1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38 #include <linux/padata.h>
39
40 #include <asm/page.h>
41 #include <asm/pgalloc.h>
42 #include <asm/tlb.h>
43
44 #include <linux/io.h>
45 #include <linux/hugetlb.h>
46 #include <linux/hugetlb_cgroup.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 #include <linux/page-isolation.h>
52
53 int hugetlb_max_hstate __read_mostly;
54 unsigned int default_hstate_idx;
55 struct hstate hstates[HUGE_MAX_HSTATE];
56
57 #ifdef CONFIG_CMA
58 static struct cma *hugetlb_cma[MAX_NUMNODES];
59 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
60 #endif
61 static unsigned long hugetlb_cma_size __initdata;
62
63 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
64
65 /* for command line parsing */
66 static struct hstate * __initdata parsed_hstate;
67 static unsigned long __initdata default_hstate_max_huge_pages;
68 static bool __initdata parsed_valid_hugepagesz = true;
69 static bool __initdata parsed_default_hugepagesz;
70 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
71
72 /*
73 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
74 * free_huge_pages, and surplus_huge_pages.
75 */
76 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
77
78 /*
79 * Serializes faults on the same logical page. This is used to
80 * prevent spurious OOMs when the hugepage pool is fully utilized.
81 */
82 static int num_fault_mutexes __ro_after_init;
83 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
84
85 /* Forward declaration */
86 static int hugetlb_acct_memory(struct hstate *h, long delta);
87 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
88 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
89 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
90 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
91 unsigned long start, unsigned long end);
92 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
93
hugetlb_free_folio(struct folio * folio)94 static void hugetlb_free_folio(struct folio *folio)
95 {
96 #ifdef CONFIG_CMA
97 int nid = folio_nid(folio);
98
99 if (cma_free_folio(hugetlb_cma[nid], folio))
100 return;
101 #endif
102 folio_put(folio);
103 }
104
subpool_is_free(struct hugepage_subpool * spool)105 static inline bool subpool_is_free(struct hugepage_subpool *spool)
106 {
107 if (spool->count)
108 return false;
109 if (spool->max_hpages != -1)
110 return spool->used_hpages == 0;
111 if (spool->min_hpages != -1)
112 return spool->rsv_hpages == spool->min_hpages;
113
114 return true;
115 }
116
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)117 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
118 unsigned long irq_flags)
119 {
120 spin_unlock_irqrestore(&spool->lock, irq_flags);
121
122 /* If no pages are used, and no other handles to the subpool
123 * remain, give up any reservations based on minimum size and
124 * free the subpool */
125 if (subpool_is_free(spool)) {
126 if (spool->min_hpages != -1)
127 hugetlb_acct_memory(spool->hstate,
128 -spool->min_hpages);
129 kfree(spool);
130 }
131 }
132
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)133 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
134 long min_hpages)
135 {
136 struct hugepage_subpool *spool;
137
138 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
139 if (!spool)
140 return NULL;
141
142 spin_lock_init(&spool->lock);
143 spool->count = 1;
144 spool->max_hpages = max_hpages;
145 spool->hstate = h;
146 spool->min_hpages = min_hpages;
147
148 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
149 kfree(spool);
150 return NULL;
151 }
152 spool->rsv_hpages = min_hpages;
153
154 return spool;
155 }
156
hugepage_put_subpool(struct hugepage_subpool * spool)157 void hugepage_put_subpool(struct hugepage_subpool *spool)
158 {
159 unsigned long flags;
160
161 spin_lock_irqsave(&spool->lock, flags);
162 BUG_ON(!spool->count);
163 spool->count--;
164 unlock_or_release_subpool(spool, flags);
165 }
166
167 /*
168 * Subpool accounting for allocating and reserving pages.
169 * Return -ENOMEM if there are not enough resources to satisfy the
170 * request. Otherwise, return the number of pages by which the
171 * global pools must be adjusted (upward). The returned value may
172 * only be different than the passed value (delta) in the case where
173 * a subpool minimum size must be maintained.
174 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)175 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
176 long delta)
177 {
178 long ret = delta;
179
180 if (!spool)
181 return ret;
182
183 spin_lock_irq(&spool->lock);
184
185 if (spool->max_hpages != -1) { /* maximum size accounting */
186 if ((spool->used_hpages + delta) <= spool->max_hpages)
187 spool->used_hpages += delta;
188 else {
189 ret = -ENOMEM;
190 goto unlock_ret;
191 }
192 }
193
194 /* minimum size accounting */
195 if (spool->min_hpages != -1 && spool->rsv_hpages) {
196 if (delta > spool->rsv_hpages) {
197 /*
198 * Asking for more reserves than those already taken on
199 * behalf of subpool. Return difference.
200 */
201 ret = delta - spool->rsv_hpages;
202 spool->rsv_hpages = 0;
203 } else {
204 ret = 0; /* reserves already accounted for */
205 spool->rsv_hpages -= delta;
206 }
207 }
208
209 unlock_ret:
210 spin_unlock_irq(&spool->lock);
211 return ret;
212 }
213
214 /*
215 * Subpool accounting for freeing and unreserving pages.
216 * Return the number of global page reservations that must be dropped.
217 * The return value may only be different than the passed value (delta)
218 * in the case where a subpool minimum size must be maintained.
219 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)220 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
221 long delta)
222 {
223 long ret = delta;
224 unsigned long flags;
225
226 if (!spool)
227 return delta;
228
229 spin_lock_irqsave(&spool->lock, flags);
230
231 if (spool->max_hpages != -1) /* maximum size accounting */
232 spool->used_hpages -= delta;
233
234 /* minimum size accounting */
235 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
236 if (spool->rsv_hpages + delta <= spool->min_hpages)
237 ret = 0;
238 else
239 ret = spool->rsv_hpages + delta - spool->min_hpages;
240
241 spool->rsv_hpages += delta;
242 if (spool->rsv_hpages > spool->min_hpages)
243 spool->rsv_hpages = spool->min_hpages;
244 }
245
246 /*
247 * If hugetlbfs_put_super couldn't free spool due to an outstanding
248 * quota reference, free it now.
249 */
250 unlock_or_release_subpool(spool, flags);
251
252 return ret;
253 }
254
subpool_inode(struct inode * inode)255 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
256 {
257 return HUGETLBFS_SB(inode->i_sb)->spool;
258 }
259
subpool_vma(struct vm_area_struct * vma)260 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
261 {
262 return subpool_inode(file_inode(vma->vm_file));
263 }
264
265 /*
266 * hugetlb vma_lock helper routines
267 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)268 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
269 {
270 if (__vma_shareable_lock(vma)) {
271 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
272
273 down_read(&vma_lock->rw_sema);
274 } else if (__vma_private_lock(vma)) {
275 struct resv_map *resv_map = vma_resv_map(vma);
276
277 down_read(&resv_map->rw_sema);
278 }
279 }
280
hugetlb_vma_unlock_read(struct vm_area_struct * vma)281 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
282 {
283 if (__vma_shareable_lock(vma)) {
284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286 up_read(&vma_lock->rw_sema);
287 } else if (__vma_private_lock(vma)) {
288 struct resv_map *resv_map = vma_resv_map(vma);
289
290 up_read(&resv_map->rw_sema);
291 }
292 }
293
hugetlb_vma_lock_write(struct vm_area_struct * vma)294 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
295 {
296 if (__vma_shareable_lock(vma)) {
297 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
298
299 down_write(&vma_lock->rw_sema);
300 } else if (__vma_private_lock(vma)) {
301 struct resv_map *resv_map = vma_resv_map(vma);
302
303 down_write(&resv_map->rw_sema);
304 }
305 }
306
hugetlb_vma_unlock_write(struct vm_area_struct * vma)307 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
308 {
309 if (__vma_shareable_lock(vma)) {
310 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
311
312 up_write(&vma_lock->rw_sema);
313 } else if (__vma_private_lock(vma)) {
314 struct resv_map *resv_map = vma_resv_map(vma);
315
316 up_write(&resv_map->rw_sema);
317 }
318 }
319
hugetlb_vma_trylock_write(struct vm_area_struct * vma)320 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
321 {
322
323 if (__vma_shareable_lock(vma)) {
324 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
325
326 return down_write_trylock(&vma_lock->rw_sema);
327 } else if (__vma_private_lock(vma)) {
328 struct resv_map *resv_map = vma_resv_map(vma);
329
330 return down_write_trylock(&resv_map->rw_sema);
331 }
332
333 return 1;
334 }
335
hugetlb_vma_assert_locked(struct vm_area_struct * vma)336 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
337 {
338 if (__vma_shareable_lock(vma)) {
339 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
340
341 lockdep_assert_held(&vma_lock->rw_sema);
342 } else if (__vma_private_lock(vma)) {
343 struct resv_map *resv_map = vma_resv_map(vma);
344
345 lockdep_assert_held(&resv_map->rw_sema);
346 }
347 }
348
hugetlb_vma_lock_release(struct kref * kref)349 void hugetlb_vma_lock_release(struct kref *kref)
350 {
351 struct hugetlb_vma_lock *vma_lock = container_of(kref,
352 struct hugetlb_vma_lock, refs);
353
354 kfree(vma_lock);
355 }
356
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)357 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
358 {
359 struct vm_area_struct *vma = vma_lock->vma;
360
361 /*
362 * vma_lock structure may or not be released as a result of put,
363 * it certainly will no longer be attached to vma so clear pointer.
364 * Semaphore synchronizes access to vma_lock->vma field.
365 */
366 vma_lock->vma = NULL;
367 vma->vm_private_data = NULL;
368 up_write(&vma_lock->rw_sema);
369 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
370 }
371
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)372 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
373 {
374 if (__vma_shareable_lock(vma)) {
375 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
376
377 __hugetlb_vma_unlock_write_put(vma_lock);
378 } else if (__vma_private_lock(vma)) {
379 struct resv_map *resv_map = vma_resv_map(vma);
380
381 /* no free for anon vmas, but still need to unlock */
382 up_write(&resv_map->rw_sema);
383 }
384 }
385
hugetlb_vma_lock_free(struct vm_area_struct * vma)386 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
387 {
388 /*
389 * Only present in sharable vmas.
390 */
391 if (!vma || !__vma_shareable_lock(vma))
392 return;
393
394 if (vma->vm_private_data) {
395 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
396
397 down_write(&vma_lock->rw_sema);
398 __hugetlb_vma_unlock_write_put(vma_lock);
399 }
400 }
401
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)402 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
403 {
404 struct hugetlb_vma_lock *vma_lock;
405
406 /* Only establish in (flags) sharable vmas */
407 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
408 return;
409
410 /* Should never get here with non-NULL vm_private_data */
411 if (vma->vm_private_data)
412 return;
413
414 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
415 if (!vma_lock) {
416 /*
417 * If we can not allocate structure, then vma can not
418 * participate in pmd sharing. This is only a possible
419 * performance enhancement and memory saving issue.
420 * However, the lock is also used to synchronize page
421 * faults with truncation. If the lock is not present,
422 * unlikely races could leave pages in a file past i_size
423 * until the file is removed. Warn in the unlikely case of
424 * allocation failure.
425 */
426 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
427 return;
428 }
429
430 kref_init(&vma_lock->refs);
431 init_rwsem(&vma_lock->rw_sema);
432 vma_lock->vma = vma;
433 vma->vm_private_data = vma_lock;
434 }
435
436 /* Helper that removes a struct file_region from the resv_map cache and returns
437 * it for use.
438 */
439 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)440 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
441 {
442 struct file_region *nrg;
443
444 VM_BUG_ON(resv->region_cache_count <= 0);
445
446 resv->region_cache_count--;
447 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
448 list_del(&nrg->link);
449
450 nrg->from = from;
451 nrg->to = to;
452
453 return nrg;
454 }
455
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)456 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
457 struct file_region *rg)
458 {
459 #ifdef CONFIG_CGROUP_HUGETLB
460 nrg->reservation_counter = rg->reservation_counter;
461 nrg->css = rg->css;
462 if (rg->css)
463 css_get(rg->css);
464 #endif
465 }
466
467 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)468 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
469 struct hstate *h,
470 struct resv_map *resv,
471 struct file_region *nrg)
472 {
473 #ifdef CONFIG_CGROUP_HUGETLB
474 if (h_cg) {
475 nrg->reservation_counter =
476 &h_cg->rsvd_hugepage[hstate_index(h)];
477 nrg->css = &h_cg->css;
478 /*
479 * The caller will hold exactly one h_cg->css reference for the
480 * whole contiguous reservation region. But this area might be
481 * scattered when there are already some file_regions reside in
482 * it. As a result, many file_regions may share only one css
483 * reference. In order to ensure that one file_region must hold
484 * exactly one h_cg->css reference, we should do css_get for
485 * each file_region and leave the reference held by caller
486 * untouched.
487 */
488 css_get(&h_cg->css);
489 if (!resv->pages_per_hpage)
490 resv->pages_per_hpage = pages_per_huge_page(h);
491 /* pages_per_hpage should be the same for all entries in
492 * a resv_map.
493 */
494 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
495 } else {
496 nrg->reservation_counter = NULL;
497 nrg->css = NULL;
498 }
499 #endif
500 }
501
put_uncharge_info(struct file_region * rg)502 static void put_uncharge_info(struct file_region *rg)
503 {
504 #ifdef CONFIG_CGROUP_HUGETLB
505 if (rg->css)
506 css_put(rg->css);
507 #endif
508 }
509
has_same_uncharge_info(struct file_region * rg,struct file_region * org)510 static bool has_same_uncharge_info(struct file_region *rg,
511 struct file_region *org)
512 {
513 #ifdef CONFIG_CGROUP_HUGETLB
514 return rg->reservation_counter == org->reservation_counter &&
515 rg->css == org->css;
516
517 #else
518 return true;
519 #endif
520 }
521
coalesce_file_region(struct resv_map * resv,struct file_region * rg)522 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
523 {
524 struct file_region *nrg, *prg;
525
526 prg = list_prev_entry(rg, link);
527 if (&prg->link != &resv->regions && prg->to == rg->from &&
528 has_same_uncharge_info(prg, rg)) {
529 prg->to = rg->to;
530
531 list_del(&rg->link);
532 put_uncharge_info(rg);
533 kfree(rg);
534
535 rg = prg;
536 }
537
538 nrg = list_next_entry(rg, link);
539 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
540 has_same_uncharge_info(nrg, rg)) {
541 nrg->from = rg->from;
542
543 list_del(&rg->link);
544 put_uncharge_info(rg);
545 kfree(rg);
546 }
547 }
548
549 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)550 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
551 long to, struct hstate *h, struct hugetlb_cgroup *cg,
552 long *regions_needed)
553 {
554 struct file_region *nrg;
555
556 if (!regions_needed) {
557 nrg = get_file_region_entry_from_cache(map, from, to);
558 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
559 list_add(&nrg->link, rg);
560 coalesce_file_region(map, nrg);
561 } else
562 *regions_needed += 1;
563
564 return to - from;
565 }
566
567 /*
568 * Must be called with resv->lock held.
569 *
570 * Calling this with regions_needed != NULL will count the number of pages
571 * to be added but will not modify the linked list. And regions_needed will
572 * indicate the number of file_regions needed in the cache to carry out to add
573 * the regions for this range.
574 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)575 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
576 struct hugetlb_cgroup *h_cg,
577 struct hstate *h, long *regions_needed)
578 {
579 long add = 0;
580 struct list_head *head = &resv->regions;
581 long last_accounted_offset = f;
582 struct file_region *iter, *trg = NULL;
583 struct list_head *rg = NULL;
584
585 if (regions_needed)
586 *regions_needed = 0;
587
588 /* In this loop, we essentially handle an entry for the range
589 * [last_accounted_offset, iter->from), at every iteration, with some
590 * bounds checking.
591 */
592 list_for_each_entry_safe(iter, trg, head, link) {
593 /* Skip irrelevant regions that start before our range. */
594 if (iter->from < f) {
595 /* If this region ends after the last accounted offset,
596 * then we need to update last_accounted_offset.
597 */
598 if (iter->to > last_accounted_offset)
599 last_accounted_offset = iter->to;
600 continue;
601 }
602
603 /* When we find a region that starts beyond our range, we've
604 * finished.
605 */
606 if (iter->from >= t) {
607 rg = iter->link.prev;
608 break;
609 }
610
611 /* Add an entry for last_accounted_offset -> iter->from, and
612 * update last_accounted_offset.
613 */
614 if (iter->from > last_accounted_offset)
615 add += hugetlb_resv_map_add(resv, iter->link.prev,
616 last_accounted_offset,
617 iter->from, h, h_cg,
618 regions_needed);
619
620 last_accounted_offset = iter->to;
621 }
622
623 /* Handle the case where our range extends beyond
624 * last_accounted_offset.
625 */
626 if (!rg)
627 rg = head->prev;
628 if (last_accounted_offset < t)
629 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
630 t, h, h_cg, regions_needed);
631
632 return add;
633 }
634
635 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
636 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)637 static int allocate_file_region_entries(struct resv_map *resv,
638 int regions_needed)
639 __must_hold(&resv->lock)
640 {
641 LIST_HEAD(allocated_regions);
642 int to_allocate = 0, i = 0;
643 struct file_region *trg = NULL, *rg = NULL;
644
645 VM_BUG_ON(regions_needed < 0);
646
647 /*
648 * Check for sufficient descriptors in the cache to accommodate
649 * the number of in progress add operations plus regions_needed.
650 *
651 * This is a while loop because when we drop the lock, some other call
652 * to region_add or region_del may have consumed some region_entries,
653 * so we keep looping here until we finally have enough entries for
654 * (adds_in_progress + regions_needed).
655 */
656 while (resv->region_cache_count <
657 (resv->adds_in_progress + regions_needed)) {
658 to_allocate = resv->adds_in_progress + regions_needed -
659 resv->region_cache_count;
660
661 /* At this point, we should have enough entries in the cache
662 * for all the existing adds_in_progress. We should only be
663 * needing to allocate for regions_needed.
664 */
665 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
666
667 spin_unlock(&resv->lock);
668 for (i = 0; i < to_allocate; i++) {
669 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
670 if (!trg)
671 goto out_of_memory;
672 list_add(&trg->link, &allocated_regions);
673 }
674
675 spin_lock(&resv->lock);
676
677 list_splice(&allocated_regions, &resv->region_cache);
678 resv->region_cache_count += to_allocate;
679 }
680
681 return 0;
682
683 out_of_memory:
684 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
685 list_del(&rg->link);
686 kfree(rg);
687 }
688 return -ENOMEM;
689 }
690
691 /*
692 * Add the huge page range represented by [f, t) to the reserve
693 * map. Regions will be taken from the cache to fill in this range.
694 * Sufficient regions should exist in the cache due to the previous
695 * call to region_chg with the same range, but in some cases the cache will not
696 * have sufficient entries due to races with other code doing region_add or
697 * region_del. The extra needed entries will be allocated.
698 *
699 * regions_needed is the out value provided by a previous call to region_chg.
700 *
701 * Return the number of new huge pages added to the map. This number is greater
702 * than or equal to zero. If file_region entries needed to be allocated for
703 * this operation and we were not able to allocate, it returns -ENOMEM.
704 * region_add of regions of length 1 never allocate file_regions and cannot
705 * fail; region_chg will always allocate at least 1 entry and a region_add for
706 * 1 page will only require at most 1 entry.
707 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)708 static long region_add(struct resv_map *resv, long f, long t,
709 long in_regions_needed, struct hstate *h,
710 struct hugetlb_cgroup *h_cg)
711 {
712 long add = 0, actual_regions_needed = 0;
713
714 spin_lock(&resv->lock);
715 retry:
716
717 /* Count how many regions are actually needed to execute this add. */
718 add_reservation_in_range(resv, f, t, NULL, NULL,
719 &actual_regions_needed);
720
721 /*
722 * Check for sufficient descriptors in the cache to accommodate
723 * this add operation. Note that actual_regions_needed may be greater
724 * than in_regions_needed, as the resv_map may have been modified since
725 * the region_chg call. In this case, we need to make sure that we
726 * allocate extra entries, such that we have enough for all the
727 * existing adds_in_progress, plus the excess needed for this
728 * operation.
729 */
730 if (actual_regions_needed > in_regions_needed &&
731 resv->region_cache_count <
732 resv->adds_in_progress +
733 (actual_regions_needed - in_regions_needed)) {
734 /* region_add operation of range 1 should never need to
735 * allocate file_region entries.
736 */
737 VM_BUG_ON(t - f <= 1);
738
739 if (allocate_file_region_entries(
740 resv, actual_regions_needed - in_regions_needed)) {
741 return -ENOMEM;
742 }
743
744 goto retry;
745 }
746
747 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
748
749 resv->adds_in_progress -= in_regions_needed;
750
751 spin_unlock(&resv->lock);
752 return add;
753 }
754
755 /*
756 * Examine the existing reserve map and determine how many
757 * huge pages in the specified range [f, t) are NOT currently
758 * represented. This routine is called before a subsequent
759 * call to region_add that will actually modify the reserve
760 * map to add the specified range [f, t). region_chg does
761 * not change the number of huge pages represented by the
762 * map. A number of new file_region structures is added to the cache as a
763 * placeholder, for the subsequent region_add call to use. At least 1
764 * file_region structure is added.
765 *
766 * out_regions_needed is the number of regions added to the
767 * resv->adds_in_progress. This value needs to be provided to a follow up call
768 * to region_add or region_abort for proper accounting.
769 *
770 * Returns the number of huge pages that need to be added to the existing
771 * reservation map for the range [f, t). This number is greater or equal to
772 * zero. -ENOMEM is returned if a new file_region structure or cache entry
773 * is needed and can not be allocated.
774 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)775 static long region_chg(struct resv_map *resv, long f, long t,
776 long *out_regions_needed)
777 {
778 long chg = 0;
779
780 spin_lock(&resv->lock);
781
782 /* Count how many hugepages in this range are NOT represented. */
783 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
784 out_regions_needed);
785
786 if (*out_regions_needed == 0)
787 *out_regions_needed = 1;
788
789 if (allocate_file_region_entries(resv, *out_regions_needed))
790 return -ENOMEM;
791
792 resv->adds_in_progress += *out_regions_needed;
793
794 spin_unlock(&resv->lock);
795 return chg;
796 }
797
798 /*
799 * Abort the in progress add operation. The adds_in_progress field
800 * of the resv_map keeps track of the operations in progress between
801 * calls to region_chg and region_add. Operations are sometimes
802 * aborted after the call to region_chg. In such cases, region_abort
803 * is called to decrement the adds_in_progress counter. regions_needed
804 * is the value returned by the region_chg call, it is used to decrement
805 * the adds_in_progress counter.
806 *
807 * NOTE: The range arguments [f, t) are not needed or used in this
808 * routine. They are kept to make reading the calling code easier as
809 * arguments will match the associated region_chg call.
810 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)811 static void region_abort(struct resv_map *resv, long f, long t,
812 long regions_needed)
813 {
814 spin_lock(&resv->lock);
815 VM_BUG_ON(!resv->region_cache_count);
816 resv->adds_in_progress -= regions_needed;
817 spin_unlock(&resv->lock);
818 }
819
820 /*
821 * Delete the specified range [f, t) from the reserve map. If the
822 * t parameter is LONG_MAX, this indicates that ALL regions after f
823 * should be deleted. Locate the regions which intersect [f, t)
824 * and either trim, delete or split the existing regions.
825 *
826 * Returns the number of huge pages deleted from the reserve map.
827 * In the normal case, the return value is zero or more. In the
828 * case where a region must be split, a new region descriptor must
829 * be allocated. If the allocation fails, -ENOMEM will be returned.
830 * NOTE: If the parameter t == LONG_MAX, then we will never split
831 * a region and possibly return -ENOMEM. Callers specifying
832 * t == LONG_MAX do not need to check for -ENOMEM error.
833 */
region_del(struct resv_map * resv,long f,long t)834 static long region_del(struct resv_map *resv, long f, long t)
835 {
836 struct list_head *head = &resv->regions;
837 struct file_region *rg, *trg;
838 struct file_region *nrg = NULL;
839 long del = 0;
840
841 retry:
842 spin_lock(&resv->lock);
843 list_for_each_entry_safe(rg, trg, head, link) {
844 /*
845 * Skip regions before the range to be deleted. file_region
846 * ranges are normally of the form [from, to). However, there
847 * may be a "placeholder" entry in the map which is of the form
848 * (from, to) with from == to. Check for placeholder entries
849 * at the beginning of the range to be deleted.
850 */
851 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
852 continue;
853
854 if (rg->from >= t)
855 break;
856
857 if (f > rg->from && t < rg->to) { /* Must split region */
858 /*
859 * Check for an entry in the cache before dropping
860 * lock and attempting allocation.
861 */
862 if (!nrg &&
863 resv->region_cache_count > resv->adds_in_progress) {
864 nrg = list_first_entry(&resv->region_cache,
865 struct file_region,
866 link);
867 list_del(&nrg->link);
868 resv->region_cache_count--;
869 }
870
871 if (!nrg) {
872 spin_unlock(&resv->lock);
873 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
874 if (!nrg)
875 return -ENOMEM;
876 goto retry;
877 }
878
879 del += t - f;
880 hugetlb_cgroup_uncharge_file_region(
881 resv, rg, t - f, false);
882
883 /* New entry for end of split region */
884 nrg->from = t;
885 nrg->to = rg->to;
886
887 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
888
889 INIT_LIST_HEAD(&nrg->link);
890
891 /* Original entry is trimmed */
892 rg->to = f;
893
894 list_add(&nrg->link, &rg->link);
895 nrg = NULL;
896 break;
897 }
898
899 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
900 del += rg->to - rg->from;
901 hugetlb_cgroup_uncharge_file_region(resv, rg,
902 rg->to - rg->from, true);
903 list_del(&rg->link);
904 kfree(rg);
905 continue;
906 }
907
908 if (f <= rg->from) { /* Trim beginning of region */
909 hugetlb_cgroup_uncharge_file_region(resv, rg,
910 t - rg->from, false);
911
912 del += t - rg->from;
913 rg->from = t;
914 } else { /* Trim end of region */
915 hugetlb_cgroup_uncharge_file_region(resv, rg,
916 rg->to - f, false);
917
918 del += rg->to - f;
919 rg->to = f;
920 }
921 }
922
923 spin_unlock(&resv->lock);
924 kfree(nrg);
925 return del;
926 }
927
928 /*
929 * A rare out of memory error was encountered which prevented removal of
930 * the reserve map region for a page. The huge page itself was free'ed
931 * and removed from the page cache. This routine will adjust the subpool
932 * usage count, and the global reserve count if needed. By incrementing
933 * these counts, the reserve map entry which could not be deleted will
934 * appear as a "reserved" entry instead of simply dangling with incorrect
935 * counts.
936 */
hugetlb_fix_reserve_counts(struct inode * inode)937 void hugetlb_fix_reserve_counts(struct inode *inode)
938 {
939 struct hugepage_subpool *spool = subpool_inode(inode);
940 long rsv_adjust;
941 bool reserved = false;
942
943 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
944 if (rsv_adjust > 0) {
945 struct hstate *h = hstate_inode(inode);
946
947 if (!hugetlb_acct_memory(h, 1))
948 reserved = true;
949 } else if (!rsv_adjust) {
950 reserved = true;
951 }
952
953 if (!reserved)
954 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
955 }
956
957 /*
958 * Count and return the number of huge pages in the reserve map
959 * that intersect with the range [f, t).
960 */
region_count(struct resv_map * resv,long f,long t)961 static long region_count(struct resv_map *resv, long f, long t)
962 {
963 struct list_head *head = &resv->regions;
964 struct file_region *rg;
965 long chg = 0;
966
967 spin_lock(&resv->lock);
968 /* Locate each segment we overlap with, and count that overlap. */
969 list_for_each_entry(rg, head, link) {
970 long seg_from;
971 long seg_to;
972
973 if (rg->to <= f)
974 continue;
975 if (rg->from >= t)
976 break;
977
978 seg_from = max(rg->from, f);
979 seg_to = min(rg->to, t);
980
981 chg += seg_to - seg_from;
982 }
983 spin_unlock(&resv->lock);
984
985 return chg;
986 }
987
988 /*
989 * Convert the address within this vma to the page offset within
990 * the mapping, huge page units here.
991 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)992 static pgoff_t vma_hugecache_offset(struct hstate *h,
993 struct vm_area_struct *vma, unsigned long address)
994 {
995 return ((address - vma->vm_start) >> huge_page_shift(h)) +
996 (vma->vm_pgoff >> huge_page_order(h));
997 }
998
999 /**
1000 * vma_kernel_pagesize - Page size granularity for this VMA.
1001 * @vma: The user mapping.
1002 *
1003 * Folios in this VMA will be aligned to, and at least the size of the
1004 * number of bytes returned by this function.
1005 *
1006 * Return: The default size of the folios allocated when backing a VMA.
1007 */
vma_kernel_pagesize(struct vm_area_struct * vma)1008 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1009 {
1010 if (vma->vm_ops && vma->vm_ops->pagesize)
1011 return vma->vm_ops->pagesize(vma);
1012 return PAGE_SIZE;
1013 }
1014 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1015
1016 /*
1017 * Return the page size being used by the MMU to back a VMA. In the majority
1018 * of cases, the page size used by the kernel matches the MMU size. On
1019 * architectures where it differs, an architecture-specific 'strong'
1020 * version of this symbol is required.
1021 */
vma_mmu_pagesize(struct vm_area_struct * vma)1022 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1023 {
1024 return vma_kernel_pagesize(vma);
1025 }
1026
1027 /*
1028 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1029 * bits of the reservation map pointer, which are always clear due to
1030 * alignment.
1031 */
1032 #define HPAGE_RESV_OWNER (1UL << 0)
1033 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1034 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1035
1036 /*
1037 * These helpers are used to track how many pages are reserved for
1038 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1039 * is guaranteed to have their future faults succeed.
1040 *
1041 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1042 * the reserve counters are updated with the hugetlb_lock held. It is safe
1043 * to reset the VMA at fork() time as it is not in use yet and there is no
1044 * chance of the global counters getting corrupted as a result of the values.
1045 *
1046 * The private mapping reservation is represented in a subtly different
1047 * manner to a shared mapping. A shared mapping has a region map associated
1048 * with the underlying file, this region map represents the backing file
1049 * pages which have ever had a reservation assigned which this persists even
1050 * after the page is instantiated. A private mapping has a region map
1051 * associated with the original mmap which is attached to all VMAs which
1052 * reference it, this region map represents those offsets which have consumed
1053 * reservation ie. where pages have been instantiated.
1054 */
get_vma_private_data(struct vm_area_struct * vma)1055 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1056 {
1057 return (unsigned long)vma->vm_private_data;
1058 }
1059
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1060 static void set_vma_private_data(struct vm_area_struct *vma,
1061 unsigned long value)
1062 {
1063 vma->vm_private_data = (void *)value;
1064 }
1065
1066 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1067 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1068 struct hugetlb_cgroup *h_cg,
1069 struct hstate *h)
1070 {
1071 #ifdef CONFIG_CGROUP_HUGETLB
1072 if (!h_cg || !h) {
1073 resv_map->reservation_counter = NULL;
1074 resv_map->pages_per_hpage = 0;
1075 resv_map->css = NULL;
1076 } else {
1077 resv_map->reservation_counter =
1078 &h_cg->rsvd_hugepage[hstate_index(h)];
1079 resv_map->pages_per_hpage = pages_per_huge_page(h);
1080 resv_map->css = &h_cg->css;
1081 }
1082 #endif
1083 }
1084
resv_map_alloc(void)1085 struct resv_map *resv_map_alloc(void)
1086 {
1087 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1088 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1089
1090 if (!resv_map || !rg) {
1091 kfree(resv_map);
1092 kfree(rg);
1093 return NULL;
1094 }
1095
1096 kref_init(&resv_map->refs);
1097 spin_lock_init(&resv_map->lock);
1098 INIT_LIST_HEAD(&resv_map->regions);
1099 init_rwsem(&resv_map->rw_sema);
1100
1101 resv_map->adds_in_progress = 0;
1102 /*
1103 * Initialize these to 0. On shared mappings, 0's here indicate these
1104 * fields don't do cgroup accounting. On private mappings, these will be
1105 * re-initialized to the proper values, to indicate that hugetlb cgroup
1106 * reservations are to be un-charged from here.
1107 */
1108 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1109
1110 INIT_LIST_HEAD(&resv_map->region_cache);
1111 list_add(&rg->link, &resv_map->region_cache);
1112 resv_map->region_cache_count = 1;
1113
1114 return resv_map;
1115 }
1116
resv_map_release(struct kref * ref)1117 void resv_map_release(struct kref *ref)
1118 {
1119 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1120 struct list_head *head = &resv_map->region_cache;
1121 struct file_region *rg, *trg;
1122
1123 /* Clear out any active regions before we release the map. */
1124 region_del(resv_map, 0, LONG_MAX);
1125
1126 /* ... and any entries left in the cache */
1127 list_for_each_entry_safe(rg, trg, head, link) {
1128 list_del(&rg->link);
1129 kfree(rg);
1130 }
1131
1132 VM_BUG_ON(resv_map->adds_in_progress);
1133
1134 kfree(resv_map);
1135 }
1136
inode_resv_map(struct inode * inode)1137 static inline struct resv_map *inode_resv_map(struct inode *inode)
1138 {
1139 /*
1140 * At inode evict time, i_mapping may not point to the original
1141 * address space within the inode. This original address space
1142 * contains the pointer to the resv_map. So, always use the
1143 * address space embedded within the inode.
1144 * The VERY common case is inode->mapping == &inode->i_data but,
1145 * this may not be true for device special inodes.
1146 */
1147 return (struct resv_map *)(&inode->i_data)->i_private_data;
1148 }
1149
vma_resv_map(struct vm_area_struct * vma)1150 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1151 {
1152 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1153 if (vma->vm_flags & VM_MAYSHARE) {
1154 struct address_space *mapping = vma->vm_file->f_mapping;
1155 struct inode *inode = mapping->host;
1156
1157 return inode_resv_map(inode);
1158
1159 } else {
1160 return (struct resv_map *)(get_vma_private_data(vma) &
1161 ~HPAGE_RESV_MASK);
1162 }
1163 }
1164
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1165 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1166 {
1167 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1168 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1169
1170 set_vma_private_data(vma, (unsigned long)map);
1171 }
1172
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1173 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1174 {
1175 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1176 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1177
1178 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1179 }
1180
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1181 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1182 {
1183 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1184
1185 return (get_vma_private_data(vma) & flag) != 0;
1186 }
1187
__vma_private_lock(struct vm_area_struct * vma)1188 bool __vma_private_lock(struct vm_area_struct *vma)
1189 {
1190 return !(vma->vm_flags & VM_MAYSHARE) &&
1191 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1192 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1193 }
1194
hugetlb_dup_vma_private(struct vm_area_struct * vma)1195 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1196 {
1197 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1198 /*
1199 * Clear vm_private_data
1200 * - For shared mappings this is a per-vma semaphore that may be
1201 * allocated in a subsequent call to hugetlb_vm_op_open.
1202 * Before clearing, make sure pointer is not associated with vma
1203 * as this will leak the structure. This is the case when called
1204 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1205 * been called to allocate a new structure.
1206 * - For MAP_PRIVATE mappings, this is the reserve map which does
1207 * not apply to children. Faults generated by the children are
1208 * not guaranteed to succeed, even if read-only.
1209 */
1210 if (vma->vm_flags & VM_MAYSHARE) {
1211 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1212
1213 if (vma_lock && vma_lock->vma != vma)
1214 vma->vm_private_data = NULL;
1215 } else
1216 vma->vm_private_data = NULL;
1217 }
1218
1219 /*
1220 * Reset and decrement one ref on hugepage private reservation.
1221 * Called with mm->mmap_lock writer semaphore held.
1222 * This function should be only used by move_vma() and operate on
1223 * same sized vma. It should never come here with last ref on the
1224 * reservation.
1225 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1226 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1227 {
1228 /*
1229 * Clear the old hugetlb private page reservation.
1230 * It has already been transferred to new_vma.
1231 *
1232 * During a mremap() operation of a hugetlb vma we call move_vma()
1233 * which copies vma into new_vma and unmaps vma. After the copy
1234 * operation both new_vma and vma share a reference to the resv_map
1235 * struct, and at that point vma is about to be unmapped. We don't
1236 * want to return the reservation to the pool at unmap of vma because
1237 * the reservation still lives on in new_vma, so simply decrement the
1238 * ref here and remove the resv_map reference from this vma.
1239 */
1240 struct resv_map *reservations = vma_resv_map(vma);
1241
1242 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1243 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1244 kref_put(&reservations->refs, resv_map_release);
1245 }
1246
1247 hugetlb_dup_vma_private(vma);
1248 }
1249
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1250 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1251 {
1252 int nid = folio_nid(folio);
1253
1254 lockdep_assert_held(&hugetlb_lock);
1255 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1256
1257 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1258 h->free_huge_pages++;
1259 h->free_huge_pages_node[nid]++;
1260 folio_set_hugetlb_freed(folio);
1261 }
1262
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1263 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1264 int nid)
1265 {
1266 struct folio *folio;
1267 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1268
1269 lockdep_assert_held(&hugetlb_lock);
1270 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1271 if (pin && !folio_is_longterm_pinnable(folio))
1272 continue;
1273
1274 if (folio_test_hwpoison(folio))
1275 continue;
1276
1277 if (is_migrate_isolate_page(&folio->page))
1278 continue;
1279
1280 list_move(&folio->lru, &h->hugepage_activelist);
1281 folio_ref_unfreeze(folio, 1);
1282 folio_clear_hugetlb_freed(folio);
1283 h->free_huge_pages--;
1284 h->free_huge_pages_node[nid]--;
1285 return folio;
1286 }
1287
1288 return NULL;
1289 }
1290
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1291 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1292 int nid, nodemask_t *nmask)
1293 {
1294 unsigned int cpuset_mems_cookie;
1295 struct zonelist *zonelist;
1296 struct zone *zone;
1297 struct zoneref *z;
1298 int node = NUMA_NO_NODE;
1299
1300 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1301 if (nid == NUMA_NO_NODE)
1302 nid = numa_node_id();
1303
1304 zonelist = node_zonelist(nid, gfp_mask);
1305
1306 retry_cpuset:
1307 cpuset_mems_cookie = read_mems_allowed_begin();
1308 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1309 struct folio *folio;
1310
1311 if (!cpuset_zone_allowed(zone, gfp_mask))
1312 continue;
1313 /*
1314 * no need to ask again on the same node. Pool is node rather than
1315 * zone aware
1316 */
1317 if (zone_to_nid(zone) == node)
1318 continue;
1319 node = zone_to_nid(zone);
1320
1321 folio = dequeue_hugetlb_folio_node_exact(h, node);
1322 if (folio)
1323 return folio;
1324 }
1325 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1326 goto retry_cpuset;
1327
1328 return NULL;
1329 }
1330
available_huge_pages(struct hstate * h)1331 static unsigned long available_huge_pages(struct hstate *h)
1332 {
1333 return h->free_huge_pages - h->resv_huge_pages;
1334 }
1335
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1336 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1337 struct vm_area_struct *vma,
1338 unsigned long address, long gbl_chg)
1339 {
1340 struct folio *folio = NULL;
1341 struct mempolicy *mpol;
1342 gfp_t gfp_mask;
1343 nodemask_t *nodemask;
1344 int nid;
1345
1346 /*
1347 * gbl_chg==1 means the allocation requires a new page that was not
1348 * reserved before. Making sure there's at least one free page.
1349 */
1350 if (gbl_chg && !available_huge_pages(h))
1351 goto err;
1352
1353 gfp_mask = htlb_alloc_mask(h);
1354 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1355
1356 if (mpol_is_preferred_many(mpol)) {
1357 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1358 nid, nodemask);
1359
1360 /* Fallback to all nodes if page==NULL */
1361 nodemask = NULL;
1362 }
1363
1364 if (!folio)
1365 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1366 nid, nodemask);
1367
1368 mpol_cond_put(mpol);
1369 return folio;
1370
1371 err:
1372 return NULL;
1373 }
1374
1375 /*
1376 * common helper functions for hstate_next_node_to_{alloc|free}.
1377 * We may have allocated or freed a huge page based on a different
1378 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1379 * be outside of *nodes_allowed. Ensure that we use an allowed
1380 * node for alloc or free.
1381 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1382 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1383 {
1384 nid = next_node_in(nid, *nodes_allowed);
1385 VM_BUG_ON(nid >= MAX_NUMNODES);
1386
1387 return nid;
1388 }
1389
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1390 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1391 {
1392 if (!node_isset(nid, *nodes_allowed))
1393 nid = next_node_allowed(nid, nodes_allowed);
1394 return nid;
1395 }
1396
1397 /*
1398 * returns the previously saved node ["this node"] from which to
1399 * allocate a persistent huge page for the pool and advance the
1400 * next node from which to allocate, handling wrap at end of node
1401 * mask.
1402 */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1403 static int hstate_next_node_to_alloc(int *next_node,
1404 nodemask_t *nodes_allowed)
1405 {
1406 int nid;
1407
1408 VM_BUG_ON(!nodes_allowed);
1409
1410 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1411 *next_node = next_node_allowed(nid, nodes_allowed);
1412
1413 return nid;
1414 }
1415
1416 /*
1417 * helper for remove_pool_hugetlb_folio() - return the previously saved
1418 * node ["this node"] from which to free a huge page. Advance the
1419 * next node id whether or not we find a free huge page to free so
1420 * that the next attempt to free addresses the next node.
1421 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1422 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1423 {
1424 int nid;
1425
1426 VM_BUG_ON(!nodes_allowed);
1427
1428 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1429 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1430
1431 return nid;
1432 }
1433
1434 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1435 for (nr_nodes = nodes_weight(*mask); \
1436 nr_nodes > 0 && \
1437 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1438 nr_nodes--)
1439
1440 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1441 for (nr_nodes = nodes_weight(*mask); \
1442 nr_nodes > 0 && \
1443 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1444 nr_nodes--)
1445
1446 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1447 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1448 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1449 int nid, nodemask_t *nodemask)
1450 {
1451 struct folio *folio;
1452 int order = huge_page_order(h);
1453 bool retried = false;
1454
1455 if (nid == NUMA_NO_NODE)
1456 nid = numa_mem_id();
1457 retry:
1458 folio = NULL;
1459 #ifdef CONFIG_CMA
1460 {
1461 int node;
1462
1463 if (hugetlb_cma[nid])
1464 folio = cma_alloc_folio(hugetlb_cma[nid], order, gfp_mask);
1465
1466 if (!folio && !(gfp_mask & __GFP_THISNODE)) {
1467 for_each_node_mask(node, *nodemask) {
1468 if (node == nid || !hugetlb_cma[node])
1469 continue;
1470
1471 folio = cma_alloc_folio(hugetlb_cma[node], order, gfp_mask);
1472 if (folio)
1473 break;
1474 }
1475 }
1476 }
1477 #endif
1478 if (!folio) {
1479 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1480 if (!folio)
1481 return NULL;
1482 }
1483
1484 if (folio_ref_freeze(folio, 1))
1485 return folio;
1486
1487 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1488 hugetlb_free_folio(folio);
1489 if (!retried) {
1490 retried = true;
1491 goto retry;
1492 }
1493 return NULL;
1494 }
1495
1496 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1497 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1498 int nid, nodemask_t *nodemask)
1499 {
1500 return NULL;
1501 }
1502 #endif /* CONFIG_CONTIG_ALLOC */
1503
1504 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1505 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1506 int nid, nodemask_t *nodemask)
1507 {
1508 return NULL;
1509 }
1510 #endif
1511
1512 /*
1513 * Remove hugetlb folio from lists.
1514 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1515 * folio appears as just a compound page. Otherwise, wait until after
1516 * allocating vmemmap to clear the flag.
1517 *
1518 * Must be called with hugetlb lock held.
1519 */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1520 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1521 bool adjust_surplus)
1522 {
1523 int nid = folio_nid(folio);
1524
1525 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1526 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1527
1528 lockdep_assert_held(&hugetlb_lock);
1529 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1530 return;
1531
1532 list_del(&folio->lru);
1533
1534 if (folio_test_hugetlb_freed(folio)) {
1535 folio_clear_hugetlb_freed(folio);
1536 h->free_huge_pages--;
1537 h->free_huge_pages_node[nid]--;
1538 }
1539 if (adjust_surplus) {
1540 h->surplus_huge_pages--;
1541 h->surplus_huge_pages_node[nid]--;
1542 }
1543
1544 /*
1545 * We can only clear the hugetlb flag after allocating vmemmap
1546 * pages. Otherwise, someone (memory error handling) may try to write
1547 * to tail struct pages.
1548 */
1549 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1550 __folio_clear_hugetlb(folio);
1551
1552 h->nr_huge_pages--;
1553 h->nr_huge_pages_node[nid]--;
1554 }
1555
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1556 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1557 bool adjust_surplus)
1558 {
1559 int nid = folio_nid(folio);
1560
1561 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1562
1563 lockdep_assert_held(&hugetlb_lock);
1564
1565 INIT_LIST_HEAD(&folio->lru);
1566 h->nr_huge_pages++;
1567 h->nr_huge_pages_node[nid]++;
1568
1569 if (adjust_surplus) {
1570 h->surplus_huge_pages++;
1571 h->surplus_huge_pages_node[nid]++;
1572 }
1573
1574 __folio_set_hugetlb(folio);
1575 folio_change_private(folio, NULL);
1576 /*
1577 * We have to set hugetlb_vmemmap_optimized again as above
1578 * folio_change_private(folio, NULL) cleared it.
1579 */
1580 folio_set_hugetlb_vmemmap_optimized(folio);
1581
1582 arch_clear_hugetlb_flags(folio);
1583 enqueue_hugetlb_folio(h, folio);
1584 }
1585
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1586 static void __update_and_free_hugetlb_folio(struct hstate *h,
1587 struct folio *folio)
1588 {
1589 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1590
1591 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1592 return;
1593
1594 /*
1595 * If we don't know which subpages are hwpoisoned, we can't free
1596 * the hugepage, so it's leaked intentionally.
1597 */
1598 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1599 return;
1600
1601 /*
1602 * If folio is not vmemmap optimized (!clear_flag), then the folio
1603 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1604 * can only be passed hugetlb pages and will BUG otherwise.
1605 */
1606 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1607 spin_lock_irq(&hugetlb_lock);
1608 /*
1609 * If we cannot allocate vmemmap pages, just refuse to free the
1610 * page and put the page back on the hugetlb free list and treat
1611 * as a surplus page.
1612 */
1613 add_hugetlb_folio(h, folio, true);
1614 spin_unlock_irq(&hugetlb_lock);
1615 return;
1616 }
1617
1618 /*
1619 * If vmemmap pages were allocated above, then we need to clear the
1620 * hugetlb flag under the hugetlb lock.
1621 */
1622 if (folio_test_hugetlb(folio)) {
1623 spin_lock_irq(&hugetlb_lock);
1624 __folio_clear_hugetlb(folio);
1625 spin_unlock_irq(&hugetlb_lock);
1626 }
1627
1628 /*
1629 * Move PageHWPoison flag from head page to the raw error pages,
1630 * which makes any healthy subpages reusable.
1631 */
1632 if (unlikely(folio_test_hwpoison(folio)))
1633 folio_clear_hugetlb_hwpoison(folio);
1634
1635 folio_ref_unfreeze(folio, 1);
1636
1637 INIT_LIST_HEAD(&folio->_deferred_list);
1638 hugetlb_free_folio(folio);
1639 }
1640
1641 /*
1642 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1643 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1644 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1645 * the vmemmap pages.
1646 *
1647 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1648 * freed and frees them one-by-one. As the page->mapping pointer is going
1649 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1650 * structure of a lockless linked list of huge pages to be freed.
1651 */
1652 static LLIST_HEAD(hpage_freelist);
1653
free_hpage_workfn(struct work_struct * work)1654 static void free_hpage_workfn(struct work_struct *work)
1655 {
1656 struct llist_node *node;
1657
1658 node = llist_del_all(&hpage_freelist);
1659
1660 while (node) {
1661 struct folio *folio;
1662 struct hstate *h;
1663
1664 folio = container_of((struct address_space **)node,
1665 struct folio, mapping);
1666 node = node->next;
1667 folio->mapping = NULL;
1668 /*
1669 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1670 * folio_hstate() is going to trigger because a previous call to
1671 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1672 * not use folio_hstate() directly.
1673 */
1674 h = size_to_hstate(folio_size(folio));
1675
1676 __update_and_free_hugetlb_folio(h, folio);
1677
1678 cond_resched();
1679 }
1680 }
1681 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1682
flush_free_hpage_work(struct hstate * h)1683 static inline void flush_free_hpage_work(struct hstate *h)
1684 {
1685 if (hugetlb_vmemmap_optimizable(h))
1686 flush_work(&free_hpage_work);
1687 }
1688
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1689 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1690 bool atomic)
1691 {
1692 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1693 __update_and_free_hugetlb_folio(h, folio);
1694 return;
1695 }
1696
1697 /*
1698 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1699 *
1700 * Only call schedule_work() if hpage_freelist is previously
1701 * empty. Otherwise, schedule_work() had been called but the workfn
1702 * hasn't retrieved the list yet.
1703 */
1704 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1705 schedule_work(&free_hpage_work);
1706 }
1707
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1708 static void bulk_vmemmap_restore_error(struct hstate *h,
1709 struct list_head *folio_list,
1710 struct list_head *non_hvo_folios)
1711 {
1712 struct folio *folio, *t_folio;
1713
1714 if (!list_empty(non_hvo_folios)) {
1715 /*
1716 * Free any restored hugetlb pages so that restore of the
1717 * entire list can be retried.
1718 * The idea is that in the common case of ENOMEM errors freeing
1719 * hugetlb pages with vmemmap we will free up memory so that we
1720 * can allocate vmemmap for more hugetlb pages.
1721 */
1722 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1723 list_del(&folio->lru);
1724 spin_lock_irq(&hugetlb_lock);
1725 __folio_clear_hugetlb(folio);
1726 spin_unlock_irq(&hugetlb_lock);
1727 update_and_free_hugetlb_folio(h, folio, false);
1728 cond_resched();
1729 }
1730 } else {
1731 /*
1732 * In the case where there are no folios which can be
1733 * immediately freed, we loop through the list trying to restore
1734 * vmemmap individually in the hope that someone elsewhere may
1735 * have done something to cause success (such as freeing some
1736 * memory). If unable to restore a hugetlb page, the hugetlb
1737 * page is made a surplus page and removed from the list.
1738 * If are able to restore vmemmap and free one hugetlb page, we
1739 * quit processing the list to retry the bulk operation.
1740 */
1741 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1742 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1743 list_del(&folio->lru);
1744 spin_lock_irq(&hugetlb_lock);
1745 add_hugetlb_folio(h, folio, true);
1746 spin_unlock_irq(&hugetlb_lock);
1747 } else {
1748 list_del(&folio->lru);
1749 spin_lock_irq(&hugetlb_lock);
1750 __folio_clear_hugetlb(folio);
1751 spin_unlock_irq(&hugetlb_lock);
1752 update_and_free_hugetlb_folio(h, folio, false);
1753 cond_resched();
1754 break;
1755 }
1756 }
1757 }
1758
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1759 static void update_and_free_pages_bulk(struct hstate *h,
1760 struct list_head *folio_list)
1761 {
1762 long ret;
1763 struct folio *folio, *t_folio;
1764 LIST_HEAD(non_hvo_folios);
1765
1766 /*
1767 * First allocate required vmemmmap (if necessary) for all folios.
1768 * Carefully handle errors and free up any available hugetlb pages
1769 * in an effort to make forward progress.
1770 */
1771 retry:
1772 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1773 if (ret < 0) {
1774 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1775 goto retry;
1776 }
1777
1778 /*
1779 * At this point, list should be empty, ret should be >= 0 and there
1780 * should only be pages on the non_hvo_folios list.
1781 * Do note that the non_hvo_folios list could be empty.
1782 * Without HVO enabled, ret will be 0 and there is no need to call
1783 * __folio_clear_hugetlb as this was done previously.
1784 */
1785 VM_WARN_ON(!list_empty(folio_list));
1786 VM_WARN_ON(ret < 0);
1787 if (!list_empty(&non_hvo_folios) && ret) {
1788 spin_lock_irq(&hugetlb_lock);
1789 list_for_each_entry(folio, &non_hvo_folios, lru)
1790 __folio_clear_hugetlb(folio);
1791 spin_unlock_irq(&hugetlb_lock);
1792 }
1793
1794 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1795 update_and_free_hugetlb_folio(h, folio, false);
1796 cond_resched();
1797 }
1798 }
1799
size_to_hstate(unsigned long size)1800 struct hstate *size_to_hstate(unsigned long size)
1801 {
1802 struct hstate *h;
1803
1804 for_each_hstate(h) {
1805 if (huge_page_size(h) == size)
1806 return h;
1807 }
1808 return NULL;
1809 }
1810
free_huge_folio(struct folio * folio)1811 void free_huge_folio(struct folio *folio)
1812 {
1813 /*
1814 * Can't pass hstate in here because it is called from the
1815 * generic mm code.
1816 */
1817 struct hstate *h = folio_hstate(folio);
1818 int nid = folio_nid(folio);
1819 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1820 bool restore_reserve;
1821 unsigned long flags;
1822
1823 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1824 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1825
1826 hugetlb_set_folio_subpool(folio, NULL);
1827 if (folio_test_anon(folio))
1828 __ClearPageAnonExclusive(&folio->page);
1829 folio->mapping = NULL;
1830 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1831 folio_clear_hugetlb_restore_reserve(folio);
1832
1833 /*
1834 * If HPageRestoreReserve was set on page, page allocation consumed a
1835 * reservation. If the page was associated with a subpool, there
1836 * would have been a page reserved in the subpool before allocation
1837 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1838 * reservation, do not call hugepage_subpool_put_pages() as this will
1839 * remove the reserved page from the subpool.
1840 */
1841 if (!restore_reserve) {
1842 /*
1843 * A return code of zero implies that the subpool will be
1844 * under its minimum size if the reservation is not restored
1845 * after page is free. Therefore, force restore_reserve
1846 * operation.
1847 */
1848 if (hugepage_subpool_put_pages(spool, 1) == 0)
1849 restore_reserve = true;
1850 }
1851
1852 spin_lock_irqsave(&hugetlb_lock, flags);
1853 folio_clear_hugetlb_migratable(folio);
1854 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1855 pages_per_huge_page(h), folio);
1856 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1857 pages_per_huge_page(h), folio);
1858 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1859 mem_cgroup_uncharge(folio);
1860 if (restore_reserve)
1861 h->resv_huge_pages++;
1862
1863 if (folio_test_hugetlb_temporary(folio)) {
1864 remove_hugetlb_folio(h, folio, false);
1865 spin_unlock_irqrestore(&hugetlb_lock, flags);
1866 update_and_free_hugetlb_folio(h, folio, true);
1867 } else if (h->surplus_huge_pages_node[nid]) {
1868 /* remove the page from active list */
1869 remove_hugetlb_folio(h, folio, true);
1870 spin_unlock_irqrestore(&hugetlb_lock, flags);
1871 update_and_free_hugetlb_folio(h, folio, true);
1872 } else {
1873 arch_clear_hugetlb_flags(folio);
1874 enqueue_hugetlb_folio(h, folio);
1875 spin_unlock_irqrestore(&hugetlb_lock, flags);
1876 }
1877 }
1878
1879 /*
1880 * Must be called with the hugetlb lock held
1881 */
__prep_account_new_huge_page(struct hstate * h,int nid)1882 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1883 {
1884 lockdep_assert_held(&hugetlb_lock);
1885 h->nr_huge_pages++;
1886 h->nr_huge_pages_node[nid]++;
1887 }
1888
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1889 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1890 {
1891 __folio_set_hugetlb(folio);
1892 INIT_LIST_HEAD(&folio->lru);
1893 hugetlb_set_folio_subpool(folio, NULL);
1894 set_hugetlb_cgroup(folio, NULL);
1895 set_hugetlb_cgroup_rsvd(folio, NULL);
1896 }
1897
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1898 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1899 {
1900 init_new_hugetlb_folio(h, folio);
1901 hugetlb_vmemmap_optimize_folio(h, folio);
1902 }
1903
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1904 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1905 {
1906 __prep_new_hugetlb_folio(h, folio);
1907 spin_lock_irq(&hugetlb_lock);
1908 __prep_account_new_huge_page(h, nid);
1909 spin_unlock_irq(&hugetlb_lock);
1910 }
1911
1912 /*
1913 * Find and lock address space (mapping) in write mode.
1914 *
1915 * Upon entry, the folio is locked which means that folio_mapping() is
1916 * stable. Due to locking order, we can only trylock_write. If we can
1917 * not get the lock, simply return NULL to caller.
1918 */
hugetlb_folio_mapping_lock_write(struct folio * folio)1919 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1920 {
1921 struct address_space *mapping = folio_mapping(folio);
1922
1923 if (!mapping)
1924 return mapping;
1925
1926 if (i_mmap_trylock_write(mapping))
1927 return mapping;
1928
1929 return NULL;
1930 }
1931
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1932 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1933 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1934 nodemask_t *node_alloc_noretry)
1935 {
1936 int order = huge_page_order(h);
1937 struct folio *folio;
1938 bool alloc_try_hard = true;
1939 bool retry = true;
1940
1941 /*
1942 * By default we always try hard to allocate the folio with
1943 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
1944 * a loop (to adjust global huge page counts) and previous allocation
1945 * failed, do not continue to try hard on the same node. Use the
1946 * node_alloc_noretry bitmap to manage this state information.
1947 */
1948 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1949 alloc_try_hard = false;
1950 if (alloc_try_hard)
1951 gfp_mask |= __GFP_RETRY_MAYFAIL;
1952 if (nid == NUMA_NO_NODE)
1953 nid = numa_mem_id();
1954 retry:
1955 folio = __folio_alloc(gfp_mask, order, nid, nmask);
1956 /* Ensure hugetlb folio won't have large_rmappable flag set. */
1957 if (folio)
1958 folio_clear_large_rmappable(folio);
1959
1960 if (folio && !folio_ref_freeze(folio, 1)) {
1961 folio_put(folio);
1962 if (retry) { /* retry once */
1963 retry = false;
1964 goto retry;
1965 }
1966 /* WOW! twice in a row. */
1967 pr_warn("HugeTLB unexpected inflated folio ref count\n");
1968 folio = NULL;
1969 }
1970
1971 /*
1972 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1973 * folio this indicates an overall state change. Clear bit so
1974 * that we resume normal 'try hard' allocations.
1975 */
1976 if (node_alloc_noretry && folio && !alloc_try_hard)
1977 node_clear(nid, *node_alloc_noretry);
1978
1979 /*
1980 * If we tried hard to get a folio but failed, set bit so that
1981 * subsequent attempts will not try as hard until there is an
1982 * overall state change.
1983 */
1984 if (node_alloc_noretry && !folio && alloc_try_hard)
1985 node_set(nid, *node_alloc_noretry);
1986
1987 if (!folio) {
1988 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1989 return NULL;
1990 }
1991
1992 __count_vm_event(HTLB_BUDDY_PGALLOC);
1993 return folio;
1994 }
1995
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1996 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1997 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1998 nodemask_t *node_alloc_noretry)
1999 {
2000 struct folio *folio;
2001
2002 if (hstate_is_gigantic(h))
2003 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2004 else
2005 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2006 if (folio)
2007 init_new_hugetlb_folio(h, folio);
2008 return folio;
2009 }
2010
2011 /*
2012 * Common helper to allocate a fresh hugetlb page. All specific allocators
2013 * should use this function to get new hugetlb pages
2014 *
2015 * Note that returned page is 'frozen': ref count of head page and all tail
2016 * pages is zero.
2017 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2018 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2019 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2020 {
2021 struct folio *folio;
2022
2023 if (hstate_is_gigantic(h))
2024 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2025 else
2026 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2027 if (!folio)
2028 return NULL;
2029
2030 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2031 return folio;
2032 }
2033
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2034 static void prep_and_add_allocated_folios(struct hstate *h,
2035 struct list_head *folio_list)
2036 {
2037 unsigned long flags;
2038 struct folio *folio, *tmp_f;
2039
2040 /* Send list for bulk vmemmap optimization processing */
2041 hugetlb_vmemmap_optimize_folios(h, folio_list);
2042
2043 /* Add all new pool pages to free lists in one lock cycle */
2044 spin_lock_irqsave(&hugetlb_lock, flags);
2045 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2046 __prep_account_new_huge_page(h, folio_nid(folio));
2047 enqueue_hugetlb_folio(h, folio);
2048 }
2049 spin_unlock_irqrestore(&hugetlb_lock, flags);
2050 }
2051
2052 /*
2053 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2054 * will later be added to the appropriate hugetlb pool.
2055 */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2056 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2057 nodemask_t *nodes_allowed,
2058 nodemask_t *node_alloc_noretry,
2059 int *next_node)
2060 {
2061 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2062 int nr_nodes, node;
2063
2064 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2065 struct folio *folio;
2066
2067 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2068 nodes_allowed, node_alloc_noretry);
2069 if (folio)
2070 return folio;
2071 }
2072
2073 return NULL;
2074 }
2075
2076 /*
2077 * Remove huge page from pool from next node to free. Attempt to keep
2078 * persistent huge pages more or less balanced over allowed nodes.
2079 * This routine only 'removes' the hugetlb page. The caller must make
2080 * an additional call to free the page to low level allocators.
2081 * Called with hugetlb_lock locked.
2082 */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2083 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2084 nodemask_t *nodes_allowed, bool acct_surplus)
2085 {
2086 int nr_nodes, node;
2087 struct folio *folio = NULL;
2088
2089 lockdep_assert_held(&hugetlb_lock);
2090 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2091 /*
2092 * If we're returning unused surplus pages, only examine
2093 * nodes with surplus pages.
2094 */
2095 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2096 !list_empty(&h->hugepage_freelists[node])) {
2097 folio = list_entry(h->hugepage_freelists[node].next,
2098 struct folio, lru);
2099 remove_hugetlb_folio(h, folio, acct_surplus);
2100 break;
2101 }
2102 }
2103
2104 return folio;
2105 }
2106
2107 /*
2108 * Dissolve a given free hugetlb folio into free buddy pages. This function
2109 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2110 * This function returns values like below:
2111 *
2112 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2113 * when the system is under memory pressure and the feature of
2114 * freeing unused vmemmap pages associated with each hugetlb page
2115 * is enabled.
2116 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2117 * (allocated or reserved.)
2118 * 0: successfully dissolved free hugepages or the page is not a
2119 * hugepage (considered as already dissolved)
2120 */
dissolve_free_hugetlb_folio(struct folio * folio)2121 int dissolve_free_hugetlb_folio(struct folio *folio)
2122 {
2123 int rc = -EBUSY;
2124
2125 retry:
2126 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2127 if (!folio_test_hugetlb(folio))
2128 return 0;
2129
2130 spin_lock_irq(&hugetlb_lock);
2131 if (!folio_test_hugetlb(folio)) {
2132 rc = 0;
2133 goto out;
2134 }
2135
2136 if (!folio_ref_count(folio)) {
2137 struct hstate *h = folio_hstate(folio);
2138 bool adjust_surplus = false;
2139
2140 if (!available_huge_pages(h))
2141 goto out;
2142
2143 /*
2144 * We should make sure that the page is already on the free list
2145 * when it is dissolved.
2146 */
2147 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2148 spin_unlock_irq(&hugetlb_lock);
2149 cond_resched();
2150
2151 /*
2152 * Theoretically, we should return -EBUSY when we
2153 * encounter this race. In fact, we have a chance
2154 * to successfully dissolve the page if we do a
2155 * retry. Because the race window is quite small.
2156 * If we seize this opportunity, it is an optimization
2157 * for increasing the success rate of dissolving page.
2158 */
2159 goto retry;
2160 }
2161
2162 if (h->surplus_huge_pages_node[folio_nid(folio)])
2163 adjust_surplus = true;
2164 remove_hugetlb_folio(h, folio, adjust_surplus);
2165 h->max_huge_pages--;
2166 spin_unlock_irq(&hugetlb_lock);
2167
2168 /*
2169 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2170 * before freeing the page. update_and_free_hugtlb_folio will fail to
2171 * free the page if it can not allocate required vmemmap. We
2172 * need to adjust max_huge_pages if the page is not freed.
2173 * Attempt to allocate vmemmmap here so that we can take
2174 * appropriate action on failure.
2175 *
2176 * The folio_test_hugetlb check here is because
2177 * remove_hugetlb_folio will clear hugetlb folio flag for
2178 * non-vmemmap optimized hugetlb folios.
2179 */
2180 if (folio_test_hugetlb(folio)) {
2181 rc = hugetlb_vmemmap_restore_folio(h, folio);
2182 if (rc) {
2183 spin_lock_irq(&hugetlb_lock);
2184 add_hugetlb_folio(h, folio, adjust_surplus);
2185 h->max_huge_pages++;
2186 goto out;
2187 }
2188 } else
2189 rc = 0;
2190
2191 update_and_free_hugetlb_folio(h, folio, false);
2192 return rc;
2193 }
2194 out:
2195 spin_unlock_irq(&hugetlb_lock);
2196 return rc;
2197 }
2198
2199 /*
2200 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2201 * make specified memory blocks removable from the system.
2202 * Note that this will dissolve a free gigantic hugepage completely, if any
2203 * part of it lies within the given range.
2204 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2205 * free hugetlb folios that were dissolved before that error are lost.
2206 */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2207 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2208 {
2209 unsigned long pfn;
2210 struct folio *folio;
2211 int rc = 0;
2212 unsigned int order;
2213 struct hstate *h;
2214
2215 if (!hugepages_supported())
2216 return rc;
2217
2218 order = huge_page_order(&default_hstate);
2219 for_each_hstate(h)
2220 order = min(order, huge_page_order(h));
2221
2222 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2223 folio = pfn_folio(pfn);
2224 rc = dissolve_free_hugetlb_folio(folio);
2225 if (rc)
2226 break;
2227 }
2228
2229 return rc;
2230 }
2231
2232 /*
2233 * Allocates a fresh surplus page from the page allocator.
2234 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2235 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2236 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2237 {
2238 struct folio *folio = NULL;
2239
2240 if (hstate_is_gigantic(h))
2241 return NULL;
2242
2243 spin_lock_irq(&hugetlb_lock);
2244 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2245 goto out_unlock;
2246 spin_unlock_irq(&hugetlb_lock);
2247
2248 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2249 if (!folio)
2250 return NULL;
2251
2252 spin_lock_irq(&hugetlb_lock);
2253 /*
2254 * We could have raced with the pool size change.
2255 * Double check that and simply deallocate the new page
2256 * if we would end up overcommiting the surpluses. Abuse
2257 * temporary page to workaround the nasty free_huge_folio
2258 * codeflow
2259 */
2260 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2261 folio_set_hugetlb_temporary(folio);
2262 spin_unlock_irq(&hugetlb_lock);
2263 free_huge_folio(folio);
2264 return NULL;
2265 }
2266
2267 h->surplus_huge_pages++;
2268 h->surplus_huge_pages_node[folio_nid(folio)]++;
2269
2270 out_unlock:
2271 spin_unlock_irq(&hugetlb_lock);
2272
2273 return folio;
2274 }
2275
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2276 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2277 int nid, nodemask_t *nmask)
2278 {
2279 struct folio *folio;
2280
2281 if (hstate_is_gigantic(h))
2282 return NULL;
2283
2284 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2285 if (!folio)
2286 return NULL;
2287
2288 /* fresh huge pages are frozen */
2289 folio_ref_unfreeze(folio, 1);
2290 /*
2291 * We do not account these pages as surplus because they are only
2292 * temporary and will be released properly on the last reference
2293 */
2294 folio_set_hugetlb_temporary(folio);
2295
2296 return folio;
2297 }
2298
2299 /*
2300 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2301 */
2302 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2303 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2304 struct vm_area_struct *vma, unsigned long addr)
2305 {
2306 struct folio *folio = NULL;
2307 struct mempolicy *mpol;
2308 gfp_t gfp_mask = htlb_alloc_mask(h);
2309 int nid;
2310 nodemask_t *nodemask;
2311
2312 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2313 if (mpol_is_preferred_many(mpol)) {
2314 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2315
2316 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2317
2318 /* Fallback to all nodes if page==NULL */
2319 nodemask = NULL;
2320 }
2321
2322 if (!folio)
2323 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2324 mpol_cond_put(mpol);
2325 return folio;
2326 }
2327
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2328 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2329 nodemask_t *nmask, gfp_t gfp_mask)
2330 {
2331 struct folio *folio;
2332
2333 spin_lock_irq(&hugetlb_lock);
2334 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2335 nmask);
2336 if (folio) {
2337 VM_BUG_ON(!h->resv_huge_pages);
2338 h->resv_huge_pages--;
2339 }
2340
2341 spin_unlock_irq(&hugetlb_lock);
2342 return folio;
2343 }
2344
2345 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2346 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2347 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2348 {
2349 spin_lock_irq(&hugetlb_lock);
2350 if (available_huge_pages(h)) {
2351 struct folio *folio;
2352
2353 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2354 preferred_nid, nmask);
2355 if (folio) {
2356 spin_unlock_irq(&hugetlb_lock);
2357 return folio;
2358 }
2359 }
2360 spin_unlock_irq(&hugetlb_lock);
2361
2362 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2363 if (!allow_alloc_fallback)
2364 gfp_mask |= __GFP_THISNODE;
2365
2366 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2367 }
2368
policy_mbind_nodemask(gfp_t gfp)2369 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2370 {
2371 #ifdef CONFIG_NUMA
2372 struct mempolicy *mpol = get_task_policy(current);
2373
2374 /*
2375 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2376 * (from policy_nodemask) specifically for hugetlb case
2377 */
2378 if (mpol->mode == MPOL_BIND &&
2379 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2380 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2381 return &mpol->nodes;
2382 #endif
2383 return NULL;
2384 }
2385
2386 /*
2387 * Increase the hugetlb pool such that it can accommodate a reservation
2388 * of size 'delta'.
2389 */
gather_surplus_pages(struct hstate * h,long delta)2390 static int gather_surplus_pages(struct hstate *h, long delta)
2391 __must_hold(&hugetlb_lock)
2392 {
2393 LIST_HEAD(surplus_list);
2394 struct folio *folio, *tmp;
2395 int ret;
2396 long i;
2397 long needed, allocated;
2398 bool alloc_ok = true;
2399 int node;
2400 nodemask_t *mbind_nodemask, alloc_nodemask;
2401
2402 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2403 if (mbind_nodemask)
2404 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2405 else
2406 alloc_nodemask = cpuset_current_mems_allowed;
2407
2408 lockdep_assert_held(&hugetlb_lock);
2409 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2410 if (needed <= 0) {
2411 h->resv_huge_pages += delta;
2412 return 0;
2413 }
2414
2415 allocated = 0;
2416
2417 ret = -ENOMEM;
2418 retry:
2419 spin_unlock_irq(&hugetlb_lock);
2420 for (i = 0; i < needed; i++) {
2421 folio = NULL;
2422
2423 /* Prioritize current node */
2424 if (node_isset(numa_mem_id(), alloc_nodemask))
2425 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2426 numa_mem_id(), NULL);
2427
2428 if (!folio) {
2429 for_each_node_mask(node, alloc_nodemask) {
2430 if (node == numa_mem_id())
2431 continue;
2432 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2433 node, NULL);
2434 if (folio)
2435 break;
2436 }
2437 }
2438 if (!folio) {
2439 alloc_ok = false;
2440 break;
2441 }
2442 list_add(&folio->lru, &surplus_list);
2443 cond_resched();
2444 }
2445 allocated += i;
2446
2447 /*
2448 * After retaking hugetlb_lock, we need to recalculate 'needed'
2449 * because either resv_huge_pages or free_huge_pages may have changed.
2450 */
2451 spin_lock_irq(&hugetlb_lock);
2452 needed = (h->resv_huge_pages + delta) -
2453 (h->free_huge_pages + allocated);
2454 if (needed > 0) {
2455 if (alloc_ok)
2456 goto retry;
2457 /*
2458 * We were not able to allocate enough pages to
2459 * satisfy the entire reservation so we free what
2460 * we've allocated so far.
2461 */
2462 goto free;
2463 }
2464 /*
2465 * The surplus_list now contains _at_least_ the number of extra pages
2466 * needed to accommodate the reservation. Add the appropriate number
2467 * of pages to the hugetlb pool and free the extras back to the buddy
2468 * allocator. Commit the entire reservation here to prevent another
2469 * process from stealing the pages as they are added to the pool but
2470 * before they are reserved.
2471 */
2472 needed += allocated;
2473 h->resv_huge_pages += delta;
2474 ret = 0;
2475
2476 /* Free the needed pages to the hugetlb pool */
2477 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2478 if ((--needed) < 0)
2479 break;
2480 /* Add the page to the hugetlb allocator */
2481 enqueue_hugetlb_folio(h, folio);
2482 }
2483 free:
2484 spin_unlock_irq(&hugetlb_lock);
2485
2486 /*
2487 * Free unnecessary surplus pages to the buddy allocator.
2488 * Pages have no ref count, call free_huge_folio directly.
2489 */
2490 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2491 free_huge_folio(folio);
2492 spin_lock_irq(&hugetlb_lock);
2493
2494 return ret;
2495 }
2496
2497 /*
2498 * This routine has two main purposes:
2499 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2500 * in unused_resv_pages. This corresponds to the prior adjustments made
2501 * to the associated reservation map.
2502 * 2) Free any unused surplus pages that may have been allocated to satisfy
2503 * the reservation. As many as unused_resv_pages may be freed.
2504 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2505 static void return_unused_surplus_pages(struct hstate *h,
2506 unsigned long unused_resv_pages)
2507 {
2508 unsigned long nr_pages;
2509 LIST_HEAD(page_list);
2510
2511 lockdep_assert_held(&hugetlb_lock);
2512 /* Uncommit the reservation */
2513 h->resv_huge_pages -= unused_resv_pages;
2514
2515 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2516 goto out;
2517
2518 /*
2519 * Part (or even all) of the reservation could have been backed
2520 * by pre-allocated pages. Only free surplus pages.
2521 */
2522 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2523
2524 /*
2525 * We want to release as many surplus pages as possible, spread
2526 * evenly across all nodes with memory. Iterate across these nodes
2527 * until we can no longer free unreserved surplus pages. This occurs
2528 * when the nodes with surplus pages have no free pages.
2529 * remove_pool_hugetlb_folio() will balance the freed pages across the
2530 * on-line nodes with memory and will handle the hstate accounting.
2531 */
2532 while (nr_pages--) {
2533 struct folio *folio;
2534
2535 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2536 if (!folio)
2537 goto out;
2538
2539 list_add(&folio->lru, &page_list);
2540 }
2541
2542 out:
2543 spin_unlock_irq(&hugetlb_lock);
2544 update_and_free_pages_bulk(h, &page_list);
2545 spin_lock_irq(&hugetlb_lock);
2546 }
2547
2548
2549 /*
2550 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2551 * are used by the huge page allocation routines to manage reservations.
2552 *
2553 * vma_needs_reservation is called to determine if the huge page at addr
2554 * within the vma has an associated reservation. If a reservation is
2555 * needed, the value 1 is returned. The caller is then responsible for
2556 * managing the global reservation and subpool usage counts. After
2557 * the huge page has been allocated, vma_commit_reservation is called
2558 * to add the page to the reservation map. If the page allocation fails,
2559 * the reservation must be ended instead of committed. vma_end_reservation
2560 * is called in such cases.
2561 *
2562 * In the normal case, vma_commit_reservation returns the same value
2563 * as the preceding vma_needs_reservation call. The only time this
2564 * is not the case is if a reserve map was changed between calls. It
2565 * is the responsibility of the caller to notice the difference and
2566 * take appropriate action.
2567 *
2568 * vma_add_reservation is used in error paths where a reservation must
2569 * be restored when a newly allocated huge page must be freed. It is
2570 * to be called after calling vma_needs_reservation to determine if a
2571 * reservation exists.
2572 *
2573 * vma_del_reservation is used in error paths where an entry in the reserve
2574 * map was created during huge page allocation and must be removed. It is to
2575 * be called after calling vma_needs_reservation to determine if a reservation
2576 * exists.
2577 */
2578 enum vma_resv_mode {
2579 VMA_NEEDS_RESV,
2580 VMA_COMMIT_RESV,
2581 VMA_END_RESV,
2582 VMA_ADD_RESV,
2583 VMA_DEL_RESV,
2584 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2585 static long __vma_reservation_common(struct hstate *h,
2586 struct vm_area_struct *vma, unsigned long addr,
2587 enum vma_resv_mode mode)
2588 {
2589 struct resv_map *resv;
2590 pgoff_t idx;
2591 long ret;
2592 long dummy_out_regions_needed;
2593
2594 resv = vma_resv_map(vma);
2595 if (!resv)
2596 return 1;
2597
2598 idx = vma_hugecache_offset(h, vma, addr);
2599 switch (mode) {
2600 case VMA_NEEDS_RESV:
2601 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2602 /* We assume that vma_reservation_* routines always operate on
2603 * 1 page, and that adding to resv map a 1 page entry can only
2604 * ever require 1 region.
2605 */
2606 VM_BUG_ON(dummy_out_regions_needed != 1);
2607 break;
2608 case VMA_COMMIT_RESV:
2609 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2610 /* region_add calls of range 1 should never fail. */
2611 VM_BUG_ON(ret < 0);
2612 break;
2613 case VMA_END_RESV:
2614 region_abort(resv, idx, idx + 1, 1);
2615 ret = 0;
2616 break;
2617 case VMA_ADD_RESV:
2618 if (vma->vm_flags & VM_MAYSHARE) {
2619 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2620 /* region_add calls of range 1 should never fail. */
2621 VM_BUG_ON(ret < 0);
2622 } else {
2623 region_abort(resv, idx, idx + 1, 1);
2624 ret = region_del(resv, idx, idx + 1);
2625 }
2626 break;
2627 case VMA_DEL_RESV:
2628 if (vma->vm_flags & VM_MAYSHARE) {
2629 region_abort(resv, idx, idx + 1, 1);
2630 ret = region_del(resv, idx, idx + 1);
2631 } else {
2632 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2633 /* region_add calls of range 1 should never fail. */
2634 VM_BUG_ON(ret < 0);
2635 }
2636 break;
2637 default:
2638 BUG();
2639 }
2640
2641 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2642 return ret;
2643 /*
2644 * We know private mapping must have HPAGE_RESV_OWNER set.
2645 *
2646 * In most cases, reserves always exist for private mappings.
2647 * However, a file associated with mapping could have been
2648 * hole punched or truncated after reserves were consumed.
2649 * As subsequent fault on such a range will not use reserves.
2650 * Subtle - The reserve map for private mappings has the
2651 * opposite meaning than that of shared mappings. If NO
2652 * entry is in the reserve map, it means a reservation exists.
2653 * If an entry exists in the reserve map, it means the
2654 * reservation has already been consumed. As a result, the
2655 * return value of this routine is the opposite of the
2656 * value returned from reserve map manipulation routines above.
2657 */
2658 if (ret > 0)
2659 return 0;
2660 if (ret == 0)
2661 return 1;
2662 return ret;
2663 }
2664
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2665 static long vma_needs_reservation(struct hstate *h,
2666 struct vm_area_struct *vma, unsigned long addr)
2667 {
2668 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2669 }
2670
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2671 static long vma_commit_reservation(struct hstate *h,
2672 struct vm_area_struct *vma, unsigned long addr)
2673 {
2674 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2675 }
2676
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2677 static void vma_end_reservation(struct hstate *h,
2678 struct vm_area_struct *vma, unsigned long addr)
2679 {
2680 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2681 }
2682
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2683 static long vma_add_reservation(struct hstate *h,
2684 struct vm_area_struct *vma, unsigned long addr)
2685 {
2686 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2687 }
2688
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2689 static long vma_del_reservation(struct hstate *h,
2690 struct vm_area_struct *vma, unsigned long addr)
2691 {
2692 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2693 }
2694
2695 /*
2696 * This routine is called to restore reservation information on error paths.
2697 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2698 * and the hugetlb mutex should remain held when calling this routine.
2699 *
2700 * It handles two specific cases:
2701 * 1) A reservation was in place and the folio consumed the reservation.
2702 * hugetlb_restore_reserve is set in the folio.
2703 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2704 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2705 *
2706 * In case 1, free_huge_folio later in the error path will increment the
2707 * global reserve count. But, free_huge_folio does not have enough context
2708 * to adjust the reservation map. This case deals primarily with private
2709 * mappings. Adjust the reserve map here to be consistent with global
2710 * reserve count adjustments to be made by free_huge_folio. Make sure the
2711 * reserve map indicates there is a reservation present.
2712 *
2713 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2714 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2715 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2716 unsigned long address, struct folio *folio)
2717 {
2718 long rc = vma_needs_reservation(h, vma, address);
2719
2720 if (folio_test_hugetlb_restore_reserve(folio)) {
2721 if (unlikely(rc < 0))
2722 /*
2723 * Rare out of memory condition in reserve map
2724 * manipulation. Clear hugetlb_restore_reserve so
2725 * that global reserve count will not be incremented
2726 * by free_huge_folio. This will make it appear
2727 * as though the reservation for this folio was
2728 * consumed. This may prevent the task from
2729 * faulting in the folio at a later time. This
2730 * is better than inconsistent global huge page
2731 * accounting of reserve counts.
2732 */
2733 folio_clear_hugetlb_restore_reserve(folio);
2734 else if (rc)
2735 (void)vma_add_reservation(h, vma, address);
2736 else
2737 vma_end_reservation(h, vma, address);
2738 } else {
2739 if (!rc) {
2740 /*
2741 * This indicates there is an entry in the reserve map
2742 * not added by alloc_hugetlb_folio. We know it was added
2743 * before the alloc_hugetlb_folio call, otherwise
2744 * hugetlb_restore_reserve would be set on the folio.
2745 * Remove the entry so that a subsequent allocation
2746 * does not consume a reservation.
2747 */
2748 rc = vma_del_reservation(h, vma, address);
2749 if (rc < 0)
2750 /*
2751 * VERY rare out of memory condition. Since
2752 * we can not delete the entry, set
2753 * hugetlb_restore_reserve so that the reserve
2754 * count will be incremented when the folio
2755 * is freed. This reserve will be consumed
2756 * on a subsequent allocation.
2757 */
2758 folio_set_hugetlb_restore_reserve(folio);
2759 } else if (rc < 0) {
2760 /*
2761 * Rare out of memory condition from
2762 * vma_needs_reservation call. Memory allocation is
2763 * only attempted if a new entry is needed. Therefore,
2764 * this implies there is not an entry in the
2765 * reserve map.
2766 *
2767 * For shared mappings, no entry in the map indicates
2768 * no reservation. We are done.
2769 */
2770 if (!(vma->vm_flags & VM_MAYSHARE))
2771 /*
2772 * For private mappings, no entry indicates
2773 * a reservation is present. Since we can
2774 * not add an entry, set hugetlb_restore_reserve
2775 * on the folio so reserve count will be
2776 * incremented when freed. This reserve will
2777 * be consumed on a subsequent allocation.
2778 */
2779 folio_set_hugetlb_restore_reserve(folio);
2780 } else
2781 /*
2782 * No reservation present, do nothing
2783 */
2784 vma_end_reservation(h, vma, address);
2785 }
2786 }
2787
2788 /*
2789 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2790 * the old one
2791 * @h: struct hstate old page belongs to
2792 * @old_folio: Old folio to dissolve
2793 * @list: List to isolate the page in case we need to
2794 * Returns 0 on success, otherwise negated error.
2795 */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2796 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2797 struct folio *old_folio, struct list_head *list)
2798 {
2799 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2800 int nid = folio_nid(old_folio);
2801 struct folio *new_folio = NULL;
2802 int ret = 0;
2803
2804 retry:
2805 spin_lock_irq(&hugetlb_lock);
2806 if (!folio_test_hugetlb(old_folio)) {
2807 /*
2808 * Freed from under us. Drop new_folio too.
2809 */
2810 goto free_new;
2811 } else if (folio_ref_count(old_folio)) {
2812 bool isolated;
2813
2814 /*
2815 * Someone has grabbed the folio, try to isolate it here.
2816 * Fail with -EBUSY if not possible.
2817 */
2818 spin_unlock_irq(&hugetlb_lock);
2819 isolated = folio_isolate_hugetlb(old_folio, list);
2820 ret = isolated ? 0 : -EBUSY;
2821 spin_lock_irq(&hugetlb_lock);
2822 goto free_new;
2823 } else if (!folio_test_hugetlb_freed(old_folio)) {
2824 /*
2825 * Folio's refcount is 0 but it has not been enqueued in the
2826 * freelist yet. Race window is small, so we can succeed here if
2827 * we retry.
2828 */
2829 spin_unlock_irq(&hugetlb_lock);
2830 cond_resched();
2831 goto retry;
2832 } else {
2833 if (!new_folio) {
2834 spin_unlock_irq(&hugetlb_lock);
2835 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2836 NULL, NULL);
2837 if (!new_folio)
2838 return -ENOMEM;
2839 __prep_new_hugetlb_folio(h, new_folio);
2840 goto retry;
2841 }
2842
2843 /*
2844 * Ok, old_folio is still a genuine free hugepage. Remove it from
2845 * the freelist and decrease the counters. These will be
2846 * incremented again when calling __prep_account_new_huge_page()
2847 * and enqueue_hugetlb_folio() for new_folio. The counters will
2848 * remain stable since this happens under the lock.
2849 */
2850 remove_hugetlb_folio(h, old_folio, false);
2851
2852 /*
2853 * Ref count on new_folio is already zero as it was dropped
2854 * earlier. It can be directly added to the pool free list.
2855 */
2856 __prep_account_new_huge_page(h, nid);
2857 enqueue_hugetlb_folio(h, new_folio);
2858
2859 /*
2860 * Folio has been replaced, we can safely free the old one.
2861 */
2862 spin_unlock_irq(&hugetlb_lock);
2863 update_and_free_hugetlb_folio(h, old_folio, false);
2864 }
2865
2866 return ret;
2867
2868 free_new:
2869 spin_unlock_irq(&hugetlb_lock);
2870 if (new_folio)
2871 update_and_free_hugetlb_folio(h, new_folio, false);
2872
2873 return ret;
2874 }
2875
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)2876 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2877 {
2878 struct hstate *h;
2879 struct folio *folio = page_folio(page);
2880 int ret = -EBUSY;
2881
2882 /*
2883 * The page might have been dissolved from under our feet, so make sure
2884 * to carefully check the state under the lock.
2885 * Return success when racing as if we dissolved the page ourselves.
2886 */
2887 spin_lock_irq(&hugetlb_lock);
2888 if (folio_test_hugetlb(folio)) {
2889 h = folio_hstate(folio);
2890 } else {
2891 spin_unlock_irq(&hugetlb_lock);
2892 return 0;
2893 }
2894 spin_unlock_irq(&hugetlb_lock);
2895
2896 /*
2897 * Fence off gigantic pages as there is a cyclic dependency between
2898 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2899 * of bailing out right away without further retrying.
2900 */
2901 if (hstate_is_gigantic(h))
2902 return -ENOMEM;
2903
2904 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2905 ret = 0;
2906 else if (!folio_ref_count(folio))
2907 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2908
2909 return ret;
2910 }
2911
2912 /*
2913 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2914 * range with new folios.
2915 * @start_pfn: start pfn of the given pfn range
2916 * @end_pfn: end pfn of the given pfn range
2917 * Returns 0 on success, otherwise negated error.
2918 */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2919 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2920 {
2921 struct hstate *h;
2922 struct folio *folio;
2923 int ret = 0;
2924
2925 LIST_HEAD(isolate_list);
2926
2927 while (start_pfn < end_pfn) {
2928 folio = pfn_folio(start_pfn);
2929 if (folio_test_hugetlb(folio)) {
2930 h = folio_hstate(folio);
2931 } else {
2932 start_pfn++;
2933 continue;
2934 }
2935
2936 if (!folio_ref_count(folio)) {
2937 ret = alloc_and_dissolve_hugetlb_folio(h, folio,
2938 &isolate_list);
2939 if (ret)
2940 break;
2941
2942 putback_movable_pages(&isolate_list);
2943 }
2944 start_pfn++;
2945 }
2946
2947 return ret;
2948 }
2949
wait_for_freed_hugetlb_folios(void)2950 void wait_for_freed_hugetlb_folios(void)
2951 {
2952 if (llist_empty(&hpage_freelist))
2953 return;
2954
2955 flush_work(&free_hpage_work);
2956 }
2957
2958 typedef enum {
2959 /*
2960 * For either 0/1: we checked the per-vma resv map, and one resv
2961 * count either can be reused (0), or an extra needed (1).
2962 */
2963 MAP_CHG_REUSE = 0,
2964 MAP_CHG_NEEDED = 1,
2965 /*
2966 * Cannot use per-vma resv count can be used, hence a new resv
2967 * count is enforced.
2968 *
2969 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2970 * that currently vma_needs_reservation() has an unwanted side
2971 * effect to either use end() or commit() to complete the
2972 * transaction. Hence it needs to differenciate from NEEDED.
2973 */
2974 MAP_CHG_ENFORCED = 2,
2975 } map_chg_state;
2976
2977 /*
2978 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2979 * faults of hugetlb private mappings on top of a non-page-cache folio (in
2980 * which case even if there's a private vma resv map it won't cover such
2981 * allocation). New call sites should (probably) never set it to true!!
2982 * When it's set, the allocation will bypass all vma level reservations.
2983 */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)2984 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2985 unsigned long addr, bool cow_from_owner)
2986 {
2987 struct hugepage_subpool *spool = subpool_vma(vma);
2988 struct hstate *h = hstate_vma(vma);
2989 struct folio *folio;
2990 long retval, gbl_chg;
2991 map_chg_state map_chg;
2992 int ret, idx;
2993 struct hugetlb_cgroup *h_cg = NULL;
2994 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2995
2996 idx = hstate_index(h);
2997
2998 /* Whether we need a separate per-vma reservation? */
2999 if (cow_from_owner) {
3000 /*
3001 * Special case! Since it's a CoW on top of a reserved
3002 * page, the private resv map doesn't count. So it cannot
3003 * consume the per-vma resv map even if it's reserved.
3004 */
3005 map_chg = MAP_CHG_ENFORCED;
3006 } else {
3007 /*
3008 * Examine the region/reserve map to determine if the process
3009 * has a reservation for the page to be allocated. A return
3010 * code of zero indicates a reservation exists (no change).
3011 */
3012 retval = vma_needs_reservation(h, vma, addr);
3013 if (retval < 0)
3014 return ERR_PTR(-ENOMEM);
3015 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3016 }
3017
3018 /*
3019 * Whether we need a separate global reservation?
3020 *
3021 * Processes that did not create the mapping will have no
3022 * reserves as indicated by the region/reserve map. Check
3023 * that the allocation will not exceed the subpool limit.
3024 * Or if it can get one from the pool reservation directly.
3025 */
3026 if (map_chg) {
3027 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3028 if (gbl_chg < 0)
3029 goto out_end_reservation;
3030 } else {
3031 /*
3032 * If we have the vma reservation ready, no need for extra
3033 * global reservation.
3034 */
3035 gbl_chg = 0;
3036 }
3037
3038 /*
3039 * If this allocation is not consuming a per-vma reservation,
3040 * charge the hugetlb cgroup now.
3041 */
3042 if (map_chg) {
3043 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3044 idx, pages_per_huge_page(h), &h_cg);
3045 if (ret)
3046 goto out_subpool_put;
3047 }
3048
3049 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3050 if (ret)
3051 goto out_uncharge_cgroup_reservation;
3052
3053 spin_lock_irq(&hugetlb_lock);
3054 /*
3055 * glb_chg is passed to indicate whether or not a page must be taken
3056 * from the global free pool (global change). gbl_chg == 0 indicates
3057 * a reservation exists for the allocation.
3058 */
3059 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3060 if (!folio) {
3061 spin_unlock_irq(&hugetlb_lock);
3062 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3063 if (!folio)
3064 goto out_uncharge_cgroup;
3065 spin_lock_irq(&hugetlb_lock);
3066 list_add(&folio->lru, &h->hugepage_activelist);
3067 folio_ref_unfreeze(folio, 1);
3068 /* Fall through */
3069 }
3070
3071 /*
3072 * Either dequeued or buddy-allocated folio needs to add special
3073 * mark to the folio when it consumes a global reservation.
3074 */
3075 if (!gbl_chg) {
3076 folio_set_hugetlb_restore_reserve(folio);
3077 h->resv_huge_pages--;
3078 }
3079
3080 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3081 /* If allocation is not consuming a reservation, also store the
3082 * hugetlb_cgroup pointer on the page.
3083 */
3084 if (map_chg) {
3085 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3086 h_cg, folio);
3087 }
3088
3089 spin_unlock_irq(&hugetlb_lock);
3090
3091 hugetlb_set_folio_subpool(folio, spool);
3092
3093 if (map_chg != MAP_CHG_ENFORCED) {
3094 /* commit() is only needed if the map_chg is not enforced */
3095 retval = vma_commit_reservation(h, vma, addr);
3096 /*
3097 * Check for possible race conditions. When it happens..
3098 * The page was added to the reservation map between
3099 * vma_needs_reservation and vma_commit_reservation.
3100 * This indicates a race with hugetlb_reserve_pages.
3101 * Adjust for the subpool count incremented above AND
3102 * in hugetlb_reserve_pages for the same page. Also,
3103 * the reservation count added in hugetlb_reserve_pages
3104 * no longer applies.
3105 */
3106 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3107 long rsv_adjust;
3108
3109 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3110 hugetlb_acct_memory(h, -rsv_adjust);
3111 if (map_chg) {
3112 spin_lock_irq(&hugetlb_lock);
3113 hugetlb_cgroup_uncharge_folio_rsvd(
3114 hstate_index(h), pages_per_huge_page(h),
3115 folio);
3116 spin_unlock_irq(&hugetlb_lock);
3117 }
3118 }
3119 }
3120
3121 ret = mem_cgroup_charge_hugetlb(folio, gfp);
3122 /*
3123 * Unconditionally increment NR_HUGETLB here. If it turns out that
3124 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3125 * decrement NR_HUGETLB.
3126 */
3127 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3128
3129 if (ret == -ENOMEM) {
3130 free_huge_folio(folio);
3131 return ERR_PTR(-ENOMEM);
3132 }
3133
3134 return folio;
3135
3136 out_uncharge_cgroup:
3137 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3138 out_uncharge_cgroup_reservation:
3139 if (map_chg)
3140 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3141 h_cg);
3142 out_subpool_put:
3143 if (map_chg)
3144 hugepage_subpool_put_pages(spool, 1);
3145 out_end_reservation:
3146 if (map_chg != MAP_CHG_ENFORCED)
3147 vma_end_reservation(h, vma, addr);
3148 return ERR_PTR(-ENOSPC);
3149 }
3150
3151 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3152 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3153 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3154 {
3155 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3156 int nr_nodes, node = nid;
3157
3158 /* do node specific alloc */
3159 if (nid != NUMA_NO_NODE) {
3160 m = memblock_alloc_exact_nid_raw(huge_page_size(h), huge_page_size(h),
3161 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3162 if (!m)
3163 return 0;
3164 goto found;
3165 }
3166 /* allocate from next node when distributing huge pages */
3167 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, &node_states[N_MEMORY]) {
3168 m = memblock_alloc_try_nid_raw(
3169 huge_page_size(h), huge_page_size(h),
3170 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3171 /*
3172 * Use the beginning of the huge page to store the
3173 * huge_bootmem_page struct (until gather_bootmem
3174 * puts them into the mem_map).
3175 */
3176 if (!m)
3177 return 0;
3178 goto found;
3179 }
3180
3181 found:
3182
3183 /*
3184 * Only initialize the head struct page in memmap_init_reserved_pages,
3185 * rest of the struct pages will be initialized by the HugeTLB
3186 * subsystem itself.
3187 * The head struct page is used to get folio information by the HugeTLB
3188 * subsystem like zone id and node id.
3189 */
3190 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3191 huge_page_size(h) - PAGE_SIZE);
3192 /* Put them into a private list first because mem_map is not up yet */
3193 INIT_LIST_HEAD(&m->list);
3194 list_add(&m->list, &huge_boot_pages[node]);
3195 m->hstate = h;
3196 return 1;
3197 }
3198
3199 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3200 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3201 unsigned long start_page_number,
3202 unsigned long end_page_number)
3203 {
3204 enum zone_type zone = zone_idx(folio_zone(folio));
3205 int nid = folio_nid(folio);
3206 unsigned long head_pfn = folio_pfn(folio);
3207 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3208 int ret;
3209
3210 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3211 struct page *page = pfn_to_page(pfn);
3212
3213 __ClearPageReserved(folio_page(folio, pfn - head_pfn));
3214 __init_single_page(page, pfn, zone, nid);
3215 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3216 ret = page_ref_freeze(page, 1);
3217 VM_BUG_ON(!ret);
3218 }
3219 }
3220
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3221 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3222 struct hstate *h,
3223 unsigned long nr_pages)
3224 {
3225 int ret;
3226
3227 /* Prepare folio head */
3228 __folio_clear_reserved(folio);
3229 __folio_set_head(folio);
3230 ret = folio_ref_freeze(folio, 1);
3231 VM_BUG_ON(!ret);
3232 /* Initialize the necessary tail struct pages */
3233 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3234 prep_compound_head((struct page *)folio, huge_page_order(h));
3235 }
3236
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3237 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3238 struct list_head *folio_list)
3239 {
3240 unsigned long flags;
3241 struct folio *folio, *tmp_f;
3242
3243 /* Send list for bulk vmemmap optimization processing */
3244 hugetlb_vmemmap_optimize_folios(h, folio_list);
3245
3246 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3247 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3248 /*
3249 * If HVO fails, initialize all tail struct pages
3250 * We do not worry about potential long lock hold
3251 * time as this is early in boot and there should
3252 * be no contention.
3253 */
3254 hugetlb_folio_init_tail_vmemmap(folio,
3255 HUGETLB_VMEMMAP_RESERVE_PAGES,
3256 pages_per_huge_page(h));
3257 }
3258 /* Subdivide locks to achieve better parallel performance */
3259 spin_lock_irqsave(&hugetlb_lock, flags);
3260 __prep_account_new_huge_page(h, folio_nid(folio));
3261 enqueue_hugetlb_folio(h, folio);
3262 spin_unlock_irqrestore(&hugetlb_lock, flags);
3263 }
3264 }
3265
3266 /*
3267 * Put bootmem huge pages into the standard lists after mem_map is up.
3268 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3269 */
gather_bootmem_prealloc_node(unsigned long nid)3270 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3271 {
3272 LIST_HEAD(folio_list);
3273 struct huge_bootmem_page *m;
3274 struct hstate *h = NULL, *prev_h = NULL;
3275
3276 list_for_each_entry(m, &huge_boot_pages[nid], list) {
3277 struct page *page = virt_to_page(m);
3278 struct folio *folio = (void *)page;
3279
3280 h = m->hstate;
3281 /*
3282 * It is possible to have multiple huge page sizes (hstates)
3283 * in this list. If so, process each size separately.
3284 */
3285 if (h != prev_h && prev_h != NULL)
3286 prep_and_add_bootmem_folios(prev_h, &folio_list);
3287 prev_h = h;
3288
3289 VM_BUG_ON(!hstate_is_gigantic(h));
3290 WARN_ON(folio_ref_count(folio) != 1);
3291
3292 hugetlb_folio_init_vmemmap(folio, h,
3293 HUGETLB_VMEMMAP_RESERVE_PAGES);
3294 init_new_hugetlb_folio(h, folio);
3295 list_add(&folio->lru, &folio_list);
3296
3297 /*
3298 * We need to restore the 'stolen' pages to totalram_pages
3299 * in order to fix confusing memory reports from free(1) and
3300 * other side-effects, like CommitLimit going negative.
3301 */
3302 adjust_managed_page_count(page, pages_per_huge_page(h));
3303 cond_resched();
3304 }
3305
3306 prep_and_add_bootmem_folios(h, &folio_list);
3307 }
3308
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3309 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3310 unsigned long end, void *arg)
3311 {
3312 int nid;
3313
3314 for (nid = start; nid < end; nid++)
3315 gather_bootmem_prealloc_node(nid);
3316 }
3317
gather_bootmem_prealloc(void)3318 static void __init gather_bootmem_prealloc(void)
3319 {
3320 struct padata_mt_job job = {
3321 .thread_fn = gather_bootmem_prealloc_parallel,
3322 .fn_arg = NULL,
3323 .start = 0,
3324 .size = nr_node_ids,
3325 .align = 1,
3326 .min_chunk = 1,
3327 .max_threads = num_node_state(N_MEMORY),
3328 .numa_aware = true,
3329 };
3330
3331 padata_do_multithreaded(&job);
3332 }
3333
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3334 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3335 {
3336 unsigned long i;
3337 char buf[32];
3338 LIST_HEAD(folio_list);
3339
3340 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3341 if (hstate_is_gigantic(h)) {
3342 if (!alloc_bootmem_huge_page(h, nid))
3343 break;
3344 } else {
3345 struct folio *folio;
3346 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3347
3348 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3349 &node_states[N_MEMORY], NULL);
3350 if (!folio)
3351 break;
3352 list_add(&folio->lru, &folio_list);
3353 }
3354 cond_resched();
3355 }
3356
3357 if (!list_empty(&folio_list))
3358 prep_and_add_allocated_folios(h, &folio_list);
3359
3360 if (i == h->max_huge_pages_node[nid])
3361 return;
3362
3363 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3364 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3365 h->max_huge_pages_node[nid], buf, nid, i);
3366 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3367 h->max_huge_pages_node[nid] = i;
3368 }
3369
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3370 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3371 {
3372 int i;
3373 bool node_specific_alloc = false;
3374
3375 for_each_online_node(i) {
3376 if (h->max_huge_pages_node[i] > 0) {
3377 hugetlb_hstate_alloc_pages_onenode(h, i);
3378 node_specific_alloc = true;
3379 }
3380 }
3381
3382 return node_specific_alloc;
3383 }
3384
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3385 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3386 {
3387 if (allocated < h->max_huge_pages) {
3388 char buf[32];
3389
3390 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3391 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3392 h->max_huge_pages, buf, allocated);
3393 h->max_huge_pages = allocated;
3394 }
3395 }
3396
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3397 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3398 {
3399 struct hstate *h = (struct hstate *)arg;
3400 int i, num = end - start;
3401 nodemask_t node_alloc_noretry;
3402 LIST_HEAD(folio_list);
3403 int next_node = first_online_node;
3404
3405 /* Bit mask controlling how hard we retry per-node allocations.*/
3406 nodes_clear(node_alloc_noretry);
3407
3408 for (i = 0; i < num; ++i) {
3409 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3410 &node_alloc_noretry, &next_node);
3411 if (!folio)
3412 break;
3413
3414 list_move(&folio->lru, &folio_list);
3415 cond_resched();
3416 }
3417
3418 prep_and_add_allocated_folios(h, &folio_list);
3419 }
3420
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3421 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3422 {
3423 unsigned long i;
3424
3425 for (i = 0; i < h->max_huge_pages; ++i) {
3426 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3427 break;
3428 cond_resched();
3429 }
3430
3431 return i;
3432 }
3433
hugetlb_pages_alloc_boot(struct hstate * h)3434 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3435 {
3436 struct padata_mt_job job = {
3437 .fn_arg = h,
3438 .align = 1,
3439 .numa_aware = true
3440 };
3441
3442 job.thread_fn = hugetlb_pages_alloc_boot_node;
3443 job.start = 0;
3444 job.size = h->max_huge_pages;
3445
3446 /*
3447 * job.max_threads is twice the num_node_state(N_MEMORY),
3448 *
3449 * Tests below indicate that a multiplier of 2 significantly improves
3450 * performance, and although larger values also provide improvements,
3451 * the gains are marginal.
3452 *
3453 * Therefore, choosing 2 as the multiplier strikes a good balance between
3454 * enhancing parallel processing capabilities and maintaining efficient
3455 * resource management.
3456 *
3457 * +------------+-------+-------+-------+-------+-------+
3458 * | multiplier | 1 | 2 | 3 | 4 | 5 |
3459 * +------------+-------+-------+-------+-------+-------+
3460 * | 256G 2node | 358ms | 215ms | 157ms | 134ms | 126ms |
3461 * | 2T 4node | 979ms | 679ms | 543ms | 489ms | 481ms |
3462 * | 50G 2node | 71ms | 44ms | 37ms | 30ms | 31ms |
3463 * +------------+-------+-------+-------+-------+-------+
3464 */
3465 job.max_threads = num_node_state(N_MEMORY) * 2;
3466 job.min_chunk = h->max_huge_pages / num_node_state(N_MEMORY) / 2;
3467 padata_do_multithreaded(&job);
3468
3469 return h->nr_huge_pages;
3470 }
3471
3472 /*
3473 * NOTE: this routine is called in different contexts for gigantic and
3474 * non-gigantic pages.
3475 * - For gigantic pages, this is called early in the boot process and
3476 * pages are allocated from memblock allocated or something similar.
3477 * Gigantic pages are actually added to pools later with the routine
3478 * gather_bootmem_prealloc.
3479 * - For non-gigantic pages, this is called later in the boot process after
3480 * all of mm is up and functional. Pages are allocated from buddy and
3481 * then added to hugetlb pools.
3482 */
hugetlb_hstate_alloc_pages(struct hstate * h)3483 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3484 {
3485 unsigned long allocated;
3486 static bool initialized __initdata;
3487
3488 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3489 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3490 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3491 return;
3492 }
3493
3494 /* hugetlb_hstate_alloc_pages will be called many times, initialize huge_boot_pages once */
3495 if (!initialized) {
3496 int i = 0;
3497
3498 for (i = 0; i < MAX_NUMNODES; i++)
3499 INIT_LIST_HEAD(&huge_boot_pages[i]);
3500 initialized = true;
3501 }
3502
3503 /* do node specific alloc */
3504 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3505 return;
3506
3507 /* below will do all node balanced alloc */
3508 if (hstate_is_gigantic(h))
3509 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3510 else
3511 allocated = hugetlb_pages_alloc_boot(h);
3512
3513 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3514 }
3515
hugetlb_init_hstates(void)3516 static void __init hugetlb_init_hstates(void)
3517 {
3518 struct hstate *h, *h2;
3519
3520 for_each_hstate(h) {
3521 /* oversize hugepages were init'ed in early boot */
3522 if (!hstate_is_gigantic(h))
3523 hugetlb_hstate_alloc_pages(h);
3524
3525 /*
3526 * Set demote order for each hstate. Note that
3527 * h->demote_order is initially 0.
3528 * - We can not demote gigantic pages if runtime freeing
3529 * is not supported, so skip this.
3530 * - If CMA allocation is possible, we can not demote
3531 * HUGETLB_PAGE_ORDER or smaller size pages.
3532 */
3533 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3534 continue;
3535 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3536 continue;
3537 for_each_hstate(h2) {
3538 if (h2 == h)
3539 continue;
3540 if (h2->order < h->order &&
3541 h2->order > h->demote_order)
3542 h->demote_order = h2->order;
3543 }
3544 }
3545 }
3546
report_hugepages(void)3547 static void __init report_hugepages(void)
3548 {
3549 struct hstate *h;
3550
3551 for_each_hstate(h) {
3552 char buf[32];
3553
3554 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3555 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3556 buf, h->free_huge_pages);
3557 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3558 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3559 }
3560 }
3561
3562 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3563 static void try_to_free_low(struct hstate *h, unsigned long count,
3564 nodemask_t *nodes_allowed)
3565 {
3566 int i;
3567 LIST_HEAD(page_list);
3568
3569 lockdep_assert_held(&hugetlb_lock);
3570 if (hstate_is_gigantic(h))
3571 return;
3572
3573 /*
3574 * Collect pages to be freed on a list, and free after dropping lock
3575 */
3576 for_each_node_mask(i, *nodes_allowed) {
3577 struct folio *folio, *next;
3578 struct list_head *freel = &h->hugepage_freelists[i];
3579 list_for_each_entry_safe(folio, next, freel, lru) {
3580 if (count >= h->nr_huge_pages)
3581 goto out;
3582 if (folio_test_highmem(folio))
3583 continue;
3584 remove_hugetlb_folio(h, folio, false);
3585 list_add(&folio->lru, &page_list);
3586 }
3587 }
3588
3589 out:
3590 spin_unlock_irq(&hugetlb_lock);
3591 update_and_free_pages_bulk(h, &page_list);
3592 spin_lock_irq(&hugetlb_lock);
3593 }
3594 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3595 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3596 nodemask_t *nodes_allowed)
3597 {
3598 }
3599 #endif
3600
3601 /*
3602 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3603 * balanced by operating on them in a round-robin fashion.
3604 * Returns 1 if an adjustment was made.
3605 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3606 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3607 int delta)
3608 {
3609 int nr_nodes, node;
3610
3611 lockdep_assert_held(&hugetlb_lock);
3612 VM_BUG_ON(delta != -1 && delta != 1);
3613
3614 if (delta < 0) {
3615 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3616 if (h->surplus_huge_pages_node[node])
3617 goto found;
3618 }
3619 } else {
3620 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3621 if (h->surplus_huge_pages_node[node] <
3622 h->nr_huge_pages_node[node])
3623 goto found;
3624 }
3625 }
3626 return 0;
3627
3628 found:
3629 h->surplus_huge_pages += delta;
3630 h->surplus_huge_pages_node[node] += delta;
3631 return 1;
3632 }
3633
3634 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3635 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3636 nodemask_t *nodes_allowed)
3637 {
3638 unsigned long min_count;
3639 unsigned long allocated;
3640 struct folio *folio;
3641 LIST_HEAD(page_list);
3642 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3643
3644 /*
3645 * Bit mask controlling how hard we retry per-node allocations.
3646 * If we can not allocate the bit mask, do not attempt to allocate
3647 * the requested huge pages.
3648 */
3649 if (node_alloc_noretry)
3650 nodes_clear(*node_alloc_noretry);
3651 else
3652 return -ENOMEM;
3653
3654 /*
3655 * resize_lock mutex prevents concurrent adjustments to number of
3656 * pages in hstate via the proc/sysfs interfaces.
3657 */
3658 mutex_lock(&h->resize_lock);
3659 flush_free_hpage_work(h);
3660 spin_lock_irq(&hugetlb_lock);
3661
3662 /*
3663 * Check for a node specific request.
3664 * Changing node specific huge page count may require a corresponding
3665 * change to the global count. In any case, the passed node mask
3666 * (nodes_allowed) will restrict alloc/free to the specified node.
3667 */
3668 if (nid != NUMA_NO_NODE) {
3669 unsigned long old_count = count;
3670
3671 count += persistent_huge_pages(h) -
3672 (h->nr_huge_pages_node[nid] -
3673 h->surplus_huge_pages_node[nid]);
3674 /*
3675 * User may have specified a large count value which caused the
3676 * above calculation to overflow. In this case, they wanted
3677 * to allocate as many huge pages as possible. Set count to
3678 * largest possible value to align with their intention.
3679 */
3680 if (count < old_count)
3681 count = ULONG_MAX;
3682 }
3683
3684 /*
3685 * Gigantic pages runtime allocation depend on the capability for large
3686 * page range allocation.
3687 * If the system does not provide this feature, return an error when
3688 * the user tries to allocate gigantic pages but let the user free the
3689 * boottime allocated gigantic pages.
3690 */
3691 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3692 if (count > persistent_huge_pages(h)) {
3693 spin_unlock_irq(&hugetlb_lock);
3694 mutex_unlock(&h->resize_lock);
3695 NODEMASK_FREE(node_alloc_noretry);
3696 return -EINVAL;
3697 }
3698 /* Fall through to decrease pool */
3699 }
3700
3701 /*
3702 * Increase the pool size
3703 * First take pages out of surplus state. Then make up the
3704 * remaining difference by allocating fresh huge pages.
3705 *
3706 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3707 * to convert a surplus huge page to a normal huge page. That is
3708 * not critical, though, it just means the overall size of the
3709 * pool might be one hugepage larger than it needs to be, but
3710 * within all the constraints specified by the sysctls.
3711 */
3712 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3713 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3714 break;
3715 }
3716
3717 allocated = 0;
3718 while (count > (persistent_huge_pages(h) + allocated)) {
3719 /*
3720 * If this allocation races such that we no longer need the
3721 * page, free_huge_folio will handle it by freeing the page
3722 * and reducing the surplus.
3723 */
3724 spin_unlock_irq(&hugetlb_lock);
3725
3726 /* yield cpu to avoid soft lockup */
3727 cond_resched();
3728
3729 folio = alloc_pool_huge_folio(h, nodes_allowed,
3730 node_alloc_noretry,
3731 &h->next_nid_to_alloc);
3732 if (!folio) {
3733 prep_and_add_allocated_folios(h, &page_list);
3734 spin_lock_irq(&hugetlb_lock);
3735 goto out;
3736 }
3737
3738 list_add(&folio->lru, &page_list);
3739 allocated++;
3740
3741 /* Bail for signals. Probably ctrl-c from user */
3742 if (signal_pending(current)) {
3743 prep_and_add_allocated_folios(h, &page_list);
3744 spin_lock_irq(&hugetlb_lock);
3745 goto out;
3746 }
3747
3748 spin_lock_irq(&hugetlb_lock);
3749 }
3750
3751 /* Add allocated pages to the pool */
3752 if (!list_empty(&page_list)) {
3753 spin_unlock_irq(&hugetlb_lock);
3754 prep_and_add_allocated_folios(h, &page_list);
3755 spin_lock_irq(&hugetlb_lock);
3756 }
3757
3758 /*
3759 * Decrease the pool size
3760 * First return free pages to the buddy allocator (being careful
3761 * to keep enough around to satisfy reservations). Then place
3762 * pages into surplus state as needed so the pool will shrink
3763 * to the desired size as pages become free.
3764 *
3765 * By placing pages into the surplus state independent of the
3766 * overcommit value, we are allowing the surplus pool size to
3767 * exceed overcommit. There are few sane options here. Since
3768 * alloc_surplus_hugetlb_folio() is checking the global counter,
3769 * though, we'll note that we're not allowed to exceed surplus
3770 * and won't grow the pool anywhere else. Not until one of the
3771 * sysctls are changed, or the surplus pages go out of use.
3772 */
3773 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3774 min_count = max(count, min_count);
3775 try_to_free_low(h, min_count, nodes_allowed);
3776
3777 /*
3778 * Collect pages to be removed on list without dropping lock
3779 */
3780 while (min_count < persistent_huge_pages(h)) {
3781 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3782 if (!folio)
3783 break;
3784
3785 list_add(&folio->lru, &page_list);
3786 }
3787 /* free the pages after dropping lock */
3788 spin_unlock_irq(&hugetlb_lock);
3789 update_and_free_pages_bulk(h, &page_list);
3790 flush_free_hpage_work(h);
3791 spin_lock_irq(&hugetlb_lock);
3792
3793 while (count < persistent_huge_pages(h)) {
3794 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3795 break;
3796 }
3797 out:
3798 h->max_huge_pages = persistent_huge_pages(h);
3799 spin_unlock_irq(&hugetlb_lock);
3800 mutex_unlock(&h->resize_lock);
3801
3802 NODEMASK_FREE(node_alloc_noretry);
3803
3804 return 0;
3805 }
3806
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3807 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3808 struct list_head *src_list)
3809 {
3810 long rc;
3811 struct folio *folio, *next;
3812 LIST_HEAD(dst_list);
3813 LIST_HEAD(ret_list);
3814
3815 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3816 list_splice_init(&ret_list, src_list);
3817
3818 /*
3819 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3820 * Without the mutex, pages added to target hstate could be marked
3821 * as surplus.
3822 *
3823 * Note that we already hold src->resize_lock. To prevent deadlock,
3824 * use the convention of always taking larger size hstate mutex first.
3825 */
3826 mutex_lock(&dst->resize_lock);
3827
3828 list_for_each_entry_safe(folio, next, src_list, lru) {
3829 int i;
3830
3831 if (folio_test_hugetlb_vmemmap_optimized(folio))
3832 continue;
3833
3834 list_del(&folio->lru);
3835
3836 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3837 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3838
3839 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3840 struct page *page = folio_page(folio, i);
3841 /* Careful: see __split_huge_page_tail() */
3842 struct folio *new_folio = (struct folio *)page;
3843
3844 clear_compound_head(page);
3845 prep_compound_page(page, dst->order);
3846
3847 new_folio->mapping = NULL;
3848 init_new_hugetlb_folio(dst, new_folio);
3849 list_add(&new_folio->lru, &dst_list);
3850 }
3851 }
3852
3853 prep_and_add_allocated_folios(dst, &dst_list);
3854
3855 mutex_unlock(&dst->resize_lock);
3856
3857 return rc;
3858 }
3859
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)3860 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
3861 unsigned long nr_to_demote)
3862 __must_hold(&hugetlb_lock)
3863 {
3864 int nr_nodes, node;
3865 struct hstate *dst;
3866 long rc = 0;
3867 long nr_demoted = 0;
3868
3869 lockdep_assert_held(&hugetlb_lock);
3870
3871 /* We should never get here if no demote order */
3872 if (!src->demote_order) {
3873 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3874 return -EINVAL; /* internal error */
3875 }
3876 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
3877
3878 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
3879 LIST_HEAD(list);
3880 struct folio *folio, *next;
3881
3882 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
3883 if (folio_test_hwpoison(folio))
3884 continue;
3885
3886 remove_hugetlb_folio(src, folio, false);
3887 list_add(&folio->lru, &list);
3888
3889 if (++nr_demoted == nr_to_demote)
3890 break;
3891 }
3892
3893 spin_unlock_irq(&hugetlb_lock);
3894
3895 rc = demote_free_hugetlb_folios(src, dst, &list);
3896
3897 spin_lock_irq(&hugetlb_lock);
3898
3899 list_for_each_entry_safe(folio, next, &list, lru) {
3900 list_del(&folio->lru);
3901 add_hugetlb_folio(src, folio, false);
3902
3903 nr_demoted--;
3904 }
3905
3906 if (rc < 0 || nr_demoted == nr_to_demote)
3907 break;
3908 }
3909
3910 /*
3911 * Not absolutely necessary, but for consistency update max_huge_pages
3912 * based on pool changes for the demoted page.
3913 */
3914 src->max_huge_pages -= nr_demoted;
3915 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
3916
3917 if (rc < 0)
3918 return rc;
3919
3920 if (nr_demoted)
3921 return nr_demoted;
3922 /*
3923 * Only way to get here is if all pages on free lists are poisoned.
3924 * Return -EBUSY so that caller will not retry.
3925 */
3926 return -EBUSY;
3927 }
3928
3929 #define HSTATE_ATTR_RO(_name) \
3930 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3931
3932 #define HSTATE_ATTR_WO(_name) \
3933 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3934
3935 #define HSTATE_ATTR(_name) \
3936 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3937
3938 static struct kobject *hugepages_kobj;
3939 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3940
3941 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3942
kobj_to_hstate(struct kobject * kobj,int * nidp)3943 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3944 {
3945 int i;
3946
3947 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3948 if (hstate_kobjs[i] == kobj) {
3949 if (nidp)
3950 *nidp = NUMA_NO_NODE;
3951 return &hstates[i];
3952 }
3953
3954 return kobj_to_node_hstate(kobj, nidp);
3955 }
3956
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3957 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3958 struct kobj_attribute *attr, char *buf)
3959 {
3960 struct hstate *h;
3961 unsigned long nr_huge_pages;
3962 int nid;
3963
3964 h = kobj_to_hstate(kobj, &nid);
3965 if (nid == NUMA_NO_NODE)
3966 nr_huge_pages = h->nr_huge_pages;
3967 else
3968 nr_huge_pages = h->nr_huge_pages_node[nid];
3969
3970 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3971 }
3972
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3973 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3974 struct hstate *h, int nid,
3975 unsigned long count, size_t len)
3976 {
3977 int err;
3978 nodemask_t nodes_allowed, *n_mask;
3979
3980 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3981 return -EINVAL;
3982
3983 if (nid == NUMA_NO_NODE) {
3984 /*
3985 * global hstate attribute
3986 */
3987 if (!(obey_mempolicy &&
3988 init_nodemask_of_mempolicy(&nodes_allowed)))
3989 n_mask = &node_states[N_MEMORY];
3990 else
3991 n_mask = &nodes_allowed;
3992 } else {
3993 /*
3994 * Node specific request. count adjustment happens in
3995 * set_max_huge_pages() after acquiring hugetlb_lock.
3996 */
3997 init_nodemask_of_node(&nodes_allowed, nid);
3998 n_mask = &nodes_allowed;
3999 }
4000
4001 err = set_max_huge_pages(h, count, nid, n_mask);
4002
4003 return err ? err : len;
4004 }
4005
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4006 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4007 struct kobject *kobj, const char *buf,
4008 size_t len)
4009 {
4010 struct hstate *h;
4011 unsigned long count;
4012 int nid;
4013 int err;
4014
4015 err = kstrtoul(buf, 10, &count);
4016 if (err)
4017 return err;
4018
4019 h = kobj_to_hstate(kobj, &nid);
4020 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4021 }
4022
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4023 static ssize_t nr_hugepages_show(struct kobject *kobj,
4024 struct kobj_attribute *attr, char *buf)
4025 {
4026 return nr_hugepages_show_common(kobj, attr, buf);
4027 }
4028
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4029 static ssize_t nr_hugepages_store(struct kobject *kobj,
4030 struct kobj_attribute *attr, const char *buf, size_t len)
4031 {
4032 return nr_hugepages_store_common(false, kobj, buf, len);
4033 }
4034 HSTATE_ATTR(nr_hugepages);
4035
4036 #ifdef CONFIG_NUMA
4037
4038 /*
4039 * hstate attribute for optionally mempolicy-based constraint on persistent
4040 * huge page alloc/free.
4041 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4042 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4043 struct kobj_attribute *attr,
4044 char *buf)
4045 {
4046 return nr_hugepages_show_common(kobj, attr, buf);
4047 }
4048
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4049 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4050 struct kobj_attribute *attr, const char *buf, size_t len)
4051 {
4052 return nr_hugepages_store_common(true, kobj, buf, len);
4053 }
4054 HSTATE_ATTR(nr_hugepages_mempolicy);
4055 #endif
4056
4057
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4058 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4059 struct kobj_attribute *attr, char *buf)
4060 {
4061 struct hstate *h = kobj_to_hstate(kobj, NULL);
4062 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4063 }
4064
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4065 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4066 struct kobj_attribute *attr, const char *buf, size_t count)
4067 {
4068 int err;
4069 unsigned long input;
4070 struct hstate *h = kobj_to_hstate(kobj, NULL);
4071
4072 if (hstate_is_gigantic(h))
4073 return -EINVAL;
4074
4075 err = kstrtoul(buf, 10, &input);
4076 if (err)
4077 return err;
4078
4079 spin_lock_irq(&hugetlb_lock);
4080 h->nr_overcommit_huge_pages = input;
4081 spin_unlock_irq(&hugetlb_lock);
4082
4083 return count;
4084 }
4085 HSTATE_ATTR(nr_overcommit_hugepages);
4086
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4087 static ssize_t free_hugepages_show(struct kobject *kobj,
4088 struct kobj_attribute *attr, char *buf)
4089 {
4090 struct hstate *h;
4091 unsigned long free_huge_pages;
4092 int nid;
4093
4094 h = kobj_to_hstate(kobj, &nid);
4095 if (nid == NUMA_NO_NODE)
4096 free_huge_pages = h->free_huge_pages;
4097 else
4098 free_huge_pages = h->free_huge_pages_node[nid];
4099
4100 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4101 }
4102 HSTATE_ATTR_RO(free_hugepages);
4103
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4104 static ssize_t resv_hugepages_show(struct kobject *kobj,
4105 struct kobj_attribute *attr, char *buf)
4106 {
4107 struct hstate *h = kobj_to_hstate(kobj, NULL);
4108 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4109 }
4110 HSTATE_ATTR_RO(resv_hugepages);
4111
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4112 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4113 struct kobj_attribute *attr, char *buf)
4114 {
4115 struct hstate *h;
4116 unsigned long surplus_huge_pages;
4117 int nid;
4118
4119 h = kobj_to_hstate(kobj, &nid);
4120 if (nid == NUMA_NO_NODE)
4121 surplus_huge_pages = h->surplus_huge_pages;
4122 else
4123 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4124
4125 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4126 }
4127 HSTATE_ATTR_RO(surplus_hugepages);
4128
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4129 static ssize_t demote_store(struct kobject *kobj,
4130 struct kobj_attribute *attr, const char *buf, size_t len)
4131 {
4132 unsigned long nr_demote;
4133 unsigned long nr_available;
4134 nodemask_t nodes_allowed, *n_mask;
4135 struct hstate *h;
4136 int err;
4137 int nid;
4138
4139 err = kstrtoul(buf, 10, &nr_demote);
4140 if (err)
4141 return err;
4142 h = kobj_to_hstate(kobj, &nid);
4143
4144 if (nid != NUMA_NO_NODE) {
4145 init_nodemask_of_node(&nodes_allowed, nid);
4146 n_mask = &nodes_allowed;
4147 } else {
4148 n_mask = &node_states[N_MEMORY];
4149 }
4150
4151 /* Synchronize with other sysfs operations modifying huge pages */
4152 mutex_lock(&h->resize_lock);
4153 spin_lock_irq(&hugetlb_lock);
4154
4155 while (nr_demote) {
4156 long rc;
4157
4158 /*
4159 * Check for available pages to demote each time thorough the
4160 * loop as demote_pool_huge_page will drop hugetlb_lock.
4161 */
4162 if (nid != NUMA_NO_NODE)
4163 nr_available = h->free_huge_pages_node[nid];
4164 else
4165 nr_available = h->free_huge_pages;
4166 nr_available -= h->resv_huge_pages;
4167 if (!nr_available)
4168 break;
4169
4170 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4171 if (rc < 0) {
4172 err = rc;
4173 break;
4174 }
4175
4176 nr_demote -= rc;
4177 }
4178
4179 spin_unlock_irq(&hugetlb_lock);
4180 mutex_unlock(&h->resize_lock);
4181
4182 if (err)
4183 return err;
4184 return len;
4185 }
4186 HSTATE_ATTR_WO(demote);
4187
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4188 static ssize_t demote_size_show(struct kobject *kobj,
4189 struct kobj_attribute *attr, char *buf)
4190 {
4191 struct hstate *h = kobj_to_hstate(kobj, NULL);
4192 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4193
4194 return sysfs_emit(buf, "%lukB\n", demote_size);
4195 }
4196
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4197 static ssize_t demote_size_store(struct kobject *kobj,
4198 struct kobj_attribute *attr,
4199 const char *buf, size_t count)
4200 {
4201 struct hstate *h, *demote_hstate;
4202 unsigned long demote_size;
4203 unsigned int demote_order;
4204
4205 demote_size = (unsigned long)memparse(buf, NULL);
4206
4207 demote_hstate = size_to_hstate(demote_size);
4208 if (!demote_hstate)
4209 return -EINVAL;
4210 demote_order = demote_hstate->order;
4211 if (demote_order < HUGETLB_PAGE_ORDER)
4212 return -EINVAL;
4213
4214 /* demote order must be smaller than hstate order */
4215 h = kobj_to_hstate(kobj, NULL);
4216 if (demote_order >= h->order)
4217 return -EINVAL;
4218
4219 /* resize_lock synchronizes access to demote size and writes */
4220 mutex_lock(&h->resize_lock);
4221 h->demote_order = demote_order;
4222 mutex_unlock(&h->resize_lock);
4223
4224 return count;
4225 }
4226 HSTATE_ATTR(demote_size);
4227
4228 static struct attribute *hstate_attrs[] = {
4229 &nr_hugepages_attr.attr,
4230 &nr_overcommit_hugepages_attr.attr,
4231 &free_hugepages_attr.attr,
4232 &resv_hugepages_attr.attr,
4233 &surplus_hugepages_attr.attr,
4234 #ifdef CONFIG_NUMA
4235 &nr_hugepages_mempolicy_attr.attr,
4236 #endif
4237 NULL,
4238 };
4239
4240 static const struct attribute_group hstate_attr_group = {
4241 .attrs = hstate_attrs,
4242 };
4243
4244 static struct attribute *hstate_demote_attrs[] = {
4245 &demote_size_attr.attr,
4246 &demote_attr.attr,
4247 NULL,
4248 };
4249
4250 static const struct attribute_group hstate_demote_attr_group = {
4251 .attrs = hstate_demote_attrs,
4252 };
4253
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4254 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4255 struct kobject **hstate_kobjs,
4256 const struct attribute_group *hstate_attr_group)
4257 {
4258 int retval;
4259 int hi = hstate_index(h);
4260
4261 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4262 if (!hstate_kobjs[hi])
4263 return -ENOMEM;
4264
4265 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4266 if (retval) {
4267 kobject_put(hstate_kobjs[hi]);
4268 hstate_kobjs[hi] = NULL;
4269 return retval;
4270 }
4271
4272 if (h->demote_order) {
4273 retval = sysfs_create_group(hstate_kobjs[hi],
4274 &hstate_demote_attr_group);
4275 if (retval) {
4276 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4277 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4278 kobject_put(hstate_kobjs[hi]);
4279 hstate_kobjs[hi] = NULL;
4280 return retval;
4281 }
4282 }
4283
4284 return 0;
4285 }
4286
4287 #ifdef CONFIG_NUMA
4288 static bool hugetlb_sysfs_initialized __ro_after_init;
4289
4290 /*
4291 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4292 * with node devices in node_devices[] using a parallel array. The array
4293 * index of a node device or _hstate == node id.
4294 * This is here to avoid any static dependency of the node device driver, in
4295 * the base kernel, on the hugetlb module.
4296 */
4297 struct node_hstate {
4298 struct kobject *hugepages_kobj;
4299 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4300 };
4301 static struct node_hstate node_hstates[MAX_NUMNODES];
4302
4303 /*
4304 * A subset of global hstate attributes for node devices
4305 */
4306 static struct attribute *per_node_hstate_attrs[] = {
4307 &nr_hugepages_attr.attr,
4308 &free_hugepages_attr.attr,
4309 &surplus_hugepages_attr.attr,
4310 NULL,
4311 };
4312
4313 static const struct attribute_group per_node_hstate_attr_group = {
4314 .attrs = per_node_hstate_attrs,
4315 };
4316
4317 /*
4318 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4319 * Returns node id via non-NULL nidp.
4320 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4321 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4322 {
4323 int nid;
4324
4325 for (nid = 0; nid < nr_node_ids; nid++) {
4326 struct node_hstate *nhs = &node_hstates[nid];
4327 int i;
4328 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4329 if (nhs->hstate_kobjs[i] == kobj) {
4330 if (nidp)
4331 *nidp = nid;
4332 return &hstates[i];
4333 }
4334 }
4335
4336 BUG();
4337 return NULL;
4338 }
4339
4340 /*
4341 * Unregister hstate attributes from a single node device.
4342 * No-op if no hstate attributes attached.
4343 */
hugetlb_unregister_node(struct node * node)4344 void hugetlb_unregister_node(struct node *node)
4345 {
4346 struct hstate *h;
4347 struct node_hstate *nhs = &node_hstates[node->dev.id];
4348
4349 if (!nhs->hugepages_kobj)
4350 return; /* no hstate attributes */
4351
4352 for_each_hstate(h) {
4353 int idx = hstate_index(h);
4354 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4355
4356 if (!hstate_kobj)
4357 continue;
4358 if (h->demote_order)
4359 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4360 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4361 kobject_put(hstate_kobj);
4362 nhs->hstate_kobjs[idx] = NULL;
4363 }
4364
4365 kobject_put(nhs->hugepages_kobj);
4366 nhs->hugepages_kobj = NULL;
4367 }
4368
4369
4370 /*
4371 * Register hstate attributes for a single node device.
4372 * No-op if attributes already registered.
4373 */
hugetlb_register_node(struct node * node)4374 void hugetlb_register_node(struct node *node)
4375 {
4376 struct hstate *h;
4377 struct node_hstate *nhs = &node_hstates[node->dev.id];
4378 int err;
4379
4380 if (!hugetlb_sysfs_initialized)
4381 return;
4382
4383 if (nhs->hugepages_kobj)
4384 return; /* already allocated */
4385
4386 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4387 &node->dev.kobj);
4388 if (!nhs->hugepages_kobj)
4389 return;
4390
4391 for_each_hstate(h) {
4392 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4393 nhs->hstate_kobjs,
4394 &per_node_hstate_attr_group);
4395 if (err) {
4396 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4397 h->name, node->dev.id);
4398 hugetlb_unregister_node(node);
4399 break;
4400 }
4401 }
4402 }
4403
4404 /*
4405 * hugetlb init time: register hstate attributes for all registered node
4406 * devices of nodes that have memory. All on-line nodes should have
4407 * registered their associated device by this time.
4408 */
hugetlb_register_all_nodes(void)4409 static void __init hugetlb_register_all_nodes(void)
4410 {
4411 int nid;
4412
4413 for_each_online_node(nid)
4414 hugetlb_register_node(node_devices[nid]);
4415 }
4416 #else /* !CONFIG_NUMA */
4417
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4418 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4419 {
4420 BUG();
4421 if (nidp)
4422 *nidp = -1;
4423 return NULL;
4424 }
4425
hugetlb_register_all_nodes(void)4426 static void hugetlb_register_all_nodes(void) { }
4427
4428 #endif
4429
4430 #ifdef CONFIG_CMA
4431 static void __init hugetlb_cma_check(void);
4432 #else
hugetlb_cma_check(void)4433 static inline __init void hugetlb_cma_check(void)
4434 {
4435 }
4436 #endif
4437
hugetlb_sysfs_init(void)4438 static void __init hugetlb_sysfs_init(void)
4439 {
4440 struct hstate *h;
4441 int err;
4442
4443 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4444 if (!hugepages_kobj)
4445 return;
4446
4447 for_each_hstate(h) {
4448 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4449 hstate_kobjs, &hstate_attr_group);
4450 if (err)
4451 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4452 }
4453
4454 #ifdef CONFIG_NUMA
4455 hugetlb_sysfs_initialized = true;
4456 #endif
4457 hugetlb_register_all_nodes();
4458 }
4459
4460 #ifdef CONFIG_SYSCTL
4461 static void hugetlb_sysctl_init(void);
4462 #else
hugetlb_sysctl_init(void)4463 static inline void hugetlb_sysctl_init(void) { }
4464 #endif
4465
hugetlb_init(void)4466 static int __init hugetlb_init(void)
4467 {
4468 int i;
4469
4470 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4471 __NR_HPAGEFLAGS);
4472
4473 if (!hugepages_supported()) {
4474 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4475 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4476 return 0;
4477 }
4478
4479 /*
4480 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4481 * architectures depend on setup being done here.
4482 */
4483 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4484 if (!parsed_default_hugepagesz) {
4485 /*
4486 * If we did not parse a default huge page size, set
4487 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4488 * number of huge pages for this default size was implicitly
4489 * specified, set that here as well.
4490 * Note that the implicit setting will overwrite an explicit
4491 * setting. A warning will be printed in this case.
4492 */
4493 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4494 if (default_hstate_max_huge_pages) {
4495 if (default_hstate.max_huge_pages) {
4496 char buf[32];
4497
4498 string_get_size(huge_page_size(&default_hstate),
4499 1, STRING_UNITS_2, buf, 32);
4500 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4501 default_hstate.max_huge_pages, buf);
4502 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4503 default_hstate_max_huge_pages);
4504 }
4505 default_hstate.max_huge_pages =
4506 default_hstate_max_huge_pages;
4507
4508 for_each_online_node(i)
4509 default_hstate.max_huge_pages_node[i] =
4510 default_hugepages_in_node[i];
4511 }
4512 }
4513
4514 hugetlb_cma_check();
4515 hugetlb_init_hstates();
4516 gather_bootmem_prealloc();
4517 report_hugepages();
4518
4519 hugetlb_sysfs_init();
4520 hugetlb_cgroup_file_init();
4521 hugetlb_sysctl_init();
4522
4523 #ifdef CONFIG_SMP
4524 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4525 #else
4526 num_fault_mutexes = 1;
4527 #endif
4528 hugetlb_fault_mutex_table =
4529 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4530 GFP_KERNEL);
4531 BUG_ON(!hugetlb_fault_mutex_table);
4532
4533 for (i = 0; i < num_fault_mutexes; i++)
4534 mutex_init(&hugetlb_fault_mutex_table[i]);
4535 return 0;
4536 }
4537 subsys_initcall(hugetlb_init);
4538
4539 /* Overwritten by architectures with more huge page sizes */
__init(weak)4540 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4541 {
4542 return size == HPAGE_SIZE;
4543 }
4544
hugetlb_add_hstate(unsigned int order)4545 void __init hugetlb_add_hstate(unsigned int order)
4546 {
4547 struct hstate *h;
4548 unsigned long i;
4549
4550 if (size_to_hstate(PAGE_SIZE << order)) {
4551 return;
4552 }
4553 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4554 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4555 h = &hstates[hugetlb_max_hstate++];
4556 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4557 h->order = order;
4558 h->mask = ~(huge_page_size(h) - 1);
4559 for (i = 0; i < MAX_NUMNODES; ++i)
4560 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4561 INIT_LIST_HEAD(&h->hugepage_activelist);
4562 h->next_nid_to_alloc = first_memory_node;
4563 h->next_nid_to_free = first_memory_node;
4564 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4565 huge_page_size(h)/SZ_1K);
4566
4567 parsed_hstate = h;
4568 }
4569
hugetlb_node_alloc_supported(void)4570 bool __init __weak hugetlb_node_alloc_supported(void)
4571 {
4572 return true;
4573 }
4574
hugepages_clear_pages_in_node(void)4575 static void __init hugepages_clear_pages_in_node(void)
4576 {
4577 if (!hugetlb_max_hstate) {
4578 default_hstate_max_huge_pages = 0;
4579 memset(default_hugepages_in_node, 0,
4580 sizeof(default_hugepages_in_node));
4581 } else {
4582 parsed_hstate->max_huge_pages = 0;
4583 memset(parsed_hstate->max_huge_pages_node, 0,
4584 sizeof(parsed_hstate->max_huge_pages_node));
4585 }
4586 }
4587
4588 /*
4589 * hugepages command line processing
4590 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4591 * specification. If not, ignore the hugepages value. hugepages can also
4592 * be the first huge page command line option in which case it implicitly
4593 * specifies the number of huge pages for the default size.
4594 */
hugepages_setup(char * s)4595 static int __init hugepages_setup(char *s)
4596 {
4597 unsigned long *mhp;
4598 static unsigned long *last_mhp;
4599 int node = NUMA_NO_NODE;
4600 int count;
4601 unsigned long tmp;
4602 char *p = s;
4603
4604 if (!parsed_valid_hugepagesz) {
4605 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4606 parsed_valid_hugepagesz = true;
4607 return 1;
4608 }
4609
4610 /*
4611 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4612 * yet, so this hugepages= parameter goes to the "default hstate".
4613 * Otherwise, it goes with the previously parsed hugepagesz or
4614 * default_hugepagesz.
4615 */
4616 else if (!hugetlb_max_hstate)
4617 mhp = &default_hstate_max_huge_pages;
4618 else
4619 mhp = &parsed_hstate->max_huge_pages;
4620
4621 if (mhp == last_mhp) {
4622 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4623 return 1;
4624 }
4625
4626 while (*p) {
4627 count = 0;
4628 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4629 goto invalid;
4630 /* Parameter is node format */
4631 if (p[count] == ':') {
4632 if (!hugetlb_node_alloc_supported()) {
4633 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4634 return 1;
4635 }
4636 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4637 goto invalid;
4638 node = array_index_nospec(tmp, MAX_NUMNODES);
4639 p += count + 1;
4640 /* Parse hugepages */
4641 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4642 goto invalid;
4643 if (!hugetlb_max_hstate)
4644 default_hugepages_in_node[node] = tmp;
4645 else
4646 parsed_hstate->max_huge_pages_node[node] = tmp;
4647 *mhp += tmp;
4648 /* Go to parse next node*/
4649 if (p[count] == ',')
4650 p += count + 1;
4651 else
4652 break;
4653 } else {
4654 if (p != s)
4655 goto invalid;
4656 *mhp = tmp;
4657 break;
4658 }
4659 }
4660
4661 /*
4662 * Global state is always initialized later in hugetlb_init.
4663 * But we need to allocate gigantic hstates here early to still
4664 * use the bootmem allocator.
4665 */
4666 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4667 hugetlb_hstate_alloc_pages(parsed_hstate);
4668
4669 last_mhp = mhp;
4670
4671 return 1;
4672
4673 invalid:
4674 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4675 hugepages_clear_pages_in_node();
4676 return 1;
4677 }
4678 __setup("hugepages=", hugepages_setup);
4679
4680 /*
4681 * hugepagesz command line processing
4682 * A specific huge page size can only be specified once with hugepagesz.
4683 * hugepagesz is followed by hugepages on the command line. The global
4684 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4685 * hugepagesz argument was valid.
4686 */
hugepagesz_setup(char * s)4687 static int __init hugepagesz_setup(char *s)
4688 {
4689 unsigned long size;
4690 struct hstate *h;
4691
4692 parsed_valid_hugepagesz = false;
4693 size = (unsigned long)memparse(s, NULL);
4694
4695 if (!arch_hugetlb_valid_size(size)) {
4696 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4697 return 1;
4698 }
4699
4700 h = size_to_hstate(size);
4701 if (h) {
4702 /*
4703 * hstate for this size already exists. This is normally
4704 * an error, but is allowed if the existing hstate is the
4705 * default hstate. More specifically, it is only allowed if
4706 * the number of huge pages for the default hstate was not
4707 * previously specified.
4708 */
4709 if (!parsed_default_hugepagesz || h != &default_hstate ||
4710 default_hstate.max_huge_pages) {
4711 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4712 return 1;
4713 }
4714
4715 /*
4716 * No need to call hugetlb_add_hstate() as hstate already
4717 * exists. But, do set parsed_hstate so that a following
4718 * hugepages= parameter will be applied to this hstate.
4719 */
4720 parsed_hstate = h;
4721 parsed_valid_hugepagesz = true;
4722 return 1;
4723 }
4724
4725 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4726 parsed_valid_hugepagesz = true;
4727 return 1;
4728 }
4729 __setup("hugepagesz=", hugepagesz_setup);
4730
4731 /*
4732 * default_hugepagesz command line input
4733 * Only one instance of default_hugepagesz allowed on command line.
4734 */
default_hugepagesz_setup(char * s)4735 static int __init default_hugepagesz_setup(char *s)
4736 {
4737 unsigned long size;
4738 int i;
4739
4740 parsed_valid_hugepagesz = false;
4741 if (parsed_default_hugepagesz) {
4742 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4743 return 1;
4744 }
4745
4746 size = (unsigned long)memparse(s, NULL);
4747
4748 if (!arch_hugetlb_valid_size(size)) {
4749 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4750 return 1;
4751 }
4752
4753 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4754 parsed_valid_hugepagesz = true;
4755 parsed_default_hugepagesz = true;
4756 default_hstate_idx = hstate_index(size_to_hstate(size));
4757
4758 /*
4759 * The number of default huge pages (for this size) could have been
4760 * specified as the first hugetlb parameter: hugepages=X. If so,
4761 * then default_hstate_max_huge_pages is set. If the default huge
4762 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4763 * allocated here from bootmem allocator.
4764 */
4765 if (default_hstate_max_huge_pages) {
4766 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4767 for_each_online_node(i)
4768 default_hstate.max_huge_pages_node[i] =
4769 default_hugepages_in_node[i];
4770 if (hstate_is_gigantic(&default_hstate))
4771 hugetlb_hstate_alloc_pages(&default_hstate);
4772 default_hstate_max_huge_pages = 0;
4773 }
4774
4775 return 1;
4776 }
4777 __setup("default_hugepagesz=", default_hugepagesz_setup);
4778
allowed_mems_nr(struct hstate * h)4779 static unsigned int allowed_mems_nr(struct hstate *h)
4780 {
4781 int node;
4782 unsigned int nr = 0;
4783 nodemask_t *mbind_nodemask;
4784 unsigned int *array = h->free_huge_pages_node;
4785 gfp_t gfp_mask = htlb_alloc_mask(h);
4786
4787 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4788 for_each_node_mask(node, cpuset_current_mems_allowed) {
4789 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4790 nr += array[node];
4791 }
4792
4793 return nr;
4794 }
4795
4796 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4797 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
4798 void *buffer, size_t *length,
4799 loff_t *ppos, unsigned long *out)
4800 {
4801 struct ctl_table dup_table;
4802
4803 /*
4804 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4805 * can duplicate the @table and alter the duplicate of it.
4806 */
4807 dup_table = *table;
4808 dup_table.data = out;
4809
4810 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4811 }
4812
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4813 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4814 const struct ctl_table *table, int write,
4815 void *buffer, size_t *length, loff_t *ppos)
4816 {
4817 struct hstate *h = &default_hstate;
4818 unsigned long tmp = h->max_huge_pages;
4819 int ret;
4820
4821 if (!hugepages_supported())
4822 return -EOPNOTSUPP;
4823
4824 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4825 &tmp);
4826 if (ret)
4827 goto out;
4828
4829 if (write)
4830 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4831 NUMA_NO_NODE, tmp, *length);
4832 out:
4833 return ret;
4834 }
4835
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4836 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
4837 void *buffer, size_t *length, loff_t *ppos)
4838 {
4839
4840 return hugetlb_sysctl_handler_common(false, table, write,
4841 buffer, length, ppos);
4842 }
4843
4844 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4845 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
4846 void *buffer, size_t *length, loff_t *ppos)
4847 {
4848 return hugetlb_sysctl_handler_common(true, table, write,
4849 buffer, length, ppos);
4850 }
4851 #endif /* CONFIG_NUMA */
4852
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4853 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
4854 void *buffer, size_t *length, loff_t *ppos)
4855 {
4856 struct hstate *h = &default_hstate;
4857 unsigned long tmp;
4858 int ret;
4859
4860 if (!hugepages_supported())
4861 return -EOPNOTSUPP;
4862
4863 tmp = h->nr_overcommit_huge_pages;
4864
4865 if (write && hstate_is_gigantic(h))
4866 return -EINVAL;
4867
4868 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4869 &tmp);
4870 if (ret)
4871 goto out;
4872
4873 if (write) {
4874 spin_lock_irq(&hugetlb_lock);
4875 h->nr_overcommit_huge_pages = tmp;
4876 spin_unlock_irq(&hugetlb_lock);
4877 }
4878 out:
4879 return ret;
4880 }
4881
4882 static const struct ctl_table hugetlb_table[] = {
4883 {
4884 .procname = "nr_hugepages",
4885 .data = NULL,
4886 .maxlen = sizeof(unsigned long),
4887 .mode = 0644,
4888 .proc_handler = hugetlb_sysctl_handler,
4889 },
4890 #ifdef CONFIG_NUMA
4891 {
4892 .procname = "nr_hugepages_mempolicy",
4893 .data = NULL,
4894 .maxlen = sizeof(unsigned long),
4895 .mode = 0644,
4896 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4897 },
4898 #endif
4899 {
4900 .procname = "hugetlb_shm_group",
4901 .data = &sysctl_hugetlb_shm_group,
4902 .maxlen = sizeof(gid_t),
4903 .mode = 0644,
4904 .proc_handler = proc_dointvec,
4905 },
4906 {
4907 .procname = "nr_overcommit_hugepages",
4908 .data = NULL,
4909 .maxlen = sizeof(unsigned long),
4910 .mode = 0644,
4911 .proc_handler = hugetlb_overcommit_handler,
4912 },
4913 };
4914
hugetlb_sysctl_init(void)4915 static void hugetlb_sysctl_init(void)
4916 {
4917 register_sysctl_init("vm", hugetlb_table);
4918 }
4919 #endif /* CONFIG_SYSCTL */
4920
hugetlb_report_meminfo(struct seq_file * m)4921 void hugetlb_report_meminfo(struct seq_file *m)
4922 {
4923 struct hstate *h;
4924 unsigned long total = 0;
4925
4926 if (!hugepages_supported())
4927 return;
4928
4929 for_each_hstate(h) {
4930 unsigned long count = h->nr_huge_pages;
4931
4932 total += huge_page_size(h) * count;
4933
4934 if (h == &default_hstate)
4935 seq_printf(m,
4936 "HugePages_Total: %5lu\n"
4937 "HugePages_Free: %5lu\n"
4938 "HugePages_Rsvd: %5lu\n"
4939 "HugePages_Surp: %5lu\n"
4940 "Hugepagesize: %8lu kB\n",
4941 count,
4942 h->free_huge_pages,
4943 h->resv_huge_pages,
4944 h->surplus_huge_pages,
4945 huge_page_size(h) / SZ_1K);
4946 }
4947
4948 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4949 }
4950
hugetlb_report_node_meminfo(char * buf,int len,int nid)4951 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4952 {
4953 struct hstate *h = &default_hstate;
4954
4955 if (!hugepages_supported())
4956 return 0;
4957
4958 return sysfs_emit_at(buf, len,
4959 "Node %d HugePages_Total: %5u\n"
4960 "Node %d HugePages_Free: %5u\n"
4961 "Node %d HugePages_Surp: %5u\n",
4962 nid, h->nr_huge_pages_node[nid],
4963 nid, h->free_huge_pages_node[nid],
4964 nid, h->surplus_huge_pages_node[nid]);
4965 }
4966
hugetlb_show_meminfo_node(int nid)4967 void hugetlb_show_meminfo_node(int nid)
4968 {
4969 struct hstate *h;
4970
4971 if (!hugepages_supported())
4972 return;
4973
4974 for_each_hstate(h)
4975 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4976 nid,
4977 h->nr_huge_pages_node[nid],
4978 h->free_huge_pages_node[nid],
4979 h->surplus_huge_pages_node[nid],
4980 huge_page_size(h) / SZ_1K);
4981 }
4982
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4983 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4984 {
4985 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4986 K(atomic_long_read(&mm->hugetlb_usage)));
4987 }
4988
4989 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4990 unsigned long hugetlb_total_pages(void)
4991 {
4992 struct hstate *h;
4993 unsigned long nr_total_pages = 0;
4994
4995 for_each_hstate(h)
4996 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4997 return nr_total_pages;
4998 }
4999
hugetlb_acct_memory(struct hstate * h,long delta)5000 static int hugetlb_acct_memory(struct hstate *h, long delta)
5001 {
5002 int ret = -ENOMEM;
5003
5004 if (!delta)
5005 return 0;
5006
5007 spin_lock_irq(&hugetlb_lock);
5008 /*
5009 * When cpuset is configured, it breaks the strict hugetlb page
5010 * reservation as the accounting is done on a global variable. Such
5011 * reservation is completely rubbish in the presence of cpuset because
5012 * the reservation is not checked against page availability for the
5013 * current cpuset. Application can still potentially OOM'ed by kernel
5014 * with lack of free htlb page in cpuset that the task is in.
5015 * Attempt to enforce strict accounting with cpuset is almost
5016 * impossible (or too ugly) because cpuset is too fluid that
5017 * task or memory node can be dynamically moved between cpusets.
5018 *
5019 * The change of semantics for shared hugetlb mapping with cpuset is
5020 * undesirable. However, in order to preserve some of the semantics,
5021 * we fall back to check against current free page availability as
5022 * a best attempt and hopefully to minimize the impact of changing
5023 * semantics that cpuset has.
5024 *
5025 * Apart from cpuset, we also have memory policy mechanism that
5026 * also determines from which node the kernel will allocate memory
5027 * in a NUMA system. So similar to cpuset, we also should consider
5028 * the memory policy of the current task. Similar to the description
5029 * above.
5030 */
5031 if (delta > 0) {
5032 if (gather_surplus_pages(h, delta) < 0)
5033 goto out;
5034
5035 if (delta > allowed_mems_nr(h)) {
5036 return_unused_surplus_pages(h, delta);
5037 goto out;
5038 }
5039 }
5040
5041 ret = 0;
5042 if (delta < 0)
5043 return_unused_surplus_pages(h, (unsigned long) -delta);
5044
5045 out:
5046 spin_unlock_irq(&hugetlb_lock);
5047 return ret;
5048 }
5049
hugetlb_vm_op_open(struct vm_area_struct * vma)5050 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5051 {
5052 struct resv_map *resv = vma_resv_map(vma);
5053
5054 /*
5055 * HPAGE_RESV_OWNER indicates a private mapping.
5056 * This new VMA should share its siblings reservation map if present.
5057 * The VMA will only ever have a valid reservation map pointer where
5058 * it is being copied for another still existing VMA. As that VMA
5059 * has a reference to the reservation map it cannot disappear until
5060 * after this open call completes. It is therefore safe to take a
5061 * new reference here without additional locking.
5062 */
5063 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5064 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5065 kref_get(&resv->refs);
5066 }
5067
5068 /*
5069 * vma_lock structure for sharable mappings is vma specific.
5070 * Clear old pointer (if copied via vm_area_dup) and allocate
5071 * new structure. Before clearing, make sure vma_lock is not
5072 * for this vma.
5073 */
5074 if (vma->vm_flags & VM_MAYSHARE) {
5075 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5076
5077 if (vma_lock) {
5078 if (vma_lock->vma != vma) {
5079 vma->vm_private_data = NULL;
5080 hugetlb_vma_lock_alloc(vma);
5081 } else
5082 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5083 } else
5084 hugetlb_vma_lock_alloc(vma);
5085 }
5086 }
5087
hugetlb_vm_op_close(struct vm_area_struct * vma)5088 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5089 {
5090 struct hstate *h = hstate_vma(vma);
5091 struct resv_map *resv;
5092 struct hugepage_subpool *spool = subpool_vma(vma);
5093 unsigned long reserve, start, end;
5094 long gbl_reserve;
5095
5096 hugetlb_vma_lock_free(vma);
5097
5098 resv = vma_resv_map(vma);
5099 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5100 return;
5101
5102 start = vma_hugecache_offset(h, vma, vma->vm_start);
5103 end = vma_hugecache_offset(h, vma, vma->vm_end);
5104
5105 reserve = (end - start) - region_count(resv, start, end);
5106 hugetlb_cgroup_uncharge_counter(resv, start, end);
5107 if (reserve) {
5108 /*
5109 * Decrement reserve counts. The global reserve count may be
5110 * adjusted if the subpool has a minimum size.
5111 */
5112 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5113 hugetlb_acct_memory(h, -gbl_reserve);
5114 }
5115
5116 kref_put(&resv->refs, resv_map_release);
5117 }
5118
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5119 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5120 {
5121 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5122 return -EINVAL;
5123
5124 /*
5125 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5126 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5127 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5128 */
5129 if (addr & ~PUD_MASK) {
5130 /*
5131 * hugetlb_vm_op_split is called right before we attempt to
5132 * split the VMA. We will need to unshare PMDs in the old and
5133 * new VMAs, so let's unshare before we split.
5134 */
5135 unsigned long floor = addr & PUD_MASK;
5136 unsigned long ceil = floor + PUD_SIZE;
5137
5138 if (floor >= vma->vm_start && ceil <= vma->vm_end)
5139 hugetlb_unshare_pmds(vma, floor, ceil);
5140 }
5141
5142 return 0;
5143 }
5144
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5145 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5146 {
5147 return huge_page_size(hstate_vma(vma));
5148 }
5149
5150 /*
5151 * We cannot handle pagefaults against hugetlb pages at all. They cause
5152 * handle_mm_fault() to try to instantiate regular-sized pages in the
5153 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5154 * this far.
5155 */
hugetlb_vm_op_fault(struct vm_fault * vmf)5156 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5157 {
5158 BUG();
5159 return 0;
5160 }
5161
5162 /*
5163 * When a new function is introduced to vm_operations_struct and added
5164 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5165 * This is because under System V memory model, mappings created via
5166 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5167 * their original vm_ops are overwritten with shm_vm_ops.
5168 */
5169 const struct vm_operations_struct hugetlb_vm_ops = {
5170 .fault = hugetlb_vm_op_fault,
5171 .open = hugetlb_vm_op_open,
5172 .close = hugetlb_vm_op_close,
5173 .may_split = hugetlb_vm_op_split,
5174 .pagesize = hugetlb_vm_op_pagesize,
5175 };
5176
make_huge_pte(struct vm_area_struct * vma,struct page * page,bool try_mkwrite)5177 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
5178 bool try_mkwrite)
5179 {
5180 pte_t entry;
5181 unsigned int shift = huge_page_shift(hstate_vma(vma));
5182
5183 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5184 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
5185 vma->vm_page_prot)));
5186 } else {
5187 entry = huge_pte_wrprotect(mk_huge_pte(page,
5188 vma->vm_page_prot));
5189 }
5190 entry = pte_mkyoung(entry);
5191 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5192
5193 return entry;
5194 }
5195
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5196 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5197 unsigned long address, pte_t *ptep)
5198 {
5199 pte_t entry;
5200
5201 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5202 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5203 update_mmu_cache(vma, address, ptep);
5204 }
5205
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5206 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5207 unsigned long address, pte_t *ptep)
5208 {
5209 if (vma->vm_flags & VM_WRITE)
5210 set_huge_ptep_writable(vma, address, ptep);
5211 }
5212
is_hugetlb_entry_migration(pte_t pte)5213 bool is_hugetlb_entry_migration(pte_t pte)
5214 {
5215 swp_entry_t swp;
5216
5217 if (huge_pte_none(pte) || pte_present(pte))
5218 return false;
5219 swp = pte_to_swp_entry(pte);
5220 if (is_migration_entry(swp))
5221 return true;
5222 else
5223 return false;
5224 }
5225
is_hugetlb_entry_hwpoisoned(pte_t pte)5226 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5227 {
5228 swp_entry_t swp;
5229
5230 if (huge_pte_none(pte) || pte_present(pte))
5231 return false;
5232 swp = pte_to_swp_entry(pte);
5233 if (is_hwpoison_entry(swp))
5234 return true;
5235 else
5236 return false;
5237 }
5238
5239 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5240 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5241 struct folio *new_folio, pte_t old, unsigned long sz)
5242 {
5243 pte_t newpte = make_huge_pte(vma, &new_folio->page, true);
5244
5245 __folio_mark_uptodate(new_folio);
5246 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5247 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5248 newpte = huge_pte_mkuffd_wp(newpte);
5249 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5250 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5251 folio_set_hugetlb_migratable(new_folio);
5252 }
5253
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5254 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5255 struct vm_area_struct *dst_vma,
5256 struct vm_area_struct *src_vma)
5257 {
5258 pte_t *src_pte, *dst_pte, entry;
5259 struct folio *pte_folio;
5260 unsigned long addr;
5261 bool cow = is_cow_mapping(src_vma->vm_flags);
5262 struct hstate *h = hstate_vma(src_vma);
5263 unsigned long sz = huge_page_size(h);
5264 unsigned long npages = pages_per_huge_page(h);
5265 struct mmu_notifier_range range;
5266 unsigned long last_addr_mask;
5267 int ret = 0;
5268
5269 if (cow) {
5270 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5271 src_vma->vm_start,
5272 src_vma->vm_end);
5273 mmu_notifier_invalidate_range_start(&range);
5274 vma_assert_write_locked(src_vma);
5275 raw_write_seqcount_begin(&src->write_protect_seq);
5276 } else {
5277 /*
5278 * For shared mappings the vma lock must be held before
5279 * calling hugetlb_walk() in the src vma. Otherwise, the
5280 * returned ptep could go away if part of a shared pmd and
5281 * another thread calls huge_pmd_unshare.
5282 */
5283 hugetlb_vma_lock_read(src_vma);
5284 }
5285
5286 last_addr_mask = hugetlb_mask_last_page(h);
5287 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5288 spinlock_t *src_ptl, *dst_ptl;
5289 src_pte = hugetlb_walk(src_vma, addr, sz);
5290 if (!src_pte) {
5291 addr |= last_addr_mask;
5292 continue;
5293 }
5294 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5295 if (!dst_pte) {
5296 ret = -ENOMEM;
5297 break;
5298 }
5299
5300 /*
5301 * If the pagetables are shared don't copy or take references.
5302 *
5303 * dst_pte == src_pte is the common case of src/dest sharing.
5304 * However, src could have 'unshared' and dst shares with
5305 * another vma. So page_count of ptep page is checked instead
5306 * to reliably determine whether pte is shared.
5307 */
5308 if (page_count(virt_to_page(dst_pte)) > 1) {
5309 addr |= last_addr_mask;
5310 continue;
5311 }
5312
5313 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5314 src_ptl = huge_pte_lockptr(h, src, src_pte);
5315 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5316 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5317 again:
5318 if (huge_pte_none(entry)) {
5319 /*
5320 * Skip if src entry none.
5321 */
5322 ;
5323 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5324 if (!userfaultfd_wp(dst_vma))
5325 entry = huge_pte_clear_uffd_wp(entry);
5326 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5327 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5328 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5329 bool uffd_wp = pte_swp_uffd_wp(entry);
5330
5331 if (!is_readable_migration_entry(swp_entry) && cow) {
5332 /*
5333 * COW mappings require pages in both
5334 * parent and child to be set to read.
5335 */
5336 swp_entry = make_readable_migration_entry(
5337 swp_offset(swp_entry));
5338 entry = swp_entry_to_pte(swp_entry);
5339 if (userfaultfd_wp(src_vma) && uffd_wp)
5340 entry = pte_swp_mkuffd_wp(entry);
5341 set_huge_pte_at(src, addr, src_pte, entry, sz);
5342 }
5343 if (!userfaultfd_wp(dst_vma))
5344 entry = huge_pte_clear_uffd_wp(entry);
5345 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5346 } else if (unlikely(is_pte_marker(entry))) {
5347 pte_marker marker = copy_pte_marker(
5348 pte_to_swp_entry(entry), dst_vma);
5349
5350 if (marker)
5351 set_huge_pte_at(dst, addr, dst_pte,
5352 make_pte_marker(marker), sz);
5353 } else {
5354 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5355 pte_folio = page_folio(pte_page(entry));
5356 folio_get(pte_folio);
5357
5358 /*
5359 * Failing to duplicate the anon rmap is a rare case
5360 * where we see pinned hugetlb pages while they're
5361 * prone to COW. We need to do the COW earlier during
5362 * fork.
5363 *
5364 * When pre-allocating the page or copying data, we
5365 * need to be without the pgtable locks since we could
5366 * sleep during the process.
5367 */
5368 if (!folio_test_anon(pte_folio)) {
5369 hugetlb_add_file_rmap(pte_folio);
5370 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5371 pte_t src_pte_old = entry;
5372 struct folio *new_folio;
5373
5374 spin_unlock(src_ptl);
5375 spin_unlock(dst_ptl);
5376 /* Do not use reserve as it's private owned */
5377 new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5378 if (IS_ERR(new_folio)) {
5379 folio_put(pte_folio);
5380 ret = PTR_ERR(new_folio);
5381 break;
5382 }
5383 ret = copy_user_large_folio(new_folio, pte_folio,
5384 addr, dst_vma);
5385 folio_put(pte_folio);
5386 if (ret) {
5387 folio_put(new_folio);
5388 break;
5389 }
5390
5391 /* Install the new hugetlb folio if src pte stable */
5392 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5393 src_ptl = huge_pte_lockptr(h, src, src_pte);
5394 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5395 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5396 if (!pte_same(src_pte_old, entry)) {
5397 restore_reserve_on_error(h, dst_vma, addr,
5398 new_folio);
5399 folio_put(new_folio);
5400 /* huge_ptep of dst_pte won't change as in child */
5401 goto again;
5402 }
5403 hugetlb_install_folio(dst_vma, dst_pte, addr,
5404 new_folio, src_pte_old, sz);
5405 spin_unlock(src_ptl);
5406 spin_unlock(dst_ptl);
5407 continue;
5408 }
5409
5410 if (cow) {
5411 /*
5412 * No need to notify as we are downgrading page
5413 * table protection not changing it to point
5414 * to a new page.
5415 *
5416 * See Documentation/mm/mmu_notifier.rst
5417 */
5418 huge_ptep_set_wrprotect(src, addr, src_pte);
5419 entry = huge_pte_wrprotect(entry);
5420 }
5421
5422 if (!userfaultfd_wp(dst_vma))
5423 entry = huge_pte_clear_uffd_wp(entry);
5424
5425 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5426 hugetlb_count_add(npages, dst);
5427 }
5428 spin_unlock(src_ptl);
5429 spin_unlock(dst_ptl);
5430 }
5431
5432 if (cow) {
5433 raw_write_seqcount_end(&src->write_protect_seq);
5434 mmu_notifier_invalidate_range_end(&range);
5435 } else {
5436 hugetlb_vma_unlock_read(src_vma);
5437 }
5438
5439 return ret;
5440 }
5441
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5442 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5443 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5444 unsigned long sz)
5445 {
5446 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5447 struct hstate *h = hstate_vma(vma);
5448 struct mm_struct *mm = vma->vm_mm;
5449 spinlock_t *src_ptl, *dst_ptl;
5450 pte_t pte;
5451
5452 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5453 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5454
5455 /*
5456 * We don't have to worry about the ordering of src and dst ptlocks
5457 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5458 */
5459 if (src_ptl != dst_ptl)
5460 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5461
5462 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5463
5464 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5465 huge_pte_clear(mm, new_addr, dst_pte, sz);
5466 else {
5467 if (need_clear_uffd_wp) {
5468 if (pte_present(pte))
5469 pte = huge_pte_clear_uffd_wp(pte);
5470 else if (is_swap_pte(pte))
5471 pte = pte_swp_clear_uffd_wp(pte);
5472 }
5473 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5474 }
5475
5476 if (src_ptl != dst_ptl)
5477 spin_unlock(src_ptl);
5478 spin_unlock(dst_ptl);
5479 }
5480
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5481 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5482 struct vm_area_struct *new_vma,
5483 unsigned long old_addr, unsigned long new_addr,
5484 unsigned long len)
5485 {
5486 struct hstate *h = hstate_vma(vma);
5487 struct address_space *mapping = vma->vm_file->f_mapping;
5488 unsigned long sz = huge_page_size(h);
5489 struct mm_struct *mm = vma->vm_mm;
5490 unsigned long old_end = old_addr + len;
5491 unsigned long last_addr_mask;
5492 pte_t *src_pte, *dst_pte;
5493 struct mmu_notifier_range range;
5494 bool shared_pmd = false;
5495
5496 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5497 old_end);
5498 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5499 /*
5500 * In case of shared PMDs, we should cover the maximum possible
5501 * range.
5502 */
5503 flush_cache_range(vma, range.start, range.end);
5504
5505 mmu_notifier_invalidate_range_start(&range);
5506 last_addr_mask = hugetlb_mask_last_page(h);
5507 /* Prevent race with file truncation */
5508 hugetlb_vma_lock_write(vma);
5509 i_mmap_lock_write(mapping);
5510 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5511 src_pte = hugetlb_walk(vma, old_addr, sz);
5512 if (!src_pte) {
5513 old_addr |= last_addr_mask;
5514 new_addr |= last_addr_mask;
5515 continue;
5516 }
5517 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5518 continue;
5519
5520 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5521 shared_pmd = true;
5522 old_addr |= last_addr_mask;
5523 new_addr |= last_addr_mask;
5524 continue;
5525 }
5526
5527 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5528 if (!dst_pte)
5529 break;
5530
5531 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5532 }
5533
5534 if (shared_pmd)
5535 flush_hugetlb_tlb_range(vma, range.start, range.end);
5536 else
5537 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5538 mmu_notifier_invalidate_range_end(&range);
5539 i_mmap_unlock_write(mapping);
5540 hugetlb_vma_unlock_write(vma);
5541
5542 return len + old_addr - old_end;
5543 }
5544
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5545 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5546 unsigned long start, unsigned long end,
5547 struct page *ref_page, zap_flags_t zap_flags)
5548 {
5549 struct mm_struct *mm = vma->vm_mm;
5550 unsigned long address;
5551 pte_t *ptep;
5552 pte_t pte;
5553 spinlock_t *ptl;
5554 struct page *page;
5555 struct hstate *h = hstate_vma(vma);
5556 unsigned long sz = huge_page_size(h);
5557 bool adjust_reservation = false;
5558 unsigned long last_addr_mask;
5559 bool force_flush = false;
5560
5561 WARN_ON(!is_vm_hugetlb_page(vma));
5562 BUG_ON(start & ~huge_page_mask(h));
5563 BUG_ON(end & ~huge_page_mask(h));
5564
5565 /*
5566 * This is a hugetlb vma, all the pte entries should point
5567 * to huge page.
5568 */
5569 tlb_change_page_size(tlb, sz);
5570 tlb_start_vma(tlb, vma);
5571
5572 last_addr_mask = hugetlb_mask_last_page(h);
5573 address = start;
5574 for (; address < end; address += sz) {
5575 ptep = hugetlb_walk(vma, address, sz);
5576 if (!ptep) {
5577 address |= last_addr_mask;
5578 continue;
5579 }
5580
5581 ptl = huge_pte_lock(h, mm, ptep);
5582 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5583 spin_unlock(ptl);
5584 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5585 force_flush = true;
5586 address |= last_addr_mask;
5587 continue;
5588 }
5589
5590 pte = huge_ptep_get(mm, address, ptep);
5591 if (huge_pte_none(pte)) {
5592 spin_unlock(ptl);
5593 continue;
5594 }
5595
5596 /*
5597 * Migrating hugepage or HWPoisoned hugepage is already
5598 * unmapped and its refcount is dropped, so just clear pte here.
5599 */
5600 if (unlikely(!pte_present(pte))) {
5601 /*
5602 * If the pte was wr-protected by uffd-wp in any of the
5603 * swap forms, meanwhile the caller does not want to
5604 * drop the uffd-wp bit in this zap, then replace the
5605 * pte with a marker.
5606 */
5607 if (pte_swp_uffd_wp_any(pte) &&
5608 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5609 set_huge_pte_at(mm, address, ptep,
5610 make_pte_marker(PTE_MARKER_UFFD_WP),
5611 sz);
5612 else
5613 huge_pte_clear(mm, address, ptep, sz);
5614 spin_unlock(ptl);
5615 continue;
5616 }
5617
5618 page = pte_page(pte);
5619 /*
5620 * If a reference page is supplied, it is because a specific
5621 * page is being unmapped, not a range. Ensure the page we
5622 * are about to unmap is the actual page of interest.
5623 */
5624 if (ref_page) {
5625 if (page != ref_page) {
5626 spin_unlock(ptl);
5627 continue;
5628 }
5629 /*
5630 * Mark the VMA as having unmapped its page so that
5631 * future faults in this VMA will fail rather than
5632 * looking like data was lost
5633 */
5634 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5635 }
5636
5637 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5638 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5639 if (huge_pte_dirty(pte))
5640 set_page_dirty(page);
5641 /* Leave a uffd-wp pte marker if needed */
5642 if (huge_pte_uffd_wp(pte) &&
5643 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5644 set_huge_pte_at(mm, address, ptep,
5645 make_pte_marker(PTE_MARKER_UFFD_WP),
5646 sz);
5647 hugetlb_count_sub(pages_per_huge_page(h), mm);
5648 hugetlb_remove_rmap(page_folio(page));
5649
5650 /*
5651 * Restore the reservation for anonymous page, otherwise the
5652 * backing page could be stolen by someone.
5653 * If there we are freeing a surplus, do not set the restore
5654 * reservation bit.
5655 */
5656 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5657 folio_test_anon(page_folio(page))) {
5658 folio_set_hugetlb_restore_reserve(page_folio(page));
5659 /* Reservation to be adjusted after the spin lock */
5660 adjust_reservation = true;
5661 }
5662
5663 spin_unlock(ptl);
5664
5665 /*
5666 * Adjust the reservation for the region that will have the
5667 * reserve restored. Keep in mind that vma_needs_reservation() changes
5668 * resv->adds_in_progress if it succeeds. If this is not done,
5669 * do_exit() will not see it, and will keep the reservation
5670 * forever.
5671 */
5672 if (adjust_reservation) {
5673 int rc = vma_needs_reservation(h, vma, address);
5674
5675 if (rc < 0)
5676 /* Pressumably allocate_file_region_entries failed
5677 * to allocate a file_region struct. Clear
5678 * hugetlb_restore_reserve so that global reserve
5679 * count will not be incremented by free_huge_folio.
5680 * Act as if we consumed the reservation.
5681 */
5682 folio_clear_hugetlb_restore_reserve(page_folio(page));
5683 else if (rc)
5684 vma_add_reservation(h, vma, address);
5685 }
5686
5687 tlb_remove_page_size(tlb, page, huge_page_size(h));
5688 /*
5689 * Bail out after unmapping reference page if supplied
5690 */
5691 if (ref_page)
5692 break;
5693 }
5694 tlb_end_vma(tlb, vma);
5695
5696 /*
5697 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5698 * could defer the flush until now, since by holding i_mmap_rwsem we
5699 * guaranteed that the last refernece would not be dropped. But we must
5700 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5701 * dropped and the last reference to the shared PMDs page might be
5702 * dropped as well.
5703 *
5704 * In theory we could defer the freeing of the PMD pages as well, but
5705 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5706 * detect sharing, so we cannot defer the release of the page either.
5707 * Instead, do flush now.
5708 */
5709 if (force_flush)
5710 tlb_flush_mmu_tlbonly(tlb);
5711 }
5712
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5713 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5714 unsigned long *start, unsigned long *end)
5715 {
5716 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5717 return;
5718
5719 adjust_range_if_pmd_sharing_possible(vma, start, end);
5720 hugetlb_vma_lock_write(vma);
5721 if (vma->vm_file)
5722 i_mmap_lock_write(vma->vm_file->f_mapping);
5723 }
5724
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5725 void __hugetlb_zap_end(struct vm_area_struct *vma,
5726 struct zap_details *details)
5727 {
5728 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5729
5730 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5731 return;
5732
5733 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5734 /*
5735 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5736 * When the vma_lock is freed, this makes the vma ineligible
5737 * for pmd sharing. And, i_mmap_rwsem is required to set up
5738 * pmd sharing. This is important as page tables for this
5739 * unmapped range will be asynchrously deleted. If the page
5740 * tables are shared, there will be issues when accessed by
5741 * someone else.
5742 */
5743 __hugetlb_vma_unlock_write_free(vma);
5744 } else {
5745 hugetlb_vma_unlock_write(vma);
5746 }
5747
5748 if (vma->vm_file)
5749 i_mmap_unlock_write(vma->vm_file->f_mapping);
5750 }
5751
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5752 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5753 unsigned long end, struct page *ref_page,
5754 zap_flags_t zap_flags)
5755 {
5756 struct mmu_notifier_range range;
5757 struct mmu_gather tlb;
5758
5759 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5760 start, end);
5761 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5762 mmu_notifier_invalidate_range_start(&range);
5763 tlb_gather_mmu(&tlb, vma->vm_mm);
5764
5765 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5766
5767 mmu_notifier_invalidate_range_end(&range);
5768 tlb_finish_mmu(&tlb);
5769 }
5770
5771 /*
5772 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5773 * mapping it owns the reserve page for. The intention is to unmap the page
5774 * from other VMAs and let the children be SIGKILLed if they are faulting the
5775 * same region.
5776 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5777 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5778 struct page *page, unsigned long address)
5779 {
5780 struct hstate *h = hstate_vma(vma);
5781 struct vm_area_struct *iter_vma;
5782 struct address_space *mapping;
5783 pgoff_t pgoff;
5784
5785 /*
5786 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5787 * from page cache lookup which is in HPAGE_SIZE units.
5788 */
5789 address = address & huge_page_mask(h);
5790 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5791 vma->vm_pgoff;
5792 mapping = vma->vm_file->f_mapping;
5793
5794 /*
5795 * Take the mapping lock for the duration of the table walk. As
5796 * this mapping should be shared between all the VMAs,
5797 * __unmap_hugepage_range() is called as the lock is already held
5798 */
5799 i_mmap_lock_write(mapping);
5800 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5801 /* Do not unmap the current VMA */
5802 if (iter_vma == vma)
5803 continue;
5804
5805 /*
5806 * Shared VMAs have their own reserves and do not affect
5807 * MAP_PRIVATE accounting but it is possible that a shared
5808 * VMA is using the same page so check and skip such VMAs.
5809 */
5810 if (iter_vma->vm_flags & VM_MAYSHARE)
5811 continue;
5812
5813 /*
5814 * Unmap the page from other VMAs without their own reserves.
5815 * They get marked to be SIGKILLed if they fault in these
5816 * areas. This is because a future no-page fault on this VMA
5817 * could insert a zeroed page instead of the data existing
5818 * from the time of fork. This would look like data corruption
5819 */
5820 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5821 unmap_hugepage_range(iter_vma, address,
5822 address + huge_page_size(h), page, 0);
5823 }
5824 i_mmap_unlock_write(mapping);
5825 }
5826
5827 /*
5828 * hugetlb_wp() should be called with page lock of the original hugepage held.
5829 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5830 * cannot race with other handlers or page migration.
5831 * Keep the pte_same checks anyway to make transition from the mutex easier.
5832 */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)5833 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
5834 struct vm_fault *vmf)
5835 {
5836 struct vm_area_struct *vma = vmf->vma;
5837 struct mm_struct *mm = vma->vm_mm;
5838 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5839 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5840 struct hstate *h = hstate_vma(vma);
5841 struct folio *old_folio;
5842 struct folio *new_folio;
5843 bool cow_from_owner = 0;
5844 vm_fault_t ret = 0;
5845 struct mmu_notifier_range range;
5846
5847 /*
5848 * Never handle CoW for uffd-wp protected pages. It should be only
5849 * handled when the uffd-wp protection is removed.
5850 *
5851 * Note that only the CoW optimization path (in hugetlb_no_page())
5852 * can trigger this, because hugetlb_fault() will always resolve
5853 * uffd-wp bit first.
5854 */
5855 if (!unshare && huge_pte_uffd_wp(pte))
5856 return 0;
5857
5858 /* Let's take out MAP_SHARED mappings first. */
5859 if (vma->vm_flags & VM_MAYSHARE) {
5860 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5861 return 0;
5862 }
5863
5864 old_folio = page_folio(pte_page(pte));
5865
5866 delayacct_wpcopy_start();
5867
5868 retry_avoidcopy:
5869 /*
5870 * If no-one else is actually using this page, we're the exclusive
5871 * owner and can reuse this page.
5872 *
5873 * Note that we don't rely on the (safer) folio refcount here, because
5874 * copying the hugetlb folio when there are unexpected (temporary)
5875 * folio references could harm simple fork()+exit() users when
5876 * we run out of free hugetlb folios: we would have to kill processes
5877 * in scenarios that used to work. As a side effect, there can still
5878 * be leaks between processes, for example, with FOLL_GET users.
5879 */
5880 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5881 if (!PageAnonExclusive(&old_folio->page)) {
5882 folio_move_anon_rmap(old_folio, vma);
5883 SetPageAnonExclusive(&old_folio->page);
5884 }
5885 if (likely(!unshare))
5886 set_huge_ptep_maybe_writable(vma, vmf->address,
5887 vmf->pte);
5888
5889 delayacct_wpcopy_end();
5890 return 0;
5891 }
5892 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5893 PageAnonExclusive(&old_folio->page), &old_folio->page);
5894
5895 /*
5896 * If the process that created a MAP_PRIVATE mapping is about to
5897 * perform a COW due to a shared page count, attempt to satisfy
5898 * the allocation without using the existing reserves. The pagecache
5899 * page is used to determine if the reserve at this address was
5900 * consumed or not. If reserves were used, a partial faulted mapping
5901 * at the time of fork() could consume its reserves on COW instead
5902 * of the full address range.
5903 */
5904 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5905 old_folio != pagecache_folio)
5906 cow_from_owner = true;
5907
5908 folio_get(old_folio);
5909
5910 /*
5911 * Drop page table lock as buddy allocator may be called. It will
5912 * be acquired again before returning to the caller, as expected.
5913 */
5914 spin_unlock(vmf->ptl);
5915 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
5916
5917 if (IS_ERR(new_folio)) {
5918 /*
5919 * If a process owning a MAP_PRIVATE mapping fails to COW,
5920 * it is due to references held by a child and an insufficient
5921 * huge page pool. To guarantee the original mappers
5922 * reliability, unmap the page from child processes. The child
5923 * may get SIGKILLed if it later faults.
5924 */
5925 if (cow_from_owner) {
5926 struct address_space *mapping = vma->vm_file->f_mapping;
5927 pgoff_t idx;
5928 u32 hash;
5929
5930 folio_put(old_folio);
5931 /*
5932 * Drop hugetlb_fault_mutex and vma_lock before
5933 * unmapping. unmapping needs to hold vma_lock
5934 * in write mode. Dropping vma_lock in read mode
5935 * here is OK as COW mappings do not interact with
5936 * PMD sharing.
5937 *
5938 * Reacquire both after unmap operation.
5939 */
5940 idx = vma_hugecache_offset(h, vma, vmf->address);
5941 hash = hugetlb_fault_mutex_hash(mapping, idx);
5942 hugetlb_vma_unlock_read(vma);
5943 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5944
5945 unmap_ref_private(mm, vma, &old_folio->page,
5946 vmf->address);
5947
5948 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5949 hugetlb_vma_lock_read(vma);
5950 spin_lock(vmf->ptl);
5951 vmf->pte = hugetlb_walk(vma, vmf->address,
5952 huge_page_size(h));
5953 if (likely(vmf->pte &&
5954 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5955 goto retry_avoidcopy;
5956 /*
5957 * race occurs while re-acquiring page table
5958 * lock, and our job is done.
5959 */
5960 delayacct_wpcopy_end();
5961 return 0;
5962 }
5963
5964 ret = vmf_error(PTR_ERR(new_folio));
5965 goto out_release_old;
5966 }
5967
5968 /*
5969 * When the original hugepage is shared one, it does not have
5970 * anon_vma prepared.
5971 */
5972 ret = __vmf_anon_prepare(vmf);
5973 if (unlikely(ret))
5974 goto out_release_all;
5975
5976 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5977 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5978 goto out_release_all;
5979 }
5980 __folio_mark_uptodate(new_folio);
5981
5982 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5983 vmf->address + huge_page_size(h));
5984 mmu_notifier_invalidate_range_start(&range);
5985
5986 /*
5987 * Retake the page table lock to check for racing updates
5988 * before the page tables are altered
5989 */
5990 spin_lock(vmf->ptl);
5991 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5992 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5993 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5994
5995 /* Break COW or unshare */
5996 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5997 hugetlb_remove_rmap(old_folio);
5998 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5999 if (huge_pte_uffd_wp(pte))
6000 newpte = huge_pte_mkuffd_wp(newpte);
6001 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6002 huge_page_size(h));
6003 folio_set_hugetlb_migratable(new_folio);
6004 /* Make the old page be freed below */
6005 new_folio = old_folio;
6006 }
6007 spin_unlock(vmf->ptl);
6008 mmu_notifier_invalidate_range_end(&range);
6009 out_release_all:
6010 /*
6011 * No restore in case of successful pagetable update (Break COW or
6012 * unshare)
6013 */
6014 if (new_folio != old_folio)
6015 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6016 folio_put(new_folio);
6017 out_release_old:
6018 folio_put(old_folio);
6019
6020 spin_lock(vmf->ptl); /* Caller expects lock to be held */
6021
6022 delayacct_wpcopy_end();
6023 return ret;
6024 }
6025
6026 /*
6027 * Return whether there is a pagecache page to back given address within VMA.
6028 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6029 bool hugetlbfs_pagecache_present(struct hstate *h,
6030 struct vm_area_struct *vma, unsigned long address)
6031 {
6032 struct address_space *mapping = vma->vm_file->f_mapping;
6033 pgoff_t idx = linear_page_index(vma, address);
6034 struct folio *folio;
6035
6036 folio = filemap_get_folio(mapping, idx);
6037 if (IS_ERR(folio))
6038 return false;
6039 folio_put(folio);
6040 return true;
6041 }
6042
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6043 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6044 pgoff_t idx)
6045 {
6046 struct inode *inode = mapping->host;
6047 struct hstate *h = hstate_inode(inode);
6048 int err;
6049
6050 idx <<= huge_page_order(h);
6051 __folio_set_locked(folio);
6052 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6053
6054 if (unlikely(err)) {
6055 __folio_clear_locked(folio);
6056 return err;
6057 }
6058 folio_clear_hugetlb_restore_reserve(folio);
6059
6060 /*
6061 * mark folio dirty so that it will not be removed from cache/file
6062 * by non-hugetlbfs specific code paths.
6063 */
6064 folio_mark_dirty(folio);
6065
6066 spin_lock(&inode->i_lock);
6067 inode->i_blocks += blocks_per_huge_page(h);
6068 spin_unlock(&inode->i_lock);
6069 return 0;
6070 }
6071
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6072 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6073 struct address_space *mapping,
6074 unsigned long reason)
6075 {
6076 u32 hash;
6077
6078 /*
6079 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6080 * userfault. Also mmap_lock could be dropped due to handling
6081 * userfault, any vma operation should be careful from here.
6082 */
6083 hugetlb_vma_unlock_read(vmf->vma);
6084 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6085 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6086 return handle_userfault(vmf, reason);
6087 }
6088
6089 /*
6090 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6091 * false if pte changed or is changing.
6092 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6093 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6094 pte_t *ptep, pte_t old_pte)
6095 {
6096 spinlock_t *ptl;
6097 bool same;
6098
6099 ptl = huge_pte_lock(h, mm, ptep);
6100 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6101 spin_unlock(ptl);
6102
6103 return same;
6104 }
6105
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6106 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6107 struct vm_fault *vmf)
6108 {
6109 struct vm_area_struct *vma = vmf->vma;
6110 struct mm_struct *mm = vma->vm_mm;
6111 struct hstate *h = hstate_vma(vma);
6112 vm_fault_t ret = VM_FAULT_SIGBUS;
6113 int anon_rmap = 0;
6114 unsigned long size;
6115 struct folio *folio;
6116 pte_t new_pte;
6117 bool new_folio, new_pagecache_folio = false;
6118 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6119
6120 /*
6121 * Currently, we are forced to kill the process in the event the
6122 * original mapper has unmapped pages from the child due to a failed
6123 * COW/unsharing. Warn that such a situation has occurred as it may not
6124 * be obvious.
6125 */
6126 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6127 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6128 current->pid);
6129 goto out;
6130 }
6131
6132 /*
6133 * Use page lock to guard against racing truncation
6134 * before we get page_table_lock.
6135 */
6136 new_folio = false;
6137 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6138 if (IS_ERR(folio)) {
6139 size = i_size_read(mapping->host) >> huge_page_shift(h);
6140 if (vmf->pgoff >= size)
6141 goto out;
6142 /* Check for page in userfault range */
6143 if (userfaultfd_missing(vma)) {
6144 /*
6145 * Since hugetlb_no_page() was examining pte
6146 * without pgtable lock, we need to re-test under
6147 * lock because the pte may not be stable and could
6148 * have changed from under us. Try to detect
6149 * either changed or during-changing ptes and retry
6150 * properly when needed.
6151 *
6152 * Note that userfaultfd is actually fine with
6153 * false positives (e.g. caused by pte changed),
6154 * but not wrong logical events (e.g. caused by
6155 * reading a pte during changing). The latter can
6156 * confuse the userspace, so the strictness is very
6157 * much preferred. E.g., MISSING event should
6158 * never happen on the page after UFFDIO_COPY has
6159 * correctly installed the page and returned.
6160 */
6161 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6162 ret = 0;
6163 goto out;
6164 }
6165
6166 return hugetlb_handle_userfault(vmf, mapping,
6167 VM_UFFD_MISSING);
6168 }
6169
6170 if (!(vma->vm_flags & VM_MAYSHARE)) {
6171 ret = __vmf_anon_prepare(vmf);
6172 if (unlikely(ret))
6173 goto out;
6174 }
6175
6176 folio = alloc_hugetlb_folio(vma, vmf->address, false);
6177 if (IS_ERR(folio)) {
6178 /*
6179 * Returning error will result in faulting task being
6180 * sent SIGBUS. The hugetlb fault mutex prevents two
6181 * tasks from racing to fault in the same page which
6182 * could result in false unable to allocate errors.
6183 * Page migration does not take the fault mutex, but
6184 * does a clear then write of pte's under page table
6185 * lock. Page fault code could race with migration,
6186 * notice the clear pte and try to allocate a page
6187 * here. Before returning error, get ptl and make
6188 * sure there really is no pte entry.
6189 */
6190 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6191 ret = vmf_error(PTR_ERR(folio));
6192 else
6193 ret = 0;
6194 goto out;
6195 }
6196 folio_zero_user(folio, vmf->real_address);
6197 __folio_mark_uptodate(folio);
6198 new_folio = true;
6199
6200 if (vma->vm_flags & VM_MAYSHARE) {
6201 int err = hugetlb_add_to_page_cache(folio, mapping,
6202 vmf->pgoff);
6203 if (err) {
6204 /*
6205 * err can't be -EEXIST which implies someone
6206 * else consumed the reservation since hugetlb
6207 * fault mutex is held when add a hugetlb page
6208 * to the page cache. So it's safe to call
6209 * restore_reserve_on_error() here.
6210 */
6211 restore_reserve_on_error(h, vma, vmf->address,
6212 folio);
6213 folio_put(folio);
6214 ret = VM_FAULT_SIGBUS;
6215 goto out;
6216 }
6217 new_pagecache_folio = true;
6218 } else {
6219 folio_lock(folio);
6220 anon_rmap = 1;
6221 }
6222 } else {
6223 /*
6224 * If memory error occurs between mmap() and fault, some process
6225 * don't have hwpoisoned swap entry for errored virtual address.
6226 * So we need to block hugepage fault by PG_hwpoison bit check.
6227 */
6228 if (unlikely(folio_test_hwpoison(folio))) {
6229 ret = VM_FAULT_HWPOISON_LARGE |
6230 VM_FAULT_SET_HINDEX(hstate_index(h));
6231 goto backout_unlocked;
6232 }
6233
6234 /* Check for page in userfault range. */
6235 if (userfaultfd_minor(vma)) {
6236 folio_unlock(folio);
6237 folio_put(folio);
6238 /* See comment in userfaultfd_missing() block above */
6239 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6240 ret = 0;
6241 goto out;
6242 }
6243 return hugetlb_handle_userfault(vmf, mapping,
6244 VM_UFFD_MINOR);
6245 }
6246 }
6247
6248 /*
6249 * If we are going to COW a private mapping later, we examine the
6250 * pending reservations for this page now. This will ensure that
6251 * any allocations necessary to record that reservation occur outside
6252 * the spinlock.
6253 */
6254 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6255 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6256 ret = VM_FAULT_OOM;
6257 goto backout_unlocked;
6258 }
6259 /* Just decrements count, does not deallocate */
6260 vma_end_reservation(h, vma, vmf->address);
6261 }
6262
6263 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6264 ret = 0;
6265 /* If pte changed from under us, retry */
6266 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6267 goto backout;
6268
6269 if (anon_rmap)
6270 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6271 else
6272 hugetlb_add_file_rmap(folio);
6273 new_pte = make_huge_pte(vma, &folio->page, vma->vm_flags & VM_SHARED);
6274 /*
6275 * If this pte was previously wr-protected, keep it wr-protected even
6276 * if populated.
6277 */
6278 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6279 new_pte = huge_pte_mkuffd_wp(new_pte);
6280 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6281
6282 hugetlb_count_add(pages_per_huge_page(h), mm);
6283 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6284 /* Optimization, do the COW without a second fault */
6285 ret = hugetlb_wp(folio, vmf);
6286 }
6287
6288 spin_unlock(vmf->ptl);
6289
6290 /*
6291 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6292 * found in the pagecache may not have hugetlb_migratable if they have
6293 * been isolated for migration.
6294 */
6295 if (new_folio)
6296 folio_set_hugetlb_migratable(folio);
6297
6298 folio_unlock(folio);
6299 out:
6300 hugetlb_vma_unlock_read(vma);
6301
6302 /*
6303 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6304 * the only way ret can be set to VM_FAULT_RETRY.
6305 */
6306 if (unlikely(ret & VM_FAULT_RETRY))
6307 vma_end_read(vma);
6308
6309 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6310 return ret;
6311
6312 backout:
6313 spin_unlock(vmf->ptl);
6314 backout_unlocked:
6315 if (new_folio && !new_pagecache_folio)
6316 restore_reserve_on_error(h, vma, vmf->address, folio);
6317
6318 folio_unlock(folio);
6319 folio_put(folio);
6320 goto out;
6321 }
6322
6323 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6324 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6325 {
6326 unsigned long key[2];
6327 u32 hash;
6328
6329 key[0] = (unsigned long) mapping;
6330 key[1] = idx;
6331
6332 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6333
6334 return hash & (num_fault_mutexes - 1);
6335 }
6336 #else
6337 /*
6338 * For uniprocessor systems we always use a single mutex, so just
6339 * return 0 and avoid the hashing overhead.
6340 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6341 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6342 {
6343 return 0;
6344 }
6345 #endif
6346
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6347 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6348 unsigned long address, unsigned int flags)
6349 {
6350 vm_fault_t ret;
6351 u32 hash;
6352 struct folio *folio = NULL;
6353 struct folio *pagecache_folio = NULL;
6354 struct hstate *h = hstate_vma(vma);
6355 struct address_space *mapping;
6356 int need_wait_lock = 0;
6357 struct vm_fault vmf = {
6358 .vma = vma,
6359 .address = address & huge_page_mask(h),
6360 .real_address = address,
6361 .flags = flags,
6362 .pgoff = vma_hugecache_offset(h, vma,
6363 address & huge_page_mask(h)),
6364 /* TODO: Track hugetlb faults using vm_fault */
6365
6366 /*
6367 * Some fields may not be initialized, be careful as it may
6368 * be hard to debug if called functions make assumptions
6369 */
6370 };
6371
6372 /*
6373 * Serialize hugepage allocation and instantiation, so that we don't
6374 * get spurious allocation failures if two CPUs race to instantiate
6375 * the same page in the page cache.
6376 */
6377 mapping = vma->vm_file->f_mapping;
6378 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6379 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6380
6381 /*
6382 * Acquire vma lock before calling huge_pte_alloc and hold
6383 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6384 * being called elsewhere and making the vmf.pte no longer valid.
6385 */
6386 hugetlb_vma_lock_read(vma);
6387 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6388 if (!vmf.pte) {
6389 hugetlb_vma_unlock_read(vma);
6390 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6391 return VM_FAULT_OOM;
6392 }
6393
6394 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6395 if (huge_pte_none_mostly(vmf.orig_pte)) {
6396 if (is_pte_marker(vmf.orig_pte)) {
6397 pte_marker marker =
6398 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6399
6400 if (marker & PTE_MARKER_POISONED) {
6401 ret = VM_FAULT_HWPOISON_LARGE |
6402 VM_FAULT_SET_HINDEX(hstate_index(h));
6403 goto out_mutex;
6404 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6405 /* This isn't supported in hugetlb. */
6406 ret = VM_FAULT_SIGSEGV;
6407 goto out_mutex;
6408 }
6409 }
6410
6411 /*
6412 * Other PTE markers should be handled the same way as none PTE.
6413 *
6414 * hugetlb_no_page will drop vma lock and hugetlb fault
6415 * mutex internally, which make us return immediately.
6416 */
6417 return hugetlb_no_page(mapping, &vmf);
6418 }
6419
6420 ret = 0;
6421
6422 /*
6423 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6424 * point, so this check prevents the kernel from going below assuming
6425 * that we have an active hugepage in pagecache. This goto expects
6426 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6427 * check will properly handle it.
6428 */
6429 if (!pte_present(vmf.orig_pte)) {
6430 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6431 /*
6432 * Release the hugetlb fault lock now, but retain
6433 * the vma lock, because it is needed to guard the
6434 * huge_pte_lockptr() later in
6435 * migration_entry_wait_huge(). The vma lock will
6436 * be released there.
6437 */
6438 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6439 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6440 return 0;
6441 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6442 ret = VM_FAULT_HWPOISON_LARGE |
6443 VM_FAULT_SET_HINDEX(hstate_index(h));
6444 goto out_mutex;
6445 }
6446
6447 /*
6448 * If we are going to COW/unshare the mapping later, we examine the
6449 * pending reservations for this page now. This will ensure that any
6450 * allocations necessary to record that reservation occur outside the
6451 * spinlock. Also lookup the pagecache page now as it is used to
6452 * determine if a reservation has been consumed.
6453 */
6454 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6455 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6456 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6457 ret = VM_FAULT_OOM;
6458 goto out_mutex;
6459 }
6460 /* Just decrements count, does not deallocate */
6461 vma_end_reservation(h, vma, vmf.address);
6462
6463 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6464 vmf.pgoff);
6465 if (IS_ERR(pagecache_folio))
6466 pagecache_folio = NULL;
6467 }
6468
6469 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6470
6471 /* Check for a racing update before calling hugetlb_wp() */
6472 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6473 goto out_ptl;
6474
6475 /* Handle userfault-wp first, before trying to lock more pages */
6476 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6477 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6478 if (!userfaultfd_wp_async(vma)) {
6479 spin_unlock(vmf.ptl);
6480 if (pagecache_folio) {
6481 folio_unlock(pagecache_folio);
6482 folio_put(pagecache_folio);
6483 }
6484 hugetlb_vma_unlock_read(vma);
6485 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6486 return handle_userfault(&vmf, VM_UFFD_WP);
6487 }
6488
6489 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6490 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6491 huge_page_size(hstate_vma(vma)));
6492 /* Fallthrough to CoW */
6493 }
6494
6495 /*
6496 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6497 * pagecache_folio, so here we need take the former one
6498 * when folio != pagecache_folio or !pagecache_folio.
6499 */
6500 folio = page_folio(pte_page(vmf.orig_pte));
6501 if (folio != pagecache_folio)
6502 if (!folio_trylock(folio)) {
6503 need_wait_lock = 1;
6504 goto out_ptl;
6505 }
6506
6507 folio_get(folio);
6508
6509 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6510 if (!huge_pte_write(vmf.orig_pte)) {
6511 ret = hugetlb_wp(pagecache_folio, &vmf);
6512 goto out_put_page;
6513 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6514 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6515 }
6516 }
6517 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6518 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6519 flags & FAULT_FLAG_WRITE))
6520 update_mmu_cache(vma, vmf.address, vmf.pte);
6521 out_put_page:
6522 if (folio != pagecache_folio)
6523 folio_unlock(folio);
6524 folio_put(folio);
6525 out_ptl:
6526 spin_unlock(vmf.ptl);
6527
6528 if (pagecache_folio) {
6529 folio_unlock(pagecache_folio);
6530 folio_put(pagecache_folio);
6531 }
6532 out_mutex:
6533 hugetlb_vma_unlock_read(vma);
6534
6535 /*
6536 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6537 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6538 */
6539 if (unlikely(ret & VM_FAULT_RETRY))
6540 vma_end_read(vma);
6541
6542 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6543 /*
6544 * Generally it's safe to hold refcount during waiting page lock. But
6545 * here we just wait to defer the next page fault to avoid busy loop and
6546 * the page is not used after unlocked before returning from the current
6547 * page fault. So we are safe from accessing freed page, even if we wait
6548 * here without taking refcount.
6549 */
6550 if (need_wait_lock)
6551 folio_wait_locked(folio);
6552 return ret;
6553 }
6554
6555 #ifdef CONFIG_USERFAULTFD
6556 /*
6557 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6558 */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6559 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6560 struct vm_area_struct *vma, unsigned long address)
6561 {
6562 struct mempolicy *mpol;
6563 nodemask_t *nodemask;
6564 struct folio *folio;
6565 gfp_t gfp_mask;
6566 int node;
6567
6568 gfp_mask = htlb_alloc_mask(h);
6569 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6570 /*
6571 * This is used to allocate a temporary hugetlb to hold the copied
6572 * content, which will then be copied again to the final hugetlb
6573 * consuming a reservation. Set the alloc_fallback to false to indicate
6574 * that breaking the per-node hugetlb pool is not allowed in this case.
6575 */
6576 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6577 mpol_cond_put(mpol);
6578
6579 return folio;
6580 }
6581
6582 /*
6583 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6584 * with modifications for hugetlb pages.
6585 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6586 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6587 struct vm_area_struct *dst_vma,
6588 unsigned long dst_addr,
6589 unsigned long src_addr,
6590 uffd_flags_t flags,
6591 struct folio **foliop)
6592 {
6593 struct mm_struct *dst_mm = dst_vma->vm_mm;
6594 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6595 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6596 struct hstate *h = hstate_vma(dst_vma);
6597 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6598 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6599 unsigned long size = huge_page_size(h);
6600 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6601 pte_t _dst_pte;
6602 spinlock_t *ptl;
6603 int ret = -ENOMEM;
6604 struct folio *folio;
6605 bool folio_in_pagecache = false;
6606
6607 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6608 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6609
6610 /* Don't overwrite any existing PTEs (even markers) */
6611 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6612 spin_unlock(ptl);
6613 return -EEXIST;
6614 }
6615
6616 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6617 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6618
6619 /* No need to invalidate - it was non-present before */
6620 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6621
6622 spin_unlock(ptl);
6623 return 0;
6624 }
6625
6626 if (is_continue) {
6627 ret = -EFAULT;
6628 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6629 if (IS_ERR(folio))
6630 goto out;
6631 folio_in_pagecache = true;
6632 } else if (!*foliop) {
6633 /* If a folio already exists, then it's UFFDIO_COPY for
6634 * a non-missing case. Return -EEXIST.
6635 */
6636 if (vm_shared &&
6637 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6638 ret = -EEXIST;
6639 goto out;
6640 }
6641
6642 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6643 if (IS_ERR(folio)) {
6644 ret = -ENOMEM;
6645 goto out;
6646 }
6647
6648 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6649 false);
6650
6651 /* fallback to copy_from_user outside mmap_lock */
6652 if (unlikely(ret)) {
6653 ret = -ENOENT;
6654 /* Free the allocated folio which may have
6655 * consumed a reservation.
6656 */
6657 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6658 folio_put(folio);
6659
6660 /* Allocate a temporary folio to hold the copied
6661 * contents.
6662 */
6663 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6664 if (!folio) {
6665 ret = -ENOMEM;
6666 goto out;
6667 }
6668 *foliop = folio;
6669 /* Set the outparam foliop and return to the caller to
6670 * copy the contents outside the lock. Don't free the
6671 * folio.
6672 */
6673 goto out;
6674 }
6675 } else {
6676 if (vm_shared &&
6677 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6678 folio_put(*foliop);
6679 ret = -EEXIST;
6680 *foliop = NULL;
6681 goto out;
6682 }
6683
6684 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6685 if (IS_ERR(folio)) {
6686 folio_put(*foliop);
6687 ret = -ENOMEM;
6688 *foliop = NULL;
6689 goto out;
6690 }
6691 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6692 folio_put(*foliop);
6693 *foliop = NULL;
6694 if (ret) {
6695 folio_put(folio);
6696 goto out;
6697 }
6698 }
6699
6700 /*
6701 * If we just allocated a new page, we need a memory barrier to ensure
6702 * that preceding stores to the page become visible before the
6703 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6704 * is what we need.
6705 *
6706 * In the case where we have not allocated a new page (is_continue),
6707 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6708 * an earlier smp_wmb() to ensure that prior stores will be visible
6709 * before the set_pte_at() write.
6710 */
6711 if (!is_continue)
6712 __folio_mark_uptodate(folio);
6713 else
6714 WARN_ON_ONCE(!folio_test_uptodate(folio));
6715
6716 /* Add shared, newly allocated pages to the page cache. */
6717 if (vm_shared && !is_continue) {
6718 ret = -EFAULT;
6719 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6720 goto out_release_nounlock;
6721
6722 /*
6723 * Serialization between remove_inode_hugepages() and
6724 * hugetlb_add_to_page_cache() below happens through the
6725 * hugetlb_fault_mutex_table that here must be hold by
6726 * the caller.
6727 */
6728 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6729 if (ret)
6730 goto out_release_nounlock;
6731 folio_in_pagecache = true;
6732 }
6733
6734 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6735
6736 ret = -EIO;
6737 if (folio_test_hwpoison(folio))
6738 goto out_release_unlock;
6739
6740 /*
6741 * We allow to overwrite a pte marker: consider when both MISSING|WP
6742 * registered, we firstly wr-protect a none pte which has no page cache
6743 * page backing it, then access the page.
6744 */
6745 ret = -EEXIST;
6746 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
6747 goto out_release_unlock;
6748
6749 if (folio_in_pagecache)
6750 hugetlb_add_file_rmap(folio);
6751 else
6752 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6753
6754 /*
6755 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6756 * with wp flag set, don't set pte write bit.
6757 */
6758 _dst_pte = make_huge_pte(dst_vma, &folio->page,
6759 !wp_enabled && !(is_continue && !vm_shared));
6760 /*
6761 * Always mark UFFDIO_COPY page dirty; note that this may not be
6762 * extremely important for hugetlbfs for now since swapping is not
6763 * supported, but we should still be clear in that this page cannot be
6764 * thrown away at will, even if write bit not set.
6765 */
6766 _dst_pte = huge_pte_mkdirty(_dst_pte);
6767 _dst_pte = pte_mkyoung(_dst_pte);
6768
6769 if (wp_enabled)
6770 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6771
6772 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6773
6774 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6775
6776 /* No need to invalidate - it was non-present before */
6777 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6778
6779 spin_unlock(ptl);
6780 if (!is_continue)
6781 folio_set_hugetlb_migratable(folio);
6782 if (vm_shared || is_continue)
6783 folio_unlock(folio);
6784 ret = 0;
6785 out:
6786 return ret;
6787 out_release_unlock:
6788 spin_unlock(ptl);
6789 if (vm_shared || is_continue)
6790 folio_unlock(folio);
6791 out_release_nounlock:
6792 if (!folio_in_pagecache)
6793 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6794 folio_put(folio);
6795 goto out;
6796 }
6797 #endif /* CONFIG_USERFAULTFD */
6798
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6799 long hugetlb_change_protection(struct vm_area_struct *vma,
6800 unsigned long address, unsigned long end,
6801 pgprot_t newprot, unsigned long cp_flags)
6802 {
6803 struct mm_struct *mm = vma->vm_mm;
6804 unsigned long start = address;
6805 pte_t *ptep;
6806 pte_t pte;
6807 struct hstate *h = hstate_vma(vma);
6808 long pages = 0, psize = huge_page_size(h);
6809 bool shared_pmd = false;
6810 struct mmu_notifier_range range;
6811 unsigned long last_addr_mask;
6812 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6813 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6814
6815 /*
6816 * In the case of shared PMDs, the area to flush could be beyond
6817 * start/end. Set range.start/range.end to cover the maximum possible
6818 * range if PMD sharing is possible.
6819 */
6820 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6821 0, mm, start, end);
6822 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6823
6824 BUG_ON(address >= end);
6825 flush_cache_range(vma, range.start, range.end);
6826
6827 mmu_notifier_invalidate_range_start(&range);
6828 hugetlb_vma_lock_write(vma);
6829 i_mmap_lock_write(vma->vm_file->f_mapping);
6830 last_addr_mask = hugetlb_mask_last_page(h);
6831 for (; address < end; address += psize) {
6832 spinlock_t *ptl;
6833 ptep = hugetlb_walk(vma, address, psize);
6834 if (!ptep) {
6835 if (!uffd_wp) {
6836 address |= last_addr_mask;
6837 continue;
6838 }
6839 /*
6840 * Userfaultfd wr-protect requires pgtable
6841 * pre-allocations to install pte markers.
6842 */
6843 ptep = huge_pte_alloc(mm, vma, address, psize);
6844 if (!ptep) {
6845 pages = -ENOMEM;
6846 break;
6847 }
6848 }
6849 ptl = huge_pte_lock(h, mm, ptep);
6850 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6851 /*
6852 * When uffd-wp is enabled on the vma, unshare
6853 * shouldn't happen at all. Warn about it if it
6854 * happened due to some reason.
6855 */
6856 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6857 pages++;
6858 spin_unlock(ptl);
6859 shared_pmd = true;
6860 address |= last_addr_mask;
6861 continue;
6862 }
6863 pte = huge_ptep_get(mm, address, ptep);
6864 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6865 /* Nothing to do. */
6866 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6867 swp_entry_t entry = pte_to_swp_entry(pte);
6868 struct page *page = pfn_swap_entry_to_page(entry);
6869 pte_t newpte = pte;
6870
6871 if (is_writable_migration_entry(entry)) {
6872 if (PageAnon(page))
6873 entry = make_readable_exclusive_migration_entry(
6874 swp_offset(entry));
6875 else
6876 entry = make_readable_migration_entry(
6877 swp_offset(entry));
6878 newpte = swp_entry_to_pte(entry);
6879 pages++;
6880 }
6881
6882 if (uffd_wp)
6883 newpte = pte_swp_mkuffd_wp(newpte);
6884 else if (uffd_wp_resolve)
6885 newpte = pte_swp_clear_uffd_wp(newpte);
6886 if (!pte_same(pte, newpte))
6887 set_huge_pte_at(mm, address, ptep, newpte, psize);
6888 } else if (unlikely(is_pte_marker(pte))) {
6889 /*
6890 * Do nothing on a poison marker; page is
6891 * corrupted, permissons do not apply. Here
6892 * pte_marker_uffd_wp()==true implies !poison
6893 * because they're mutual exclusive.
6894 */
6895 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
6896 /* Safe to modify directly (non-present->none). */
6897 huge_pte_clear(mm, address, ptep, psize);
6898 } else if (!huge_pte_none(pte)) {
6899 pte_t old_pte;
6900 unsigned int shift = huge_page_shift(hstate_vma(vma));
6901
6902 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6903 pte = huge_pte_modify(old_pte, newprot);
6904 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6905 if (uffd_wp)
6906 pte = huge_pte_mkuffd_wp(pte);
6907 else if (uffd_wp_resolve)
6908 pte = huge_pte_clear_uffd_wp(pte);
6909 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6910 pages++;
6911 } else {
6912 /* None pte */
6913 if (unlikely(uffd_wp))
6914 /* Safe to modify directly (none->non-present). */
6915 set_huge_pte_at(mm, address, ptep,
6916 make_pte_marker(PTE_MARKER_UFFD_WP),
6917 psize);
6918 }
6919 spin_unlock(ptl);
6920 }
6921 /*
6922 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6923 * may have cleared our pud entry and done put_page on the page table:
6924 * once we release i_mmap_rwsem, another task can do the final put_page
6925 * and that page table be reused and filled with junk. If we actually
6926 * did unshare a page of pmds, flush the range corresponding to the pud.
6927 */
6928 if (shared_pmd)
6929 flush_hugetlb_tlb_range(vma, range.start, range.end);
6930 else
6931 flush_hugetlb_tlb_range(vma, start, end);
6932 /*
6933 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6934 * downgrading page table protection not changing it to point to a new
6935 * page.
6936 *
6937 * See Documentation/mm/mmu_notifier.rst
6938 */
6939 i_mmap_unlock_write(vma->vm_file->f_mapping);
6940 hugetlb_vma_unlock_write(vma);
6941 mmu_notifier_invalidate_range_end(&range);
6942
6943 return pages > 0 ? (pages << h->order) : pages;
6944 }
6945
6946 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6947 bool hugetlb_reserve_pages(struct inode *inode,
6948 long from, long to,
6949 struct vm_area_struct *vma,
6950 vm_flags_t vm_flags)
6951 {
6952 long chg = -1, add = -1;
6953 struct hstate *h = hstate_inode(inode);
6954 struct hugepage_subpool *spool = subpool_inode(inode);
6955 struct resv_map *resv_map;
6956 struct hugetlb_cgroup *h_cg = NULL;
6957 long gbl_reserve, regions_needed = 0;
6958
6959 /* This should never happen */
6960 if (from > to) {
6961 VM_WARN(1, "%s called with a negative range\n", __func__);
6962 return false;
6963 }
6964
6965 /*
6966 * vma specific semaphore used for pmd sharing and fault/truncation
6967 * synchronization
6968 */
6969 hugetlb_vma_lock_alloc(vma);
6970
6971 /*
6972 * Only apply hugepage reservation if asked. At fault time, an
6973 * attempt will be made for VM_NORESERVE to allocate a page
6974 * without using reserves
6975 */
6976 if (vm_flags & VM_NORESERVE)
6977 return true;
6978
6979 /*
6980 * Shared mappings base their reservation on the number of pages that
6981 * are already allocated on behalf of the file. Private mappings need
6982 * to reserve the full area even if read-only as mprotect() may be
6983 * called to make the mapping read-write. Assume !vma is a shm mapping
6984 */
6985 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6986 /*
6987 * resv_map can not be NULL as hugetlb_reserve_pages is only
6988 * called for inodes for which resv_maps were created (see
6989 * hugetlbfs_get_inode).
6990 */
6991 resv_map = inode_resv_map(inode);
6992
6993 chg = region_chg(resv_map, from, to, ®ions_needed);
6994 } else {
6995 /* Private mapping. */
6996 resv_map = resv_map_alloc();
6997 if (!resv_map)
6998 goto out_err;
6999
7000 chg = to - from;
7001
7002 set_vma_resv_map(vma, resv_map);
7003 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7004 }
7005
7006 if (chg < 0)
7007 goto out_err;
7008
7009 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7010 chg * pages_per_huge_page(h), &h_cg) < 0)
7011 goto out_err;
7012
7013 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7014 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7015 * of the resv_map.
7016 */
7017 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7018 }
7019
7020 /*
7021 * There must be enough pages in the subpool for the mapping. If
7022 * the subpool has a minimum size, there may be some global
7023 * reservations already in place (gbl_reserve).
7024 */
7025 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7026 if (gbl_reserve < 0)
7027 goto out_uncharge_cgroup;
7028
7029 /*
7030 * Check enough hugepages are available for the reservation.
7031 * Hand the pages back to the subpool if there are not
7032 */
7033 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7034 goto out_put_pages;
7035
7036 /*
7037 * Account for the reservations made. Shared mappings record regions
7038 * that have reservations as they are shared by multiple VMAs.
7039 * When the last VMA disappears, the region map says how much
7040 * the reservation was and the page cache tells how much of
7041 * the reservation was consumed. Private mappings are per-VMA and
7042 * only the consumed reservations are tracked. When the VMA
7043 * disappears, the original reservation is the VMA size and the
7044 * consumed reservations are stored in the map. Hence, nothing
7045 * else has to be done for private mappings here
7046 */
7047 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7048 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7049
7050 if (unlikely(add < 0)) {
7051 hugetlb_acct_memory(h, -gbl_reserve);
7052 goto out_put_pages;
7053 } else if (unlikely(chg > add)) {
7054 /*
7055 * pages in this range were added to the reserve
7056 * map between region_chg and region_add. This
7057 * indicates a race with alloc_hugetlb_folio. Adjust
7058 * the subpool and reserve counts modified above
7059 * based on the difference.
7060 */
7061 long rsv_adjust;
7062
7063 /*
7064 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7065 * reference to h_cg->css. See comment below for detail.
7066 */
7067 hugetlb_cgroup_uncharge_cgroup_rsvd(
7068 hstate_index(h),
7069 (chg - add) * pages_per_huge_page(h), h_cg);
7070
7071 rsv_adjust = hugepage_subpool_put_pages(spool,
7072 chg - add);
7073 hugetlb_acct_memory(h, -rsv_adjust);
7074 } else if (h_cg) {
7075 /*
7076 * The file_regions will hold their own reference to
7077 * h_cg->css. So we should release the reference held
7078 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7079 * done.
7080 */
7081 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7082 }
7083 }
7084 return true;
7085
7086 out_put_pages:
7087 /* put back original number of pages, chg */
7088 (void)hugepage_subpool_put_pages(spool, chg);
7089 out_uncharge_cgroup:
7090 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7091 chg * pages_per_huge_page(h), h_cg);
7092 out_err:
7093 hugetlb_vma_lock_free(vma);
7094 if (!vma || vma->vm_flags & VM_MAYSHARE)
7095 /* Only call region_abort if the region_chg succeeded but the
7096 * region_add failed or didn't run.
7097 */
7098 if (chg >= 0 && add < 0)
7099 region_abort(resv_map, from, to, regions_needed);
7100 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7101 kref_put(&resv_map->refs, resv_map_release);
7102 set_vma_resv_map(vma, NULL);
7103 }
7104 return false;
7105 }
7106
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7107 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7108 long freed)
7109 {
7110 struct hstate *h = hstate_inode(inode);
7111 struct resv_map *resv_map = inode_resv_map(inode);
7112 long chg = 0;
7113 struct hugepage_subpool *spool = subpool_inode(inode);
7114 long gbl_reserve;
7115
7116 /*
7117 * Since this routine can be called in the evict inode path for all
7118 * hugetlbfs inodes, resv_map could be NULL.
7119 */
7120 if (resv_map) {
7121 chg = region_del(resv_map, start, end);
7122 /*
7123 * region_del() can fail in the rare case where a region
7124 * must be split and another region descriptor can not be
7125 * allocated. If end == LONG_MAX, it will not fail.
7126 */
7127 if (chg < 0)
7128 return chg;
7129 }
7130
7131 spin_lock(&inode->i_lock);
7132 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7133 spin_unlock(&inode->i_lock);
7134
7135 /*
7136 * If the subpool has a minimum size, the number of global
7137 * reservations to be released may be adjusted.
7138 *
7139 * Note that !resv_map implies freed == 0. So (chg - freed)
7140 * won't go negative.
7141 */
7142 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7143 hugetlb_acct_memory(h, -gbl_reserve);
7144
7145 return 0;
7146 }
7147
7148 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7149 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7150 struct vm_area_struct *vma,
7151 unsigned long addr, pgoff_t idx)
7152 {
7153 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7154 svma->vm_start;
7155 unsigned long sbase = saddr & PUD_MASK;
7156 unsigned long s_end = sbase + PUD_SIZE;
7157
7158 /* Allow segments to share if only one is marked locked */
7159 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7160 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7161
7162 /*
7163 * match the virtual addresses, permission and the alignment of the
7164 * page table page.
7165 *
7166 * Also, vma_lock (vm_private_data) is required for sharing.
7167 */
7168 if (pmd_index(addr) != pmd_index(saddr) ||
7169 vm_flags != svm_flags ||
7170 !range_in_vma(svma, sbase, s_end) ||
7171 !svma->vm_private_data)
7172 return 0;
7173
7174 return saddr;
7175 }
7176
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7177 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7178 {
7179 unsigned long start = addr & PUD_MASK;
7180 unsigned long end = start + PUD_SIZE;
7181
7182 #ifdef CONFIG_USERFAULTFD
7183 if (uffd_disable_huge_pmd_share(vma))
7184 return false;
7185 #endif
7186 /*
7187 * check on proper vm_flags and page table alignment
7188 */
7189 if (!(vma->vm_flags & VM_MAYSHARE))
7190 return false;
7191 if (!vma->vm_private_data) /* vma lock required for sharing */
7192 return false;
7193 if (!range_in_vma(vma, start, end))
7194 return false;
7195 return true;
7196 }
7197
7198 /*
7199 * Determine if start,end range within vma could be mapped by shared pmd.
7200 * If yes, adjust start and end to cover range associated with possible
7201 * shared pmd mappings.
7202 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7203 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7204 unsigned long *start, unsigned long *end)
7205 {
7206 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7207 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7208
7209 /*
7210 * vma needs to span at least one aligned PUD size, and the range
7211 * must be at least partially within in.
7212 */
7213 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7214 (*end <= v_start) || (*start >= v_end))
7215 return;
7216
7217 /* Extend the range to be PUD aligned for a worst case scenario */
7218 if (*start > v_start)
7219 *start = ALIGN_DOWN(*start, PUD_SIZE);
7220
7221 if (*end < v_end)
7222 *end = ALIGN(*end, PUD_SIZE);
7223 }
7224
7225 /*
7226 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7227 * and returns the corresponding pte. While this is not necessary for the
7228 * !shared pmd case because we can allocate the pmd later as well, it makes the
7229 * code much cleaner. pmd allocation is essential for the shared case because
7230 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7231 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7232 * bad pmd for sharing.
7233 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7234 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7235 unsigned long addr, pud_t *pud)
7236 {
7237 struct address_space *mapping = vma->vm_file->f_mapping;
7238 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7239 vma->vm_pgoff;
7240 struct vm_area_struct *svma;
7241 unsigned long saddr;
7242 pte_t *spte = NULL;
7243 pte_t *pte;
7244
7245 i_mmap_lock_read(mapping);
7246 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7247 if (svma == vma)
7248 continue;
7249
7250 saddr = page_table_shareable(svma, vma, addr, idx);
7251 if (saddr) {
7252 spte = hugetlb_walk(svma, saddr,
7253 vma_mmu_pagesize(svma));
7254 if (spte) {
7255 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7256 break;
7257 }
7258 }
7259 }
7260
7261 if (!spte)
7262 goto out;
7263
7264 spin_lock(&mm->page_table_lock);
7265 if (pud_none(*pud)) {
7266 pud_populate(mm, pud,
7267 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7268 mm_inc_nr_pmds(mm);
7269 } else {
7270 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7271 }
7272 spin_unlock(&mm->page_table_lock);
7273 out:
7274 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7275 i_mmap_unlock_read(mapping);
7276 return pte;
7277 }
7278
7279 /*
7280 * unmap huge page backed by shared pte.
7281 *
7282 * Called with page table lock held.
7283 *
7284 * returns: 1 successfully unmapped a shared pte page
7285 * 0 the underlying pte page is not shared, or it is the last user
7286 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7287 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7288 unsigned long addr, pte_t *ptep)
7289 {
7290 unsigned long sz = huge_page_size(hstate_vma(vma));
7291 pgd_t *pgd = pgd_offset(mm, addr);
7292 p4d_t *p4d = p4d_offset(pgd, addr);
7293 pud_t *pud = pud_offset(p4d, addr);
7294
7295 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7296 hugetlb_vma_assert_locked(vma);
7297 if (sz != PMD_SIZE)
7298 return 0;
7299 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7300 return 0;
7301
7302 pud_clear(pud);
7303 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7304 mm_dec_nr_pmds(mm);
7305 return 1;
7306 }
7307
7308 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7309
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7310 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7311 unsigned long addr, pud_t *pud)
7312 {
7313 return NULL;
7314 }
7315
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7316 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7317 unsigned long addr, pte_t *ptep)
7318 {
7319 return 0;
7320 }
7321
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7322 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7323 unsigned long *start, unsigned long *end)
7324 {
7325 }
7326
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7327 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7328 {
7329 return false;
7330 }
7331 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7332
7333 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7334 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7335 unsigned long addr, unsigned long sz)
7336 {
7337 pgd_t *pgd;
7338 p4d_t *p4d;
7339 pud_t *pud;
7340 pte_t *pte = NULL;
7341
7342 pgd = pgd_offset(mm, addr);
7343 p4d = p4d_alloc(mm, pgd, addr);
7344 if (!p4d)
7345 return NULL;
7346 pud = pud_alloc(mm, p4d, addr);
7347 if (pud) {
7348 if (sz == PUD_SIZE) {
7349 pte = (pte_t *)pud;
7350 } else {
7351 BUG_ON(sz != PMD_SIZE);
7352 if (want_pmd_share(vma, addr) && pud_none(*pud))
7353 pte = huge_pmd_share(mm, vma, addr, pud);
7354 else
7355 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7356 }
7357 }
7358
7359 if (pte) {
7360 pte_t pteval = ptep_get_lockless(pte);
7361
7362 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7363 }
7364
7365 return pte;
7366 }
7367
7368 /*
7369 * huge_pte_offset() - Walk the page table to resolve the hugepage
7370 * entry at address @addr
7371 *
7372 * Return: Pointer to page table entry (PUD or PMD) for
7373 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7374 * size @sz doesn't match the hugepage size at this level of the page
7375 * table.
7376 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7377 pte_t *huge_pte_offset(struct mm_struct *mm,
7378 unsigned long addr, unsigned long sz)
7379 {
7380 pgd_t *pgd;
7381 p4d_t *p4d;
7382 pud_t *pud;
7383 pmd_t *pmd;
7384
7385 pgd = pgd_offset(mm, addr);
7386 if (!pgd_present(*pgd))
7387 return NULL;
7388 p4d = p4d_offset(pgd, addr);
7389 if (!p4d_present(*p4d))
7390 return NULL;
7391
7392 pud = pud_offset(p4d, addr);
7393 if (sz == PUD_SIZE)
7394 /* must be pud huge, non-present or none */
7395 return (pte_t *)pud;
7396 if (!pud_present(*pud))
7397 return NULL;
7398 /* must have a valid entry and size to go further */
7399
7400 pmd = pmd_offset(pud, addr);
7401 /* must be pmd huge, non-present or none */
7402 return (pte_t *)pmd;
7403 }
7404
7405 /*
7406 * Return a mask that can be used to update an address to the last huge
7407 * page in a page table page mapping size. Used to skip non-present
7408 * page table entries when linearly scanning address ranges. Architectures
7409 * with unique huge page to page table relationships can define their own
7410 * version of this routine.
7411 */
hugetlb_mask_last_page(struct hstate * h)7412 unsigned long hugetlb_mask_last_page(struct hstate *h)
7413 {
7414 unsigned long hp_size = huge_page_size(h);
7415
7416 if (hp_size == PUD_SIZE)
7417 return P4D_SIZE - PUD_SIZE;
7418 else if (hp_size == PMD_SIZE)
7419 return PUD_SIZE - PMD_SIZE;
7420 else
7421 return 0UL;
7422 }
7423
7424 #else
7425
7426 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7427 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7428 {
7429 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7430 if (huge_page_size(h) == PMD_SIZE)
7431 return PUD_SIZE - PMD_SIZE;
7432 #endif
7433 return 0UL;
7434 }
7435
7436 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7437
7438 /**
7439 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7440 * @folio: the folio to isolate
7441 * @list: the list to add the folio to on success
7442 *
7443 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7444 * isolated/non-migratable, and moving it from the active list to the
7445 * given list.
7446 *
7447 * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7448 * it is already isolated/non-migratable.
7449 *
7450 * On success, an additional folio reference is taken that must be dropped
7451 * using folio_putback_hugetlb() to undo the isolation.
7452 *
7453 * Return: True if isolation worked, otherwise False.
7454 */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7455 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7456 {
7457 bool ret = true;
7458
7459 spin_lock_irq(&hugetlb_lock);
7460 if (!folio_test_hugetlb(folio) ||
7461 !folio_test_hugetlb_migratable(folio) ||
7462 !folio_try_get(folio)) {
7463 ret = false;
7464 goto unlock;
7465 }
7466 folio_clear_hugetlb_migratable(folio);
7467 list_move_tail(&folio->lru, list);
7468 unlock:
7469 spin_unlock_irq(&hugetlb_lock);
7470 return ret;
7471 }
7472
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7473 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7474 {
7475 int ret = 0;
7476
7477 *hugetlb = false;
7478 spin_lock_irq(&hugetlb_lock);
7479 if (folio_test_hugetlb(folio)) {
7480 *hugetlb = true;
7481 if (folio_test_hugetlb_freed(folio))
7482 ret = 0;
7483 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7484 ret = folio_try_get(folio);
7485 else
7486 ret = -EBUSY;
7487 }
7488 spin_unlock_irq(&hugetlb_lock);
7489 return ret;
7490 }
7491
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7492 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7493 bool *migratable_cleared)
7494 {
7495 int ret;
7496
7497 spin_lock_irq(&hugetlb_lock);
7498 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7499 spin_unlock_irq(&hugetlb_lock);
7500 return ret;
7501 }
7502
7503 /**
7504 * folio_putback_hugetlb - unisolate a hugetlb folio
7505 * @folio: the isolated hugetlb folio
7506 *
7507 * Putback/un-isolate the hugetlb folio that was previous isolated using
7508 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7509 * back onto the active list.
7510 *
7511 * Will drop the additional folio reference obtained through
7512 * folio_isolate_hugetlb().
7513 */
folio_putback_hugetlb(struct folio * folio)7514 void folio_putback_hugetlb(struct folio *folio)
7515 {
7516 spin_lock_irq(&hugetlb_lock);
7517 folio_set_hugetlb_migratable(folio);
7518 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7519 spin_unlock_irq(&hugetlb_lock);
7520 folio_put(folio);
7521 }
7522
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7523 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7524 {
7525 struct hstate *h = folio_hstate(old_folio);
7526
7527 hugetlb_cgroup_migrate(old_folio, new_folio);
7528 set_page_owner_migrate_reason(&new_folio->page, reason);
7529
7530 /*
7531 * transfer temporary state of the new hugetlb folio. This is
7532 * reverse to other transitions because the newpage is going to
7533 * be final while the old one will be freed so it takes over
7534 * the temporary status.
7535 *
7536 * Also note that we have to transfer the per-node surplus state
7537 * here as well otherwise the global surplus count will not match
7538 * the per-node's.
7539 */
7540 if (folio_test_hugetlb_temporary(new_folio)) {
7541 int old_nid = folio_nid(old_folio);
7542 int new_nid = folio_nid(new_folio);
7543
7544 folio_set_hugetlb_temporary(old_folio);
7545 folio_clear_hugetlb_temporary(new_folio);
7546
7547
7548 /*
7549 * There is no need to transfer the per-node surplus state
7550 * when we do not cross the node.
7551 */
7552 if (new_nid == old_nid)
7553 return;
7554 spin_lock_irq(&hugetlb_lock);
7555 if (h->surplus_huge_pages_node[old_nid]) {
7556 h->surplus_huge_pages_node[old_nid]--;
7557 h->surplus_huge_pages_node[new_nid]++;
7558 }
7559 spin_unlock_irq(&hugetlb_lock);
7560 }
7561
7562 /*
7563 * Our old folio is isolated and has "migratable" cleared until it
7564 * is putback. As migration succeeded, set the new folio "migratable"
7565 * and add it to the active list.
7566 */
7567 spin_lock_irq(&hugetlb_lock);
7568 folio_set_hugetlb_migratable(new_folio);
7569 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7570 spin_unlock_irq(&hugetlb_lock);
7571 }
7572
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7573 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7574 unsigned long start,
7575 unsigned long end)
7576 {
7577 struct hstate *h = hstate_vma(vma);
7578 unsigned long sz = huge_page_size(h);
7579 struct mm_struct *mm = vma->vm_mm;
7580 struct mmu_notifier_range range;
7581 unsigned long address;
7582 spinlock_t *ptl;
7583 pte_t *ptep;
7584
7585 if (!(vma->vm_flags & VM_MAYSHARE))
7586 return;
7587
7588 if (start >= end)
7589 return;
7590
7591 flush_cache_range(vma, start, end);
7592 /*
7593 * No need to call adjust_range_if_pmd_sharing_possible(), because
7594 * we have already done the PUD_SIZE alignment.
7595 */
7596 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7597 start, end);
7598 mmu_notifier_invalidate_range_start(&range);
7599 hugetlb_vma_lock_write(vma);
7600 i_mmap_lock_write(vma->vm_file->f_mapping);
7601 for (address = start; address < end; address += PUD_SIZE) {
7602 ptep = hugetlb_walk(vma, address, sz);
7603 if (!ptep)
7604 continue;
7605 ptl = huge_pte_lock(h, mm, ptep);
7606 huge_pmd_unshare(mm, vma, address, ptep);
7607 spin_unlock(ptl);
7608 }
7609 flush_hugetlb_tlb_range(vma, start, end);
7610 i_mmap_unlock_write(vma->vm_file->f_mapping);
7611 hugetlb_vma_unlock_write(vma);
7612 /*
7613 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7614 * Documentation/mm/mmu_notifier.rst.
7615 */
7616 mmu_notifier_invalidate_range_end(&range);
7617 }
7618
7619 /*
7620 * This function will unconditionally remove all the shared pmd pgtable entries
7621 * within the specific vma for a hugetlbfs memory range.
7622 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7623 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7624 {
7625 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7626 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7627 }
7628
7629 #ifdef CONFIG_CMA
7630 static bool cma_reserve_called __initdata;
7631
cmdline_parse_hugetlb_cma(char * p)7632 static int __init cmdline_parse_hugetlb_cma(char *p)
7633 {
7634 int nid, count = 0;
7635 unsigned long tmp;
7636 char *s = p;
7637
7638 while (*s) {
7639 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7640 break;
7641
7642 if (s[count] == ':') {
7643 if (tmp >= MAX_NUMNODES)
7644 break;
7645 nid = array_index_nospec(tmp, MAX_NUMNODES);
7646
7647 s += count + 1;
7648 tmp = memparse(s, &s);
7649 hugetlb_cma_size_in_node[nid] = tmp;
7650 hugetlb_cma_size += tmp;
7651
7652 /*
7653 * Skip the separator if have one, otherwise
7654 * break the parsing.
7655 */
7656 if (*s == ',')
7657 s++;
7658 else
7659 break;
7660 } else {
7661 hugetlb_cma_size = memparse(p, &p);
7662 break;
7663 }
7664 }
7665
7666 return 0;
7667 }
7668
7669 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7670
hugetlb_cma_reserve(int order)7671 void __init hugetlb_cma_reserve(int order)
7672 {
7673 unsigned long size, reserved, per_node;
7674 bool node_specific_cma_alloc = false;
7675 int nid;
7676
7677 /*
7678 * HugeTLB CMA reservation is required for gigantic
7679 * huge pages which could not be allocated via the
7680 * page allocator. Just warn if there is any change
7681 * breaking this assumption.
7682 */
7683 VM_WARN_ON(order <= MAX_PAGE_ORDER);
7684 cma_reserve_called = true;
7685
7686 if (!hugetlb_cma_size)
7687 return;
7688
7689 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7690 if (hugetlb_cma_size_in_node[nid] == 0)
7691 continue;
7692
7693 if (!node_online(nid)) {
7694 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7695 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7696 hugetlb_cma_size_in_node[nid] = 0;
7697 continue;
7698 }
7699
7700 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7701 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7702 nid, (PAGE_SIZE << order) / SZ_1M);
7703 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7704 hugetlb_cma_size_in_node[nid] = 0;
7705 } else {
7706 node_specific_cma_alloc = true;
7707 }
7708 }
7709
7710 /* Validate the CMA size again in case some invalid nodes specified. */
7711 if (!hugetlb_cma_size)
7712 return;
7713
7714 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7715 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7716 (PAGE_SIZE << order) / SZ_1M);
7717 hugetlb_cma_size = 0;
7718 return;
7719 }
7720
7721 if (!node_specific_cma_alloc) {
7722 /*
7723 * If 3 GB area is requested on a machine with 4 numa nodes,
7724 * let's allocate 1 GB on first three nodes and ignore the last one.
7725 */
7726 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7727 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7728 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7729 }
7730
7731 reserved = 0;
7732 for_each_online_node(nid) {
7733 int res;
7734 char name[CMA_MAX_NAME];
7735
7736 if (node_specific_cma_alloc) {
7737 if (hugetlb_cma_size_in_node[nid] == 0)
7738 continue;
7739
7740 size = hugetlb_cma_size_in_node[nid];
7741 } else {
7742 size = min(per_node, hugetlb_cma_size - reserved);
7743 }
7744
7745 size = round_up(size, PAGE_SIZE << order);
7746
7747 snprintf(name, sizeof(name), "hugetlb%d", nid);
7748 /*
7749 * Note that 'order per bit' is based on smallest size that
7750 * may be returned to CMA allocator in the case of
7751 * huge page demotion.
7752 */
7753 res = cma_declare_contiguous_nid(0, size, 0,
7754 PAGE_SIZE << order,
7755 HUGETLB_PAGE_ORDER, false, name,
7756 &hugetlb_cma[nid], nid);
7757 if (res) {
7758 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7759 res, nid);
7760 continue;
7761 }
7762
7763 reserved += size;
7764 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7765 size / SZ_1M, nid);
7766
7767 if (reserved >= hugetlb_cma_size)
7768 break;
7769 }
7770
7771 if (!reserved)
7772 /*
7773 * hugetlb_cma_size is used to determine if allocations from
7774 * cma are possible. Set to zero if no cma regions are set up.
7775 */
7776 hugetlb_cma_size = 0;
7777 }
7778
hugetlb_cma_check(void)7779 static void __init hugetlb_cma_check(void)
7780 {
7781 if (!hugetlb_cma_size || cma_reserve_called)
7782 return;
7783
7784 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7785 }
7786
7787 #endif /* CONFIG_CMA */
7788