xref: /linux/mm/hugetlb.c (revision 7203ca412fc8e8a0588e9adc0f777d3163f8dff3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/minmax.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_choices.h>
27 #include <linux/string_helpers.h>
28 #include <linux/swap.h>
29 #include <linux/leafops.h>
30 #include <linux/jhash.h>
31 #include <linux/numa.h>
32 #include <linux/llist.h>
33 #include <linux/cma.h>
34 #include <linux/migrate.h>
35 #include <linux/nospec.h>
36 #include <linux/delayacct.h>
37 #include <linux/memory.h>
38 #include <linux/mm_inline.h>
39 #include <linux/padata.h>
40 #include <linux/pgalloc.h>
41 
42 #include <asm/page.h>
43 #include <asm/tlb.h>
44 #include <asm/setup.h>
45 
46 #include <linux/io.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 #include "hugetlb_cma.h"
52 #include "hugetlb_internal.h"
53 #include <linux/page-isolation.h>
54 
55 int hugetlb_max_hstate __read_mostly;
56 unsigned int default_hstate_idx;
57 struct hstate hstates[HUGE_MAX_HSTATE];
58 
59 __initdata nodemask_t hugetlb_bootmem_nodes;
60 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
61 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
62 
63 /*
64  * Due to ordering constraints across the init code for various
65  * architectures, hugetlb hstate cmdline parameters can't simply
66  * be early_param. early_param might call the setup function
67  * before valid hugetlb page sizes are determined, leading to
68  * incorrect rejection of valid hugepagesz= options.
69  *
70  * So, record the parameters early and consume them whenever the
71  * init code is ready for them, by calling hugetlb_parse_params().
72  */
73 
74 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
75 #define HUGE_MAX_CMDLINE_ARGS	(2 * HUGE_MAX_HSTATE + 1)
76 struct hugetlb_cmdline {
77 	char *val;
78 	int (*setup)(char *val);
79 };
80 
81 /* for command line parsing */
82 static struct hstate * __initdata parsed_hstate;
83 static unsigned long __initdata default_hstate_max_huge_pages;
84 static bool __initdata parsed_valid_hugepagesz = true;
85 static bool __initdata parsed_default_hugepagesz;
86 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
87 static unsigned long hugepage_allocation_threads __initdata;
88 
89 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
90 static int hstate_cmdline_index __initdata;
91 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
92 static int hugetlb_param_index __initdata;
93 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
94 static __init void hugetlb_parse_params(void);
95 
96 #define hugetlb_early_param(str, func) \
97 static __init int func##args(char *s) \
98 { \
99 	return hugetlb_add_param(s, func); \
100 } \
101 early_param(str, func##args)
102 
103 /*
104  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
105  * free_huge_pages, and surplus_huge_pages.
106  */
107 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
108 
109 /*
110  * Serializes faults on the same logical page.  This is used to
111  * prevent spurious OOMs when the hugepage pool is fully utilized.
112  */
113 static int num_fault_mutexes __ro_after_init;
114 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
115 
116 /* Forward declaration */
117 static int hugetlb_acct_memory(struct hstate *h, long delta);
118 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
119 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
120 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
121 		unsigned long start, unsigned long end, bool take_locks);
122 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
123 
hugetlb_free_folio(struct folio * folio)124 static void hugetlb_free_folio(struct folio *folio)
125 {
126 	if (folio_test_hugetlb_cma(folio)) {
127 		hugetlb_cma_free_folio(folio);
128 		return;
129 	}
130 
131 	folio_put(folio);
132 }
133 
subpool_is_free(struct hugepage_subpool * spool)134 static inline bool subpool_is_free(struct hugepage_subpool *spool)
135 {
136 	if (spool->count)
137 		return false;
138 	if (spool->max_hpages != -1)
139 		return spool->used_hpages == 0;
140 	if (spool->min_hpages != -1)
141 		return spool->rsv_hpages == spool->min_hpages;
142 
143 	return true;
144 }
145 
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)146 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
147 						unsigned long irq_flags)
148 {
149 	spin_unlock_irqrestore(&spool->lock, irq_flags);
150 
151 	/* If no pages are used, and no other handles to the subpool
152 	 * remain, give up any reservations based on minimum size and
153 	 * free the subpool */
154 	if (subpool_is_free(spool)) {
155 		if (spool->min_hpages != -1)
156 			hugetlb_acct_memory(spool->hstate,
157 						-spool->min_hpages);
158 		kfree(spool);
159 	}
160 }
161 
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)162 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
163 						long min_hpages)
164 {
165 	struct hugepage_subpool *spool;
166 
167 	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
168 	if (!spool)
169 		return NULL;
170 
171 	spin_lock_init(&spool->lock);
172 	spool->count = 1;
173 	spool->max_hpages = max_hpages;
174 	spool->hstate = h;
175 	spool->min_hpages = min_hpages;
176 
177 	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
178 		kfree(spool);
179 		return NULL;
180 	}
181 	spool->rsv_hpages = min_hpages;
182 
183 	return spool;
184 }
185 
hugepage_put_subpool(struct hugepage_subpool * spool)186 void hugepage_put_subpool(struct hugepage_subpool *spool)
187 {
188 	unsigned long flags;
189 
190 	spin_lock_irqsave(&spool->lock, flags);
191 	BUG_ON(!spool->count);
192 	spool->count--;
193 	unlock_or_release_subpool(spool, flags);
194 }
195 
196 /*
197  * Subpool accounting for allocating and reserving pages.
198  * Return -ENOMEM if there are not enough resources to satisfy the
199  * request.  Otherwise, return the number of pages by which the
200  * global pools must be adjusted (upward).  The returned value may
201  * only be different than the passed value (delta) in the case where
202  * a subpool minimum size must be maintained.
203  */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)204 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
205 				      long delta)
206 {
207 	long ret = delta;
208 
209 	if (!spool)
210 		return ret;
211 
212 	spin_lock_irq(&spool->lock);
213 
214 	if (spool->max_hpages != -1) {		/* maximum size accounting */
215 		if ((spool->used_hpages + delta) <= spool->max_hpages)
216 			spool->used_hpages += delta;
217 		else {
218 			ret = -ENOMEM;
219 			goto unlock_ret;
220 		}
221 	}
222 
223 	/* minimum size accounting */
224 	if (spool->min_hpages != -1 && spool->rsv_hpages) {
225 		if (delta > spool->rsv_hpages) {
226 			/*
227 			 * Asking for more reserves than those already taken on
228 			 * behalf of subpool.  Return difference.
229 			 */
230 			ret = delta - spool->rsv_hpages;
231 			spool->rsv_hpages = 0;
232 		} else {
233 			ret = 0;	/* reserves already accounted for */
234 			spool->rsv_hpages -= delta;
235 		}
236 	}
237 
238 unlock_ret:
239 	spin_unlock_irq(&spool->lock);
240 	return ret;
241 }
242 
243 /*
244  * Subpool accounting for freeing and unreserving pages.
245  * Return the number of global page reservations that must be dropped.
246  * The return value may only be different than the passed value (delta)
247  * in the case where a subpool minimum size must be maintained.
248  */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)249 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
250 				       long delta)
251 {
252 	long ret = delta;
253 	unsigned long flags;
254 
255 	if (!spool)
256 		return delta;
257 
258 	spin_lock_irqsave(&spool->lock, flags);
259 
260 	if (spool->max_hpages != -1)		/* maximum size accounting */
261 		spool->used_hpages -= delta;
262 
263 	 /* minimum size accounting */
264 	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
265 		if (spool->rsv_hpages + delta <= spool->min_hpages)
266 			ret = 0;
267 		else
268 			ret = spool->rsv_hpages + delta - spool->min_hpages;
269 
270 		spool->rsv_hpages += delta;
271 		if (spool->rsv_hpages > spool->min_hpages)
272 			spool->rsv_hpages = spool->min_hpages;
273 	}
274 
275 	/*
276 	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
277 	 * quota reference, free it now.
278 	 */
279 	unlock_or_release_subpool(spool, flags);
280 
281 	return ret;
282 }
283 
subpool_vma(struct vm_area_struct * vma)284 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
285 {
286 	return subpool_inode(file_inode(vma->vm_file));
287 }
288 
289 /*
290  * hugetlb vma_lock helper routines
291  */
hugetlb_vma_lock_read(struct vm_area_struct * vma)292 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
293 {
294 	if (__vma_shareable_lock(vma)) {
295 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296 
297 		down_read(&vma_lock->rw_sema);
298 	} else if (__vma_private_lock(vma)) {
299 		struct resv_map *resv_map = vma_resv_map(vma);
300 
301 		down_read(&resv_map->rw_sema);
302 	}
303 }
304 
hugetlb_vma_unlock_read(struct vm_area_struct * vma)305 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
306 {
307 	if (__vma_shareable_lock(vma)) {
308 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
309 
310 		up_read(&vma_lock->rw_sema);
311 	} else if (__vma_private_lock(vma)) {
312 		struct resv_map *resv_map = vma_resv_map(vma);
313 
314 		up_read(&resv_map->rw_sema);
315 	}
316 }
317 
hugetlb_vma_lock_write(struct vm_area_struct * vma)318 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
319 {
320 	if (__vma_shareable_lock(vma)) {
321 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322 
323 		down_write(&vma_lock->rw_sema);
324 	} else if (__vma_private_lock(vma)) {
325 		struct resv_map *resv_map = vma_resv_map(vma);
326 
327 		down_write(&resv_map->rw_sema);
328 	}
329 }
330 
hugetlb_vma_unlock_write(struct vm_area_struct * vma)331 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
332 {
333 	if (__vma_shareable_lock(vma)) {
334 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
335 
336 		up_write(&vma_lock->rw_sema);
337 	} else if (__vma_private_lock(vma)) {
338 		struct resv_map *resv_map = vma_resv_map(vma);
339 
340 		up_write(&resv_map->rw_sema);
341 	}
342 }
343 
hugetlb_vma_trylock_write(struct vm_area_struct * vma)344 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
345 {
346 
347 	if (__vma_shareable_lock(vma)) {
348 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
349 
350 		return down_write_trylock(&vma_lock->rw_sema);
351 	} else if (__vma_private_lock(vma)) {
352 		struct resv_map *resv_map = vma_resv_map(vma);
353 
354 		return down_write_trylock(&resv_map->rw_sema);
355 	}
356 
357 	return 1;
358 }
359 
hugetlb_vma_assert_locked(struct vm_area_struct * vma)360 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
361 {
362 	if (__vma_shareable_lock(vma)) {
363 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
364 
365 		lockdep_assert_held(&vma_lock->rw_sema);
366 	} else if (__vma_private_lock(vma)) {
367 		struct resv_map *resv_map = vma_resv_map(vma);
368 
369 		lockdep_assert_held(&resv_map->rw_sema);
370 	}
371 }
372 
hugetlb_vma_lock_release(struct kref * kref)373 void hugetlb_vma_lock_release(struct kref *kref)
374 {
375 	struct hugetlb_vma_lock *vma_lock = container_of(kref,
376 			struct hugetlb_vma_lock, refs);
377 
378 	kfree(vma_lock);
379 }
380 
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)381 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
382 {
383 	struct vm_area_struct *vma = vma_lock->vma;
384 
385 	/*
386 	 * vma_lock structure may or not be released as a result of put,
387 	 * it certainly will no longer be attached to vma so clear pointer.
388 	 * Semaphore synchronizes access to vma_lock->vma field.
389 	 */
390 	vma_lock->vma = NULL;
391 	vma->vm_private_data = NULL;
392 	up_write(&vma_lock->rw_sema);
393 	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
394 }
395 
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)396 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
397 {
398 	if (__vma_shareable_lock(vma)) {
399 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
400 
401 		__hugetlb_vma_unlock_write_put(vma_lock);
402 	} else if (__vma_private_lock(vma)) {
403 		struct resv_map *resv_map = vma_resv_map(vma);
404 
405 		/* no free for anon vmas, but still need to unlock */
406 		up_write(&resv_map->rw_sema);
407 	}
408 }
409 
hugetlb_vma_lock_free(struct vm_area_struct * vma)410 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
411 {
412 	/*
413 	 * Only present in sharable vmas.
414 	 */
415 	if (!vma || !__vma_shareable_lock(vma))
416 		return;
417 
418 	if (vma->vm_private_data) {
419 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
420 
421 		down_write(&vma_lock->rw_sema);
422 		__hugetlb_vma_unlock_write_put(vma_lock);
423 	}
424 }
425 
426 /*
427  * vma specific semaphore used for pmd sharing and fault/truncation
428  * synchronization
429  */
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)430 int hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
431 {
432 	struct hugetlb_vma_lock *vma_lock;
433 
434 	/* Only establish in (flags) sharable vmas */
435 	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
436 		return 0;
437 
438 	/* Should never get here with non-NULL vm_private_data */
439 	if (vma->vm_private_data)
440 		return -EINVAL;
441 
442 	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
443 	if (!vma_lock) {
444 		/*
445 		 * If we can not allocate structure, then vma can not
446 		 * participate in pmd sharing.  This is only a possible
447 		 * performance enhancement and memory saving issue.
448 		 * However, the lock is also used to synchronize page
449 		 * faults with truncation.  If the lock is not present,
450 		 * unlikely races could leave pages in a file past i_size
451 		 * until the file is removed.  Warn in the unlikely case of
452 		 * allocation failure.
453 		 */
454 		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
455 		return -EINVAL;
456 	}
457 
458 	kref_init(&vma_lock->refs);
459 	init_rwsem(&vma_lock->rw_sema);
460 	vma_lock->vma = vma;
461 	vma->vm_private_data = vma_lock;
462 
463 	return 0;
464 }
465 
466 /* Helper that removes a struct file_region from the resv_map cache and returns
467  * it for use.
468  */
469 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)470 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
471 {
472 	struct file_region *nrg;
473 
474 	VM_BUG_ON(resv->region_cache_count <= 0);
475 
476 	resv->region_cache_count--;
477 	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
478 	list_del(&nrg->link);
479 
480 	nrg->from = from;
481 	nrg->to = to;
482 
483 	return nrg;
484 }
485 
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)486 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
487 					      struct file_region *rg)
488 {
489 #ifdef CONFIG_CGROUP_HUGETLB
490 	nrg->reservation_counter = rg->reservation_counter;
491 	nrg->css = rg->css;
492 	if (rg->css)
493 		css_get(rg->css);
494 #endif
495 }
496 
497 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)498 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
499 						struct hstate *h,
500 						struct resv_map *resv,
501 						struct file_region *nrg)
502 {
503 #ifdef CONFIG_CGROUP_HUGETLB
504 	if (h_cg) {
505 		nrg->reservation_counter =
506 			&h_cg->rsvd_hugepage[hstate_index(h)];
507 		nrg->css = &h_cg->css;
508 		/*
509 		 * The caller will hold exactly one h_cg->css reference for the
510 		 * whole contiguous reservation region. But this area might be
511 		 * scattered when there are already some file_regions reside in
512 		 * it. As a result, many file_regions may share only one css
513 		 * reference. In order to ensure that one file_region must hold
514 		 * exactly one h_cg->css reference, we should do css_get for
515 		 * each file_region and leave the reference held by caller
516 		 * untouched.
517 		 */
518 		css_get(&h_cg->css);
519 		if (!resv->pages_per_hpage)
520 			resv->pages_per_hpage = pages_per_huge_page(h);
521 		/* pages_per_hpage should be the same for all entries in
522 		 * a resv_map.
523 		 */
524 		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
525 	} else {
526 		nrg->reservation_counter = NULL;
527 		nrg->css = NULL;
528 	}
529 #endif
530 }
531 
put_uncharge_info(struct file_region * rg)532 static void put_uncharge_info(struct file_region *rg)
533 {
534 #ifdef CONFIG_CGROUP_HUGETLB
535 	if (rg->css)
536 		css_put(rg->css);
537 #endif
538 }
539 
has_same_uncharge_info(struct file_region * rg,struct file_region * org)540 static bool has_same_uncharge_info(struct file_region *rg,
541 				   struct file_region *org)
542 {
543 #ifdef CONFIG_CGROUP_HUGETLB
544 	return rg->reservation_counter == org->reservation_counter &&
545 	       rg->css == org->css;
546 
547 #else
548 	return true;
549 #endif
550 }
551 
coalesce_file_region(struct resv_map * resv,struct file_region * rg)552 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
553 {
554 	struct file_region *nrg, *prg;
555 
556 	prg = list_prev_entry(rg, link);
557 	if (&prg->link != &resv->regions && prg->to == rg->from &&
558 	    has_same_uncharge_info(prg, rg)) {
559 		prg->to = rg->to;
560 
561 		list_del(&rg->link);
562 		put_uncharge_info(rg);
563 		kfree(rg);
564 
565 		rg = prg;
566 	}
567 
568 	nrg = list_next_entry(rg, link);
569 	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
570 	    has_same_uncharge_info(nrg, rg)) {
571 		nrg->from = rg->from;
572 
573 		list_del(&rg->link);
574 		put_uncharge_info(rg);
575 		kfree(rg);
576 	}
577 }
578 
579 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)580 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
581 		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
582 		     long *regions_needed)
583 {
584 	struct file_region *nrg;
585 
586 	if (!regions_needed) {
587 		nrg = get_file_region_entry_from_cache(map, from, to);
588 		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
589 		list_add(&nrg->link, rg);
590 		coalesce_file_region(map, nrg);
591 	} else
592 		*regions_needed += 1;
593 
594 	return to - from;
595 }
596 
597 /*
598  * Must be called with resv->lock held.
599  *
600  * Calling this with regions_needed != NULL will count the number of pages
601  * to be added but will not modify the linked list. And regions_needed will
602  * indicate the number of file_regions needed in the cache to carry out to add
603  * the regions for this range.
604  */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)605 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
606 				     struct hugetlb_cgroup *h_cg,
607 				     struct hstate *h, long *regions_needed)
608 {
609 	long add = 0;
610 	struct list_head *head = &resv->regions;
611 	long last_accounted_offset = f;
612 	struct file_region *iter, *trg = NULL;
613 	struct list_head *rg = NULL;
614 
615 	if (regions_needed)
616 		*regions_needed = 0;
617 
618 	/* In this loop, we essentially handle an entry for the range
619 	 * [last_accounted_offset, iter->from), at every iteration, with some
620 	 * bounds checking.
621 	 */
622 	list_for_each_entry_safe(iter, trg, head, link) {
623 		/* Skip irrelevant regions that start before our range. */
624 		if (iter->from < f) {
625 			/* If this region ends after the last accounted offset,
626 			 * then we need to update last_accounted_offset.
627 			 */
628 			if (iter->to > last_accounted_offset)
629 				last_accounted_offset = iter->to;
630 			continue;
631 		}
632 
633 		/* When we find a region that starts beyond our range, we've
634 		 * finished.
635 		 */
636 		if (iter->from >= t) {
637 			rg = iter->link.prev;
638 			break;
639 		}
640 
641 		/* Add an entry for last_accounted_offset -> iter->from, and
642 		 * update last_accounted_offset.
643 		 */
644 		if (iter->from > last_accounted_offset)
645 			add += hugetlb_resv_map_add(resv, iter->link.prev,
646 						    last_accounted_offset,
647 						    iter->from, h, h_cg,
648 						    regions_needed);
649 
650 		last_accounted_offset = iter->to;
651 	}
652 
653 	/* Handle the case where our range extends beyond
654 	 * last_accounted_offset.
655 	 */
656 	if (!rg)
657 		rg = head->prev;
658 	if (last_accounted_offset < t)
659 		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
660 					    t, h, h_cg, regions_needed);
661 
662 	return add;
663 }
664 
665 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
666  */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)667 static int allocate_file_region_entries(struct resv_map *resv,
668 					int regions_needed)
669 	__must_hold(&resv->lock)
670 {
671 	LIST_HEAD(allocated_regions);
672 	int to_allocate = 0, i = 0;
673 	struct file_region *trg = NULL, *rg = NULL;
674 
675 	VM_BUG_ON(regions_needed < 0);
676 
677 	/*
678 	 * Check for sufficient descriptors in the cache to accommodate
679 	 * the number of in progress add operations plus regions_needed.
680 	 *
681 	 * This is a while loop because when we drop the lock, some other call
682 	 * to region_add or region_del may have consumed some region_entries,
683 	 * so we keep looping here until we finally have enough entries for
684 	 * (adds_in_progress + regions_needed).
685 	 */
686 	while (resv->region_cache_count <
687 	       (resv->adds_in_progress + regions_needed)) {
688 		to_allocate = resv->adds_in_progress + regions_needed -
689 			      resv->region_cache_count;
690 
691 		/* At this point, we should have enough entries in the cache
692 		 * for all the existing adds_in_progress. We should only be
693 		 * needing to allocate for regions_needed.
694 		 */
695 		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
696 
697 		spin_unlock(&resv->lock);
698 		for (i = 0; i < to_allocate; i++) {
699 			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
700 			if (!trg)
701 				goto out_of_memory;
702 			list_add(&trg->link, &allocated_regions);
703 		}
704 
705 		spin_lock(&resv->lock);
706 
707 		list_splice(&allocated_regions, &resv->region_cache);
708 		resv->region_cache_count += to_allocate;
709 	}
710 
711 	return 0;
712 
713 out_of_memory:
714 	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
715 		list_del(&rg->link);
716 		kfree(rg);
717 	}
718 	return -ENOMEM;
719 }
720 
721 /*
722  * Add the huge page range represented by [f, t) to the reserve
723  * map.  Regions will be taken from the cache to fill in this range.
724  * Sufficient regions should exist in the cache due to the previous
725  * call to region_chg with the same range, but in some cases the cache will not
726  * have sufficient entries due to races with other code doing region_add or
727  * region_del.  The extra needed entries will be allocated.
728  *
729  * regions_needed is the out value provided by a previous call to region_chg.
730  *
731  * Return the number of new huge pages added to the map.  This number is greater
732  * than or equal to zero.  If file_region entries needed to be allocated for
733  * this operation and we were not able to allocate, it returns -ENOMEM.
734  * region_add of regions of length 1 never allocate file_regions and cannot
735  * fail; region_chg will always allocate at least 1 entry and a region_add for
736  * 1 page will only require at most 1 entry.
737  */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)738 static long region_add(struct resv_map *resv, long f, long t,
739 		       long in_regions_needed, struct hstate *h,
740 		       struct hugetlb_cgroup *h_cg)
741 {
742 	long add = 0, actual_regions_needed = 0;
743 
744 	spin_lock(&resv->lock);
745 retry:
746 
747 	/* Count how many regions are actually needed to execute this add. */
748 	add_reservation_in_range(resv, f, t, NULL, NULL,
749 				 &actual_regions_needed);
750 
751 	/*
752 	 * Check for sufficient descriptors in the cache to accommodate
753 	 * this add operation. Note that actual_regions_needed may be greater
754 	 * than in_regions_needed, as the resv_map may have been modified since
755 	 * the region_chg call. In this case, we need to make sure that we
756 	 * allocate extra entries, such that we have enough for all the
757 	 * existing adds_in_progress, plus the excess needed for this
758 	 * operation.
759 	 */
760 	if (actual_regions_needed > in_regions_needed &&
761 	    resv->region_cache_count <
762 		    resv->adds_in_progress +
763 			    (actual_regions_needed - in_regions_needed)) {
764 		/* region_add operation of range 1 should never need to
765 		 * allocate file_region entries.
766 		 */
767 		VM_BUG_ON(t - f <= 1);
768 
769 		if (allocate_file_region_entries(
770 			    resv, actual_regions_needed - in_regions_needed)) {
771 			return -ENOMEM;
772 		}
773 
774 		goto retry;
775 	}
776 
777 	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
778 
779 	resv->adds_in_progress -= in_regions_needed;
780 
781 	spin_unlock(&resv->lock);
782 	return add;
783 }
784 
785 /*
786  * Examine the existing reserve map and determine how many
787  * huge pages in the specified range [f, t) are NOT currently
788  * represented.  This routine is called before a subsequent
789  * call to region_add that will actually modify the reserve
790  * map to add the specified range [f, t).  region_chg does
791  * not change the number of huge pages represented by the
792  * map.  A number of new file_region structures is added to the cache as a
793  * placeholder, for the subsequent region_add call to use. At least 1
794  * file_region structure is added.
795  *
796  * out_regions_needed is the number of regions added to the
797  * resv->adds_in_progress.  This value needs to be provided to a follow up call
798  * to region_add or region_abort for proper accounting.
799  *
800  * Returns the number of huge pages that need to be added to the existing
801  * reservation map for the range [f, t).  This number is greater or equal to
802  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
803  * is needed and can not be allocated.
804  */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)805 static long region_chg(struct resv_map *resv, long f, long t,
806 		       long *out_regions_needed)
807 {
808 	long chg = 0;
809 
810 	spin_lock(&resv->lock);
811 
812 	/* Count how many hugepages in this range are NOT represented. */
813 	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
814 				       out_regions_needed);
815 
816 	if (*out_regions_needed == 0)
817 		*out_regions_needed = 1;
818 
819 	if (allocate_file_region_entries(resv, *out_regions_needed))
820 		return -ENOMEM;
821 
822 	resv->adds_in_progress += *out_regions_needed;
823 
824 	spin_unlock(&resv->lock);
825 	return chg;
826 }
827 
828 /*
829  * Abort the in progress add operation.  The adds_in_progress field
830  * of the resv_map keeps track of the operations in progress between
831  * calls to region_chg and region_add.  Operations are sometimes
832  * aborted after the call to region_chg.  In such cases, region_abort
833  * is called to decrement the adds_in_progress counter. regions_needed
834  * is the value returned by the region_chg call, it is used to decrement
835  * the adds_in_progress counter.
836  *
837  * NOTE: The range arguments [f, t) are not needed or used in this
838  * routine.  They are kept to make reading the calling code easier as
839  * arguments will match the associated region_chg call.
840  */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)841 static void region_abort(struct resv_map *resv, long f, long t,
842 			 long regions_needed)
843 {
844 	spin_lock(&resv->lock);
845 	VM_BUG_ON(!resv->region_cache_count);
846 	resv->adds_in_progress -= regions_needed;
847 	spin_unlock(&resv->lock);
848 }
849 
850 /*
851  * Delete the specified range [f, t) from the reserve map.  If the
852  * t parameter is LONG_MAX, this indicates that ALL regions after f
853  * should be deleted.  Locate the regions which intersect [f, t)
854  * and either trim, delete or split the existing regions.
855  *
856  * Returns the number of huge pages deleted from the reserve map.
857  * In the normal case, the return value is zero or more.  In the
858  * case where a region must be split, a new region descriptor must
859  * be allocated.  If the allocation fails, -ENOMEM will be returned.
860  * NOTE: If the parameter t == LONG_MAX, then we will never split
861  * a region and possibly return -ENOMEM.  Callers specifying
862  * t == LONG_MAX do not need to check for -ENOMEM error.
863  */
region_del(struct resv_map * resv,long f,long t)864 static long region_del(struct resv_map *resv, long f, long t)
865 {
866 	struct list_head *head = &resv->regions;
867 	struct file_region *rg, *trg;
868 	struct file_region *nrg = NULL;
869 	long del = 0;
870 
871 retry:
872 	spin_lock(&resv->lock);
873 	list_for_each_entry_safe(rg, trg, head, link) {
874 		/*
875 		 * Skip regions before the range to be deleted.  file_region
876 		 * ranges are normally of the form [from, to).  However, there
877 		 * may be a "placeholder" entry in the map which is of the form
878 		 * (from, to) with from == to.  Check for placeholder entries
879 		 * at the beginning of the range to be deleted.
880 		 */
881 		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
882 			continue;
883 
884 		if (rg->from >= t)
885 			break;
886 
887 		if (f > rg->from && t < rg->to) { /* Must split region */
888 			/*
889 			 * Check for an entry in the cache before dropping
890 			 * lock and attempting allocation.
891 			 */
892 			if (!nrg &&
893 			    resv->region_cache_count > resv->adds_in_progress) {
894 				nrg = list_first_entry(&resv->region_cache,
895 							struct file_region,
896 							link);
897 				list_del(&nrg->link);
898 				resv->region_cache_count--;
899 			}
900 
901 			if (!nrg) {
902 				spin_unlock(&resv->lock);
903 				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
904 				if (!nrg)
905 					return -ENOMEM;
906 				goto retry;
907 			}
908 
909 			del += t - f;
910 			hugetlb_cgroup_uncharge_file_region(
911 				resv, rg, t - f, false);
912 
913 			/* New entry for end of split region */
914 			nrg->from = t;
915 			nrg->to = rg->to;
916 
917 			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
918 
919 			INIT_LIST_HEAD(&nrg->link);
920 
921 			/* Original entry is trimmed */
922 			rg->to = f;
923 
924 			list_add(&nrg->link, &rg->link);
925 			nrg = NULL;
926 			break;
927 		}
928 
929 		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
930 			del += rg->to - rg->from;
931 			hugetlb_cgroup_uncharge_file_region(resv, rg,
932 							    rg->to - rg->from, true);
933 			list_del(&rg->link);
934 			kfree(rg);
935 			continue;
936 		}
937 
938 		if (f <= rg->from) {	/* Trim beginning of region */
939 			hugetlb_cgroup_uncharge_file_region(resv, rg,
940 							    t - rg->from, false);
941 
942 			del += t - rg->from;
943 			rg->from = t;
944 		} else {		/* Trim end of region */
945 			hugetlb_cgroup_uncharge_file_region(resv, rg,
946 							    rg->to - f, false);
947 
948 			del += rg->to - f;
949 			rg->to = f;
950 		}
951 	}
952 
953 	spin_unlock(&resv->lock);
954 	kfree(nrg);
955 	return del;
956 }
957 
958 /*
959  * A rare out of memory error was encountered which prevented removal of
960  * the reserve map region for a page.  The huge page itself was free'ed
961  * and removed from the page cache.  This routine will adjust the subpool
962  * usage count, and the global reserve count if needed.  By incrementing
963  * these counts, the reserve map entry which could not be deleted will
964  * appear as a "reserved" entry instead of simply dangling with incorrect
965  * counts.
966  */
hugetlb_fix_reserve_counts(struct inode * inode)967 void hugetlb_fix_reserve_counts(struct inode *inode)
968 {
969 	struct hugepage_subpool *spool = subpool_inode(inode);
970 	long rsv_adjust;
971 	bool reserved = false;
972 
973 	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
974 	if (rsv_adjust > 0) {
975 		struct hstate *h = hstate_inode(inode);
976 
977 		if (!hugetlb_acct_memory(h, 1))
978 			reserved = true;
979 	} else if (!rsv_adjust) {
980 		reserved = true;
981 	}
982 
983 	if (!reserved)
984 		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
985 }
986 
987 /*
988  * Count and return the number of huge pages in the reserve map
989  * that intersect with the range [f, t).
990  */
region_count(struct resv_map * resv,long f,long t)991 static long region_count(struct resv_map *resv, long f, long t)
992 {
993 	struct list_head *head = &resv->regions;
994 	struct file_region *rg;
995 	long chg = 0;
996 
997 	spin_lock(&resv->lock);
998 	/* Locate each segment we overlap with, and count that overlap. */
999 	list_for_each_entry(rg, head, link) {
1000 		long seg_from;
1001 		long seg_to;
1002 
1003 		if (rg->to <= f)
1004 			continue;
1005 		if (rg->from >= t)
1006 			break;
1007 
1008 		seg_from = max(rg->from, f);
1009 		seg_to = min(rg->to, t);
1010 
1011 		chg += seg_to - seg_from;
1012 	}
1013 	spin_unlock(&resv->lock);
1014 
1015 	return chg;
1016 }
1017 
1018 /*
1019  * Convert the address within this vma to the page offset within
1020  * the mapping, huge page units here.
1021  */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1022 static pgoff_t vma_hugecache_offset(struct hstate *h,
1023 			struct vm_area_struct *vma, unsigned long address)
1024 {
1025 	return ((address - vma->vm_start) >> huge_page_shift(h)) +
1026 			(vma->vm_pgoff >> huge_page_order(h));
1027 }
1028 
1029 /**
1030  * vma_kernel_pagesize - Page size granularity for this VMA.
1031  * @vma: The user mapping.
1032  *
1033  * Folios in this VMA will be aligned to, and at least the size of the
1034  * number of bytes returned by this function.
1035  *
1036  * Return: The default size of the folios allocated when backing a VMA.
1037  */
vma_kernel_pagesize(struct vm_area_struct * vma)1038 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1039 {
1040 	if (vma->vm_ops && vma->vm_ops->pagesize)
1041 		return vma->vm_ops->pagesize(vma);
1042 	return PAGE_SIZE;
1043 }
1044 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1045 
1046 /*
1047  * Return the page size being used by the MMU to back a VMA. In the majority
1048  * of cases, the page size used by the kernel matches the MMU size. On
1049  * architectures where it differs, an architecture-specific 'strong'
1050  * version of this symbol is required.
1051  */
vma_mmu_pagesize(struct vm_area_struct * vma)1052 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1053 {
1054 	return vma_kernel_pagesize(vma);
1055 }
1056 
1057 /*
1058  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1059  * bits of the reservation map pointer, which are always clear due to
1060  * alignment.
1061  */
1062 #define HPAGE_RESV_OWNER    (1UL << 0)
1063 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1064 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1065 
1066 /*
1067  * These helpers are used to track how many pages are reserved for
1068  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1069  * is guaranteed to have their future faults succeed.
1070  *
1071  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1072  * the reserve counters are updated with the hugetlb_lock held. It is safe
1073  * to reset the VMA at fork() time as it is not in use yet and there is no
1074  * chance of the global counters getting corrupted as a result of the values.
1075  *
1076  * The private mapping reservation is represented in a subtly different
1077  * manner to a shared mapping.  A shared mapping has a region map associated
1078  * with the underlying file, this region map represents the backing file
1079  * pages which have ever had a reservation assigned which this persists even
1080  * after the page is instantiated.  A private mapping has a region map
1081  * associated with the original mmap which is attached to all VMAs which
1082  * reference it, this region map represents those offsets which have consumed
1083  * reservation ie. where pages have been instantiated.
1084  */
get_vma_private_data(struct vm_area_struct * vma)1085 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1086 {
1087 	return (unsigned long)vma->vm_private_data;
1088 }
1089 
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1090 static void set_vma_private_data(struct vm_area_struct *vma,
1091 							unsigned long value)
1092 {
1093 	vma->vm_private_data = (void *)value;
1094 }
1095 
1096 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1097 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1098 					  struct hugetlb_cgroup *h_cg,
1099 					  struct hstate *h)
1100 {
1101 #ifdef CONFIG_CGROUP_HUGETLB
1102 	if (!h_cg || !h) {
1103 		resv_map->reservation_counter = NULL;
1104 		resv_map->pages_per_hpage = 0;
1105 		resv_map->css = NULL;
1106 	} else {
1107 		resv_map->reservation_counter =
1108 			&h_cg->rsvd_hugepage[hstate_index(h)];
1109 		resv_map->pages_per_hpage = pages_per_huge_page(h);
1110 		resv_map->css = &h_cg->css;
1111 	}
1112 #endif
1113 }
1114 
resv_map_alloc(void)1115 struct resv_map *resv_map_alloc(void)
1116 {
1117 	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1118 	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1119 
1120 	if (!resv_map || !rg) {
1121 		kfree(resv_map);
1122 		kfree(rg);
1123 		return NULL;
1124 	}
1125 
1126 	kref_init(&resv_map->refs);
1127 	spin_lock_init(&resv_map->lock);
1128 	INIT_LIST_HEAD(&resv_map->regions);
1129 	init_rwsem(&resv_map->rw_sema);
1130 
1131 	resv_map->adds_in_progress = 0;
1132 	/*
1133 	 * Initialize these to 0. On shared mappings, 0's here indicate these
1134 	 * fields don't do cgroup accounting. On private mappings, these will be
1135 	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1136 	 * reservations are to be un-charged from here.
1137 	 */
1138 	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1139 
1140 	INIT_LIST_HEAD(&resv_map->region_cache);
1141 	list_add(&rg->link, &resv_map->region_cache);
1142 	resv_map->region_cache_count = 1;
1143 
1144 	return resv_map;
1145 }
1146 
resv_map_release(struct kref * ref)1147 void resv_map_release(struct kref *ref)
1148 {
1149 	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1150 	struct list_head *head = &resv_map->region_cache;
1151 	struct file_region *rg, *trg;
1152 
1153 	/* Clear out any active regions before we release the map. */
1154 	region_del(resv_map, 0, LONG_MAX);
1155 
1156 	/* ... and any entries left in the cache */
1157 	list_for_each_entry_safe(rg, trg, head, link) {
1158 		list_del(&rg->link);
1159 		kfree(rg);
1160 	}
1161 
1162 	VM_BUG_ON(resv_map->adds_in_progress);
1163 
1164 	kfree(resv_map);
1165 }
1166 
inode_resv_map(struct inode * inode)1167 static inline struct resv_map *inode_resv_map(struct inode *inode)
1168 {
1169 	/*
1170 	 * At inode evict time, i_mapping may not point to the original
1171 	 * address space within the inode.  This original address space
1172 	 * contains the pointer to the resv_map.  So, always use the
1173 	 * address space embedded within the inode.
1174 	 * The VERY common case is inode->mapping == &inode->i_data but,
1175 	 * this may not be true for device special inodes.
1176 	 */
1177 	return (struct resv_map *)(&inode->i_data)->i_private_data;
1178 }
1179 
vma_resv_map(struct vm_area_struct * vma)1180 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1181 {
1182 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1183 	if (vma->vm_flags & VM_MAYSHARE) {
1184 		struct address_space *mapping = vma->vm_file->f_mapping;
1185 		struct inode *inode = mapping->host;
1186 
1187 		return inode_resv_map(inode);
1188 
1189 	} else {
1190 		return (struct resv_map *)(get_vma_private_data(vma) &
1191 							~HPAGE_RESV_MASK);
1192 	}
1193 }
1194 
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1195 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1196 {
1197 	VM_WARN_ON_ONCE_VMA(!is_vm_hugetlb_page(vma), vma);
1198 	VM_WARN_ON_ONCE_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1199 
1200 	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1201 }
1202 
set_vma_desc_resv_map(struct vm_area_desc * desc,struct resv_map * map)1203 static void set_vma_desc_resv_map(struct vm_area_desc *desc, struct resv_map *map)
1204 {
1205 	VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags));
1206 	VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE);
1207 
1208 	desc->private_data = map;
1209 }
1210 
set_vma_desc_resv_flags(struct vm_area_desc * desc,unsigned long flags)1211 static void set_vma_desc_resv_flags(struct vm_area_desc *desc, unsigned long flags)
1212 {
1213 	VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags));
1214 	VM_WARN_ON_ONCE(desc->vm_flags & VM_MAYSHARE);
1215 
1216 	desc->private_data = (void *)((unsigned long)desc->private_data | flags);
1217 }
1218 
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1219 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1220 {
1221 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1222 
1223 	return (get_vma_private_data(vma) & flag) != 0;
1224 }
1225 
is_vma_desc_resv_set(struct vm_area_desc * desc,unsigned long flag)1226 static bool is_vma_desc_resv_set(struct vm_area_desc *desc, unsigned long flag)
1227 {
1228 	VM_WARN_ON_ONCE(!is_vm_hugetlb_flags(desc->vm_flags));
1229 
1230 	return ((unsigned long)desc->private_data) & flag;
1231 }
1232 
__vma_private_lock(struct vm_area_struct * vma)1233 bool __vma_private_lock(struct vm_area_struct *vma)
1234 {
1235 	return !(vma->vm_flags & VM_MAYSHARE) &&
1236 		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1237 		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1238 }
1239 
hugetlb_dup_vma_private(struct vm_area_struct * vma)1240 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1241 {
1242 	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1243 	/*
1244 	 * Clear vm_private_data
1245 	 * - For shared mappings this is a per-vma semaphore that may be
1246 	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1247 	 *   Before clearing, make sure pointer is not associated with vma
1248 	 *   as this will leak the structure.  This is the case when called
1249 	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1250 	 *   been called to allocate a new structure.
1251 	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1252 	 *   not apply to children.  Faults generated by the children are
1253 	 *   not guaranteed to succeed, even if read-only.
1254 	 */
1255 	if (vma->vm_flags & VM_MAYSHARE) {
1256 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1257 
1258 		if (vma_lock && vma_lock->vma != vma)
1259 			vma->vm_private_data = NULL;
1260 	} else
1261 		vma->vm_private_data = NULL;
1262 }
1263 
1264 /*
1265  * Reset and decrement one ref on hugepage private reservation.
1266  * Called with mm->mmap_lock writer semaphore held.
1267  * This function should be only used by mremap and operate on
1268  * same sized vma. It should never come here with last ref on the
1269  * reservation.
1270  */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1271 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1272 {
1273 	/*
1274 	 * Clear the old hugetlb private page reservation.
1275 	 * It has already been transferred to new_vma.
1276 	 *
1277 	 * During a mremap() operation of a hugetlb vma we call move_vma()
1278 	 * which copies vma into new_vma and unmaps vma. After the copy
1279 	 * operation both new_vma and vma share a reference to the resv_map
1280 	 * struct, and at that point vma is about to be unmapped. We don't
1281 	 * want to return the reservation to the pool at unmap of vma because
1282 	 * the reservation still lives on in new_vma, so simply decrement the
1283 	 * ref here and remove the resv_map reference from this vma.
1284 	 */
1285 	struct resv_map *reservations = vma_resv_map(vma);
1286 
1287 	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1288 		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1289 		kref_put(&reservations->refs, resv_map_release);
1290 	}
1291 
1292 	hugetlb_dup_vma_private(vma);
1293 }
1294 
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1295 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1296 {
1297 	int nid = folio_nid(folio);
1298 
1299 	lockdep_assert_held(&hugetlb_lock);
1300 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1301 
1302 	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1303 	h->free_huge_pages++;
1304 	h->free_huge_pages_node[nid]++;
1305 	folio_set_hugetlb_freed(folio);
1306 }
1307 
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1308 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1309 								int nid)
1310 {
1311 	struct folio *folio;
1312 	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1313 
1314 	lockdep_assert_held(&hugetlb_lock);
1315 	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1316 		if (pin && !folio_is_longterm_pinnable(folio))
1317 			continue;
1318 
1319 		if (folio_test_hwpoison(folio))
1320 			continue;
1321 
1322 		if (is_migrate_isolate_page(&folio->page))
1323 			continue;
1324 
1325 		list_move(&folio->lru, &h->hugepage_activelist);
1326 		folio_ref_unfreeze(folio, 1);
1327 		folio_clear_hugetlb_freed(folio);
1328 		h->free_huge_pages--;
1329 		h->free_huge_pages_node[nid]--;
1330 		return folio;
1331 	}
1332 
1333 	return NULL;
1334 }
1335 
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1336 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1337 							int nid, nodemask_t *nmask)
1338 {
1339 	unsigned int cpuset_mems_cookie;
1340 	struct zonelist *zonelist;
1341 	struct zone *zone;
1342 	struct zoneref *z;
1343 	int node = NUMA_NO_NODE;
1344 
1345 	/* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1346 	if (nid == NUMA_NO_NODE)
1347 		nid = numa_node_id();
1348 
1349 	zonelist = node_zonelist(nid, gfp_mask);
1350 
1351 retry_cpuset:
1352 	cpuset_mems_cookie = read_mems_allowed_begin();
1353 	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1354 		struct folio *folio;
1355 
1356 		if (!cpuset_zone_allowed(zone, gfp_mask))
1357 			continue;
1358 		/*
1359 		 * no need to ask again on the same node. Pool is node rather than
1360 		 * zone aware
1361 		 */
1362 		if (zone_to_nid(zone) == node)
1363 			continue;
1364 		node = zone_to_nid(zone);
1365 
1366 		folio = dequeue_hugetlb_folio_node_exact(h, node);
1367 		if (folio)
1368 			return folio;
1369 	}
1370 	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1371 		goto retry_cpuset;
1372 
1373 	return NULL;
1374 }
1375 
available_huge_pages(struct hstate * h)1376 static unsigned long available_huge_pages(struct hstate *h)
1377 {
1378 	return h->free_huge_pages - h->resv_huge_pages;
1379 }
1380 
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1381 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1382 				struct vm_area_struct *vma,
1383 				unsigned long address, long gbl_chg)
1384 {
1385 	struct folio *folio = NULL;
1386 	struct mempolicy *mpol;
1387 	gfp_t gfp_mask;
1388 	nodemask_t *nodemask;
1389 	int nid;
1390 
1391 	/*
1392 	 * gbl_chg==1 means the allocation requires a new page that was not
1393 	 * reserved before.  Making sure there's at least one free page.
1394 	 */
1395 	if (gbl_chg && !available_huge_pages(h))
1396 		goto err;
1397 
1398 	gfp_mask = htlb_alloc_mask(h);
1399 	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1400 
1401 	if (mpol_is_preferred_many(mpol)) {
1402 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1403 							nid, nodemask);
1404 
1405 		/* Fallback to all nodes if page==NULL */
1406 		nodemask = NULL;
1407 	}
1408 
1409 	if (!folio)
1410 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1411 							nid, nodemask);
1412 
1413 	mpol_cond_put(mpol);
1414 	return folio;
1415 
1416 err:
1417 	return NULL;
1418 }
1419 
1420 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1421 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1422 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask,
1423 		int nid, nodemask_t *nodemask)
1424 {
1425 	struct folio *folio;
1426 	bool retried = false;
1427 
1428 retry:
1429 	folio = hugetlb_cma_alloc_folio(order, gfp_mask, nid, nodemask);
1430 	if (!folio) {
1431 		if (hugetlb_cma_exclusive_alloc())
1432 			return NULL;
1433 
1434 		folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1435 		if (!folio)
1436 			return NULL;
1437 	}
1438 
1439 	if (folio_ref_freeze(folio, 1))
1440 		return folio;
1441 
1442 	pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1443 	hugetlb_free_folio(folio);
1444 	if (!retried) {
1445 		retried = true;
1446 		goto retry;
1447 	}
1448 	return NULL;
1449 }
1450 
1451 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1452 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid,
1453 					  nodemask_t *nodemask)
1454 {
1455 	return NULL;
1456 }
1457 #endif /* CONFIG_CONTIG_ALLOC */
1458 
1459 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1460 static struct folio *alloc_gigantic_folio(int order, gfp_t gfp_mask, int nid,
1461 					  nodemask_t *nodemask)
1462 {
1463 	return NULL;
1464 }
1465 #endif
1466 
1467 /*
1468  * Remove hugetlb folio from lists.
1469  * If vmemmap exists for the folio, clear the hugetlb flag so that the
1470  * folio appears as just a compound page.  Otherwise, wait until after
1471  * allocating vmemmap to clear the flag.
1472  *
1473  * Must be called with hugetlb lock held.
1474  */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1475 void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1476 			  bool adjust_surplus)
1477 {
1478 	int nid = folio_nid(folio);
1479 
1480 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1481 	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1482 
1483 	lockdep_assert_held(&hugetlb_lock);
1484 	if (hstate_is_gigantic_no_runtime(h))
1485 		return;
1486 
1487 	list_del(&folio->lru);
1488 
1489 	if (folio_test_hugetlb_freed(folio)) {
1490 		folio_clear_hugetlb_freed(folio);
1491 		h->free_huge_pages--;
1492 		h->free_huge_pages_node[nid]--;
1493 	}
1494 	if (adjust_surplus) {
1495 		h->surplus_huge_pages--;
1496 		h->surplus_huge_pages_node[nid]--;
1497 	}
1498 
1499 	/*
1500 	 * We can only clear the hugetlb flag after allocating vmemmap
1501 	 * pages.  Otherwise, someone (memory error handling) may try to write
1502 	 * to tail struct pages.
1503 	 */
1504 	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1505 		__folio_clear_hugetlb(folio);
1506 
1507 	h->nr_huge_pages--;
1508 	h->nr_huge_pages_node[nid]--;
1509 }
1510 
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1511 void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1512 		       bool adjust_surplus)
1513 {
1514 	int nid = folio_nid(folio);
1515 
1516 	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1517 
1518 	lockdep_assert_held(&hugetlb_lock);
1519 
1520 	INIT_LIST_HEAD(&folio->lru);
1521 	h->nr_huge_pages++;
1522 	h->nr_huge_pages_node[nid]++;
1523 
1524 	if (adjust_surplus) {
1525 		h->surplus_huge_pages++;
1526 		h->surplus_huge_pages_node[nid]++;
1527 	}
1528 
1529 	__folio_set_hugetlb(folio);
1530 	folio_change_private(folio, NULL);
1531 	/*
1532 	 * We have to set hugetlb_vmemmap_optimized again as above
1533 	 * folio_change_private(folio, NULL) cleared it.
1534 	 */
1535 	folio_set_hugetlb_vmemmap_optimized(folio);
1536 
1537 	arch_clear_hugetlb_flags(folio);
1538 	enqueue_hugetlb_folio(h, folio);
1539 }
1540 
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1541 static void __update_and_free_hugetlb_folio(struct hstate *h,
1542 						struct folio *folio)
1543 {
1544 	bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1545 
1546 	if (hstate_is_gigantic_no_runtime(h))
1547 		return;
1548 
1549 	/*
1550 	 * If we don't know which subpages are hwpoisoned, we can't free
1551 	 * the hugepage, so it's leaked intentionally.
1552 	 */
1553 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1554 		return;
1555 
1556 	/*
1557 	 * If folio is not vmemmap optimized (!clear_flag), then the folio
1558 	 * is no longer identified as a hugetlb page.  hugetlb_vmemmap_restore_folio
1559 	 * can only be passed hugetlb pages and will BUG otherwise.
1560 	 */
1561 	if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1562 		spin_lock_irq(&hugetlb_lock);
1563 		/*
1564 		 * If we cannot allocate vmemmap pages, just refuse to free the
1565 		 * page and put the page back on the hugetlb free list and treat
1566 		 * as a surplus page.
1567 		 */
1568 		add_hugetlb_folio(h, folio, true);
1569 		spin_unlock_irq(&hugetlb_lock);
1570 		return;
1571 	}
1572 
1573 	/*
1574 	 * If vmemmap pages were allocated above, then we need to clear the
1575 	 * hugetlb flag under the hugetlb lock.
1576 	 */
1577 	if (folio_test_hugetlb(folio)) {
1578 		spin_lock_irq(&hugetlb_lock);
1579 		__folio_clear_hugetlb(folio);
1580 		spin_unlock_irq(&hugetlb_lock);
1581 	}
1582 
1583 	/*
1584 	 * Move PageHWPoison flag from head page to the raw error pages,
1585 	 * which makes any healthy subpages reusable.
1586 	 */
1587 	if (unlikely(folio_test_hwpoison(folio)))
1588 		folio_clear_hugetlb_hwpoison(folio);
1589 
1590 	folio_ref_unfreeze(folio, 1);
1591 
1592 	hugetlb_free_folio(folio);
1593 }
1594 
1595 /*
1596  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1597  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1598  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1599  * the vmemmap pages.
1600  *
1601  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1602  * freed and frees them one-by-one. As the page->mapping pointer is going
1603  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1604  * structure of a lockless linked list of huge pages to be freed.
1605  */
1606 static LLIST_HEAD(hpage_freelist);
1607 
free_hpage_workfn(struct work_struct * work)1608 static void free_hpage_workfn(struct work_struct *work)
1609 {
1610 	struct llist_node *node;
1611 
1612 	node = llist_del_all(&hpage_freelist);
1613 
1614 	while (node) {
1615 		struct folio *folio;
1616 		struct hstate *h;
1617 
1618 		folio = container_of((struct address_space **)node,
1619 				     struct folio, mapping);
1620 		node = node->next;
1621 		folio->mapping = NULL;
1622 		/*
1623 		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1624 		 * folio_hstate() is going to trigger because a previous call to
1625 		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1626 		 * not use folio_hstate() directly.
1627 		 */
1628 		h = size_to_hstate(folio_size(folio));
1629 
1630 		__update_and_free_hugetlb_folio(h, folio);
1631 
1632 		cond_resched();
1633 	}
1634 }
1635 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1636 
flush_free_hpage_work(struct hstate * h)1637 static inline void flush_free_hpage_work(struct hstate *h)
1638 {
1639 	if (hugetlb_vmemmap_optimizable(h))
1640 		flush_work(&free_hpage_work);
1641 }
1642 
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1643 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1644 				 bool atomic)
1645 {
1646 	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1647 		__update_and_free_hugetlb_folio(h, folio);
1648 		return;
1649 	}
1650 
1651 	/*
1652 	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1653 	 *
1654 	 * Only call schedule_work() if hpage_freelist is previously
1655 	 * empty. Otherwise, schedule_work() had been called but the workfn
1656 	 * hasn't retrieved the list yet.
1657 	 */
1658 	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1659 		schedule_work(&free_hpage_work);
1660 }
1661 
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1662 static void bulk_vmemmap_restore_error(struct hstate *h,
1663 					struct list_head *folio_list,
1664 					struct list_head *non_hvo_folios)
1665 {
1666 	struct folio *folio, *t_folio;
1667 
1668 	if (!list_empty(non_hvo_folios)) {
1669 		/*
1670 		 * Free any restored hugetlb pages so that restore of the
1671 		 * entire list can be retried.
1672 		 * The idea is that in the common case of ENOMEM errors freeing
1673 		 * hugetlb pages with vmemmap we will free up memory so that we
1674 		 * can allocate vmemmap for more hugetlb pages.
1675 		 */
1676 		list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1677 			list_del(&folio->lru);
1678 			spin_lock_irq(&hugetlb_lock);
1679 			__folio_clear_hugetlb(folio);
1680 			spin_unlock_irq(&hugetlb_lock);
1681 			update_and_free_hugetlb_folio(h, folio, false);
1682 			cond_resched();
1683 		}
1684 	} else {
1685 		/*
1686 		 * In the case where there are no folios which can be
1687 		 * immediately freed, we loop through the list trying to restore
1688 		 * vmemmap individually in the hope that someone elsewhere may
1689 		 * have done something to cause success (such as freeing some
1690 		 * memory).  If unable to restore a hugetlb page, the hugetlb
1691 		 * page is made a surplus page and removed from the list.
1692 		 * If are able to restore vmemmap and free one hugetlb page, we
1693 		 * quit processing the list to retry the bulk operation.
1694 		 */
1695 		list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1696 			if (hugetlb_vmemmap_restore_folio(h, folio)) {
1697 				list_del(&folio->lru);
1698 				spin_lock_irq(&hugetlb_lock);
1699 				add_hugetlb_folio(h, folio, true);
1700 				spin_unlock_irq(&hugetlb_lock);
1701 			} else {
1702 				list_del(&folio->lru);
1703 				spin_lock_irq(&hugetlb_lock);
1704 				__folio_clear_hugetlb(folio);
1705 				spin_unlock_irq(&hugetlb_lock);
1706 				update_and_free_hugetlb_folio(h, folio, false);
1707 				cond_resched();
1708 				break;
1709 			}
1710 	}
1711 }
1712 
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1713 static void update_and_free_pages_bulk(struct hstate *h,
1714 						struct list_head *folio_list)
1715 {
1716 	long ret;
1717 	struct folio *folio, *t_folio;
1718 	LIST_HEAD(non_hvo_folios);
1719 
1720 	/*
1721 	 * First allocate required vmemmmap (if necessary) for all folios.
1722 	 * Carefully handle errors and free up any available hugetlb pages
1723 	 * in an effort to make forward progress.
1724 	 */
1725 retry:
1726 	ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1727 	if (ret < 0) {
1728 		bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1729 		goto retry;
1730 	}
1731 
1732 	/*
1733 	 * At this point, list should be empty, ret should be >= 0 and there
1734 	 * should only be pages on the non_hvo_folios list.
1735 	 * Do note that the non_hvo_folios list could be empty.
1736 	 * Without HVO enabled, ret will be 0 and there is no need to call
1737 	 * __folio_clear_hugetlb as this was done previously.
1738 	 */
1739 	VM_WARN_ON(!list_empty(folio_list));
1740 	VM_WARN_ON(ret < 0);
1741 	if (!list_empty(&non_hvo_folios) && ret) {
1742 		spin_lock_irq(&hugetlb_lock);
1743 		list_for_each_entry(folio, &non_hvo_folios, lru)
1744 			__folio_clear_hugetlb(folio);
1745 		spin_unlock_irq(&hugetlb_lock);
1746 	}
1747 
1748 	list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1749 		update_and_free_hugetlb_folio(h, folio, false);
1750 		cond_resched();
1751 	}
1752 }
1753 
size_to_hstate(unsigned long size)1754 struct hstate *size_to_hstate(unsigned long size)
1755 {
1756 	struct hstate *h;
1757 
1758 	for_each_hstate(h) {
1759 		if (huge_page_size(h) == size)
1760 			return h;
1761 	}
1762 	return NULL;
1763 }
1764 
free_huge_folio(struct folio * folio)1765 void free_huge_folio(struct folio *folio)
1766 {
1767 	/*
1768 	 * Can't pass hstate in here because it is called from the
1769 	 * generic mm code.
1770 	 */
1771 	struct hstate *h = folio_hstate(folio);
1772 	int nid = folio_nid(folio);
1773 	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1774 	bool restore_reserve;
1775 	unsigned long flags;
1776 
1777 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1778 	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1779 
1780 	hugetlb_set_folio_subpool(folio, NULL);
1781 	if (folio_test_anon(folio))
1782 		__ClearPageAnonExclusive(&folio->page);
1783 	folio->mapping = NULL;
1784 	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1785 	folio_clear_hugetlb_restore_reserve(folio);
1786 
1787 	/*
1788 	 * If HPageRestoreReserve was set on page, page allocation consumed a
1789 	 * reservation.  If the page was associated with a subpool, there
1790 	 * would have been a page reserved in the subpool before allocation
1791 	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1792 	 * reservation, do not call hugepage_subpool_put_pages() as this will
1793 	 * remove the reserved page from the subpool.
1794 	 */
1795 	if (!restore_reserve) {
1796 		/*
1797 		 * A return code of zero implies that the subpool will be
1798 		 * under its minimum size if the reservation is not restored
1799 		 * after page is free.  Therefore, force restore_reserve
1800 		 * operation.
1801 		 */
1802 		if (hugepage_subpool_put_pages(spool, 1) == 0)
1803 			restore_reserve = true;
1804 	}
1805 
1806 	spin_lock_irqsave(&hugetlb_lock, flags);
1807 	folio_clear_hugetlb_migratable(folio);
1808 	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1809 				     pages_per_huge_page(h), folio);
1810 	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1811 					  pages_per_huge_page(h), folio);
1812 	lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1813 	mem_cgroup_uncharge(folio);
1814 	if (restore_reserve)
1815 		h->resv_huge_pages++;
1816 
1817 	if (folio_test_hugetlb_temporary(folio)) {
1818 		remove_hugetlb_folio(h, folio, false);
1819 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1820 		update_and_free_hugetlb_folio(h, folio, true);
1821 	} else if (h->surplus_huge_pages_node[nid]) {
1822 		/* remove the page from active list */
1823 		remove_hugetlb_folio(h, folio, true);
1824 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1825 		update_and_free_hugetlb_folio(h, folio, true);
1826 	} else {
1827 		arch_clear_hugetlb_flags(folio);
1828 		enqueue_hugetlb_folio(h, folio);
1829 		spin_unlock_irqrestore(&hugetlb_lock, flags);
1830 	}
1831 }
1832 
1833 /*
1834  * Must be called with the hugetlb lock held
1835  */
account_new_hugetlb_folio(struct hstate * h,struct folio * folio)1836 static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1837 {
1838 	lockdep_assert_held(&hugetlb_lock);
1839 	h->nr_huge_pages++;
1840 	h->nr_huge_pages_node[folio_nid(folio)]++;
1841 }
1842 
init_new_hugetlb_folio(struct folio * folio)1843 void init_new_hugetlb_folio(struct folio *folio)
1844 {
1845 	__folio_set_hugetlb(folio);
1846 	INIT_LIST_HEAD(&folio->lru);
1847 	hugetlb_set_folio_subpool(folio, NULL);
1848 	set_hugetlb_cgroup(folio, NULL);
1849 	set_hugetlb_cgroup_rsvd(folio, NULL);
1850 }
1851 
1852 /*
1853  * Find and lock address space (mapping) in write mode.
1854  *
1855  * Upon entry, the folio is locked which means that folio_mapping() is
1856  * stable.  Due to locking order, we can only trylock_write.  If we can
1857  * not get the lock, simply return NULL to caller.
1858  */
hugetlb_folio_mapping_lock_write(struct folio * folio)1859 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1860 {
1861 	struct address_space *mapping = folio_mapping(folio);
1862 
1863 	if (!mapping)
1864 		return mapping;
1865 
1866 	if (i_mmap_trylock_write(mapping))
1867 		return mapping;
1868 
1869 	return NULL;
1870 }
1871 
alloc_buddy_hugetlb_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1872 static struct folio *alloc_buddy_hugetlb_folio(int order, gfp_t gfp_mask,
1873 		int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry)
1874 {
1875 	struct folio *folio;
1876 	bool alloc_try_hard = true;
1877 
1878 	/*
1879 	 * By default we always try hard to allocate the folio with
1880 	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating folios in
1881 	 * a loop (to adjust global huge page counts) and previous allocation
1882 	 * failed, do not continue to try hard on the same node.  Use the
1883 	 * node_alloc_noretry bitmap to manage this state information.
1884 	 */
1885 	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1886 		alloc_try_hard = false;
1887 	if (alloc_try_hard)
1888 		gfp_mask |= __GFP_RETRY_MAYFAIL;
1889 
1890 	folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
1891 
1892 	/*
1893 	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1894 	 * folio this indicates an overall state change.  Clear bit so
1895 	 * that we resume normal 'try hard' allocations.
1896 	 */
1897 	if (node_alloc_noretry && folio && !alloc_try_hard)
1898 		node_clear(nid, *node_alloc_noretry);
1899 
1900 	/*
1901 	 * If we tried hard to get a folio but failed, set bit so that
1902 	 * subsequent attempts will not try as hard until there is an
1903 	 * overall state change.
1904 	 */
1905 	if (node_alloc_noretry && !folio && alloc_try_hard)
1906 		node_set(nid, *node_alloc_noretry);
1907 
1908 	if (!folio) {
1909 		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1910 		return NULL;
1911 	}
1912 
1913 	__count_vm_event(HTLB_BUDDY_PGALLOC);
1914 	return folio;
1915 }
1916 
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1917 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1918 		gfp_t gfp_mask, int nid, nodemask_t *nmask,
1919 		nodemask_t *node_alloc_noretry)
1920 {
1921 	struct folio *folio;
1922 	int order = huge_page_order(h);
1923 
1924 	if (nid == NUMA_NO_NODE)
1925 		nid = numa_mem_id();
1926 
1927 	if (order_is_gigantic(order))
1928 		folio = alloc_gigantic_folio(order, gfp_mask, nid, nmask);
1929 	else
1930 		folio = alloc_buddy_hugetlb_folio(order, gfp_mask, nid, nmask,
1931 						  node_alloc_noretry);
1932 	if (folio)
1933 		init_new_hugetlb_folio(folio);
1934 	return folio;
1935 }
1936 
1937 /*
1938  * Common helper to allocate a fresh hugetlb folio. All specific allocators
1939  * should use this function to get new hugetlb folio
1940  *
1941  * Note that returned folio is 'frozen':  ref count of head page and all tail
1942  * pages is zero, and the accounting must be done in the caller.
1943  */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1944 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
1945 		gfp_t gfp_mask, int nid, nodemask_t *nmask)
1946 {
1947 	struct folio *folio;
1948 
1949 	folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
1950 	if (folio)
1951 		hugetlb_vmemmap_optimize_folio(h, folio);
1952 	return folio;
1953 }
1954 
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)1955 void prep_and_add_allocated_folios(struct hstate *h,
1956 				   struct list_head *folio_list)
1957 {
1958 	unsigned long flags;
1959 	struct folio *folio, *tmp_f;
1960 
1961 	/* Send list for bulk vmemmap optimization processing */
1962 	hugetlb_vmemmap_optimize_folios(h, folio_list);
1963 
1964 	/* Add all new pool pages to free lists in one lock cycle */
1965 	spin_lock_irqsave(&hugetlb_lock, flags);
1966 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
1967 		account_new_hugetlb_folio(h, folio);
1968 		enqueue_hugetlb_folio(h, folio);
1969 	}
1970 	spin_unlock_irqrestore(&hugetlb_lock, flags);
1971 }
1972 
1973 /*
1974  * Allocates a fresh hugetlb page in a node interleaved manner.  The page
1975  * will later be added to the appropriate hugetlb pool.
1976  */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)1977 static struct folio *alloc_pool_huge_folio(struct hstate *h,
1978 					nodemask_t *nodes_allowed,
1979 					nodemask_t *node_alloc_noretry,
1980 					int *next_node)
1981 {
1982 	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1983 	int nr_nodes, node;
1984 
1985 	for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
1986 		struct folio *folio;
1987 
1988 		folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
1989 					nodes_allowed, node_alloc_noretry);
1990 		if (folio)
1991 			return folio;
1992 	}
1993 
1994 	return NULL;
1995 }
1996 
1997 /*
1998  * Remove huge page from pool from next node to free.  Attempt to keep
1999  * persistent huge pages more or less balanced over allowed nodes.
2000  * This routine only 'removes' the hugetlb page.  The caller must make
2001  * an additional call to free the page to low level allocators.
2002  * Called with hugetlb_lock locked.
2003  */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2004 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2005 		nodemask_t *nodes_allowed, bool acct_surplus)
2006 {
2007 	int nr_nodes, node;
2008 	struct folio *folio = NULL;
2009 
2010 	lockdep_assert_held(&hugetlb_lock);
2011 	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2012 		/*
2013 		 * If we're returning unused surplus pages, only examine
2014 		 * nodes with surplus pages.
2015 		 */
2016 		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2017 		    !list_empty(&h->hugepage_freelists[node])) {
2018 			folio = list_entry(h->hugepage_freelists[node].next,
2019 					  struct folio, lru);
2020 			remove_hugetlb_folio(h, folio, acct_surplus);
2021 			break;
2022 		}
2023 	}
2024 
2025 	return folio;
2026 }
2027 
2028 /*
2029  * Dissolve a given free hugetlb folio into free buddy pages. This function
2030  * does nothing for in-use hugetlb folios and non-hugetlb folios.
2031  * This function returns values like below:
2032  *
2033  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2034  *           when the system is under memory pressure and the feature of
2035  *           freeing unused vmemmap pages associated with each hugetlb page
2036  *           is enabled.
2037  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2038  *           (allocated or reserved.)
2039  *       0:  successfully dissolved free hugepages or the page is not a
2040  *           hugepage (considered as already dissolved)
2041  */
dissolve_free_hugetlb_folio(struct folio * folio)2042 int dissolve_free_hugetlb_folio(struct folio *folio)
2043 {
2044 	int rc = -EBUSY;
2045 
2046 retry:
2047 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2048 	if (!folio_test_hugetlb(folio))
2049 		return 0;
2050 
2051 	spin_lock_irq(&hugetlb_lock);
2052 	if (!folio_test_hugetlb(folio)) {
2053 		rc = 0;
2054 		goto out;
2055 	}
2056 
2057 	if (!folio_ref_count(folio)) {
2058 		struct hstate *h = folio_hstate(folio);
2059 		bool adjust_surplus = false;
2060 
2061 		if (!available_huge_pages(h))
2062 			goto out;
2063 
2064 		/*
2065 		 * We should make sure that the page is already on the free list
2066 		 * when it is dissolved.
2067 		 */
2068 		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2069 			spin_unlock_irq(&hugetlb_lock);
2070 			cond_resched();
2071 
2072 			/*
2073 			 * Theoretically, we should return -EBUSY when we
2074 			 * encounter this race. In fact, we have a chance
2075 			 * to successfully dissolve the page if we do a
2076 			 * retry. Because the race window is quite small.
2077 			 * If we seize this opportunity, it is an optimization
2078 			 * for increasing the success rate of dissolving page.
2079 			 */
2080 			goto retry;
2081 		}
2082 
2083 		if (h->surplus_huge_pages_node[folio_nid(folio)])
2084 			adjust_surplus = true;
2085 		remove_hugetlb_folio(h, folio, adjust_surplus);
2086 		h->max_huge_pages--;
2087 		spin_unlock_irq(&hugetlb_lock);
2088 
2089 		/*
2090 		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2091 		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2092 		 * free the page if it can not allocate required vmemmap.  We
2093 		 * need to adjust max_huge_pages if the page is not freed.
2094 		 * Attempt to allocate vmemmmap here so that we can take
2095 		 * appropriate action on failure.
2096 		 *
2097 		 * The folio_test_hugetlb check here is because
2098 		 * remove_hugetlb_folio will clear hugetlb folio flag for
2099 		 * non-vmemmap optimized hugetlb folios.
2100 		 */
2101 		if (folio_test_hugetlb(folio)) {
2102 			rc = hugetlb_vmemmap_restore_folio(h, folio);
2103 			if (rc) {
2104 				spin_lock_irq(&hugetlb_lock);
2105 				add_hugetlb_folio(h, folio, adjust_surplus);
2106 				h->max_huge_pages++;
2107 				goto out;
2108 			}
2109 		} else
2110 			rc = 0;
2111 
2112 		update_and_free_hugetlb_folio(h, folio, false);
2113 		return rc;
2114 	}
2115 out:
2116 	spin_unlock_irq(&hugetlb_lock);
2117 	return rc;
2118 }
2119 
2120 /*
2121  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2122  * make specified memory blocks removable from the system.
2123  * Note that this will dissolve a free gigantic hugepage completely, if any
2124  * part of it lies within the given range.
2125  * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2126  * free hugetlb folios that were dissolved before that error are lost.
2127  */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2128 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2129 {
2130 	unsigned long pfn;
2131 	struct folio *folio;
2132 	int rc = 0;
2133 	unsigned int order;
2134 	struct hstate *h;
2135 
2136 	if (!hugepages_supported())
2137 		return rc;
2138 
2139 	order = huge_page_order(&default_hstate);
2140 	for_each_hstate(h)
2141 		order = min(order, huge_page_order(h));
2142 
2143 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2144 		folio = pfn_folio(pfn);
2145 		rc = dissolve_free_hugetlb_folio(folio);
2146 		if (rc)
2147 			break;
2148 	}
2149 
2150 	return rc;
2151 }
2152 
2153 /*
2154  * Allocates a fresh surplus page from the page allocator.
2155  */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2156 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2157 				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2158 {
2159 	struct folio *folio = NULL;
2160 
2161 	if (hstate_is_gigantic_no_runtime(h))
2162 		return NULL;
2163 
2164 	spin_lock_irq(&hugetlb_lock);
2165 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2166 		goto out_unlock;
2167 	spin_unlock_irq(&hugetlb_lock);
2168 
2169 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2170 	if (!folio)
2171 		return NULL;
2172 
2173 	spin_lock_irq(&hugetlb_lock);
2174 	/*
2175 	 * nr_huge_pages needs to be adjusted within the same lock cycle
2176 	 * as surplus_pages, otherwise it might confuse
2177 	 * persistent_huge_pages() momentarily.
2178 	 */
2179 	account_new_hugetlb_folio(h, folio);
2180 
2181 	/*
2182 	 * We could have raced with the pool size change.
2183 	 * Double check that and simply deallocate the new page
2184 	 * if we would end up overcommiting the surpluses. Abuse
2185 	 * temporary page to workaround the nasty free_huge_folio
2186 	 * codeflow
2187 	 */
2188 	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2189 		folio_set_hugetlb_temporary(folio);
2190 		spin_unlock_irq(&hugetlb_lock);
2191 		free_huge_folio(folio);
2192 		return NULL;
2193 	}
2194 
2195 	h->surplus_huge_pages++;
2196 	h->surplus_huge_pages_node[folio_nid(folio)]++;
2197 
2198 out_unlock:
2199 	spin_unlock_irq(&hugetlb_lock);
2200 
2201 	return folio;
2202 }
2203 
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2204 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2205 				     int nid, nodemask_t *nmask)
2206 {
2207 	struct folio *folio;
2208 
2209 	if (hstate_is_gigantic(h))
2210 		return NULL;
2211 
2212 	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2213 	if (!folio)
2214 		return NULL;
2215 
2216 	spin_lock_irq(&hugetlb_lock);
2217 	account_new_hugetlb_folio(h, folio);
2218 	spin_unlock_irq(&hugetlb_lock);
2219 
2220 	/* fresh huge pages are frozen */
2221 	folio_ref_unfreeze(folio, 1);
2222 	/*
2223 	 * We do not account these pages as surplus because they are only
2224 	 * temporary and will be released properly on the last reference
2225 	 */
2226 	folio_set_hugetlb_temporary(folio);
2227 
2228 	return folio;
2229 }
2230 
2231 /*
2232  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2233  */
2234 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2235 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2236 		struct vm_area_struct *vma, unsigned long addr)
2237 {
2238 	struct folio *folio = NULL;
2239 	struct mempolicy *mpol;
2240 	gfp_t gfp_mask = htlb_alloc_mask(h);
2241 	int nid;
2242 	nodemask_t *nodemask;
2243 
2244 	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2245 	if (mpol_is_preferred_many(mpol)) {
2246 		gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2247 
2248 		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2249 
2250 		/* Fallback to all nodes if page==NULL */
2251 		nodemask = NULL;
2252 	}
2253 
2254 	if (!folio)
2255 		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2256 	mpol_cond_put(mpol);
2257 	return folio;
2258 }
2259 
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2260 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2261 		nodemask_t *nmask, gfp_t gfp_mask)
2262 {
2263 	struct folio *folio;
2264 
2265 	spin_lock_irq(&hugetlb_lock);
2266 	if (!h->resv_huge_pages) {
2267 		spin_unlock_irq(&hugetlb_lock);
2268 		return NULL;
2269 	}
2270 
2271 	folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2272 					       nmask);
2273 	if (folio)
2274 		h->resv_huge_pages--;
2275 
2276 	spin_unlock_irq(&hugetlb_lock);
2277 	return folio;
2278 }
2279 
2280 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2281 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2282 		nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2283 {
2284 	spin_lock_irq(&hugetlb_lock);
2285 	if (available_huge_pages(h)) {
2286 		struct folio *folio;
2287 
2288 		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2289 						preferred_nid, nmask);
2290 		if (folio) {
2291 			spin_unlock_irq(&hugetlb_lock);
2292 			return folio;
2293 		}
2294 	}
2295 	spin_unlock_irq(&hugetlb_lock);
2296 
2297 	/* We cannot fallback to other nodes, as we could break the per-node pool. */
2298 	if (!allow_alloc_fallback)
2299 		gfp_mask |= __GFP_THISNODE;
2300 
2301 	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2302 }
2303 
policy_mbind_nodemask(gfp_t gfp)2304 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2305 {
2306 #ifdef CONFIG_NUMA
2307 	struct mempolicy *mpol = get_task_policy(current);
2308 
2309 	/*
2310 	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2311 	 * (from policy_nodemask) specifically for hugetlb case
2312 	 */
2313 	if (mpol->mode == MPOL_BIND &&
2314 		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
2315 		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2316 		return &mpol->nodes;
2317 #endif
2318 	return NULL;
2319 }
2320 
2321 /*
2322  * Increase the hugetlb pool such that it can accommodate a reservation
2323  * of size 'delta'.
2324  */
gather_surplus_pages(struct hstate * h,long delta)2325 static int gather_surplus_pages(struct hstate *h, long delta)
2326 	__must_hold(&hugetlb_lock)
2327 {
2328 	LIST_HEAD(surplus_list);
2329 	struct folio *folio, *tmp;
2330 	int ret;
2331 	long i;
2332 	long needed, allocated;
2333 	bool alloc_ok = true;
2334 	nodemask_t *mbind_nodemask, alloc_nodemask;
2335 
2336 	mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2337 	if (mbind_nodemask)
2338 		nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2339 	else
2340 		alloc_nodemask = cpuset_current_mems_allowed;
2341 
2342 	lockdep_assert_held(&hugetlb_lock);
2343 	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2344 	if (needed <= 0) {
2345 		h->resv_huge_pages += delta;
2346 		return 0;
2347 	}
2348 
2349 	allocated = 0;
2350 
2351 	ret = -ENOMEM;
2352 retry:
2353 	spin_unlock_irq(&hugetlb_lock);
2354 	for (i = 0; i < needed; i++) {
2355 		folio = NULL;
2356 
2357 		/*
2358 		 * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
2359 		 * down the road to pick the current node if that is the case.
2360 		 */
2361 		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2362 						    NUMA_NO_NODE, &alloc_nodemask);
2363 		if (!folio) {
2364 			alloc_ok = false;
2365 			break;
2366 		}
2367 		list_add(&folio->lru, &surplus_list);
2368 		cond_resched();
2369 	}
2370 	allocated += i;
2371 
2372 	/*
2373 	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2374 	 * because either resv_huge_pages or free_huge_pages may have changed.
2375 	 */
2376 	spin_lock_irq(&hugetlb_lock);
2377 	needed = (h->resv_huge_pages + delta) -
2378 			(h->free_huge_pages + allocated);
2379 	if (needed > 0) {
2380 		if (alloc_ok)
2381 			goto retry;
2382 		/*
2383 		 * We were not able to allocate enough pages to
2384 		 * satisfy the entire reservation so we free what
2385 		 * we've allocated so far.
2386 		 */
2387 		goto free;
2388 	}
2389 	/*
2390 	 * The surplus_list now contains _at_least_ the number of extra pages
2391 	 * needed to accommodate the reservation.  Add the appropriate number
2392 	 * of pages to the hugetlb pool and free the extras back to the buddy
2393 	 * allocator.  Commit the entire reservation here to prevent another
2394 	 * process from stealing the pages as they are added to the pool but
2395 	 * before they are reserved.
2396 	 */
2397 	needed += allocated;
2398 	h->resv_huge_pages += delta;
2399 	ret = 0;
2400 
2401 	/* Free the needed pages to the hugetlb pool */
2402 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2403 		if ((--needed) < 0)
2404 			break;
2405 		/* Add the page to the hugetlb allocator */
2406 		enqueue_hugetlb_folio(h, folio);
2407 	}
2408 free:
2409 	spin_unlock_irq(&hugetlb_lock);
2410 
2411 	/*
2412 	 * Free unnecessary surplus pages to the buddy allocator.
2413 	 * Pages have no ref count, call free_huge_folio directly.
2414 	 */
2415 	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2416 		free_huge_folio(folio);
2417 	spin_lock_irq(&hugetlb_lock);
2418 
2419 	return ret;
2420 }
2421 
2422 /*
2423  * This routine has two main purposes:
2424  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2425  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2426  *    to the associated reservation map.
2427  * 2) Free any unused surplus pages that may have been allocated to satisfy
2428  *    the reservation.  As many as unused_resv_pages may be freed.
2429  */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2430 static void return_unused_surplus_pages(struct hstate *h,
2431 					unsigned long unused_resv_pages)
2432 {
2433 	unsigned long nr_pages;
2434 	LIST_HEAD(page_list);
2435 
2436 	lockdep_assert_held(&hugetlb_lock);
2437 	/* Uncommit the reservation */
2438 	h->resv_huge_pages -= unused_resv_pages;
2439 
2440 	if (hstate_is_gigantic_no_runtime(h))
2441 		goto out;
2442 
2443 	/*
2444 	 * Part (or even all) of the reservation could have been backed
2445 	 * by pre-allocated pages. Only free surplus pages.
2446 	 */
2447 	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2448 
2449 	/*
2450 	 * We want to release as many surplus pages as possible, spread
2451 	 * evenly across all nodes with memory. Iterate across these nodes
2452 	 * until we can no longer free unreserved surplus pages. This occurs
2453 	 * when the nodes with surplus pages have no free pages.
2454 	 * remove_pool_hugetlb_folio() will balance the freed pages across the
2455 	 * on-line nodes with memory and will handle the hstate accounting.
2456 	 */
2457 	while (nr_pages--) {
2458 		struct folio *folio;
2459 
2460 		folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2461 		if (!folio)
2462 			goto out;
2463 
2464 		list_add(&folio->lru, &page_list);
2465 	}
2466 
2467 out:
2468 	spin_unlock_irq(&hugetlb_lock);
2469 	update_and_free_pages_bulk(h, &page_list);
2470 	spin_lock_irq(&hugetlb_lock);
2471 }
2472 
2473 
2474 /*
2475  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2476  * are used by the huge page allocation routines to manage reservations.
2477  *
2478  * vma_needs_reservation is called to determine if the huge page at addr
2479  * within the vma has an associated reservation.  If a reservation is
2480  * needed, the value 1 is returned.  The caller is then responsible for
2481  * managing the global reservation and subpool usage counts.  After
2482  * the huge page has been allocated, vma_commit_reservation is called
2483  * to add the page to the reservation map.  If the page allocation fails,
2484  * the reservation must be ended instead of committed.  vma_end_reservation
2485  * is called in such cases.
2486  *
2487  * In the normal case, vma_commit_reservation returns the same value
2488  * as the preceding vma_needs_reservation call.  The only time this
2489  * is not the case is if a reserve map was changed between calls.  It
2490  * is the responsibility of the caller to notice the difference and
2491  * take appropriate action.
2492  *
2493  * vma_add_reservation is used in error paths where a reservation must
2494  * be restored when a newly allocated huge page must be freed.  It is
2495  * to be called after calling vma_needs_reservation to determine if a
2496  * reservation exists.
2497  *
2498  * vma_del_reservation is used in error paths where an entry in the reserve
2499  * map was created during huge page allocation and must be removed.  It is to
2500  * be called after calling vma_needs_reservation to determine if a reservation
2501  * exists.
2502  */
2503 enum vma_resv_mode {
2504 	VMA_NEEDS_RESV,
2505 	VMA_COMMIT_RESV,
2506 	VMA_END_RESV,
2507 	VMA_ADD_RESV,
2508 	VMA_DEL_RESV,
2509 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2510 static long __vma_reservation_common(struct hstate *h,
2511 				struct vm_area_struct *vma, unsigned long addr,
2512 				enum vma_resv_mode mode)
2513 {
2514 	struct resv_map *resv;
2515 	pgoff_t idx;
2516 	long ret;
2517 	long dummy_out_regions_needed;
2518 
2519 	resv = vma_resv_map(vma);
2520 	if (!resv)
2521 		return 1;
2522 
2523 	idx = vma_hugecache_offset(h, vma, addr);
2524 	switch (mode) {
2525 	case VMA_NEEDS_RESV:
2526 		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2527 		/* We assume that vma_reservation_* routines always operate on
2528 		 * 1 page, and that adding to resv map a 1 page entry can only
2529 		 * ever require 1 region.
2530 		 */
2531 		VM_BUG_ON(dummy_out_regions_needed != 1);
2532 		break;
2533 	case VMA_COMMIT_RESV:
2534 		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2535 		/* region_add calls of range 1 should never fail. */
2536 		VM_BUG_ON(ret < 0);
2537 		break;
2538 	case VMA_END_RESV:
2539 		region_abort(resv, idx, idx + 1, 1);
2540 		ret = 0;
2541 		break;
2542 	case VMA_ADD_RESV:
2543 		if (vma->vm_flags & VM_MAYSHARE) {
2544 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2545 			/* region_add calls of range 1 should never fail. */
2546 			VM_BUG_ON(ret < 0);
2547 		} else {
2548 			region_abort(resv, idx, idx + 1, 1);
2549 			ret = region_del(resv, idx, idx + 1);
2550 		}
2551 		break;
2552 	case VMA_DEL_RESV:
2553 		if (vma->vm_flags & VM_MAYSHARE) {
2554 			region_abort(resv, idx, idx + 1, 1);
2555 			ret = region_del(resv, idx, idx + 1);
2556 		} else {
2557 			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2558 			/* region_add calls of range 1 should never fail. */
2559 			VM_BUG_ON(ret < 0);
2560 		}
2561 		break;
2562 	default:
2563 		BUG();
2564 	}
2565 
2566 	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2567 		return ret;
2568 	/*
2569 	 * We know private mapping must have HPAGE_RESV_OWNER set.
2570 	 *
2571 	 * In most cases, reserves always exist for private mappings.
2572 	 * However, a file associated with mapping could have been
2573 	 * hole punched or truncated after reserves were consumed.
2574 	 * As subsequent fault on such a range will not use reserves.
2575 	 * Subtle - The reserve map for private mappings has the
2576 	 * opposite meaning than that of shared mappings.  If NO
2577 	 * entry is in the reserve map, it means a reservation exists.
2578 	 * If an entry exists in the reserve map, it means the
2579 	 * reservation has already been consumed.  As a result, the
2580 	 * return value of this routine is the opposite of the
2581 	 * value returned from reserve map manipulation routines above.
2582 	 */
2583 	if (ret > 0)
2584 		return 0;
2585 	if (ret == 0)
2586 		return 1;
2587 	return ret;
2588 }
2589 
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2590 static long vma_needs_reservation(struct hstate *h,
2591 			struct vm_area_struct *vma, unsigned long addr)
2592 {
2593 	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2594 }
2595 
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2596 static long vma_commit_reservation(struct hstate *h,
2597 			struct vm_area_struct *vma, unsigned long addr)
2598 {
2599 	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2600 }
2601 
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2602 static void vma_end_reservation(struct hstate *h,
2603 			struct vm_area_struct *vma, unsigned long addr)
2604 {
2605 	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2606 }
2607 
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2608 static long vma_add_reservation(struct hstate *h,
2609 			struct vm_area_struct *vma, unsigned long addr)
2610 {
2611 	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2612 }
2613 
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2614 static long vma_del_reservation(struct hstate *h,
2615 			struct vm_area_struct *vma, unsigned long addr)
2616 {
2617 	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2618 }
2619 
2620 /*
2621  * This routine is called to restore reservation information on error paths.
2622  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2623  * and the hugetlb mutex should remain held when calling this routine.
2624  *
2625  * It handles two specific cases:
2626  * 1) A reservation was in place and the folio consumed the reservation.
2627  *    hugetlb_restore_reserve is set in the folio.
2628  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2629  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2630  *
2631  * In case 1, free_huge_folio later in the error path will increment the
2632  * global reserve count.  But, free_huge_folio does not have enough context
2633  * to adjust the reservation map.  This case deals primarily with private
2634  * mappings.  Adjust the reserve map here to be consistent with global
2635  * reserve count adjustments to be made by free_huge_folio.  Make sure the
2636  * reserve map indicates there is a reservation present.
2637  *
2638  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2639  */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2640 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2641 			unsigned long address, struct folio *folio)
2642 {
2643 	long rc = vma_needs_reservation(h, vma, address);
2644 
2645 	if (folio_test_hugetlb_restore_reserve(folio)) {
2646 		if (unlikely(rc < 0))
2647 			/*
2648 			 * Rare out of memory condition in reserve map
2649 			 * manipulation.  Clear hugetlb_restore_reserve so
2650 			 * that global reserve count will not be incremented
2651 			 * by free_huge_folio.  This will make it appear
2652 			 * as though the reservation for this folio was
2653 			 * consumed.  This may prevent the task from
2654 			 * faulting in the folio at a later time.  This
2655 			 * is better than inconsistent global huge page
2656 			 * accounting of reserve counts.
2657 			 */
2658 			folio_clear_hugetlb_restore_reserve(folio);
2659 		else if (rc)
2660 			(void)vma_add_reservation(h, vma, address);
2661 		else
2662 			vma_end_reservation(h, vma, address);
2663 	} else {
2664 		if (!rc) {
2665 			/*
2666 			 * This indicates there is an entry in the reserve map
2667 			 * not added by alloc_hugetlb_folio.  We know it was added
2668 			 * before the alloc_hugetlb_folio call, otherwise
2669 			 * hugetlb_restore_reserve would be set on the folio.
2670 			 * Remove the entry so that a subsequent allocation
2671 			 * does not consume a reservation.
2672 			 */
2673 			rc = vma_del_reservation(h, vma, address);
2674 			if (rc < 0)
2675 				/*
2676 				 * VERY rare out of memory condition.  Since
2677 				 * we can not delete the entry, set
2678 				 * hugetlb_restore_reserve so that the reserve
2679 				 * count will be incremented when the folio
2680 				 * is freed.  This reserve will be consumed
2681 				 * on a subsequent allocation.
2682 				 */
2683 				folio_set_hugetlb_restore_reserve(folio);
2684 		} else if (rc < 0) {
2685 			/*
2686 			 * Rare out of memory condition from
2687 			 * vma_needs_reservation call.  Memory allocation is
2688 			 * only attempted if a new entry is needed.  Therefore,
2689 			 * this implies there is not an entry in the
2690 			 * reserve map.
2691 			 *
2692 			 * For shared mappings, no entry in the map indicates
2693 			 * no reservation.  We are done.
2694 			 */
2695 			if (!(vma->vm_flags & VM_MAYSHARE))
2696 				/*
2697 				 * For private mappings, no entry indicates
2698 				 * a reservation is present.  Since we can
2699 				 * not add an entry, set hugetlb_restore_reserve
2700 				 * on the folio so reserve count will be
2701 				 * incremented when freed.  This reserve will
2702 				 * be consumed on a subsequent allocation.
2703 				 */
2704 				folio_set_hugetlb_restore_reserve(folio);
2705 		} else
2706 			/*
2707 			 * No reservation present, do nothing
2708 			 */
2709 			 vma_end_reservation(h, vma, address);
2710 	}
2711 }
2712 
2713 /*
2714  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2715  * the old one
2716  * @old_folio: Old folio to dissolve
2717  * @list: List to isolate the page in case we need to
2718  * Returns 0 on success, otherwise negated error.
2719  */
alloc_and_dissolve_hugetlb_folio(struct folio * old_folio,struct list_head * list)2720 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio,
2721 			struct list_head *list)
2722 {
2723 	gfp_t gfp_mask;
2724 	struct hstate *h;
2725 	int nid = folio_nid(old_folio);
2726 	struct folio *new_folio = NULL;
2727 	int ret = 0;
2728 
2729 retry:
2730 	/*
2731 	 * The old_folio might have been dissolved from under our feet, so make sure
2732 	 * to carefully check the state under the lock.
2733 	 */
2734 	spin_lock_irq(&hugetlb_lock);
2735 	if (!folio_test_hugetlb(old_folio)) {
2736 		/*
2737 		 * Freed from under us. Drop new_folio too.
2738 		 */
2739 		goto free_new;
2740 	} else if (folio_ref_count(old_folio)) {
2741 		bool isolated;
2742 
2743 		/*
2744 		 * Someone has grabbed the folio, try to isolate it here.
2745 		 * Fail with -EBUSY if not possible.
2746 		 */
2747 		spin_unlock_irq(&hugetlb_lock);
2748 		isolated = folio_isolate_hugetlb(old_folio, list);
2749 		ret = isolated ? 0 : -EBUSY;
2750 		spin_lock_irq(&hugetlb_lock);
2751 		goto free_new;
2752 	} else if (!folio_test_hugetlb_freed(old_folio)) {
2753 		/*
2754 		 * Folio's refcount is 0 but it has not been enqueued in the
2755 		 * freelist yet. Race window is small, so we can succeed here if
2756 		 * we retry.
2757 		 */
2758 		spin_unlock_irq(&hugetlb_lock);
2759 		cond_resched();
2760 		goto retry;
2761 	} else {
2762 		h = folio_hstate(old_folio);
2763 		if (!new_folio) {
2764 			spin_unlock_irq(&hugetlb_lock);
2765 			gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2766 			new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask,
2767 							      nid, NULL);
2768 			if (!new_folio)
2769 				return -ENOMEM;
2770 			goto retry;
2771 		}
2772 
2773 		/*
2774 		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2775 		 * the freelist and decrease the counters. These will be
2776 		 * incremented again when calling account_new_hugetlb_folio()
2777 		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2778 		 * remain stable since this happens under the lock.
2779 		 */
2780 		remove_hugetlb_folio(h, old_folio, false);
2781 
2782 		/*
2783 		 * Ref count on new_folio is already zero as it was dropped
2784 		 * earlier.  It can be directly added to the pool free list.
2785 		 */
2786 		account_new_hugetlb_folio(h, new_folio);
2787 		enqueue_hugetlb_folio(h, new_folio);
2788 
2789 		/*
2790 		 * Folio has been replaced, we can safely free the old one.
2791 		 */
2792 		spin_unlock_irq(&hugetlb_lock);
2793 		update_and_free_hugetlb_folio(h, old_folio, false);
2794 	}
2795 
2796 	return ret;
2797 
2798 free_new:
2799 	spin_unlock_irq(&hugetlb_lock);
2800 	if (new_folio)
2801 		update_and_free_hugetlb_folio(h, new_folio, false);
2802 
2803 	return ret;
2804 }
2805 
isolate_or_dissolve_huge_folio(struct folio * folio,struct list_head * list)2806 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
2807 {
2808 	int ret = -EBUSY;
2809 
2810 	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2811 	if (!folio_test_hugetlb(folio))
2812 		return 0;
2813 
2814 	/*
2815 	 * Fence off gigantic pages as there is a cyclic dependency between
2816 	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2817 	 * of bailing out right away without further retrying.
2818 	 */
2819 	if (order_is_gigantic(folio_order(folio)))
2820 		return -ENOMEM;
2821 
2822 	if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2823 		ret = 0;
2824 	else if (!folio_ref_count(folio))
2825 		ret = alloc_and_dissolve_hugetlb_folio(folio, list);
2826 
2827 	return ret;
2828 }
2829 
2830 /*
2831  *  replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2832  *  range with new folios.
2833  *  @start_pfn: start pfn of the given pfn range
2834  *  @end_pfn: end pfn of the given pfn range
2835  *  Returns 0 on success, otherwise negated error.
2836  */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2837 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2838 {
2839 	struct folio *folio;
2840 	int ret = 0;
2841 
2842 	LIST_HEAD(isolate_list);
2843 
2844 	while (start_pfn < end_pfn) {
2845 		folio = pfn_folio(start_pfn);
2846 
2847 		/* Not to disrupt normal path by vainly holding hugetlb_lock */
2848 		if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) {
2849 			ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list);
2850 			if (ret)
2851 				break;
2852 
2853 			putback_movable_pages(&isolate_list);
2854 		}
2855 		start_pfn++;
2856 	}
2857 
2858 	return ret;
2859 }
2860 
wait_for_freed_hugetlb_folios(void)2861 void wait_for_freed_hugetlb_folios(void)
2862 {
2863 	if (llist_empty(&hpage_freelist))
2864 		return;
2865 
2866 	flush_work(&free_hpage_work);
2867 }
2868 
2869 typedef enum {
2870 	/*
2871 	 * For either 0/1: we checked the per-vma resv map, and one resv
2872 	 * count either can be reused (0), or an extra needed (1).
2873 	 */
2874 	MAP_CHG_REUSE = 0,
2875 	MAP_CHG_NEEDED = 1,
2876 	/*
2877 	 * Cannot use per-vma resv count can be used, hence a new resv
2878 	 * count is enforced.
2879 	 *
2880 	 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2881 	 * that currently vma_needs_reservation() has an unwanted side
2882 	 * effect to either use end() or commit() to complete the
2883 	 * transaction. Hence it needs to differentiate from NEEDED.
2884 	 */
2885 	MAP_CHG_ENFORCED = 2,
2886 } map_chg_state;
2887 
2888 /*
2889  * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2890  * faults of hugetlb private mappings on top of a non-page-cache folio (in
2891  * which case even if there's a private vma resv map it won't cover such
2892  * allocation).  New call sites should (probably) never set it to true!!
2893  * When it's set, the allocation will bypass all vma level reservations.
2894  */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)2895 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2896 				    unsigned long addr, bool cow_from_owner)
2897 {
2898 	struct hugepage_subpool *spool = subpool_vma(vma);
2899 	struct hstate *h = hstate_vma(vma);
2900 	struct folio *folio;
2901 	long retval, gbl_chg, gbl_reserve;
2902 	map_chg_state map_chg;
2903 	int ret, idx;
2904 	struct hugetlb_cgroup *h_cg = NULL;
2905 	gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2906 
2907 	idx = hstate_index(h);
2908 
2909 	/* Whether we need a separate per-vma reservation? */
2910 	if (cow_from_owner) {
2911 		/*
2912 		 * Special case!  Since it's a CoW on top of a reserved
2913 		 * page, the private resv map doesn't count.  So it cannot
2914 		 * consume the per-vma resv map even if it's reserved.
2915 		 */
2916 		map_chg = MAP_CHG_ENFORCED;
2917 	} else {
2918 		/*
2919 		 * Examine the region/reserve map to determine if the process
2920 		 * has a reservation for the page to be allocated.  A return
2921 		 * code of zero indicates a reservation exists (no change).
2922 		 */
2923 		retval = vma_needs_reservation(h, vma, addr);
2924 		if (retval < 0)
2925 			return ERR_PTR(-ENOMEM);
2926 		map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
2927 	}
2928 
2929 	/*
2930 	 * Whether we need a separate global reservation?
2931 	 *
2932 	 * Processes that did not create the mapping will have no
2933 	 * reserves as indicated by the region/reserve map. Check
2934 	 * that the allocation will not exceed the subpool limit.
2935 	 * Or if it can get one from the pool reservation directly.
2936 	 */
2937 	if (map_chg) {
2938 		gbl_chg = hugepage_subpool_get_pages(spool, 1);
2939 		if (gbl_chg < 0)
2940 			goto out_end_reservation;
2941 	} else {
2942 		/*
2943 		 * If we have the vma reservation ready, no need for extra
2944 		 * global reservation.
2945 		 */
2946 		gbl_chg = 0;
2947 	}
2948 
2949 	/*
2950 	 * If this allocation is not consuming a per-vma reservation,
2951 	 * charge the hugetlb cgroup now.
2952 	 */
2953 	if (map_chg) {
2954 		ret = hugetlb_cgroup_charge_cgroup_rsvd(
2955 			idx, pages_per_huge_page(h), &h_cg);
2956 		if (ret)
2957 			goto out_subpool_put;
2958 	}
2959 
2960 	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2961 	if (ret)
2962 		goto out_uncharge_cgroup_reservation;
2963 
2964 	spin_lock_irq(&hugetlb_lock);
2965 	/*
2966 	 * glb_chg is passed to indicate whether or not a page must be taken
2967 	 * from the global free pool (global change).  gbl_chg == 0 indicates
2968 	 * a reservation exists for the allocation.
2969 	 */
2970 	folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
2971 	if (!folio) {
2972 		spin_unlock_irq(&hugetlb_lock);
2973 		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
2974 		if (!folio)
2975 			goto out_uncharge_cgroup;
2976 		spin_lock_irq(&hugetlb_lock);
2977 		list_add(&folio->lru, &h->hugepage_activelist);
2978 		folio_ref_unfreeze(folio, 1);
2979 		/* Fall through */
2980 	}
2981 
2982 	/*
2983 	 * Either dequeued or buddy-allocated folio needs to add special
2984 	 * mark to the folio when it consumes a global reservation.
2985 	 */
2986 	if (!gbl_chg) {
2987 		folio_set_hugetlb_restore_reserve(folio);
2988 		h->resv_huge_pages--;
2989 	}
2990 
2991 	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
2992 	/* If allocation is not consuming a reservation, also store the
2993 	 * hugetlb_cgroup pointer on the page.
2994 	 */
2995 	if (map_chg) {
2996 		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2997 						  h_cg, folio);
2998 	}
2999 
3000 	spin_unlock_irq(&hugetlb_lock);
3001 
3002 	hugetlb_set_folio_subpool(folio, spool);
3003 
3004 	if (map_chg != MAP_CHG_ENFORCED) {
3005 		/* commit() is only needed if the map_chg is not enforced */
3006 		retval = vma_commit_reservation(h, vma, addr);
3007 		/*
3008 		 * Check for possible race conditions. When it happens..
3009 		 * The page was added to the reservation map between
3010 		 * vma_needs_reservation and vma_commit_reservation.
3011 		 * This indicates a race with hugetlb_reserve_pages.
3012 		 * Adjust for the subpool count incremented above AND
3013 		 * in hugetlb_reserve_pages for the same page.	Also,
3014 		 * the reservation count added in hugetlb_reserve_pages
3015 		 * no longer applies.
3016 		 */
3017 		if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3018 			long rsv_adjust;
3019 
3020 			rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3021 			hugetlb_acct_memory(h, -rsv_adjust);
3022 			if (map_chg) {
3023 				spin_lock_irq(&hugetlb_lock);
3024 				hugetlb_cgroup_uncharge_folio_rsvd(
3025 				    hstate_index(h), pages_per_huge_page(h),
3026 				    folio);
3027 				spin_unlock_irq(&hugetlb_lock);
3028 			}
3029 		}
3030 	}
3031 
3032 	ret = mem_cgroup_charge_hugetlb(folio, gfp);
3033 	/*
3034 	 * Unconditionally increment NR_HUGETLB here. If it turns out that
3035 	 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3036 	 * decrement NR_HUGETLB.
3037 	 */
3038 	lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3039 
3040 	if (ret == -ENOMEM) {
3041 		free_huge_folio(folio);
3042 		return ERR_PTR(-ENOMEM);
3043 	}
3044 
3045 	return folio;
3046 
3047 out_uncharge_cgroup:
3048 	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3049 out_uncharge_cgroup_reservation:
3050 	if (map_chg)
3051 		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3052 						    h_cg);
3053 out_subpool_put:
3054 	/*
3055 	 * put page to subpool iff the quota of subpool's rsv_hpages is used
3056 	 * during hugepage_subpool_get_pages.
3057 	 */
3058 	if (map_chg && !gbl_chg) {
3059 		gbl_reserve = hugepage_subpool_put_pages(spool, 1);
3060 		hugetlb_acct_memory(h, -gbl_reserve);
3061 	}
3062 
3063 
3064 out_end_reservation:
3065 	if (map_chg != MAP_CHG_ENFORCED)
3066 		vma_end_reservation(h, vma, addr);
3067 	return ERR_PTR(-ENOSPC);
3068 }
3069 
alloc_bootmem(struct hstate * h,int nid,bool node_exact)3070 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3071 {
3072 	struct huge_bootmem_page *m;
3073 	int listnode = nid;
3074 
3075 	if (hugetlb_early_cma(h))
3076 		m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3077 	else {
3078 		if (node_exact)
3079 			m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3080 				huge_page_size(h), 0,
3081 				MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3082 		else {
3083 			m = memblock_alloc_try_nid_raw(huge_page_size(h),
3084 				huge_page_size(h), 0,
3085 				MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3086 			/*
3087 			 * For pre-HVO to work correctly, pages need to be on
3088 			 * the list for the node they were actually allocated
3089 			 * from. That node may be different in the case of
3090 			 * fallback by memblock_alloc_try_nid_raw. So,
3091 			 * extract the actual node first.
3092 			 */
3093 			if (m)
3094 				listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3095 		}
3096 
3097 		if (m) {
3098 			m->flags = 0;
3099 			m->cma = NULL;
3100 		}
3101 	}
3102 
3103 	if (m) {
3104 		/*
3105 		 * Use the beginning of the huge page to store the
3106 		 * huge_bootmem_page struct (until gather_bootmem
3107 		 * puts them into the mem_map).
3108 		 *
3109 		 * Put them into a private list first because mem_map
3110 		 * is not up yet.
3111 		 */
3112 		INIT_LIST_HEAD(&m->list);
3113 		list_add(&m->list, &huge_boot_pages[listnode]);
3114 		m->hstate = h;
3115 	}
3116 
3117 	return m;
3118 }
3119 
3120 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3121 	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3122 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3123 {
3124 	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3125 	int nr_nodes, node = nid;
3126 
3127 	/* do node specific alloc */
3128 	if (nid != NUMA_NO_NODE) {
3129 		m = alloc_bootmem(h, node, true);
3130 		if (!m)
3131 			return 0;
3132 		goto found;
3133 	}
3134 
3135 	/* allocate from next node when distributing huge pages */
3136 	for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
3137 				    &hugetlb_bootmem_nodes) {
3138 		m = alloc_bootmem(h, node, false);
3139 		if (!m)
3140 			return 0;
3141 		goto found;
3142 	}
3143 
3144 found:
3145 
3146 	/*
3147 	 * Only initialize the head struct page in memmap_init_reserved_pages,
3148 	 * rest of the struct pages will be initialized by the HugeTLB
3149 	 * subsystem itself.
3150 	 * The head struct page is used to get folio information by the HugeTLB
3151 	 * subsystem like zone id and node id.
3152 	 */
3153 	memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3154 		huge_page_size(h) - PAGE_SIZE);
3155 
3156 	return 1;
3157 }
3158 
3159 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3160 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3161 					unsigned long start_page_number,
3162 					unsigned long end_page_number)
3163 {
3164 	enum zone_type zone = folio_zonenum(folio);
3165 	int nid = folio_nid(folio);
3166 	struct page *page = folio_page(folio, start_page_number);
3167 	unsigned long head_pfn = folio_pfn(folio);
3168 	unsigned long pfn, end_pfn = head_pfn + end_page_number;
3169 
3170 	/*
3171 	 * As we marked all tail pages with memblock_reserved_mark_noinit(),
3172 	 * we must initialize them ourselves here.
3173 	 */
3174 	for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) {
3175 		__init_single_page(page, pfn, zone, nid);
3176 		prep_compound_tail((struct page *)folio, pfn - head_pfn);
3177 		set_page_count(page, 0);
3178 	}
3179 }
3180 
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3181 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3182 					      struct hstate *h,
3183 					      unsigned long nr_pages)
3184 {
3185 	int ret;
3186 
3187 	/*
3188 	 * This is an open-coded prep_compound_page() whereby we avoid
3189 	 * walking pages twice by initializing/preparing+freezing them in the
3190 	 * same go.
3191 	 */
3192 	__folio_clear_reserved(folio);
3193 	__folio_set_head(folio);
3194 	ret = folio_ref_freeze(folio, 1);
3195 	VM_BUG_ON(!ret);
3196 	hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3197 	prep_compound_head(&folio->page, huge_page_order(h));
3198 }
3199 
hugetlb_bootmem_page_prehvo(struct huge_bootmem_page * m)3200 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3201 {
3202 	return m->flags & HUGE_BOOTMEM_HVO;
3203 }
3204 
hugetlb_bootmem_page_earlycma(struct huge_bootmem_page * m)3205 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3206 {
3207 	return m->flags & HUGE_BOOTMEM_CMA;
3208 }
3209 
3210 /*
3211  * memblock-allocated pageblocks might not have the migrate type set
3212  * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3213  * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3214  * reservation.
3215  *
3216  * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3217  * read-only, but that's ok - for sparse vmemmap this does not write to
3218  * the page structure.
3219  */
hugetlb_bootmem_init_migratetype(struct folio * folio,struct hstate * h)3220 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3221 							  struct hstate *h)
3222 {
3223 	unsigned long nr_pages = pages_per_huge_page(h), i;
3224 
3225 	WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3226 
3227 	for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3228 		if (folio_test_hugetlb_cma(folio))
3229 			init_cma_pageblock(folio_page(folio, i));
3230 		else
3231 			init_pageblock_migratetype(folio_page(folio, i),
3232 					  MIGRATE_MOVABLE, false);
3233 	}
3234 }
3235 
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3236 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3237 					struct list_head *folio_list)
3238 {
3239 	unsigned long flags;
3240 	struct folio *folio, *tmp_f;
3241 
3242 	/* Send list for bulk vmemmap optimization processing */
3243 	hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3244 
3245 	list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3246 		if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3247 			/*
3248 			 * If HVO fails, initialize all tail struct pages
3249 			 * We do not worry about potential long lock hold
3250 			 * time as this is early in boot and there should
3251 			 * be no contention.
3252 			 */
3253 			hugetlb_folio_init_tail_vmemmap(folio,
3254 					HUGETLB_VMEMMAP_RESERVE_PAGES,
3255 					pages_per_huge_page(h));
3256 		}
3257 		hugetlb_bootmem_init_migratetype(folio, h);
3258 		/* Subdivide locks to achieve better parallel performance */
3259 		spin_lock_irqsave(&hugetlb_lock, flags);
3260 		account_new_hugetlb_folio(h, folio);
3261 		enqueue_hugetlb_folio(h, folio);
3262 		spin_unlock_irqrestore(&hugetlb_lock, flags);
3263 	}
3264 }
3265 
hugetlb_bootmem_page_zones_valid(int nid,struct huge_bootmem_page * m)3266 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3267 					     struct huge_bootmem_page *m)
3268 {
3269 	unsigned long start_pfn;
3270 	bool valid;
3271 
3272 	if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3273 		/*
3274 		 * Already validated, skip check.
3275 		 */
3276 		return true;
3277 	}
3278 
3279 	if (hugetlb_bootmem_page_earlycma(m)) {
3280 		valid = cma_validate_zones(m->cma);
3281 		goto out;
3282 	}
3283 
3284 	start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3285 
3286 	valid = !pfn_range_intersects_zones(nid, start_pfn,
3287 			pages_per_huge_page(m->hstate));
3288 out:
3289 	if (!valid)
3290 		hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3291 
3292 	return valid;
3293 }
3294 
3295 /*
3296  * Free a bootmem page that was found to be invalid (intersecting with
3297  * multiple zones).
3298  *
3299  * Since it intersects with multiple zones, we can't just do a free
3300  * operation on all pages at once, but instead have to walk all
3301  * pages, freeing them one by one.
3302  */
hugetlb_bootmem_free_invalid_page(int nid,struct page * page,struct hstate * h)3303 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3304 					     struct hstate *h)
3305 {
3306 	unsigned long npages = pages_per_huge_page(h);
3307 	unsigned long pfn;
3308 
3309 	while (npages--) {
3310 		pfn = page_to_pfn(page);
3311 		__init_page_from_nid(pfn, nid);
3312 		free_reserved_page(page);
3313 		page++;
3314 	}
3315 }
3316 
3317 /*
3318  * Put bootmem huge pages into the standard lists after mem_map is up.
3319  * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3320  */
gather_bootmem_prealloc_node(unsigned long nid)3321 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3322 {
3323 	LIST_HEAD(folio_list);
3324 	struct huge_bootmem_page *m, *tm;
3325 	struct hstate *h = NULL, *prev_h = NULL;
3326 
3327 	list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3328 		struct page *page = virt_to_page(m);
3329 		struct folio *folio = (void *)page;
3330 
3331 		h = m->hstate;
3332 		if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3333 			/*
3334 			 * Can't use this page. Initialize the
3335 			 * page structures if that hasn't already
3336 			 * been done, and give them to the page
3337 			 * allocator.
3338 			 */
3339 			hugetlb_bootmem_free_invalid_page(nid, page, h);
3340 			continue;
3341 		}
3342 
3343 		/*
3344 		 * It is possible to have multiple huge page sizes (hstates)
3345 		 * in this list.  If so, process each size separately.
3346 		 */
3347 		if (h != prev_h && prev_h != NULL)
3348 			prep_and_add_bootmem_folios(prev_h, &folio_list);
3349 		prev_h = h;
3350 
3351 		VM_BUG_ON(!hstate_is_gigantic(h));
3352 		WARN_ON(folio_ref_count(folio) != 1);
3353 
3354 		hugetlb_folio_init_vmemmap(folio, h,
3355 					   HUGETLB_VMEMMAP_RESERVE_PAGES);
3356 		init_new_hugetlb_folio(folio);
3357 
3358 		if (hugetlb_bootmem_page_prehvo(m))
3359 			/*
3360 			 * If pre-HVO was done, just set the
3361 			 * flag, the HVO code will then skip
3362 			 * this folio.
3363 			 */
3364 			folio_set_hugetlb_vmemmap_optimized(folio);
3365 
3366 		if (hugetlb_bootmem_page_earlycma(m))
3367 			folio_set_hugetlb_cma(folio);
3368 
3369 		list_add(&folio->lru, &folio_list);
3370 
3371 		/*
3372 		 * We need to restore the 'stolen' pages to totalram_pages
3373 		 * in order to fix confusing memory reports from free(1) and
3374 		 * other side-effects, like CommitLimit going negative.
3375 		 *
3376 		 * For CMA pages, this is done in init_cma_pageblock
3377 		 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3378 		 */
3379 		if (!folio_test_hugetlb_cma(folio))
3380 			adjust_managed_page_count(page, pages_per_huge_page(h));
3381 		cond_resched();
3382 	}
3383 
3384 	prep_and_add_bootmem_folios(h, &folio_list);
3385 }
3386 
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3387 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3388 						    unsigned long end, void *arg)
3389 {
3390 	int nid;
3391 
3392 	for (nid = start; nid < end; nid++)
3393 		gather_bootmem_prealloc_node(nid);
3394 }
3395 
gather_bootmem_prealloc(void)3396 static void __init gather_bootmem_prealloc(void)
3397 {
3398 	struct padata_mt_job job = {
3399 		.thread_fn	= gather_bootmem_prealloc_parallel,
3400 		.fn_arg		= NULL,
3401 		.start		= 0,
3402 		.size		= nr_node_ids,
3403 		.align		= 1,
3404 		.min_chunk	= 1,
3405 		.max_threads	= num_node_state(N_MEMORY),
3406 		.numa_aware	= true,
3407 	};
3408 
3409 	padata_do_multithreaded(&job);
3410 }
3411 
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3412 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3413 {
3414 	unsigned long i;
3415 	char buf[32];
3416 	LIST_HEAD(folio_list);
3417 
3418 	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3419 		if (hstate_is_gigantic(h)) {
3420 			if (!alloc_bootmem_huge_page(h, nid))
3421 				break;
3422 		} else {
3423 			struct folio *folio;
3424 			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3425 
3426 			folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3427 					&node_states[N_MEMORY], NULL);
3428 			if (!folio)
3429 				break;
3430 			list_add(&folio->lru, &folio_list);
3431 		}
3432 		cond_resched();
3433 	}
3434 
3435 	if (!list_empty(&folio_list))
3436 		prep_and_add_allocated_folios(h, &folio_list);
3437 
3438 	if (i == h->max_huge_pages_node[nid])
3439 		return;
3440 
3441 	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3442 	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3443 		h->max_huge_pages_node[nid], buf, nid, i);
3444 	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3445 	h->max_huge_pages_node[nid] = i;
3446 }
3447 
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3448 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3449 {
3450 	int i;
3451 	bool node_specific_alloc = false;
3452 
3453 	for_each_online_node(i) {
3454 		if (h->max_huge_pages_node[i] > 0) {
3455 			hugetlb_hstate_alloc_pages_onenode(h, i);
3456 			node_specific_alloc = true;
3457 		}
3458 	}
3459 
3460 	return node_specific_alloc;
3461 }
3462 
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3463 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3464 {
3465 	if (allocated < h->max_huge_pages) {
3466 		char buf[32];
3467 
3468 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3469 		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3470 			h->max_huge_pages, buf, allocated);
3471 		h->max_huge_pages = allocated;
3472 	}
3473 }
3474 
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3475 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3476 {
3477 	struct hstate *h = (struct hstate *)arg;
3478 	int i, num = end - start;
3479 	nodemask_t node_alloc_noretry;
3480 	LIST_HEAD(folio_list);
3481 	int next_node = first_online_node;
3482 
3483 	/* Bit mask controlling how hard we retry per-node allocations.*/
3484 	nodes_clear(node_alloc_noretry);
3485 
3486 	for (i = 0; i < num; ++i) {
3487 		struct folio *folio;
3488 
3489 		if (hugetlb_vmemmap_optimizable_size(h) &&
3490 		    (si_mem_available() == 0) && !list_empty(&folio_list)) {
3491 			prep_and_add_allocated_folios(h, &folio_list);
3492 			INIT_LIST_HEAD(&folio_list);
3493 		}
3494 		folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3495 						&node_alloc_noretry, &next_node);
3496 		if (!folio)
3497 			break;
3498 
3499 		list_move(&folio->lru, &folio_list);
3500 		cond_resched();
3501 	}
3502 
3503 	prep_and_add_allocated_folios(h, &folio_list);
3504 }
3505 
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3506 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3507 {
3508 	unsigned long i;
3509 
3510 	for (i = 0; i < h->max_huge_pages; ++i) {
3511 		if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3512 			break;
3513 		cond_resched();
3514 	}
3515 
3516 	return i;
3517 }
3518 
hugetlb_pages_alloc_boot(struct hstate * h)3519 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3520 {
3521 	struct padata_mt_job job = {
3522 		.fn_arg		= h,
3523 		.align		= 1,
3524 		.numa_aware	= true
3525 	};
3526 
3527 	unsigned long jiffies_start;
3528 	unsigned long jiffies_end;
3529 	unsigned long remaining;
3530 
3531 	job.thread_fn	= hugetlb_pages_alloc_boot_node;
3532 
3533 	/*
3534 	 * job.max_threads is 25% of the available cpu threads by default.
3535 	 *
3536 	 * On large servers with terabytes of memory, huge page allocation
3537 	 * can consume a considerably amount of time.
3538 	 *
3539 	 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3540 	 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3541 	 *
3542 	 * +-----------------------+-------+-------+-------+-------+-------+
3543 	 * | threads               |   8   |   16  |   32  |   64  |   128 |
3544 	 * +-----------------------+-------+-------+-------+-------+-------+
3545 	 * | skylake      144 cpus |   44s |   22s |   16s |   19s |   20s |
3546 	 * | cascade lake 192 cpus |   39s |   20s |   11s |   10s |    9s |
3547 	 * +-----------------------+-------+-------+-------+-------+-------+
3548 	 */
3549 	if (hugepage_allocation_threads == 0) {
3550 		hugepage_allocation_threads = num_online_cpus() / 4;
3551 		hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3552 	}
3553 
3554 	job.max_threads	= hugepage_allocation_threads;
3555 
3556 	jiffies_start = jiffies;
3557 	do {
3558 		remaining = h->max_huge_pages - h->nr_huge_pages;
3559 
3560 		job.start     = h->nr_huge_pages;
3561 		job.size      = remaining;
3562 		job.min_chunk = remaining / hugepage_allocation_threads;
3563 		padata_do_multithreaded(&job);
3564 
3565 		if (h->nr_huge_pages == h->max_huge_pages)
3566 			break;
3567 
3568 		/*
3569 		 * Retry only if the vmemmap optimization might have been able to free
3570 		 * some memory back to the system.
3571 		 */
3572 		if (!hugetlb_vmemmap_optimizable(h))
3573 			break;
3574 
3575 		/* Continue if progress was made in last iteration */
3576 	} while (remaining != (h->max_huge_pages - h->nr_huge_pages));
3577 
3578 	jiffies_end = jiffies;
3579 
3580 	pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3581 		jiffies_to_msecs(jiffies_end - jiffies_start),
3582 		hugepage_allocation_threads);
3583 
3584 	return h->nr_huge_pages;
3585 }
3586 
3587 /*
3588  * NOTE: this routine is called in different contexts for gigantic and
3589  * non-gigantic pages.
3590  * - For gigantic pages, this is called early in the boot process and
3591  *   pages are allocated from memblock allocated or something similar.
3592  *   Gigantic pages are actually added to pools later with the routine
3593  *   gather_bootmem_prealloc.
3594  * - For non-gigantic pages, this is called later in the boot process after
3595  *   all of mm is up and functional.  Pages are allocated from buddy and
3596  *   then added to hugetlb pools.
3597  */
hugetlb_hstate_alloc_pages(struct hstate * h)3598 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3599 {
3600 	unsigned long allocated;
3601 
3602 	/*
3603 	 * Skip gigantic hugepages allocation if early CMA
3604 	 * reservations are not available.
3605 	 */
3606 	if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3607 	    !hugetlb_early_cma(h)) {
3608 		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3609 		return;
3610 	}
3611 
3612 	if (!h->max_huge_pages)
3613 		return;
3614 
3615 	/* do node specific alloc */
3616 	if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3617 		return;
3618 
3619 	/* below will do all node balanced alloc */
3620 	if (hstate_is_gigantic(h))
3621 		allocated = hugetlb_gigantic_pages_alloc_boot(h);
3622 	else
3623 		allocated = hugetlb_pages_alloc_boot(h);
3624 
3625 	hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3626 }
3627 
hugetlb_init_hstates(void)3628 static void __init hugetlb_init_hstates(void)
3629 {
3630 	struct hstate *h, *h2;
3631 
3632 	for_each_hstate(h) {
3633 		/*
3634 		 * Always reset to first_memory_node here, even if
3635 		 * next_nid_to_alloc was set before - we can't
3636 		 * reference hugetlb_bootmem_nodes after init, and
3637 		 * first_memory_node is right for all further allocations.
3638 		 */
3639 		h->next_nid_to_alloc = first_memory_node;
3640 		h->next_nid_to_free = first_memory_node;
3641 
3642 		/* oversize hugepages were init'ed in early boot */
3643 		if (!hstate_is_gigantic(h))
3644 			hugetlb_hstate_alloc_pages(h);
3645 
3646 		/*
3647 		 * Set demote order for each hstate.  Note that
3648 		 * h->demote_order is initially 0.
3649 		 * - We can not demote gigantic pages if runtime freeing
3650 		 *   is not supported, so skip this.
3651 		 * - If CMA allocation is possible, we can not demote
3652 		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3653 		 */
3654 		if (hstate_is_gigantic_no_runtime(h))
3655 			continue;
3656 		if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3657 			continue;
3658 		for_each_hstate(h2) {
3659 			if (h2 == h)
3660 				continue;
3661 			if (h2->order < h->order &&
3662 			    h2->order > h->demote_order)
3663 				h->demote_order = h2->order;
3664 		}
3665 	}
3666 }
3667 
report_hugepages(void)3668 static void __init report_hugepages(void)
3669 {
3670 	struct hstate *h;
3671 	unsigned long nrinvalid;
3672 
3673 	for_each_hstate(h) {
3674 		char buf[32];
3675 
3676 		nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3677 		h->max_huge_pages -= nrinvalid;
3678 
3679 		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3680 		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3681 			buf, h->nr_huge_pages);
3682 		if (nrinvalid)
3683 			pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3684 					buf, nrinvalid, str_plural(nrinvalid));
3685 		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3686 			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3687 	}
3688 }
3689 
3690 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3691 static void try_to_free_low(struct hstate *h, unsigned long count,
3692 						nodemask_t *nodes_allowed)
3693 {
3694 	int i;
3695 	LIST_HEAD(page_list);
3696 
3697 	lockdep_assert_held(&hugetlb_lock);
3698 	if (hstate_is_gigantic(h))
3699 		return;
3700 
3701 	/*
3702 	 * Collect pages to be freed on a list, and free after dropping lock
3703 	 */
3704 	for_each_node_mask(i, *nodes_allowed) {
3705 		struct folio *folio, *next;
3706 		struct list_head *freel = &h->hugepage_freelists[i];
3707 		list_for_each_entry_safe(folio, next, freel, lru) {
3708 			if (count >= h->nr_huge_pages)
3709 				goto out;
3710 			if (folio_test_highmem(folio))
3711 				continue;
3712 			remove_hugetlb_folio(h, folio, false);
3713 			list_add(&folio->lru, &page_list);
3714 		}
3715 	}
3716 
3717 out:
3718 	spin_unlock_irq(&hugetlb_lock);
3719 	update_and_free_pages_bulk(h, &page_list);
3720 	spin_lock_irq(&hugetlb_lock);
3721 }
3722 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3723 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3724 						nodemask_t *nodes_allowed)
3725 {
3726 }
3727 #endif
3728 
3729 /*
3730  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3731  * balanced by operating on them in a round-robin fashion.
3732  * Returns 1 if an adjustment was made.
3733  */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3734 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3735 				int delta)
3736 {
3737 	int nr_nodes, node;
3738 
3739 	lockdep_assert_held(&hugetlb_lock);
3740 	VM_BUG_ON(delta != -1 && delta != 1);
3741 
3742 	if (delta < 0) {
3743 		for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3744 			if (h->surplus_huge_pages_node[node])
3745 				goto found;
3746 		}
3747 	} else {
3748 		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3749 			if (h->surplus_huge_pages_node[node] <
3750 					h->nr_huge_pages_node[node])
3751 				goto found;
3752 		}
3753 	}
3754 	return 0;
3755 
3756 found:
3757 	h->surplus_huge_pages += delta;
3758 	h->surplus_huge_pages_node[node] += delta;
3759 	return 1;
3760 }
3761 
3762 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3763 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3764 			      nodemask_t *nodes_allowed)
3765 {
3766 	unsigned long persistent_free_count;
3767 	unsigned long min_count;
3768 	unsigned long allocated;
3769 	struct folio *folio;
3770 	LIST_HEAD(page_list);
3771 	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3772 
3773 	/*
3774 	 * Bit mask controlling how hard we retry per-node allocations.
3775 	 * If we can not allocate the bit mask, do not attempt to allocate
3776 	 * the requested huge pages.
3777 	 */
3778 	if (node_alloc_noretry)
3779 		nodes_clear(*node_alloc_noretry);
3780 	else
3781 		return -ENOMEM;
3782 
3783 	/*
3784 	 * resize_lock mutex prevents concurrent adjustments to number of
3785 	 * pages in hstate via the proc/sysfs interfaces.
3786 	 */
3787 	mutex_lock(&h->resize_lock);
3788 	flush_free_hpage_work(h);
3789 	spin_lock_irq(&hugetlb_lock);
3790 
3791 	/*
3792 	 * Check for a node specific request.
3793 	 * Changing node specific huge page count may require a corresponding
3794 	 * change to the global count.  In any case, the passed node mask
3795 	 * (nodes_allowed) will restrict alloc/free to the specified node.
3796 	 */
3797 	if (nid != NUMA_NO_NODE) {
3798 		unsigned long old_count = count;
3799 
3800 		count += persistent_huge_pages(h) -
3801 			 (h->nr_huge_pages_node[nid] -
3802 			  h->surplus_huge_pages_node[nid]);
3803 		/*
3804 		 * User may have specified a large count value which caused the
3805 		 * above calculation to overflow.  In this case, they wanted
3806 		 * to allocate as many huge pages as possible.  Set count to
3807 		 * largest possible value to align with their intention.
3808 		 */
3809 		if (count < old_count)
3810 			count = ULONG_MAX;
3811 	}
3812 
3813 	/*
3814 	 * Gigantic pages runtime allocation depend on the capability for large
3815 	 * page range allocation.
3816 	 * If the system does not provide this feature, return an error when
3817 	 * the user tries to allocate gigantic pages but let the user free the
3818 	 * boottime allocated gigantic pages.
3819 	 */
3820 	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3821 		if (count > persistent_huge_pages(h)) {
3822 			spin_unlock_irq(&hugetlb_lock);
3823 			mutex_unlock(&h->resize_lock);
3824 			NODEMASK_FREE(node_alloc_noretry);
3825 			return -EINVAL;
3826 		}
3827 		/* Fall through to decrease pool */
3828 	}
3829 
3830 	/*
3831 	 * Increase the pool size
3832 	 * First take pages out of surplus state.  Then make up the
3833 	 * remaining difference by allocating fresh huge pages.
3834 	 *
3835 	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3836 	 * to convert a surplus huge page to a normal huge page. That is
3837 	 * not critical, though, it just means the overall size of the
3838 	 * pool might be one hugepage larger than it needs to be, but
3839 	 * within all the constraints specified by the sysctls.
3840 	 */
3841 	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3842 		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3843 			break;
3844 	}
3845 
3846 	allocated = 0;
3847 	while (count > (persistent_huge_pages(h) + allocated)) {
3848 		/*
3849 		 * If this allocation races such that we no longer need the
3850 		 * page, free_huge_folio will handle it by freeing the page
3851 		 * and reducing the surplus.
3852 		 */
3853 		spin_unlock_irq(&hugetlb_lock);
3854 
3855 		/* yield cpu to avoid soft lockup */
3856 		cond_resched();
3857 
3858 		folio = alloc_pool_huge_folio(h, nodes_allowed,
3859 						node_alloc_noretry,
3860 						&h->next_nid_to_alloc);
3861 		if (!folio) {
3862 			prep_and_add_allocated_folios(h, &page_list);
3863 			spin_lock_irq(&hugetlb_lock);
3864 			goto out;
3865 		}
3866 
3867 		list_add(&folio->lru, &page_list);
3868 		allocated++;
3869 
3870 		/* Bail for signals. Probably ctrl-c from user */
3871 		if (signal_pending(current)) {
3872 			prep_and_add_allocated_folios(h, &page_list);
3873 			spin_lock_irq(&hugetlb_lock);
3874 			goto out;
3875 		}
3876 
3877 		spin_lock_irq(&hugetlb_lock);
3878 	}
3879 
3880 	/* Add allocated pages to the pool */
3881 	if (!list_empty(&page_list)) {
3882 		spin_unlock_irq(&hugetlb_lock);
3883 		prep_and_add_allocated_folios(h, &page_list);
3884 		spin_lock_irq(&hugetlb_lock);
3885 	}
3886 
3887 	/*
3888 	 * Decrease the pool size
3889 	 * First return free pages to the buddy allocator (being careful
3890 	 * to keep enough around to satisfy reservations).  Then place
3891 	 * pages into surplus state as needed so the pool will shrink
3892 	 * to the desired size as pages become free.
3893 	 *
3894 	 * By placing pages into the surplus state independent of the
3895 	 * overcommit value, we are allowing the surplus pool size to
3896 	 * exceed overcommit. There are few sane options here. Since
3897 	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3898 	 * though, we'll note that we're not allowed to exceed surplus
3899 	 * and won't grow the pool anywhere else. Not until one of the
3900 	 * sysctls are changed, or the surplus pages go out of use.
3901 	 *
3902 	 * min_count is the expected number of persistent pages, we
3903 	 * shouldn't calculate min_count by using
3904 	 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3905 	 * because there may exist free surplus huge pages, and this will
3906 	 * lead to subtracting twice. Free surplus huge pages come from HVO
3907 	 * failing to restore vmemmap, see comments in the callers of
3908 	 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3909 	 * persistent free count first.
3910 	 */
3911 	persistent_free_count = h->free_huge_pages;
3912 	if (h->free_huge_pages > persistent_huge_pages(h)) {
3913 		if (h->free_huge_pages > h->surplus_huge_pages)
3914 			persistent_free_count -= h->surplus_huge_pages;
3915 		else
3916 			persistent_free_count = 0;
3917 	}
3918 	min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3919 	min_count = max(count, min_count);
3920 	try_to_free_low(h, min_count, nodes_allowed);
3921 
3922 	/*
3923 	 * Collect pages to be removed on list without dropping lock
3924 	 */
3925 	while (min_count < persistent_huge_pages(h)) {
3926 		folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3927 		if (!folio)
3928 			break;
3929 
3930 		list_add(&folio->lru, &page_list);
3931 	}
3932 	/* free the pages after dropping lock */
3933 	spin_unlock_irq(&hugetlb_lock);
3934 	update_and_free_pages_bulk(h, &page_list);
3935 	flush_free_hpage_work(h);
3936 	spin_lock_irq(&hugetlb_lock);
3937 
3938 	while (count < persistent_huge_pages(h)) {
3939 		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3940 			break;
3941 	}
3942 out:
3943 	h->max_huge_pages = persistent_huge_pages(h);
3944 	spin_unlock_irq(&hugetlb_lock);
3945 	mutex_unlock(&h->resize_lock);
3946 
3947 	NODEMASK_FREE(node_alloc_noretry);
3948 
3949 	return 0;
3950 }
3951 
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3952 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3953 				       struct list_head *src_list)
3954 {
3955 	long rc;
3956 	struct folio *folio, *next;
3957 	LIST_HEAD(dst_list);
3958 	LIST_HEAD(ret_list);
3959 
3960 	rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3961 	list_splice_init(&ret_list, src_list);
3962 
3963 	/*
3964 	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3965 	 * Without the mutex, pages added to target hstate could be marked
3966 	 * as surplus.
3967 	 *
3968 	 * Note that we already hold src->resize_lock.  To prevent deadlock,
3969 	 * use the convention of always taking larger size hstate mutex first.
3970 	 */
3971 	mutex_lock(&dst->resize_lock);
3972 
3973 	list_for_each_entry_safe(folio, next, src_list, lru) {
3974 		int i;
3975 		bool cma;
3976 
3977 		if (folio_test_hugetlb_vmemmap_optimized(folio))
3978 			continue;
3979 
3980 		cma = folio_test_hugetlb_cma(folio);
3981 
3982 		list_del(&folio->lru);
3983 
3984 		split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
3985 		pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
3986 
3987 		for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
3988 			struct page *page = folio_page(folio, i);
3989 			/* Careful: see __split_huge_page_tail() */
3990 			struct folio *new_folio = (struct folio *)page;
3991 
3992 			clear_compound_head(page);
3993 			prep_compound_page(page, dst->order);
3994 
3995 			new_folio->mapping = NULL;
3996 			init_new_hugetlb_folio(new_folio);
3997 			/* Copy the CMA flag so that it is freed correctly */
3998 			if (cma)
3999 				folio_set_hugetlb_cma(new_folio);
4000 			list_add(&new_folio->lru, &dst_list);
4001 		}
4002 	}
4003 
4004 	prep_and_add_allocated_folios(dst, &dst_list);
4005 
4006 	mutex_unlock(&dst->resize_lock);
4007 
4008 	return rc;
4009 }
4010 
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)4011 long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4012 			   unsigned long nr_to_demote)
4013 	__must_hold(&hugetlb_lock)
4014 {
4015 	int nr_nodes, node;
4016 	struct hstate *dst;
4017 	long rc = 0;
4018 	long nr_demoted = 0;
4019 
4020 	lockdep_assert_held(&hugetlb_lock);
4021 
4022 	/* We should never get here if no demote order */
4023 	if (!src->demote_order) {
4024 		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4025 		return -EINVAL;		/* internal error */
4026 	}
4027 	dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4028 
4029 	for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4030 		LIST_HEAD(list);
4031 		struct folio *folio, *next;
4032 
4033 		list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4034 			if (folio_test_hwpoison(folio))
4035 				continue;
4036 
4037 			remove_hugetlb_folio(src, folio, false);
4038 			list_add(&folio->lru, &list);
4039 
4040 			if (++nr_demoted == nr_to_demote)
4041 				break;
4042 		}
4043 
4044 		spin_unlock_irq(&hugetlb_lock);
4045 
4046 		rc = demote_free_hugetlb_folios(src, dst, &list);
4047 
4048 		spin_lock_irq(&hugetlb_lock);
4049 
4050 		list_for_each_entry_safe(folio, next, &list, lru) {
4051 			list_del(&folio->lru);
4052 			add_hugetlb_folio(src, folio, false);
4053 
4054 			nr_demoted--;
4055 		}
4056 
4057 		if (rc < 0 || nr_demoted == nr_to_demote)
4058 			break;
4059 	}
4060 
4061 	/*
4062 	 * Not absolutely necessary, but for consistency update max_huge_pages
4063 	 * based on pool changes for the demoted page.
4064 	 */
4065 	src->max_huge_pages -= nr_demoted;
4066 	dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4067 
4068 	if (rc < 0)
4069 		return rc;
4070 
4071 	if (nr_demoted)
4072 		return nr_demoted;
4073 	/*
4074 	 * Only way to get here is if all pages on free lists are poisoned.
4075 	 * Return -EBUSY so that caller will not retry.
4076 	 */
4077 	return -EBUSY;
4078 }
4079 
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4080 ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4081 					   struct hstate *h, int nid,
4082 					   unsigned long count, size_t len)
4083 {
4084 	int err;
4085 	nodemask_t nodes_allowed, *n_mask;
4086 
4087 	if (hstate_is_gigantic_no_runtime(h))
4088 		return -EINVAL;
4089 
4090 	if (nid == NUMA_NO_NODE) {
4091 		/*
4092 		 * global hstate attribute
4093 		 */
4094 		if (!(obey_mempolicy &&
4095 				init_nodemask_of_mempolicy(&nodes_allowed)))
4096 			n_mask = &node_states[N_MEMORY];
4097 		else
4098 			n_mask = &nodes_allowed;
4099 	} else {
4100 		/*
4101 		 * Node specific request.  count adjustment happens in
4102 		 * set_max_huge_pages() after acquiring hugetlb_lock.
4103 		 */
4104 		init_nodemask_of_node(&nodes_allowed, nid);
4105 		n_mask = &nodes_allowed;
4106 	}
4107 
4108 	err = set_max_huge_pages(h, count, nid, n_mask);
4109 
4110 	return err ? err : len;
4111 }
4112 
hugetlb_init(void)4113 static int __init hugetlb_init(void)
4114 {
4115 	int i;
4116 
4117 	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4118 			__NR_HPAGEFLAGS);
4119 	BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER);
4120 
4121 	if (!hugepages_supported()) {
4122 		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4123 			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4124 		return 0;
4125 	}
4126 
4127 	/*
4128 	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4129 	 * architectures depend on setup being done here.
4130 	 */
4131 	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4132 	if (!parsed_default_hugepagesz) {
4133 		/*
4134 		 * If we did not parse a default huge page size, set
4135 		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4136 		 * number of huge pages for this default size was implicitly
4137 		 * specified, set that here as well.
4138 		 * Note that the implicit setting will overwrite an explicit
4139 		 * setting.  A warning will be printed in this case.
4140 		 */
4141 		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4142 		if (default_hstate_max_huge_pages) {
4143 			if (default_hstate.max_huge_pages) {
4144 				char buf[32];
4145 
4146 				string_get_size(huge_page_size(&default_hstate),
4147 					1, STRING_UNITS_2, buf, 32);
4148 				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4149 					default_hstate.max_huge_pages, buf);
4150 				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4151 					default_hstate_max_huge_pages);
4152 			}
4153 			default_hstate.max_huge_pages =
4154 				default_hstate_max_huge_pages;
4155 
4156 			for_each_online_node(i)
4157 				default_hstate.max_huge_pages_node[i] =
4158 					default_hugepages_in_node[i];
4159 		}
4160 	}
4161 
4162 	hugetlb_cma_check();
4163 	hugetlb_init_hstates();
4164 	gather_bootmem_prealloc();
4165 	report_hugepages();
4166 
4167 	hugetlb_sysfs_init();
4168 	hugetlb_cgroup_file_init();
4169 	hugetlb_sysctl_init();
4170 
4171 #ifdef CONFIG_SMP
4172 	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4173 #else
4174 	num_fault_mutexes = 1;
4175 #endif
4176 	hugetlb_fault_mutex_table =
4177 		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4178 			      GFP_KERNEL);
4179 	BUG_ON(!hugetlb_fault_mutex_table);
4180 
4181 	for (i = 0; i < num_fault_mutexes; i++)
4182 		mutex_init(&hugetlb_fault_mutex_table[i]);
4183 	return 0;
4184 }
4185 subsys_initcall(hugetlb_init);
4186 
4187 /* Overwritten by architectures with more huge page sizes */
__init(weak)4188 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4189 {
4190 	return size == HPAGE_SIZE;
4191 }
4192 
hugetlb_add_hstate(unsigned int order)4193 void __init hugetlb_add_hstate(unsigned int order)
4194 {
4195 	struct hstate *h;
4196 	unsigned long i;
4197 
4198 	if (size_to_hstate(PAGE_SIZE << order)) {
4199 		return;
4200 	}
4201 	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4202 	BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4203 	WARN_ON(order > MAX_FOLIO_ORDER);
4204 	h = &hstates[hugetlb_max_hstate++];
4205 	__mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4206 	h->order = order;
4207 	h->mask = ~(huge_page_size(h) - 1);
4208 	for (i = 0; i < MAX_NUMNODES; ++i)
4209 		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4210 	INIT_LIST_HEAD(&h->hugepage_activelist);
4211 	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4212 					huge_page_size(h)/SZ_1K);
4213 
4214 	parsed_hstate = h;
4215 }
4216 
hugetlb_node_alloc_supported(void)4217 bool __init __weak hugetlb_node_alloc_supported(void)
4218 {
4219 	return true;
4220 }
4221 
hugepages_clear_pages_in_node(void)4222 static void __init hugepages_clear_pages_in_node(void)
4223 {
4224 	if (!hugetlb_max_hstate) {
4225 		default_hstate_max_huge_pages = 0;
4226 		memset(default_hugepages_in_node, 0,
4227 			sizeof(default_hugepages_in_node));
4228 	} else {
4229 		parsed_hstate->max_huge_pages = 0;
4230 		memset(parsed_hstate->max_huge_pages_node, 0,
4231 			sizeof(parsed_hstate->max_huge_pages_node));
4232 	}
4233 }
4234 
hugetlb_add_param(char * s,int (* setup)(char *))4235 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4236 {
4237 	size_t len;
4238 	char *p;
4239 
4240 	if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4241 		return -EINVAL;
4242 
4243 	len = strlen(s) + 1;
4244 	if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4245 		return -EINVAL;
4246 
4247 	p = &hstate_cmdline_buf[hstate_cmdline_index];
4248 	memcpy(p, s, len);
4249 	hstate_cmdline_index += len;
4250 
4251 	hugetlb_params[hugetlb_param_index].val = p;
4252 	hugetlb_params[hugetlb_param_index].setup = setup;
4253 
4254 	hugetlb_param_index++;
4255 
4256 	return 0;
4257 }
4258 
hugetlb_parse_params(void)4259 static __init void hugetlb_parse_params(void)
4260 {
4261 	int i;
4262 	struct hugetlb_cmdline *hcp;
4263 
4264 	for (i = 0; i < hugetlb_param_index; i++) {
4265 		hcp = &hugetlb_params[i];
4266 
4267 		hcp->setup(hcp->val);
4268 	}
4269 
4270 	hugetlb_cma_validate_params();
4271 }
4272 
4273 /*
4274  * hugepages command line processing
4275  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4276  * specification.  If not, ignore the hugepages value.  hugepages can also
4277  * be the first huge page command line  option in which case it implicitly
4278  * specifies the number of huge pages for the default size.
4279  */
hugepages_setup(char * s)4280 static int __init hugepages_setup(char *s)
4281 {
4282 	unsigned long *mhp;
4283 	static unsigned long *last_mhp;
4284 	int node = NUMA_NO_NODE;
4285 	int count;
4286 	unsigned long tmp;
4287 	char *p = s;
4288 
4289 	if (!parsed_valid_hugepagesz) {
4290 		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4291 		parsed_valid_hugepagesz = true;
4292 		return -EINVAL;
4293 	}
4294 
4295 	/*
4296 	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4297 	 * yet, so this hugepages= parameter goes to the "default hstate".
4298 	 * Otherwise, it goes with the previously parsed hugepagesz or
4299 	 * default_hugepagesz.
4300 	 */
4301 	else if (!hugetlb_max_hstate)
4302 		mhp = &default_hstate_max_huge_pages;
4303 	else
4304 		mhp = &parsed_hstate->max_huge_pages;
4305 
4306 	if (mhp == last_mhp) {
4307 		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4308 		return 1;
4309 	}
4310 
4311 	while (*p) {
4312 		count = 0;
4313 		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4314 			goto invalid;
4315 		/* Parameter is node format */
4316 		if (p[count] == ':') {
4317 			if (!hugetlb_node_alloc_supported()) {
4318 				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4319 				return 1;
4320 			}
4321 			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4322 				goto invalid;
4323 			node = array_index_nospec(tmp, MAX_NUMNODES);
4324 			p += count + 1;
4325 			/* Parse hugepages */
4326 			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4327 				goto invalid;
4328 			if (!hugetlb_max_hstate)
4329 				default_hugepages_in_node[node] = tmp;
4330 			else
4331 				parsed_hstate->max_huge_pages_node[node] = tmp;
4332 			*mhp += tmp;
4333 			/* Go to parse next node*/
4334 			if (p[count] == ',')
4335 				p += count + 1;
4336 			else
4337 				break;
4338 		} else {
4339 			if (p != s)
4340 				goto invalid;
4341 			*mhp = tmp;
4342 			break;
4343 		}
4344 	}
4345 
4346 	last_mhp = mhp;
4347 
4348 	return 0;
4349 
4350 invalid:
4351 	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4352 	hugepages_clear_pages_in_node();
4353 	return -EINVAL;
4354 }
4355 hugetlb_early_param("hugepages", hugepages_setup);
4356 
4357 /*
4358  * hugepagesz command line processing
4359  * A specific huge page size can only be specified once with hugepagesz.
4360  * hugepagesz is followed by hugepages on the command line.  The global
4361  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4362  * hugepagesz argument was valid.
4363  */
hugepagesz_setup(char * s)4364 static int __init hugepagesz_setup(char *s)
4365 {
4366 	unsigned long size;
4367 	struct hstate *h;
4368 
4369 	parsed_valid_hugepagesz = false;
4370 	size = (unsigned long)memparse(s, NULL);
4371 
4372 	if (!arch_hugetlb_valid_size(size)) {
4373 		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4374 		return -EINVAL;
4375 	}
4376 
4377 	h = size_to_hstate(size);
4378 	if (h) {
4379 		/*
4380 		 * hstate for this size already exists.  This is normally
4381 		 * an error, but is allowed if the existing hstate is the
4382 		 * default hstate.  More specifically, it is only allowed if
4383 		 * the number of huge pages for the default hstate was not
4384 		 * previously specified.
4385 		 */
4386 		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4387 		    default_hstate.max_huge_pages) {
4388 			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4389 			return -EINVAL;
4390 		}
4391 
4392 		/*
4393 		 * No need to call hugetlb_add_hstate() as hstate already
4394 		 * exists.  But, do set parsed_hstate so that a following
4395 		 * hugepages= parameter will be applied to this hstate.
4396 		 */
4397 		parsed_hstate = h;
4398 		parsed_valid_hugepagesz = true;
4399 		return 0;
4400 	}
4401 
4402 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4403 	parsed_valid_hugepagesz = true;
4404 	return 0;
4405 }
4406 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4407 
4408 /*
4409  * default_hugepagesz command line input
4410  * Only one instance of default_hugepagesz allowed on command line.
4411  */
default_hugepagesz_setup(char * s)4412 static int __init default_hugepagesz_setup(char *s)
4413 {
4414 	unsigned long size;
4415 	int i;
4416 
4417 	parsed_valid_hugepagesz = false;
4418 	if (parsed_default_hugepagesz) {
4419 		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4420 		return -EINVAL;
4421 	}
4422 
4423 	size = (unsigned long)memparse(s, NULL);
4424 
4425 	if (!arch_hugetlb_valid_size(size)) {
4426 		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4427 		return -EINVAL;
4428 	}
4429 
4430 	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4431 	parsed_valid_hugepagesz = true;
4432 	parsed_default_hugepagesz = true;
4433 	default_hstate_idx = hstate_index(size_to_hstate(size));
4434 
4435 	/*
4436 	 * The number of default huge pages (for this size) could have been
4437 	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4438 	 * then default_hstate_max_huge_pages is set.  If the default huge
4439 	 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4440 	 * allocated here from bootmem allocator.
4441 	 */
4442 	if (default_hstate_max_huge_pages) {
4443 		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4444 		/*
4445 		 * Since this is an early parameter, we can't check
4446 		 * NUMA node state yet, so loop through MAX_NUMNODES.
4447 		 */
4448 		for (i = 0; i < MAX_NUMNODES; i++) {
4449 			if (default_hugepages_in_node[i] != 0)
4450 				default_hstate.max_huge_pages_node[i] =
4451 					default_hugepages_in_node[i];
4452 		}
4453 		default_hstate_max_huge_pages = 0;
4454 	}
4455 
4456 	return 0;
4457 }
4458 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
4459 
hugetlb_bootmem_set_nodes(void)4460 void __init hugetlb_bootmem_set_nodes(void)
4461 {
4462 	int i, nid;
4463 	unsigned long start_pfn, end_pfn;
4464 
4465 	if (!nodes_empty(hugetlb_bootmem_nodes))
4466 		return;
4467 
4468 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4469 		if (end_pfn > start_pfn)
4470 			node_set(nid, hugetlb_bootmem_nodes);
4471 	}
4472 }
4473 
4474 static bool __hugetlb_bootmem_allocated __initdata;
4475 
hugetlb_bootmem_allocated(void)4476 bool __init hugetlb_bootmem_allocated(void)
4477 {
4478 	return __hugetlb_bootmem_allocated;
4479 }
4480 
hugetlb_bootmem_alloc(void)4481 void __init hugetlb_bootmem_alloc(void)
4482 {
4483 	struct hstate *h;
4484 	int i;
4485 
4486 	if (__hugetlb_bootmem_allocated)
4487 		return;
4488 
4489 	hugetlb_bootmem_set_nodes();
4490 
4491 	for (i = 0; i < MAX_NUMNODES; i++)
4492 		INIT_LIST_HEAD(&huge_boot_pages[i]);
4493 
4494 	hugetlb_parse_params();
4495 
4496 	for_each_hstate(h) {
4497 		h->next_nid_to_alloc = first_online_node;
4498 
4499 		if (hstate_is_gigantic(h))
4500 			hugetlb_hstate_alloc_pages(h);
4501 	}
4502 
4503 	__hugetlb_bootmem_allocated = true;
4504 }
4505 
4506 /*
4507  * hugepage_alloc_threads command line parsing.
4508  *
4509  * When set, use this specific number of threads for the boot
4510  * allocation of hugepages.
4511  */
hugepage_alloc_threads_setup(char * s)4512 static int __init hugepage_alloc_threads_setup(char *s)
4513 {
4514 	unsigned long allocation_threads;
4515 
4516 	if (kstrtoul(s, 0, &allocation_threads) != 0)
4517 		return 1;
4518 
4519 	if (allocation_threads == 0)
4520 		return 1;
4521 
4522 	hugepage_allocation_threads = allocation_threads;
4523 
4524 	return 1;
4525 }
4526 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
4527 
allowed_mems_nr(struct hstate * h)4528 static unsigned int allowed_mems_nr(struct hstate *h)
4529 {
4530 	int node;
4531 	unsigned int nr = 0;
4532 	nodemask_t *mbind_nodemask;
4533 	unsigned int *array = h->free_huge_pages_node;
4534 	gfp_t gfp_mask = htlb_alloc_mask(h);
4535 
4536 	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4537 	for_each_node_mask(node, cpuset_current_mems_allowed) {
4538 		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4539 			nr += array[node];
4540 	}
4541 
4542 	return nr;
4543 }
4544 
hugetlb_report_meminfo(struct seq_file * m)4545 void hugetlb_report_meminfo(struct seq_file *m)
4546 {
4547 	struct hstate *h;
4548 	unsigned long total = 0;
4549 
4550 	if (!hugepages_supported())
4551 		return;
4552 
4553 	for_each_hstate(h) {
4554 		unsigned long count = h->nr_huge_pages;
4555 
4556 		total += huge_page_size(h) * count;
4557 
4558 		if (h == &default_hstate)
4559 			seq_printf(m,
4560 				   "HugePages_Total:   %5lu\n"
4561 				   "HugePages_Free:    %5lu\n"
4562 				   "HugePages_Rsvd:    %5lu\n"
4563 				   "HugePages_Surp:    %5lu\n"
4564 				   "Hugepagesize:   %8lu kB\n",
4565 				   count,
4566 				   h->free_huge_pages,
4567 				   h->resv_huge_pages,
4568 				   h->surplus_huge_pages,
4569 				   huge_page_size(h) / SZ_1K);
4570 	}
4571 
4572 	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4573 }
4574 
hugetlb_report_node_meminfo(char * buf,int len,int nid)4575 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4576 {
4577 	struct hstate *h = &default_hstate;
4578 
4579 	if (!hugepages_supported())
4580 		return 0;
4581 
4582 	return sysfs_emit_at(buf, len,
4583 			     "Node %d HugePages_Total: %5u\n"
4584 			     "Node %d HugePages_Free:  %5u\n"
4585 			     "Node %d HugePages_Surp:  %5u\n",
4586 			     nid, h->nr_huge_pages_node[nid],
4587 			     nid, h->free_huge_pages_node[nid],
4588 			     nid, h->surplus_huge_pages_node[nid]);
4589 }
4590 
hugetlb_show_meminfo_node(int nid)4591 void hugetlb_show_meminfo_node(int nid)
4592 {
4593 	struct hstate *h;
4594 
4595 	if (!hugepages_supported())
4596 		return;
4597 
4598 	for_each_hstate(h)
4599 		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4600 			nid,
4601 			h->nr_huge_pages_node[nid],
4602 			h->free_huge_pages_node[nid],
4603 			h->surplus_huge_pages_node[nid],
4604 			huge_page_size(h) / SZ_1K);
4605 }
4606 
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4607 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4608 {
4609 	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4610 		   K(atomic_long_read(&mm->hugetlb_usage)));
4611 }
4612 
4613 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4614 unsigned long hugetlb_total_pages(void)
4615 {
4616 	struct hstate *h;
4617 	unsigned long nr_total_pages = 0;
4618 
4619 	for_each_hstate(h)
4620 		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4621 	return nr_total_pages;
4622 }
4623 
hugetlb_acct_memory(struct hstate * h,long delta)4624 static int hugetlb_acct_memory(struct hstate *h, long delta)
4625 {
4626 	int ret = -ENOMEM;
4627 
4628 	if (!delta)
4629 		return 0;
4630 
4631 	spin_lock_irq(&hugetlb_lock);
4632 	/*
4633 	 * When cpuset is configured, it breaks the strict hugetlb page
4634 	 * reservation as the accounting is done on a global variable. Such
4635 	 * reservation is completely rubbish in the presence of cpuset because
4636 	 * the reservation is not checked against page availability for the
4637 	 * current cpuset. Application can still potentially OOM'ed by kernel
4638 	 * with lack of free htlb page in cpuset that the task is in.
4639 	 * Attempt to enforce strict accounting with cpuset is almost
4640 	 * impossible (or too ugly) because cpuset is too fluid that
4641 	 * task or memory node can be dynamically moved between cpusets.
4642 	 *
4643 	 * The change of semantics for shared hugetlb mapping with cpuset is
4644 	 * undesirable. However, in order to preserve some of the semantics,
4645 	 * we fall back to check against current free page availability as
4646 	 * a best attempt and hopefully to minimize the impact of changing
4647 	 * semantics that cpuset has.
4648 	 *
4649 	 * Apart from cpuset, we also have memory policy mechanism that
4650 	 * also determines from which node the kernel will allocate memory
4651 	 * in a NUMA system. So similar to cpuset, we also should consider
4652 	 * the memory policy of the current task. Similar to the description
4653 	 * above.
4654 	 */
4655 	if (delta > 0) {
4656 		if (gather_surplus_pages(h, delta) < 0)
4657 			goto out;
4658 
4659 		if (delta > allowed_mems_nr(h)) {
4660 			return_unused_surplus_pages(h, delta);
4661 			goto out;
4662 		}
4663 	}
4664 
4665 	ret = 0;
4666 	if (delta < 0)
4667 		return_unused_surplus_pages(h, (unsigned long) -delta);
4668 
4669 out:
4670 	spin_unlock_irq(&hugetlb_lock);
4671 	return ret;
4672 }
4673 
hugetlb_vm_op_open(struct vm_area_struct * vma)4674 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4675 {
4676 	struct resv_map *resv = vma_resv_map(vma);
4677 
4678 	/*
4679 	 * HPAGE_RESV_OWNER indicates a private mapping.
4680 	 * This new VMA should share its siblings reservation map if present.
4681 	 * The VMA will only ever have a valid reservation map pointer where
4682 	 * it is being copied for another still existing VMA.  As that VMA
4683 	 * has a reference to the reservation map it cannot disappear until
4684 	 * after this open call completes.  It is therefore safe to take a
4685 	 * new reference here without additional locking.
4686 	 */
4687 	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4688 		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4689 		kref_get(&resv->refs);
4690 	}
4691 
4692 	/*
4693 	 * vma_lock structure for sharable mappings is vma specific.
4694 	 * Clear old pointer (if copied via vm_area_dup) and allocate
4695 	 * new structure.  Before clearing, make sure vma_lock is not
4696 	 * for this vma.
4697 	 */
4698 	if (vma->vm_flags & VM_MAYSHARE) {
4699 		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4700 
4701 		if (vma_lock) {
4702 			if (vma_lock->vma != vma) {
4703 				vma->vm_private_data = NULL;
4704 				hugetlb_vma_lock_alloc(vma);
4705 			} else
4706 				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4707 		} else
4708 			hugetlb_vma_lock_alloc(vma);
4709 	}
4710 }
4711 
hugetlb_vm_op_close(struct vm_area_struct * vma)4712 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4713 {
4714 	struct hstate *h = hstate_vma(vma);
4715 	struct resv_map *resv;
4716 	struct hugepage_subpool *spool = subpool_vma(vma);
4717 	unsigned long reserve, start, end;
4718 	long gbl_reserve;
4719 
4720 	hugetlb_vma_lock_free(vma);
4721 
4722 	resv = vma_resv_map(vma);
4723 	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4724 		return;
4725 
4726 	start = vma_hugecache_offset(h, vma, vma->vm_start);
4727 	end = vma_hugecache_offset(h, vma, vma->vm_end);
4728 
4729 	reserve = (end - start) - region_count(resv, start, end);
4730 	hugetlb_cgroup_uncharge_counter(resv, start, end);
4731 	if (reserve) {
4732 		/*
4733 		 * Decrement reserve counts.  The global reserve count may be
4734 		 * adjusted if the subpool has a minimum size.
4735 		 */
4736 		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4737 		hugetlb_acct_memory(h, -gbl_reserve);
4738 	}
4739 
4740 	kref_put(&resv->refs, resv_map_release);
4741 }
4742 
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)4743 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4744 {
4745 	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4746 		return -EINVAL;
4747 	return 0;
4748 }
4749 
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)4750 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
4751 {
4752 	/*
4753 	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4754 	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4755 	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4756 	 * This function is called in the middle of a VMA split operation, with
4757 	 * MM, VMA and rmap all write-locked to prevent concurrent page table
4758 	 * walks (except hardware and gup_fast()).
4759 	 */
4760 	vma_assert_write_locked(vma);
4761 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
4762 
4763 	if (addr & ~PUD_MASK) {
4764 		unsigned long floor = addr & PUD_MASK;
4765 		unsigned long ceil = floor + PUD_SIZE;
4766 
4767 		if (floor >= vma->vm_start && ceil <= vma->vm_end) {
4768 			/*
4769 			 * Locking:
4770 			 * Use take_locks=false here.
4771 			 * The file rmap lock is already held.
4772 			 * The hugetlb VMA lock can't be taken when we already
4773 			 * hold the file rmap lock, and we don't need it because
4774 			 * its purpose is to synchronize against concurrent page
4775 			 * table walks, which are not possible thanks to the
4776 			 * locks held by our caller.
4777 			 */
4778 			hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
4779 		}
4780 	}
4781 }
4782 
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)4783 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4784 {
4785 	return huge_page_size(hstate_vma(vma));
4786 }
4787 
4788 /*
4789  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4790  * handle_mm_fault() to try to instantiate regular-sized pages in the
4791  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4792  * this far.
4793  */
hugetlb_vm_op_fault(struct vm_fault * vmf)4794 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4795 {
4796 	BUG();
4797 	return 0;
4798 }
4799 
4800 /*
4801  * When a new function is introduced to vm_operations_struct and added
4802  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4803  * This is because under System V memory model, mappings created via
4804  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4805  * their original vm_ops are overwritten with shm_vm_ops.
4806  */
4807 const struct vm_operations_struct hugetlb_vm_ops = {
4808 	.fault = hugetlb_vm_op_fault,
4809 	.open = hugetlb_vm_op_open,
4810 	.close = hugetlb_vm_op_close,
4811 	.may_split = hugetlb_vm_op_split,
4812 	.pagesize = hugetlb_vm_op_pagesize,
4813 };
4814 
make_huge_pte(struct vm_area_struct * vma,struct folio * folio,bool try_mkwrite)4815 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
4816 		bool try_mkwrite)
4817 {
4818 	pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
4819 	unsigned int shift = huge_page_shift(hstate_vma(vma));
4820 
4821 	if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
4822 		entry = pte_mkwrite_novma(pte_mkdirty(entry));
4823 	} else {
4824 		entry = pte_wrprotect(entry);
4825 	}
4826 	entry = pte_mkyoung(entry);
4827 	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4828 
4829 	return entry;
4830 }
4831 
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4832 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4833 				   unsigned long address, pte_t *ptep)
4834 {
4835 	pte_t entry;
4836 
4837 	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
4838 	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4839 		update_mmu_cache(vma, address, ptep);
4840 }
4841 
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4842 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
4843 					 unsigned long address, pte_t *ptep)
4844 {
4845 	if (vma->vm_flags & VM_WRITE)
4846 		set_huge_ptep_writable(vma, address, ptep);
4847 }
4848 
4849 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)4850 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4851 		      struct folio *new_folio, pte_t old, unsigned long sz)
4852 {
4853 	pte_t newpte = make_huge_pte(vma, new_folio, true);
4854 
4855 	__folio_mark_uptodate(new_folio);
4856 	hugetlb_add_new_anon_rmap(new_folio, vma, addr);
4857 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
4858 		newpte = huge_pte_mkuffd_wp(newpte);
4859 	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
4860 	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4861 	folio_set_hugetlb_migratable(new_folio);
4862 }
4863 
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)4864 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4865 			    struct vm_area_struct *dst_vma,
4866 			    struct vm_area_struct *src_vma)
4867 {
4868 	pte_t *src_pte, *dst_pte, entry;
4869 	struct folio *pte_folio;
4870 	unsigned long addr;
4871 	bool cow = is_cow_mapping(src_vma->vm_flags);
4872 	struct hstate *h = hstate_vma(src_vma);
4873 	unsigned long sz = huge_page_size(h);
4874 	unsigned long npages = pages_per_huge_page(h);
4875 	struct mmu_notifier_range range;
4876 	unsigned long last_addr_mask;
4877 	softleaf_t softleaf;
4878 	int ret = 0;
4879 
4880 	if (cow) {
4881 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
4882 					src_vma->vm_start,
4883 					src_vma->vm_end);
4884 		mmu_notifier_invalidate_range_start(&range);
4885 		vma_assert_write_locked(src_vma);
4886 		raw_write_seqcount_begin(&src->write_protect_seq);
4887 	} else {
4888 		/*
4889 		 * For shared mappings the vma lock must be held before
4890 		 * calling hugetlb_walk() in the src vma. Otherwise, the
4891 		 * returned ptep could go away if part of a shared pmd and
4892 		 * another thread calls huge_pmd_unshare.
4893 		 */
4894 		hugetlb_vma_lock_read(src_vma);
4895 	}
4896 
4897 	last_addr_mask = hugetlb_mask_last_page(h);
4898 	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4899 		spinlock_t *src_ptl, *dst_ptl;
4900 		src_pte = hugetlb_walk(src_vma, addr, sz);
4901 		if (!src_pte) {
4902 			addr |= last_addr_mask;
4903 			continue;
4904 		}
4905 		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4906 		if (!dst_pte) {
4907 			ret = -ENOMEM;
4908 			break;
4909 		}
4910 
4911 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
4912 		/* If the pagetables are shared, there is nothing to do */
4913 		if (ptdesc_pmd_is_shared(virt_to_ptdesc(dst_pte))) {
4914 			addr |= last_addr_mask;
4915 			continue;
4916 		}
4917 #endif
4918 
4919 		dst_ptl = huge_pte_lock(h, dst, dst_pte);
4920 		src_ptl = huge_pte_lockptr(h, src, src_pte);
4921 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4922 		entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
4923 again:
4924 		if (huge_pte_none(entry)) {
4925 			/* Skip if src entry none. */
4926 			goto next;
4927 		}
4928 
4929 		softleaf = softleaf_from_pte(entry);
4930 		if (unlikely(softleaf_is_hwpoison(softleaf))) {
4931 			if (!userfaultfd_wp(dst_vma))
4932 				entry = huge_pte_clear_uffd_wp(entry);
4933 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
4934 		} else if (unlikely(softleaf_is_migration(softleaf))) {
4935 			bool uffd_wp = pte_swp_uffd_wp(entry);
4936 
4937 			if (!softleaf_is_migration_read(softleaf) && cow) {
4938 				/*
4939 				 * COW mappings require pages in both
4940 				 * parent and child to be set to read.
4941 				 */
4942 				softleaf = make_readable_migration_entry(
4943 							swp_offset(softleaf));
4944 				entry = swp_entry_to_pte(softleaf);
4945 				if (userfaultfd_wp(src_vma) && uffd_wp)
4946 					entry = pte_swp_mkuffd_wp(entry);
4947 				set_huge_pte_at(src, addr, src_pte, entry, sz);
4948 			}
4949 			if (!userfaultfd_wp(dst_vma))
4950 				entry = huge_pte_clear_uffd_wp(entry);
4951 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
4952 		} else if (unlikely(pte_is_marker(entry))) {
4953 			const pte_marker marker = copy_pte_marker(softleaf, dst_vma);
4954 
4955 			if (marker)
4956 				set_huge_pte_at(dst, addr, dst_pte,
4957 						make_pte_marker(marker), sz);
4958 		} else {
4959 			entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
4960 			pte_folio = page_folio(pte_page(entry));
4961 			folio_get(pte_folio);
4962 
4963 			/*
4964 			 * Failing to duplicate the anon rmap is a rare case
4965 			 * where we see pinned hugetlb pages while they're
4966 			 * prone to COW. We need to do the COW earlier during
4967 			 * fork.
4968 			 *
4969 			 * When pre-allocating the page or copying data, we
4970 			 * need to be without the pgtable locks since we could
4971 			 * sleep during the process.
4972 			 */
4973 			if (!folio_test_anon(pte_folio)) {
4974 				hugetlb_add_file_rmap(pte_folio);
4975 			} else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
4976 				pte_t src_pte_old = entry;
4977 				struct folio *new_folio;
4978 
4979 				spin_unlock(src_ptl);
4980 				spin_unlock(dst_ptl);
4981 				/* Do not use reserve as it's private owned */
4982 				new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
4983 				if (IS_ERR(new_folio)) {
4984 					folio_put(pte_folio);
4985 					ret = PTR_ERR(new_folio);
4986 					break;
4987 				}
4988 				ret = copy_user_large_folio(new_folio, pte_folio,
4989 							    addr, dst_vma);
4990 				folio_put(pte_folio);
4991 				if (ret) {
4992 					folio_put(new_folio);
4993 					break;
4994 				}
4995 
4996 				/* Install the new hugetlb folio if src pte stable */
4997 				dst_ptl = huge_pte_lock(h, dst, dst_pte);
4998 				src_ptl = huge_pte_lockptr(h, src, src_pte);
4999 				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5000 				entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5001 				if (!pte_same(src_pte_old, entry)) {
5002 					restore_reserve_on_error(h, dst_vma, addr,
5003 								new_folio);
5004 					folio_put(new_folio);
5005 					/* huge_ptep of dst_pte won't change as in child */
5006 					goto again;
5007 				}
5008 				hugetlb_install_folio(dst_vma, dst_pte, addr,
5009 						      new_folio, src_pte_old, sz);
5010 				goto next;
5011 			}
5012 
5013 			if (cow) {
5014 				/*
5015 				 * No need to notify as we are downgrading page
5016 				 * table protection not changing it to point
5017 				 * to a new page.
5018 				 *
5019 				 * See Documentation/mm/mmu_notifier.rst
5020 				 */
5021 				huge_ptep_set_wrprotect(src, addr, src_pte);
5022 				entry = huge_pte_wrprotect(entry);
5023 			}
5024 
5025 			if (!userfaultfd_wp(dst_vma))
5026 				entry = huge_pte_clear_uffd_wp(entry);
5027 
5028 			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5029 			hugetlb_count_add(npages, dst);
5030 		}
5031 
5032 next:
5033 		spin_unlock(src_ptl);
5034 		spin_unlock(dst_ptl);
5035 	}
5036 
5037 	if (cow) {
5038 		raw_write_seqcount_end(&src->write_protect_seq);
5039 		mmu_notifier_invalidate_range_end(&range);
5040 	} else {
5041 		hugetlb_vma_unlock_read(src_vma);
5042 	}
5043 
5044 	return ret;
5045 }
5046 
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5047 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5048 			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5049 			  unsigned long sz)
5050 {
5051 	bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5052 	struct hstate *h = hstate_vma(vma);
5053 	struct mm_struct *mm = vma->vm_mm;
5054 	spinlock_t *src_ptl, *dst_ptl;
5055 	pte_t pte;
5056 
5057 	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5058 	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5059 
5060 	/*
5061 	 * We don't have to worry about the ordering of src and dst ptlocks
5062 	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5063 	 */
5064 	if (src_ptl != dst_ptl)
5065 		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5066 
5067 	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5068 
5069 	if (need_clear_uffd_wp && pte_is_uffd_wp_marker(pte)) {
5070 		huge_pte_clear(mm, new_addr, dst_pte, sz);
5071 	} else {
5072 		if (need_clear_uffd_wp) {
5073 			if (pte_present(pte))
5074 				pte = huge_pte_clear_uffd_wp(pte);
5075 			else
5076 				pte = pte_swp_clear_uffd_wp(pte);
5077 		}
5078 		set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5079 	}
5080 
5081 	if (src_ptl != dst_ptl)
5082 		spin_unlock(src_ptl);
5083 	spin_unlock(dst_ptl);
5084 }
5085 
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5086 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5087 			     struct vm_area_struct *new_vma,
5088 			     unsigned long old_addr, unsigned long new_addr,
5089 			     unsigned long len)
5090 {
5091 	struct hstate *h = hstate_vma(vma);
5092 	struct address_space *mapping = vma->vm_file->f_mapping;
5093 	unsigned long sz = huge_page_size(h);
5094 	struct mm_struct *mm = vma->vm_mm;
5095 	unsigned long old_end = old_addr + len;
5096 	unsigned long last_addr_mask;
5097 	pte_t *src_pte, *dst_pte;
5098 	struct mmu_notifier_range range;
5099 	bool shared_pmd = false;
5100 
5101 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5102 				old_end);
5103 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5104 	/*
5105 	 * In case of shared PMDs, we should cover the maximum possible
5106 	 * range.
5107 	 */
5108 	flush_cache_range(vma, range.start, range.end);
5109 
5110 	mmu_notifier_invalidate_range_start(&range);
5111 	last_addr_mask = hugetlb_mask_last_page(h);
5112 	/* Prevent race with file truncation */
5113 	hugetlb_vma_lock_write(vma);
5114 	i_mmap_lock_write(mapping);
5115 	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5116 		src_pte = hugetlb_walk(vma, old_addr, sz);
5117 		if (!src_pte) {
5118 			old_addr |= last_addr_mask;
5119 			new_addr |= last_addr_mask;
5120 			continue;
5121 		}
5122 		if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5123 			continue;
5124 
5125 		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5126 			shared_pmd = true;
5127 			old_addr |= last_addr_mask;
5128 			new_addr |= last_addr_mask;
5129 			continue;
5130 		}
5131 
5132 		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5133 		if (!dst_pte)
5134 			break;
5135 
5136 		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5137 	}
5138 
5139 	if (shared_pmd)
5140 		flush_hugetlb_tlb_range(vma, range.start, range.end);
5141 	else
5142 		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5143 	mmu_notifier_invalidate_range_end(&range);
5144 	i_mmap_unlock_write(mapping);
5145 	hugetlb_vma_unlock_write(vma);
5146 
5147 	return len + old_addr - old_end;
5148 }
5149 
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)5150 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5151 			    unsigned long start, unsigned long end,
5152 			    struct folio *folio, zap_flags_t zap_flags)
5153 {
5154 	struct mm_struct *mm = vma->vm_mm;
5155 	const bool folio_provided = !!folio;
5156 	unsigned long address;
5157 	pte_t *ptep;
5158 	pte_t pte;
5159 	spinlock_t *ptl;
5160 	struct hstate *h = hstate_vma(vma);
5161 	unsigned long sz = huge_page_size(h);
5162 	bool adjust_reservation;
5163 	unsigned long last_addr_mask;
5164 	bool force_flush = false;
5165 
5166 	WARN_ON(!is_vm_hugetlb_page(vma));
5167 	BUG_ON(start & ~huge_page_mask(h));
5168 	BUG_ON(end & ~huge_page_mask(h));
5169 
5170 	/*
5171 	 * This is a hugetlb vma, all the pte entries should point
5172 	 * to huge page.
5173 	 */
5174 	tlb_change_page_size(tlb, sz);
5175 	tlb_start_vma(tlb, vma);
5176 
5177 	last_addr_mask = hugetlb_mask_last_page(h);
5178 	address = start;
5179 	for (; address < end; address += sz) {
5180 		ptep = hugetlb_walk(vma, address, sz);
5181 		if (!ptep) {
5182 			address |= last_addr_mask;
5183 			continue;
5184 		}
5185 
5186 		ptl = huge_pte_lock(h, mm, ptep);
5187 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5188 			spin_unlock(ptl);
5189 			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5190 			force_flush = true;
5191 			address |= last_addr_mask;
5192 			continue;
5193 		}
5194 
5195 		pte = huge_ptep_get(mm, address, ptep);
5196 		if (huge_pte_none(pte)) {
5197 			spin_unlock(ptl);
5198 			continue;
5199 		}
5200 
5201 		/*
5202 		 * Migrating hugepage or HWPoisoned hugepage is already
5203 		 * unmapped and its refcount is dropped, so just clear pte here.
5204 		 */
5205 		if (unlikely(!pte_present(pte))) {
5206 			/*
5207 			 * If the pte was wr-protected by uffd-wp in any of the
5208 			 * swap forms, meanwhile the caller does not want to
5209 			 * drop the uffd-wp bit in this zap, then replace the
5210 			 * pte with a marker.
5211 			 */
5212 			if (pte_swp_uffd_wp_any(pte) &&
5213 			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5214 				set_huge_pte_at(mm, address, ptep,
5215 						make_pte_marker(PTE_MARKER_UFFD_WP),
5216 						sz);
5217 			else
5218 				huge_pte_clear(mm, address, ptep, sz);
5219 			spin_unlock(ptl);
5220 			continue;
5221 		}
5222 
5223 		/*
5224 		 * If a folio is supplied, it is because a specific
5225 		 * folio is being unmapped, not a range. Ensure the folio we
5226 		 * are about to unmap is the actual folio of interest.
5227 		 */
5228 		if (folio_provided) {
5229 			if (folio != page_folio(pte_page(pte))) {
5230 				spin_unlock(ptl);
5231 				continue;
5232 			}
5233 			/*
5234 			 * Mark the VMA as having unmapped its page so that
5235 			 * future faults in this VMA will fail rather than
5236 			 * looking like data was lost
5237 			 */
5238 			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5239 		} else {
5240 			folio = page_folio(pte_page(pte));
5241 		}
5242 
5243 		pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5244 		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5245 		if (huge_pte_dirty(pte))
5246 			folio_mark_dirty(folio);
5247 		/* Leave a uffd-wp pte marker if needed */
5248 		if (huge_pte_uffd_wp(pte) &&
5249 		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5250 			set_huge_pte_at(mm, address, ptep,
5251 					make_pte_marker(PTE_MARKER_UFFD_WP),
5252 					sz);
5253 		hugetlb_count_sub(pages_per_huge_page(h), mm);
5254 		hugetlb_remove_rmap(folio);
5255 		spin_unlock(ptl);
5256 
5257 		/*
5258 		 * Restore the reservation for anonymous page, otherwise the
5259 		 * backing page could be stolen by someone.
5260 		 * If there we are freeing a surplus, do not set the restore
5261 		 * reservation bit.
5262 		 */
5263 		adjust_reservation = false;
5264 
5265 		spin_lock_irq(&hugetlb_lock);
5266 		if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5267 		    folio_test_anon(folio)) {
5268 			folio_set_hugetlb_restore_reserve(folio);
5269 			/* Reservation to be adjusted after the spin lock */
5270 			adjust_reservation = true;
5271 		}
5272 		spin_unlock_irq(&hugetlb_lock);
5273 
5274 		/*
5275 		 * Adjust the reservation for the region that will have the
5276 		 * reserve restored. Keep in mind that vma_needs_reservation() changes
5277 		 * resv->adds_in_progress if it succeeds. If this is not done,
5278 		 * do_exit() will not see it, and will keep the reservation
5279 		 * forever.
5280 		 */
5281 		if (adjust_reservation) {
5282 			int rc = vma_needs_reservation(h, vma, address);
5283 
5284 			if (rc < 0)
5285 				/* Pressumably allocate_file_region_entries failed
5286 				 * to allocate a file_region struct. Clear
5287 				 * hugetlb_restore_reserve so that global reserve
5288 				 * count will not be incremented by free_huge_folio.
5289 				 * Act as if we consumed the reservation.
5290 				 */
5291 				folio_clear_hugetlb_restore_reserve(folio);
5292 			else if (rc)
5293 				vma_add_reservation(h, vma, address);
5294 		}
5295 
5296 		tlb_remove_page_size(tlb, folio_page(folio, 0),
5297 				     folio_size(folio));
5298 		/*
5299 		 * If we were instructed to unmap a specific folio, we're done.
5300 		 */
5301 		if (folio_provided)
5302 			break;
5303 	}
5304 	tlb_end_vma(tlb, vma);
5305 
5306 	/*
5307 	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5308 	 * could defer the flush until now, since by holding i_mmap_rwsem we
5309 	 * guaranteed that the last reference would not be dropped. But we must
5310 	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5311 	 * dropped and the last reference to the shared PMDs page might be
5312 	 * dropped as well.
5313 	 *
5314 	 * In theory we could defer the freeing of the PMD pages as well, but
5315 	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5316 	 * detect sharing, so we cannot defer the release of the page either.
5317 	 * Instead, do flush now.
5318 	 */
5319 	if (force_flush)
5320 		tlb_flush_mmu_tlbonly(tlb);
5321 }
5322 
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5323 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5324 			 unsigned long *start, unsigned long *end)
5325 {
5326 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5327 		return;
5328 
5329 	adjust_range_if_pmd_sharing_possible(vma, start, end);
5330 	hugetlb_vma_lock_write(vma);
5331 	if (vma->vm_file)
5332 		i_mmap_lock_write(vma->vm_file->f_mapping);
5333 }
5334 
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5335 void __hugetlb_zap_end(struct vm_area_struct *vma,
5336 		       struct zap_details *details)
5337 {
5338 	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5339 
5340 	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5341 		return;
5342 
5343 	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5344 		/*
5345 		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5346 		 * When the vma_lock is freed, this makes the vma ineligible
5347 		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5348 		 * pmd sharing.  This is important as page tables for this
5349 		 * unmapped range will be asynchrously deleted.  If the page
5350 		 * tables are shared, there will be issues when accessed by
5351 		 * someone else.
5352 		 */
5353 		__hugetlb_vma_unlock_write_free(vma);
5354 	} else {
5355 		hugetlb_vma_unlock_write(vma);
5356 	}
5357 
5358 	if (vma->vm_file)
5359 		i_mmap_unlock_write(vma->vm_file->f_mapping);
5360 }
5361 
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)5362 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5363 			  unsigned long end, struct folio *folio,
5364 			  zap_flags_t zap_flags)
5365 {
5366 	struct mmu_notifier_range range;
5367 	struct mmu_gather tlb;
5368 
5369 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5370 				start, end);
5371 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5372 	mmu_notifier_invalidate_range_start(&range);
5373 	tlb_gather_mmu(&tlb, vma->vm_mm);
5374 
5375 	__unmap_hugepage_range(&tlb, vma, start, end,
5376 			       folio, zap_flags);
5377 
5378 	mmu_notifier_invalidate_range_end(&range);
5379 	tlb_finish_mmu(&tlb);
5380 }
5381 
5382 /*
5383  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5384  * mapping it owns the reserve page for. The intention is to unmap the page
5385  * from other VMAs and let the children be SIGKILLed if they are faulting the
5386  * same region.
5387  */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct folio * folio,unsigned long address)5388 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5389 			      struct folio *folio, unsigned long address)
5390 {
5391 	struct hstate *h = hstate_vma(vma);
5392 	struct vm_area_struct *iter_vma;
5393 	struct address_space *mapping;
5394 	pgoff_t pgoff;
5395 
5396 	/*
5397 	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5398 	 * from page cache lookup which is in HPAGE_SIZE units.
5399 	 */
5400 	address = address & huge_page_mask(h);
5401 	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5402 			vma->vm_pgoff;
5403 	mapping = vma->vm_file->f_mapping;
5404 
5405 	/*
5406 	 * Take the mapping lock for the duration of the table walk. As
5407 	 * this mapping should be shared between all the VMAs,
5408 	 * __unmap_hugepage_range() is called as the lock is already held
5409 	 */
5410 	i_mmap_lock_write(mapping);
5411 	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5412 		/* Do not unmap the current VMA */
5413 		if (iter_vma == vma)
5414 			continue;
5415 
5416 		/*
5417 		 * Shared VMAs have their own reserves and do not affect
5418 		 * MAP_PRIVATE accounting but it is possible that a shared
5419 		 * VMA is using the same page so check and skip such VMAs.
5420 		 */
5421 		if (iter_vma->vm_flags & VM_MAYSHARE)
5422 			continue;
5423 
5424 		/*
5425 		 * Unmap the page from other VMAs without their own reserves.
5426 		 * They get marked to be SIGKILLed if they fault in these
5427 		 * areas. This is because a future no-page fault on this VMA
5428 		 * could insert a zeroed page instead of the data existing
5429 		 * from the time of fork. This would look like data corruption
5430 		 */
5431 		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5432 			unmap_hugepage_range(iter_vma, address,
5433 					     address + huge_page_size(h),
5434 					     folio, 0);
5435 	}
5436 	i_mmap_unlock_write(mapping);
5437 }
5438 
5439 /*
5440  * hugetlb_wp() should be called with page lock of the original hugepage held.
5441  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5442  * cannot race with other handlers or page migration.
5443  * Keep the pte_same checks anyway to make transition from the mutex easier.
5444  */
hugetlb_wp(struct vm_fault * vmf)5445 static vm_fault_t hugetlb_wp(struct vm_fault *vmf)
5446 {
5447 	struct vm_area_struct *vma = vmf->vma;
5448 	struct mm_struct *mm = vma->vm_mm;
5449 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5450 	pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5451 	struct hstate *h = hstate_vma(vma);
5452 	struct folio *old_folio;
5453 	struct folio *new_folio;
5454 	bool cow_from_owner = 0;
5455 	vm_fault_t ret = 0;
5456 	struct mmu_notifier_range range;
5457 
5458 	/*
5459 	 * Never handle CoW for uffd-wp protected pages.  It should be only
5460 	 * handled when the uffd-wp protection is removed.
5461 	 *
5462 	 * Note that only the CoW optimization path (in hugetlb_no_page())
5463 	 * can trigger this, because hugetlb_fault() will always resolve
5464 	 * uffd-wp bit first.
5465 	 */
5466 	if (!unshare && huge_pte_uffd_wp(pte))
5467 		return 0;
5468 
5469 	/* Let's take out MAP_SHARED mappings first. */
5470 	if (vma->vm_flags & VM_MAYSHARE) {
5471 		set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5472 		return 0;
5473 	}
5474 
5475 	old_folio = page_folio(pte_page(pte));
5476 
5477 	delayacct_wpcopy_start();
5478 
5479 retry_avoidcopy:
5480 	/*
5481 	 * If no-one else is actually using this page, we're the exclusive
5482 	 * owner and can reuse this page.
5483 	 *
5484 	 * Note that we don't rely on the (safer) folio refcount here, because
5485 	 * copying the hugetlb folio when there are unexpected (temporary)
5486 	 * folio references could harm simple fork()+exit() users when
5487 	 * we run out of free hugetlb folios: we would have to kill processes
5488 	 * in scenarios that used to work. As a side effect, there can still
5489 	 * be leaks between processes, for example, with FOLL_GET users.
5490 	 */
5491 	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5492 		if (!PageAnonExclusive(&old_folio->page)) {
5493 			folio_move_anon_rmap(old_folio, vma);
5494 			SetPageAnonExclusive(&old_folio->page);
5495 		}
5496 		if (likely(!unshare))
5497 			set_huge_ptep_maybe_writable(vma, vmf->address,
5498 						     vmf->pte);
5499 
5500 		delayacct_wpcopy_end();
5501 		return 0;
5502 	}
5503 	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5504 		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5505 
5506 	/*
5507 	 * If the process that created a MAP_PRIVATE mapping is about to perform
5508 	 * a COW due to a shared page count, attempt to satisfy the allocation
5509 	 * without using the existing reserves.
5510 	 * In order to determine where this is a COW on a MAP_PRIVATE mapping it
5511 	 * is enough to check whether the old_folio is anonymous. This means that
5512 	 * the reserve for this address was consumed. If reserves were used, a
5513 	 * partial faulted mapping at the fime of fork() could consume its reserves
5514 	 * on COW instead of the full address range.
5515 	 */
5516 	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5517 	    folio_test_anon(old_folio))
5518 		cow_from_owner = true;
5519 
5520 	folio_get(old_folio);
5521 
5522 	/*
5523 	 * Drop page table lock as buddy allocator may be called. It will
5524 	 * be acquired again before returning to the caller, as expected.
5525 	 */
5526 	spin_unlock(vmf->ptl);
5527 	new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
5528 
5529 	if (IS_ERR(new_folio)) {
5530 		/*
5531 		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5532 		 * it is due to references held by a child and an insufficient
5533 		 * huge page pool. To guarantee the original mappers
5534 		 * reliability, unmap the page from child processes. The child
5535 		 * may get SIGKILLed if it later faults.
5536 		 */
5537 		if (cow_from_owner) {
5538 			struct address_space *mapping = vma->vm_file->f_mapping;
5539 			pgoff_t idx;
5540 			u32 hash;
5541 
5542 			folio_put(old_folio);
5543 			/*
5544 			 * Drop hugetlb_fault_mutex and vma_lock before
5545 			 * unmapping.  unmapping needs to hold vma_lock
5546 			 * in write mode.  Dropping vma_lock in read mode
5547 			 * here is OK as COW mappings do not interact with
5548 			 * PMD sharing.
5549 			 *
5550 			 * Reacquire both after unmap operation.
5551 			 */
5552 			idx = vma_hugecache_offset(h, vma, vmf->address);
5553 			hash = hugetlb_fault_mutex_hash(mapping, idx);
5554 			hugetlb_vma_unlock_read(vma);
5555 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5556 
5557 			unmap_ref_private(mm, vma, old_folio, vmf->address);
5558 
5559 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5560 			hugetlb_vma_lock_read(vma);
5561 			spin_lock(vmf->ptl);
5562 			vmf->pte = hugetlb_walk(vma, vmf->address,
5563 					huge_page_size(h));
5564 			if (likely(vmf->pte &&
5565 				   pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5566 				goto retry_avoidcopy;
5567 			/*
5568 			 * race occurs while re-acquiring page table
5569 			 * lock, and our job is done.
5570 			 */
5571 			delayacct_wpcopy_end();
5572 			return 0;
5573 		}
5574 
5575 		ret = vmf_error(PTR_ERR(new_folio));
5576 		goto out_release_old;
5577 	}
5578 
5579 	/*
5580 	 * When the original hugepage is shared one, it does not have
5581 	 * anon_vma prepared.
5582 	 */
5583 	ret = __vmf_anon_prepare(vmf);
5584 	if (unlikely(ret))
5585 		goto out_release_all;
5586 
5587 	if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5588 		ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5589 		goto out_release_all;
5590 	}
5591 	__folio_mark_uptodate(new_folio);
5592 
5593 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5594 				vmf->address + huge_page_size(h));
5595 	mmu_notifier_invalidate_range_start(&range);
5596 
5597 	/*
5598 	 * Retake the page table lock to check for racing updates
5599 	 * before the page tables are altered
5600 	 */
5601 	spin_lock(vmf->ptl);
5602 	vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5603 	if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5604 		pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
5605 
5606 		/* Break COW or unshare */
5607 		huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5608 		hugetlb_remove_rmap(old_folio);
5609 		hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5610 		if (huge_pte_uffd_wp(pte))
5611 			newpte = huge_pte_mkuffd_wp(newpte);
5612 		set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5613 				huge_page_size(h));
5614 		folio_set_hugetlb_migratable(new_folio);
5615 		/* Make the old page be freed below */
5616 		new_folio = old_folio;
5617 	}
5618 	spin_unlock(vmf->ptl);
5619 	mmu_notifier_invalidate_range_end(&range);
5620 out_release_all:
5621 	/*
5622 	 * No restore in case of successful pagetable update (Break COW or
5623 	 * unshare)
5624 	 */
5625 	if (new_folio != old_folio)
5626 		restore_reserve_on_error(h, vma, vmf->address, new_folio);
5627 	folio_put(new_folio);
5628 out_release_old:
5629 	folio_put(old_folio);
5630 
5631 	spin_lock(vmf->ptl); /* Caller expects lock to be held */
5632 
5633 	delayacct_wpcopy_end();
5634 	return ret;
5635 }
5636 
5637 /*
5638  * Return whether there is a pagecache page to back given address within VMA.
5639  */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5640 bool hugetlbfs_pagecache_present(struct hstate *h,
5641 				 struct vm_area_struct *vma, unsigned long address)
5642 {
5643 	struct address_space *mapping = vma->vm_file->f_mapping;
5644 	pgoff_t idx = linear_page_index(vma, address);
5645 	struct folio *folio;
5646 
5647 	folio = filemap_get_folio(mapping, idx);
5648 	if (IS_ERR(folio))
5649 		return false;
5650 	folio_put(folio);
5651 	return true;
5652 }
5653 
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)5654 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5655 			   pgoff_t idx)
5656 {
5657 	struct inode *inode = mapping->host;
5658 	struct hstate *h = hstate_inode(inode);
5659 	int err;
5660 
5661 	idx <<= huge_page_order(h);
5662 	__folio_set_locked(folio);
5663 	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5664 
5665 	if (unlikely(err)) {
5666 		__folio_clear_locked(folio);
5667 		return err;
5668 	}
5669 	folio_clear_hugetlb_restore_reserve(folio);
5670 
5671 	/*
5672 	 * mark folio dirty so that it will not be removed from cache/file
5673 	 * by non-hugetlbfs specific code paths.
5674 	 */
5675 	folio_mark_dirty(folio);
5676 
5677 	spin_lock(&inode->i_lock);
5678 	inode->i_blocks += blocks_per_huge_page(h);
5679 	spin_unlock(&inode->i_lock);
5680 	return 0;
5681 }
5682 
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)5683 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
5684 						  struct address_space *mapping,
5685 						  unsigned long reason)
5686 {
5687 	u32 hash;
5688 
5689 	/*
5690 	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5691 	 * userfault. Also mmap_lock could be dropped due to handling
5692 	 * userfault, any vma operation should be careful from here.
5693 	 */
5694 	hugetlb_vma_unlock_read(vmf->vma);
5695 	hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
5696 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5697 	return handle_userfault(vmf, reason);
5698 }
5699 
5700 /*
5701  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5702  * false if pte changed or is changing.
5703  */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)5704 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
5705 			       pte_t *ptep, pte_t old_pte)
5706 {
5707 	spinlock_t *ptl;
5708 	bool same;
5709 
5710 	ptl = huge_pte_lock(h, mm, ptep);
5711 	same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
5712 	spin_unlock(ptl);
5713 
5714 	return same;
5715 }
5716 
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)5717 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
5718 			struct vm_fault *vmf)
5719 {
5720 	u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
5721 	bool new_folio, new_anon_folio = false;
5722 	struct vm_area_struct *vma = vmf->vma;
5723 	struct mm_struct *mm = vma->vm_mm;
5724 	struct hstate *h = hstate_vma(vma);
5725 	vm_fault_t ret = VM_FAULT_SIGBUS;
5726 	bool folio_locked = true;
5727 	struct folio *folio;
5728 	unsigned long size;
5729 	pte_t new_pte;
5730 
5731 	/*
5732 	 * Currently, we are forced to kill the process in the event the
5733 	 * original mapper has unmapped pages from the child due to a failed
5734 	 * COW/unsharing. Warn that such a situation has occurred as it may not
5735 	 * be obvious.
5736 	 */
5737 	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5738 		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5739 			   current->pid);
5740 		goto out;
5741 	}
5742 
5743 	/*
5744 	 * Use page lock to guard against racing truncation
5745 	 * before we get page_table_lock.
5746 	 */
5747 	new_folio = false;
5748 	folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
5749 	if (IS_ERR(folio)) {
5750 		size = i_size_read(mapping->host) >> huge_page_shift(h);
5751 		if (vmf->pgoff >= size)
5752 			goto out;
5753 		/* Check for page in userfault range */
5754 		if (userfaultfd_missing(vma)) {
5755 			/*
5756 			 * Since hugetlb_no_page() was examining pte
5757 			 * without pgtable lock, we need to re-test under
5758 			 * lock because the pte may not be stable and could
5759 			 * have changed from under us.  Try to detect
5760 			 * either changed or during-changing ptes and retry
5761 			 * properly when needed.
5762 			 *
5763 			 * Note that userfaultfd is actually fine with
5764 			 * false positives (e.g. caused by pte changed),
5765 			 * but not wrong logical events (e.g. caused by
5766 			 * reading a pte during changing).  The latter can
5767 			 * confuse the userspace, so the strictness is very
5768 			 * much preferred.  E.g., MISSING event should
5769 			 * never happen on the page after UFFDIO_COPY has
5770 			 * correctly installed the page and returned.
5771 			 */
5772 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
5773 				ret = 0;
5774 				goto out;
5775 			}
5776 
5777 			return hugetlb_handle_userfault(vmf, mapping,
5778 							VM_UFFD_MISSING);
5779 		}
5780 
5781 		if (!(vma->vm_flags & VM_MAYSHARE)) {
5782 			ret = __vmf_anon_prepare(vmf);
5783 			if (unlikely(ret))
5784 				goto out;
5785 		}
5786 
5787 		folio = alloc_hugetlb_folio(vma, vmf->address, false);
5788 		if (IS_ERR(folio)) {
5789 			/*
5790 			 * Returning error will result in faulting task being
5791 			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5792 			 * tasks from racing to fault in the same page which
5793 			 * could result in false unable to allocate errors.
5794 			 * Page migration does not take the fault mutex, but
5795 			 * does a clear then write of pte's under page table
5796 			 * lock.  Page fault code could race with migration,
5797 			 * notice the clear pte and try to allocate a page
5798 			 * here.  Before returning error, get ptl and make
5799 			 * sure there really is no pte entry.
5800 			 */
5801 			if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
5802 				ret = vmf_error(PTR_ERR(folio));
5803 			else
5804 				ret = 0;
5805 			goto out;
5806 		}
5807 		folio_zero_user(folio, vmf->real_address);
5808 		__folio_mark_uptodate(folio);
5809 		new_folio = true;
5810 
5811 		if (vma->vm_flags & VM_MAYSHARE) {
5812 			int err = hugetlb_add_to_page_cache(folio, mapping,
5813 							vmf->pgoff);
5814 			if (err) {
5815 				/*
5816 				 * err can't be -EEXIST which implies someone
5817 				 * else consumed the reservation since hugetlb
5818 				 * fault mutex is held when add a hugetlb page
5819 				 * to the page cache. So it's safe to call
5820 				 * restore_reserve_on_error() here.
5821 				 */
5822 				restore_reserve_on_error(h, vma, vmf->address,
5823 							folio);
5824 				folio_put(folio);
5825 				ret = VM_FAULT_SIGBUS;
5826 				goto out;
5827 			}
5828 		} else {
5829 			new_anon_folio = true;
5830 			folio_lock(folio);
5831 		}
5832 	} else {
5833 		/*
5834 		 * If memory error occurs between mmap() and fault, some process
5835 		 * don't have hwpoisoned swap entry for errored virtual address.
5836 		 * So we need to block hugepage fault by PG_hwpoison bit check.
5837 		 */
5838 		if (unlikely(folio_test_hwpoison(folio))) {
5839 			ret = VM_FAULT_HWPOISON_LARGE |
5840 				VM_FAULT_SET_HINDEX(hstate_index(h));
5841 			goto backout_unlocked;
5842 		}
5843 
5844 		/* Check for page in userfault range. */
5845 		if (userfaultfd_minor(vma)) {
5846 			folio_unlock(folio);
5847 			folio_put(folio);
5848 			/* See comment in userfaultfd_missing() block above */
5849 			if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
5850 				ret = 0;
5851 				goto out;
5852 			}
5853 			return hugetlb_handle_userfault(vmf, mapping,
5854 							VM_UFFD_MINOR);
5855 		}
5856 	}
5857 
5858 	/*
5859 	 * If we are going to COW a private mapping later, we examine the
5860 	 * pending reservations for this page now. This will ensure that
5861 	 * any allocations necessary to record that reservation occur outside
5862 	 * the spinlock.
5863 	 */
5864 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5865 		if (vma_needs_reservation(h, vma, vmf->address) < 0) {
5866 			ret = VM_FAULT_OOM;
5867 			goto backout_unlocked;
5868 		}
5869 		/* Just decrements count, does not deallocate */
5870 		vma_end_reservation(h, vma, vmf->address);
5871 	}
5872 
5873 	vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
5874 	ret = 0;
5875 	/* If pte changed from under us, retry */
5876 	if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
5877 		goto backout;
5878 
5879 	if (new_anon_folio)
5880 		hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
5881 	else
5882 		hugetlb_add_file_rmap(folio);
5883 	new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
5884 	/*
5885 	 * If this pte was previously wr-protected, keep it wr-protected even
5886 	 * if populated.
5887 	 */
5888 	if (unlikely(pte_is_uffd_wp_marker(vmf->orig_pte)))
5889 		new_pte = huge_pte_mkuffd_wp(new_pte);
5890 	set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
5891 
5892 	hugetlb_count_add(pages_per_huge_page(h), mm);
5893 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5894 		/*
5895 		 * No need to keep file folios locked. See comment in
5896 		 * hugetlb_fault().
5897 		 */
5898 		if (!new_anon_folio) {
5899 			folio_locked = false;
5900 			folio_unlock(folio);
5901 		}
5902 		/* Optimization, do the COW without a second fault */
5903 		ret = hugetlb_wp(vmf);
5904 	}
5905 
5906 	spin_unlock(vmf->ptl);
5907 
5908 	/*
5909 	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
5910 	 * found in the pagecache may not have hugetlb_migratable if they have
5911 	 * been isolated for migration.
5912 	 */
5913 	if (new_folio)
5914 		folio_set_hugetlb_migratable(folio);
5915 
5916 	if (folio_locked)
5917 		folio_unlock(folio);
5918 out:
5919 	hugetlb_vma_unlock_read(vma);
5920 
5921 	/*
5922 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
5923 	 * the only way ret can be set to VM_FAULT_RETRY.
5924 	 */
5925 	if (unlikely(ret & VM_FAULT_RETRY))
5926 		vma_end_read(vma);
5927 
5928 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5929 	return ret;
5930 
5931 backout:
5932 	spin_unlock(vmf->ptl);
5933 backout_unlocked:
5934 	/* We only need to restore reservations for private mappings */
5935 	if (new_anon_folio)
5936 		restore_reserve_on_error(h, vma, vmf->address, folio);
5937 
5938 	folio_unlock(folio);
5939 	folio_put(folio);
5940 	goto out;
5941 }
5942 
5943 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5944 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5945 {
5946 	unsigned long key[2];
5947 	u32 hash;
5948 
5949 	key[0] = (unsigned long) mapping;
5950 	key[1] = idx;
5951 
5952 	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5953 
5954 	return hash & (num_fault_mutexes - 1);
5955 }
5956 #else
5957 /*
5958  * For uniprocessor systems we always use a single mutex, so just
5959  * return 0 and avoid the hashing overhead.
5960  */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5961 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5962 {
5963 	return 0;
5964 }
5965 #endif
5966 
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)5967 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5968 			unsigned long address, unsigned int flags)
5969 {
5970 	vm_fault_t ret;
5971 	u32 hash;
5972 	struct folio *folio = NULL;
5973 	struct hstate *h = hstate_vma(vma);
5974 	struct address_space *mapping;
5975 	bool need_wait_lock = false;
5976 	struct vm_fault vmf = {
5977 		.vma = vma,
5978 		.address = address & huge_page_mask(h),
5979 		.real_address = address,
5980 		.flags = flags,
5981 		.pgoff = vma_hugecache_offset(h, vma,
5982 				address & huge_page_mask(h)),
5983 		/* TODO: Track hugetlb faults using vm_fault */
5984 
5985 		/*
5986 		 * Some fields may not be initialized, be careful as it may
5987 		 * be hard to debug if called functions make assumptions
5988 		 */
5989 	};
5990 
5991 	/*
5992 	 * Serialize hugepage allocation and instantiation, so that we don't
5993 	 * get spurious allocation failures if two CPUs race to instantiate
5994 	 * the same page in the page cache.
5995 	 */
5996 	mapping = vma->vm_file->f_mapping;
5997 	hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
5998 	mutex_lock(&hugetlb_fault_mutex_table[hash]);
5999 
6000 	/*
6001 	 * Acquire vma lock before calling huge_pte_alloc and hold
6002 	 * until finished with vmf.pte.  This prevents huge_pmd_unshare from
6003 	 * being called elsewhere and making the vmf.pte no longer valid.
6004 	 */
6005 	hugetlb_vma_lock_read(vma);
6006 	vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6007 	if (!vmf.pte) {
6008 		hugetlb_vma_unlock_read(vma);
6009 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6010 		return VM_FAULT_OOM;
6011 	}
6012 
6013 	vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6014 	if (huge_pte_none(vmf.orig_pte))
6015 		/*
6016 		 * hugetlb_no_page will drop vma lock and hugetlb fault
6017 		 * mutex internally, which make us return immediately.
6018 		 */
6019 		return hugetlb_no_page(mapping, &vmf);
6020 
6021 	if (pte_is_marker(vmf.orig_pte)) {
6022 		const pte_marker marker =
6023 			softleaf_to_marker(softleaf_from_pte(vmf.orig_pte));
6024 
6025 		if (marker & PTE_MARKER_POISONED) {
6026 			ret = VM_FAULT_HWPOISON_LARGE |
6027 				VM_FAULT_SET_HINDEX(hstate_index(h));
6028 			goto out_mutex;
6029 		} else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6030 			/* This isn't supported in hugetlb. */
6031 			ret = VM_FAULT_SIGSEGV;
6032 			goto out_mutex;
6033 		}
6034 
6035 		return hugetlb_no_page(mapping, &vmf);
6036 	}
6037 
6038 	ret = 0;
6039 
6040 	/* Not present, either a migration or a hwpoisoned entry */
6041 	if (!pte_present(vmf.orig_pte) && !huge_pte_none(vmf.orig_pte)) {
6042 		const softleaf_t softleaf = softleaf_from_pte(vmf.orig_pte);
6043 
6044 		if (softleaf_is_migration(softleaf)) {
6045 			/*
6046 			 * Release the hugetlb fault lock now, but retain
6047 			 * the vma lock, because it is needed to guard the
6048 			 * huge_pte_lockptr() later in
6049 			 * migration_entry_wait_huge(). The vma lock will
6050 			 * be released there.
6051 			 */
6052 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6053 			migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6054 			return 0;
6055 		}
6056 		if (softleaf_is_hwpoison(softleaf)) {
6057 			ret = VM_FAULT_HWPOISON_LARGE |
6058 			    VM_FAULT_SET_HINDEX(hstate_index(h));
6059 		}
6060 
6061 		goto out_mutex;
6062 	}
6063 
6064 	/*
6065 	 * If we are going to COW/unshare the mapping later, we examine the
6066 	 * pending reservations for this page now. This will ensure that any
6067 	 * allocations necessary to record that reservation occur outside the
6068 	 * spinlock.
6069 	 */
6070 	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6071 	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6072 		if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6073 			ret = VM_FAULT_OOM;
6074 			goto out_mutex;
6075 		}
6076 		/* Just decrements count, does not deallocate */
6077 		vma_end_reservation(h, vma, vmf.address);
6078 	}
6079 
6080 	vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6081 
6082 	/* Check for a racing update before calling hugetlb_wp() */
6083 	if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6084 		goto out_ptl;
6085 
6086 	/* Handle userfault-wp first, before trying to lock more pages */
6087 	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6088 	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6089 		if (!userfaultfd_wp_async(vma)) {
6090 			spin_unlock(vmf.ptl);
6091 			hugetlb_vma_unlock_read(vma);
6092 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6093 			return handle_userfault(&vmf, VM_UFFD_WP);
6094 		}
6095 
6096 		vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6097 		set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6098 				huge_page_size(hstate_vma(vma)));
6099 		/* Fallthrough to CoW */
6100 	}
6101 
6102 	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6103 		if (!huge_pte_write(vmf.orig_pte)) {
6104 			/*
6105 			 * Anonymous folios need to be lock since hugetlb_wp()
6106 			 * checks whether we can re-use the folio exclusively
6107 			 * for us in case we are the only user of it.
6108 			 */
6109 			folio = page_folio(pte_page(vmf.orig_pte));
6110 			if (folio_test_anon(folio) && !folio_trylock(folio)) {
6111 				need_wait_lock = true;
6112 				goto out_ptl;
6113 			}
6114 			folio_get(folio);
6115 			ret = hugetlb_wp(&vmf);
6116 			if (folio_test_anon(folio))
6117 				folio_unlock(folio);
6118 			folio_put(folio);
6119 			goto out_ptl;
6120 		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6121 			vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6122 		}
6123 	}
6124 	vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6125 	if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6126 						flags & FAULT_FLAG_WRITE))
6127 		update_mmu_cache(vma, vmf.address, vmf.pte);
6128 out_ptl:
6129 	spin_unlock(vmf.ptl);
6130 out_mutex:
6131 	hugetlb_vma_unlock_read(vma);
6132 
6133 	/*
6134 	 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6135 	 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6136 	 */
6137 	if (unlikely(ret & VM_FAULT_RETRY))
6138 		vma_end_read(vma);
6139 
6140 	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6141 	/*
6142 	 * hugetlb_wp drops all the locks, but the folio lock, before trying to
6143 	 * unmap the folio from other processes. During that window, if another
6144 	 * process mapping that folio faults in, it will take the mutex and then
6145 	 * it will wait on folio_lock, causing an ABBA deadlock.
6146 	 * Use trylock instead and bail out if we fail.
6147 	 *
6148 	 * Ideally, we should hold a refcount on the folio we wait for, but we do
6149 	 * not want to use the folio after it becomes unlocked, but rather just
6150 	 * wait for it to become unlocked, so hopefully next fault successes on
6151 	 * the trylock.
6152 	 */
6153 	if (need_wait_lock)
6154 		folio_wait_locked(folio);
6155 	return ret;
6156 }
6157 
6158 #ifdef CONFIG_USERFAULTFD
6159 /*
6160  * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6161  */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6162 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6163 		struct vm_area_struct *vma, unsigned long address)
6164 {
6165 	struct mempolicy *mpol;
6166 	nodemask_t *nodemask;
6167 	struct folio *folio;
6168 	gfp_t gfp_mask;
6169 	int node;
6170 
6171 	gfp_mask = htlb_alloc_mask(h);
6172 	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6173 	/*
6174 	 * This is used to allocate a temporary hugetlb to hold the copied
6175 	 * content, which will then be copied again to the final hugetlb
6176 	 * consuming a reservation. Set the alloc_fallback to false to indicate
6177 	 * that breaking the per-node hugetlb pool is not allowed in this case.
6178 	 */
6179 	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6180 	mpol_cond_put(mpol);
6181 
6182 	return folio;
6183 }
6184 
6185 /*
6186  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6187  * with modifications for hugetlb pages.
6188  */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6189 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6190 			     struct vm_area_struct *dst_vma,
6191 			     unsigned long dst_addr,
6192 			     unsigned long src_addr,
6193 			     uffd_flags_t flags,
6194 			     struct folio **foliop)
6195 {
6196 	struct mm_struct *dst_mm = dst_vma->vm_mm;
6197 	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6198 	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6199 	struct hstate *h = hstate_vma(dst_vma);
6200 	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6201 	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6202 	unsigned long size = huge_page_size(h);
6203 	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6204 	pte_t _dst_pte;
6205 	spinlock_t *ptl;
6206 	int ret = -ENOMEM;
6207 	struct folio *folio;
6208 	bool folio_in_pagecache = false;
6209 	pte_t dst_ptep;
6210 
6211 	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6212 		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6213 
6214 		/* Don't overwrite any existing PTEs (even markers) */
6215 		if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6216 			spin_unlock(ptl);
6217 			return -EEXIST;
6218 		}
6219 
6220 		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6221 		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6222 
6223 		/* No need to invalidate - it was non-present before */
6224 		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6225 
6226 		spin_unlock(ptl);
6227 		return 0;
6228 	}
6229 
6230 	if (is_continue) {
6231 		ret = -EFAULT;
6232 		folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6233 		if (IS_ERR(folio))
6234 			goto out;
6235 		folio_in_pagecache = true;
6236 	} else if (!*foliop) {
6237 		/* If a folio already exists, then it's UFFDIO_COPY for
6238 		 * a non-missing case. Return -EEXIST.
6239 		 */
6240 		if (vm_shared &&
6241 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6242 			ret = -EEXIST;
6243 			goto out;
6244 		}
6245 
6246 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6247 		if (IS_ERR(folio)) {
6248 			pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE);
6249 			if (actual_pte) {
6250 				ret = -EEXIST;
6251 				goto out;
6252 			}
6253 			ret = -ENOMEM;
6254 			goto out;
6255 		}
6256 
6257 		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6258 					   false);
6259 
6260 		/* fallback to copy_from_user outside mmap_lock */
6261 		if (unlikely(ret)) {
6262 			ret = -ENOENT;
6263 			/* Free the allocated folio which may have
6264 			 * consumed a reservation.
6265 			 */
6266 			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6267 			folio_put(folio);
6268 
6269 			/* Allocate a temporary folio to hold the copied
6270 			 * contents.
6271 			 */
6272 			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6273 			if (!folio) {
6274 				ret = -ENOMEM;
6275 				goto out;
6276 			}
6277 			*foliop = folio;
6278 			/* Set the outparam foliop and return to the caller to
6279 			 * copy the contents outside the lock. Don't free the
6280 			 * folio.
6281 			 */
6282 			goto out;
6283 		}
6284 	} else {
6285 		if (vm_shared &&
6286 		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6287 			folio_put(*foliop);
6288 			ret = -EEXIST;
6289 			*foliop = NULL;
6290 			goto out;
6291 		}
6292 
6293 		folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6294 		if (IS_ERR(folio)) {
6295 			folio_put(*foliop);
6296 			ret = -ENOMEM;
6297 			*foliop = NULL;
6298 			goto out;
6299 		}
6300 		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6301 		folio_put(*foliop);
6302 		*foliop = NULL;
6303 		if (ret) {
6304 			folio_put(folio);
6305 			goto out;
6306 		}
6307 	}
6308 
6309 	/*
6310 	 * If we just allocated a new page, we need a memory barrier to ensure
6311 	 * that preceding stores to the page become visible before the
6312 	 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6313 	 * is what we need.
6314 	 *
6315 	 * In the case where we have not allocated a new page (is_continue),
6316 	 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6317 	 * an earlier smp_wmb() to ensure that prior stores will be visible
6318 	 * before the set_pte_at() write.
6319 	 */
6320 	if (!is_continue)
6321 		__folio_mark_uptodate(folio);
6322 	else
6323 		WARN_ON_ONCE(!folio_test_uptodate(folio));
6324 
6325 	/* Add shared, newly allocated pages to the page cache. */
6326 	if (vm_shared && !is_continue) {
6327 		ret = -EFAULT;
6328 		if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6329 			goto out_release_nounlock;
6330 
6331 		/*
6332 		 * Serialization between remove_inode_hugepages() and
6333 		 * hugetlb_add_to_page_cache() below happens through the
6334 		 * hugetlb_fault_mutex_table that here must be hold by
6335 		 * the caller.
6336 		 */
6337 		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6338 		if (ret)
6339 			goto out_release_nounlock;
6340 		folio_in_pagecache = true;
6341 	}
6342 
6343 	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6344 
6345 	ret = -EIO;
6346 	if (folio_test_hwpoison(folio))
6347 		goto out_release_unlock;
6348 
6349 	ret = -EEXIST;
6350 
6351 	dst_ptep = huge_ptep_get(dst_mm, dst_addr, dst_pte);
6352 	/*
6353 	 * See comment about UFFD marker overwriting in
6354 	 * mfill_atomic_install_pte().
6355 	 */
6356 	if (!huge_pte_none(dst_ptep) && !pte_is_uffd_marker(dst_ptep))
6357 		goto out_release_unlock;
6358 
6359 	if (folio_in_pagecache)
6360 		hugetlb_add_file_rmap(folio);
6361 	else
6362 		hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6363 
6364 	/*
6365 	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6366 	 * with wp flag set, don't set pte write bit.
6367 	 */
6368 	_dst_pte = make_huge_pte(dst_vma, folio,
6369 				 !wp_enabled && !(is_continue && !vm_shared));
6370 	/*
6371 	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6372 	 * extremely important for hugetlbfs for now since swapping is not
6373 	 * supported, but we should still be clear in that this page cannot be
6374 	 * thrown away at will, even if write bit not set.
6375 	 */
6376 	_dst_pte = huge_pte_mkdirty(_dst_pte);
6377 	_dst_pte = pte_mkyoung(_dst_pte);
6378 
6379 	if (wp_enabled)
6380 		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6381 
6382 	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6383 
6384 	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6385 
6386 	/* No need to invalidate - it was non-present before */
6387 	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6388 
6389 	spin_unlock(ptl);
6390 	if (!is_continue)
6391 		folio_set_hugetlb_migratable(folio);
6392 	if (vm_shared || is_continue)
6393 		folio_unlock(folio);
6394 	ret = 0;
6395 out:
6396 	return ret;
6397 out_release_unlock:
6398 	spin_unlock(ptl);
6399 	if (vm_shared || is_continue)
6400 		folio_unlock(folio);
6401 out_release_nounlock:
6402 	if (!folio_in_pagecache)
6403 		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6404 	folio_put(folio);
6405 	goto out;
6406 }
6407 #endif /* CONFIG_USERFAULTFD */
6408 
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6409 long hugetlb_change_protection(struct vm_area_struct *vma,
6410 		unsigned long address, unsigned long end,
6411 		pgprot_t newprot, unsigned long cp_flags)
6412 {
6413 	struct mm_struct *mm = vma->vm_mm;
6414 	unsigned long start = address;
6415 	pte_t *ptep;
6416 	pte_t pte;
6417 	struct hstate *h = hstate_vma(vma);
6418 	long pages = 0, psize = huge_page_size(h);
6419 	bool shared_pmd = false;
6420 	struct mmu_notifier_range range;
6421 	unsigned long last_addr_mask;
6422 	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6423 	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6424 
6425 	/*
6426 	 * In the case of shared PMDs, the area to flush could be beyond
6427 	 * start/end.  Set range.start/range.end to cover the maximum possible
6428 	 * range if PMD sharing is possible.
6429 	 */
6430 	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6431 				0, mm, start, end);
6432 	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6433 
6434 	BUG_ON(address >= end);
6435 	flush_cache_range(vma, range.start, range.end);
6436 
6437 	mmu_notifier_invalidate_range_start(&range);
6438 	hugetlb_vma_lock_write(vma);
6439 	i_mmap_lock_write(vma->vm_file->f_mapping);
6440 	last_addr_mask = hugetlb_mask_last_page(h);
6441 	for (; address < end; address += psize) {
6442 		softleaf_t entry;
6443 		spinlock_t *ptl;
6444 
6445 		ptep = hugetlb_walk(vma, address, psize);
6446 		if (!ptep) {
6447 			if (!uffd_wp) {
6448 				address |= last_addr_mask;
6449 				continue;
6450 			}
6451 			/*
6452 			 * Userfaultfd wr-protect requires pgtable
6453 			 * pre-allocations to install pte markers.
6454 			 */
6455 			ptep = huge_pte_alloc(mm, vma, address, psize);
6456 			if (!ptep) {
6457 				pages = -ENOMEM;
6458 				break;
6459 			}
6460 		}
6461 		ptl = huge_pte_lock(h, mm, ptep);
6462 		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6463 			/*
6464 			 * When uffd-wp is enabled on the vma, unshare
6465 			 * shouldn't happen at all.  Warn about it if it
6466 			 * happened due to some reason.
6467 			 */
6468 			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6469 			pages++;
6470 			spin_unlock(ptl);
6471 			shared_pmd = true;
6472 			address |= last_addr_mask;
6473 			continue;
6474 		}
6475 		pte = huge_ptep_get(mm, address, ptep);
6476 		if (huge_pte_none(pte)) {
6477 			if (unlikely(uffd_wp))
6478 				/* Safe to modify directly (none->non-present). */
6479 				set_huge_pte_at(mm, address, ptep,
6480 						make_pte_marker(PTE_MARKER_UFFD_WP),
6481 						psize);
6482 			goto next;
6483 		}
6484 
6485 		entry = softleaf_from_pte(pte);
6486 		if (unlikely(softleaf_is_hwpoison(entry))) {
6487 			/* Nothing to do. */
6488 		} else if (unlikely(softleaf_is_migration(entry))) {
6489 			struct folio *folio = softleaf_to_folio(entry);
6490 			pte_t newpte = pte;
6491 
6492 			if (softleaf_is_migration_write(entry)) {
6493 				if (folio_test_anon(folio))
6494 					entry = make_readable_exclusive_migration_entry(
6495 								swp_offset(entry));
6496 				else
6497 					entry = make_readable_migration_entry(
6498 								swp_offset(entry));
6499 				newpte = swp_entry_to_pte(entry);
6500 				pages++;
6501 			}
6502 
6503 			if (uffd_wp)
6504 				newpte = pte_swp_mkuffd_wp(newpte);
6505 			else if (uffd_wp_resolve)
6506 				newpte = pte_swp_clear_uffd_wp(newpte);
6507 			if (!pte_same(pte, newpte))
6508 				set_huge_pte_at(mm, address, ptep, newpte, psize);
6509 		} else if (unlikely(pte_is_marker(pte))) {
6510 			/*
6511 			 * Do nothing on a poison marker; page is
6512 			 * corrupted, permissions do not apply. Here
6513 			 * pte_marker_uffd_wp()==true implies !poison
6514 			 * because they're mutual exclusive.
6515 			 */
6516 			if (pte_is_uffd_wp_marker(pte) && uffd_wp_resolve)
6517 				/* Safe to modify directly (non-present->none). */
6518 				huge_pte_clear(mm, address, ptep, psize);
6519 		} else {
6520 			pte_t old_pte;
6521 			unsigned int shift = huge_page_shift(hstate_vma(vma));
6522 
6523 			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6524 			pte = huge_pte_modify(old_pte, newprot);
6525 			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6526 			if (uffd_wp)
6527 				pte = huge_pte_mkuffd_wp(pte);
6528 			else if (uffd_wp_resolve)
6529 				pte = huge_pte_clear_uffd_wp(pte);
6530 			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6531 			pages++;
6532 		}
6533 
6534 next:
6535 		spin_unlock(ptl);
6536 		cond_resched();
6537 	}
6538 	/*
6539 	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6540 	 * may have cleared our pud entry and done put_page on the page table:
6541 	 * once we release i_mmap_rwsem, another task can do the final put_page
6542 	 * and that page table be reused and filled with junk.  If we actually
6543 	 * did unshare a page of pmds, flush the range corresponding to the pud.
6544 	 */
6545 	if (shared_pmd)
6546 		flush_hugetlb_tlb_range(vma, range.start, range.end);
6547 	else
6548 		flush_hugetlb_tlb_range(vma, start, end);
6549 	/*
6550 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6551 	 * downgrading page table protection not changing it to point to a new
6552 	 * page.
6553 	 *
6554 	 * See Documentation/mm/mmu_notifier.rst
6555 	 */
6556 	i_mmap_unlock_write(vma->vm_file->f_mapping);
6557 	hugetlb_vma_unlock_write(vma);
6558 	mmu_notifier_invalidate_range_end(&range);
6559 
6560 	return pages > 0 ? (pages << h->order) : pages;
6561 }
6562 
6563 /*
6564  * Update the reservation map for the range [from, to].
6565  *
6566  * Returns the number of entries that would be added to the reservation map
6567  * associated with the range [from, to].  This number is greater or equal to
6568  * zero. -EINVAL or -ENOMEM is returned in case of any errors.
6569  */
6570 
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_desc * desc,vm_flags_t vm_flags)6571 long hugetlb_reserve_pages(struct inode *inode,
6572 		long from, long to,
6573 		struct vm_area_desc *desc,
6574 		vm_flags_t vm_flags)
6575 {
6576 	long chg = -1, add = -1, spool_resv, gbl_resv;
6577 	struct hstate *h = hstate_inode(inode);
6578 	struct hugepage_subpool *spool = subpool_inode(inode);
6579 	struct resv_map *resv_map;
6580 	struct hugetlb_cgroup *h_cg = NULL;
6581 	long gbl_reserve, regions_needed = 0;
6582 
6583 	/* This should never happen */
6584 	if (from > to) {
6585 		VM_WARN(1, "%s called with a negative range\n", __func__);
6586 		return -EINVAL;
6587 	}
6588 
6589 	/*
6590 	 * Only apply hugepage reservation if asked. At fault time, an
6591 	 * attempt will be made for VM_NORESERVE to allocate a page
6592 	 * without using reserves
6593 	 */
6594 	if (vm_flags & VM_NORESERVE)
6595 		return 0;
6596 
6597 	/*
6598 	 * Shared mappings base their reservation on the number of pages that
6599 	 * are already allocated on behalf of the file. Private mappings need
6600 	 * to reserve the full area even if read-only as mprotect() may be
6601 	 * called to make the mapping read-write. Assume !desc is a shm mapping
6602 	 */
6603 	if (!desc || desc->vm_flags & VM_MAYSHARE) {
6604 		/*
6605 		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6606 		 * called for inodes for which resv_maps were created (see
6607 		 * hugetlbfs_get_inode).
6608 		 */
6609 		resv_map = inode_resv_map(inode);
6610 
6611 		chg = region_chg(resv_map, from, to, &regions_needed);
6612 	} else {
6613 		/* Private mapping. */
6614 		resv_map = resv_map_alloc();
6615 		if (!resv_map)
6616 			goto out_err;
6617 
6618 		chg = to - from;
6619 
6620 		set_vma_desc_resv_map(desc, resv_map);
6621 		set_vma_desc_resv_flags(desc, HPAGE_RESV_OWNER);
6622 	}
6623 
6624 	if (chg < 0)
6625 		goto out_err;
6626 
6627 	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6628 				chg * pages_per_huge_page(h), &h_cg) < 0)
6629 		goto out_err;
6630 
6631 	if (desc && !(desc->vm_flags & VM_MAYSHARE) && h_cg) {
6632 		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6633 		 * of the resv_map.
6634 		 */
6635 		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6636 	}
6637 
6638 	/*
6639 	 * There must be enough pages in the subpool for the mapping. If
6640 	 * the subpool has a minimum size, there may be some global
6641 	 * reservations already in place (gbl_reserve).
6642 	 */
6643 	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6644 	if (gbl_reserve < 0)
6645 		goto out_uncharge_cgroup;
6646 
6647 	/*
6648 	 * Check enough hugepages are available for the reservation.
6649 	 * Hand the pages back to the subpool if there are not
6650 	 */
6651 	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6652 		goto out_put_pages;
6653 
6654 	/*
6655 	 * Account for the reservations made. Shared mappings record regions
6656 	 * that have reservations as they are shared by multiple VMAs.
6657 	 * When the last VMA disappears, the region map says how much
6658 	 * the reservation was and the page cache tells how much of
6659 	 * the reservation was consumed. Private mappings are per-VMA and
6660 	 * only the consumed reservations are tracked. When the VMA
6661 	 * disappears, the original reservation is the VMA size and the
6662 	 * consumed reservations are stored in the map. Hence, nothing
6663 	 * else has to be done for private mappings here
6664 	 */
6665 	if (!desc || desc->vm_flags & VM_MAYSHARE) {
6666 		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6667 
6668 		if (unlikely(add < 0)) {
6669 			hugetlb_acct_memory(h, -gbl_reserve);
6670 			goto out_put_pages;
6671 		} else if (unlikely(chg > add)) {
6672 			/*
6673 			 * pages in this range were added to the reserve
6674 			 * map between region_chg and region_add.  This
6675 			 * indicates a race with alloc_hugetlb_folio.  Adjust
6676 			 * the subpool and reserve counts modified above
6677 			 * based on the difference.
6678 			 */
6679 			long rsv_adjust;
6680 
6681 			/*
6682 			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6683 			 * reference to h_cg->css. See comment below for detail.
6684 			 */
6685 			hugetlb_cgroup_uncharge_cgroup_rsvd(
6686 				hstate_index(h),
6687 				(chg - add) * pages_per_huge_page(h), h_cg);
6688 
6689 			rsv_adjust = hugepage_subpool_put_pages(spool,
6690 								chg - add);
6691 			hugetlb_acct_memory(h, -rsv_adjust);
6692 		} else if (h_cg) {
6693 			/*
6694 			 * The file_regions will hold their own reference to
6695 			 * h_cg->css. So we should release the reference held
6696 			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6697 			 * done.
6698 			 */
6699 			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6700 		}
6701 	}
6702 	return chg;
6703 
6704 out_put_pages:
6705 	spool_resv = chg - gbl_reserve;
6706 	if (spool_resv) {
6707 		/* put sub pool's reservation back, chg - gbl_reserve */
6708 		gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
6709 		/*
6710 		 * subpool's reserved pages can not be put back due to race,
6711 		 * return to hstate.
6712 		 */
6713 		hugetlb_acct_memory(h, -gbl_resv);
6714 	}
6715 out_uncharge_cgroup:
6716 	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6717 					    chg * pages_per_huge_page(h), h_cg);
6718 out_err:
6719 	if (!desc || desc->vm_flags & VM_MAYSHARE)
6720 		/* Only call region_abort if the region_chg succeeded but the
6721 		 * region_add failed or didn't run.
6722 		 */
6723 		if (chg >= 0 && add < 0)
6724 			region_abort(resv_map, from, to, regions_needed);
6725 	if (desc && is_vma_desc_resv_set(desc, HPAGE_RESV_OWNER)) {
6726 		kref_put(&resv_map->refs, resv_map_release);
6727 		set_vma_desc_resv_map(desc, NULL);
6728 	}
6729 	return chg < 0 ? chg : add < 0 ? add : -EINVAL;
6730 }
6731 
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)6732 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6733 								long freed)
6734 {
6735 	struct hstate *h = hstate_inode(inode);
6736 	struct resv_map *resv_map = inode_resv_map(inode);
6737 	long chg = 0;
6738 	struct hugepage_subpool *spool = subpool_inode(inode);
6739 	long gbl_reserve;
6740 
6741 	/*
6742 	 * Since this routine can be called in the evict inode path for all
6743 	 * hugetlbfs inodes, resv_map could be NULL.
6744 	 */
6745 	if (resv_map) {
6746 		chg = region_del(resv_map, start, end);
6747 		/*
6748 		 * region_del() can fail in the rare case where a region
6749 		 * must be split and another region descriptor can not be
6750 		 * allocated.  If end == LONG_MAX, it will not fail.
6751 		 */
6752 		if (chg < 0)
6753 			return chg;
6754 	}
6755 
6756 	spin_lock(&inode->i_lock);
6757 	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6758 	spin_unlock(&inode->i_lock);
6759 
6760 	/*
6761 	 * If the subpool has a minimum size, the number of global
6762 	 * reservations to be released may be adjusted.
6763 	 *
6764 	 * Note that !resv_map implies freed == 0. So (chg - freed)
6765 	 * won't go negative.
6766 	 */
6767 	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6768 	hugetlb_acct_memory(h, -gbl_reserve);
6769 
6770 	return 0;
6771 }
6772 
6773 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)6774 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6775 				struct vm_area_struct *vma,
6776 				unsigned long addr, pgoff_t idx)
6777 {
6778 	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6779 				svma->vm_start;
6780 	unsigned long sbase = saddr & PUD_MASK;
6781 	unsigned long s_end = sbase + PUD_SIZE;
6782 
6783 	/* Allow segments to share if only one is marked locked */
6784 	vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6785 	vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6786 
6787 	/*
6788 	 * match the virtual addresses, permission and the alignment of the
6789 	 * page table page.
6790 	 *
6791 	 * Also, vma_lock (vm_private_data) is required for sharing.
6792 	 */
6793 	if (pmd_index(addr) != pmd_index(saddr) ||
6794 	    vm_flags != svm_flags ||
6795 	    !range_in_vma(svma, sbase, s_end) ||
6796 	    !svma->vm_private_data)
6797 		return 0;
6798 
6799 	return saddr;
6800 }
6801 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6802 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6803 {
6804 	unsigned long start = addr & PUD_MASK;
6805 	unsigned long end = start + PUD_SIZE;
6806 
6807 #ifdef CONFIG_USERFAULTFD
6808 	if (uffd_disable_huge_pmd_share(vma))
6809 		return false;
6810 #endif
6811 	/*
6812 	 * check on proper vm_flags and page table alignment
6813 	 */
6814 	if (!(vma->vm_flags & VM_MAYSHARE))
6815 		return false;
6816 	if (!vma->vm_private_data)	/* vma lock required for sharing */
6817 		return false;
6818 	if (!range_in_vma(vma, start, end))
6819 		return false;
6820 	return true;
6821 }
6822 
6823 /*
6824  * Determine if start,end range within vma could be mapped by shared pmd.
6825  * If yes, adjust start and end to cover range associated with possible
6826  * shared pmd mappings.
6827  */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6828 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6829 				unsigned long *start, unsigned long *end)
6830 {
6831 	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6832 		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6833 
6834 	/*
6835 	 * vma needs to span at least one aligned PUD size, and the range
6836 	 * must be at least partially within in.
6837 	 */
6838 	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6839 		(*end <= v_start) || (*start >= v_end))
6840 		return;
6841 
6842 	/* Extend the range to be PUD aligned for a worst case scenario */
6843 	if (*start > v_start)
6844 		*start = ALIGN_DOWN(*start, PUD_SIZE);
6845 
6846 	if (*end < v_end)
6847 		*end = ALIGN(*end, PUD_SIZE);
6848 }
6849 
6850 /*
6851  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6852  * and returns the corresponding pte. While this is not necessary for the
6853  * !shared pmd case because we can allocate the pmd later as well, it makes the
6854  * code much cleaner. pmd allocation is essential for the shared case because
6855  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6856  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6857  * bad pmd for sharing.
6858  */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6859 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6860 		      unsigned long addr, pud_t *pud)
6861 {
6862 	struct address_space *mapping = vma->vm_file->f_mapping;
6863 	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6864 			vma->vm_pgoff;
6865 	struct vm_area_struct *svma;
6866 	unsigned long saddr;
6867 	pte_t *spte = NULL;
6868 	pte_t *pte;
6869 
6870 	i_mmap_lock_read(mapping);
6871 	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6872 		if (svma == vma)
6873 			continue;
6874 
6875 		saddr = page_table_shareable(svma, vma, addr, idx);
6876 		if (saddr) {
6877 			spte = hugetlb_walk(svma, saddr,
6878 					    vma_mmu_pagesize(svma));
6879 			if (spte) {
6880 				ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
6881 				break;
6882 			}
6883 		}
6884 	}
6885 
6886 	if (!spte)
6887 		goto out;
6888 
6889 	spin_lock(&mm->page_table_lock);
6890 	if (pud_none(*pud)) {
6891 		pud_populate(mm, pud,
6892 				(pmd_t *)((unsigned long)spte & PAGE_MASK));
6893 		mm_inc_nr_pmds(mm);
6894 	} else {
6895 		ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
6896 	}
6897 	spin_unlock(&mm->page_table_lock);
6898 out:
6899 	pte = (pte_t *)pmd_alloc(mm, pud, addr);
6900 	i_mmap_unlock_read(mapping);
6901 	return pte;
6902 }
6903 
6904 /*
6905  * unmap huge page backed by shared pte.
6906  *
6907  * Called with page table lock held.
6908  *
6909  * returns: 1 successfully unmapped a shared pte page
6910  *	    0 the underlying pte page is not shared, or it is the last user
6911  */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)6912 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6913 					unsigned long addr, pte_t *ptep)
6914 {
6915 	unsigned long sz = huge_page_size(hstate_vma(vma));
6916 	pgd_t *pgd = pgd_offset(mm, addr);
6917 	p4d_t *p4d = p4d_offset(pgd, addr);
6918 	pud_t *pud = pud_offset(p4d, addr);
6919 
6920 	if (sz != PMD_SIZE)
6921 		return 0;
6922 	if (!ptdesc_pmd_is_shared(virt_to_ptdesc(ptep)))
6923 		return 0;
6924 	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6925 	hugetlb_vma_assert_locked(vma);
6926 	pud_clear(pud);
6927 	/*
6928 	 * Once our caller drops the rmap lock, some other process might be
6929 	 * using this page table as a normal, non-hugetlb page table.
6930 	 * Wait for pending gup_fast() in other threads to finish before letting
6931 	 * that happen.
6932 	 */
6933 	tlb_remove_table_sync_one();
6934 	ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
6935 	mm_dec_nr_pmds(mm);
6936 	return 1;
6937 }
6938 
6939 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
6940 
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6941 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6942 		      unsigned long addr, pud_t *pud)
6943 {
6944 	return NULL;
6945 }
6946 
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)6947 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6948 				unsigned long addr, pte_t *ptep)
6949 {
6950 	return 0;
6951 }
6952 
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6953 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6954 				unsigned long *start, unsigned long *end)
6955 {
6956 }
6957 
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6958 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6959 {
6960 	return false;
6961 }
6962 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
6963 
6964 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)6965 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6966 			unsigned long addr, unsigned long sz)
6967 {
6968 	pgd_t *pgd;
6969 	p4d_t *p4d;
6970 	pud_t *pud;
6971 	pte_t *pte = NULL;
6972 
6973 	pgd = pgd_offset(mm, addr);
6974 	p4d = p4d_alloc(mm, pgd, addr);
6975 	if (!p4d)
6976 		return NULL;
6977 	pud = pud_alloc(mm, p4d, addr);
6978 	if (pud) {
6979 		if (sz == PUD_SIZE) {
6980 			pte = (pte_t *)pud;
6981 		} else {
6982 			BUG_ON(sz != PMD_SIZE);
6983 			if (want_pmd_share(vma, addr) && pud_none(*pud))
6984 				pte = huge_pmd_share(mm, vma, addr, pud);
6985 			else
6986 				pte = (pte_t *)pmd_alloc(mm, pud, addr);
6987 		}
6988 	}
6989 
6990 	if (pte) {
6991 		pte_t pteval = ptep_get_lockless(pte);
6992 
6993 		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
6994 	}
6995 
6996 	return pte;
6997 }
6998 
6999 /*
7000  * huge_pte_offset() - Walk the page table to resolve the hugepage
7001  * entry at address @addr
7002  *
7003  * Return: Pointer to page table entry (PUD or PMD) for
7004  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7005  * size @sz doesn't match the hugepage size at this level of the page
7006  * table.
7007  */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7008 pte_t *huge_pte_offset(struct mm_struct *mm,
7009 		       unsigned long addr, unsigned long sz)
7010 {
7011 	pgd_t *pgd;
7012 	p4d_t *p4d;
7013 	pud_t *pud;
7014 	pmd_t *pmd;
7015 
7016 	pgd = pgd_offset(mm, addr);
7017 	if (!pgd_present(*pgd))
7018 		return NULL;
7019 	p4d = p4d_offset(pgd, addr);
7020 	if (!p4d_present(*p4d))
7021 		return NULL;
7022 
7023 	pud = pud_offset(p4d, addr);
7024 	if (sz == PUD_SIZE)
7025 		/* must be pud huge, non-present or none */
7026 		return (pte_t *)pud;
7027 	if (!pud_present(*pud))
7028 		return NULL;
7029 	/* must have a valid entry and size to go further */
7030 
7031 	pmd = pmd_offset(pud, addr);
7032 	/* must be pmd huge, non-present or none */
7033 	return (pte_t *)pmd;
7034 }
7035 
7036 /*
7037  * Return a mask that can be used to update an address to the last huge
7038  * page in a page table page mapping size.  Used to skip non-present
7039  * page table entries when linearly scanning address ranges.  Architectures
7040  * with unique huge page to page table relationships can define their own
7041  * version of this routine.
7042  */
hugetlb_mask_last_page(struct hstate * h)7043 unsigned long hugetlb_mask_last_page(struct hstate *h)
7044 {
7045 	unsigned long hp_size = huge_page_size(h);
7046 
7047 	if (hp_size == PUD_SIZE)
7048 		return P4D_SIZE - PUD_SIZE;
7049 	else if (hp_size == PMD_SIZE)
7050 		return PUD_SIZE - PMD_SIZE;
7051 	else
7052 		return 0UL;
7053 }
7054 
7055 #else
7056 
7057 /* See description above.  Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7058 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7059 {
7060 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7061 	if (huge_page_size(h) == PMD_SIZE)
7062 		return PUD_SIZE - PMD_SIZE;
7063 #endif
7064 	return 0UL;
7065 }
7066 
7067 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7068 
7069 /**
7070  * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7071  * @folio: the folio to isolate
7072  * @list: the list to add the folio to on success
7073  *
7074  * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7075  * isolated/non-migratable, and moving it from the active list to the
7076  * given list.
7077  *
7078  * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7079  * it is already isolated/non-migratable.
7080  *
7081  * On success, an additional folio reference is taken that must be dropped
7082  * using folio_putback_hugetlb() to undo the isolation.
7083  *
7084  * Return: True if isolation worked, otherwise False.
7085  */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7086 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7087 {
7088 	bool ret = true;
7089 
7090 	spin_lock_irq(&hugetlb_lock);
7091 	if (!folio_test_hugetlb(folio) ||
7092 	    !folio_test_hugetlb_migratable(folio) ||
7093 	    !folio_try_get(folio)) {
7094 		ret = false;
7095 		goto unlock;
7096 	}
7097 	folio_clear_hugetlb_migratable(folio);
7098 	list_move_tail(&folio->lru, list);
7099 unlock:
7100 	spin_unlock_irq(&hugetlb_lock);
7101 	return ret;
7102 }
7103 
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7104 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7105 {
7106 	int ret = 0;
7107 
7108 	*hugetlb = false;
7109 	spin_lock_irq(&hugetlb_lock);
7110 	if (folio_test_hugetlb(folio)) {
7111 		*hugetlb = true;
7112 		if (folio_test_hugetlb_freed(folio))
7113 			ret = 0;
7114 		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7115 			ret = folio_try_get(folio);
7116 		else
7117 			ret = -EBUSY;
7118 	}
7119 	spin_unlock_irq(&hugetlb_lock);
7120 	return ret;
7121 }
7122 
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7123 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7124 				bool *migratable_cleared)
7125 {
7126 	int ret;
7127 
7128 	spin_lock_irq(&hugetlb_lock);
7129 	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7130 	spin_unlock_irq(&hugetlb_lock);
7131 	return ret;
7132 }
7133 
7134 /**
7135  * folio_putback_hugetlb - unisolate a hugetlb folio
7136  * @folio: the isolated hugetlb folio
7137  *
7138  * Putback/un-isolate the hugetlb folio that was previous isolated using
7139  * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7140  * back onto the active list.
7141  *
7142  * Will drop the additional folio reference obtained through
7143  * folio_isolate_hugetlb().
7144  */
folio_putback_hugetlb(struct folio * folio)7145 void folio_putback_hugetlb(struct folio *folio)
7146 {
7147 	spin_lock_irq(&hugetlb_lock);
7148 	folio_set_hugetlb_migratable(folio);
7149 	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7150 	spin_unlock_irq(&hugetlb_lock);
7151 	folio_put(folio);
7152 }
7153 
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7154 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7155 {
7156 	struct hstate *h = folio_hstate(old_folio);
7157 
7158 	hugetlb_cgroup_migrate(old_folio, new_folio);
7159 	folio_set_owner_migrate_reason(new_folio, reason);
7160 
7161 	/*
7162 	 * transfer temporary state of the new hugetlb folio. This is
7163 	 * reverse to other transitions because the newpage is going to
7164 	 * be final while the old one will be freed so it takes over
7165 	 * the temporary status.
7166 	 *
7167 	 * Also note that we have to transfer the per-node surplus state
7168 	 * here as well otherwise the global surplus count will not match
7169 	 * the per-node's.
7170 	 */
7171 	if (folio_test_hugetlb_temporary(new_folio)) {
7172 		int old_nid = folio_nid(old_folio);
7173 		int new_nid = folio_nid(new_folio);
7174 
7175 		folio_set_hugetlb_temporary(old_folio);
7176 		folio_clear_hugetlb_temporary(new_folio);
7177 
7178 
7179 		/*
7180 		 * There is no need to transfer the per-node surplus state
7181 		 * when we do not cross the node.
7182 		 */
7183 		if (new_nid == old_nid)
7184 			return;
7185 		spin_lock_irq(&hugetlb_lock);
7186 		if (h->surplus_huge_pages_node[old_nid]) {
7187 			h->surplus_huge_pages_node[old_nid]--;
7188 			h->surplus_huge_pages_node[new_nid]++;
7189 		}
7190 		spin_unlock_irq(&hugetlb_lock);
7191 	}
7192 
7193 	/*
7194 	 * Our old folio is isolated and has "migratable" cleared until it
7195 	 * is putback. As migration succeeded, set the new folio "migratable"
7196 	 * and add it to the active list.
7197 	 */
7198 	spin_lock_irq(&hugetlb_lock);
7199 	folio_set_hugetlb_migratable(new_folio);
7200 	list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7201 	spin_unlock_irq(&hugetlb_lock);
7202 }
7203 
7204 /*
7205  * If @take_locks is false, the caller must ensure that no concurrent page table
7206  * access can happen (except for gup_fast() and hardware page walks).
7207  * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
7208  * concurrent page fault handling) and the file rmap lock.
7209  */
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool take_locks)7210 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7211 				   unsigned long start,
7212 				   unsigned long end,
7213 				   bool take_locks)
7214 {
7215 	struct hstate *h = hstate_vma(vma);
7216 	unsigned long sz = huge_page_size(h);
7217 	struct mm_struct *mm = vma->vm_mm;
7218 	struct mmu_notifier_range range;
7219 	unsigned long address;
7220 	spinlock_t *ptl;
7221 	pte_t *ptep;
7222 
7223 	if (!(vma->vm_flags & VM_MAYSHARE))
7224 		return;
7225 
7226 	if (start >= end)
7227 		return;
7228 
7229 	flush_cache_range(vma, start, end);
7230 	/*
7231 	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7232 	 * we have already done the PUD_SIZE alignment.
7233 	 */
7234 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7235 				start, end);
7236 	mmu_notifier_invalidate_range_start(&range);
7237 	if (take_locks) {
7238 		hugetlb_vma_lock_write(vma);
7239 		i_mmap_lock_write(vma->vm_file->f_mapping);
7240 	} else {
7241 		i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7242 	}
7243 	for (address = start; address < end; address += PUD_SIZE) {
7244 		ptep = hugetlb_walk(vma, address, sz);
7245 		if (!ptep)
7246 			continue;
7247 		ptl = huge_pte_lock(h, mm, ptep);
7248 		huge_pmd_unshare(mm, vma, address, ptep);
7249 		spin_unlock(ptl);
7250 	}
7251 	flush_hugetlb_tlb_range(vma, start, end);
7252 	if (take_locks) {
7253 		i_mmap_unlock_write(vma->vm_file->f_mapping);
7254 		hugetlb_vma_unlock_write(vma);
7255 	}
7256 	/*
7257 	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7258 	 * Documentation/mm/mmu_notifier.rst.
7259 	 */
7260 	mmu_notifier_invalidate_range_end(&range);
7261 }
7262 
7263 /*
7264  * This function will unconditionally remove all the shared pmd pgtable entries
7265  * within the specific vma for a hugetlbfs memory range.
7266  */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7267 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7268 {
7269 	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7270 			ALIGN_DOWN(vma->vm_end, PUD_SIZE),
7271 			/* take_locks = */ true);
7272 }
7273 
7274 /*
7275  * For hugetlb, mremap() is an odd edge case - while the VMA copying is
7276  * performed, we permit both the old and new VMAs to reference the same
7277  * reservation.
7278  *
7279  * We fix this up after the operation succeeds, or if a newly allocated VMA
7280  * is closed as a result of a failure to allocate memory.
7281  */
fixup_hugetlb_reservations(struct vm_area_struct * vma)7282 void fixup_hugetlb_reservations(struct vm_area_struct *vma)
7283 {
7284 	if (is_vm_hugetlb_page(vma))
7285 		clear_vma_resv_huge_pages(vma);
7286 }
7287