1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpumask.h>
18 #include <linux/cpuset.h>
19 #include <linux/mutex.h>
20 #include <linux/memblock.h>
21 #include <linux/minmax.h>
22 #include <linux/sysfs.h>
23 #include <linux/slab.h>
24 #include <linux/sched/mm.h>
25 #include <linux/mmdebug.h>
26 #include <linux/sched/signal.h>
27 #include <linux/rmap.h>
28 #include <linux/string_helpers.h>
29 #include <linux/swap.h>
30 #include <linux/swapops.h>
31 #include <linux/jhash.h>
32 #include <linux/numa.h>
33 #include <linux/llist.h>
34 #include <linux/cma.h>
35 #include <linux/migrate.h>
36 #include <linux/nospec.h>
37 #include <linux/delayacct.h>
38 #include <linux/memory.h>
39 #include <linux/mm_inline.h>
40 #include <linux/padata.h>
41
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/tlb.h>
45 #include <asm/setup.h>
46
47 #include <linux/io.h>
48 #include <linux/hugetlb.h>
49 #include <linux/hugetlb_cgroup.h>
50 #include <linux/node.h>
51 #include <linux/page_owner.h>
52 #include "internal.h"
53 #include "hugetlb_vmemmap.h"
54 #include "hugetlb_cma.h"
55 #include <linux/page-isolation.h>
56
57 int hugetlb_max_hstate __read_mostly;
58 unsigned int default_hstate_idx;
59 struct hstate hstates[HUGE_MAX_HSTATE];
60
61 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
62 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
63
64 /*
65 * Due to ordering constraints across the init code for various
66 * architectures, hugetlb hstate cmdline parameters can't simply
67 * be early_param. early_param might call the setup function
68 * before valid hugetlb page sizes are determined, leading to
69 * incorrect rejection of valid hugepagesz= options.
70 *
71 * So, record the parameters early and consume them whenever the
72 * init code is ready for them, by calling hugetlb_parse_params().
73 */
74
75 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
76 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
77 struct hugetlb_cmdline {
78 char *val;
79 int (*setup)(char *val);
80 };
81
82 /* for command line parsing */
83 static struct hstate * __initdata parsed_hstate;
84 static unsigned long __initdata default_hstate_max_huge_pages;
85 static bool __initdata parsed_valid_hugepagesz = true;
86 static bool __initdata parsed_default_hugepagesz;
87 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
88 static unsigned long hugepage_allocation_threads __initdata;
89
90 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
91 static int hstate_cmdline_index __initdata;
92 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
93 static int hugetlb_param_index __initdata;
94 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
95 static __init void hugetlb_parse_params(void);
96
97 #define hugetlb_early_param(str, func) \
98 static __init int func##args(char *s) \
99 { \
100 return hugetlb_add_param(s, func); \
101 } \
102 early_param(str, func##args)
103
104 /*
105 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
106 * free_huge_pages, and surplus_huge_pages.
107 */
108 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
109
110 /*
111 * Serializes faults on the same logical page. This is used to
112 * prevent spurious OOMs when the hugepage pool is fully utilized.
113 */
114 static int num_fault_mutexes __ro_after_init;
115 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
116
117 /* Forward declaration */
118 static int hugetlb_acct_memory(struct hstate *h, long delta);
119 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
120 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
121 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
122 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
123 unsigned long start, unsigned long end);
124 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
125
hugetlb_free_folio(struct folio * folio)126 static void hugetlb_free_folio(struct folio *folio)
127 {
128 if (folio_test_hugetlb_cma(folio)) {
129 hugetlb_cma_free_folio(folio);
130 return;
131 }
132
133 folio_put(folio);
134 }
135
subpool_is_free(struct hugepage_subpool * spool)136 static inline bool subpool_is_free(struct hugepage_subpool *spool)
137 {
138 if (spool->count)
139 return false;
140 if (spool->max_hpages != -1)
141 return spool->used_hpages == 0;
142 if (spool->min_hpages != -1)
143 return spool->rsv_hpages == spool->min_hpages;
144
145 return true;
146 }
147
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)148 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
149 unsigned long irq_flags)
150 {
151 spin_unlock_irqrestore(&spool->lock, irq_flags);
152
153 /* If no pages are used, and no other handles to the subpool
154 * remain, give up any reservations based on minimum size and
155 * free the subpool */
156 if (subpool_is_free(spool)) {
157 if (spool->min_hpages != -1)
158 hugetlb_acct_memory(spool->hstate,
159 -spool->min_hpages);
160 kfree(spool);
161 }
162 }
163
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)164 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
165 long min_hpages)
166 {
167 struct hugepage_subpool *spool;
168
169 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
170 if (!spool)
171 return NULL;
172
173 spin_lock_init(&spool->lock);
174 spool->count = 1;
175 spool->max_hpages = max_hpages;
176 spool->hstate = h;
177 spool->min_hpages = min_hpages;
178
179 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
180 kfree(spool);
181 return NULL;
182 }
183 spool->rsv_hpages = min_hpages;
184
185 return spool;
186 }
187
hugepage_put_subpool(struct hugepage_subpool * spool)188 void hugepage_put_subpool(struct hugepage_subpool *spool)
189 {
190 unsigned long flags;
191
192 spin_lock_irqsave(&spool->lock, flags);
193 BUG_ON(!spool->count);
194 spool->count--;
195 unlock_or_release_subpool(spool, flags);
196 }
197
198 /*
199 * Subpool accounting for allocating and reserving pages.
200 * Return -ENOMEM if there are not enough resources to satisfy the
201 * request. Otherwise, return the number of pages by which the
202 * global pools must be adjusted (upward). The returned value may
203 * only be different than the passed value (delta) in the case where
204 * a subpool minimum size must be maintained.
205 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)206 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
207 long delta)
208 {
209 long ret = delta;
210
211 if (!spool)
212 return ret;
213
214 spin_lock_irq(&spool->lock);
215
216 if (spool->max_hpages != -1) { /* maximum size accounting */
217 if ((spool->used_hpages + delta) <= spool->max_hpages)
218 spool->used_hpages += delta;
219 else {
220 ret = -ENOMEM;
221 goto unlock_ret;
222 }
223 }
224
225 /* minimum size accounting */
226 if (spool->min_hpages != -1 && spool->rsv_hpages) {
227 if (delta > spool->rsv_hpages) {
228 /*
229 * Asking for more reserves than those already taken on
230 * behalf of subpool. Return difference.
231 */
232 ret = delta - spool->rsv_hpages;
233 spool->rsv_hpages = 0;
234 } else {
235 ret = 0; /* reserves already accounted for */
236 spool->rsv_hpages -= delta;
237 }
238 }
239
240 unlock_ret:
241 spin_unlock_irq(&spool->lock);
242 return ret;
243 }
244
245 /*
246 * Subpool accounting for freeing and unreserving pages.
247 * Return the number of global page reservations that must be dropped.
248 * The return value may only be different than the passed value (delta)
249 * in the case where a subpool minimum size must be maintained.
250 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)251 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
252 long delta)
253 {
254 long ret = delta;
255 unsigned long flags;
256
257 if (!spool)
258 return delta;
259
260 spin_lock_irqsave(&spool->lock, flags);
261
262 if (spool->max_hpages != -1) /* maximum size accounting */
263 spool->used_hpages -= delta;
264
265 /* minimum size accounting */
266 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
267 if (spool->rsv_hpages + delta <= spool->min_hpages)
268 ret = 0;
269 else
270 ret = spool->rsv_hpages + delta - spool->min_hpages;
271
272 spool->rsv_hpages += delta;
273 if (spool->rsv_hpages > spool->min_hpages)
274 spool->rsv_hpages = spool->min_hpages;
275 }
276
277 /*
278 * If hugetlbfs_put_super couldn't free spool due to an outstanding
279 * quota reference, free it now.
280 */
281 unlock_or_release_subpool(spool, flags);
282
283 return ret;
284 }
285
subpool_inode(struct inode * inode)286 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
287 {
288 return HUGETLBFS_SB(inode->i_sb)->spool;
289 }
290
subpool_vma(struct vm_area_struct * vma)291 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
292 {
293 return subpool_inode(file_inode(vma->vm_file));
294 }
295
296 /*
297 * hugetlb vma_lock helper routines
298 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)299 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
300 {
301 if (__vma_shareable_lock(vma)) {
302 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303
304 down_read(&vma_lock->rw_sema);
305 } else if (__vma_private_lock(vma)) {
306 struct resv_map *resv_map = vma_resv_map(vma);
307
308 down_read(&resv_map->rw_sema);
309 }
310 }
311
hugetlb_vma_unlock_read(struct vm_area_struct * vma)312 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
313 {
314 if (__vma_shareable_lock(vma)) {
315 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
316
317 up_read(&vma_lock->rw_sema);
318 } else if (__vma_private_lock(vma)) {
319 struct resv_map *resv_map = vma_resv_map(vma);
320
321 up_read(&resv_map->rw_sema);
322 }
323 }
324
hugetlb_vma_lock_write(struct vm_area_struct * vma)325 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
326 {
327 if (__vma_shareable_lock(vma)) {
328 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
329
330 down_write(&vma_lock->rw_sema);
331 } else if (__vma_private_lock(vma)) {
332 struct resv_map *resv_map = vma_resv_map(vma);
333
334 down_write(&resv_map->rw_sema);
335 }
336 }
337
hugetlb_vma_unlock_write(struct vm_area_struct * vma)338 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
339 {
340 if (__vma_shareable_lock(vma)) {
341 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
342
343 up_write(&vma_lock->rw_sema);
344 } else if (__vma_private_lock(vma)) {
345 struct resv_map *resv_map = vma_resv_map(vma);
346
347 up_write(&resv_map->rw_sema);
348 }
349 }
350
hugetlb_vma_trylock_write(struct vm_area_struct * vma)351 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
352 {
353
354 if (__vma_shareable_lock(vma)) {
355 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
356
357 return down_write_trylock(&vma_lock->rw_sema);
358 } else if (__vma_private_lock(vma)) {
359 struct resv_map *resv_map = vma_resv_map(vma);
360
361 return down_write_trylock(&resv_map->rw_sema);
362 }
363
364 return 1;
365 }
366
hugetlb_vma_assert_locked(struct vm_area_struct * vma)367 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
368 {
369 if (__vma_shareable_lock(vma)) {
370 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
371
372 lockdep_assert_held(&vma_lock->rw_sema);
373 } else if (__vma_private_lock(vma)) {
374 struct resv_map *resv_map = vma_resv_map(vma);
375
376 lockdep_assert_held(&resv_map->rw_sema);
377 }
378 }
379
hugetlb_vma_lock_release(struct kref * kref)380 void hugetlb_vma_lock_release(struct kref *kref)
381 {
382 struct hugetlb_vma_lock *vma_lock = container_of(kref,
383 struct hugetlb_vma_lock, refs);
384
385 kfree(vma_lock);
386 }
387
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)388 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
389 {
390 struct vm_area_struct *vma = vma_lock->vma;
391
392 /*
393 * vma_lock structure may or not be released as a result of put,
394 * it certainly will no longer be attached to vma so clear pointer.
395 * Semaphore synchronizes access to vma_lock->vma field.
396 */
397 vma_lock->vma = NULL;
398 vma->vm_private_data = NULL;
399 up_write(&vma_lock->rw_sema);
400 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
401 }
402
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)403 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
404 {
405 if (__vma_shareable_lock(vma)) {
406 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
407
408 __hugetlb_vma_unlock_write_put(vma_lock);
409 } else if (__vma_private_lock(vma)) {
410 struct resv_map *resv_map = vma_resv_map(vma);
411
412 /* no free for anon vmas, but still need to unlock */
413 up_write(&resv_map->rw_sema);
414 }
415 }
416
hugetlb_vma_lock_free(struct vm_area_struct * vma)417 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
418 {
419 /*
420 * Only present in sharable vmas.
421 */
422 if (!vma || !__vma_shareable_lock(vma))
423 return;
424
425 if (vma->vm_private_data) {
426 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
427
428 down_write(&vma_lock->rw_sema);
429 __hugetlb_vma_unlock_write_put(vma_lock);
430 }
431 }
432
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)433 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
434 {
435 struct hugetlb_vma_lock *vma_lock;
436
437 /* Only establish in (flags) sharable vmas */
438 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
439 return;
440
441 /* Should never get here with non-NULL vm_private_data */
442 if (vma->vm_private_data)
443 return;
444
445 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
446 if (!vma_lock) {
447 /*
448 * If we can not allocate structure, then vma can not
449 * participate in pmd sharing. This is only a possible
450 * performance enhancement and memory saving issue.
451 * However, the lock is also used to synchronize page
452 * faults with truncation. If the lock is not present,
453 * unlikely races could leave pages in a file past i_size
454 * until the file is removed. Warn in the unlikely case of
455 * allocation failure.
456 */
457 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
458 return;
459 }
460
461 kref_init(&vma_lock->refs);
462 init_rwsem(&vma_lock->rw_sema);
463 vma_lock->vma = vma;
464 vma->vm_private_data = vma_lock;
465 }
466
467 /* Helper that removes a struct file_region from the resv_map cache and returns
468 * it for use.
469 */
470 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)471 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
472 {
473 struct file_region *nrg;
474
475 VM_BUG_ON(resv->region_cache_count <= 0);
476
477 resv->region_cache_count--;
478 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
479 list_del(&nrg->link);
480
481 nrg->from = from;
482 nrg->to = to;
483
484 return nrg;
485 }
486
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)487 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
488 struct file_region *rg)
489 {
490 #ifdef CONFIG_CGROUP_HUGETLB
491 nrg->reservation_counter = rg->reservation_counter;
492 nrg->css = rg->css;
493 if (rg->css)
494 css_get(rg->css);
495 #endif
496 }
497
498 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)499 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
500 struct hstate *h,
501 struct resv_map *resv,
502 struct file_region *nrg)
503 {
504 #ifdef CONFIG_CGROUP_HUGETLB
505 if (h_cg) {
506 nrg->reservation_counter =
507 &h_cg->rsvd_hugepage[hstate_index(h)];
508 nrg->css = &h_cg->css;
509 /*
510 * The caller will hold exactly one h_cg->css reference for the
511 * whole contiguous reservation region. But this area might be
512 * scattered when there are already some file_regions reside in
513 * it. As a result, many file_regions may share only one css
514 * reference. In order to ensure that one file_region must hold
515 * exactly one h_cg->css reference, we should do css_get for
516 * each file_region and leave the reference held by caller
517 * untouched.
518 */
519 css_get(&h_cg->css);
520 if (!resv->pages_per_hpage)
521 resv->pages_per_hpage = pages_per_huge_page(h);
522 /* pages_per_hpage should be the same for all entries in
523 * a resv_map.
524 */
525 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
526 } else {
527 nrg->reservation_counter = NULL;
528 nrg->css = NULL;
529 }
530 #endif
531 }
532
put_uncharge_info(struct file_region * rg)533 static void put_uncharge_info(struct file_region *rg)
534 {
535 #ifdef CONFIG_CGROUP_HUGETLB
536 if (rg->css)
537 css_put(rg->css);
538 #endif
539 }
540
has_same_uncharge_info(struct file_region * rg,struct file_region * org)541 static bool has_same_uncharge_info(struct file_region *rg,
542 struct file_region *org)
543 {
544 #ifdef CONFIG_CGROUP_HUGETLB
545 return rg->reservation_counter == org->reservation_counter &&
546 rg->css == org->css;
547
548 #else
549 return true;
550 #endif
551 }
552
coalesce_file_region(struct resv_map * resv,struct file_region * rg)553 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
554 {
555 struct file_region *nrg, *prg;
556
557 prg = list_prev_entry(rg, link);
558 if (&prg->link != &resv->regions && prg->to == rg->from &&
559 has_same_uncharge_info(prg, rg)) {
560 prg->to = rg->to;
561
562 list_del(&rg->link);
563 put_uncharge_info(rg);
564 kfree(rg);
565
566 rg = prg;
567 }
568
569 nrg = list_next_entry(rg, link);
570 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
571 has_same_uncharge_info(nrg, rg)) {
572 nrg->from = rg->from;
573
574 list_del(&rg->link);
575 put_uncharge_info(rg);
576 kfree(rg);
577 }
578 }
579
580 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)581 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
582 long to, struct hstate *h, struct hugetlb_cgroup *cg,
583 long *regions_needed)
584 {
585 struct file_region *nrg;
586
587 if (!regions_needed) {
588 nrg = get_file_region_entry_from_cache(map, from, to);
589 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
590 list_add(&nrg->link, rg);
591 coalesce_file_region(map, nrg);
592 } else
593 *regions_needed += 1;
594
595 return to - from;
596 }
597
598 /*
599 * Must be called with resv->lock held.
600 *
601 * Calling this with regions_needed != NULL will count the number of pages
602 * to be added but will not modify the linked list. And regions_needed will
603 * indicate the number of file_regions needed in the cache to carry out to add
604 * the regions for this range.
605 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)606 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
607 struct hugetlb_cgroup *h_cg,
608 struct hstate *h, long *regions_needed)
609 {
610 long add = 0;
611 struct list_head *head = &resv->regions;
612 long last_accounted_offset = f;
613 struct file_region *iter, *trg = NULL;
614 struct list_head *rg = NULL;
615
616 if (regions_needed)
617 *regions_needed = 0;
618
619 /* In this loop, we essentially handle an entry for the range
620 * [last_accounted_offset, iter->from), at every iteration, with some
621 * bounds checking.
622 */
623 list_for_each_entry_safe(iter, trg, head, link) {
624 /* Skip irrelevant regions that start before our range. */
625 if (iter->from < f) {
626 /* If this region ends after the last accounted offset,
627 * then we need to update last_accounted_offset.
628 */
629 if (iter->to > last_accounted_offset)
630 last_accounted_offset = iter->to;
631 continue;
632 }
633
634 /* When we find a region that starts beyond our range, we've
635 * finished.
636 */
637 if (iter->from >= t) {
638 rg = iter->link.prev;
639 break;
640 }
641
642 /* Add an entry for last_accounted_offset -> iter->from, and
643 * update last_accounted_offset.
644 */
645 if (iter->from > last_accounted_offset)
646 add += hugetlb_resv_map_add(resv, iter->link.prev,
647 last_accounted_offset,
648 iter->from, h, h_cg,
649 regions_needed);
650
651 last_accounted_offset = iter->to;
652 }
653
654 /* Handle the case where our range extends beyond
655 * last_accounted_offset.
656 */
657 if (!rg)
658 rg = head->prev;
659 if (last_accounted_offset < t)
660 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
661 t, h, h_cg, regions_needed);
662
663 return add;
664 }
665
666 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
667 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)668 static int allocate_file_region_entries(struct resv_map *resv,
669 int regions_needed)
670 __must_hold(&resv->lock)
671 {
672 LIST_HEAD(allocated_regions);
673 int to_allocate = 0, i = 0;
674 struct file_region *trg = NULL, *rg = NULL;
675
676 VM_BUG_ON(regions_needed < 0);
677
678 /*
679 * Check for sufficient descriptors in the cache to accommodate
680 * the number of in progress add operations plus regions_needed.
681 *
682 * This is a while loop because when we drop the lock, some other call
683 * to region_add or region_del may have consumed some region_entries,
684 * so we keep looping here until we finally have enough entries for
685 * (adds_in_progress + regions_needed).
686 */
687 while (resv->region_cache_count <
688 (resv->adds_in_progress + regions_needed)) {
689 to_allocate = resv->adds_in_progress + regions_needed -
690 resv->region_cache_count;
691
692 /* At this point, we should have enough entries in the cache
693 * for all the existing adds_in_progress. We should only be
694 * needing to allocate for regions_needed.
695 */
696 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
697
698 spin_unlock(&resv->lock);
699 for (i = 0; i < to_allocate; i++) {
700 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
701 if (!trg)
702 goto out_of_memory;
703 list_add(&trg->link, &allocated_regions);
704 }
705
706 spin_lock(&resv->lock);
707
708 list_splice(&allocated_regions, &resv->region_cache);
709 resv->region_cache_count += to_allocate;
710 }
711
712 return 0;
713
714 out_of_memory:
715 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
716 list_del(&rg->link);
717 kfree(rg);
718 }
719 return -ENOMEM;
720 }
721
722 /*
723 * Add the huge page range represented by [f, t) to the reserve
724 * map. Regions will be taken from the cache to fill in this range.
725 * Sufficient regions should exist in the cache due to the previous
726 * call to region_chg with the same range, but in some cases the cache will not
727 * have sufficient entries due to races with other code doing region_add or
728 * region_del. The extra needed entries will be allocated.
729 *
730 * regions_needed is the out value provided by a previous call to region_chg.
731 *
732 * Return the number of new huge pages added to the map. This number is greater
733 * than or equal to zero. If file_region entries needed to be allocated for
734 * this operation and we were not able to allocate, it returns -ENOMEM.
735 * region_add of regions of length 1 never allocate file_regions and cannot
736 * fail; region_chg will always allocate at least 1 entry and a region_add for
737 * 1 page will only require at most 1 entry.
738 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)739 static long region_add(struct resv_map *resv, long f, long t,
740 long in_regions_needed, struct hstate *h,
741 struct hugetlb_cgroup *h_cg)
742 {
743 long add = 0, actual_regions_needed = 0;
744
745 spin_lock(&resv->lock);
746 retry:
747
748 /* Count how many regions are actually needed to execute this add. */
749 add_reservation_in_range(resv, f, t, NULL, NULL,
750 &actual_regions_needed);
751
752 /*
753 * Check for sufficient descriptors in the cache to accommodate
754 * this add operation. Note that actual_regions_needed may be greater
755 * than in_regions_needed, as the resv_map may have been modified since
756 * the region_chg call. In this case, we need to make sure that we
757 * allocate extra entries, such that we have enough for all the
758 * existing adds_in_progress, plus the excess needed for this
759 * operation.
760 */
761 if (actual_regions_needed > in_regions_needed &&
762 resv->region_cache_count <
763 resv->adds_in_progress +
764 (actual_regions_needed - in_regions_needed)) {
765 /* region_add operation of range 1 should never need to
766 * allocate file_region entries.
767 */
768 VM_BUG_ON(t - f <= 1);
769
770 if (allocate_file_region_entries(
771 resv, actual_regions_needed - in_regions_needed)) {
772 return -ENOMEM;
773 }
774
775 goto retry;
776 }
777
778 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
779
780 resv->adds_in_progress -= in_regions_needed;
781
782 spin_unlock(&resv->lock);
783 return add;
784 }
785
786 /*
787 * Examine the existing reserve map and determine how many
788 * huge pages in the specified range [f, t) are NOT currently
789 * represented. This routine is called before a subsequent
790 * call to region_add that will actually modify the reserve
791 * map to add the specified range [f, t). region_chg does
792 * not change the number of huge pages represented by the
793 * map. A number of new file_region structures is added to the cache as a
794 * placeholder, for the subsequent region_add call to use. At least 1
795 * file_region structure is added.
796 *
797 * out_regions_needed is the number of regions added to the
798 * resv->adds_in_progress. This value needs to be provided to a follow up call
799 * to region_add or region_abort for proper accounting.
800 *
801 * Returns the number of huge pages that need to be added to the existing
802 * reservation map for the range [f, t). This number is greater or equal to
803 * zero. -ENOMEM is returned if a new file_region structure or cache entry
804 * is needed and can not be allocated.
805 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)806 static long region_chg(struct resv_map *resv, long f, long t,
807 long *out_regions_needed)
808 {
809 long chg = 0;
810
811 spin_lock(&resv->lock);
812
813 /* Count how many hugepages in this range are NOT represented. */
814 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
815 out_regions_needed);
816
817 if (*out_regions_needed == 0)
818 *out_regions_needed = 1;
819
820 if (allocate_file_region_entries(resv, *out_regions_needed))
821 return -ENOMEM;
822
823 resv->adds_in_progress += *out_regions_needed;
824
825 spin_unlock(&resv->lock);
826 return chg;
827 }
828
829 /*
830 * Abort the in progress add operation. The adds_in_progress field
831 * of the resv_map keeps track of the operations in progress between
832 * calls to region_chg and region_add. Operations are sometimes
833 * aborted after the call to region_chg. In such cases, region_abort
834 * is called to decrement the adds_in_progress counter. regions_needed
835 * is the value returned by the region_chg call, it is used to decrement
836 * the adds_in_progress counter.
837 *
838 * NOTE: The range arguments [f, t) are not needed or used in this
839 * routine. They are kept to make reading the calling code easier as
840 * arguments will match the associated region_chg call.
841 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)842 static void region_abort(struct resv_map *resv, long f, long t,
843 long regions_needed)
844 {
845 spin_lock(&resv->lock);
846 VM_BUG_ON(!resv->region_cache_count);
847 resv->adds_in_progress -= regions_needed;
848 spin_unlock(&resv->lock);
849 }
850
851 /*
852 * Delete the specified range [f, t) from the reserve map. If the
853 * t parameter is LONG_MAX, this indicates that ALL regions after f
854 * should be deleted. Locate the regions which intersect [f, t)
855 * and either trim, delete or split the existing regions.
856 *
857 * Returns the number of huge pages deleted from the reserve map.
858 * In the normal case, the return value is zero or more. In the
859 * case where a region must be split, a new region descriptor must
860 * be allocated. If the allocation fails, -ENOMEM will be returned.
861 * NOTE: If the parameter t == LONG_MAX, then we will never split
862 * a region and possibly return -ENOMEM. Callers specifying
863 * t == LONG_MAX do not need to check for -ENOMEM error.
864 */
region_del(struct resv_map * resv,long f,long t)865 static long region_del(struct resv_map *resv, long f, long t)
866 {
867 struct list_head *head = &resv->regions;
868 struct file_region *rg, *trg;
869 struct file_region *nrg = NULL;
870 long del = 0;
871
872 retry:
873 spin_lock(&resv->lock);
874 list_for_each_entry_safe(rg, trg, head, link) {
875 /*
876 * Skip regions before the range to be deleted. file_region
877 * ranges are normally of the form [from, to). However, there
878 * may be a "placeholder" entry in the map which is of the form
879 * (from, to) with from == to. Check for placeholder entries
880 * at the beginning of the range to be deleted.
881 */
882 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
883 continue;
884
885 if (rg->from >= t)
886 break;
887
888 if (f > rg->from && t < rg->to) { /* Must split region */
889 /*
890 * Check for an entry in the cache before dropping
891 * lock and attempting allocation.
892 */
893 if (!nrg &&
894 resv->region_cache_count > resv->adds_in_progress) {
895 nrg = list_first_entry(&resv->region_cache,
896 struct file_region,
897 link);
898 list_del(&nrg->link);
899 resv->region_cache_count--;
900 }
901
902 if (!nrg) {
903 spin_unlock(&resv->lock);
904 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
905 if (!nrg)
906 return -ENOMEM;
907 goto retry;
908 }
909
910 del += t - f;
911 hugetlb_cgroup_uncharge_file_region(
912 resv, rg, t - f, false);
913
914 /* New entry for end of split region */
915 nrg->from = t;
916 nrg->to = rg->to;
917
918 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
919
920 INIT_LIST_HEAD(&nrg->link);
921
922 /* Original entry is trimmed */
923 rg->to = f;
924
925 list_add(&nrg->link, &rg->link);
926 nrg = NULL;
927 break;
928 }
929
930 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
931 del += rg->to - rg->from;
932 hugetlb_cgroup_uncharge_file_region(resv, rg,
933 rg->to - rg->from, true);
934 list_del(&rg->link);
935 kfree(rg);
936 continue;
937 }
938
939 if (f <= rg->from) { /* Trim beginning of region */
940 hugetlb_cgroup_uncharge_file_region(resv, rg,
941 t - rg->from, false);
942
943 del += t - rg->from;
944 rg->from = t;
945 } else { /* Trim end of region */
946 hugetlb_cgroup_uncharge_file_region(resv, rg,
947 rg->to - f, false);
948
949 del += rg->to - f;
950 rg->to = f;
951 }
952 }
953
954 spin_unlock(&resv->lock);
955 kfree(nrg);
956 return del;
957 }
958
959 /*
960 * A rare out of memory error was encountered which prevented removal of
961 * the reserve map region for a page. The huge page itself was free'ed
962 * and removed from the page cache. This routine will adjust the subpool
963 * usage count, and the global reserve count if needed. By incrementing
964 * these counts, the reserve map entry which could not be deleted will
965 * appear as a "reserved" entry instead of simply dangling with incorrect
966 * counts.
967 */
hugetlb_fix_reserve_counts(struct inode * inode)968 void hugetlb_fix_reserve_counts(struct inode *inode)
969 {
970 struct hugepage_subpool *spool = subpool_inode(inode);
971 long rsv_adjust;
972 bool reserved = false;
973
974 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
975 if (rsv_adjust > 0) {
976 struct hstate *h = hstate_inode(inode);
977
978 if (!hugetlb_acct_memory(h, 1))
979 reserved = true;
980 } else if (!rsv_adjust) {
981 reserved = true;
982 }
983
984 if (!reserved)
985 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
986 }
987
988 /*
989 * Count and return the number of huge pages in the reserve map
990 * that intersect with the range [f, t).
991 */
region_count(struct resv_map * resv,long f,long t)992 static long region_count(struct resv_map *resv, long f, long t)
993 {
994 struct list_head *head = &resv->regions;
995 struct file_region *rg;
996 long chg = 0;
997
998 spin_lock(&resv->lock);
999 /* Locate each segment we overlap with, and count that overlap. */
1000 list_for_each_entry(rg, head, link) {
1001 long seg_from;
1002 long seg_to;
1003
1004 if (rg->to <= f)
1005 continue;
1006 if (rg->from >= t)
1007 break;
1008
1009 seg_from = max(rg->from, f);
1010 seg_to = min(rg->to, t);
1011
1012 chg += seg_to - seg_from;
1013 }
1014 spin_unlock(&resv->lock);
1015
1016 return chg;
1017 }
1018
1019 /*
1020 * Convert the address within this vma to the page offset within
1021 * the mapping, huge page units here.
1022 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1023 static pgoff_t vma_hugecache_offset(struct hstate *h,
1024 struct vm_area_struct *vma, unsigned long address)
1025 {
1026 return ((address - vma->vm_start) >> huge_page_shift(h)) +
1027 (vma->vm_pgoff >> huge_page_order(h));
1028 }
1029
1030 /**
1031 * vma_kernel_pagesize - Page size granularity for this VMA.
1032 * @vma: The user mapping.
1033 *
1034 * Folios in this VMA will be aligned to, and at least the size of the
1035 * number of bytes returned by this function.
1036 *
1037 * Return: The default size of the folios allocated when backing a VMA.
1038 */
vma_kernel_pagesize(struct vm_area_struct * vma)1039 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1040 {
1041 if (vma->vm_ops && vma->vm_ops->pagesize)
1042 return vma->vm_ops->pagesize(vma);
1043 return PAGE_SIZE;
1044 }
1045 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1046
1047 /*
1048 * Return the page size being used by the MMU to back a VMA. In the majority
1049 * of cases, the page size used by the kernel matches the MMU size. On
1050 * architectures where it differs, an architecture-specific 'strong'
1051 * version of this symbol is required.
1052 */
vma_mmu_pagesize(struct vm_area_struct * vma)1053 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1054 {
1055 return vma_kernel_pagesize(vma);
1056 }
1057
1058 /*
1059 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1060 * bits of the reservation map pointer, which are always clear due to
1061 * alignment.
1062 */
1063 #define HPAGE_RESV_OWNER (1UL << 0)
1064 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1065 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1066
1067 /*
1068 * These helpers are used to track how many pages are reserved for
1069 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1070 * is guaranteed to have their future faults succeed.
1071 *
1072 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1073 * the reserve counters are updated with the hugetlb_lock held. It is safe
1074 * to reset the VMA at fork() time as it is not in use yet and there is no
1075 * chance of the global counters getting corrupted as a result of the values.
1076 *
1077 * The private mapping reservation is represented in a subtly different
1078 * manner to a shared mapping. A shared mapping has a region map associated
1079 * with the underlying file, this region map represents the backing file
1080 * pages which have ever had a reservation assigned which this persists even
1081 * after the page is instantiated. A private mapping has a region map
1082 * associated with the original mmap which is attached to all VMAs which
1083 * reference it, this region map represents those offsets which have consumed
1084 * reservation ie. where pages have been instantiated.
1085 */
get_vma_private_data(struct vm_area_struct * vma)1086 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1087 {
1088 return (unsigned long)vma->vm_private_data;
1089 }
1090
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1091 static void set_vma_private_data(struct vm_area_struct *vma,
1092 unsigned long value)
1093 {
1094 vma->vm_private_data = (void *)value;
1095 }
1096
1097 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1098 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1099 struct hugetlb_cgroup *h_cg,
1100 struct hstate *h)
1101 {
1102 #ifdef CONFIG_CGROUP_HUGETLB
1103 if (!h_cg || !h) {
1104 resv_map->reservation_counter = NULL;
1105 resv_map->pages_per_hpage = 0;
1106 resv_map->css = NULL;
1107 } else {
1108 resv_map->reservation_counter =
1109 &h_cg->rsvd_hugepage[hstate_index(h)];
1110 resv_map->pages_per_hpage = pages_per_huge_page(h);
1111 resv_map->css = &h_cg->css;
1112 }
1113 #endif
1114 }
1115
resv_map_alloc(void)1116 struct resv_map *resv_map_alloc(void)
1117 {
1118 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1119 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1120
1121 if (!resv_map || !rg) {
1122 kfree(resv_map);
1123 kfree(rg);
1124 return NULL;
1125 }
1126
1127 kref_init(&resv_map->refs);
1128 spin_lock_init(&resv_map->lock);
1129 INIT_LIST_HEAD(&resv_map->regions);
1130 init_rwsem(&resv_map->rw_sema);
1131
1132 resv_map->adds_in_progress = 0;
1133 /*
1134 * Initialize these to 0. On shared mappings, 0's here indicate these
1135 * fields don't do cgroup accounting. On private mappings, these will be
1136 * re-initialized to the proper values, to indicate that hugetlb cgroup
1137 * reservations are to be un-charged from here.
1138 */
1139 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1140
1141 INIT_LIST_HEAD(&resv_map->region_cache);
1142 list_add(&rg->link, &resv_map->region_cache);
1143 resv_map->region_cache_count = 1;
1144
1145 return resv_map;
1146 }
1147
resv_map_release(struct kref * ref)1148 void resv_map_release(struct kref *ref)
1149 {
1150 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1151 struct list_head *head = &resv_map->region_cache;
1152 struct file_region *rg, *trg;
1153
1154 /* Clear out any active regions before we release the map. */
1155 region_del(resv_map, 0, LONG_MAX);
1156
1157 /* ... and any entries left in the cache */
1158 list_for_each_entry_safe(rg, trg, head, link) {
1159 list_del(&rg->link);
1160 kfree(rg);
1161 }
1162
1163 VM_BUG_ON(resv_map->adds_in_progress);
1164
1165 kfree(resv_map);
1166 }
1167
inode_resv_map(struct inode * inode)1168 static inline struct resv_map *inode_resv_map(struct inode *inode)
1169 {
1170 /*
1171 * At inode evict time, i_mapping may not point to the original
1172 * address space within the inode. This original address space
1173 * contains the pointer to the resv_map. So, always use the
1174 * address space embedded within the inode.
1175 * The VERY common case is inode->mapping == &inode->i_data but,
1176 * this may not be true for device special inodes.
1177 */
1178 return (struct resv_map *)(&inode->i_data)->i_private_data;
1179 }
1180
vma_resv_map(struct vm_area_struct * vma)1181 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1182 {
1183 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1184 if (vma->vm_flags & VM_MAYSHARE) {
1185 struct address_space *mapping = vma->vm_file->f_mapping;
1186 struct inode *inode = mapping->host;
1187
1188 return inode_resv_map(inode);
1189
1190 } else {
1191 return (struct resv_map *)(get_vma_private_data(vma) &
1192 ~HPAGE_RESV_MASK);
1193 }
1194 }
1195
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1196 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1197 {
1198 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1199 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1200
1201 set_vma_private_data(vma, (unsigned long)map);
1202 }
1203
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1204 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1205 {
1206 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1207 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1208
1209 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1210 }
1211
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1212 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1213 {
1214 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1215
1216 return (get_vma_private_data(vma) & flag) != 0;
1217 }
1218
__vma_private_lock(struct vm_area_struct * vma)1219 bool __vma_private_lock(struct vm_area_struct *vma)
1220 {
1221 return !(vma->vm_flags & VM_MAYSHARE) &&
1222 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1223 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1224 }
1225
hugetlb_dup_vma_private(struct vm_area_struct * vma)1226 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1227 {
1228 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1229 /*
1230 * Clear vm_private_data
1231 * - For shared mappings this is a per-vma semaphore that may be
1232 * allocated in a subsequent call to hugetlb_vm_op_open.
1233 * Before clearing, make sure pointer is not associated with vma
1234 * as this will leak the structure. This is the case when called
1235 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1236 * been called to allocate a new structure.
1237 * - For MAP_PRIVATE mappings, this is the reserve map which does
1238 * not apply to children. Faults generated by the children are
1239 * not guaranteed to succeed, even if read-only.
1240 */
1241 if (vma->vm_flags & VM_MAYSHARE) {
1242 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1243
1244 if (vma_lock && vma_lock->vma != vma)
1245 vma->vm_private_data = NULL;
1246 } else
1247 vma->vm_private_data = NULL;
1248 }
1249
1250 /*
1251 * Reset and decrement one ref on hugepage private reservation.
1252 * Called with mm->mmap_lock writer semaphore held.
1253 * This function should be only used by move_vma() and operate on
1254 * same sized vma. It should never come here with last ref on the
1255 * reservation.
1256 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1257 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1258 {
1259 /*
1260 * Clear the old hugetlb private page reservation.
1261 * It has already been transferred to new_vma.
1262 *
1263 * During a mremap() operation of a hugetlb vma we call move_vma()
1264 * which copies vma into new_vma and unmaps vma. After the copy
1265 * operation both new_vma and vma share a reference to the resv_map
1266 * struct, and at that point vma is about to be unmapped. We don't
1267 * want to return the reservation to the pool at unmap of vma because
1268 * the reservation still lives on in new_vma, so simply decrement the
1269 * ref here and remove the resv_map reference from this vma.
1270 */
1271 struct resv_map *reservations = vma_resv_map(vma);
1272
1273 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1274 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1275 kref_put(&reservations->refs, resv_map_release);
1276 }
1277
1278 hugetlb_dup_vma_private(vma);
1279 }
1280
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1281 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1282 {
1283 int nid = folio_nid(folio);
1284
1285 lockdep_assert_held(&hugetlb_lock);
1286 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1287
1288 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1289 h->free_huge_pages++;
1290 h->free_huge_pages_node[nid]++;
1291 folio_set_hugetlb_freed(folio);
1292 }
1293
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1294 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1295 int nid)
1296 {
1297 struct folio *folio;
1298 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1299
1300 lockdep_assert_held(&hugetlb_lock);
1301 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1302 if (pin && !folio_is_longterm_pinnable(folio))
1303 continue;
1304
1305 if (folio_test_hwpoison(folio))
1306 continue;
1307
1308 if (is_migrate_isolate_page(&folio->page))
1309 continue;
1310
1311 list_move(&folio->lru, &h->hugepage_activelist);
1312 folio_ref_unfreeze(folio, 1);
1313 folio_clear_hugetlb_freed(folio);
1314 h->free_huge_pages--;
1315 h->free_huge_pages_node[nid]--;
1316 return folio;
1317 }
1318
1319 return NULL;
1320 }
1321
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1322 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1323 int nid, nodemask_t *nmask)
1324 {
1325 unsigned int cpuset_mems_cookie;
1326 struct zonelist *zonelist;
1327 struct zone *zone;
1328 struct zoneref *z;
1329 int node = NUMA_NO_NODE;
1330
1331 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1332 if (nid == NUMA_NO_NODE)
1333 nid = numa_node_id();
1334
1335 zonelist = node_zonelist(nid, gfp_mask);
1336
1337 retry_cpuset:
1338 cpuset_mems_cookie = read_mems_allowed_begin();
1339 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1340 struct folio *folio;
1341
1342 if (!cpuset_zone_allowed(zone, gfp_mask))
1343 continue;
1344 /*
1345 * no need to ask again on the same node. Pool is node rather than
1346 * zone aware
1347 */
1348 if (zone_to_nid(zone) == node)
1349 continue;
1350 node = zone_to_nid(zone);
1351
1352 folio = dequeue_hugetlb_folio_node_exact(h, node);
1353 if (folio)
1354 return folio;
1355 }
1356 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1357 goto retry_cpuset;
1358
1359 return NULL;
1360 }
1361
available_huge_pages(struct hstate * h)1362 static unsigned long available_huge_pages(struct hstate *h)
1363 {
1364 return h->free_huge_pages - h->resv_huge_pages;
1365 }
1366
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1367 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1368 struct vm_area_struct *vma,
1369 unsigned long address, long gbl_chg)
1370 {
1371 struct folio *folio = NULL;
1372 struct mempolicy *mpol;
1373 gfp_t gfp_mask;
1374 nodemask_t *nodemask;
1375 int nid;
1376
1377 /*
1378 * gbl_chg==1 means the allocation requires a new page that was not
1379 * reserved before. Making sure there's at least one free page.
1380 */
1381 if (gbl_chg && !available_huge_pages(h))
1382 goto err;
1383
1384 gfp_mask = htlb_alloc_mask(h);
1385 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1386
1387 if (mpol_is_preferred_many(mpol)) {
1388 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1389 nid, nodemask);
1390
1391 /* Fallback to all nodes if page==NULL */
1392 nodemask = NULL;
1393 }
1394
1395 if (!folio)
1396 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1397 nid, nodemask);
1398
1399 mpol_cond_put(mpol);
1400 return folio;
1401
1402 err:
1403 return NULL;
1404 }
1405
1406 /*
1407 * common helper functions for hstate_next_node_to_{alloc|free}.
1408 * We may have allocated or freed a huge page based on a different
1409 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1410 * be outside of *nodes_allowed. Ensure that we use an allowed
1411 * node for alloc or free.
1412 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1413 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1414 {
1415 nid = next_node_in(nid, *nodes_allowed);
1416 VM_BUG_ON(nid >= MAX_NUMNODES);
1417
1418 return nid;
1419 }
1420
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1421 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1422 {
1423 if (!node_isset(nid, *nodes_allowed))
1424 nid = next_node_allowed(nid, nodes_allowed);
1425 return nid;
1426 }
1427
1428 /*
1429 * returns the previously saved node ["this node"] from which to
1430 * allocate a persistent huge page for the pool and advance the
1431 * next node from which to allocate, handling wrap at end of node
1432 * mask.
1433 */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1434 static int hstate_next_node_to_alloc(int *next_node,
1435 nodemask_t *nodes_allowed)
1436 {
1437 int nid;
1438
1439 VM_BUG_ON(!nodes_allowed);
1440
1441 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1442 *next_node = next_node_allowed(nid, nodes_allowed);
1443
1444 return nid;
1445 }
1446
1447 /*
1448 * helper for remove_pool_hugetlb_folio() - return the previously saved
1449 * node ["this node"] from which to free a huge page. Advance the
1450 * next node id whether or not we find a free huge page to free so
1451 * that the next attempt to free addresses the next node.
1452 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1453 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1454 {
1455 int nid;
1456
1457 VM_BUG_ON(!nodes_allowed);
1458
1459 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1460 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1461
1462 return nid;
1463 }
1464
1465 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1466 for (nr_nodes = nodes_weight(*mask); \
1467 nr_nodes > 0 && \
1468 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1469 nr_nodes--)
1470
1471 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1472 for (nr_nodes = nodes_weight(*mask); \
1473 nr_nodes > 0 && \
1474 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1475 nr_nodes--)
1476
1477 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1478 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1479 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1480 int nid, nodemask_t *nodemask)
1481 {
1482 struct folio *folio;
1483 int order = huge_page_order(h);
1484 bool retried = false;
1485
1486 if (nid == NUMA_NO_NODE)
1487 nid = numa_mem_id();
1488 retry:
1489 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask);
1490 if (!folio) {
1491 if (hugetlb_cma_exclusive_alloc())
1492 return NULL;
1493
1494 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1495 if (!folio)
1496 return NULL;
1497 }
1498
1499 if (folio_ref_freeze(folio, 1))
1500 return folio;
1501
1502 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1503 hugetlb_free_folio(folio);
1504 if (!retried) {
1505 retried = true;
1506 goto retry;
1507 }
1508 return NULL;
1509 }
1510
1511 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1512 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1513 int nid, nodemask_t *nodemask)
1514 {
1515 return NULL;
1516 }
1517 #endif /* CONFIG_CONTIG_ALLOC */
1518
1519 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1520 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1521 int nid, nodemask_t *nodemask)
1522 {
1523 return NULL;
1524 }
1525 #endif
1526
1527 /*
1528 * Remove hugetlb folio from lists.
1529 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1530 * folio appears as just a compound page. Otherwise, wait until after
1531 * allocating vmemmap to clear the flag.
1532 *
1533 * Must be called with hugetlb lock held.
1534 */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1535 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1536 bool adjust_surplus)
1537 {
1538 int nid = folio_nid(folio);
1539
1540 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1541 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1542
1543 lockdep_assert_held(&hugetlb_lock);
1544 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1545 return;
1546
1547 list_del(&folio->lru);
1548
1549 if (folio_test_hugetlb_freed(folio)) {
1550 folio_clear_hugetlb_freed(folio);
1551 h->free_huge_pages--;
1552 h->free_huge_pages_node[nid]--;
1553 }
1554 if (adjust_surplus) {
1555 h->surplus_huge_pages--;
1556 h->surplus_huge_pages_node[nid]--;
1557 }
1558
1559 /*
1560 * We can only clear the hugetlb flag after allocating vmemmap
1561 * pages. Otherwise, someone (memory error handling) may try to write
1562 * to tail struct pages.
1563 */
1564 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1565 __folio_clear_hugetlb(folio);
1566
1567 h->nr_huge_pages--;
1568 h->nr_huge_pages_node[nid]--;
1569 }
1570
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1571 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1572 bool adjust_surplus)
1573 {
1574 int nid = folio_nid(folio);
1575
1576 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1577
1578 lockdep_assert_held(&hugetlb_lock);
1579
1580 INIT_LIST_HEAD(&folio->lru);
1581 h->nr_huge_pages++;
1582 h->nr_huge_pages_node[nid]++;
1583
1584 if (adjust_surplus) {
1585 h->surplus_huge_pages++;
1586 h->surplus_huge_pages_node[nid]++;
1587 }
1588
1589 __folio_set_hugetlb(folio);
1590 folio_change_private(folio, NULL);
1591 /*
1592 * We have to set hugetlb_vmemmap_optimized again as above
1593 * folio_change_private(folio, NULL) cleared it.
1594 */
1595 folio_set_hugetlb_vmemmap_optimized(folio);
1596
1597 arch_clear_hugetlb_flags(folio);
1598 enqueue_hugetlb_folio(h, folio);
1599 }
1600
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1601 static void __update_and_free_hugetlb_folio(struct hstate *h,
1602 struct folio *folio)
1603 {
1604 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1605
1606 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1607 return;
1608
1609 /*
1610 * If we don't know which subpages are hwpoisoned, we can't free
1611 * the hugepage, so it's leaked intentionally.
1612 */
1613 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1614 return;
1615
1616 /*
1617 * If folio is not vmemmap optimized (!clear_flag), then the folio
1618 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1619 * can only be passed hugetlb pages and will BUG otherwise.
1620 */
1621 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1622 spin_lock_irq(&hugetlb_lock);
1623 /*
1624 * If we cannot allocate vmemmap pages, just refuse to free the
1625 * page and put the page back on the hugetlb free list and treat
1626 * as a surplus page.
1627 */
1628 add_hugetlb_folio(h, folio, true);
1629 spin_unlock_irq(&hugetlb_lock);
1630 return;
1631 }
1632
1633 /*
1634 * If vmemmap pages were allocated above, then we need to clear the
1635 * hugetlb flag under the hugetlb lock.
1636 */
1637 if (folio_test_hugetlb(folio)) {
1638 spin_lock_irq(&hugetlb_lock);
1639 __folio_clear_hugetlb(folio);
1640 spin_unlock_irq(&hugetlb_lock);
1641 }
1642
1643 /*
1644 * Move PageHWPoison flag from head page to the raw error pages,
1645 * which makes any healthy subpages reusable.
1646 */
1647 if (unlikely(folio_test_hwpoison(folio)))
1648 folio_clear_hugetlb_hwpoison(folio);
1649
1650 folio_ref_unfreeze(folio, 1);
1651
1652 hugetlb_free_folio(folio);
1653 }
1654
1655 /*
1656 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1657 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1658 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1659 * the vmemmap pages.
1660 *
1661 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1662 * freed and frees them one-by-one. As the page->mapping pointer is going
1663 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1664 * structure of a lockless linked list of huge pages to be freed.
1665 */
1666 static LLIST_HEAD(hpage_freelist);
1667
free_hpage_workfn(struct work_struct * work)1668 static void free_hpage_workfn(struct work_struct *work)
1669 {
1670 struct llist_node *node;
1671
1672 node = llist_del_all(&hpage_freelist);
1673
1674 while (node) {
1675 struct folio *folio;
1676 struct hstate *h;
1677
1678 folio = container_of((struct address_space **)node,
1679 struct folio, mapping);
1680 node = node->next;
1681 folio->mapping = NULL;
1682 /*
1683 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1684 * folio_hstate() is going to trigger because a previous call to
1685 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1686 * not use folio_hstate() directly.
1687 */
1688 h = size_to_hstate(folio_size(folio));
1689
1690 __update_and_free_hugetlb_folio(h, folio);
1691
1692 cond_resched();
1693 }
1694 }
1695 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1696
flush_free_hpage_work(struct hstate * h)1697 static inline void flush_free_hpage_work(struct hstate *h)
1698 {
1699 if (hugetlb_vmemmap_optimizable(h))
1700 flush_work(&free_hpage_work);
1701 }
1702
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1703 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1704 bool atomic)
1705 {
1706 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1707 __update_and_free_hugetlb_folio(h, folio);
1708 return;
1709 }
1710
1711 /*
1712 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1713 *
1714 * Only call schedule_work() if hpage_freelist is previously
1715 * empty. Otherwise, schedule_work() had been called but the workfn
1716 * hasn't retrieved the list yet.
1717 */
1718 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1719 schedule_work(&free_hpage_work);
1720 }
1721
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1722 static void bulk_vmemmap_restore_error(struct hstate *h,
1723 struct list_head *folio_list,
1724 struct list_head *non_hvo_folios)
1725 {
1726 struct folio *folio, *t_folio;
1727
1728 if (!list_empty(non_hvo_folios)) {
1729 /*
1730 * Free any restored hugetlb pages so that restore of the
1731 * entire list can be retried.
1732 * The idea is that in the common case of ENOMEM errors freeing
1733 * hugetlb pages with vmemmap we will free up memory so that we
1734 * can allocate vmemmap for more hugetlb pages.
1735 */
1736 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1737 list_del(&folio->lru);
1738 spin_lock_irq(&hugetlb_lock);
1739 __folio_clear_hugetlb(folio);
1740 spin_unlock_irq(&hugetlb_lock);
1741 update_and_free_hugetlb_folio(h, folio, false);
1742 cond_resched();
1743 }
1744 } else {
1745 /*
1746 * In the case where there are no folios which can be
1747 * immediately freed, we loop through the list trying to restore
1748 * vmemmap individually in the hope that someone elsewhere may
1749 * have done something to cause success (such as freeing some
1750 * memory). If unable to restore a hugetlb page, the hugetlb
1751 * page is made a surplus page and removed from the list.
1752 * If are able to restore vmemmap and free one hugetlb page, we
1753 * quit processing the list to retry the bulk operation.
1754 */
1755 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1756 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1757 list_del(&folio->lru);
1758 spin_lock_irq(&hugetlb_lock);
1759 add_hugetlb_folio(h, folio, true);
1760 spin_unlock_irq(&hugetlb_lock);
1761 } else {
1762 list_del(&folio->lru);
1763 spin_lock_irq(&hugetlb_lock);
1764 __folio_clear_hugetlb(folio);
1765 spin_unlock_irq(&hugetlb_lock);
1766 update_and_free_hugetlb_folio(h, folio, false);
1767 cond_resched();
1768 break;
1769 }
1770 }
1771 }
1772
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1773 static void update_and_free_pages_bulk(struct hstate *h,
1774 struct list_head *folio_list)
1775 {
1776 long ret;
1777 struct folio *folio, *t_folio;
1778 LIST_HEAD(non_hvo_folios);
1779
1780 /*
1781 * First allocate required vmemmmap (if necessary) for all folios.
1782 * Carefully handle errors and free up any available hugetlb pages
1783 * in an effort to make forward progress.
1784 */
1785 retry:
1786 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1787 if (ret < 0) {
1788 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1789 goto retry;
1790 }
1791
1792 /*
1793 * At this point, list should be empty, ret should be >= 0 and there
1794 * should only be pages on the non_hvo_folios list.
1795 * Do note that the non_hvo_folios list could be empty.
1796 * Without HVO enabled, ret will be 0 and there is no need to call
1797 * __folio_clear_hugetlb as this was done previously.
1798 */
1799 VM_WARN_ON(!list_empty(folio_list));
1800 VM_WARN_ON(ret < 0);
1801 if (!list_empty(&non_hvo_folios) && ret) {
1802 spin_lock_irq(&hugetlb_lock);
1803 list_for_each_entry(folio, &non_hvo_folios, lru)
1804 __folio_clear_hugetlb(folio);
1805 spin_unlock_irq(&hugetlb_lock);
1806 }
1807
1808 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1809 update_and_free_hugetlb_folio(h, folio, false);
1810 cond_resched();
1811 }
1812 }
1813
size_to_hstate(unsigned long size)1814 struct hstate *size_to_hstate(unsigned long size)
1815 {
1816 struct hstate *h;
1817
1818 for_each_hstate(h) {
1819 if (huge_page_size(h) == size)
1820 return h;
1821 }
1822 return NULL;
1823 }
1824
free_huge_folio(struct folio * folio)1825 void free_huge_folio(struct folio *folio)
1826 {
1827 /*
1828 * Can't pass hstate in here because it is called from the
1829 * generic mm code.
1830 */
1831 struct hstate *h = folio_hstate(folio);
1832 int nid = folio_nid(folio);
1833 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1834 bool restore_reserve;
1835 unsigned long flags;
1836
1837 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1838 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1839
1840 hugetlb_set_folio_subpool(folio, NULL);
1841 if (folio_test_anon(folio))
1842 __ClearPageAnonExclusive(&folio->page);
1843 folio->mapping = NULL;
1844 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1845 folio_clear_hugetlb_restore_reserve(folio);
1846
1847 /*
1848 * If HPageRestoreReserve was set on page, page allocation consumed a
1849 * reservation. If the page was associated with a subpool, there
1850 * would have been a page reserved in the subpool before allocation
1851 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1852 * reservation, do not call hugepage_subpool_put_pages() as this will
1853 * remove the reserved page from the subpool.
1854 */
1855 if (!restore_reserve) {
1856 /*
1857 * A return code of zero implies that the subpool will be
1858 * under its minimum size if the reservation is not restored
1859 * after page is free. Therefore, force restore_reserve
1860 * operation.
1861 */
1862 if (hugepage_subpool_put_pages(spool, 1) == 0)
1863 restore_reserve = true;
1864 }
1865
1866 spin_lock_irqsave(&hugetlb_lock, flags);
1867 folio_clear_hugetlb_migratable(folio);
1868 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1869 pages_per_huge_page(h), folio);
1870 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1871 pages_per_huge_page(h), folio);
1872 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1873 mem_cgroup_uncharge(folio);
1874 if (restore_reserve)
1875 h->resv_huge_pages++;
1876
1877 if (folio_test_hugetlb_temporary(folio)) {
1878 remove_hugetlb_folio(h, folio, false);
1879 spin_unlock_irqrestore(&hugetlb_lock, flags);
1880 update_and_free_hugetlb_folio(h, folio, true);
1881 } else if (h->surplus_huge_pages_node[nid]) {
1882 /* remove the page from active list */
1883 remove_hugetlb_folio(h, folio, true);
1884 spin_unlock_irqrestore(&hugetlb_lock, flags);
1885 update_and_free_hugetlb_folio(h, folio, true);
1886 } else {
1887 arch_clear_hugetlb_flags(folio);
1888 enqueue_hugetlb_folio(h, folio);
1889 spin_unlock_irqrestore(&hugetlb_lock, flags);
1890 }
1891 }
1892
1893 /*
1894 * Must be called with the hugetlb lock held
1895 */
__prep_account_new_huge_page(struct hstate * h,int nid)1896 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1897 {
1898 lockdep_assert_held(&hugetlb_lock);
1899 h->nr_huge_pages++;
1900 h->nr_huge_pages_node[nid]++;
1901 }
1902
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1903 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1904 {
1905 __folio_set_hugetlb(folio);
1906 INIT_LIST_HEAD(&folio->lru);
1907 hugetlb_set_folio_subpool(folio, NULL);
1908 set_hugetlb_cgroup(folio, NULL);
1909 set_hugetlb_cgroup_rsvd(folio, NULL);
1910 }
1911
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1912 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1913 {
1914 init_new_hugetlb_folio(h, folio);
1915 hugetlb_vmemmap_optimize_folio(h, folio);
1916 }
1917
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1918 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1919 {
1920 __prep_new_hugetlb_folio(h, folio);
1921 spin_lock_irq(&hugetlb_lock);
1922 __prep_account_new_huge_page(h, nid);
1923 spin_unlock_irq(&hugetlb_lock);
1924 }
1925
1926 /*
1927 * Find and lock address space (mapping) in write mode.
1928 *
1929 * Upon entry, the folio is locked which means that folio_mapping() is
1930 * stable. Due to locking order, we can only trylock_write. If we can
1931 * not get the lock, simply return NULL to caller.
1932 */
hugetlb_folio_mapping_lock_write(struct folio * folio)1933 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1934 {
1935 struct address_space *mapping = folio_mapping(folio);
1936
1937 if (!mapping)
1938 return mapping;
1939
1940 if (i_mmap_trylock_write(mapping))
1941 return mapping;
1942
1943 return NULL;
1944 }
1945
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1946 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1947 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1948 nodemask_t *node_alloc_noretry)
1949 {
1950 int order = huge_page_order(h);
1951 struct folio *folio;
1952 bool alloc_try_hard = true;
1953 bool retry = true;
1954
1955 /*
1956 * By default we always try hard to allocate the folio with
1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
1958 * a loop (to adjust global huge page counts) and previous allocation
1959 * failed, do not continue to try hard on the same node. Use the
1960 * node_alloc_noretry bitmap to manage this state information.
1961 */
1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 alloc_try_hard = false;
1964 if (alloc_try_hard)
1965 gfp_mask |= __GFP_RETRY_MAYFAIL;
1966 if (nid == NUMA_NO_NODE)
1967 nid = numa_mem_id();
1968 retry:
1969 folio = __folio_alloc(gfp_mask, order, nid, nmask);
1970 /* Ensure hugetlb folio won't have large_rmappable flag set. */
1971 if (folio)
1972 folio_clear_large_rmappable(folio);
1973
1974 if (folio && !folio_ref_freeze(folio, 1)) {
1975 folio_put(folio);
1976 if (retry) { /* retry once */
1977 retry = false;
1978 goto retry;
1979 }
1980 /* WOW! twice in a row. */
1981 pr_warn("HugeTLB unexpected inflated folio ref count\n");
1982 folio = NULL;
1983 }
1984
1985 /*
1986 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1987 * folio this indicates an overall state change. Clear bit so
1988 * that we resume normal 'try hard' allocations.
1989 */
1990 if (node_alloc_noretry && folio && !alloc_try_hard)
1991 node_clear(nid, *node_alloc_noretry);
1992
1993 /*
1994 * If we tried hard to get a folio but failed, set bit so that
1995 * subsequent attempts will not try as hard until there is an
1996 * overall state change.
1997 */
1998 if (node_alloc_noretry && !folio && alloc_try_hard)
1999 node_set(nid, *node_alloc_noretry);
2000
2001 if (!folio) {
2002 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2003 return NULL;
2004 }
2005
2006 __count_vm_event(HTLB_BUDDY_PGALLOC);
2007 return folio;
2008 }
2009
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2010 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
2011 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2012 nodemask_t *node_alloc_noretry)
2013 {
2014 struct folio *folio;
2015
2016 if (hstate_is_gigantic(h))
2017 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2018 else
2019 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2020 if (folio)
2021 init_new_hugetlb_folio(h, folio);
2022 return folio;
2023 }
2024
2025 /*
2026 * Common helper to allocate a fresh hugetlb page. All specific allocators
2027 * should use this function to get new hugetlb pages
2028 *
2029 * Note that returned page is 'frozen': ref count of head page and all tail
2030 * pages is zero.
2031 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2032 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2033 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2034 {
2035 struct folio *folio;
2036
2037 if (hstate_is_gigantic(h))
2038 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2039 else
2040 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2041 if (!folio)
2042 return NULL;
2043
2044 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2045 return folio;
2046 }
2047
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2048 static void prep_and_add_allocated_folios(struct hstate *h,
2049 struct list_head *folio_list)
2050 {
2051 unsigned long flags;
2052 struct folio *folio, *tmp_f;
2053
2054 /* Send list for bulk vmemmap optimization processing */
2055 hugetlb_vmemmap_optimize_folios(h, folio_list);
2056
2057 /* Add all new pool pages to free lists in one lock cycle */
2058 spin_lock_irqsave(&hugetlb_lock, flags);
2059 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2060 __prep_account_new_huge_page(h, folio_nid(folio));
2061 enqueue_hugetlb_folio(h, folio);
2062 }
2063 spin_unlock_irqrestore(&hugetlb_lock, flags);
2064 }
2065
2066 /*
2067 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2068 * will later be added to the appropriate hugetlb pool.
2069 */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2070 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2071 nodemask_t *nodes_allowed,
2072 nodemask_t *node_alloc_noretry,
2073 int *next_node)
2074 {
2075 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2076 int nr_nodes, node;
2077
2078 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2079 struct folio *folio;
2080
2081 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2082 nodes_allowed, node_alloc_noretry);
2083 if (folio)
2084 return folio;
2085 }
2086
2087 return NULL;
2088 }
2089
2090 /*
2091 * Remove huge page from pool from next node to free. Attempt to keep
2092 * persistent huge pages more or less balanced over allowed nodes.
2093 * This routine only 'removes' the hugetlb page. The caller must make
2094 * an additional call to free the page to low level allocators.
2095 * Called with hugetlb_lock locked.
2096 */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2097 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2098 nodemask_t *nodes_allowed, bool acct_surplus)
2099 {
2100 int nr_nodes, node;
2101 struct folio *folio = NULL;
2102
2103 lockdep_assert_held(&hugetlb_lock);
2104 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2105 /*
2106 * If we're returning unused surplus pages, only examine
2107 * nodes with surplus pages.
2108 */
2109 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2110 !list_empty(&h->hugepage_freelists[node])) {
2111 folio = list_entry(h->hugepage_freelists[node].next,
2112 struct folio, lru);
2113 remove_hugetlb_folio(h, folio, acct_surplus);
2114 break;
2115 }
2116 }
2117
2118 return folio;
2119 }
2120
2121 /*
2122 * Dissolve a given free hugetlb folio into free buddy pages. This function
2123 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2124 * This function returns values like below:
2125 *
2126 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2127 * when the system is under memory pressure and the feature of
2128 * freeing unused vmemmap pages associated with each hugetlb page
2129 * is enabled.
2130 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2131 * (allocated or reserved.)
2132 * 0: successfully dissolved free hugepages or the page is not a
2133 * hugepage (considered as already dissolved)
2134 */
dissolve_free_hugetlb_folio(struct folio * folio)2135 int dissolve_free_hugetlb_folio(struct folio *folio)
2136 {
2137 int rc = -EBUSY;
2138
2139 retry:
2140 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2141 if (!folio_test_hugetlb(folio))
2142 return 0;
2143
2144 spin_lock_irq(&hugetlb_lock);
2145 if (!folio_test_hugetlb(folio)) {
2146 rc = 0;
2147 goto out;
2148 }
2149
2150 if (!folio_ref_count(folio)) {
2151 struct hstate *h = folio_hstate(folio);
2152 bool adjust_surplus = false;
2153
2154 if (!available_huge_pages(h))
2155 goto out;
2156
2157 /*
2158 * We should make sure that the page is already on the free list
2159 * when it is dissolved.
2160 */
2161 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2162 spin_unlock_irq(&hugetlb_lock);
2163 cond_resched();
2164
2165 /*
2166 * Theoretically, we should return -EBUSY when we
2167 * encounter this race. In fact, we have a chance
2168 * to successfully dissolve the page if we do a
2169 * retry. Because the race window is quite small.
2170 * If we seize this opportunity, it is an optimization
2171 * for increasing the success rate of dissolving page.
2172 */
2173 goto retry;
2174 }
2175
2176 if (h->surplus_huge_pages_node[folio_nid(folio)])
2177 adjust_surplus = true;
2178 remove_hugetlb_folio(h, folio, adjust_surplus);
2179 h->max_huge_pages--;
2180 spin_unlock_irq(&hugetlb_lock);
2181
2182 /*
2183 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2184 * before freeing the page. update_and_free_hugtlb_folio will fail to
2185 * free the page if it can not allocate required vmemmap. We
2186 * need to adjust max_huge_pages if the page is not freed.
2187 * Attempt to allocate vmemmmap here so that we can take
2188 * appropriate action on failure.
2189 *
2190 * The folio_test_hugetlb check here is because
2191 * remove_hugetlb_folio will clear hugetlb folio flag for
2192 * non-vmemmap optimized hugetlb folios.
2193 */
2194 if (folio_test_hugetlb(folio)) {
2195 rc = hugetlb_vmemmap_restore_folio(h, folio);
2196 if (rc) {
2197 spin_lock_irq(&hugetlb_lock);
2198 add_hugetlb_folio(h, folio, adjust_surplus);
2199 h->max_huge_pages++;
2200 goto out;
2201 }
2202 } else
2203 rc = 0;
2204
2205 update_and_free_hugetlb_folio(h, folio, false);
2206 return rc;
2207 }
2208 out:
2209 spin_unlock_irq(&hugetlb_lock);
2210 return rc;
2211 }
2212
2213 /*
2214 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2215 * make specified memory blocks removable from the system.
2216 * Note that this will dissolve a free gigantic hugepage completely, if any
2217 * part of it lies within the given range.
2218 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2219 * free hugetlb folios that were dissolved before that error are lost.
2220 */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2221 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2222 {
2223 unsigned long pfn;
2224 struct folio *folio;
2225 int rc = 0;
2226 unsigned int order;
2227 struct hstate *h;
2228
2229 if (!hugepages_supported())
2230 return rc;
2231
2232 order = huge_page_order(&default_hstate);
2233 for_each_hstate(h)
2234 order = min(order, huge_page_order(h));
2235
2236 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2237 folio = pfn_folio(pfn);
2238 rc = dissolve_free_hugetlb_folio(folio);
2239 if (rc)
2240 break;
2241 }
2242
2243 return rc;
2244 }
2245
2246 /*
2247 * Allocates a fresh surplus page from the page allocator.
2248 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2249 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2250 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2251 {
2252 struct folio *folio = NULL;
2253
2254 if (hstate_is_gigantic(h))
2255 return NULL;
2256
2257 spin_lock_irq(&hugetlb_lock);
2258 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2259 goto out_unlock;
2260 spin_unlock_irq(&hugetlb_lock);
2261
2262 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2263 if (!folio)
2264 return NULL;
2265
2266 hugetlb_vmemmap_optimize_folio(h, folio);
2267
2268 spin_lock_irq(&hugetlb_lock);
2269 /*
2270 * nr_huge_pages needs to be adjusted within the same lock cycle
2271 * as surplus_pages, otherwise it might confuse
2272 * persistent_huge_pages() momentarily.
2273 */
2274 __prep_account_new_huge_page(h, nid);
2275
2276 /*
2277 * We could have raced with the pool size change.
2278 * Double check that and simply deallocate the new page
2279 * if we would end up overcommiting the surpluses. Abuse
2280 * temporary page to workaround the nasty free_huge_folio
2281 * codeflow
2282 */
2283 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2284 folio_set_hugetlb_temporary(folio);
2285 spin_unlock_irq(&hugetlb_lock);
2286 free_huge_folio(folio);
2287 return NULL;
2288 }
2289
2290 h->surplus_huge_pages++;
2291 h->surplus_huge_pages_node[folio_nid(folio)]++;
2292
2293 out_unlock:
2294 spin_unlock_irq(&hugetlb_lock);
2295
2296 return folio;
2297 }
2298
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2299 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2300 int nid, nodemask_t *nmask)
2301 {
2302 struct folio *folio;
2303
2304 if (hstate_is_gigantic(h))
2305 return NULL;
2306
2307 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2308 if (!folio)
2309 return NULL;
2310
2311 /* fresh huge pages are frozen */
2312 folio_ref_unfreeze(folio, 1);
2313 /*
2314 * We do not account these pages as surplus because they are only
2315 * temporary and will be released properly on the last reference
2316 */
2317 folio_set_hugetlb_temporary(folio);
2318
2319 return folio;
2320 }
2321
2322 /*
2323 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2324 */
2325 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2326 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2327 struct vm_area_struct *vma, unsigned long addr)
2328 {
2329 struct folio *folio = NULL;
2330 struct mempolicy *mpol;
2331 gfp_t gfp_mask = htlb_alloc_mask(h);
2332 int nid;
2333 nodemask_t *nodemask;
2334
2335 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2336 if (mpol_is_preferred_many(mpol)) {
2337 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2338
2339 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2340
2341 /* Fallback to all nodes if page==NULL */
2342 nodemask = NULL;
2343 }
2344
2345 if (!folio)
2346 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2347 mpol_cond_put(mpol);
2348 return folio;
2349 }
2350
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2351 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2352 nodemask_t *nmask, gfp_t gfp_mask)
2353 {
2354 struct folio *folio;
2355
2356 spin_lock_irq(&hugetlb_lock);
2357 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2358 nmask);
2359 if (folio) {
2360 VM_BUG_ON(!h->resv_huge_pages);
2361 h->resv_huge_pages--;
2362 }
2363
2364 spin_unlock_irq(&hugetlb_lock);
2365 return folio;
2366 }
2367
2368 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2369 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2370 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2371 {
2372 spin_lock_irq(&hugetlb_lock);
2373 if (available_huge_pages(h)) {
2374 struct folio *folio;
2375
2376 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2377 preferred_nid, nmask);
2378 if (folio) {
2379 spin_unlock_irq(&hugetlb_lock);
2380 return folio;
2381 }
2382 }
2383 spin_unlock_irq(&hugetlb_lock);
2384
2385 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2386 if (!allow_alloc_fallback)
2387 gfp_mask |= __GFP_THISNODE;
2388
2389 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2390 }
2391
policy_mbind_nodemask(gfp_t gfp)2392 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2393 {
2394 #ifdef CONFIG_NUMA
2395 struct mempolicy *mpol = get_task_policy(current);
2396
2397 /*
2398 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2399 * (from policy_nodemask) specifically for hugetlb case
2400 */
2401 if (mpol->mode == MPOL_BIND &&
2402 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2403 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2404 return &mpol->nodes;
2405 #endif
2406 return NULL;
2407 }
2408
2409 /*
2410 * Increase the hugetlb pool such that it can accommodate a reservation
2411 * of size 'delta'.
2412 */
gather_surplus_pages(struct hstate * h,long delta)2413 static int gather_surplus_pages(struct hstate *h, long delta)
2414 __must_hold(&hugetlb_lock)
2415 {
2416 LIST_HEAD(surplus_list);
2417 struct folio *folio, *tmp;
2418 int ret;
2419 long i;
2420 long needed, allocated;
2421 bool alloc_ok = true;
2422 int node;
2423 nodemask_t *mbind_nodemask, alloc_nodemask;
2424
2425 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2426 if (mbind_nodemask)
2427 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2428 else
2429 alloc_nodemask = cpuset_current_mems_allowed;
2430
2431 lockdep_assert_held(&hugetlb_lock);
2432 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2433 if (needed <= 0) {
2434 h->resv_huge_pages += delta;
2435 return 0;
2436 }
2437
2438 allocated = 0;
2439
2440 ret = -ENOMEM;
2441 retry:
2442 spin_unlock_irq(&hugetlb_lock);
2443 for (i = 0; i < needed; i++) {
2444 folio = NULL;
2445
2446 /* Prioritize current node */
2447 if (node_isset(numa_mem_id(), alloc_nodemask))
2448 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2449 numa_mem_id(), NULL);
2450
2451 if (!folio) {
2452 for_each_node_mask(node, alloc_nodemask) {
2453 if (node == numa_mem_id())
2454 continue;
2455 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2456 node, NULL);
2457 if (folio)
2458 break;
2459 }
2460 }
2461 if (!folio) {
2462 alloc_ok = false;
2463 break;
2464 }
2465 list_add(&folio->lru, &surplus_list);
2466 cond_resched();
2467 }
2468 allocated += i;
2469
2470 /*
2471 * After retaking hugetlb_lock, we need to recalculate 'needed'
2472 * because either resv_huge_pages or free_huge_pages may have changed.
2473 */
2474 spin_lock_irq(&hugetlb_lock);
2475 needed = (h->resv_huge_pages + delta) -
2476 (h->free_huge_pages + allocated);
2477 if (needed > 0) {
2478 if (alloc_ok)
2479 goto retry;
2480 /*
2481 * We were not able to allocate enough pages to
2482 * satisfy the entire reservation so we free what
2483 * we've allocated so far.
2484 */
2485 goto free;
2486 }
2487 /*
2488 * The surplus_list now contains _at_least_ the number of extra pages
2489 * needed to accommodate the reservation. Add the appropriate number
2490 * of pages to the hugetlb pool and free the extras back to the buddy
2491 * allocator. Commit the entire reservation here to prevent another
2492 * process from stealing the pages as they are added to the pool but
2493 * before they are reserved.
2494 */
2495 needed += allocated;
2496 h->resv_huge_pages += delta;
2497 ret = 0;
2498
2499 /* Free the needed pages to the hugetlb pool */
2500 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2501 if ((--needed) < 0)
2502 break;
2503 /* Add the page to the hugetlb allocator */
2504 enqueue_hugetlb_folio(h, folio);
2505 }
2506 free:
2507 spin_unlock_irq(&hugetlb_lock);
2508
2509 /*
2510 * Free unnecessary surplus pages to the buddy allocator.
2511 * Pages have no ref count, call free_huge_folio directly.
2512 */
2513 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2514 free_huge_folio(folio);
2515 spin_lock_irq(&hugetlb_lock);
2516
2517 return ret;
2518 }
2519
2520 /*
2521 * This routine has two main purposes:
2522 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2523 * in unused_resv_pages. This corresponds to the prior adjustments made
2524 * to the associated reservation map.
2525 * 2) Free any unused surplus pages that may have been allocated to satisfy
2526 * the reservation. As many as unused_resv_pages may be freed.
2527 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2528 static void return_unused_surplus_pages(struct hstate *h,
2529 unsigned long unused_resv_pages)
2530 {
2531 unsigned long nr_pages;
2532 LIST_HEAD(page_list);
2533
2534 lockdep_assert_held(&hugetlb_lock);
2535 /* Uncommit the reservation */
2536 h->resv_huge_pages -= unused_resv_pages;
2537
2538 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2539 goto out;
2540
2541 /*
2542 * Part (or even all) of the reservation could have been backed
2543 * by pre-allocated pages. Only free surplus pages.
2544 */
2545 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2546
2547 /*
2548 * We want to release as many surplus pages as possible, spread
2549 * evenly across all nodes with memory. Iterate across these nodes
2550 * until we can no longer free unreserved surplus pages. This occurs
2551 * when the nodes with surplus pages have no free pages.
2552 * remove_pool_hugetlb_folio() will balance the freed pages across the
2553 * on-line nodes with memory and will handle the hstate accounting.
2554 */
2555 while (nr_pages--) {
2556 struct folio *folio;
2557
2558 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2559 if (!folio)
2560 goto out;
2561
2562 list_add(&folio->lru, &page_list);
2563 }
2564
2565 out:
2566 spin_unlock_irq(&hugetlb_lock);
2567 update_and_free_pages_bulk(h, &page_list);
2568 spin_lock_irq(&hugetlb_lock);
2569 }
2570
2571
2572 /*
2573 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2574 * are used by the huge page allocation routines to manage reservations.
2575 *
2576 * vma_needs_reservation is called to determine if the huge page at addr
2577 * within the vma has an associated reservation. If a reservation is
2578 * needed, the value 1 is returned. The caller is then responsible for
2579 * managing the global reservation and subpool usage counts. After
2580 * the huge page has been allocated, vma_commit_reservation is called
2581 * to add the page to the reservation map. If the page allocation fails,
2582 * the reservation must be ended instead of committed. vma_end_reservation
2583 * is called in such cases.
2584 *
2585 * In the normal case, vma_commit_reservation returns the same value
2586 * as the preceding vma_needs_reservation call. The only time this
2587 * is not the case is if a reserve map was changed between calls. It
2588 * is the responsibility of the caller to notice the difference and
2589 * take appropriate action.
2590 *
2591 * vma_add_reservation is used in error paths where a reservation must
2592 * be restored when a newly allocated huge page must be freed. It is
2593 * to be called after calling vma_needs_reservation to determine if a
2594 * reservation exists.
2595 *
2596 * vma_del_reservation is used in error paths where an entry in the reserve
2597 * map was created during huge page allocation and must be removed. It is to
2598 * be called after calling vma_needs_reservation to determine if a reservation
2599 * exists.
2600 */
2601 enum vma_resv_mode {
2602 VMA_NEEDS_RESV,
2603 VMA_COMMIT_RESV,
2604 VMA_END_RESV,
2605 VMA_ADD_RESV,
2606 VMA_DEL_RESV,
2607 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2608 static long __vma_reservation_common(struct hstate *h,
2609 struct vm_area_struct *vma, unsigned long addr,
2610 enum vma_resv_mode mode)
2611 {
2612 struct resv_map *resv;
2613 pgoff_t idx;
2614 long ret;
2615 long dummy_out_regions_needed;
2616
2617 resv = vma_resv_map(vma);
2618 if (!resv)
2619 return 1;
2620
2621 idx = vma_hugecache_offset(h, vma, addr);
2622 switch (mode) {
2623 case VMA_NEEDS_RESV:
2624 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2625 /* We assume that vma_reservation_* routines always operate on
2626 * 1 page, and that adding to resv map a 1 page entry can only
2627 * ever require 1 region.
2628 */
2629 VM_BUG_ON(dummy_out_regions_needed != 1);
2630 break;
2631 case VMA_COMMIT_RESV:
2632 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2633 /* region_add calls of range 1 should never fail. */
2634 VM_BUG_ON(ret < 0);
2635 break;
2636 case VMA_END_RESV:
2637 region_abort(resv, idx, idx + 1, 1);
2638 ret = 0;
2639 break;
2640 case VMA_ADD_RESV:
2641 if (vma->vm_flags & VM_MAYSHARE) {
2642 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2643 /* region_add calls of range 1 should never fail. */
2644 VM_BUG_ON(ret < 0);
2645 } else {
2646 region_abort(resv, idx, idx + 1, 1);
2647 ret = region_del(resv, idx, idx + 1);
2648 }
2649 break;
2650 case VMA_DEL_RESV:
2651 if (vma->vm_flags & VM_MAYSHARE) {
2652 region_abort(resv, idx, idx + 1, 1);
2653 ret = region_del(resv, idx, idx + 1);
2654 } else {
2655 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2656 /* region_add calls of range 1 should never fail. */
2657 VM_BUG_ON(ret < 0);
2658 }
2659 break;
2660 default:
2661 BUG();
2662 }
2663
2664 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2665 return ret;
2666 /*
2667 * We know private mapping must have HPAGE_RESV_OWNER set.
2668 *
2669 * In most cases, reserves always exist for private mappings.
2670 * However, a file associated with mapping could have been
2671 * hole punched or truncated after reserves were consumed.
2672 * As subsequent fault on such a range will not use reserves.
2673 * Subtle - The reserve map for private mappings has the
2674 * opposite meaning than that of shared mappings. If NO
2675 * entry is in the reserve map, it means a reservation exists.
2676 * If an entry exists in the reserve map, it means the
2677 * reservation has already been consumed. As a result, the
2678 * return value of this routine is the opposite of the
2679 * value returned from reserve map manipulation routines above.
2680 */
2681 if (ret > 0)
2682 return 0;
2683 if (ret == 0)
2684 return 1;
2685 return ret;
2686 }
2687
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2688 static long vma_needs_reservation(struct hstate *h,
2689 struct vm_area_struct *vma, unsigned long addr)
2690 {
2691 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2692 }
2693
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2694 static long vma_commit_reservation(struct hstate *h,
2695 struct vm_area_struct *vma, unsigned long addr)
2696 {
2697 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2698 }
2699
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2700 static void vma_end_reservation(struct hstate *h,
2701 struct vm_area_struct *vma, unsigned long addr)
2702 {
2703 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2704 }
2705
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2706 static long vma_add_reservation(struct hstate *h,
2707 struct vm_area_struct *vma, unsigned long addr)
2708 {
2709 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2710 }
2711
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2712 static long vma_del_reservation(struct hstate *h,
2713 struct vm_area_struct *vma, unsigned long addr)
2714 {
2715 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2716 }
2717
2718 /*
2719 * This routine is called to restore reservation information on error paths.
2720 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2721 * and the hugetlb mutex should remain held when calling this routine.
2722 *
2723 * It handles two specific cases:
2724 * 1) A reservation was in place and the folio consumed the reservation.
2725 * hugetlb_restore_reserve is set in the folio.
2726 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2727 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2728 *
2729 * In case 1, free_huge_folio later in the error path will increment the
2730 * global reserve count. But, free_huge_folio does not have enough context
2731 * to adjust the reservation map. This case deals primarily with private
2732 * mappings. Adjust the reserve map here to be consistent with global
2733 * reserve count adjustments to be made by free_huge_folio. Make sure the
2734 * reserve map indicates there is a reservation present.
2735 *
2736 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2737 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2738 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2739 unsigned long address, struct folio *folio)
2740 {
2741 long rc = vma_needs_reservation(h, vma, address);
2742
2743 if (folio_test_hugetlb_restore_reserve(folio)) {
2744 if (unlikely(rc < 0))
2745 /*
2746 * Rare out of memory condition in reserve map
2747 * manipulation. Clear hugetlb_restore_reserve so
2748 * that global reserve count will not be incremented
2749 * by free_huge_folio. This will make it appear
2750 * as though the reservation for this folio was
2751 * consumed. This may prevent the task from
2752 * faulting in the folio at a later time. This
2753 * is better than inconsistent global huge page
2754 * accounting of reserve counts.
2755 */
2756 folio_clear_hugetlb_restore_reserve(folio);
2757 else if (rc)
2758 (void)vma_add_reservation(h, vma, address);
2759 else
2760 vma_end_reservation(h, vma, address);
2761 } else {
2762 if (!rc) {
2763 /*
2764 * This indicates there is an entry in the reserve map
2765 * not added by alloc_hugetlb_folio. We know it was added
2766 * before the alloc_hugetlb_folio call, otherwise
2767 * hugetlb_restore_reserve would be set on the folio.
2768 * Remove the entry so that a subsequent allocation
2769 * does not consume a reservation.
2770 */
2771 rc = vma_del_reservation(h, vma, address);
2772 if (rc < 0)
2773 /*
2774 * VERY rare out of memory condition. Since
2775 * we can not delete the entry, set
2776 * hugetlb_restore_reserve so that the reserve
2777 * count will be incremented when the folio
2778 * is freed. This reserve will be consumed
2779 * on a subsequent allocation.
2780 */
2781 folio_set_hugetlb_restore_reserve(folio);
2782 } else if (rc < 0) {
2783 /*
2784 * Rare out of memory condition from
2785 * vma_needs_reservation call. Memory allocation is
2786 * only attempted if a new entry is needed. Therefore,
2787 * this implies there is not an entry in the
2788 * reserve map.
2789 *
2790 * For shared mappings, no entry in the map indicates
2791 * no reservation. We are done.
2792 */
2793 if (!(vma->vm_flags & VM_MAYSHARE))
2794 /*
2795 * For private mappings, no entry indicates
2796 * a reservation is present. Since we can
2797 * not add an entry, set hugetlb_restore_reserve
2798 * on the folio so reserve count will be
2799 * incremented when freed. This reserve will
2800 * be consumed on a subsequent allocation.
2801 */
2802 folio_set_hugetlb_restore_reserve(folio);
2803 } else
2804 /*
2805 * No reservation present, do nothing
2806 */
2807 vma_end_reservation(h, vma, address);
2808 }
2809 }
2810
2811 /*
2812 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2813 * the old one
2814 * @h: struct hstate old page belongs to
2815 * @old_folio: Old folio to dissolve
2816 * @list: List to isolate the page in case we need to
2817 * Returns 0 on success, otherwise negated error.
2818 */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2819 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2820 struct folio *old_folio, struct list_head *list)
2821 {
2822 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2823 int nid = folio_nid(old_folio);
2824 struct folio *new_folio = NULL;
2825 int ret = 0;
2826
2827 retry:
2828 spin_lock_irq(&hugetlb_lock);
2829 if (!folio_test_hugetlb(old_folio)) {
2830 /*
2831 * Freed from under us. Drop new_folio too.
2832 */
2833 goto free_new;
2834 } else if (folio_ref_count(old_folio)) {
2835 bool isolated;
2836
2837 /*
2838 * Someone has grabbed the folio, try to isolate it here.
2839 * Fail with -EBUSY if not possible.
2840 */
2841 spin_unlock_irq(&hugetlb_lock);
2842 isolated = folio_isolate_hugetlb(old_folio, list);
2843 ret = isolated ? 0 : -EBUSY;
2844 spin_lock_irq(&hugetlb_lock);
2845 goto free_new;
2846 } else if (!folio_test_hugetlb_freed(old_folio)) {
2847 /*
2848 * Folio's refcount is 0 but it has not been enqueued in the
2849 * freelist yet. Race window is small, so we can succeed here if
2850 * we retry.
2851 */
2852 spin_unlock_irq(&hugetlb_lock);
2853 cond_resched();
2854 goto retry;
2855 } else {
2856 if (!new_folio) {
2857 spin_unlock_irq(&hugetlb_lock);
2858 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2859 NULL, NULL);
2860 if (!new_folio)
2861 return -ENOMEM;
2862 __prep_new_hugetlb_folio(h, new_folio);
2863 goto retry;
2864 }
2865
2866 /*
2867 * Ok, old_folio is still a genuine free hugepage. Remove it from
2868 * the freelist and decrease the counters. These will be
2869 * incremented again when calling __prep_account_new_huge_page()
2870 * and enqueue_hugetlb_folio() for new_folio. The counters will
2871 * remain stable since this happens under the lock.
2872 */
2873 remove_hugetlb_folio(h, old_folio, false);
2874
2875 /*
2876 * Ref count on new_folio is already zero as it was dropped
2877 * earlier. It can be directly added to the pool free list.
2878 */
2879 __prep_account_new_huge_page(h, nid);
2880 enqueue_hugetlb_folio(h, new_folio);
2881
2882 /*
2883 * Folio has been replaced, we can safely free the old one.
2884 */
2885 spin_unlock_irq(&hugetlb_lock);
2886 update_and_free_hugetlb_folio(h, old_folio, false);
2887 }
2888
2889 return ret;
2890
2891 free_new:
2892 spin_unlock_irq(&hugetlb_lock);
2893 if (new_folio)
2894 update_and_free_hugetlb_folio(h, new_folio, false);
2895
2896 return ret;
2897 }
2898
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2899 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2900 {
2901 struct hstate *h;
2902 struct folio *folio = page_folio(page);
2903 int ret = -EBUSY;
2904
2905 /*
2906 * The page might have been dissolved from under our feet, so make sure
2907 * to carefully check the state under the lock.
2908 * Return success when racing as if we dissolved the page ourselves.
2909 */
2910 spin_lock_irq(&hugetlb_lock);
2911 if (folio_test_hugetlb(folio)) {
2912 h = folio_hstate(folio);
2913 } else {
2914 spin_unlock_irq(&hugetlb_lock);
2915 return 0;
2916 }
2917 spin_unlock_irq(&hugetlb_lock);
2918
2919 /*
2920 * Fence off gigantic pages as there is a cyclic dependency between
2921 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2922 * of bailing out right away without further retrying.
2923 */
2924 if (hstate_is_gigantic(h))
2925 return -ENOMEM;
2926
2927 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2928 ret = 0;
2929 else if (!folio_ref_count(folio))
2930 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2931
2932 return ret;
2933 }
2934
2935 /*
2936 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2937 * range with new folios.
2938 * @start_pfn: start pfn of the given pfn range
2939 * @end_pfn: end pfn of the given pfn range
2940 * Returns 0 on success, otherwise negated error.
2941 */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2942 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2943 {
2944 struct hstate *h;
2945 struct folio *folio;
2946 int ret = 0;
2947
2948 LIST_HEAD(isolate_list);
2949
2950 while (start_pfn < end_pfn) {
2951 folio = pfn_folio(start_pfn);
2952 if (folio_test_hugetlb(folio)) {
2953 h = folio_hstate(folio);
2954 } else {
2955 start_pfn++;
2956 continue;
2957 }
2958
2959 if (!folio_ref_count(folio)) {
2960 ret = alloc_and_dissolve_hugetlb_folio(h, folio,
2961 &isolate_list);
2962 if (ret)
2963 break;
2964
2965 putback_movable_pages(&isolate_list);
2966 }
2967 start_pfn++;
2968 }
2969
2970 return ret;
2971 }
2972
wait_for_freed_hugetlb_folios(void)2973 void wait_for_freed_hugetlb_folios(void)
2974 {
2975 if (llist_empty(&hpage_freelist))
2976 return;
2977
2978 flush_work(&free_hpage_work);
2979 }
2980
2981 typedef enum {
2982 /*
2983 * For either 0/1: we checked the per-vma resv map, and one resv
2984 * count either can be reused (0), or an extra needed (1).
2985 */
2986 MAP_CHG_REUSE = 0,
2987 MAP_CHG_NEEDED = 1,
2988 /*
2989 * Cannot use per-vma resv count can be used, hence a new resv
2990 * count is enforced.
2991 *
2992 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2993 * that currently vma_needs_reservation() has an unwanted side
2994 * effect to either use end() or commit() to complete the
2995 * transaction. Hence it needs to differenciate from NEEDED.
2996 */
2997 MAP_CHG_ENFORCED = 2,
2998 } map_chg_state;
2999
3000 /*
3001 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
3002 * faults of hugetlb private mappings on top of a non-page-cache folio (in
3003 * which case even if there's a private vma resv map it won't cover such
3004 * allocation). New call sites should (probably) never set it to true!!
3005 * When it's set, the allocation will bypass all vma level reservations.
3006 */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)3007 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3008 unsigned long addr, bool cow_from_owner)
3009 {
3010 struct hugepage_subpool *spool = subpool_vma(vma);
3011 struct hstate *h = hstate_vma(vma);
3012 struct folio *folio;
3013 long retval, gbl_chg;
3014 map_chg_state map_chg;
3015 int ret, idx;
3016 struct hugetlb_cgroup *h_cg = NULL;
3017 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
3018
3019 idx = hstate_index(h);
3020
3021 /* Whether we need a separate per-vma reservation? */
3022 if (cow_from_owner) {
3023 /*
3024 * Special case! Since it's a CoW on top of a reserved
3025 * page, the private resv map doesn't count. So it cannot
3026 * consume the per-vma resv map even if it's reserved.
3027 */
3028 map_chg = MAP_CHG_ENFORCED;
3029 } else {
3030 /*
3031 * Examine the region/reserve map to determine if the process
3032 * has a reservation for the page to be allocated. A return
3033 * code of zero indicates a reservation exists (no change).
3034 */
3035 retval = vma_needs_reservation(h, vma, addr);
3036 if (retval < 0)
3037 return ERR_PTR(-ENOMEM);
3038 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3039 }
3040
3041 /*
3042 * Whether we need a separate global reservation?
3043 *
3044 * Processes that did not create the mapping will have no
3045 * reserves as indicated by the region/reserve map. Check
3046 * that the allocation will not exceed the subpool limit.
3047 * Or if it can get one from the pool reservation directly.
3048 */
3049 if (map_chg) {
3050 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3051 if (gbl_chg < 0)
3052 goto out_end_reservation;
3053 } else {
3054 /*
3055 * If we have the vma reservation ready, no need for extra
3056 * global reservation.
3057 */
3058 gbl_chg = 0;
3059 }
3060
3061 /*
3062 * If this allocation is not consuming a per-vma reservation,
3063 * charge the hugetlb cgroup now.
3064 */
3065 if (map_chg) {
3066 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3067 idx, pages_per_huge_page(h), &h_cg);
3068 if (ret)
3069 goto out_subpool_put;
3070 }
3071
3072 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3073 if (ret)
3074 goto out_uncharge_cgroup_reservation;
3075
3076 spin_lock_irq(&hugetlb_lock);
3077 /*
3078 * glb_chg is passed to indicate whether or not a page must be taken
3079 * from the global free pool (global change). gbl_chg == 0 indicates
3080 * a reservation exists for the allocation.
3081 */
3082 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3083 if (!folio) {
3084 spin_unlock_irq(&hugetlb_lock);
3085 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3086 if (!folio)
3087 goto out_uncharge_cgroup;
3088 spin_lock_irq(&hugetlb_lock);
3089 list_add(&folio->lru, &h->hugepage_activelist);
3090 folio_ref_unfreeze(folio, 1);
3091 /* Fall through */
3092 }
3093
3094 /*
3095 * Either dequeued or buddy-allocated folio needs to add special
3096 * mark to the folio when it consumes a global reservation.
3097 */
3098 if (!gbl_chg) {
3099 folio_set_hugetlb_restore_reserve(folio);
3100 h->resv_huge_pages--;
3101 }
3102
3103 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3104 /* If allocation is not consuming a reservation, also store the
3105 * hugetlb_cgroup pointer on the page.
3106 */
3107 if (map_chg) {
3108 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3109 h_cg, folio);
3110 }
3111
3112 spin_unlock_irq(&hugetlb_lock);
3113
3114 hugetlb_set_folio_subpool(folio, spool);
3115
3116 if (map_chg != MAP_CHG_ENFORCED) {
3117 /* commit() is only needed if the map_chg is not enforced */
3118 retval = vma_commit_reservation(h, vma, addr);
3119 /*
3120 * Check for possible race conditions. When it happens..
3121 * The page was added to the reservation map between
3122 * vma_needs_reservation and vma_commit_reservation.
3123 * This indicates a race with hugetlb_reserve_pages.
3124 * Adjust for the subpool count incremented above AND
3125 * in hugetlb_reserve_pages for the same page. Also,
3126 * the reservation count added in hugetlb_reserve_pages
3127 * no longer applies.
3128 */
3129 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3130 long rsv_adjust;
3131
3132 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3133 hugetlb_acct_memory(h, -rsv_adjust);
3134 if (map_chg) {
3135 spin_lock_irq(&hugetlb_lock);
3136 hugetlb_cgroup_uncharge_folio_rsvd(
3137 hstate_index(h), pages_per_huge_page(h),
3138 folio);
3139 spin_unlock_irq(&hugetlb_lock);
3140 }
3141 }
3142 }
3143
3144 ret = mem_cgroup_charge_hugetlb(folio, gfp);
3145 /*
3146 * Unconditionally increment NR_HUGETLB here. If it turns out that
3147 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3148 * decrement NR_HUGETLB.
3149 */
3150 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3151
3152 if (ret == -ENOMEM) {
3153 free_huge_folio(folio);
3154 return ERR_PTR(-ENOMEM);
3155 }
3156
3157 return folio;
3158
3159 out_uncharge_cgroup:
3160 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3161 out_uncharge_cgroup_reservation:
3162 if (map_chg)
3163 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3164 h_cg);
3165 out_subpool_put:
3166 if (map_chg)
3167 hugepage_subpool_put_pages(spool, 1);
3168 out_end_reservation:
3169 if (map_chg != MAP_CHG_ENFORCED)
3170 vma_end_reservation(h, vma, addr);
3171 return ERR_PTR(-ENOSPC);
3172 }
3173
alloc_bootmem(struct hstate * h,int nid,bool node_exact)3174 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3175 {
3176 struct huge_bootmem_page *m;
3177 int listnode = nid;
3178
3179 if (hugetlb_early_cma(h))
3180 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3181 else {
3182 if (node_exact)
3183 m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3184 huge_page_size(h), 0,
3185 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3186 else {
3187 m = memblock_alloc_try_nid_raw(huge_page_size(h),
3188 huge_page_size(h), 0,
3189 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3190 /*
3191 * For pre-HVO to work correctly, pages need to be on
3192 * the list for the node they were actually allocated
3193 * from. That node may be different in the case of
3194 * fallback by memblock_alloc_try_nid_raw. So,
3195 * extract the actual node first.
3196 */
3197 if (m)
3198 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3199 }
3200
3201 if (m) {
3202 m->flags = 0;
3203 m->cma = NULL;
3204 }
3205 }
3206
3207 if (m) {
3208 /*
3209 * Use the beginning of the huge page to store the
3210 * huge_bootmem_page struct (until gather_bootmem
3211 * puts them into the mem_map).
3212 *
3213 * Put them into a private list first because mem_map
3214 * is not up yet.
3215 */
3216 INIT_LIST_HEAD(&m->list);
3217 list_add(&m->list, &huge_boot_pages[listnode]);
3218 m->hstate = h;
3219 }
3220
3221 return m;
3222 }
3223
3224 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3225 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3226 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3227 {
3228 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3229 int nr_nodes, node = nid;
3230
3231 /* do node specific alloc */
3232 if (nid != NUMA_NO_NODE) {
3233 m = alloc_bootmem(h, node, true);
3234 if (!m)
3235 return 0;
3236 goto found;
3237 }
3238
3239 /* allocate from next node when distributing huge pages */
3240 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_ONLINE]) {
3241 m = alloc_bootmem(h, node, false);
3242 if (!m)
3243 return 0;
3244 goto found;
3245 }
3246
3247 found:
3248
3249 /*
3250 * Only initialize the head struct page in memmap_init_reserved_pages,
3251 * rest of the struct pages will be initialized by the HugeTLB
3252 * subsystem itself.
3253 * The head struct page is used to get folio information by the HugeTLB
3254 * subsystem like zone id and node id.
3255 */
3256 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3257 huge_page_size(h) - PAGE_SIZE);
3258
3259 return 1;
3260 }
3261
3262 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3263 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3264 unsigned long start_page_number,
3265 unsigned long end_page_number)
3266 {
3267 enum zone_type zone = zone_idx(folio_zone(folio));
3268 int nid = folio_nid(folio);
3269 unsigned long head_pfn = folio_pfn(folio);
3270 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3271 int ret;
3272
3273 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3274 struct page *page = pfn_to_page(pfn);
3275
3276 __init_single_page(page, pfn, zone, nid);
3277 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3278 ret = page_ref_freeze(page, 1);
3279 VM_BUG_ON(!ret);
3280 }
3281 }
3282
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3283 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3284 struct hstate *h,
3285 unsigned long nr_pages)
3286 {
3287 int ret;
3288
3289 /* Prepare folio head */
3290 __folio_clear_reserved(folio);
3291 __folio_set_head(folio);
3292 ret = folio_ref_freeze(folio, 1);
3293 VM_BUG_ON(!ret);
3294 /* Initialize the necessary tail struct pages */
3295 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3296 prep_compound_head((struct page *)folio, huge_page_order(h));
3297 }
3298
hugetlb_bootmem_page_prehvo(struct huge_bootmem_page * m)3299 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3300 {
3301 return m->flags & HUGE_BOOTMEM_HVO;
3302 }
3303
hugetlb_bootmem_page_earlycma(struct huge_bootmem_page * m)3304 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3305 {
3306 return m->flags & HUGE_BOOTMEM_CMA;
3307 }
3308
3309 /*
3310 * memblock-allocated pageblocks might not have the migrate type set
3311 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3312 * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3313 * reservation.
3314 *
3315 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3316 * read-only, but that's ok - for sparse vmemmap this does not write to
3317 * the page structure.
3318 */
hugetlb_bootmem_init_migratetype(struct folio * folio,struct hstate * h)3319 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3320 struct hstate *h)
3321 {
3322 unsigned long nr_pages = pages_per_huge_page(h), i;
3323
3324 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3325
3326 for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3327 if (folio_test_hugetlb_cma(folio))
3328 init_cma_pageblock(folio_page(folio, i));
3329 else
3330 set_pageblock_migratetype(folio_page(folio, i),
3331 MIGRATE_MOVABLE);
3332 }
3333 }
3334
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3335 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3336 struct list_head *folio_list)
3337 {
3338 unsigned long flags;
3339 struct folio *folio, *tmp_f;
3340
3341 /* Send list for bulk vmemmap optimization processing */
3342 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3343
3344 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3345 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3346 /*
3347 * If HVO fails, initialize all tail struct pages
3348 * We do not worry about potential long lock hold
3349 * time as this is early in boot and there should
3350 * be no contention.
3351 */
3352 hugetlb_folio_init_tail_vmemmap(folio,
3353 HUGETLB_VMEMMAP_RESERVE_PAGES,
3354 pages_per_huge_page(h));
3355 }
3356 hugetlb_bootmem_init_migratetype(folio, h);
3357 /* Subdivide locks to achieve better parallel performance */
3358 spin_lock_irqsave(&hugetlb_lock, flags);
3359 __prep_account_new_huge_page(h, folio_nid(folio));
3360 enqueue_hugetlb_folio(h, folio);
3361 spin_unlock_irqrestore(&hugetlb_lock, flags);
3362 }
3363 }
3364
hugetlb_bootmem_page_zones_valid(int nid,struct huge_bootmem_page * m)3365 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3366 struct huge_bootmem_page *m)
3367 {
3368 unsigned long start_pfn;
3369 bool valid;
3370
3371 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3372 /*
3373 * Already validated, skip check.
3374 */
3375 return true;
3376 }
3377
3378 if (hugetlb_bootmem_page_earlycma(m)) {
3379 valid = cma_validate_zones(m->cma);
3380 goto out;
3381 }
3382
3383 start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3384
3385 valid = !pfn_range_intersects_zones(nid, start_pfn,
3386 pages_per_huge_page(m->hstate));
3387 out:
3388 if (!valid)
3389 hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3390
3391 return valid;
3392 }
3393
3394 /*
3395 * Free a bootmem page that was found to be invalid (intersecting with
3396 * multiple zones).
3397 *
3398 * Since it intersects with multiple zones, we can't just do a free
3399 * operation on all pages at once, but instead have to walk all
3400 * pages, freeing them one by one.
3401 */
hugetlb_bootmem_free_invalid_page(int nid,struct page * page,struct hstate * h)3402 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3403 struct hstate *h)
3404 {
3405 unsigned long npages = pages_per_huge_page(h);
3406 unsigned long pfn;
3407
3408 while (npages--) {
3409 pfn = page_to_pfn(page);
3410 __init_page_from_nid(pfn, nid);
3411 free_reserved_page(page);
3412 page++;
3413 }
3414 }
3415
3416 /*
3417 * Put bootmem huge pages into the standard lists after mem_map is up.
3418 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3419 */
gather_bootmem_prealloc_node(unsigned long nid)3420 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3421 {
3422 LIST_HEAD(folio_list);
3423 struct huge_bootmem_page *m, *tm;
3424 struct hstate *h = NULL, *prev_h = NULL;
3425
3426 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3427 struct page *page = virt_to_page(m);
3428 struct folio *folio = (void *)page;
3429
3430 h = m->hstate;
3431 if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3432 /*
3433 * Can't use this page. Initialize the
3434 * page structures if that hasn't already
3435 * been done, and give them to the page
3436 * allocator.
3437 */
3438 hugetlb_bootmem_free_invalid_page(nid, page, h);
3439 continue;
3440 }
3441
3442 /*
3443 * It is possible to have multiple huge page sizes (hstates)
3444 * in this list. If so, process each size separately.
3445 */
3446 if (h != prev_h && prev_h != NULL)
3447 prep_and_add_bootmem_folios(prev_h, &folio_list);
3448 prev_h = h;
3449
3450 VM_BUG_ON(!hstate_is_gigantic(h));
3451 WARN_ON(folio_ref_count(folio) != 1);
3452
3453 hugetlb_folio_init_vmemmap(folio, h,
3454 HUGETLB_VMEMMAP_RESERVE_PAGES);
3455 init_new_hugetlb_folio(h, folio);
3456
3457 if (hugetlb_bootmem_page_prehvo(m))
3458 /*
3459 * If pre-HVO was done, just set the
3460 * flag, the HVO code will then skip
3461 * this folio.
3462 */
3463 folio_set_hugetlb_vmemmap_optimized(folio);
3464
3465 if (hugetlb_bootmem_page_earlycma(m))
3466 folio_set_hugetlb_cma(folio);
3467
3468 list_add(&folio->lru, &folio_list);
3469
3470 /*
3471 * We need to restore the 'stolen' pages to totalram_pages
3472 * in order to fix confusing memory reports from free(1) and
3473 * other side-effects, like CommitLimit going negative.
3474 *
3475 * For CMA pages, this is done in init_cma_pageblock
3476 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3477 */
3478 if (!folio_test_hugetlb_cma(folio))
3479 adjust_managed_page_count(page, pages_per_huge_page(h));
3480 cond_resched();
3481 }
3482
3483 prep_and_add_bootmem_folios(h, &folio_list);
3484 }
3485
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3486 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3487 unsigned long end, void *arg)
3488 {
3489 int nid;
3490
3491 for (nid = start; nid < end; nid++)
3492 gather_bootmem_prealloc_node(nid);
3493 }
3494
gather_bootmem_prealloc(void)3495 static void __init gather_bootmem_prealloc(void)
3496 {
3497 struct padata_mt_job job = {
3498 .thread_fn = gather_bootmem_prealloc_parallel,
3499 .fn_arg = NULL,
3500 .start = 0,
3501 .size = nr_node_ids,
3502 .align = 1,
3503 .min_chunk = 1,
3504 .max_threads = num_node_state(N_MEMORY),
3505 .numa_aware = true,
3506 };
3507
3508 padata_do_multithreaded(&job);
3509 }
3510
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3511 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3512 {
3513 unsigned long i;
3514 char buf[32];
3515 LIST_HEAD(folio_list);
3516
3517 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3518 if (hstate_is_gigantic(h)) {
3519 if (!alloc_bootmem_huge_page(h, nid))
3520 break;
3521 } else {
3522 struct folio *folio;
3523 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3524
3525 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3526 &node_states[N_MEMORY], NULL);
3527 if (!folio)
3528 break;
3529 list_add(&folio->lru, &folio_list);
3530 }
3531 cond_resched();
3532 }
3533
3534 if (!list_empty(&folio_list))
3535 prep_and_add_allocated_folios(h, &folio_list);
3536
3537 if (i == h->max_huge_pages_node[nid])
3538 return;
3539
3540 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3541 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3542 h->max_huge_pages_node[nid], buf, nid, i);
3543 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3544 h->max_huge_pages_node[nid] = i;
3545 }
3546
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3547 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3548 {
3549 int i;
3550 bool node_specific_alloc = false;
3551
3552 for_each_online_node(i) {
3553 if (h->max_huge_pages_node[i] > 0) {
3554 hugetlb_hstate_alloc_pages_onenode(h, i);
3555 node_specific_alloc = true;
3556 }
3557 }
3558
3559 return node_specific_alloc;
3560 }
3561
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3562 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3563 {
3564 if (allocated < h->max_huge_pages) {
3565 char buf[32];
3566
3567 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3568 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3569 h->max_huge_pages, buf, allocated);
3570 h->max_huge_pages = allocated;
3571 }
3572 }
3573
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3574 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3575 {
3576 struct hstate *h = (struct hstate *)arg;
3577 int i, num = end - start;
3578 nodemask_t node_alloc_noretry;
3579 LIST_HEAD(folio_list);
3580 int next_node = first_online_node;
3581
3582 /* Bit mask controlling how hard we retry per-node allocations.*/
3583 nodes_clear(node_alloc_noretry);
3584
3585 for (i = 0; i < num; ++i) {
3586 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3587 &node_alloc_noretry, &next_node);
3588 if (!folio)
3589 break;
3590
3591 list_move(&folio->lru, &folio_list);
3592 cond_resched();
3593 }
3594
3595 prep_and_add_allocated_folios(h, &folio_list);
3596 }
3597
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3598 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3599 {
3600 unsigned long i;
3601
3602 for (i = 0; i < h->max_huge_pages; ++i) {
3603 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3604 break;
3605 cond_resched();
3606 }
3607
3608 return i;
3609 }
3610
hugetlb_pages_alloc_boot(struct hstate * h)3611 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3612 {
3613 struct padata_mt_job job = {
3614 .fn_arg = h,
3615 .align = 1,
3616 .numa_aware = true
3617 };
3618
3619 unsigned long jiffies_start;
3620 unsigned long jiffies_end;
3621
3622 job.thread_fn = hugetlb_pages_alloc_boot_node;
3623 job.start = 0;
3624 job.size = h->max_huge_pages;
3625
3626 /*
3627 * job.max_threads is 25% of the available cpu threads by default.
3628 *
3629 * On large servers with terabytes of memory, huge page allocation
3630 * can consume a considerably amount of time.
3631 *
3632 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3633 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3634 *
3635 * +-----------------------+-------+-------+-------+-------+-------+
3636 * | threads | 8 | 16 | 32 | 64 | 128 |
3637 * +-----------------------+-------+-------+-------+-------+-------+
3638 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
3639 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
3640 * +-----------------------+-------+-------+-------+-------+-------+
3641 */
3642 if (hugepage_allocation_threads == 0) {
3643 hugepage_allocation_threads = num_online_cpus() / 4;
3644 hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3645 }
3646
3647 job.max_threads = hugepage_allocation_threads;
3648 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads;
3649
3650 jiffies_start = jiffies;
3651 padata_do_multithreaded(&job);
3652 jiffies_end = jiffies;
3653
3654 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3655 jiffies_to_msecs(jiffies_end - jiffies_start),
3656 hugepage_allocation_threads);
3657
3658 return h->nr_huge_pages;
3659 }
3660
3661 /*
3662 * NOTE: this routine is called in different contexts for gigantic and
3663 * non-gigantic pages.
3664 * - For gigantic pages, this is called early in the boot process and
3665 * pages are allocated from memblock allocated or something similar.
3666 * Gigantic pages are actually added to pools later with the routine
3667 * gather_bootmem_prealloc.
3668 * - For non-gigantic pages, this is called later in the boot process after
3669 * all of mm is up and functional. Pages are allocated from buddy and
3670 * then added to hugetlb pools.
3671 */
hugetlb_hstate_alloc_pages(struct hstate * h)3672 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3673 {
3674 unsigned long allocated;
3675
3676 /*
3677 * Skip gigantic hugepages allocation if early CMA
3678 * reservations are not available.
3679 */
3680 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3681 !hugetlb_early_cma(h)) {
3682 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3683 return;
3684 }
3685
3686 /* do node specific alloc */
3687 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3688 return;
3689
3690 /* below will do all node balanced alloc */
3691 if (hstate_is_gigantic(h))
3692 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3693 else
3694 allocated = hugetlb_pages_alloc_boot(h);
3695
3696 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3697 }
3698
hugetlb_init_hstates(void)3699 static void __init hugetlb_init_hstates(void)
3700 {
3701 struct hstate *h, *h2;
3702
3703 for_each_hstate(h) {
3704 /* oversize hugepages were init'ed in early boot */
3705 if (!hstate_is_gigantic(h))
3706 hugetlb_hstate_alloc_pages(h);
3707
3708 /*
3709 * Set demote order for each hstate. Note that
3710 * h->demote_order is initially 0.
3711 * - We can not demote gigantic pages if runtime freeing
3712 * is not supported, so skip this.
3713 * - If CMA allocation is possible, we can not demote
3714 * HUGETLB_PAGE_ORDER or smaller size pages.
3715 */
3716 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3717 continue;
3718 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3719 continue;
3720 for_each_hstate(h2) {
3721 if (h2 == h)
3722 continue;
3723 if (h2->order < h->order &&
3724 h2->order > h->demote_order)
3725 h->demote_order = h2->order;
3726 }
3727 }
3728 }
3729
report_hugepages(void)3730 static void __init report_hugepages(void)
3731 {
3732 struct hstate *h;
3733 unsigned long nrinvalid;
3734
3735 for_each_hstate(h) {
3736 char buf[32];
3737
3738 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3739 h->max_huge_pages -= nrinvalid;
3740
3741 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3742 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3743 buf, h->free_huge_pages);
3744 if (nrinvalid)
3745 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3746 buf, nrinvalid, nrinvalid > 1 ? "s" : "");
3747 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3748 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3749 }
3750 }
3751
3752 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3753 static void try_to_free_low(struct hstate *h, unsigned long count,
3754 nodemask_t *nodes_allowed)
3755 {
3756 int i;
3757 LIST_HEAD(page_list);
3758
3759 lockdep_assert_held(&hugetlb_lock);
3760 if (hstate_is_gigantic(h))
3761 return;
3762
3763 /*
3764 * Collect pages to be freed on a list, and free after dropping lock
3765 */
3766 for_each_node_mask(i, *nodes_allowed) {
3767 struct folio *folio, *next;
3768 struct list_head *freel = &h->hugepage_freelists[i];
3769 list_for_each_entry_safe(folio, next, freel, lru) {
3770 if (count >= h->nr_huge_pages)
3771 goto out;
3772 if (folio_test_highmem(folio))
3773 continue;
3774 remove_hugetlb_folio(h, folio, false);
3775 list_add(&folio->lru, &page_list);
3776 }
3777 }
3778
3779 out:
3780 spin_unlock_irq(&hugetlb_lock);
3781 update_and_free_pages_bulk(h, &page_list);
3782 spin_lock_irq(&hugetlb_lock);
3783 }
3784 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3785 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3786 nodemask_t *nodes_allowed)
3787 {
3788 }
3789 #endif
3790
3791 /*
3792 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3793 * balanced by operating on them in a round-robin fashion.
3794 * Returns 1 if an adjustment was made.
3795 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3796 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3797 int delta)
3798 {
3799 int nr_nodes, node;
3800
3801 lockdep_assert_held(&hugetlb_lock);
3802 VM_BUG_ON(delta != -1 && delta != 1);
3803
3804 if (delta < 0) {
3805 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3806 if (h->surplus_huge_pages_node[node])
3807 goto found;
3808 }
3809 } else {
3810 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3811 if (h->surplus_huge_pages_node[node] <
3812 h->nr_huge_pages_node[node])
3813 goto found;
3814 }
3815 }
3816 return 0;
3817
3818 found:
3819 h->surplus_huge_pages += delta;
3820 h->surplus_huge_pages_node[node] += delta;
3821 return 1;
3822 }
3823
3824 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3825 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3826 nodemask_t *nodes_allowed)
3827 {
3828 unsigned long min_count;
3829 unsigned long allocated;
3830 struct folio *folio;
3831 LIST_HEAD(page_list);
3832 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3833
3834 /*
3835 * Bit mask controlling how hard we retry per-node allocations.
3836 * If we can not allocate the bit mask, do not attempt to allocate
3837 * the requested huge pages.
3838 */
3839 if (node_alloc_noretry)
3840 nodes_clear(*node_alloc_noretry);
3841 else
3842 return -ENOMEM;
3843
3844 /*
3845 * resize_lock mutex prevents concurrent adjustments to number of
3846 * pages in hstate via the proc/sysfs interfaces.
3847 */
3848 mutex_lock(&h->resize_lock);
3849 flush_free_hpage_work(h);
3850 spin_lock_irq(&hugetlb_lock);
3851
3852 /*
3853 * Check for a node specific request.
3854 * Changing node specific huge page count may require a corresponding
3855 * change to the global count. In any case, the passed node mask
3856 * (nodes_allowed) will restrict alloc/free to the specified node.
3857 */
3858 if (nid != NUMA_NO_NODE) {
3859 unsigned long old_count = count;
3860
3861 count += persistent_huge_pages(h) -
3862 (h->nr_huge_pages_node[nid] -
3863 h->surplus_huge_pages_node[nid]);
3864 /*
3865 * User may have specified a large count value which caused the
3866 * above calculation to overflow. In this case, they wanted
3867 * to allocate as many huge pages as possible. Set count to
3868 * largest possible value to align with their intention.
3869 */
3870 if (count < old_count)
3871 count = ULONG_MAX;
3872 }
3873
3874 /*
3875 * Gigantic pages runtime allocation depend on the capability for large
3876 * page range allocation.
3877 * If the system does not provide this feature, return an error when
3878 * the user tries to allocate gigantic pages but let the user free the
3879 * boottime allocated gigantic pages.
3880 */
3881 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3882 if (count > persistent_huge_pages(h)) {
3883 spin_unlock_irq(&hugetlb_lock);
3884 mutex_unlock(&h->resize_lock);
3885 NODEMASK_FREE(node_alloc_noretry);
3886 return -EINVAL;
3887 }
3888 /* Fall through to decrease pool */
3889 }
3890
3891 /*
3892 * Increase the pool size
3893 * First take pages out of surplus state. Then make up the
3894 * remaining difference by allocating fresh huge pages.
3895 *
3896 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3897 * to convert a surplus huge page to a normal huge page. That is
3898 * not critical, though, it just means the overall size of the
3899 * pool might be one hugepage larger than it needs to be, but
3900 * within all the constraints specified by the sysctls.
3901 */
3902 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3903 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3904 break;
3905 }
3906
3907 allocated = 0;
3908 while (count > (persistent_huge_pages(h) + allocated)) {
3909 /*
3910 * If this allocation races such that we no longer need the
3911 * page, free_huge_folio will handle it by freeing the page
3912 * and reducing the surplus.
3913 */
3914 spin_unlock_irq(&hugetlb_lock);
3915
3916 /* yield cpu to avoid soft lockup */
3917 cond_resched();
3918
3919 folio = alloc_pool_huge_folio(h, nodes_allowed,
3920 node_alloc_noretry,
3921 &h->next_nid_to_alloc);
3922 if (!folio) {
3923 prep_and_add_allocated_folios(h, &page_list);
3924 spin_lock_irq(&hugetlb_lock);
3925 goto out;
3926 }
3927
3928 list_add(&folio->lru, &page_list);
3929 allocated++;
3930
3931 /* Bail for signals. Probably ctrl-c from user */
3932 if (signal_pending(current)) {
3933 prep_and_add_allocated_folios(h, &page_list);
3934 spin_lock_irq(&hugetlb_lock);
3935 goto out;
3936 }
3937
3938 spin_lock_irq(&hugetlb_lock);
3939 }
3940
3941 /* Add allocated pages to the pool */
3942 if (!list_empty(&page_list)) {
3943 spin_unlock_irq(&hugetlb_lock);
3944 prep_and_add_allocated_folios(h, &page_list);
3945 spin_lock_irq(&hugetlb_lock);
3946 }
3947
3948 /*
3949 * Decrease the pool size
3950 * First return free pages to the buddy allocator (being careful
3951 * to keep enough around to satisfy reservations). Then place
3952 * pages into surplus state as needed so the pool will shrink
3953 * to the desired size as pages become free.
3954 *
3955 * By placing pages into the surplus state independent of the
3956 * overcommit value, we are allowing the surplus pool size to
3957 * exceed overcommit. There are few sane options here. Since
3958 * alloc_surplus_hugetlb_folio() is checking the global counter,
3959 * though, we'll note that we're not allowed to exceed surplus
3960 * and won't grow the pool anywhere else. Not until one of the
3961 * sysctls are changed, or the surplus pages go out of use.
3962 */
3963 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3964 min_count = max(count, min_count);
3965 try_to_free_low(h, min_count, nodes_allowed);
3966
3967 /*
3968 * Collect pages to be removed on list without dropping lock
3969 */
3970 while (min_count < persistent_huge_pages(h)) {
3971 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3972 if (!folio)
3973 break;
3974
3975 list_add(&folio->lru, &page_list);
3976 }
3977 /* free the pages after dropping lock */
3978 spin_unlock_irq(&hugetlb_lock);
3979 update_and_free_pages_bulk(h, &page_list);
3980 flush_free_hpage_work(h);
3981 spin_lock_irq(&hugetlb_lock);
3982
3983 while (count < persistent_huge_pages(h)) {
3984 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3985 break;
3986 }
3987 out:
3988 h->max_huge_pages = persistent_huge_pages(h);
3989 spin_unlock_irq(&hugetlb_lock);
3990 mutex_unlock(&h->resize_lock);
3991
3992 NODEMASK_FREE(node_alloc_noretry);
3993
3994 return 0;
3995 }
3996
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3997 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3998 struct list_head *src_list)
3999 {
4000 long rc;
4001 struct folio *folio, *next;
4002 LIST_HEAD(dst_list);
4003 LIST_HEAD(ret_list);
4004
4005 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
4006 list_splice_init(&ret_list, src_list);
4007
4008 /*
4009 * Taking target hstate mutex synchronizes with set_max_huge_pages.
4010 * Without the mutex, pages added to target hstate could be marked
4011 * as surplus.
4012 *
4013 * Note that we already hold src->resize_lock. To prevent deadlock,
4014 * use the convention of always taking larger size hstate mutex first.
4015 */
4016 mutex_lock(&dst->resize_lock);
4017
4018 list_for_each_entry_safe(folio, next, src_list, lru) {
4019 int i;
4020
4021 if (folio_test_hugetlb_vmemmap_optimized(folio))
4022 continue;
4023
4024 list_del(&folio->lru);
4025
4026 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4027 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4028
4029 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4030 struct page *page = folio_page(folio, i);
4031 /* Careful: see __split_huge_page_tail() */
4032 struct folio *new_folio = (struct folio *)page;
4033
4034 clear_compound_head(page);
4035 prep_compound_page(page, dst->order);
4036
4037 new_folio->mapping = NULL;
4038 init_new_hugetlb_folio(dst, new_folio);
4039 list_add(&new_folio->lru, &dst_list);
4040 }
4041 }
4042
4043 prep_and_add_allocated_folios(dst, &dst_list);
4044
4045 mutex_unlock(&dst->resize_lock);
4046
4047 return rc;
4048 }
4049
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)4050 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4051 unsigned long nr_to_demote)
4052 __must_hold(&hugetlb_lock)
4053 {
4054 int nr_nodes, node;
4055 struct hstate *dst;
4056 long rc = 0;
4057 long nr_demoted = 0;
4058
4059 lockdep_assert_held(&hugetlb_lock);
4060
4061 /* We should never get here if no demote order */
4062 if (!src->demote_order) {
4063 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4064 return -EINVAL; /* internal error */
4065 }
4066 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4067
4068 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4069 LIST_HEAD(list);
4070 struct folio *folio, *next;
4071
4072 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4073 if (folio_test_hwpoison(folio))
4074 continue;
4075
4076 remove_hugetlb_folio(src, folio, false);
4077 list_add(&folio->lru, &list);
4078
4079 if (++nr_demoted == nr_to_demote)
4080 break;
4081 }
4082
4083 spin_unlock_irq(&hugetlb_lock);
4084
4085 rc = demote_free_hugetlb_folios(src, dst, &list);
4086
4087 spin_lock_irq(&hugetlb_lock);
4088
4089 list_for_each_entry_safe(folio, next, &list, lru) {
4090 list_del(&folio->lru);
4091 add_hugetlb_folio(src, folio, false);
4092
4093 nr_demoted--;
4094 }
4095
4096 if (rc < 0 || nr_demoted == nr_to_demote)
4097 break;
4098 }
4099
4100 /*
4101 * Not absolutely necessary, but for consistency update max_huge_pages
4102 * based on pool changes for the demoted page.
4103 */
4104 src->max_huge_pages -= nr_demoted;
4105 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4106
4107 if (rc < 0)
4108 return rc;
4109
4110 if (nr_demoted)
4111 return nr_demoted;
4112 /*
4113 * Only way to get here is if all pages on free lists are poisoned.
4114 * Return -EBUSY so that caller will not retry.
4115 */
4116 return -EBUSY;
4117 }
4118
4119 #define HSTATE_ATTR_RO(_name) \
4120 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4121
4122 #define HSTATE_ATTR_WO(_name) \
4123 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4124
4125 #define HSTATE_ATTR(_name) \
4126 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4127
4128 static struct kobject *hugepages_kobj;
4129 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4130
4131 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4132
kobj_to_hstate(struct kobject * kobj,int * nidp)4133 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4134 {
4135 int i;
4136
4137 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4138 if (hstate_kobjs[i] == kobj) {
4139 if (nidp)
4140 *nidp = NUMA_NO_NODE;
4141 return &hstates[i];
4142 }
4143
4144 return kobj_to_node_hstate(kobj, nidp);
4145 }
4146
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4147 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4148 struct kobj_attribute *attr, char *buf)
4149 {
4150 struct hstate *h;
4151 unsigned long nr_huge_pages;
4152 int nid;
4153
4154 h = kobj_to_hstate(kobj, &nid);
4155 if (nid == NUMA_NO_NODE)
4156 nr_huge_pages = h->nr_huge_pages;
4157 else
4158 nr_huge_pages = h->nr_huge_pages_node[nid];
4159
4160 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4161 }
4162
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4163 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4164 struct hstate *h, int nid,
4165 unsigned long count, size_t len)
4166 {
4167 int err;
4168 nodemask_t nodes_allowed, *n_mask;
4169
4170 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4171 return -EINVAL;
4172
4173 if (nid == NUMA_NO_NODE) {
4174 /*
4175 * global hstate attribute
4176 */
4177 if (!(obey_mempolicy &&
4178 init_nodemask_of_mempolicy(&nodes_allowed)))
4179 n_mask = &node_states[N_MEMORY];
4180 else
4181 n_mask = &nodes_allowed;
4182 } else {
4183 /*
4184 * Node specific request. count adjustment happens in
4185 * set_max_huge_pages() after acquiring hugetlb_lock.
4186 */
4187 init_nodemask_of_node(&nodes_allowed, nid);
4188 n_mask = &nodes_allowed;
4189 }
4190
4191 err = set_max_huge_pages(h, count, nid, n_mask);
4192
4193 return err ? err : len;
4194 }
4195
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4196 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4197 struct kobject *kobj, const char *buf,
4198 size_t len)
4199 {
4200 struct hstate *h;
4201 unsigned long count;
4202 int nid;
4203 int err;
4204
4205 err = kstrtoul(buf, 10, &count);
4206 if (err)
4207 return err;
4208
4209 h = kobj_to_hstate(kobj, &nid);
4210 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4211 }
4212
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4213 static ssize_t nr_hugepages_show(struct kobject *kobj,
4214 struct kobj_attribute *attr, char *buf)
4215 {
4216 return nr_hugepages_show_common(kobj, attr, buf);
4217 }
4218
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4219 static ssize_t nr_hugepages_store(struct kobject *kobj,
4220 struct kobj_attribute *attr, const char *buf, size_t len)
4221 {
4222 return nr_hugepages_store_common(false, kobj, buf, len);
4223 }
4224 HSTATE_ATTR(nr_hugepages);
4225
4226 #ifdef CONFIG_NUMA
4227
4228 /*
4229 * hstate attribute for optionally mempolicy-based constraint on persistent
4230 * huge page alloc/free.
4231 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4232 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4233 struct kobj_attribute *attr,
4234 char *buf)
4235 {
4236 return nr_hugepages_show_common(kobj, attr, buf);
4237 }
4238
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4239 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4240 struct kobj_attribute *attr, const char *buf, size_t len)
4241 {
4242 return nr_hugepages_store_common(true, kobj, buf, len);
4243 }
4244 HSTATE_ATTR(nr_hugepages_mempolicy);
4245 #endif
4246
4247
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4248 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4249 struct kobj_attribute *attr, char *buf)
4250 {
4251 struct hstate *h = kobj_to_hstate(kobj, NULL);
4252 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4253 }
4254
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4255 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4256 struct kobj_attribute *attr, const char *buf, size_t count)
4257 {
4258 int err;
4259 unsigned long input;
4260 struct hstate *h = kobj_to_hstate(kobj, NULL);
4261
4262 if (hstate_is_gigantic(h))
4263 return -EINVAL;
4264
4265 err = kstrtoul(buf, 10, &input);
4266 if (err)
4267 return err;
4268
4269 spin_lock_irq(&hugetlb_lock);
4270 h->nr_overcommit_huge_pages = input;
4271 spin_unlock_irq(&hugetlb_lock);
4272
4273 return count;
4274 }
4275 HSTATE_ATTR(nr_overcommit_hugepages);
4276
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4277 static ssize_t free_hugepages_show(struct kobject *kobj,
4278 struct kobj_attribute *attr, char *buf)
4279 {
4280 struct hstate *h;
4281 unsigned long free_huge_pages;
4282 int nid;
4283
4284 h = kobj_to_hstate(kobj, &nid);
4285 if (nid == NUMA_NO_NODE)
4286 free_huge_pages = h->free_huge_pages;
4287 else
4288 free_huge_pages = h->free_huge_pages_node[nid];
4289
4290 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4291 }
4292 HSTATE_ATTR_RO(free_hugepages);
4293
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4294 static ssize_t resv_hugepages_show(struct kobject *kobj,
4295 struct kobj_attribute *attr, char *buf)
4296 {
4297 struct hstate *h = kobj_to_hstate(kobj, NULL);
4298 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4299 }
4300 HSTATE_ATTR_RO(resv_hugepages);
4301
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4302 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4303 struct kobj_attribute *attr, char *buf)
4304 {
4305 struct hstate *h;
4306 unsigned long surplus_huge_pages;
4307 int nid;
4308
4309 h = kobj_to_hstate(kobj, &nid);
4310 if (nid == NUMA_NO_NODE)
4311 surplus_huge_pages = h->surplus_huge_pages;
4312 else
4313 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4314
4315 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4316 }
4317 HSTATE_ATTR_RO(surplus_hugepages);
4318
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4319 static ssize_t demote_store(struct kobject *kobj,
4320 struct kobj_attribute *attr, const char *buf, size_t len)
4321 {
4322 unsigned long nr_demote;
4323 unsigned long nr_available;
4324 nodemask_t nodes_allowed, *n_mask;
4325 struct hstate *h;
4326 int err;
4327 int nid;
4328
4329 err = kstrtoul(buf, 10, &nr_demote);
4330 if (err)
4331 return err;
4332 h = kobj_to_hstate(kobj, &nid);
4333
4334 if (nid != NUMA_NO_NODE) {
4335 init_nodemask_of_node(&nodes_allowed, nid);
4336 n_mask = &nodes_allowed;
4337 } else {
4338 n_mask = &node_states[N_MEMORY];
4339 }
4340
4341 /* Synchronize with other sysfs operations modifying huge pages */
4342 mutex_lock(&h->resize_lock);
4343 spin_lock_irq(&hugetlb_lock);
4344
4345 while (nr_demote) {
4346 long rc;
4347
4348 /*
4349 * Check for available pages to demote each time thorough the
4350 * loop as demote_pool_huge_page will drop hugetlb_lock.
4351 */
4352 if (nid != NUMA_NO_NODE)
4353 nr_available = h->free_huge_pages_node[nid];
4354 else
4355 nr_available = h->free_huge_pages;
4356 nr_available -= h->resv_huge_pages;
4357 if (!nr_available)
4358 break;
4359
4360 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4361 if (rc < 0) {
4362 err = rc;
4363 break;
4364 }
4365
4366 nr_demote -= rc;
4367 }
4368
4369 spin_unlock_irq(&hugetlb_lock);
4370 mutex_unlock(&h->resize_lock);
4371
4372 if (err)
4373 return err;
4374 return len;
4375 }
4376 HSTATE_ATTR_WO(demote);
4377
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4378 static ssize_t demote_size_show(struct kobject *kobj,
4379 struct kobj_attribute *attr, char *buf)
4380 {
4381 struct hstate *h = kobj_to_hstate(kobj, NULL);
4382 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4383
4384 return sysfs_emit(buf, "%lukB\n", demote_size);
4385 }
4386
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4387 static ssize_t demote_size_store(struct kobject *kobj,
4388 struct kobj_attribute *attr,
4389 const char *buf, size_t count)
4390 {
4391 struct hstate *h, *demote_hstate;
4392 unsigned long demote_size;
4393 unsigned int demote_order;
4394
4395 demote_size = (unsigned long)memparse(buf, NULL);
4396
4397 demote_hstate = size_to_hstate(demote_size);
4398 if (!demote_hstate)
4399 return -EINVAL;
4400 demote_order = demote_hstate->order;
4401 if (demote_order < HUGETLB_PAGE_ORDER)
4402 return -EINVAL;
4403
4404 /* demote order must be smaller than hstate order */
4405 h = kobj_to_hstate(kobj, NULL);
4406 if (demote_order >= h->order)
4407 return -EINVAL;
4408
4409 /* resize_lock synchronizes access to demote size and writes */
4410 mutex_lock(&h->resize_lock);
4411 h->demote_order = demote_order;
4412 mutex_unlock(&h->resize_lock);
4413
4414 return count;
4415 }
4416 HSTATE_ATTR(demote_size);
4417
4418 static struct attribute *hstate_attrs[] = {
4419 &nr_hugepages_attr.attr,
4420 &nr_overcommit_hugepages_attr.attr,
4421 &free_hugepages_attr.attr,
4422 &resv_hugepages_attr.attr,
4423 &surplus_hugepages_attr.attr,
4424 #ifdef CONFIG_NUMA
4425 &nr_hugepages_mempolicy_attr.attr,
4426 #endif
4427 NULL,
4428 };
4429
4430 static const struct attribute_group hstate_attr_group = {
4431 .attrs = hstate_attrs,
4432 };
4433
4434 static struct attribute *hstate_demote_attrs[] = {
4435 &demote_size_attr.attr,
4436 &demote_attr.attr,
4437 NULL,
4438 };
4439
4440 static const struct attribute_group hstate_demote_attr_group = {
4441 .attrs = hstate_demote_attrs,
4442 };
4443
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4444 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4445 struct kobject **hstate_kobjs,
4446 const struct attribute_group *hstate_attr_group)
4447 {
4448 int retval;
4449 int hi = hstate_index(h);
4450
4451 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4452 if (!hstate_kobjs[hi])
4453 return -ENOMEM;
4454
4455 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4456 if (retval) {
4457 kobject_put(hstate_kobjs[hi]);
4458 hstate_kobjs[hi] = NULL;
4459 return retval;
4460 }
4461
4462 if (h->demote_order) {
4463 retval = sysfs_create_group(hstate_kobjs[hi],
4464 &hstate_demote_attr_group);
4465 if (retval) {
4466 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4467 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4468 kobject_put(hstate_kobjs[hi]);
4469 hstate_kobjs[hi] = NULL;
4470 return retval;
4471 }
4472 }
4473
4474 return 0;
4475 }
4476
4477 #ifdef CONFIG_NUMA
4478 static bool hugetlb_sysfs_initialized __ro_after_init;
4479
4480 /*
4481 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4482 * with node devices in node_devices[] using a parallel array. The array
4483 * index of a node device or _hstate == node id.
4484 * This is here to avoid any static dependency of the node device driver, in
4485 * the base kernel, on the hugetlb module.
4486 */
4487 struct node_hstate {
4488 struct kobject *hugepages_kobj;
4489 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4490 };
4491 static struct node_hstate node_hstates[MAX_NUMNODES];
4492
4493 /*
4494 * A subset of global hstate attributes for node devices
4495 */
4496 static struct attribute *per_node_hstate_attrs[] = {
4497 &nr_hugepages_attr.attr,
4498 &free_hugepages_attr.attr,
4499 &surplus_hugepages_attr.attr,
4500 NULL,
4501 };
4502
4503 static const struct attribute_group per_node_hstate_attr_group = {
4504 .attrs = per_node_hstate_attrs,
4505 };
4506
4507 /*
4508 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4509 * Returns node id via non-NULL nidp.
4510 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4511 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4512 {
4513 int nid;
4514
4515 for (nid = 0; nid < nr_node_ids; nid++) {
4516 struct node_hstate *nhs = &node_hstates[nid];
4517 int i;
4518 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4519 if (nhs->hstate_kobjs[i] == kobj) {
4520 if (nidp)
4521 *nidp = nid;
4522 return &hstates[i];
4523 }
4524 }
4525
4526 BUG();
4527 return NULL;
4528 }
4529
4530 /*
4531 * Unregister hstate attributes from a single node device.
4532 * No-op if no hstate attributes attached.
4533 */
hugetlb_unregister_node(struct node * node)4534 void hugetlb_unregister_node(struct node *node)
4535 {
4536 struct hstate *h;
4537 struct node_hstate *nhs = &node_hstates[node->dev.id];
4538
4539 if (!nhs->hugepages_kobj)
4540 return; /* no hstate attributes */
4541
4542 for_each_hstate(h) {
4543 int idx = hstate_index(h);
4544 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4545
4546 if (!hstate_kobj)
4547 continue;
4548 if (h->demote_order)
4549 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4550 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4551 kobject_put(hstate_kobj);
4552 nhs->hstate_kobjs[idx] = NULL;
4553 }
4554
4555 kobject_put(nhs->hugepages_kobj);
4556 nhs->hugepages_kobj = NULL;
4557 }
4558
4559
4560 /*
4561 * Register hstate attributes for a single node device.
4562 * No-op if attributes already registered.
4563 */
hugetlb_register_node(struct node * node)4564 void hugetlb_register_node(struct node *node)
4565 {
4566 struct hstate *h;
4567 struct node_hstate *nhs = &node_hstates[node->dev.id];
4568 int err;
4569
4570 if (!hugetlb_sysfs_initialized)
4571 return;
4572
4573 if (nhs->hugepages_kobj)
4574 return; /* already allocated */
4575
4576 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4577 &node->dev.kobj);
4578 if (!nhs->hugepages_kobj)
4579 return;
4580
4581 for_each_hstate(h) {
4582 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4583 nhs->hstate_kobjs,
4584 &per_node_hstate_attr_group);
4585 if (err) {
4586 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4587 h->name, node->dev.id);
4588 hugetlb_unregister_node(node);
4589 break;
4590 }
4591 }
4592 }
4593
4594 /*
4595 * hugetlb init time: register hstate attributes for all registered node
4596 * devices of nodes that have memory. All on-line nodes should have
4597 * registered their associated device by this time.
4598 */
hugetlb_register_all_nodes(void)4599 static void __init hugetlb_register_all_nodes(void)
4600 {
4601 int nid;
4602
4603 for_each_online_node(nid)
4604 hugetlb_register_node(node_devices[nid]);
4605 }
4606 #else /* !CONFIG_NUMA */
4607
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4608 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4609 {
4610 BUG();
4611 if (nidp)
4612 *nidp = -1;
4613 return NULL;
4614 }
4615
hugetlb_register_all_nodes(void)4616 static void hugetlb_register_all_nodes(void) { }
4617
4618 #endif
4619
hugetlb_sysfs_init(void)4620 static void __init hugetlb_sysfs_init(void)
4621 {
4622 struct hstate *h;
4623 int err;
4624
4625 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4626 if (!hugepages_kobj)
4627 return;
4628
4629 for_each_hstate(h) {
4630 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4631 hstate_kobjs, &hstate_attr_group);
4632 if (err)
4633 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4634 }
4635
4636 #ifdef CONFIG_NUMA
4637 hugetlb_sysfs_initialized = true;
4638 #endif
4639 hugetlb_register_all_nodes();
4640 }
4641
4642 #ifdef CONFIG_SYSCTL
4643 static void hugetlb_sysctl_init(void);
4644 #else
hugetlb_sysctl_init(void)4645 static inline void hugetlb_sysctl_init(void) { }
4646 #endif
4647
hugetlb_init(void)4648 static int __init hugetlb_init(void)
4649 {
4650 int i;
4651
4652 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4653 __NR_HPAGEFLAGS);
4654
4655 if (!hugepages_supported()) {
4656 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4657 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4658 return 0;
4659 }
4660
4661 /*
4662 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4663 * architectures depend on setup being done here.
4664 */
4665 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4666 if (!parsed_default_hugepagesz) {
4667 /*
4668 * If we did not parse a default huge page size, set
4669 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4670 * number of huge pages for this default size was implicitly
4671 * specified, set that here as well.
4672 * Note that the implicit setting will overwrite an explicit
4673 * setting. A warning will be printed in this case.
4674 */
4675 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4676 if (default_hstate_max_huge_pages) {
4677 if (default_hstate.max_huge_pages) {
4678 char buf[32];
4679
4680 string_get_size(huge_page_size(&default_hstate),
4681 1, STRING_UNITS_2, buf, 32);
4682 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4683 default_hstate.max_huge_pages, buf);
4684 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4685 default_hstate_max_huge_pages);
4686 }
4687 default_hstate.max_huge_pages =
4688 default_hstate_max_huge_pages;
4689
4690 for_each_online_node(i)
4691 default_hstate.max_huge_pages_node[i] =
4692 default_hugepages_in_node[i];
4693 }
4694 }
4695
4696 hugetlb_cma_check();
4697 hugetlb_init_hstates();
4698 gather_bootmem_prealloc();
4699 report_hugepages();
4700
4701 hugetlb_sysfs_init();
4702 hugetlb_cgroup_file_init();
4703 hugetlb_sysctl_init();
4704
4705 #ifdef CONFIG_SMP
4706 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4707 #else
4708 num_fault_mutexes = 1;
4709 #endif
4710 hugetlb_fault_mutex_table =
4711 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4712 GFP_KERNEL);
4713 BUG_ON(!hugetlb_fault_mutex_table);
4714
4715 for (i = 0; i < num_fault_mutexes; i++)
4716 mutex_init(&hugetlb_fault_mutex_table[i]);
4717 return 0;
4718 }
4719 subsys_initcall(hugetlb_init);
4720
4721 /* Overwritten by architectures with more huge page sizes */
__init(weak)4722 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4723 {
4724 return size == HPAGE_SIZE;
4725 }
4726
hugetlb_add_hstate(unsigned int order)4727 void __init hugetlb_add_hstate(unsigned int order)
4728 {
4729 struct hstate *h;
4730 unsigned long i;
4731
4732 if (size_to_hstate(PAGE_SIZE << order)) {
4733 return;
4734 }
4735 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4736 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4737 h = &hstates[hugetlb_max_hstate++];
4738 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4739 h->order = order;
4740 h->mask = ~(huge_page_size(h) - 1);
4741 for (i = 0; i < MAX_NUMNODES; ++i)
4742 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4743 INIT_LIST_HEAD(&h->hugepage_activelist);
4744 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4745 huge_page_size(h)/SZ_1K);
4746
4747 parsed_hstate = h;
4748 }
4749
hugetlb_node_alloc_supported(void)4750 bool __init __weak hugetlb_node_alloc_supported(void)
4751 {
4752 return true;
4753 }
4754
hugepages_clear_pages_in_node(void)4755 static void __init hugepages_clear_pages_in_node(void)
4756 {
4757 if (!hugetlb_max_hstate) {
4758 default_hstate_max_huge_pages = 0;
4759 memset(default_hugepages_in_node, 0,
4760 sizeof(default_hugepages_in_node));
4761 } else {
4762 parsed_hstate->max_huge_pages = 0;
4763 memset(parsed_hstate->max_huge_pages_node, 0,
4764 sizeof(parsed_hstate->max_huge_pages_node));
4765 }
4766 }
4767
hugetlb_add_param(char * s,int (* setup)(char *))4768 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4769 {
4770 size_t len;
4771 char *p;
4772
4773 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4774 return -EINVAL;
4775
4776 len = strlen(s) + 1;
4777 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4778 return -EINVAL;
4779
4780 p = &hstate_cmdline_buf[hstate_cmdline_index];
4781 memcpy(p, s, len);
4782 hstate_cmdline_index += len;
4783
4784 hugetlb_params[hugetlb_param_index].val = p;
4785 hugetlb_params[hugetlb_param_index].setup = setup;
4786
4787 hugetlb_param_index++;
4788
4789 return 0;
4790 }
4791
hugetlb_parse_params(void)4792 static __init void hugetlb_parse_params(void)
4793 {
4794 int i;
4795 struct hugetlb_cmdline *hcp;
4796
4797 for (i = 0; i < hugetlb_param_index; i++) {
4798 hcp = &hugetlb_params[i];
4799
4800 hcp->setup(hcp->val);
4801 }
4802
4803 hugetlb_cma_validate_params();
4804 }
4805
4806 /*
4807 * hugepages command line processing
4808 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4809 * specification. If not, ignore the hugepages value. hugepages can also
4810 * be the first huge page command line option in which case it implicitly
4811 * specifies the number of huge pages for the default size.
4812 */
hugepages_setup(char * s)4813 static int __init hugepages_setup(char *s)
4814 {
4815 unsigned long *mhp;
4816 static unsigned long *last_mhp;
4817 int node = NUMA_NO_NODE;
4818 int count;
4819 unsigned long tmp;
4820 char *p = s;
4821
4822 if (!parsed_valid_hugepagesz) {
4823 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4824 parsed_valid_hugepagesz = true;
4825 return -EINVAL;
4826 }
4827
4828 /*
4829 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4830 * yet, so this hugepages= parameter goes to the "default hstate".
4831 * Otherwise, it goes with the previously parsed hugepagesz or
4832 * default_hugepagesz.
4833 */
4834 else if (!hugetlb_max_hstate)
4835 mhp = &default_hstate_max_huge_pages;
4836 else
4837 mhp = &parsed_hstate->max_huge_pages;
4838
4839 if (mhp == last_mhp) {
4840 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4841 return 1;
4842 }
4843
4844 while (*p) {
4845 count = 0;
4846 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4847 goto invalid;
4848 /* Parameter is node format */
4849 if (p[count] == ':') {
4850 if (!hugetlb_node_alloc_supported()) {
4851 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4852 return 1;
4853 }
4854 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4855 goto invalid;
4856 node = array_index_nospec(tmp, MAX_NUMNODES);
4857 p += count + 1;
4858 /* Parse hugepages */
4859 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4860 goto invalid;
4861 if (!hugetlb_max_hstate)
4862 default_hugepages_in_node[node] = tmp;
4863 else
4864 parsed_hstate->max_huge_pages_node[node] = tmp;
4865 *mhp += tmp;
4866 /* Go to parse next node*/
4867 if (p[count] == ',')
4868 p += count + 1;
4869 else
4870 break;
4871 } else {
4872 if (p != s)
4873 goto invalid;
4874 *mhp = tmp;
4875 break;
4876 }
4877 }
4878
4879 last_mhp = mhp;
4880
4881 return 0;
4882
4883 invalid:
4884 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4885 hugepages_clear_pages_in_node();
4886 return -EINVAL;
4887 }
4888 hugetlb_early_param("hugepages", hugepages_setup);
4889
4890 /*
4891 * hugepagesz command line processing
4892 * A specific huge page size can only be specified once with hugepagesz.
4893 * hugepagesz is followed by hugepages on the command line. The global
4894 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4895 * hugepagesz argument was valid.
4896 */
hugepagesz_setup(char * s)4897 static int __init hugepagesz_setup(char *s)
4898 {
4899 unsigned long size;
4900 struct hstate *h;
4901
4902 parsed_valid_hugepagesz = false;
4903 size = (unsigned long)memparse(s, NULL);
4904
4905 if (!arch_hugetlb_valid_size(size)) {
4906 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4907 return -EINVAL;
4908 }
4909
4910 h = size_to_hstate(size);
4911 if (h) {
4912 /*
4913 * hstate for this size already exists. This is normally
4914 * an error, but is allowed if the existing hstate is the
4915 * default hstate. More specifically, it is only allowed if
4916 * the number of huge pages for the default hstate was not
4917 * previously specified.
4918 */
4919 if (!parsed_default_hugepagesz || h != &default_hstate ||
4920 default_hstate.max_huge_pages) {
4921 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4922 return -EINVAL;
4923 }
4924
4925 /*
4926 * No need to call hugetlb_add_hstate() as hstate already
4927 * exists. But, do set parsed_hstate so that a following
4928 * hugepages= parameter will be applied to this hstate.
4929 */
4930 parsed_hstate = h;
4931 parsed_valid_hugepagesz = true;
4932 return 0;
4933 }
4934
4935 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4936 parsed_valid_hugepagesz = true;
4937 return 0;
4938 }
4939 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4940
4941 /*
4942 * default_hugepagesz command line input
4943 * Only one instance of default_hugepagesz allowed on command line.
4944 */
default_hugepagesz_setup(char * s)4945 static int __init default_hugepagesz_setup(char *s)
4946 {
4947 unsigned long size;
4948 int i;
4949
4950 parsed_valid_hugepagesz = false;
4951 if (parsed_default_hugepagesz) {
4952 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4953 return -EINVAL;
4954 }
4955
4956 size = (unsigned long)memparse(s, NULL);
4957
4958 if (!arch_hugetlb_valid_size(size)) {
4959 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4960 return -EINVAL;
4961 }
4962
4963 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4964 parsed_valid_hugepagesz = true;
4965 parsed_default_hugepagesz = true;
4966 default_hstate_idx = hstate_index(size_to_hstate(size));
4967
4968 /*
4969 * The number of default huge pages (for this size) could have been
4970 * specified as the first hugetlb parameter: hugepages=X. If so,
4971 * then default_hstate_max_huge_pages is set. If the default huge
4972 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4973 * allocated here from bootmem allocator.
4974 */
4975 if (default_hstate_max_huge_pages) {
4976 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4977 /*
4978 * Since this is an early parameter, we can't check
4979 * NUMA node state yet, so loop through MAX_NUMNODES.
4980 */
4981 for (i = 0; i < MAX_NUMNODES; i++) {
4982 if (default_hugepages_in_node[i] != 0)
4983 default_hstate.max_huge_pages_node[i] =
4984 default_hugepages_in_node[i];
4985 }
4986 default_hstate_max_huge_pages = 0;
4987 }
4988
4989 return 0;
4990 }
4991 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
4992
4993 static bool __hugetlb_bootmem_allocated __initdata;
4994
hugetlb_bootmem_allocated(void)4995 bool __init hugetlb_bootmem_allocated(void)
4996 {
4997 return __hugetlb_bootmem_allocated;
4998 }
4999
hugetlb_bootmem_alloc(void)5000 void __init hugetlb_bootmem_alloc(void)
5001 {
5002 struct hstate *h;
5003 int i;
5004
5005 if (__hugetlb_bootmem_allocated)
5006 return;
5007
5008 for (i = 0; i < MAX_NUMNODES; i++)
5009 INIT_LIST_HEAD(&huge_boot_pages[i]);
5010
5011 hugetlb_parse_params();
5012
5013 for_each_hstate(h) {
5014 h->next_nid_to_alloc = first_online_node;
5015 h->next_nid_to_free = first_online_node;
5016
5017 if (hstate_is_gigantic(h))
5018 hugetlb_hstate_alloc_pages(h);
5019 }
5020
5021 __hugetlb_bootmem_allocated = true;
5022 }
5023
5024 /*
5025 * hugepage_alloc_threads command line parsing.
5026 *
5027 * When set, use this specific number of threads for the boot
5028 * allocation of hugepages.
5029 */
hugepage_alloc_threads_setup(char * s)5030 static int __init hugepage_alloc_threads_setup(char *s)
5031 {
5032 unsigned long allocation_threads;
5033
5034 if (kstrtoul(s, 0, &allocation_threads) != 0)
5035 return 1;
5036
5037 if (allocation_threads == 0)
5038 return 1;
5039
5040 hugepage_allocation_threads = allocation_threads;
5041
5042 return 1;
5043 }
5044 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
5045
allowed_mems_nr(struct hstate * h)5046 static unsigned int allowed_mems_nr(struct hstate *h)
5047 {
5048 int node;
5049 unsigned int nr = 0;
5050 nodemask_t *mbind_nodemask;
5051 unsigned int *array = h->free_huge_pages_node;
5052 gfp_t gfp_mask = htlb_alloc_mask(h);
5053
5054 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
5055 for_each_node_mask(node, cpuset_current_mems_allowed) {
5056 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
5057 nr += array[node];
5058 }
5059
5060 return nr;
5061 }
5062
5063 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)5064 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
5065 void *buffer, size_t *length,
5066 loff_t *ppos, unsigned long *out)
5067 {
5068 struct ctl_table dup_table;
5069
5070 /*
5071 * In order to avoid races with __do_proc_doulongvec_minmax(), we
5072 * can duplicate the @table and alter the duplicate of it.
5073 */
5074 dup_table = *table;
5075 dup_table.data = out;
5076
5077 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
5078 }
5079
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5080 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
5081 const struct ctl_table *table, int write,
5082 void *buffer, size_t *length, loff_t *ppos)
5083 {
5084 struct hstate *h = &default_hstate;
5085 unsigned long tmp = h->max_huge_pages;
5086 int ret;
5087
5088 if (!hugepages_supported())
5089 return -EOPNOTSUPP;
5090
5091 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5092 &tmp);
5093 if (ret)
5094 goto out;
5095
5096 if (write)
5097 ret = __nr_hugepages_store_common(obey_mempolicy, h,
5098 NUMA_NO_NODE, tmp, *length);
5099 out:
5100 return ret;
5101 }
5102
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5103 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
5104 void *buffer, size_t *length, loff_t *ppos)
5105 {
5106
5107 return hugetlb_sysctl_handler_common(false, table, write,
5108 buffer, length, ppos);
5109 }
5110
5111 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5112 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
5113 void *buffer, size_t *length, loff_t *ppos)
5114 {
5115 return hugetlb_sysctl_handler_common(true, table, write,
5116 buffer, length, ppos);
5117 }
5118 #endif /* CONFIG_NUMA */
5119
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5120 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
5121 void *buffer, size_t *length, loff_t *ppos)
5122 {
5123 struct hstate *h = &default_hstate;
5124 unsigned long tmp;
5125 int ret;
5126
5127 if (!hugepages_supported())
5128 return -EOPNOTSUPP;
5129
5130 tmp = h->nr_overcommit_huge_pages;
5131
5132 if (write && hstate_is_gigantic(h))
5133 return -EINVAL;
5134
5135 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5136 &tmp);
5137 if (ret)
5138 goto out;
5139
5140 if (write) {
5141 spin_lock_irq(&hugetlb_lock);
5142 h->nr_overcommit_huge_pages = tmp;
5143 spin_unlock_irq(&hugetlb_lock);
5144 }
5145 out:
5146 return ret;
5147 }
5148
5149 static const struct ctl_table hugetlb_table[] = {
5150 {
5151 .procname = "nr_hugepages",
5152 .data = NULL,
5153 .maxlen = sizeof(unsigned long),
5154 .mode = 0644,
5155 .proc_handler = hugetlb_sysctl_handler,
5156 },
5157 #ifdef CONFIG_NUMA
5158 {
5159 .procname = "nr_hugepages_mempolicy",
5160 .data = NULL,
5161 .maxlen = sizeof(unsigned long),
5162 .mode = 0644,
5163 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
5164 },
5165 #endif
5166 {
5167 .procname = "hugetlb_shm_group",
5168 .data = &sysctl_hugetlb_shm_group,
5169 .maxlen = sizeof(gid_t),
5170 .mode = 0644,
5171 .proc_handler = proc_dointvec,
5172 },
5173 {
5174 .procname = "nr_overcommit_hugepages",
5175 .data = NULL,
5176 .maxlen = sizeof(unsigned long),
5177 .mode = 0644,
5178 .proc_handler = hugetlb_overcommit_handler,
5179 },
5180 };
5181
hugetlb_sysctl_init(void)5182 static void __init hugetlb_sysctl_init(void)
5183 {
5184 register_sysctl_init("vm", hugetlb_table);
5185 }
5186 #endif /* CONFIG_SYSCTL */
5187
hugetlb_report_meminfo(struct seq_file * m)5188 void hugetlb_report_meminfo(struct seq_file *m)
5189 {
5190 struct hstate *h;
5191 unsigned long total = 0;
5192
5193 if (!hugepages_supported())
5194 return;
5195
5196 for_each_hstate(h) {
5197 unsigned long count = h->nr_huge_pages;
5198
5199 total += huge_page_size(h) * count;
5200
5201 if (h == &default_hstate)
5202 seq_printf(m,
5203 "HugePages_Total: %5lu\n"
5204 "HugePages_Free: %5lu\n"
5205 "HugePages_Rsvd: %5lu\n"
5206 "HugePages_Surp: %5lu\n"
5207 "Hugepagesize: %8lu kB\n",
5208 count,
5209 h->free_huge_pages,
5210 h->resv_huge_pages,
5211 h->surplus_huge_pages,
5212 huge_page_size(h) / SZ_1K);
5213 }
5214
5215 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5216 }
5217
hugetlb_report_node_meminfo(char * buf,int len,int nid)5218 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5219 {
5220 struct hstate *h = &default_hstate;
5221
5222 if (!hugepages_supported())
5223 return 0;
5224
5225 return sysfs_emit_at(buf, len,
5226 "Node %d HugePages_Total: %5u\n"
5227 "Node %d HugePages_Free: %5u\n"
5228 "Node %d HugePages_Surp: %5u\n",
5229 nid, h->nr_huge_pages_node[nid],
5230 nid, h->free_huge_pages_node[nid],
5231 nid, h->surplus_huge_pages_node[nid]);
5232 }
5233
hugetlb_show_meminfo_node(int nid)5234 void hugetlb_show_meminfo_node(int nid)
5235 {
5236 struct hstate *h;
5237
5238 if (!hugepages_supported())
5239 return;
5240
5241 for_each_hstate(h)
5242 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5243 nid,
5244 h->nr_huge_pages_node[nid],
5245 h->free_huge_pages_node[nid],
5246 h->surplus_huge_pages_node[nid],
5247 huge_page_size(h) / SZ_1K);
5248 }
5249
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)5250 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5251 {
5252 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5253 K(atomic_long_read(&mm->hugetlb_usage)));
5254 }
5255
5256 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)5257 unsigned long hugetlb_total_pages(void)
5258 {
5259 struct hstate *h;
5260 unsigned long nr_total_pages = 0;
5261
5262 for_each_hstate(h)
5263 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5264 return nr_total_pages;
5265 }
5266
hugetlb_acct_memory(struct hstate * h,long delta)5267 static int hugetlb_acct_memory(struct hstate *h, long delta)
5268 {
5269 int ret = -ENOMEM;
5270
5271 if (!delta)
5272 return 0;
5273
5274 spin_lock_irq(&hugetlb_lock);
5275 /*
5276 * When cpuset is configured, it breaks the strict hugetlb page
5277 * reservation as the accounting is done on a global variable. Such
5278 * reservation is completely rubbish in the presence of cpuset because
5279 * the reservation is not checked against page availability for the
5280 * current cpuset. Application can still potentially OOM'ed by kernel
5281 * with lack of free htlb page in cpuset that the task is in.
5282 * Attempt to enforce strict accounting with cpuset is almost
5283 * impossible (or too ugly) because cpuset is too fluid that
5284 * task or memory node can be dynamically moved between cpusets.
5285 *
5286 * The change of semantics for shared hugetlb mapping with cpuset is
5287 * undesirable. However, in order to preserve some of the semantics,
5288 * we fall back to check against current free page availability as
5289 * a best attempt and hopefully to minimize the impact of changing
5290 * semantics that cpuset has.
5291 *
5292 * Apart from cpuset, we also have memory policy mechanism that
5293 * also determines from which node the kernel will allocate memory
5294 * in a NUMA system. So similar to cpuset, we also should consider
5295 * the memory policy of the current task. Similar to the description
5296 * above.
5297 */
5298 if (delta > 0) {
5299 if (gather_surplus_pages(h, delta) < 0)
5300 goto out;
5301
5302 if (delta > allowed_mems_nr(h)) {
5303 return_unused_surplus_pages(h, delta);
5304 goto out;
5305 }
5306 }
5307
5308 ret = 0;
5309 if (delta < 0)
5310 return_unused_surplus_pages(h, (unsigned long) -delta);
5311
5312 out:
5313 spin_unlock_irq(&hugetlb_lock);
5314 return ret;
5315 }
5316
hugetlb_vm_op_open(struct vm_area_struct * vma)5317 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5318 {
5319 struct resv_map *resv = vma_resv_map(vma);
5320
5321 /*
5322 * HPAGE_RESV_OWNER indicates a private mapping.
5323 * This new VMA should share its siblings reservation map if present.
5324 * The VMA will only ever have a valid reservation map pointer where
5325 * it is being copied for another still existing VMA. As that VMA
5326 * has a reference to the reservation map it cannot disappear until
5327 * after this open call completes. It is therefore safe to take a
5328 * new reference here without additional locking.
5329 */
5330 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5331 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5332 kref_get(&resv->refs);
5333 }
5334
5335 /*
5336 * vma_lock structure for sharable mappings is vma specific.
5337 * Clear old pointer (if copied via vm_area_dup) and allocate
5338 * new structure. Before clearing, make sure vma_lock is not
5339 * for this vma.
5340 */
5341 if (vma->vm_flags & VM_MAYSHARE) {
5342 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5343
5344 if (vma_lock) {
5345 if (vma_lock->vma != vma) {
5346 vma->vm_private_data = NULL;
5347 hugetlb_vma_lock_alloc(vma);
5348 } else
5349 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5350 } else
5351 hugetlb_vma_lock_alloc(vma);
5352 }
5353 }
5354
hugetlb_vm_op_close(struct vm_area_struct * vma)5355 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5356 {
5357 struct hstate *h = hstate_vma(vma);
5358 struct resv_map *resv;
5359 struct hugepage_subpool *spool = subpool_vma(vma);
5360 unsigned long reserve, start, end;
5361 long gbl_reserve;
5362
5363 hugetlb_vma_lock_free(vma);
5364
5365 resv = vma_resv_map(vma);
5366 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5367 return;
5368
5369 start = vma_hugecache_offset(h, vma, vma->vm_start);
5370 end = vma_hugecache_offset(h, vma, vma->vm_end);
5371
5372 reserve = (end - start) - region_count(resv, start, end);
5373 hugetlb_cgroup_uncharge_counter(resv, start, end);
5374 if (reserve) {
5375 /*
5376 * Decrement reserve counts. The global reserve count may be
5377 * adjusted if the subpool has a minimum size.
5378 */
5379 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5380 hugetlb_acct_memory(h, -gbl_reserve);
5381 }
5382
5383 kref_put(&resv->refs, resv_map_release);
5384 }
5385
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5386 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5387 {
5388 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5389 return -EINVAL;
5390
5391 /*
5392 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5393 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5394 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5395 */
5396 if (addr & ~PUD_MASK) {
5397 /*
5398 * hugetlb_vm_op_split is called right before we attempt to
5399 * split the VMA. We will need to unshare PMDs in the old and
5400 * new VMAs, so let's unshare before we split.
5401 */
5402 unsigned long floor = addr & PUD_MASK;
5403 unsigned long ceil = floor + PUD_SIZE;
5404
5405 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5406 hugetlb_unshare_pmds(vma, floor, ceil);
5407 }
5408
5409 return 0;
5410 }
5411
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5412 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5413 {
5414 return huge_page_size(hstate_vma(vma));
5415 }
5416
5417 /*
5418 * We cannot handle pagefaults against hugetlb pages at all. They cause
5419 * handle_mm_fault() to try to instantiate regular-sized pages in the
5420 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5421 * this far.
5422 */
hugetlb_vm_op_fault(struct vm_fault * vmf)5423 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5424 {
5425 BUG();
5426 return 0;
5427 }
5428
5429 /*
5430 * When a new function is introduced to vm_operations_struct and added
5431 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5432 * This is because under System V memory model, mappings created via
5433 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5434 * their original vm_ops are overwritten with shm_vm_ops.
5435 */
5436 const struct vm_operations_struct hugetlb_vm_ops = {
5437 .fault = hugetlb_vm_op_fault,
5438 .open = hugetlb_vm_op_open,
5439 .close = hugetlb_vm_op_close,
5440 .may_split = hugetlb_vm_op_split,
5441 .pagesize = hugetlb_vm_op_pagesize,
5442 };
5443
make_huge_pte(struct vm_area_struct * vma,struct page * page,bool try_mkwrite)5444 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5445 bool try_mkwrite)
5446 {
5447 pte_t entry;
5448 unsigned int shift = huge_page_shift(hstate_vma(vma));
5449
5450 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5451 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5452 vma->vm_page_prot)));
5453 } else {
5454 entry = huge_pte_wrprotect(mk_huge_pte(page,
5455 vma->vm_page_prot));
5456 }
5457 entry = pte_mkyoung(entry);
5458 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5459
5460 return entry;
5461 }
5462
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5463 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5464 unsigned long address, pte_t *ptep)
5465 {
5466 pte_t entry;
5467
5468 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5469 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5470 update_mmu_cache(vma, address, ptep);
5471 }
5472
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5473 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5474 unsigned long address, pte_t *ptep)
5475 {
5476 if (vma->vm_flags & VM_WRITE)
5477 set_huge_ptep_writable(vma, address, ptep);
5478 }
5479
is_hugetlb_entry_migration(pte_t pte)5480 bool is_hugetlb_entry_migration(pte_t pte)
5481 {
5482 swp_entry_t swp;
5483
5484 if (huge_pte_none(pte) || pte_present(pte))
5485 return false;
5486 swp = pte_to_swp_entry(pte);
5487 if (is_migration_entry(swp))
5488 return true;
5489 else
5490 return false;
5491 }
5492
is_hugetlb_entry_hwpoisoned(pte_t pte)5493 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5494 {
5495 swp_entry_t swp;
5496
5497 if (huge_pte_none(pte) || pte_present(pte))
5498 return false;
5499 swp = pte_to_swp_entry(pte);
5500 if (is_hwpoison_entry(swp))
5501 return true;
5502 else
5503 return false;
5504 }
5505
5506 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5507 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5508 struct folio *new_folio, pte_t old, unsigned long sz)
5509 {
5510 pte_t newpte = make_huge_pte(vma, &new_folio->page, true);
5511
5512 __folio_mark_uptodate(new_folio);
5513 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5514 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5515 newpte = huge_pte_mkuffd_wp(newpte);
5516 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5517 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5518 folio_set_hugetlb_migratable(new_folio);
5519 }
5520
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5521 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5522 struct vm_area_struct *dst_vma,
5523 struct vm_area_struct *src_vma)
5524 {
5525 pte_t *src_pte, *dst_pte, entry;
5526 struct folio *pte_folio;
5527 unsigned long addr;
5528 bool cow = is_cow_mapping(src_vma->vm_flags);
5529 struct hstate *h = hstate_vma(src_vma);
5530 unsigned long sz = huge_page_size(h);
5531 unsigned long npages = pages_per_huge_page(h);
5532 struct mmu_notifier_range range;
5533 unsigned long last_addr_mask;
5534 int ret = 0;
5535
5536 if (cow) {
5537 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5538 src_vma->vm_start,
5539 src_vma->vm_end);
5540 mmu_notifier_invalidate_range_start(&range);
5541 vma_assert_write_locked(src_vma);
5542 raw_write_seqcount_begin(&src->write_protect_seq);
5543 } else {
5544 /*
5545 * For shared mappings the vma lock must be held before
5546 * calling hugetlb_walk() in the src vma. Otherwise, the
5547 * returned ptep could go away if part of a shared pmd and
5548 * another thread calls huge_pmd_unshare.
5549 */
5550 hugetlb_vma_lock_read(src_vma);
5551 }
5552
5553 last_addr_mask = hugetlb_mask_last_page(h);
5554 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5555 spinlock_t *src_ptl, *dst_ptl;
5556 src_pte = hugetlb_walk(src_vma, addr, sz);
5557 if (!src_pte) {
5558 addr |= last_addr_mask;
5559 continue;
5560 }
5561 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5562 if (!dst_pte) {
5563 ret = -ENOMEM;
5564 break;
5565 }
5566
5567 /*
5568 * If the pagetables are shared don't copy or take references.
5569 *
5570 * dst_pte == src_pte is the common case of src/dest sharing.
5571 * However, src could have 'unshared' and dst shares with
5572 * another vma. So page_count of ptep page is checked instead
5573 * to reliably determine whether pte is shared.
5574 */
5575 if (page_count(virt_to_page(dst_pte)) > 1) {
5576 addr |= last_addr_mask;
5577 continue;
5578 }
5579
5580 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5581 src_ptl = huge_pte_lockptr(h, src, src_pte);
5582 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5583 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5584 again:
5585 if (huge_pte_none(entry)) {
5586 /*
5587 * Skip if src entry none.
5588 */
5589 ;
5590 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5591 if (!userfaultfd_wp(dst_vma))
5592 entry = huge_pte_clear_uffd_wp(entry);
5593 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5594 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5595 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5596 bool uffd_wp = pte_swp_uffd_wp(entry);
5597
5598 if (!is_readable_migration_entry(swp_entry) && cow) {
5599 /*
5600 * COW mappings require pages in both
5601 * parent and child to be set to read.
5602 */
5603 swp_entry = make_readable_migration_entry(
5604 swp_offset(swp_entry));
5605 entry = swp_entry_to_pte(swp_entry);
5606 if (userfaultfd_wp(src_vma) && uffd_wp)
5607 entry = pte_swp_mkuffd_wp(entry);
5608 set_huge_pte_at(src, addr, src_pte, entry, sz);
5609 }
5610 if (!userfaultfd_wp(dst_vma))
5611 entry = huge_pte_clear_uffd_wp(entry);
5612 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5613 } else if (unlikely(is_pte_marker(entry))) {
5614 pte_marker marker = copy_pte_marker(
5615 pte_to_swp_entry(entry), dst_vma);
5616
5617 if (marker)
5618 set_huge_pte_at(dst, addr, dst_pte,
5619 make_pte_marker(marker), sz);
5620 } else {
5621 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5622 pte_folio = page_folio(pte_page(entry));
5623 folio_get(pte_folio);
5624
5625 /*
5626 * Failing to duplicate the anon rmap is a rare case
5627 * where we see pinned hugetlb pages while they're
5628 * prone to COW. We need to do the COW earlier during
5629 * fork.
5630 *
5631 * When pre-allocating the page or copying data, we
5632 * need to be without the pgtable locks since we could
5633 * sleep during the process.
5634 */
5635 if (!folio_test_anon(pte_folio)) {
5636 hugetlb_add_file_rmap(pte_folio);
5637 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5638 pte_t src_pte_old = entry;
5639 struct folio *new_folio;
5640
5641 spin_unlock(src_ptl);
5642 spin_unlock(dst_ptl);
5643 /* Do not use reserve as it's private owned */
5644 new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5645 if (IS_ERR(new_folio)) {
5646 folio_put(pte_folio);
5647 ret = PTR_ERR(new_folio);
5648 break;
5649 }
5650 ret = copy_user_large_folio(new_folio, pte_folio,
5651 addr, dst_vma);
5652 folio_put(pte_folio);
5653 if (ret) {
5654 folio_put(new_folio);
5655 break;
5656 }
5657
5658 /* Install the new hugetlb folio if src pte stable */
5659 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5660 src_ptl = huge_pte_lockptr(h, src, src_pte);
5661 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5662 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5663 if (!pte_same(src_pte_old, entry)) {
5664 restore_reserve_on_error(h, dst_vma, addr,
5665 new_folio);
5666 folio_put(new_folio);
5667 /* huge_ptep of dst_pte won't change as in child */
5668 goto again;
5669 }
5670 hugetlb_install_folio(dst_vma, dst_pte, addr,
5671 new_folio, src_pte_old, sz);
5672 spin_unlock(src_ptl);
5673 spin_unlock(dst_ptl);
5674 continue;
5675 }
5676
5677 if (cow) {
5678 /*
5679 * No need to notify as we are downgrading page
5680 * table protection not changing it to point
5681 * to a new page.
5682 *
5683 * See Documentation/mm/mmu_notifier.rst
5684 */
5685 huge_ptep_set_wrprotect(src, addr, src_pte);
5686 entry = huge_pte_wrprotect(entry);
5687 }
5688
5689 if (!userfaultfd_wp(dst_vma))
5690 entry = huge_pte_clear_uffd_wp(entry);
5691
5692 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5693 hugetlb_count_add(npages, dst);
5694 }
5695 spin_unlock(src_ptl);
5696 spin_unlock(dst_ptl);
5697 }
5698
5699 if (cow) {
5700 raw_write_seqcount_end(&src->write_protect_seq);
5701 mmu_notifier_invalidate_range_end(&range);
5702 } else {
5703 hugetlb_vma_unlock_read(src_vma);
5704 }
5705
5706 return ret;
5707 }
5708
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5709 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5710 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5711 unsigned long sz)
5712 {
5713 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5714 struct hstate *h = hstate_vma(vma);
5715 struct mm_struct *mm = vma->vm_mm;
5716 spinlock_t *src_ptl, *dst_ptl;
5717 pte_t pte;
5718
5719 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5720 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5721
5722 /*
5723 * We don't have to worry about the ordering of src and dst ptlocks
5724 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5725 */
5726 if (src_ptl != dst_ptl)
5727 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5728
5729 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5730
5731 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5732 huge_pte_clear(mm, new_addr, dst_pte, sz);
5733 else {
5734 if (need_clear_uffd_wp) {
5735 if (pte_present(pte))
5736 pte = huge_pte_clear_uffd_wp(pte);
5737 else if (is_swap_pte(pte))
5738 pte = pte_swp_clear_uffd_wp(pte);
5739 }
5740 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5741 }
5742
5743 if (src_ptl != dst_ptl)
5744 spin_unlock(src_ptl);
5745 spin_unlock(dst_ptl);
5746 }
5747
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5748 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5749 struct vm_area_struct *new_vma,
5750 unsigned long old_addr, unsigned long new_addr,
5751 unsigned long len)
5752 {
5753 struct hstate *h = hstate_vma(vma);
5754 struct address_space *mapping = vma->vm_file->f_mapping;
5755 unsigned long sz = huge_page_size(h);
5756 struct mm_struct *mm = vma->vm_mm;
5757 unsigned long old_end = old_addr + len;
5758 unsigned long last_addr_mask;
5759 pte_t *src_pte, *dst_pte;
5760 struct mmu_notifier_range range;
5761 bool shared_pmd = false;
5762
5763 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5764 old_end);
5765 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5766 /*
5767 * In case of shared PMDs, we should cover the maximum possible
5768 * range.
5769 */
5770 flush_cache_range(vma, range.start, range.end);
5771
5772 mmu_notifier_invalidate_range_start(&range);
5773 last_addr_mask = hugetlb_mask_last_page(h);
5774 /* Prevent race with file truncation */
5775 hugetlb_vma_lock_write(vma);
5776 i_mmap_lock_write(mapping);
5777 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5778 src_pte = hugetlb_walk(vma, old_addr, sz);
5779 if (!src_pte) {
5780 old_addr |= last_addr_mask;
5781 new_addr |= last_addr_mask;
5782 continue;
5783 }
5784 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5785 continue;
5786
5787 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5788 shared_pmd = true;
5789 old_addr |= last_addr_mask;
5790 new_addr |= last_addr_mask;
5791 continue;
5792 }
5793
5794 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5795 if (!dst_pte)
5796 break;
5797
5798 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5799 }
5800
5801 if (shared_pmd)
5802 flush_hugetlb_tlb_range(vma, range.start, range.end);
5803 else
5804 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5805 mmu_notifier_invalidate_range_end(&range);
5806 i_mmap_unlock_write(mapping);
5807 hugetlb_vma_unlock_write(vma);
5808
5809 return len + old_addr - old_end;
5810 }
5811
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5812 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5813 unsigned long start, unsigned long end,
5814 struct page *ref_page, zap_flags_t zap_flags)
5815 {
5816 struct mm_struct *mm = vma->vm_mm;
5817 unsigned long address;
5818 pte_t *ptep;
5819 pte_t pte;
5820 spinlock_t *ptl;
5821 struct page *page;
5822 struct hstate *h = hstate_vma(vma);
5823 unsigned long sz = huge_page_size(h);
5824 bool adjust_reservation = false;
5825 unsigned long last_addr_mask;
5826 bool force_flush = false;
5827
5828 WARN_ON(!is_vm_hugetlb_page(vma));
5829 BUG_ON(start & ~huge_page_mask(h));
5830 BUG_ON(end & ~huge_page_mask(h));
5831
5832 /*
5833 * This is a hugetlb vma, all the pte entries should point
5834 * to huge page.
5835 */
5836 tlb_change_page_size(tlb, sz);
5837 tlb_start_vma(tlb, vma);
5838
5839 last_addr_mask = hugetlb_mask_last_page(h);
5840 address = start;
5841 for (; address < end; address += sz) {
5842 ptep = hugetlb_walk(vma, address, sz);
5843 if (!ptep) {
5844 address |= last_addr_mask;
5845 continue;
5846 }
5847
5848 ptl = huge_pte_lock(h, mm, ptep);
5849 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5850 spin_unlock(ptl);
5851 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5852 force_flush = true;
5853 address |= last_addr_mask;
5854 continue;
5855 }
5856
5857 pte = huge_ptep_get(mm, address, ptep);
5858 if (huge_pte_none(pte)) {
5859 spin_unlock(ptl);
5860 continue;
5861 }
5862
5863 /*
5864 * Migrating hugepage or HWPoisoned hugepage is already
5865 * unmapped and its refcount is dropped, so just clear pte here.
5866 */
5867 if (unlikely(!pte_present(pte))) {
5868 /*
5869 * If the pte was wr-protected by uffd-wp in any of the
5870 * swap forms, meanwhile the caller does not want to
5871 * drop the uffd-wp bit in this zap, then replace the
5872 * pte with a marker.
5873 */
5874 if (pte_swp_uffd_wp_any(pte) &&
5875 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5876 set_huge_pte_at(mm, address, ptep,
5877 make_pte_marker(PTE_MARKER_UFFD_WP),
5878 sz);
5879 else
5880 huge_pte_clear(mm, address, ptep, sz);
5881 spin_unlock(ptl);
5882 continue;
5883 }
5884
5885 page = pte_page(pte);
5886 /*
5887 * If a reference page is supplied, it is because a specific
5888 * page is being unmapped, not a range. Ensure the page we
5889 * are about to unmap is the actual page of interest.
5890 */
5891 if (ref_page) {
5892 if (page != ref_page) {
5893 spin_unlock(ptl);
5894 continue;
5895 }
5896 /*
5897 * Mark the VMA as having unmapped its page so that
5898 * future faults in this VMA will fail rather than
5899 * looking like data was lost
5900 */
5901 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5902 }
5903
5904 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5905 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5906 if (huge_pte_dirty(pte))
5907 set_page_dirty(page);
5908 /* Leave a uffd-wp pte marker if needed */
5909 if (huge_pte_uffd_wp(pte) &&
5910 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5911 set_huge_pte_at(mm, address, ptep,
5912 make_pte_marker(PTE_MARKER_UFFD_WP),
5913 sz);
5914 hugetlb_count_sub(pages_per_huge_page(h), mm);
5915 hugetlb_remove_rmap(page_folio(page));
5916
5917 /*
5918 * Restore the reservation for anonymous page, otherwise the
5919 * backing page could be stolen by someone.
5920 * If there we are freeing a surplus, do not set the restore
5921 * reservation bit.
5922 */
5923 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5924 folio_test_anon(page_folio(page))) {
5925 folio_set_hugetlb_restore_reserve(page_folio(page));
5926 /* Reservation to be adjusted after the spin lock */
5927 adjust_reservation = true;
5928 }
5929
5930 spin_unlock(ptl);
5931
5932 /*
5933 * Adjust the reservation for the region that will have the
5934 * reserve restored. Keep in mind that vma_needs_reservation() changes
5935 * resv->adds_in_progress if it succeeds. If this is not done,
5936 * do_exit() will not see it, and will keep the reservation
5937 * forever.
5938 */
5939 if (adjust_reservation) {
5940 int rc = vma_needs_reservation(h, vma, address);
5941
5942 if (rc < 0)
5943 /* Pressumably allocate_file_region_entries failed
5944 * to allocate a file_region struct. Clear
5945 * hugetlb_restore_reserve so that global reserve
5946 * count will not be incremented by free_huge_folio.
5947 * Act as if we consumed the reservation.
5948 */
5949 folio_clear_hugetlb_restore_reserve(page_folio(page));
5950 else if (rc)
5951 vma_add_reservation(h, vma, address);
5952 }
5953
5954 tlb_remove_page_size(tlb, page, huge_page_size(h));
5955 /*
5956 * Bail out after unmapping reference page if supplied
5957 */
5958 if (ref_page)
5959 break;
5960 }
5961 tlb_end_vma(tlb, vma);
5962
5963 /*
5964 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5965 * could defer the flush until now, since by holding i_mmap_rwsem we
5966 * guaranteed that the last refernece would not be dropped. But we must
5967 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5968 * dropped and the last reference to the shared PMDs page might be
5969 * dropped as well.
5970 *
5971 * In theory we could defer the freeing of the PMD pages as well, but
5972 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5973 * detect sharing, so we cannot defer the release of the page either.
5974 * Instead, do flush now.
5975 */
5976 if (force_flush)
5977 tlb_flush_mmu_tlbonly(tlb);
5978 }
5979
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5980 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5981 unsigned long *start, unsigned long *end)
5982 {
5983 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5984 return;
5985
5986 adjust_range_if_pmd_sharing_possible(vma, start, end);
5987 hugetlb_vma_lock_write(vma);
5988 if (vma->vm_file)
5989 i_mmap_lock_write(vma->vm_file->f_mapping);
5990 }
5991
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5992 void __hugetlb_zap_end(struct vm_area_struct *vma,
5993 struct zap_details *details)
5994 {
5995 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5996
5997 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5998 return;
5999
6000 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
6001 /*
6002 * Unlock and free the vma lock before releasing i_mmap_rwsem.
6003 * When the vma_lock is freed, this makes the vma ineligible
6004 * for pmd sharing. And, i_mmap_rwsem is required to set up
6005 * pmd sharing. This is important as page tables for this
6006 * unmapped range will be asynchrously deleted. If the page
6007 * tables are shared, there will be issues when accessed by
6008 * someone else.
6009 */
6010 __hugetlb_vma_unlock_write_free(vma);
6011 } else {
6012 hugetlb_vma_unlock_write(vma);
6013 }
6014
6015 if (vma->vm_file)
6016 i_mmap_unlock_write(vma->vm_file->f_mapping);
6017 }
6018
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)6019 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
6020 unsigned long end, struct page *ref_page,
6021 zap_flags_t zap_flags)
6022 {
6023 struct mmu_notifier_range range;
6024 struct mmu_gather tlb;
6025
6026 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
6027 start, end);
6028 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6029 mmu_notifier_invalidate_range_start(&range);
6030 tlb_gather_mmu(&tlb, vma->vm_mm);
6031
6032 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
6033
6034 mmu_notifier_invalidate_range_end(&range);
6035 tlb_finish_mmu(&tlb);
6036 }
6037
6038 /*
6039 * This is called when the original mapper is failing to COW a MAP_PRIVATE
6040 * mapping it owns the reserve page for. The intention is to unmap the page
6041 * from other VMAs and let the children be SIGKILLed if they are faulting the
6042 * same region.
6043 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)6044 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
6045 struct page *page, unsigned long address)
6046 {
6047 struct hstate *h = hstate_vma(vma);
6048 struct vm_area_struct *iter_vma;
6049 struct address_space *mapping;
6050 pgoff_t pgoff;
6051
6052 /*
6053 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
6054 * from page cache lookup which is in HPAGE_SIZE units.
6055 */
6056 address = address & huge_page_mask(h);
6057 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
6058 vma->vm_pgoff;
6059 mapping = vma->vm_file->f_mapping;
6060
6061 /*
6062 * Take the mapping lock for the duration of the table walk. As
6063 * this mapping should be shared between all the VMAs,
6064 * __unmap_hugepage_range() is called as the lock is already held
6065 */
6066 i_mmap_lock_write(mapping);
6067 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
6068 /* Do not unmap the current VMA */
6069 if (iter_vma == vma)
6070 continue;
6071
6072 /*
6073 * Shared VMAs have their own reserves and do not affect
6074 * MAP_PRIVATE accounting but it is possible that a shared
6075 * VMA is using the same page so check and skip such VMAs.
6076 */
6077 if (iter_vma->vm_flags & VM_MAYSHARE)
6078 continue;
6079
6080 /*
6081 * Unmap the page from other VMAs without their own reserves.
6082 * They get marked to be SIGKILLed if they fault in these
6083 * areas. This is because a future no-page fault on this VMA
6084 * could insert a zeroed page instead of the data existing
6085 * from the time of fork. This would look like data corruption
6086 */
6087 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
6088 unmap_hugepage_range(iter_vma, address,
6089 address + huge_page_size(h), page, 0);
6090 }
6091 i_mmap_unlock_write(mapping);
6092 }
6093
6094 /*
6095 * hugetlb_wp() should be called with page lock of the original hugepage held.
6096 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
6097 * cannot race with other handlers or page migration.
6098 * Keep the pte_same checks anyway to make transition from the mutex easier.
6099 */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)6100 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
6101 struct vm_fault *vmf)
6102 {
6103 struct vm_area_struct *vma = vmf->vma;
6104 struct mm_struct *mm = vma->vm_mm;
6105 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6106 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
6107 struct hstate *h = hstate_vma(vma);
6108 struct folio *old_folio;
6109 struct folio *new_folio;
6110 bool cow_from_owner = 0;
6111 vm_fault_t ret = 0;
6112 struct mmu_notifier_range range;
6113
6114 /*
6115 * Never handle CoW for uffd-wp protected pages. It should be only
6116 * handled when the uffd-wp protection is removed.
6117 *
6118 * Note that only the CoW optimization path (in hugetlb_no_page())
6119 * can trigger this, because hugetlb_fault() will always resolve
6120 * uffd-wp bit first.
6121 */
6122 if (!unshare && huge_pte_uffd_wp(pte))
6123 return 0;
6124
6125 /* Let's take out MAP_SHARED mappings first. */
6126 if (vma->vm_flags & VM_MAYSHARE) {
6127 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6128 return 0;
6129 }
6130
6131 old_folio = page_folio(pte_page(pte));
6132
6133 delayacct_wpcopy_start();
6134
6135 retry_avoidcopy:
6136 /*
6137 * If no-one else is actually using this page, we're the exclusive
6138 * owner and can reuse this page.
6139 *
6140 * Note that we don't rely on the (safer) folio refcount here, because
6141 * copying the hugetlb folio when there are unexpected (temporary)
6142 * folio references could harm simple fork()+exit() users when
6143 * we run out of free hugetlb folios: we would have to kill processes
6144 * in scenarios that used to work. As a side effect, there can still
6145 * be leaks between processes, for example, with FOLL_GET users.
6146 */
6147 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6148 if (!PageAnonExclusive(&old_folio->page)) {
6149 folio_move_anon_rmap(old_folio, vma);
6150 SetPageAnonExclusive(&old_folio->page);
6151 }
6152 if (likely(!unshare))
6153 set_huge_ptep_maybe_writable(vma, vmf->address,
6154 vmf->pte);
6155
6156 delayacct_wpcopy_end();
6157 return 0;
6158 }
6159 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6160 PageAnonExclusive(&old_folio->page), &old_folio->page);
6161
6162 /*
6163 * If the process that created a MAP_PRIVATE mapping is about to
6164 * perform a COW due to a shared page count, attempt to satisfy
6165 * the allocation without using the existing reserves. The pagecache
6166 * page is used to determine if the reserve at this address was
6167 * consumed or not. If reserves were used, a partial faulted mapping
6168 * at the time of fork() could consume its reserves on COW instead
6169 * of the full address range.
6170 */
6171 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6172 old_folio != pagecache_folio)
6173 cow_from_owner = true;
6174
6175 folio_get(old_folio);
6176
6177 /*
6178 * Drop page table lock as buddy allocator may be called. It will
6179 * be acquired again before returning to the caller, as expected.
6180 */
6181 spin_unlock(vmf->ptl);
6182 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
6183
6184 if (IS_ERR(new_folio)) {
6185 /*
6186 * If a process owning a MAP_PRIVATE mapping fails to COW,
6187 * it is due to references held by a child and an insufficient
6188 * huge page pool. To guarantee the original mappers
6189 * reliability, unmap the page from child processes. The child
6190 * may get SIGKILLed if it later faults.
6191 */
6192 if (cow_from_owner) {
6193 struct address_space *mapping = vma->vm_file->f_mapping;
6194 pgoff_t idx;
6195 u32 hash;
6196
6197 folio_put(old_folio);
6198 /*
6199 * Drop hugetlb_fault_mutex and vma_lock before
6200 * unmapping. unmapping needs to hold vma_lock
6201 * in write mode. Dropping vma_lock in read mode
6202 * here is OK as COW mappings do not interact with
6203 * PMD sharing.
6204 *
6205 * Reacquire both after unmap operation.
6206 */
6207 idx = vma_hugecache_offset(h, vma, vmf->address);
6208 hash = hugetlb_fault_mutex_hash(mapping, idx);
6209 hugetlb_vma_unlock_read(vma);
6210 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6211
6212 unmap_ref_private(mm, vma, &old_folio->page,
6213 vmf->address);
6214
6215 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6216 hugetlb_vma_lock_read(vma);
6217 spin_lock(vmf->ptl);
6218 vmf->pte = hugetlb_walk(vma, vmf->address,
6219 huge_page_size(h));
6220 if (likely(vmf->pte &&
6221 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6222 goto retry_avoidcopy;
6223 /*
6224 * race occurs while re-acquiring page table
6225 * lock, and our job is done.
6226 */
6227 delayacct_wpcopy_end();
6228 return 0;
6229 }
6230
6231 ret = vmf_error(PTR_ERR(new_folio));
6232 goto out_release_old;
6233 }
6234
6235 /*
6236 * When the original hugepage is shared one, it does not have
6237 * anon_vma prepared.
6238 */
6239 ret = __vmf_anon_prepare(vmf);
6240 if (unlikely(ret))
6241 goto out_release_all;
6242
6243 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6244 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6245 goto out_release_all;
6246 }
6247 __folio_mark_uptodate(new_folio);
6248
6249 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6250 vmf->address + huge_page_size(h));
6251 mmu_notifier_invalidate_range_start(&range);
6252
6253 /*
6254 * Retake the page table lock to check for racing updates
6255 * before the page tables are altered
6256 */
6257 spin_lock(vmf->ptl);
6258 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6259 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6260 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
6261
6262 /* Break COW or unshare */
6263 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6264 hugetlb_remove_rmap(old_folio);
6265 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6266 if (huge_pte_uffd_wp(pte))
6267 newpte = huge_pte_mkuffd_wp(newpte);
6268 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6269 huge_page_size(h));
6270 folio_set_hugetlb_migratable(new_folio);
6271 /* Make the old page be freed below */
6272 new_folio = old_folio;
6273 }
6274 spin_unlock(vmf->ptl);
6275 mmu_notifier_invalidate_range_end(&range);
6276 out_release_all:
6277 /*
6278 * No restore in case of successful pagetable update (Break COW or
6279 * unshare)
6280 */
6281 if (new_folio != old_folio)
6282 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6283 folio_put(new_folio);
6284 out_release_old:
6285 folio_put(old_folio);
6286
6287 spin_lock(vmf->ptl); /* Caller expects lock to be held */
6288
6289 delayacct_wpcopy_end();
6290 return ret;
6291 }
6292
6293 /*
6294 * Return whether there is a pagecache page to back given address within VMA.
6295 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6296 bool hugetlbfs_pagecache_present(struct hstate *h,
6297 struct vm_area_struct *vma, unsigned long address)
6298 {
6299 struct address_space *mapping = vma->vm_file->f_mapping;
6300 pgoff_t idx = linear_page_index(vma, address);
6301 struct folio *folio;
6302
6303 folio = filemap_get_folio(mapping, idx);
6304 if (IS_ERR(folio))
6305 return false;
6306 folio_put(folio);
6307 return true;
6308 }
6309
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6310 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6311 pgoff_t idx)
6312 {
6313 struct inode *inode = mapping->host;
6314 struct hstate *h = hstate_inode(inode);
6315 int err;
6316
6317 idx <<= huge_page_order(h);
6318 __folio_set_locked(folio);
6319 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6320
6321 if (unlikely(err)) {
6322 __folio_clear_locked(folio);
6323 return err;
6324 }
6325 folio_clear_hugetlb_restore_reserve(folio);
6326
6327 /*
6328 * mark folio dirty so that it will not be removed from cache/file
6329 * by non-hugetlbfs specific code paths.
6330 */
6331 folio_mark_dirty(folio);
6332
6333 spin_lock(&inode->i_lock);
6334 inode->i_blocks += blocks_per_huge_page(h);
6335 spin_unlock(&inode->i_lock);
6336 return 0;
6337 }
6338
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6339 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6340 struct address_space *mapping,
6341 unsigned long reason)
6342 {
6343 u32 hash;
6344
6345 /*
6346 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6347 * userfault. Also mmap_lock could be dropped due to handling
6348 * userfault, any vma operation should be careful from here.
6349 */
6350 hugetlb_vma_unlock_read(vmf->vma);
6351 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6352 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6353 return handle_userfault(vmf, reason);
6354 }
6355
6356 /*
6357 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6358 * false if pte changed or is changing.
6359 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6360 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6361 pte_t *ptep, pte_t old_pte)
6362 {
6363 spinlock_t *ptl;
6364 bool same;
6365
6366 ptl = huge_pte_lock(h, mm, ptep);
6367 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6368 spin_unlock(ptl);
6369
6370 return same;
6371 }
6372
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6373 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6374 struct vm_fault *vmf)
6375 {
6376 struct vm_area_struct *vma = vmf->vma;
6377 struct mm_struct *mm = vma->vm_mm;
6378 struct hstate *h = hstate_vma(vma);
6379 vm_fault_t ret = VM_FAULT_SIGBUS;
6380 int anon_rmap = 0;
6381 unsigned long size;
6382 struct folio *folio;
6383 pte_t new_pte;
6384 bool new_folio, new_pagecache_folio = false;
6385 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6386
6387 /*
6388 * Currently, we are forced to kill the process in the event the
6389 * original mapper has unmapped pages from the child due to a failed
6390 * COW/unsharing. Warn that such a situation has occurred as it may not
6391 * be obvious.
6392 */
6393 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6394 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6395 current->pid);
6396 goto out;
6397 }
6398
6399 /*
6400 * Use page lock to guard against racing truncation
6401 * before we get page_table_lock.
6402 */
6403 new_folio = false;
6404 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6405 if (IS_ERR(folio)) {
6406 size = i_size_read(mapping->host) >> huge_page_shift(h);
6407 if (vmf->pgoff >= size)
6408 goto out;
6409 /* Check for page in userfault range */
6410 if (userfaultfd_missing(vma)) {
6411 /*
6412 * Since hugetlb_no_page() was examining pte
6413 * without pgtable lock, we need to re-test under
6414 * lock because the pte may not be stable and could
6415 * have changed from under us. Try to detect
6416 * either changed or during-changing ptes and retry
6417 * properly when needed.
6418 *
6419 * Note that userfaultfd is actually fine with
6420 * false positives (e.g. caused by pte changed),
6421 * but not wrong logical events (e.g. caused by
6422 * reading a pte during changing). The latter can
6423 * confuse the userspace, so the strictness is very
6424 * much preferred. E.g., MISSING event should
6425 * never happen on the page after UFFDIO_COPY has
6426 * correctly installed the page and returned.
6427 */
6428 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6429 ret = 0;
6430 goto out;
6431 }
6432
6433 return hugetlb_handle_userfault(vmf, mapping,
6434 VM_UFFD_MISSING);
6435 }
6436
6437 if (!(vma->vm_flags & VM_MAYSHARE)) {
6438 ret = __vmf_anon_prepare(vmf);
6439 if (unlikely(ret))
6440 goto out;
6441 }
6442
6443 folio = alloc_hugetlb_folio(vma, vmf->address, false);
6444 if (IS_ERR(folio)) {
6445 /*
6446 * Returning error will result in faulting task being
6447 * sent SIGBUS. The hugetlb fault mutex prevents two
6448 * tasks from racing to fault in the same page which
6449 * could result in false unable to allocate errors.
6450 * Page migration does not take the fault mutex, but
6451 * does a clear then write of pte's under page table
6452 * lock. Page fault code could race with migration,
6453 * notice the clear pte and try to allocate a page
6454 * here. Before returning error, get ptl and make
6455 * sure there really is no pte entry.
6456 */
6457 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6458 ret = vmf_error(PTR_ERR(folio));
6459 else
6460 ret = 0;
6461 goto out;
6462 }
6463 folio_zero_user(folio, vmf->real_address);
6464 __folio_mark_uptodate(folio);
6465 new_folio = true;
6466
6467 if (vma->vm_flags & VM_MAYSHARE) {
6468 int err = hugetlb_add_to_page_cache(folio, mapping,
6469 vmf->pgoff);
6470 if (err) {
6471 /*
6472 * err can't be -EEXIST which implies someone
6473 * else consumed the reservation since hugetlb
6474 * fault mutex is held when add a hugetlb page
6475 * to the page cache. So it's safe to call
6476 * restore_reserve_on_error() here.
6477 */
6478 restore_reserve_on_error(h, vma, vmf->address,
6479 folio);
6480 folio_put(folio);
6481 ret = VM_FAULT_SIGBUS;
6482 goto out;
6483 }
6484 new_pagecache_folio = true;
6485 } else {
6486 folio_lock(folio);
6487 anon_rmap = 1;
6488 }
6489 } else {
6490 /*
6491 * If memory error occurs between mmap() and fault, some process
6492 * don't have hwpoisoned swap entry for errored virtual address.
6493 * So we need to block hugepage fault by PG_hwpoison bit check.
6494 */
6495 if (unlikely(folio_test_hwpoison(folio))) {
6496 ret = VM_FAULT_HWPOISON_LARGE |
6497 VM_FAULT_SET_HINDEX(hstate_index(h));
6498 goto backout_unlocked;
6499 }
6500
6501 /* Check for page in userfault range. */
6502 if (userfaultfd_minor(vma)) {
6503 folio_unlock(folio);
6504 folio_put(folio);
6505 /* See comment in userfaultfd_missing() block above */
6506 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6507 ret = 0;
6508 goto out;
6509 }
6510 return hugetlb_handle_userfault(vmf, mapping,
6511 VM_UFFD_MINOR);
6512 }
6513 }
6514
6515 /*
6516 * If we are going to COW a private mapping later, we examine the
6517 * pending reservations for this page now. This will ensure that
6518 * any allocations necessary to record that reservation occur outside
6519 * the spinlock.
6520 */
6521 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6522 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6523 ret = VM_FAULT_OOM;
6524 goto backout_unlocked;
6525 }
6526 /* Just decrements count, does not deallocate */
6527 vma_end_reservation(h, vma, vmf->address);
6528 }
6529
6530 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6531 ret = 0;
6532 /* If pte changed from under us, retry */
6533 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6534 goto backout;
6535
6536 if (anon_rmap)
6537 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6538 else
6539 hugetlb_add_file_rmap(folio);
6540 new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED);
6541 /*
6542 * If this pte was previously wr-protected, keep it wr-protected even
6543 * if populated.
6544 */
6545 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6546 new_pte = huge_pte_mkuffd_wp(new_pte);
6547 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6548
6549 hugetlb_count_add(pages_per_huge_page(h), mm);
6550 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6551 /* Optimization, do the COW without a second fault */
6552 ret = hugetlb_wp(folio, vmf);
6553 }
6554
6555 spin_unlock(vmf->ptl);
6556
6557 /*
6558 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6559 * found in the pagecache may not have hugetlb_migratable if they have
6560 * been isolated for migration.
6561 */
6562 if (new_folio)
6563 folio_set_hugetlb_migratable(folio);
6564
6565 folio_unlock(folio);
6566 out:
6567 hugetlb_vma_unlock_read(vma);
6568
6569 /*
6570 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6571 * the only way ret can be set to VM_FAULT_RETRY.
6572 */
6573 if (unlikely(ret & VM_FAULT_RETRY))
6574 vma_end_read(vma);
6575
6576 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6577 return ret;
6578
6579 backout:
6580 spin_unlock(vmf->ptl);
6581 backout_unlocked:
6582 if (new_folio && !new_pagecache_folio)
6583 restore_reserve_on_error(h, vma, vmf->address, folio);
6584
6585 folio_unlock(folio);
6586 folio_put(folio);
6587 goto out;
6588 }
6589
6590 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6591 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6592 {
6593 unsigned long key[2];
6594 u32 hash;
6595
6596 key[0] = (unsigned long) mapping;
6597 key[1] = idx;
6598
6599 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6600
6601 return hash & (num_fault_mutexes - 1);
6602 }
6603 #else
6604 /*
6605 * For uniprocessor systems we always use a single mutex, so just
6606 * return 0 and avoid the hashing overhead.
6607 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6608 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6609 {
6610 return 0;
6611 }
6612 #endif
6613
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6614 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6615 unsigned long address, unsigned int flags)
6616 {
6617 vm_fault_t ret;
6618 u32 hash;
6619 struct folio *folio = NULL;
6620 struct folio *pagecache_folio = NULL;
6621 struct hstate *h = hstate_vma(vma);
6622 struct address_space *mapping;
6623 int need_wait_lock = 0;
6624 struct vm_fault vmf = {
6625 .vma = vma,
6626 .address = address & huge_page_mask(h),
6627 .real_address = address,
6628 .flags = flags,
6629 .pgoff = vma_hugecache_offset(h, vma,
6630 address & huge_page_mask(h)),
6631 /* TODO: Track hugetlb faults using vm_fault */
6632
6633 /*
6634 * Some fields may not be initialized, be careful as it may
6635 * be hard to debug if called functions make assumptions
6636 */
6637 };
6638
6639 /*
6640 * Serialize hugepage allocation and instantiation, so that we don't
6641 * get spurious allocation failures if two CPUs race to instantiate
6642 * the same page in the page cache.
6643 */
6644 mapping = vma->vm_file->f_mapping;
6645 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6646 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6647
6648 /*
6649 * Acquire vma lock before calling huge_pte_alloc and hold
6650 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6651 * being called elsewhere and making the vmf.pte no longer valid.
6652 */
6653 hugetlb_vma_lock_read(vma);
6654 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6655 if (!vmf.pte) {
6656 hugetlb_vma_unlock_read(vma);
6657 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6658 return VM_FAULT_OOM;
6659 }
6660
6661 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6662 if (huge_pte_none_mostly(vmf.orig_pte)) {
6663 if (is_pte_marker(vmf.orig_pte)) {
6664 pte_marker marker =
6665 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6666
6667 if (marker & PTE_MARKER_POISONED) {
6668 ret = VM_FAULT_HWPOISON_LARGE |
6669 VM_FAULT_SET_HINDEX(hstate_index(h));
6670 goto out_mutex;
6671 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6672 /* This isn't supported in hugetlb. */
6673 ret = VM_FAULT_SIGSEGV;
6674 goto out_mutex;
6675 }
6676 }
6677
6678 /*
6679 * Other PTE markers should be handled the same way as none PTE.
6680 *
6681 * hugetlb_no_page will drop vma lock and hugetlb fault
6682 * mutex internally, which make us return immediately.
6683 */
6684 return hugetlb_no_page(mapping, &vmf);
6685 }
6686
6687 ret = 0;
6688
6689 /*
6690 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6691 * point, so this check prevents the kernel from going below assuming
6692 * that we have an active hugepage in pagecache. This goto expects
6693 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6694 * check will properly handle it.
6695 */
6696 if (!pte_present(vmf.orig_pte)) {
6697 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6698 /*
6699 * Release the hugetlb fault lock now, but retain
6700 * the vma lock, because it is needed to guard the
6701 * huge_pte_lockptr() later in
6702 * migration_entry_wait_huge(). The vma lock will
6703 * be released there.
6704 */
6705 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6706 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6707 return 0;
6708 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6709 ret = VM_FAULT_HWPOISON_LARGE |
6710 VM_FAULT_SET_HINDEX(hstate_index(h));
6711 goto out_mutex;
6712 }
6713
6714 /*
6715 * If we are going to COW/unshare the mapping later, we examine the
6716 * pending reservations for this page now. This will ensure that any
6717 * allocations necessary to record that reservation occur outside the
6718 * spinlock. Also lookup the pagecache page now as it is used to
6719 * determine if a reservation has been consumed.
6720 */
6721 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6722 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6723 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6724 ret = VM_FAULT_OOM;
6725 goto out_mutex;
6726 }
6727 /* Just decrements count, does not deallocate */
6728 vma_end_reservation(h, vma, vmf.address);
6729
6730 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6731 vmf.pgoff);
6732 if (IS_ERR(pagecache_folio))
6733 pagecache_folio = NULL;
6734 }
6735
6736 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6737
6738 /* Check for a racing update before calling hugetlb_wp() */
6739 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6740 goto out_ptl;
6741
6742 /* Handle userfault-wp first, before trying to lock more pages */
6743 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6744 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6745 if (!userfaultfd_wp_async(vma)) {
6746 spin_unlock(vmf.ptl);
6747 if (pagecache_folio) {
6748 folio_unlock(pagecache_folio);
6749 folio_put(pagecache_folio);
6750 }
6751 hugetlb_vma_unlock_read(vma);
6752 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6753 return handle_userfault(&vmf, VM_UFFD_WP);
6754 }
6755
6756 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6757 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6758 huge_page_size(hstate_vma(vma)));
6759 /* Fallthrough to CoW */
6760 }
6761
6762 /*
6763 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6764 * pagecache_folio, so here we need take the former one
6765 * when folio != pagecache_folio or !pagecache_folio.
6766 */
6767 folio = page_folio(pte_page(vmf.orig_pte));
6768 if (folio != pagecache_folio)
6769 if (!folio_trylock(folio)) {
6770 need_wait_lock = 1;
6771 goto out_ptl;
6772 }
6773
6774 folio_get(folio);
6775
6776 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6777 if (!huge_pte_write(vmf.orig_pte)) {
6778 ret = hugetlb_wp(pagecache_folio, &vmf);
6779 goto out_put_page;
6780 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6781 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6782 }
6783 }
6784 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6785 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6786 flags & FAULT_FLAG_WRITE))
6787 update_mmu_cache(vma, vmf.address, vmf.pte);
6788 out_put_page:
6789 if (folio != pagecache_folio)
6790 folio_unlock(folio);
6791 folio_put(folio);
6792 out_ptl:
6793 spin_unlock(vmf.ptl);
6794
6795 if (pagecache_folio) {
6796 folio_unlock(pagecache_folio);
6797 folio_put(pagecache_folio);
6798 }
6799 out_mutex:
6800 hugetlb_vma_unlock_read(vma);
6801
6802 /*
6803 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6804 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6805 */
6806 if (unlikely(ret & VM_FAULT_RETRY))
6807 vma_end_read(vma);
6808
6809 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6810 /*
6811 * Generally it's safe to hold refcount during waiting page lock. But
6812 * here we just wait to defer the next page fault to avoid busy loop and
6813 * the page is not used after unlocked before returning from the current
6814 * page fault. So we are safe from accessing freed page, even if we wait
6815 * here without taking refcount.
6816 */
6817 if (need_wait_lock)
6818 folio_wait_locked(folio);
6819 return ret;
6820 }
6821
6822 #ifdef CONFIG_USERFAULTFD
6823 /*
6824 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6825 */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6826 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6827 struct vm_area_struct *vma, unsigned long address)
6828 {
6829 struct mempolicy *mpol;
6830 nodemask_t *nodemask;
6831 struct folio *folio;
6832 gfp_t gfp_mask;
6833 int node;
6834
6835 gfp_mask = htlb_alloc_mask(h);
6836 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6837 /*
6838 * This is used to allocate a temporary hugetlb to hold the copied
6839 * content, which will then be copied again to the final hugetlb
6840 * consuming a reservation. Set the alloc_fallback to false to indicate
6841 * that breaking the per-node hugetlb pool is not allowed in this case.
6842 */
6843 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6844 mpol_cond_put(mpol);
6845
6846 return folio;
6847 }
6848
6849 /*
6850 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6851 * with modifications for hugetlb pages.
6852 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6853 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6854 struct vm_area_struct *dst_vma,
6855 unsigned long dst_addr,
6856 unsigned long src_addr,
6857 uffd_flags_t flags,
6858 struct folio **foliop)
6859 {
6860 struct mm_struct *dst_mm = dst_vma->vm_mm;
6861 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6862 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6863 struct hstate *h = hstate_vma(dst_vma);
6864 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6865 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6866 unsigned long size = huge_page_size(h);
6867 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6868 pte_t _dst_pte;
6869 spinlock_t *ptl;
6870 int ret = -ENOMEM;
6871 struct folio *folio;
6872 bool folio_in_pagecache = false;
6873
6874 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6875 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6876
6877 /* Don't overwrite any existing PTEs (even markers) */
6878 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6879 spin_unlock(ptl);
6880 return -EEXIST;
6881 }
6882
6883 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6884 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6885
6886 /* No need to invalidate - it was non-present before */
6887 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6888
6889 spin_unlock(ptl);
6890 return 0;
6891 }
6892
6893 if (is_continue) {
6894 ret = -EFAULT;
6895 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6896 if (IS_ERR(folio))
6897 goto out;
6898 folio_in_pagecache = true;
6899 } else if (!*foliop) {
6900 /* If a folio already exists, then it's UFFDIO_COPY for
6901 * a non-missing case. Return -EEXIST.
6902 */
6903 if (vm_shared &&
6904 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6905 ret = -EEXIST;
6906 goto out;
6907 }
6908
6909 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6910 if (IS_ERR(folio)) {
6911 ret = -ENOMEM;
6912 goto out;
6913 }
6914
6915 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6916 false);
6917
6918 /* fallback to copy_from_user outside mmap_lock */
6919 if (unlikely(ret)) {
6920 ret = -ENOENT;
6921 /* Free the allocated folio which may have
6922 * consumed a reservation.
6923 */
6924 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6925 folio_put(folio);
6926
6927 /* Allocate a temporary folio to hold the copied
6928 * contents.
6929 */
6930 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6931 if (!folio) {
6932 ret = -ENOMEM;
6933 goto out;
6934 }
6935 *foliop = folio;
6936 /* Set the outparam foliop and return to the caller to
6937 * copy the contents outside the lock. Don't free the
6938 * folio.
6939 */
6940 goto out;
6941 }
6942 } else {
6943 if (vm_shared &&
6944 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6945 folio_put(*foliop);
6946 ret = -EEXIST;
6947 *foliop = NULL;
6948 goto out;
6949 }
6950
6951 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6952 if (IS_ERR(folio)) {
6953 folio_put(*foliop);
6954 ret = -ENOMEM;
6955 *foliop = NULL;
6956 goto out;
6957 }
6958 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6959 folio_put(*foliop);
6960 *foliop = NULL;
6961 if (ret) {
6962 folio_put(folio);
6963 goto out;
6964 }
6965 }
6966
6967 /*
6968 * If we just allocated a new page, we need a memory barrier to ensure
6969 * that preceding stores to the page become visible before the
6970 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6971 * is what we need.
6972 *
6973 * In the case where we have not allocated a new page (is_continue),
6974 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6975 * an earlier smp_wmb() to ensure that prior stores will be visible
6976 * before the set_pte_at() write.
6977 */
6978 if (!is_continue)
6979 __folio_mark_uptodate(folio);
6980 else
6981 WARN_ON_ONCE(!folio_test_uptodate(folio));
6982
6983 /* Add shared, newly allocated pages to the page cache. */
6984 if (vm_shared && !is_continue) {
6985 ret = -EFAULT;
6986 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6987 goto out_release_nounlock;
6988
6989 /*
6990 * Serialization between remove_inode_hugepages() and
6991 * hugetlb_add_to_page_cache() below happens through the
6992 * hugetlb_fault_mutex_table that here must be hold by
6993 * the caller.
6994 */
6995 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6996 if (ret)
6997 goto out_release_nounlock;
6998 folio_in_pagecache = true;
6999 }
7000
7001 ptl = huge_pte_lock(h, dst_mm, dst_pte);
7002
7003 ret = -EIO;
7004 if (folio_test_hwpoison(folio))
7005 goto out_release_unlock;
7006
7007 /*
7008 * We allow to overwrite a pte marker: consider when both MISSING|WP
7009 * registered, we firstly wr-protect a none pte which has no page cache
7010 * page backing it, then access the page.
7011 */
7012 ret = -EEXIST;
7013 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
7014 goto out_release_unlock;
7015
7016 if (folio_in_pagecache)
7017 hugetlb_add_file_rmap(folio);
7018 else
7019 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
7020
7021 /*
7022 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
7023 * with wp flag set, don't set pte write bit.
7024 */
7025 _dst_pte = make_huge_pte(dst_vma, &folio->page,
7026 !wp_enabled && !(is_continue && !vm_shared));
7027 /*
7028 * Always mark UFFDIO_COPY page dirty; note that this may not be
7029 * extremely important for hugetlbfs for now since swapping is not
7030 * supported, but we should still be clear in that this page cannot be
7031 * thrown away at will, even if write bit not set.
7032 */
7033 _dst_pte = huge_pte_mkdirty(_dst_pte);
7034 _dst_pte = pte_mkyoung(_dst_pte);
7035
7036 if (wp_enabled)
7037 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
7038
7039 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
7040
7041 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
7042
7043 /* No need to invalidate - it was non-present before */
7044 update_mmu_cache(dst_vma, dst_addr, dst_pte);
7045
7046 spin_unlock(ptl);
7047 if (!is_continue)
7048 folio_set_hugetlb_migratable(folio);
7049 if (vm_shared || is_continue)
7050 folio_unlock(folio);
7051 ret = 0;
7052 out:
7053 return ret;
7054 out_release_unlock:
7055 spin_unlock(ptl);
7056 if (vm_shared || is_continue)
7057 folio_unlock(folio);
7058 out_release_nounlock:
7059 if (!folio_in_pagecache)
7060 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
7061 folio_put(folio);
7062 goto out;
7063 }
7064 #endif /* CONFIG_USERFAULTFD */
7065
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)7066 long hugetlb_change_protection(struct vm_area_struct *vma,
7067 unsigned long address, unsigned long end,
7068 pgprot_t newprot, unsigned long cp_flags)
7069 {
7070 struct mm_struct *mm = vma->vm_mm;
7071 unsigned long start = address;
7072 pte_t *ptep;
7073 pte_t pte;
7074 struct hstate *h = hstate_vma(vma);
7075 long pages = 0, psize = huge_page_size(h);
7076 bool shared_pmd = false;
7077 struct mmu_notifier_range range;
7078 unsigned long last_addr_mask;
7079 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
7080 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
7081
7082 /*
7083 * In the case of shared PMDs, the area to flush could be beyond
7084 * start/end. Set range.start/range.end to cover the maximum possible
7085 * range if PMD sharing is possible.
7086 */
7087 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7088 0, mm, start, end);
7089 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
7090
7091 BUG_ON(address >= end);
7092 flush_cache_range(vma, range.start, range.end);
7093
7094 mmu_notifier_invalidate_range_start(&range);
7095 hugetlb_vma_lock_write(vma);
7096 i_mmap_lock_write(vma->vm_file->f_mapping);
7097 last_addr_mask = hugetlb_mask_last_page(h);
7098 for (; address < end; address += psize) {
7099 spinlock_t *ptl;
7100 ptep = hugetlb_walk(vma, address, psize);
7101 if (!ptep) {
7102 if (!uffd_wp) {
7103 address |= last_addr_mask;
7104 continue;
7105 }
7106 /*
7107 * Userfaultfd wr-protect requires pgtable
7108 * pre-allocations to install pte markers.
7109 */
7110 ptep = huge_pte_alloc(mm, vma, address, psize);
7111 if (!ptep) {
7112 pages = -ENOMEM;
7113 break;
7114 }
7115 }
7116 ptl = huge_pte_lock(h, mm, ptep);
7117 if (huge_pmd_unshare(mm, vma, address, ptep)) {
7118 /*
7119 * When uffd-wp is enabled on the vma, unshare
7120 * shouldn't happen at all. Warn about it if it
7121 * happened due to some reason.
7122 */
7123 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7124 pages++;
7125 spin_unlock(ptl);
7126 shared_pmd = true;
7127 address |= last_addr_mask;
7128 continue;
7129 }
7130 pte = huge_ptep_get(mm, address, ptep);
7131 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7132 /* Nothing to do. */
7133 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7134 swp_entry_t entry = pte_to_swp_entry(pte);
7135 struct page *page = pfn_swap_entry_to_page(entry);
7136 pte_t newpte = pte;
7137
7138 if (is_writable_migration_entry(entry)) {
7139 if (PageAnon(page))
7140 entry = make_readable_exclusive_migration_entry(
7141 swp_offset(entry));
7142 else
7143 entry = make_readable_migration_entry(
7144 swp_offset(entry));
7145 newpte = swp_entry_to_pte(entry);
7146 pages++;
7147 }
7148
7149 if (uffd_wp)
7150 newpte = pte_swp_mkuffd_wp(newpte);
7151 else if (uffd_wp_resolve)
7152 newpte = pte_swp_clear_uffd_wp(newpte);
7153 if (!pte_same(pte, newpte))
7154 set_huge_pte_at(mm, address, ptep, newpte, psize);
7155 } else if (unlikely(is_pte_marker(pte))) {
7156 /*
7157 * Do nothing on a poison marker; page is
7158 * corrupted, permissons do not apply. Here
7159 * pte_marker_uffd_wp()==true implies !poison
7160 * because they're mutual exclusive.
7161 */
7162 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7163 /* Safe to modify directly (non-present->none). */
7164 huge_pte_clear(mm, address, ptep, psize);
7165 } else if (!huge_pte_none(pte)) {
7166 pte_t old_pte;
7167 unsigned int shift = huge_page_shift(hstate_vma(vma));
7168
7169 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7170 pte = huge_pte_modify(old_pte, newprot);
7171 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7172 if (uffd_wp)
7173 pte = huge_pte_mkuffd_wp(pte);
7174 else if (uffd_wp_resolve)
7175 pte = huge_pte_clear_uffd_wp(pte);
7176 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7177 pages++;
7178 } else {
7179 /* None pte */
7180 if (unlikely(uffd_wp))
7181 /* Safe to modify directly (none->non-present). */
7182 set_huge_pte_at(mm, address, ptep,
7183 make_pte_marker(PTE_MARKER_UFFD_WP),
7184 psize);
7185 }
7186 spin_unlock(ptl);
7187 }
7188 /*
7189 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7190 * may have cleared our pud entry and done put_page on the page table:
7191 * once we release i_mmap_rwsem, another task can do the final put_page
7192 * and that page table be reused and filled with junk. If we actually
7193 * did unshare a page of pmds, flush the range corresponding to the pud.
7194 */
7195 if (shared_pmd)
7196 flush_hugetlb_tlb_range(vma, range.start, range.end);
7197 else
7198 flush_hugetlb_tlb_range(vma, start, end);
7199 /*
7200 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7201 * downgrading page table protection not changing it to point to a new
7202 * page.
7203 *
7204 * See Documentation/mm/mmu_notifier.rst
7205 */
7206 i_mmap_unlock_write(vma->vm_file->f_mapping);
7207 hugetlb_vma_unlock_write(vma);
7208 mmu_notifier_invalidate_range_end(&range);
7209
7210 return pages > 0 ? (pages << h->order) : pages;
7211 }
7212
7213 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)7214 bool hugetlb_reserve_pages(struct inode *inode,
7215 long from, long to,
7216 struct vm_area_struct *vma,
7217 vm_flags_t vm_flags)
7218 {
7219 long chg = -1, add = -1;
7220 struct hstate *h = hstate_inode(inode);
7221 struct hugepage_subpool *spool = subpool_inode(inode);
7222 struct resv_map *resv_map;
7223 struct hugetlb_cgroup *h_cg = NULL;
7224 long gbl_reserve, regions_needed = 0;
7225
7226 /* This should never happen */
7227 if (from > to) {
7228 VM_WARN(1, "%s called with a negative range\n", __func__);
7229 return false;
7230 }
7231
7232 /*
7233 * vma specific semaphore used for pmd sharing and fault/truncation
7234 * synchronization
7235 */
7236 hugetlb_vma_lock_alloc(vma);
7237
7238 /*
7239 * Only apply hugepage reservation if asked. At fault time, an
7240 * attempt will be made for VM_NORESERVE to allocate a page
7241 * without using reserves
7242 */
7243 if (vm_flags & VM_NORESERVE)
7244 return true;
7245
7246 /*
7247 * Shared mappings base their reservation on the number of pages that
7248 * are already allocated on behalf of the file. Private mappings need
7249 * to reserve the full area even if read-only as mprotect() may be
7250 * called to make the mapping read-write. Assume !vma is a shm mapping
7251 */
7252 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7253 /*
7254 * resv_map can not be NULL as hugetlb_reserve_pages is only
7255 * called for inodes for which resv_maps were created (see
7256 * hugetlbfs_get_inode).
7257 */
7258 resv_map = inode_resv_map(inode);
7259
7260 chg = region_chg(resv_map, from, to, ®ions_needed);
7261 } else {
7262 /* Private mapping. */
7263 resv_map = resv_map_alloc();
7264 if (!resv_map)
7265 goto out_err;
7266
7267 chg = to - from;
7268
7269 set_vma_resv_map(vma, resv_map);
7270 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7271 }
7272
7273 if (chg < 0)
7274 goto out_err;
7275
7276 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7277 chg * pages_per_huge_page(h), &h_cg) < 0)
7278 goto out_err;
7279
7280 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7281 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7282 * of the resv_map.
7283 */
7284 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7285 }
7286
7287 /*
7288 * There must be enough pages in the subpool for the mapping. If
7289 * the subpool has a minimum size, there may be some global
7290 * reservations already in place (gbl_reserve).
7291 */
7292 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7293 if (gbl_reserve < 0)
7294 goto out_uncharge_cgroup;
7295
7296 /*
7297 * Check enough hugepages are available for the reservation.
7298 * Hand the pages back to the subpool if there are not
7299 */
7300 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7301 goto out_put_pages;
7302
7303 /*
7304 * Account for the reservations made. Shared mappings record regions
7305 * that have reservations as they are shared by multiple VMAs.
7306 * When the last VMA disappears, the region map says how much
7307 * the reservation was and the page cache tells how much of
7308 * the reservation was consumed. Private mappings are per-VMA and
7309 * only the consumed reservations are tracked. When the VMA
7310 * disappears, the original reservation is the VMA size and the
7311 * consumed reservations are stored in the map. Hence, nothing
7312 * else has to be done for private mappings here
7313 */
7314 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7315 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7316
7317 if (unlikely(add < 0)) {
7318 hugetlb_acct_memory(h, -gbl_reserve);
7319 goto out_put_pages;
7320 } else if (unlikely(chg > add)) {
7321 /*
7322 * pages in this range were added to the reserve
7323 * map between region_chg and region_add. This
7324 * indicates a race with alloc_hugetlb_folio. Adjust
7325 * the subpool and reserve counts modified above
7326 * based on the difference.
7327 */
7328 long rsv_adjust;
7329
7330 /*
7331 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7332 * reference to h_cg->css. See comment below for detail.
7333 */
7334 hugetlb_cgroup_uncharge_cgroup_rsvd(
7335 hstate_index(h),
7336 (chg - add) * pages_per_huge_page(h), h_cg);
7337
7338 rsv_adjust = hugepage_subpool_put_pages(spool,
7339 chg - add);
7340 hugetlb_acct_memory(h, -rsv_adjust);
7341 } else if (h_cg) {
7342 /*
7343 * The file_regions will hold their own reference to
7344 * h_cg->css. So we should release the reference held
7345 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7346 * done.
7347 */
7348 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7349 }
7350 }
7351 return true;
7352
7353 out_put_pages:
7354 /* put back original number of pages, chg */
7355 (void)hugepage_subpool_put_pages(spool, chg);
7356 out_uncharge_cgroup:
7357 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7358 chg * pages_per_huge_page(h), h_cg);
7359 out_err:
7360 hugetlb_vma_lock_free(vma);
7361 if (!vma || vma->vm_flags & VM_MAYSHARE)
7362 /* Only call region_abort if the region_chg succeeded but the
7363 * region_add failed or didn't run.
7364 */
7365 if (chg >= 0 && add < 0)
7366 region_abort(resv_map, from, to, regions_needed);
7367 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7368 kref_put(&resv_map->refs, resv_map_release);
7369 set_vma_resv_map(vma, NULL);
7370 }
7371 return false;
7372 }
7373
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7374 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7375 long freed)
7376 {
7377 struct hstate *h = hstate_inode(inode);
7378 struct resv_map *resv_map = inode_resv_map(inode);
7379 long chg = 0;
7380 struct hugepage_subpool *spool = subpool_inode(inode);
7381 long gbl_reserve;
7382
7383 /*
7384 * Since this routine can be called in the evict inode path for all
7385 * hugetlbfs inodes, resv_map could be NULL.
7386 */
7387 if (resv_map) {
7388 chg = region_del(resv_map, start, end);
7389 /*
7390 * region_del() can fail in the rare case where a region
7391 * must be split and another region descriptor can not be
7392 * allocated. If end == LONG_MAX, it will not fail.
7393 */
7394 if (chg < 0)
7395 return chg;
7396 }
7397
7398 spin_lock(&inode->i_lock);
7399 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7400 spin_unlock(&inode->i_lock);
7401
7402 /*
7403 * If the subpool has a minimum size, the number of global
7404 * reservations to be released may be adjusted.
7405 *
7406 * Note that !resv_map implies freed == 0. So (chg - freed)
7407 * won't go negative.
7408 */
7409 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7410 hugetlb_acct_memory(h, -gbl_reserve);
7411
7412 return 0;
7413 }
7414
7415 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7416 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7417 struct vm_area_struct *vma,
7418 unsigned long addr, pgoff_t idx)
7419 {
7420 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7421 svma->vm_start;
7422 unsigned long sbase = saddr & PUD_MASK;
7423 unsigned long s_end = sbase + PUD_SIZE;
7424
7425 /* Allow segments to share if only one is marked locked */
7426 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7427 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7428
7429 /*
7430 * match the virtual addresses, permission and the alignment of the
7431 * page table page.
7432 *
7433 * Also, vma_lock (vm_private_data) is required for sharing.
7434 */
7435 if (pmd_index(addr) != pmd_index(saddr) ||
7436 vm_flags != svm_flags ||
7437 !range_in_vma(svma, sbase, s_end) ||
7438 !svma->vm_private_data)
7439 return 0;
7440
7441 return saddr;
7442 }
7443
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7444 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7445 {
7446 unsigned long start = addr & PUD_MASK;
7447 unsigned long end = start + PUD_SIZE;
7448
7449 #ifdef CONFIG_USERFAULTFD
7450 if (uffd_disable_huge_pmd_share(vma))
7451 return false;
7452 #endif
7453 /*
7454 * check on proper vm_flags and page table alignment
7455 */
7456 if (!(vma->vm_flags & VM_MAYSHARE))
7457 return false;
7458 if (!vma->vm_private_data) /* vma lock required for sharing */
7459 return false;
7460 if (!range_in_vma(vma, start, end))
7461 return false;
7462 return true;
7463 }
7464
7465 /*
7466 * Determine if start,end range within vma could be mapped by shared pmd.
7467 * If yes, adjust start and end to cover range associated with possible
7468 * shared pmd mappings.
7469 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7470 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7471 unsigned long *start, unsigned long *end)
7472 {
7473 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7474 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7475
7476 /*
7477 * vma needs to span at least one aligned PUD size, and the range
7478 * must be at least partially within in.
7479 */
7480 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7481 (*end <= v_start) || (*start >= v_end))
7482 return;
7483
7484 /* Extend the range to be PUD aligned for a worst case scenario */
7485 if (*start > v_start)
7486 *start = ALIGN_DOWN(*start, PUD_SIZE);
7487
7488 if (*end < v_end)
7489 *end = ALIGN(*end, PUD_SIZE);
7490 }
7491
7492 /*
7493 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7494 * and returns the corresponding pte. While this is not necessary for the
7495 * !shared pmd case because we can allocate the pmd later as well, it makes the
7496 * code much cleaner. pmd allocation is essential for the shared case because
7497 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7498 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7499 * bad pmd for sharing.
7500 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7501 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7502 unsigned long addr, pud_t *pud)
7503 {
7504 struct address_space *mapping = vma->vm_file->f_mapping;
7505 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7506 vma->vm_pgoff;
7507 struct vm_area_struct *svma;
7508 unsigned long saddr;
7509 pte_t *spte = NULL;
7510 pte_t *pte;
7511
7512 i_mmap_lock_read(mapping);
7513 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7514 if (svma == vma)
7515 continue;
7516
7517 saddr = page_table_shareable(svma, vma, addr, idx);
7518 if (saddr) {
7519 spte = hugetlb_walk(svma, saddr,
7520 vma_mmu_pagesize(svma));
7521 if (spte) {
7522 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7523 break;
7524 }
7525 }
7526 }
7527
7528 if (!spte)
7529 goto out;
7530
7531 spin_lock(&mm->page_table_lock);
7532 if (pud_none(*pud)) {
7533 pud_populate(mm, pud,
7534 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7535 mm_inc_nr_pmds(mm);
7536 } else {
7537 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7538 }
7539 spin_unlock(&mm->page_table_lock);
7540 out:
7541 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7542 i_mmap_unlock_read(mapping);
7543 return pte;
7544 }
7545
7546 /*
7547 * unmap huge page backed by shared pte.
7548 *
7549 * Called with page table lock held.
7550 *
7551 * returns: 1 successfully unmapped a shared pte page
7552 * 0 the underlying pte page is not shared, or it is the last user
7553 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7554 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7555 unsigned long addr, pte_t *ptep)
7556 {
7557 unsigned long sz = huge_page_size(hstate_vma(vma));
7558 pgd_t *pgd = pgd_offset(mm, addr);
7559 p4d_t *p4d = p4d_offset(pgd, addr);
7560 pud_t *pud = pud_offset(p4d, addr);
7561
7562 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7563 hugetlb_vma_assert_locked(vma);
7564 if (sz != PMD_SIZE)
7565 return 0;
7566 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7567 return 0;
7568
7569 pud_clear(pud);
7570 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7571 mm_dec_nr_pmds(mm);
7572 return 1;
7573 }
7574
7575 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7576
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7577 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7578 unsigned long addr, pud_t *pud)
7579 {
7580 return NULL;
7581 }
7582
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7583 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7584 unsigned long addr, pte_t *ptep)
7585 {
7586 return 0;
7587 }
7588
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7589 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7590 unsigned long *start, unsigned long *end)
7591 {
7592 }
7593
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7594 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7595 {
7596 return false;
7597 }
7598 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7599
7600 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7601 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7602 unsigned long addr, unsigned long sz)
7603 {
7604 pgd_t *pgd;
7605 p4d_t *p4d;
7606 pud_t *pud;
7607 pte_t *pte = NULL;
7608
7609 pgd = pgd_offset(mm, addr);
7610 p4d = p4d_alloc(mm, pgd, addr);
7611 if (!p4d)
7612 return NULL;
7613 pud = pud_alloc(mm, p4d, addr);
7614 if (pud) {
7615 if (sz == PUD_SIZE) {
7616 pte = (pte_t *)pud;
7617 } else {
7618 BUG_ON(sz != PMD_SIZE);
7619 if (want_pmd_share(vma, addr) && pud_none(*pud))
7620 pte = huge_pmd_share(mm, vma, addr, pud);
7621 else
7622 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7623 }
7624 }
7625
7626 if (pte) {
7627 pte_t pteval = ptep_get_lockless(pte);
7628
7629 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7630 }
7631
7632 return pte;
7633 }
7634
7635 /*
7636 * huge_pte_offset() - Walk the page table to resolve the hugepage
7637 * entry at address @addr
7638 *
7639 * Return: Pointer to page table entry (PUD or PMD) for
7640 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7641 * size @sz doesn't match the hugepage size at this level of the page
7642 * table.
7643 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7644 pte_t *huge_pte_offset(struct mm_struct *mm,
7645 unsigned long addr, unsigned long sz)
7646 {
7647 pgd_t *pgd;
7648 p4d_t *p4d;
7649 pud_t *pud;
7650 pmd_t *pmd;
7651
7652 pgd = pgd_offset(mm, addr);
7653 if (!pgd_present(*pgd))
7654 return NULL;
7655 p4d = p4d_offset(pgd, addr);
7656 if (!p4d_present(*p4d))
7657 return NULL;
7658
7659 pud = pud_offset(p4d, addr);
7660 if (sz == PUD_SIZE)
7661 /* must be pud huge, non-present or none */
7662 return (pte_t *)pud;
7663 if (!pud_present(*pud))
7664 return NULL;
7665 /* must have a valid entry and size to go further */
7666
7667 pmd = pmd_offset(pud, addr);
7668 /* must be pmd huge, non-present or none */
7669 return (pte_t *)pmd;
7670 }
7671
7672 /*
7673 * Return a mask that can be used to update an address to the last huge
7674 * page in a page table page mapping size. Used to skip non-present
7675 * page table entries when linearly scanning address ranges. Architectures
7676 * with unique huge page to page table relationships can define their own
7677 * version of this routine.
7678 */
hugetlb_mask_last_page(struct hstate * h)7679 unsigned long hugetlb_mask_last_page(struct hstate *h)
7680 {
7681 unsigned long hp_size = huge_page_size(h);
7682
7683 if (hp_size == PUD_SIZE)
7684 return P4D_SIZE - PUD_SIZE;
7685 else if (hp_size == PMD_SIZE)
7686 return PUD_SIZE - PMD_SIZE;
7687 else
7688 return 0UL;
7689 }
7690
7691 #else
7692
7693 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7694 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7695 {
7696 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7697 if (huge_page_size(h) == PMD_SIZE)
7698 return PUD_SIZE - PMD_SIZE;
7699 #endif
7700 return 0UL;
7701 }
7702
7703 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7704
7705 /**
7706 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7707 * @folio: the folio to isolate
7708 * @list: the list to add the folio to on success
7709 *
7710 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7711 * isolated/non-migratable, and moving it from the active list to the
7712 * given list.
7713 *
7714 * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7715 * it is already isolated/non-migratable.
7716 *
7717 * On success, an additional folio reference is taken that must be dropped
7718 * using folio_putback_hugetlb() to undo the isolation.
7719 *
7720 * Return: True if isolation worked, otherwise False.
7721 */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7722 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7723 {
7724 bool ret = true;
7725
7726 spin_lock_irq(&hugetlb_lock);
7727 if (!folio_test_hugetlb(folio) ||
7728 !folio_test_hugetlb_migratable(folio) ||
7729 !folio_try_get(folio)) {
7730 ret = false;
7731 goto unlock;
7732 }
7733 folio_clear_hugetlb_migratable(folio);
7734 list_move_tail(&folio->lru, list);
7735 unlock:
7736 spin_unlock_irq(&hugetlb_lock);
7737 return ret;
7738 }
7739
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7740 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7741 {
7742 int ret = 0;
7743
7744 *hugetlb = false;
7745 spin_lock_irq(&hugetlb_lock);
7746 if (folio_test_hugetlb(folio)) {
7747 *hugetlb = true;
7748 if (folio_test_hugetlb_freed(folio))
7749 ret = 0;
7750 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7751 ret = folio_try_get(folio);
7752 else
7753 ret = -EBUSY;
7754 }
7755 spin_unlock_irq(&hugetlb_lock);
7756 return ret;
7757 }
7758
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7759 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7760 bool *migratable_cleared)
7761 {
7762 int ret;
7763
7764 spin_lock_irq(&hugetlb_lock);
7765 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7766 spin_unlock_irq(&hugetlb_lock);
7767 return ret;
7768 }
7769
7770 /**
7771 * folio_putback_hugetlb - unisolate a hugetlb folio
7772 * @folio: the isolated hugetlb folio
7773 *
7774 * Putback/un-isolate the hugetlb folio that was previous isolated using
7775 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7776 * back onto the active list.
7777 *
7778 * Will drop the additional folio reference obtained through
7779 * folio_isolate_hugetlb().
7780 */
folio_putback_hugetlb(struct folio * folio)7781 void folio_putback_hugetlb(struct folio *folio)
7782 {
7783 spin_lock_irq(&hugetlb_lock);
7784 folio_set_hugetlb_migratable(folio);
7785 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7786 spin_unlock_irq(&hugetlb_lock);
7787 folio_put(folio);
7788 }
7789
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7790 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7791 {
7792 struct hstate *h = folio_hstate(old_folio);
7793
7794 hugetlb_cgroup_migrate(old_folio, new_folio);
7795 set_page_owner_migrate_reason(&new_folio->page, reason);
7796
7797 /*
7798 * transfer temporary state of the new hugetlb folio. This is
7799 * reverse to other transitions because the newpage is going to
7800 * be final while the old one will be freed so it takes over
7801 * the temporary status.
7802 *
7803 * Also note that we have to transfer the per-node surplus state
7804 * here as well otherwise the global surplus count will not match
7805 * the per-node's.
7806 */
7807 if (folio_test_hugetlb_temporary(new_folio)) {
7808 int old_nid = folio_nid(old_folio);
7809 int new_nid = folio_nid(new_folio);
7810
7811 folio_set_hugetlb_temporary(old_folio);
7812 folio_clear_hugetlb_temporary(new_folio);
7813
7814
7815 /*
7816 * There is no need to transfer the per-node surplus state
7817 * when we do not cross the node.
7818 */
7819 if (new_nid == old_nid)
7820 return;
7821 spin_lock_irq(&hugetlb_lock);
7822 if (h->surplus_huge_pages_node[old_nid]) {
7823 h->surplus_huge_pages_node[old_nid]--;
7824 h->surplus_huge_pages_node[new_nid]++;
7825 }
7826 spin_unlock_irq(&hugetlb_lock);
7827 }
7828
7829 /*
7830 * Our old folio is isolated and has "migratable" cleared until it
7831 * is putback. As migration succeeded, set the new folio "migratable"
7832 * and add it to the active list.
7833 */
7834 spin_lock_irq(&hugetlb_lock);
7835 folio_set_hugetlb_migratable(new_folio);
7836 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7837 spin_unlock_irq(&hugetlb_lock);
7838 }
7839
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7840 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7841 unsigned long start,
7842 unsigned long end)
7843 {
7844 struct hstate *h = hstate_vma(vma);
7845 unsigned long sz = huge_page_size(h);
7846 struct mm_struct *mm = vma->vm_mm;
7847 struct mmu_notifier_range range;
7848 unsigned long address;
7849 spinlock_t *ptl;
7850 pte_t *ptep;
7851
7852 if (!(vma->vm_flags & VM_MAYSHARE))
7853 return;
7854
7855 if (start >= end)
7856 return;
7857
7858 flush_cache_range(vma, start, end);
7859 /*
7860 * No need to call adjust_range_if_pmd_sharing_possible(), because
7861 * we have already done the PUD_SIZE alignment.
7862 */
7863 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7864 start, end);
7865 mmu_notifier_invalidate_range_start(&range);
7866 hugetlb_vma_lock_write(vma);
7867 i_mmap_lock_write(vma->vm_file->f_mapping);
7868 for (address = start; address < end; address += PUD_SIZE) {
7869 ptep = hugetlb_walk(vma, address, sz);
7870 if (!ptep)
7871 continue;
7872 ptl = huge_pte_lock(h, mm, ptep);
7873 huge_pmd_unshare(mm, vma, address, ptep);
7874 spin_unlock(ptl);
7875 }
7876 flush_hugetlb_tlb_range(vma, start, end);
7877 i_mmap_unlock_write(vma->vm_file->f_mapping);
7878 hugetlb_vma_unlock_write(vma);
7879 /*
7880 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7881 * Documentation/mm/mmu_notifier.rst.
7882 */
7883 mmu_notifier_invalidate_range_end(&range);
7884 }
7885
7886 /*
7887 * This function will unconditionally remove all the shared pmd pgtable entries
7888 * within the specific vma for a hugetlbfs memory range.
7889 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7890 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7891 {
7892 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7893 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7894 }
7895