1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpumask.h>
18 #include <linux/cpuset.h>
19 #include <linux/mutex.h>
20 #include <linux/memblock.h>
21 #include <linux/minmax.h>
22 #include <linux/sysfs.h>
23 #include <linux/slab.h>
24 #include <linux/sched/mm.h>
25 #include <linux/mmdebug.h>
26 #include <linux/sched/signal.h>
27 #include <linux/rmap.h>
28 #include <linux/string_helpers.h>
29 #include <linux/swap.h>
30 #include <linux/swapops.h>
31 #include <linux/jhash.h>
32 #include <linux/numa.h>
33 #include <linux/llist.h>
34 #include <linux/cma.h>
35 #include <linux/migrate.h>
36 #include <linux/nospec.h>
37 #include <linux/delayacct.h>
38 #include <linux/memory.h>
39 #include <linux/mm_inline.h>
40 #include <linux/padata.h>
41
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/tlb.h>
45 #include <asm/setup.h>
46
47 #include <linux/io.h>
48 #include <linux/hugetlb.h>
49 #include <linux/hugetlb_cgroup.h>
50 #include <linux/node.h>
51 #include <linux/page_owner.h>
52 #include "internal.h"
53 #include "hugetlb_vmemmap.h"
54 #include "hugetlb_cma.h"
55 #include <linux/page-isolation.h>
56
57 int hugetlb_max_hstate __read_mostly;
58 unsigned int default_hstate_idx;
59 struct hstate hstates[HUGE_MAX_HSTATE];
60
61 __initdata nodemask_t hugetlb_bootmem_nodes;
62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
64
65 /*
66 * Due to ordering constraints across the init code for various
67 * architectures, hugetlb hstate cmdline parameters can't simply
68 * be early_param. early_param might call the setup function
69 * before valid hugetlb page sizes are determined, leading to
70 * incorrect rejection of valid hugepagesz= options.
71 *
72 * So, record the parameters early and consume them whenever the
73 * init code is ready for them, by calling hugetlb_parse_params().
74 */
75
76 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
77 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
78 struct hugetlb_cmdline {
79 char *val;
80 int (*setup)(char *val);
81 };
82
83 /* for command line parsing */
84 static struct hstate * __initdata parsed_hstate;
85 static unsigned long __initdata default_hstate_max_huge_pages;
86 static bool __initdata parsed_valid_hugepagesz = true;
87 static bool __initdata parsed_default_hugepagesz;
88 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
89 static unsigned long hugepage_allocation_threads __initdata;
90
91 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
92 static int hstate_cmdline_index __initdata;
93 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
94 static int hugetlb_param_index __initdata;
95 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
96 static __init void hugetlb_parse_params(void);
97
98 #define hugetlb_early_param(str, func) \
99 static __init int func##args(char *s) \
100 { \
101 return hugetlb_add_param(s, func); \
102 } \
103 early_param(str, func##args)
104
105 /*
106 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
107 * free_huge_pages, and surplus_huge_pages.
108 */
109 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
110
111 /*
112 * Serializes faults on the same logical page. This is used to
113 * prevent spurious OOMs when the hugepage pool is fully utilized.
114 */
115 static int num_fault_mutexes __ro_after_init;
116 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
117
118 /* Forward declaration */
119 static int hugetlb_acct_memory(struct hstate *h, long delta);
120 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
121 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
122 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
123 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
124 unsigned long start, unsigned long end, bool take_locks);
125 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
126
hugetlb_free_folio(struct folio * folio)127 static void hugetlb_free_folio(struct folio *folio)
128 {
129 if (folio_test_hugetlb_cma(folio)) {
130 hugetlb_cma_free_folio(folio);
131 return;
132 }
133
134 folio_put(folio);
135 }
136
subpool_is_free(struct hugepage_subpool * spool)137 static inline bool subpool_is_free(struct hugepage_subpool *spool)
138 {
139 if (spool->count)
140 return false;
141 if (spool->max_hpages != -1)
142 return spool->used_hpages == 0;
143 if (spool->min_hpages != -1)
144 return spool->rsv_hpages == spool->min_hpages;
145
146 return true;
147 }
148
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)149 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
150 unsigned long irq_flags)
151 {
152 spin_unlock_irqrestore(&spool->lock, irq_flags);
153
154 /* If no pages are used, and no other handles to the subpool
155 * remain, give up any reservations based on minimum size and
156 * free the subpool */
157 if (subpool_is_free(spool)) {
158 if (spool->min_hpages != -1)
159 hugetlb_acct_memory(spool->hstate,
160 -spool->min_hpages);
161 kfree(spool);
162 }
163 }
164
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)165 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
166 long min_hpages)
167 {
168 struct hugepage_subpool *spool;
169
170 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
171 if (!spool)
172 return NULL;
173
174 spin_lock_init(&spool->lock);
175 spool->count = 1;
176 spool->max_hpages = max_hpages;
177 spool->hstate = h;
178 spool->min_hpages = min_hpages;
179
180 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
181 kfree(spool);
182 return NULL;
183 }
184 spool->rsv_hpages = min_hpages;
185
186 return spool;
187 }
188
hugepage_put_subpool(struct hugepage_subpool * spool)189 void hugepage_put_subpool(struct hugepage_subpool *spool)
190 {
191 unsigned long flags;
192
193 spin_lock_irqsave(&spool->lock, flags);
194 BUG_ON(!spool->count);
195 spool->count--;
196 unlock_or_release_subpool(spool, flags);
197 }
198
199 /*
200 * Subpool accounting for allocating and reserving pages.
201 * Return -ENOMEM if there are not enough resources to satisfy the
202 * request. Otherwise, return the number of pages by which the
203 * global pools must be adjusted (upward). The returned value may
204 * only be different than the passed value (delta) in the case where
205 * a subpool minimum size must be maintained.
206 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)207 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
208 long delta)
209 {
210 long ret = delta;
211
212 if (!spool)
213 return ret;
214
215 spin_lock_irq(&spool->lock);
216
217 if (spool->max_hpages != -1) { /* maximum size accounting */
218 if ((spool->used_hpages + delta) <= spool->max_hpages)
219 spool->used_hpages += delta;
220 else {
221 ret = -ENOMEM;
222 goto unlock_ret;
223 }
224 }
225
226 /* minimum size accounting */
227 if (spool->min_hpages != -1 && spool->rsv_hpages) {
228 if (delta > spool->rsv_hpages) {
229 /*
230 * Asking for more reserves than those already taken on
231 * behalf of subpool. Return difference.
232 */
233 ret = delta - spool->rsv_hpages;
234 spool->rsv_hpages = 0;
235 } else {
236 ret = 0; /* reserves already accounted for */
237 spool->rsv_hpages -= delta;
238 }
239 }
240
241 unlock_ret:
242 spin_unlock_irq(&spool->lock);
243 return ret;
244 }
245
246 /*
247 * Subpool accounting for freeing and unreserving pages.
248 * Return the number of global page reservations that must be dropped.
249 * The return value may only be different than the passed value (delta)
250 * in the case where a subpool minimum size must be maintained.
251 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)252 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
253 long delta)
254 {
255 long ret = delta;
256 unsigned long flags;
257
258 if (!spool)
259 return delta;
260
261 spin_lock_irqsave(&spool->lock, flags);
262
263 if (spool->max_hpages != -1) /* maximum size accounting */
264 spool->used_hpages -= delta;
265
266 /* minimum size accounting */
267 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
268 if (spool->rsv_hpages + delta <= spool->min_hpages)
269 ret = 0;
270 else
271 ret = spool->rsv_hpages + delta - spool->min_hpages;
272
273 spool->rsv_hpages += delta;
274 if (spool->rsv_hpages > spool->min_hpages)
275 spool->rsv_hpages = spool->min_hpages;
276 }
277
278 /*
279 * If hugetlbfs_put_super couldn't free spool due to an outstanding
280 * quota reference, free it now.
281 */
282 unlock_or_release_subpool(spool, flags);
283
284 return ret;
285 }
286
subpool_inode(struct inode * inode)287 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
288 {
289 return HUGETLBFS_SB(inode->i_sb)->spool;
290 }
291
subpool_vma(struct vm_area_struct * vma)292 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
293 {
294 return subpool_inode(file_inode(vma->vm_file));
295 }
296
297 /*
298 * hugetlb vma_lock helper routines
299 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)300 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
301 {
302 if (__vma_shareable_lock(vma)) {
303 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
304
305 down_read(&vma_lock->rw_sema);
306 } else if (__vma_private_lock(vma)) {
307 struct resv_map *resv_map = vma_resv_map(vma);
308
309 down_read(&resv_map->rw_sema);
310 }
311 }
312
hugetlb_vma_unlock_read(struct vm_area_struct * vma)313 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
314 {
315 if (__vma_shareable_lock(vma)) {
316 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
317
318 up_read(&vma_lock->rw_sema);
319 } else if (__vma_private_lock(vma)) {
320 struct resv_map *resv_map = vma_resv_map(vma);
321
322 up_read(&resv_map->rw_sema);
323 }
324 }
325
hugetlb_vma_lock_write(struct vm_area_struct * vma)326 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
327 {
328 if (__vma_shareable_lock(vma)) {
329 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
330
331 down_write(&vma_lock->rw_sema);
332 } else if (__vma_private_lock(vma)) {
333 struct resv_map *resv_map = vma_resv_map(vma);
334
335 down_write(&resv_map->rw_sema);
336 }
337 }
338
hugetlb_vma_unlock_write(struct vm_area_struct * vma)339 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
340 {
341 if (__vma_shareable_lock(vma)) {
342 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
343
344 up_write(&vma_lock->rw_sema);
345 } else if (__vma_private_lock(vma)) {
346 struct resv_map *resv_map = vma_resv_map(vma);
347
348 up_write(&resv_map->rw_sema);
349 }
350 }
351
hugetlb_vma_trylock_write(struct vm_area_struct * vma)352 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
353 {
354
355 if (__vma_shareable_lock(vma)) {
356 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
357
358 return down_write_trylock(&vma_lock->rw_sema);
359 } else if (__vma_private_lock(vma)) {
360 struct resv_map *resv_map = vma_resv_map(vma);
361
362 return down_write_trylock(&resv_map->rw_sema);
363 }
364
365 return 1;
366 }
367
hugetlb_vma_assert_locked(struct vm_area_struct * vma)368 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
369 {
370 if (__vma_shareable_lock(vma)) {
371 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
372
373 lockdep_assert_held(&vma_lock->rw_sema);
374 } else if (__vma_private_lock(vma)) {
375 struct resv_map *resv_map = vma_resv_map(vma);
376
377 lockdep_assert_held(&resv_map->rw_sema);
378 }
379 }
380
hugetlb_vma_lock_release(struct kref * kref)381 void hugetlb_vma_lock_release(struct kref *kref)
382 {
383 struct hugetlb_vma_lock *vma_lock = container_of(kref,
384 struct hugetlb_vma_lock, refs);
385
386 kfree(vma_lock);
387 }
388
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)389 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
390 {
391 struct vm_area_struct *vma = vma_lock->vma;
392
393 /*
394 * vma_lock structure may or not be released as a result of put,
395 * it certainly will no longer be attached to vma so clear pointer.
396 * Semaphore synchronizes access to vma_lock->vma field.
397 */
398 vma_lock->vma = NULL;
399 vma->vm_private_data = NULL;
400 up_write(&vma_lock->rw_sema);
401 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
402 }
403
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)404 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
405 {
406 if (__vma_shareable_lock(vma)) {
407 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
408
409 __hugetlb_vma_unlock_write_put(vma_lock);
410 } else if (__vma_private_lock(vma)) {
411 struct resv_map *resv_map = vma_resv_map(vma);
412
413 /* no free for anon vmas, but still need to unlock */
414 up_write(&resv_map->rw_sema);
415 }
416 }
417
hugetlb_vma_lock_free(struct vm_area_struct * vma)418 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
419 {
420 /*
421 * Only present in sharable vmas.
422 */
423 if (!vma || !__vma_shareable_lock(vma))
424 return;
425
426 if (vma->vm_private_data) {
427 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
428
429 down_write(&vma_lock->rw_sema);
430 __hugetlb_vma_unlock_write_put(vma_lock);
431 }
432 }
433
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)434 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
435 {
436 struct hugetlb_vma_lock *vma_lock;
437
438 /* Only establish in (flags) sharable vmas */
439 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
440 return;
441
442 /* Should never get here with non-NULL vm_private_data */
443 if (vma->vm_private_data)
444 return;
445
446 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
447 if (!vma_lock) {
448 /*
449 * If we can not allocate structure, then vma can not
450 * participate in pmd sharing. This is only a possible
451 * performance enhancement and memory saving issue.
452 * However, the lock is also used to synchronize page
453 * faults with truncation. If the lock is not present,
454 * unlikely races could leave pages in a file past i_size
455 * until the file is removed. Warn in the unlikely case of
456 * allocation failure.
457 */
458 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
459 return;
460 }
461
462 kref_init(&vma_lock->refs);
463 init_rwsem(&vma_lock->rw_sema);
464 vma_lock->vma = vma;
465 vma->vm_private_data = vma_lock;
466 }
467
468 /* Helper that removes a struct file_region from the resv_map cache and returns
469 * it for use.
470 */
471 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)472 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
473 {
474 struct file_region *nrg;
475
476 VM_BUG_ON(resv->region_cache_count <= 0);
477
478 resv->region_cache_count--;
479 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
480 list_del(&nrg->link);
481
482 nrg->from = from;
483 nrg->to = to;
484
485 return nrg;
486 }
487
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)488 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
489 struct file_region *rg)
490 {
491 #ifdef CONFIG_CGROUP_HUGETLB
492 nrg->reservation_counter = rg->reservation_counter;
493 nrg->css = rg->css;
494 if (rg->css)
495 css_get(rg->css);
496 #endif
497 }
498
499 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)500 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
501 struct hstate *h,
502 struct resv_map *resv,
503 struct file_region *nrg)
504 {
505 #ifdef CONFIG_CGROUP_HUGETLB
506 if (h_cg) {
507 nrg->reservation_counter =
508 &h_cg->rsvd_hugepage[hstate_index(h)];
509 nrg->css = &h_cg->css;
510 /*
511 * The caller will hold exactly one h_cg->css reference for the
512 * whole contiguous reservation region. But this area might be
513 * scattered when there are already some file_regions reside in
514 * it. As a result, many file_regions may share only one css
515 * reference. In order to ensure that one file_region must hold
516 * exactly one h_cg->css reference, we should do css_get for
517 * each file_region and leave the reference held by caller
518 * untouched.
519 */
520 css_get(&h_cg->css);
521 if (!resv->pages_per_hpage)
522 resv->pages_per_hpage = pages_per_huge_page(h);
523 /* pages_per_hpage should be the same for all entries in
524 * a resv_map.
525 */
526 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
527 } else {
528 nrg->reservation_counter = NULL;
529 nrg->css = NULL;
530 }
531 #endif
532 }
533
put_uncharge_info(struct file_region * rg)534 static void put_uncharge_info(struct file_region *rg)
535 {
536 #ifdef CONFIG_CGROUP_HUGETLB
537 if (rg->css)
538 css_put(rg->css);
539 #endif
540 }
541
has_same_uncharge_info(struct file_region * rg,struct file_region * org)542 static bool has_same_uncharge_info(struct file_region *rg,
543 struct file_region *org)
544 {
545 #ifdef CONFIG_CGROUP_HUGETLB
546 return rg->reservation_counter == org->reservation_counter &&
547 rg->css == org->css;
548
549 #else
550 return true;
551 #endif
552 }
553
coalesce_file_region(struct resv_map * resv,struct file_region * rg)554 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
555 {
556 struct file_region *nrg, *prg;
557
558 prg = list_prev_entry(rg, link);
559 if (&prg->link != &resv->regions && prg->to == rg->from &&
560 has_same_uncharge_info(prg, rg)) {
561 prg->to = rg->to;
562
563 list_del(&rg->link);
564 put_uncharge_info(rg);
565 kfree(rg);
566
567 rg = prg;
568 }
569
570 nrg = list_next_entry(rg, link);
571 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
572 has_same_uncharge_info(nrg, rg)) {
573 nrg->from = rg->from;
574
575 list_del(&rg->link);
576 put_uncharge_info(rg);
577 kfree(rg);
578 }
579 }
580
581 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)582 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
583 long to, struct hstate *h, struct hugetlb_cgroup *cg,
584 long *regions_needed)
585 {
586 struct file_region *nrg;
587
588 if (!regions_needed) {
589 nrg = get_file_region_entry_from_cache(map, from, to);
590 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
591 list_add(&nrg->link, rg);
592 coalesce_file_region(map, nrg);
593 } else
594 *regions_needed += 1;
595
596 return to - from;
597 }
598
599 /*
600 * Must be called with resv->lock held.
601 *
602 * Calling this with regions_needed != NULL will count the number of pages
603 * to be added but will not modify the linked list. And regions_needed will
604 * indicate the number of file_regions needed in the cache to carry out to add
605 * the regions for this range.
606 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)607 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
608 struct hugetlb_cgroup *h_cg,
609 struct hstate *h, long *regions_needed)
610 {
611 long add = 0;
612 struct list_head *head = &resv->regions;
613 long last_accounted_offset = f;
614 struct file_region *iter, *trg = NULL;
615 struct list_head *rg = NULL;
616
617 if (regions_needed)
618 *regions_needed = 0;
619
620 /* In this loop, we essentially handle an entry for the range
621 * [last_accounted_offset, iter->from), at every iteration, with some
622 * bounds checking.
623 */
624 list_for_each_entry_safe(iter, trg, head, link) {
625 /* Skip irrelevant regions that start before our range. */
626 if (iter->from < f) {
627 /* If this region ends after the last accounted offset,
628 * then we need to update last_accounted_offset.
629 */
630 if (iter->to > last_accounted_offset)
631 last_accounted_offset = iter->to;
632 continue;
633 }
634
635 /* When we find a region that starts beyond our range, we've
636 * finished.
637 */
638 if (iter->from >= t) {
639 rg = iter->link.prev;
640 break;
641 }
642
643 /* Add an entry for last_accounted_offset -> iter->from, and
644 * update last_accounted_offset.
645 */
646 if (iter->from > last_accounted_offset)
647 add += hugetlb_resv_map_add(resv, iter->link.prev,
648 last_accounted_offset,
649 iter->from, h, h_cg,
650 regions_needed);
651
652 last_accounted_offset = iter->to;
653 }
654
655 /* Handle the case where our range extends beyond
656 * last_accounted_offset.
657 */
658 if (!rg)
659 rg = head->prev;
660 if (last_accounted_offset < t)
661 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
662 t, h, h_cg, regions_needed);
663
664 return add;
665 }
666
667 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
668 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)669 static int allocate_file_region_entries(struct resv_map *resv,
670 int regions_needed)
671 __must_hold(&resv->lock)
672 {
673 LIST_HEAD(allocated_regions);
674 int to_allocate = 0, i = 0;
675 struct file_region *trg = NULL, *rg = NULL;
676
677 VM_BUG_ON(regions_needed < 0);
678
679 /*
680 * Check for sufficient descriptors in the cache to accommodate
681 * the number of in progress add operations plus regions_needed.
682 *
683 * This is a while loop because when we drop the lock, some other call
684 * to region_add or region_del may have consumed some region_entries,
685 * so we keep looping here until we finally have enough entries for
686 * (adds_in_progress + regions_needed).
687 */
688 while (resv->region_cache_count <
689 (resv->adds_in_progress + regions_needed)) {
690 to_allocate = resv->adds_in_progress + regions_needed -
691 resv->region_cache_count;
692
693 /* At this point, we should have enough entries in the cache
694 * for all the existing adds_in_progress. We should only be
695 * needing to allocate for regions_needed.
696 */
697 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
698
699 spin_unlock(&resv->lock);
700 for (i = 0; i < to_allocate; i++) {
701 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
702 if (!trg)
703 goto out_of_memory;
704 list_add(&trg->link, &allocated_regions);
705 }
706
707 spin_lock(&resv->lock);
708
709 list_splice(&allocated_regions, &resv->region_cache);
710 resv->region_cache_count += to_allocate;
711 }
712
713 return 0;
714
715 out_of_memory:
716 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
717 list_del(&rg->link);
718 kfree(rg);
719 }
720 return -ENOMEM;
721 }
722
723 /*
724 * Add the huge page range represented by [f, t) to the reserve
725 * map. Regions will be taken from the cache to fill in this range.
726 * Sufficient regions should exist in the cache due to the previous
727 * call to region_chg with the same range, but in some cases the cache will not
728 * have sufficient entries due to races with other code doing region_add or
729 * region_del. The extra needed entries will be allocated.
730 *
731 * regions_needed is the out value provided by a previous call to region_chg.
732 *
733 * Return the number of new huge pages added to the map. This number is greater
734 * than or equal to zero. If file_region entries needed to be allocated for
735 * this operation and we were not able to allocate, it returns -ENOMEM.
736 * region_add of regions of length 1 never allocate file_regions and cannot
737 * fail; region_chg will always allocate at least 1 entry and a region_add for
738 * 1 page will only require at most 1 entry.
739 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)740 static long region_add(struct resv_map *resv, long f, long t,
741 long in_regions_needed, struct hstate *h,
742 struct hugetlb_cgroup *h_cg)
743 {
744 long add = 0, actual_regions_needed = 0;
745
746 spin_lock(&resv->lock);
747 retry:
748
749 /* Count how many regions are actually needed to execute this add. */
750 add_reservation_in_range(resv, f, t, NULL, NULL,
751 &actual_regions_needed);
752
753 /*
754 * Check for sufficient descriptors in the cache to accommodate
755 * this add operation. Note that actual_regions_needed may be greater
756 * than in_regions_needed, as the resv_map may have been modified since
757 * the region_chg call. In this case, we need to make sure that we
758 * allocate extra entries, such that we have enough for all the
759 * existing adds_in_progress, plus the excess needed for this
760 * operation.
761 */
762 if (actual_regions_needed > in_regions_needed &&
763 resv->region_cache_count <
764 resv->adds_in_progress +
765 (actual_regions_needed - in_regions_needed)) {
766 /* region_add operation of range 1 should never need to
767 * allocate file_region entries.
768 */
769 VM_BUG_ON(t - f <= 1);
770
771 if (allocate_file_region_entries(
772 resv, actual_regions_needed - in_regions_needed)) {
773 return -ENOMEM;
774 }
775
776 goto retry;
777 }
778
779 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
780
781 resv->adds_in_progress -= in_regions_needed;
782
783 spin_unlock(&resv->lock);
784 return add;
785 }
786
787 /*
788 * Examine the existing reserve map and determine how many
789 * huge pages in the specified range [f, t) are NOT currently
790 * represented. This routine is called before a subsequent
791 * call to region_add that will actually modify the reserve
792 * map to add the specified range [f, t). region_chg does
793 * not change the number of huge pages represented by the
794 * map. A number of new file_region structures is added to the cache as a
795 * placeholder, for the subsequent region_add call to use. At least 1
796 * file_region structure is added.
797 *
798 * out_regions_needed is the number of regions added to the
799 * resv->adds_in_progress. This value needs to be provided to a follow up call
800 * to region_add or region_abort for proper accounting.
801 *
802 * Returns the number of huge pages that need to be added to the existing
803 * reservation map for the range [f, t). This number is greater or equal to
804 * zero. -ENOMEM is returned if a new file_region structure or cache entry
805 * is needed and can not be allocated.
806 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)807 static long region_chg(struct resv_map *resv, long f, long t,
808 long *out_regions_needed)
809 {
810 long chg = 0;
811
812 spin_lock(&resv->lock);
813
814 /* Count how many hugepages in this range are NOT represented. */
815 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
816 out_regions_needed);
817
818 if (*out_regions_needed == 0)
819 *out_regions_needed = 1;
820
821 if (allocate_file_region_entries(resv, *out_regions_needed))
822 return -ENOMEM;
823
824 resv->adds_in_progress += *out_regions_needed;
825
826 spin_unlock(&resv->lock);
827 return chg;
828 }
829
830 /*
831 * Abort the in progress add operation. The adds_in_progress field
832 * of the resv_map keeps track of the operations in progress between
833 * calls to region_chg and region_add. Operations are sometimes
834 * aborted after the call to region_chg. In such cases, region_abort
835 * is called to decrement the adds_in_progress counter. regions_needed
836 * is the value returned by the region_chg call, it is used to decrement
837 * the adds_in_progress counter.
838 *
839 * NOTE: The range arguments [f, t) are not needed or used in this
840 * routine. They are kept to make reading the calling code easier as
841 * arguments will match the associated region_chg call.
842 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)843 static void region_abort(struct resv_map *resv, long f, long t,
844 long regions_needed)
845 {
846 spin_lock(&resv->lock);
847 VM_BUG_ON(!resv->region_cache_count);
848 resv->adds_in_progress -= regions_needed;
849 spin_unlock(&resv->lock);
850 }
851
852 /*
853 * Delete the specified range [f, t) from the reserve map. If the
854 * t parameter is LONG_MAX, this indicates that ALL regions after f
855 * should be deleted. Locate the regions which intersect [f, t)
856 * and either trim, delete or split the existing regions.
857 *
858 * Returns the number of huge pages deleted from the reserve map.
859 * In the normal case, the return value is zero or more. In the
860 * case where a region must be split, a new region descriptor must
861 * be allocated. If the allocation fails, -ENOMEM will be returned.
862 * NOTE: If the parameter t == LONG_MAX, then we will never split
863 * a region and possibly return -ENOMEM. Callers specifying
864 * t == LONG_MAX do not need to check for -ENOMEM error.
865 */
region_del(struct resv_map * resv,long f,long t)866 static long region_del(struct resv_map *resv, long f, long t)
867 {
868 struct list_head *head = &resv->regions;
869 struct file_region *rg, *trg;
870 struct file_region *nrg = NULL;
871 long del = 0;
872
873 retry:
874 spin_lock(&resv->lock);
875 list_for_each_entry_safe(rg, trg, head, link) {
876 /*
877 * Skip regions before the range to be deleted. file_region
878 * ranges are normally of the form [from, to). However, there
879 * may be a "placeholder" entry in the map which is of the form
880 * (from, to) with from == to. Check for placeholder entries
881 * at the beginning of the range to be deleted.
882 */
883 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
884 continue;
885
886 if (rg->from >= t)
887 break;
888
889 if (f > rg->from && t < rg->to) { /* Must split region */
890 /*
891 * Check for an entry in the cache before dropping
892 * lock and attempting allocation.
893 */
894 if (!nrg &&
895 resv->region_cache_count > resv->adds_in_progress) {
896 nrg = list_first_entry(&resv->region_cache,
897 struct file_region,
898 link);
899 list_del(&nrg->link);
900 resv->region_cache_count--;
901 }
902
903 if (!nrg) {
904 spin_unlock(&resv->lock);
905 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
906 if (!nrg)
907 return -ENOMEM;
908 goto retry;
909 }
910
911 del += t - f;
912 hugetlb_cgroup_uncharge_file_region(
913 resv, rg, t - f, false);
914
915 /* New entry for end of split region */
916 nrg->from = t;
917 nrg->to = rg->to;
918
919 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
920
921 INIT_LIST_HEAD(&nrg->link);
922
923 /* Original entry is trimmed */
924 rg->to = f;
925
926 list_add(&nrg->link, &rg->link);
927 nrg = NULL;
928 break;
929 }
930
931 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
932 del += rg->to - rg->from;
933 hugetlb_cgroup_uncharge_file_region(resv, rg,
934 rg->to - rg->from, true);
935 list_del(&rg->link);
936 kfree(rg);
937 continue;
938 }
939
940 if (f <= rg->from) { /* Trim beginning of region */
941 hugetlb_cgroup_uncharge_file_region(resv, rg,
942 t - rg->from, false);
943
944 del += t - rg->from;
945 rg->from = t;
946 } else { /* Trim end of region */
947 hugetlb_cgroup_uncharge_file_region(resv, rg,
948 rg->to - f, false);
949
950 del += rg->to - f;
951 rg->to = f;
952 }
953 }
954
955 spin_unlock(&resv->lock);
956 kfree(nrg);
957 return del;
958 }
959
960 /*
961 * A rare out of memory error was encountered which prevented removal of
962 * the reserve map region for a page. The huge page itself was free'ed
963 * and removed from the page cache. This routine will adjust the subpool
964 * usage count, and the global reserve count if needed. By incrementing
965 * these counts, the reserve map entry which could not be deleted will
966 * appear as a "reserved" entry instead of simply dangling with incorrect
967 * counts.
968 */
hugetlb_fix_reserve_counts(struct inode * inode)969 void hugetlb_fix_reserve_counts(struct inode *inode)
970 {
971 struct hugepage_subpool *spool = subpool_inode(inode);
972 long rsv_adjust;
973 bool reserved = false;
974
975 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
976 if (rsv_adjust > 0) {
977 struct hstate *h = hstate_inode(inode);
978
979 if (!hugetlb_acct_memory(h, 1))
980 reserved = true;
981 } else if (!rsv_adjust) {
982 reserved = true;
983 }
984
985 if (!reserved)
986 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
987 }
988
989 /*
990 * Count and return the number of huge pages in the reserve map
991 * that intersect with the range [f, t).
992 */
region_count(struct resv_map * resv,long f,long t)993 static long region_count(struct resv_map *resv, long f, long t)
994 {
995 struct list_head *head = &resv->regions;
996 struct file_region *rg;
997 long chg = 0;
998
999 spin_lock(&resv->lock);
1000 /* Locate each segment we overlap with, and count that overlap. */
1001 list_for_each_entry(rg, head, link) {
1002 long seg_from;
1003 long seg_to;
1004
1005 if (rg->to <= f)
1006 continue;
1007 if (rg->from >= t)
1008 break;
1009
1010 seg_from = max(rg->from, f);
1011 seg_to = min(rg->to, t);
1012
1013 chg += seg_to - seg_from;
1014 }
1015 spin_unlock(&resv->lock);
1016
1017 return chg;
1018 }
1019
1020 /*
1021 * Convert the address within this vma to the page offset within
1022 * the mapping, huge page units here.
1023 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1024 static pgoff_t vma_hugecache_offset(struct hstate *h,
1025 struct vm_area_struct *vma, unsigned long address)
1026 {
1027 return ((address - vma->vm_start) >> huge_page_shift(h)) +
1028 (vma->vm_pgoff >> huge_page_order(h));
1029 }
1030
1031 /**
1032 * vma_kernel_pagesize - Page size granularity for this VMA.
1033 * @vma: The user mapping.
1034 *
1035 * Folios in this VMA will be aligned to, and at least the size of the
1036 * number of bytes returned by this function.
1037 *
1038 * Return: The default size of the folios allocated when backing a VMA.
1039 */
vma_kernel_pagesize(struct vm_area_struct * vma)1040 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1041 {
1042 if (vma->vm_ops && vma->vm_ops->pagesize)
1043 return vma->vm_ops->pagesize(vma);
1044 return PAGE_SIZE;
1045 }
1046 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1047
1048 /*
1049 * Return the page size being used by the MMU to back a VMA. In the majority
1050 * of cases, the page size used by the kernel matches the MMU size. On
1051 * architectures where it differs, an architecture-specific 'strong'
1052 * version of this symbol is required.
1053 */
vma_mmu_pagesize(struct vm_area_struct * vma)1054 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1055 {
1056 return vma_kernel_pagesize(vma);
1057 }
1058
1059 /*
1060 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1061 * bits of the reservation map pointer, which are always clear due to
1062 * alignment.
1063 */
1064 #define HPAGE_RESV_OWNER (1UL << 0)
1065 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1066 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1067
1068 /*
1069 * These helpers are used to track how many pages are reserved for
1070 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1071 * is guaranteed to have their future faults succeed.
1072 *
1073 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1074 * the reserve counters are updated with the hugetlb_lock held. It is safe
1075 * to reset the VMA at fork() time as it is not in use yet and there is no
1076 * chance of the global counters getting corrupted as a result of the values.
1077 *
1078 * The private mapping reservation is represented in a subtly different
1079 * manner to a shared mapping. A shared mapping has a region map associated
1080 * with the underlying file, this region map represents the backing file
1081 * pages which have ever had a reservation assigned which this persists even
1082 * after the page is instantiated. A private mapping has a region map
1083 * associated with the original mmap which is attached to all VMAs which
1084 * reference it, this region map represents those offsets which have consumed
1085 * reservation ie. where pages have been instantiated.
1086 */
get_vma_private_data(struct vm_area_struct * vma)1087 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1088 {
1089 return (unsigned long)vma->vm_private_data;
1090 }
1091
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1092 static void set_vma_private_data(struct vm_area_struct *vma,
1093 unsigned long value)
1094 {
1095 vma->vm_private_data = (void *)value;
1096 }
1097
1098 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1099 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1100 struct hugetlb_cgroup *h_cg,
1101 struct hstate *h)
1102 {
1103 #ifdef CONFIG_CGROUP_HUGETLB
1104 if (!h_cg || !h) {
1105 resv_map->reservation_counter = NULL;
1106 resv_map->pages_per_hpage = 0;
1107 resv_map->css = NULL;
1108 } else {
1109 resv_map->reservation_counter =
1110 &h_cg->rsvd_hugepage[hstate_index(h)];
1111 resv_map->pages_per_hpage = pages_per_huge_page(h);
1112 resv_map->css = &h_cg->css;
1113 }
1114 #endif
1115 }
1116
resv_map_alloc(void)1117 struct resv_map *resv_map_alloc(void)
1118 {
1119 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1120 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1121
1122 if (!resv_map || !rg) {
1123 kfree(resv_map);
1124 kfree(rg);
1125 return NULL;
1126 }
1127
1128 kref_init(&resv_map->refs);
1129 spin_lock_init(&resv_map->lock);
1130 INIT_LIST_HEAD(&resv_map->regions);
1131 init_rwsem(&resv_map->rw_sema);
1132
1133 resv_map->adds_in_progress = 0;
1134 /*
1135 * Initialize these to 0. On shared mappings, 0's here indicate these
1136 * fields don't do cgroup accounting. On private mappings, these will be
1137 * re-initialized to the proper values, to indicate that hugetlb cgroup
1138 * reservations are to be un-charged from here.
1139 */
1140 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1141
1142 INIT_LIST_HEAD(&resv_map->region_cache);
1143 list_add(&rg->link, &resv_map->region_cache);
1144 resv_map->region_cache_count = 1;
1145
1146 return resv_map;
1147 }
1148
resv_map_release(struct kref * ref)1149 void resv_map_release(struct kref *ref)
1150 {
1151 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1152 struct list_head *head = &resv_map->region_cache;
1153 struct file_region *rg, *trg;
1154
1155 /* Clear out any active regions before we release the map. */
1156 region_del(resv_map, 0, LONG_MAX);
1157
1158 /* ... and any entries left in the cache */
1159 list_for_each_entry_safe(rg, trg, head, link) {
1160 list_del(&rg->link);
1161 kfree(rg);
1162 }
1163
1164 VM_BUG_ON(resv_map->adds_in_progress);
1165
1166 kfree(resv_map);
1167 }
1168
inode_resv_map(struct inode * inode)1169 static inline struct resv_map *inode_resv_map(struct inode *inode)
1170 {
1171 /*
1172 * At inode evict time, i_mapping may not point to the original
1173 * address space within the inode. This original address space
1174 * contains the pointer to the resv_map. So, always use the
1175 * address space embedded within the inode.
1176 * The VERY common case is inode->mapping == &inode->i_data but,
1177 * this may not be true for device special inodes.
1178 */
1179 return (struct resv_map *)(&inode->i_data)->i_private_data;
1180 }
1181
vma_resv_map(struct vm_area_struct * vma)1182 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1183 {
1184 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1185 if (vma->vm_flags & VM_MAYSHARE) {
1186 struct address_space *mapping = vma->vm_file->f_mapping;
1187 struct inode *inode = mapping->host;
1188
1189 return inode_resv_map(inode);
1190
1191 } else {
1192 return (struct resv_map *)(get_vma_private_data(vma) &
1193 ~HPAGE_RESV_MASK);
1194 }
1195 }
1196
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1197 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1198 {
1199 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1200 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1201
1202 set_vma_private_data(vma, (unsigned long)map);
1203 }
1204
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1205 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1206 {
1207 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1208 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1209
1210 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1211 }
1212
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1213 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1214 {
1215 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1216
1217 return (get_vma_private_data(vma) & flag) != 0;
1218 }
1219
__vma_private_lock(struct vm_area_struct * vma)1220 bool __vma_private_lock(struct vm_area_struct *vma)
1221 {
1222 return !(vma->vm_flags & VM_MAYSHARE) &&
1223 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1224 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1225 }
1226
hugetlb_dup_vma_private(struct vm_area_struct * vma)1227 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1228 {
1229 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1230 /*
1231 * Clear vm_private_data
1232 * - For shared mappings this is a per-vma semaphore that may be
1233 * allocated in a subsequent call to hugetlb_vm_op_open.
1234 * Before clearing, make sure pointer is not associated with vma
1235 * as this will leak the structure. This is the case when called
1236 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1237 * been called to allocate a new structure.
1238 * - For MAP_PRIVATE mappings, this is the reserve map which does
1239 * not apply to children. Faults generated by the children are
1240 * not guaranteed to succeed, even if read-only.
1241 */
1242 if (vma->vm_flags & VM_MAYSHARE) {
1243 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1244
1245 if (vma_lock && vma_lock->vma != vma)
1246 vma->vm_private_data = NULL;
1247 } else
1248 vma->vm_private_data = NULL;
1249 }
1250
1251 /*
1252 * Reset and decrement one ref on hugepage private reservation.
1253 * Called with mm->mmap_lock writer semaphore held.
1254 * This function should be only used by mremap and operate on
1255 * same sized vma. It should never come here with last ref on the
1256 * reservation.
1257 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1258 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1259 {
1260 /*
1261 * Clear the old hugetlb private page reservation.
1262 * It has already been transferred to new_vma.
1263 *
1264 * During a mremap() operation of a hugetlb vma we call move_vma()
1265 * which copies vma into new_vma and unmaps vma. After the copy
1266 * operation both new_vma and vma share a reference to the resv_map
1267 * struct, and at that point vma is about to be unmapped. We don't
1268 * want to return the reservation to the pool at unmap of vma because
1269 * the reservation still lives on in new_vma, so simply decrement the
1270 * ref here and remove the resv_map reference from this vma.
1271 */
1272 struct resv_map *reservations = vma_resv_map(vma);
1273
1274 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1275 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1276 kref_put(&reservations->refs, resv_map_release);
1277 }
1278
1279 hugetlb_dup_vma_private(vma);
1280 }
1281
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1282 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1283 {
1284 int nid = folio_nid(folio);
1285
1286 lockdep_assert_held(&hugetlb_lock);
1287 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1288
1289 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1290 h->free_huge_pages++;
1291 h->free_huge_pages_node[nid]++;
1292 folio_set_hugetlb_freed(folio);
1293 }
1294
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1295 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1296 int nid)
1297 {
1298 struct folio *folio;
1299 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1300
1301 lockdep_assert_held(&hugetlb_lock);
1302 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1303 if (pin && !folio_is_longterm_pinnable(folio))
1304 continue;
1305
1306 if (folio_test_hwpoison(folio))
1307 continue;
1308
1309 if (is_migrate_isolate_page(&folio->page))
1310 continue;
1311
1312 list_move(&folio->lru, &h->hugepage_activelist);
1313 folio_ref_unfreeze(folio, 1);
1314 folio_clear_hugetlb_freed(folio);
1315 h->free_huge_pages--;
1316 h->free_huge_pages_node[nid]--;
1317 return folio;
1318 }
1319
1320 return NULL;
1321 }
1322
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1323 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1324 int nid, nodemask_t *nmask)
1325 {
1326 unsigned int cpuset_mems_cookie;
1327 struct zonelist *zonelist;
1328 struct zone *zone;
1329 struct zoneref *z;
1330 int node = NUMA_NO_NODE;
1331
1332 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1333 if (nid == NUMA_NO_NODE)
1334 nid = numa_node_id();
1335
1336 zonelist = node_zonelist(nid, gfp_mask);
1337
1338 retry_cpuset:
1339 cpuset_mems_cookie = read_mems_allowed_begin();
1340 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1341 struct folio *folio;
1342
1343 if (!cpuset_zone_allowed(zone, gfp_mask))
1344 continue;
1345 /*
1346 * no need to ask again on the same node. Pool is node rather than
1347 * zone aware
1348 */
1349 if (zone_to_nid(zone) == node)
1350 continue;
1351 node = zone_to_nid(zone);
1352
1353 folio = dequeue_hugetlb_folio_node_exact(h, node);
1354 if (folio)
1355 return folio;
1356 }
1357 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1358 goto retry_cpuset;
1359
1360 return NULL;
1361 }
1362
available_huge_pages(struct hstate * h)1363 static unsigned long available_huge_pages(struct hstate *h)
1364 {
1365 return h->free_huge_pages - h->resv_huge_pages;
1366 }
1367
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1368 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1369 struct vm_area_struct *vma,
1370 unsigned long address, long gbl_chg)
1371 {
1372 struct folio *folio = NULL;
1373 struct mempolicy *mpol;
1374 gfp_t gfp_mask;
1375 nodemask_t *nodemask;
1376 int nid;
1377
1378 /*
1379 * gbl_chg==1 means the allocation requires a new page that was not
1380 * reserved before. Making sure there's at least one free page.
1381 */
1382 if (gbl_chg && !available_huge_pages(h))
1383 goto err;
1384
1385 gfp_mask = htlb_alloc_mask(h);
1386 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1387
1388 if (mpol_is_preferred_many(mpol)) {
1389 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1390 nid, nodemask);
1391
1392 /* Fallback to all nodes if page==NULL */
1393 nodemask = NULL;
1394 }
1395
1396 if (!folio)
1397 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1398 nid, nodemask);
1399
1400 mpol_cond_put(mpol);
1401 return folio;
1402
1403 err:
1404 return NULL;
1405 }
1406
1407 /*
1408 * common helper functions for hstate_next_node_to_{alloc|free}.
1409 * We may have allocated or freed a huge page based on a different
1410 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1411 * be outside of *nodes_allowed. Ensure that we use an allowed
1412 * node for alloc or free.
1413 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1414 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1415 {
1416 nid = next_node_in(nid, *nodes_allowed);
1417 VM_BUG_ON(nid >= MAX_NUMNODES);
1418
1419 return nid;
1420 }
1421
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1422 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1423 {
1424 if (!node_isset(nid, *nodes_allowed))
1425 nid = next_node_allowed(nid, nodes_allowed);
1426 return nid;
1427 }
1428
1429 /*
1430 * returns the previously saved node ["this node"] from which to
1431 * allocate a persistent huge page for the pool and advance the
1432 * next node from which to allocate, handling wrap at end of node
1433 * mask.
1434 */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1435 static int hstate_next_node_to_alloc(int *next_node,
1436 nodemask_t *nodes_allowed)
1437 {
1438 int nid;
1439
1440 VM_BUG_ON(!nodes_allowed);
1441
1442 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1443 *next_node = next_node_allowed(nid, nodes_allowed);
1444
1445 return nid;
1446 }
1447
1448 /*
1449 * helper for remove_pool_hugetlb_folio() - return the previously saved
1450 * node ["this node"] from which to free a huge page. Advance the
1451 * next node id whether or not we find a free huge page to free so
1452 * that the next attempt to free addresses the next node.
1453 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1454 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1455 {
1456 int nid;
1457
1458 VM_BUG_ON(!nodes_allowed);
1459
1460 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1461 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1462
1463 return nid;
1464 }
1465
1466 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1467 for (nr_nodes = nodes_weight(*mask); \
1468 nr_nodes > 0 && \
1469 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1470 nr_nodes--)
1471
1472 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1473 for (nr_nodes = nodes_weight(*mask); \
1474 nr_nodes > 0 && \
1475 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1476 nr_nodes--)
1477
1478 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1479 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1480 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1481 int nid, nodemask_t *nodemask)
1482 {
1483 struct folio *folio;
1484 int order = huge_page_order(h);
1485 bool retried = false;
1486
1487 if (nid == NUMA_NO_NODE)
1488 nid = numa_mem_id();
1489 retry:
1490 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask);
1491 if (!folio) {
1492 if (hugetlb_cma_exclusive_alloc())
1493 return NULL;
1494
1495 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1496 if (!folio)
1497 return NULL;
1498 }
1499
1500 if (folio_ref_freeze(folio, 1))
1501 return folio;
1502
1503 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1504 hugetlb_free_folio(folio);
1505 if (!retried) {
1506 retried = true;
1507 goto retry;
1508 }
1509 return NULL;
1510 }
1511
1512 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1513 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1514 int nid, nodemask_t *nodemask)
1515 {
1516 return NULL;
1517 }
1518 #endif /* CONFIG_CONTIG_ALLOC */
1519
1520 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1521 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1522 int nid, nodemask_t *nodemask)
1523 {
1524 return NULL;
1525 }
1526 #endif
1527
1528 /*
1529 * Remove hugetlb folio from lists.
1530 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1531 * folio appears as just a compound page. Otherwise, wait until after
1532 * allocating vmemmap to clear the flag.
1533 *
1534 * Must be called with hugetlb lock held.
1535 */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1536 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1537 bool adjust_surplus)
1538 {
1539 int nid = folio_nid(folio);
1540
1541 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1542 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1543
1544 lockdep_assert_held(&hugetlb_lock);
1545 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1546 return;
1547
1548 list_del(&folio->lru);
1549
1550 if (folio_test_hugetlb_freed(folio)) {
1551 folio_clear_hugetlb_freed(folio);
1552 h->free_huge_pages--;
1553 h->free_huge_pages_node[nid]--;
1554 }
1555 if (adjust_surplus) {
1556 h->surplus_huge_pages--;
1557 h->surplus_huge_pages_node[nid]--;
1558 }
1559
1560 /*
1561 * We can only clear the hugetlb flag after allocating vmemmap
1562 * pages. Otherwise, someone (memory error handling) may try to write
1563 * to tail struct pages.
1564 */
1565 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1566 __folio_clear_hugetlb(folio);
1567
1568 h->nr_huge_pages--;
1569 h->nr_huge_pages_node[nid]--;
1570 }
1571
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1572 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1573 bool adjust_surplus)
1574 {
1575 int nid = folio_nid(folio);
1576
1577 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1578
1579 lockdep_assert_held(&hugetlb_lock);
1580
1581 INIT_LIST_HEAD(&folio->lru);
1582 h->nr_huge_pages++;
1583 h->nr_huge_pages_node[nid]++;
1584
1585 if (adjust_surplus) {
1586 h->surplus_huge_pages++;
1587 h->surplus_huge_pages_node[nid]++;
1588 }
1589
1590 __folio_set_hugetlb(folio);
1591 folio_change_private(folio, NULL);
1592 /*
1593 * We have to set hugetlb_vmemmap_optimized again as above
1594 * folio_change_private(folio, NULL) cleared it.
1595 */
1596 folio_set_hugetlb_vmemmap_optimized(folio);
1597
1598 arch_clear_hugetlb_flags(folio);
1599 enqueue_hugetlb_folio(h, folio);
1600 }
1601
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1602 static void __update_and_free_hugetlb_folio(struct hstate *h,
1603 struct folio *folio)
1604 {
1605 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1606
1607 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1608 return;
1609
1610 /*
1611 * If we don't know which subpages are hwpoisoned, we can't free
1612 * the hugepage, so it's leaked intentionally.
1613 */
1614 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1615 return;
1616
1617 /*
1618 * If folio is not vmemmap optimized (!clear_flag), then the folio
1619 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1620 * can only be passed hugetlb pages and will BUG otherwise.
1621 */
1622 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1623 spin_lock_irq(&hugetlb_lock);
1624 /*
1625 * If we cannot allocate vmemmap pages, just refuse to free the
1626 * page and put the page back on the hugetlb free list and treat
1627 * as a surplus page.
1628 */
1629 add_hugetlb_folio(h, folio, true);
1630 spin_unlock_irq(&hugetlb_lock);
1631 return;
1632 }
1633
1634 /*
1635 * If vmemmap pages were allocated above, then we need to clear the
1636 * hugetlb flag under the hugetlb lock.
1637 */
1638 if (folio_test_hugetlb(folio)) {
1639 spin_lock_irq(&hugetlb_lock);
1640 __folio_clear_hugetlb(folio);
1641 spin_unlock_irq(&hugetlb_lock);
1642 }
1643
1644 /*
1645 * Move PageHWPoison flag from head page to the raw error pages,
1646 * which makes any healthy subpages reusable.
1647 */
1648 if (unlikely(folio_test_hwpoison(folio)))
1649 folio_clear_hugetlb_hwpoison(folio);
1650
1651 folio_ref_unfreeze(folio, 1);
1652
1653 hugetlb_free_folio(folio);
1654 }
1655
1656 /*
1657 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1658 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1659 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1660 * the vmemmap pages.
1661 *
1662 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1663 * freed and frees them one-by-one. As the page->mapping pointer is going
1664 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1665 * structure of a lockless linked list of huge pages to be freed.
1666 */
1667 static LLIST_HEAD(hpage_freelist);
1668
free_hpage_workfn(struct work_struct * work)1669 static void free_hpage_workfn(struct work_struct *work)
1670 {
1671 struct llist_node *node;
1672
1673 node = llist_del_all(&hpage_freelist);
1674
1675 while (node) {
1676 struct folio *folio;
1677 struct hstate *h;
1678
1679 folio = container_of((struct address_space **)node,
1680 struct folio, mapping);
1681 node = node->next;
1682 folio->mapping = NULL;
1683 /*
1684 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1685 * folio_hstate() is going to trigger because a previous call to
1686 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1687 * not use folio_hstate() directly.
1688 */
1689 h = size_to_hstate(folio_size(folio));
1690
1691 __update_and_free_hugetlb_folio(h, folio);
1692
1693 cond_resched();
1694 }
1695 }
1696 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1697
flush_free_hpage_work(struct hstate * h)1698 static inline void flush_free_hpage_work(struct hstate *h)
1699 {
1700 if (hugetlb_vmemmap_optimizable(h))
1701 flush_work(&free_hpage_work);
1702 }
1703
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1704 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1705 bool atomic)
1706 {
1707 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1708 __update_and_free_hugetlb_folio(h, folio);
1709 return;
1710 }
1711
1712 /*
1713 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1714 *
1715 * Only call schedule_work() if hpage_freelist is previously
1716 * empty. Otherwise, schedule_work() had been called but the workfn
1717 * hasn't retrieved the list yet.
1718 */
1719 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1720 schedule_work(&free_hpage_work);
1721 }
1722
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1723 static void bulk_vmemmap_restore_error(struct hstate *h,
1724 struct list_head *folio_list,
1725 struct list_head *non_hvo_folios)
1726 {
1727 struct folio *folio, *t_folio;
1728
1729 if (!list_empty(non_hvo_folios)) {
1730 /*
1731 * Free any restored hugetlb pages so that restore of the
1732 * entire list can be retried.
1733 * The idea is that in the common case of ENOMEM errors freeing
1734 * hugetlb pages with vmemmap we will free up memory so that we
1735 * can allocate vmemmap for more hugetlb pages.
1736 */
1737 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1738 list_del(&folio->lru);
1739 spin_lock_irq(&hugetlb_lock);
1740 __folio_clear_hugetlb(folio);
1741 spin_unlock_irq(&hugetlb_lock);
1742 update_and_free_hugetlb_folio(h, folio, false);
1743 cond_resched();
1744 }
1745 } else {
1746 /*
1747 * In the case where there are no folios which can be
1748 * immediately freed, we loop through the list trying to restore
1749 * vmemmap individually in the hope that someone elsewhere may
1750 * have done something to cause success (such as freeing some
1751 * memory). If unable to restore a hugetlb page, the hugetlb
1752 * page is made a surplus page and removed from the list.
1753 * If are able to restore vmemmap and free one hugetlb page, we
1754 * quit processing the list to retry the bulk operation.
1755 */
1756 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1757 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1758 list_del(&folio->lru);
1759 spin_lock_irq(&hugetlb_lock);
1760 add_hugetlb_folio(h, folio, true);
1761 spin_unlock_irq(&hugetlb_lock);
1762 } else {
1763 list_del(&folio->lru);
1764 spin_lock_irq(&hugetlb_lock);
1765 __folio_clear_hugetlb(folio);
1766 spin_unlock_irq(&hugetlb_lock);
1767 update_and_free_hugetlb_folio(h, folio, false);
1768 cond_resched();
1769 break;
1770 }
1771 }
1772 }
1773
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1774 static void update_and_free_pages_bulk(struct hstate *h,
1775 struct list_head *folio_list)
1776 {
1777 long ret;
1778 struct folio *folio, *t_folio;
1779 LIST_HEAD(non_hvo_folios);
1780
1781 /*
1782 * First allocate required vmemmmap (if necessary) for all folios.
1783 * Carefully handle errors and free up any available hugetlb pages
1784 * in an effort to make forward progress.
1785 */
1786 retry:
1787 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1788 if (ret < 0) {
1789 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1790 goto retry;
1791 }
1792
1793 /*
1794 * At this point, list should be empty, ret should be >= 0 and there
1795 * should only be pages on the non_hvo_folios list.
1796 * Do note that the non_hvo_folios list could be empty.
1797 * Without HVO enabled, ret will be 0 and there is no need to call
1798 * __folio_clear_hugetlb as this was done previously.
1799 */
1800 VM_WARN_ON(!list_empty(folio_list));
1801 VM_WARN_ON(ret < 0);
1802 if (!list_empty(&non_hvo_folios) && ret) {
1803 spin_lock_irq(&hugetlb_lock);
1804 list_for_each_entry(folio, &non_hvo_folios, lru)
1805 __folio_clear_hugetlb(folio);
1806 spin_unlock_irq(&hugetlb_lock);
1807 }
1808
1809 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1810 update_and_free_hugetlb_folio(h, folio, false);
1811 cond_resched();
1812 }
1813 }
1814
size_to_hstate(unsigned long size)1815 struct hstate *size_to_hstate(unsigned long size)
1816 {
1817 struct hstate *h;
1818
1819 for_each_hstate(h) {
1820 if (huge_page_size(h) == size)
1821 return h;
1822 }
1823 return NULL;
1824 }
1825
free_huge_folio(struct folio * folio)1826 void free_huge_folio(struct folio *folio)
1827 {
1828 /*
1829 * Can't pass hstate in here because it is called from the
1830 * generic mm code.
1831 */
1832 struct hstate *h = folio_hstate(folio);
1833 int nid = folio_nid(folio);
1834 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1835 bool restore_reserve;
1836 unsigned long flags;
1837
1838 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1839 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1840
1841 hugetlb_set_folio_subpool(folio, NULL);
1842 if (folio_test_anon(folio))
1843 __ClearPageAnonExclusive(&folio->page);
1844 folio->mapping = NULL;
1845 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1846 folio_clear_hugetlb_restore_reserve(folio);
1847
1848 /*
1849 * If HPageRestoreReserve was set on page, page allocation consumed a
1850 * reservation. If the page was associated with a subpool, there
1851 * would have been a page reserved in the subpool before allocation
1852 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1853 * reservation, do not call hugepage_subpool_put_pages() as this will
1854 * remove the reserved page from the subpool.
1855 */
1856 if (!restore_reserve) {
1857 /*
1858 * A return code of zero implies that the subpool will be
1859 * under its minimum size if the reservation is not restored
1860 * after page is free. Therefore, force restore_reserve
1861 * operation.
1862 */
1863 if (hugepage_subpool_put_pages(spool, 1) == 0)
1864 restore_reserve = true;
1865 }
1866
1867 spin_lock_irqsave(&hugetlb_lock, flags);
1868 folio_clear_hugetlb_migratable(folio);
1869 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1870 pages_per_huge_page(h), folio);
1871 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1872 pages_per_huge_page(h), folio);
1873 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1874 mem_cgroup_uncharge(folio);
1875 if (restore_reserve)
1876 h->resv_huge_pages++;
1877
1878 if (folio_test_hugetlb_temporary(folio)) {
1879 remove_hugetlb_folio(h, folio, false);
1880 spin_unlock_irqrestore(&hugetlb_lock, flags);
1881 update_and_free_hugetlb_folio(h, folio, true);
1882 } else if (h->surplus_huge_pages_node[nid]) {
1883 /* remove the page from active list */
1884 remove_hugetlb_folio(h, folio, true);
1885 spin_unlock_irqrestore(&hugetlb_lock, flags);
1886 update_and_free_hugetlb_folio(h, folio, true);
1887 } else {
1888 arch_clear_hugetlb_flags(folio);
1889 enqueue_hugetlb_folio(h, folio);
1890 spin_unlock_irqrestore(&hugetlb_lock, flags);
1891 }
1892 }
1893
1894 /*
1895 * Must be called with the hugetlb lock held
1896 */
__prep_account_new_huge_page(struct hstate * h,int nid)1897 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1898 {
1899 lockdep_assert_held(&hugetlb_lock);
1900 h->nr_huge_pages++;
1901 h->nr_huge_pages_node[nid]++;
1902 }
1903
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1904 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1905 {
1906 __folio_set_hugetlb(folio);
1907 INIT_LIST_HEAD(&folio->lru);
1908 hugetlb_set_folio_subpool(folio, NULL);
1909 set_hugetlb_cgroup(folio, NULL);
1910 set_hugetlb_cgroup_rsvd(folio, NULL);
1911 }
1912
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1913 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1914 {
1915 init_new_hugetlb_folio(h, folio);
1916 hugetlb_vmemmap_optimize_folio(h, folio);
1917 }
1918
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1919 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1920 {
1921 __prep_new_hugetlb_folio(h, folio);
1922 spin_lock_irq(&hugetlb_lock);
1923 __prep_account_new_huge_page(h, nid);
1924 spin_unlock_irq(&hugetlb_lock);
1925 }
1926
1927 /*
1928 * Find and lock address space (mapping) in write mode.
1929 *
1930 * Upon entry, the folio is locked which means that folio_mapping() is
1931 * stable. Due to locking order, we can only trylock_write. If we can
1932 * not get the lock, simply return NULL to caller.
1933 */
hugetlb_folio_mapping_lock_write(struct folio * folio)1934 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1935 {
1936 struct address_space *mapping = folio_mapping(folio);
1937
1938 if (!mapping)
1939 return mapping;
1940
1941 if (i_mmap_trylock_write(mapping))
1942 return mapping;
1943
1944 return NULL;
1945 }
1946
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1947 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1948 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1949 nodemask_t *node_alloc_noretry)
1950 {
1951 int order = huge_page_order(h);
1952 struct folio *folio;
1953 bool alloc_try_hard = true;
1954
1955 /*
1956 * By default we always try hard to allocate the folio with
1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
1958 * a loop (to adjust global huge page counts) and previous allocation
1959 * failed, do not continue to try hard on the same node. Use the
1960 * node_alloc_noretry bitmap to manage this state information.
1961 */
1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 alloc_try_hard = false;
1964 if (alloc_try_hard)
1965 gfp_mask |= __GFP_RETRY_MAYFAIL;
1966 if (nid == NUMA_NO_NODE)
1967 nid = numa_mem_id();
1968
1969 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
1970
1971 /*
1972 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1973 * folio this indicates an overall state change. Clear bit so
1974 * that we resume normal 'try hard' allocations.
1975 */
1976 if (node_alloc_noretry && folio && !alloc_try_hard)
1977 node_clear(nid, *node_alloc_noretry);
1978
1979 /*
1980 * If we tried hard to get a folio but failed, set bit so that
1981 * subsequent attempts will not try as hard until there is an
1982 * overall state change.
1983 */
1984 if (node_alloc_noretry && !folio && alloc_try_hard)
1985 node_set(nid, *node_alloc_noretry);
1986
1987 if (!folio) {
1988 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1989 return NULL;
1990 }
1991
1992 __count_vm_event(HTLB_BUDDY_PGALLOC);
1993 return folio;
1994 }
1995
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1996 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1997 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1998 nodemask_t *node_alloc_noretry)
1999 {
2000 struct folio *folio;
2001
2002 if (hstate_is_gigantic(h))
2003 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2004 else
2005 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2006 if (folio)
2007 init_new_hugetlb_folio(h, folio);
2008 return folio;
2009 }
2010
2011 /*
2012 * Common helper to allocate a fresh hugetlb page. All specific allocators
2013 * should use this function to get new hugetlb pages
2014 *
2015 * Note that returned page is 'frozen': ref count of head page and all tail
2016 * pages is zero.
2017 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2018 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2019 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2020 {
2021 struct folio *folio;
2022
2023 if (hstate_is_gigantic(h))
2024 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2025 else
2026 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2027 if (!folio)
2028 return NULL;
2029
2030 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2031 return folio;
2032 }
2033
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2034 static void prep_and_add_allocated_folios(struct hstate *h,
2035 struct list_head *folio_list)
2036 {
2037 unsigned long flags;
2038 struct folio *folio, *tmp_f;
2039
2040 /* Send list for bulk vmemmap optimization processing */
2041 hugetlb_vmemmap_optimize_folios(h, folio_list);
2042
2043 /* Add all new pool pages to free lists in one lock cycle */
2044 spin_lock_irqsave(&hugetlb_lock, flags);
2045 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2046 __prep_account_new_huge_page(h, folio_nid(folio));
2047 enqueue_hugetlb_folio(h, folio);
2048 }
2049 spin_unlock_irqrestore(&hugetlb_lock, flags);
2050 }
2051
2052 /*
2053 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2054 * will later be added to the appropriate hugetlb pool.
2055 */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2056 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2057 nodemask_t *nodes_allowed,
2058 nodemask_t *node_alloc_noretry,
2059 int *next_node)
2060 {
2061 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2062 int nr_nodes, node;
2063
2064 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2065 struct folio *folio;
2066
2067 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2068 nodes_allowed, node_alloc_noretry);
2069 if (folio)
2070 return folio;
2071 }
2072
2073 return NULL;
2074 }
2075
2076 /*
2077 * Remove huge page from pool from next node to free. Attempt to keep
2078 * persistent huge pages more or less balanced over allowed nodes.
2079 * This routine only 'removes' the hugetlb page. The caller must make
2080 * an additional call to free the page to low level allocators.
2081 * Called with hugetlb_lock locked.
2082 */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2083 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2084 nodemask_t *nodes_allowed, bool acct_surplus)
2085 {
2086 int nr_nodes, node;
2087 struct folio *folio = NULL;
2088
2089 lockdep_assert_held(&hugetlb_lock);
2090 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2091 /*
2092 * If we're returning unused surplus pages, only examine
2093 * nodes with surplus pages.
2094 */
2095 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2096 !list_empty(&h->hugepage_freelists[node])) {
2097 folio = list_entry(h->hugepage_freelists[node].next,
2098 struct folio, lru);
2099 remove_hugetlb_folio(h, folio, acct_surplus);
2100 break;
2101 }
2102 }
2103
2104 return folio;
2105 }
2106
2107 /*
2108 * Dissolve a given free hugetlb folio into free buddy pages. This function
2109 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2110 * This function returns values like below:
2111 *
2112 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2113 * when the system is under memory pressure and the feature of
2114 * freeing unused vmemmap pages associated with each hugetlb page
2115 * is enabled.
2116 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2117 * (allocated or reserved.)
2118 * 0: successfully dissolved free hugepages or the page is not a
2119 * hugepage (considered as already dissolved)
2120 */
dissolve_free_hugetlb_folio(struct folio * folio)2121 int dissolve_free_hugetlb_folio(struct folio *folio)
2122 {
2123 int rc = -EBUSY;
2124
2125 retry:
2126 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2127 if (!folio_test_hugetlb(folio))
2128 return 0;
2129
2130 spin_lock_irq(&hugetlb_lock);
2131 if (!folio_test_hugetlb(folio)) {
2132 rc = 0;
2133 goto out;
2134 }
2135
2136 if (!folio_ref_count(folio)) {
2137 struct hstate *h = folio_hstate(folio);
2138 bool adjust_surplus = false;
2139
2140 if (!available_huge_pages(h))
2141 goto out;
2142
2143 /*
2144 * We should make sure that the page is already on the free list
2145 * when it is dissolved.
2146 */
2147 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2148 spin_unlock_irq(&hugetlb_lock);
2149 cond_resched();
2150
2151 /*
2152 * Theoretically, we should return -EBUSY when we
2153 * encounter this race. In fact, we have a chance
2154 * to successfully dissolve the page if we do a
2155 * retry. Because the race window is quite small.
2156 * If we seize this opportunity, it is an optimization
2157 * for increasing the success rate of dissolving page.
2158 */
2159 goto retry;
2160 }
2161
2162 if (h->surplus_huge_pages_node[folio_nid(folio)])
2163 adjust_surplus = true;
2164 remove_hugetlb_folio(h, folio, adjust_surplus);
2165 h->max_huge_pages--;
2166 spin_unlock_irq(&hugetlb_lock);
2167
2168 /*
2169 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2170 * before freeing the page. update_and_free_hugtlb_folio will fail to
2171 * free the page if it can not allocate required vmemmap. We
2172 * need to adjust max_huge_pages if the page is not freed.
2173 * Attempt to allocate vmemmmap here so that we can take
2174 * appropriate action on failure.
2175 *
2176 * The folio_test_hugetlb check here is because
2177 * remove_hugetlb_folio will clear hugetlb folio flag for
2178 * non-vmemmap optimized hugetlb folios.
2179 */
2180 if (folio_test_hugetlb(folio)) {
2181 rc = hugetlb_vmemmap_restore_folio(h, folio);
2182 if (rc) {
2183 spin_lock_irq(&hugetlb_lock);
2184 add_hugetlb_folio(h, folio, adjust_surplus);
2185 h->max_huge_pages++;
2186 goto out;
2187 }
2188 } else
2189 rc = 0;
2190
2191 update_and_free_hugetlb_folio(h, folio, false);
2192 return rc;
2193 }
2194 out:
2195 spin_unlock_irq(&hugetlb_lock);
2196 return rc;
2197 }
2198
2199 /*
2200 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2201 * make specified memory blocks removable from the system.
2202 * Note that this will dissolve a free gigantic hugepage completely, if any
2203 * part of it lies within the given range.
2204 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2205 * free hugetlb folios that were dissolved before that error are lost.
2206 */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2207 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2208 {
2209 unsigned long pfn;
2210 struct folio *folio;
2211 int rc = 0;
2212 unsigned int order;
2213 struct hstate *h;
2214
2215 if (!hugepages_supported())
2216 return rc;
2217
2218 order = huge_page_order(&default_hstate);
2219 for_each_hstate(h)
2220 order = min(order, huge_page_order(h));
2221
2222 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2223 folio = pfn_folio(pfn);
2224 rc = dissolve_free_hugetlb_folio(folio);
2225 if (rc)
2226 break;
2227 }
2228
2229 return rc;
2230 }
2231
2232 /*
2233 * Allocates a fresh surplus page from the page allocator.
2234 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2235 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2236 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2237 {
2238 struct folio *folio = NULL;
2239
2240 if (hstate_is_gigantic(h))
2241 return NULL;
2242
2243 spin_lock_irq(&hugetlb_lock);
2244 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2245 goto out_unlock;
2246 spin_unlock_irq(&hugetlb_lock);
2247
2248 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2249 if (!folio)
2250 return NULL;
2251
2252 hugetlb_vmemmap_optimize_folio(h, folio);
2253
2254 spin_lock_irq(&hugetlb_lock);
2255 /*
2256 * nr_huge_pages needs to be adjusted within the same lock cycle
2257 * as surplus_pages, otherwise it might confuse
2258 * persistent_huge_pages() momentarily.
2259 */
2260 __prep_account_new_huge_page(h, folio_nid(folio));
2261
2262 /*
2263 * We could have raced with the pool size change.
2264 * Double check that and simply deallocate the new page
2265 * if we would end up overcommiting the surpluses. Abuse
2266 * temporary page to workaround the nasty free_huge_folio
2267 * codeflow
2268 */
2269 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2270 folio_set_hugetlb_temporary(folio);
2271 spin_unlock_irq(&hugetlb_lock);
2272 free_huge_folio(folio);
2273 return NULL;
2274 }
2275
2276 h->surplus_huge_pages++;
2277 h->surplus_huge_pages_node[folio_nid(folio)]++;
2278
2279 out_unlock:
2280 spin_unlock_irq(&hugetlb_lock);
2281
2282 return folio;
2283 }
2284
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2285 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2286 int nid, nodemask_t *nmask)
2287 {
2288 struct folio *folio;
2289
2290 if (hstate_is_gigantic(h))
2291 return NULL;
2292
2293 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2294 if (!folio)
2295 return NULL;
2296
2297 /* fresh huge pages are frozen */
2298 folio_ref_unfreeze(folio, 1);
2299 /*
2300 * We do not account these pages as surplus because they are only
2301 * temporary and will be released properly on the last reference
2302 */
2303 folio_set_hugetlb_temporary(folio);
2304
2305 return folio;
2306 }
2307
2308 /*
2309 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2310 */
2311 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2312 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2313 struct vm_area_struct *vma, unsigned long addr)
2314 {
2315 struct folio *folio = NULL;
2316 struct mempolicy *mpol;
2317 gfp_t gfp_mask = htlb_alloc_mask(h);
2318 int nid;
2319 nodemask_t *nodemask;
2320
2321 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2322 if (mpol_is_preferred_many(mpol)) {
2323 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2324
2325 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2326
2327 /* Fallback to all nodes if page==NULL */
2328 nodemask = NULL;
2329 }
2330
2331 if (!folio)
2332 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2333 mpol_cond_put(mpol);
2334 return folio;
2335 }
2336
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2337 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2338 nodemask_t *nmask, gfp_t gfp_mask)
2339 {
2340 struct folio *folio;
2341
2342 spin_lock_irq(&hugetlb_lock);
2343 if (!h->resv_huge_pages) {
2344 spin_unlock_irq(&hugetlb_lock);
2345 return NULL;
2346 }
2347
2348 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2349 nmask);
2350 if (folio)
2351 h->resv_huge_pages--;
2352
2353 spin_unlock_irq(&hugetlb_lock);
2354 return folio;
2355 }
2356
2357 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2358 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2359 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2360 {
2361 spin_lock_irq(&hugetlb_lock);
2362 if (available_huge_pages(h)) {
2363 struct folio *folio;
2364
2365 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2366 preferred_nid, nmask);
2367 if (folio) {
2368 spin_unlock_irq(&hugetlb_lock);
2369 return folio;
2370 }
2371 }
2372 spin_unlock_irq(&hugetlb_lock);
2373
2374 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2375 if (!allow_alloc_fallback)
2376 gfp_mask |= __GFP_THISNODE;
2377
2378 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2379 }
2380
policy_mbind_nodemask(gfp_t gfp)2381 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2382 {
2383 #ifdef CONFIG_NUMA
2384 struct mempolicy *mpol = get_task_policy(current);
2385
2386 /*
2387 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2388 * (from policy_nodemask) specifically for hugetlb case
2389 */
2390 if (mpol->mode == MPOL_BIND &&
2391 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2392 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2393 return &mpol->nodes;
2394 #endif
2395 return NULL;
2396 }
2397
2398 /*
2399 * Increase the hugetlb pool such that it can accommodate a reservation
2400 * of size 'delta'.
2401 */
gather_surplus_pages(struct hstate * h,long delta)2402 static int gather_surplus_pages(struct hstate *h, long delta)
2403 __must_hold(&hugetlb_lock)
2404 {
2405 LIST_HEAD(surplus_list);
2406 struct folio *folio, *tmp;
2407 int ret;
2408 long i;
2409 long needed, allocated;
2410 bool alloc_ok = true;
2411 nodemask_t *mbind_nodemask, alloc_nodemask;
2412
2413 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2414 if (mbind_nodemask)
2415 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2416 else
2417 alloc_nodemask = cpuset_current_mems_allowed;
2418
2419 lockdep_assert_held(&hugetlb_lock);
2420 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2421 if (needed <= 0) {
2422 h->resv_huge_pages += delta;
2423 return 0;
2424 }
2425
2426 allocated = 0;
2427
2428 ret = -ENOMEM;
2429 retry:
2430 spin_unlock_irq(&hugetlb_lock);
2431 for (i = 0; i < needed; i++) {
2432 folio = NULL;
2433
2434 /*
2435 * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
2436 * down the road to pick the current node if that is the case.
2437 */
2438 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2439 NUMA_NO_NODE, &alloc_nodemask);
2440 if (!folio) {
2441 alloc_ok = false;
2442 break;
2443 }
2444 list_add(&folio->lru, &surplus_list);
2445 cond_resched();
2446 }
2447 allocated += i;
2448
2449 /*
2450 * After retaking hugetlb_lock, we need to recalculate 'needed'
2451 * because either resv_huge_pages or free_huge_pages may have changed.
2452 */
2453 spin_lock_irq(&hugetlb_lock);
2454 needed = (h->resv_huge_pages + delta) -
2455 (h->free_huge_pages + allocated);
2456 if (needed > 0) {
2457 if (alloc_ok)
2458 goto retry;
2459 /*
2460 * We were not able to allocate enough pages to
2461 * satisfy the entire reservation so we free what
2462 * we've allocated so far.
2463 */
2464 goto free;
2465 }
2466 /*
2467 * The surplus_list now contains _at_least_ the number of extra pages
2468 * needed to accommodate the reservation. Add the appropriate number
2469 * of pages to the hugetlb pool and free the extras back to the buddy
2470 * allocator. Commit the entire reservation here to prevent another
2471 * process from stealing the pages as they are added to the pool but
2472 * before they are reserved.
2473 */
2474 needed += allocated;
2475 h->resv_huge_pages += delta;
2476 ret = 0;
2477
2478 /* Free the needed pages to the hugetlb pool */
2479 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2480 if ((--needed) < 0)
2481 break;
2482 /* Add the page to the hugetlb allocator */
2483 enqueue_hugetlb_folio(h, folio);
2484 }
2485 free:
2486 spin_unlock_irq(&hugetlb_lock);
2487
2488 /*
2489 * Free unnecessary surplus pages to the buddy allocator.
2490 * Pages have no ref count, call free_huge_folio directly.
2491 */
2492 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2493 free_huge_folio(folio);
2494 spin_lock_irq(&hugetlb_lock);
2495
2496 return ret;
2497 }
2498
2499 /*
2500 * This routine has two main purposes:
2501 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2502 * in unused_resv_pages. This corresponds to the prior adjustments made
2503 * to the associated reservation map.
2504 * 2) Free any unused surplus pages that may have been allocated to satisfy
2505 * the reservation. As many as unused_resv_pages may be freed.
2506 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2507 static void return_unused_surplus_pages(struct hstate *h,
2508 unsigned long unused_resv_pages)
2509 {
2510 unsigned long nr_pages;
2511 LIST_HEAD(page_list);
2512
2513 lockdep_assert_held(&hugetlb_lock);
2514 /* Uncommit the reservation */
2515 h->resv_huge_pages -= unused_resv_pages;
2516
2517 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2518 goto out;
2519
2520 /*
2521 * Part (or even all) of the reservation could have been backed
2522 * by pre-allocated pages. Only free surplus pages.
2523 */
2524 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2525
2526 /*
2527 * We want to release as many surplus pages as possible, spread
2528 * evenly across all nodes with memory. Iterate across these nodes
2529 * until we can no longer free unreserved surplus pages. This occurs
2530 * when the nodes with surplus pages have no free pages.
2531 * remove_pool_hugetlb_folio() will balance the freed pages across the
2532 * on-line nodes with memory and will handle the hstate accounting.
2533 */
2534 while (nr_pages--) {
2535 struct folio *folio;
2536
2537 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2538 if (!folio)
2539 goto out;
2540
2541 list_add(&folio->lru, &page_list);
2542 }
2543
2544 out:
2545 spin_unlock_irq(&hugetlb_lock);
2546 update_and_free_pages_bulk(h, &page_list);
2547 spin_lock_irq(&hugetlb_lock);
2548 }
2549
2550
2551 /*
2552 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2553 * are used by the huge page allocation routines to manage reservations.
2554 *
2555 * vma_needs_reservation is called to determine if the huge page at addr
2556 * within the vma has an associated reservation. If a reservation is
2557 * needed, the value 1 is returned. The caller is then responsible for
2558 * managing the global reservation and subpool usage counts. After
2559 * the huge page has been allocated, vma_commit_reservation is called
2560 * to add the page to the reservation map. If the page allocation fails,
2561 * the reservation must be ended instead of committed. vma_end_reservation
2562 * is called in such cases.
2563 *
2564 * In the normal case, vma_commit_reservation returns the same value
2565 * as the preceding vma_needs_reservation call. The only time this
2566 * is not the case is if a reserve map was changed between calls. It
2567 * is the responsibility of the caller to notice the difference and
2568 * take appropriate action.
2569 *
2570 * vma_add_reservation is used in error paths where a reservation must
2571 * be restored when a newly allocated huge page must be freed. It is
2572 * to be called after calling vma_needs_reservation to determine if a
2573 * reservation exists.
2574 *
2575 * vma_del_reservation is used in error paths where an entry in the reserve
2576 * map was created during huge page allocation and must be removed. It is to
2577 * be called after calling vma_needs_reservation to determine if a reservation
2578 * exists.
2579 */
2580 enum vma_resv_mode {
2581 VMA_NEEDS_RESV,
2582 VMA_COMMIT_RESV,
2583 VMA_END_RESV,
2584 VMA_ADD_RESV,
2585 VMA_DEL_RESV,
2586 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2587 static long __vma_reservation_common(struct hstate *h,
2588 struct vm_area_struct *vma, unsigned long addr,
2589 enum vma_resv_mode mode)
2590 {
2591 struct resv_map *resv;
2592 pgoff_t idx;
2593 long ret;
2594 long dummy_out_regions_needed;
2595
2596 resv = vma_resv_map(vma);
2597 if (!resv)
2598 return 1;
2599
2600 idx = vma_hugecache_offset(h, vma, addr);
2601 switch (mode) {
2602 case VMA_NEEDS_RESV:
2603 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2604 /* We assume that vma_reservation_* routines always operate on
2605 * 1 page, and that adding to resv map a 1 page entry can only
2606 * ever require 1 region.
2607 */
2608 VM_BUG_ON(dummy_out_regions_needed != 1);
2609 break;
2610 case VMA_COMMIT_RESV:
2611 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2612 /* region_add calls of range 1 should never fail. */
2613 VM_BUG_ON(ret < 0);
2614 break;
2615 case VMA_END_RESV:
2616 region_abort(resv, idx, idx + 1, 1);
2617 ret = 0;
2618 break;
2619 case VMA_ADD_RESV:
2620 if (vma->vm_flags & VM_MAYSHARE) {
2621 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2622 /* region_add calls of range 1 should never fail. */
2623 VM_BUG_ON(ret < 0);
2624 } else {
2625 region_abort(resv, idx, idx + 1, 1);
2626 ret = region_del(resv, idx, idx + 1);
2627 }
2628 break;
2629 case VMA_DEL_RESV:
2630 if (vma->vm_flags & VM_MAYSHARE) {
2631 region_abort(resv, idx, idx + 1, 1);
2632 ret = region_del(resv, idx, idx + 1);
2633 } else {
2634 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2635 /* region_add calls of range 1 should never fail. */
2636 VM_BUG_ON(ret < 0);
2637 }
2638 break;
2639 default:
2640 BUG();
2641 }
2642
2643 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2644 return ret;
2645 /*
2646 * We know private mapping must have HPAGE_RESV_OWNER set.
2647 *
2648 * In most cases, reserves always exist for private mappings.
2649 * However, a file associated with mapping could have been
2650 * hole punched or truncated after reserves were consumed.
2651 * As subsequent fault on such a range will not use reserves.
2652 * Subtle - The reserve map for private mappings has the
2653 * opposite meaning than that of shared mappings. If NO
2654 * entry is in the reserve map, it means a reservation exists.
2655 * If an entry exists in the reserve map, it means the
2656 * reservation has already been consumed. As a result, the
2657 * return value of this routine is the opposite of the
2658 * value returned from reserve map manipulation routines above.
2659 */
2660 if (ret > 0)
2661 return 0;
2662 if (ret == 0)
2663 return 1;
2664 return ret;
2665 }
2666
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2667 static long vma_needs_reservation(struct hstate *h,
2668 struct vm_area_struct *vma, unsigned long addr)
2669 {
2670 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2671 }
2672
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2673 static long vma_commit_reservation(struct hstate *h,
2674 struct vm_area_struct *vma, unsigned long addr)
2675 {
2676 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2677 }
2678
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2679 static void vma_end_reservation(struct hstate *h,
2680 struct vm_area_struct *vma, unsigned long addr)
2681 {
2682 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2683 }
2684
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2685 static long vma_add_reservation(struct hstate *h,
2686 struct vm_area_struct *vma, unsigned long addr)
2687 {
2688 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2689 }
2690
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2691 static long vma_del_reservation(struct hstate *h,
2692 struct vm_area_struct *vma, unsigned long addr)
2693 {
2694 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2695 }
2696
2697 /*
2698 * This routine is called to restore reservation information on error paths.
2699 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2700 * and the hugetlb mutex should remain held when calling this routine.
2701 *
2702 * It handles two specific cases:
2703 * 1) A reservation was in place and the folio consumed the reservation.
2704 * hugetlb_restore_reserve is set in the folio.
2705 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2706 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2707 *
2708 * In case 1, free_huge_folio later in the error path will increment the
2709 * global reserve count. But, free_huge_folio does not have enough context
2710 * to adjust the reservation map. This case deals primarily with private
2711 * mappings. Adjust the reserve map here to be consistent with global
2712 * reserve count adjustments to be made by free_huge_folio. Make sure the
2713 * reserve map indicates there is a reservation present.
2714 *
2715 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2716 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2717 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2718 unsigned long address, struct folio *folio)
2719 {
2720 long rc = vma_needs_reservation(h, vma, address);
2721
2722 if (folio_test_hugetlb_restore_reserve(folio)) {
2723 if (unlikely(rc < 0))
2724 /*
2725 * Rare out of memory condition in reserve map
2726 * manipulation. Clear hugetlb_restore_reserve so
2727 * that global reserve count will not be incremented
2728 * by free_huge_folio. This will make it appear
2729 * as though the reservation for this folio was
2730 * consumed. This may prevent the task from
2731 * faulting in the folio at a later time. This
2732 * is better than inconsistent global huge page
2733 * accounting of reserve counts.
2734 */
2735 folio_clear_hugetlb_restore_reserve(folio);
2736 else if (rc)
2737 (void)vma_add_reservation(h, vma, address);
2738 else
2739 vma_end_reservation(h, vma, address);
2740 } else {
2741 if (!rc) {
2742 /*
2743 * This indicates there is an entry in the reserve map
2744 * not added by alloc_hugetlb_folio. We know it was added
2745 * before the alloc_hugetlb_folio call, otherwise
2746 * hugetlb_restore_reserve would be set on the folio.
2747 * Remove the entry so that a subsequent allocation
2748 * does not consume a reservation.
2749 */
2750 rc = vma_del_reservation(h, vma, address);
2751 if (rc < 0)
2752 /*
2753 * VERY rare out of memory condition. Since
2754 * we can not delete the entry, set
2755 * hugetlb_restore_reserve so that the reserve
2756 * count will be incremented when the folio
2757 * is freed. This reserve will be consumed
2758 * on a subsequent allocation.
2759 */
2760 folio_set_hugetlb_restore_reserve(folio);
2761 } else if (rc < 0) {
2762 /*
2763 * Rare out of memory condition from
2764 * vma_needs_reservation call. Memory allocation is
2765 * only attempted if a new entry is needed. Therefore,
2766 * this implies there is not an entry in the
2767 * reserve map.
2768 *
2769 * For shared mappings, no entry in the map indicates
2770 * no reservation. We are done.
2771 */
2772 if (!(vma->vm_flags & VM_MAYSHARE))
2773 /*
2774 * For private mappings, no entry indicates
2775 * a reservation is present. Since we can
2776 * not add an entry, set hugetlb_restore_reserve
2777 * on the folio so reserve count will be
2778 * incremented when freed. This reserve will
2779 * be consumed on a subsequent allocation.
2780 */
2781 folio_set_hugetlb_restore_reserve(folio);
2782 } else
2783 /*
2784 * No reservation present, do nothing
2785 */
2786 vma_end_reservation(h, vma, address);
2787 }
2788 }
2789
2790 /*
2791 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2792 * the old one
2793 * @old_folio: Old folio to dissolve
2794 * @list: List to isolate the page in case we need to
2795 * Returns 0 on success, otherwise negated error.
2796 */
alloc_and_dissolve_hugetlb_folio(struct folio * old_folio,struct list_head * list)2797 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio,
2798 struct list_head *list)
2799 {
2800 gfp_t gfp_mask;
2801 struct hstate *h;
2802 int nid = folio_nid(old_folio);
2803 struct folio *new_folio = NULL;
2804 int ret = 0;
2805
2806 retry:
2807 /*
2808 * The old_folio might have been dissolved from under our feet, so make sure
2809 * to carefully check the state under the lock.
2810 */
2811 spin_lock_irq(&hugetlb_lock);
2812 if (!folio_test_hugetlb(old_folio)) {
2813 /*
2814 * Freed from under us. Drop new_folio too.
2815 */
2816 goto free_new;
2817 } else if (folio_ref_count(old_folio)) {
2818 bool isolated;
2819
2820 /*
2821 * Someone has grabbed the folio, try to isolate it here.
2822 * Fail with -EBUSY if not possible.
2823 */
2824 spin_unlock_irq(&hugetlb_lock);
2825 isolated = folio_isolate_hugetlb(old_folio, list);
2826 ret = isolated ? 0 : -EBUSY;
2827 spin_lock_irq(&hugetlb_lock);
2828 goto free_new;
2829 } else if (!folio_test_hugetlb_freed(old_folio)) {
2830 /*
2831 * Folio's refcount is 0 but it has not been enqueued in the
2832 * freelist yet. Race window is small, so we can succeed here if
2833 * we retry.
2834 */
2835 spin_unlock_irq(&hugetlb_lock);
2836 cond_resched();
2837 goto retry;
2838 } else {
2839 h = folio_hstate(old_folio);
2840 if (!new_folio) {
2841 spin_unlock_irq(&hugetlb_lock);
2842 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2843 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2844 NULL, NULL);
2845 if (!new_folio)
2846 return -ENOMEM;
2847 __prep_new_hugetlb_folio(h, new_folio);
2848 goto retry;
2849 }
2850
2851 /*
2852 * Ok, old_folio is still a genuine free hugepage. Remove it from
2853 * the freelist and decrease the counters. These will be
2854 * incremented again when calling __prep_account_new_huge_page()
2855 * and enqueue_hugetlb_folio() for new_folio. The counters will
2856 * remain stable since this happens under the lock.
2857 */
2858 remove_hugetlb_folio(h, old_folio, false);
2859
2860 /*
2861 * Ref count on new_folio is already zero as it was dropped
2862 * earlier. It can be directly added to the pool free list.
2863 */
2864 __prep_account_new_huge_page(h, nid);
2865 enqueue_hugetlb_folio(h, new_folio);
2866
2867 /*
2868 * Folio has been replaced, we can safely free the old one.
2869 */
2870 spin_unlock_irq(&hugetlb_lock);
2871 update_and_free_hugetlb_folio(h, old_folio, false);
2872 }
2873
2874 return ret;
2875
2876 free_new:
2877 spin_unlock_irq(&hugetlb_lock);
2878 if (new_folio)
2879 update_and_free_hugetlb_folio(h, new_folio, false);
2880
2881 return ret;
2882 }
2883
isolate_or_dissolve_huge_folio(struct folio * folio,struct list_head * list)2884 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
2885 {
2886 int ret = -EBUSY;
2887
2888 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2889 if (!folio_test_hugetlb(folio))
2890 return 0;
2891
2892 /*
2893 * Fence off gigantic pages as there is a cyclic dependency between
2894 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2895 * of bailing out right away without further retrying.
2896 */
2897 if (folio_order(folio) > MAX_PAGE_ORDER)
2898 return -ENOMEM;
2899
2900 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2901 ret = 0;
2902 else if (!folio_ref_count(folio))
2903 ret = alloc_and_dissolve_hugetlb_folio(folio, list);
2904
2905 return ret;
2906 }
2907
2908 /*
2909 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2910 * range with new folios.
2911 * @start_pfn: start pfn of the given pfn range
2912 * @end_pfn: end pfn of the given pfn range
2913 * Returns 0 on success, otherwise negated error.
2914 */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2915 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2916 {
2917 struct folio *folio;
2918 int ret = 0;
2919
2920 LIST_HEAD(isolate_list);
2921
2922 while (start_pfn < end_pfn) {
2923 folio = pfn_folio(start_pfn);
2924
2925 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2926 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) {
2927 ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list);
2928 if (ret)
2929 break;
2930
2931 putback_movable_pages(&isolate_list);
2932 }
2933 start_pfn++;
2934 }
2935
2936 return ret;
2937 }
2938
wait_for_freed_hugetlb_folios(void)2939 void wait_for_freed_hugetlb_folios(void)
2940 {
2941 if (llist_empty(&hpage_freelist))
2942 return;
2943
2944 flush_work(&free_hpage_work);
2945 }
2946
2947 typedef enum {
2948 /*
2949 * For either 0/1: we checked the per-vma resv map, and one resv
2950 * count either can be reused (0), or an extra needed (1).
2951 */
2952 MAP_CHG_REUSE = 0,
2953 MAP_CHG_NEEDED = 1,
2954 /*
2955 * Cannot use per-vma resv count can be used, hence a new resv
2956 * count is enforced.
2957 *
2958 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2959 * that currently vma_needs_reservation() has an unwanted side
2960 * effect to either use end() or commit() to complete the
2961 * transaction. Hence it needs to differenciate from NEEDED.
2962 */
2963 MAP_CHG_ENFORCED = 2,
2964 } map_chg_state;
2965
2966 /*
2967 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2968 * faults of hugetlb private mappings on top of a non-page-cache folio (in
2969 * which case even if there's a private vma resv map it won't cover such
2970 * allocation). New call sites should (probably) never set it to true!!
2971 * When it's set, the allocation will bypass all vma level reservations.
2972 */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)2973 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2974 unsigned long addr, bool cow_from_owner)
2975 {
2976 struct hugepage_subpool *spool = subpool_vma(vma);
2977 struct hstate *h = hstate_vma(vma);
2978 struct folio *folio;
2979 long retval, gbl_chg, gbl_reserve;
2980 map_chg_state map_chg;
2981 int ret, idx;
2982 struct hugetlb_cgroup *h_cg = NULL;
2983 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2984
2985 idx = hstate_index(h);
2986
2987 /* Whether we need a separate per-vma reservation? */
2988 if (cow_from_owner) {
2989 /*
2990 * Special case! Since it's a CoW on top of a reserved
2991 * page, the private resv map doesn't count. So it cannot
2992 * consume the per-vma resv map even if it's reserved.
2993 */
2994 map_chg = MAP_CHG_ENFORCED;
2995 } else {
2996 /*
2997 * Examine the region/reserve map to determine if the process
2998 * has a reservation for the page to be allocated. A return
2999 * code of zero indicates a reservation exists (no change).
3000 */
3001 retval = vma_needs_reservation(h, vma, addr);
3002 if (retval < 0)
3003 return ERR_PTR(-ENOMEM);
3004 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3005 }
3006
3007 /*
3008 * Whether we need a separate global reservation?
3009 *
3010 * Processes that did not create the mapping will have no
3011 * reserves as indicated by the region/reserve map. Check
3012 * that the allocation will not exceed the subpool limit.
3013 * Or if it can get one from the pool reservation directly.
3014 */
3015 if (map_chg) {
3016 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3017 if (gbl_chg < 0)
3018 goto out_end_reservation;
3019 } else {
3020 /*
3021 * If we have the vma reservation ready, no need for extra
3022 * global reservation.
3023 */
3024 gbl_chg = 0;
3025 }
3026
3027 /*
3028 * If this allocation is not consuming a per-vma reservation,
3029 * charge the hugetlb cgroup now.
3030 */
3031 if (map_chg) {
3032 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3033 idx, pages_per_huge_page(h), &h_cg);
3034 if (ret)
3035 goto out_subpool_put;
3036 }
3037
3038 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3039 if (ret)
3040 goto out_uncharge_cgroup_reservation;
3041
3042 spin_lock_irq(&hugetlb_lock);
3043 /*
3044 * glb_chg is passed to indicate whether or not a page must be taken
3045 * from the global free pool (global change). gbl_chg == 0 indicates
3046 * a reservation exists for the allocation.
3047 */
3048 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3049 if (!folio) {
3050 spin_unlock_irq(&hugetlb_lock);
3051 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3052 if (!folio)
3053 goto out_uncharge_cgroup;
3054 spin_lock_irq(&hugetlb_lock);
3055 list_add(&folio->lru, &h->hugepage_activelist);
3056 folio_ref_unfreeze(folio, 1);
3057 /* Fall through */
3058 }
3059
3060 /*
3061 * Either dequeued or buddy-allocated folio needs to add special
3062 * mark to the folio when it consumes a global reservation.
3063 */
3064 if (!gbl_chg) {
3065 folio_set_hugetlb_restore_reserve(folio);
3066 h->resv_huge_pages--;
3067 }
3068
3069 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3070 /* If allocation is not consuming a reservation, also store the
3071 * hugetlb_cgroup pointer on the page.
3072 */
3073 if (map_chg) {
3074 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3075 h_cg, folio);
3076 }
3077
3078 spin_unlock_irq(&hugetlb_lock);
3079
3080 hugetlb_set_folio_subpool(folio, spool);
3081
3082 if (map_chg != MAP_CHG_ENFORCED) {
3083 /* commit() is only needed if the map_chg is not enforced */
3084 retval = vma_commit_reservation(h, vma, addr);
3085 /*
3086 * Check for possible race conditions. When it happens..
3087 * The page was added to the reservation map between
3088 * vma_needs_reservation and vma_commit_reservation.
3089 * This indicates a race with hugetlb_reserve_pages.
3090 * Adjust for the subpool count incremented above AND
3091 * in hugetlb_reserve_pages for the same page. Also,
3092 * the reservation count added in hugetlb_reserve_pages
3093 * no longer applies.
3094 */
3095 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3096 long rsv_adjust;
3097
3098 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3099 hugetlb_acct_memory(h, -rsv_adjust);
3100 if (map_chg) {
3101 spin_lock_irq(&hugetlb_lock);
3102 hugetlb_cgroup_uncharge_folio_rsvd(
3103 hstate_index(h), pages_per_huge_page(h),
3104 folio);
3105 spin_unlock_irq(&hugetlb_lock);
3106 }
3107 }
3108 }
3109
3110 ret = mem_cgroup_charge_hugetlb(folio, gfp);
3111 /*
3112 * Unconditionally increment NR_HUGETLB here. If it turns out that
3113 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3114 * decrement NR_HUGETLB.
3115 */
3116 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3117
3118 if (ret == -ENOMEM) {
3119 free_huge_folio(folio);
3120 return ERR_PTR(-ENOMEM);
3121 }
3122
3123 return folio;
3124
3125 out_uncharge_cgroup:
3126 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3127 out_uncharge_cgroup_reservation:
3128 if (map_chg)
3129 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3130 h_cg);
3131 out_subpool_put:
3132 /*
3133 * put page to subpool iff the quota of subpool's rsv_hpages is used
3134 * during hugepage_subpool_get_pages.
3135 */
3136 if (map_chg && !gbl_chg) {
3137 gbl_reserve = hugepage_subpool_put_pages(spool, 1);
3138 hugetlb_acct_memory(h, -gbl_reserve);
3139 }
3140
3141
3142 out_end_reservation:
3143 if (map_chg != MAP_CHG_ENFORCED)
3144 vma_end_reservation(h, vma, addr);
3145 return ERR_PTR(-ENOSPC);
3146 }
3147
alloc_bootmem(struct hstate * h,int nid,bool node_exact)3148 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3149 {
3150 struct huge_bootmem_page *m;
3151 int listnode = nid;
3152
3153 if (hugetlb_early_cma(h))
3154 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3155 else {
3156 if (node_exact)
3157 m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3158 huge_page_size(h), 0,
3159 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3160 else {
3161 m = memblock_alloc_try_nid_raw(huge_page_size(h),
3162 huge_page_size(h), 0,
3163 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3164 /*
3165 * For pre-HVO to work correctly, pages need to be on
3166 * the list for the node they were actually allocated
3167 * from. That node may be different in the case of
3168 * fallback by memblock_alloc_try_nid_raw. So,
3169 * extract the actual node first.
3170 */
3171 if (m)
3172 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3173 }
3174
3175 if (m) {
3176 m->flags = 0;
3177 m->cma = NULL;
3178 }
3179 }
3180
3181 if (m) {
3182 /*
3183 * Use the beginning of the huge page to store the
3184 * huge_bootmem_page struct (until gather_bootmem
3185 * puts them into the mem_map).
3186 *
3187 * Put them into a private list first because mem_map
3188 * is not up yet.
3189 */
3190 INIT_LIST_HEAD(&m->list);
3191 list_add(&m->list, &huge_boot_pages[listnode]);
3192 m->hstate = h;
3193 }
3194
3195 return m;
3196 }
3197
3198 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3199 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3200 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3201 {
3202 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3203 int nr_nodes, node = nid;
3204
3205 /* do node specific alloc */
3206 if (nid != NUMA_NO_NODE) {
3207 m = alloc_bootmem(h, node, true);
3208 if (!m)
3209 return 0;
3210 goto found;
3211 }
3212
3213 /* allocate from next node when distributing huge pages */
3214 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
3215 &hugetlb_bootmem_nodes) {
3216 m = alloc_bootmem(h, node, false);
3217 if (!m)
3218 return 0;
3219 goto found;
3220 }
3221
3222 found:
3223
3224 /*
3225 * Only initialize the head struct page in memmap_init_reserved_pages,
3226 * rest of the struct pages will be initialized by the HugeTLB
3227 * subsystem itself.
3228 * The head struct page is used to get folio information by the HugeTLB
3229 * subsystem like zone id and node id.
3230 */
3231 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3232 huge_page_size(h) - PAGE_SIZE);
3233
3234 return 1;
3235 }
3236
3237 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3238 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3239 unsigned long start_page_number,
3240 unsigned long end_page_number)
3241 {
3242 enum zone_type zone = zone_idx(folio_zone(folio));
3243 int nid = folio_nid(folio);
3244 unsigned long head_pfn = folio_pfn(folio);
3245 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3246 int ret;
3247
3248 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3249 struct page *page = pfn_to_page(pfn);
3250
3251 __init_single_page(page, pfn, zone, nid);
3252 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3253 ret = page_ref_freeze(page, 1);
3254 VM_BUG_ON(!ret);
3255 }
3256 }
3257
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3258 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3259 struct hstate *h,
3260 unsigned long nr_pages)
3261 {
3262 int ret;
3263
3264 /* Prepare folio head */
3265 __folio_clear_reserved(folio);
3266 __folio_set_head(folio);
3267 ret = folio_ref_freeze(folio, 1);
3268 VM_BUG_ON(!ret);
3269 /* Initialize the necessary tail struct pages */
3270 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3271 prep_compound_head((struct page *)folio, huge_page_order(h));
3272 }
3273
hugetlb_bootmem_page_prehvo(struct huge_bootmem_page * m)3274 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3275 {
3276 return m->flags & HUGE_BOOTMEM_HVO;
3277 }
3278
hugetlb_bootmem_page_earlycma(struct huge_bootmem_page * m)3279 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3280 {
3281 return m->flags & HUGE_BOOTMEM_CMA;
3282 }
3283
3284 /*
3285 * memblock-allocated pageblocks might not have the migrate type set
3286 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3287 * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3288 * reservation.
3289 *
3290 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3291 * read-only, but that's ok - for sparse vmemmap this does not write to
3292 * the page structure.
3293 */
hugetlb_bootmem_init_migratetype(struct folio * folio,struct hstate * h)3294 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3295 struct hstate *h)
3296 {
3297 unsigned long nr_pages = pages_per_huge_page(h), i;
3298
3299 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3300
3301 for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3302 if (folio_test_hugetlb_cma(folio))
3303 init_cma_pageblock(folio_page(folio, i));
3304 else
3305 set_pageblock_migratetype(folio_page(folio, i),
3306 MIGRATE_MOVABLE);
3307 }
3308 }
3309
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3310 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3311 struct list_head *folio_list)
3312 {
3313 unsigned long flags;
3314 struct folio *folio, *tmp_f;
3315
3316 /* Send list for bulk vmemmap optimization processing */
3317 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3318
3319 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3320 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3321 /*
3322 * If HVO fails, initialize all tail struct pages
3323 * We do not worry about potential long lock hold
3324 * time as this is early in boot and there should
3325 * be no contention.
3326 */
3327 hugetlb_folio_init_tail_vmemmap(folio,
3328 HUGETLB_VMEMMAP_RESERVE_PAGES,
3329 pages_per_huge_page(h));
3330 }
3331 hugetlb_bootmem_init_migratetype(folio, h);
3332 /* Subdivide locks to achieve better parallel performance */
3333 spin_lock_irqsave(&hugetlb_lock, flags);
3334 __prep_account_new_huge_page(h, folio_nid(folio));
3335 enqueue_hugetlb_folio(h, folio);
3336 spin_unlock_irqrestore(&hugetlb_lock, flags);
3337 }
3338 }
3339
hugetlb_bootmem_page_zones_valid(int nid,struct huge_bootmem_page * m)3340 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3341 struct huge_bootmem_page *m)
3342 {
3343 unsigned long start_pfn;
3344 bool valid;
3345
3346 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3347 /*
3348 * Already validated, skip check.
3349 */
3350 return true;
3351 }
3352
3353 if (hugetlb_bootmem_page_earlycma(m)) {
3354 valid = cma_validate_zones(m->cma);
3355 goto out;
3356 }
3357
3358 start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3359
3360 valid = !pfn_range_intersects_zones(nid, start_pfn,
3361 pages_per_huge_page(m->hstate));
3362 out:
3363 if (!valid)
3364 hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3365
3366 return valid;
3367 }
3368
3369 /*
3370 * Free a bootmem page that was found to be invalid (intersecting with
3371 * multiple zones).
3372 *
3373 * Since it intersects with multiple zones, we can't just do a free
3374 * operation on all pages at once, but instead have to walk all
3375 * pages, freeing them one by one.
3376 */
hugetlb_bootmem_free_invalid_page(int nid,struct page * page,struct hstate * h)3377 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3378 struct hstate *h)
3379 {
3380 unsigned long npages = pages_per_huge_page(h);
3381 unsigned long pfn;
3382
3383 while (npages--) {
3384 pfn = page_to_pfn(page);
3385 __init_page_from_nid(pfn, nid);
3386 free_reserved_page(page);
3387 page++;
3388 }
3389 }
3390
3391 /*
3392 * Put bootmem huge pages into the standard lists after mem_map is up.
3393 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3394 */
gather_bootmem_prealloc_node(unsigned long nid)3395 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3396 {
3397 LIST_HEAD(folio_list);
3398 struct huge_bootmem_page *m, *tm;
3399 struct hstate *h = NULL, *prev_h = NULL;
3400
3401 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3402 struct page *page = virt_to_page(m);
3403 struct folio *folio = (void *)page;
3404
3405 h = m->hstate;
3406 if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3407 /*
3408 * Can't use this page. Initialize the
3409 * page structures if that hasn't already
3410 * been done, and give them to the page
3411 * allocator.
3412 */
3413 hugetlb_bootmem_free_invalid_page(nid, page, h);
3414 continue;
3415 }
3416
3417 /*
3418 * It is possible to have multiple huge page sizes (hstates)
3419 * in this list. If so, process each size separately.
3420 */
3421 if (h != prev_h && prev_h != NULL)
3422 prep_and_add_bootmem_folios(prev_h, &folio_list);
3423 prev_h = h;
3424
3425 VM_BUG_ON(!hstate_is_gigantic(h));
3426 WARN_ON(folio_ref_count(folio) != 1);
3427
3428 hugetlb_folio_init_vmemmap(folio, h,
3429 HUGETLB_VMEMMAP_RESERVE_PAGES);
3430 init_new_hugetlb_folio(h, folio);
3431
3432 if (hugetlb_bootmem_page_prehvo(m))
3433 /*
3434 * If pre-HVO was done, just set the
3435 * flag, the HVO code will then skip
3436 * this folio.
3437 */
3438 folio_set_hugetlb_vmemmap_optimized(folio);
3439
3440 if (hugetlb_bootmem_page_earlycma(m))
3441 folio_set_hugetlb_cma(folio);
3442
3443 list_add(&folio->lru, &folio_list);
3444
3445 /*
3446 * We need to restore the 'stolen' pages to totalram_pages
3447 * in order to fix confusing memory reports from free(1) and
3448 * other side-effects, like CommitLimit going negative.
3449 *
3450 * For CMA pages, this is done in init_cma_pageblock
3451 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3452 */
3453 if (!folio_test_hugetlb_cma(folio))
3454 adjust_managed_page_count(page, pages_per_huge_page(h));
3455 cond_resched();
3456 }
3457
3458 prep_and_add_bootmem_folios(h, &folio_list);
3459 }
3460
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3461 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3462 unsigned long end, void *arg)
3463 {
3464 int nid;
3465
3466 for (nid = start; nid < end; nid++)
3467 gather_bootmem_prealloc_node(nid);
3468 }
3469
gather_bootmem_prealloc(void)3470 static void __init gather_bootmem_prealloc(void)
3471 {
3472 struct padata_mt_job job = {
3473 .thread_fn = gather_bootmem_prealloc_parallel,
3474 .fn_arg = NULL,
3475 .start = 0,
3476 .size = nr_node_ids,
3477 .align = 1,
3478 .min_chunk = 1,
3479 .max_threads = num_node_state(N_MEMORY),
3480 .numa_aware = true,
3481 };
3482
3483 padata_do_multithreaded(&job);
3484 }
3485
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3486 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3487 {
3488 unsigned long i;
3489 char buf[32];
3490 LIST_HEAD(folio_list);
3491
3492 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3493 if (hstate_is_gigantic(h)) {
3494 if (!alloc_bootmem_huge_page(h, nid))
3495 break;
3496 } else {
3497 struct folio *folio;
3498 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3499
3500 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3501 &node_states[N_MEMORY], NULL);
3502 if (!folio)
3503 break;
3504 list_add(&folio->lru, &folio_list);
3505 }
3506 cond_resched();
3507 }
3508
3509 if (!list_empty(&folio_list))
3510 prep_and_add_allocated_folios(h, &folio_list);
3511
3512 if (i == h->max_huge_pages_node[nid])
3513 return;
3514
3515 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3516 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3517 h->max_huge_pages_node[nid], buf, nid, i);
3518 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3519 h->max_huge_pages_node[nid] = i;
3520 }
3521
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3522 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3523 {
3524 int i;
3525 bool node_specific_alloc = false;
3526
3527 for_each_online_node(i) {
3528 if (h->max_huge_pages_node[i] > 0) {
3529 hugetlb_hstate_alloc_pages_onenode(h, i);
3530 node_specific_alloc = true;
3531 }
3532 }
3533
3534 return node_specific_alloc;
3535 }
3536
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3537 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3538 {
3539 if (allocated < h->max_huge_pages) {
3540 char buf[32];
3541
3542 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3543 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3544 h->max_huge_pages, buf, allocated);
3545 h->max_huge_pages = allocated;
3546 }
3547 }
3548
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3549 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3550 {
3551 struct hstate *h = (struct hstate *)arg;
3552 int i, num = end - start;
3553 nodemask_t node_alloc_noretry;
3554 LIST_HEAD(folio_list);
3555 int next_node = first_online_node;
3556
3557 /* Bit mask controlling how hard we retry per-node allocations.*/
3558 nodes_clear(node_alloc_noretry);
3559
3560 for (i = 0; i < num; ++i) {
3561 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3562 &node_alloc_noretry, &next_node);
3563 if (!folio)
3564 break;
3565
3566 list_move(&folio->lru, &folio_list);
3567 cond_resched();
3568 }
3569
3570 prep_and_add_allocated_folios(h, &folio_list);
3571 }
3572
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3573 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3574 {
3575 unsigned long i;
3576
3577 for (i = 0; i < h->max_huge_pages; ++i) {
3578 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3579 break;
3580 cond_resched();
3581 }
3582
3583 return i;
3584 }
3585
hugetlb_pages_alloc_boot(struct hstate * h)3586 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3587 {
3588 struct padata_mt_job job = {
3589 .fn_arg = h,
3590 .align = 1,
3591 .numa_aware = true
3592 };
3593
3594 unsigned long jiffies_start;
3595 unsigned long jiffies_end;
3596
3597 job.thread_fn = hugetlb_pages_alloc_boot_node;
3598 job.start = 0;
3599 job.size = h->max_huge_pages;
3600
3601 /*
3602 * job.max_threads is 25% of the available cpu threads by default.
3603 *
3604 * On large servers with terabytes of memory, huge page allocation
3605 * can consume a considerably amount of time.
3606 *
3607 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3608 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3609 *
3610 * +-----------------------+-------+-------+-------+-------+-------+
3611 * | threads | 8 | 16 | 32 | 64 | 128 |
3612 * +-----------------------+-------+-------+-------+-------+-------+
3613 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
3614 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
3615 * +-----------------------+-------+-------+-------+-------+-------+
3616 */
3617 if (hugepage_allocation_threads == 0) {
3618 hugepage_allocation_threads = num_online_cpus() / 4;
3619 hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3620 }
3621
3622 job.max_threads = hugepage_allocation_threads;
3623 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads;
3624
3625 jiffies_start = jiffies;
3626 padata_do_multithreaded(&job);
3627 jiffies_end = jiffies;
3628
3629 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3630 jiffies_to_msecs(jiffies_end - jiffies_start),
3631 hugepage_allocation_threads);
3632
3633 return h->nr_huge_pages;
3634 }
3635
3636 /*
3637 * NOTE: this routine is called in different contexts for gigantic and
3638 * non-gigantic pages.
3639 * - For gigantic pages, this is called early in the boot process and
3640 * pages are allocated from memblock allocated or something similar.
3641 * Gigantic pages are actually added to pools later with the routine
3642 * gather_bootmem_prealloc.
3643 * - For non-gigantic pages, this is called later in the boot process after
3644 * all of mm is up and functional. Pages are allocated from buddy and
3645 * then added to hugetlb pools.
3646 */
hugetlb_hstate_alloc_pages(struct hstate * h)3647 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3648 {
3649 unsigned long allocated;
3650
3651 /*
3652 * Skip gigantic hugepages allocation if early CMA
3653 * reservations are not available.
3654 */
3655 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3656 !hugetlb_early_cma(h)) {
3657 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3658 return;
3659 }
3660
3661 /* do node specific alloc */
3662 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3663 return;
3664
3665 /* below will do all node balanced alloc */
3666 if (hstate_is_gigantic(h))
3667 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3668 else
3669 allocated = hugetlb_pages_alloc_boot(h);
3670
3671 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3672 }
3673
hugetlb_init_hstates(void)3674 static void __init hugetlb_init_hstates(void)
3675 {
3676 struct hstate *h, *h2;
3677
3678 for_each_hstate(h) {
3679 /*
3680 * Always reset to first_memory_node here, even if
3681 * next_nid_to_alloc was set before - we can't
3682 * reference hugetlb_bootmem_nodes after init, and
3683 * first_memory_node is right for all further allocations.
3684 */
3685 h->next_nid_to_alloc = first_memory_node;
3686 h->next_nid_to_free = first_memory_node;
3687
3688 /* oversize hugepages were init'ed in early boot */
3689 if (!hstate_is_gigantic(h))
3690 hugetlb_hstate_alloc_pages(h);
3691
3692 /*
3693 * Set demote order for each hstate. Note that
3694 * h->demote_order is initially 0.
3695 * - We can not demote gigantic pages if runtime freeing
3696 * is not supported, so skip this.
3697 * - If CMA allocation is possible, we can not demote
3698 * HUGETLB_PAGE_ORDER or smaller size pages.
3699 */
3700 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3701 continue;
3702 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3703 continue;
3704 for_each_hstate(h2) {
3705 if (h2 == h)
3706 continue;
3707 if (h2->order < h->order &&
3708 h2->order > h->demote_order)
3709 h->demote_order = h2->order;
3710 }
3711 }
3712 }
3713
report_hugepages(void)3714 static void __init report_hugepages(void)
3715 {
3716 struct hstate *h;
3717 unsigned long nrinvalid;
3718
3719 for_each_hstate(h) {
3720 char buf[32];
3721
3722 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3723 h->max_huge_pages -= nrinvalid;
3724
3725 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3726 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3727 buf, h->nr_huge_pages);
3728 if (nrinvalid)
3729 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3730 buf, nrinvalid, nrinvalid > 1 ? "s" : "");
3731 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3732 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3733 }
3734 }
3735
3736 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3737 static void try_to_free_low(struct hstate *h, unsigned long count,
3738 nodemask_t *nodes_allowed)
3739 {
3740 int i;
3741 LIST_HEAD(page_list);
3742
3743 lockdep_assert_held(&hugetlb_lock);
3744 if (hstate_is_gigantic(h))
3745 return;
3746
3747 /*
3748 * Collect pages to be freed on a list, and free after dropping lock
3749 */
3750 for_each_node_mask(i, *nodes_allowed) {
3751 struct folio *folio, *next;
3752 struct list_head *freel = &h->hugepage_freelists[i];
3753 list_for_each_entry_safe(folio, next, freel, lru) {
3754 if (count >= h->nr_huge_pages)
3755 goto out;
3756 if (folio_test_highmem(folio))
3757 continue;
3758 remove_hugetlb_folio(h, folio, false);
3759 list_add(&folio->lru, &page_list);
3760 }
3761 }
3762
3763 out:
3764 spin_unlock_irq(&hugetlb_lock);
3765 update_and_free_pages_bulk(h, &page_list);
3766 spin_lock_irq(&hugetlb_lock);
3767 }
3768 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3769 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3770 nodemask_t *nodes_allowed)
3771 {
3772 }
3773 #endif
3774
3775 /*
3776 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3777 * balanced by operating on them in a round-robin fashion.
3778 * Returns 1 if an adjustment was made.
3779 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3780 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3781 int delta)
3782 {
3783 int nr_nodes, node;
3784
3785 lockdep_assert_held(&hugetlb_lock);
3786 VM_BUG_ON(delta != -1 && delta != 1);
3787
3788 if (delta < 0) {
3789 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3790 if (h->surplus_huge_pages_node[node])
3791 goto found;
3792 }
3793 } else {
3794 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3795 if (h->surplus_huge_pages_node[node] <
3796 h->nr_huge_pages_node[node])
3797 goto found;
3798 }
3799 }
3800 return 0;
3801
3802 found:
3803 h->surplus_huge_pages += delta;
3804 h->surplus_huge_pages_node[node] += delta;
3805 return 1;
3806 }
3807
3808 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3809 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3810 nodemask_t *nodes_allowed)
3811 {
3812 unsigned long persistent_free_count;
3813 unsigned long min_count;
3814 unsigned long allocated;
3815 struct folio *folio;
3816 LIST_HEAD(page_list);
3817 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3818
3819 /*
3820 * Bit mask controlling how hard we retry per-node allocations.
3821 * If we can not allocate the bit mask, do not attempt to allocate
3822 * the requested huge pages.
3823 */
3824 if (node_alloc_noretry)
3825 nodes_clear(*node_alloc_noretry);
3826 else
3827 return -ENOMEM;
3828
3829 /*
3830 * resize_lock mutex prevents concurrent adjustments to number of
3831 * pages in hstate via the proc/sysfs interfaces.
3832 */
3833 mutex_lock(&h->resize_lock);
3834 flush_free_hpage_work(h);
3835 spin_lock_irq(&hugetlb_lock);
3836
3837 /*
3838 * Check for a node specific request.
3839 * Changing node specific huge page count may require a corresponding
3840 * change to the global count. In any case, the passed node mask
3841 * (nodes_allowed) will restrict alloc/free to the specified node.
3842 */
3843 if (nid != NUMA_NO_NODE) {
3844 unsigned long old_count = count;
3845
3846 count += persistent_huge_pages(h) -
3847 (h->nr_huge_pages_node[nid] -
3848 h->surplus_huge_pages_node[nid]);
3849 /*
3850 * User may have specified a large count value which caused the
3851 * above calculation to overflow. In this case, they wanted
3852 * to allocate as many huge pages as possible. Set count to
3853 * largest possible value to align with their intention.
3854 */
3855 if (count < old_count)
3856 count = ULONG_MAX;
3857 }
3858
3859 /*
3860 * Gigantic pages runtime allocation depend on the capability for large
3861 * page range allocation.
3862 * If the system does not provide this feature, return an error when
3863 * the user tries to allocate gigantic pages but let the user free the
3864 * boottime allocated gigantic pages.
3865 */
3866 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3867 if (count > persistent_huge_pages(h)) {
3868 spin_unlock_irq(&hugetlb_lock);
3869 mutex_unlock(&h->resize_lock);
3870 NODEMASK_FREE(node_alloc_noretry);
3871 return -EINVAL;
3872 }
3873 /* Fall through to decrease pool */
3874 }
3875
3876 /*
3877 * Increase the pool size
3878 * First take pages out of surplus state. Then make up the
3879 * remaining difference by allocating fresh huge pages.
3880 *
3881 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3882 * to convert a surplus huge page to a normal huge page. That is
3883 * not critical, though, it just means the overall size of the
3884 * pool might be one hugepage larger than it needs to be, but
3885 * within all the constraints specified by the sysctls.
3886 */
3887 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3888 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3889 break;
3890 }
3891
3892 allocated = 0;
3893 while (count > (persistent_huge_pages(h) + allocated)) {
3894 /*
3895 * If this allocation races such that we no longer need the
3896 * page, free_huge_folio will handle it by freeing the page
3897 * and reducing the surplus.
3898 */
3899 spin_unlock_irq(&hugetlb_lock);
3900
3901 /* yield cpu to avoid soft lockup */
3902 cond_resched();
3903
3904 folio = alloc_pool_huge_folio(h, nodes_allowed,
3905 node_alloc_noretry,
3906 &h->next_nid_to_alloc);
3907 if (!folio) {
3908 prep_and_add_allocated_folios(h, &page_list);
3909 spin_lock_irq(&hugetlb_lock);
3910 goto out;
3911 }
3912
3913 list_add(&folio->lru, &page_list);
3914 allocated++;
3915
3916 /* Bail for signals. Probably ctrl-c from user */
3917 if (signal_pending(current)) {
3918 prep_and_add_allocated_folios(h, &page_list);
3919 spin_lock_irq(&hugetlb_lock);
3920 goto out;
3921 }
3922
3923 spin_lock_irq(&hugetlb_lock);
3924 }
3925
3926 /* Add allocated pages to the pool */
3927 if (!list_empty(&page_list)) {
3928 spin_unlock_irq(&hugetlb_lock);
3929 prep_and_add_allocated_folios(h, &page_list);
3930 spin_lock_irq(&hugetlb_lock);
3931 }
3932
3933 /*
3934 * Decrease the pool size
3935 * First return free pages to the buddy allocator (being careful
3936 * to keep enough around to satisfy reservations). Then place
3937 * pages into surplus state as needed so the pool will shrink
3938 * to the desired size as pages become free.
3939 *
3940 * By placing pages into the surplus state independent of the
3941 * overcommit value, we are allowing the surplus pool size to
3942 * exceed overcommit. There are few sane options here. Since
3943 * alloc_surplus_hugetlb_folio() is checking the global counter,
3944 * though, we'll note that we're not allowed to exceed surplus
3945 * and won't grow the pool anywhere else. Not until one of the
3946 * sysctls are changed, or the surplus pages go out of use.
3947 *
3948 * min_count is the expected number of persistent pages, we
3949 * shouldn't calculate min_count by using
3950 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3951 * because there may exist free surplus huge pages, and this will
3952 * lead to subtracting twice. Free surplus huge pages come from HVO
3953 * failing to restore vmemmap, see comments in the callers of
3954 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3955 * persistent free count first.
3956 */
3957 persistent_free_count = h->free_huge_pages;
3958 if (h->free_huge_pages > persistent_huge_pages(h)) {
3959 if (h->free_huge_pages > h->surplus_huge_pages)
3960 persistent_free_count -= h->surplus_huge_pages;
3961 else
3962 persistent_free_count = 0;
3963 }
3964 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3965 min_count = max(count, min_count);
3966 try_to_free_low(h, min_count, nodes_allowed);
3967
3968 /*
3969 * Collect pages to be removed on list without dropping lock
3970 */
3971 while (min_count < persistent_huge_pages(h)) {
3972 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3973 if (!folio)
3974 break;
3975
3976 list_add(&folio->lru, &page_list);
3977 }
3978 /* free the pages after dropping lock */
3979 spin_unlock_irq(&hugetlb_lock);
3980 update_and_free_pages_bulk(h, &page_list);
3981 flush_free_hpage_work(h);
3982 spin_lock_irq(&hugetlb_lock);
3983
3984 while (count < persistent_huge_pages(h)) {
3985 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3986 break;
3987 }
3988 out:
3989 h->max_huge_pages = persistent_huge_pages(h);
3990 spin_unlock_irq(&hugetlb_lock);
3991 mutex_unlock(&h->resize_lock);
3992
3993 NODEMASK_FREE(node_alloc_noretry);
3994
3995 return 0;
3996 }
3997
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3998 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3999 struct list_head *src_list)
4000 {
4001 long rc;
4002 struct folio *folio, *next;
4003 LIST_HEAD(dst_list);
4004 LIST_HEAD(ret_list);
4005
4006 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
4007 list_splice_init(&ret_list, src_list);
4008
4009 /*
4010 * Taking target hstate mutex synchronizes with set_max_huge_pages.
4011 * Without the mutex, pages added to target hstate could be marked
4012 * as surplus.
4013 *
4014 * Note that we already hold src->resize_lock. To prevent deadlock,
4015 * use the convention of always taking larger size hstate mutex first.
4016 */
4017 mutex_lock(&dst->resize_lock);
4018
4019 list_for_each_entry_safe(folio, next, src_list, lru) {
4020 int i;
4021 bool cma;
4022
4023 if (folio_test_hugetlb_vmemmap_optimized(folio))
4024 continue;
4025
4026 cma = folio_test_hugetlb_cma(folio);
4027
4028 list_del(&folio->lru);
4029
4030 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4031 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4032
4033 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4034 struct page *page = folio_page(folio, i);
4035 /* Careful: see __split_huge_page_tail() */
4036 struct folio *new_folio = (struct folio *)page;
4037
4038 clear_compound_head(page);
4039 prep_compound_page(page, dst->order);
4040
4041 new_folio->mapping = NULL;
4042 init_new_hugetlb_folio(dst, new_folio);
4043 /* Copy the CMA flag so that it is freed correctly */
4044 if (cma)
4045 folio_set_hugetlb_cma(new_folio);
4046 list_add(&new_folio->lru, &dst_list);
4047 }
4048 }
4049
4050 prep_and_add_allocated_folios(dst, &dst_list);
4051
4052 mutex_unlock(&dst->resize_lock);
4053
4054 return rc;
4055 }
4056
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)4057 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4058 unsigned long nr_to_demote)
4059 __must_hold(&hugetlb_lock)
4060 {
4061 int nr_nodes, node;
4062 struct hstate *dst;
4063 long rc = 0;
4064 long nr_demoted = 0;
4065
4066 lockdep_assert_held(&hugetlb_lock);
4067
4068 /* We should never get here if no demote order */
4069 if (!src->demote_order) {
4070 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4071 return -EINVAL; /* internal error */
4072 }
4073 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4074
4075 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4076 LIST_HEAD(list);
4077 struct folio *folio, *next;
4078
4079 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4080 if (folio_test_hwpoison(folio))
4081 continue;
4082
4083 remove_hugetlb_folio(src, folio, false);
4084 list_add(&folio->lru, &list);
4085
4086 if (++nr_demoted == nr_to_demote)
4087 break;
4088 }
4089
4090 spin_unlock_irq(&hugetlb_lock);
4091
4092 rc = demote_free_hugetlb_folios(src, dst, &list);
4093
4094 spin_lock_irq(&hugetlb_lock);
4095
4096 list_for_each_entry_safe(folio, next, &list, lru) {
4097 list_del(&folio->lru);
4098 add_hugetlb_folio(src, folio, false);
4099
4100 nr_demoted--;
4101 }
4102
4103 if (rc < 0 || nr_demoted == nr_to_demote)
4104 break;
4105 }
4106
4107 /*
4108 * Not absolutely necessary, but for consistency update max_huge_pages
4109 * based on pool changes for the demoted page.
4110 */
4111 src->max_huge_pages -= nr_demoted;
4112 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4113
4114 if (rc < 0)
4115 return rc;
4116
4117 if (nr_demoted)
4118 return nr_demoted;
4119 /*
4120 * Only way to get here is if all pages on free lists are poisoned.
4121 * Return -EBUSY so that caller will not retry.
4122 */
4123 return -EBUSY;
4124 }
4125
4126 #define HSTATE_ATTR_RO(_name) \
4127 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4128
4129 #define HSTATE_ATTR_WO(_name) \
4130 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4131
4132 #define HSTATE_ATTR(_name) \
4133 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4134
4135 static struct kobject *hugepages_kobj;
4136 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4137
4138 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4139
kobj_to_hstate(struct kobject * kobj,int * nidp)4140 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4141 {
4142 int i;
4143
4144 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4145 if (hstate_kobjs[i] == kobj) {
4146 if (nidp)
4147 *nidp = NUMA_NO_NODE;
4148 return &hstates[i];
4149 }
4150
4151 return kobj_to_node_hstate(kobj, nidp);
4152 }
4153
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4154 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4155 struct kobj_attribute *attr, char *buf)
4156 {
4157 struct hstate *h;
4158 unsigned long nr_huge_pages;
4159 int nid;
4160
4161 h = kobj_to_hstate(kobj, &nid);
4162 if (nid == NUMA_NO_NODE)
4163 nr_huge_pages = h->nr_huge_pages;
4164 else
4165 nr_huge_pages = h->nr_huge_pages_node[nid];
4166
4167 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4168 }
4169
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4170 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4171 struct hstate *h, int nid,
4172 unsigned long count, size_t len)
4173 {
4174 int err;
4175 nodemask_t nodes_allowed, *n_mask;
4176
4177 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4178 return -EINVAL;
4179
4180 if (nid == NUMA_NO_NODE) {
4181 /*
4182 * global hstate attribute
4183 */
4184 if (!(obey_mempolicy &&
4185 init_nodemask_of_mempolicy(&nodes_allowed)))
4186 n_mask = &node_states[N_MEMORY];
4187 else
4188 n_mask = &nodes_allowed;
4189 } else {
4190 /*
4191 * Node specific request. count adjustment happens in
4192 * set_max_huge_pages() after acquiring hugetlb_lock.
4193 */
4194 init_nodemask_of_node(&nodes_allowed, nid);
4195 n_mask = &nodes_allowed;
4196 }
4197
4198 err = set_max_huge_pages(h, count, nid, n_mask);
4199
4200 return err ? err : len;
4201 }
4202
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4203 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4204 struct kobject *kobj, const char *buf,
4205 size_t len)
4206 {
4207 struct hstate *h;
4208 unsigned long count;
4209 int nid;
4210 int err;
4211
4212 err = kstrtoul(buf, 10, &count);
4213 if (err)
4214 return err;
4215
4216 h = kobj_to_hstate(kobj, &nid);
4217 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4218 }
4219
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4220 static ssize_t nr_hugepages_show(struct kobject *kobj,
4221 struct kobj_attribute *attr, char *buf)
4222 {
4223 return nr_hugepages_show_common(kobj, attr, buf);
4224 }
4225
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4226 static ssize_t nr_hugepages_store(struct kobject *kobj,
4227 struct kobj_attribute *attr, const char *buf, size_t len)
4228 {
4229 return nr_hugepages_store_common(false, kobj, buf, len);
4230 }
4231 HSTATE_ATTR(nr_hugepages);
4232
4233 #ifdef CONFIG_NUMA
4234
4235 /*
4236 * hstate attribute for optionally mempolicy-based constraint on persistent
4237 * huge page alloc/free.
4238 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4239 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4240 struct kobj_attribute *attr,
4241 char *buf)
4242 {
4243 return nr_hugepages_show_common(kobj, attr, buf);
4244 }
4245
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4246 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4247 struct kobj_attribute *attr, const char *buf, size_t len)
4248 {
4249 return nr_hugepages_store_common(true, kobj, buf, len);
4250 }
4251 HSTATE_ATTR(nr_hugepages_mempolicy);
4252 #endif
4253
4254
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4255 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4256 struct kobj_attribute *attr, char *buf)
4257 {
4258 struct hstate *h = kobj_to_hstate(kobj, NULL);
4259 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4260 }
4261
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4262 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4263 struct kobj_attribute *attr, const char *buf, size_t count)
4264 {
4265 int err;
4266 unsigned long input;
4267 struct hstate *h = kobj_to_hstate(kobj, NULL);
4268
4269 if (hstate_is_gigantic(h))
4270 return -EINVAL;
4271
4272 err = kstrtoul(buf, 10, &input);
4273 if (err)
4274 return err;
4275
4276 spin_lock_irq(&hugetlb_lock);
4277 h->nr_overcommit_huge_pages = input;
4278 spin_unlock_irq(&hugetlb_lock);
4279
4280 return count;
4281 }
4282 HSTATE_ATTR(nr_overcommit_hugepages);
4283
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4284 static ssize_t free_hugepages_show(struct kobject *kobj,
4285 struct kobj_attribute *attr, char *buf)
4286 {
4287 struct hstate *h;
4288 unsigned long free_huge_pages;
4289 int nid;
4290
4291 h = kobj_to_hstate(kobj, &nid);
4292 if (nid == NUMA_NO_NODE)
4293 free_huge_pages = h->free_huge_pages;
4294 else
4295 free_huge_pages = h->free_huge_pages_node[nid];
4296
4297 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4298 }
4299 HSTATE_ATTR_RO(free_hugepages);
4300
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4301 static ssize_t resv_hugepages_show(struct kobject *kobj,
4302 struct kobj_attribute *attr, char *buf)
4303 {
4304 struct hstate *h = kobj_to_hstate(kobj, NULL);
4305 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4306 }
4307 HSTATE_ATTR_RO(resv_hugepages);
4308
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4309 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4310 struct kobj_attribute *attr, char *buf)
4311 {
4312 struct hstate *h;
4313 unsigned long surplus_huge_pages;
4314 int nid;
4315
4316 h = kobj_to_hstate(kobj, &nid);
4317 if (nid == NUMA_NO_NODE)
4318 surplus_huge_pages = h->surplus_huge_pages;
4319 else
4320 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4321
4322 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4323 }
4324 HSTATE_ATTR_RO(surplus_hugepages);
4325
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4326 static ssize_t demote_store(struct kobject *kobj,
4327 struct kobj_attribute *attr, const char *buf, size_t len)
4328 {
4329 unsigned long nr_demote;
4330 unsigned long nr_available;
4331 nodemask_t nodes_allowed, *n_mask;
4332 struct hstate *h;
4333 int err;
4334 int nid;
4335
4336 err = kstrtoul(buf, 10, &nr_demote);
4337 if (err)
4338 return err;
4339 h = kobj_to_hstate(kobj, &nid);
4340
4341 if (nid != NUMA_NO_NODE) {
4342 init_nodemask_of_node(&nodes_allowed, nid);
4343 n_mask = &nodes_allowed;
4344 } else {
4345 n_mask = &node_states[N_MEMORY];
4346 }
4347
4348 /* Synchronize with other sysfs operations modifying huge pages */
4349 mutex_lock(&h->resize_lock);
4350 spin_lock_irq(&hugetlb_lock);
4351
4352 while (nr_demote) {
4353 long rc;
4354
4355 /*
4356 * Check for available pages to demote each time thorough the
4357 * loop as demote_pool_huge_page will drop hugetlb_lock.
4358 */
4359 if (nid != NUMA_NO_NODE)
4360 nr_available = h->free_huge_pages_node[nid];
4361 else
4362 nr_available = h->free_huge_pages;
4363 nr_available -= h->resv_huge_pages;
4364 if (!nr_available)
4365 break;
4366
4367 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4368 if (rc < 0) {
4369 err = rc;
4370 break;
4371 }
4372
4373 nr_demote -= rc;
4374 }
4375
4376 spin_unlock_irq(&hugetlb_lock);
4377 mutex_unlock(&h->resize_lock);
4378
4379 if (err)
4380 return err;
4381 return len;
4382 }
4383 HSTATE_ATTR_WO(demote);
4384
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4385 static ssize_t demote_size_show(struct kobject *kobj,
4386 struct kobj_attribute *attr, char *buf)
4387 {
4388 struct hstate *h = kobj_to_hstate(kobj, NULL);
4389 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4390
4391 return sysfs_emit(buf, "%lukB\n", demote_size);
4392 }
4393
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4394 static ssize_t demote_size_store(struct kobject *kobj,
4395 struct kobj_attribute *attr,
4396 const char *buf, size_t count)
4397 {
4398 struct hstate *h, *demote_hstate;
4399 unsigned long demote_size;
4400 unsigned int demote_order;
4401
4402 demote_size = (unsigned long)memparse(buf, NULL);
4403
4404 demote_hstate = size_to_hstate(demote_size);
4405 if (!demote_hstate)
4406 return -EINVAL;
4407 demote_order = demote_hstate->order;
4408 if (demote_order < HUGETLB_PAGE_ORDER)
4409 return -EINVAL;
4410
4411 /* demote order must be smaller than hstate order */
4412 h = kobj_to_hstate(kobj, NULL);
4413 if (demote_order >= h->order)
4414 return -EINVAL;
4415
4416 /* resize_lock synchronizes access to demote size and writes */
4417 mutex_lock(&h->resize_lock);
4418 h->demote_order = demote_order;
4419 mutex_unlock(&h->resize_lock);
4420
4421 return count;
4422 }
4423 HSTATE_ATTR(demote_size);
4424
4425 static struct attribute *hstate_attrs[] = {
4426 &nr_hugepages_attr.attr,
4427 &nr_overcommit_hugepages_attr.attr,
4428 &free_hugepages_attr.attr,
4429 &resv_hugepages_attr.attr,
4430 &surplus_hugepages_attr.attr,
4431 #ifdef CONFIG_NUMA
4432 &nr_hugepages_mempolicy_attr.attr,
4433 #endif
4434 NULL,
4435 };
4436
4437 static const struct attribute_group hstate_attr_group = {
4438 .attrs = hstate_attrs,
4439 };
4440
4441 static struct attribute *hstate_demote_attrs[] = {
4442 &demote_size_attr.attr,
4443 &demote_attr.attr,
4444 NULL,
4445 };
4446
4447 static const struct attribute_group hstate_demote_attr_group = {
4448 .attrs = hstate_demote_attrs,
4449 };
4450
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4451 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4452 struct kobject **hstate_kobjs,
4453 const struct attribute_group *hstate_attr_group)
4454 {
4455 int retval;
4456 int hi = hstate_index(h);
4457
4458 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4459 if (!hstate_kobjs[hi])
4460 return -ENOMEM;
4461
4462 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4463 if (retval) {
4464 kobject_put(hstate_kobjs[hi]);
4465 hstate_kobjs[hi] = NULL;
4466 return retval;
4467 }
4468
4469 if (h->demote_order) {
4470 retval = sysfs_create_group(hstate_kobjs[hi],
4471 &hstate_demote_attr_group);
4472 if (retval) {
4473 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4474 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4475 kobject_put(hstate_kobjs[hi]);
4476 hstate_kobjs[hi] = NULL;
4477 return retval;
4478 }
4479 }
4480
4481 return 0;
4482 }
4483
4484 #ifdef CONFIG_NUMA
4485 static bool hugetlb_sysfs_initialized __ro_after_init;
4486
4487 /*
4488 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4489 * with node devices in node_devices[] using a parallel array. The array
4490 * index of a node device or _hstate == node id.
4491 * This is here to avoid any static dependency of the node device driver, in
4492 * the base kernel, on the hugetlb module.
4493 */
4494 struct node_hstate {
4495 struct kobject *hugepages_kobj;
4496 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4497 };
4498 static struct node_hstate node_hstates[MAX_NUMNODES];
4499
4500 /*
4501 * A subset of global hstate attributes for node devices
4502 */
4503 static struct attribute *per_node_hstate_attrs[] = {
4504 &nr_hugepages_attr.attr,
4505 &free_hugepages_attr.attr,
4506 &surplus_hugepages_attr.attr,
4507 NULL,
4508 };
4509
4510 static const struct attribute_group per_node_hstate_attr_group = {
4511 .attrs = per_node_hstate_attrs,
4512 };
4513
4514 /*
4515 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4516 * Returns node id via non-NULL nidp.
4517 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4518 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4519 {
4520 int nid;
4521
4522 for (nid = 0; nid < nr_node_ids; nid++) {
4523 struct node_hstate *nhs = &node_hstates[nid];
4524 int i;
4525 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4526 if (nhs->hstate_kobjs[i] == kobj) {
4527 if (nidp)
4528 *nidp = nid;
4529 return &hstates[i];
4530 }
4531 }
4532
4533 BUG();
4534 return NULL;
4535 }
4536
4537 /*
4538 * Unregister hstate attributes from a single node device.
4539 * No-op if no hstate attributes attached.
4540 */
hugetlb_unregister_node(struct node * node)4541 void hugetlb_unregister_node(struct node *node)
4542 {
4543 struct hstate *h;
4544 struct node_hstate *nhs = &node_hstates[node->dev.id];
4545
4546 if (!nhs->hugepages_kobj)
4547 return; /* no hstate attributes */
4548
4549 for_each_hstate(h) {
4550 int idx = hstate_index(h);
4551 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4552
4553 if (!hstate_kobj)
4554 continue;
4555 if (h->demote_order)
4556 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4557 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4558 kobject_put(hstate_kobj);
4559 nhs->hstate_kobjs[idx] = NULL;
4560 }
4561
4562 kobject_put(nhs->hugepages_kobj);
4563 nhs->hugepages_kobj = NULL;
4564 }
4565
4566
4567 /*
4568 * Register hstate attributes for a single node device.
4569 * No-op if attributes already registered.
4570 */
hugetlb_register_node(struct node * node)4571 void hugetlb_register_node(struct node *node)
4572 {
4573 struct hstate *h;
4574 struct node_hstate *nhs = &node_hstates[node->dev.id];
4575 int err;
4576
4577 if (!hugetlb_sysfs_initialized)
4578 return;
4579
4580 if (nhs->hugepages_kobj)
4581 return; /* already allocated */
4582
4583 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4584 &node->dev.kobj);
4585 if (!nhs->hugepages_kobj)
4586 return;
4587
4588 for_each_hstate(h) {
4589 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4590 nhs->hstate_kobjs,
4591 &per_node_hstate_attr_group);
4592 if (err) {
4593 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4594 h->name, node->dev.id);
4595 hugetlb_unregister_node(node);
4596 break;
4597 }
4598 }
4599 }
4600
4601 /*
4602 * hugetlb init time: register hstate attributes for all registered node
4603 * devices of nodes that have memory. All on-line nodes should have
4604 * registered their associated device by this time.
4605 */
hugetlb_register_all_nodes(void)4606 static void __init hugetlb_register_all_nodes(void)
4607 {
4608 int nid;
4609
4610 for_each_online_node(nid)
4611 hugetlb_register_node(node_devices[nid]);
4612 }
4613 #else /* !CONFIG_NUMA */
4614
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4615 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4616 {
4617 BUG();
4618 if (nidp)
4619 *nidp = -1;
4620 return NULL;
4621 }
4622
hugetlb_register_all_nodes(void)4623 static void hugetlb_register_all_nodes(void) { }
4624
4625 #endif
4626
hugetlb_sysfs_init(void)4627 static void __init hugetlb_sysfs_init(void)
4628 {
4629 struct hstate *h;
4630 int err;
4631
4632 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4633 if (!hugepages_kobj)
4634 return;
4635
4636 for_each_hstate(h) {
4637 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4638 hstate_kobjs, &hstate_attr_group);
4639 if (err)
4640 pr_err("HugeTLB: Unable to add hstate %s\n", h->name);
4641 }
4642
4643 #ifdef CONFIG_NUMA
4644 hugetlb_sysfs_initialized = true;
4645 #endif
4646 hugetlb_register_all_nodes();
4647 }
4648
4649 #ifdef CONFIG_SYSCTL
4650 static void hugetlb_sysctl_init(void);
4651 #else
hugetlb_sysctl_init(void)4652 static inline void hugetlb_sysctl_init(void) { }
4653 #endif
4654
hugetlb_init(void)4655 static int __init hugetlb_init(void)
4656 {
4657 int i;
4658
4659 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4660 __NR_HPAGEFLAGS);
4661
4662 if (!hugepages_supported()) {
4663 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4664 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4665 return 0;
4666 }
4667
4668 /*
4669 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4670 * architectures depend on setup being done here.
4671 */
4672 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4673 if (!parsed_default_hugepagesz) {
4674 /*
4675 * If we did not parse a default huge page size, set
4676 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4677 * number of huge pages for this default size was implicitly
4678 * specified, set that here as well.
4679 * Note that the implicit setting will overwrite an explicit
4680 * setting. A warning will be printed in this case.
4681 */
4682 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4683 if (default_hstate_max_huge_pages) {
4684 if (default_hstate.max_huge_pages) {
4685 char buf[32];
4686
4687 string_get_size(huge_page_size(&default_hstate),
4688 1, STRING_UNITS_2, buf, 32);
4689 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4690 default_hstate.max_huge_pages, buf);
4691 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4692 default_hstate_max_huge_pages);
4693 }
4694 default_hstate.max_huge_pages =
4695 default_hstate_max_huge_pages;
4696
4697 for_each_online_node(i)
4698 default_hstate.max_huge_pages_node[i] =
4699 default_hugepages_in_node[i];
4700 }
4701 }
4702
4703 hugetlb_cma_check();
4704 hugetlb_init_hstates();
4705 gather_bootmem_prealloc();
4706 report_hugepages();
4707
4708 hugetlb_sysfs_init();
4709 hugetlb_cgroup_file_init();
4710 hugetlb_sysctl_init();
4711
4712 #ifdef CONFIG_SMP
4713 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4714 #else
4715 num_fault_mutexes = 1;
4716 #endif
4717 hugetlb_fault_mutex_table =
4718 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4719 GFP_KERNEL);
4720 BUG_ON(!hugetlb_fault_mutex_table);
4721
4722 for (i = 0; i < num_fault_mutexes; i++)
4723 mutex_init(&hugetlb_fault_mutex_table[i]);
4724 return 0;
4725 }
4726 subsys_initcall(hugetlb_init);
4727
4728 /* Overwritten by architectures with more huge page sizes */
__init(weak)4729 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4730 {
4731 return size == HPAGE_SIZE;
4732 }
4733
hugetlb_add_hstate(unsigned int order)4734 void __init hugetlb_add_hstate(unsigned int order)
4735 {
4736 struct hstate *h;
4737 unsigned long i;
4738
4739 if (size_to_hstate(PAGE_SIZE << order)) {
4740 return;
4741 }
4742 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4743 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4744 h = &hstates[hugetlb_max_hstate++];
4745 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4746 h->order = order;
4747 h->mask = ~(huge_page_size(h) - 1);
4748 for (i = 0; i < MAX_NUMNODES; ++i)
4749 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4750 INIT_LIST_HEAD(&h->hugepage_activelist);
4751 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4752 huge_page_size(h)/SZ_1K);
4753
4754 parsed_hstate = h;
4755 }
4756
hugetlb_node_alloc_supported(void)4757 bool __init __weak hugetlb_node_alloc_supported(void)
4758 {
4759 return true;
4760 }
4761
hugepages_clear_pages_in_node(void)4762 static void __init hugepages_clear_pages_in_node(void)
4763 {
4764 if (!hugetlb_max_hstate) {
4765 default_hstate_max_huge_pages = 0;
4766 memset(default_hugepages_in_node, 0,
4767 sizeof(default_hugepages_in_node));
4768 } else {
4769 parsed_hstate->max_huge_pages = 0;
4770 memset(parsed_hstate->max_huge_pages_node, 0,
4771 sizeof(parsed_hstate->max_huge_pages_node));
4772 }
4773 }
4774
hugetlb_add_param(char * s,int (* setup)(char *))4775 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4776 {
4777 size_t len;
4778 char *p;
4779
4780 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4781 return -EINVAL;
4782
4783 len = strlen(s) + 1;
4784 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4785 return -EINVAL;
4786
4787 p = &hstate_cmdline_buf[hstate_cmdline_index];
4788 memcpy(p, s, len);
4789 hstate_cmdline_index += len;
4790
4791 hugetlb_params[hugetlb_param_index].val = p;
4792 hugetlb_params[hugetlb_param_index].setup = setup;
4793
4794 hugetlb_param_index++;
4795
4796 return 0;
4797 }
4798
hugetlb_parse_params(void)4799 static __init void hugetlb_parse_params(void)
4800 {
4801 int i;
4802 struct hugetlb_cmdline *hcp;
4803
4804 for (i = 0; i < hugetlb_param_index; i++) {
4805 hcp = &hugetlb_params[i];
4806
4807 hcp->setup(hcp->val);
4808 }
4809
4810 hugetlb_cma_validate_params();
4811 }
4812
4813 /*
4814 * hugepages command line processing
4815 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4816 * specification. If not, ignore the hugepages value. hugepages can also
4817 * be the first huge page command line option in which case it implicitly
4818 * specifies the number of huge pages for the default size.
4819 */
hugepages_setup(char * s)4820 static int __init hugepages_setup(char *s)
4821 {
4822 unsigned long *mhp;
4823 static unsigned long *last_mhp;
4824 int node = NUMA_NO_NODE;
4825 int count;
4826 unsigned long tmp;
4827 char *p = s;
4828
4829 if (!parsed_valid_hugepagesz) {
4830 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4831 parsed_valid_hugepagesz = true;
4832 return -EINVAL;
4833 }
4834
4835 /*
4836 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4837 * yet, so this hugepages= parameter goes to the "default hstate".
4838 * Otherwise, it goes with the previously parsed hugepagesz or
4839 * default_hugepagesz.
4840 */
4841 else if (!hugetlb_max_hstate)
4842 mhp = &default_hstate_max_huge_pages;
4843 else
4844 mhp = &parsed_hstate->max_huge_pages;
4845
4846 if (mhp == last_mhp) {
4847 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4848 return 1;
4849 }
4850
4851 while (*p) {
4852 count = 0;
4853 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4854 goto invalid;
4855 /* Parameter is node format */
4856 if (p[count] == ':') {
4857 if (!hugetlb_node_alloc_supported()) {
4858 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4859 return 1;
4860 }
4861 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4862 goto invalid;
4863 node = array_index_nospec(tmp, MAX_NUMNODES);
4864 p += count + 1;
4865 /* Parse hugepages */
4866 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4867 goto invalid;
4868 if (!hugetlb_max_hstate)
4869 default_hugepages_in_node[node] = tmp;
4870 else
4871 parsed_hstate->max_huge_pages_node[node] = tmp;
4872 *mhp += tmp;
4873 /* Go to parse next node*/
4874 if (p[count] == ',')
4875 p += count + 1;
4876 else
4877 break;
4878 } else {
4879 if (p != s)
4880 goto invalid;
4881 *mhp = tmp;
4882 break;
4883 }
4884 }
4885
4886 last_mhp = mhp;
4887
4888 return 0;
4889
4890 invalid:
4891 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4892 hugepages_clear_pages_in_node();
4893 return -EINVAL;
4894 }
4895 hugetlb_early_param("hugepages", hugepages_setup);
4896
4897 /*
4898 * hugepagesz command line processing
4899 * A specific huge page size can only be specified once with hugepagesz.
4900 * hugepagesz is followed by hugepages on the command line. The global
4901 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4902 * hugepagesz argument was valid.
4903 */
hugepagesz_setup(char * s)4904 static int __init hugepagesz_setup(char *s)
4905 {
4906 unsigned long size;
4907 struct hstate *h;
4908
4909 parsed_valid_hugepagesz = false;
4910 size = (unsigned long)memparse(s, NULL);
4911
4912 if (!arch_hugetlb_valid_size(size)) {
4913 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4914 return -EINVAL;
4915 }
4916
4917 h = size_to_hstate(size);
4918 if (h) {
4919 /*
4920 * hstate for this size already exists. This is normally
4921 * an error, but is allowed if the existing hstate is the
4922 * default hstate. More specifically, it is only allowed if
4923 * the number of huge pages for the default hstate was not
4924 * previously specified.
4925 */
4926 if (!parsed_default_hugepagesz || h != &default_hstate ||
4927 default_hstate.max_huge_pages) {
4928 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4929 return -EINVAL;
4930 }
4931
4932 /*
4933 * No need to call hugetlb_add_hstate() as hstate already
4934 * exists. But, do set parsed_hstate so that a following
4935 * hugepages= parameter will be applied to this hstate.
4936 */
4937 parsed_hstate = h;
4938 parsed_valid_hugepagesz = true;
4939 return 0;
4940 }
4941
4942 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4943 parsed_valid_hugepagesz = true;
4944 return 0;
4945 }
4946 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4947
4948 /*
4949 * default_hugepagesz command line input
4950 * Only one instance of default_hugepagesz allowed on command line.
4951 */
default_hugepagesz_setup(char * s)4952 static int __init default_hugepagesz_setup(char *s)
4953 {
4954 unsigned long size;
4955 int i;
4956
4957 parsed_valid_hugepagesz = false;
4958 if (parsed_default_hugepagesz) {
4959 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4960 return -EINVAL;
4961 }
4962
4963 size = (unsigned long)memparse(s, NULL);
4964
4965 if (!arch_hugetlb_valid_size(size)) {
4966 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4967 return -EINVAL;
4968 }
4969
4970 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4971 parsed_valid_hugepagesz = true;
4972 parsed_default_hugepagesz = true;
4973 default_hstate_idx = hstate_index(size_to_hstate(size));
4974
4975 /*
4976 * The number of default huge pages (for this size) could have been
4977 * specified as the first hugetlb parameter: hugepages=X. If so,
4978 * then default_hstate_max_huge_pages is set. If the default huge
4979 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4980 * allocated here from bootmem allocator.
4981 */
4982 if (default_hstate_max_huge_pages) {
4983 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4984 /*
4985 * Since this is an early parameter, we can't check
4986 * NUMA node state yet, so loop through MAX_NUMNODES.
4987 */
4988 for (i = 0; i < MAX_NUMNODES; i++) {
4989 if (default_hugepages_in_node[i] != 0)
4990 default_hstate.max_huge_pages_node[i] =
4991 default_hugepages_in_node[i];
4992 }
4993 default_hstate_max_huge_pages = 0;
4994 }
4995
4996 return 0;
4997 }
4998 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
4999
hugetlb_bootmem_set_nodes(void)5000 void __init hugetlb_bootmem_set_nodes(void)
5001 {
5002 int i, nid;
5003 unsigned long start_pfn, end_pfn;
5004
5005 if (!nodes_empty(hugetlb_bootmem_nodes))
5006 return;
5007
5008 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5009 if (end_pfn > start_pfn)
5010 node_set(nid, hugetlb_bootmem_nodes);
5011 }
5012 }
5013
5014 static bool __hugetlb_bootmem_allocated __initdata;
5015
hugetlb_bootmem_allocated(void)5016 bool __init hugetlb_bootmem_allocated(void)
5017 {
5018 return __hugetlb_bootmem_allocated;
5019 }
5020
hugetlb_bootmem_alloc(void)5021 void __init hugetlb_bootmem_alloc(void)
5022 {
5023 struct hstate *h;
5024 int i;
5025
5026 if (__hugetlb_bootmem_allocated)
5027 return;
5028
5029 hugetlb_bootmem_set_nodes();
5030
5031 for (i = 0; i < MAX_NUMNODES; i++)
5032 INIT_LIST_HEAD(&huge_boot_pages[i]);
5033
5034 hugetlb_parse_params();
5035
5036 for_each_hstate(h) {
5037 h->next_nid_to_alloc = first_online_node;
5038
5039 if (hstate_is_gigantic(h))
5040 hugetlb_hstate_alloc_pages(h);
5041 }
5042
5043 __hugetlb_bootmem_allocated = true;
5044 }
5045
5046 /*
5047 * hugepage_alloc_threads command line parsing.
5048 *
5049 * When set, use this specific number of threads for the boot
5050 * allocation of hugepages.
5051 */
hugepage_alloc_threads_setup(char * s)5052 static int __init hugepage_alloc_threads_setup(char *s)
5053 {
5054 unsigned long allocation_threads;
5055
5056 if (kstrtoul(s, 0, &allocation_threads) != 0)
5057 return 1;
5058
5059 if (allocation_threads == 0)
5060 return 1;
5061
5062 hugepage_allocation_threads = allocation_threads;
5063
5064 return 1;
5065 }
5066 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
5067
allowed_mems_nr(struct hstate * h)5068 static unsigned int allowed_mems_nr(struct hstate *h)
5069 {
5070 int node;
5071 unsigned int nr = 0;
5072 nodemask_t *mbind_nodemask;
5073 unsigned int *array = h->free_huge_pages_node;
5074 gfp_t gfp_mask = htlb_alloc_mask(h);
5075
5076 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
5077 for_each_node_mask(node, cpuset_current_mems_allowed) {
5078 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
5079 nr += array[node];
5080 }
5081
5082 return nr;
5083 }
5084
5085 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)5086 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
5087 void *buffer, size_t *length,
5088 loff_t *ppos, unsigned long *out)
5089 {
5090 struct ctl_table dup_table;
5091
5092 /*
5093 * In order to avoid races with __do_proc_doulongvec_minmax(), we
5094 * can duplicate the @table and alter the duplicate of it.
5095 */
5096 dup_table = *table;
5097 dup_table.data = out;
5098
5099 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
5100 }
5101
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5102 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
5103 const struct ctl_table *table, int write,
5104 void *buffer, size_t *length, loff_t *ppos)
5105 {
5106 struct hstate *h = &default_hstate;
5107 unsigned long tmp = h->max_huge_pages;
5108 int ret;
5109
5110 if (!hugepages_supported())
5111 return -EOPNOTSUPP;
5112
5113 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5114 &tmp);
5115 if (ret)
5116 goto out;
5117
5118 if (write)
5119 ret = __nr_hugepages_store_common(obey_mempolicy, h,
5120 NUMA_NO_NODE, tmp, *length);
5121 out:
5122 return ret;
5123 }
5124
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5125 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
5126 void *buffer, size_t *length, loff_t *ppos)
5127 {
5128
5129 return hugetlb_sysctl_handler_common(false, table, write,
5130 buffer, length, ppos);
5131 }
5132
5133 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5134 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
5135 void *buffer, size_t *length, loff_t *ppos)
5136 {
5137 return hugetlb_sysctl_handler_common(true, table, write,
5138 buffer, length, ppos);
5139 }
5140 #endif /* CONFIG_NUMA */
5141
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5142 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
5143 void *buffer, size_t *length, loff_t *ppos)
5144 {
5145 struct hstate *h = &default_hstate;
5146 unsigned long tmp;
5147 int ret;
5148
5149 if (!hugepages_supported())
5150 return -EOPNOTSUPP;
5151
5152 tmp = h->nr_overcommit_huge_pages;
5153
5154 if (write && hstate_is_gigantic(h))
5155 return -EINVAL;
5156
5157 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5158 &tmp);
5159 if (ret)
5160 goto out;
5161
5162 if (write) {
5163 spin_lock_irq(&hugetlb_lock);
5164 h->nr_overcommit_huge_pages = tmp;
5165 spin_unlock_irq(&hugetlb_lock);
5166 }
5167 out:
5168 return ret;
5169 }
5170
5171 static const struct ctl_table hugetlb_table[] = {
5172 {
5173 .procname = "nr_hugepages",
5174 .data = NULL,
5175 .maxlen = sizeof(unsigned long),
5176 .mode = 0644,
5177 .proc_handler = hugetlb_sysctl_handler,
5178 },
5179 #ifdef CONFIG_NUMA
5180 {
5181 .procname = "nr_hugepages_mempolicy",
5182 .data = NULL,
5183 .maxlen = sizeof(unsigned long),
5184 .mode = 0644,
5185 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
5186 },
5187 #endif
5188 {
5189 .procname = "hugetlb_shm_group",
5190 .data = &sysctl_hugetlb_shm_group,
5191 .maxlen = sizeof(gid_t),
5192 .mode = 0644,
5193 .proc_handler = proc_dointvec,
5194 },
5195 {
5196 .procname = "nr_overcommit_hugepages",
5197 .data = NULL,
5198 .maxlen = sizeof(unsigned long),
5199 .mode = 0644,
5200 .proc_handler = hugetlb_overcommit_handler,
5201 },
5202 };
5203
hugetlb_sysctl_init(void)5204 static void __init hugetlb_sysctl_init(void)
5205 {
5206 register_sysctl_init("vm", hugetlb_table);
5207 }
5208 #endif /* CONFIG_SYSCTL */
5209
hugetlb_report_meminfo(struct seq_file * m)5210 void hugetlb_report_meminfo(struct seq_file *m)
5211 {
5212 struct hstate *h;
5213 unsigned long total = 0;
5214
5215 if (!hugepages_supported())
5216 return;
5217
5218 for_each_hstate(h) {
5219 unsigned long count = h->nr_huge_pages;
5220
5221 total += huge_page_size(h) * count;
5222
5223 if (h == &default_hstate)
5224 seq_printf(m,
5225 "HugePages_Total: %5lu\n"
5226 "HugePages_Free: %5lu\n"
5227 "HugePages_Rsvd: %5lu\n"
5228 "HugePages_Surp: %5lu\n"
5229 "Hugepagesize: %8lu kB\n",
5230 count,
5231 h->free_huge_pages,
5232 h->resv_huge_pages,
5233 h->surplus_huge_pages,
5234 huge_page_size(h) / SZ_1K);
5235 }
5236
5237 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5238 }
5239
hugetlb_report_node_meminfo(char * buf,int len,int nid)5240 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5241 {
5242 struct hstate *h = &default_hstate;
5243
5244 if (!hugepages_supported())
5245 return 0;
5246
5247 return sysfs_emit_at(buf, len,
5248 "Node %d HugePages_Total: %5u\n"
5249 "Node %d HugePages_Free: %5u\n"
5250 "Node %d HugePages_Surp: %5u\n",
5251 nid, h->nr_huge_pages_node[nid],
5252 nid, h->free_huge_pages_node[nid],
5253 nid, h->surplus_huge_pages_node[nid]);
5254 }
5255
hugetlb_show_meminfo_node(int nid)5256 void hugetlb_show_meminfo_node(int nid)
5257 {
5258 struct hstate *h;
5259
5260 if (!hugepages_supported())
5261 return;
5262
5263 for_each_hstate(h)
5264 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5265 nid,
5266 h->nr_huge_pages_node[nid],
5267 h->free_huge_pages_node[nid],
5268 h->surplus_huge_pages_node[nid],
5269 huge_page_size(h) / SZ_1K);
5270 }
5271
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)5272 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5273 {
5274 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5275 K(atomic_long_read(&mm->hugetlb_usage)));
5276 }
5277
5278 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)5279 unsigned long hugetlb_total_pages(void)
5280 {
5281 struct hstate *h;
5282 unsigned long nr_total_pages = 0;
5283
5284 for_each_hstate(h)
5285 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5286 return nr_total_pages;
5287 }
5288
hugetlb_acct_memory(struct hstate * h,long delta)5289 static int hugetlb_acct_memory(struct hstate *h, long delta)
5290 {
5291 int ret = -ENOMEM;
5292
5293 if (!delta)
5294 return 0;
5295
5296 spin_lock_irq(&hugetlb_lock);
5297 /*
5298 * When cpuset is configured, it breaks the strict hugetlb page
5299 * reservation as the accounting is done on a global variable. Such
5300 * reservation is completely rubbish in the presence of cpuset because
5301 * the reservation is not checked against page availability for the
5302 * current cpuset. Application can still potentially OOM'ed by kernel
5303 * with lack of free htlb page in cpuset that the task is in.
5304 * Attempt to enforce strict accounting with cpuset is almost
5305 * impossible (or too ugly) because cpuset is too fluid that
5306 * task or memory node can be dynamically moved between cpusets.
5307 *
5308 * The change of semantics for shared hugetlb mapping with cpuset is
5309 * undesirable. However, in order to preserve some of the semantics,
5310 * we fall back to check against current free page availability as
5311 * a best attempt and hopefully to minimize the impact of changing
5312 * semantics that cpuset has.
5313 *
5314 * Apart from cpuset, we also have memory policy mechanism that
5315 * also determines from which node the kernel will allocate memory
5316 * in a NUMA system. So similar to cpuset, we also should consider
5317 * the memory policy of the current task. Similar to the description
5318 * above.
5319 */
5320 if (delta > 0) {
5321 if (gather_surplus_pages(h, delta) < 0)
5322 goto out;
5323
5324 if (delta > allowed_mems_nr(h)) {
5325 return_unused_surplus_pages(h, delta);
5326 goto out;
5327 }
5328 }
5329
5330 ret = 0;
5331 if (delta < 0)
5332 return_unused_surplus_pages(h, (unsigned long) -delta);
5333
5334 out:
5335 spin_unlock_irq(&hugetlb_lock);
5336 return ret;
5337 }
5338
hugetlb_vm_op_open(struct vm_area_struct * vma)5339 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5340 {
5341 struct resv_map *resv = vma_resv_map(vma);
5342
5343 /*
5344 * HPAGE_RESV_OWNER indicates a private mapping.
5345 * This new VMA should share its siblings reservation map if present.
5346 * The VMA will only ever have a valid reservation map pointer where
5347 * it is being copied for another still existing VMA. As that VMA
5348 * has a reference to the reservation map it cannot disappear until
5349 * after this open call completes. It is therefore safe to take a
5350 * new reference here without additional locking.
5351 */
5352 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5353 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5354 kref_get(&resv->refs);
5355 }
5356
5357 /*
5358 * vma_lock structure for sharable mappings is vma specific.
5359 * Clear old pointer (if copied via vm_area_dup) and allocate
5360 * new structure. Before clearing, make sure vma_lock is not
5361 * for this vma.
5362 */
5363 if (vma->vm_flags & VM_MAYSHARE) {
5364 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5365
5366 if (vma_lock) {
5367 if (vma_lock->vma != vma) {
5368 vma->vm_private_data = NULL;
5369 hugetlb_vma_lock_alloc(vma);
5370 } else
5371 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5372 } else
5373 hugetlb_vma_lock_alloc(vma);
5374 }
5375 }
5376
hugetlb_vm_op_close(struct vm_area_struct * vma)5377 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5378 {
5379 struct hstate *h = hstate_vma(vma);
5380 struct resv_map *resv;
5381 struct hugepage_subpool *spool = subpool_vma(vma);
5382 unsigned long reserve, start, end;
5383 long gbl_reserve;
5384
5385 hugetlb_vma_lock_free(vma);
5386
5387 resv = vma_resv_map(vma);
5388 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5389 return;
5390
5391 start = vma_hugecache_offset(h, vma, vma->vm_start);
5392 end = vma_hugecache_offset(h, vma, vma->vm_end);
5393
5394 reserve = (end - start) - region_count(resv, start, end);
5395 hugetlb_cgroup_uncharge_counter(resv, start, end);
5396 if (reserve) {
5397 /*
5398 * Decrement reserve counts. The global reserve count may be
5399 * adjusted if the subpool has a minimum size.
5400 */
5401 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5402 hugetlb_acct_memory(h, -gbl_reserve);
5403 }
5404
5405 kref_put(&resv->refs, resv_map_release);
5406 }
5407
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5408 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5409 {
5410 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5411 return -EINVAL;
5412 return 0;
5413 }
5414
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)5415 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
5416 {
5417 /*
5418 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5419 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5420 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5421 * This function is called in the middle of a VMA split operation, with
5422 * MM, VMA and rmap all write-locked to prevent concurrent page table
5423 * walks (except hardware and gup_fast()).
5424 */
5425 vma_assert_write_locked(vma);
5426 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5427
5428 if (addr & ~PUD_MASK) {
5429 unsigned long floor = addr & PUD_MASK;
5430 unsigned long ceil = floor + PUD_SIZE;
5431
5432 if (floor >= vma->vm_start && ceil <= vma->vm_end) {
5433 /*
5434 * Locking:
5435 * Use take_locks=false here.
5436 * The file rmap lock is already held.
5437 * The hugetlb VMA lock can't be taken when we already
5438 * hold the file rmap lock, and we don't need it because
5439 * its purpose is to synchronize against concurrent page
5440 * table walks, which are not possible thanks to the
5441 * locks held by our caller.
5442 */
5443 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
5444 }
5445 }
5446 }
5447
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5448 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5449 {
5450 return huge_page_size(hstate_vma(vma));
5451 }
5452
5453 /*
5454 * We cannot handle pagefaults against hugetlb pages at all. They cause
5455 * handle_mm_fault() to try to instantiate regular-sized pages in the
5456 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5457 * this far.
5458 */
hugetlb_vm_op_fault(struct vm_fault * vmf)5459 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5460 {
5461 BUG();
5462 return 0;
5463 }
5464
5465 /*
5466 * When a new function is introduced to vm_operations_struct and added
5467 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5468 * This is because under System V memory model, mappings created via
5469 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5470 * their original vm_ops are overwritten with shm_vm_ops.
5471 */
5472 const struct vm_operations_struct hugetlb_vm_ops = {
5473 .fault = hugetlb_vm_op_fault,
5474 .open = hugetlb_vm_op_open,
5475 .close = hugetlb_vm_op_close,
5476 .may_split = hugetlb_vm_op_split,
5477 .pagesize = hugetlb_vm_op_pagesize,
5478 };
5479
make_huge_pte(struct vm_area_struct * vma,struct folio * folio,bool try_mkwrite)5480 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
5481 bool try_mkwrite)
5482 {
5483 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
5484 unsigned int shift = huge_page_shift(hstate_vma(vma));
5485
5486 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5487 entry = pte_mkwrite_novma(pte_mkdirty(entry));
5488 } else {
5489 entry = pte_wrprotect(entry);
5490 }
5491 entry = pte_mkyoung(entry);
5492 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5493
5494 return entry;
5495 }
5496
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5497 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5498 unsigned long address, pte_t *ptep)
5499 {
5500 pte_t entry;
5501
5502 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5503 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5504 update_mmu_cache(vma, address, ptep);
5505 }
5506
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5507 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5508 unsigned long address, pte_t *ptep)
5509 {
5510 if (vma->vm_flags & VM_WRITE)
5511 set_huge_ptep_writable(vma, address, ptep);
5512 }
5513
is_hugetlb_entry_migration(pte_t pte)5514 bool is_hugetlb_entry_migration(pte_t pte)
5515 {
5516 swp_entry_t swp;
5517
5518 if (huge_pte_none(pte) || pte_present(pte))
5519 return false;
5520 swp = pte_to_swp_entry(pte);
5521 if (is_migration_entry(swp))
5522 return true;
5523 else
5524 return false;
5525 }
5526
is_hugetlb_entry_hwpoisoned(pte_t pte)5527 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5528 {
5529 swp_entry_t swp;
5530
5531 if (huge_pte_none(pte) || pte_present(pte))
5532 return false;
5533 swp = pte_to_swp_entry(pte);
5534 if (is_hwpoison_entry(swp))
5535 return true;
5536 else
5537 return false;
5538 }
5539
5540 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5541 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5542 struct folio *new_folio, pte_t old, unsigned long sz)
5543 {
5544 pte_t newpte = make_huge_pte(vma, new_folio, true);
5545
5546 __folio_mark_uptodate(new_folio);
5547 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5548 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5549 newpte = huge_pte_mkuffd_wp(newpte);
5550 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5551 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5552 folio_set_hugetlb_migratable(new_folio);
5553 }
5554
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5555 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5556 struct vm_area_struct *dst_vma,
5557 struct vm_area_struct *src_vma)
5558 {
5559 pte_t *src_pte, *dst_pte, entry;
5560 struct folio *pte_folio;
5561 unsigned long addr;
5562 bool cow = is_cow_mapping(src_vma->vm_flags);
5563 struct hstate *h = hstate_vma(src_vma);
5564 unsigned long sz = huge_page_size(h);
5565 unsigned long npages = pages_per_huge_page(h);
5566 struct mmu_notifier_range range;
5567 unsigned long last_addr_mask;
5568 int ret = 0;
5569
5570 if (cow) {
5571 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5572 src_vma->vm_start,
5573 src_vma->vm_end);
5574 mmu_notifier_invalidate_range_start(&range);
5575 vma_assert_write_locked(src_vma);
5576 raw_write_seqcount_begin(&src->write_protect_seq);
5577 } else {
5578 /*
5579 * For shared mappings the vma lock must be held before
5580 * calling hugetlb_walk() in the src vma. Otherwise, the
5581 * returned ptep could go away if part of a shared pmd and
5582 * another thread calls huge_pmd_unshare.
5583 */
5584 hugetlb_vma_lock_read(src_vma);
5585 }
5586
5587 last_addr_mask = hugetlb_mask_last_page(h);
5588 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5589 spinlock_t *src_ptl, *dst_ptl;
5590 src_pte = hugetlb_walk(src_vma, addr, sz);
5591 if (!src_pte) {
5592 addr |= last_addr_mask;
5593 continue;
5594 }
5595 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5596 if (!dst_pte) {
5597 ret = -ENOMEM;
5598 break;
5599 }
5600
5601 /*
5602 * If the pagetables are shared don't copy or take references.
5603 *
5604 * dst_pte == src_pte is the common case of src/dest sharing.
5605 * However, src could have 'unshared' and dst shares with
5606 * another vma. So page_count of ptep page is checked instead
5607 * to reliably determine whether pte is shared.
5608 */
5609 if (page_count(virt_to_page(dst_pte)) > 1) {
5610 addr |= last_addr_mask;
5611 continue;
5612 }
5613
5614 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5615 src_ptl = huge_pte_lockptr(h, src, src_pte);
5616 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5617 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5618 again:
5619 if (huge_pte_none(entry)) {
5620 /*
5621 * Skip if src entry none.
5622 */
5623 ;
5624 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5625 if (!userfaultfd_wp(dst_vma))
5626 entry = huge_pte_clear_uffd_wp(entry);
5627 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5628 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5629 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5630 bool uffd_wp = pte_swp_uffd_wp(entry);
5631
5632 if (!is_readable_migration_entry(swp_entry) && cow) {
5633 /*
5634 * COW mappings require pages in both
5635 * parent and child to be set to read.
5636 */
5637 swp_entry = make_readable_migration_entry(
5638 swp_offset(swp_entry));
5639 entry = swp_entry_to_pte(swp_entry);
5640 if (userfaultfd_wp(src_vma) && uffd_wp)
5641 entry = pte_swp_mkuffd_wp(entry);
5642 set_huge_pte_at(src, addr, src_pte, entry, sz);
5643 }
5644 if (!userfaultfd_wp(dst_vma))
5645 entry = huge_pte_clear_uffd_wp(entry);
5646 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5647 } else if (unlikely(is_pte_marker(entry))) {
5648 pte_marker marker = copy_pte_marker(
5649 pte_to_swp_entry(entry), dst_vma);
5650
5651 if (marker)
5652 set_huge_pte_at(dst, addr, dst_pte,
5653 make_pte_marker(marker), sz);
5654 } else {
5655 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5656 pte_folio = page_folio(pte_page(entry));
5657 folio_get(pte_folio);
5658
5659 /*
5660 * Failing to duplicate the anon rmap is a rare case
5661 * where we see pinned hugetlb pages while they're
5662 * prone to COW. We need to do the COW earlier during
5663 * fork.
5664 *
5665 * When pre-allocating the page or copying data, we
5666 * need to be without the pgtable locks since we could
5667 * sleep during the process.
5668 */
5669 if (!folio_test_anon(pte_folio)) {
5670 hugetlb_add_file_rmap(pte_folio);
5671 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5672 pte_t src_pte_old = entry;
5673 struct folio *new_folio;
5674
5675 spin_unlock(src_ptl);
5676 spin_unlock(dst_ptl);
5677 /* Do not use reserve as it's private owned */
5678 new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5679 if (IS_ERR(new_folio)) {
5680 folio_put(pte_folio);
5681 ret = PTR_ERR(new_folio);
5682 break;
5683 }
5684 ret = copy_user_large_folio(new_folio, pte_folio,
5685 addr, dst_vma);
5686 folio_put(pte_folio);
5687 if (ret) {
5688 folio_put(new_folio);
5689 break;
5690 }
5691
5692 /* Install the new hugetlb folio if src pte stable */
5693 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5694 src_ptl = huge_pte_lockptr(h, src, src_pte);
5695 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5696 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5697 if (!pte_same(src_pte_old, entry)) {
5698 restore_reserve_on_error(h, dst_vma, addr,
5699 new_folio);
5700 folio_put(new_folio);
5701 /* huge_ptep of dst_pte won't change as in child */
5702 goto again;
5703 }
5704 hugetlb_install_folio(dst_vma, dst_pte, addr,
5705 new_folio, src_pte_old, sz);
5706 spin_unlock(src_ptl);
5707 spin_unlock(dst_ptl);
5708 continue;
5709 }
5710
5711 if (cow) {
5712 /*
5713 * No need to notify as we are downgrading page
5714 * table protection not changing it to point
5715 * to a new page.
5716 *
5717 * See Documentation/mm/mmu_notifier.rst
5718 */
5719 huge_ptep_set_wrprotect(src, addr, src_pte);
5720 entry = huge_pte_wrprotect(entry);
5721 }
5722
5723 if (!userfaultfd_wp(dst_vma))
5724 entry = huge_pte_clear_uffd_wp(entry);
5725
5726 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5727 hugetlb_count_add(npages, dst);
5728 }
5729 spin_unlock(src_ptl);
5730 spin_unlock(dst_ptl);
5731 }
5732
5733 if (cow) {
5734 raw_write_seqcount_end(&src->write_protect_seq);
5735 mmu_notifier_invalidate_range_end(&range);
5736 } else {
5737 hugetlb_vma_unlock_read(src_vma);
5738 }
5739
5740 return ret;
5741 }
5742
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5743 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5744 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5745 unsigned long sz)
5746 {
5747 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5748 struct hstate *h = hstate_vma(vma);
5749 struct mm_struct *mm = vma->vm_mm;
5750 spinlock_t *src_ptl, *dst_ptl;
5751 pte_t pte;
5752
5753 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5754 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5755
5756 /*
5757 * We don't have to worry about the ordering of src and dst ptlocks
5758 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5759 */
5760 if (src_ptl != dst_ptl)
5761 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5762
5763 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5764
5765 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5766 huge_pte_clear(mm, new_addr, dst_pte, sz);
5767 else {
5768 if (need_clear_uffd_wp) {
5769 if (pte_present(pte))
5770 pte = huge_pte_clear_uffd_wp(pte);
5771 else if (is_swap_pte(pte))
5772 pte = pte_swp_clear_uffd_wp(pte);
5773 }
5774 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5775 }
5776
5777 if (src_ptl != dst_ptl)
5778 spin_unlock(src_ptl);
5779 spin_unlock(dst_ptl);
5780 }
5781
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5782 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5783 struct vm_area_struct *new_vma,
5784 unsigned long old_addr, unsigned long new_addr,
5785 unsigned long len)
5786 {
5787 struct hstate *h = hstate_vma(vma);
5788 struct address_space *mapping = vma->vm_file->f_mapping;
5789 unsigned long sz = huge_page_size(h);
5790 struct mm_struct *mm = vma->vm_mm;
5791 unsigned long old_end = old_addr + len;
5792 unsigned long last_addr_mask;
5793 pte_t *src_pte, *dst_pte;
5794 struct mmu_notifier_range range;
5795 bool shared_pmd = false;
5796
5797 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5798 old_end);
5799 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5800 /*
5801 * In case of shared PMDs, we should cover the maximum possible
5802 * range.
5803 */
5804 flush_cache_range(vma, range.start, range.end);
5805
5806 mmu_notifier_invalidate_range_start(&range);
5807 last_addr_mask = hugetlb_mask_last_page(h);
5808 /* Prevent race with file truncation */
5809 hugetlb_vma_lock_write(vma);
5810 i_mmap_lock_write(mapping);
5811 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5812 src_pte = hugetlb_walk(vma, old_addr, sz);
5813 if (!src_pte) {
5814 old_addr |= last_addr_mask;
5815 new_addr |= last_addr_mask;
5816 continue;
5817 }
5818 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5819 continue;
5820
5821 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5822 shared_pmd = true;
5823 old_addr |= last_addr_mask;
5824 new_addr |= last_addr_mask;
5825 continue;
5826 }
5827
5828 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5829 if (!dst_pte)
5830 break;
5831
5832 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5833 }
5834
5835 if (shared_pmd)
5836 flush_hugetlb_tlb_range(vma, range.start, range.end);
5837 else
5838 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5839 mmu_notifier_invalidate_range_end(&range);
5840 i_mmap_unlock_write(mapping);
5841 hugetlb_vma_unlock_write(vma);
5842
5843 return len + old_addr - old_end;
5844 }
5845
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)5846 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5847 unsigned long start, unsigned long end,
5848 struct folio *folio, zap_flags_t zap_flags)
5849 {
5850 struct mm_struct *mm = vma->vm_mm;
5851 const bool folio_provided = !!folio;
5852 unsigned long address;
5853 pte_t *ptep;
5854 pte_t pte;
5855 spinlock_t *ptl;
5856 struct hstate *h = hstate_vma(vma);
5857 unsigned long sz = huge_page_size(h);
5858 bool adjust_reservation = false;
5859 unsigned long last_addr_mask;
5860 bool force_flush = false;
5861
5862 WARN_ON(!is_vm_hugetlb_page(vma));
5863 BUG_ON(start & ~huge_page_mask(h));
5864 BUG_ON(end & ~huge_page_mask(h));
5865
5866 /*
5867 * This is a hugetlb vma, all the pte entries should point
5868 * to huge page.
5869 */
5870 tlb_change_page_size(tlb, sz);
5871 tlb_start_vma(tlb, vma);
5872
5873 last_addr_mask = hugetlb_mask_last_page(h);
5874 address = start;
5875 for (; address < end; address += sz) {
5876 ptep = hugetlb_walk(vma, address, sz);
5877 if (!ptep) {
5878 address |= last_addr_mask;
5879 continue;
5880 }
5881
5882 ptl = huge_pte_lock(h, mm, ptep);
5883 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5884 spin_unlock(ptl);
5885 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5886 force_flush = true;
5887 address |= last_addr_mask;
5888 continue;
5889 }
5890
5891 pte = huge_ptep_get(mm, address, ptep);
5892 if (huge_pte_none(pte)) {
5893 spin_unlock(ptl);
5894 continue;
5895 }
5896
5897 /*
5898 * Migrating hugepage or HWPoisoned hugepage is already
5899 * unmapped and its refcount is dropped, so just clear pte here.
5900 */
5901 if (unlikely(!pte_present(pte))) {
5902 /*
5903 * If the pte was wr-protected by uffd-wp in any of the
5904 * swap forms, meanwhile the caller does not want to
5905 * drop the uffd-wp bit in this zap, then replace the
5906 * pte with a marker.
5907 */
5908 if (pte_swp_uffd_wp_any(pte) &&
5909 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5910 set_huge_pte_at(mm, address, ptep,
5911 make_pte_marker(PTE_MARKER_UFFD_WP),
5912 sz);
5913 else
5914 huge_pte_clear(mm, address, ptep, sz);
5915 spin_unlock(ptl);
5916 continue;
5917 }
5918
5919 /*
5920 * If a folio is supplied, it is because a specific
5921 * folio is being unmapped, not a range. Ensure the folio we
5922 * are about to unmap is the actual folio of interest.
5923 */
5924 if (folio_provided) {
5925 if (folio != page_folio(pte_page(pte))) {
5926 spin_unlock(ptl);
5927 continue;
5928 }
5929 /*
5930 * Mark the VMA as having unmapped its page so that
5931 * future faults in this VMA will fail rather than
5932 * looking like data was lost
5933 */
5934 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5935 } else {
5936 folio = page_folio(pte_page(pte));
5937 }
5938
5939 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5940 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5941 if (huge_pte_dirty(pte))
5942 folio_mark_dirty(folio);
5943 /* Leave a uffd-wp pte marker if needed */
5944 if (huge_pte_uffd_wp(pte) &&
5945 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5946 set_huge_pte_at(mm, address, ptep,
5947 make_pte_marker(PTE_MARKER_UFFD_WP),
5948 sz);
5949 hugetlb_count_sub(pages_per_huge_page(h), mm);
5950 hugetlb_remove_rmap(folio);
5951
5952 /*
5953 * Restore the reservation for anonymous page, otherwise the
5954 * backing page could be stolen by someone.
5955 * If there we are freeing a surplus, do not set the restore
5956 * reservation bit.
5957 */
5958 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5959 folio_test_anon(folio)) {
5960 folio_set_hugetlb_restore_reserve(folio);
5961 /* Reservation to be adjusted after the spin lock */
5962 adjust_reservation = true;
5963 }
5964
5965 spin_unlock(ptl);
5966
5967 /*
5968 * Adjust the reservation for the region that will have the
5969 * reserve restored. Keep in mind that vma_needs_reservation() changes
5970 * resv->adds_in_progress if it succeeds. If this is not done,
5971 * do_exit() will not see it, and will keep the reservation
5972 * forever.
5973 */
5974 if (adjust_reservation) {
5975 int rc = vma_needs_reservation(h, vma, address);
5976
5977 if (rc < 0)
5978 /* Pressumably allocate_file_region_entries failed
5979 * to allocate a file_region struct. Clear
5980 * hugetlb_restore_reserve so that global reserve
5981 * count will not be incremented by free_huge_folio.
5982 * Act as if we consumed the reservation.
5983 */
5984 folio_clear_hugetlb_restore_reserve(folio);
5985 else if (rc)
5986 vma_add_reservation(h, vma, address);
5987 }
5988
5989 tlb_remove_page_size(tlb, folio_page(folio, 0),
5990 folio_size(folio));
5991 /*
5992 * If we were instructed to unmap a specific folio, we're done.
5993 */
5994 if (folio_provided)
5995 break;
5996 }
5997 tlb_end_vma(tlb, vma);
5998
5999 /*
6000 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
6001 * could defer the flush until now, since by holding i_mmap_rwsem we
6002 * guaranteed that the last refernece would not be dropped. But we must
6003 * do the flushing before we return, as otherwise i_mmap_rwsem will be
6004 * dropped and the last reference to the shared PMDs page might be
6005 * dropped as well.
6006 *
6007 * In theory we could defer the freeing of the PMD pages as well, but
6008 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
6009 * detect sharing, so we cannot defer the release of the page either.
6010 * Instead, do flush now.
6011 */
6012 if (force_flush)
6013 tlb_flush_mmu_tlbonly(tlb);
6014 }
6015
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6016 void __hugetlb_zap_begin(struct vm_area_struct *vma,
6017 unsigned long *start, unsigned long *end)
6018 {
6019 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6020 return;
6021
6022 adjust_range_if_pmd_sharing_possible(vma, start, end);
6023 hugetlb_vma_lock_write(vma);
6024 if (vma->vm_file)
6025 i_mmap_lock_write(vma->vm_file->f_mapping);
6026 }
6027
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)6028 void __hugetlb_zap_end(struct vm_area_struct *vma,
6029 struct zap_details *details)
6030 {
6031 zap_flags_t zap_flags = details ? details->zap_flags : 0;
6032
6033 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6034 return;
6035
6036 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
6037 /*
6038 * Unlock and free the vma lock before releasing i_mmap_rwsem.
6039 * When the vma_lock is freed, this makes the vma ineligible
6040 * for pmd sharing. And, i_mmap_rwsem is required to set up
6041 * pmd sharing. This is important as page tables for this
6042 * unmapped range will be asynchrously deleted. If the page
6043 * tables are shared, there will be issues when accessed by
6044 * someone else.
6045 */
6046 __hugetlb_vma_unlock_write_free(vma);
6047 } else {
6048 hugetlb_vma_unlock_write(vma);
6049 }
6050
6051 if (vma->vm_file)
6052 i_mmap_unlock_write(vma->vm_file->f_mapping);
6053 }
6054
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)6055 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
6056 unsigned long end, struct folio *folio,
6057 zap_flags_t zap_flags)
6058 {
6059 struct mmu_notifier_range range;
6060 struct mmu_gather tlb;
6061
6062 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
6063 start, end);
6064 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6065 mmu_notifier_invalidate_range_start(&range);
6066 tlb_gather_mmu(&tlb, vma->vm_mm);
6067
6068 __unmap_hugepage_range(&tlb, vma, start, end,
6069 folio, zap_flags);
6070
6071 mmu_notifier_invalidate_range_end(&range);
6072 tlb_finish_mmu(&tlb);
6073 }
6074
6075 /*
6076 * This is called when the original mapper is failing to COW a MAP_PRIVATE
6077 * mapping it owns the reserve page for. The intention is to unmap the page
6078 * from other VMAs and let the children be SIGKILLed if they are faulting the
6079 * same region.
6080 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct folio * folio,unsigned long address)6081 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
6082 struct folio *folio, unsigned long address)
6083 {
6084 struct hstate *h = hstate_vma(vma);
6085 struct vm_area_struct *iter_vma;
6086 struct address_space *mapping;
6087 pgoff_t pgoff;
6088
6089 /*
6090 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
6091 * from page cache lookup which is in HPAGE_SIZE units.
6092 */
6093 address = address & huge_page_mask(h);
6094 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
6095 vma->vm_pgoff;
6096 mapping = vma->vm_file->f_mapping;
6097
6098 /*
6099 * Take the mapping lock for the duration of the table walk. As
6100 * this mapping should be shared between all the VMAs,
6101 * __unmap_hugepage_range() is called as the lock is already held
6102 */
6103 i_mmap_lock_write(mapping);
6104 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
6105 /* Do not unmap the current VMA */
6106 if (iter_vma == vma)
6107 continue;
6108
6109 /*
6110 * Shared VMAs have their own reserves and do not affect
6111 * MAP_PRIVATE accounting but it is possible that a shared
6112 * VMA is using the same page so check and skip such VMAs.
6113 */
6114 if (iter_vma->vm_flags & VM_MAYSHARE)
6115 continue;
6116
6117 /*
6118 * Unmap the page from other VMAs without their own reserves.
6119 * They get marked to be SIGKILLed if they fault in these
6120 * areas. This is because a future no-page fault on this VMA
6121 * could insert a zeroed page instead of the data existing
6122 * from the time of fork. This would look like data corruption
6123 */
6124 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
6125 unmap_hugepage_range(iter_vma, address,
6126 address + huge_page_size(h),
6127 folio, 0);
6128 }
6129 i_mmap_unlock_write(mapping);
6130 }
6131
6132 /*
6133 * hugetlb_wp() should be called with page lock of the original hugepage held.
6134 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
6135 * cannot race with other handlers or page migration.
6136 * Keep the pte_same checks anyway to make transition from the mutex easier.
6137 */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)6138 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
6139 struct vm_fault *vmf)
6140 {
6141 struct vm_area_struct *vma = vmf->vma;
6142 struct mm_struct *mm = vma->vm_mm;
6143 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6144 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
6145 struct hstate *h = hstate_vma(vma);
6146 struct folio *old_folio;
6147 struct folio *new_folio;
6148 bool cow_from_owner = 0;
6149 vm_fault_t ret = 0;
6150 struct mmu_notifier_range range;
6151
6152 /*
6153 * Never handle CoW for uffd-wp protected pages. It should be only
6154 * handled when the uffd-wp protection is removed.
6155 *
6156 * Note that only the CoW optimization path (in hugetlb_no_page())
6157 * can trigger this, because hugetlb_fault() will always resolve
6158 * uffd-wp bit first.
6159 */
6160 if (!unshare && huge_pte_uffd_wp(pte))
6161 return 0;
6162
6163 /* Let's take out MAP_SHARED mappings first. */
6164 if (vma->vm_flags & VM_MAYSHARE) {
6165 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6166 return 0;
6167 }
6168
6169 old_folio = page_folio(pte_page(pte));
6170
6171 delayacct_wpcopy_start();
6172
6173 retry_avoidcopy:
6174 /*
6175 * If no-one else is actually using this page, we're the exclusive
6176 * owner and can reuse this page.
6177 *
6178 * Note that we don't rely on the (safer) folio refcount here, because
6179 * copying the hugetlb folio when there are unexpected (temporary)
6180 * folio references could harm simple fork()+exit() users when
6181 * we run out of free hugetlb folios: we would have to kill processes
6182 * in scenarios that used to work. As a side effect, there can still
6183 * be leaks between processes, for example, with FOLL_GET users.
6184 */
6185 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6186 if (!PageAnonExclusive(&old_folio->page)) {
6187 folio_move_anon_rmap(old_folio, vma);
6188 SetPageAnonExclusive(&old_folio->page);
6189 }
6190 if (likely(!unshare))
6191 set_huge_ptep_maybe_writable(vma, vmf->address,
6192 vmf->pte);
6193
6194 delayacct_wpcopy_end();
6195 return 0;
6196 }
6197 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6198 PageAnonExclusive(&old_folio->page), &old_folio->page);
6199
6200 /*
6201 * If the process that created a MAP_PRIVATE mapping is about to
6202 * perform a COW due to a shared page count, attempt to satisfy
6203 * the allocation without using the existing reserves. The pagecache
6204 * page is used to determine if the reserve at this address was
6205 * consumed or not. If reserves were used, a partial faulted mapping
6206 * at the time of fork() could consume its reserves on COW instead
6207 * of the full address range.
6208 */
6209 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6210 old_folio != pagecache_folio)
6211 cow_from_owner = true;
6212
6213 folio_get(old_folio);
6214
6215 /*
6216 * Drop page table lock as buddy allocator may be called. It will
6217 * be acquired again before returning to the caller, as expected.
6218 */
6219 spin_unlock(vmf->ptl);
6220 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
6221
6222 if (IS_ERR(new_folio)) {
6223 /*
6224 * If a process owning a MAP_PRIVATE mapping fails to COW,
6225 * it is due to references held by a child and an insufficient
6226 * huge page pool. To guarantee the original mappers
6227 * reliability, unmap the page from child processes. The child
6228 * may get SIGKILLed if it later faults.
6229 */
6230 if (cow_from_owner) {
6231 struct address_space *mapping = vma->vm_file->f_mapping;
6232 pgoff_t idx;
6233 u32 hash;
6234
6235 folio_put(old_folio);
6236 /*
6237 * Drop hugetlb_fault_mutex and vma_lock before
6238 * unmapping. unmapping needs to hold vma_lock
6239 * in write mode. Dropping vma_lock in read mode
6240 * here is OK as COW mappings do not interact with
6241 * PMD sharing.
6242 *
6243 * Reacquire both after unmap operation.
6244 */
6245 idx = vma_hugecache_offset(h, vma, vmf->address);
6246 hash = hugetlb_fault_mutex_hash(mapping, idx);
6247 hugetlb_vma_unlock_read(vma);
6248 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6249
6250 unmap_ref_private(mm, vma, old_folio, vmf->address);
6251
6252 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6253 hugetlb_vma_lock_read(vma);
6254 spin_lock(vmf->ptl);
6255 vmf->pte = hugetlb_walk(vma, vmf->address,
6256 huge_page_size(h));
6257 if (likely(vmf->pte &&
6258 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6259 goto retry_avoidcopy;
6260 /*
6261 * race occurs while re-acquiring page table
6262 * lock, and our job is done.
6263 */
6264 delayacct_wpcopy_end();
6265 return 0;
6266 }
6267
6268 ret = vmf_error(PTR_ERR(new_folio));
6269 goto out_release_old;
6270 }
6271
6272 /*
6273 * When the original hugepage is shared one, it does not have
6274 * anon_vma prepared.
6275 */
6276 ret = __vmf_anon_prepare(vmf);
6277 if (unlikely(ret))
6278 goto out_release_all;
6279
6280 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6281 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6282 goto out_release_all;
6283 }
6284 __folio_mark_uptodate(new_folio);
6285
6286 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6287 vmf->address + huge_page_size(h));
6288 mmu_notifier_invalidate_range_start(&range);
6289
6290 /*
6291 * Retake the page table lock to check for racing updates
6292 * before the page tables are altered
6293 */
6294 spin_lock(vmf->ptl);
6295 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6296 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6297 pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
6298
6299 /* Break COW or unshare */
6300 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6301 hugetlb_remove_rmap(old_folio);
6302 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6303 if (huge_pte_uffd_wp(pte))
6304 newpte = huge_pte_mkuffd_wp(newpte);
6305 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6306 huge_page_size(h));
6307 folio_set_hugetlb_migratable(new_folio);
6308 /* Make the old page be freed below */
6309 new_folio = old_folio;
6310 }
6311 spin_unlock(vmf->ptl);
6312 mmu_notifier_invalidate_range_end(&range);
6313 out_release_all:
6314 /*
6315 * No restore in case of successful pagetable update (Break COW or
6316 * unshare)
6317 */
6318 if (new_folio != old_folio)
6319 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6320 folio_put(new_folio);
6321 out_release_old:
6322 folio_put(old_folio);
6323
6324 spin_lock(vmf->ptl); /* Caller expects lock to be held */
6325
6326 delayacct_wpcopy_end();
6327 return ret;
6328 }
6329
6330 /*
6331 * Return whether there is a pagecache page to back given address within VMA.
6332 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6333 bool hugetlbfs_pagecache_present(struct hstate *h,
6334 struct vm_area_struct *vma, unsigned long address)
6335 {
6336 struct address_space *mapping = vma->vm_file->f_mapping;
6337 pgoff_t idx = linear_page_index(vma, address);
6338 struct folio *folio;
6339
6340 folio = filemap_get_folio(mapping, idx);
6341 if (IS_ERR(folio))
6342 return false;
6343 folio_put(folio);
6344 return true;
6345 }
6346
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6347 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6348 pgoff_t idx)
6349 {
6350 struct inode *inode = mapping->host;
6351 struct hstate *h = hstate_inode(inode);
6352 int err;
6353
6354 idx <<= huge_page_order(h);
6355 __folio_set_locked(folio);
6356 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6357
6358 if (unlikely(err)) {
6359 __folio_clear_locked(folio);
6360 return err;
6361 }
6362 folio_clear_hugetlb_restore_reserve(folio);
6363
6364 /*
6365 * mark folio dirty so that it will not be removed from cache/file
6366 * by non-hugetlbfs specific code paths.
6367 */
6368 folio_mark_dirty(folio);
6369
6370 spin_lock(&inode->i_lock);
6371 inode->i_blocks += blocks_per_huge_page(h);
6372 spin_unlock(&inode->i_lock);
6373 return 0;
6374 }
6375
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6376 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6377 struct address_space *mapping,
6378 unsigned long reason)
6379 {
6380 u32 hash;
6381
6382 /*
6383 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6384 * userfault. Also mmap_lock could be dropped due to handling
6385 * userfault, any vma operation should be careful from here.
6386 */
6387 hugetlb_vma_unlock_read(vmf->vma);
6388 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6389 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6390 return handle_userfault(vmf, reason);
6391 }
6392
6393 /*
6394 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6395 * false if pte changed or is changing.
6396 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6397 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6398 pte_t *ptep, pte_t old_pte)
6399 {
6400 spinlock_t *ptl;
6401 bool same;
6402
6403 ptl = huge_pte_lock(h, mm, ptep);
6404 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6405 spin_unlock(ptl);
6406
6407 return same;
6408 }
6409
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6410 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6411 struct vm_fault *vmf)
6412 {
6413 struct vm_area_struct *vma = vmf->vma;
6414 struct mm_struct *mm = vma->vm_mm;
6415 struct hstate *h = hstate_vma(vma);
6416 vm_fault_t ret = VM_FAULT_SIGBUS;
6417 int anon_rmap = 0;
6418 unsigned long size;
6419 struct folio *folio;
6420 pte_t new_pte;
6421 bool new_folio, new_pagecache_folio = false;
6422 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6423
6424 /*
6425 * Currently, we are forced to kill the process in the event the
6426 * original mapper has unmapped pages from the child due to a failed
6427 * COW/unsharing. Warn that such a situation has occurred as it may not
6428 * be obvious.
6429 */
6430 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6431 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6432 current->pid);
6433 goto out;
6434 }
6435
6436 /*
6437 * Use page lock to guard against racing truncation
6438 * before we get page_table_lock.
6439 */
6440 new_folio = false;
6441 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6442 if (IS_ERR(folio)) {
6443 size = i_size_read(mapping->host) >> huge_page_shift(h);
6444 if (vmf->pgoff >= size)
6445 goto out;
6446 /* Check for page in userfault range */
6447 if (userfaultfd_missing(vma)) {
6448 /*
6449 * Since hugetlb_no_page() was examining pte
6450 * without pgtable lock, we need to re-test under
6451 * lock because the pte may not be stable and could
6452 * have changed from under us. Try to detect
6453 * either changed or during-changing ptes and retry
6454 * properly when needed.
6455 *
6456 * Note that userfaultfd is actually fine with
6457 * false positives (e.g. caused by pte changed),
6458 * but not wrong logical events (e.g. caused by
6459 * reading a pte during changing). The latter can
6460 * confuse the userspace, so the strictness is very
6461 * much preferred. E.g., MISSING event should
6462 * never happen on the page after UFFDIO_COPY has
6463 * correctly installed the page and returned.
6464 */
6465 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6466 ret = 0;
6467 goto out;
6468 }
6469
6470 return hugetlb_handle_userfault(vmf, mapping,
6471 VM_UFFD_MISSING);
6472 }
6473
6474 if (!(vma->vm_flags & VM_MAYSHARE)) {
6475 ret = __vmf_anon_prepare(vmf);
6476 if (unlikely(ret))
6477 goto out;
6478 }
6479
6480 folio = alloc_hugetlb_folio(vma, vmf->address, false);
6481 if (IS_ERR(folio)) {
6482 /*
6483 * Returning error will result in faulting task being
6484 * sent SIGBUS. The hugetlb fault mutex prevents two
6485 * tasks from racing to fault in the same page which
6486 * could result in false unable to allocate errors.
6487 * Page migration does not take the fault mutex, but
6488 * does a clear then write of pte's under page table
6489 * lock. Page fault code could race with migration,
6490 * notice the clear pte and try to allocate a page
6491 * here. Before returning error, get ptl and make
6492 * sure there really is no pte entry.
6493 */
6494 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6495 ret = vmf_error(PTR_ERR(folio));
6496 else
6497 ret = 0;
6498 goto out;
6499 }
6500 folio_zero_user(folio, vmf->real_address);
6501 __folio_mark_uptodate(folio);
6502 new_folio = true;
6503
6504 if (vma->vm_flags & VM_MAYSHARE) {
6505 int err = hugetlb_add_to_page_cache(folio, mapping,
6506 vmf->pgoff);
6507 if (err) {
6508 /*
6509 * err can't be -EEXIST which implies someone
6510 * else consumed the reservation since hugetlb
6511 * fault mutex is held when add a hugetlb page
6512 * to the page cache. So it's safe to call
6513 * restore_reserve_on_error() here.
6514 */
6515 restore_reserve_on_error(h, vma, vmf->address,
6516 folio);
6517 folio_put(folio);
6518 ret = VM_FAULT_SIGBUS;
6519 goto out;
6520 }
6521 new_pagecache_folio = true;
6522 } else {
6523 folio_lock(folio);
6524 anon_rmap = 1;
6525 }
6526 } else {
6527 /*
6528 * If memory error occurs between mmap() and fault, some process
6529 * don't have hwpoisoned swap entry for errored virtual address.
6530 * So we need to block hugepage fault by PG_hwpoison bit check.
6531 */
6532 if (unlikely(folio_test_hwpoison(folio))) {
6533 ret = VM_FAULT_HWPOISON_LARGE |
6534 VM_FAULT_SET_HINDEX(hstate_index(h));
6535 goto backout_unlocked;
6536 }
6537
6538 /* Check for page in userfault range. */
6539 if (userfaultfd_minor(vma)) {
6540 folio_unlock(folio);
6541 folio_put(folio);
6542 /* See comment in userfaultfd_missing() block above */
6543 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6544 ret = 0;
6545 goto out;
6546 }
6547 return hugetlb_handle_userfault(vmf, mapping,
6548 VM_UFFD_MINOR);
6549 }
6550 }
6551
6552 /*
6553 * If we are going to COW a private mapping later, we examine the
6554 * pending reservations for this page now. This will ensure that
6555 * any allocations necessary to record that reservation occur outside
6556 * the spinlock.
6557 */
6558 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6559 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6560 ret = VM_FAULT_OOM;
6561 goto backout_unlocked;
6562 }
6563 /* Just decrements count, does not deallocate */
6564 vma_end_reservation(h, vma, vmf->address);
6565 }
6566
6567 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6568 ret = 0;
6569 /* If pte changed from under us, retry */
6570 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6571 goto backout;
6572
6573 if (anon_rmap)
6574 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6575 else
6576 hugetlb_add_file_rmap(folio);
6577 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
6578 /*
6579 * If this pte was previously wr-protected, keep it wr-protected even
6580 * if populated.
6581 */
6582 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6583 new_pte = huge_pte_mkuffd_wp(new_pte);
6584 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6585
6586 hugetlb_count_add(pages_per_huge_page(h), mm);
6587 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6588 /* Optimization, do the COW without a second fault */
6589 ret = hugetlb_wp(folio, vmf);
6590 }
6591
6592 spin_unlock(vmf->ptl);
6593
6594 /*
6595 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6596 * found in the pagecache may not have hugetlb_migratable if they have
6597 * been isolated for migration.
6598 */
6599 if (new_folio)
6600 folio_set_hugetlb_migratable(folio);
6601
6602 folio_unlock(folio);
6603 out:
6604 hugetlb_vma_unlock_read(vma);
6605
6606 /*
6607 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6608 * the only way ret can be set to VM_FAULT_RETRY.
6609 */
6610 if (unlikely(ret & VM_FAULT_RETRY))
6611 vma_end_read(vma);
6612
6613 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6614 return ret;
6615
6616 backout:
6617 spin_unlock(vmf->ptl);
6618 backout_unlocked:
6619 if (new_folio && !new_pagecache_folio)
6620 restore_reserve_on_error(h, vma, vmf->address, folio);
6621
6622 folio_unlock(folio);
6623 folio_put(folio);
6624 goto out;
6625 }
6626
6627 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6628 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6629 {
6630 unsigned long key[2];
6631 u32 hash;
6632
6633 key[0] = (unsigned long) mapping;
6634 key[1] = idx;
6635
6636 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6637
6638 return hash & (num_fault_mutexes - 1);
6639 }
6640 #else
6641 /*
6642 * For uniprocessor systems we always use a single mutex, so just
6643 * return 0 and avoid the hashing overhead.
6644 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6645 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6646 {
6647 return 0;
6648 }
6649 #endif
6650
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6651 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6652 unsigned long address, unsigned int flags)
6653 {
6654 vm_fault_t ret;
6655 u32 hash;
6656 struct folio *folio = NULL;
6657 struct folio *pagecache_folio = NULL;
6658 struct hstate *h = hstate_vma(vma);
6659 struct address_space *mapping;
6660 int need_wait_lock = 0;
6661 struct vm_fault vmf = {
6662 .vma = vma,
6663 .address = address & huge_page_mask(h),
6664 .real_address = address,
6665 .flags = flags,
6666 .pgoff = vma_hugecache_offset(h, vma,
6667 address & huge_page_mask(h)),
6668 /* TODO: Track hugetlb faults using vm_fault */
6669
6670 /*
6671 * Some fields may not be initialized, be careful as it may
6672 * be hard to debug if called functions make assumptions
6673 */
6674 };
6675
6676 /*
6677 * Serialize hugepage allocation and instantiation, so that we don't
6678 * get spurious allocation failures if two CPUs race to instantiate
6679 * the same page in the page cache.
6680 */
6681 mapping = vma->vm_file->f_mapping;
6682 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6683 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6684
6685 /*
6686 * Acquire vma lock before calling huge_pte_alloc and hold
6687 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6688 * being called elsewhere and making the vmf.pte no longer valid.
6689 */
6690 hugetlb_vma_lock_read(vma);
6691 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6692 if (!vmf.pte) {
6693 hugetlb_vma_unlock_read(vma);
6694 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6695 return VM_FAULT_OOM;
6696 }
6697
6698 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6699 if (huge_pte_none_mostly(vmf.orig_pte)) {
6700 if (is_pte_marker(vmf.orig_pte)) {
6701 pte_marker marker =
6702 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6703
6704 if (marker & PTE_MARKER_POISONED) {
6705 ret = VM_FAULT_HWPOISON_LARGE |
6706 VM_FAULT_SET_HINDEX(hstate_index(h));
6707 goto out_mutex;
6708 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6709 /* This isn't supported in hugetlb. */
6710 ret = VM_FAULT_SIGSEGV;
6711 goto out_mutex;
6712 }
6713 }
6714
6715 /*
6716 * Other PTE markers should be handled the same way as none PTE.
6717 *
6718 * hugetlb_no_page will drop vma lock and hugetlb fault
6719 * mutex internally, which make us return immediately.
6720 */
6721 return hugetlb_no_page(mapping, &vmf);
6722 }
6723
6724 ret = 0;
6725
6726 /*
6727 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6728 * point, so this check prevents the kernel from going below assuming
6729 * that we have an active hugepage in pagecache. This goto expects
6730 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6731 * check will properly handle it.
6732 */
6733 if (!pte_present(vmf.orig_pte)) {
6734 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6735 /*
6736 * Release the hugetlb fault lock now, but retain
6737 * the vma lock, because it is needed to guard the
6738 * huge_pte_lockptr() later in
6739 * migration_entry_wait_huge(). The vma lock will
6740 * be released there.
6741 */
6742 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6743 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6744 return 0;
6745 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6746 ret = VM_FAULT_HWPOISON_LARGE |
6747 VM_FAULT_SET_HINDEX(hstate_index(h));
6748 goto out_mutex;
6749 }
6750
6751 /*
6752 * If we are going to COW/unshare the mapping later, we examine the
6753 * pending reservations for this page now. This will ensure that any
6754 * allocations necessary to record that reservation occur outside the
6755 * spinlock. Also lookup the pagecache page now as it is used to
6756 * determine if a reservation has been consumed.
6757 */
6758 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6759 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6760 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6761 ret = VM_FAULT_OOM;
6762 goto out_mutex;
6763 }
6764 /* Just decrements count, does not deallocate */
6765 vma_end_reservation(h, vma, vmf.address);
6766
6767 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6768 vmf.pgoff);
6769 if (IS_ERR(pagecache_folio))
6770 pagecache_folio = NULL;
6771 }
6772
6773 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6774
6775 /* Check for a racing update before calling hugetlb_wp() */
6776 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6777 goto out_ptl;
6778
6779 /* Handle userfault-wp first, before trying to lock more pages */
6780 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6781 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6782 if (!userfaultfd_wp_async(vma)) {
6783 spin_unlock(vmf.ptl);
6784 if (pagecache_folio) {
6785 folio_unlock(pagecache_folio);
6786 folio_put(pagecache_folio);
6787 }
6788 hugetlb_vma_unlock_read(vma);
6789 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6790 return handle_userfault(&vmf, VM_UFFD_WP);
6791 }
6792
6793 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6794 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6795 huge_page_size(hstate_vma(vma)));
6796 /* Fallthrough to CoW */
6797 }
6798
6799 /*
6800 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6801 * pagecache_folio, so here we need take the former one
6802 * when folio != pagecache_folio or !pagecache_folio.
6803 */
6804 folio = page_folio(pte_page(vmf.orig_pte));
6805 if (folio != pagecache_folio)
6806 if (!folio_trylock(folio)) {
6807 need_wait_lock = 1;
6808 goto out_ptl;
6809 }
6810
6811 folio_get(folio);
6812
6813 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6814 if (!huge_pte_write(vmf.orig_pte)) {
6815 ret = hugetlb_wp(pagecache_folio, &vmf);
6816 goto out_put_page;
6817 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6818 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6819 }
6820 }
6821 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6822 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6823 flags & FAULT_FLAG_WRITE))
6824 update_mmu_cache(vma, vmf.address, vmf.pte);
6825 out_put_page:
6826 if (folio != pagecache_folio)
6827 folio_unlock(folio);
6828 folio_put(folio);
6829 out_ptl:
6830 spin_unlock(vmf.ptl);
6831
6832 if (pagecache_folio) {
6833 folio_unlock(pagecache_folio);
6834 folio_put(pagecache_folio);
6835 }
6836 out_mutex:
6837 hugetlb_vma_unlock_read(vma);
6838
6839 /*
6840 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6841 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6842 */
6843 if (unlikely(ret & VM_FAULT_RETRY))
6844 vma_end_read(vma);
6845
6846 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6847 /*
6848 * Generally it's safe to hold refcount during waiting page lock. But
6849 * here we just wait to defer the next page fault to avoid busy loop and
6850 * the page is not used after unlocked before returning from the current
6851 * page fault. So we are safe from accessing freed page, even if we wait
6852 * here without taking refcount.
6853 */
6854 if (need_wait_lock)
6855 folio_wait_locked(folio);
6856 return ret;
6857 }
6858
6859 #ifdef CONFIG_USERFAULTFD
6860 /*
6861 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6862 */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6863 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6864 struct vm_area_struct *vma, unsigned long address)
6865 {
6866 struct mempolicy *mpol;
6867 nodemask_t *nodemask;
6868 struct folio *folio;
6869 gfp_t gfp_mask;
6870 int node;
6871
6872 gfp_mask = htlb_alloc_mask(h);
6873 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6874 /*
6875 * This is used to allocate a temporary hugetlb to hold the copied
6876 * content, which will then be copied again to the final hugetlb
6877 * consuming a reservation. Set the alloc_fallback to false to indicate
6878 * that breaking the per-node hugetlb pool is not allowed in this case.
6879 */
6880 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6881 mpol_cond_put(mpol);
6882
6883 return folio;
6884 }
6885
6886 /*
6887 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6888 * with modifications for hugetlb pages.
6889 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6890 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6891 struct vm_area_struct *dst_vma,
6892 unsigned long dst_addr,
6893 unsigned long src_addr,
6894 uffd_flags_t flags,
6895 struct folio **foliop)
6896 {
6897 struct mm_struct *dst_mm = dst_vma->vm_mm;
6898 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6899 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6900 struct hstate *h = hstate_vma(dst_vma);
6901 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6902 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6903 unsigned long size = huge_page_size(h);
6904 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6905 pte_t _dst_pte;
6906 spinlock_t *ptl;
6907 int ret = -ENOMEM;
6908 struct folio *folio;
6909 bool folio_in_pagecache = false;
6910
6911 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6912 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6913
6914 /* Don't overwrite any existing PTEs (even markers) */
6915 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6916 spin_unlock(ptl);
6917 return -EEXIST;
6918 }
6919
6920 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6921 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6922
6923 /* No need to invalidate - it was non-present before */
6924 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6925
6926 spin_unlock(ptl);
6927 return 0;
6928 }
6929
6930 if (is_continue) {
6931 ret = -EFAULT;
6932 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6933 if (IS_ERR(folio))
6934 goto out;
6935 folio_in_pagecache = true;
6936 } else if (!*foliop) {
6937 /* If a folio already exists, then it's UFFDIO_COPY for
6938 * a non-missing case. Return -EEXIST.
6939 */
6940 if (vm_shared &&
6941 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6942 ret = -EEXIST;
6943 goto out;
6944 }
6945
6946 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6947 if (IS_ERR(folio)) {
6948 ret = -ENOMEM;
6949 goto out;
6950 }
6951
6952 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6953 false);
6954
6955 /* fallback to copy_from_user outside mmap_lock */
6956 if (unlikely(ret)) {
6957 ret = -ENOENT;
6958 /* Free the allocated folio which may have
6959 * consumed a reservation.
6960 */
6961 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6962 folio_put(folio);
6963
6964 /* Allocate a temporary folio to hold the copied
6965 * contents.
6966 */
6967 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6968 if (!folio) {
6969 ret = -ENOMEM;
6970 goto out;
6971 }
6972 *foliop = folio;
6973 /* Set the outparam foliop and return to the caller to
6974 * copy the contents outside the lock. Don't free the
6975 * folio.
6976 */
6977 goto out;
6978 }
6979 } else {
6980 if (vm_shared &&
6981 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6982 folio_put(*foliop);
6983 ret = -EEXIST;
6984 *foliop = NULL;
6985 goto out;
6986 }
6987
6988 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6989 if (IS_ERR(folio)) {
6990 folio_put(*foliop);
6991 ret = -ENOMEM;
6992 *foliop = NULL;
6993 goto out;
6994 }
6995 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6996 folio_put(*foliop);
6997 *foliop = NULL;
6998 if (ret) {
6999 folio_put(folio);
7000 goto out;
7001 }
7002 }
7003
7004 /*
7005 * If we just allocated a new page, we need a memory barrier to ensure
7006 * that preceding stores to the page become visible before the
7007 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
7008 * is what we need.
7009 *
7010 * In the case where we have not allocated a new page (is_continue),
7011 * the page must already be uptodate. UFFDIO_CONTINUE already includes
7012 * an earlier smp_wmb() to ensure that prior stores will be visible
7013 * before the set_pte_at() write.
7014 */
7015 if (!is_continue)
7016 __folio_mark_uptodate(folio);
7017 else
7018 WARN_ON_ONCE(!folio_test_uptodate(folio));
7019
7020 /* Add shared, newly allocated pages to the page cache. */
7021 if (vm_shared && !is_continue) {
7022 ret = -EFAULT;
7023 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
7024 goto out_release_nounlock;
7025
7026 /*
7027 * Serialization between remove_inode_hugepages() and
7028 * hugetlb_add_to_page_cache() below happens through the
7029 * hugetlb_fault_mutex_table that here must be hold by
7030 * the caller.
7031 */
7032 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
7033 if (ret)
7034 goto out_release_nounlock;
7035 folio_in_pagecache = true;
7036 }
7037
7038 ptl = huge_pte_lock(h, dst_mm, dst_pte);
7039
7040 ret = -EIO;
7041 if (folio_test_hwpoison(folio))
7042 goto out_release_unlock;
7043
7044 /*
7045 * We allow to overwrite a pte marker: consider when both MISSING|WP
7046 * registered, we firstly wr-protect a none pte which has no page cache
7047 * page backing it, then access the page.
7048 */
7049 ret = -EEXIST;
7050 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
7051 goto out_release_unlock;
7052
7053 if (folio_in_pagecache)
7054 hugetlb_add_file_rmap(folio);
7055 else
7056 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
7057
7058 /*
7059 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
7060 * with wp flag set, don't set pte write bit.
7061 */
7062 _dst_pte = make_huge_pte(dst_vma, folio,
7063 !wp_enabled && !(is_continue && !vm_shared));
7064 /*
7065 * Always mark UFFDIO_COPY page dirty; note that this may not be
7066 * extremely important for hugetlbfs for now since swapping is not
7067 * supported, but we should still be clear in that this page cannot be
7068 * thrown away at will, even if write bit not set.
7069 */
7070 _dst_pte = huge_pte_mkdirty(_dst_pte);
7071 _dst_pte = pte_mkyoung(_dst_pte);
7072
7073 if (wp_enabled)
7074 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
7075
7076 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
7077
7078 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
7079
7080 /* No need to invalidate - it was non-present before */
7081 update_mmu_cache(dst_vma, dst_addr, dst_pte);
7082
7083 spin_unlock(ptl);
7084 if (!is_continue)
7085 folio_set_hugetlb_migratable(folio);
7086 if (vm_shared || is_continue)
7087 folio_unlock(folio);
7088 ret = 0;
7089 out:
7090 return ret;
7091 out_release_unlock:
7092 spin_unlock(ptl);
7093 if (vm_shared || is_continue)
7094 folio_unlock(folio);
7095 out_release_nounlock:
7096 if (!folio_in_pagecache)
7097 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
7098 folio_put(folio);
7099 goto out;
7100 }
7101 #endif /* CONFIG_USERFAULTFD */
7102
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)7103 long hugetlb_change_protection(struct vm_area_struct *vma,
7104 unsigned long address, unsigned long end,
7105 pgprot_t newprot, unsigned long cp_flags)
7106 {
7107 struct mm_struct *mm = vma->vm_mm;
7108 unsigned long start = address;
7109 pte_t *ptep;
7110 pte_t pte;
7111 struct hstate *h = hstate_vma(vma);
7112 long pages = 0, psize = huge_page_size(h);
7113 bool shared_pmd = false;
7114 struct mmu_notifier_range range;
7115 unsigned long last_addr_mask;
7116 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
7117 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
7118
7119 /*
7120 * In the case of shared PMDs, the area to flush could be beyond
7121 * start/end. Set range.start/range.end to cover the maximum possible
7122 * range if PMD sharing is possible.
7123 */
7124 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7125 0, mm, start, end);
7126 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
7127
7128 BUG_ON(address >= end);
7129 flush_cache_range(vma, range.start, range.end);
7130
7131 mmu_notifier_invalidate_range_start(&range);
7132 hugetlb_vma_lock_write(vma);
7133 i_mmap_lock_write(vma->vm_file->f_mapping);
7134 last_addr_mask = hugetlb_mask_last_page(h);
7135 for (; address < end; address += psize) {
7136 spinlock_t *ptl;
7137 ptep = hugetlb_walk(vma, address, psize);
7138 if (!ptep) {
7139 if (!uffd_wp) {
7140 address |= last_addr_mask;
7141 continue;
7142 }
7143 /*
7144 * Userfaultfd wr-protect requires pgtable
7145 * pre-allocations to install pte markers.
7146 */
7147 ptep = huge_pte_alloc(mm, vma, address, psize);
7148 if (!ptep) {
7149 pages = -ENOMEM;
7150 break;
7151 }
7152 }
7153 ptl = huge_pte_lock(h, mm, ptep);
7154 if (huge_pmd_unshare(mm, vma, address, ptep)) {
7155 /*
7156 * When uffd-wp is enabled on the vma, unshare
7157 * shouldn't happen at all. Warn about it if it
7158 * happened due to some reason.
7159 */
7160 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7161 pages++;
7162 spin_unlock(ptl);
7163 shared_pmd = true;
7164 address |= last_addr_mask;
7165 continue;
7166 }
7167 pte = huge_ptep_get(mm, address, ptep);
7168 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7169 /* Nothing to do. */
7170 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7171 swp_entry_t entry = pte_to_swp_entry(pte);
7172 struct page *page = pfn_swap_entry_to_page(entry);
7173 pte_t newpte = pte;
7174
7175 if (is_writable_migration_entry(entry)) {
7176 if (PageAnon(page))
7177 entry = make_readable_exclusive_migration_entry(
7178 swp_offset(entry));
7179 else
7180 entry = make_readable_migration_entry(
7181 swp_offset(entry));
7182 newpte = swp_entry_to_pte(entry);
7183 pages++;
7184 }
7185
7186 if (uffd_wp)
7187 newpte = pte_swp_mkuffd_wp(newpte);
7188 else if (uffd_wp_resolve)
7189 newpte = pte_swp_clear_uffd_wp(newpte);
7190 if (!pte_same(pte, newpte))
7191 set_huge_pte_at(mm, address, ptep, newpte, psize);
7192 } else if (unlikely(is_pte_marker(pte))) {
7193 /*
7194 * Do nothing on a poison marker; page is
7195 * corrupted, permissons do not apply. Here
7196 * pte_marker_uffd_wp()==true implies !poison
7197 * because they're mutual exclusive.
7198 */
7199 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7200 /* Safe to modify directly (non-present->none). */
7201 huge_pte_clear(mm, address, ptep, psize);
7202 } else if (!huge_pte_none(pte)) {
7203 pte_t old_pte;
7204 unsigned int shift = huge_page_shift(hstate_vma(vma));
7205
7206 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7207 pte = huge_pte_modify(old_pte, newprot);
7208 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7209 if (uffd_wp)
7210 pte = huge_pte_mkuffd_wp(pte);
7211 else if (uffd_wp_resolve)
7212 pte = huge_pte_clear_uffd_wp(pte);
7213 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7214 pages++;
7215 } else {
7216 /* None pte */
7217 if (unlikely(uffd_wp))
7218 /* Safe to modify directly (none->non-present). */
7219 set_huge_pte_at(mm, address, ptep,
7220 make_pte_marker(PTE_MARKER_UFFD_WP),
7221 psize);
7222 }
7223 spin_unlock(ptl);
7224 }
7225 /*
7226 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7227 * may have cleared our pud entry and done put_page on the page table:
7228 * once we release i_mmap_rwsem, another task can do the final put_page
7229 * and that page table be reused and filled with junk. If we actually
7230 * did unshare a page of pmds, flush the range corresponding to the pud.
7231 */
7232 if (shared_pmd)
7233 flush_hugetlb_tlb_range(vma, range.start, range.end);
7234 else
7235 flush_hugetlb_tlb_range(vma, start, end);
7236 /*
7237 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7238 * downgrading page table protection not changing it to point to a new
7239 * page.
7240 *
7241 * See Documentation/mm/mmu_notifier.rst
7242 */
7243 i_mmap_unlock_write(vma->vm_file->f_mapping);
7244 hugetlb_vma_unlock_write(vma);
7245 mmu_notifier_invalidate_range_end(&range);
7246
7247 return pages > 0 ? (pages << h->order) : pages;
7248 }
7249
7250 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)7251 bool hugetlb_reserve_pages(struct inode *inode,
7252 long from, long to,
7253 struct vm_area_struct *vma,
7254 vm_flags_t vm_flags)
7255 {
7256 long chg = -1, add = -1, spool_resv, gbl_resv;
7257 struct hstate *h = hstate_inode(inode);
7258 struct hugepage_subpool *spool = subpool_inode(inode);
7259 struct resv_map *resv_map;
7260 struct hugetlb_cgroup *h_cg = NULL;
7261 long gbl_reserve, regions_needed = 0;
7262
7263 /* This should never happen */
7264 if (from > to) {
7265 VM_WARN(1, "%s called with a negative range\n", __func__);
7266 return false;
7267 }
7268
7269 /*
7270 * vma specific semaphore used for pmd sharing and fault/truncation
7271 * synchronization
7272 */
7273 hugetlb_vma_lock_alloc(vma);
7274
7275 /*
7276 * Only apply hugepage reservation if asked. At fault time, an
7277 * attempt will be made for VM_NORESERVE to allocate a page
7278 * without using reserves
7279 */
7280 if (vm_flags & VM_NORESERVE)
7281 return true;
7282
7283 /*
7284 * Shared mappings base their reservation on the number of pages that
7285 * are already allocated on behalf of the file. Private mappings need
7286 * to reserve the full area even if read-only as mprotect() may be
7287 * called to make the mapping read-write. Assume !vma is a shm mapping
7288 */
7289 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7290 /*
7291 * resv_map can not be NULL as hugetlb_reserve_pages is only
7292 * called for inodes for which resv_maps were created (see
7293 * hugetlbfs_get_inode).
7294 */
7295 resv_map = inode_resv_map(inode);
7296
7297 chg = region_chg(resv_map, from, to, ®ions_needed);
7298 } else {
7299 /* Private mapping. */
7300 resv_map = resv_map_alloc();
7301 if (!resv_map)
7302 goto out_err;
7303
7304 chg = to - from;
7305
7306 set_vma_resv_map(vma, resv_map);
7307 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7308 }
7309
7310 if (chg < 0)
7311 goto out_err;
7312
7313 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7314 chg * pages_per_huge_page(h), &h_cg) < 0)
7315 goto out_err;
7316
7317 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7318 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7319 * of the resv_map.
7320 */
7321 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7322 }
7323
7324 /*
7325 * There must be enough pages in the subpool for the mapping. If
7326 * the subpool has a minimum size, there may be some global
7327 * reservations already in place (gbl_reserve).
7328 */
7329 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7330 if (gbl_reserve < 0)
7331 goto out_uncharge_cgroup;
7332
7333 /*
7334 * Check enough hugepages are available for the reservation.
7335 * Hand the pages back to the subpool if there are not
7336 */
7337 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7338 goto out_put_pages;
7339
7340 /*
7341 * Account for the reservations made. Shared mappings record regions
7342 * that have reservations as they are shared by multiple VMAs.
7343 * When the last VMA disappears, the region map says how much
7344 * the reservation was and the page cache tells how much of
7345 * the reservation was consumed. Private mappings are per-VMA and
7346 * only the consumed reservations are tracked. When the VMA
7347 * disappears, the original reservation is the VMA size and the
7348 * consumed reservations are stored in the map. Hence, nothing
7349 * else has to be done for private mappings here
7350 */
7351 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7352 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7353
7354 if (unlikely(add < 0)) {
7355 hugetlb_acct_memory(h, -gbl_reserve);
7356 goto out_put_pages;
7357 } else if (unlikely(chg > add)) {
7358 /*
7359 * pages in this range were added to the reserve
7360 * map between region_chg and region_add. This
7361 * indicates a race with alloc_hugetlb_folio. Adjust
7362 * the subpool and reserve counts modified above
7363 * based on the difference.
7364 */
7365 long rsv_adjust;
7366
7367 /*
7368 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7369 * reference to h_cg->css. See comment below for detail.
7370 */
7371 hugetlb_cgroup_uncharge_cgroup_rsvd(
7372 hstate_index(h),
7373 (chg - add) * pages_per_huge_page(h), h_cg);
7374
7375 rsv_adjust = hugepage_subpool_put_pages(spool,
7376 chg - add);
7377 hugetlb_acct_memory(h, -rsv_adjust);
7378 } else if (h_cg) {
7379 /*
7380 * The file_regions will hold their own reference to
7381 * h_cg->css. So we should release the reference held
7382 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7383 * done.
7384 */
7385 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7386 }
7387 }
7388 return true;
7389
7390 out_put_pages:
7391 spool_resv = chg - gbl_reserve;
7392 if (spool_resv) {
7393 /* put sub pool's reservation back, chg - gbl_reserve */
7394 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
7395 /*
7396 * subpool's reserved pages can not be put back due to race,
7397 * return to hstate.
7398 */
7399 hugetlb_acct_memory(h, -gbl_resv);
7400 }
7401 out_uncharge_cgroup:
7402 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7403 chg * pages_per_huge_page(h), h_cg);
7404 out_err:
7405 hugetlb_vma_lock_free(vma);
7406 if (!vma || vma->vm_flags & VM_MAYSHARE)
7407 /* Only call region_abort if the region_chg succeeded but the
7408 * region_add failed or didn't run.
7409 */
7410 if (chg >= 0 && add < 0)
7411 region_abort(resv_map, from, to, regions_needed);
7412 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7413 kref_put(&resv_map->refs, resv_map_release);
7414 set_vma_resv_map(vma, NULL);
7415 }
7416 return false;
7417 }
7418
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7419 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7420 long freed)
7421 {
7422 struct hstate *h = hstate_inode(inode);
7423 struct resv_map *resv_map = inode_resv_map(inode);
7424 long chg = 0;
7425 struct hugepage_subpool *spool = subpool_inode(inode);
7426 long gbl_reserve;
7427
7428 /*
7429 * Since this routine can be called in the evict inode path for all
7430 * hugetlbfs inodes, resv_map could be NULL.
7431 */
7432 if (resv_map) {
7433 chg = region_del(resv_map, start, end);
7434 /*
7435 * region_del() can fail in the rare case where a region
7436 * must be split and another region descriptor can not be
7437 * allocated. If end == LONG_MAX, it will not fail.
7438 */
7439 if (chg < 0)
7440 return chg;
7441 }
7442
7443 spin_lock(&inode->i_lock);
7444 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7445 spin_unlock(&inode->i_lock);
7446
7447 /*
7448 * If the subpool has a minimum size, the number of global
7449 * reservations to be released may be adjusted.
7450 *
7451 * Note that !resv_map implies freed == 0. So (chg - freed)
7452 * won't go negative.
7453 */
7454 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7455 hugetlb_acct_memory(h, -gbl_reserve);
7456
7457 return 0;
7458 }
7459
7460 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7461 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7462 struct vm_area_struct *vma,
7463 unsigned long addr, pgoff_t idx)
7464 {
7465 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7466 svma->vm_start;
7467 unsigned long sbase = saddr & PUD_MASK;
7468 unsigned long s_end = sbase + PUD_SIZE;
7469
7470 /* Allow segments to share if only one is marked locked */
7471 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7472 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7473
7474 /*
7475 * match the virtual addresses, permission and the alignment of the
7476 * page table page.
7477 *
7478 * Also, vma_lock (vm_private_data) is required for sharing.
7479 */
7480 if (pmd_index(addr) != pmd_index(saddr) ||
7481 vm_flags != svm_flags ||
7482 !range_in_vma(svma, sbase, s_end) ||
7483 !svma->vm_private_data)
7484 return 0;
7485
7486 return saddr;
7487 }
7488
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7489 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7490 {
7491 unsigned long start = addr & PUD_MASK;
7492 unsigned long end = start + PUD_SIZE;
7493
7494 #ifdef CONFIG_USERFAULTFD
7495 if (uffd_disable_huge_pmd_share(vma))
7496 return false;
7497 #endif
7498 /*
7499 * check on proper vm_flags and page table alignment
7500 */
7501 if (!(vma->vm_flags & VM_MAYSHARE))
7502 return false;
7503 if (!vma->vm_private_data) /* vma lock required for sharing */
7504 return false;
7505 if (!range_in_vma(vma, start, end))
7506 return false;
7507 return true;
7508 }
7509
7510 /*
7511 * Determine if start,end range within vma could be mapped by shared pmd.
7512 * If yes, adjust start and end to cover range associated with possible
7513 * shared pmd mappings.
7514 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7515 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7516 unsigned long *start, unsigned long *end)
7517 {
7518 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7519 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7520
7521 /*
7522 * vma needs to span at least one aligned PUD size, and the range
7523 * must be at least partially within in.
7524 */
7525 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7526 (*end <= v_start) || (*start >= v_end))
7527 return;
7528
7529 /* Extend the range to be PUD aligned for a worst case scenario */
7530 if (*start > v_start)
7531 *start = ALIGN_DOWN(*start, PUD_SIZE);
7532
7533 if (*end < v_end)
7534 *end = ALIGN(*end, PUD_SIZE);
7535 }
7536
7537 /*
7538 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7539 * and returns the corresponding pte. While this is not necessary for the
7540 * !shared pmd case because we can allocate the pmd later as well, it makes the
7541 * code much cleaner. pmd allocation is essential for the shared case because
7542 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7543 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7544 * bad pmd for sharing.
7545 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7546 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7547 unsigned long addr, pud_t *pud)
7548 {
7549 struct address_space *mapping = vma->vm_file->f_mapping;
7550 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7551 vma->vm_pgoff;
7552 struct vm_area_struct *svma;
7553 unsigned long saddr;
7554 pte_t *spte = NULL;
7555 pte_t *pte;
7556
7557 i_mmap_lock_read(mapping);
7558 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7559 if (svma == vma)
7560 continue;
7561
7562 saddr = page_table_shareable(svma, vma, addr, idx);
7563 if (saddr) {
7564 spte = hugetlb_walk(svma, saddr,
7565 vma_mmu_pagesize(svma));
7566 if (spte) {
7567 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7568 break;
7569 }
7570 }
7571 }
7572
7573 if (!spte)
7574 goto out;
7575
7576 spin_lock(&mm->page_table_lock);
7577 if (pud_none(*pud)) {
7578 pud_populate(mm, pud,
7579 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7580 mm_inc_nr_pmds(mm);
7581 } else {
7582 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7583 }
7584 spin_unlock(&mm->page_table_lock);
7585 out:
7586 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7587 i_mmap_unlock_read(mapping);
7588 return pte;
7589 }
7590
7591 /*
7592 * unmap huge page backed by shared pte.
7593 *
7594 * Called with page table lock held.
7595 *
7596 * returns: 1 successfully unmapped a shared pte page
7597 * 0 the underlying pte page is not shared, or it is the last user
7598 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7599 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7600 unsigned long addr, pte_t *ptep)
7601 {
7602 unsigned long sz = huge_page_size(hstate_vma(vma));
7603 pgd_t *pgd = pgd_offset(mm, addr);
7604 p4d_t *p4d = p4d_offset(pgd, addr);
7605 pud_t *pud = pud_offset(p4d, addr);
7606
7607 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7608 hugetlb_vma_assert_locked(vma);
7609 if (sz != PMD_SIZE)
7610 return 0;
7611 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7612 return 0;
7613
7614 pud_clear(pud);
7615 /*
7616 * Once our caller drops the rmap lock, some other process might be
7617 * using this page table as a normal, non-hugetlb page table.
7618 * Wait for pending gup_fast() in other threads to finish before letting
7619 * that happen.
7620 */
7621 tlb_remove_table_sync_one();
7622 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7623 mm_dec_nr_pmds(mm);
7624 return 1;
7625 }
7626
7627 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7628
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7629 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7630 unsigned long addr, pud_t *pud)
7631 {
7632 return NULL;
7633 }
7634
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7635 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7636 unsigned long addr, pte_t *ptep)
7637 {
7638 return 0;
7639 }
7640
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7641 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7642 unsigned long *start, unsigned long *end)
7643 {
7644 }
7645
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7646 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7647 {
7648 return false;
7649 }
7650 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7651
7652 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7653 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7654 unsigned long addr, unsigned long sz)
7655 {
7656 pgd_t *pgd;
7657 p4d_t *p4d;
7658 pud_t *pud;
7659 pte_t *pte = NULL;
7660
7661 pgd = pgd_offset(mm, addr);
7662 p4d = p4d_alloc(mm, pgd, addr);
7663 if (!p4d)
7664 return NULL;
7665 pud = pud_alloc(mm, p4d, addr);
7666 if (pud) {
7667 if (sz == PUD_SIZE) {
7668 pte = (pte_t *)pud;
7669 } else {
7670 BUG_ON(sz != PMD_SIZE);
7671 if (want_pmd_share(vma, addr) && pud_none(*pud))
7672 pte = huge_pmd_share(mm, vma, addr, pud);
7673 else
7674 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7675 }
7676 }
7677
7678 if (pte) {
7679 pte_t pteval = ptep_get_lockless(pte);
7680
7681 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7682 }
7683
7684 return pte;
7685 }
7686
7687 /*
7688 * huge_pte_offset() - Walk the page table to resolve the hugepage
7689 * entry at address @addr
7690 *
7691 * Return: Pointer to page table entry (PUD or PMD) for
7692 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7693 * size @sz doesn't match the hugepage size at this level of the page
7694 * table.
7695 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7696 pte_t *huge_pte_offset(struct mm_struct *mm,
7697 unsigned long addr, unsigned long sz)
7698 {
7699 pgd_t *pgd;
7700 p4d_t *p4d;
7701 pud_t *pud;
7702 pmd_t *pmd;
7703
7704 pgd = pgd_offset(mm, addr);
7705 if (!pgd_present(*pgd))
7706 return NULL;
7707 p4d = p4d_offset(pgd, addr);
7708 if (!p4d_present(*p4d))
7709 return NULL;
7710
7711 pud = pud_offset(p4d, addr);
7712 if (sz == PUD_SIZE)
7713 /* must be pud huge, non-present or none */
7714 return (pte_t *)pud;
7715 if (!pud_present(*pud))
7716 return NULL;
7717 /* must have a valid entry and size to go further */
7718
7719 pmd = pmd_offset(pud, addr);
7720 /* must be pmd huge, non-present or none */
7721 return (pte_t *)pmd;
7722 }
7723
7724 /*
7725 * Return a mask that can be used to update an address to the last huge
7726 * page in a page table page mapping size. Used to skip non-present
7727 * page table entries when linearly scanning address ranges. Architectures
7728 * with unique huge page to page table relationships can define their own
7729 * version of this routine.
7730 */
hugetlb_mask_last_page(struct hstate * h)7731 unsigned long hugetlb_mask_last_page(struct hstate *h)
7732 {
7733 unsigned long hp_size = huge_page_size(h);
7734
7735 if (hp_size == PUD_SIZE)
7736 return P4D_SIZE - PUD_SIZE;
7737 else if (hp_size == PMD_SIZE)
7738 return PUD_SIZE - PMD_SIZE;
7739 else
7740 return 0UL;
7741 }
7742
7743 #else
7744
7745 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7746 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7747 {
7748 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7749 if (huge_page_size(h) == PMD_SIZE)
7750 return PUD_SIZE - PMD_SIZE;
7751 #endif
7752 return 0UL;
7753 }
7754
7755 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7756
7757 /**
7758 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7759 * @folio: the folio to isolate
7760 * @list: the list to add the folio to on success
7761 *
7762 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7763 * isolated/non-migratable, and moving it from the active list to the
7764 * given list.
7765 *
7766 * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7767 * it is already isolated/non-migratable.
7768 *
7769 * On success, an additional folio reference is taken that must be dropped
7770 * using folio_putback_hugetlb() to undo the isolation.
7771 *
7772 * Return: True if isolation worked, otherwise False.
7773 */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7774 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7775 {
7776 bool ret = true;
7777
7778 spin_lock_irq(&hugetlb_lock);
7779 if (!folio_test_hugetlb(folio) ||
7780 !folio_test_hugetlb_migratable(folio) ||
7781 !folio_try_get(folio)) {
7782 ret = false;
7783 goto unlock;
7784 }
7785 folio_clear_hugetlb_migratable(folio);
7786 list_move_tail(&folio->lru, list);
7787 unlock:
7788 spin_unlock_irq(&hugetlb_lock);
7789 return ret;
7790 }
7791
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7792 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7793 {
7794 int ret = 0;
7795
7796 *hugetlb = false;
7797 spin_lock_irq(&hugetlb_lock);
7798 if (folio_test_hugetlb(folio)) {
7799 *hugetlb = true;
7800 if (folio_test_hugetlb_freed(folio))
7801 ret = 0;
7802 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7803 ret = folio_try_get(folio);
7804 else
7805 ret = -EBUSY;
7806 }
7807 spin_unlock_irq(&hugetlb_lock);
7808 return ret;
7809 }
7810
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7811 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7812 bool *migratable_cleared)
7813 {
7814 int ret;
7815
7816 spin_lock_irq(&hugetlb_lock);
7817 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7818 spin_unlock_irq(&hugetlb_lock);
7819 return ret;
7820 }
7821
7822 /**
7823 * folio_putback_hugetlb - unisolate a hugetlb folio
7824 * @folio: the isolated hugetlb folio
7825 *
7826 * Putback/un-isolate the hugetlb folio that was previous isolated using
7827 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7828 * back onto the active list.
7829 *
7830 * Will drop the additional folio reference obtained through
7831 * folio_isolate_hugetlb().
7832 */
folio_putback_hugetlb(struct folio * folio)7833 void folio_putback_hugetlb(struct folio *folio)
7834 {
7835 spin_lock_irq(&hugetlb_lock);
7836 folio_set_hugetlb_migratable(folio);
7837 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7838 spin_unlock_irq(&hugetlb_lock);
7839 folio_put(folio);
7840 }
7841
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7842 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7843 {
7844 struct hstate *h = folio_hstate(old_folio);
7845
7846 hugetlb_cgroup_migrate(old_folio, new_folio);
7847 set_page_owner_migrate_reason(&new_folio->page, reason);
7848
7849 /*
7850 * transfer temporary state of the new hugetlb folio. This is
7851 * reverse to other transitions because the newpage is going to
7852 * be final while the old one will be freed so it takes over
7853 * the temporary status.
7854 *
7855 * Also note that we have to transfer the per-node surplus state
7856 * here as well otherwise the global surplus count will not match
7857 * the per-node's.
7858 */
7859 if (folio_test_hugetlb_temporary(new_folio)) {
7860 int old_nid = folio_nid(old_folio);
7861 int new_nid = folio_nid(new_folio);
7862
7863 folio_set_hugetlb_temporary(old_folio);
7864 folio_clear_hugetlb_temporary(new_folio);
7865
7866
7867 /*
7868 * There is no need to transfer the per-node surplus state
7869 * when we do not cross the node.
7870 */
7871 if (new_nid == old_nid)
7872 return;
7873 spin_lock_irq(&hugetlb_lock);
7874 if (h->surplus_huge_pages_node[old_nid]) {
7875 h->surplus_huge_pages_node[old_nid]--;
7876 h->surplus_huge_pages_node[new_nid]++;
7877 }
7878 spin_unlock_irq(&hugetlb_lock);
7879 }
7880
7881 /*
7882 * Our old folio is isolated and has "migratable" cleared until it
7883 * is putback. As migration succeeded, set the new folio "migratable"
7884 * and add it to the active list.
7885 */
7886 spin_lock_irq(&hugetlb_lock);
7887 folio_set_hugetlb_migratable(new_folio);
7888 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7889 spin_unlock_irq(&hugetlb_lock);
7890 }
7891
7892 /*
7893 * If @take_locks is false, the caller must ensure that no concurrent page table
7894 * access can happen (except for gup_fast() and hardware page walks).
7895 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
7896 * concurrent page fault handling) and the file rmap lock.
7897 */
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool take_locks)7898 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7899 unsigned long start,
7900 unsigned long end,
7901 bool take_locks)
7902 {
7903 struct hstate *h = hstate_vma(vma);
7904 unsigned long sz = huge_page_size(h);
7905 struct mm_struct *mm = vma->vm_mm;
7906 struct mmu_notifier_range range;
7907 unsigned long address;
7908 spinlock_t *ptl;
7909 pte_t *ptep;
7910
7911 if (!(vma->vm_flags & VM_MAYSHARE))
7912 return;
7913
7914 if (start >= end)
7915 return;
7916
7917 flush_cache_range(vma, start, end);
7918 /*
7919 * No need to call adjust_range_if_pmd_sharing_possible(), because
7920 * we have already done the PUD_SIZE alignment.
7921 */
7922 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7923 start, end);
7924 mmu_notifier_invalidate_range_start(&range);
7925 if (take_locks) {
7926 hugetlb_vma_lock_write(vma);
7927 i_mmap_lock_write(vma->vm_file->f_mapping);
7928 } else {
7929 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7930 }
7931 for (address = start; address < end; address += PUD_SIZE) {
7932 ptep = hugetlb_walk(vma, address, sz);
7933 if (!ptep)
7934 continue;
7935 ptl = huge_pte_lock(h, mm, ptep);
7936 huge_pmd_unshare(mm, vma, address, ptep);
7937 spin_unlock(ptl);
7938 }
7939 flush_hugetlb_tlb_range(vma, start, end);
7940 if (take_locks) {
7941 i_mmap_unlock_write(vma->vm_file->f_mapping);
7942 hugetlb_vma_unlock_write(vma);
7943 }
7944 /*
7945 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7946 * Documentation/mm/mmu_notifier.rst.
7947 */
7948 mmu_notifier_invalidate_range_end(&range);
7949 }
7950
7951 /*
7952 * This function will unconditionally remove all the shared pmd pgtable entries
7953 * within the specific vma for a hugetlbfs memory range.
7954 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7955 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7956 {
7957 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7958 ALIGN_DOWN(vma->vm_end, PUD_SIZE),
7959 /* take_locks = */ true);
7960 }
7961
7962 /*
7963 * For hugetlb, mremap() is an odd edge case - while the VMA copying is
7964 * performed, we permit both the old and new VMAs to reference the same
7965 * reservation.
7966 *
7967 * We fix this up after the operation succeeds, or if a newly allocated VMA
7968 * is closed as a result of a failure to allocate memory.
7969 */
fixup_hugetlb_reservations(struct vm_area_struct * vma)7970 void fixup_hugetlb_reservations(struct vm_area_struct *vma)
7971 {
7972 if (is_vm_hugetlb_page(vma))
7973 clear_vma_resv_huge_pages(vma);
7974 }
7975