1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
initname(struct filename * name,const char __user * uptr)128 static inline void initname(struct filename *name, const char __user *uptr)
129 {
130 name->uptr = uptr;
131 name->aname = NULL;
132 atomic_set(&name->refcnt, 1);
133 }
134
135 struct filename *
getname_flags(const char __user * filename,int flags)136 getname_flags(const char __user *filename, int flags)
137 {
138 struct filename *result;
139 char *kname;
140 int len;
141
142 result = audit_reusename(filename);
143 if (result)
144 return result;
145
146 result = __getname();
147 if (unlikely(!result))
148 return ERR_PTR(-ENOMEM);
149
150 /*
151 * First, try to embed the struct filename inside the names_cache
152 * allocation
153 */
154 kname = (char *)result->iname;
155 result->name = kname;
156
157 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 /*
159 * Handle both empty path and copy failure in one go.
160 */
161 if (unlikely(len <= 0)) {
162 if (unlikely(len < 0)) {
163 __putname(result);
164 return ERR_PTR(len);
165 }
166
167 /* The empty path is special. */
168 if (!(flags & LOOKUP_EMPTY)) {
169 __putname(result);
170 return ERR_PTR(-ENOENT);
171 }
172 }
173
174 /*
175 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 * separate struct filename so we can dedicate the entire
177 * names_cache allocation for the pathname, and re-do the copy from
178 * userland.
179 */
180 if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 const size_t size = offsetof(struct filename, iname[1]);
182 kname = (char *)result;
183
184 /*
185 * size is chosen that way we to guarantee that
186 * result->iname[0] is within the same object and that
187 * kname can't be equal to result->iname, no matter what.
188 */
189 result = kzalloc(size, GFP_KERNEL);
190 if (unlikely(!result)) {
191 __putname(kname);
192 return ERR_PTR(-ENOMEM);
193 }
194 result->name = kname;
195 len = strncpy_from_user(kname, filename, PATH_MAX);
196 if (unlikely(len < 0)) {
197 __putname(kname);
198 kfree(result);
199 return ERR_PTR(len);
200 }
201 /* The empty path is special. */
202 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 __putname(kname);
204 kfree(result);
205 return ERR_PTR(-ENOENT);
206 }
207 if (unlikely(len == PATH_MAX)) {
208 __putname(kname);
209 kfree(result);
210 return ERR_PTR(-ENAMETOOLONG);
211 }
212 }
213 initname(result, filename);
214 audit_getname(result);
215 return result;
216 }
217
getname_uflags(const char __user * filename,int uflags)218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221
222 return getname_flags(filename, flags);
223 }
224
__getname_maybe_null(const char __user * pathname)225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 struct filename *name;
228 char c;
229
230 /* try to save on allocations; loss on um, though */
231 if (get_user(c, pathname))
232 return ERR_PTR(-EFAULT);
233 if (!c)
234 return NULL;
235
236 name = getname_flags(pathname, LOOKUP_EMPTY);
237 if (!IS_ERR(name) && !(name->name[0])) {
238 putname(name);
239 name = NULL;
240 }
241 return name;
242 }
243
getname_kernel(const char * filename)244 struct filename *getname_kernel(const char * filename)
245 {
246 struct filename *result;
247 int len = strlen(filename) + 1;
248
249 result = __getname();
250 if (unlikely(!result))
251 return ERR_PTR(-ENOMEM);
252
253 if (len <= EMBEDDED_NAME_MAX) {
254 result->name = (char *)result->iname;
255 } else if (len <= PATH_MAX) {
256 const size_t size = offsetof(struct filename, iname[1]);
257 struct filename *tmp;
258
259 tmp = kmalloc(size, GFP_KERNEL);
260 if (unlikely(!tmp)) {
261 __putname(result);
262 return ERR_PTR(-ENOMEM);
263 }
264 tmp->name = (char *)result;
265 result = tmp;
266 } else {
267 __putname(result);
268 return ERR_PTR(-ENAMETOOLONG);
269 }
270 memcpy((char *)result->name, filename, len);
271 initname(result, NULL);
272 audit_getname(result);
273 return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276
putname(struct filename * name)277 void putname(struct filename *name)
278 {
279 int refcnt;
280
281 if (IS_ERR_OR_NULL(name))
282 return;
283
284 refcnt = atomic_read(&name->refcnt);
285 if (unlikely(refcnt != 1)) {
286 if (WARN_ON_ONCE(!refcnt))
287 return;
288
289 if (!atomic_dec_and_test(&name->refcnt))
290 return;
291 }
292
293 if (unlikely(name->name != name->iname)) {
294 __putname(name->name);
295 kfree(name);
296 } else
297 __putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300
301 /**
302 * check_acl - perform ACL permission checking
303 * @idmap: idmap of the mount the inode was found from
304 * @inode: inode to check permissions on
305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306 *
307 * This function performs the ACL permission checking. Since this function
308 * retrieve POSIX acls it needs to know whether it is called from a blocking or
309 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310 *
311 * If the inode has been found through an idmapped mount the idmap of
312 * the vfsmount must be passed through @idmap. This function will then take
313 * care to map the inode according to @idmap before checking permissions.
314 * On non-idmapped mounts or if permission checking is to be performed on the
315 * raw inode simply pass @nop_mnt_idmap.
316 */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)317 static int check_acl(struct mnt_idmap *idmap,
318 struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 struct posix_acl *acl;
322
323 if (mask & MAY_NOT_BLOCK) {
324 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 if (!acl)
326 return -EAGAIN;
327 /* no ->get_inode_acl() calls in RCU mode... */
328 if (is_uncached_acl(acl))
329 return -ECHILD;
330 return posix_acl_permission(idmap, inode, acl, mask);
331 }
332
333 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 if (IS_ERR(acl))
335 return PTR_ERR(acl);
336 if (acl) {
337 int error = posix_acl_permission(idmap, inode, acl, mask);
338 posix_acl_release(acl);
339 return error;
340 }
341 #endif
342
343 return -EAGAIN;
344 }
345
346 /*
347 * Very quick optimistic "we know we have no ACL's" check.
348 *
349 * Note that this is purely for ACL_TYPE_ACCESS, and purely
350 * for the "we have cached that there are no ACLs" case.
351 *
352 * If this returns true, we know there are no ACLs. But if
353 * it returns false, we might still not have ACLs (it could
354 * be the is_uncached_acl() case).
355 */
no_acl_inode(struct inode * inode)356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 return likely(!READ_ONCE(inode->i_acl));
360 #else
361 return true;
362 #endif
363 }
364
365 /**
366 * acl_permission_check - perform basic UNIX permission checking
367 * @idmap: idmap of the mount the inode was found from
368 * @inode: inode to check permissions on
369 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370 *
371 * This function performs the basic UNIX permission checking. Since this
372 * function may retrieve POSIX acls it needs to know whether it is called from a
373 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374 *
375 * If the inode has been found through an idmapped mount the idmap of
376 * the vfsmount must be passed through @idmap. This function will then take
377 * care to map the inode according to @idmap before checking permissions.
378 * On non-idmapped mounts or if permission checking is to be performed on the
379 * raw inode simply pass @nop_mnt_idmap.
380 */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)381 static int acl_permission_check(struct mnt_idmap *idmap,
382 struct inode *inode, int mask)
383 {
384 unsigned int mode = inode->i_mode;
385 vfsuid_t vfsuid;
386
387 /*
388 * Common cheap case: everybody has the requested
389 * rights, and there are no ACLs to check. No need
390 * to do any owner/group checks in that case.
391 *
392 * - 'mask&7' is the requested permission bit set
393 * - multiplying by 0111 spreads them out to all of ugo
394 * - '& ~mode' looks for missing inode permission bits
395 * - the '!' is for "no missing permissions"
396 *
397 * After that, we just need to check that there are no
398 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 * because it will dereference the ->i_sb pointer and we
400 * want to avoid that if at all possible.
401 */
402 if (!((mask & 7) * 0111 & ~mode)) {
403 if (no_acl_inode(inode))
404 return 0;
405 if (!IS_POSIXACL(inode))
406 return 0;
407 }
408
409 /* Are we the owner? If so, ACL's don't matter */
410 vfsuid = i_uid_into_vfsuid(idmap, inode);
411 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 mask &= 7;
413 mode >>= 6;
414 return (mask & ~mode) ? -EACCES : 0;
415 }
416
417 /* Do we have ACL's? */
418 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 int error = check_acl(idmap, inode, mask);
420 if (error != -EAGAIN)
421 return error;
422 }
423
424 /* Only RWX matters for group/other mode bits */
425 mask &= 7;
426
427 /*
428 * Are the group permissions different from
429 * the other permissions in the bits we care
430 * about? Need to check group ownership if so.
431 */
432 if (mask & (mode ^ (mode >> 3))) {
433 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 if (vfsgid_in_group_p(vfsgid))
435 mode >>= 3;
436 }
437
438 /* Bits in 'mode' clear that we require? */
439 return (mask & ~mode) ? -EACCES : 0;
440 }
441
442 /**
443 * generic_permission - check for access rights on a Posix-like filesystem
444 * @idmap: idmap of the mount the inode was found from
445 * @inode: inode to check access rights for
446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447 * %MAY_NOT_BLOCK ...)
448 *
449 * Used to check for read/write/execute permissions on a file.
450 * We use "fsuid" for this, letting us set arbitrary permissions
451 * for filesystem access without changing the "normal" uids which
452 * are used for other things.
453 *
454 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455 * request cannot be satisfied (eg. requires blocking or too much complexity).
456 * It would then be called again in ref-walk mode.
457 *
458 * If the inode has been found through an idmapped mount the idmap of
459 * the vfsmount must be passed through @idmap. This function will then take
460 * care to map the inode according to @idmap before checking permissions.
461 * On non-idmapped mounts or if permission checking is to be performed on the
462 * raw inode simply pass @nop_mnt_idmap.
463 */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 int mask)
466 {
467 int ret;
468
469 /*
470 * Do the basic permission checks.
471 */
472 ret = acl_permission_check(idmap, inode, mask);
473 if (ret != -EACCES)
474 return ret;
475
476 if (S_ISDIR(inode->i_mode)) {
477 /* DACs are overridable for directories */
478 if (!(mask & MAY_WRITE))
479 if (capable_wrt_inode_uidgid(idmap, inode,
480 CAP_DAC_READ_SEARCH))
481 return 0;
482 if (capable_wrt_inode_uidgid(idmap, inode,
483 CAP_DAC_OVERRIDE))
484 return 0;
485 return -EACCES;
486 }
487
488 /*
489 * Searching includes executable on directories, else just read.
490 */
491 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 if (mask == MAY_READ)
493 if (capable_wrt_inode_uidgid(idmap, inode,
494 CAP_DAC_READ_SEARCH))
495 return 0;
496 /*
497 * Read/write DACs are always overridable.
498 * Executable DACs are overridable when there is
499 * at least one exec bit set.
500 */
501 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 if (capable_wrt_inode_uidgid(idmap, inode,
503 CAP_DAC_OVERRIDE))
504 return 0;
505
506 return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509
510 /**
511 * do_inode_permission - UNIX permission checking
512 * @idmap: idmap of the mount the inode was found from
513 * @inode: inode to check permissions on
514 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515 *
516 * We _really_ want to just do "generic_permission()" without
517 * even looking at the inode->i_op values. So we keep a cache
518 * flag in inode->i_opflags, that says "this has not special
519 * permission function, use the fast case".
520 */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 struct inode *inode, int mask)
523 {
524 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 if (likely(inode->i_op->permission))
526 return inode->i_op->permission(idmap, inode, mask);
527
528 /* This gets set once for the inode lifetime */
529 spin_lock(&inode->i_lock);
530 inode->i_opflags |= IOP_FASTPERM;
531 spin_unlock(&inode->i_lock);
532 }
533 return generic_permission(idmap, inode, mask);
534 }
535
536 /**
537 * sb_permission - Check superblock-level permissions
538 * @sb: Superblock of inode to check permission on
539 * @inode: Inode to check permission on
540 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541 *
542 * Separate out file-system wide checks from inode-specific permission checks.
543 *
544 * Note: lookup_inode_permission_may_exec() does not call here. If you add
545 * MAY_EXEC checks, adjust it.
546 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)547 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
548 {
549 if (mask & MAY_WRITE) {
550 umode_t mode = inode->i_mode;
551
552 /* Nobody gets write access to a read-only fs. */
553 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
554 return -EROFS;
555 }
556 return 0;
557 }
558
559 /**
560 * inode_permission - Check for access rights to a given inode
561 * @idmap: idmap of the mount the inode was found from
562 * @inode: Inode to check permission on
563 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
564 *
565 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
566 * this, letting us set arbitrary permissions for filesystem access without
567 * changing the "normal" UIDs which are used for other things.
568 *
569 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
570 */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)571 int inode_permission(struct mnt_idmap *idmap,
572 struct inode *inode, int mask)
573 {
574 int retval;
575
576 retval = sb_permission(inode->i_sb, inode, mask);
577 if (unlikely(retval))
578 return retval;
579
580 if (mask & MAY_WRITE) {
581 /*
582 * Nobody gets write access to an immutable file.
583 */
584 if (unlikely(IS_IMMUTABLE(inode)))
585 return -EPERM;
586
587 /*
588 * Updating mtime will likely cause i_uid and i_gid to be
589 * written back improperly if their true value is unknown
590 * to the vfs.
591 */
592 if (unlikely(HAS_UNMAPPED_ID(idmap, inode)))
593 return -EACCES;
594 }
595
596 retval = do_inode_permission(idmap, inode, mask);
597 if (unlikely(retval))
598 return retval;
599
600 retval = devcgroup_inode_permission(inode, mask);
601 if (unlikely(retval))
602 return retval;
603
604 return security_inode_permission(inode, mask);
605 }
606 EXPORT_SYMBOL(inode_permission);
607
608 /*
609 * lookup_inode_permission_may_exec - Check traversal right for given inode
610 *
611 * This is a special case routine for may_lookup() making assumptions specific
612 * to path traversal. Use inode_permission() if you are doing something else.
613 *
614 * Work is shaved off compared to inode_permission() as follows:
615 * - we know for a fact there is no MAY_WRITE to worry about
616 * - it is an invariant the inode is a directory
617 *
618 * Since majority of real-world traversal happens on inodes which grant it for
619 * everyone, we check it upfront and only resort to more expensive work if it
620 * fails.
621 *
622 * Filesystems which have their own ->permission hook and consequently miss out
623 * on IOP_FASTPERM can still get the optimization if they set IOP_FASTPERM_MAY_EXEC
624 * on their directory inodes.
625 */
lookup_inode_permission_may_exec(struct mnt_idmap * idmap,struct inode * inode,int mask)626 static __always_inline int lookup_inode_permission_may_exec(struct mnt_idmap *idmap,
627 struct inode *inode, int mask)
628 {
629 /* Lookup already checked this to return -ENOTDIR */
630 VFS_BUG_ON_INODE(!S_ISDIR(inode->i_mode), inode);
631 VFS_BUG_ON((mask & ~MAY_NOT_BLOCK) != 0);
632
633 mask |= MAY_EXEC;
634
635 if (unlikely(!(inode->i_opflags & (IOP_FASTPERM | IOP_FASTPERM_MAY_EXEC))))
636 return inode_permission(idmap, inode, mask);
637
638 if (unlikely(((inode->i_mode & 0111) != 0111) || !no_acl_inode(inode)))
639 return inode_permission(idmap, inode, mask);
640
641 return security_inode_permission(inode, mask);
642 }
643
644 /**
645 * path_get - get a reference to a path
646 * @path: path to get the reference to
647 *
648 * Given a path increment the reference count to the dentry and the vfsmount.
649 */
path_get(const struct path * path)650 void path_get(const struct path *path)
651 {
652 mntget(path->mnt);
653 dget(path->dentry);
654 }
655 EXPORT_SYMBOL(path_get);
656
657 /**
658 * path_put - put a reference to a path
659 * @path: path to put the reference to
660 *
661 * Given a path decrement the reference count to the dentry and the vfsmount.
662 */
path_put(const struct path * path)663 void path_put(const struct path *path)
664 {
665 dput(path->dentry);
666 mntput(path->mnt);
667 }
668 EXPORT_SYMBOL(path_put);
669
670 #define EMBEDDED_LEVELS 2
671 struct nameidata {
672 struct path path;
673 struct qstr last;
674 struct path root;
675 struct inode *inode; /* path.dentry.d_inode */
676 unsigned int flags, state;
677 unsigned seq, next_seq, m_seq, r_seq;
678 int last_type;
679 unsigned depth;
680 int total_link_count;
681 struct saved {
682 struct path link;
683 struct delayed_call done;
684 const char *name;
685 unsigned seq;
686 } *stack, internal[EMBEDDED_LEVELS];
687 struct filename *name;
688 const char *pathname;
689 struct nameidata *saved;
690 unsigned root_seq;
691 int dfd;
692 vfsuid_t dir_vfsuid;
693 umode_t dir_mode;
694 } __randomize_layout;
695
696 #define ND_ROOT_PRESET 1
697 #define ND_ROOT_GRABBED 2
698 #define ND_JUMPED 4
699
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)700 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
701 {
702 struct nameidata *old = current->nameidata;
703 p->stack = p->internal;
704 p->depth = 0;
705 p->dfd = dfd;
706 p->name = name;
707 p->pathname = likely(name) ? name->name : "";
708 p->path.mnt = NULL;
709 p->path.dentry = NULL;
710 p->total_link_count = old ? old->total_link_count : 0;
711 p->saved = old;
712 current->nameidata = p;
713 }
714
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)715 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
716 const struct path *root)
717 {
718 __set_nameidata(p, dfd, name);
719 p->state = 0;
720 if (unlikely(root)) {
721 p->state = ND_ROOT_PRESET;
722 p->root = *root;
723 }
724 }
725
restore_nameidata(void)726 static void restore_nameidata(void)
727 {
728 struct nameidata *now = current->nameidata, *old = now->saved;
729
730 current->nameidata = old;
731 if (old)
732 old->total_link_count = now->total_link_count;
733 if (now->stack != now->internal)
734 kfree(now->stack);
735 }
736
nd_alloc_stack(struct nameidata * nd)737 static bool nd_alloc_stack(struct nameidata *nd)
738 {
739 struct saved *p;
740
741 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
742 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
743 if (unlikely(!p))
744 return false;
745 memcpy(p, nd->internal, sizeof(nd->internal));
746 nd->stack = p;
747 return true;
748 }
749
750 /**
751 * path_connected - Verify that a dentry is below mnt.mnt_root
752 * @mnt: The mountpoint to check.
753 * @dentry: The dentry to check.
754 *
755 * Rename can sometimes move a file or directory outside of a bind
756 * mount, path_connected allows those cases to be detected.
757 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)758 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
759 {
760 struct super_block *sb = mnt->mnt_sb;
761
762 /* Bind mounts can have disconnected paths */
763 if (mnt->mnt_root == sb->s_root)
764 return true;
765
766 return is_subdir(dentry, mnt->mnt_root);
767 }
768
drop_links(struct nameidata * nd)769 static void drop_links(struct nameidata *nd)
770 {
771 int i = nd->depth;
772 while (i--) {
773 struct saved *last = nd->stack + i;
774 do_delayed_call(&last->done);
775 clear_delayed_call(&last->done);
776 }
777 }
778
leave_rcu(struct nameidata * nd)779 static void leave_rcu(struct nameidata *nd)
780 {
781 nd->flags &= ~LOOKUP_RCU;
782 nd->seq = nd->next_seq = 0;
783 rcu_read_unlock();
784 }
785
terminate_walk(struct nameidata * nd)786 static void terminate_walk(struct nameidata *nd)
787 {
788 if (unlikely(nd->depth))
789 drop_links(nd);
790 if (!(nd->flags & LOOKUP_RCU)) {
791 int i;
792 path_put(&nd->path);
793 for (i = 0; i < nd->depth; i++)
794 path_put(&nd->stack[i].link);
795 if (nd->state & ND_ROOT_GRABBED) {
796 path_put(&nd->root);
797 nd->state &= ~ND_ROOT_GRABBED;
798 }
799 } else {
800 leave_rcu(nd);
801 }
802 nd->depth = 0;
803 nd->path.mnt = NULL;
804 nd->path.dentry = NULL;
805 }
806
807 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)808 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
809 {
810 int res = __legitimize_mnt(path->mnt, mseq);
811 if (unlikely(res)) {
812 if (res > 0)
813 path->mnt = NULL;
814 path->dentry = NULL;
815 return false;
816 }
817 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
818 path->dentry = NULL;
819 return false;
820 }
821 return !read_seqcount_retry(&path->dentry->d_seq, seq);
822 }
823
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)824 static inline bool legitimize_path(struct nameidata *nd,
825 struct path *path, unsigned seq)
826 {
827 return __legitimize_path(path, seq, nd->m_seq);
828 }
829
legitimize_links(struct nameidata * nd)830 static bool legitimize_links(struct nameidata *nd)
831 {
832 int i;
833 if (unlikely(nd->flags & LOOKUP_CACHED)) {
834 drop_links(nd);
835 nd->depth = 0;
836 return false;
837 }
838 for (i = 0; i < nd->depth; i++) {
839 struct saved *last = nd->stack + i;
840 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
841 drop_links(nd);
842 nd->depth = i + 1;
843 return false;
844 }
845 }
846 return true;
847 }
848
legitimize_root(struct nameidata * nd)849 static bool legitimize_root(struct nameidata *nd)
850 {
851 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
852 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
853 return true;
854 nd->state |= ND_ROOT_GRABBED;
855 return legitimize_path(nd, &nd->root, nd->root_seq);
856 }
857
858 /*
859 * Path walking has 2 modes, rcu-walk and ref-walk (see
860 * Documentation/filesystems/path-lookup.txt). In situations when we can't
861 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
862 * normal reference counts on dentries and vfsmounts to transition to ref-walk
863 * mode. Refcounts are grabbed at the last known good point before rcu-walk
864 * got stuck, so ref-walk may continue from there. If this is not successful
865 * (eg. a seqcount has changed), then failure is returned and it's up to caller
866 * to restart the path walk from the beginning in ref-walk mode.
867 */
868
869 /**
870 * try_to_unlazy - try to switch to ref-walk mode.
871 * @nd: nameidata pathwalk data
872 * Returns: true on success, false on failure
873 *
874 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
875 * for ref-walk mode.
876 * Must be called from rcu-walk context.
877 * Nothing should touch nameidata between try_to_unlazy() failure and
878 * terminate_walk().
879 */
try_to_unlazy(struct nameidata * nd)880 static bool try_to_unlazy(struct nameidata *nd)
881 {
882 struct dentry *parent = nd->path.dentry;
883
884 BUG_ON(!(nd->flags & LOOKUP_RCU));
885
886 if (unlikely(nd->depth && !legitimize_links(nd)))
887 goto out1;
888 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
889 goto out;
890 if (unlikely(!legitimize_root(nd)))
891 goto out;
892 leave_rcu(nd);
893 BUG_ON(nd->inode != parent->d_inode);
894 return true;
895
896 out1:
897 nd->path.mnt = NULL;
898 nd->path.dentry = NULL;
899 out:
900 leave_rcu(nd);
901 return false;
902 }
903
904 /**
905 * try_to_unlazy_next - try to switch to ref-walk mode.
906 * @nd: nameidata pathwalk data
907 * @dentry: next dentry to step into
908 * Returns: true on success, false on failure
909 *
910 * Similar to try_to_unlazy(), but here we have the next dentry already
911 * picked by rcu-walk and want to legitimize that in addition to the current
912 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
913 * Nothing should touch nameidata between try_to_unlazy_next() failure and
914 * terminate_walk().
915 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)916 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
917 {
918 int res;
919 BUG_ON(!(nd->flags & LOOKUP_RCU));
920
921 if (unlikely(nd->depth && !legitimize_links(nd)))
922 goto out2;
923 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
924 if (unlikely(res)) {
925 if (res > 0)
926 goto out2;
927 goto out1;
928 }
929 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
930 goto out1;
931
932 /*
933 * We need to move both the parent and the dentry from the RCU domain
934 * to be properly refcounted. And the sequence number in the dentry
935 * validates *both* dentry counters, since we checked the sequence
936 * number of the parent after we got the child sequence number. So we
937 * know the parent must still be valid if the child sequence number is
938 */
939 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
940 goto out;
941 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
942 goto out_dput;
943 /*
944 * Sequence counts matched. Now make sure that the root is
945 * still valid and get it if required.
946 */
947 if (unlikely(!legitimize_root(nd)))
948 goto out_dput;
949 leave_rcu(nd);
950 return true;
951
952 out2:
953 nd->path.mnt = NULL;
954 out1:
955 nd->path.dentry = NULL;
956 out:
957 leave_rcu(nd);
958 return false;
959 out_dput:
960 leave_rcu(nd);
961 dput(dentry);
962 return false;
963 }
964
d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)965 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
966 struct dentry *dentry, unsigned int flags)
967 {
968 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
969 return dentry->d_op->d_revalidate(dir, name, dentry, flags);
970 else
971 return 1;
972 }
973
974 /**
975 * complete_walk - successful completion of path walk
976 * @nd: pointer nameidata
977 *
978 * If we had been in RCU mode, drop out of it and legitimize nd->path.
979 * Revalidate the final result, unless we'd already done that during
980 * the path walk or the filesystem doesn't ask for it. Return 0 on
981 * success, -error on failure. In case of failure caller does not
982 * need to drop nd->path.
983 */
complete_walk(struct nameidata * nd)984 static int complete_walk(struct nameidata *nd)
985 {
986 struct dentry *dentry = nd->path.dentry;
987 int status;
988
989 if (nd->flags & LOOKUP_RCU) {
990 /*
991 * We don't want to zero nd->root for scoped-lookups or
992 * externally-managed nd->root.
993 */
994 if (likely(!(nd->state & ND_ROOT_PRESET)))
995 if (likely(!(nd->flags & LOOKUP_IS_SCOPED)))
996 nd->root.mnt = NULL;
997 nd->flags &= ~LOOKUP_CACHED;
998 if (!try_to_unlazy(nd))
999 return -ECHILD;
1000 }
1001
1002 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1003 /*
1004 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
1005 * ever step outside the root during lookup" and should already
1006 * be guaranteed by the rest of namei, we want to avoid a namei
1007 * BUG resulting in userspace being given a path that was not
1008 * scoped within the root at some point during the lookup.
1009 *
1010 * So, do a final sanity-check to make sure that in the
1011 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
1012 * we won't silently return an fd completely outside of the
1013 * requested root to userspace.
1014 *
1015 * Userspace could move the path outside the root after this
1016 * check, but as discussed elsewhere this is not a concern (the
1017 * resolved file was inside the root at some point).
1018 */
1019 if (!path_is_under(&nd->path, &nd->root))
1020 return -EXDEV;
1021 }
1022
1023 if (likely(!(nd->state & ND_JUMPED)))
1024 return 0;
1025
1026 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
1027 return 0;
1028
1029 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
1030 if (status > 0)
1031 return 0;
1032
1033 if (!status)
1034 status = -ESTALE;
1035
1036 return status;
1037 }
1038
set_root(struct nameidata * nd)1039 static int set_root(struct nameidata *nd)
1040 {
1041 struct fs_struct *fs = current->fs;
1042
1043 /*
1044 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1045 * still have to ensure it doesn't happen because it will cause a breakout
1046 * from the dirfd.
1047 */
1048 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1049 return -ENOTRECOVERABLE;
1050
1051 if (nd->flags & LOOKUP_RCU) {
1052 unsigned seq;
1053
1054 do {
1055 seq = read_seqbegin(&fs->seq);
1056 nd->root = fs->root;
1057 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1058 } while (read_seqretry(&fs->seq, seq));
1059 } else {
1060 get_fs_root(fs, &nd->root);
1061 nd->state |= ND_ROOT_GRABBED;
1062 }
1063 return 0;
1064 }
1065
nd_jump_root(struct nameidata * nd)1066 static int nd_jump_root(struct nameidata *nd)
1067 {
1068 if (unlikely(nd->flags & LOOKUP_BENEATH))
1069 return -EXDEV;
1070 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1071 /* Absolute path arguments to path_init() are allowed. */
1072 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1073 return -EXDEV;
1074 }
1075 if (!nd->root.mnt) {
1076 int error = set_root(nd);
1077 if (unlikely(error))
1078 return error;
1079 }
1080 if (nd->flags & LOOKUP_RCU) {
1081 struct dentry *d;
1082 nd->path = nd->root;
1083 d = nd->path.dentry;
1084 nd->inode = d->d_inode;
1085 nd->seq = nd->root_seq;
1086 if (read_seqcount_retry(&d->d_seq, nd->seq))
1087 return -ECHILD;
1088 } else {
1089 path_put(&nd->path);
1090 nd->path = nd->root;
1091 path_get(&nd->path);
1092 nd->inode = nd->path.dentry->d_inode;
1093 }
1094 nd->state |= ND_JUMPED;
1095 return 0;
1096 }
1097
1098 /*
1099 * Helper to directly jump to a known parsed path from ->get_link,
1100 * caller must have taken a reference to path beforehand.
1101 */
nd_jump_link(const struct path * path)1102 int nd_jump_link(const struct path *path)
1103 {
1104 int error = -ELOOP;
1105 struct nameidata *nd = current->nameidata;
1106
1107 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1108 goto err;
1109
1110 error = -EXDEV;
1111 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1112 if (nd->path.mnt != path->mnt)
1113 goto err;
1114 }
1115 /* Not currently safe for scoped-lookups. */
1116 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1117 goto err;
1118
1119 path_put(&nd->path);
1120 nd->path = *path;
1121 nd->inode = nd->path.dentry->d_inode;
1122 nd->state |= ND_JUMPED;
1123 return 0;
1124
1125 err:
1126 path_put(path);
1127 return error;
1128 }
1129
put_link(struct nameidata * nd)1130 static inline void put_link(struct nameidata *nd)
1131 {
1132 struct saved *last = nd->stack + --nd->depth;
1133 do_delayed_call(&last->done);
1134 if (!(nd->flags & LOOKUP_RCU))
1135 path_put(&last->link);
1136 }
1137
1138 static int sysctl_protected_symlinks __read_mostly;
1139 static int sysctl_protected_hardlinks __read_mostly;
1140 static int sysctl_protected_fifos __read_mostly;
1141 static int sysctl_protected_regular __read_mostly;
1142
1143 #ifdef CONFIG_SYSCTL
1144 static const struct ctl_table namei_sysctls[] = {
1145 {
1146 .procname = "protected_symlinks",
1147 .data = &sysctl_protected_symlinks,
1148 .maxlen = sizeof(int),
1149 .mode = 0644,
1150 .proc_handler = proc_dointvec_minmax,
1151 .extra1 = SYSCTL_ZERO,
1152 .extra2 = SYSCTL_ONE,
1153 },
1154 {
1155 .procname = "protected_hardlinks",
1156 .data = &sysctl_protected_hardlinks,
1157 .maxlen = sizeof(int),
1158 .mode = 0644,
1159 .proc_handler = proc_dointvec_minmax,
1160 .extra1 = SYSCTL_ZERO,
1161 .extra2 = SYSCTL_ONE,
1162 },
1163 {
1164 .procname = "protected_fifos",
1165 .data = &sysctl_protected_fifos,
1166 .maxlen = sizeof(int),
1167 .mode = 0644,
1168 .proc_handler = proc_dointvec_minmax,
1169 .extra1 = SYSCTL_ZERO,
1170 .extra2 = SYSCTL_TWO,
1171 },
1172 {
1173 .procname = "protected_regular",
1174 .data = &sysctl_protected_regular,
1175 .maxlen = sizeof(int),
1176 .mode = 0644,
1177 .proc_handler = proc_dointvec_minmax,
1178 .extra1 = SYSCTL_ZERO,
1179 .extra2 = SYSCTL_TWO,
1180 },
1181 };
1182
init_fs_namei_sysctls(void)1183 static int __init init_fs_namei_sysctls(void)
1184 {
1185 register_sysctl_init("fs", namei_sysctls);
1186 return 0;
1187 }
1188 fs_initcall(init_fs_namei_sysctls);
1189
1190 #endif /* CONFIG_SYSCTL */
1191
1192 /**
1193 * may_follow_link - Check symlink following for unsafe situations
1194 * @nd: nameidata pathwalk data
1195 * @inode: Used for idmapping.
1196 *
1197 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1198 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1199 * in a sticky world-writable directory. This is to protect privileged
1200 * processes from failing races against path names that may change out
1201 * from under them by way of other users creating malicious symlinks.
1202 * It will permit symlinks to be followed only when outside a sticky
1203 * world-writable directory, or when the uid of the symlink and follower
1204 * match, or when the directory owner matches the symlink's owner.
1205 *
1206 * Returns 0 if following the symlink is allowed, -ve on error.
1207 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1208 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1209 {
1210 struct mnt_idmap *idmap;
1211 vfsuid_t vfsuid;
1212
1213 if (!sysctl_protected_symlinks)
1214 return 0;
1215
1216 idmap = mnt_idmap(nd->path.mnt);
1217 vfsuid = i_uid_into_vfsuid(idmap, inode);
1218 /* Allowed if owner and follower match. */
1219 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1220 return 0;
1221
1222 /* Allowed if parent directory not sticky and world-writable. */
1223 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1224 return 0;
1225
1226 /* Allowed if parent directory and link owner match. */
1227 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1228 return 0;
1229
1230 if (nd->flags & LOOKUP_RCU)
1231 return -ECHILD;
1232
1233 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1234 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1235 return -EACCES;
1236 }
1237
1238 /**
1239 * safe_hardlink_source - Check for safe hardlink conditions
1240 * @idmap: idmap of the mount the inode was found from
1241 * @inode: the source inode to hardlink from
1242 *
1243 * Return false if at least one of the following conditions:
1244 * - inode is not a regular file
1245 * - inode is setuid
1246 * - inode is setgid and group-exec
1247 * - access failure for read and write
1248 *
1249 * Otherwise returns true.
1250 */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1251 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1252 struct inode *inode)
1253 {
1254 umode_t mode = inode->i_mode;
1255
1256 /* Special files should not get pinned to the filesystem. */
1257 if (!S_ISREG(mode))
1258 return false;
1259
1260 /* Setuid files should not get pinned to the filesystem. */
1261 if (mode & S_ISUID)
1262 return false;
1263
1264 /* Executable setgid files should not get pinned to the filesystem. */
1265 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1266 return false;
1267
1268 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1269 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1270 return false;
1271
1272 return true;
1273 }
1274
1275 /**
1276 * may_linkat - Check permissions for creating a hardlink
1277 * @idmap: idmap of the mount the inode was found from
1278 * @link: the source to hardlink from
1279 *
1280 * Block hardlink when all of:
1281 * - sysctl_protected_hardlinks enabled
1282 * - fsuid does not match inode
1283 * - hardlink source is unsafe (see safe_hardlink_source() above)
1284 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1285 *
1286 * If the inode has been found through an idmapped mount the idmap of
1287 * the vfsmount must be passed through @idmap. This function will then take
1288 * care to map the inode according to @idmap before checking permissions.
1289 * On non-idmapped mounts or if permission checking is to be performed on the
1290 * raw inode simply pass @nop_mnt_idmap.
1291 *
1292 * Returns 0 if successful, -ve on error.
1293 */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1294 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1295 {
1296 struct inode *inode = link->dentry->d_inode;
1297
1298 /* Inode writeback is not safe when the uid or gid are invalid. */
1299 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1300 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1301 return -EOVERFLOW;
1302
1303 if (!sysctl_protected_hardlinks)
1304 return 0;
1305
1306 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1307 * otherwise, it must be a safe source.
1308 */
1309 if (safe_hardlink_source(idmap, inode) ||
1310 inode_owner_or_capable(idmap, inode))
1311 return 0;
1312
1313 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1314 return -EPERM;
1315 }
1316
1317 /**
1318 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1319 * should be allowed, or not, on files that already
1320 * exist.
1321 * @idmap: idmap of the mount the inode was found from
1322 * @nd: nameidata pathwalk data
1323 * @inode: the inode of the file to open
1324 *
1325 * Block an O_CREAT open of a FIFO (or a regular file) when:
1326 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1327 * - the file already exists
1328 * - we are in a sticky directory
1329 * - we don't own the file
1330 * - the owner of the directory doesn't own the file
1331 * - the directory is world writable
1332 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1333 * the directory doesn't have to be world writable: being group writable will
1334 * be enough.
1335 *
1336 * If the inode has been found through an idmapped mount the idmap of
1337 * the vfsmount must be passed through @idmap. This function will then take
1338 * care to map the inode according to @idmap before checking permissions.
1339 * On non-idmapped mounts or if permission checking is to be performed on the
1340 * raw inode simply pass @nop_mnt_idmap.
1341 *
1342 * Returns 0 if the open is allowed, -ve on error.
1343 */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1344 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1345 struct inode *const inode)
1346 {
1347 umode_t dir_mode = nd->dir_mode;
1348 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1349
1350 if (likely(!(dir_mode & S_ISVTX)))
1351 return 0;
1352
1353 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1354 return 0;
1355
1356 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1357 return 0;
1358
1359 i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1360
1361 if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1362 return 0;
1363
1364 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1365 return 0;
1366
1367 if (likely(dir_mode & 0002)) {
1368 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1369 return -EACCES;
1370 }
1371
1372 if (dir_mode & 0020) {
1373 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1374 audit_log_path_denied(AUDIT_ANOM_CREAT,
1375 "sticky_create_fifo");
1376 return -EACCES;
1377 }
1378
1379 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1380 audit_log_path_denied(AUDIT_ANOM_CREAT,
1381 "sticky_create_regular");
1382 return -EACCES;
1383 }
1384 }
1385
1386 return 0;
1387 }
1388
1389 /*
1390 * follow_up - Find the mountpoint of path's vfsmount
1391 *
1392 * Given a path, find the mountpoint of its source file system.
1393 * Replace @path with the path of the mountpoint in the parent mount.
1394 * Up is towards /.
1395 *
1396 * Return 1 if we went up a level and 0 if we were already at the
1397 * root.
1398 */
follow_up(struct path * path)1399 int follow_up(struct path *path)
1400 {
1401 struct mount *mnt = real_mount(path->mnt);
1402 struct mount *parent;
1403 struct dentry *mountpoint;
1404
1405 read_seqlock_excl(&mount_lock);
1406 parent = mnt->mnt_parent;
1407 if (parent == mnt) {
1408 read_sequnlock_excl(&mount_lock);
1409 return 0;
1410 }
1411 mntget(&parent->mnt);
1412 mountpoint = dget(mnt->mnt_mountpoint);
1413 read_sequnlock_excl(&mount_lock);
1414 dput(path->dentry);
1415 path->dentry = mountpoint;
1416 mntput(path->mnt);
1417 path->mnt = &parent->mnt;
1418 return 1;
1419 }
1420 EXPORT_SYMBOL(follow_up);
1421
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1422 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1423 struct path *path, unsigned *seqp)
1424 {
1425 while (mnt_has_parent(m)) {
1426 struct dentry *mountpoint = m->mnt_mountpoint;
1427
1428 m = m->mnt_parent;
1429 if (unlikely(root->dentry == mountpoint &&
1430 root->mnt == &m->mnt))
1431 break;
1432 if (mountpoint != m->mnt.mnt_root) {
1433 path->mnt = &m->mnt;
1434 path->dentry = mountpoint;
1435 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1436 return true;
1437 }
1438 }
1439 return false;
1440 }
1441
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1442 static bool choose_mountpoint(struct mount *m, const struct path *root,
1443 struct path *path)
1444 {
1445 bool found;
1446
1447 rcu_read_lock();
1448 while (1) {
1449 unsigned seq, mseq = read_seqbegin(&mount_lock);
1450
1451 found = choose_mountpoint_rcu(m, root, path, &seq);
1452 if (unlikely(!found)) {
1453 if (!read_seqretry(&mount_lock, mseq))
1454 break;
1455 } else {
1456 if (likely(__legitimize_path(path, seq, mseq)))
1457 break;
1458 rcu_read_unlock();
1459 path_put(path);
1460 rcu_read_lock();
1461 }
1462 }
1463 rcu_read_unlock();
1464 return found;
1465 }
1466
1467 /*
1468 * Perform an automount
1469 * - return -EISDIR to tell follow_managed() to stop and return the path we
1470 * were called with.
1471 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1472 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1473 {
1474 struct dentry *dentry = path->dentry;
1475
1476 /* We don't want to mount if someone's just doing a stat -
1477 * unless they're stat'ing a directory and appended a '/' to
1478 * the name.
1479 *
1480 * We do, however, want to mount if someone wants to open or
1481 * create a file of any type under the mountpoint, wants to
1482 * traverse through the mountpoint or wants to open the
1483 * mounted directory. Also, autofs may mark negative dentries
1484 * as being automount points. These will need the attentions
1485 * of the daemon to instantiate them before they can be used.
1486 */
1487 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1488 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1489 dentry->d_inode)
1490 return -EISDIR;
1491
1492 /* No need to trigger automounts if mountpoint crossing is disabled. */
1493 if (lookup_flags & LOOKUP_NO_XDEV)
1494 return -EXDEV;
1495
1496 if (count && (*count)++ >= MAXSYMLINKS)
1497 return -ELOOP;
1498
1499 return finish_automount(dentry->d_op->d_automount(path), path);
1500 }
1501
1502 /*
1503 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1504 * dentries are pinned but not locked here, so negative dentry can go
1505 * positive right under us. Use of smp_load_acquire() provides a barrier
1506 * sufficient for ->d_inode and ->d_flags consistency.
1507 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1508 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1509 int *count, unsigned lookup_flags)
1510 {
1511 struct vfsmount *mnt = path->mnt;
1512 bool need_mntput = false;
1513 int ret = 0;
1514
1515 while (flags & DCACHE_MANAGED_DENTRY) {
1516 /* Allow the filesystem to manage the transit without i_rwsem
1517 * being held. */
1518 if (flags & DCACHE_MANAGE_TRANSIT) {
1519 if (lookup_flags & LOOKUP_NO_XDEV) {
1520 ret = -EXDEV;
1521 break;
1522 }
1523 ret = path->dentry->d_op->d_manage(path, false);
1524 flags = smp_load_acquire(&path->dentry->d_flags);
1525 if (ret < 0)
1526 break;
1527 }
1528
1529 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1530 struct vfsmount *mounted = lookup_mnt(path);
1531 if (mounted) { // ... in our namespace
1532 dput(path->dentry);
1533 if (need_mntput)
1534 mntput(path->mnt);
1535 path->mnt = mounted;
1536 path->dentry = dget(mounted->mnt_root);
1537 // here we know it's positive
1538 flags = path->dentry->d_flags;
1539 need_mntput = true;
1540 if (unlikely(lookup_flags & LOOKUP_NO_XDEV)) {
1541 ret = -EXDEV;
1542 break;
1543 }
1544 continue;
1545 }
1546 }
1547
1548 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1549 break;
1550
1551 // uncovered automount point
1552 ret = follow_automount(path, count, lookup_flags);
1553 flags = smp_load_acquire(&path->dentry->d_flags);
1554 if (ret < 0)
1555 break;
1556 }
1557
1558 if (ret == -EISDIR)
1559 ret = 0;
1560 // possible if you race with several mount --move
1561 if (need_mntput && path->mnt == mnt)
1562 mntput(path->mnt);
1563 if (!ret && unlikely(d_flags_negative(flags)))
1564 ret = -ENOENT;
1565 *jumped = need_mntput;
1566 return ret;
1567 }
1568
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1569 static inline int traverse_mounts(struct path *path, bool *jumped,
1570 int *count, unsigned lookup_flags)
1571 {
1572 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1573
1574 /* fastpath */
1575 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1576 *jumped = false;
1577 if (unlikely(d_flags_negative(flags)))
1578 return -ENOENT;
1579 return 0;
1580 }
1581 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1582 }
1583
follow_down_one(struct path * path)1584 int follow_down_one(struct path *path)
1585 {
1586 struct vfsmount *mounted;
1587
1588 mounted = lookup_mnt(path);
1589 if (mounted) {
1590 dput(path->dentry);
1591 mntput(path->mnt);
1592 path->mnt = mounted;
1593 path->dentry = dget(mounted->mnt_root);
1594 return 1;
1595 }
1596 return 0;
1597 }
1598 EXPORT_SYMBOL(follow_down_one);
1599
1600 /*
1601 * Follow down to the covering mount currently visible to userspace. At each
1602 * point, the filesystem owning that dentry may be queried as to whether the
1603 * caller is permitted to proceed or not.
1604 */
follow_down(struct path * path,unsigned int flags)1605 int follow_down(struct path *path, unsigned int flags)
1606 {
1607 struct vfsmount *mnt = path->mnt;
1608 bool jumped;
1609 int ret = traverse_mounts(path, &jumped, NULL, flags);
1610
1611 if (path->mnt != mnt)
1612 mntput(mnt);
1613 return ret;
1614 }
1615 EXPORT_SYMBOL(follow_down);
1616
1617 /*
1618 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1619 * we meet a managed dentry that would need blocking.
1620 */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1621 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1622 {
1623 struct dentry *dentry = path->dentry;
1624 unsigned int flags = dentry->d_flags;
1625
1626 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1627 return true;
1628
1629 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1630 return false;
1631
1632 for (;;) {
1633 /*
1634 * Don't forget we might have a non-mountpoint managed dentry
1635 * that wants to block transit.
1636 */
1637 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1638 int res = dentry->d_op->d_manage(path, true);
1639 if (res)
1640 return res == -EISDIR;
1641 flags = dentry->d_flags;
1642 }
1643
1644 if (flags & DCACHE_MOUNTED) {
1645 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1646 if (mounted) {
1647 path->mnt = &mounted->mnt;
1648 dentry = path->dentry = mounted->mnt.mnt_root;
1649 nd->state |= ND_JUMPED;
1650 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1651 flags = dentry->d_flags;
1652 // makes sure that non-RCU pathwalk could reach
1653 // this state.
1654 if (read_seqretry(&mount_lock, nd->m_seq))
1655 return false;
1656 continue;
1657 }
1658 if (read_seqretry(&mount_lock, nd->m_seq))
1659 return false;
1660 }
1661 return !(flags & DCACHE_NEED_AUTOMOUNT);
1662 }
1663 }
1664
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1665 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1666 struct path *path)
1667 {
1668 bool jumped;
1669 int ret;
1670
1671 path->mnt = nd->path.mnt;
1672 path->dentry = dentry;
1673 if (nd->flags & LOOKUP_RCU) {
1674 unsigned int seq = nd->next_seq;
1675 if (likely(!d_managed(dentry)))
1676 return 0;
1677 if (likely(__follow_mount_rcu(nd, path)))
1678 return 0;
1679 // *path and nd->next_seq might've been clobbered
1680 path->mnt = nd->path.mnt;
1681 path->dentry = dentry;
1682 nd->next_seq = seq;
1683 if (unlikely(!try_to_unlazy_next(nd, dentry)))
1684 return -ECHILD;
1685 }
1686 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1687 if (jumped)
1688 nd->state |= ND_JUMPED;
1689 if (unlikely(ret)) {
1690 dput(path->dentry);
1691 if (path->mnt != nd->path.mnt)
1692 mntput(path->mnt);
1693 }
1694 return ret;
1695 }
1696
1697 /*
1698 * This looks up the name in dcache and possibly revalidates the found dentry.
1699 * NULL is returned if the dentry does not exist in the cache.
1700 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1701 static struct dentry *lookup_dcache(const struct qstr *name,
1702 struct dentry *dir,
1703 unsigned int flags)
1704 {
1705 struct dentry *dentry = d_lookup(dir, name);
1706 if (dentry) {
1707 int error = d_revalidate(dir->d_inode, name, dentry, flags);
1708 if (unlikely(error <= 0)) {
1709 if (!error)
1710 d_invalidate(dentry);
1711 dput(dentry);
1712 return ERR_PTR(error);
1713 }
1714 }
1715 return dentry;
1716 }
1717
1718 /*
1719 * Parent directory has inode locked exclusive. This is one
1720 * and only case when ->lookup() gets called on non in-lookup
1721 * dentries - as the matter of fact, this only gets called
1722 * when directory is guaranteed to have no in-lookup children
1723 * at all.
1724 * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1725 * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1726 */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1727 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1728 struct dentry *base, unsigned int flags)
1729 {
1730 struct dentry *dentry;
1731 struct dentry *old;
1732 struct inode *dir;
1733
1734 dentry = lookup_dcache(name, base, flags);
1735 if (dentry)
1736 goto found;
1737
1738 /* Don't create child dentry for a dead directory. */
1739 dir = base->d_inode;
1740 if (unlikely(IS_DEADDIR(dir)))
1741 return ERR_PTR(-ENOENT);
1742
1743 dentry = d_alloc(base, name);
1744 if (unlikely(!dentry))
1745 return ERR_PTR(-ENOMEM);
1746
1747 old = dir->i_op->lookup(dir, dentry, flags);
1748 if (unlikely(old)) {
1749 dput(dentry);
1750 dentry = old;
1751 }
1752 found:
1753 if (IS_ERR(dentry))
1754 return dentry;
1755 if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1756 dput(dentry);
1757 return ERR_PTR(-ENOENT);
1758 }
1759 if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1760 dput(dentry);
1761 return ERR_PTR(-EEXIST);
1762 }
1763 return dentry;
1764 }
1765 EXPORT_SYMBOL(lookup_one_qstr_excl);
1766
1767 /**
1768 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1769 * @nd: current nameidata
1770 *
1771 * Do a fast, but racy lookup in the dcache for the given dentry, and
1772 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1773 * found. On error, an ERR_PTR will be returned.
1774 *
1775 * If this function returns a valid dentry and the walk is no longer
1776 * lazy, the dentry will carry a reference that must later be put. If
1777 * RCU mode is still in force, then this is not the case and the dentry
1778 * must be legitimized before use. If this returns NULL, then the walk
1779 * will no longer be in RCU mode.
1780 */
lookup_fast(struct nameidata * nd)1781 static struct dentry *lookup_fast(struct nameidata *nd)
1782 {
1783 struct dentry *dentry, *parent = nd->path.dentry;
1784 int status = 1;
1785
1786 /*
1787 * Rename seqlock is not required here because in the off chance
1788 * of a false negative due to a concurrent rename, the caller is
1789 * going to fall back to non-racy lookup.
1790 */
1791 if (nd->flags & LOOKUP_RCU) {
1792 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1793 if (unlikely(!dentry)) {
1794 if (!try_to_unlazy(nd))
1795 return ERR_PTR(-ECHILD);
1796 return NULL;
1797 }
1798
1799 /*
1800 * This sequence count validates that the parent had no
1801 * changes while we did the lookup of the dentry above.
1802 */
1803 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1804 return ERR_PTR(-ECHILD);
1805
1806 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1807 if (likely(status > 0))
1808 return dentry;
1809 if (!try_to_unlazy_next(nd, dentry))
1810 return ERR_PTR(-ECHILD);
1811 if (status == -ECHILD)
1812 /* we'd been told to redo it in non-rcu mode */
1813 status = d_revalidate(nd->inode, &nd->last,
1814 dentry, nd->flags);
1815 } else {
1816 dentry = __d_lookup(parent, &nd->last);
1817 if (unlikely(!dentry))
1818 return NULL;
1819 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1820 }
1821 if (unlikely(status <= 0)) {
1822 if (!status)
1823 d_invalidate(dentry);
1824 dput(dentry);
1825 return ERR_PTR(status);
1826 }
1827 return dentry;
1828 }
1829
1830 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1831 static struct dentry *__lookup_slow(const struct qstr *name,
1832 struct dentry *dir,
1833 unsigned int flags)
1834 {
1835 struct dentry *dentry, *old;
1836 struct inode *inode = dir->d_inode;
1837 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1838
1839 /* Don't go there if it's already dead */
1840 if (unlikely(IS_DEADDIR(inode)))
1841 return ERR_PTR(-ENOENT);
1842 again:
1843 dentry = d_alloc_parallel(dir, name, &wq);
1844 if (IS_ERR(dentry))
1845 return dentry;
1846 if (unlikely(!d_in_lookup(dentry))) {
1847 int error = d_revalidate(inode, name, dentry, flags);
1848 if (unlikely(error <= 0)) {
1849 if (!error) {
1850 d_invalidate(dentry);
1851 dput(dentry);
1852 goto again;
1853 }
1854 dput(dentry);
1855 dentry = ERR_PTR(error);
1856 }
1857 } else {
1858 old = inode->i_op->lookup(inode, dentry, flags);
1859 d_lookup_done(dentry);
1860 if (unlikely(old)) {
1861 dput(dentry);
1862 dentry = old;
1863 }
1864 }
1865 return dentry;
1866 }
1867
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1868 static noinline struct dentry *lookup_slow(const struct qstr *name,
1869 struct dentry *dir,
1870 unsigned int flags)
1871 {
1872 struct inode *inode = dir->d_inode;
1873 struct dentry *res;
1874 inode_lock_shared(inode);
1875 res = __lookup_slow(name, dir, flags);
1876 inode_unlock_shared(inode);
1877 return res;
1878 }
1879
lookup_slow_killable(const struct qstr * name,struct dentry * dir,unsigned int flags)1880 static struct dentry *lookup_slow_killable(const struct qstr *name,
1881 struct dentry *dir,
1882 unsigned int flags)
1883 {
1884 struct inode *inode = dir->d_inode;
1885 struct dentry *res;
1886
1887 if (inode_lock_shared_killable(inode))
1888 return ERR_PTR(-EINTR);
1889 res = __lookup_slow(name, dir, flags);
1890 inode_unlock_shared(inode);
1891 return res;
1892 }
1893
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1894 static inline int may_lookup(struct mnt_idmap *idmap,
1895 struct nameidata *restrict nd)
1896 {
1897 int err, mask;
1898
1899 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1900 err = lookup_inode_permission_may_exec(idmap, nd->inode, mask);
1901 if (likely(!err))
1902 return 0;
1903
1904 // If we failed, and we weren't in LOOKUP_RCU, it's final
1905 if (!(nd->flags & LOOKUP_RCU))
1906 return err;
1907
1908 // Drop out of RCU mode to make sure it wasn't transient
1909 if (!try_to_unlazy(nd))
1910 return -ECHILD; // redo it all non-lazy
1911
1912 if (err != -ECHILD) // hard error
1913 return err;
1914
1915 return lookup_inode_permission_may_exec(idmap, nd->inode, 0);
1916 }
1917
reserve_stack(struct nameidata * nd,struct path * link)1918 static int reserve_stack(struct nameidata *nd, struct path *link)
1919 {
1920 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1921 return -ELOOP;
1922
1923 if (likely(nd->depth != EMBEDDED_LEVELS))
1924 return 0;
1925 if (likely(nd->stack != nd->internal))
1926 return 0;
1927 if (likely(nd_alloc_stack(nd)))
1928 return 0;
1929
1930 if (nd->flags & LOOKUP_RCU) {
1931 // we need to grab link before we do unlazy. And we can't skip
1932 // unlazy even if we fail to grab the link - cleanup needs it
1933 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1934
1935 if (!try_to_unlazy(nd) || !grabbed_link)
1936 return -ECHILD;
1937
1938 if (nd_alloc_stack(nd))
1939 return 0;
1940 }
1941 return -ENOMEM;
1942 }
1943
1944 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1945
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1946 static noinline const char *pick_link(struct nameidata *nd, struct path *link,
1947 struct inode *inode, int flags)
1948 {
1949 struct saved *last;
1950 const char *res;
1951 int error;
1952
1953 if (nd->flags & LOOKUP_RCU) {
1954 /* make sure that d_is_symlink from step_into_slowpath() matches the inode */
1955 if (read_seqcount_retry(&link->dentry->d_seq, nd->next_seq))
1956 return ERR_PTR(-ECHILD);
1957 } else {
1958 if (link->mnt == nd->path.mnt)
1959 mntget(link->mnt);
1960 }
1961
1962 error = reserve_stack(nd, link);
1963 if (unlikely(error)) {
1964 if (!(nd->flags & LOOKUP_RCU))
1965 path_put(link);
1966 return ERR_PTR(error);
1967 }
1968 last = nd->stack + nd->depth++;
1969 last->link = *link;
1970 clear_delayed_call(&last->done);
1971 last->seq = nd->next_seq;
1972
1973 if (flags & WALK_TRAILING) {
1974 error = may_follow_link(nd, inode);
1975 if (unlikely(error))
1976 return ERR_PTR(error);
1977 }
1978
1979 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1980 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1981 return ERR_PTR(-ELOOP);
1982
1983 if (unlikely(atime_needs_update(&last->link, inode))) {
1984 if (nd->flags & LOOKUP_RCU) {
1985 if (!try_to_unlazy(nd))
1986 return ERR_PTR(-ECHILD);
1987 }
1988 touch_atime(&last->link);
1989 cond_resched();
1990 }
1991
1992 error = security_inode_follow_link(link->dentry, inode,
1993 nd->flags & LOOKUP_RCU);
1994 if (unlikely(error))
1995 return ERR_PTR(error);
1996
1997 res = READ_ONCE(inode->i_link);
1998 if (!res) {
1999 const char * (*get)(struct dentry *, struct inode *,
2000 struct delayed_call *);
2001 get = inode->i_op->get_link;
2002 if (nd->flags & LOOKUP_RCU) {
2003 res = get(NULL, inode, &last->done);
2004 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
2005 res = get(link->dentry, inode, &last->done);
2006 } else {
2007 res = get(link->dentry, inode, &last->done);
2008 }
2009 if (!res)
2010 goto all_done;
2011 if (IS_ERR(res))
2012 return res;
2013 }
2014 if (*res == '/') {
2015 error = nd_jump_root(nd);
2016 if (unlikely(error))
2017 return ERR_PTR(error);
2018 while (unlikely(*++res == '/'))
2019 ;
2020 }
2021 if (*res)
2022 return res;
2023 all_done: // pure jump
2024 put_link(nd);
2025 return NULL;
2026 }
2027
2028 /*
2029 * Do we need to follow links? We _really_ want to be able
2030 * to do this check without having to look at inode->i_op,
2031 * so we keep a cache of "no, this doesn't need follow_link"
2032 * for the common case.
2033 *
2034 * NOTE: dentry must be what nd->next_seq had been sampled from.
2035 */
step_into_slowpath(struct nameidata * nd,int flags,struct dentry * dentry)2036 static noinline const char *step_into_slowpath(struct nameidata *nd, int flags,
2037 struct dentry *dentry)
2038 {
2039 struct path path;
2040 struct inode *inode;
2041 int err;
2042
2043 err = handle_mounts(nd, dentry, &path);
2044 if (unlikely(err < 0))
2045 return ERR_PTR(err);
2046 inode = path.dentry->d_inode;
2047 if (likely(!d_is_symlink(path.dentry)) ||
2048 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
2049 (flags & WALK_NOFOLLOW)) {
2050 /* not a symlink or should not follow */
2051 if (nd->flags & LOOKUP_RCU) {
2052 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2053 return ERR_PTR(-ECHILD);
2054 if (unlikely(!inode))
2055 return ERR_PTR(-ENOENT);
2056 } else {
2057 dput(nd->path.dentry);
2058 if (nd->path.mnt != path.mnt)
2059 mntput(nd->path.mnt);
2060 }
2061 nd->path = path;
2062 nd->inode = inode;
2063 nd->seq = nd->next_seq;
2064 return NULL;
2065 }
2066 return pick_link(nd, &path, inode, flags);
2067 }
2068
step_into(struct nameidata * nd,int flags,struct dentry * dentry)2069 static __always_inline const char *step_into(struct nameidata *nd, int flags,
2070 struct dentry *dentry)
2071 {
2072 /*
2073 * In the common case we are in rcu-walk and traversing over a non-mounted on
2074 * directory (as opposed to e.g., a symlink).
2075 *
2076 * We can handle that and negative entries with the checks below.
2077 */
2078 if (likely((nd->flags & LOOKUP_RCU) &&
2079 !d_managed(dentry) && !d_is_symlink(dentry))) {
2080 struct inode *inode = dentry->d_inode;
2081 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
2082 return ERR_PTR(-ECHILD);
2083 if (unlikely(!inode))
2084 return ERR_PTR(-ENOENT);
2085 nd->path.dentry = dentry;
2086 /* nd->path.mnt is retained on purpose */
2087 nd->inode = inode;
2088 nd->seq = nd->next_seq;
2089 return NULL;
2090 }
2091 return step_into_slowpath(nd, flags, dentry);
2092 }
2093
follow_dotdot_rcu(struct nameidata * nd)2094 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2095 {
2096 struct dentry *parent, *old;
2097
2098 if (path_equal(&nd->path, &nd->root))
2099 goto in_root;
2100 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2101 struct path path;
2102 unsigned seq;
2103 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2104 &nd->root, &path, &seq))
2105 goto in_root;
2106 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2107 return ERR_PTR(-ECHILD);
2108 nd->path = path;
2109 nd->inode = path.dentry->d_inode;
2110 nd->seq = seq;
2111 // makes sure that non-RCU pathwalk could reach this state
2112 if (read_seqretry(&mount_lock, nd->m_seq))
2113 return ERR_PTR(-ECHILD);
2114 /* we know that mountpoint was pinned */
2115 }
2116 old = nd->path.dentry;
2117 parent = old->d_parent;
2118 nd->next_seq = read_seqcount_begin(&parent->d_seq);
2119 // makes sure that non-RCU pathwalk could reach this state
2120 if (read_seqcount_retry(&old->d_seq, nd->seq))
2121 return ERR_PTR(-ECHILD);
2122 if (unlikely(!path_connected(nd->path.mnt, parent)))
2123 return ERR_PTR(-ECHILD);
2124 return parent;
2125 in_root:
2126 if (read_seqretry(&mount_lock, nd->m_seq))
2127 return ERR_PTR(-ECHILD);
2128 if (unlikely(nd->flags & LOOKUP_BENEATH))
2129 return ERR_PTR(-ECHILD);
2130 nd->next_seq = nd->seq;
2131 return nd->path.dentry;
2132 }
2133
follow_dotdot(struct nameidata * nd)2134 static struct dentry *follow_dotdot(struct nameidata *nd)
2135 {
2136 struct dentry *parent;
2137
2138 if (path_equal(&nd->path, &nd->root))
2139 goto in_root;
2140 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2141 struct path path;
2142
2143 if (!choose_mountpoint(real_mount(nd->path.mnt),
2144 &nd->root, &path))
2145 goto in_root;
2146 path_put(&nd->path);
2147 nd->path = path;
2148 nd->inode = path.dentry->d_inode;
2149 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2150 return ERR_PTR(-EXDEV);
2151 }
2152 /* rare case of legitimate dget_parent()... */
2153 parent = dget_parent(nd->path.dentry);
2154 if (unlikely(!path_connected(nd->path.mnt, parent))) {
2155 dput(parent);
2156 return ERR_PTR(-ENOENT);
2157 }
2158 return parent;
2159
2160 in_root:
2161 if (unlikely(nd->flags & LOOKUP_BENEATH))
2162 return ERR_PTR(-EXDEV);
2163 return dget(nd->path.dentry);
2164 }
2165
handle_dots(struct nameidata * nd,int type)2166 static const char *handle_dots(struct nameidata *nd, int type)
2167 {
2168 if (type == LAST_DOTDOT) {
2169 const char *error = NULL;
2170 struct dentry *parent;
2171
2172 if (!nd->root.mnt) {
2173 error = ERR_PTR(set_root(nd));
2174 if (unlikely(error))
2175 return error;
2176 }
2177 if (nd->flags & LOOKUP_RCU)
2178 parent = follow_dotdot_rcu(nd);
2179 else
2180 parent = follow_dotdot(nd);
2181 if (IS_ERR(parent))
2182 return ERR_CAST(parent);
2183 error = step_into(nd, WALK_NOFOLLOW, parent);
2184 if (unlikely(error))
2185 return error;
2186
2187 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2188 /*
2189 * If there was a racing rename or mount along our
2190 * path, then we can't be sure that ".." hasn't jumped
2191 * above nd->root (and so userspace should retry or use
2192 * some fallback).
2193 */
2194 smp_rmb();
2195 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2196 return ERR_PTR(-EAGAIN);
2197 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2198 return ERR_PTR(-EAGAIN);
2199 }
2200 }
2201 return NULL;
2202 }
2203
walk_component(struct nameidata * nd,int flags)2204 static __always_inline const char *walk_component(struct nameidata *nd, int flags)
2205 {
2206 struct dentry *dentry;
2207 /*
2208 * "." and ".." are special - ".." especially so because it has
2209 * to be able to know about the current root directory and
2210 * parent relationships.
2211 */
2212 if (unlikely(nd->last_type != LAST_NORM)) {
2213 if (unlikely(nd->depth) && !(flags & WALK_MORE))
2214 put_link(nd);
2215 return handle_dots(nd, nd->last_type);
2216 }
2217 dentry = lookup_fast(nd);
2218 if (IS_ERR(dentry))
2219 return ERR_CAST(dentry);
2220 if (unlikely(!dentry)) {
2221 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2222 if (IS_ERR(dentry))
2223 return ERR_CAST(dentry);
2224 }
2225 if (unlikely(nd->depth) && !(flags & WALK_MORE))
2226 put_link(nd);
2227 return step_into(nd, flags, dentry);
2228 }
2229
2230 /*
2231 * We can do the critical dentry name comparison and hashing
2232 * operations one word at a time, but we are limited to:
2233 *
2234 * - Architectures with fast unaligned word accesses. We could
2235 * do a "get_unaligned()" if this helps and is sufficiently
2236 * fast.
2237 *
2238 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2239 * do not trap on the (extremely unlikely) case of a page
2240 * crossing operation.
2241 *
2242 * - Furthermore, we need an efficient 64-bit compile for the
2243 * 64-bit case in order to generate the "number of bytes in
2244 * the final mask". Again, that could be replaced with a
2245 * efficient population count instruction or similar.
2246 */
2247 #ifdef CONFIG_DCACHE_WORD_ACCESS
2248
2249 #include <asm/word-at-a-time.h>
2250
2251 #ifdef HASH_MIX
2252
2253 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2254
2255 #elif defined(CONFIG_64BIT)
2256 /*
2257 * Register pressure in the mixing function is an issue, particularly
2258 * on 32-bit x86, but almost any function requires one state value and
2259 * one temporary. Instead, use a function designed for two state values
2260 * and no temporaries.
2261 *
2262 * This function cannot create a collision in only two iterations, so
2263 * we have two iterations to achieve avalanche. In those two iterations,
2264 * we have six layers of mixing, which is enough to spread one bit's
2265 * influence out to 2^6 = 64 state bits.
2266 *
2267 * Rotate constants are scored by considering either 64 one-bit input
2268 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2269 * probability of that delta causing a change to each of the 128 output
2270 * bits, using a sample of random initial states.
2271 *
2272 * The Shannon entropy of the computed probabilities is then summed
2273 * to produce a score. Ideally, any input change has a 50% chance of
2274 * toggling any given output bit.
2275 *
2276 * Mixing scores (in bits) for (12,45):
2277 * Input delta: 1-bit 2-bit
2278 * 1 round: 713.3 42542.6
2279 * 2 rounds: 2753.7 140389.8
2280 * 3 rounds: 5954.1 233458.2
2281 * 4 rounds: 7862.6 256672.2
2282 * Perfect: 8192 258048
2283 * (64*128) (64*63/2 * 128)
2284 */
2285 #define HASH_MIX(x, y, a) \
2286 ( x ^= (a), \
2287 y ^= x, x = rol64(x,12),\
2288 x += y, y = rol64(y,45),\
2289 y *= 9 )
2290
2291 /*
2292 * Fold two longs into one 32-bit hash value. This must be fast, but
2293 * latency isn't quite as critical, as there is a fair bit of additional
2294 * work done before the hash value is used.
2295 */
fold_hash(unsigned long x,unsigned long y)2296 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2297 {
2298 y ^= x * GOLDEN_RATIO_64;
2299 y *= GOLDEN_RATIO_64;
2300 return y >> 32;
2301 }
2302
2303 #else /* 32-bit case */
2304
2305 /*
2306 * Mixing scores (in bits) for (7,20):
2307 * Input delta: 1-bit 2-bit
2308 * 1 round: 330.3 9201.6
2309 * 2 rounds: 1246.4 25475.4
2310 * 3 rounds: 1907.1 31295.1
2311 * 4 rounds: 2042.3 31718.6
2312 * Perfect: 2048 31744
2313 * (32*64) (32*31/2 * 64)
2314 */
2315 #define HASH_MIX(x, y, a) \
2316 ( x ^= (a), \
2317 y ^= x, x = rol32(x, 7),\
2318 x += y, y = rol32(y,20),\
2319 y *= 9 )
2320
fold_hash(unsigned long x,unsigned long y)2321 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2322 {
2323 /* Use arch-optimized multiply if one exists */
2324 return __hash_32(y ^ __hash_32(x));
2325 }
2326
2327 #endif
2328
2329 /*
2330 * Return the hash of a string of known length. This is carfully
2331 * designed to match hash_name(), which is the more critical function.
2332 * In particular, we must end by hashing a final word containing 0..7
2333 * payload bytes, to match the way that hash_name() iterates until it
2334 * finds the delimiter after the name.
2335 */
full_name_hash(const void * salt,const char * name,unsigned int len)2336 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2337 {
2338 unsigned long a, x = 0, y = (unsigned long)salt;
2339
2340 for (;;) {
2341 if (!len)
2342 goto done;
2343 a = load_unaligned_zeropad(name);
2344 if (len < sizeof(unsigned long))
2345 break;
2346 HASH_MIX(x, y, a);
2347 name += sizeof(unsigned long);
2348 len -= sizeof(unsigned long);
2349 }
2350 x ^= a & bytemask_from_count(len);
2351 done:
2352 return fold_hash(x, y);
2353 }
2354 EXPORT_SYMBOL(full_name_hash);
2355
2356 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2357 u64 hashlen_string(const void *salt, const char *name)
2358 {
2359 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2360 unsigned long adata, mask, len;
2361 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2362
2363 len = 0;
2364 goto inside;
2365
2366 do {
2367 HASH_MIX(x, y, a);
2368 len += sizeof(unsigned long);
2369 inside:
2370 a = load_unaligned_zeropad(name+len);
2371 } while (!has_zero(a, &adata, &constants));
2372
2373 adata = prep_zero_mask(a, adata, &constants);
2374 mask = create_zero_mask(adata);
2375 x ^= a & zero_bytemask(mask);
2376
2377 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2378 }
2379 EXPORT_SYMBOL(hashlen_string);
2380
2381 /*
2382 * Calculate the length and hash of the path component, and
2383 * return the length as the result.
2384 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2385 static inline const char *hash_name(struct nameidata *nd,
2386 const char *name,
2387 unsigned long *lastword)
2388 {
2389 unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2390 unsigned long adata, bdata, mask, len;
2391 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2392
2393 /*
2394 * The first iteration is special, because it can result in
2395 * '.' and '..' and has no mixing other than the final fold.
2396 */
2397 a = load_unaligned_zeropad(name);
2398 b = a ^ REPEAT_BYTE('/');
2399 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2400 adata = prep_zero_mask(a, adata, &constants);
2401 bdata = prep_zero_mask(b, bdata, &constants);
2402 mask = create_zero_mask(adata | bdata);
2403 a &= zero_bytemask(mask);
2404 *lastword = a;
2405 len = find_zero(mask);
2406 nd->last.hash = fold_hash(a, y);
2407 nd->last.len = len;
2408 return name + len;
2409 }
2410
2411 len = 0;
2412 x = 0;
2413 do {
2414 HASH_MIX(x, y, a);
2415 len += sizeof(unsigned long);
2416 a = load_unaligned_zeropad(name+len);
2417 b = a ^ REPEAT_BYTE('/');
2418 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2419
2420 adata = prep_zero_mask(a, adata, &constants);
2421 bdata = prep_zero_mask(b, bdata, &constants);
2422 mask = create_zero_mask(adata | bdata);
2423 a &= zero_bytemask(mask);
2424 x ^= a;
2425 len += find_zero(mask);
2426 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT
2427
2428 nd->last.hash = fold_hash(x, y);
2429 nd->last.len = len;
2430 return name + len;
2431 }
2432
2433 /*
2434 * Note that the 'last' word is always zero-masked, but
2435 * was loaded as a possibly big-endian word.
2436 */
2437 #ifdef __BIG_ENDIAN
2438 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8))
2439 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16))
2440 #endif
2441
2442 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2443
2444 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2445 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2446 {
2447 unsigned long hash = init_name_hash(salt);
2448 while (len--)
2449 hash = partial_name_hash((unsigned char)*name++, hash);
2450 return end_name_hash(hash);
2451 }
2452 EXPORT_SYMBOL(full_name_hash);
2453
2454 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2455 u64 hashlen_string(const void *salt, const char *name)
2456 {
2457 unsigned long hash = init_name_hash(salt);
2458 unsigned long len = 0, c;
2459
2460 c = (unsigned char)*name;
2461 while (c) {
2462 len++;
2463 hash = partial_name_hash(c, hash);
2464 c = (unsigned char)name[len];
2465 }
2466 return hashlen_create(end_name_hash(hash), len);
2467 }
2468 EXPORT_SYMBOL(hashlen_string);
2469
2470 /*
2471 * We know there's a real path component here of at least
2472 * one character.
2473 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2474 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2475 {
2476 unsigned long hash = init_name_hash(nd->path.dentry);
2477 unsigned long len = 0, c, last = 0;
2478
2479 c = (unsigned char)*name;
2480 do {
2481 last = (last << 8) + c;
2482 len++;
2483 hash = partial_name_hash(c, hash);
2484 c = (unsigned char)name[len];
2485 } while (c && c != '/');
2486
2487 // This is reliable for DOT or DOTDOT, since the component
2488 // cannot contain NUL characters - top bits being zero means
2489 // we cannot have had any other pathnames.
2490 *lastword = last;
2491 nd->last.hash = end_name_hash(hash);
2492 nd->last.len = len;
2493 return name + len;
2494 }
2495
2496 #endif
2497
2498 #ifndef LAST_WORD_IS_DOT
2499 #define LAST_WORD_IS_DOT 0x2e
2500 #define LAST_WORD_IS_DOTDOT 0x2e2e
2501 #endif
2502
2503 /*
2504 * Name resolution.
2505 * This is the basic name resolution function, turning a pathname into
2506 * the final dentry. We expect 'base' to be positive and a directory.
2507 *
2508 * Returns 0 and nd will have valid dentry and mnt on success.
2509 * Returns error and drops reference to input namei data on failure.
2510 */
link_path_walk(const char * name,struct nameidata * nd)2511 static int link_path_walk(const char *name, struct nameidata *nd)
2512 {
2513 int depth = 0; // depth <= nd->depth
2514 int err;
2515
2516 nd->last_type = LAST_ROOT;
2517 nd->flags |= LOOKUP_PARENT;
2518 if (IS_ERR(name))
2519 return PTR_ERR(name);
2520 if (*name == '/') {
2521 do {
2522 name++;
2523 } while (unlikely(*name == '/'));
2524 }
2525 if (unlikely(!*name)) {
2526 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2527 return 0;
2528 }
2529
2530 /* At this point we know we have a real path component. */
2531 for(;;) {
2532 struct mnt_idmap *idmap;
2533 const char *link;
2534 unsigned long lastword;
2535
2536 idmap = mnt_idmap(nd->path.mnt);
2537 err = may_lookup(idmap, nd);
2538 if (unlikely(err))
2539 return err;
2540
2541 nd->last.name = name;
2542 name = hash_name(nd, name, &lastword);
2543
2544 switch(lastword) {
2545 case LAST_WORD_IS_DOTDOT:
2546 nd->last_type = LAST_DOTDOT;
2547 nd->state |= ND_JUMPED;
2548 break;
2549
2550 case LAST_WORD_IS_DOT:
2551 nd->last_type = LAST_DOT;
2552 break;
2553
2554 default:
2555 nd->last_type = LAST_NORM;
2556 nd->state &= ~ND_JUMPED;
2557
2558 struct dentry *parent = nd->path.dentry;
2559 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2560 err = parent->d_op->d_hash(parent, &nd->last);
2561 if (err < 0)
2562 return err;
2563 }
2564 }
2565
2566 if (!*name)
2567 goto OK;
2568 /*
2569 * If it wasn't NUL, we know it was '/'. Skip that
2570 * slash, and continue until no more slashes.
2571 */
2572 do {
2573 name++;
2574 } while (unlikely(*name == '/'));
2575 if (unlikely(!*name)) {
2576 OK:
2577 /* pathname or trailing symlink, done */
2578 if (likely(!depth)) {
2579 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2580 nd->dir_mode = nd->inode->i_mode;
2581 nd->flags &= ~LOOKUP_PARENT;
2582 return 0;
2583 }
2584 /* last component of nested symlink */
2585 name = nd->stack[--depth].name;
2586 link = walk_component(nd, 0);
2587 } else {
2588 /* not the last component */
2589 link = walk_component(nd, WALK_MORE);
2590 }
2591 if (unlikely(link)) {
2592 if (IS_ERR(link))
2593 return PTR_ERR(link);
2594 /* a symlink to follow */
2595 nd->stack[depth++].name = name;
2596 name = link;
2597 continue;
2598 }
2599 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2600 if (nd->flags & LOOKUP_RCU) {
2601 if (!try_to_unlazy(nd))
2602 return -ECHILD;
2603 }
2604 return -ENOTDIR;
2605 }
2606 }
2607 }
2608
2609 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2610 static const char *path_init(struct nameidata *nd, unsigned flags)
2611 {
2612 int error;
2613 const char *s = nd->pathname;
2614
2615 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2616 if (unlikely((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED))
2617 return ERR_PTR(-EAGAIN);
2618
2619 if (unlikely(!*s))
2620 flags &= ~LOOKUP_RCU;
2621 if (flags & LOOKUP_RCU)
2622 rcu_read_lock();
2623 else
2624 nd->seq = nd->next_seq = 0;
2625
2626 nd->flags = flags;
2627 nd->state |= ND_JUMPED;
2628
2629 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2630 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2631 smp_rmb();
2632
2633 if (unlikely(nd->state & ND_ROOT_PRESET)) {
2634 struct dentry *root = nd->root.dentry;
2635 struct inode *inode = root->d_inode;
2636 if (*s && unlikely(!d_can_lookup(root)))
2637 return ERR_PTR(-ENOTDIR);
2638 nd->path = nd->root;
2639 nd->inode = inode;
2640 if (flags & LOOKUP_RCU) {
2641 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2642 nd->root_seq = nd->seq;
2643 } else {
2644 path_get(&nd->path);
2645 }
2646 return s;
2647 }
2648
2649 nd->root.mnt = NULL;
2650
2651 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2652 if (*s == '/' && likely(!(flags & LOOKUP_IN_ROOT))) {
2653 error = nd_jump_root(nd);
2654 if (unlikely(error))
2655 return ERR_PTR(error);
2656 return s;
2657 }
2658
2659 /* Relative pathname -- get the starting-point it is relative to. */
2660 if (nd->dfd == AT_FDCWD) {
2661 if (flags & LOOKUP_RCU) {
2662 struct fs_struct *fs = current->fs;
2663 unsigned seq;
2664
2665 do {
2666 seq = read_seqbegin(&fs->seq);
2667 nd->path = fs->pwd;
2668 nd->inode = nd->path.dentry->d_inode;
2669 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2670 } while (read_seqretry(&fs->seq, seq));
2671 } else {
2672 get_fs_pwd(current->fs, &nd->path);
2673 nd->inode = nd->path.dentry->d_inode;
2674 }
2675 } else {
2676 /* Caller must check execute permissions on the starting path component */
2677 CLASS(fd_raw, f)(nd->dfd);
2678 struct dentry *dentry;
2679
2680 if (fd_empty(f))
2681 return ERR_PTR(-EBADF);
2682
2683 if (flags & LOOKUP_LINKAT_EMPTY) {
2684 if (fd_file(f)->f_cred != current_cred() &&
2685 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2686 return ERR_PTR(-ENOENT);
2687 }
2688
2689 dentry = fd_file(f)->f_path.dentry;
2690
2691 if (*s && unlikely(!d_can_lookup(dentry)))
2692 return ERR_PTR(-ENOTDIR);
2693
2694 nd->path = fd_file(f)->f_path;
2695 if (flags & LOOKUP_RCU) {
2696 nd->inode = nd->path.dentry->d_inode;
2697 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2698 } else {
2699 path_get(&nd->path);
2700 nd->inode = nd->path.dentry->d_inode;
2701 }
2702 }
2703
2704 /* For scoped-lookups we need to set the root to the dirfd as well. */
2705 if (unlikely(flags & LOOKUP_IS_SCOPED)) {
2706 nd->root = nd->path;
2707 if (flags & LOOKUP_RCU) {
2708 nd->root_seq = nd->seq;
2709 } else {
2710 path_get(&nd->root);
2711 nd->state |= ND_ROOT_GRABBED;
2712 }
2713 }
2714 return s;
2715 }
2716
lookup_last(struct nameidata * nd)2717 static inline const char *lookup_last(struct nameidata *nd)
2718 {
2719 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2720 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2721
2722 return walk_component(nd, WALK_TRAILING);
2723 }
2724
handle_lookup_down(struct nameidata * nd)2725 static int handle_lookup_down(struct nameidata *nd)
2726 {
2727 if (!(nd->flags & LOOKUP_RCU))
2728 dget(nd->path.dentry);
2729 nd->next_seq = nd->seq;
2730 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2731 }
2732
2733 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2734 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2735 {
2736 const char *s = path_init(nd, flags);
2737 int err;
2738
2739 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2740 err = handle_lookup_down(nd);
2741 if (unlikely(err < 0))
2742 s = ERR_PTR(err);
2743 }
2744
2745 while (!(err = link_path_walk(s, nd)) &&
2746 (s = lookup_last(nd)) != NULL)
2747 ;
2748 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2749 err = handle_lookup_down(nd);
2750 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2751 }
2752 if (!err)
2753 err = complete_walk(nd);
2754
2755 if (!err && nd->flags & LOOKUP_DIRECTORY)
2756 if (!d_can_lookup(nd->path.dentry))
2757 err = -ENOTDIR;
2758 if (!err) {
2759 *path = nd->path;
2760 nd->path.mnt = NULL;
2761 nd->path.dentry = NULL;
2762 }
2763 terminate_walk(nd);
2764 return err;
2765 }
2766
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,const struct path * root)2767 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2768 struct path *path, const struct path *root)
2769 {
2770 int retval;
2771 struct nameidata nd;
2772 if (IS_ERR(name))
2773 return PTR_ERR(name);
2774 set_nameidata(&nd, dfd, name, root);
2775 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2776 if (unlikely(retval == -ECHILD))
2777 retval = path_lookupat(&nd, flags, path);
2778 if (unlikely(retval == -ESTALE))
2779 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2780
2781 if (likely(!retval))
2782 audit_inode(name, path->dentry,
2783 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2784 restore_nameidata();
2785 return retval;
2786 }
2787
2788 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2789 static int path_parentat(struct nameidata *nd, unsigned flags,
2790 struct path *parent)
2791 {
2792 const char *s = path_init(nd, flags);
2793 int err = link_path_walk(s, nd);
2794 if (!err)
2795 err = complete_walk(nd);
2796 if (!err) {
2797 *parent = nd->path;
2798 nd->path.mnt = NULL;
2799 nd->path.dentry = NULL;
2800 }
2801 terminate_walk(nd);
2802 return err;
2803 }
2804
2805 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2806 static int __filename_parentat(int dfd, struct filename *name,
2807 unsigned int flags, struct path *parent,
2808 struct qstr *last, int *type,
2809 const struct path *root)
2810 {
2811 int retval;
2812 struct nameidata nd;
2813
2814 if (IS_ERR(name))
2815 return PTR_ERR(name);
2816 set_nameidata(&nd, dfd, name, root);
2817 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2818 if (unlikely(retval == -ECHILD))
2819 retval = path_parentat(&nd, flags, parent);
2820 if (unlikely(retval == -ESTALE))
2821 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2822 if (likely(!retval)) {
2823 *last = nd.last;
2824 *type = nd.last_type;
2825 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2826 }
2827 restore_nameidata();
2828 return retval;
2829 }
2830
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2831 static int filename_parentat(int dfd, struct filename *name,
2832 unsigned int flags, struct path *parent,
2833 struct qstr *last, int *type)
2834 {
2835 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2836 }
2837
2838 /* does lookup, returns the object with parent locked */
__start_removing_path(int dfd,struct filename * name,struct path * path)2839 static struct dentry *__start_removing_path(int dfd, struct filename *name,
2840 struct path *path)
2841 {
2842 struct path parent_path __free(path_put) = {};
2843 struct dentry *d;
2844 struct qstr last;
2845 int type, error;
2846
2847 error = filename_parentat(dfd, name, 0, &parent_path, &last, &type);
2848 if (error)
2849 return ERR_PTR(error);
2850 if (unlikely(type != LAST_NORM))
2851 return ERR_PTR(-EINVAL);
2852 /* don't fail immediately if it's r/o, at least try to report other errors */
2853 error = mnt_want_write(parent_path.mnt);
2854 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT);
2855 d = lookup_one_qstr_excl(&last, parent_path.dentry, 0);
2856 if (IS_ERR(d))
2857 goto unlock;
2858 if (error)
2859 goto fail;
2860 path->dentry = no_free_ptr(parent_path.dentry);
2861 path->mnt = no_free_ptr(parent_path.mnt);
2862 return d;
2863
2864 fail:
2865 dput(d);
2866 d = ERR_PTR(error);
2867 unlock:
2868 inode_unlock(parent_path.dentry->d_inode);
2869 if (!error)
2870 mnt_drop_write(parent_path.mnt);
2871 return d;
2872 }
2873
2874 /**
2875 * kern_path_parent: lookup path returning parent and target
2876 * @name: path name
2877 * @path: path to store parent in
2878 *
2879 * The path @name should end with a normal component, not "." or ".." or "/".
2880 * A lookup is performed and if successful the parent information
2881 * is store in @parent and the dentry is returned.
2882 *
2883 * The dentry maybe negative, the parent will be positive.
2884 *
2885 * Returns: dentry or error.
2886 */
kern_path_parent(const char * name,struct path * path)2887 struct dentry *kern_path_parent(const char *name, struct path *path)
2888 {
2889 struct path parent_path __free(path_put) = {};
2890 struct filename *filename __free(putname) = getname_kernel(name);
2891 struct dentry *d;
2892 struct qstr last;
2893 int type, error;
2894
2895 error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type);
2896 if (error)
2897 return ERR_PTR(error);
2898 if (unlikely(type != LAST_NORM))
2899 return ERR_PTR(-EINVAL);
2900
2901 d = lookup_noperm_unlocked(&last, parent_path.dentry);
2902 if (IS_ERR(d))
2903 return d;
2904 path->dentry = no_free_ptr(parent_path.dentry);
2905 path->mnt = no_free_ptr(parent_path.mnt);
2906 return d;
2907 }
2908
start_removing_path(const char * name,struct path * path)2909 struct dentry *start_removing_path(const char *name, struct path *path)
2910 {
2911 struct filename *filename = getname_kernel(name);
2912 struct dentry *res = __start_removing_path(AT_FDCWD, filename, path);
2913
2914 putname(filename);
2915 return res;
2916 }
2917
start_removing_user_path_at(int dfd,const char __user * name,struct path * path)2918 struct dentry *start_removing_user_path_at(int dfd,
2919 const char __user *name,
2920 struct path *path)
2921 {
2922 struct filename *filename = getname(name);
2923 struct dentry *res = __start_removing_path(dfd, filename, path);
2924
2925 putname(filename);
2926 return res;
2927 }
2928 EXPORT_SYMBOL(start_removing_user_path_at);
2929
kern_path(const char * name,unsigned int flags,struct path * path)2930 int kern_path(const char *name, unsigned int flags, struct path *path)
2931 {
2932 struct filename *filename = getname_kernel(name);
2933 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2934
2935 putname(filename);
2936 return ret;
2937
2938 }
2939 EXPORT_SYMBOL(kern_path);
2940
2941 /**
2942 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2943 * @filename: filename structure
2944 * @flags: lookup flags
2945 * @parent: pointer to struct path to fill
2946 * @last: last component
2947 * @type: type of the last component
2948 * @root: pointer to struct path of the base directory
2949 */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2950 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2951 struct path *parent, struct qstr *last, int *type,
2952 const struct path *root)
2953 {
2954 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2955 type, root);
2956 }
2957 EXPORT_SYMBOL(vfs_path_parent_lookup);
2958
2959 /**
2960 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2961 * @dentry: pointer to dentry of the base directory
2962 * @mnt: pointer to vfs mount of the base directory
2963 * @name: pointer to file name
2964 * @flags: lookup flags
2965 * @path: pointer to struct path to fill
2966 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2967 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2968 const char *name, unsigned int flags,
2969 struct path *path)
2970 {
2971 struct filename *filename;
2972 struct path root = {.mnt = mnt, .dentry = dentry};
2973 int ret;
2974
2975 filename = getname_kernel(name);
2976 /* the first argument of filename_lookup() is ignored with root */
2977 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2978 putname(filename);
2979 return ret;
2980 }
2981 EXPORT_SYMBOL(vfs_path_lookup);
2982
lookup_noperm_common(struct qstr * qname,struct dentry * base)2983 static int lookup_noperm_common(struct qstr *qname, struct dentry *base)
2984 {
2985 const char *name = qname->name;
2986 u32 len = qname->len;
2987
2988 qname->hash = full_name_hash(base, name, len);
2989 if (!len)
2990 return -EACCES;
2991
2992 if (is_dot_dotdot(name, len))
2993 return -EACCES;
2994
2995 while (len--) {
2996 unsigned int c = *(const unsigned char *)name++;
2997 if (c == '/' || c == '\0')
2998 return -EACCES;
2999 }
3000 /*
3001 * See if the low-level filesystem might want
3002 * to use its own hash..
3003 */
3004 if (base->d_flags & DCACHE_OP_HASH) {
3005 int err = base->d_op->d_hash(base, qname);
3006 if (err < 0)
3007 return err;
3008 }
3009 return 0;
3010 }
3011
lookup_one_common(struct mnt_idmap * idmap,struct qstr * qname,struct dentry * base)3012 static int lookup_one_common(struct mnt_idmap *idmap,
3013 struct qstr *qname, struct dentry *base)
3014 {
3015 int err;
3016 err = lookup_noperm_common(qname, base);
3017 if (err < 0)
3018 return err;
3019 return inode_permission(idmap, base->d_inode, MAY_EXEC);
3020 }
3021
3022 /**
3023 * try_lookup_noperm - filesystem helper to lookup single pathname component
3024 * @name: qstr storing pathname component to lookup
3025 * @base: base directory to lookup from
3026 *
3027 * Look up a dentry by name in the dcache, returning NULL if it does not
3028 * currently exist. The function does not try to create a dentry and if one
3029 * is found it doesn't try to revalidate it.
3030 *
3031 * Note that this routine is purely a helper for filesystem usage and should
3032 * not be called by generic code. It does no permission checking.
3033 *
3034 * No locks need be held - only a counted reference to @base is needed.
3035 *
3036 */
try_lookup_noperm(struct qstr * name,struct dentry * base)3037 struct dentry *try_lookup_noperm(struct qstr *name, struct dentry *base)
3038 {
3039 int err;
3040
3041 err = lookup_noperm_common(name, base);
3042 if (err)
3043 return ERR_PTR(err);
3044
3045 return d_lookup(base, name);
3046 }
3047 EXPORT_SYMBOL(try_lookup_noperm);
3048
3049 /**
3050 * lookup_noperm - filesystem helper to lookup single pathname component
3051 * @name: qstr storing pathname component to lookup
3052 * @base: base directory to lookup from
3053 *
3054 * Note that this routine is purely a helper for filesystem usage and should
3055 * not be called by generic code. It does no permission checking.
3056 *
3057 * The caller must hold base->i_rwsem.
3058 */
lookup_noperm(struct qstr * name,struct dentry * base)3059 struct dentry *lookup_noperm(struct qstr *name, struct dentry *base)
3060 {
3061 struct dentry *dentry;
3062 int err;
3063
3064 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
3065
3066 err = lookup_noperm_common(name, base);
3067 if (err)
3068 return ERR_PTR(err);
3069
3070 dentry = lookup_dcache(name, base, 0);
3071 return dentry ? dentry : __lookup_slow(name, base, 0);
3072 }
3073 EXPORT_SYMBOL(lookup_noperm);
3074
3075 /**
3076 * lookup_one - lookup single pathname component
3077 * @idmap: idmap of the mount the lookup is performed from
3078 * @name: qstr holding pathname component to lookup
3079 * @base: base directory to lookup from
3080 *
3081 * This can be used for in-kernel filesystem clients such as file servers.
3082 *
3083 * The caller must hold base->i_rwsem.
3084 */
lookup_one(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3085 struct dentry *lookup_one(struct mnt_idmap *idmap, struct qstr *name,
3086 struct dentry *base)
3087 {
3088 struct dentry *dentry;
3089 int err;
3090
3091 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
3092
3093 err = lookup_one_common(idmap, name, base);
3094 if (err)
3095 return ERR_PTR(err);
3096
3097 dentry = lookup_dcache(name, base, 0);
3098 return dentry ? dentry : __lookup_slow(name, base, 0);
3099 }
3100 EXPORT_SYMBOL(lookup_one);
3101
3102 /**
3103 * lookup_one_unlocked - lookup single pathname component
3104 * @idmap: idmap of the mount the lookup is performed from
3105 * @name: qstr olding pathname component to lookup
3106 * @base: base directory to lookup from
3107 *
3108 * This can be used for in-kernel filesystem clients such as file servers.
3109 *
3110 * Unlike lookup_one, it should be called without the parent
3111 * i_rwsem held, and will take the i_rwsem itself if necessary.
3112 */
lookup_one_unlocked(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3113 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap, struct qstr *name,
3114 struct dentry *base)
3115 {
3116 int err;
3117 struct dentry *ret;
3118
3119 err = lookup_one_common(idmap, name, base);
3120 if (err)
3121 return ERR_PTR(err);
3122
3123 ret = lookup_dcache(name, base, 0);
3124 if (!ret)
3125 ret = lookup_slow(name, base, 0);
3126 return ret;
3127 }
3128 EXPORT_SYMBOL(lookup_one_unlocked);
3129
3130 /**
3131 * lookup_one_positive_killable - lookup single pathname component
3132 * @idmap: idmap of the mount the lookup is performed from
3133 * @name: qstr olding pathname component to lookup
3134 * @base: base directory to lookup from
3135 *
3136 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3137 * known positive or ERR_PTR(). This is what most of the users want.
3138 *
3139 * Note that pinned negative with unlocked parent _can_ become positive at any
3140 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3141 * positives have >d_inode stable, so this one avoids such problems.
3142 *
3143 * This can be used for in-kernel filesystem clients such as file servers.
3144 *
3145 * It should be called without the parent i_rwsem held, and will take
3146 * the i_rwsem itself if necessary. If a fatal signal is pending or
3147 * delivered, it will return %-EINTR if the lock is needed.
3148 */
lookup_one_positive_killable(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3149 struct dentry *lookup_one_positive_killable(struct mnt_idmap *idmap,
3150 struct qstr *name,
3151 struct dentry *base)
3152 {
3153 int err;
3154 struct dentry *ret;
3155
3156 err = lookup_one_common(idmap, name, base);
3157 if (err)
3158 return ERR_PTR(err);
3159
3160 ret = lookup_dcache(name, base, 0);
3161 if (!ret)
3162 ret = lookup_slow_killable(name, base, 0);
3163 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3164 dput(ret);
3165 ret = ERR_PTR(-ENOENT);
3166 }
3167 return ret;
3168 }
3169 EXPORT_SYMBOL(lookup_one_positive_killable);
3170
3171 /**
3172 * lookup_one_positive_unlocked - lookup single pathname component
3173 * @idmap: idmap of the mount the lookup is performed from
3174 * @name: qstr holding pathname component to lookup
3175 * @base: base directory to lookup from
3176 *
3177 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3178 * known positive or ERR_PTR(). This is what most of the users want.
3179 *
3180 * Note that pinned negative with unlocked parent _can_ become positive at any
3181 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3182 * positives have >d_inode stable, so this one avoids such problems.
3183 *
3184 * This can be used for in-kernel filesystem clients such as file servers.
3185 *
3186 * The helper should be called without i_rwsem held.
3187 */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,struct qstr * name,struct dentry * base)3188 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3189 struct qstr *name,
3190 struct dentry *base)
3191 {
3192 struct dentry *ret = lookup_one_unlocked(idmap, name, base);
3193
3194 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3195 dput(ret);
3196 ret = ERR_PTR(-ENOENT);
3197 }
3198 return ret;
3199 }
3200 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3201
3202 /**
3203 * lookup_noperm_unlocked - filesystem helper to lookup single pathname component
3204 * @name: pathname component to lookup
3205 * @base: base directory to lookup from
3206 *
3207 * Note that this routine is purely a helper for filesystem usage and should
3208 * not be called by generic code. It does no permission checking.
3209 *
3210 * Unlike lookup_noperm(), it should be called without the parent
3211 * i_rwsem held, and will take the i_rwsem itself if necessary.
3212 *
3213 * Unlike try_lookup_noperm() it *does* revalidate the dentry if it already
3214 * existed.
3215 */
lookup_noperm_unlocked(struct qstr * name,struct dentry * base)3216 struct dentry *lookup_noperm_unlocked(struct qstr *name, struct dentry *base)
3217 {
3218 struct dentry *ret;
3219 int err;
3220
3221 err = lookup_noperm_common(name, base);
3222 if (err)
3223 return ERR_PTR(err);
3224
3225 ret = lookup_dcache(name, base, 0);
3226 if (!ret)
3227 ret = lookup_slow(name, base, 0);
3228 return ret;
3229 }
3230 EXPORT_SYMBOL(lookup_noperm_unlocked);
3231
3232 /*
3233 * Like lookup_noperm_unlocked(), except that it yields ERR_PTR(-ENOENT)
3234 * on negatives. Returns known positive or ERR_PTR(); that's what
3235 * most of the users want. Note that pinned negative with unlocked parent
3236 * _can_ become positive at any time, so callers of lookup_noperm_unlocked()
3237 * need to be very careful; pinned positives have ->d_inode stable, so
3238 * this one avoids such problems.
3239 */
lookup_noperm_positive_unlocked(struct qstr * name,struct dentry * base)3240 struct dentry *lookup_noperm_positive_unlocked(struct qstr *name,
3241 struct dentry *base)
3242 {
3243 struct dentry *ret;
3244
3245 ret = lookup_noperm_unlocked(name, base);
3246 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3247 dput(ret);
3248 ret = ERR_PTR(-ENOENT);
3249 }
3250 return ret;
3251 }
3252 EXPORT_SYMBOL(lookup_noperm_positive_unlocked);
3253
3254 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)3255 int path_pts(struct path *path)
3256 {
3257 /* Find something mounted on "pts" in the same directory as
3258 * the input path.
3259 */
3260 struct dentry *parent = dget_parent(path->dentry);
3261 struct dentry *child;
3262 struct qstr this = QSTR_INIT("pts", 3);
3263
3264 if (unlikely(!path_connected(path->mnt, parent))) {
3265 dput(parent);
3266 return -ENOENT;
3267 }
3268 dput(path->dentry);
3269 path->dentry = parent;
3270 child = d_hash_and_lookup(parent, &this);
3271 if (IS_ERR_OR_NULL(child))
3272 return -ENOENT;
3273
3274 path->dentry = child;
3275 dput(parent);
3276 follow_down(path, 0);
3277 return 0;
3278 }
3279 #endif
3280
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3281 int user_path_at(int dfd, const char __user *name, unsigned flags,
3282 struct path *path)
3283 {
3284 struct filename *filename = getname_flags(name, flags);
3285 int ret = filename_lookup(dfd, filename, flags, path, NULL);
3286
3287 putname(filename);
3288 return ret;
3289 }
3290 EXPORT_SYMBOL(user_path_at);
3291
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3292 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3293 struct inode *inode)
3294 {
3295 kuid_t fsuid = current_fsuid();
3296
3297 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3298 return 0;
3299 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3300 return 0;
3301 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3302 }
3303 EXPORT_SYMBOL(__check_sticky);
3304
3305 /*
3306 * Check whether we can remove a link victim from directory dir, check
3307 * whether the type of victim is right.
3308 * 1. We can't do it if dir is read-only (done in permission())
3309 * 2. We should have write and exec permissions on dir
3310 * 3. We can't remove anything from append-only dir
3311 * 4. We can't do anything with immutable dir (done in permission())
3312 * 5. If the sticky bit on dir is set we should either
3313 * a. be owner of dir, or
3314 * b. be owner of victim, or
3315 * c. have CAP_FOWNER capability
3316 * 6. If the victim is append-only or immutable we can't do antyhing with
3317 * links pointing to it.
3318 * 7. If the victim has an unknown uid or gid we can't change the inode.
3319 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3320 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3321 * 10. We can't remove a root or mountpoint.
3322 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3323 * nfs_async_unlink().
3324 */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3325 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3326 struct dentry *victim, bool isdir)
3327 {
3328 struct inode *inode = d_backing_inode(victim);
3329 int error;
3330
3331 if (d_is_negative(victim))
3332 return -ENOENT;
3333 BUG_ON(!inode);
3334
3335 BUG_ON(victim->d_parent->d_inode != dir);
3336
3337 /* Inode writeback is not safe when the uid or gid are invalid. */
3338 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3339 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3340 return -EOVERFLOW;
3341
3342 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3343
3344 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3345 if (error)
3346 return error;
3347 if (IS_APPEND(dir))
3348 return -EPERM;
3349
3350 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3351 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3352 HAS_UNMAPPED_ID(idmap, inode))
3353 return -EPERM;
3354 if (isdir) {
3355 if (!d_is_dir(victim))
3356 return -ENOTDIR;
3357 if (IS_ROOT(victim))
3358 return -EBUSY;
3359 } else if (d_is_dir(victim))
3360 return -EISDIR;
3361 if (IS_DEADDIR(dir))
3362 return -ENOENT;
3363 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3364 return -EBUSY;
3365 return 0;
3366 }
3367
3368 /* Check whether we can create an object with dentry child in directory
3369 * dir.
3370 * 1. We can't do it if child already exists (open has special treatment for
3371 * this case, but since we are inlined it's OK)
3372 * 2. We can't do it if dir is read-only (done in permission())
3373 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3374 * 4. We should have write and exec permissions on dir
3375 * 5. We can't do it if dir is immutable (done in permission())
3376 */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3377 static inline int may_create(struct mnt_idmap *idmap,
3378 struct inode *dir, struct dentry *child)
3379 {
3380 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3381 if (child->d_inode)
3382 return -EEXIST;
3383 if (IS_DEADDIR(dir))
3384 return -ENOENT;
3385 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3386 return -EOVERFLOW;
3387
3388 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3389 }
3390
3391 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3392 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3393 {
3394 struct dentry *p = p1, *q = p2, *r;
3395
3396 while ((r = p->d_parent) != p2 && r != p)
3397 p = r;
3398 if (r == p2) {
3399 // p is a child of p2 and an ancestor of p1 or p1 itself
3400 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3401 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3402 return p;
3403 }
3404 // p is the root of connected component that contains p1
3405 // p2 does not occur on the path from p to p1
3406 while ((r = q->d_parent) != p1 && r != p && r != q)
3407 q = r;
3408 if (r == p1) {
3409 // q is a child of p1 and an ancestor of p2 or p2 itself
3410 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3411 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3412 return q;
3413 } else if (likely(r == p)) {
3414 // both p2 and p1 are descendents of p
3415 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3416 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3417 return NULL;
3418 } else { // no common ancestor at the time we'd been called
3419 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3420 return ERR_PTR(-EXDEV);
3421 }
3422 }
3423
3424 /*
3425 * p1 and p2 should be directories on the same fs.
3426 */
lock_rename(struct dentry * p1,struct dentry * p2)3427 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3428 {
3429 if (p1 == p2) {
3430 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3431 return NULL;
3432 }
3433
3434 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3435 return lock_two_directories(p1, p2);
3436 }
3437 EXPORT_SYMBOL(lock_rename);
3438
3439 /*
3440 * c1 and p2 should be on the same fs.
3441 */
lock_rename_child(struct dentry * c1,struct dentry * p2)3442 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3443 {
3444 if (READ_ONCE(c1->d_parent) == p2) {
3445 /*
3446 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3447 */
3448 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3449 /*
3450 * now that p2 is locked, nobody can move in or out of it,
3451 * so the test below is safe.
3452 */
3453 if (likely(c1->d_parent == p2))
3454 return NULL;
3455
3456 /*
3457 * c1 got moved out of p2 while we'd been taking locks;
3458 * unlock and fall back to slow case.
3459 */
3460 inode_unlock(p2->d_inode);
3461 }
3462
3463 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3464 /*
3465 * nobody can move out of any directories on this fs.
3466 */
3467 if (likely(c1->d_parent != p2))
3468 return lock_two_directories(c1->d_parent, p2);
3469
3470 /*
3471 * c1 got moved into p2 while we were taking locks;
3472 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3473 * for consistency with lock_rename().
3474 */
3475 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3476 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3477 return NULL;
3478 }
3479 EXPORT_SYMBOL(lock_rename_child);
3480
unlock_rename(struct dentry * p1,struct dentry * p2)3481 void unlock_rename(struct dentry *p1, struct dentry *p2)
3482 {
3483 inode_unlock(p1->d_inode);
3484 if (p1 != p2) {
3485 inode_unlock(p2->d_inode);
3486 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3487 }
3488 }
3489 EXPORT_SYMBOL(unlock_rename);
3490
3491 /**
3492 * vfs_prepare_mode - prepare the mode to be used for a new inode
3493 * @idmap: idmap of the mount the inode was found from
3494 * @dir: parent directory of the new inode
3495 * @mode: mode of the new inode
3496 * @mask_perms: allowed permission by the vfs
3497 * @type: type of file to be created
3498 *
3499 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3500 * object to be created.
3501 *
3502 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3503 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3504 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3505 * POSIX ACL supporting filesystems.
3506 *
3507 * Note that it's currently valid for @type to be 0 if a directory is created.
3508 * Filesystems raise that flag individually and we need to check whether each
3509 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3510 * non-zero type.
3511 *
3512 * Returns: mode to be passed to the filesystem
3513 */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3514 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3515 const struct inode *dir, umode_t mode,
3516 umode_t mask_perms, umode_t type)
3517 {
3518 mode = mode_strip_sgid(idmap, dir, mode);
3519 mode = mode_strip_umask(dir, mode);
3520
3521 /*
3522 * Apply the vfs mandated allowed permission mask and set the type of
3523 * file to be created before we call into the filesystem.
3524 */
3525 mode &= (mask_perms & ~S_IFMT);
3526 mode |= (type & S_IFMT);
3527
3528 return mode;
3529 }
3530
3531 /**
3532 * vfs_create - create new file
3533 * @idmap: idmap of the mount the inode was found from
3534 * @dir: inode of the parent directory
3535 * @dentry: dentry of the child file
3536 * @mode: mode of the child file
3537 * @want_excl: whether the file must not yet exist
3538 *
3539 * Create a new file.
3540 *
3541 * If the inode has been found through an idmapped mount the idmap of
3542 * the vfsmount must be passed through @idmap. This function will then take
3543 * care to map the inode according to @idmap before checking permissions.
3544 * On non-idmapped mounts or if permission checking is to be performed on the
3545 * raw inode simply pass @nop_mnt_idmap.
3546 */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3547 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3548 struct dentry *dentry, umode_t mode, bool want_excl)
3549 {
3550 int error;
3551
3552 error = may_create(idmap, dir, dentry);
3553 if (error)
3554 return error;
3555
3556 if (!dir->i_op->create)
3557 return -EACCES; /* shouldn't it be ENOSYS? */
3558
3559 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3560 error = security_inode_create(dir, dentry, mode);
3561 if (error)
3562 return error;
3563 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3564 if (!error)
3565 fsnotify_create(dir, dentry);
3566 return error;
3567 }
3568 EXPORT_SYMBOL(vfs_create);
3569
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3570 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3571 int (*f)(struct dentry *, umode_t, void *),
3572 void *arg)
3573 {
3574 struct inode *dir = dentry->d_parent->d_inode;
3575 int error = may_create(&nop_mnt_idmap, dir, dentry);
3576 if (error)
3577 return error;
3578
3579 mode &= S_IALLUGO;
3580 mode |= S_IFREG;
3581 error = security_inode_create(dir, dentry, mode);
3582 if (error)
3583 return error;
3584 error = f(dentry, mode, arg);
3585 if (!error)
3586 fsnotify_create(dir, dentry);
3587 return error;
3588 }
3589 EXPORT_SYMBOL(vfs_mkobj);
3590
may_open_dev(const struct path * path)3591 bool may_open_dev(const struct path *path)
3592 {
3593 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3594 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3595 }
3596
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3597 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3598 int acc_mode, int flag)
3599 {
3600 struct dentry *dentry = path->dentry;
3601 struct inode *inode = dentry->d_inode;
3602 int error;
3603
3604 if (!inode)
3605 return -ENOENT;
3606
3607 switch (inode->i_mode & S_IFMT) {
3608 case S_IFLNK:
3609 return -ELOOP;
3610 case S_IFDIR:
3611 if (acc_mode & MAY_WRITE)
3612 return -EISDIR;
3613 if (acc_mode & MAY_EXEC)
3614 return -EACCES;
3615 break;
3616 case S_IFBLK:
3617 case S_IFCHR:
3618 if (!may_open_dev(path))
3619 return -EACCES;
3620 fallthrough;
3621 case S_IFIFO:
3622 case S_IFSOCK:
3623 if (acc_mode & MAY_EXEC)
3624 return -EACCES;
3625 flag &= ~O_TRUNC;
3626 break;
3627 case S_IFREG:
3628 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3629 return -EACCES;
3630 break;
3631 default:
3632 VFS_BUG_ON_INODE(!IS_ANON_FILE(inode), inode);
3633 }
3634
3635 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3636 if (error)
3637 return error;
3638
3639 /*
3640 * An append-only file must be opened in append mode for writing.
3641 */
3642 if (IS_APPEND(inode)) {
3643 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3644 return -EPERM;
3645 if (flag & O_TRUNC)
3646 return -EPERM;
3647 }
3648
3649 /* O_NOATIME can only be set by the owner or superuser */
3650 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3651 return -EPERM;
3652
3653 return 0;
3654 }
3655
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3656 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3657 {
3658 const struct path *path = &filp->f_path;
3659 struct inode *inode = path->dentry->d_inode;
3660 int error = get_write_access(inode);
3661 if (error)
3662 return error;
3663
3664 error = security_file_truncate(filp);
3665 if (!error) {
3666 error = do_truncate(idmap, path->dentry, 0,
3667 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3668 filp);
3669 }
3670 put_write_access(inode);
3671 return error;
3672 }
3673
open_to_namei_flags(int flag)3674 static inline int open_to_namei_flags(int flag)
3675 {
3676 if ((flag & O_ACCMODE) == 3)
3677 flag--;
3678 return flag;
3679 }
3680
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3681 static int may_o_create(struct mnt_idmap *idmap,
3682 const struct path *dir, struct dentry *dentry,
3683 umode_t mode)
3684 {
3685 int error = security_path_mknod(dir, dentry, mode, 0);
3686 if (error)
3687 return error;
3688
3689 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3690 return -EOVERFLOW;
3691
3692 error = inode_permission(idmap, dir->dentry->d_inode,
3693 MAY_WRITE | MAY_EXEC);
3694 if (error)
3695 return error;
3696
3697 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3698 }
3699
3700 /*
3701 * Attempt to atomically look up, create and open a file from a negative
3702 * dentry.
3703 *
3704 * Returns 0 if successful. The file will have been created and attached to
3705 * @file by the filesystem calling finish_open().
3706 *
3707 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3708 * be set. The caller will need to perform the open themselves. @path will
3709 * have been updated to point to the new dentry. This may be negative.
3710 *
3711 * Returns an error code otherwise.
3712 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3713 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3714 struct file *file,
3715 int open_flag, umode_t mode)
3716 {
3717 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3718 struct inode *dir = nd->path.dentry->d_inode;
3719 int error;
3720
3721 if (nd->flags & LOOKUP_DIRECTORY)
3722 open_flag |= O_DIRECTORY;
3723
3724 file->__f_path.dentry = DENTRY_NOT_SET;
3725 file->__f_path.mnt = nd->path.mnt;
3726 error = dir->i_op->atomic_open(dir, dentry, file,
3727 open_to_namei_flags(open_flag), mode);
3728 d_lookup_done(dentry);
3729 if (!error) {
3730 if (file->f_mode & FMODE_OPENED) {
3731 if (unlikely(dentry != file->f_path.dentry)) {
3732 dput(dentry);
3733 dentry = dget(file->f_path.dentry);
3734 }
3735 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3736 error = -EIO;
3737 } else {
3738 if (file->f_path.dentry) {
3739 dput(dentry);
3740 dentry = file->f_path.dentry;
3741 }
3742 if (unlikely(d_is_negative(dentry)))
3743 error = -ENOENT;
3744 }
3745 }
3746 if (error) {
3747 dput(dentry);
3748 dentry = ERR_PTR(error);
3749 }
3750 return dentry;
3751 }
3752
3753 /*
3754 * Look up and maybe create and open the last component.
3755 *
3756 * Must be called with parent locked (exclusive in O_CREAT case).
3757 *
3758 * Returns 0 on success, that is, if
3759 * the file was successfully atomically created (if necessary) and opened, or
3760 * the file was not completely opened at this time, though lookups and
3761 * creations were performed.
3762 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3763 * In the latter case dentry returned in @path might be negative if O_CREAT
3764 * hadn't been specified.
3765 *
3766 * An error code is returned on failure.
3767 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3768 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3769 const struct open_flags *op,
3770 bool got_write)
3771 {
3772 struct mnt_idmap *idmap;
3773 struct dentry *dir = nd->path.dentry;
3774 struct inode *dir_inode = dir->d_inode;
3775 int open_flag = op->open_flag;
3776 struct dentry *dentry;
3777 int error, create_error = 0;
3778 umode_t mode = op->mode;
3779 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3780
3781 if (unlikely(IS_DEADDIR(dir_inode)))
3782 return ERR_PTR(-ENOENT);
3783
3784 file->f_mode &= ~FMODE_CREATED;
3785 dentry = d_lookup(dir, &nd->last);
3786 for (;;) {
3787 if (!dentry) {
3788 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3789 if (IS_ERR(dentry))
3790 return dentry;
3791 }
3792 if (d_in_lookup(dentry))
3793 break;
3794
3795 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
3796 if (likely(error > 0))
3797 break;
3798 if (error)
3799 goto out_dput;
3800 d_invalidate(dentry);
3801 dput(dentry);
3802 dentry = NULL;
3803 }
3804 if (dentry->d_inode) {
3805 /* Cached positive dentry: will open in f_op->open */
3806 return dentry;
3807 }
3808
3809 if (open_flag & O_CREAT)
3810 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3811
3812 /*
3813 * Checking write permission is tricky, bacuse we don't know if we are
3814 * going to actually need it: O_CREAT opens should work as long as the
3815 * file exists. But checking existence breaks atomicity. The trick is
3816 * to check access and if not granted clear O_CREAT from the flags.
3817 *
3818 * Another problem is returing the "right" error value (e.g. for an
3819 * O_EXCL open we want to return EEXIST not EROFS).
3820 */
3821 if (unlikely(!got_write))
3822 open_flag &= ~O_TRUNC;
3823 idmap = mnt_idmap(nd->path.mnt);
3824 if (open_flag & O_CREAT) {
3825 if (open_flag & O_EXCL)
3826 open_flag &= ~O_TRUNC;
3827 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3828 if (likely(got_write))
3829 create_error = may_o_create(idmap, &nd->path,
3830 dentry, mode);
3831 else
3832 create_error = -EROFS;
3833 }
3834 if (create_error)
3835 open_flag &= ~O_CREAT;
3836 if (dir_inode->i_op->atomic_open) {
3837 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3838 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3839 dentry = ERR_PTR(create_error);
3840 return dentry;
3841 }
3842
3843 if (d_in_lookup(dentry)) {
3844 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3845 nd->flags);
3846 d_lookup_done(dentry);
3847 if (unlikely(res)) {
3848 if (IS_ERR(res)) {
3849 error = PTR_ERR(res);
3850 goto out_dput;
3851 }
3852 dput(dentry);
3853 dentry = res;
3854 }
3855 }
3856
3857 /* Negative dentry, just create the file */
3858 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3859 file->f_mode |= FMODE_CREATED;
3860 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3861 if (!dir_inode->i_op->create) {
3862 error = -EACCES;
3863 goto out_dput;
3864 }
3865
3866 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3867 mode, open_flag & O_EXCL);
3868 if (error)
3869 goto out_dput;
3870 }
3871 if (unlikely(create_error) && !dentry->d_inode) {
3872 error = create_error;
3873 goto out_dput;
3874 }
3875 return dentry;
3876
3877 out_dput:
3878 dput(dentry);
3879 return ERR_PTR(error);
3880 }
3881
trailing_slashes(struct nameidata * nd)3882 static inline bool trailing_slashes(struct nameidata *nd)
3883 {
3884 return (bool)nd->last.name[nd->last.len];
3885 }
3886
lookup_fast_for_open(struct nameidata * nd,int open_flag)3887 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3888 {
3889 struct dentry *dentry;
3890
3891 if (open_flag & O_CREAT) {
3892 if (trailing_slashes(nd))
3893 return ERR_PTR(-EISDIR);
3894
3895 /* Don't bother on an O_EXCL create */
3896 if (open_flag & O_EXCL)
3897 return NULL;
3898 }
3899
3900 if (trailing_slashes(nd))
3901 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3902
3903 dentry = lookup_fast(nd);
3904 if (IS_ERR_OR_NULL(dentry))
3905 return dentry;
3906
3907 if (open_flag & O_CREAT) {
3908 /* Discard negative dentries. Need inode_lock to do the create */
3909 if (!dentry->d_inode) {
3910 if (!(nd->flags & LOOKUP_RCU))
3911 dput(dentry);
3912 dentry = NULL;
3913 }
3914 }
3915 return dentry;
3916 }
3917
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3918 static const char *open_last_lookups(struct nameidata *nd,
3919 struct file *file, const struct open_flags *op)
3920 {
3921 struct dentry *dir = nd->path.dentry;
3922 int open_flag = op->open_flag;
3923 bool got_write = false;
3924 struct dentry *dentry;
3925 const char *res;
3926
3927 nd->flags |= op->intent;
3928
3929 if (nd->last_type != LAST_NORM) {
3930 if (nd->depth)
3931 put_link(nd);
3932 return handle_dots(nd, nd->last_type);
3933 }
3934
3935 /* We _can_ be in RCU mode here */
3936 dentry = lookup_fast_for_open(nd, open_flag);
3937 if (IS_ERR(dentry))
3938 return ERR_CAST(dentry);
3939
3940 if (likely(dentry))
3941 goto finish_lookup;
3942
3943 if (!(open_flag & O_CREAT)) {
3944 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3945 return ERR_PTR(-ECHILD);
3946 } else {
3947 if (nd->flags & LOOKUP_RCU) {
3948 if (!try_to_unlazy(nd))
3949 return ERR_PTR(-ECHILD);
3950 }
3951 }
3952
3953 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3954 got_write = !mnt_want_write(nd->path.mnt);
3955 /*
3956 * do _not_ fail yet - we might not need that or fail with
3957 * a different error; let lookup_open() decide; we'll be
3958 * dropping this one anyway.
3959 */
3960 }
3961 if (open_flag & O_CREAT)
3962 inode_lock(dir->d_inode);
3963 else
3964 inode_lock_shared(dir->d_inode);
3965 dentry = lookup_open(nd, file, op, got_write);
3966 if (!IS_ERR(dentry)) {
3967 if (file->f_mode & FMODE_CREATED)
3968 fsnotify_create(dir->d_inode, dentry);
3969 if (file->f_mode & FMODE_OPENED)
3970 fsnotify_open(file);
3971 }
3972 if (open_flag & O_CREAT)
3973 inode_unlock(dir->d_inode);
3974 else
3975 inode_unlock_shared(dir->d_inode);
3976
3977 if (got_write)
3978 mnt_drop_write(nd->path.mnt);
3979
3980 if (IS_ERR(dentry))
3981 return ERR_CAST(dentry);
3982
3983 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3984 dput(nd->path.dentry);
3985 nd->path.dentry = dentry;
3986 return NULL;
3987 }
3988
3989 finish_lookup:
3990 if (nd->depth)
3991 put_link(nd);
3992 res = step_into(nd, WALK_TRAILING, dentry);
3993 if (unlikely(res))
3994 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3995 return res;
3996 }
3997
3998 /*
3999 * Handle the last step of open()
4000 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)4001 static int do_open(struct nameidata *nd,
4002 struct file *file, const struct open_flags *op)
4003 {
4004 struct mnt_idmap *idmap;
4005 int open_flag = op->open_flag;
4006 bool do_truncate;
4007 int acc_mode;
4008 int error;
4009
4010 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
4011 error = complete_walk(nd);
4012 if (error)
4013 return error;
4014 }
4015 if (!(file->f_mode & FMODE_CREATED))
4016 audit_inode(nd->name, nd->path.dentry, 0);
4017 idmap = mnt_idmap(nd->path.mnt);
4018 if (open_flag & O_CREAT) {
4019 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
4020 return -EEXIST;
4021 if (d_is_dir(nd->path.dentry))
4022 return -EISDIR;
4023 error = may_create_in_sticky(idmap, nd,
4024 d_backing_inode(nd->path.dentry));
4025 if (unlikely(error))
4026 return error;
4027 }
4028 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
4029 return -ENOTDIR;
4030
4031 do_truncate = false;
4032 acc_mode = op->acc_mode;
4033 if (file->f_mode & FMODE_CREATED) {
4034 /* Don't check for write permission, don't truncate */
4035 open_flag &= ~O_TRUNC;
4036 acc_mode = 0;
4037 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
4038 error = mnt_want_write(nd->path.mnt);
4039 if (error)
4040 return error;
4041 do_truncate = true;
4042 }
4043 error = may_open(idmap, &nd->path, acc_mode, open_flag);
4044 if (!error && !(file->f_mode & FMODE_OPENED))
4045 error = vfs_open(&nd->path, file);
4046 if (!error)
4047 error = security_file_post_open(file, op->acc_mode);
4048 if (!error && do_truncate)
4049 error = handle_truncate(idmap, file);
4050 if (unlikely(error > 0)) {
4051 WARN_ON(1);
4052 error = -EINVAL;
4053 }
4054 if (do_truncate)
4055 mnt_drop_write(nd->path.mnt);
4056 return error;
4057 }
4058
4059 /**
4060 * vfs_tmpfile - create tmpfile
4061 * @idmap: idmap of the mount the inode was found from
4062 * @parentpath: pointer to the path of the base directory
4063 * @file: file descriptor of the new tmpfile
4064 * @mode: mode of the new tmpfile
4065 *
4066 * Create a temporary file.
4067 *
4068 * If the inode has been found through an idmapped mount the idmap of
4069 * the vfsmount must be passed through @idmap. This function will then take
4070 * care to map the inode according to @idmap before checking permissions.
4071 * On non-idmapped mounts or if permission checking is to be performed on the
4072 * raw inode simply pass @nop_mnt_idmap.
4073 */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)4074 int vfs_tmpfile(struct mnt_idmap *idmap,
4075 const struct path *parentpath,
4076 struct file *file, umode_t mode)
4077 {
4078 struct dentry *child;
4079 struct inode *dir = d_inode(parentpath->dentry);
4080 struct inode *inode;
4081 int error;
4082 int open_flag = file->f_flags;
4083
4084 /* we want directory to be writable */
4085 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
4086 if (error)
4087 return error;
4088 if (!dir->i_op->tmpfile)
4089 return -EOPNOTSUPP;
4090 child = d_alloc(parentpath->dentry, &slash_name);
4091 if (unlikely(!child))
4092 return -ENOMEM;
4093 file->__f_path.mnt = parentpath->mnt;
4094 file->__f_path.dentry = child;
4095 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4096 error = dir->i_op->tmpfile(idmap, dir, file, mode);
4097 dput(child);
4098 if (file->f_mode & FMODE_OPENED)
4099 fsnotify_open(file);
4100 if (error)
4101 return error;
4102 /* Don't check for other permissions, the inode was just created */
4103 error = may_open(idmap, &file->f_path, 0, file->f_flags);
4104 if (error)
4105 return error;
4106 inode = file_inode(file);
4107 if (!(open_flag & O_EXCL)) {
4108 spin_lock(&inode->i_lock);
4109 inode_state_set(inode, I_LINKABLE);
4110 spin_unlock(&inode->i_lock);
4111 }
4112 security_inode_post_create_tmpfile(idmap, inode);
4113 return 0;
4114 }
4115
4116 /**
4117 * kernel_tmpfile_open - open a tmpfile for kernel internal use
4118 * @idmap: idmap of the mount the inode was found from
4119 * @parentpath: path of the base directory
4120 * @mode: mode of the new tmpfile
4121 * @open_flag: flags
4122 * @cred: credentials for open
4123 *
4124 * Create and open a temporary file. The file is not accounted in nr_files,
4125 * hence this is only for kernel internal use, and must not be installed into
4126 * file tables or such.
4127 */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)4128 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
4129 const struct path *parentpath,
4130 umode_t mode, int open_flag,
4131 const struct cred *cred)
4132 {
4133 struct file *file;
4134 int error;
4135
4136 file = alloc_empty_file_noaccount(open_flag, cred);
4137 if (IS_ERR(file))
4138 return file;
4139
4140 error = vfs_tmpfile(idmap, parentpath, file, mode);
4141 if (error) {
4142 fput(file);
4143 file = ERR_PTR(error);
4144 }
4145 return file;
4146 }
4147 EXPORT_SYMBOL(kernel_tmpfile_open);
4148
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)4149 static int do_tmpfile(struct nameidata *nd, unsigned flags,
4150 const struct open_flags *op,
4151 struct file *file)
4152 {
4153 struct path path;
4154 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
4155
4156 if (unlikely(error))
4157 return error;
4158 error = mnt_want_write(path.mnt);
4159 if (unlikely(error))
4160 goto out;
4161 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
4162 if (error)
4163 goto out2;
4164 audit_inode(nd->name, file->f_path.dentry, 0);
4165 out2:
4166 mnt_drop_write(path.mnt);
4167 out:
4168 path_put(&path);
4169 return error;
4170 }
4171
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)4172 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
4173 {
4174 struct path path;
4175 int error = path_lookupat(nd, flags, &path);
4176 if (!error) {
4177 audit_inode(nd->name, path.dentry, 0);
4178 error = vfs_open(&path, file);
4179 path_put(&path);
4180 }
4181 return error;
4182 }
4183
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)4184 static struct file *path_openat(struct nameidata *nd,
4185 const struct open_flags *op, unsigned flags)
4186 {
4187 struct file *file;
4188 int error;
4189
4190 file = alloc_empty_file(op->open_flag, current_cred());
4191 if (IS_ERR(file))
4192 return file;
4193
4194 if (unlikely(file->f_flags & __O_TMPFILE)) {
4195 error = do_tmpfile(nd, flags, op, file);
4196 } else if (unlikely(file->f_flags & O_PATH)) {
4197 error = do_o_path(nd, flags, file);
4198 } else {
4199 const char *s = path_init(nd, flags);
4200 while (!(error = link_path_walk(s, nd)) &&
4201 (s = open_last_lookups(nd, file, op)) != NULL)
4202 ;
4203 if (!error)
4204 error = do_open(nd, file, op);
4205 terminate_walk(nd);
4206 }
4207 if (likely(!error)) {
4208 if (likely(file->f_mode & FMODE_OPENED))
4209 return file;
4210 WARN_ON(1);
4211 error = -EINVAL;
4212 }
4213 fput_close(file);
4214 if (error == -EOPENSTALE) {
4215 if (flags & LOOKUP_RCU)
4216 error = -ECHILD;
4217 else
4218 error = -ESTALE;
4219 }
4220 return ERR_PTR(error);
4221 }
4222
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)4223 struct file *do_filp_open(int dfd, struct filename *pathname,
4224 const struct open_flags *op)
4225 {
4226 struct nameidata nd;
4227 int flags = op->lookup_flags;
4228 struct file *filp;
4229
4230 set_nameidata(&nd, dfd, pathname, NULL);
4231 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4232 if (unlikely(filp == ERR_PTR(-ECHILD)))
4233 filp = path_openat(&nd, op, flags);
4234 if (unlikely(filp == ERR_PTR(-ESTALE)))
4235 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4236 restore_nameidata();
4237 return filp;
4238 }
4239
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)4240 struct file *do_file_open_root(const struct path *root,
4241 const char *name, const struct open_flags *op)
4242 {
4243 struct nameidata nd;
4244 struct file *file;
4245 struct filename *filename;
4246 int flags = op->lookup_flags;
4247
4248 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4249 return ERR_PTR(-ELOOP);
4250
4251 filename = getname_kernel(name);
4252 if (IS_ERR(filename))
4253 return ERR_CAST(filename);
4254
4255 set_nameidata(&nd, -1, filename, root);
4256 file = path_openat(&nd, op, flags | LOOKUP_RCU);
4257 if (unlikely(file == ERR_PTR(-ECHILD)))
4258 file = path_openat(&nd, op, flags);
4259 if (unlikely(file == ERR_PTR(-ESTALE)))
4260 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4261 restore_nameidata();
4262 putname(filename);
4263 return file;
4264 }
4265
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)4266 static struct dentry *filename_create(int dfd, struct filename *name,
4267 struct path *path, unsigned int lookup_flags)
4268 {
4269 struct dentry *dentry = ERR_PTR(-EEXIST);
4270 struct qstr last;
4271 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4272 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4273 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4274 int type;
4275 int error;
4276
4277 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4278 if (error)
4279 return ERR_PTR(error);
4280
4281 /*
4282 * Yucky last component or no last component at all?
4283 * (foo/., foo/.., /////)
4284 */
4285 if (unlikely(type != LAST_NORM))
4286 goto out;
4287
4288 /* don't fail immediately if it's r/o, at least try to report other errors */
4289 error = mnt_want_write(path->mnt);
4290 /*
4291 * Do the final lookup. Suppress 'create' if there is a trailing
4292 * '/', and a directory wasn't requested.
4293 */
4294 if (last.name[last.len] && !want_dir)
4295 create_flags &= ~LOOKUP_CREATE;
4296 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4297 dentry = lookup_one_qstr_excl(&last, path->dentry,
4298 reval_flag | create_flags);
4299 if (IS_ERR(dentry))
4300 goto unlock;
4301
4302 if (unlikely(error))
4303 goto fail;
4304
4305 return dentry;
4306 fail:
4307 dput(dentry);
4308 dentry = ERR_PTR(error);
4309 unlock:
4310 inode_unlock(path->dentry->d_inode);
4311 if (!error)
4312 mnt_drop_write(path->mnt);
4313 out:
4314 path_put(path);
4315 return dentry;
4316 }
4317
start_creating_path(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4318 struct dentry *start_creating_path(int dfd, const char *pathname,
4319 struct path *path, unsigned int lookup_flags)
4320 {
4321 struct filename *filename = getname_kernel(pathname);
4322 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4323
4324 putname(filename);
4325 return res;
4326 }
4327 EXPORT_SYMBOL(start_creating_path);
4328
end_creating_path(const struct path * path,struct dentry * dentry)4329 void end_creating_path(const struct path *path, struct dentry *dentry)
4330 {
4331 if (!IS_ERR(dentry))
4332 dput(dentry);
4333 inode_unlock(path->dentry->d_inode);
4334 mnt_drop_write(path->mnt);
4335 path_put(path);
4336 }
4337 EXPORT_SYMBOL(end_creating_path);
4338
start_creating_user_path(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4339 inline struct dentry *start_creating_user_path(
4340 int dfd, const char __user *pathname,
4341 struct path *path, unsigned int lookup_flags)
4342 {
4343 struct filename *filename = getname(pathname);
4344 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4345
4346 putname(filename);
4347 return res;
4348 }
4349 EXPORT_SYMBOL(start_creating_user_path);
4350
4351 /**
4352 * vfs_mknod - create device node or file
4353 * @idmap: idmap of the mount the inode was found from
4354 * @dir: inode of the parent directory
4355 * @dentry: dentry of the child device node
4356 * @mode: mode of the child device node
4357 * @dev: device number of device to create
4358 *
4359 * Create a device node or file.
4360 *
4361 * If the inode has been found through an idmapped mount the idmap of
4362 * the vfsmount must be passed through @idmap. This function will then take
4363 * care to map the inode according to @idmap before checking permissions.
4364 * On non-idmapped mounts or if permission checking is to be performed on the
4365 * raw inode simply pass @nop_mnt_idmap.
4366 */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)4367 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4368 struct dentry *dentry, umode_t mode, dev_t dev)
4369 {
4370 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4371 int error = may_create(idmap, dir, dentry);
4372
4373 if (error)
4374 return error;
4375
4376 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4377 !capable(CAP_MKNOD))
4378 return -EPERM;
4379
4380 if (!dir->i_op->mknod)
4381 return -EPERM;
4382
4383 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4384 error = devcgroup_inode_mknod(mode, dev);
4385 if (error)
4386 return error;
4387
4388 error = security_inode_mknod(dir, dentry, mode, dev);
4389 if (error)
4390 return error;
4391
4392 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4393 if (!error)
4394 fsnotify_create(dir, dentry);
4395 return error;
4396 }
4397 EXPORT_SYMBOL(vfs_mknod);
4398
may_mknod(umode_t mode)4399 static int may_mknod(umode_t mode)
4400 {
4401 switch (mode & S_IFMT) {
4402 case S_IFREG:
4403 case S_IFCHR:
4404 case S_IFBLK:
4405 case S_IFIFO:
4406 case S_IFSOCK:
4407 case 0: /* zero mode translates to S_IFREG */
4408 return 0;
4409 case S_IFDIR:
4410 return -EPERM;
4411 default:
4412 return -EINVAL;
4413 }
4414 }
4415
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4416 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4417 unsigned int dev)
4418 {
4419 struct mnt_idmap *idmap;
4420 struct dentry *dentry;
4421 struct path path;
4422 int error;
4423 unsigned int lookup_flags = 0;
4424
4425 error = may_mknod(mode);
4426 if (error)
4427 goto out1;
4428 retry:
4429 dentry = filename_create(dfd, name, &path, lookup_flags);
4430 error = PTR_ERR(dentry);
4431 if (IS_ERR(dentry))
4432 goto out1;
4433
4434 error = security_path_mknod(&path, dentry,
4435 mode_strip_umask(path.dentry->d_inode, mode), dev);
4436 if (error)
4437 goto out2;
4438
4439 idmap = mnt_idmap(path.mnt);
4440 switch (mode & S_IFMT) {
4441 case 0: case S_IFREG:
4442 error = vfs_create(idmap, path.dentry->d_inode,
4443 dentry, mode, true);
4444 if (!error)
4445 security_path_post_mknod(idmap, dentry);
4446 break;
4447 case S_IFCHR: case S_IFBLK:
4448 error = vfs_mknod(idmap, path.dentry->d_inode,
4449 dentry, mode, new_decode_dev(dev));
4450 break;
4451 case S_IFIFO: case S_IFSOCK:
4452 error = vfs_mknod(idmap, path.dentry->d_inode,
4453 dentry, mode, 0);
4454 break;
4455 }
4456 out2:
4457 end_creating_path(&path, dentry);
4458 if (retry_estale(error, lookup_flags)) {
4459 lookup_flags |= LOOKUP_REVAL;
4460 goto retry;
4461 }
4462 out1:
4463 putname(name);
4464 return error;
4465 }
4466
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4467 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4468 unsigned int, dev)
4469 {
4470 return do_mknodat(dfd, getname(filename), mode, dev);
4471 }
4472
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4473 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4474 {
4475 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4476 }
4477
4478 /**
4479 * vfs_mkdir - create directory returning correct dentry if possible
4480 * @idmap: idmap of the mount the inode was found from
4481 * @dir: inode of the parent directory
4482 * @dentry: dentry of the child directory
4483 * @mode: mode of the child directory
4484 *
4485 * Create a directory.
4486 *
4487 * If the inode has been found through an idmapped mount the idmap of
4488 * the vfsmount must be passed through @idmap. This function will then take
4489 * care to map the inode according to @idmap before checking permissions.
4490 * On non-idmapped mounts or if permission checking is to be performed on the
4491 * raw inode simply pass @nop_mnt_idmap.
4492 *
4493 * In the event that the filesystem does not use the *@dentry but leaves it
4494 * negative or unhashes it and possibly splices a different one returning it,
4495 * the original dentry is dput() and the alternate is returned.
4496 *
4497 * In case of an error the dentry is dput() and an ERR_PTR() is returned.
4498 */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4499 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4500 struct dentry *dentry, umode_t mode)
4501 {
4502 int error;
4503 unsigned max_links = dir->i_sb->s_max_links;
4504 struct dentry *de;
4505
4506 error = may_create(idmap, dir, dentry);
4507 if (error)
4508 goto err;
4509
4510 error = -EPERM;
4511 if (!dir->i_op->mkdir)
4512 goto err;
4513
4514 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4515 error = security_inode_mkdir(dir, dentry, mode);
4516 if (error)
4517 goto err;
4518
4519 error = -EMLINK;
4520 if (max_links && dir->i_nlink >= max_links)
4521 goto err;
4522
4523 de = dir->i_op->mkdir(idmap, dir, dentry, mode);
4524 error = PTR_ERR(de);
4525 if (IS_ERR(de))
4526 goto err;
4527 if (de) {
4528 dput(dentry);
4529 dentry = de;
4530 }
4531 fsnotify_mkdir(dir, dentry);
4532 return dentry;
4533
4534 err:
4535 dput(dentry);
4536 return ERR_PTR(error);
4537 }
4538 EXPORT_SYMBOL(vfs_mkdir);
4539
do_mkdirat(int dfd,struct filename * name,umode_t mode)4540 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4541 {
4542 struct dentry *dentry;
4543 struct path path;
4544 int error;
4545 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4546
4547 retry:
4548 dentry = filename_create(dfd, name, &path, lookup_flags);
4549 error = PTR_ERR(dentry);
4550 if (IS_ERR(dentry))
4551 goto out_putname;
4552
4553 error = security_path_mkdir(&path, dentry,
4554 mode_strip_umask(path.dentry->d_inode, mode));
4555 if (!error) {
4556 dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4557 dentry, mode);
4558 if (IS_ERR(dentry))
4559 error = PTR_ERR(dentry);
4560 }
4561 end_creating_path(&path, dentry);
4562 if (retry_estale(error, lookup_flags)) {
4563 lookup_flags |= LOOKUP_REVAL;
4564 goto retry;
4565 }
4566 out_putname:
4567 putname(name);
4568 return error;
4569 }
4570
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4571 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4572 {
4573 return do_mkdirat(dfd, getname(pathname), mode);
4574 }
4575
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4576 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4577 {
4578 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4579 }
4580
4581 /**
4582 * vfs_rmdir - remove directory
4583 * @idmap: idmap of the mount the inode was found from
4584 * @dir: inode of the parent directory
4585 * @dentry: dentry of the child directory
4586 *
4587 * Remove a directory.
4588 *
4589 * If the inode has been found through an idmapped mount the idmap of
4590 * the vfsmount must be passed through @idmap. This function will then take
4591 * care to map the inode according to @idmap before checking permissions.
4592 * On non-idmapped mounts or if permission checking is to be performed on the
4593 * raw inode simply pass @nop_mnt_idmap.
4594 */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4595 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4596 struct dentry *dentry)
4597 {
4598 int error = may_delete(idmap, dir, dentry, 1);
4599
4600 if (error)
4601 return error;
4602
4603 if (!dir->i_op->rmdir)
4604 return -EPERM;
4605
4606 dget(dentry);
4607 inode_lock(dentry->d_inode);
4608
4609 error = -EBUSY;
4610 if (is_local_mountpoint(dentry) ||
4611 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4612 goto out;
4613
4614 error = security_inode_rmdir(dir, dentry);
4615 if (error)
4616 goto out;
4617
4618 error = dir->i_op->rmdir(dir, dentry);
4619 if (error)
4620 goto out;
4621
4622 shrink_dcache_parent(dentry);
4623 dentry->d_inode->i_flags |= S_DEAD;
4624 dont_mount(dentry);
4625 detach_mounts(dentry);
4626
4627 out:
4628 inode_unlock(dentry->d_inode);
4629 dput(dentry);
4630 if (!error)
4631 d_delete_notify(dir, dentry);
4632 return error;
4633 }
4634 EXPORT_SYMBOL(vfs_rmdir);
4635
do_rmdir(int dfd,struct filename * name)4636 int do_rmdir(int dfd, struct filename *name)
4637 {
4638 int error;
4639 struct dentry *dentry;
4640 struct path path;
4641 struct qstr last;
4642 int type;
4643 unsigned int lookup_flags = 0;
4644 retry:
4645 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4646 if (error)
4647 goto exit1;
4648
4649 switch (type) {
4650 case LAST_DOTDOT:
4651 error = -ENOTEMPTY;
4652 goto exit2;
4653 case LAST_DOT:
4654 error = -EINVAL;
4655 goto exit2;
4656 case LAST_ROOT:
4657 error = -EBUSY;
4658 goto exit2;
4659 }
4660
4661 error = mnt_want_write(path.mnt);
4662 if (error)
4663 goto exit2;
4664
4665 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4666 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4667 error = PTR_ERR(dentry);
4668 if (IS_ERR(dentry))
4669 goto exit3;
4670 error = security_path_rmdir(&path, dentry);
4671 if (error)
4672 goto exit4;
4673 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4674 exit4:
4675 dput(dentry);
4676 exit3:
4677 inode_unlock(path.dentry->d_inode);
4678 mnt_drop_write(path.mnt);
4679 exit2:
4680 path_put(&path);
4681 if (retry_estale(error, lookup_flags)) {
4682 lookup_flags |= LOOKUP_REVAL;
4683 goto retry;
4684 }
4685 exit1:
4686 putname(name);
4687 return error;
4688 }
4689
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4690 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4691 {
4692 return do_rmdir(AT_FDCWD, getname(pathname));
4693 }
4694
4695 /**
4696 * vfs_unlink - unlink a filesystem object
4697 * @idmap: idmap of the mount the inode was found from
4698 * @dir: parent directory
4699 * @dentry: victim
4700 * @delegated_inode: returns victim inode, if the inode is delegated.
4701 *
4702 * The caller must hold dir->i_rwsem exclusively.
4703 *
4704 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4705 * return a reference to the inode in delegated_inode. The caller
4706 * should then break the delegation on that inode and retry. Because
4707 * breaking a delegation may take a long time, the caller should drop
4708 * dir->i_rwsem before doing so.
4709 *
4710 * Alternatively, a caller may pass NULL for delegated_inode. This may
4711 * be appropriate for callers that expect the underlying filesystem not
4712 * to be NFS exported.
4713 *
4714 * If the inode has been found through an idmapped mount the idmap of
4715 * the vfsmount must be passed through @idmap. This function will then take
4716 * care to map the inode according to @idmap before checking permissions.
4717 * On non-idmapped mounts or if permission checking is to be performed on the
4718 * raw inode simply pass @nop_mnt_idmap.
4719 */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4720 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4721 struct dentry *dentry, struct inode **delegated_inode)
4722 {
4723 struct inode *target = dentry->d_inode;
4724 int error = may_delete(idmap, dir, dentry, 0);
4725
4726 if (error)
4727 return error;
4728
4729 if (!dir->i_op->unlink)
4730 return -EPERM;
4731
4732 inode_lock(target);
4733 if (IS_SWAPFILE(target))
4734 error = -EPERM;
4735 else if (is_local_mountpoint(dentry))
4736 error = -EBUSY;
4737 else {
4738 error = security_inode_unlink(dir, dentry);
4739 if (!error) {
4740 error = try_break_deleg(target, delegated_inode);
4741 if (error)
4742 goto out;
4743 error = dir->i_op->unlink(dir, dentry);
4744 if (!error) {
4745 dont_mount(dentry);
4746 detach_mounts(dentry);
4747 }
4748 }
4749 }
4750 out:
4751 inode_unlock(target);
4752
4753 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4754 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4755 fsnotify_unlink(dir, dentry);
4756 } else if (!error) {
4757 fsnotify_link_count(target);
4758 d_delete_notify(dir, dentry);
4759 }
4760
4761 return error;
4762 }
4763 EXPORT_SYMBOL(vfs_unlink);
4764
4765 /*
4766 * Make sure that the actual truncation of the file will occur outside its
4767 * directory's i_rwsem. Truncate can take a long time if there is a lot of
4768 * writeout happening, and we don't want to prevent access to the directory
4769 * while waiting on the I/O.
4770 */
do_unlinkat(int dfd,struct filename * name)4771 int do_unlinkat(int dfd, struct filename *name)
4772 {
4773 int error;
4774 struct dentry *dentry;
4775 struct path path;
4776 struct qstr last;
4777 int type;
4778 struct inode *inode = NULL;
4779 struct inode *delegated_inode = NULL;
4780 unsigned int lookup_flags = 0;
4781 retry:
4782 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4783 if (error)
4784 goto exit1;
4785
4786 error = -EISDIR;
4787 if (type != LAST_NORM)
4788 goto exit2;
4789
4790 error = mnt_want_write(path.mnt);
4791 if (error)
4792 goto exit2;
4793 retry_deleg:
4794 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4795 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4796 error = PTR_ERR(dentry);
4797 if (!IS_ERR(dentry)) {
4798
4799 /* Why not before? Because we want correct error value */
4800 if (last.name[last.len])
4801 goto slashes;
4802 inode = dentry->d_inode;
4803 ihold(inode);
4804 error = security_path_unlink(&path, dentry);
4805 if (error)
4806 goto exit3;
4807 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4808 dentry, &delegated_inode);
4809 exit3:
4810 dput(dentry);
4811 }
4812 inode_unlock(path.dentry->d_inode);
4813 if (inode)
4814 iput(inode); /* truncate the inode here */
4815 inode = NULL;
4816 if (delegated_inode) {
4817 error = break_deleg_wait(&delegated_inode);
4818 if (!error)
4819 goto retry_deleg;
4820 }
4821 mnt_drop_write(path.mnt);
4822 exit2:
4823 path_put(&path);
4824 if (retry_estale(error, lookup_flags)) {
4825 lookup_flags |= LOOKUP_REVAL;
4826 inode = NULL;
4827 goto retry;
4828 }
4829 exit1:
4830 putname(name);
4831 return error;
4832
4833 slashes:
4834 if (d_is_dir(dentry))
4835 error = -EISDIR;
4836 else
4837 error = -ENOTDIR;
4838 goto exit3;
4839 }
4840
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4841 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4842 {
4843 if ((flag & ~AT_REMOVEDIR) != 0)
4844 return -EINVAL;
4845
4846 if (flag & AT_REMOVEDIR)
4847 return do_rmdir(dfd, getname(pathname));
4848 return do_unlinkat(dfd, getname(pathname));
4849 }
4850
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4851 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4852 {
4853 return do_unlinkat(AT_FDCWD, getname(pathname));
4854 }
4855
4856 /**
4857 * vfs_symlink - create symlink
4858 * @idmap: idmap of the mount the inode was found from
4859 * @dir: inode of the parent directory
4860 * @dentry: dentry of the child symlink file
4861 * @oldname: name of the file to link to
4862 *
4863 * Create a symlink.
4864 *
4865 * If the inode has been found through an idmapped mount the idmap of
4866 * the vfsmount must be passed through @idmap. This function will then take
4867 * care to map the inode according to @idmap before checking permissions.
4868 * On non-idmapped mounts or if permission checking is to be performed on the
4869 * raw inode simply pass @nop_mnt_idmap.
4870 */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4871 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4872 struct dentry *dentry, const char *oldname)
4873 {
4874 int error;
4875
4876 error = may_create(idmap, dir, dentry);
4877 if (error)
4878 return error;
4879
4880 if (!dir->i_op->symlink)
4881 return -EPERM;
4882
4883 error = security_inode_symlink(dir, dentry, oldname);
4884 if (error)
4885 return error;
4886
4887 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4888 if (!error)
4889 fsnotify_create(dir, dentry);
4890 return error;
4891 }
4892 EXPORT_SYMBOL(vfs_symlink);
4893
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4894 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4895 {
4896 int error;
4897 struct dentry *dentry;
4898 struct path path;
4899 unsigned int lookup_flags = 0;
4900
4901 if (IS_ERR(from)) {
4902 error = PTR_ERR(from);
4903 goto out_putnames;
4904 }
4905 retry:
4906 dentry = filename_create(newdfd, to, &path, lookup_flags);
4907 error = PTR_ERR(dentry);
4908 if (IS_ERR(dentry))
4909 goto out_putnames;
4910
4911 error = security_path_symlink(&path, dentry, from->name);
4912 if (!error)
4913 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4914 dentry, from->name);
4915 end_creating_path(&path, dentry);
4916 if (retry_estale(error, lookup_flags)) {
4917 lookup_flags |= LOOKUP_REVAL;
4918 goto retry;
4919 }
4920 out_putnames:
4921 putname(to);
4922 putname(from);
4923 return error;
4924 }
4925
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4926 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4927 int, newdfd, const char __user *, newname)
4928 {
4929 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4930 }
4931
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4932 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4933 {
4934 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4935 }
4936
4937 /**
4938 * vfs_link - create a new link
4939 * @old_dentry: object to be linked
4940 * @idmap: idmap of the mount
4941 * @dir: new parent
4942 * @new_dentry: where to create the new link
4943 * @delegated_inode: returns inode needing a delegation break
4944 *
4945 * The caller must hold dir->i_rwsem exclusively.
4946 *
4947 * If vfs_link discovers a delegation on the to-be-linked file in need
4948 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4949 * inode in delegated_inode. The caller should then break the delegation
4950 * and retry. Because breaking a delegation may take a long time, the
4951 * caller should drop the i_rwsem before doing so.
4952 *
4953 * Alternatively, a caller may pass NULL for delegated_inode. This may
4954 * be appropriate for callers that expect the underlying filesystem not
4955 * to be NFS exported.
4956 *
4957 * If the inode has been found through an idmapped mount the idmap of
4958 * the vfsmount must be passed through @idmap. This function will then take
4959 * care to map the inode according to @idmap before checking permissions.
4960 * On non-idmapped mounts or if permission checking is to be performed on the
4961 * raw inode simply pass @nop_mnt_idmap.
4962 */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4963 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4964 struct inode *dir, struct dentry *new_dentry,
4965 struct inode **delegated_inode)
4966 {
4967 struct inode *inode = old_dentry->d_inode;
4968 unsigned max_links = dir->i_sb->s_max_links;
4969 int error;
4970
4971 if (!inode)
4972 return -ENOENT;
4973
4974 error = may_create(idmap, dir, new_dentry);
4975 if (error)
4976 return error;
4977
4978 if (dir->i_sb != inode->i_sb)
4979 return -EXDEV;
4980
4981 /*
4982 * A link to an append-only or immutable file cannot be created.
4983 */
4984 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4985 return -EPERM;
4986 /*
4987 * Updating the link count will likely cause i_uid and i_gid to
4988 * be written back improperly if their true value is unknown to
4989 * the vfs.
4990 */
4991 if (HAS_UNMAPPED_ID(idmap, inode))
4992 return -EPERM;
4993 if (!dir->i_op->link)
4994 return -EPERM;
4995 if (S_ISDIR(inode->i_mode))
4996 return -EPERM;
4997
4998 error = security_inode_link(old_dentry, dir, new_dentry);
4999 if (error)
5000 return error;
5001
5002 inode_lock(inode);
5003 /* Make sure we don't allow creating hardlink to an unlinked file */
5004 if (inode->i_nlink == 0 && !(inode_state_read_once(inode) & I_LINKABLE))
5005 error = -ENOENT;
5006 else if (max_links && inode->i_nlink >= max_links)
5007 error = -EMLINK;
5008 else {
5009 error = try_break_deleg(inode, delegated_inode);
5010 if (!error)
5011 error = dir->i_op->link(old_dentry, dir, new_dentry);
5012 }
5013
5014 if (!error && (inode_state_read_once(inode) & I_LINKABLE)) {
5015 spin_lock(&inode->i_lock);
5016 inode_state_clear(inode, I_LINKABLE);
5017 spin_unlock(&inode->i_lock);
5018 }
5019 inode_unlock(inode);
5020 if (!error)
5021 fsnotify_link(dir, inode, new_dentry);
5022 return error;
5023 }
5024 EXPORT_SYMBOL(vfs_link);
5025
5026 /*
5027 * Hardlinks are often used in delicate situations. We avoid
5028 * security-related surprises by not following symlinks on the
5029 * newname. --KAB
5030 *
5031 * We don't follow them on the oldname either to be compatible
5032 * with linux 2.0, and to avoid hard-linking to directories
5033 * and other special files. --ADM
5034 */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)5035 int do_linkat(int olddfd, struct filename *old, int newdfd,
5036 struct filename *new, int flags)
5037 {
5038 struct mnt_idmap *idmap;
5039 struct dentry *new_dentry;
5040 struct path old_path, new_path;
5041 struct inode *delegated_inode = NULL;
5042 int how = 0;
5043 int error;
5044
5045 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
5046 error = -EINVAL;
5047 goto out_putnames;
5048 }
5049 /*
5050 * To use null names we require CAP_DAC_READ_SEARCH or
5051 * that the open-time creds of the dfd matches current.
5052 * This ensures that not everyone will be able to create
5053 * a hardlink using the passed file descriptor.
5054 */
5055 if (flags & AT_EMPTY_PATH)
5056 how |= LOOKUP_LINKAT_EMPTY;
5057
5058 if (flags & AT_SYMLINK_FOLLOW)
5059 how |= LOOKUP_FOLLOW;
5060 retry:
5061 error = filename_lookup(olddfd, old, how, &old_path, NULL);
5062 if (error)
5063 goto out_putnames;
5064
5065 new_dentry = filename_create(newdfd, new, &new_path,
5066 (how & LOOKUP_REVAL));
5067 error = PTR_ERR(new_dentry);
5068 if (IS_ERR(new_dentry))
5069 goto out_putpath;
5070
5071 error = -EXDEV;
5072 if (old_path.mnt != new_path.mnt)
5073 goto out_dput;
5074 idmap = mnt_idmap(new_path.mnt);
5075 error = may_linkat(idmap, &old_path);
5076 if (unlikely(error))
5077 goto out_dput;
5078 error = security_path_link(old_path.dentry, &new_path, new_dentry);
5079 if (error)
5080 goto out_dput;
5081 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
5082 new_dentry, &delegated_inode);
5083 out_dput:
5084 end_creating_path(&new_path, new_dentry);
5085 if (delegated_inode) {
5086 error = break_deleg_wait(&delegated_inode);
5087 if (!error) {
5088 path_put(&old_path);
5089 goto retry;
5090 }
5091 }
5092 if (retry_estale(error, how)) {
5093 path_put(&old_path);
5094 how |= LOOKUP_REVAL;
5095 goto retry;
5096 }
5097 out_putpath:
5098 path_put(&old_path);
5099 out_putnames:
5100 putname(old);
5101 putname(new);
5102
5103 return error;
5104 }
5105
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)5106 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
5107 int, newdfd, const char __user *, newname, int, flags)
5108 {
5109 return do_linkat(olddfd, getname_uflags(oldname, flags),
5110 newdfd, getname(newname), flags);
5111 }
5112
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)5113 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
5114 {
5115 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
5116 }
5117
5118 /**
5119 * vfs_rename - rename a filesystem object
5120 * @rd: pointer to &struct renamedata info
5121 *
5122 * The caller must hold multiple mutexes--see lock_rename()).
5123 *
5124 * If vfs_rename discovers a delegation in need of breaking at either
5125 * the source or destination, it will return -EWOULDBLOCK and return a
5126 * reference to the inode in delegated_inode. The caller should then
5127 * break the delegation and retry. Because breaking a delegation may
5128 * take a long time, the caller should drop all locks before doing
5129 * so.
5130 *
5131 * Alternatively, a caller may pass NULL for delegated_inode. This may
5132 * be appropriate for callers that expect the underlying filesystem not
5133 * to be NFS exported.
5134 *
5135 * The worst of all namespace operations - renaming directory. "Perverted"
5136 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
5137 * Problems:
5138 *
5139 * a) we can get into loop creation.
5140 * b) race potential - two innocent renames can create a loop together.
5141 * That's where 4.4BSD screws up. Current fix: serialization on
5142 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
5143 * story.
5144 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
5145 * and source (if it's a non-directory or a subdirectory that moves to
5146 * different parent).
5147 * And that - after we got ->i_rwsem on parents (until then we don't know
5148 * whether the target exists). Solution: try to be smart with locking
5149 * order for inodes. We rely on the fact that tree topology may change
5150 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
5151 * move will be locked. Thus we can rank directories by the tree
5152 * (ancestors first) and rank all non-directories after them.
5153 * That works since everybody except rename does "lock parent, lookup,
5154 * lock child" and rename is under ->s_vfs_rename_mutex.
5155 * HOWEVER, it relies on the assumption that any object with ->lookup()
5156 * has no more than 1 dentry. If "hybrid" objects will ever appear,
5157 * we'd better make sure that there's no link(2) for them.
5158 * d) conversion from fhandle to dentry may come in the wrong moment - when
5159 * we are removing the target. Solution: we will have to grab ->i_rwsem
5160 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
5161 * ->i_rwsem on parents, which works but leads to some truly excessive
5162 * locking].
5163 */
vfs_rename(struct renamedata * rd)5164 int vfs_rename(struct renamedata *rd)
5165 {
5166 int error;
5167 struct inode *old_dir = d_inode(rd->old_parent);
5168 struct inode *new_dir = d_inode(rd->new_parent);
5169 struct dentry *old_dentry = rd->old_dentry;
5170 struct dentry *new_dentry = rd->new_dentry;
5171 struct inode **delegated_inode = rd->delegated_inode;
5172 unsigned int flags = rd->flags;
5173 bool is_dir = d_is_dir(old_dentry);
5174 struct inode *source = old_dentry->d_inode;
5175 struct inode *target = new_dentry->d_inode;
5176 bool new_is_dir = false;
5177 unsigned max_links = new_dir->i_sb->s_max_links;
5178 struct name_snapshot old_name;
5179 bool lock_old_subdir, lock_new_subdir;
5180
5181 if (source == target)
5182 return 0;
5183
5184 error = may_delete(rd->mnt_idmap, old_dir, old_dentry, is_dir);
5185 if (error)
5186 return error;
5187
5188 if (!target) {
5189 error = may_create(rd->mnt_idmap, new_dir, new_dentry);
5190 } else {
5191 new_is_dir = d_is_dir(new_dentry);
5192
5193 if (!(flags & RENAME_EXCHANGE))
5194 error = may_delete(rd->mnt_idmap, new_dir,
5195 new_dentry, is_dir);
5196 else
5197 error = may_delete(rd->mnt_idmap, new_dir,
5198 new_dentry, new_is_dir);
5199 }
5200 if (error)
5201 return error;
5202
5203 if (!old_dir->i_op->rename)
5204 return -EPERM;
5205
5206 /*
5207 * If we are going to change the parent - check write permissions,
5208 * we'll need to flip '..'.
5209 */
5210 if (new_dir != old_dir) {
5211 if (is_dir) {
5212 error = inode_permission(rd->mnt_idmap, source,
5213 MAY_WRITE);
5214 if (error)
5215 return error;
5216 }
5217 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5218 error = inode_permission(rd->mnt_idmap, target,
5219 MAY_WRITE);
5220 if (error)
5221 return error;
5222 }
5223 }
5224
5225 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5226 flags);
5227 if (error)
5228 return error;
5229
5230 take_dentry_name_snapshot(&old_name, old_dentry);
5231 dget(new_dentry);
5232 /*
5233 * Lock children.
5234 * The source subdirectory needs to be locked on cross-directory
5235 * rename or cross-directory exchange since its parent changes.
5236 * The target subdirectory needs to be locked on cross-directory
5237 * exchange due to parent change and on any rename due to becoming
5238 * a victim.
5239 * Non-directories need locking in all cases (for NFS reasons);
5240 * they get locked after any subdirectories (in inode address order).
5241 *
5242 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5243 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5244 */
5245 lock_old_subdir = new_dir != old_dir;
5246 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5247 if (is_dir) {
5248 if (lock_old_subdir)
5249 inode_lock_nested(source, I_MUTEX_CHILD);
5250 if (target && (!new_is_dir || lock_new_subdir))
5251 inode_lock(target);
5252 } else if (new_is_dir) {
5253 if (lock_new_subdir)
5254 inode_lock_nested(target, I_MUTEX_CHILD);
5255 inode_lock(source);
5256 } else {
5257 lock_two_nondirectories(source, target);
5258 }
5259
5260 error = -EPERM;
5261 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5262 goto out;
5263
5264 error = -EBUSY;
5265 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5266 goto out;
5267
5268 if (max_links && new_dir != old_dir) {
5269 error = -EMLINK;
5270 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5271 goto out;
5272 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5273 old_dir->i_nlink >= max_links)
5274 goto out;
5275 }
5276 if (!is_dir) {
5277 error = try_break_deleg(source, delegated_inode);
5278 if (error)
5279 goto out;
5280 }
5281 if (target && !new_is_dir) {
5282 error = try_break_deleg(target, delegated_inode);
5283 if (error)
5284 goto out;
5285 }
5286 error = old_dir->i_op->rename(rd->mnt_idmap, old_dir, old_dentry,
5287 new_dir, new_dentry, flags);
5288 if (error)
5289 goto out;
5290
5291 if (!(flags & RENAME_EXCHANGE) && target) {
5292 if (is_dir) {
5293 shrink_dcache_parent(new_dentry);
5294 target->i_flags |= S_DEAD;
5295 }
5296 dont_mount(new_dentry);
5297 detach_mounts(new_dentry);
5298 }
5299 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5300 if (!(flags & RENAME_EXCHANGE))
5301 d_move(old_dentry, new_dentry);
5302 else
5303 d_exchange(old_dentry, new_dentry);
5304 }
5305 out:
5306 if (!is_dir || lock_old_subdir)
5307 inode_unlock(source);
5308 if (target && (!new_is_dir || lock_new_subdir))
5309 inode_unlock(target);
5310 dput(new_dentry);
5311 if (!error) {
5312 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5313 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5314 if (flags & RENAME_EXCHANGE) {
5315 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5316 new_is_dir, NULL, new_dentry);
5317 }
5318 }
5319 release_dentry_name_snapshot(&old_name);
5320
5321 return error;
5322 }
5323 EXPORT_SYMBOL(vfs_rename);
5324
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5325 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5326 struct filename *to, unsigned int flags)
5327 {
5328 struct renamedata rd;
5329 struct dentry *old_dentry, *new_dentry;
5330 struct dentry *trap;
5331 struct path old_path, new_path;
5332 struct qstr old_last, new_last;
5333 int old_type, new_type;
5334 struct inode *delegated_inode = NULL;
5335 unsigned int lookup_flags = 0, target_flags =
5336 LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
5337 bool should_retry = false;
5338 int error = -EINVAL;
5339
5340 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5341 goto put_names;
5342
5343 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5344 (flags & RENAME_EXCHANGE))
5345 goto put_names;
5346
5347 if (flags & RENAME_EXCHANGE)
5348 target_flags = 0;
5349 if (flags & RENAME_NOREPLACE)
5350 target_flags |= LOOKUP_EXCL;
5351
5352 retry:
5353 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5354 &old_last, &old_type);
5355 if (error)
5356 goto put_names;
5357
5358 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5359 &new_type);
5360 if (error)
5361 goto exit1;
5362
5363 error = -EXDEV;
5364 if (old_path.mnt != new_path.mnt)
5365 goto exit2;
5366
5367 error = -EBUSY;
5368 if (old_type != LAST_NORM)
5369 goto exit2;
5370
5371 if (flags & RENAME_NOREPLACE)
5372 error = -EEXIST;
5373 if (new_type != LAST_NORM)
5374 goto exit2;
5375
5376 error = mnt_want_write(old_path.mnt);
5377 if (error)
5378 goto exit2;
5379
5380 retry_deleg:
5381 trap = lock_rename(new_path.dentry, old_path.dentry);
5382 if (IS_ERR(trap)) {
5383 error = PTR_ERR(trap);
5384 goto exit_lock_rename;
5385 }
5386
5387 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5388 lookup_flags);
5389 error = PTR_ERR(old_dentry);
5390 if (IS_ERR(old_dentry))
5391 goto exit3;
5392 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5393 lookup_flags | target_flags);
5394 error = PTR_ERR(new_dentry);
5395 if (IS_ERR(new_dentry))
5396 goto exit4;
5397 if (flags & RENAME_EXCHANGE) {
5398 if (!d_is_dir(new_dentry)) {
5399 error = -ENOTDIR;
5400 if (new_last.name[new_last.len])
5401 goto exit5;
5402 }
5403 }
5404 /* unless the source is a directory trailing slashes give -ENOTDIR */
5405 if (!d_is_dir(old_dentry)) {
5406 error = -ENOTDIR;
5407 if (old_last.name[old_last.len])
5408 goto exit5;
5409 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5410 goto exit5;
5411 }
5412 /* source should not be ancestor of target */
5413 error = -EINVAL;
5414 if (old_dentry == trap)
5415 goto exit5;
5416 /* target should not be an ancestor of source */
5417 if (!(flags & RENAME_EXCHANGE))
5418 error = -ENOTEMPTY;
5419 if (new_dentry == trap)
5420 goto exit5;
5421
5422 error = security_path_rename(&old_path, old_dentry,
5423 &new_path, new_dentry, flags);
5424 if (error)
5425 goto exit5;
5426
5427 rd.old_parent = old_path.dentry;
5428 rd.old_dentry = old_dentry;
5429 rd.mnt_idmap = mnt_idmap(old_path.mnt);
5430 rd.new_parent = new_path.dentry;
5431 rd.new_dentry = new_dentry;
5432 rd.delegated_inode = &delegated_inode;
5433 rd.flags = flags;
5434 error = vfs_rename(&rd);
5435 exit5:
5436 dput(new_dentry);
5437 exit4:
5438 dput(old_dentry);
5439 exit3:
5440 unlock_rename(new_path.dentry, old_path.dentry);
5441 exit_lock_rename:
5442 if (delegated_inode) {
5443 error = break_deleg_wait(&delegated_inode);
5444 if (!error)
5445 goto retry_deleg;
5446 }
5447 mnt_drop_write(old_path.mnt);
5448 exit2:
5449 if (retry_estale(error, lookup_flags))
5450 should_retry = true;
5451 path_put(&new_path);
5452 exit1:
5453 path_put(&old_path);
5454 if (should_retry) {
5455 should_retry = false;
5456 lookup_flags |= LOOKUP_REVAL;
5457 goto retry;
5458 }
5459 put_names:
5460 putname(from);
5461 putname(to);
5462 return error;
5463 }
5464
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5465 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5466 int, newdfd, const char __user *, newname, unsigned int, flags)
5467 {
5468 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5469 flags);
5470 }
5471
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5472 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5473 int, newdfd, const char __user *, newname)
5474 {
5475 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5476 0);
5477 }
5478
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5479 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5480 {
5481 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5482 getname(newname), 0);
5483 }
5484
readlink_copy(char __user * buffer,int buflen,const char * link,int linklen)5485 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
5486 {
5487 int copylen;
5488
5489 copylen = linklen;
5490 if (unlikely(copylen > (unsigned) buflen))
5491 copylen = buflen;
5492 if (copy_to_user(buffer, link, copylen))
5493 copylen = -EFAULT;
5494 return copylen;
5495 }
5496
5497 /**
5498 * vfs_readlink - copy symlink body into userspace buffer
5499 * @dentry: dentry on which to get symbolic link
5500 * @buffer: user memory pointer
5501 * @buflen: size of buffer
5502 *
5503 * Does not touch atime. That's up to the caller if necessary
5504 *
5505 * Does not call security hook.
5506 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5507 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5508 {
5509 struct inode *inode = d_inode(dentry);
5510 DEFINE_DELAYED_CALL(done);
5511 const char *link;
5512 int res;
5513
5514 if (inode->i_opflags & IOP_CACHED_LINK)
5515 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
5516
5517 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5518 if (unlikely(inode->i_op->readlink))
5519 return inode->i_op->readlink(dentry, buffer, buflen);
5520
5521 if (!d_is_symlink(dentry))
5522 return -EINVAL;
5523
5524 spin_lock(&inode->i_lock);
5525 inode->i_opflags |= IOP_DEFAULT_READLINK;
5526 spin_unlock(&inode->i_lock);
5527 }
5528
5529 link = READ_ONCE(inode->i_link);
5530 if (!link) {
5531 link = inode->i_op->get_link(dentry, inode, &done);
5532 if (IS_ERR(link))
5533 return PTR_ERR(link);
5534 }
5535 res = readlink_copy(buffer, buflen, link, strlen(link));
5536 do_delayed_call(&done);
5537 return res;
5538 }
5539 EXPORT_SYMBOL(vfs_readlink);
5540
5541 /**
5542 * vfs_get_link - get symlink body
5543 * @dentry: dentry on which to get symbolic link
5544 * @done: caller needs to free returned data with this
5545 *
5546 * Calls security hook and i_op->get_link() on the supplied inode.
5547 *
5548 * It does not touch atime. That's up to the caller if necessary.
5549 *
5550 * Does not work on "special" symlinks like /proc/$$/fd/N
5551 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5552 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5553 {
5554 const char *res = ERR_PTR(-EINVAL);
5555 struct inode *inode = d_inode(dentry);
5556
5557 if (d_is_symlink(dentry)) {
5558 res = ERR_PTR(security_inode_readlink(dentry));
5559 if (!res)
5560 res = inode->i_op->get_link(dentry, inode, done);
5561 }
5562 return res;
5563 }
5564 EXPORT_SYMBOL(vfs_get_link);
5565
5566 /* get the link contents into pagecache */
__page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5567 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
5568 struct delayed_call *callback)
5569 {
5570 struct folio *folio;
5571 struct address_space *mapping = inode->i_mapping;
5572
5573 if (!dentry) {
5574 folio = filemap_get_folio(mapping, 0);
5575 if (IS_ERR(folio))
5576 return ERR_PTR(-ECHILD);
5577 if (!folio_test_uptodate(folio)) {
5578 folio_put(folio);
5579 return ERR_PTR(-ECHILD);
5580 }
5581 } else {
5582 folio = read_mapping_folio(mapping, 0, NULL);
5583 if (IS_ERR(folio))
5584 return ERR_CAST(folio);
5585 }
5586 set_delayed_call(callback, page_put_link, folio);
5587 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5588 return folio_address(folio);
5589 }
5590
page_get_link_raw(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5591 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
5592 struct delayed_call *callback)
5593 {
5594 return __page_get_link(dentry, inode, callback);
5595 }
5596 EXPORT_SYMBOL_GPL(page_get_link_raw);
5597
5598 /**
5599 * page_get_link() - An implementation of the get_link inode_operation.
5600 * @dentry: The directory entry which is the symlink.
5601 * @inode: The inode for the symlink.
5602 * @callback: Used to drop the reference to the symlink.
5603 *
5604 * Filesystems which store their symlinks in the page cache should use
5605 * this to implement the get_link() member of their inode_operations.
5606 *
5607 * Return: A pointer to the NUL-terminated symlink.
5608 */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5609 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5610 struct delayed_call *callback)
5611 {
5612 char *kaddr = __page_get_link(dentry, inode, callback);
5613
5614 if (!IS_ERR(kaddr))
5615 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5616 return kaddr;
5617 }
5618 EXPORT_SYMBOL(page_get_link);
5619
5620 /**
5621 * page_put_link() - Drop the reference to the symlink.
5622 * @arg: The folio which contains the symlink.
5623 *
5624 * This is used internally by page_get_link(). It is exported for use
5625 * by filesystems which need to implement a variant of page_get_link()
5626 * themselves. Despite the apparent symmetry, filesystems which use
5627 * page_get_link() do not need to call page_put_link().
5628 *
5629 * The argument, while it has a void pointer type, must be a pointer to
5630 * the folio which was retrieved from the page cache. The delayed_call
5631 * infrastructure is used to drop the reference count once the caller
5632 * is done with the symlink.
5633 */
page_put_link(void * arg)5634 void page_put_link(void *arg)
5635 {
5636 folio_put(arg);
5637 }
5638 EXPORT_SYMBOL(page_put_link);
5639
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5640 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5641 {
5642 const char *link;
5643 int res;
5644
5645 DEFINE_DELAYED_CALL(done);
5646 link = page_get_link(dentry, d_inode(dentry), &done);
5647 res = PTR_ERR(link);
5648 if (!IS_ERR(link))
5649 res = readlink_copy(buffer, buflen, link, strlen(link));
5650 do_delayed_call(&done);
5651 return res;
5652 }
5653 EXPORT_SYMBOL(page_readlink);
5654
page_symlink(struct inode * inode,const char * symname,int len)5655 int page_symlink(struct inode *inode, const char *symname, int len)
5656 {
5657 struct address_space *mapping = inode->i_mapping;
5658 const struct address_space_operations *aops = mapping->a_ops;
5659 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5660 struct folio *folio;
5661 void *fsdata = NULL;
5662 int err;
5663 unsigned int flags;
5664
5665 retry:
5666 if (nofs)
5667 flags = memalloc_nofs_save();
5668 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5669 if (nofs)
5670 memalloc_nofs_restore(flags);
5671 if (err)
5672 goto fail;
5673
5674 memcpy(folio_address(folio), symname, len - 1);
5675
5676 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5677 folio, fsdata);
5678 if (err < 0)
5679 goto fail;
5680 if (err < len-1)
5681 goto retry;
5682
5683 mark_inode_dirty(inode);
5684 return 0;
5685 fail:
5686 return err;
5687 }
5688 EXPORT_SYMBOL(page_symlink);
5689
5690 const struct inode_operations page_symlink_inode_operations = {
5691 .get_link = page_get_link,
5692 };
5693 EXPORT_SYMBOL(page_symlink_inode_operations);
5694