xref: /linux/drivers/iio/adc/qcom-spmi-rradc.c (revision 7ec462100ef9142344ddbf86f2c3008b97acddbe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016-2017, 2019, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2022 Linaro Limited.
5  *  Author: Caleb Connolly <caleb.connolly@linaro.org>
6  *
7  * This driver is for the Round Robin ADC found in the pmi8998 and pm660 PMICs.
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/delay.h>
12 #include <linux/kernel.h>
13 #include <linux/math64.h>
14 #include <linux/module.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/platform_device.h>
17 #include <linux/property.h>
18 #include <linux/regmap.h>
19 #include <linux/spmi.h>
20 #include <linux/types.h>
21 #include <linux/units.h>
22 
23 #include <linux/unaligned.h>
24 
25 #include <linux/iio/iio.h>
26 #include <linux/iio/types.h>
27 
28 #include <soc/qcom/qcom-spmi-pmic.h>
29 
30 #define DRIVER_NAME "qcom-spmi-rradc"
31 
32 #define RR_ADC_EN_CTL 0x46
33 #define RR_ADC_SKIN_TEMP_LSB 0x50
34 #define RR_ADC_SKIN_TEMP_MSB 0x51
35 #define RR_ADC_CTL 0x52
36 #define RR_ADC_CTL_CONTINUOUS_SEL BIT(3)
37 #define RR_ADC_LOG 0x53
38 #define RR_ADC_LOG_CLR_CTRL BIT(0)
39 
40 #define RR_ADC_FAKE_BATT_LOW_LSB 0x58
41 #define RR_ADC_FAKE_BATT_LOW_MSB 0x59
42 #define RR_ADC_FAKE_BATT_HIGH_LSB 0x5A
43 #define RR_ADC_FAKE_BATT_HIGH_MSB 0x5B
44 
45 #define RR_ADC_BATT_ID_CTRL 0x60
46 #define RR_ADC_BATT_ID_CTRL_CHANNEL_CONV BIT(0)
47 #define RR_ADC_BATT_ID_TRIGGER 0x61
48 #define RR_ADC_BATT_ID_STS 0x62
49 #define RR_ADC_BATT_ID_CFG 0x63
50 #define BATT_ID_SETTLE_MASK GENMASK(7, 5)
51 #define RR_ADC_BATT_ID_5_LSB 0x66
52 #define RR_ADC_BATT_ID_5_MSB 0x67
53 #define RR_ADC_BATT_ID_15_LSB 0x68
54 #define RR_ADC_BATT_ID_15_MSB 0x69
55 #define RR_ADC_BATT_ID_150_LSB 0x6A
56 #define RR_ADC_BATT_ID_150_MSB 0x6B
57 
58 #define RR_ADC_BATT_THERM_CTRL 0x70
59 #define RR_ADC_BATT_THERM_TRIGGER 0x71
60 #define RR_ADC_BATT_THERM_STS 0x72
61 #define RR_ADC_BATT_THERM_CFG 0x73
62 #define RR_ADC_BATT_THERM_LSB 0x74
63 #define RR_ADC_BATT_THERM_MSB 0x75
64 #define RR_ADC_BATT_THERM_FREQ 0x76
65 
66 #define RR_ADC_AUX_THERM_CTRL 0x80
67 #define RR_ADC_AUX_THERM_TRIGGER 0x81
68 #define RR_ADC_AUX_THERM_STS 0x82
69 #define RR_ADC_AUX_THERM_CFG 0x83
70 #define RR_ADC_AUX_THERM_LSB 0x84
71 #define RR_ADC_AUX_THERM_MSB 0x85
72 
73 #define RR_ADC_SKIN_HOT 0x86
74 #define RR_ADC_SKIN_TOO_HOT 0x87
75 
76 #define RR_ADC_AUX_THERM_C1 0x88
77 #define RR_ADC_AUX_THERM_C2 0x89
78 #define RR_ADC_AUX_THERM_C3 0x8A
79 #define RR_ADC_AUX_THERM_HALF_RANGE 0x8B
80 
81 #define RR_ADC_USB_IN_V_CTRL 0x90
82 #define RR_ADC_USB_IN_V_TRIGGER 0x91
83 #define RR_ADC_USB_IN_V_STS 0x92
84 #define RR_ADC_USB_IN_V_LSB 0x94
85 #define RR_ADC_USB_IN_V_MSB 0x95
86 #define RR_ADC_USB_IN_I_CTRL 0x98
87 #define RR_ADC_USB_IN_I_TRIGGER 0x99
88 #define RR_ADC_USB_IN_I_STS 0x9A
89 #define RR_ADC_USB_IN_I_LSB 0x9C
90 #define RR_ADC_USB_IN_I_MSB 0x9D
91 
92 #define RR_ADC_DC_IN_V_CTRL 0xA0
93 #define RR_ADC_DC_IN_V_TRIGGER 0xA1
94 #define RR_ADC_DC_IN_V_STS 0xA2
95 #define RR_ADC_DC_IN_V_LSB 0xA4
96 #define RR_ADC_DC_IN_V_MSB 0xA5
97 #define RR_ADC_DC_IN_I_CTRL 0xA8
98 #define RR_ADC_DC_IN_I_TRIGGER 0xA9
99 #define RR_ADC_DC_IN_I_STS 0xAA
100 #define RR_ADC_DC_IN_I_LSB 0xAC
101 #define RR_ADC_DC_IN_I_MSB 0xAD
102 
103 #define RR_ADC_PMI_DIE_TEMP_CTRL 0xB0
104 #define RR_ADC_PMI_DIE_TEMP_TRIGGER 0xB1
105 #define RR_ADC_PMI_DIE_TEMP_STS 0xB2
106 #define RR_ADC_PMI_DIE_TEMP_CFG 0xB3
107 #define RR_ADC_PMI_DIE_TEMP_LSB 0xB4
108 #define RR_ADC_PMI_DIE_TEMP_MSB 0xB5
109 
110 #define RR_ADC_CHARGER_TEMP_CTRL 0xB8
111 #define RR_ADC_CHARGER_TEMP_TRIGGER 0xB9
112 #define RR_ADC_CHARGER_TEMP_STS 0xBA
113 #define RR_ADC_CHARGER_TEMP_CFG 0xBB
114 #define RR_ADC_CHARGER_TEMP_LSB 0xBC
115 #define RR_ADC_CHARGER_TEMP_MSB 0xBD
116 #define RR_ADC_CHARGER_HOT 0xBE
117 #define RR_ADC_CHARGER_TOO_HOT 0xBF
118 
119 #define RR_ADC_GPIO_CTRL 0xC0
120 #define RR_ADC_GPIO_TRIGGER 0xC1
121 #define RR_ADC_GPIO_STS 0xC2
122 #define RR_ADC_GPIO_LSB 0xC4
123 #define RR_ADC_GPIO_MSB 0xC5
124 
125 #define RR_ADC_ATEST_CTRL 0xC8
126 #define RR_ADC_ATEST_TRIGGER 0xC9
127 #define RR_ADC_ATEST_STS 0xCA
128 #define RR_ADC_ATEST_LSB 0xCC
129 #define RR_ADC_ATEST_MSB 0xCD
130 #define RR_ADC_SEC_ACCESS 0xD0
131 
132 #define RR_ADC_PERPH_RESET_CTL2 0xD9
133 #define RR_ADC_PERPH_RESET_CTL3 0xDA
134 #define RR_ADC_PERPH_RESET_CTL4 0xDB
135 #define RR_ADC_INT_TEST1 0xE0
136 #define RR_ADC_INT_TEST_VAL 0xE1
137 
138 #define RR_ADC_TM_TRIGGER_CTRLS 0xE2
139 #define RR_ADC_TM_ADC_CTRLS 0xE3
140 #define RR_ADC_TM_CNL_CTRL 0xE4
141 #define RR_ADC_TM_BATT_ID_CTRL 0xE5
142 #define RR_ADC_TM_THERM_CTRL 0xE6
143 #define RR_ADC_TM_CONV_STS 0xE7
144 #define RR_ADC_TM_ADC_READ_LSB 0xE8
145 #define RR_ADC_TM_ADC_READ_MSB 0xE9
146 #define RR_ADC_TM_ATEST_MUX_1 0xEA
147 #define RR_ADC_TM_ATEST_MUX_2 0xEB
148 #define RR_ADC_TM_REFERENCES 0xED
149 #define RR_ADC_TM_MISC_CTL 0xEE
150 #define RR_ADC_TM_RR_CTRL 0xEF
151 
152 #define RR_ADC_TRIGGER_EVERY_CYCLE BIT(7)
153 #define RR_ADC_TRIGGER_CTL BIT(0)
154 
155 #define RR_ADC_BATT_ID_RANGE 820
156 
157 #define RR_ADC_BITS 10
158 #define RR_ADC_CHAN_MSB (1 << RR_ADC_BITS)
159 #define RR_ADC_FS_VOLTAGE_MV 2500
160 
161 /* BATT_THERM 0.25K/LSB */
162 #define RR_ADC_BATT_THERM_LSB_K 4
163 
164 #define RR_ADC_TEMP_FS_VOLTAGE_NUM 5000000
165 #define RR_ADC_TEMP_FS_VOLTAGE_DEN 3
166 #define RR_ADC_DIE_TEMP_OFFSET 601400
167 #define RR_ADC_DIE_TEMP_SLOPE 2
168 #define RR_ADC_DIE_TEMP_OFFSET_MILLI_DEGC 25000
169 
170 #define RR_ADC_CHG_TEMP_GF_OFFSET_UV 1303168
171 #define RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C 3784
172 #define RR_ADC_CHG_TEMP_SMIC_OFFSET_UV 1338433
173 #define RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C 3655
174 #define RR_ADC_CHG_TEMP_660_GF_OFFSET_UV 1309001
175 #define RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C 3403
176 #define RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV 1295898
177 #define RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C 3596
178 #define RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV 1314779
179 #define RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C 3496
180 #define RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC 25000
181 #define RR_ADC_CHG_THRESHOLD_SCALE 4
182 
183 #define RR_ADC_VOLT_INPUT_FACTOR 8
184 #define RR_ADC_CURR_INPUT_FACTOR 2000
185 #define RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL 1886
186 #define RR_ADC_CURR_USBIN_660_FACTOR_MIL 9
187 #define RR_ADC_CURR_USBIN_660_UV_VAL 579500
188 
189 #define RR_ADC_GPIO_FS_RANGE 5000
190 #define RR_ADC_COHERENT_CHECK_RETRY 5
191 #define RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN 16
192 
193 #define RR_ADC_STS_CHANNEL_READING_MASK GENMASK(1, 0)
194 #define RR_ADC_STS_CHANNEL_STS BIT(1)
195 
196 #define RR_ADC_TP_REV_VERSION1 21
197 #define RR_ADC_TP_REV_VERSION2 29
198 #define RR_ADC_TP_REV_VERSION3 32
199 
200 #define RRADC_BATT_ID_DELAY_MAX 8
201 
202 enum rradc_channel_id {
203 	RR_ADC_BATT_ID = 0,
204 	RR_ADC_BATT_THERM,
205 	RR_ADC_SKIN_TEMP,
206 	RR_ADC_USBIN_I,
207 	RR_ADC_USBIN_V,
208 	RR_ADC_DCIN_I,
209 	RR_ADC_DCIN_V,
210 	RR_ADC_DIE_TEMP,
211 	RR_ADC_CHG_TEMP,
212 	RR_ADC_GPIO,
213 	RR_ADC_CHAN_MAX
214 };
215 
216 struct rradc_chip;
217 
218 /**
219  * struct rradc_channel - rradc channel data
220  * @label:		channel label
221  * @lsb:		Channel least significant byte
222  * @status:		Channel status address
223  * @size:		number of bytes to read
224  * @trigger_addr:	Trigger address, trigger is only used on some channels
225  * @trigger_mask:	Trigger mask
226  * @scale_fn:		Post process callback for channels which can't be exposed
227  *			as offset + scale.
228  */
229 struct rradc_channel {
230 	const char *label;
231 	u8 lsb;
232 	u8 status;
233 	int size;
234 	int trigger_addr;
235 	int trigger_mask;
236 	int (*scale_fn)(struct rradc_chip *chip, u16 adc_code, int *result);
237 };
238 
239 struct rradc_chip {
240 	struct device *dev;
241 	const struct qcom_spmi_pmic *pmic;
242 	/*
243 	 * Lock held while doing channel conversion
244 	 * involving multiple register read/writes
245 	 */
246 	struct mutex conversion_lock;
247 	struct regmap *regmap;
248 	u32 base;
249 	int batt_id_delay;
250 	u16 batt_id_data;
251 };
252 
253 static const int batt_id_delays[] = { 0, 1, 4, 12, 20, 40, 60, 80 };
254 static const struct rradc_channel rradc_chans[RR_ADC_CHAN_MAX];
255 static const struct iio_chan_spec rradc_iio_chans[RR_ADC_CHAN_MAX];
256 
rradc_read(struct rradc_chip * chip,u16 addr,__le16 * buf,int len)257 static int rradc_read(struct rradc_chip *chip, u16 addr, __le16 *buf, int len)
258 {
259 	int ret, retry_cnt = 0;
260 	__le16 data_check[RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN / 2];
261 
262 	if (len > RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN) {
263 		dev_err(chip->dev,
264 			"Can't read more than %d bytes, but asked to read %d bytes.\n",
265 			RR_ADC_CHAN_MAX_CONTINUOUS_BUFFER_LEN, len);
266 		return -EINVAL;
267 	}
268 
269 	while (retry_cnt < RR_ADC_COHERENT_CHECK_RETRY) {
270 		ret = regmap_bulk_read(chip->regmap, chip->base + addr, buf,
271 				       len);
272 		if (ret < 0) {
273 			dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr,
274 				ret);
275 			return ret;
276 		}
277 
278 		ret = regmap_bulk_read(chip->regmap, chip->base + addr,
279 				       data_check, len);
280 		if (ret < 0) {
281 			dev_err(chip->dev, "rr_adc reg 0x%x failed :%d\n", addr,
282 				ret);
283 			return ret;
284 		}
285 
286 		if (memcmp(buf, data_check, len) != 0) {
287 			retry_cnt++;
288 			dev_dbg(chip->dev,
289 				"coherent read error, retry_cnt:%d\n",
290 				retry_cnt);
291 			continue;
292 		}
293 
294 		break;
295 	}
296 
297 	if (retry_cnt == RR_ADC_COHERENT_CHECK_RETRY)
298 		dev_err(chip->dev, "Retry exceeded for coherency check\n");
299 
300 	return ret;
301 }
302 
rradc_get_fab_coeff(struct rradc_chip * chip,int64_t * offset,int64_t * slope)303 static int rradc_get_fab_coeff(struct rradc_chip *chip, int64_t *offset,
304 			       int64_t *slope)
305 {
306 	if (chip->pmic->subtype == PM660_SUBTYPE) {
307 		switch (chip->pmic->fab_id) {
308 		case PM660_FAB_ID_GF:
309 			*offset = RR_ADC_CHG_TEMP_660_GF_OFFSET_UV;
310 			*slope = RR_ADC_CHG_TEMP_660_GF_SLOPE_UV_PER_C;
311 			return 0;
312 		case PM660_FAB_ID_TSMC:
313 			*offset = RR_ADC_CHG_TEMP_660_SMIC_OFFSET_UV;
314 			*slope = RR_ADC_CHG_TEMP_660_SMIC_SLOPE_UV_PER_C;
315 			return 0;
316 		default:
317 			*offset = RR_ADC_CHG_TEMP_660_MGNA_OFFSET_UV;
318 			*slope = RR_ADC_CHG_TEMP_660_MGNA_SLOPE_UV_PER_C;
319 		}
320 	} else if (chip->pmic->subtype == PMI8998_SUBTYPE) {
321 		switch (chip->pmic->fab_id) {
322 		case PMI8998_FAB_ID_GF:
323 			*offset = RR_ADC_CHG_TEMP_GF_OFFSET_UV;
324 			*slope = RR_ADC_CHG_TEMP_GF_SLOPE_UV_PER_C;
325 			return 0;
326 		case PMI8998_FAB_ID_SMIC:
327 			*offset = RR_ADC_CHG_TEMP_SMIC_OFFSET_UV;
328 			*slope = RR_ADC_CHG_TEMP_SMIC_SLOPE_UV_PER_C;
329 			return 0;
330 		default:
331 			return -EINVAL;
332 		}
333 	}
334 
335 	return -EINVAL;
336 }
337 
338 /*
339  * These functions explicitly cast int64_t to int.
340  * They will never overflow, as the values are small enough.
341  */
rradc_post_process_batt_id(struct rradc_chip * chip,u16 adc_code,int * result_ohms)342 static int rradc_post_process_batt_id(struct rradc_chip *chip, u16 adc_code,
343 				      int *result_ohms)
344 {
345 	uint32_t current_value;
346 	int64_t r_id;
347 
348 	current_value = chip->batt_id_data;
349 	r_id = ((int64_t)adc_code * RR_ADC_FS_VOLTAGE_MV);
350 	r_id = div64_s64(r_id, (RR_ADC_CHAN_MSB * current_value));
351 	*result_ohms = (int)(r_id * MILLI);
352 
353 	return 0;
354 }
355 
rradc_enable_continuous_mode(struct rradc_chip * chip)356 static int rradc_enable_continuous_mode(struct rradc_chip *chip)
357 {
358 	int ret;
359 
360 	/* Clear channel log */
361 	ret = regmap_set_bits(chip->regmap, chip->base + RR_ADC_LOG,
362 			      RR_ADC_LOG_CLR_CTRL);
363 	if (ret < 0) {
364 		dev_err(chip->dev, "log ctrl update to clear failed:%d\n", ret);
365 		return ret;
366 	}
367 
368 	ret = regmap_clear_bits(chip->regmap, chip->base + RR_ADC_LOG,
369 				RR_ADC_LOG_CLR_CTRL);
370 	if (ret < 0) {
371 		dev_err(chip->dev, "log ctrl update to not clear failed:%d\n",
372 			ret);
373 		return ret;
374 	}
375 
376 	/* Switch to continuous mode */
377 	ret = regmap_set_bits(chip->regmap, chip->base + RR_ADC_CTL,
378 			      RR_ADC_CTL_CONTINUOUS_SEL);
379 	if (ret < 0)
380 		dev_err(chip->dev, "Update to continuous mode failed:%d\n",
381 			ret);
382 
383 	return ret;
384 }
385 
rradc_disable_continuous_mode(struct rradc_chip * chip)386 static int rradc_disable_continuous_mode(struct rradc_chip *chip)
387 {
388 	int ret;
389 
390 	/* Switch to non continuous mode */
391 	ret = regmap_clear_bits(chip->regmap, chip->base + RR_ADC_CTL,
392 				RR_ADC_CTL_CONTINUOUS_SEL);
393 	if (ret < 0)
394 		dev_err(chip->dev, "Update to non-continuous mode failed:%d\n",
395 			ret);
396 
397 	return ret;
398 }
399 
rradc_is_ready(struct rradc_chip * chip,enum rradc_channel_id chan_address)400 static bool rradc_is_ready(struct rradc_chip *chip,
401 			   enum rradc_channel_id chan_address)
402 {
403 	const struct rradc_channel *chan = &rradc_chans[chan_address];
404 	int ret;
405 	unsigned int status, mask;
406 
407 	/* BATT_ID STS bit does not get set initially */
408 	switch (chan_address) {
409 	case RR_ADC_BATT_ID:
410 		mask = RR_ADC_STS_CHANNEL_STS;
411 		break;
412 	default:
413 		mask = RR_ADC_STS_CHANNEL_READING_MASK;
414 		break;
415 	}
416 
417 	ret = regmap_read(chip->regmap, chip->base + chan->status, &status);
418 	if (ret < 0 || !(status & mask))
419 		return false;
420 
421 	return true;
422 }
423 
rradc_read_status_in_cont_mode(struct rradc_chip * chip,enum rradc_channel_id chan_address)424 static int rradc_read_status_in_cont_mode(struct rradc_chip *chip,
425 					  enum rradc_channel_id chan_address)
426 {
427 	const struct rradc_channel *chan = &rradc_chans[chan_address];
428 	const struct iio_chan_spec *iio_chan = &rradc_iio_chans[chan_address];
429 	int ret, i;
430 
431 	if (chan->trigger_mask == 0) {
432 		dev_err(chip->dev, "Channel doesn't have a trigger mask\n");
433 		return -EINVAL;
434 	}
435 
436 	ret = regmap_set_bits(chip->regmap, chip->base + chan->trigger_addr,
437 			      chan->trigger_mask);
438 	if (ret < 0) {
439 		dev_err(chip->dev,
440 			"Failed to apply trigger for channel '%s' ret=%d\n",
441 			iio_chan->extend_name, ret);
442 		return ret;
443 	}
444 
445 	ret = rradc_enable_continuous_mode(chip);
446 	if (ret < 0) {
447 		dev_err(chip->dev, "Failed to switch to continuous mode\n");
448 		goto disable_trigger;
449 	}
450 
451 	/*
452 	 * The wait/sleep values were found through trial and error,
453 	 * this is mostly for the battery ID channel which takes some
454 	 * time to settle.
455 	 */
456 	for (i = 0; i < 5; i++) {
457 		if (rradc_is_ready(chip, chan_address))
458 			break;
459 		usleep_range(50000, 50000 + 500);
460 	}
461 
462 	if (i == 5) {
463 		dev_err(chip->dev, "Channel '%s' is not ready\n",
464 			iio_chan->extend_name);
465 		ret = -ETIMEDOUT;
466 	}
467 
468 	rradc_disable_continuous_mode(chip);
469 
470 disable_trigger:
471 	regmap_clear_bits(chip->regmap, chip->base + chan->trigger_addr,
472 			  chan->trigger_mask);
473 
474 	return ret;
475 }
476 
rradc_prepare_batt_id_conversion(struct rradc_chip * chip,enum rradc_channel_id chan_address,u16 * data)477 static int rradc_prepare_batt_id_conversion(struct rradc_chip *chip,
478 					    enum rradc_channel_id chan_address,
479 					    u16 *data)
480 {
481 	int ret;
482 
483 	ret = regmap_set_bits(chip->regmap, chip->base + RR_ADC_BATT_ID_CTRL,
484 			      RR_ADC_BATT_ID_CTRL_CHANNEL_CONV);
485 	if (ret < 0) {
486 		dev_err(chip->dev, "Enabling BATT ID channel failed:%d\n", ret);
487 		return ret;
488 	}
489 
490 	ret = regmap_set_bits(chip->regmap,
491 			      chip->base + RR_ADC_BATT_ID_TRIGGER,
492 			      RR_ADC_TRIGGER_CTL);
493 	if (ret < 0) {
494 		dev_err(chip->dev, "BATT_ID trigger set failed:%d\n", ret);
495 		goto out_disable_batt_id;
496 	}
497 
498 	ret = rradc_read_status_in_cont_mode(chip, chan_address);
499 
500 	/* Reset registers back to default values */
501 	regmap_clear_bits(chip->regmap, chip->base + RR_ADC_BATT_ID_TRIGGER,
502 			  RR_ADC_TRIGGER_CTL);
503 
504 out_disable_batt_id:
505 	regmap_clear_bits(chip->regmap, chip->base + RR_ADC_BATT_ID_CTRL,
506 			  RR_ADC_BATT_ID_CTRL_CHANNEL_CONV);
507 
508 	return ret;
509 }
510 
rradc_do_conversion(struct rradc_chip * chip,enum rradc_channel_id chan_address,u16 * data)511 static int rradc_do_conversion(struct rradc_chip *chip,
512 			       enum rradc_channel_id chan_address, u16 *data)
513 {
514 	const struct rradc_channel *chan = &rradc_chans[chan_address];
515 	const struct iio_chan_spec *iio_chan = &rradc_iio_chans[chan_address];
516 	int ret;
517 	__le16 buf[3];
518 
519 	mutex_lock(&chip->conversion_lock);
520 
521 	switch (chan_address) {
522 	case RR_ADC_BATT_ID:
523 		ret = rradc_prepare_batt_id_conversion(chip, chan_address, data);
524 		if (ret < 0) {
525 			dev_err(chip->dev, "Battery ID conversion failed:%d\n",
526 				ret);
527 			goto unlock_out;
528 		}
529 		break;
530 
531 	case RR_ADC_USBIN_V:
532 	case RR_ADC_DIE_TEMP:
533 		ret = rradc_read_status_in_cont_mode(chip, chan_address);
534 		if (ret < 0) {
535 			dev_err(chip->dev,
536 				"Error reading in continuous mode:%d\n", ret);
537 			goto unlock_out;
538 		}
539 		break;
540 	default:
541 		if (!rradc_is_ready(chip, chan_address)) {
542 			/*
543 			 * Usually this means the channel isn't attached, for example
544 			 * the in_voltage_usbin_v_input channel will not be ready if
545 			 * no USB cable is attached
546 			 */
547 			dev_dbg(chip->dev, "channel '%s' is not ready\n",
548 				iio_chan->extend_name);
549 			ret = -ENODATA;
550 			goto unlock_out;
551 		}
552 		break;
553 	}
554 
555 	ret = rradc_read(chip, chan->lsb, buf, chan->size);
556 	if (ret) {
557 		dev_err(chip->dev, "read data failed\n");
558 		goto unlock_out;
559 	}
560 
561 	/*
562 	 * For the battery ID we read the register for every ID ADC and then
563 	 * see which one is actually connected.
564 	 */
565 	if (chan_address == RR_ADC_BATT_ID) {
566 		u16 batt_id_150 = le16_to_cpu(buf[2]);
567 		u16 batt_id_15 = le16_to_cpu(buf[1]);
568 		u16 batt_id_5 = le16_to_cpu(buf[0]);
569 
570 		if (!batt_id_150 && !batt_id_15 && !batt_id_5) {
571 			dev_err(chip->dev,
572 				"Invalid batt_id values with all zeros\n");
573 			ret = -EINVAL;
574 			goto unlock_out;
575 		}
576 
577 		if (batt_id_150 <= RR_ADC_BATT_ID_RANGE) {
578 			*data = batt_id_150;
579 			chip->batt_id_data = 150;
580 		} else if (batt_id_15 <= RR_ADC_BATT_ID_RANGE) {
581 			*data = batt_id_15;
582 			chip->batt_id_data = 15;
583 		} else {
584 			*data = batt_id_5;
585 			chip->batt_id_data = 5;
586 		}
587 	} else {
588 		/*
589 		 * All of the other channels are either 1 or 2 bytes.
590 		 * We can rely on the second byte being 0 for 1-byte channels.
591 		 */
592 		*data = le16_to_cpu(buf[0]);
593 	}
594 
595 unlock_out:
596 	mutex_unlock(&chip->conversion_lock);
597 
598 	return ret;
599 }
600 
rradc_read_scale(struct rradc_chip * chip,int chan_address,int * val,int * val2)601 static int rradc_read_scale(struct rradc_chip *chip, int chan_address, int *val,
602 			    int *val2)
603 {
604 	int64_t fab_offset, fab_slope;
605 	int ret;
606 
607 	ret = rradc_get_fab_coeff(chip, &fab_offset, &fab_slope);
608 	if (ret < 0) {
609 		dev_err(chip->dev, "Unable to get fab id coefficients\n");
610 		return -EINVAL;
611 	}
612 
613 	switch (chan_address) {
614 	case RR_ADC_SKIN_TEMP:
615 		*val = MILLI;
616 		*val2 = RR_ADC_BATT_THERM_LSB_K;
617 		return IIO_VAL_FRACTIONAL;
618 	case RR_ADC_USBIN_I:
619 		*val = RR_ADC_CURR_USBIN_INPUT_FACTOR_MIL *
620 		       RR_ADC_FS_VOLTAGE_MV;
621 		*val2 = RR_ADC_CHAN_MSB;
622 		return IIO_VAL_FRACTIONAL;
623 	case RR_ADC_DCIN_I:
624 		*val = RR_ADC_CURR_INPUT_FACTOR * RR_ADC_FS_VOLTAGE_MV;
625 		*val2 = RR_ADC_CHAN_MSB;
626 		return IIO_VAL_FRACTIONAL;
627 	case RR_ADC_USBIN_V:
628 	case RR_ADC_DCIN_V:
629 		*val = RR_ADC_VOLT_INPUT_FACTOR * RR_ADC_FS_VOLTAGE_MV * MILLI;
630 		*val2 = RR_ADC_CHAN_MSB;
631 		return IIO_VAL_FRACTIONAL;
632 	case RR_ADC_GPIO:
633 		*val = RR_ADC_GPIO_FS_RANGE;
634 		*val2 = RR_ADC_CHAN_MSB;
635 		return IIO_VAL_FRACTIONAL;
636 	case RR_ADC_CHG_TEMP:
637 		/*
638 		 * We divide val2 by MILLI instead of multiplying val
639 		 * to avoid an integer overflow.
640 		 */
641 		*val = -RR_ADC_TEMP_FS_VOLTAGE_NUM;
642 		*val2 = div64_s64(RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
643 					  fab_slope,
644 				  MILLI);
645 
646 		return IIO_VAL_FRACTIONAL;
647 	case RR_ADC_DIE_TEMP:
648 		*val = RR_ADC_TEMP_FS_VOLTAGE_NUM;
649 		*val2 = RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
650 			RR_ADC_DIE_TEMP_SLOPE;
651 
652 		return IIO_VAL_FRACTIONAL;
653 	default:
654 		return -EINVAL;
655 	}
656 }
657 
rradc_read_offset(struct rradc_chip * chip,int chan_address,int * val)658 static int rradc_read_offset(struct rradc_chip *chip, int chan_address, int *val)
659 {
660 	int64_t fab_offset, fab_slope;
661 	int64_t offset1, offset2;
662 	int ret;
663 
664 	switch (chan_address) {
665 	case RR_ADC_SKIN_TEMP:
666 		/*
667 		 * Offset from kelvin to degC, divided by the
668 		 * scale factor (250). We lose some precision here.
669 		 * 273150 / 250 = 1092.6
670 		 */
671 		*val = div64_s64(ABSOLUTE_ZERO_MILLICELSIUS,
672 				 (MILLI / RR_ADC_BATT_THERM_LSB_K));
673 		return IIO_VAL_INT;
674 	case RR_ADC_CHG_TEMP:
675 		ret = rradc_get_fab_coeff(chip, &fab_offset, &fab_slope);
676 		if (ret < 0) {
677 			dev_err(chip->dev,
678 				"Unable to get fab id coefficients\n");
679 			return -EINVAL;
680 		}
681 		offset1 = -(fab_offset * RR_ADC_TEMP_FS_VOLTAGE_DEN *
682 			    RR_ADC_CHAN_MSB);
683 		offset1 += (int64_t)RR_ADC_TEMP_FS_VOLTAGE_NUM / 2ULL;
684 		offset1 = div64_s64(offset1,
685 				    (int64_t)(RR_ADC_TEMP_FS_VOLTAGE_NUM));
686 
687 		offset2 = (int64_t)RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC *
688 			  RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
689 			  (int64_t)fab_slope;
690 		offset2 += ((int64_t)MILLI * RR_ADC_TEMP_FS_VOLTAGE_NUM) / 2;
691 		offset2 = div64_s64(
692 			offset2, ((int64_t)MILLI * RR_ADC_TEMP_FS_VOLTAGE_NUM));
693 
694 		/*
695 		 * The -1 is to compensate for lost precision.
696 		 * It should actually be -0.7906976744186046.
697 		 * This works out to every value being off
698 		 * by about +0.091 degrees C after applying offset and scale.
699 		 */
700 		*val = (int)(offset1 - offset2 - 1);
701 		return IIO_VAL_INT;
702 	case RR_ADC_DIE_TEMP:
703 		offset1 = -RR_ADC_DIE_TEMP_OFFSET *
704 			  (int64_t)RR_ADC_TEMP_FS_VOLTAGE_DEN *
705 			  (int64_t)RR_ADC_CHAN_MSB;
706 		offset1 = div64_s64(offset1, RR_ADC_TEMP_FS_VOLTAGE_NUM);
707 
708 		offset2 = -(int64_t)RR_ADC_CHG_TEMP_OFFSET_MILLI_DEGC *
709 			  RR_ADC_TEMP_FS_VOLTAGE_DEN * RR_ADC_CHAN_MSB *
710 			  RR_ADC_DIE_TEMP_SLOPE;
711 		offset2 = div64_s64(offset2,
712 				    ((int64_t)RR_ADC_TEMP_FS_VOLTAGE_NUM));
713 
714 		/*
715 		 * The result is -339, it should be -338.69789, this results
716 		 * in the calculated die temp being off by
717 		 * -0.004 - -0.0175 degrees C
718 		 */
719 		*val = (int)(offset1 - offset2);
720 		return IIO_VAL_INT;
721 	default:
722 		break;
723 	}
724 	return -EINVAL;
725 }
726 
rradc_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan_spec,int * val,int * val2,long mask)727 static int rradc_read_raw(struct iio_dev *indio_dev,
728 			  struct iio_chan_spec const *chan_spec, int *val,
729 			  int *val2, long mask)
730 {
731 	struct rradc_chip *chip = iio_priv(indio_dev);
732 	const struct rradc_channel *chan;
733 	int ret;
734 	u16 adc_code;
735 
736 	if (chan_spec->address >= RR_ADC_CHAN_MAX) {
737 		dev_err(chip->dev, "Invalid channel index:%lu\n",
738 			chan_spec->address);
739 		return -EINVAL;
740 	}
741 
742 	switch (mask) {
743 	case IIO_CHAN_INFO_SCALE:
744 		return rradc_read_scale(chip, chan_spec->address, val, val2);
745 	case IIO_CHAN_INFO_OFFSET:
746 		return rradc_read_offset(chip, chan_spec->address, val);
747 	case IIO_CHAN_INFO_RAW:
748 		ret = rradc_do_conversion(chip, chan_spec->address, &adc_code);
749 		if (ret < 0)
750 			return ret;
751 
752 		*val = adc_code;
753 		return IIO_VAL_INT;
754 	case IIO_CHAN_INFO_PROCESSED:
755 		chan = &rradc_chans[chan_spec->address];
756 		if (!chan->scale_fn)
757 			return -EINVAL;
758 		ret = rradc_do_conversion(chip, chan_spec->address, &adc_code);
759 		if (ret < 0)
760 			return ret;
761 
762 		*val = chan->scale_fn(chip, adc_code, val);
763 		return IIO_VAL_INT;
764 	default:
765 		return -EINVAL;
766 	}
767 }
768 
rradc_read_label(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,char * label)769 static int rradc_read_label(struct iio_dev *indio_dev,
770 			    struct iio_chan_spec const *chan, char *label)
771 {
772 	return snprintf(label, PAGE_SIZE, "%s\n",
773 			rradc_chans[chan->address].label);
774 }
775 
776 static const struct iio_info rradc_info = {
777 	.read_raw = rradc_read_raw,
778 	.read_label = rradc_read_label,
779 };
780 
781 static const struct rradc_channel rradc_chans[RR_ADC_CHAN_MAX] = {
782 	{
783 		.label = "batt_id",
784 		.scale_fn = rradc_post_process_batt_id,
785 		.lsb = RR_ADC_BATT_ID_5_LSB,
786 		.status = RR_ADC_BATT_ID_STS,
787 		.size = 6,
788 		.trigger_addr = RR_ADC_BATT_ID_TRIGGER,
789 		.trigger_mask = BIT(0),
790 	}, {
791 		.label = "batt",
792 		.lsb = RR_ADC_BATT_THERM_LSB,
793 		.status = RR_ADC_BATT_THERM_STS,
794 		.size = 2,
795 		.trigger_addr = RR_ADC_BATT_THERM_TRIGGER,
796 	}, {
797 		.label = "pmi8998_skin",
798 		.lsb = RR_ADC_SKIN_TEMP_LSB,
799 		.status = RR_ADC_AUX_THERM_STS,
800 		.size = 2,
801 		.trigger_addr = RR_ADC_AUX_THERM_TRIGGER,
802 	}, {
803 		.label = "usbin_i",
804 		.lsb = RR_ADC_USB_IN_I_LSB,
805 		.status = RR_ADC_USB_IN_I_STS,
806 		.size = 2,
807 		.trigger_addr = RR_ADC_USB_IN_I_TRIGGER,
808 	}, {
809 		.label = "usbin_v",
810 		.lsb = RR_ADC_USB_IN_V_LSB,
811 		.status = RR_ADC_USB_IN_V_STS,
812 		.size = 2,
813 		.trigger_addr = RR_ADC_USB_IN_V_TRIGGER,
814 		.trigger_mask = BIT(7),
815 	}, {
816 		.label = "dcin_i",
817 		.lsb = RR_ADC_DC_IN_I_LSB,
818 		.status = RR_ADC_DC_IN_I_STS,
819 		.size = 2,
820 		.trigger_addr = RR_ADC_DC_IN_I_TRIGGER,
821 	}, {
822 		.label = "dcin_v",
823 		.lsb = RR_ADC_DC_IN_V_LSB,
824 		.status = RR_ADC_DC_IN_V_STS,
825 		.size = 2,
826 		.trigger_addr = RR_ADC_DC_IN_V_TRIGGER,
827 	}, {
828 		.label = "pmi8998_die",
829 		.lsb = RR_ADC_PMI_DIE_TEMP_LSB,
830 		.status = RR_ADC_PMI_DIE_TEMP_STS,
831 		.size = 2,
832 		.trigger_addr = RR_ADC_PMI_DIE_TEMP_TRIGGER,
833 		.trigger_mask = RR_ADC_TRIGGER_EVERY_CYCLE,
834 	}, {
835 		.label = "chg",
836 		.lsb = RR_ADC_CHARGER_TEMP_LSB,
837 		.status = RR_ADC_CHARGER_TEMP_STS,
838 		.size = 2,
839 		.trigger_addr = RR_ADC_CHARGER_TEMP_TRIGGER,
840 	}, {
841 		.label = "gpio",
842 		.lsb = RR_ADC_GPIO_LSB,
843 		.status = RR_ADC_GPIO_STS,
844 		.size = 2,
845 		.trigger_addr = RR_ADC_GPIO_TRIGGER,
846 	},
847 };
848 
849 static const struct iio_chan_spec rradc_iio_chans[RR_ADC_CHAN_MAX] = {
850 	{
851 		.type = IIO_RESISTANCE,
852 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
853 		.address = RR_ADC_BATT_ID,
854 		.channel = 0,
855 		.indexed = 1,
856 	}, {
857 		.type = IIO_TEMP,
858 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
859 		.address = RR_ADC_BATT_THERM,
860 		.channel = 0,
861 		.indexed = 1,
862 	}, {
863 		.type = IIO_TEMP,
864 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
865 				      BIT(IIO_CHAN_INFO_SCALE) |
866 				      BIT(IIO_CHAN_INFO_OFFSET),
867 		.address = RR_ADC_SKIN_TEMP,
868 		.channel = 1,
869 		.indexed = 1,
870 	}, {
871 		.type = IIO_CURRENT,
872 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
873 				      BIT(IIO_CHAN_INFO_SCALE),
874 		.address = RR_ADC_USBIN_I,
875 		.channel = 0,
876 		.indexed = 1,
877 	}, {
878 		.type = IIO_VOLTAGE,
879 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
880 				      BIT(IIO_CHAN_INFO_SCALE),
881 		.address = RR_ADC_USBIN_V,
882 		.channel = 0,
883 		.indexed = 1,
884 	}, {
885 		.type = IIO_CURRENT,
886 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
887 				      BIT(IIO_CHAN_INFO_SCALE),
888 		.address = RR_ADC_DCIN_I,
889 		.channel = 1,
890 		.indexed = 1,
891 	}, {
892 		.type = IIO_VOLTAGE,
893 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
894 				      BIT(IIO_CHAN_INFO_SCALE),
895 		.address = RR_ADC_DCIN_V,
896 		.channel = 1,
897 		.indexed = 1,
898 	}, {
899 		.type = IIO_TEMP,
900 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
901 				      BIT(IIO_CHAN_INFO_SCALE) |
902 				      BIT(IIO_CHAN_INFO_OFFSET),
903 		.address = RR_ADC_DIE_TEMP,
904 		.channel = 2,
905 		.indexed = 1,
906 	}, {
907 		.type = IIO_TEMP,
908 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
909 				      BIT(IIO_CHAN_INFO_OFFSET) |
910 				      BIT(IIO_CHAN_INFO_SCALE),
911 		.address = RR_ADC_CHG_TEMP,
912 		.channel = 3,
913 		.indexed = 1,
914 	}, {
915 		.type = IIO_VOLTAGE,
916 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
917 				      BIT(IIO_CHAN_INFO_SCALE),
918 		.address = RR_ADC_GPIO,
919 		.channel = 2,
920 		.indexed = 1,
921 	},
922 };
923 
rradc_probe(struct platform_device * pdev)924 static int rradc_probe(struct platform_device *pdev)
925 {
926 	struct device *dev = &pdev->dev;
927 	struct iio_dev *indio_dev;
928 	struct rradc_chip *chip;
929 	int ret, i, batt_id_delay;
930 
931 	indio_dev = devm_iio_device_alloc(dev, sizeof(*chip));
932 	if (!indio_dev)
933 		return -ENOMEM;
934 
935 	chip = iio_priv(indio_dev);
936 	chip->regmap = dev_get_regmap(pdev->dev.parent, NULL);
937 	if (!chip->regmap) {
938 		dev_err(dev, "Couldn't get parent's regmap\n");
939 		return -EINVAL;
940 	}
941 
942 	chip->dev = dev;
943 	mutex_init(&chip->conversion_lock);
944 
945 	ret = device_property_read_u32(dev, "reg", &chip->base);
946 	if (ret < 0) {
947 		dev_err(chip->dev, "Couldn't find reg address, ret = %d\n",
948 			ret);
949 		return ret;
950 	}
951 
952 	batt_id_delay = -1;
953 	ret = device_property_read_u32(dev, "qcom,batt-id-delay-ms",
954 				       &batt_id_delay);
955 	if (!ret) {
956 		for (i = 0; i < RRADC_BATT_ID_DELAY_MAX; i++) {
957 			if (batt_id_delay == batt_id_delays[i])
958 				break;
959 		}
960 		if (i == RRADC_BATT_ID_DELAY_MAX)
961 			batt_id_delay = -1;
962 	}
963 
964 	if (batt_id_delay >= 0) {
965 		batt_id_delay = FIELD_PREP(BATT_ID_SETTLE_MASK, batt_id_delay);
966 		ret = regmap_set_bits(chip->regmap,
967 				      chip->base + RR_ADC_BATT_ID_CFG,
968 				      batt_id_delay);
969 		if (ret < 0) {
970 			dev_err(chip->dev,
971 				"BATT_ID settling time config failed:%d\n",
972 				ret);
973 		}
974 	}
975 
976 	/* Get the PMIC revision, we need it to handle some varying coefficients */
977 	chip->pmic = qcom_pmic_get(chip->dev);
978 	if (IS_ERR(chip->pmic)) {
979 		dev_err(chip->dev, "Unable to get reference to PMIC device\n");
980 		return PTR_ERR(chip->pmic);
981 	}
982 
983 	switch (chip->pmic->subtype) {
984 	case PMI8998_SUBTYPE:
985 		indio_dev->name = "pmi8998-rradc";
986 		break;
987 	case PM660_SUBTYPE:
988 		indio_dev->name = "pm660-rradc";
989 		break;
990 	default:
991 		indio_dev->name = DRIVER_NAME;
992 		break;
993 	}
994 	indio_dev->modes = INDIO_DIRECT_MODE;
995 	indio_dev->info = &rradc_info;
996 	indio_dev->channels = rradc_iio_chans;
997 	indio_dev->num_channels = ARRAY_SIZE(rradc_iio_chans);
998 
999 	return devm_iio_device_register(dev, indio_dev);
1000 }
1001 
1002 static const struct of_device_id rradc_match_table[] = {
1003 	{ .compatible = "qcom,pm660-rradc" },
1004 	{ .compatible = "qcom,pmi8998-rradc" },
1005 	{ }
1006 };
1007 MODULE_DEVICE_TABLE(of, rradc_match_table);
1008 
1009 static struct platform_driver rradc_driver = {
1010 	.driver		= {
1011 		.name		= DRIVER_NAME,
1012 		.of_match_table	= rradc_match_table,
1013 	},
1014 	.probe = rradc_probe,
1015 };
1016 module_platform_driver(rradc_driver);
1017 
1018 MODULE_DESCRIPTION("QCOM SPMI PMIC RR ADC driver");
1019 MODULE_AUTHOR("Caleb Connolly <caleb.connolly@linaro.org>");
1020 MODULE_LICENSE("GPL");
1021