 		 */
4705 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4706 		    default_hstate.max_huge_pages) {
4707 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4708 			return 1;
4709 		}
4710 
4711 		/*
4712 		 * No need to call hugetlb_add_hstate() as hstate already
4713 		 * exists.  But, do set parsed_hstate so that a following
4714 		 * hugepages= parameter will be applied to this hstate.
4715 		 */
4716 		parsed_hstate = h;
4717 		parsed_valid_hugepagesz = true;
4718 		return 1;
4719 	}
4720 
4721 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4722 	parsed_valid_hugepagesz = true;
4723 	return 1;
4724 }
4725 __setup("hugepagesz=", hugepagesz_setup);
4726 
4727 /*
4728  * default_hugepagesz command line input
4729  * Only one instance of default_hugepagesz allowed on command line.
4730  */
default_hugepagesz_setup(char * s)4731 static int __init default_hugepagesz_setup(char *s)
4732 {
4733 	unsigned long size;
4734 	int i;
4735 
4736 	parsed_valid_hugepagesz = false;
4737 	if (parsed_default_hugepagesz) {
4738 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4739 		return 1;
4740 	}
4741 
4742 	size = (unsigned long)memparse(s, NULL);
4743 
4744 	if (!arch_hugetlb_valid_size(size)) {
4745 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4746 		return 1;
4747 	}
4748 
4749 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4750 	parsed_valid_hugepagesz = true;
4751 	parsed_default_hugepagesz = true;
4752 	default_hstate_idx = hstate_index(size_to_hstate(size));
4753 
4754 	/*
4755 	 * The number of default huge pages (for this size) could have been
4756 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4757 	 * then default_hstate_max_huge_pages is set.  If the default huge
4758 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4759 	 * allocated here from bootmem allocator.
4760 	 */
4761 	if (default_hstate_max_huge_pages) {
4762 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4763 		for_each_online_node(i)
4764 			default_hstate.max_huge_pages_node[i] =
4765 				default_hugepages_in_node[i];
4766 		if (hstate_is_gigantic(&default_hstate))
4767 			hugetlb_hstate_alloc_pages(&default_hstate);
4768 		default_hstate_max_huge_pages = 0;
4769 	}
4770 
4771 	return 1;
4772 }
4773 __setup("default_hugepagesz=", default_hugepagesz_setup);
4774 
allowed_mems_nr(struct hstate * h)4775 static unsigned int allowed_mems_nr(struct hstate *h)
4776 {
4777 	int node;
4778 	unsigned int nr = 0;
4779 	nodemask_t *mbind_nodemask;
4780 	unsigned int *array = h->free_huge_pages_node;
4781 	gfp_t gfp_mask = htlb_alloc_mask(h);
4782 
4783 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4784 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4785 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4786 			nr += array[node];
4787 	}
4788 
4789 	return nr;
4790 }
4791 
4792 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4793 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4794 					  void *buffer, size_t *length,
4795 					  loff_t *ppos, unsigned long *out)
4796 {
4797 	struct ctl_table dup_table;
4798 
4799 	/*
4800 	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4801 	 * can duplicate the @table and alter the duplicate of it.
4802 	 */
4803 	dup_table = *table;
4804 	dup_table.data = out;
4805 
4806 	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4807 }
4808 
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4809 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4810 			 const struct ctl_table *table, int write,
4811 			 void *buffer, size_t *length, loff_t *ppos)
4812 {
4813 	struct hstate *h = &default_hstate;
4814 	unsigned long tmp = h->max_huge_pages;
4815 	int ret;
4816 
4817 	if (!hugepages_supported())
4818 		return -EOPNOTSUPP;
4819 
4820 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4821 					     &tmp);
4822 	if (ret)
4823 		goto out;
4824 
4825 	if (write)
4826 		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4827 						  NUMA_NO_NODE, tmp, *length);
4828 out:
4829 	return ret;
4830 }
4831 
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4832 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4833 			  void *buffer, size_t *length, loff_t *ppos)
4834 {
4835 
4836 	return hugetlb_sysctl_handler_common(false, table, write,
4837 							buffer, length, ppos);
4838 }
4839 
4840 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4841 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4842 			  void *buffer, size_t *length, loff_t *ppos)
4843 {
4844 	return hugetlb_sysctl_handler_common(true, table, write,
4845 							buffer, length, ppos);
4846 }
4847 #endif /* CONFIG_NUMA */
4848 
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4849 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4850 		void *buffer, size_t *length, loff_t *ppos)
4851 {
4852 	struct hstate *h = &default_hstate;
4853 	unsigned long tmp;
4854 	int ret;
4855 
4856 	if (!hugepages_supported())
4857 		return -EOPNOTSUPP;
4858 
4859 	tmp = h->nr_overcommit_huge_pages;
4860 
4861 	if (write && hstate_is_gigantic(h))
4862 		return -EINVAL;
4863 
4864 	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4865 					     &tmp);
4866 	if (ret)
4867 		goto out;
4868 
4869 	if (write) {
4870 		spin_lock_irq(&hugetlb_lock);
4871 		h->nr_overcommit_huge_pages = tmp;
4872 		spin_unlock_irq(&hugetlb_lock);
4873 	}
4874 out:
4875 	return ret;
4876 }
4877 
4878 static const struct ctl_table hugetlb_table[] = {
4879 	{
4880 		.procname	= "nr_hugepages",
4881 		.data		= NULL,
4882 		.maxlen		= sizeof(unsigned long),
4883 		.mode		= 0644,
4884 		.proc_handler	= hugetlb_sysctl_handler,
4885 	},
4886 #ifdef CONFIG_NUMA
4887 	{
4888 		.procname       = "nr_hugepages_mempolicy",
4889 		.data           = NULL,
4890 		.maxlen         = sizeof(unsigned long),
4891 		.mode           = 0644,
4892 		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4893 	},
4894 #endif
4895 	{
4896 		.procname	= "hugetlb_shm_group",
4897 		.data		= &sysctl_hugetlb_shm_group,
4898 		.maxlen		= sizeof(gid_t),
4899 		.mode		= 0644,
4900 		.proc_handler	= proc_dointvec,
4901 	},
4902 	{
4903 		.procname	= "nr_overcommit_hugepages",
4904 		.data		= NULL,
4905 		.maxlen		= sizeof(unsigned long),
4906 		.mode		= 0644,
4907 		.proc_handler	= hugetlb_overcommit_handler,
4908 	},
4909 };
4910 
hugetlb_sysctl_init(void)4911 static void hugetlb_sysctl_init(void)
4912 {
4913 	register_sysctl_init("vm", hugetlb_table);
4914 }
4915 #endif /* CONFIG_SYSCTL */
4916 
hugetlb_report_meminfo(struct seq_file * m)4917 void hugetlb_report_meminfo(struct seq_file *m)
4918 {
4919 	struct hstate *h;
4920 	unsigned long total = 0;
4921 
4922 	if (!hugepages_supported())
4923 		return;
4924 
4925 	for_each_hstate(h) {
4926 		unsigned long count = h->nr_huge_pages;
4927 
4928 		total += huge_page_size(h) * count;
4929 
4930 		if (h == &default_hstate)
4931 			seq_printf(m,
4932 				   "HugePages_Total:   %5lu\n"
4933 				   "HugePages_Free:    %5lu\n"
4934 				   "HugePages_Rsvd:    %5lu\n"
4935 				   "HugePages_Surp:    %5lu\n"
4936 				   "Hugepagesize:   %8lu kB\n",
4937 				   count,
4938 				   h->free_huge_pages,
4939 				   h->resv_huge_pages,
4940 				   h->surplus_huge_pages,
4941 				   huge_page_size(h) / SZ_1K);
4942 	}
4943 
4944 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4945 }
4946 
hugetlb_report_node_meminfo(char * buf,int len,int nid)4947 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4948 {
4949 	struct hstate *h = &default_hstate;
4950 
4951 	if (!hugepages_supported())
4952 		return 0;
4953 
4954 	return sysfs_emit_at(buf, len,
4955 			     "Node %d HugePages_Total: %5u\n"
4956 			     "Node %d HugePages_Free:  %5u\n"
4957 			     "Node %d HugePages_Surp:  %5u\n",
4958 			     nid, h->nr_huge_pages_node[nid],
4959 			     nid, h->free_huge_pages_node[nid],
4960 			     nid, h->surplus_huge_pages_node[nid]);
4961 }
4962 
hugetlb_show_meminfo_node(int nid)4963 void hugetlb_show_meminfo_node(int nid)
4964 {
4965 	struct hstate *h;
4966 
4967 	if (!hugepages_supported())
4968 		return;
4969 
4970 	for_each_hstate(h)
4971 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4972 			nid,
4973 			h->nr_huge_pages_node[nid],
4974 			h->free_huge_pages_node[nid],
4975 			h->surplus_huge_pages_node[nid],
4976 			huge_page_size(h) / SZ_1K);
4977 }
4978 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4979 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4980 {
4981 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4982 		   K(atomic_long_read(&mm->hugetlb_usage)));
4983 }
4984 
4985 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4986 unsigned long hugetlb_total_pages(void)
4987 {
4988 	struct hstate *h;
4989 	unsigned long nr_total_pages = 0;
4990 
4991 	for_each_hstate(h)
4992 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4993 	return nr_total_pages;
4994 }
4995 
hugetlb_acct_memory(struct hstate * h,long delta)4996 static int hugetlb_acct_memory(struct hstate *h, long delta)
4997 {
4998 	int ret = -ENOMEM;
4999 
5000 	if (!delta)
5001 		return 0;
5002 
5003 	spin_lock_irq(&hugetlb_lock);
5004 	/*
5005 	 * When cpuset is configured, it breaks the strict hugetlb page
5006 	 * reservation as the accounting is done on a global variable. Such
5007 	 * reservation is completely rubbish in the presence of cpuset because
5008 	 * the reservation is not checked against page availability for the
5009 	 * current cpuset. Application can still potentially OOM'ed by kernel
5010 	 * with lack of free htlb page in cpuset that the task is in.
5011 	 * Attempt to enforce strict accounting with cpuset is almost
5012 	 * impossible (or too ugly) because cpuset is too fluid that
5013 	 * task or memory node can be dynamically moved between cpusets.
5014 	 *
5015 	 * The change of semantics for shared hugetlb mapping with cpuset is
5016 	 * undesirable. However, in order to preserve some of the semantics,
5017 	 * we fall back to check against current free page availability as
5018 	 * a best attempt and hopefully to minimize the impact of changing
5019 	 * semantics that cpuset has.
5020 	 *
5021 	 * Apart from cpuset, we also have memory policy mechanism that
5022 	 * also determines from which node the kernel will allocate memory
5023 	 * in a NUMA system. So similar to cpuset, we also should consider
5024 	 * the memory policy of the current task. Similar to the description
5025 	 * above.
5026 	 */
5027 	if (delta > 0) {
5028 		if (gather_surplus_pages(h, delta) < 0)
5029 			goto out;
5030 
5031 		if (delta > allowed_mems_nr(h)) {
5032 			return_unused_surplus_pages(h, delta);
5033 			goto out;
5034 		}
5035 	}
5036 
5037 	ret = 0;
5038 	if (delta < 0)
5039 		return_unused_surplus_pages(h, (unsigned long) -delta);
5040 
5041 out:
5042 	spin_unlock_irq(&hugetlb_lock);
5043 	return ret;
5044 }
5045 
hugetlb_vm_op_open(struct vm_area_struct * vma)5046 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5047 {
5048 	struct resv_map *resv = vma_resv_map(vma);
5049 
5050 	/*
5051 	 * HPAGE_RESV_OWNER indicates a private mapping.
5052 	 * This new VMA should share its siblings reservation map if present.
5053 	 * The VMA will only ever have a valid reservation map pointer where
5054 	 * it is being copied for another still existing VMA.  As that VMA
5055 	 * has a reference to the reservation map it cannot disappear until
5056 	 * after this open call completes.  It is therefore safe to take a
5057 	 * new reference here without additional locking.
5058 	 */
5059 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5060 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5061 		kref_get(&resv->refs);
5062 	}
5063 
5064 	/*
5065 	 * vma_lock structure for sharable mappings is vma specific.
5066 	 * Clear old pointer (if copied via vm_area_dup) and allocate
5067 	 * new structure.  Before clearing, make sure vma_lock is not
5068 	 * for this vma.
5069 	 */
5070 	if (vma->vm_flags & VM_MAYSHARE) {
5071 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5072 
5073 		if (vma_lock) {
5074 			if (vma_lock->vma != vma) {
5075 				vma->vm_private_data = NULL;
5076 				hugetlb_vma_lock_alloc(vma);
5077 			} else
5078 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5079 		} else
5080 			hugetlb_vma_lock_alloc(vma);
5081 	}
5082 }
5083 
hugetlb_vm_op_close(struct vm_area_struct * vma)5084 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5085 {
5086 	struct hstate *h = hstate_vma(vma);
5087 	struct resv_map *resv;
5088 	struct hugepage_subpool *spool = subpool_vma(vma);
5089 	unsigned long reserve, start, end;
5090 	long gbl_reserve;
5091 
5092 	hugetlb_vma_lock_free(vma);
5093 
5094 	resv = vma_resv_map(vma);
5095 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5096 		return;
5097 
5098 	start = vma_hugecache_offset(h, vma, vma->vm_start);
5099 	end = vma_hugecache_offset(h, vma, vma->vm_end);
5100 
5101 	reserve = (end - start) - region_count(resv, start, end);
5102 	hugetlb_cgroup_uncharge_counter(resv, start, end);
5103 	if (reserve) {
5104 		/*
5105 		 * Decrement reserve counts.  The global reserve count may be
5106 		 * adjusted if the subpool has a minimum size.
5107 		 */
5108 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5109 		hugetlb_acct_memory(h, -gbl_reserve);
5110 	}
5111 
5112 	kref_put(&resv->refs, resv_map_release);
5113 }
5114 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5115 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5116 {
5117 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
5118 		return -EINVAL;
5119 
5120 	/*
5121 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5122 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5123 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5124 	 */
5125 	if (addr & ~PUD_MASK) {
5126 		/*
5127 		 * hugetlb_vm_op_split is called right before we attempt to
5128 		 * split the VMA. We will need to unshare PMDs in the old and
5129 		 * new VMAs, so let's unshare before we split.
5130 		 */
5131 		unsigned long floor = addr & PUD_MASK;
5132 		unsigned long ceil = floor + PUD_SIZE;
5133 
5134 		if (floor >= vma->vm_start && ceil <= vma->vm_end)
5135 			hugetlb_unshare_pmds(vma, floor, ceil);
5136 	}
5137 
5138 	return 0;
5139 }
5140 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5141 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5142 {
5143 	return huge_page_size(hstate_vma(vma));
5144 }
5145 
5146 /*
5147  * We cannot handle pagefaults against hugetlb pages at all.  They cause
5148  * handle_mm_fault() to try to instantiate regular-sized pages in the
5149  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
5150  * this far.
5151  */
hugetlb_vm_op_fault(struct vm_fault * vmf)5152 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5153 {
5154 	BUG();
5155 	return 0;
5156 }
5157 
5158 /*
5159  * When a new function is introduced to vm_operations_struct and added
5160  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5161  * This is because under System V memory model, mappings created via
5162  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5163  * their original vm_ops are overwritten with shm_vm_ops.
5164  */
5165 const struct vm_operations_struct hugetlb_vm_ops = {
5166 	.fault = hugetlb_vm_op_fault,
5167 	.open = hugetlb_vm_op_open,
5168 	.close = hugetlb_vm_op_close,
5169 	.may_split = hugetlb_vm_op_split,
5170 	.pagesize = hugetlb_vm_op_pagesize,
5171 };
5172 
make_huge_pte(struct vm_area_struct * vma,struct page * page,bool try_mkwrite)5173 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5174 		bool try_mkwrite)
5175 {
5176 	pte_t entry;
5177 	unsigned int shift = huge_page_shift(hstate_vma(vma));
5178 
5179 	if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5180 		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5181 					 vma->vm_page_prot)));
5182 	} else {
5183 		entry = huge_pte_wrprotect(mk_huge_pte(page,
5184 					   vma->vm_page_prot));
5185 	}
5186 	entry = pte_mkyoung(entry);
5187 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5188 
5189 	return entry;
5190 }
5191 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5192 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5193 				   unsigned long address, pte_t *ptep)
5194 {
5195 	pte_t entry;
5196 
5197 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5198 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5199 		update_mmu_cache(vma, address, ptep);
5200 }
5201 
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5202 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5203 					 unsigned long address, pte_t *ptep)
5204 {
5205 	if (vma->vm_flags & VM_WRITE)
5206 		set_huge_ptep_writable(vma, address, ptep);
5207 }
5208 
is_hugetlb_entry_migration(pte_t pte)5209 bool is_hugetlb_entry_migration(pte_t pte)
5210 {
5211 	swp_entry_t swp;
5212 
5213 	if (huge_pte_none(pte) || pte_present(pte))
5214 		return false;
5215 	swp = pte_to_swp_entry(pte);
5216 	if (is_migration_entry(swp))
5217 		return true;
5218 	else
5219 		return false;
5220 }
5221 
is_hugetlb_entry_hwpoisoned(pte_t pte)5222 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5223 {
5224 	swp_entry_t swp;
5225 
5226 	if (huge_pte_none(pte) || pte_present(pte))
5227 		return false;
5228 	swp = pte_to_swp_entry(pte);
5229 	if (is_hwpoison_entry(swp))
5230 		return true;
5231 	else
5232 		return false;
5233 }
5234 
5235 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5236 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5237 		      struct folio *new_folio, pte_t old, unsigned long sz)
5238 {
5239 	pte_t newpte = make_huge_pte(vma, &new_folio->page, true);
5240 
5241 	__folio_mark_uptodate(new_folio);
5242 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5243 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5244 		newpte = huge_pte_mkuffd_wp(newpte);
5245 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5246 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5247 	folio_set_hugetlb_migratable(new_folio);
5248 }
5249 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5250 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5251 			    struct vm_area_struct *dst_vma,
5252 			    struct vm_area_struct *src_vma)
5253 {
5254 	pte_t *src_pte, *dst_pte, entry;
5255 	struct folio *pte_folio;
5256 	unsigned long addr;
5257 	bool cow = is_cow_mapping(src_vma->vm_flags);
5258 	struct hstate *h = hstate_vma(src_vma);
5259 	unsigned long sz = huge_page_size(h);
5260 	unsigned long npages = pages_per_huge_page(h);
5261 	struct mmu_notifier_range range;
5262 	unsigned long last_addr_mask;
5263 	int ret = 0;
5264 
5265 	if (cow) {
5266 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5267 					src_vma->vm_start,
5268 					src_vma->vm_end);
5269 		mmu_notifier_invalidate_range_start(&range);
5270 		vma_assert_write_locked(src_vma);
5271 		raw_write_seqcount_begin(&src->write_protect_seq);
5272 	} else {
5273 		/*
5274 		 * For shared mappings the vma lock must be held before
5275 		 * calling hugetlb_walk() in the src vma. Otherwise, the
5276 		 * returned ptep could go away if part of a shared pmd and
5277 		 * another thread calls huge_pmd_unshare.
5278 		 */
5279 		hugetlb_vma_lock_read(src_vma);
5280 	}
5281 
5282 	last_addr_mask = hugetlb_mask_last_page(h);
5283 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5284 		spinlock_t *src_ptl, *dst_ptl;
5285 		src_pte = hugetlb_walk(src_vma, addr, sz);
5286 		if (!src_pte) {
5287 			addr |= last_addr_mask;
5288 			continue;
5289 		}
5290 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5291 		if (!dst_pte) {
5292 			ret = -ENOMEM;
5293 			break;
5294 		}
5295 
5296 		/*
5297 		 * If the pagetables are shared don't copy or take references.
5298 		 *
5299 		 * dst_pte == src_pte is the common case of src/dest sharing.
5300 		 * However, src could have 'unshared' and dst shares with
5301 		 * another vma. So page_count of ptep page is checked instead
5302 		 * to reliably determine whether pte is shared.
5303 		 */
5304 		if (page_count(virt_to_page(dst_pte)) > 1) {
5305 			addr |= last_addr_mask;
5306 			continue;
5307 		}
5308 
5309 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5310 		src_ptl = huge_pte_lockptr(h, src, src_pte);
5311 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5312 		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5313 again:
5314 		if (huge_pte_none(entry)) {
5315 			/*
5316 			 * Skip if src entry none.
5317 			 */
5318 			;
5319 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5320 			if (!userfaultfd_wp(dst_vma))
5321 				entry = huge_pte_clear_uffd_wp(entry);
5322 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5323 		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5324 			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5325 			bool uffd_wp = pte_swp_uffd_wp(entry);
5326 
5327 			if (!is_readable_migration_entry(swp_entry) && cow) {
5328 				/*
5329 				 * COW mappings require pages in both
5330 				 * parent and child to be set to read.
5331 				 */
5332 				swp_entry = make_readable_migration_entry(
5333 							swp_offset(swp_entry));
5334 				entry = swp_entry_to_pte(swp_entry);
5335 				if (userfaultfd_wp(src_vma) && uffd_wp)
5336 					entry = pte_swp_mkuffd_wp(entry);
5337 				set_huge_pte_at(src, addr, src_pte, entry, sz);
5338 			}
5339 			if (!userfaultfd_wp(dst_vma))
5340 				entry = huge_pte_clear_uffd_wp(entry);
5341 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5342 		} else if (unlikely(is_pte_marker(entry))) {
5343 			pte_marker marker = copy_pte_marker(
5344 				pte_to_swp_entry(entry), dst_vma);
5345 
5346 			if (marker)
5347 				set_huge_pte_at(dst, addr, dst_pte,
5348 						make_pte_marker(marker), sz);
5349 		} else {
5350 			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5351 			pte_folio = page_folio(pte_page(entry));
5352 			folio_get(pte_folio);
5353 
5354 			/*
5355 			 * Failing to duplicate the anon rmap is a rare case
5356 			 * where we see pinned hugetlb pages while they're
5357 			 * prone to COW. We need to do the COW earlier during
5358 			 * fork.
5359 			 *
5360 			 * When pre-allocating the page or copying data, we
5361 			 * need to be without the pgtable locks since we could
5362 			 * sleep during the process.
5363 			 */
5364 			if (!folio_test_anon(pte_folio)) {
5365 				hugetlb_add_file_rmap(pte_folio);
5366 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5367 				pte_t src_pte_old = entry;
5368 				struct folio *new_folio;
5369 
5370 				spin_unlock(src_ptl);
5371 				spin_unlock(dst_ptl);
5372 				/* Do not use reserve as it's private owned */
5373 				new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5374 				if (IS_ERR(new_folio)) {
5375 					folio_put(pte_folio);
5376 					ret = PTR_ERR(new_folio);
5377 					break;
5378 				}
5379 				ret = copy_user_large_folio(new_folio, pte_folio,
5380 							    addr, dst_vma);
5381 				folio_put(pte_folio);
5382 				if (ret) {
5383 					folio_put(new_folio);
5384 					break;
5385 				}
5386 
5387 				/* Install the new hugetlb folio if src pte stable */
5388 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5389 				src_ptl = huge_pte_lockptr(h, src, src_pte);
5390 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5391 				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5392 				if (!pte_same(src_pte_old, entry)) {
5393 					restore_reserve_on_error(h, dst_vma, addr,
5394 								new_folio);
5395 					folio_put(new_folio);
5396 					/* huge_ptep of dst_pte won't change as in child */
5397 					goto again;
5398 				}
5399 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5400 						      new_folio, src_pte_old, sz);
5401 				spin_unlock(src_ptl);
5402 				spin_unlock(dst_ptl);
5403 				continue;
5404 			}
5405 
5406 			if (cow) {
5407 				/*
5408 				 * No need to notify as we are downgrading page
5409 				 * table protection not changing it to point
5410 				 * to a new page.
5411 				 *
5412 				 * See Documentation/mm/mmu_notifier.rst
5413 				 */
5414 				huge_ptep_set_wrprotect(src, addr, src_pte);
5415 				entry = huge_pte_wrprotect(entry);
5416 			}
5417 
5418 			if (!userfaultfd_wp(dst_vma))
5419 				entry = huge_pte_clear_uffd_wp(entry);
5420 
5421 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5422 			hugetlb_count_add(npages, dst);
5423 		}
5424 		spin_unlock(src_ptl);
5425 		spin_unlock(dst_ptl);
5426 	}
5427 
5428 	if (cow) {
5429 		raw_write_seqcount_end(&src->write_protect_seq);
5430 		mmu_notifier_invalidate_range_end(&range);
5431 	} else {
5432 		hugetlb_vma_unlock_read(src_vma);
5433 	}
5434 
5435 	return ret;
5436 }
5437 
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5438 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5439 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5440 			  unsigned long sz)
5441 {
5442 	bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5443 	struct hstate *h = hstate_vma(vma);
5444 	struct mm_struct *mm = vma->vm_mm;
5445 	spinlock_t *src_ptl, *dst_ptl;
5446 	pte_t pte;
5447 
5448 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5449 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5450 
5451 	/*
5452 	 * We don't have to worry about the ordering of src and dst ptlocks
5453 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5454 	 */
5455 	if (src_ptl != dst_ptl)
5456 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5457 
5458 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5459 
5460 	if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5461 		huge_pte_clear(mm, new_addr, dst_pte, sz);
5462 	else {
5463 		if (need_clear_uffd_wp) {
5464 			if (pte_present(pte))
5465 				pte = huge_pte_clear_uffd_wp(pte);
5466 			else if (is_swap_pte(pte))
5467 				pte = pte_swp_clear_uffd_wp(pte);
5468 		}
5469 		set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5470 	}
5471 
5472 	if (src_ptl != dst_ptl)
5473 		spin_unlock(src_ptl);
5474 	spin_unlock(dst_ptl);
5475 }
5476 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5477 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5478 			     struct vm_area_struct *new_vma,
5479 			     unsigned long old_addr, unsigned long new_addr,
5480 			     unsigned long len)
5481 {
5482 	struct hstate *h = hstate_vma(vma);
5483 	struct address_space *mapping = vma->vm_file->f_mapping;
5484 	unsigned long sz = huge_page_size(h);
5485 	struct mm_struct *mm = vma->vm_mm;
5486 	unsigned long old_end = old_addr + len;
5487 	unsigned long last_addr_mask;
5488 	pte_t *src_pte, *dst_pte;
5489 	struct mmu_notifier_range range;
5490 	bool shared_pmd = false;
5491 
5492 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5493 				old_end);
5494 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5495 	/*
5496 	 * In case of shared PMDs, we should cover the maximum possible
5497 	 * range.
5498 	 */
5499 	flush_cache_range(vma, range.start, range.end);
5500 
5501 	mmu_notifier_invalidate_range_start(&range);
5502 	last_addr_mask = hugetlb_mask_last_page(h);
5503 	/* Prevent race with file truncation */
5504 	hugetlb_vma_lock_write(vma);
5505 	i_mmap_lock_write(mapping);
5506 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5507 		src_pte = hugetlb_walk(vma, old_addr, sz);
5508 		if (!src_pte) {
5509 			old_addr |= last_addr_mask;
5510 			new_addr |= last_addr_mask;
5511 			continue;
5512 		}
5513 		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5514 			continue;
5515 
5516 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5517 			shared_pmd = true;
5518 			old_addr |= last_addr_mask;
5519 			new_addr |= last_addr_mask;
5520 			continue;
5521 		}
5522 
5523 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5524 		if (!dst_pte)
5525 			break;
5526 
5527 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5528 	}
5529 
5530 	if (shared_pmd)
5531 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5532 	else
5533 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5534 	mmu_notifier_invalidate_range_end(&range);
5535 	i_mmap_unlock_write(mapping);
5536 	hugetlb_vma_unlock_write(vma);
5537 
5538 	return len + old_addr - old_end;
5539 }
5540 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5541 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5542 			    unsigned long start, unsigned long end,
5543 			    struct page *ref_page, zap_flags_t zap_flags)
5544 {
5545 	struct mm_struct *mm = vma->vm_mm;
5546 	unsigned long address;
5547 	pte_t *ptep;
5548 	pte_t pte;
5549 	spinlock_t *ptl;
5550 	struct page *page;
5551 	struct hstate *h = hstate_vma(vma);
5552 	unsigned long sz = huge_page_size(h);
5553 	bool adjust_reservation = false;
5554 	unsigned long last_addr_mask;
5555 	bool force_flush = false;
5556 
5557 	WARN_ON(!is_vm_hugetlb_page(vma));
5558 	BUG_ON(start & ~huge_page_mask(h));
5559 	BUG_ON(end & ~huge_page_mask(h));
5560 
5561 	/*
5562 	 * This is a hugetlb vma, all the pte entries should point
5563 	 * to huge page.
5564 	 */
5565 	tlb_change_page_size(tlb, sz);
5566 	tlb_start_vma(tlb, vma);
5567 
5568 	last_addr_mask = hugetlb_mask_last_page(h);
5569 	address = start;
5570 	for (; address < end; address += sz) {
5571 		ptep = hugetlb_walk(vma, address, sz);
5572 		if (!ptep) {
5573 			address |= last_addr_mask;
5574 			continue;
5575 		}
5576 
5577 		ptl = huge_pte_lock(h, mm, ptep);
5578 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5579 			spin_unlock(ptl);
5580 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5581 			force_flush = true;
5582 			address |= last_addr_mask;
5583 			continue;
5584 		}
5585 
5586 		pte = huge_ptep_get(mm, address, ptep);
5587 		if (huge_pte_none(pte)) {
5588 			spin_unlock(ptl);
5589 			continue;
5590 		}
5591 
5592 		/*
5593 		 * Migrating hugepage or HWPoisoned hugepage is already
5594 		 * unmapped and its refcount is dropped, so just clear pte here.
5595 		 */
5596 		if (unlikely(!pte_present(pte))) {
5597 			/*
5598 			 * If the pte was wr-protected by uffd-wp in any of the
5599 			 * swap forms, meanwhile the caller does not want to
5600 			 * drop the uffd-wp bit in this zap, then replace the
5601 			 * pte with a marker.
5602 			 */
5603 			if (pte_swp_uffd_wp_any(pte) &&
5604 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5605 				set_huge_pte_at(mm, address, ptep,
5606 						make_pte_marker(PTE_MARKER_UFFD_WP),
5607 						sz);
5608 			else
5609 				huge_pte_clear(mm, address, ptep, sz);
5610 			spin_unlock(ptl);
5611 			continue;
5612 		}
5613 
5614 		page = pte_page(pte);
5615 		/*
5616 		 * If a reference page is supplied, it is because a specific
5617 		 * page is being unmapped, not a range. Ensure the page we
5618 		 * are about to unmap is the actual page of interest.
5619 		 */
5620 		if (ref_page) {
5621 			if (page != ref_page) {
5622 				spin_unlock(ptl);
5623 				continue;
5624 			}
5625 			/*
5626 			 * Mark the VMA as having unmapped its page so that
5627 			 * future faults in this VMA will fail rather than
5628 			 * looking like data was lost
5629 			 */
5630 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5631 		}
5632 
5633 		pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5634 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5635 		if (huge_pte_dirty(pte))
5636 			set_page_dirty(page);
5637 		/* Leave a uffd-wp pte marker if needed */
5638 		if (huge_pte_uffd_wp(pte) &&
5639 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5640 			set_huge_pte_at(mm, address, ptep,
5641 					make_pte_marker(PTE_MARKER_UFFD_WP),
5642 					sz);
5643 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5644 		hugetlb_remove_rmap(page_folio(page));
5645 
5646 		/*
5647 		 * Restore the reservation for anonymous page, otherwise the
5648 		 * backing page could be stolen by someone.
5649 		 * If there we are freeing a surplus, do not set the restore
5650 		 * reservation bit.
5651 		 */
5652 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5653 		    folio_test_anon(page_folio(page))) {
5654 			folio_set_hugetlb_restore_reserve(page_folio(page));
5655 			/* Reservation to be adjusted after the spin lock */
5656 			adjust_reservation = true;
5657 		}
5658 
5659 		spin_unlock(ptl);
5660 
5661 		/*
5662 		 * Adjust the reservation for the region that will have the
5663 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5664 		 * resv->adds_in_progress if it succeeds. If this is not done,
5665 		 * do_exit() will not see it, and will keep the reservation
5666 		 * forever.
5667 		 */
5668 		if (adjust_reservation) {
5669 			int rc = vma_needs_reservation(h, vma, address);
5670 
5671 			if (rc < 0)
5672 				/* Pressumably allocate_file_region_entries failed
5673 				 * to allocate a file_region struct. Clear
5674 				 * hugetlb_restore_reserve so that global reserve
5675 				 * count will not be incremented by free_huge_folio.
5676 				 * Act as if we consumed the reservation.
5677 				 */
5678 				folio_clear_hugetlb_restore_reserve(page_folio(page));
5679 			else if (rc)
5680 				vma_add_reservation(h, vma, address);
5681 		}
5682 
5683 		tlb_remove_page_size(tlb, page, huge_page_size(h));
5684 		/*
5685 		 * Bail out after unmapping reference page if supplied
5686 		 */
5687 		if (ref_page)
5688 			break;
5689 	}
5690 	tlb_end_vma(tlb, vma);
5691 
5692 	/*
5693 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5694 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5695 	 * guaranteed that the last refernece would not be dropped. But we must
5696 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5697 	 * dropped and the last reference to the shared PMDs page might be
5698 	 * dropped as well.
5699 	 *
5700 	 * In theory we could defer the freeing of the PMD pages as well, but
5701 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5702 	 * detect sharing, so we cannot defer the release of the page either.
5703 	 * Instead, do flush now.
5704 	 */
5705 	if (force_flush)
5706 		tlb_flush_mmu_tlbonly(tlb);
5707 }
5708 
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5709 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5710 			 unsigned long *start, unsigned long *end)
5711 {
5712 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5713 		return;
5714 
5715 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5716 	hugetlb_vma_lock_write(vma);
5717 	if (vma->vm_file)
5718 		i_mmap_lock_write(vma->vm_file->f_mapping);
5719 }
5720 
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5721 void __hugetlb_zap_end(struct vm_area_struct *vma,
5722 		       struct zap_details *details)
5723 {
5724 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5725 
5726 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5727 		return;
5728 
5729 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5730 		/*
5731 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5732 		 * When the vma_lock is freed, this makes the vma ineligible
5733 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5734 		 * pmd sharing.  This is important as page tables for this
5735 		 * unmapped range will be asynchrously deleted.  If the page
5736 		 * tables are shared, there will be issues when accessed by
5737 		 * someone else.
5738 		 */
5739 		__hugetlb_vma_unlock_write_free(vma);
5740 	} else {
5741 		hugetlb_vma_unlock_write(vma);
5742 	}
5743 
5744 	if (vma->vm_file)
5745 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5746 }
5747 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5748 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5749 			  unsigned long end, struct page *ref_page,
5750 			  zap_flags_t zap_flags)
5751 {
5752 	struct mmu_notifier_range range;
5753 	struct mmu_gather tlb;
5754 
5755 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5756 				start, end);
5757 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5758 	mmu_notifier_invalidate_range_start(&range);
5759 	tlb_gather_mmu(&tlb, vma->vm_mm);
5760 
5761 	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5762 
5763 	mmu_notifier_invalidate_range_end(&range);
5764 	tlb_finish_mmu(&tlb);
5765 }
5766 
5767 /*
5768  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5769  * mapping it owns the reserve page for. The intention is to unmap the page
5770  * from other VMAs and let the children be SIGKILLed if they are faulting the
5771  * same region.
5772  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5773 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5774 			      struct page *page, unsigned long address)
5775 {
5776 	struct hstate *h = hstate_vma(vma);
5777 	struct vm_area_struct *iter_vma;
5778 	struct address_space *mapping;
5779 	pgoff_t pgoff;
5780 
5781 	/*
5782 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5783 	 * from page cache lookup which is in HPAGE_SIZE units.
5784 	 */
5785 	address = address & huge_page_mask(h);
5786 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5787 			vma->vm_pgoff;
5788 	mapping = vma->vm_file->f_mapping;
5789 
5790 	/*
5791 	 * Take the mapping lock for the duration of the table walk. As
5792 	 * this mapping should be shared between all the VMAs,
5793 	 * __unmap_hugepage_range() is called as the lock is already held
5794 	 */
5795 	i_mmap_lock_write(mapping);
5796 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5797 		/* Do not unmap the current VMA */
5798 		if (iter_vma == vma)
5799 			continue;
5800 
5801 		/*
5802 		 * Shared VMAs have their own reserves and do not affect
5803 		 * MAP_PRIVATE accounting but it is possible that a shared
5804 		 * VMA is using the same page so check and skip such VMAs.
5805 		 */
5806 		if (iter_vma->vm_flags & VM_MAYSHARE)
5807 			continue;
5808 
5809 		/*
5810 		 * Unmap the page from other VMAs without their own reserves.
5811 		 * They get marked to be SIGKILLed if they fault in these
5812 		 * areas. This is because a future no-page fault on this VMA
5813 		 * could insert a zeroed page instead of the data existing
5814 		 * from the time of fork. This would look like data corruption
5815 		 */
5816 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5817 			unmap_hugepage_range(iter_vma, address,
5818 					     address + huge_page_size(h), page, 0);
5819 	}
5820 	i_mmap_unlock_write(mapping);
5821 }
5822 
5823 /*
5824  * hugetlb_wp() should be called with page lock of the original hugepage held.
5825  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5826  * cannot race with other handlers or page migration.
5827  * Keep the pte_same checks anyway to make transition from the mutex easier.
5828  */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)5829 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5830 		       struct vm_fault *vmf)
5831 {
5832 	struct vm_area_struct *vma = vmf->vma;
5833 	struct mm_struct *mm = vma->vm_mm;
5834 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5835 	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5836 	struct hstate *h = hstate_vma(vma);
5837 	struct folio *old_folio;
5838 	struct folio *new_folio;
5839 	bool cow_from_owner = 0;
5840 	vm_fault_t ret = 0;
5841 	struct mmu_notifier_range range;
5842 
5843 	/*
5844 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5845 	 * handled when the uffd-wp protection is removed.
5846 	 *
5847 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5848 	 * can trigger this, because hugetlb_fault() will always resolve
5849 	 * uffd-wp bit first.
5850 	 */
5851 	if (!unshare && huge_pte_uffd_wp(pte))
5852 		return 0;
5853 
5854 	/* Let's take out MAP_SHARED mappings first. */
5855 	if (vma->vm_flags & VM_MAYSHARE) {
5856 		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5857 		return 0;
5858 	}
5859 
5860 	old_folio = page_folio(pte_page(pte));
5861 
5862 	delayacct_wpcopy_start();
5863 
5864 retry_avoidcopy:
5865 	/*
5866 	 * If no-one else is actually using this page, we're the exclusive
5867 	 * owner and can reuse this page.
5868 	 *
5869 	 * Note that we don't rely on the (safer) folio refcount here, because
5870 	 * copying the hugetlb folio when there are unexpected (temporary)
5871 	 * folio references could harm simple fork()+exit() users when
5872 	 * we run out of free hugetlb folios: we would have to kill processes
5873 	 * in scenarios that used to work. As a side effect, there can still
5874 	 * be leaks between processes, for example, with FOLL_GET users.
5875 	 */
5876 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5877 		if (!PageAnonExclusive(&old_folio->page)) {
5878 			folio_move_anon_rmap(old_folio, vma);
5879 			SetPageAnonExclusive(&old_folio->page);
5880 		}
5881 		if (likely(!unshare))
5882 			set_huge_ptep_maybe_writable(vma, vmf->address,
5883 						     vmf->pte);
5884 
5885 		delayacct_wpcopy_end();
5886 		return 0;
5887 	}
5888 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5889 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5890 
5891 	/*
5892 	 * If the process that created a MAP_PRIVATE mapping is about to
5893 	 * perform a COW due to a shared page count, attempt to satisfy
5894 	 * the allocation without using the existing reserves. The pagecache
5895 	 * page is used to determine if the reserve at this address was
5896 	 * consumed or not. If reserves were used, a partial faulted mapping
5897 	 * at the time of fork() could consume its reserves on COW instead
5898 	 * of the full address range.
5899 	 */
5900 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5901 			old_folio != pagecache_folio)
5902 		cow_from_owner = true;
5903 
5904 	folio_get(old_folio);
5905 
5906 	/*
5907 	 * Drop page table lock as buddy allocator may be called. It will
5908 	 * be acquired again before returning to the caller, as expected.
5909 	 */
5910 	spin_unlock(vmf->ptl);
5911 	new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
5912 
5913 	if (IS_ERR(new_folio)) {
5914 		/*
5915 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5916 		 * it is due to references held by a child and an insufficient
5917 		 * huge page pool. To guarantee the original mappers
5918 		 * reliability, unmap the page from child processes. The child
5919 		 * may get SIGKILLed if it later faults.
5920 		 */
5921 		if (cow_from_owner) {
5922 			struct address_space *mapping = vma->vm_file->f_mapping;
5923 			pgoff_t idx;
5924 			u32 hash;
5925 
5926 			folio_put(old_folio);
5927 			/*
5928 			 * Drop hugetlb_fault_mutex and vma_lock before
5929 			 * unmapping.  unmapping needs to hold vma_lock
5930 			 * in write mode.  Dropping vma_lock in read mode
5931 			 * here is OK as COW mappings do not interact with
5932 			 * PMD sharing.
5933 			 *
5934 			 * Reacquire both after unmap operation.
5935 			 */
5936 			idx = vma_hugecache_offset(h, vma, vmf->address);
5937 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5938 			hugetlb_vma_unlock_read(vma);
5939 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5940 
5941 			unmap_ref_private(mm, vma, &old_folio->page,
5942 					vmf->address);
5943 
5944 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5945 			hugetlb_vma_lock_read(vma);
5946 			spin_lock(vmf->ptl);
5947 			vmf->pte = hugetlb_walk(vma, vmf->address,
5948 					huge_page_size(h));
5949 			if (likely(vmf->pte &&
5950 				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5951 				goto retry_avoidcopy;
5952 			/*
5953 			 * race occurs while re-acquiring page table
5954 			 * lock, and our job is done.
5955 			 */
5956 			delayacct_wpcopy_end();
5957 			return 0;
5958 		}
5959 
5960 		ret = vmf_error(PTR_ERR(new_folio));
5961 		goto out_release_old;
5962 	}
5963 
5964 	/*
5965 	 * When the original hugepage is shared one, it does not have
5966 	 * anon_vma prepared.
5967 	 */
5968 	ret = __vmf_anon_prepare(vmf);
5969 	if (unlikely(ret))
5970 		goto out_release_all;
5971 
5972 	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5973 		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5974 		goto out_release_all;
5975 	}
5976 	__folio_mark_uptodate(new_folio);
5977 
5978 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5979 				vmf->address + huge_page_size(h));
5980 	mmu_notifier_invalidate_range_start(&range);
5981 
5982 	/*
5983 	 * Retake the page table lock to check for racing updates
5984 	 * before the page tables are altered
5985 	 */
5986 	spin_lock(vmf->ptl);
5987 	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5988 	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5989 		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5990 
5991 		/* Break COW or unshare */
5992 		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5993 		hugetlb_remove_rmap(old_folio);
5994 		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5995 		if (huge_pte_uffd_wp(pte))
5996 			newpte = huge_pte_mkuffd_wp(newpte);
5997 		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5998 				huge_page_size(h));
5999 		folio_set_hugetlb_migratable(new_folio);
6000 		/* Make the old page be freed below */
6001 		new_folio = old_folio;
6002 	}
6003 	spin_unlock(vmf->ptl);
6004 	mmu_notifier_invalidate_range_end(&range);
6005 out_release_all:
6006 	/*
6007 	 * No restore in case of successful pagetable update (Break COW or
6008 	 * unshare)
6009 	 */
6010 	if (new_folio != old_folio)
6011 		restore_reserve_on_error(h, vma, vmf->address, new_folio);
6012 	folio_put(new_folio);
6013 out_release_old:
6014 	folio_put(old_folio);
6015 
6016 	spin_lock(vmf->ptl); /* Caller expects lock to be held */
6017 
6018 	delayacct_wpcopy_end();
6019 	return ret;
6020 }
6021 
6022 /*
6023  * Return whether there is a pagecache page to back given address within VMA.
6024  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6025 bool hugetlbfs_pagecache_present(struct hstate *h,
6026 				 struct vm_area_struct *vma, unsigned long address)
6027 {
6028 	struct address_space *mapping = vma->vm_file->f_mapping;
6029 	pgoff_t idx = linear_page_index(vma, address);
6030 	struct folio *folio;
6031 
6032 	folio = filemap_get_folio(mapping, idx);
6033 	if (IS_ERR(folio))
6034 		return false;
6035 	folio_put(folio);
6036 	return true;
6037 }
6038 
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6039 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6040 			   pgoff_t idx)
6041 {
6042 	struct inode *inode = mapping->host;
6043 	struct hstate *h = hstate_inode(inode);
6044 	int err;
6045 
6046 	idx <<= huge_page_order(h);
6047 	__folio_set_locked(folio);
6048 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6049 
6050 	if (unlikely(err)) {
6051 		__folio_clear_locked(folio);
6052 		return err;
6053 	}
6054 	folio_clear_hugetlb_restore_reserve(folio);
6055 
6056 	/*
6057 	 * mark folio dirty so that it will not be removed from cache/file
6058 	 * by non-hugetlbfs specific code paths.
6059 	 */
6060 	folio_mark_dirty(folio);
6061 
6062 	spin_lock(&inode->i_lock);
6063 	inode->i_blocks += blocks_per_huge_page(h);
6064 	spin_unlock(&inode->i_lock);
6065 	return 0;
6066 }
6067 
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6068 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6069 						  struct address_space *mapping,
6070 						  unsigned long reason)
6071 {
6072 	u32 hash;
6073 
6074 	/*
6075 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6076 	 * userfault. Also mmap_lock could be dropped due to handling
6077 	 * userfault, any vma operation should be careful from here.
6078 	 */
6079 	hugetlb_vma_unlock_read(vmf->vma);
6080 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6081 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6082 	return handle_userfault(vmf, reason);
6083 }
6084 
6085 /*
6086  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
6087  * false if pte changed or is changing.
6088  */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6089 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6090 			       pte_t *ptep, pte_t old_pte)
6091 {
6092 	spinlock_t *ptl;
6093 	bool same;
6094 
6095 	ptl = huge_pte_lock(h, mm, ptep);
6096 	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6097 	spin_unlock(ptl);
6098 
6099 	return same;
6100 }
6101 
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6102 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6103 			struct vm_fault *vmf)
6104 {
6105 	struct vm_area_struct *vma = vmf->vma;
6106 	struct mm_struct *mm = vma->vm_mm;
6107 	struct hstate *h = hstate_vma(vma);
6108 	vm_fault_t ret = VM_FAULT_SIGBUS;
6109 	int anon_rmap = 0;
6110 	unsigned long size;
6111 	struct folio *folio;
6112 	pte_t new_pte;
6113 	bool new_folio, new_pagecache_folio = false;
6114 	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6115 
6116 	/*
6117 	 * Currently, we are forced to kill the process in the event the
6118 	 * original mapper has unmapped pages from the child due to a failed
6119 	 * COW/unsharing. Warn that such a situation has occurred as it may not
6120 	 * be obvious.
6121 	 */
6122 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6123 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6124 			   current->pid);
6125 		goto out;
6126 	}
6127 
6128 	/*
6129 	 * Use page lock to guard against racing truncation
6130 	 * before we get page_table_lock.
6131 	 */
6132 	new_folio = false;
6133 	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6134 	if (IS_ERR(folio)) {
6135 		size = i_size_read(mapping->host) >> huge_page_shift(h);
6136 		if (vmf->pgoff >= size)
6137 			goto out;
6138 		/* Check for page in userfault range */
6139 		if (userfaultfd_missing(vma)) {
6140 			/*
6141 			 * Since hugetlb_no_page() was examining pte
6142 			 * without pgtable lock, we need to re-test under
6143 			 * lock because the pte may not be stable and could
6144 			 * have changed from under us.  Try to detect
6145 			 * either changed or during-changing ptes and retry
6146 			 * properly when needed.
6147 			 *
6148 			 * Note that userfaultfd is actually fine with
6149 			 * false positives (e.g. caused by pte changed),
6150 			 * but not wrong logical events (e.g. caused by
6151 			 * reading a pte during changing).  The latter can
6152 			 * confuse the userspace, so the strictness is very
6153 			 * much preferred.  E.g., MISSING event should
6154 			 * never happen on the page after UFFDIO_COPY has
6155 			 * correctly installed the page and returned.
6156 			 */
6157 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6158 				ret = 0;
6159 				goto out;
6160 			}
6161 
6162 			return hugetlb_handle_userfault(vmf, mapping,
6163 							VM_UFFD_MISSING);
6164 		}
6165 
6166 		if (!(vma->vm_flags & VM_MAYSHARE)) {
6167 			ret = __vmf_anon_prepare(vmf);
6168 			if (unlikely(ret))
6169 				goto out;
6170 		}
6171 
6172 		folio = alloc_hugetlb_folio(vma, vmf->address, false);
6173 		if (IS_ERR(folio)) {
6174 			/*
6175 			 * Returning error will result in faulting task being
6176 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
6177 			 * tasks from racing to fault in the same page which
6178 			 * could result in false unable to allocate errors.
6179 			 * Page migration does not take the fault mutex, but
6180 			 * does a clear then write of pte's under page table
6181 			 * lock.  Page fault code could race with migration,
6182 			 * notice the clear pte and try to allocate a page
6183 			 * here.  Before returning error, get ptl and make
6184 			 * sure there really is no pte entry.
6185 			 */
6186 			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6187 				ret = vmf_error(PTR_ERR(folio));
6188 			else
6189 				ret = 0;
6190 			goto out;
6191 		}
6192 		folio_zero_user(folio, vmf->real_address);
6193 		__folio_mark_uptodate(folio);
6194 		new_folio = true;
6195 
6196 		if (vma->vm_flags & VM_MAYSHARE) {
6197 			int err = hugetlb_add_to_page_cache(folio, mapping,
6198 							vmf->pgoff);
6199 			if (err) {
6200 				/*
6201 				 * err can't be -EEXIST which implies someone
6202 				 * else consumed the reservation since hugetlb
6203 				 * fault mutex is held when add a hugetlb page
6204 				 * to the page cache. So it's safe to call
6205 				 * restore_reserve_on_error() here.
6206 				 */
6207 				restore_reserve_on_error(h, vma, vmf->address,
6208 							folio);
6209 				folio_put(folio);
6210 				ret = VM_FAULT_SIGBUS;
6211 				goto out;
6212 			}
6213 			new_pagecache_folio = true;
6214 		} else {
6215 			folio_lock(folio);
6216 			anon_rmap = 1;
6217 		}
6218 	} else {
6219 		/*
6220 		 * If memory error occurs between mmap() and fault, some process
6221 		 * don't have hwpoisoned swap entry for errored virtual address.
6222 		 * So we need to block hugepage fault by PG_hwpoison bit check.
6223 		 */
6224 		if (unlikely(folio_test_hwpoison(folio))) {
6225 			ret = VM_FAULT_HWPOISON_LARGE |
6226 				VM_FAULT_SET_HINDEX(hstate_index(h));
6227 			goto backout_unlocked;
6228 		}
6229 
6230 		/* Check for page in userfault range. */
6231 		if (userfaultfd_minor(vma)) {
6232 			folio_unlock(folio);
6233 			folio_put(folio);
6234 			/* See comment in userfaultfd_missing() block above */
6235 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6236 				ret = 0;
6237 				goto out;
6238 			}
6239 			return hugetlb_handle_userfault(vmf, mapping,
6240 							VM_UFFD_MINOR);
6241 		}
6242 	}
6243 
6244 	/*
6245 	 * If we are going to COW a private mapping later, we examine the
6246 	 * pending reservations for this page now. This will ensure that
6247 	 * any allocations necessary to record that reservation occur outside
6248 	 * the spinlock.
6249 	 */
6250 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6251 		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6252 			ret = VM_FAULT_OOM;
6253 			goto backout_unlocked;
6254 		}
6255 		/* Just decrements count, does not deallocate */
6256 		vma_end_reservation(h, vma, vmf->address);
6257 	}
6258 
6259 	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6260 	ret = 0;
6261 	/* If pte changed from under us, retry */
6262 	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6263 		goto backout;
6264 
6265 	if (anon_rmap)
6266 		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6267 	else
6268 		hugetlb_add_file_rmap(folio);
6269 	new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED);
6270 	/*
6271 	 * If this pte was previously wr-protected, keep it wr-protected even
6272 	 * if populated.
6273 	 */
6274 	if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6275 		new_pte = huge_pte_mkuffd_wp(new_pte);
6276 	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6277 
6278 	hugetlb_count_add(pages_per_huge_page(h), mm);
6279 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6280 		/* Optimization, do the COW without a second fault */
6281 		ret = hugetlb_wp(folio, vmf);
6282 	}
6283 
6284 	spin_unlock(vmf->ptl);
6285 
6286 	/*
6287 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6288 	 * found in the pagecache may not have hugetlb_migratable if they have
6289 	 * been isolated for migration.
6290 	 */
6291 	if (new_folio)
6292 		folio_set_hugetlb_migratable(folio);
6293 
6294 	folio_unlock(folio);
6295 out:
6296 	hugetlb_vma_unlock_read(vma);
6297 
6298 	/*
6299 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6300 	 * the only way ret can be set to VM_FAULT_RETRY.
6301 	 */
6302 	if (unlikely(ret & VM_FAULT_RETRY))
6303 		vma_end_read(vma);
6304 
6305 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6306 	return ret;
6307 
6308 backout:
6309 	spin_unlock(vmf->ptl);
6310 backout_unlocked:
6311 	if (new_folio && !new_pagecache_folio)
6312 		restore_reserve_on_error(h, vma, vmf->address, folio);
6313 
6314 	folio_unlock(folio);
6315 	folio_put(folio);
6316 	goto out;
6317 }
6318 
6319 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6320 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6321 {
6322 	unsigned long key[2];
6323 	u32 hash;
6324 
6325 	key[0] = (unsigned long) mapping;
6326 	key[1] = idx;
6327 
6328 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6329 
6330 	return hash & (num_fault_mutexes - 1);
6331 }
6332 #else
6333 /*
6334  * For uniprocessor systems we always use a single mutex, so just
6335  * return 0 and avoid the hashing overhead.
6336  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6337 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6338 {
6339 	return 0;
6340 }
6341 #endif
6342 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6343 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6344 			unsigned long address, unsigned int flags)
6345 {
6346 	vm_fault_t ret;
6347 	u32 hash;
6348 	struct folio *folio = NULL;
6349 	struct folio *pagecache_folio = NULL;
6350 	struct hstate *h = hstate_vma(vma);
6351 	struct address_space *mapping;
6352 	int need_wait_lock = 0;
6353 	struct vm_fault vmf = {
6354 		.vma = vma,
6355 		.address = address & huge_page_mask(h),
6356 		.real_address = address,
6357 		.flags = flags,
6358 		.pgoff = vma_hugecache_offset(h, vma,
6359 				address & huge_page_mask(h)),
6360 		/* TODO: Track hugetlb faults using vm_fault */
6361 
6362 		/*
6363 		 * Some fields may not be initialized, be careful as it may
6364 		 * be hard to debug if called functions make assumptions
6365 		 */
6366 	};
6367 
6368 	/*
6369 	 * Serialize hugepage allocation and instantiation, so that we don't
6370 	 * get spurious allocation failures if two CPUs race to instantiate
6371 	 * the same page in the page cache.
6372 	 */
6373 	mapping = vma->vm_file->f_mapping;
6374 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6375 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6376 
6377 	/*
6378 	 * Acquire vma lock before calling huge_pte_alloc and hold
6379 	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6380 	 * being called elsewhere and making the vmf.pte no longer valid.
6381 	 */
6382 	hugetlb_vma_lock_read(vma);
6383 	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6384 	if (!vmf.pte) {
6385 		hugetlb_vma_unlock_read(vma);
6386 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6387 		return VM_FAULT_OOM;
6388 	}
6389 
6390 	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6391 	if (huge_pte_none_mostly(vmf.orig_pte)) {
6392 		if (is_pte_marker(vmf.orig_pte)) {
6393 			pte_marker marker =
6394 				pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6395 
6396 			if (marker & PTE_MARKER_POISONED) {
6397 				ret = VM_FAULT_HWPOISON_LARGE |
6398 				      VM_FAULT_SET_HINDEX(hstate_index(h));
6399 				goto out_mutex;
6400 			} else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6401 				/* This isn't supported in hugetlb. */
6402 				ret = VM_FAULT_SIGSEGV;
6403 				goto out_mutex;
6404 			}
6405 		}
6406 
6407 		/*
6408 		 * Other PTE markers should be handled the same way as none PTE.
6409 		 *
6410 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6411 		 * mutex internally, which make us return immediately.
6412 		 */
6413 		return hugetlb_no_page(mapping, &vmf);
6414 	}
6415 
6416 	ret = 0;
6417 
6418 	/*
6419 	 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6420 	 * point, so this check prevents the kernel from going below assuming
6421 	 * that we have an active hugepage in pagecache. This goto expects
6422 	 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6423 	 * check will properly handle it.
6424 	 */
6425 	if (!pte_present(vmf.orig_pte)) {
6426 		if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6427 			/*
6428 			 * Release the hugetlb fault lock now, but retain
6429 			 * the vma lock, because it is needed to guard the
6430 			 * huge_pte_lockptr() later in
6431 			 * migration_entry_wait_huge(). The vma lock will
6432 			 * be released there.
6433 			 */
6434 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6435 			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6436 			return 0;
6437 		} else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6438 			ret = VM_FAULT_HWPOISON_LARGE |
6439 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6440 		goto out_mutex;
6441 	}
6442 
6443 	/*
6444 	 * If we are going to COW/unshare the mapping later, we examine the
6445 	 * pending reservations for this page now. This will ensure that any
6446 	 * allocations necessary to record that reservation occur outside the
6447 	 * spinlock. Also lookup the pagecache page now as it is used to
6448 	 * determine if a reservation has been consumed.
6449 	 */
6450 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6451 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6452 		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6453 			ret = VM_FAULT_OOM;
6454 			goto out_mutex;
6455 		}
6456 		/* Just decrements count, does not deallocate */
6457 		vma_end_reservation(h, vma, vmf.address);
6458 
6459 		pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6460 							     vmf.pgoff);
6461 		if (IS_ERR(pagecache_folio))
6462 			pagecache_folio = NULL;
6463 	}
6464 
6465 	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6466 
6467 	/* Check for a racing update before calling hugetlb_wp() */
6468 	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6469 		goto out_ptl;
6470 
6471 	/* Handle userfault-wp first, before trying to lock more pages */
6472 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6473 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6474 		if (!userfaultfd_wp_async(vma)) {
6475 			spin_unlock(vmf.ptl);
6476 			if (pagecache_folio) {
6477 				folio_unlock(pagecache_folio);
6478 				folio_put(pagecache_folio);
6479 			}
6480 			hugetlb_vma_unlock_read(vma);
6481 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6482 			return handle_userfault(&vmf, VM_UFFD_WP);
6483 		}
6484 
6485 		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6486 		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6487 				huge_page_size(hstate_vma(vma)));
6488 		/* Fallthrough to CoW */
6489 	}
6490 
6491 	/*
6492 	 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6493 	 * pagecache_folio, so here we need take the former one
6494 	 * when folio != pagecache_folio or !pagecache_folio.
6495 	 */
6496 	folio = page_folio(pte_page(vmf.orig_pte));
6497 	if (folio != pagecache_folio)
6498 		if (!folio_trylock(folio)) {
6499 			need_wait_lock = 1;
6500 			goto out_ptl;
6501 		}
6502 
6503 	folio_get(folio);
6504 
6505 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6506 		if (!huge_pte_write(vmf.orig_pte)) {
6507 			ret = hugetlb_wp(pagecache_folio, &vmf);
6508 			goto out_put_page;
6509 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6510 			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6511 		}
6512 	}
6513 	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6514 	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6515 						flags & FAULT_FLAG_WRITE))
6516 		update_mmu_cache(vma, vmf.address, vmf.pte);
6517 out_put_page:
6518 	if (folio != pagecache_folio)
6519 		folio_unlock(folio);
6520 	folio_put(folio);
6521 out_ptl:
6522 	spin_unlock(vmf.ptl);
6523 
6524 	if (pagecache_folio) {
6525 		folio_unlock(pagecache_folio);
6526 		folio_put(pagecache_folio);
6527 	}
6528 out_mutex:
6529 	hugetlb_vma_unlock_read(vma);
6530 
6531 	/*
6532 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6533 	 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6534 	 */
6535 	if (unlikely(ret & VM_FAULT_RETRY))
6536 		vma_end_read(vma);
6537 
6538 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6539 	/*
6540 	 * Generally it's safe to hold refcount during waiting page lock. But
6541 	 * here we just wait to defer the next page fault to avoid busy loop and
6542 	 * the page is not used after unlocked before returning from the current
6543 	 * page fault. So we are safe from accessing freed page, even if we wait
6544 	 * here without taking refcount.
6545 	 */
6546 	if (need_wait_lock)
6547 		folio_wait_locked(folio);
6548 	return ret;
6549 }
6550 
6551 #ifdef CONFIG_USERFAULTFD
6552 /*
6553  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6554  */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6555 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6556 		struct vm_area_struct *vma, unsigned long address)
6557 {
6558 	struct mempolicy *mpol;
6559 	nodemask_t *nodemask;
6560 	struct folio *folio;
6561 	gfp_t gfp_mask;
6562 	int node;
6563 
6564 	gfp_mask = htlb_alloc_mask(h);
6565 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6566 	/*
6567 	 * This is used to allocate a temporary hugetlb to hold the copied
6568 	 * content, which will then be copied again to the final hugetlb
6569 	 * consuming a reservation. Set the alloc_fallback to false to indicate
6570 	 * that breaking the per-node hugetlb pool is not allowed in this case.
6571 	 */
6572 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6573 	mpol_cond_put(mpol);
6574 
6575 	return folio;
6576 }
6577 
6578 /*
6579  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6580  * with modifications for hugetlb pages.
6581  */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6582 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6583 			     struct vm_area_struct *dst_vma,
6584 			     unsigned long dst_addr,
6585 			     unsigned long src_addr,
6586 			     uffd_flags_t flags,
6587 			     struct folio **foliop)
6588 {
6589 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6590 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6591 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6592 	struct hstate *h = hstate_vma(dst_vma);
6593 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6594 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6595 	unsigned long size = huge_page_size(h);
6596 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6597 	pte_t _dst_pte;
6598 	spinlock_t *ptl;
6599 	int ret = -ENOMEM;
6600 	struct folio *folio;
6601 	bool folio_in_pagecache = false;
6602 
6603 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6604 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6605 
6606 		/* Don't overwrite any existing PTEs (even markers) */
6607 		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6608 			spin_unlock(ptl);
6609 			return -EEXIST;
6610 		}
6611 
6612 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6613 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6614 
6615 		/* No need to invalidate - it was non-present before */
6616 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6617 
6618 		spin_unlock(ptl);
6619 		return 0;
6620 	}
6621 
6622 	if (is_continue) {
6623 		ret = -EFAULT;
6624 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6625 		if (IS_ERR(folio))
6626 			goto out;
6627 		folio_in_pagecache = true;
6628 	} else if (!*foliop) {
6629 		/* If a folio already exists, then it's UFFDIO_COPY for
6630 		 * a non-missing case. Return -EEXIST.
6631 		 */
6632 		if (vm_shared &&
6633 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6634 			ret = -EEXIST;
6635 			goto out;
6636 		}
6637 
6638 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6639 		if (IS_ERR(folio)) {
6640 			ret = -ENOMEM;
6641 			goto out;
6642 		}
6643 
6644 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6645 					   false);
6646 
6647 		/* fallback to copy_from_user outside mmap_lock */
6648 		if (unlikely(ret)) {
6649 			ret = -ENOENT;
6650 			/* Free the allocated folio which may have
6651 			 * consumed a reservation.
6652 			 */
6653 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6654 			folio_put(folio);
6655 
6656 			/* Allocate a temporary folio to hold the copied
6657 			 * contents.
6658 			 */
6659 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6660 			if (!folio) {
6661 				ret = -ENOMEM;
6662 				goto out;
6663 			}
6664 			*foliop = folio;
6665 			/* Set the outparam foliop and return to the caller to
6666 			 * copy the contents outside the lock. Don't free the
6667 			 * folio.
6668 			 */
6669 			goto out;
6670 		}
6671 	} else {
6672 		if (vm_shared &&
6673 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6674 			folio_put(*foliop);
6675 			ret = -EEXIST;
6676 			*foliop = NULL;
6677 			goto out;
6678 		}
6679 
6680 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6681 		if (IS_ERR(folio)) {
6682 			folio_put(*foliop);
6683 			ret = -ENOMEM;
6684 			*foliop = NULL;
6685 			goto out;
6686 		}
6687 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6688 		folio_put(*foliop);
6689 		*foliop = NULL;
6690 		if (ret) {
6691 			folio_put(folio);
6692 			goto out;
6693 		}
6694 	}
6695 
6696 	/*
6697 	 * If we just allocated a new page, we need a memory barrier to ensure
6698 	 * that preceding stores to the page become visible before the
6699 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6700 	 * is what we need.
6701 	 *
6702 	 * In the case where we have not allocated a new page (is_continue),
6703 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6704 	 * an earlier smp_wmb() to ensure that prior stores will be visible
6705 	 * before the set_pte_at() write.
6706 	 */
6707 	if (!is_continue)
6708 		__folio_mark_uptodate(folio);
6709 	else
6710 		WARN_ON_ONCE(!folio_test_uptodate(folio));
6711 
6712 	/* Add shared, newly allocated pages to the page cache. */
6713 	if (vm_shared && !is_continue) {
6714 		ret = -EFAULT;
6715 		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6716 			goto out_release_nounlock;
6717 
6718 		/*
6719 		 * Serialization between remove_inode_hugepages() and
6720 		 * hugetlb_add_to_page_cache() below happens through the
6721 		 * hugetlb_fault_mutex_table that here must be hold by
6722 		 * the caller.
6723 		 */
6724 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6725 		if (ret)
6726 			goto out_release_nounlock;
6727 		folio_in_pagecache = true;
6728 	}
6729 
6730 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6731 
6732 	ret = -EIO;
6733 	if (folio_test_hwpoison(folio))
6734 		goto out_release_unlock;
6735 
6736 	/*
6737 	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6738 	 * registered, we firstly wr-protect a none pte which has no page cache
6739 	 * page backing it, then access the page.
6740 	 */
6741 	ret = -EEXIST;
6742 	if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6743 		goto out_release_unlock;
6744 
6745 	if (folio_in_pagecache)
6746 		hugetlb_add_file_rmap(folio);
6747 	else
6748 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6749 
6750 	/*
6751 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6752 	 * with wp flag set, don't set pte write bit.
6753 	 */
6754 	_dst_pte = make_huge_pte(dst_vma, &folio->page,
6755 				 !wp_enabled && !(is_continue && !vm_shared));
6756 	/*
6757 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6758 	 * extremely important for hugetlbfs for now since swapping is not
6759 	 * supported, but we should still be clear in that this page cannot be
6760 	 * thrown away at will, even if write bit not set.
6761 	 */
6762 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6763 	_dst_pte = pte_mkyoung(_dst_pte);
6764 
6765 	if (wp_enabled)
6766 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6767 
6768 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6769 
6770 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6771 
6772 	/* No need to invalidate - it was non-present before */
6773 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6774 
6775 	spin_unlock(ptl);
6776 	if (!is_continue)
6777 		folio_set_hugetlb_migratable(folio);
6778 	if (vm_shared || is_continue)
6779 		folio_unlock(folio);
6780 	ret = 0;
6781 out:
6782 	return ret;
6783 out_release_unlock:
6784 	spin_unlock(ptl);
6785 	if (vm_shared || is_continue)
6786 		folio_unlock(folio);
6787 out_release_nounlock:
6788 	if (!folio_in_pagecache)
6789 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6790 	folio_put(folio);
6791 	goto out;
6792 }
6793 #endif /* CONFIG_USERFAULTFD */
6794 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6795 long hugetlb_change_protection(struct vm_area_struct *vma,
6796 		unsigned long address, unsigned long end,
6797 		pgprot_t newprot, unsigned long cp_flags)
6798 {
6799 	struct mm_struct *mm = vma->vm_mm;
6800 	unsigned long start = address;
6801 	pte_t *ptep;
6802 	pte_t pte;
6803 	struct hstate *h = hstate_vma(vma);
6804 	long pages = 0, psize = huge_page_size(h);
6805 	bool shared_pmd = false;
6806 	struct mmu_notifier_range range;
6807 	unsigned long last_addr_mask;
6808 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6809 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6810 
6811 	/*
6812 	 * In the case of shared PMDs, the area to flush could be beyond
6813 	 * start/end.  Set range.start/range.end to cover the maximum possible
6814 	 * range if PMD sharing is possible.
6815 	 */
6816 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6817 				0, mm, start, end);
6818 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6819 
6820 	BUG_ON(address >= end);
6821 	flush_cache_range(vma, range.start, range.end);
6822 
6823 	mmu_notifier_invalidate_range_start(&range);
6824 	hugetlb_vma_lock_write(vma);
6825 	i_mmap_lock_write(vma->vm_file->f_mapping);
6826 	last_addr_mask = hugetlb_mask_last_page(h);
6827 	for (; address < end; address += psize) {
6828 		spinlock_t *ptl;
6829 		ptep = hugetlb_walk(vma, address, psize);
6830 		if (!ptep) {
6831 			if (!uffd_wp) {
6832 				address |= last_addr_mask;
6833 				continue;
6834 			}
6835 			/*
6836 			 * Userfaultfd wr-protect requires pgtable
6837 			 * pre-allocations to install pte markers.
6838 			 */
6839 			ptep = huge_pte_alloc(mm, vma, address, psize);
6840 			if (!ptep) {
6841 				pages = -ENOMEM;
6842 				break;
6843 			}
6844 		}
6845 		ptl = huge_pte_lock(h, mm, ptep);
6846 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6847 			/*
6848 			 * When uffd-wp is enabled on the vma, unshare
6849 			 * shouldn't happen at all.  Warn about it if it
6850 			 * happened due to some reason.
6851 			 */
6852 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6853 			pages++;
6854 			spin_unlock(ptl);
6855 			shared_pmd = true;
6856 			address |= last_addr_mask;
6857 			continue;
6858 		}
6859 		pte = huge_ptep_get(mm, address, ptep);
6860 		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6861 			/* Nothing to do. */
6862 		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6863 			swp_entry_t entry = pte_to_swp_entry(pte);
6864 			struct page *page = pfn_swap_entry_to_page(entry);
6865 			pte_t newpte = pte;
6866 
6867 			if (is_writable_migration_entry(entry)) {
6868 				if (PageAnon(page))
6869 					entry = make_readable_exclusive_migration_entry(
6870 								swp_offset(entry));
6871 				else
6872 					entry = make_readable_migration_entry(
6873 								swp_offset(entry));
6874 				newpte = swp_entry_to_pte(entry);
6875 				pages++;
6876 			}
6877 
6878 			if (uffd_wp)
6879 				newpte = pte_swp_mkuffd_wp(newpte);
6880 			else if (uffd_wp_resolve)
6881 				newpte = pte_swp_clear_uffd_wp(newpte);
6882 			if (!pte_same(pte, newpte))
6883 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6884 		} else if (unlikely(is_pte_marker(pte))) {
6885 			/*
6886 			 * Do nothing on a poison marker; page is
6887 			 * corrupted, permissons do not apply.  Here
6888 			 * pte_marker_uffd_wp()==true implies !poison
6889 			 * because they're mutual exclusive.
6890 			 */
6891 			if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6892 				/* Safe to modify directly (non-present->none). */
6893 				huge_pte_clear(mm, address, ptep, psize);
6894 		} else if (!huge_pte_none(pte)) {
6895 			pte_t old_pte;
6896 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6897 
6898 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6899 			pte = huge_pte_modify(old_pte, newprot);
6900 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6901 			if (uffd_wp)
6902 				pte = huge_pte_mkuffd_wp(pte);
6903 			else if (uffd_wp_resolve)
6904 				pte = huge_pte_clear_uffd_wp(pte);
6905 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6906 			pages++;
6907 		} else {
6908 			/* None pte */
6909 			if (unlikely(uffd_wp))
6910 				/* Safe to modify directly (none->non-present). */
6911 				set_huge_pte_at(mm, address, ptep,
6912 						make_pte_marker(PTE_MARKER_UFFD_WP),
6913 						psize);
6914 		}
6915 		spin_unlock(ptl);
6916 	}
6917 	/*
6918 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6919 	 * may have cleared our pud entry and done put_page on the page table:
6920 	 * once we release i_mmap_rwsem, another task can do the final put_page
6921 	 * and that page table be reused and filled with junk.  If we actually
6922 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6923 	 */
6924 	if (shared_pmd)
6925 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6926 	else
6927 		flush_hugetlb_tlb_range(vma, start, end);
6928 	/*
6929 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6930 	 * downgrading page table protection not changing it to point to a new
6931 	 * page.
6932 	 *
6933 	 * See Documentation/mm/mmu_notifier.rst
6934 	 */
6935 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6936 	hugetlb_vma_unlock_write(vma);
6937 	mmu_notifier_invalidate_range_end(&range);
6938 
6939 	return pages > 0 ? (pages << h->order) : pages;
6940 }
6941 
6942 /* Return true if reservation was successful, false otherwise.  */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6943 bool hugetlb_reserve_pages(struct inode *inode,
6944 					long from, long to,
6945 					struct vm_area_struct *vma,
6946 					vm_flags_t vm_flags)
6947 {
6948 	long chg = -1, add = -1;
6949 	struct hstate *h = hstate_inode(inode);
6950 	struct hugepage_subpool *spool = subpool_inode(inode);
6951 	struct resv_map *resv_map;
6952 	struct hugetlb_cgroup *h_cg = NULL;
6953 	long gbl_reserve, regions_needed = 0;
6954 
6955 	/* This should never happen */
6956 	if (from > to) {
6957 		VM_WARN(1, "%s called with a negative range\n", __func__);
6958 		return false;
6959 	}
6960 
6961 	/*
6962 	 * vma specific semaphore used for pmd sharing and fault/truncation
6963 	 * synchronization
6964 	 */
6965 	hugetlb_vma_lock_alloc(vma);
6966 
6967 	/*
6968 	 * Only apply hugepage reservation if asked. At fault time, an
6969 	 * attempt will be made for VM_NORESERVE to allocate a page
6970 	 * without using reserves
6971 	 */
6972 	if (vm_flags & VM_NORESERVE)
6973 		return true;
6974 
6975 	/*
6976 	 * Shared mappings base their reservation on the number of pages that
6977 	 * are already allocated on behalf of the file. Private mappings need
6978 	 * to reserve the full area even if read-only as mprotect() may be
6979 	 * called to make the mapping read-write. Assume !vma is a shm mapping
6980 	 */
6981 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6982 		/*
6983 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6984 		 * called for inodes for which resv_maps were created (see
6985 		 * hugetlbfs_get_inode).
6986 		 */
6987 		resv_map = inode_resv_map(inode);
6988 
6989 		chg = region_chg(resv_map, from, to, &regions_needed);
6990 	} else {
6991 		/* Private mapping. */
6992 		resv_map = resv_map_alloc();
6993 		if (!resv_map)
6994 			goto out_err;
6995 
6996 		chg = to - from;
6997 
6998 		set_vma_resv_map(vma, resv_map);
6999 		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7000 	}
7001 
7002 	if (chg < 0)
7003 		goto out_err;
7004 
7005 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7006 				chg * pages_per_huge_page(h), &h_cg) < 0)
7007 		goto out_err;
7008 
7009 	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7010 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
7011 		 * of the resv_map.
7012 		 */
7013 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7014 	}
7015 
7016 	/*
7017 	 * There must be enough pages in the subpool for the mapping. If
7018 	 * the subpool has a minimum size, there may be some global
7019 	 * reservations already in place (gbl_reserve).
7020 	 */
7021 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7022 	if (gbl_reserve < 0)
7023 		goto out_uncharge_cgroup;
7024 
7025 	/*
7026 	 * Check enough hugepages are available for the reservation.
7027 	 * Hand the pages back to the subpool if there are not
7028 	 */
7029 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7030 		goto out_put_pages;
7031 
7032 	/*
7033 	 * Account for the reservations made. Shared mappings record regions
7034 	 * that have reservations as they are shared by multiple VMAs.
7035 	 * When the last VMA disappears, the region map says how much
7036 	 * the reservation was and the page cache tells how much of
7037 	 * the reservation was consumed. Private mappings are per-VMA and
7038 	 * only the consumed reservations are tracked. When the VMA
7039 	 * disappears, the original reservation is the VMA size and the
7040 	 * consumed reservations are stored in the map. Hence, nothing
7041 	 * else has to be done for private mappings here
7042 	 */
7043 	if (!vma || vma->vm_flags & VM_MAYSHARE) {
7044 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7045 
7046 		if (unlikely(add < 0)) {
7047 			hugetlb_acct_memory(h, -gbl_reserve);
7048 			goto out_put_pages;
7049 		} else if (unlikely(chg > add)) {
7050 			/*
7051 			 * pages in this range were added to the reserve
7052 			 * map between region_chg and region_add.  This
7053 			 * indicates a race with alloc_hugetlb_folio.  Adjust
7054 			 * the subpool and reserve counts modified above
7055 			 * based on the difference.
7056 			 */
7057 			long rsv_adjust;
7058 
7059 			/*
7060 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7061 			 * reference to h_cg->css. See comment below for detail.
7062 			 */
7063 			hugetlb_cgroup_uncharge_cgroup_rsvd(
7064 				hstate_index(h),
7065 				(chg - add) * pages_per_huge_page(h), h_cg);
7066 
7067 			rsv_adjust = hugepage_subpool_put_pages(spool,
7068 								chg - add);
7069 			hugetlb_acct_memory(h, -rsv_adjust);
7070 		} else if (h_cg) {
7071 			/*
7072 			 * The file_regions will hold their own reference to
7073 			 * h_cg->css. So we should release the reference held
7074 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7075 			 * done.
7076 			 */
7077 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7078 		}
7079 	}
7080 	return true;
7081 
7082 out_put_pages:
7083 	/* put back original number of pages, chg */
7084 	(void)hugepage_subpool_put_pages(spool, chg);
7085 out_uncharge_cgroup:
7086 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7087 					    chg * pages_per_huge_page(h), h_cg);
7088 out_err:
7089 	hugetlb_vma_lock_free(vma);
7090 	if (!vma || vma->vm_flags & VM_MAYSHARE)
7091 		/* Only call region_abort if the region_chg succeeded but the
7092 		 * region_add failed or didn't run.
7093 		 */
7094 		if (chg >= 0 && add < 0)
7095 			region_abort(resv_map, from, to, regions_needed);
7096 	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7097 		kref_put(&resv_map->refs, resv_map_release);
7098 		set_vma_resv_map(vma, NULL);
7099 	}
7100 	return false;
7101 }
7102 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7103 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7104 								long freed)
7105 {
7106 	struct hstate *h = hstate_inode(inode);
7107 	struct resv_map *resv_map = inode_resv_map(inode);
7108 	long chg = 0;
7109 	struct hugepage_subpool *spool = subpool_inode(inode);
7110 	long gbl_reserve;
7111 
7112 	/*
7113 	 * Since this routine can be called in the evict inode path for all
7114 	 * hugetlbfs inodes, resv_map could be NULL.
7115 	 */
7116 	if (resv_map) {
7117 		chg = region_del(resv_map, start, end);
7118 		/*
7119 		 * region_del() can fail in the rare case where a region
7120 		 * must be split and another region descriptor can not be
7121 		 * allocated.  If end == LONG_MAX, it will not fail.
7122 		 */
7123 		if (chg < 0)
7124 			return chg;
7125 	}
7126 
7127 	spin_lock(&inode->i_lock);
7128 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7129 	spin_unlock(&inode->i_lock);
7130 
7131 	/*
7132 	 * If the subpool has a minimum size, the number of global
7133 	 * reservations to be released may be adjusted.
7134 	 *
7135 	 * Note that !resv_map implies freed == 0. So (chg - freed)
7136 	 * won't go negative.
7137 	 */
7138 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7139 	hugetlb_acct_memory(h, -gbl_reserve);
7140 
7141 	return 0;
7142 }
7143 
7144 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7145 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7146 				struct vm_area_struct *vma,
7147 				unsigned long addr, pgoff_t idx)
7148 {
7149 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7150 				svma->vm_start;
7151 	unsigned long sbase = saddr & PUD_MASK;
7152 	unsigned long s_end = sbase + PUD_SIZE;
7153 
7154 	/* Allow segments to share if only one is marked locked */
7155 	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7156 	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7157 
7158 	/*
7159 	 * match the virtual addresses, permission and the alignment of the
7160 	 * page table page.
7161 	 *
7162 	 * Also, vma_lock (vm_private_data) is required for sharing.
7163 	 */
7164 	if (pmd_index(addr) != pmd_index(saddr) ||
7165 	    vm_flags != svm_flags ||
7166 	    !range_in_vma(svma, sbase, s_end) ||
7167 	    !svma->vm_private_data)
7168 		return 0;
7169 
7170 	return saddr;
7171 }
7172 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7173 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7174 {
7175 	unsigned long start = addr & PUD_MASK;
7176 	unsigned long end = start + PUD_SIZE;
7177 
7178 #ifdef CONFIG_USERFAULTFD
7179 	if (uffd_disable_huge_pmd_share(vma))
7180 		return false;
7181 #endif
7182 	/*
7183 	 * check on proper vm_flags and page table alignment
7184 	 */
7185 	if (!(vma->vm_flags & VM_MAYSHARE))
7186 		return false;
7187 	if (!vma->vm_private_data)	/* vma lock required for sharing */
7188 		return false;
7189 	if (!range_in_vma(vma, start, end))
7190 		return false;
7191 	return true;
7192 }
7193 
7194 /*
7195  * Determine if start,end range within vma could be mapped by shared pmd.
7196  * If yes, adjust start and end to cover range associated with possible
7197  * shared pmd mappings.
7198  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7199 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7200 				unsigned long *start, unsigned long *end)
7201 {
7202 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7203 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7204 
7205 	/*
7206 	 * vma needs to span at least one aligned PUD size, and the range
7207 	 * must be at least partially within in.
7208 	 */
7209 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7210 		(*end <= v_start) || (*start >= v_end))
7211 		return;
7212 
7213 	/* Extend the range to be PUD aligned for a worst case scenario */
7214 	if (*start > v_start)
7215 		*start = ALIGN_DOWN(*start, PUD_SIZE);
7216 
7217 	if (*end < v_end)
7218 		*end = ALIGN(*end, PUD_SIZE);
7219 }
7220 
7221 /*
7222  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7223  * and returns the corresponding pte. While this is not necessary for the
7224  * !shared pmd case because we can allocate the pmd later as well, it makes the
7225  * code much cleaner. pmd allocation is essential for the shared case because
7226  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7227  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7228  * bad pmd for sharing.
7229  */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7230 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7231 		      unsigned long addr, pud_t *pud)
7232 {
7233 	struct address_space *mapping = vma->vm_file->f_mapping;
7234 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7235 			vma->vm_pgoff;
7236 	struct vm_area_struct *svma;
7237 	unsigned long saddr;
7238 	pte_t *spte = NULL;
7239 	pte_t *pte;
7240 
7241 	i_mmap_lock_read(mapping);
7242 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7243 		if (svma == vma)
7244 			continue;
7245 
7246 		saddr = page_table_shareable(svma, vma, addr, idx);
7247 		if (saddr) {
7248 			spte = hugetlb_walk(svma, saddr,
7249 					    vma_mmu_pagesize(svma));
7250 			if (spte) {
7251 				ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7252 				break;
7253 			}
7254 		}
7255 	}
7256 
7257 	if (!spte)
7258 		goto out;
7259 
7260 	spin_lock(&mm->page_table_lock);
7261 	if (pud_none(*pud)) {
7262 		pud_populate(mm, pud,
7263 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7264 		mm_inc_nr_pmds(mm);
7265 	} else {
7266 		ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7267 	}
7268 	spin_unlock(&mm->page_table_lock);
7269 out:
7270 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7271 	i_mmap_unlock_read(mapping);
7272 	return pte;
7273 }
7274 
7275 /*
7276  * unmap huge page backed by shared pte.
7277  *
7278  * Called with page table lock held.
7279  *
7280  * returns: 1 successfully unmapped a shared pte page
7281  *	    0 the underlying pte page is not shared, or it is the last user
7282  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7283 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7284 					unsigned long addr, pte_t *ptep)
7285 {
7286 	unsigned long sz = huge_page_size(hstate_vma(vma));
7287 	pgd_t *pgd = pgd_offset(mm, addr);
7288 	p4d_t *p4d = p4d_offset(pgd, addr);
7289 	pud_t *pud = pud_offset(p4d, addr);
7290 
7291 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7292 	hugetlb_vma_assert_locked(vma);
7293 	if (sz != PMD_SIZE)
7294 		return 0;
7295 	if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7296 		return 0;
7297 
7298 	pud_clear(pud);
7299 	ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7300 	mm_dec_nr_pmds(mm);
7301 	return 1;
7302 }
7303 
7304 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7305 
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7306 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7307 		      unsigned long addr, pud_t *pud)
7308 {
7309 	return NULL;
7310 }
7311 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7312 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7313 				unsigned long addr, pte_t *ptep)
7314 {
7315 	return 0;
7316 }
7317 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7318 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7319 				unsigned long *start, unsigned long *end)
7320 {
7321 }
7322 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7323 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7324 {
7325 	return false;
7326 }
7327 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7328 
7329 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7330 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7331 			unsigned long addr, unsigned long sz)
7332 {
7333 	pgd_t *pgd;
7334 	p4d_t *p4d;
7335 	pud_t *pud;
7336 	pte_t *pte = NULL;
7337 
7338 	pgd = pgd_offset(mm, addr);
7339 	p4d = p4d_alloc(mm, pgd, addr);
7340 	if (!p4d)
7341 		return NULL;
7342 	pud = pud_alloc(mm, p4d, addr);
7343 	if (pud) {
7344 		if (sz == PUD_SIZE) {
7345 			pte = (pte_t *)pud;
7346 		} else {
7347 			BUG_ON(sz != PMD_SIZE);
7348 			if (want_pmd_share(vma, addr) && pud_none(*pud))
7349 				pte = huge_pmd_share(mm, vma, addr, pud);
7350 			else
7351 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7352 		}
7353 	}
7354 
7355 	if (pte) {
7356 		pte_t pteval = ptep_get_lockless(pte);
7357 
7358 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7359 	}
7360 
7361 	return pte;
7362 }
7363 
7364 /*
7365  * huge_pte_offset() - Walk the page table to resolve the hugepage
7366  * entry at address @addr
7367  *
7368  * Return: Pointer to page table entry (PUD or PMD) for
7369  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7370  * size @sz doesn't match the hugepage size at this level of the page
7371  * table.
7372  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7373 pte_t *huge_pte_offset(struct mm_struct *mm,
7374 		       unsigned long addr, unsigned long sz)
7375 {
7376 	pgd_t *pgd;
7377 	p4d_t *p4d;
7378 	pud_t *pud;
7379 	pmd_t *pmd;
7380 
7381 	pgd = pgd_offset(mm, addr);
7382 	if (!pgd_present(*pgd))
7383 		return NULL;
7384 	p4d = p4d_offset(pgd, addr);
7385 	if (!p4d_present(*p4d))
7386 		return NULL;
7387 
7388 	pud = pud_offset(p4d, addr);
7389 	if (sz == PUD_SIZE)
7390 		/* must be pud huge, non-present or none */
7391 		return (pte_t *)pud;
7392 	if (!pud_present(*pud))
7393 		return NULL;
7394 	/* must have a valid entry and size to go further */
7395 
7396 	pmd = pmd_offset(pud, addr);
7397 	/* must be pmd huge, non-present or none */
7398 	return (pte_t *)pmd;
7399 }
7400 
7401 /*
7402  * Return a mask that can be used to update an address to the last huge
7403  * page in a page table page mapping size.  Used to skip non-present
7404  * page table entries when linearly scanning address ranges.  Architectures
7405  * with unique huge page to page table relationships can define their own
7406  * version of this routine.
7407  */
hugetlb_mask_last_page(struct hstate * h)7408 unsigned long hugetlb_mask_last_page(struct hstate *h)
7409 {
7410 	unsigned long hp_size = huge_page_size(h);
7411 
7412 	if (hp_size == PUD_SIZE)
7413 		return P4D_SIZE - PUD_SIZE;
7414 	else if (hp_size == PMD_SIZE)
7415 		return PUD_SIZE - PMD_SIZE;
7416 	else
7417 		return 0UL;
7418 }
7419 
7420 #else
7421 
7422 /* See description above.  Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7423 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7424 {
7425 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7426 	if (huge_page_size(h) == PMD_SIZE)
7427 		return PUD_SIZE - PMD_SIZE;
7428 #endif
7429 	return 0UL;
7430 }
7431 
7432 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7433 
7434 /**
7435  * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7436  * @folio: the folio to isolate
7437  * @list: the list to add the folio to on success
7438  *
7439  * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7440  * isolated/non-migratable, and moving it from the active list to the
7441  * given list.
7442  *
7443  * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7444  * it is already isolated/non-migratable.
7445  *
7446  * On success, an additional folio reference is taken that must be dropped
7447  * using folio_putback_hugetlb() to undo the isolation.
7448  *
7449  * Return: True if isolation worked, otherwise False.
7450  */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7451 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7452 {
7453 	bool ret = true;
7454 
7455 	spin_lock_irq(&hugetlb_lock);
7456 	if (!folio_test_hugetlb(folio) ||
7457 	    !folio_test_hugetlb_migratable(folio) ||
7458 	    !folio_try_get(folio)) {
7459 		ret = false;
7460 		goto unlock;
7461 	}
7462 	folio_clear_hugetlb_migratable(folio);
7463 	list_move_tail(&folio->lru, list);
7464 unlock:
7465 	spin_unlock_irq(&hugetlb_lock);
7466 	return ret;
7467 }
7468 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7469 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7470 {
7471 	int ret = 0;
7472 
7473 	*hugetlb = false;
7474 	spin_lock_irq(&hugetlb_lock);
7475 	if (folio_test_hugetlb(folio)) {
7476 		*hugetlb = true;
7477 		if (folio_test_hugetlb_freed(folio))
7478 			ret = 0;
7479 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7480 			ret = folio_try_get(folio);
7481 		else
7482 			ret = -EBUSY;
7483 	}
7484 	spin_unlock_irq(&hugetlb_lock);
7485 	return ret;
7486 }
7487 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7488 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7489 				bool *migratable_cleared)
7490 {
7491 	int ret;
7492 
7493 	spin_lock_irq(&hugetlb_lock);
7494 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7495 	spin_unlock_irq(&hugetlb_lock);
7496 	return ret;
7497 }
7498 
7499 /**
7500  * folio_putback_hugetlb - unisolate a hugetlb folio
7501  * @folio: the isolated hugetlb folio
7502  *
7503  * Putback/un-isolate the hugetlb folio that was previous isolated using
7504  * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7505  * back onto the active list.
7506  *
7507  * Will drop the additional folio reference obtained through
7508  * folio_isolate_hugetlb().
7509  */
folio_putback_hugetlb(struct folio * folio)7510 void folio_putback_hugetlb(struct folio *folio)
7511 {
7512 	spin_lock_irq(&hugetlb_lock);
7513 	folio_set_hugetlb_migratable(folio);
7514 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7515 	spin_unlock_irq(&hugetlb_lock);
7516 	folio_put(folio);
7517 }
7518 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7519 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7520 {
7521 	struct hstate *h = folio_hstate(old_folio);
7522 
7523 	hugetlb_cgroup_migrate(old_folio, new_folio);
7524 	set_page_owner_migrate_reason(&new_folio->page, reason);
7525 
7526 	/*
7527 	 * transfer temporary state of the new hugetlb folio. This is
7528 	 * reverse to other transitions because the newpage is going to
7529 	 * be final while the old one will be freed so it takes over
7530 	 * the temporary status.
7531 	 *
7532 	 * Also note that we have to transfer the per-node surplus state
7533 	 * here as well otherwise the global surplus count will not match
7534 	 * the per-node's.
7535 	 */
7536 	if (folio_test_hugetlb_temporary(new_folio)) {
7537 		int old_nid = folio_nid(old_folio);
7538 		int new_nid = folio_nid(new_folio);
7539 
7540 		folio_set_hugetlb_temporary(old_folio);
7541 		folio_clear_hugetlb_temporary(new_folio);
7542 
7543 
7544 		/*
7545 		 * There is no need to transfer the per-node surplus state
7546 		 * when we do not cross the node.
7547 		 */
7548 		if (new_nid == old_nid)
7549 			return;
7550 		spin_lock_irq(&hugetlb_lock);
7551 		if (h->surplus_huge_pages_node[old_nid]) {
7552 			h->surplus_huge_pages_node[old_nid]--;
7553 			h->surplus_huge_pages_node[new_nid]++;
7554 		}
7555 		spin_unlock_irq(&hugetlb_lock);
7556 	}
7557 
7558 	/*
7559 	 * Our old folio is isolated and has "migratable" cleared until it
7560 	 * is putback. As migration succeeded, set the new folio "migratable"
7561 	 * and add it to the active list.
7562 	 */
7563 	spin_lock_irq(&hugetlb_lock);
7564 	folio_set_hugetlb_migratable(new_folio);
7565 	list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7566 	spin_unlock_irq(&hugetlb_lock);
7567 }
7568 
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7569 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7570 				   unsigned long start,
7571 				   unsigned long end)
7572 {
7573 	struct hstate *h = hstate_vma(vma);
7574 	unsigned long sz = huge_page_size(h);
7575 	struct mm_struct *mm = vma->vm_mm;
7576 	struct mmu_notifier_range range;
7577 	unsigned long address;
7578 	spinlock_t *ptl;
7579 	pte_t *ptep;
7580 
7581 	if (!(vma->vm_flags & VM_MAYSHARE))
7582 		return;
7583 
7584 	if (start >= end)
7585 		return;
7586 
7587 	flush_cache_range(vma, start, end);
7588 	/*
7589 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7590 	 * we have already done the PUD_SIZE alignment.
7591 	 */
7592 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7593 				start, end);
7594 	mmu_notifier_invalidate_range_start(&range);
7595 	hugetlb_vma_lock_write(vma);
7596 	i_mmap_lock_write(vma->vm_file->f_mapping);
7597 	for (address = start; address < end; address += PUD_SIZE) {
7598 		ptep = hugetlb_walk(vma, address, sz);
7599 		if (!ptep)
7600 			continue;
7601 		ptl = huge_pte_lock(h, mm, ptep);
7602 		huge_pmd_unshare(mm, vma, address, ptep);
7603 		spin_unlock(ptl);
7604 	}
7605 	flush_hugetlb_tlb_range(vma, start, end);
7606 	i_mmap_unlock_write(vma->vm_file->f_mapping);
7607 	hugetlb_vma_unlock_write(vma);
7608 	/*
7609 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7610 	 * Documentation/mm/mmu_notifier.rst.
7611 	 */
7612 	mmu_notifier_invalidate_range_end(&range);
7613 }
7614 
7615 /*
7616  * This function will unconditionally remove all the shared pmd pgtable entries
7617  * within the specific vma for a hugetlbfs memory range.
7618  */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7619 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7620 {
7621 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7622 			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7623 }
7624 
7625 #ifdef CONFIG_CMA
7626 static bool cma_reserve_called __initdata;
7627 
cmdline_parse_hugetlb_cma(char * p)7628 static int __init cmdline_parse_hugetlb_cma(char *p)
7629 {
7630 	int nid, count = 0;
7631 	unsigned long tmp;
7632 	char *s = p;
7633 
7634 	while (*s) {
7635 		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7636 			break;
7637 
7638 		if (s[count] == ':') {
7639 			if (tmp >= MAX_NUMNODES)
7640 				break;
7641 			nid = array_index_nospec(tmp, MAX_NUMNODES);
7642 
7643 			s += count + 1;
7644 			tmp = memparse(s, &s);
7645 			hugetlb_cma_size_in_node[nid] = tmp;
7646 			hugetlb_cma_size += tmp;
7647 
7648 			/*
7649 			 * Skip the separator if have one, otherwise
7650 			 * break the parsing.
7651 			 */
7652 			if (*s == ',')
7653 				s++;
7654 			else
7655 				break;
7656 		} else {
7657 			hugetlb_cma_size = memparse(p, &p);
7658 			break;
7659 		}
7660 	}
7661 
7662 	return 0;
7663 }
7664 
7665 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7666 
hugetlb_cma_reserve(int order)7667 void __init hugetlb_cma_reserve(int order)
7668 {
7669 	unsigned long size, reserved, per_node;
7670 	bool node_specific_cma_alloc = false;
7671 	int nid;
7672 
7673 	/*
7674 	 * HugeTLB CMA reservation is required for gigantic
7675 	 * huge pages which could not be allocated via the
7676 	 * page allocator. Just warn if there is any change
7677 	 * breaking this assumption.
7678 	 */
7679 	VM_WARN_ON(order <= MAX_PAGE_ORDER);
7680 	cma_reserve_called = true;
7681 
7682 	if (!hugetlb_cma_size)
7683 		return;
7684 
7685 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7686 		if (hugetlb_cma_size_in_node[nid] == 0)
7687 			continue;
7688 
7689 		if (!node_online(nid)) {
7690 			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7691 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7692 			hugetlb_cma_size_in_node[nid] = 0;
7693 			continue;
7694 		}
7695 
7696 		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7697 			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7698 				nid, (PAGE_SIZE << order) / SZ_1M);
7699 			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7700 			hugetlb_cma_size_in_node[nid] = 0;
7701 		} else {
7702 			node_specific_cma_alloc = true;
7703 		}
7704 	}
7705 
7706 	/* Validate the CMA size again in case some invalid nodes specified. */
7707 	if (!hugetlb_cma_size)
7708 		return;
7709 
7710 	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7711 		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7712 			(PAGE_SIZE << order) / SZ_1M);
7713 		hugetlb_cma_size = 0;
7714 		return;
7715 	}
7716 
7717 	if (!node_specific_cma_alloc) {
7718 		/*
7719 		 * If 3 GB area is requested on a machine with 4 numa nodes,
7720 		 * let's allocate 1 GB on first three nodes and ignore the last one.
7721 		 */
7722 		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7723 		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7724 			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7725 	}
7726 
7727 	reserved = 0;
7728 	for_each_online_node(nid) {
7729 		int res;
7730 		char name[CMA_MAX_NAME];
7731 
7732 		if (node_specific_cma_alloc) {
7733 			if (hugetlb_cma_size_in_node[nid] == 0)
7734 				continue;
7735 
7736 			size = hugetlb_cma_size_in_node[nid];
7737 		} else {
7738 			size = min(per_node, hugetlb_cma_size - reserved);
7739 		}
7740 
7741 		size = round_up(size, PAGE_SIZE << order);
7742 
7743 		snprintf(name, sizeof(name), "hugetlb%d", nid);
7744 		/*
7745 		 * Note that 'order per bit' is based on smallest size that
7746 		 * may be returned to CMA allocator in the case of
7747 		 * huge page demotion.
7748 		 */
7749 		res = cma_declare_contiguous_nid(0, size, 0,
7750 					PAGE_SIZE << order,
7751 					HUGETLB_PAGE_ORDER, false, name,
7752 					&hugetlb_cma[nid], nid);
7753 		if (res) {
7754 			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7755 				res, nid);
7756 			continue;
7757 		}
7758 
7759 		reserved += size;
7760 		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7761 			size / SZ_1M, nid);
7762 
7763 		if (reserved >= hugetlb_cma_size)
7764 			break;
7765 	}
7766 
7767 	if (!reserved)
7768 		/*
7769 		 * hugetlb_cma_size is used to determine if allocations from
7770 		 * cma are possible.  Set to zero if no cma regions are set up.
7771 		 */
7772 		hugetlb_cma_size = 0;
7773 }
7774 
hugetlb_cma_check(void)7775 static void __init hugetlb_cma_check(void)
7776 {
7777 	if (!hugetlb_cma_size || cma_reserve_called)
7778 		return;
7779 
7780 	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7781 }
7782 
7783 #endif /* CONFIG_CMA */
7784