1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpumask.h>
18 #include <linux/cpuset.h>
19 #include <linux/mutex.h>
20 #include <linux/memblock.h>
21 #include <linux/minmax.h>
22 #include <linux/sysfs.h>
23 #include <linux/slab.h>
24 #include <linux/sched/mm.h>
25 #include <linux/mmdebug.h>
26 #include <linux/sched/signal.h>
27 #include <linux/rmap.h>
28 #include <linux/string_helpers.h>
29 #include <linux/swap.h>
30 #include <linux/swapops.h>
31 #include <linux/jhash.h>
32 #include <linux/numa.h>
33 #include <linux/llist.h>
34 #include <linux/cma.h>
35 #include <linux/migrate.h>
36 #include <linux/nospec.h>
37 #include <linux/delayacct.h>
38 #include <linux/memory.h>
39 #include <linux/mm_inline.h>
40 #include <linux/padata.h>
41
42 #include <asm/page.h>
43 #include <asm/pgalloc.h>
44 #include <asm/tlb.h>
45 #include <asm/setup.h>
46
47 #include <linux/io.h>
48 #include <linux/hugetlb.h>
49 #include <linux/hugetlb_cgroup.h>
50 #include <linux/node.h>
51 #include <linux/page_owner.h>
52 #include "internal.h"
53 #include "hugetlb_vmemmap.h"
54 #include "hugetlb_cma.h"
55 #include <linux/page-isolation.h>
56
57 int hugetlb_max_hstate __read_mostly;
58 unsigned int default_hstate_idx;
59 struct hstate hstates[HUGE_MAX_HSTATE];
60
61 __initdata nodemask_t hugetlb_bootmem_nodes;
62 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
63 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
64
65 /*
66 * Due to ordering constraints across the init code for various
67 * architectures, hugetlb hstate cmdline parameters can't simply
68 * be early_param. early_param might call the setup function
69 * before valid hugetlb page sizes are determined, leading to
70 * incorrect rejection of valid hugepagesz= options.
71 *
72 * So, record the parameters early and consume them whenever the
73 * init code is ready for them, by calling hugetlb_parse_params().
74 */
75
76 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
77 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
78 struct hugetlb_cmdline {
79 char *val;
80 int (*setup)(char *val);
81 };
82
83 /* for command line parsing */
84 static struct hstate * __initdata parsed_hstate;
85 static unsigned long __initdata default_hstate_max_huge_pages;
86 static bool __initdata parsed_valid_hugepagesz = true;
87 static bool __initdata parsed_default_hugepagesz;
88 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
89 static unsigned long hugepage_allocation_threads __initdata;
90
91 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
92 static int hstate_cmdline_index __initdata;
93 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
94 static int hugetlb_param_index __initdata;
95 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
96 static __init void hugetlb_parse_params(void);
97
98 #define hugetlb_early_param(str, func) \
99 static __init int func##args(char *s) \
100 { \
101 return hugetlb_add_param(s, func); \
102 } \
103 early_param(str, func##args)
104
105 /*
106 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
107 * free_huge_pages, and surplus_huge_pages.
108 */
109 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
110
111 /*
112 * Serializes faults on the same logical page. This is used to
113 * prevent spurious OOMs when the hugepage pool is fully utilized.
114 */
115 static int num_fault_mutexes __ro_after_init;
116 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
117
118 /* Forward declaration */
119 static int hugetlb_acct_memory(struct hstate *h, long delta);
120 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
121 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
122 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
123 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
124 unsigned long start, unsigned long end, bool take_locks);
125 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
126
hugetlb_free_folio(struct folio * folio)127 static void hugetlb_free_folio(struct folio *folio)
128 {
129 if (folio_test_hugetlb_cma(folio)) {
130 hugetlb_cma_free_folio(folio);
131 return;
132 }
133
134 folio_put(folio);
135 }
136
subpool_is_free(struct hugepage_subpool * spool)137 static inline bool subpool_is_free(struct hugepage_subpool *spool)
138 {
139 if (spool->count)
140 return false;
141 if (spool->max_hpages != -1)
142 return spool->used_hpages == 0;
143 if (spool->min_hpages != -1)
144 return spool->rsv_hpages == spool->min_hpages;
145
146 return true;
147 }
148
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)149 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
150 unsigned long irq_flags)
151 {
152 spin_unlock_irqrestore(&spool->lock, irq_flags);
153
154 /* If no pages are used, and no other handles to the subpool
155 * remain, give up any reservations based on minimum size and
156 * free the subpool */
157 if (subpool_is_free(spool)) {
158 if (spool->min_hpages != -1)
159 hugetlb_acct_memory(spool->hstate,
160 -spool->min_hpages);
161 kfree(spool);
162 }
163 }
164
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)165 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
166 long min_hpages)
167 {
168 struct hugepage_subpool *spool;
169
170 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
171 if (!spool)
172 return NULL;
173
174 spin_lock_init(&spool->lock);
175 spool->count = 1;
176 spool->max_hpages = max_hpages;
177 spool->hstate = h;
178 spool->min_hpages = min_hpages;
179
180 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
181 kfree(spool);
182 return NULL;
183 }
184 spool->rsv_hpages = min_hpages;
185
186 return spool;
187 }
188
hugepage_put_subpool(struct hugepage_subpool * spool)189 void hugepage_put_subpool(struct hugepage_subpool *spool)
190 {
191 unsigned long flags;
192
193 spin_lock_irqsave(&spool->lock, flags);
194 BUG_ON(!spool->count);
195 spool->count--;
196 unlock_or_release_subpool(spool, flags);
197 }
198
199 /*
200 * Subpool accounting for allocating and reserving pages.
201 * Return -ENOMEM if there are not enough resources to satisfy the
202 * request. Otherwise, return the number of pages by which the
203 * global pools must be adjusted (upward). The returned value may
204 * only be different than the passed value (delta) in the case where
205 * a subpool minimum size must be maintained.
206 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)207 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
208 long delta)
209 {
210 long ret = delta;
211
212 if (!spool)
213 return ret;
214
215 spin_lock_irq(&spool->lock);
216
217 if (spool->max_hpages != -1) { /* maximum size accounting */
218 if ((spool->used_hpages + delta) <= spool->max_hpages)
219 spool->used_hpages += delta;
220 else {
221 ret = -ENOMEM;
222 goto unlock_ret;
223 }
224 }
225
226 /* minimum size accounting */
227 if (spool->min_hpages != -1 && spool->rsv_hpages) {
228 if (delta > spool->rsv_hpages) {
229 /*
230 * Asking for more reserves than those already taken on
231 * behalf of subpool. Return difference.
232 */
233 ret = delta - spool->rsv_hpages;
234 spool->rsv_hpages = 0;
235 } else {
236 ret = 0; /* reserves already accounted for */
237 spool->rsv_hpages -= delta;
238 }
239 }
240
241 unlock_ret:
242 spin_unlock_irq(&spool->lock);
243 return ret;
244 }
245
246 /*
247 * Subpool accounting for freeing and unreserving pages.
248 * Return the number of global page reservations that must be dropped.
249 * The return value may only be different than the passed value (delta)
250 * in the case where a subpool minimum size must be maintained.
251 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)252 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
253 long delta)
254 {
255 long ret = delta;
256 unsigned long flags;
257
258 if (!spool)
259 return delta;
260
261 spin_lock_irqsave(&spool->lock, flags);
262
263 if (spool->max_hpages != -1) /* maximum size accounting */
264 spool->used_hpages -= delta;
265
266 /* minimum size accounting */
267 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
268 if (spool->rsv_hpages + delta <= spool->min_hpages)
269 ret = 0;
270 else
271 ret = spool->rsv_hpages + delta - spool->min_hpages;
272
273 spool->rsv_hpages += delta;
274 if (spool->rsv_hpages > spool->min_hpages)
275 spool->rsv_hpages = spool->min_hpages;
276 }
277
278 /*
279 * If hugetlbfs_put_super couldn't free spool due to an outstanding
280 * quota reference, free it now.
281 */
282 unlock_or_release_subpool(spool, flags);
283
284 return ret;
285 }
286
subpool_inode(struct inode * inode)287 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
288 {
289 return HUGETLBFS_SB(inode->i_sb)->spool;
290 }
291
subpool_vma(struct vm_area_struct * vma)292 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
293 {
294 return subpool_inode(file_inode(vma->vm_file));
295 }
296
297 /*
298 * hugetlb vma_lock helper routines
299 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)300 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
301 {
302 if (__vma_shareable_lock(vma)) {
303 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
304
305 down_read(&vma_lock->rw_sema);
306 } else if (__vma_private_lock(vma)) {
307 struct resv_map *resv_map = vma_resv_map(vma);
308
309 down_read(&resv_map->rw_sema);
310 }
311 }
312
hugetlb_vma_unlock_read(struct vm_area_struct * vma)313 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
314 {
315 if (__vma_shareable_lock(vma)) {
316 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
317
318 up_read(&vma_lock->rw_sema);
319 } else if (__vma_private_lock(vma)) {
320 struct resv_map *resv_map = vma_resv_map(vma);
321
322 up_read(&resv_map->rw_sema);
323 }
324 }
325
hugetlb_vma_lock_write(struct vm_area_struct * vma)326 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
327 {
328 if (__vma_shareable_lock(vma)) {
329 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
330
331 down_write(&vma_lock->rw_sema);
332 } else if (__vma_private_lock(vma)) {
333 struct resv_map *resv_map = vma_resv_map(vma);
334
335 down_write(&resv_map->rw_sema);
336 }
337 }
338
hugetlb_vma_unlock_write(struct vm_area_struct * vma)339 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
340 {
341 if (__vma_shareable_lock(vma)) {
342 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
343
344 up_write(&vma_lock->rw_sema);
345 } else if (__vma_private_lock(vma)) {
346 struct resv_map *resv_map = vma_resv_map(vma);
347
348 up_write(&resv_map->rw_sema);
349 }
350 }
351
hugetlb_vma_trylock_write(struct vm_area_struct * vma)352 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
353 {
354
355 if (__vma_shareable_lock(vma)) {
356 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
357
358 return down_write_trylock(&vma_lock->rw_sema);
359 } else if (__vma_private_lock(vma)) {
360 struct resv_map *resv_map = vma_resv_map(vma);
361
362 return down_write_trylock(&resv_map->rw_sema);
363 }
364
365 return 1;
366 }
367
hugetlb_vma_assert_locked(struct vm_area_struct * vma)368 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
369 {
370 if (__vma_shareable_lock(vma)) {
371 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
372
373 lockdep_assert_held(&vma_lock->rw_sema);
374 } else if (__vma_private_lock(vma)) {
375 struct resv_map *resv_map = vma_resv_map(vma);
376
377 lockdep_assert_held(&resv_map->rw_sema);
378 }
379 }
380
hugetlb_vma_lock_release(struct kref * kref)381 void hugetlb_vma_lock_release(struct kref *kref)
382 {
383 struct hugetlb_vma_lock *vma_lock = container_of(kref,
384 struct hugetlb_vma_lock, refs);
385
386 kfree(vma_lock);
387 }
388
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)389 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
390 {
391 struct vm_area_struct *vma = vma_lock->vma;
392
393 /*
394 * vma_lock structure may or not be released as a result of put,
395 * it certainly will no longer be attached to vma so clear pointer.
396 * Semaphore synchronizes access to vma_lock->vma field.
397 */
398 vma_lock->vma = NULL;
399 vma->vm_private_data = NULL;
400 up_write(&vma_lock->rw_sema);
401 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
402 }
403
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)404 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
405 {
406 if (__vma_shareable_lock(vma)) {
407 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
408
409 __hugetlb_vma_unlock_write_put(vma_lock);
410 } else if (__vma_private_lock(vma)) {
411 struct resv_map *resv_map = vma_resv_map(vma);
412
413 /* no free for anon vmas, but still need to unlock */
414 up_write(&resv_map->rw_sema);
415 }
416 }
417
hugetlb_vma_lock_free(struct vm_area_struct * vma)418 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
419 {
420 /*
421 * Only present in sharable vmas.
422 */
423 if (!vma || !__vma_shareable_lock(vma))
424 return;
425
426 if (vma->vm_private_data) {
427 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
428
429 down_write(&vma_lock->rw_sema);
430 __hugetlb_vma_unlock_write_put(vma_lock);
431 }
432 }
433
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)434 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
435 {
436 struct hugetlb_vma_lock *vma_lock;
437
438 /* Only establish in (flags) sharable vmas */
439 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
440 return;
441
442 /* Should never get here with non-NULL vm_private_data */
443 if (vma->vm_private_data)
444 return;
445
446 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
447 if (!vma_lock) {
448 /*
449 * If we can not allocate structure, then vma can not
450 * participate in pmd sharing. This is only a possible
451 * performance enhancement and memory saving issue.
452 * However, the lock is also used to synchronize page
453 * faults with truncation. If the lock is not present,
454 * unlikely races could leave pages in a file past i_size
455 * until the file is removed. Warn in the unlikely case of
456 * allocation failure.
457 */
458 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
459 return;
460 }
461
462 kref_init(&vma_lock->refs);
463 init_rwsem(&vma_lock->rw_sema);
464 vma_lock->vma = vma;
465 vma->vm_private_data = vma_lock;
466 }
467
468 /* Helper that removes a struct file_region from the resv_map cache and returns
469 * it for use.
470 */
471 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)472 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
473 {
474 struct file_region *nrg;
475
476 VM_BUG_ON(resv->region_cache_count <= 0);
477
478 resv->region_cache_count--;
479 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
480 list_del(&nrg->link);
481
482 nrg->from = from;
483 nrg->to = to;
484
485 return nrg;
486 }
487
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)488 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
489 struct file_region *rg)
490 {
491 #ifdef CONFIG_CGROUP_HUGETLB
492 nrg->reservation_counter = rg->reservation_counter;
493 nrg->css = rg->css;
494 if (rg->css)
495 css_get(rg->css);
496 #endif
497 }
498
499 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)500 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
501 struct hstate *h,
502 struct resv_map *resv,
503 struct file_region *nrg)
504 {
505 #ifdef CONFIG_CGROUP_HUGETLB
506 if (h_cg) {
507 nrg->reservation_counter =
508 &h_cg->rsvd_hugepage[hstate_index(h)];
509 nrg->css = &h_cg->css;
510 /*
511 * The caller will hold exactly one h_cg->css reference for the
512 * whole contiguous reservation region. But this area might be
513 * scattered when there are already some file_regions reside in
514 * it. As a result, many file_regions may share only one css
515 * reference. In order to ensure that one file_region must hold
516 * exactly one h_cg->css reference, we should do css_get for
517 * each file_region and leave the reference held by caller
518 * untouched.
519 */
520 css_get(&h_cg->css);
521 if (!resv->pages_per_hpage)
522 resv->pages_per_hpage = pages_per_huge_page(h);
523 /* pages_per_hpage should be the same for all entries in
524 * a resv_map.
525 */
526 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
527 } else {
528 nrg->reservation_counter = NULL;
529 nrg->css = NULL;
530 }
531 #endif
532 }
533
put_uncharge_info(struct file_region * rg)534 static void put_uncharge_info(struct file_region *rg)
535 {
536 #ifdef CONFIG_CGROUP_HUGETLB
537 if (rg->css)
538 css_put(rg->css);
539 #endif
540 }
541
has_same_uncharge_info(struct file_region * rg,struct file_region * org)542 static bool has_same_uncharge_info(struct file_region *rg,
543 struct file_region *org)
544 {
545 #ifdef CONFIG_CGROUP_HUGETLB
546 return rg->reservation_counter == org->reservation_counter &&
547 rg->css == org->css;
548
549 #else
550 return true;
551 #endif
552 }
553
coalesce_file_region(struct resv_map * resv,struct file_region * rg)554 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
555 {
556 struct file_region *nrg, *prg;
557
558 prg = list_prev_entry(rg, link);
559 if (&prg->link != &resv->regions && prg->to == rg->from &&
560 has_same_uncharge_info(prg, rg)) {
561 prg->to = rg->to;
562
563 list_del(&rg->link);
564 put_uncharge_info(rg);
565 kfree(rg);
566
567 rg = prg;
568 }
569
570 nrg = list_next_entry(rg, link);
571 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
572 has_same_uncharge_info(nrg, rg)) {
573 nrg->from = rg->from;
574
575 list_del(&rg->link);
576 put_uncharge_info(rg);
577 kfree(rg);
578 }
579 }
580
581 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)582 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
583 long to, struct hstate *h, struct hugetlb_cgroup *cg,
584 long *regions_needed)
585 {
586 struct file_region *nrg;
587
588 if (!regions_needed) {
589 nrg = get_file_region_entry_from_cache(map, from, to);
590 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
591 list_add(&nrg->link, rg);
592 coalesce_file_region(map, nrg);
593 } else
594 *regions_needed += 1;
595
596 return to - from;
597 }
598
599 /*
600 * Must be called with resv->lock held.
601 *
602 * Calling this with regions_needed != NULL will count the number of pages
603 * to be added but will not modify the linked list. And regions_needed will
604 * indicate the number of file_regions needed in the cache to carry out to add
605 * the regions for this range.
606 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)607 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
608 struct hugetlb_cgroup *h_cg,
609 struct hstate *h, long *regions_needed)
610 {
611 long add = 0;
612 struct list_head *head = &resv->regions;
613 long last_accounted_offset = f;
614 struct file_region *iter, *trg = NULL;
615 struct list_head *rg = NULL;
616
617 if (regions_needed)
618 *regions_needed = 0;
619
620 /* In this loop, we essentially handle an entry for the range
621 * [last_accounted_offset, iter->from), at every iteration, with some
622 * bounds checking.
623 */
624 list_for_each_entry_safe(iter, trg, head, link) {
625 /* Skip irrelevant regions that start before our range. */
626 if (iter->from < f) {
627 /* If this region ends after the last accounted offset,
628 * then we need to update last_accounted_offset.
629 */
630 if (iter->to > last_accounted_offset)
631 last_accounted_offset = iter->to;
632 continue;
633 }
634
635 /* When we find a region that starts beyond our range, we've
636 * finished.
637 */
638 if (iter->from >= t) {
639 rg = iter->link.prev;
640 break;
641 }
642
643 /* Add an entry for last_accounted_offset -> iter->from, and
644 * update last_accounted_offset.
645 */
646 if (iter->from > last_accounted_offset)
647 add += hugetlb_resv_map_add(resv, iter->link.prev,
648 last_accounted_offset,
649 iter->from, h, h_cg,
650 regions_needed);
651
652 last_accounted_offset = iter->to;
653 }
654
655 /* Handle the case where our range extends beyond
656 * last_accounted_offset.
657 */
658 if (!rg)
659 rg = head->prev;
660 if (last_accounted_offset < t)
661 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
662 t, h, h_cg, regions_needed);
663
664 return add;
665 }
666
667 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
668 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)669 static int allocate_file_region_entries(struct resv_map *resv,
670 int regions_needed)
671 __must_hold(&resv->lock)
672 {
673 LIST_HEAD(allocated_regions);
674 int to_allocate = 0, i = 0;
675 struct file_region *trg = NULL, *rg = NULL;
676
677 VM_BUG_ON(regions_needed < 0);
678
679 /*
680 * Check for sufficient descriptors in the cache to accommodate
681 * the number of in progress add operations plus regions_needed.
682 *
683 * This is a while loop because when we drop the lock, some other call
684 * to region_add or region_del may have consumed some region_entries,
685 * so we keep looping here until we finally have enough entries for
686 * (adds_in_progress + regions_needed).
687 */
688 while (resv->region_cache_count <
689 (resv->adds_in_progress + regions_needed)) {
690 to_allocate = resv->adds_in_progress + regions_needed -
691 resv->region_cache_count;
692
693 /* At this point, we should have enough entries in the cache
694 * for all the existing adds_in_progress. We should only be
695 * needing to allocate for regions_needed.
696 */
697 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
698
699 spin_unlock(&resv->lock);
700 for (i = 0; i < to_allocate; i++) {
701 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
702 if (!trg)
703 goto out_of_memory;
704 list_add(&trg->link, &allocated_regions);
705 }
706
707 spin_lock(&resv->lock);
708
709 list_splice(&allocated_regions, &resv->region_cache);
710 resv->region_cache_count += to_allocate;
711 }
712
713 return 0;
714
715 out_of_memory:
716 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
717 list_del(&rg->link);
718 kfree(rg);
719 }
720 return -ENOMEM;
721 }
722
723 /*
724 * Add the huge page range represented by [f, t) to the reserve
725 * map. Regions will be taken from the cache to fill in this range.
726 * Sufficient regions should exist in the cache due to the previous
727 * call to region_chg with the same range, but in some cases the cache will not
728 * have sufficient entries due to races with other code doing region_add or
729 * region_del. The extra needed entries will be allocated.
730 *
731 * regions_needed is the out value provided by a previous call to region_chg.
732 *
733 * Return the number of new huge pages added to the map. This number is greater
734 * than or equal to zero. If file_region entries needed to be allocated for
735 * this operation and we were not able to allocate, it returns -ENOMEM.
736 * region_add of regions of length 1 never allocate file_regions and cannot
737 * fail; region_chg will always allocate at least 1 entry and a region_add for
738 * 1 page will only require at most 1 entry.
739 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)740 static long region_add(struct resv_map *resv, long f, long t,
741 long in_regions_needed, struct hstate *h,
742 struct hugetlb_cgroup *h_cg)
743 {
744 long add = 0, actual_regions_needed = 0;
745
746 spin_lock(&resv->lock);
747 retry:
748
749 /* Count how many regions are actually needed to execute this add. */
750 add_reservation_in_range(resv, f, t, NULL, NULL,
751 &actual_regions_needed);
752
753 /*
754 * Check for sufficient descriptors in the cache to accommodate
755 * this add operation. Note that actual_regions_needed may be greater
756 * than in_regions_needed, as the resv_map may have been modified since
757 * the region_chg call. In this case, we need to make sure that we
758 * allocate extra entries, such that we have enough for all the
759 * existing adds_in_progress, plus the excess needed for this
760 * operation.
761 */
762 if (actual_regions_needed > in_regions_needed &&
763 resv->region_cache_count <
764 resv->adds_in_progress +
765 (actual_regions_needed - in_regions_needed)) {
766 /* region_add operation of range 1 should never need to
767 * allocate file_region entries.
768 */
769 VM_BUG_ON(t - f <= 1);
770
771 if (allocate_file_region_entries(
772 resv, actual_regions_needed - in_regions_needed)) {
773 return -ENOMEM;
774 }
775
776 goto retry;
777 }
778
779 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
780
781 resv->adds_in_progress -= in_regions_needed;
782
783 spin_unlock(&resv->lock);
784 return add;
785 }
786
787 /*
788 * Examine the existing reserve map and determine how many
789 * huge pages in the specified range [f, t) are NOT currently
790 * represented. This routine is called before a subsequent
791 * call to region_add that will actually modify the reserve
792 * map to add the specified range [f, t). region_chg does
793 * not change the number of huge pages represented by the
794 * map. A number of new file_region structures is added to the cache as a
795 * placeholder, for the subsequent region_add call to use. At least 1
796 * file_region structure is added.
797 *
798 * out_regions_needed is the number of regions added to the
799 * resv->adds_in_progress. This value needs to be provided to a follow up call
800 * to region_add or region_abort for proper accounting.
801 *
802 * Returns the number of huge pages that need to be added to the existing
803 * reservation map for the range [f, t). This number is greater or equal to
804 * zero. -ENOMEM is returned if a new file_region structure or cache entry
805 * is needed and can not be allocated.
806 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)807 static long region_chg(struct resv_map *resv, long f, long t,
808 long *out_regions_needed)
809 {
810 long chg = 0;
811
812 spin_lock(&resv->lock);
813
814 /* Count how many hugepages in this range are NOT represented. */
815 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
816 out_regions_needed);
817
818 if (*out_regions_needed == 0)
819 *out_regions_needed = 1;
820
821 if (allocate_file_region_entries(resv, *out_regions_needed))
822 return -ENOMEM;
823
824 resv->adds_in_progress += *out_regions_needed;
825
826 spin_unlock(&resv->lock);
827 return chg;
828 }
829
830 /*
831 * Abort the in progress add operation. The adds_in_progress field
832 * of the resv_map keeps track of the operations in progress between
833 * calls to region_chg and region_add. Operations are sometimes
834 * aborted after the call to region_chg. In such cases, region_abort
835 * is called to decrement the adds_in_progress counter. regions_needed
836 * is the value returned by the region_chg call, it is used to decrement
837 * the adds_in_progress counter.
838 *
839 * NOTE: The range arguments [f, t) are not needed or used in this
840 * routine. They are kept to make reading the calling code easier as
841 * arguments will match the associated region_chg call.
842 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)843 static void region_abort(struct resv_map *resv, long f, long t,
844 long regions_needed)
845 {
846 spin_lock(&resv->lock);
847 VM_BUG_ON(!resv->region_cache_count);
848 resv->adds_in_progress -= regions_needed;
849 spin_unlock(&resv->lock);
850 }
851
852 /*
853 * Delete the specified range [f, t) from the reserve map. If the
854 * t parameter is LONG_MAX, this indicates that ALL regions after f
855 * should be deleted. Locate the regions which intersect [f, t)
856 * and either trim, delete or split the existing regions.
857 *
858 * Returns the number of huge pages deleted from the reserve map.
859 * In the normal case, the return value is zero or more. In the
860 * case where a region must be split, a new region descriptor must
861 * be allocated. If the allocation fails, -ENOMEM will be returned.
862 * NOTE: If the parameter t == LONG_MAX, then we will never split
863 * a region and possibly return -ENOMEM. Callers specifying
864 * t == LONG_MAX do not need to check for -ENOMEM error.
865 */
region_del(struct resv_map * resv,long f,long t)866 static long region_del(struct resv_map *resv, long f, long t)
867 {
868 struct list_head *head = &resv->regions;
869 struct file_region *rg, *trg;
870 struct file_region *nrg = NULL;
871 long del = 0;
872
873 retry:
874 spin_lock(&resv->lock);
875 list_for_each_entry_safe(rg, trg, head, link) {
876 /*
877 * Skip regions before the range to be deleted. file_region
878 * ranges are normally of the form [from, to). However, there
879 * may be a "placeholder" entry in the map which is of the form
880 * (from, to) with from == to. Check for placeholder entries
881 * at the beginning of the range to be deleted.
882 */
883 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
884 continue;
885
886 if (rg->from >= t)
887 break;
888
889 if (f > rg->from && t < rg->to) { /* Must split region */
890 /*
891 * Check for an entry in the cache before dropping
892 * lock and attempting allocation.
893 */
894 if (!nrg &&
895 resv->region_cache_count > resv->adds_in_progress) {
896 nrg = list_first_entry(&resv->region_cache,
897 struct file_region,
898 link);
899 list_del(&nrg->link);
900 resv->region_cache_count--;
901 }
902
903 if (!nrg) {
904 spin_unlock(&resv->lock);
905 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
906 if (!nrg)
907 return -ENOMEM;
908 goto retry;
909 }
910
911 del += t - f;
912 hugetlb_cgroup_uncharge_file_region(
913 resv, rg, t - f, false);
914
915 /* New entry for end of split region */
916 nrg->from = t;
917 nrg->to = rg->to;
918
919 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
920
921 INIT_LIST_HEAD(&nrg->link);
922
923 /* Original entry is trimmed */
924 rg->to = f;
925
926 list_add(&nrg->link, &rg->link);
927 nrg = NULL;
928 break;
929 }
930
931 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
932 del += rg->to - rg->from;
933 hugetlb_cgroup_uncharge_file_region(resv, rg,
934 rg->to - rg->from, true);
935 list_del(&rg->link);
936 kfree(rg);
937 continue;
938 }
939
940 if (f <= rg->from) { /* Trim beginning of region */
941 hugetlb_cgroup_uncharge_file_region(resv, rg,
942 t - rg->from, false);
943
944 del += t - rg->from;
945 rg->from = t;
946 } else { /* Trim end of region */
947 hugetlb_cgroup_uncharge_file_region(resv, rg,
948 rg->to - f, false);
949
950 del += rg->to - f;
951 rg->to = f;
952 }
953 }
954
955 spin_unlock(&resv->lock);
956 kfree(nrg);
957 return del;
958 }
959
960 /*
961 * A rare out of memory error was encountered which prevented removal of
962 * the reserve map region for a page. The huge page itself was free'ed
963 * and removed from the page cache. This routine will adjust the subpool
964 * usage count, and the global reserve count if needed. By incrementing
965 * these counts, the reserve map entry which could not be deleted will
966 * appear as a "reserved" entry instead of simply dangling with incorrect
967 * counts.
968 */
hugetlb_fix_reserve_counts(struct inode * inode)969 void hugetlb_fix_reserve_counts(struct inode *inode)
970 {
971 struct hugepage_subpool *spool = subpool_inode(inode);
972 long rsv_adjust;
973 bool reserved = false;
974
975 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
976 if (rsv_adjust > 0) {
977 struct hstate *h = hstate_inode(inode);
978
979 if (!hugetlb_acct_memory(h, 1))
980 reserved = true;
981 } else if (!rsv_adjust) {
982 reserved = true;
983 }
984
985 if (!reserved)
986 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
987 }
988
989 /*
990 * Count and return the number of huge pages in the reserve map
991 * that intersect with the range [f, t).
992 */
region_count(struct resv_map * resv,long f,long t)993 static long region_count(struct resv_map *resv, long f, long t)
994 {
995 struct list_head *head = &resv->regions;
996 struct file_region *rg;
997 long chg = 0;
998
999 spin_lock(&resv->lock);
1000 /* Locate each segment we overlap with, and count that overlap. */
1001 list_for_each_entry(rg, head, link) {
1002 long seg_from;
1003 long seg_to;
1004
1005 if (rg->to <= f)
1006 continue;
1007 if (rg->from >= t)
1008 break;
1009
1010 seg_from = max(rg->from, f);
1011 seg_to = min(rg->to, t);
1012
1013 chg += seg_to - seg_from;
1014 }
1015 spin_unlock(&resv->lock);
1016
1017 return chg;
1018 }
1019
1020 /*
1021 * Convert the address within this vma to the page offset within
1022 * the mapping, huge page units here.
1023 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1024 static pgoff_t vma_hugecache_offset(struct hstate *h,
1025 struct vm_area_struct *vma, unsigned long address)
1026 {
1027 return ((address - vma->vm_start) >> huge_page_shift(h)) +
1028 (vma->vm_pgoff >> huge_page_order(h));
1029 }
1030
1031 /**
1032 * vma_kernel_pagesize - Page size granularity for this VMA.
1033 * @vma: The user mapping.
1034 *
1035 * Folios in this VMA will be aligned to, and at least the size of the
1036 * number of bytes returned by this function.
1037 *
1038 * Return: The default size of the folios allocated when backing a VMA.
1039 */
vma_kernel_pagesize(struct vm_area_struct * vma)1040 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1041 {
1042 if (vma->vm_ops && vma->vm_ops->pagesize)
1043 return vma->vm_ops->pagesize(vma);
1044 return PAGE_SIZE;
1045 }
1046 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1047
1048 /*
1049 * Return the page size being used by the MMU to back a VMA. In the majority
1050 * of cases, the page size used by the kernel matches the MMU size. On
1051 * architectures where it differs, an architecture-specific 'strong'
1052 * version of this symbol is required.
1053 */
vma_mmu_pagesize(struct vm_area_struct * vma)1054 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1055 {
1056 return vma_kernel_pagesize(vma);
1057 }
1058
1059 /*
1060 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1061 * bits of the reservation map pointer, which are always clear due to
1062 * alignment.
1063 */
1064 #define HPAGE_RESV_OWNER (1UL << 0)
1065 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1066 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1067
1068 /*
1069 * These helpers are used to track how many pages are reserved for
1070 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1071 * is guaranteed to have their future faults succeed.
1072 *
1073 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1074 * the reserve counters are updated with the hugetlb_lock held. It is safe
1075 * to reset the VMA at fork() time as it is not in use yet and there is no
1076 * chance of the global counters getting corrupted as a result of the values.
1077 *
1078 * The private mapping reservation is represented in a subtly different
1079 * manner to a shared mapping. A shared mapping has a region map associated
1080 * with the underlying file, this region map represents the backing file
1081 * pages which have ever had a reservation assigned which this persists even
1082 * after the page is instantiated. A private mapping has a region map
1083 * associated with the original mmap which is attached to all VMAs which
1084 * reference it, this region map represents those offsets which have consumed
1085 * reservation ie. where pages have been instantiated.
1086 */
get_vma_private_data(struct vm_area_struct * vma)1087 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1088 {
1089 return (unsigned long)vma->vm_private_data;
1090 }
1091
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1092 static void set_vma_private_data(struct vm_area_struct *vma,
1093 unsigned long value)
1094 {
1095 vma->vm_private_data = (void *)value;
1096 }
1097
1098 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1099 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1100 struct hugetlb_cgroup *h_cg,
1101 struct hstate *h)
1102 {
1103 #ifdef CONFIG_CGROUP_HUGETLB
1104 if (!h_cg || !h) {
1105 resv_map->reservation_counter = NULL;
1106 resv_map->pages_per_hpage = 0;
1107 resv_map->css = NULL;
1108 } else {
1109 resv_map->reservation_counter =
1110 &h_cg->rsvd_hugepage[hstate_index(h)];
1111 resv_map->pages_per_hpage = pages_per_huge_page(h);
1112 resv_map->css = &h_cg->css;
1113 }
1114 #endif
1115 }
1116
resv_map_alloc(void)1117 struct resv_map *resv_map_alloc(void)
1118 {
1119 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1120 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1121
1122 if (!resv_map || !rg) {
1123 kfree(resv_map);
1124 kfree(rg);
1125 return NULL;
1126 }
1127
1128 kref_init(&resv_map->refs);
1129 spin_lock_init(&resv_map->lock);
1130 INIT_LIST_HEAD(&resv_map->regions);
1131 init_rwsem(&resv_map->rw_sema);
1132
1133 resv_map->adds_in_progress = 0;
1134 /*
1135 * Initialize these to 0. On shared mappings, 0's here indicate these
1136 * fields don't do cgroup accounting. On private mappings, these will be
1137 * re-initialized to the proper values, to indicate that hugetlb cgroup
1138 * reservations are to be un-charged from here.
1139 */
1140 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1141
1142 INIT_LIST_HEAD(&resv_map->region_cache);
1143 list_add(&rg->link, &resv_map->region_cache);
1144 resv_map->region_cache_count = 1;
1145
1146 return resv_map;
1147 }
1148
resv_map_release(struct kref * ref)1149 void resv_map_release(struct kref *ref)
1150 {
1151 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1152 struct list_head *head = &resv_map->region_cache;
1153 struct file_region *rg, *trg;
1154
1155 /* Clear out any active regions before we release the map. */
1156 region_del(resv_map, 0, LONG_MAX);
1157
1158 /* ... and any entries left in the cache */
1159 list_for_each_entry_safe(rg, trg, head, link) {
1160 list_del(&rg->link);
1161 kfree(rg);
1162 }
1163
1164 VM_BUG_ON(resv_map->adds_in_progress);
1165
1166 kfree(resv_map);
1167 }
1168
inode_resv_map(struct inode * inode)1169 static inline struct resv_map *inode_resv_map(struct inode *inode)
1170 {
1171 /*
1172 * At inode evict time, i_mapping may not point to the original
1173 * address space within the inode. This original address space
1174 * contains the pointer to the resv_map. So, always use the
1175 * address space embedded within the inode.
1176 * The VERY common case is inode->mapping == &inode->i_data but,
1177 * this may not be true for device special inodes.
1178 */
1179 return (struct resv_map *)(&inode->i_data)->i_private_data;
1180 }
1181
vma_resv_map(struct vm_area_struct * vma)1182 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1183 {
1184 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1185 if (vma->vm_flags & VM_MAYSHARE) {
1186 struct address_space *mapping = vma->vm_file->f_mapping;
1187 struct inode *inode = mapping->host;
1188
1189 return inode_resv_map(inode);
1190
1191 } else {
1192 return (struct resv_map *)(get_vma_private_data(vma) &
1193 ~HPAGE_RESV_MASK);
1194 }
1195 }
1196
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1197 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1198 {
1199 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1200 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1201
1202 set_vma_private_data(vma, (unsigned long)map);
1203 }
1204
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1205 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1206 {
1207 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1208 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1209
1210 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1211 }
1212
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1213 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1214 {
1215 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1216
1217 return (get_vma_private_data(vma) & flag) != 0;
1218 }
1219
__vma_private_lock(struct vm_area_struct * vma)1220 bool __vma_private_lock(struct vm_area_struct *vma)
1221 {
1222 return !(vma->vm_flags & VM_MAYSHARE) &&
1223 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1224 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1225 }
1226
hugetlb_dup_vma_private(struct vm_area_struct * vma)1227 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1228 {
1229 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1230 /*
1231 * Clear vm_private_data
1232 * - For shared mappings this is a per-vma semaphore that may be
1233 * allocated in a subsequent call to hugetlb_vm_op_open.
1234 * Before clearing, make sure pointer is not associated with vma
1235 * as this will leak the structure. This is the case when called
1236 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1237 * been called to allocate a new structure.
1238 * - For MAP_PRIVATE mappings, this is the reserve map which does
1239 * not apply to children. Faults generated by the children are
1240 * not guaranteed to succeed, even if read-only.
1241 */
1242 if (vma->vm_flags & VM_MAYSHARE) {
1243 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1244
1245 if (vma_lock && vma_lock->vma != vma)
1246 vma->vm_private_data = NULL;
1247 } else
1248 vma->vm_private_data = NULL;
1249 }
1250
1251 /*
1252 * Reset and decrement one ref on hugepage private reservation.
1253 * Called with mm->mmap_lock writer semaphore held.
1254 * This function should be only used by mremap and operate on
1255 * same sized vma. It should never come here with last ref on the
1256 * reservation.
1257 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1258 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1259 {
1260 /*
1261 * Clear the old hugetlb private page reservation.
1262 * It has already been transferred to new_vma.
1263 *
1264 * During a mremap() operation of a hugetlb vma we call move_vma()
1265 * which copies vma into new_vma and unmaps vma. After the copy
1266 * operation both new_vma and vma share a reference to the resv_map
1267 * struct, and at that point vma is about to be unmapped. We don't
1268 * want to return the reservation to the pool at unmap of vma because
1269 * the reservation still lives on in new_vma, so simply decrement the
1270 * ref here and remove the resv_map reference from this vma.
1271 */
1272 struct resv_map *reservations = vma_resv_map(vma);
1273
1274 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1275 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1276 kref_put(&reservations->refs, resv_map_release);
1277 }
1278
1279 hugetlb_dup_vma_private(vma);
1280 }
1281
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1282 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1283 {
1284 int nid = folio_nid(folio);
1285
1286 lockdep_assert_held(&hugetlb_lock);
1287 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1288
1289 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1290 h->free_huge_pages++;
1291 h->free_huge_pages_node[nid]++;
1292 folio_set_hugetlb_freed(folio);
1293 }
1294
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1295 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1296 int nid)
1297 {
1298 struct folio *folio;
1299 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1300
1301 lockdep_assert_held(&hugetlb_lock);
1302 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1303 if (pin && !folio_is_longterm_pinnable(folio))
1304 continue;
1305
1306 if (folio_test_hwpoison(folio))
1307 continue;
1308
1309 if (is_migrate_isolate_page(&folio->page))
1310 continue;
1311
1312 list_move(&folio->lru, &h->hugepage_activelist);
1313 folio_ref_unfreeze(folio, 1);
1314 folio_clear_hugetlb_freed(folio);
1315 h->free_huge_pages--;
1316 h->free_huge_pages_node[nid]--;
1317 return folio;
1318 }
1319
1320 return NULL;
1321 }
1322
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1323 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1324 int nid, nodemask_t *nmask)
1325 {
1326 unsigned int cpuset_mems_cookie;
1327 struct zonelist *zonelist;
1328 struct zone *zone;
1329 struct zoneref *z;
1330 int node = NUMA_NO_NODE;
1331
1332 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1333 if (nid == NUMA_NO_NODE)
1334 nid = numa_node_id();
1335
1336 zonelist = node_zonelist(nid, gfp_mask);
1337
1338 retry_cpuset:
1339 cpuset_mems_cookie = read_mems_allowed_begin();
1340 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1341 struct folio *folio;
1342
1343 if (!cpuset_zone_allowed(zone, gfp_mask))
1344 continue;
1345 /*
1346 * no need to ask again on the same node. Pool is node rather than
1347 * zone aware
1348 */
1349 if (zone_to_nid(zone) == node)
1350 continue;
1351 node = zone_to_nid(zone);
1352
1353 folio = dequeue_hugetlb_folio_node_exact(h, node);
1354 if (folio)
1355 return folio;
1356 }
1357 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1358 goto retry_cpuset;
1359
1360 return NULL;
1361 }
1362
available_huge_pages(struct hstate * h)1363 static unsigned long available_huge_pages(struct hstate *h)
1364 {
1365 return h->free_huge_pages - h->resv_huge_pages;
1366 }
1367
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1368 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1369 struct vm_area_struct *vma,
1370 unsigned long address, long gbl_chg)
1371 {
1372 struct folio *folio = NULL;
1373 struct mempolicy *mpol;
1374 gfp_t gfp_mask;
1375 nodemask_t *nodemask;
1376 int nid;
1377
1378 /*
1379 * gbl_chg==1 means the allocation requires a new page that was not
1380 * reserved before. Making sure there's at least one free page.
1381 */
1382 if (gbl_chg && !available_huge_pages(h))
1383 goto err;
1384
1385 gfp_mask = htlb_alloc_mask(h);
1386 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1387
1388 if (mpol_is_preferred_many(mpol)) {
1389 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1390 nid, nodemask);
1391
1392 /* Fallback to all nodes if page==NULL */
1393 nodemask = NULL;
1394 }
1395
1396 if (!folio)
1397 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1398 nid, nodemask);
1399
1400 mpol_cond_put(mpol);
1401 return folio;
1402
1403 err:
1404 return NULL;
1405 }
1406
1407 /*
1408 * common helper functions for hstate_next_node_to_{alloc|free}.
1409 * We may have allocated or freed a huge page based on a different
1410 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1411 * be outside of *nodes_allowed. Ensure that we use an allowed
1412 * node for alloc or free.
1413 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1414 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1415 {
1416 nid = next_node_in(nid, *nodes_allowed);
1417 VM_BUG_ON(nid >= MAX_NUMNODES);
1418
1419 return nid;
1420 }
1421
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1422 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1423 {
1424 if (!node_isset(nid, *nodes_allowed))
1425 nid = next_node_allowed(nid, nodes_allowed);
1426 return nid;
1427 }
1428
1429 /*
1430 * returns the previously saved node ["this node"] from which to
1431 * allocate a persistent huge page for the pool and advance the
1432 * next node from which to allocate, handling wrap at end of node
1433 * mask.
1434 */
hstate_next_node_to_alloc(int * next_node,nodemask_t * nodes_allowed)1435 static int hstate_next_node_to_alloc(int *next_node,
1436 nodemask_t *nodes_allowed)
1437 {
1438 int nid;
1439
1440 VM_BUG_ON(!nodes_allowed);
1441
1442 nid = get_valid_node_allowed(*next_node, nodes_allowed);
1443 *next_node = next_node_allowed(nid, nodes_allowed);
1444
1445 return nid;
1446 }
1447
1448 /*
1449 * helper for remove_pool_hugetlb_folio() - return the previously saved
1450 * node ["this node"] from which to free a huge page. Advance the
1451 * next node id whether or not we find a free huge page to free so
1452 * that the next attempt to free addresses the next node.
1453 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1454 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1455 {
1456 int nid;
1457
1458 VM_BUG_ON(!nodes_allowed);
1459
1460 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1461 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1462
1463 return nid;
1464 }
1465
1466 #define for_each_node_mask_to_alloc(next_node, nr_nodes, node, mask) \
1467 for (nr_nodes = nodes_weight(*mask); \
1468 nr_nodes > 0 && \
1469 ((node = hstate_next_node_to_alloc(next_node, mask)) || 1); \
1470 nr_nodes--)
1471
1472 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1473 for (nr_nodes = nodes_weight(*mask); \
1474 nr_nodes > 0 && \
1475 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1476 nr_nodes--)
1477
1478 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1479 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1480 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1481 int nid, nodemask_t *nodemask)
1482 {
1483 struct folio *folio;
1484 int order = huge_page_order(h);
1485 bool retried = false;
1486
1487 if (nid == NUMA_NO_NODE)
1488 nid = numa_mem_id();
1489 retry:
1490 folio = hugetlb_cma_alloc_folio(h, gfp_mask, nid, nodemask);
1491 if (!folio) {
1492 if (hugetlb_cma_exclusive_alloc())
1493 return NULL;
1494
1495 folio = folio_alloc_gigantic(order, gfp_mask, nid, nodemask);
1496 if (!folio)
1497 return NULL;
1498 }
1499
1500 if (folio_ref_freeze(folio, 1))
1501 return folio;
1502
1503 pr_warn("HugeTLB: unexpected refcount on PFN %lu\n", folio_pfn(folio));
1504 hugetlb_free_folio(folio);
1505 if (!retried) {
1506 retried = true;
1507 goto retry;
1508 }
1509 return NULL;
1510 }
1511
1512 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1513 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1514 int nid, nodemask_t *nodemask)
1515 {
1516 return NULL;
1517 }
1518 #endif /* CONFIG_CONTIG_ALLOC */
1519
1520 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1521 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1522 int nid, nodemask_t *nodemask)
1523 {
1524 return NULL;
1525 }
1526 #endif
1527
1528 /*
1529 * Remove hugetlb folio from lists.
1530 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1531 * folio appears as just a compound page. Otherwise, wait until after
1532 * allocating vmemmap to clear the flag.
1533 *
1534 * Must be called with hugetlb lock held.
1535 */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1536 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1537 bool adjust_surplus)
1538 {
1539 int nid = folio_nid(folio);
1540
1541 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1542 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1543
1544 lockdep_assert_held(&hugetlb_lock);
1545 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1546 return;
1547
1548 list_del(&folio->lru);
1549
1550 if (folio_test_hugetlb_freed(folio)) {
1551 folio_clear_hugetlb_freed(folio);
1552 h->free_huge_pages--;
1553 h->free_huge_pages_node[nid]--;
1554 }
1555 if (adjust_surplus) {
1556 h->surplus_huge_pages--;
1557 h->surplus_huge_pages_node[nid]--;
1558 }
1559
1560 /*
1561 * We can only clear the hugetlb flag after allocating vmemmap
1562 * pages. Otherwise, someone (memory error handling) may try to write
1563 * to tail struct pages.
1564 */
1565 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1566 __folio_clear_hugetlb(folio);
1567
1568 h->nr_huge_pages--;
1569 h->nr_huge_pages_node[nid]--;
1570 }
1571
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1572 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1573 bool adjust_surplus)
1574 {
1575 int nid = folio_nid(folio);
1576
1577 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1578
1579 lockdep_assert_held(&hugetlb_lock);
1580
1581 INIT_LIST_HEAD(&folio->lru);
1582 h->nr_huge_pages++;
1583 h->nr_huge_pages_node[nid]++;
1584
1585 if (adjust_surplus) {
1586 h->surplus_huge_pages++;
1587 h->surplus_huge_pages_node[nid]++;
1588 }
1589
1590 __folio_set_hugetlb(folio);
1591 folio_change_private(folio, NULL);
1592 /*
1593 * We have to set hugetlb_vmemmap_optimized again as above
1594 * folio_change_private(folio, NULL) cleared it.
1595 */
1596 folio_set_hugetlb_vmemmap_optimized(folio);
1597
1598 arch_clear_hugetlb_flags(folio);
1599 enqueue_hugetlb_folio(h, folio);
1600 }
1601
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1602 static void __update_and_free_hugetlb_folio(struct hstate *h,
1603 struct folio *folio)
1604 {
1605 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1606
1607 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1608 return;
1609
1610 /*
1611 * If we don't know which subpages are hwpoisoned, we can't free
1612 * the hugepage, so it's leaked intentionally.
1613 */
1614 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1615 return;
1616
1617 /*
1618 * If folio is not vmemmap optimized (!clear_flag), then the folio
1619 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1620 * can only be passed hugetlb pages and will BUG otherwise.
1621 */
1622 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1623 spin_lock_irq(&hugetlb_lock);
1624 /*
1625 * If we cannot allocate vmemmap pages, just refuse to free the
1626 * page and put the page back on the hugetlb free list and treat
1627 * as a surplus page.
1628 */
1629 add_hugetlb_folio(h, folio, true);
1630 spin_unlock_irq(&hugetlb_lock);
1631 return;
1632 }
1633
1634 /*
1635 * If vmemmap pages were allocated above, then we need to clear the
1636 * hugetlb flag under the hugetlb lock.
1637 */
1638 if (folio_test_hugetlb(folio)) {
1639 spin_lock_irq(&hugetlb_lock);
1640 __folio_clear_hugetlb(folio);
1641 spin_unlock_irq(&hugetlb_lock);
1642 }
1643
1644 /*
1645 * Move PageHWPoison flag from head page to the raw error pages,
1646 * which makes any healthy subpages reusable.
1647 */
1648 if (unlikely(folio_test_hwpoison(folio)))
1649 folio_clear_hugetlb_hwpoison(folio);
1650
1651 folio_ref_unfreeze(folio, 1);
1652
1653 hugetlb_free_folio(folio);
1654 }
1655
1656 /*
1657 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1658 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1659 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1660 * the vmemmap pages.
1661 *
1662 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1663 * freed and frees them one-by-one. As the page->mapping pointer is going
1664 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1665 * structure of a lockless linked list of huge pages to be freed.
1666 */
1667 static LLIST_HEAD(hpage_freelist);
1668
free_hpage_workfn(struct work_struct * work)1669 static void free_hpage_workfn(struct work_struct *work)
1670 {
1671 struct llist_node *node;
1672
1673 node = llist_del_all(&hpage_freelist);
1674
1675 while (node) {
1676 struct folio *folio;
1677 struct hstate *h;
1678
1679 folio = container_of((struct address_space **)node,
1680 struct folio, mapping);
1681 node = node->next;
1682 folio->mapping = NULL;
1683 /*
1684 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1685 * folio_hstate() is going to trigger because a previous call to
1686 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1687 * not use folio_hstate() directly.
1688 */
1689 h = size_to_hstate(folio_size(folio));
1690
1691 __update_and_free_hugetlb_folio(h, folio);
1692
1693 cond_resched();
1694 }
1695 }
1696 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1697
flush_free_hpage_work(struct hstate * h)1698 static inline void flush_free_hpage_work(struct hstate *h)
1699 {
1700 if (hugetlb_vmemmap_optimizable(h))
1701 flush_work(&free_hpage_work);
1702 }
1703
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1704 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1705 bool atomic)
1706 {
1707 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1708 __update_and_free_hugetlb_folio(h, folio);
1709 return;
1710 }
1711
1712 /*
1713 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1714 *
1715 * Only call schedule_work() if hpage_freelist is previously
1716 * empty. Otherwise, schedule_work() had been called but the workfn
1717 * hasn't retrieved the list yet.
1718 */
1719 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1720 schedule_work(&free_hpage_work);
1721 }
1722
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1723 static void bulk_vmemmap_restore_error(struct hstate *h,
1724 struct list_head *folio_list,
1725 struct list_head *non_hvo_folios)
1726 {
1727 struct folio *folio, *t_folio;
1728
1729 if (!list_empty(non_hvo_folios)) {
1730 /*
1731 * Free any restored hugetlb pages so that restore of the
1732 * entire list can be retried.
1733 * The idea is that in the common case of ENOMEM errors freeing
1734 * hugetlb pages with vmemmap we will free up memory so that we
1735 * can allocate vmemmap for more hugetlb pages.
1736 */
1737 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1738 list_del(&folio->lru);
1739 spin_lock_irq(&hugetlb_lock);
1740 __folio_clear_hugetlb(folio);
1741 spin_unlock_irq(&hugetlb_lock);
1742 update_and_free_hugetlb_folio(h, folio, false);
1743 cond_resched();
1744 }
1745 } else {
1746 /*
1747 * In the case where there are no folios which can be
1748 * immediately freed, we loop through the list trying to restore
1749 * vmemmap individually in the hope that someone elsewhere may
1750 * have done something to cause success (such as freeing some
1751 * memory). If unable to restore a hugetlb page, the hugetlb
1752 * page is made a surplus page and removed from the list.
1753 * If are able to restore vmemmap and free one hugetlb page, we
1754 * quit processing the list to retry the bulk operation.
1755 */
1756 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1757 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1758 list_del(&folio->lru);
1759 spin_lock_irq(&hugetlb_lock);
1760 add_hugetlb_folio(h, folio, true);
1761 spin_unlock_irq(&hugetlb_lock);
1762 } else {
1763 list_del(&folio->lru);
1764 spin_lock_irq(&hugetlb_lock);
1765 __folio_clear_hugetlb(folio);
1766 spin_unlock_irq(&hugetlb_lock);
1767 update_and_free_hugetlb_folio(h, folio, false);
1768 cond_resched();
1769 break;
1770 }
1771 }
1772 }
1773
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1774 static void update_and_free_pages_bulk(struct hstate *h,
1775 struct list_head *folio_list)
1776 {
1777 long ret;
1778 struct folio *folio, *t_folio;
1779 LIST_HEAD(non_hvo_folios);
1780
1781 /*
1782 * First allocate required vmemmmap (if necessary) for all folios.
1783 * Carefully handle errors and free up any available hugetlb pages
1784 * in an effort to make forward progress.
1785 */
1786 retry:
1787 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1788 if (ret < 0) {
1789 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1790 goto retry;
1791 }
1792
1793 /*
1794 * At this point, list should be empty, ret should be >= 0 and there
1795 * should only be pages on the non_hvo_folios list.
1796 * Do note that the non_hvo_folios list could be empty.
1797 * Without HVO enabled, ret will be 0 and there is no need to call
1798 * __folio_clear_hugetlb as this was done previously.
1799 */
1800 VM_WARN_ON(!list_empty(folio_list));
1801 VM_WARN_ON(ret < 0);
1802 if (!list_empty(&non_hvo_folios) && ret) {
1803 spin_lock_irq(&hugetlb_lock);
1804 list_for_each_entry(folio, &non_hvo_folios, lru)
1805 __folio_clear_hugetlb(folio);
1806 spin_unlock_irq(&hugetlb_lock);
1807 }
1808
1809 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1810 update_and_free_hugetlb_folio(h, folio, false);
1811 cond_resched();
1812 }
1813 }
1814
size_to_hstate(unsigned long size)1815 struct hstate *size_to_hstate(unsigned long size)
1816 {
1817 struct hstate *h;
1818
1819 for_each_hstate(h) {
1820 if (huge_page_size(h) == size)
1821 return h;
1822 }
1823 return NULL;
1824 }
1825
free_huge_folio(struct folio * folio)1826 void free_huge_folio(struct folio *folio)
1827 {
1828 /*
1829 * Can't pass hstate in here because it is called from the
1830 * generic mm code.
1831 */
1832 struct hstate *h = folio_hstate(folio);
1833 int nid = folio_nid(folio);
1834 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1835 bool restore_reserve;
1836 unsigned long flags;
1837
1838 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1839 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1840
1841 hugetlb_set_folio_subpool(folio, NULL);
1842 if (folio_test_anon(folio))
1843 __ClearPageAnonExclusive(&folio->page);
1844 folio->mapping = NULL;
1845 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1846 folio_clear_hugetlb_restore_reserve(folio);
1847
1848 /*
1849 * If HPageRestoreReserve was set on page, page allocation consumed a
1850 * reservation. If the page was associated with a subpool, there
1851 * would have been a page reserved in the subpool before allocation
1852 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1853 * reservation, do not call hugepage_subpool_put_pages() as this will
1854 * remove the reserved page from the subpool.
1855 */
1856 if (!restore_reserve) {
1857 /*
1858 * A return code of zero implies that the subpool will be
1859 * under its minimum size if the reservation is not restored
1860 * after page is free. Therefore, force restore_reserve
1861 * operation.
1862 */
1863 if (hugepage_subpool_put_pages(spool, 1) == 0)
1864 restore_reserve = true;
1865 }
1866
1867 spin_lock_irqsave(&hugetlb_lock, flags);
1868 folio_clear_hugetlb_migratable(folio);
1869 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1870 pages_per_huge_page(h), folio);
1871 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1872 pages_per_huge_page(h), folio);
1873 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1874 mem_cgroup_uncharge(folio);
1875 if (restore_reserve)
1876 h->resv_huge_pages++;
1877
1878 if (folio_test_hugetlb_temporary(folio)) {
1879 remove_hugetlb_folio(h, folio, false);
1880 spin_unlock_irqrestore(&hugetlb_lock, flags);
1881 update_and_free_hugetlb_folio(h, folio, true);
1882 } else if (h->surplus_huge_pages_node[nid]) {
1883 /* remove the page from active list */
1884 remove_hugetlb_folio(h, folio, true);
1885 spin_unlock_irqrestore(&hugetlb_lock, flags);
1886 update_and_free_hugetlb_folio(h, folio, true);
1887 } else {
1888 arch_clear_hugetlb_flags(folio);
1889 enqueue_hugetlb_folio(h, folio);
1890 spin_unlock_irqrestore(&hugetlb_lock, flags);
1891 }
1892 }
1893
1894 /*
1895 * Must be called with the hugetlb lock held
1896 */
__prep_account_new_huge_page(struct hstate * h,int nid)1897 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1898 {
1899 lockdep_assert_held(&hugetlb_lock);
1900 h->nr_huge_pages++;
1901 h->nr_huge_pages_node[nid]++;
1902 }
1903
init_new_hugetlb_folio(struct hstate * h,struct folio * folio)1904 static void init_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1905 {
1906 __folio_set_hugetlb(folio);
1907 INIT_LIST_HEAD(&folio->lru);
1908 hugetlb_set_folio_subpool(folio, NULL);
1909 set_hugetlb_cgroup(folio, NULL);
1910 set_hugetlb_cgroup_rsvd(folio, NULL);
1911 }
1912
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1913 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1914 {
1915 init_new_hugetlb_folio(h, folio);
1916 hugetlb_vmemmap_optimize_folio(h, folio);
1917 }
1918
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1919 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1920 {
1921 __prep_new_hugetlb_folio(h, folio);
1922 spin_lock_irq(&hugetlb_lock);
1923 __prep_account_new_huge_page(h, nid);
1924 spin_unlock_irq(&hugetlb_lock);
1925 }
1926
1927 /*
1928 * Find and lock address space (mapping) in write mode.
1929 *
1930 * Upon entry, the folio is locked which means that folio_mapping() is
1931 * stable. Due to locking order, we can only trylock_write. If we can
1932 * not get the lock, simply return NULL to caller.
1933 */
hugetlb_folio_mapping_lock_write(struct folio * folio)1934 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1935 {
1936 struct address_space *mapping = folio_mapping(folio);
1937
1938 if (!mapping)
1939 return mapping;
1940
1941 if (i_mmap_trylock_write(mapping))
1942 return mapping;
1943
1944 return NULL;
1945 }
1946
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1947 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1948 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1949 nodemask_t *node_alloc_noretry)
1950 {
1951 int order = huge_page_order(h);
1952 struct folio *folio;
1953 bool alloc_try_hard = true;
1954
1955 /*
1956 * By default we always try hard to allocate the folio with
1957 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
1958 * a loop (to adjust global huge page counts) and previous allocation
1959 * failed, do not continue to try hard on the same node. Use the
1960 * node_alloc_noretry bitmap to manage this state information.
1961 */
1962 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1963 alloc_try_hard = false;
1964 if (alloc_try_hard)
1965 gfp_mask |= __GFP_RETRY_MAYFAIL;
1966 if (nid == NUMA_NO_NODE)
1967 nid = numa_mem_id();
1968
1969 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
1970
1971 /*
1972 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1973 * folio this indicates an overall state change. Clear bit so
1974 * that we resume normal 'try hard' allocations.
1975 */
1976 if (node_alloc_noretry && folio && !alloc_try_hard)
1977 node_clear(nid, *node_alloc_noretry);
1978
1979 /*
1980 * If we tried hard to get a folio but failed, set bit so that
1981 * subsequent attempts will not try as hard until there is an
1982 * overall state change.
1983 */
1984 if (node_alloc_noretry && !folio && alloc_try_hard)
1985 node_set(nid, *node_alloc_noretry);
1986
1987 if (!folio) {
1988 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1989 return NULL;
1990 }
1991
1992 __count_vm_event(HTLB_BUDDY_PGALLOC);
1993 return folio;
1994 }
1995
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1996 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1997 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1998 nodemask_t *node_alloc_noretry)
1999 {
2000 struct folio *folio;
2001
2002 if (hstate_is_gigantic(h))
2003 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2004 else
2005 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, node_alloc_noretry);
2006 if (folio)
2007 init_new_hugetlb_folio(h, folio);
2008 return folio;
2009 }
2010
2011 /*
2012 * Common helper to allocate a fresh hugetlb page. All specific allocators
2013 * should use this function to get new hugetlb pages
2014 *
2015 * Note that returned page is 'frozen': ref count of head page and all tail
2016 * pages is zero.
2017 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2018 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2019 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2020 {
2021 struct folio *folio;
2022
2023 if (hstate_is_gigantic(h))
2024 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2025 else
2026 folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2027 if (!folio)
2028 return NULL;
2029
2030 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2031 return folio;
2032 }
2033
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)2034 static void prep_and_add_allocated_folios(struct hstate *h,
2035 struct list_head *folio_list)
2036 {
2037 unsigned long flags;
2038 struct folio *folio, *tmp_f;
2039
2040 /* Send list for bulk vmemmap optimization processing */
2041 hugetlb_vmemmap_optimize_folios(h, folio_list);
2042
2043 /* Add all new pool pages to free lists in one lock cycle */
2044 spin_lock_irqsave(&hugetlb_lock, flags);
2045 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
2046 __prep_account_new_huge_page(h, folio_nid(folio));
2047 enqueue_hugetlb_folio(h, folio);
2048 }
2049 spin_unlock_irqrestore(&hugetlb_lock, flags);
2050 }
2051
2052 /*
2053 * Allocates a fresh hugetlb page in a node interleaved manner. The page
2054 * will later be added to the appropriate hugetlb pool.
2055 */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)2056 static struct folio *alloc_pool_huge_folio(struct hstate *h,
2057 nodemask_t *nodes_allowed,
2058 nodemask_t *node_alloc_noretry,
2059 int *next_node)
2060 {
2061 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2062 int nr_nodes, node;
2063
2064 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
2065 struct folio *folio;
2066
2067 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2068 nodes_allowed, node_alloc_noretry);
2069 if (folio)
2070 return folio;
2071 }
2072
2073 return NULL;
2074 }
2075
2076 /*
2077 * Remove huge page from pool from next node to free. Attempt to keep
2078 * persistent huge pages more or less balanced over allowed nodes.
2079 * This routine only 'removes' the hugetlb page. The caller must make
2080 * an additional call to free the page to low level allocators.
2081 * Called with hugetlb_lock locked.
2082 */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2083 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
2084 nodemask_t *nodes_allowed, bool acct_surplus)
2085 {
2086 int nr_nodes, node;
2087 struct folio *folio = NULL;
2088
2089 lockdep_assert_held(&hugetlb_lock);
2090 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2091 /*
2092 * If we're returning unused surplus pages, only examine
2093 * nodes with surplus pages.
2094 */
2095 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2096 !list_empty(&h->hugepage_freelists[node])) {
2097 folio = list_entry(h->hugepage_freelists[node].next,
2098 struct folio, lru);
2099 remove_hugetlb_folio(h, folio, acct_surplus);
2100 break;
2101 }
2102 }
2103
2104 return folio;
2105 }
2106
2107 /*
2108 * Dissolve a given free hugetlb folio into free buddy pages. This function
2109 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2110 * This function returns values like below:
2111 *
2112 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2113 * when the system is under memory pressure and the feature of
2114 * freeing unused vmemmap pages associated with each hugetlb page
2115 * is enabled.
2116 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2117 * (allocated or reserved.)
2118 * 0: successfully dissolved free hugepages or the page is not a
2119 * hugepage (considered as already dissolved)
2120 */
dissolve_free_hugetlb_folio(struct folio * folio)2121 int dissolve_free_hugetlb_folio(struct folio *folio)
2122 {
2123 int rc = -EBUSY;
2124
2125 retry:
2126 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2127 if (!folio_test_hugetlb(folio))
2128 return 0;
2129
2130 spin_lock_irq(&hugetlb_lock);
2131 if (!folio_test_hugetlb(folio)) {
2132 rc = 0;
2133 goto out;
2134 }
2135
2136 if (!folio_ref_count(folio)) {
2137 struct hstate *h = folio_hstate(folio);
2138 bool adjust_surplus = false;
2139
2140 if (!available_huge_pages(h))
2141 goto out;
2142
2143 /*
2144 * We should make sure that the page is already on the free list
2145 * when it is dissolved.
2146 */
2147 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2148 spin_unlock_irq(&hugetlb_lock);
2149 cond_resched();
2150
2151 /*
2152 * Theoretically, we should return -EBUSY when we
2153 * encounter this race. In fact, we have a chance
2154 * to successfully dissolve the page if we do a
2155 * retry. Because the race window is quite small.
2156 * If we seize this opportunity, it is an optimization
2157 * for increasing the success rate of dissolving page.
2158 */
2159 goto retry;
2160 }
2161
2162 if (h->surplus_huge_pages_node[folio_nid(folio)])
2163 adjust_surplus = true;
2164 remove_hugetlb_folio(h, folio, adjust_surplus);
2165 h->max_huge_pages--;
2166 spin_unlock_irq(&hugetlb_lock);
2167
2168 /*
2169 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2170 * before freeing the page. update_and_free_hugtlb_folio will fail to
2171 * free the page if it can not allocate required vmemmap. We
2172 * need to adjust max_huge_pages if the page is not freed.
2173 * Attempt to allocate vmemmmap here so that we can take
2174 * appropriate action on failure.
2175 *
2176 * The folio_test_hugetlb check here is because
2177 * remove_hugetlb_folio will clear hugetlb folio flag for
2178 * non-vmemmap optimized hugetlb folios.
2179 */
2180 if (folio_test_hugetlb(folio)) {
2181 rc = hugetlb_vmemmap_restore_folio(h, folio);
2182 if (rc) {
2183 spin_lock_irq(&hugetlb_lock);
2184 add_hugetlb_folio(h, folio, adjust_surplus);
2185 h->max_huge_pages++;
2186 goto out;
2187 }
2188 } else
2189 rc = 0;
2190
2191 update_and_free_hugetlb_folio(h, folio, false);
2192 return rc;
2193 }
2194 out:
2195 spin_unlock_irq(&hugetlb_lock);
2196 return rc;
2197 }
2198
2199 /*
2200 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2201 * make specified memory blocks removable from the system.
2202 * Note that this will dissolve a free gigantic hugepage completely, if any
2203 * part of it lies within the given range.
2204 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2205 * free hugetlb folios that were dissolved before that error are lost.
2206 */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2207 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2208 {
2209 unsigned long pfn;
2210 struct folio *folio;
2211 int rc = 0;
2212 unsigned int order;
2213 struct hstate *h;
2214
2215 if (!hugepages_supported())
2216 return rc;
2217
2218 order = huge_page_order(&default_hstate);
2219 for_each_hstate(h)
2220 order = min(order, huge_page_order(h));
2221
2222 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2223 folio = pfn_folio(pfn);
2224 rc = dissolve_free_hugetlb_folio(folio);
2225 if (rc)
2226 break;
2227 }
2228
2229 return rc;
2230 }
2231
2232 /*
2233 * Allocates a fresh surplus page from the page allocator.
2234 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2235 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2236 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2237 {
2238 struct folio *folio = NULL;
2239
2240 if (hstate_is_gigantic(h))
2241 return NULL;
2242
2243 spin_lock_irq(&hugetlb_lock);
2244 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2245 goto out_unlock;
2246 spin_unlock_irq(&hugetlb_lock);
2247
2248 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2249 if (!folio)
2250 return NULL;
2251
2252 hugetlb_vmemmap_optimize_folio(h, folio);
2253
2254 spin_lock_irq(&hugetlb_lock);
2255 /*
2256 * nr_huge_pages needs to be adjusted within the same lock cycle
2257 * as surplus_pages, otherwise it might confuse
2258 * persistent_huge_pages() momentarily.
2259 */
2260 __prep_account_new_huge_page(h, folio_nid(folio));
2261
2262 /*
2263 * We could have raced with the pool size change.
2264 * Double check that and simply deallocate the new page
2265 * if we would end up overcommiting the surpluses. Abuse
2266 * temporary page to workaround the nasty free_huge_folio
2267 * codeflow
2268 */
2269 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2270 folio_set_hugetlb_temporary(folio);
2271 spin_unlock_irq(&hugetlb_lock);
2272 free_huge_folio(folio);
2273 return NULL;
2274 }
2275
2276 h->surplus_huge_pages++;
2277 h->surplus_huge_pages_node[folio_nid(folio)]++;
2278
2279 out_unlock:
2280 spin_unlock_irq(&hugetlb_lock);
2281
2282 return folio;
2283 }
2284
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2285 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2286 int nid, nodemask_t *nmask)
2287 {
2288 struct folio *folio;
2289
2290 if (hstate_is_gigantic(h))
2291 return NULL;
2292
2293 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2294 if (!folio)
2295 return NULL;
2296
2297 /* fresh huge pages are frozen */
2298 folio_ref_unfreeze(folio, 1);
2299 /*
2300 * We do not account these pages as surplus because they are only
2301 * temporary and will be released properly on the last reference
2302 */
2303 folio_set_hugetlb_temporary(folio);
2304
2305 return folio;
2306 }
2307
2308 /*
2309 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2310 */
2311 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2312 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2313 struct vm_area_struct *vma, unsigned long addr)
2314 {
2315 struct folio *folio = NULL;
2316 struct mempolicy *mpol;
2317 gfp_t gfp_mask = htlb_alloc_mask(h);
2318 int nid;
2319 nodemask_t *nodemask;
2320
2321 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2322 if (mpol_is_preferred_many(mpol)) {
2323 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2324
2325 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2326
2327 /* Fallback to all nodes if page==NULL */
2328 nodemask = NULL;
2329 }
2330
2331 if (!folio)
2332 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2333 mpol_cond_put(mpol);
2334 return folio;
2335 }
2336
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2337 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2338 nodemask_t *nmask, gfp_t gfp_mask)
2339 {
2340 struct folio *folio;
2341
2342 spin_lock_irq(&hugetlb_lock);
2343 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2344 nmask);
2345 if (folio) {
2346 VM_BUG_ON(!h->resv_huge_pages);
2347 h->resv_huge_pages--;
2348 }
2349
2350 spin_unlock_irq(&hugetlb_lock);
2351 return folio;
2352 }
2353
2354 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2355 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2356 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2357 {
2358 spin_lock_irq(&hugetlb_lock);
2359 if (available_huge_pages(h)) {
2360 struct folio *folio;
2361
2362 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2363 preferred_nid, nmask);
2364 if (folio) {
2365 spin_unlock_irq(&hugetlb_lock);
2366 return folio;
2367 }
2368 }
2369 spin_unlock_irq(&hugetlb_lock);
2370
2371 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2372 if (!allow_alloc_fallback)
2373 gfp_mask |= __GFP_THISNODE;
2374
2375 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2376 }
2377
policy_mbind_nodemask(gfp_t gfp)2378 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2379 {
2380 #ifdef CONFIG_NUMA
2381 struct mempolicy *mpol = get_task_policy(current);
2382
2383 /*
2384 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2385 * (from policy_nodemask) specifically for hugetlb case
2386 */
2387 if (mpol->mode == MPOL_BIND &&
2388 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2389 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2390 return &mpol->nodes;
2391 #endif
2392 return NULL;
2393 }
2394
2395 /*
2396 * Increase the hugetlb pool such that it can accommodate a reservation
2397 * of size 'delta'.
2398 */
gather_surplus_pages(struct hstate * h,long delta)2399 static int gather_surplus_pages(struct hstate *h, long delta)
2400 __must_hold(&hugetlb_lock)
2401 {
2402 LIST_HEAD(surplus_list);
2403 struct folio *folio, *tmp;
2404 int ret;
2405 long i;
2406 long needed, allocated;
2407 bool alloc_ok = true;
2408 nodemask_t *mbind_nodemask, alloc_nodemask;
2409
2410 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2411 if (mbind_nodemask)
2412 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2413 else
2414 alloc_nodemask = cpuset_current_mems_allowed;
2415
2416 lockdep_assert_held(&hugetlb_lock);
2417 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2418 if (needed <= 0) {
2419 h->resv_huge_pages += delta;
2420 return 0;
2421 }
2422
2423 allocated = 0;
2424
2425 ret = -ENOMEM;
2426 retry:
2427 spin_unlock_irq(&hugetlb_lock);
2428 for (i = 0; i < needed; i++) {
2429 folio = NULL;
2430
2431 /*
2432 * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
2433 * down the road to pick the current node if that is the case.
2434 */
2435 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2436 NUMA_NO_NODE, &alloc_nodemask);
2437 if (!folio) {
2438 alloc_ok = false;
2439 break;
2440 }
2441 list_add(&folio->lru, &surplus_list);
2442 cond_resched();
2443 }
2444 allocated += i;
2445
2446 /*
2447 * After retaking hugetlb_lock, we need to recalculate 'needed'
2448 * because either resv_huge_pages or free_huge_pages may have changed.
2449 */
2450 spin_lock_irq(&hugetlb_lock);
2451 needed = (h->resv_huge_pages + delta) -
2452 (h->free_huge_pages + allocated);
2453 if (needed > 0) {
2454 if (alloc_ok)
2455 goto retry;
2456 /*
2457 * We were not able to allocate enough pages to
2458 * satisfy the entire reservation so we free what
2459 * we've allocated so far.
2460 */
2461 goto free;
2462 }
2463 /*
2464 * The surplus_list now contains _at_least_ the number of extra pages
2465 * needed to accommodate the reservation. Add the appropriate number
2466 * of pages to the hugetlb pool and free the extras back to the buddy
2467 * allocator. Commit the entire reservation here to prevent another
2468 * process from stealing the pages as they are added to the pool but
2469 * before they are reserved.
2470 */
2471 needed += allocated;
2472 h->resv_huge_pages += delta;
2473 ret = 0;
2474
2475 /* Free the needed pages to the hugetlb pool */
2476 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2477 if ((--needed) < 0)
2478 break;
2479 /* Add the page to the hugetlb allocator */
2480 enqueue_hugetlb_folio(h, folio);
2481 }
2482 free:
2483 spin_unlock_irq(&hugetlb_lock);
2484
2485 /*
2486 * Free unnecessary surplus pages to the buddy allocator.
2487 * Pages have no ref count, call free_huge_folio directly.
2488 */
2489 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2490 free_huge_folio(folio);
2491 spin_lock_irq(&hugetlb_lock);
2492
2493 return ret;
2494 }
2495
2496 /*
2497 * This routine has two main purposes:
2498 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2499 * in unused_resv_pages. This corresponds to the prior adjustments made
2500 * to the associated reservation map.
2501 * 2) Free any unused surplus pages that may have been allocated to satisfy
2502 * the reservation. As many as unused_resv_pages may be freed.
2503 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2504 static void return_unused_surplus_pages(struct hstate *h,
2505 unsigned long unused_resv_pages)
2506 {
2507 unsigned long nr_pages;
2508 LIST_HEAD(page_list);
2509
2510 lockdep_assert_held(&hugetlb_lock);
2511 /* Uncommit the reservation */
2512 h->resv_huge_pages -= unused_resv_pages;
2513
2514 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2515 goto out;
2516
2517 /*
2518 * Part (or even all) of the reservation could have been backed
2519 * by pre-allocated pages. Only free surplus pages.
2520 */
2521 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2522
2523 /*
2524 * We want to release as many surplus pages as possible, spread
2525 * evenly across all nodes with memory. Iterate across these nodes
2526 * until we can no longer free unreserved surplus pages. This occurs
2527 * when the nodes with surplus pages have no free pages.
2528 * remove_pool_hugetlb_folio() will balance the freed pages across the
2529 * on-line nodes with memory and will handle the hstate accounting.
2530 */
2531 while (nr_pages--) {
2532 struct folio *folio;
2533
2534 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2535 if (!folio)
2536 goto out;
2537
2538 list_add(&folio->lru, &page_list);
2539 }
2540
2541 out:
2542 spin_unlock_irq(&hugetlb_lock);
2543 update_and_free_pages_bulk(h, &page_list);
2544 spin_lock_irq(&hugetlb_lock);
2545 }
2546
2547
2548 /*
2549 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2550 * are used by the huge page allocation routines to manage reservations.
2551 *
2552 * vma_needs_reservation is called to determine if the huge page at addr
2553 * within the vma has an associated reservation. If a reservation is
2554 * needed, the value 1 is returned. The caller is then responsible for
2555 * managing the global reservation and subpool usage counts. After
2556 * the huge page has been allocated, vma_commit_reservation is called
2557 * to add the page to the reservation map. If the page allocation fails,
2558 * the reservation must be ended instead of committed. vma_end_reservation
2559 * is called in such cases.
2560 *
2561 * In the normal case, vma_commit_reservation returns the same value
2562 * as the preceding vma_needs_reservation call. The only time this
2563 * is not the case is if a reserve map was changed between calls. It
2564 * is the responsibility of the caller to notice the difference and
2565 * take appropriate action.
2566 *
2567 * vma_add_reservation is used in error paths where a reservation must
2568 * be restored when a newly allocated huge page must be freed. It is
2569 * to be called after calling vma_needs_reservation to determine if a
2570 * reservation exists.
2571 *
2572 * vma_del_reservation is used in error paths where an entry in the reserve
2573 * map was created during huge page allocation and must be removed. It is to
2574 * be called after calling vma_needs_reservation to determine if a reservation
2575 * exists.
2576 */
2577 enum vma_resv_mode {
2578 VMA_NEEDS_RESV,
2579 VMA_COMMIT_RESV,
2580 VMA_END_RESV,
2581 VMA_ADD_RESV,
2582 VMA_DEL_RESV,
2583 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2584 static long __vma_reservation_common(struct hstate *h,
2585 struct vm_area_struct *vma, unsigned long addr,
2586 enum vma_resv_mode mode)
2587 {
2588 struct resv_map *resv;
2589 pgoff_t idx;
2590 long ret;
2591 long dummy_out_regions_needed;
2592
2593 resv = vma_resv_map(vma);
2594 if (!resv)
2595 return 1;
2596
2597 idx = vma_hugecache_offset(h, vma, addr);
2598 switch (mode) {
2599 case VMA_NEEDS_RESV:
2600 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2601 /* We assume that vma_reservation_* routines always operate on
2602 * 1 page, and that adding to resv map a 1 page entry can only
2603 * ever require 1 region.
2604 */
2605 VM_BUG_ON(dummy_out_regions_needed != 1);
2606 break;
2607 case VMA_COMMIT_RESV:
2608 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2609 /* region_add calls of range 1 should never fail. */
2610 VM_BUG_ON(ret < 0);
2611 break;
2612 case VMA_END_RESV:
2613 region_abort(resv, idx, idx + 1, 1);
2614 ret = 0;
2615 break;
2616 case VMA_ADD_RESV:
2617 if (vma->vm_flags & VM_MAYSHARE) {
2618 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2619 /* region_add calls of range 1 should never fail. */
2620 VM_BUG_ON(ret < 0);
2621 } else {
2622 region_abort(resv, idx, idx + 1, 1);
2623 ret = region_del(resv, idx, idx + 1);
2624 }
2625 break;
2626 case VMA_DEL_RESV:
2627 if (vma->vm_flags & VM_MAYSHARE) {
2628 region_abort(resv, idx, idx + 1, 1);
2629 ret = region_del(resv, idx, idx + 1);
2630 } else {
2631 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2632 /* region_add calls of range 1 should never fail. */
2633 VM_BUG_ON(ret < 0);
2634 }
2635 break;
2636 default:
2637 BUG();
2638 }
2639
2640 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2641 return ret;
2642 /*
2643 * We know private mapping must have HPAGE_RESV_OWNER set.
2644 *
2645 * In most cases, reserves always exist for private mappings.
2646 * However, a file associated with mapping could have been
2647 * hole punched or truncated after reserves were consumed.
2648 * As subsequent fault on such a range will not use reserves.
2649 * Subtle - The reserve map for private mappings has the
2650 * opposite meaning than that of shared mappings. If NO
2651 * entry is in the reserve map, it means a reservation exists.
2652 * If an entry exists in the reserve map, it means the
2653 * reservation has already been consumed. As a result, the
2654 * return value of this routine is the opposite of the
2655 * value returned from reserve map manipulation routines above.
2656 */
2657 if (ret > 0)
2658 return 0;
2659 if (ret == 0)
2660 return 1;
2661 return ret;
2662 }
2663
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2664 static long vma_needs_reservation(struct hstate *h,
2665 struct vm_area_struct *vma, unsigned long addr)
2666 {
2667 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2668 }
2669
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2670 static long vma_commit_reservation(struct hstate *h,
2671 struct vm_area_struct *vma, unsigned long addr)
2672 {
2673 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2674 }
2675
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2676 static void vma_end_reservation(struct hstate *h,
2677 struct vm_area_struct *vma, unsigned long addr)
2678 {
2679 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2680 }
2681
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2682 static long vma_add_reservation(struct hstate *h,
2683 struct vm_area_struct *vma, unsigned long addr)
2684 {
2685 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2686 }
2687
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2688 static long vma_del_reservation(struct hstate *h,
2689 struct vm_area_struct *vma, unsigned long addr)
2690 {
2691 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2692 }
2693
2694 /*
2695 * This routine is called to restore reservation information on error paths.
2696 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2697 * and the hugetlb mutex should remain held when calling this routine.
2698 *
2699 * It handles two specific cases:
2700 * 1) A reservation was in place and the folio consumed the reservation.
2701 * hugetlb_restore_reserve is set in the folio.
2702 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2703 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2704 *
2705 * In case 1, free_huge_folio later in the error path will increment the
2706 * global reserve count. But, free_huge_folio does not have enough context
2707 * to adjust the reservation map. This case deals primarily with private
2708 * mappings. Adjust the reserve map here to be consistent with global
2709 * reserve count adjustments to be made by free_huge_folio. Make sure the
2710 * reserve map indicates there is a reservation present.
2711 *
2712 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2713 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2714 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2715 unsigned long address, struct folio *folio)
2716 {
2717 long rc = vma_needs_reservation(h, vma, address);
2718
2719 if (folio_test_hugetlb_restore_reserve(folio)) {
2720 if (unlikely(rc < 0))
2721 /*
2722 * Rare out of memory condition in reserve map
2723 * manipulation. Clear hugetlb_restore_reserve so
2724 * that global reserve count will not be incremented
2725 * by free_huge_folio. This will make it appear
2726 * as though the reservation for this folio was
2727 * consumed. This may prevent the task from
2728 * faulting in the folio at a later time. This
2729 * is better than inconsistent global huge page
2730 * accounting of reserve counts.
2731 */
2732 folio_clear_hugetlb_restore_reserve(folio);
2733 else if (rc)
2734 (void)vma_add_reservation(h, vma, address);
2735 else
2736 vma_end_reservation(h, vma, address);
2737 } else {
2738 if (!rc) {
2739 /*
2740 * This indicates there is an entry in the reserve map
2741 * not added by alloc_hugetlb_folio. We know it was added
2742 * before the alloc_hugetlb_folio call, otherwise
2743 * hugetlb_restore_reserve would be set on the folio.
2744 * Remove the entry so that a subsequent allocation
2745 * does not consume a reservation.
2746 */
2747 rc = vma_del_reservation(h, vma, address);
2748 if (rc < 0)
2749 /*
2750 * VERY rare out of memory condition. Since
2751 * we can not delete the entry, set
2752 * hugetlb_restore_reserve so that the reserve
2753 * count will be incremented when the folio
2754 * is freed. This reserve will be consumed
2755 * on a subsequent allocation.
2756 */
2757 folio_set_hugetlb_restore_reserve(folio);
2758 } else if (rc < 0) {
2759 /*
2760 * Rare out of memory condition from
2761 * vma_needs_reservation call. Memory allocation is
2762 * only attempted if a new entry is needed. Therefore,
2763 * this implies there is not an entry in the
2764 * reserve map.
2765 *
2766 * For shared mappings, no entry in the map indicates
2767 * no reservation. We are done.
2768 */
2769 if (!(vma->vm_flags & VM_MAYSHARE))
2770 /*
2771 * For private mappings, no entry indicates
2772 * a reservation is present. Since we can
2773 * not add an entry, set hugetlb_restore_reserve
2774 * on the folio so reserve count will be
2775 * incremented when freed. This reserve will
2776 * be consumed on a subsequent allocation.
2777 */
2778 folio_set_hugetlb_restore_reserve(folio);
2779 } else
2780 /*
2781 * No reservation present, do nothing
2782 */
2783 vma_end_reservation(h, vma, address);
2784 }
2785 }
2786
2787 /*
2788 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2789 * the old one
2790 * @old_folio: Old folio to dissolve
2791 * @list: List to isolate the page in case we need to
2792 * Returns 0 on success, otherwise negated error.
2793 */
alloc_and_dissolve_hugetlb_folio(struct folio * old_folio,struct list_head * list)2794 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio,
2795 struct list_head *list)
2796 {
2797 gfp_t gfp_mask;
2798 struct hstate *h;
2799 int nid = folio_nid(old_folio);
2800 struct folio *new_folio = NULL;
2801 int ret = 0;
2802
2803 retry:
2804 /*
2805 * The old_folio might have been dissolved from under our feet, so make sure
2806 * to carefully check the state under the lock.
2807 */
2808 spin_lock_irq(&hugetlb_lock);
2809 if (!folio_test_hugetlb(old_folio)) {
2810 /*
2811 * Freed from under us. Drop new_folio too.
2812 */
2813 goto free_new;
2814 } else if (folio_ref_count(old_folio)) {
2815 bool isolated;
2816
2817 /*
2818 * Someone has grabbed the folio, try to isolate it here.
2819 * Fail with -EBUSY if not possible.
2820 */
2821 spin_unlock_irq(&hugetlb_lock);
2822 isolated = folio_isolate_hugetlb(old_folio, list);
2823 ret = isolated ? 0 : -EBUSY;
2824 spin_lock_irq(&hugetlb_lock);
2825 goto free_new;
2826 } else if (!folio_test_hugetlb_freed(old_folio)) {
2827 /*
2828 * Folio's refcount is 0 but it has not been enqueued in the
2829 * freelist yet. Race window is small, so we can succeed here if
2830 * we retry.
2831 */
2832 spin_unlock_irq(&hugetlb_lock);
2833 cond_resched();
2834 goto retry;
2835 } else {
2836 h = folio_hstate(old_folio);
2837 if (!new_folio) {
2838 spin_unlock_irq(&hugetlb_lock);
2839 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2840 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid,
2841 NULL, NULL);
2842 if (!new_folio)
2843 return -ENOMEM;
2844 __prep_new_hugetlb_folio(h, new_folio);
2845 goto retry;
2846 }
2847
2848 /*
2849 * Ok, old_folio is still a genuine free hugepage. Remove it from
2850 * the freelist and decrease the counters. These will be
2851 * incremented again when calling __prep_account_new_huge_page()
2852 * and enqueue_hugetlb_folio() for new_folio. The counters will
2853 * remain stable since this happens under the lock.
2854 */
2855 remove_hugetlb_folio(h, old_folio, false);
2856
2857 /*
2858 * Ref count on new_folio is already zero as it was dropped
2859 * earlier. It can be directly added to the pool free list.
2860 */
2861 __prep_account_new_huge_page(h, nid);
2862 enqueue_hugetlb_folio(h, new_folio);
2863
2864 /*
2865 * Folio has been replaced, we can safely free the old one.
2866 */
2867 spin_unlock_irq(&hugetlb_lock);
2868 update_and_free_hugetlb_folio(h, old_folio, false);
2869 }
2870
2871 return ret;
2872
2873 free_new:
2874 spin_unlock_irq(&hugetlb_lock);
2875 if (new_folio)
2876 update_and_free_hugetlb_folio(h, new_folio, false);
2877
2878 return ret;
2879 }
2880
isolate_or_dissolve_huge_folio(struct folio * folio,struct list_head * list)2881 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
2882 {
2883 int ret = -EBUSY;
2884
2885 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2886 if (!folio_test_hugetlb(folio))
2887 return 0;
2888
2889 /*
2890 * Fence off gigantic pages as there is a cyclic dependency between
2891 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2892 * of bailing out right away without further retrying.
2893 */
2894 if (folio_order(folio) > MAX_PAGE_ORDER)
2895 return -ENOMEM;
2896
2897 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2898 ret = 0;
2899 else if (!folio_ref_count(folio))
2900 ret = alloc_and_dissolve_hugetlb_folio(folio, list);
2901
2902 return ret;
2903 }
2904
2905 /*
2906 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2907 * range with new folios.
2908 * @start_pfn: start pfn of the given pfn range
2909 * @end_pfn: end pfn of the given pfn range
2910 * Returns 0 on success, otherwise negated error.
2911 */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2912 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2913 {
2914 struct folio *folio;
2915 int ret = 0;
2916
2917 LIST_HEAD(isolate_list);
2918
2919 while (start_pfn < end_pfn) {
2920 folio = pfn_folio(start_pfn);
2921
2922 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2923 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) {
2924 ret = alloc_and_dissolve_hugetlb_folio(folio, &isolate_list);
2925 if (ret)
2926 break;
2927
2928 putback_movable_pages(&isolate_list);
2929 }
2930 start_pfn++;
2931 }
2932
2933 return ret;
2934 }
2935
wait_for_freed_hugetlb_folios(void)2936 void wait_for_freed_hugetlb_folios(void)
2937 {
2938 if (llist_empty(&hpage_freelist))
2939 return;
2940
2941 flush_work(&free_hpage_work);
2942 }
2943
2944 typedef enum {
2945 /*
2946 * For either 0/1: we checked the per-vma resv map, and one resv
2947 * count either can be reused (0), or an extra needed (1).
2948 */
2949 MAP_CHG_REUSE = 0,
2950 MAP_CHG_NEEDED = 1,
2951 /*
2952 * Cannot use per-vma resv count can be used, hence a new resv
2953 * count is enforced.
2954 *
2955 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2956 * that currently vma_needs_reservation() has an unwanted side
2957 * effect to either use end() or commit() to complete the
2958 * transaction. Hence it needs to differenciate from NEEDED.
2959 */
2960 MAP_CHG_ENFORCED = 2,
2961 } map_chg_state;
2962
2963 /*
2964 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2965 * faults of hugetlb private mappings on top of a non-page-cache folio (in
2966 * which case even if there's a private vma resv map it won't cover such
2967 * allocation). New call sites should (probably) never set it to true!!
2968 * When it's set, the allocation will bypass all vma level reservations.
2969 */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)2970 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2971 unsigned long addr, bool cow_from_owner)
2972 {
2973 struct hugepage_subpool *spool = subpool_vma(vma);
2974 struct hstate *h = hstate_vma(vma);
2975 struct folio *folio;
2976 long retval, gbl_chg, gbl_reserve;
2977 map_chg_state map_chg;
2978 int ret, idx;
2979 struct hugetlb_cgroup *h_cg = NULL;
2980 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2981
2982 idx = hstate_index(h);
2983
2984 /* Whether we need a separate per-vma reservation? */
2985 if (cow_from_owner) {
2986 /*
2987 * Special case! Since it's a CoW on top of a reserved
2988 * page, the private resv map doesn't count. So it cannot
2989 * consume the per-vma resv map even if it's reserved.
2990 */
2991 map_chg = MAP_CHG_ENFORCED;
2992 } else {
2993 /*
2994 * Examine the region/reserve map to determine if the process
2995 * has a reservation for the page to be allocated. A return
2996 * code of zero indicates a reservation exists (no change).
2997 */
2998 retval = vma_needs_reservation(h, vma, addr);
2999 if (retval < 0)
3000 return ERR_PTR(-ENOMEM);
3001 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
3002 }
3003
3004 /*
3005 * Whether we need a separate global reservation?
3006 *
3007 * Processes that did not create the mapping will have no
3008 * reserves as indicated by the region/reserve map. Check
3009 * that the allocation will not exceed the subpool limit.
3010 * Or if it can get one from the pool reservation directly.
3011 */
3012 if (map_chg) {
3013 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3014 if (gbl_chg < 0)
3015 goto out_end_reservation;
3016 } else {
3017 /*
3018 * If we have the vma reservation ready, no need for extra
3019 * global reservation.
3020 */
3021 gbl_chg = 0;
3022 }
3023
3024 /*
3025 * If this allocation is not consuming a per-vma reservation,
3026 * charge the hugetlb cgroup now.
3027 */
3028 if (map_chg) {
3029 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3030 idx, pages_per_huge_page(h), &h_cg);
3031 if (ret)
3032 goto out_subpool_put;
3033 }
3034
3035 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3036 if (ret)
3037 goto out_uncharge_cgroup_reservation;
3038
3039 spin_lock_irq(&hugetlb_lock);
3040 /*
3041 * glb_chg is passed to indicate whether or not a page must be taken
3042 * from the global free pool (global change). gbl_chg == 0 indicates
3043 * a reservation exists for the allocation.
3044 */
3045 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
3046 if (!folio) {
3047 spin_unlock_irq(&hugetlb_lock);
3048 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3049 if (!folio)
3050 goto out_uncharge_cgroup;
3051 spin_lock_irq(&hugetlb_lock);
3052 list_add(&folio->lru, &h->hugepage_activelist);
3053 folio_ref_unfreeze(folio, 1);
3054 /* Fall through */
3055 }
3056
3057 /*
3058 * Either dequeued or buddy-allocated folio needs to add special
3059 * mark to the folio when it consumes a global reservation.
3060 */
3061 if (!gbl_chg) {
3062 folio_set_hugetlb_restore_reserve(folio);
3063 h->resv_huge_pages--;
3064 }
3065
3066 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3067 /* If allocation is not consuming a reservation, also store the
3068 * hugetlb_cgroup pointer on the page.
3069 */
3070 if (map_chg) {
3071 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3072 h_cg, folio);
3073 }
3074
3075 spin_unlock_irq(&hugetlb_lock);
3076
3077 hugetlb_set_folio_subpool(folio, spool);
3078
3079 if (map_chg != MAP_CHG_ENFORCED) {
3080 /* commit() is only needed if the map_chg is not enforced */
3081 retval = vma_commit_reservation(h, vma, addr);
3082 /*
3083 * Check for possible race conditions. When it happens..
3084 * The page was added to the reservation map between
3085 * vma_needs_reservation and vma_commit_reservation.
3086 * This indicates a race with hugetlb_reserve_pages.
3087 * Adjust for the subpool count incremented above AND
3088 * in hugetlb_reserve_pages for the same page. Also,
3089 * the reservation count added in hugetlb_reserve_pages
3090 * no longer applies.
3091 */
3092 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3093 long rsv_adjust;
3094
3095 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3096 hugetlb_acct_memory(h, -rsv_adjust);
3097 if (map_chg) {
3098 spin_lock_irq(&hugetlb_lock);
3099 hugetlb_cgroup_uncharge_folio_rsvd(
3100 hstate_index(h), pages_per_huge_page(h),
3101 folio);
3102 spin_unlock_irq(&hugetlb_lock);
3103 }
3104 }
3105 }
3106
3107 ret = mem_cgroup_charge_hugetlb(folio, gfp);
3108 /*
3109 * Unconditionally increment NR_HUGETLB here. If it turns out that
3110 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3111 * decrement NR_HUGETLB.
3112 */
3113 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3114
3115 if (ret == -ENOMEM) {
3116 free_huge_folio(folio);
3117 return ERR_PTR(-ENOMEM);
3118 }
3119
3120 return folio;
3121
3122 out_uncharge_cgroup:
3123 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3124 out_uncharge_cgroup_reservation:
3125 if (map_chg)
3126 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3127 h_cg);
3128 out_subpool_put:
3129 /*
3130 * put page to subpool iff the quota of subpool's rsv_hpages is used
3131 * during hugepage_subpool_get_pages.
3132 */
3133 if (map_chg && !gbl_chg) {
3134 gbl_reserve = hugepage_subpool_put_pages(spool, 1);
3135 hugetlb_acct_memory(h, -gbl_reserve);
3136 }
3137
3138
3139 out_end_reservation:
3140 if (map_chg != MAP_CHG_ENFORCED)
3141 vma_end_reservation(h, vma, addr);
3142 return ERR_PTR(-ENOSPC);
3143 }
3144
alloc_bootmem(struct hstate * h,int nid,bool node_exact)3145 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3146 {
3147 struct huge_bootmem_page *m;
3148 int listnode = nid;
3149
3150 if (hugetlb_early_cma(h))
3151 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3152 else {
3153 if (node_exact)
3154 m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3155 huge_page_size(h), 0,
3156 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3157 else {
3158 m = memblock_alloc_try_nid_raw(huge_page_size(h),
3159 huge_page_size(h), 0,
3160 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3161 /*
3162 * For pre-HVO to work correctly, pages need to be on
3163 * the list for the node they were actually allocated
3164 * from. That node may be different in the case of
3165 * fallback by memblock_alloc_try_nid_raw. So,
3166 * extract the actual node first.
3167 */
3168 if (m)
3169 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3170 }
3171
3172 if (m) {
3173 m->flags = 0;
3174 m->cma = NULL;
3175 }
3176 }
3177
3178 if (m) {
3179 /*
3180 * Use the beginning of the huge page to store the
3181 * huge_bootmem_page struct (until gather_bootmem
3182 * puts them into the mem_map).
3183 *
3184 * Put them into a private list first because mem_map
3185 * is not up yet.
3186 */
3187 INIT_LIST_HEAD(&m->list);
3188 list_add(&m->list, &huge_boot_pages[listnode]);
3189 m->hstate = h;
3190 }
3191
3192 return m;
3193 }
3194
3195 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3196 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3197 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3198 {
3199 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3200 int nr_nodes, node = nid;
3201
3202 /* do node specific alloc */
3203 if (nid != NUMA_NO_NODE) {
3204 m = alloc_bootmem(h, node, true);
3205 if (!m)
3206 return 0;
3207 goto found;
3208 }
3209
3210 /* allocate from next node when distributing huge pages */
3211 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
3212 &hugetlb_bootmem_nodes) {
3213 m = alloc_bootmem(h, node, false);
3214 if (!m)
3215 return 0;
3216 goto found;
3217 }
3218
3219 found:
3220
3221 /*
3222 * Only initialize the head struct page in memmap_init_reserved_pages,
3223 * rest of the struct pages will be initialized by the HugeTLB
3224 * subsystem itself.
3225 * The head struct page is used to get folio information by the HugeTLB
3226 * subsystem like zone id and node id.
3227 */
3228 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3229 huge_page_size(h) - PAGE_SIZE);
3230
3231 return 1;
3232 }
3233
3234 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3235 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3236 unsigned long start_page_number,
3237 unsigned long end_page_number)
3238 {
3239 enum zone_type zone = zone_idx(folio_zone(folio));
3240 int nid = folio_nid(folio);
3241 unsigned long head_pfn = folio_pfn(folio);
3242 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3243 int ret;
3244
3245 for (pfn = head_pfn + start_page_number; pfn < end_pfn; pfn++) {
3246 struct page *page = pfn_to_page(pfn);
3247
3248 __init_single_page(page, pfn, zone, nid);
3249 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3250 ret = page_ref_freeze(page, 1);
3251 VM_BUG_ON(!ret);
3252 }
3253 }
3254
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3255 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3256 struct hstate *h,
3257 unsigned long nr_pages)
3258 {
3259 int ret;
3260
3261 /* Prepare folio head */
3262 __folio_clear_reserved(folio);
3263 __folio_set_head(folio);
3264 ret = folio_ref_freeze(folio, 1);
3265 VM_BUG_ON(!ret);
3266 /* Initialize the necessary tail struct pages */
3267 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3268 prep_compound_head((struct page *)folio, huge_page_order(h));
3269 }
3270
hugetlb_bootmem_page_prehvo(struct huge_bootmem_page * m)3271 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3272 {
3273 return m->flags & HUGE_BOOTMEM_HVO;
3274 }
3275
hugetlb_bootmem_page_earlycma(struct huge_bootmem_page * m)3276 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3277 {
3278 return m->flags & HUGE_BOOTMEM_CMA;
3279 }
3280
3281 /*
3282 * memblock-allocated pageblocks might not have the migrate type set
3283 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3284 * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3285 * reservation.
3286 *
3287 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3288 * read-only, but that's ok - for sparse vmemmap this does not write to
3289 * the page structure.
3290 */
hugetlb_bootmem_init_migratetype(struct folio * folio,struct hstate * h)3291 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3292 struct hstate *h)
3293 {
3294 unsigned long nr_pages = pages_per_huge_page(h), i;
3295
3296 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3297
3298 for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3299 if (folio_test_hugetlb_cma(folio))
3300 init_cma_pageblock(folio_page(folio, i));
3301 else
3302 set_pageblock_migratetype(folio_page(folio, i),
3303 MIGRATE_MOVABLE);
3304 }
3305 }
3306
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3307 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3308 struct list_head *folio_list)
3309 {
3310 unsigned long flags;
3311 struct folio *folio, *tmp_f;
3312
3313 /* Send list for bulk vmemmap optimization processing */
3314 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3315
3316 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3317 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3318 /*
3319 * If HVO fails, initialize all tail struct pages
3320 * We do not worry about potential long lock hold
3321 * time as this is early in boot and there should
3322 * be no contention.
3323 */
3324 hugetlb_folio_init_tail_vmemmap(folio,
3325 HUGETLB_VMEMMAP_RESERVE_PAGES,
3326 pages_per_huge_page(h));
3327 }
3328 hugetlb_bootmem_init_migratetype(folio, h);
3329 /* Subdivide locks to achieve better parallel performance */
3330 spin_lock_irqsave(&hugetlb_lock, flags);
3331 __prep_account_new_huge_page(h, folio_nid(folio));
3332 enqueue_hugetlb_folio(h, folio);
3333 spin_unlock_irqrestore(&hugetlb_lock, flags);
3334 }
3335 }
3336
hugetlb_bootmem_page_zones_valid(int nid,struct huge_bootmem_page * m)3337 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3338 struct huge_bootmem_page *m)
3339 {
3340 unsigned long start_pfn;
3341 bool valid;
3342
3343 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3344 /*
3345 * Already validated, skip check.
3346 */
3347 return true;
3348 }
3349
3350 if (hugetlb_bootmem_page_earlycma(m)) {
3351 valid = cma_validate_zones(m->cma);
3352 goto out;
3353 }
3354
3355 start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3356
3357 valid = !pfn_range_intersects_zones(nid, start_pfn,
3358 pages_per_huge_page(m->hstate));
3359 out:
3360 if (!valid)
3361 hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3362
3363 return valid;
3364 }
3365
3366 /*
3367 * Free a bootmem page that was found to be invalid (intersecting with
3368 * multiple zones).
3369 *
3370 * Since it intersects with multiple zones, we can't just do a free
3371 * operation on all pages at once, but instead have to walk all
3372 * pages, freeing them one by one.
3373 */
hugetlb_bootmem_free_invalid_page(int nid,struct page * page,struct hstate * h)3374 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3375 struct hstate *h)
3376 {
3377 unsigned long npages = pages_per_huge_page(h);
3378 unsigned long pfn;
3379
3380 while (npages--) {
3381 pfn = page_to_pfn(page);
3382 __init_page_from_nid(pfn, nid);
3383 free_reserved_page(page);
3384 page++;
3385 }
3386 }
3387
3388 /*
3389 * Put bootmem huge pages into the standard lists after mem_map is up.
3390 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3391 */
gather_bootmem_prealloc_node(unsigned long nid)3392 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3393 {
3394 LIST_HEAD(folio_list);
3395 struct huge_bootmem_page *m, *tm;
3396 struct hstate *h = NULL, *prev_h = NULL;
3397
3398 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3399 struct page *page = virt_to_page(m);
3400 struct folio *folio = (void *)page;
3401
3402 h = m->hstate;
3403 if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3404 /*
3405 * Can't use this page. Initialize the
3406 * page structures if that hasn't already
3407 * been done, and give them to the page
3408 * allocator.
3409 */
3410 hugetlb_bootmem_free_invalid_page(nid, page, h);
3411 continue;
3412 }
3413
3414 /*
3415 * It is possible to have multiple huge page sizes (hstates)
3416 * in this list. If so, process each size separately.
3417 */
3418 if (h != prev_h && prev_h != NULL)
3419 prep_and_add_bootmem_folios(prev_h, &folio_list);
3420 prev_h = h;
3421
3422 VM_BUG_ON(!hstate_is_gigantic(h));
3423 WARN_ON(folio_ref_count(folio) != 1);
3424
3425 hugetlb_folio_init_vmemmap(folio, h,
3426 HUGETLB_VMEMMAP_RESERVE_PAGES);
3427 init_new_hugetlb_folio(h, folio);
3428
3429 if (hugetlb_bootmem_page_prehvo(m))
3430 /*
3431 * If pre-HVO was done, just set the
3432 * flag, the HVO code will then skip
3433 * this folio.
3434 */
3435 folio_set_hugetlb_vmemmap_optimized(folio);
3436
3437 if (hugetlb_bootmem_page_earlycma(m))
3438 folio_set_hugetlb_cma(folio);
3439
3440 list_add(&folio->lru, &folio_list);
3441
3442 /*
3443 * We need to restore the 'stolen' pages to totalram_pages
3444 * in order to fix confusing memory reports from free(1) and
3445 * other side-effects, like CommitLimit going negative.
3446 *
3447 * For CMA pages, this is done in init_cma_pageblock
3448 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3449 */
3450 if (!folio_test_hugetlb_cma(folio))
3451 adjust_managed_page_count(page, pages_per_huge_page(h));
3452 cond_resched();
3453 }
3454
3455 prep_and_add_bootmem_folios(h, &folio_list);
3456 }
3457
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3458 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3459 unsigned long end, void *arg)
3460 {
3461 int nid;
3462
3463 for (nid = start; nid < end; nid++)
3464 gather_bootmem_prealloc_node(nid);
3465 }
3466
gather_bootmem_prealloc(void)3467 static void __init gather_bootmem_prealloc(void)
3468 {
3469 struct padata_mt_job job = {
3470 .thread_fn = gather_bootmem_prealloc_parallel,
3471 .fn_arg = NULL,
3472 .start = 0,
3473 .size = nr_node_ids,
3474 .align = 1,
3475 .min_chunk = 1,
3476 .max_threads = num_node_state(N_MEMORY),
3477 .numa_aware = true,
3478 };
3479
3480 padata_do_multithreaded(&job);
3481 }
3482
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3483 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3484 {
3485 unsigned long i;
3486 char buf[32];
3487 LIST_HEAD(folio_list);
3488
3489 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3490 if (hstate_is_gigantic(h)) {
3491 if (!alloc_bootmem_huge_page(h, nid))
3492 break;
3493 } else {
3494 struct folio *folio;
3495 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3496
3497 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3498 &node_states[N_MEMORY], NULL);
3499 if (!folio)
3500 break;
3501 list_add(&folio->lru, &folio_list);
3502 }
3503 cond_resched();
3504 }
3505
3506 if (!list_empty(&folio_list))
3507 prep_and_add_allocated_folios(h, &folio_list);
3508
3509 if (i == h->max_huge_pages_node[nid])
3510 return;
3511
3512 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3513 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3514 h->max_huge_pages_node[nid], buf, nid, i);
3515 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3516 h->max_huge_pages_node[nid] = i;
3517 }
3518
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3519 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3520 {
3521 int i;
3522 bool node_specific_alloc = false;
3523
3524 for_each_online_node(i) {
3525 if (h->max_huge_pages_node[i] > 0) {
3526 hugetlb_hstate_alloc_pages_onenode(h, i);
3527 node_specific_alloc = true;
3528 }
3529 }
3530
3531 return node_specific_alloc;
3532 }
3533
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3534 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3535 {
3536 if (allocated < h->max_huge_pages) {
3537 char buf[32];
3538
3539 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3540 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3541 h->max_huge_pages, buf, allocated);
3542 h->max_huge_pages = allocated;
3543 }
3544 }
3545
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3546 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3547 {
3548 struct hstate *h = (struct hstate *)arg;
3549 int i, num = end - start;
3550 nodemask_t node_alloc_noretry;
3551 LIST_HEAD(folio_list);
3552 int next_node = first_online_node;
3553
3554 /* Bit mask controlling how hard we retry per-node allocations.*/
3555 nodes_clear(node_alloc_noretry);
3556
3557 for (i = 0; i < num; ++i) {
3558 struct folio *folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3559 &node_alloc_noretry, &next_node);
3560 if (!folio)
3561 break;
3562
3563 list_move(&folio->lru, &folio_list);
3564 cond_resched();
3565 }
3566
3567 prep_and_add_allocated_folios(h, &folio_list);
3568 }
3569
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3570 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3571 {
3572 unsigned long i;
3573
3574 for (i = 0; i < h->max_huge_pages; ++i) {
3575 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3576 break;
3577 cond_resched();
3578 }
3579
3580 return i;
3581 }
3582
hugetlb_pages_alloc_boot(struct hstate * h)3583 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3584 {
3585 struct padata_mt_job job = {
3586 .fn_arg = h,
3587 .align = 1,
3588 .numa_aware = true
3589 };
3590
3591 unsigned long jiffies_start;
3592 unsigned long jiffies_end;
3593
3594 job.thread_fn = hugetlb_pages_alloc_boot_node;
3595 job.start = 0;
3596 job.size = h->max_huge_pages;
3597
3598 /*
3599 * job.max_threads is 25% of the available cpu threads by default.
3600 *
3601 * On large servers with terabytes of memory, huge page allocation
3602 * can consume a considerably amount of time.
3603 *
3604 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3605 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3606 *
3607 * +-----------------------+-------+-------+-------+-------+-------+
3608 * | threads | 8 | 16 | 32 | 64 | 128 |
3609 * +-----------------------+-------+-------+-------+-------+-------+
3610 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
3611 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
3612 * +-----------------------+-------+-------+-------+-------+-------+
3613 */
3614 if (hugepage_allocation_threads == 0) {
3615 hugepage_allocation_threads = num_online_cpus() / 4;
3616 hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3617 }
3618
3619 job.max_threads = hugepage_allocation_threads;
3620 job.min_chunk = h->max_huge_pages / hugepage_allocation_threads;
3621
3622 jiffies_start = jiffies;
3623 padata_do_multithreaded(&job);
3624 jiffies_end = jiffies;
3625
3626 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3627 jiffies_to_msecs(jiffies_end - jiffies_start),
3628 hugepage_allocation_threads);
3629
3630 return h->nr_huge_pages;
3631 }
3632
3633 /*
3634 * NOTE: this routine is called in different contexts for gigantic and
3635 * non-gigantic pages.
3636 * - For gigantic pages, this is called early in the boot process and
3637 * pages are allocated from memblock allocated or something similar.
3638 * Gigantic pages are actually added to pools later with the routine
3639 * gather_bootmem_prealloc.
3640 * - For non-gigantic pages, this is called later in the boot process after
3641 * all of mm is up and functional. Pages are allocated from buddy and
3642 * then added to hugetlb pools.
3643 */
hugetlb_hstate_alloc_pages(struct hstate * h)3644 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3645 {
3646 unsigned long allocated;
3647
3648 /*
3649 * Skip gigantic hugepages allocation if early CMA
3650 * reservations are not available.
3651 */
3652 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3653 !hugetlb_early_cma(h)) {
3654 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3655 return;
3656 }
3657
3658 /* do node specific alloc */
3659 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3660 return;
3661
3662 /* below will do all node balanced alloc */
3663 if (hstate_is_gigantic(h))
3664 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3665 else
3666 allocated = hugetlb_pages_alloc_boot(h);
3667
3668 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3669 }
3670
hugetlb_init_hstates(void)3671 static void __init hugetlb_init_hstates(void)
3672 {
3673 struct hstate *h, *h2;
3674
3675 for_each_hstate(h) {
3676 /*
3677 * Always reset to first_memory_node here, even if
3678 * next_nid_to_alloc was set before - we can't
3679 * reference hugetlb_bootmem_nodes after init, and
3680 * first_memory_node is right for all further allocations.
3681 */
3682 h->next_nid_to_alloc = first_memory_node;
3683 h->next_nid_to_free = first_memory_node;
3684
3685 /* oversize hugepages were init'ed in early boot */
3686 if (!hstate_is_gigantic(h))
3687 hugetlb_hstate_alloc_pages(h);
3688
3689 /*
3690 * Set demote order for each hstate. Note that
3691 * h->demote_order is initially 0.
3692 * - We can not demote gigantic pages if runtime freeing
3693 * is not supported, so skip this.
3694 * - If CMA allocation is possible, we can not demote
3695 * HUGETLB_PAGE_ORDER or smaller size pages.
3696 */
3697 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3698 continue;
3699 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3700 continue;
3701 for_each_hstate(h2) {
3702 if (h2 == h)
3703 continue;
3704 if (h2->order < h->order &&
3705 h2->order > h->demote_order)
3706 h->demote_order = h2->order;
3707 }
3708 }
3709 }
3710
report_hugepages(void)3711 static void __init report_hugepages(void)
3712 {
3713 struct hstate *h;
3714 unsigned long nrinvalid;
3715
3716 for_each_hstate(h) {
3717 char buf[32];
3718
3719 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3720 h->max_huge_pages -= nrinvalid;
3721
3722 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3723 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3724 buf, h->nr_huge_pages);
3725 if (nrinvalid)
3726 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3727 buf, nrinvalid, nrinvalid > 1 ? "s" : "");
3728 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3729 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3730 }
3731 }
3732
3733 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3734 static void try_to_free_low(struct hstate *h, unsigned long count,
3735 nodemask_t *nodes_allowed)
3736 {
3737 int i;
3738 LIST_HEAD(page_list);
3739
3740 lockdep_assert_held(&hugetlb_lock);
3741 if (hstate_is_gigantic(h))
3742 return;
3743
3744 /*
3745 * Collect pages to be freed on a list, and free after dropping lock
3746 */
3747 for_each_node_mask(i, *nodes_allowed) {
3748 struct folio *folio, *next;
3749 struct list_head *freel = &h->hugepage_freelists[i];
3750 list_for_each_entry_safe(folio, next, freel, lru) {
3751 if (count >= h->nr_huge_pages)
3752 goto out;
3753 if (folio_test_highmem(folio))
3754 continue;
3755 remove_hugetlb_folio(h, folio, false);
3756 list_add(&folio->lru, &page_list);
3757 }
3758 }
3759
3760 out:
3761 spin_unlock_irq(&hugetlb_lock);
3762 update_and_free_pages_bulk(h, &page_list);
3763 spin_lock_irq(&hugetlb_lock);
3764 }
3765 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3766 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3767 nodemask_t *nodes_allowed)
3768 {
3769 }
3770 #endif
3771
3772 /*
3773 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3774 * balanced by operating on them in a round-robin fashion.
3775 * Returns 1 if an adjustment was made.
3776 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3777 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3778 int delta)
3779 {
3780 int nr_nodes, node;
3781
3782 lockdep_assert_held(&hugetlb_lock);
3783 VM_BUG_ON(delta != -1 && delta != 1);
3784
3785 if (delta < 0) {
3786 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3787 if (h->surplus_huge_pages_node[node])
3788 goto found;
3789 }
3790 } else {
3791 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3792 if (h->surplus_huge_pages_node[node] <
3793 h->nr_huge_pages_node[node])
3794 goto found;
3795 }
3796 }
3797 return 0;
3798
3799 found:
3800 h->surplus_huge_pages += delta;
3801 h->surplus_huge_pages_node[node] += delta;
3802 return 1;
3803 }
3804
3805 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3806 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3807 nodemask_t *nodes_allowed)
3808 {
3809 unsigned long persistent_free_count;
3810 unsigned long min_count;
3811 unsigned long allocated;
3812 struct folio *folio;
3813 LIST_HEAD(page_list);
3814 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3815
3816 /*
3817 * Bit mask controlling how hard we retry per-node allocations.
3818 * If we can not allocate the bit mask, do not attempt to allocate
3819 * the requested huge pages.
3820 */
3821 if (node_alloc_noretry)
3822 nodes_clear(*node_alloc_noretry);
3823 else
3824 return -ENOMEM;
3825
3826 /*
3827 * resize_lock mutex prevents concurrent adjustments to number of
3828 * pages in hstate via the proc/sysfs interfaces.
3829 */
3830 mutex_lock(&h->resize_lock);
3831 flush_free_hpage_work(h);
3832 spin_lock_irq(&hugetlb_lock);
3833
3834 /*
3835 * Check for a node specific request.
3836 * Changing node specific huge page count may require a corresponding
3837 * change to the global count. In any case, the passed node mask
3838 * (nodes_allowed) will restrict alloc/free to the specified node.
3839 */
3840 if (nid != NUMA_NO_NODE) {
3841 unsigned long old_count = count;
3842
3843 count += persistent_huge_pages(h) -
3844 (h->nr_huge_pages_node[nid] -
3845 h->surplus_huge_pages_node[nid]);
3846 /*
3847 * User may have specified a large count value which caused the
3848 * above calculation to overflow. In this case, they wanted
3849 * to allocate as many huge pages as possible. Set count to
3850 * largest possible value to align with their intention.
3851 */
3852 if (count < old_count)
3853 count = ULONG_MAX;
3854 }
3855
3856 /*
3857 * Gigantic pages runtime allocation depend on the capability for large
3858 * page range allocation.
3859 * If the system does not provide this feature, return an error when
3860 * the user tries to allocate gigantic pages but let the user free the
3861 * boottime allocated gigantic pages.
3862 */
3863 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3864 if (count > persistent_huge_pages(h)) {
3865 spin_unlock_irq(&hugetlb_lock);
3866 mutex_unlock(&h->resize_lock);
3867 NODEMASK_FREE(node_alloc_noretry);
3868 return -EINVAL;
3869 }
3870 /* Fall through to decrease pool */
3871 }
3872
3873 /*
3874 * Increase the pool size
3875 * First take pages out of surplus state. Then make up the
3876 * remaining difference by allocating fresh huge pages.
3877 *
3878 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3879 * to convert a surplus huge page to a normal huge page. That is
3880 * not critical, though, it just means the overall size of the
3881 * pool might be one hugepage larger than it needs to be, but
3882 * within all the constraints specified by the sysctls.
3883 */
3884 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3885 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3886 break;
3887 }
3888
3889 allocated = 0;
3890 while (count > (persistent_huge_pages(h) + allocated)) {
3891 /*
3892 * If this allocation races such that we no longer need the
3893 * page, free_huge_folio will handle it by freeing the page
3894 * and reducing the surplus.
3895 */
3896 spin_unlock_irq(&hugetlb_lock);
3897
3898 /* yield cpu to avoid soft lockup */
3899 cond_resched();
3900
3901 folio = alloc_pool_huge_folio(h, nodes_allowed,
3902 node_alloc_noretry,
3903 &h->next_nid_to_alloc);
3904 if (!folio) {
3905 prep_and_add_allocated_folios(h, &page_list);
3906 spin_lock_irq(&hugetlb_lock);
3907 goto out;
3908 }
3909
3910 list_add(&folio->lru, &page_list);
3911 allocated++;
3912
3913 /* Bail for signals. Probably ctrl-c from user */
3914 if (signal_pending(current)) {
3915 prep_and_add_allocated_folios(h, &page_list);
3916 spin_lock_irq(&hugetlb_lock);
3917 goto out;
3918 }
3919
3920 spin_lock_irq(&hugetlb_lock);
3921 }
3922
3923 /* Add allocated pages to the pool */
3924 if (!list_empty(&page_list)) {
3925 spin_unlock_irq(&hugetlb_lock);
3926 prep_and_add_allocated_folios(h, &page_list);
3927 spin_lock_irq(&hugetlb_lock);
3928 }
3929
3930 /*
3931 * Decrease the pool size
3932 * First return free pages to the buddy allocator (being careful
3933 * to keep enough around to satisfy reservations). Then place
3934 * pages into surplus state as needed so the pool will shrink
3935 * to the desired size as pages become free.
3936 *
3937 * By placing pages into the surplus state independent of the
3938 * overcommit value, we are allowing the surplus pool size to
3939 * exceed overcommit. There are few sane options here. Since
3940 * alloc_surplus_hugetlb_folio() is checking the global counter,
3941 * though, we'll note that we're not allowed to exceed surplus
3942 * and won't grow the pool anywhere else. Not until one of the
3943 * sysctls are changed, or the surplus pages go out of use.
3944 *
3945 * min_count is the expected number of persistent pages, we
3946 * shouldn't calculate min_count by using
3947 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3948 * because there may exist free surplus huge pages, and this will
3949 * lead to subtracting twice. Free surplus huge pages come from HVO
3950 * failing to restore vmemmap, see comments in the callers of
3951 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3952 * persistent free count first.
3953 */
3954 persistent_free_count = h->free_huge_pages;
3955 if (h->free_huge_pages > persistent_huge_pages(h)) {
3956 if (h->free_huge_pages > h->surplus_huge_pages)
3957 persistent_free_count -= h->surplus_huge_pages;
3958 else
3959 persistent_free_count = 0;
3960 }
3961 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3962 min_count = max(count, min_count);
3963 try_to_free_low(h, min_count, nodes_allowed);
3964
3965 /*
3966 * Collect pages to be removed on list without dropping lock
3967 */
3968 while (min_count < persistent_huge_pages(h)) {
3969 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3970 if (!folio)
3971 break;
3972
3973 list_add(&folio->lru, &page_list);
3974 }
3975 /* free the pages after dropping lock */
3976 spin_unlock_irq(&hugetlb_lock);
3977 update_and_free_pages_bulk(h, &page_list);
3978 flush_free_hpage_work(h);
3979 spin_lock_irq(&hugetlb_lock);
3980
3981 while (count < persistent_huge_pages(h)) {
3982 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3983 break;
3984 }
3985 out:
3986 h->max_huge_pages = persistent_huge_pages(h);
3987 spin_unlock_irq(&hugetlb_lock);
3988 mutex_unlock(&h->resize_lock);
3989
3990 NODEMASK_FREE(node_alloc_noretry);
3991
3992 return 0;
3993 }
3994
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3995 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3996 struct list_head *src_list)
3997 {
3998 long rc;
3999 struct folio *folio, *next;
4000 LIST_HEAD(dst_list);
4001 LIST_HEAD(ret_list);
4002
4003 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
4004 list_splice_init(&ret_list, src_list);
4005
4006 /*
4007 * Taking target hstate mutex synchronizes with set_max_huge_pages.
4008 * Without the mutex, pages added to target hstate could be marked
4009 * as surplus.
4010 *
4011 * Note that we already hold src->resize_lock. To prevent deadlock,
4012 * use the convention of always taking larger size hstate mutex first.
4013 */
4014 mutex_lock(&dst->resize_lock);
4015
4016 list_for_each_entry_safe(folio, next, src_list, lru) {
4017 int i;
4018 bool cma;
4019
4020 if (folio_test_hugetlb_vmemmap_optimized(folio))
4021 continue;
4022
4023 cma = folio_test_hugetlb_cma(folio);
4024
4025 list_del(&folio->lru);
4026
4027 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4028 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4029
4030 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4031 struct page *page = folio_page(folio, i);
4032 /* Careful: see __split_huge_page_tail() */
4033 struct folio *new_folio = (struct folio *)page;
4034
4035 clear_compound_head(page);
4036 prep_compound_page(page, dst->order);
4037
4038 new_folio->mapping = NULL;
4039 init_new_hugetlb_folio(dst, new_folio);
4040 /* Copy the CMA flag so that it is freed correctly */
4041 if (cma)
4042 folio_set_hugetlb_cma(new_folio);
4043 list_add(&new_folio->lru, &dst_list);
4044 }
4045 }
4046
4047 prep_and_add_allocated_folios(dst, &dst_list);
4048
4049 mutex_unlock(&dst->resize_lock);
4050
4051 return rc;
4052 }
4053
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)4054 static long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4055 unsigned long nr_to_demote)
4056 __must_hold(&hugetlb_lock)
4057 {
4058 int nr_nodes, node;
4059 struct hstate *dst;
4060 long rc = 0;
4061 long nr_demoted = 0;
4062
4063 lockdep_assert_held(&hugetlb_lock);
4064
4065 /* We should never get here if no demote order */
4066 if (!src->demote_order) {
4067 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4068 return -EINVAL; /* internal error */
4069 }
4070 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4071
4072 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4073 LIST_HEAD(list);
4074 struct folio *folio, *next;
4075
4076 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4077 if (folio_test_hwpoison(folio))
4078 continue;
4079
4080 remove_hugetlb_folio(src, folio, false);
4081 list_add(&folio->lru, &list);
4082
4083 if (++nr_demoted == nr_to_demote)
4084 break;
4085 }
4086
4087 spin_unlock_irq(&hugetlb_lock);
4088
4089 rc = demote_free_hugetlb_folios(src, dst, &list);
4090
4091 spin_lock_irq(&hugetlb_lock);
4092
4093 list_for_each_entry_safe(folio, next, &list, lru) {
4094 list_del(&folio->lru);
4095 add_hugetlb_folio(src, folio, false);
4096
4097 nr_demoted--;
4098 }
4099
4100 if (rc < 0 || nr_demoted == nr_to_demote)
4101 break;
4102 }
4103
4104 /*
4105 * Not absolutely necessary, but for consistency update max_huge_pages
4106 * based on pool changes for the demoted page.
4107 */
4108 src->max_huge_pages -= nr_demoted;
4109 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4110
4111 if (rc < 0)
4112 return rc;
4113
4114 if (nr_demoted)
4115 return nr_demoted;
4116 /*
4117 * Only way to get here is if all pages on free lists are poisoned.
4118 * Return -EBUSY so that caller will not retry.
4119 */
4120 return -EBUSY;
4121 }
4122
4123 #define HSTATE_ATTR_RO(_name) \
4124 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
4125
4126 #define HSTATE_ATTR_WO(_name) \
4127 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
4128
4129 #define HSTATE_ATTR(_name) \
4130 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
4131
4132 static struct kobject *hugepages_kobj;
4133 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4134
4135 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
4136
kobj_to_hstate(struct kobject * kobj,int * nidp)4137 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
4138 {
4139 int i;
4140
4141 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4142 if (hstate_kobjs[i] == kobj) {
4143 if (nidp)
4144 *nidp = NUMA_NO_NODE;
4145 return &hstates[i];
4146 }
4147
4148 return kobj_to_node_hstate(kobj, nidp);
4149 }
4150
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4151 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
4152 struct kobj_attribute *attr, char *buf)
4153 {
4154 struct hstate *h;
4155 unsigned long nr_huge_pages;
4156 int nid;
4157
4158 h = kobj_to_hstate(kobj, &nid);
4159 if (nid == NUMA_NO_NODE)
4160 nr_huge_pages = h->nr_huge_pages;
4161 else
4162 nr_huge_pages = h->nr_huge_pages_node[nid];
4163
4164 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
4165 }
4166
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4167 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4168 struct hstate *h, int nid,
4169 unsigned long count, size_t len)
4170 {
4171 int err;
4172 nodemask_t nodes_allowed, *n_mask;
4173
4174 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
4175 return -EINVAL;
4176
4177 if (nid == NUMA_NO_NODE) {
4178 /*
4179 * global hstate attribute
4180 */
4181 if (!(obey_mempolicy &&
4182 init_nodemask_of_mempolicy(&nodes_allowed)))
4183 n_mask = &node_states[N_MEMORY];
4184 else
4185 n_mask = &nodes_allowed;
4186 } else {
4187 /*
4188 * Node specific request. count adjustment happens in
4189 * set_max_huge_pages() after acquiring hugetlb_lock.
4190 */
4191 init_nodemask_of_node(&nodes_allowed, nid);
4192 n_mask = &nodes_allowed;
4193 }
4194
4195 err = set_max_huge_pages(h, count, nid, n_mask);
4196
4197 return err ? err : len;
4198 }
4199
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)4200 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
4201 struct kobject *kobj, const char *buf,
4202 size_t len)
4203 {
4204 struct hstate *h;
4205 unsigned long count;
4206 int nid;
4207 int err;
4208
4209 err = kstrtoul(buf, 10, &count);
4210 if (err)
4211 return err;
4212
4213 h = kobj_to_hstate(kobj, &nid);
4214 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
4215 }
4216
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4217 static ssize_t nr_hugepages_show(struct kobject *kobj,
4218 struct kobj_attribute *attr, char *buf)
4219 {
4220 return nr_hugepages_show_common(kobj, attr, buf);
4221 }
4222
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4223 static ssize_t nr_hugepages_store(struct kobject *kobj,
4224 struct kobj_attribute *attr, const char *buf, size_t len)
4225 {
4226 return nr_hugepages_store_common(false, kobj, buf, len);
4227 }
4228 HSTATE_ATTR(nr_hugepages);
4229
4230 #ifdef CONFIG_NUMA
4231
4232 /*
4233 * hstate attribute for optionally mempolicy-based constraint on persistent
4234 * huge page alloc/free.
4235 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4236 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
4237 struct kobj_attribute *attr,
4238 char *buf)
4239 {
4240 return nr_hugepages_show_common(kobj, attr, buf);
4241 }
4242
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4243 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
4244 struct kobj_attribute *attr, const char *buf, size_t len)
4245 {
4246 return nr_hugepages_store_common(true, kobj, buf, len);
4247 }
4248 HSTATE_ATTR(nr_hugepages_mempolicy);
4249 #endif
4250
4251
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4252 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
4253 struct kobj_attribute *attr, char *buf)
4254 {
4255 struct hstate *h = kobj_to_hstate(kobj, NULL);
4256 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
4257 }
4258
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4259 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
4260 struct kobj_attribute *attr, const char *buf, size_t count)
4261 {
4262 int err;
4263 unsigned long input;
4264 struct hstate *h = kobj_to_hstate(kobj, NULL);
4265
4266 if (hstate_is_gigantic(h))
4267 return -EINVAL;
4268
4269 err = kstrtoul(buf, 10, &input);
4270 if (err)
4271 return err;
4272
4273 spin_lock_irq(&hugetlb_lock);
4274 h->nr_overcommit_huge_pages = input;
4275 spin_unlock_irq(&hugetlb_lock);
4276
4277 return count;
4278 }
4279 HSTATE_ATTR(nr_overcommit_hugepages);
4280
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4281 static ssize_t free_hugepages_show(struct kobject *kobj,
4282 struct kobj_attribute *attr, char *buf)
4283 {
4284 struct hstate *h;
4285 unsigned long free_huge_pages;
4286 int nid;
4287
4288 h = kobj_to_hstate(kobj, &nid);
4289 if (nid == NUMA_NO_NODE)
4290 free_huge_pages = h->free_huge_pages;
4291 else
4292 free_huge_pages = h->free_huge_pages_node[nid];
4293
4294 return sysfs_emit(buf, "%lu\n", free_huge_pages);
4295 }
4296 HSTATE_ATTR_RO(free_hugepages);
4297
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4298 static ssize_t resv_hugepages_show(struct kobject *kobj,
4299 struct kobj_attribute *attr, char *buf)
4300 {
4301 struct hstate *h = kobj_to_hstate(kobj, NULL);
4302 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
4303 }
4304 HSTATE_ATTR_RO(resv_hugepages);
4305
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4306 static ssize_t surplus_hugepages_show(struct kobject *kobj,
4307 struct kobj_attribute *attr, char *buf)
4308 {
4309 struct hstate *h;
4310 unsigned long surplus_huge_pages;
4311 int nid;
4312
4313 h = kobj_to_hstate(kobj, &nid);
4314 if (nid == NUMA_NO_NODE)
4315 surplus_huge_pages = h->surplus_huge_pages;
4316 else
4317 surplus_huge_pages = h->surplus_huge_pages_node[nid];
4318
4319 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
4320 }
4321 HSTATE_ATTR_RO(surplus_hugepages);
4322
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4323 static ssize_t demote_store(struct kobject *kobj,
4324 struct kobj_attribute *attr, const char *buf, size_t len)
4325 {
4326 unsigned long nr_demote;
4327 unsigned long nr_available;
4328 nodemask_t nodes_allowed, *n_mask;
4329 struct hstate *h;
4330 int err;
4331 int nid;
4332
4333 err = kstrtoul(buf, 10, &nr_demote);
4334 if (err)
4335 return err;
4336 h = kobj_to_hstate(kobj, &nid);
4337
4338 if (nid != NUMA_NO_NODE) {
4339 init_nodemask_of_node(&nodes_allowed, nid);
4340 n_mask = &nodes_allowed;
4341 } else {
4342 n_mask = &node_states[N_MEMORY];
4343 }
4344
4345 /* Synchronize with other sysfs operations modifying huge pages */
4346 mutex_lock(&h->resize_lock);
4347 spin_lock_irq(&hugetlb_lock);
4348
4349 while (nr_demote) {
4350 long rc;
4351
4352 /*
4353 * Check for available pages to demote each time thorough the
4354 * loop as demote_pool_huge_page will drop hugetlb_lock.
4355 */
4356 if (nid != NUMA_NO_NODE)
4357 nr_available = h->free_huge_pages_node[nid];
4358 else
4359 nr_available = h->free_huge_pages;
4360 nr_available -= h->resv_huge_pages;
4361 if (!nr_available)
4362 break;
4363
4364 rc = demote_pool_huge_page(h, n_mask, nr_demote);
4365 if (rc < 0) {
4366 err = rc;
4367 break;
4368 }
4369
4370 nr_demote -= rc;
4371 }
4372
4373 spin_unlock_irq(&hugetlb_lock);
4374 mutex_unlock(&h->resize_lock);
4375
4376 if (err)
4377 return err;
4378 return len;
4379 }
4380 HSTATE_ATTR_WO(demote);
4381
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4382 static ssize_t demote_size_show(struct kobject *kobj,
4383 struct kobj_attribute *attr, char *buf)
4384 {
4385 struct hstate *h = kobj_to_hstate(kobj, NULL);
4386 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
4387
4388 return sysfs_emit(buf, "%lukB\n", demote_size);
4389 }
4390
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4391 static ssize_t demote_size_store(struct kobject *kobj,
4392 struct kobj_attribute *attr,
4393 const char *buf, size_t count)
4394 {
4395 struct hstate *h, *demote_hstate;
4396 unsigned long demote_size;
4397 unsigned int demote_order;
4398
4399 demote_size = (unsigned long)memparse(buf, NULL);
4400
4401 demote_hstate = size_to_hstate(demote_size);
4402 if (!demote_hstate)
4403 return -EINVAL;
4404 demote_order = demote_hstate->order;
4405 if (demote_order < HUGETLB_PAGE_ORDER)
4406 return -EINVAL;
4407
4408 /* demote order must be smaller than hstate order */
4409 h = kobj_to_hstate(kobj, NULL);
4410 if (demote_order >= h->order)
4411 return -EINVAL;
4412
4413 /* resize_lock synchronizes access to demote size and writes */
4414 mutex_lock(&h->resize_lock);
4415 h->demote_order = demote_order;
4416 mutex_unlock(&h->resize_lock);
4417
4418 return count;
4419 }
4420 HSTATE_ATTR(demote_size);
4421
4422 static struct attribute *hstate_attrs[] = {
4423 &nr_hugepages_attr.attr,
4424 &nr_overcommit_hugepages_attr.attr,
4425 &free_hugepages_attr.attr,
4426 &resv_hugepages_attr.attr,
4427 &surplus_hugepages_attr.attr,
4428 #ifdef CONFIG_NUMA
4429 &nr_hugepages_mempolicy_attr.attr,
4430 #endif
4431 NULL,
4432 };
4433
4434 static const struct attribute_group hstate_attr_group = {
4435 .attrs = hstate_attrs,
4436 };
4437
4438 static struct attribute *hstate_demote_attrs[] = {
4439 &demote_size_attr.attr,
4440 &demote_attr.attr,
4441 NULL,
4442 };
4443
4444 static const struct attribute_group hstate_demote_attr_group = {
4445 .attrs = hstate_demote_attrs,
4446 };
4447
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4448 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4449 struct kobject **hstate_kobjs,
4450 const struct attribute_group *hstate_attr_group)
4451 {
4452 int retval;
4453 int hi = hstate_index(h);
4454
4455 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4456 if (!hstate_kobjs[hi])
4457 return -ENOMEM;
4458
4459 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4460 if (retval) {
4461 kobject_put(hstate_kobjs[hi]);
4462 hstate_kobjs[hi] = NULL;
4463 return retval;
4464 }
4465
4466 if (h->demote_order) {
4467 retval = sysfs_create_group(hstate_kobjs[hi],
4468 &hstate_demote_attr_group);
4469 if (retval) {
4470 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4471 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4472 kobject_put(hstate_kobjs[hi]);
4473 hstate_kobjs[hi] = NULL;
4474 return retval;
4475 }
4476 }
4477
4478 return 0;
4479 }
4480
4481 #ifdef CONFIG_NUMA
4482 static bool hugetlb_sysfs_initialized __ro_after_init;
4483
4484 /*
4485 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4486 * with node devices in node_devices[] using a parallel array. The array
4487 * index of a node device or _hstate == node id.
4488 * This is here to avoid any static dependency of the node device driver, in
4489 * the base kernel, on the hugetlb module.
4490 */
4491 struct node_hstate {
4492 struct kobject *hugepages_kobj;
4493 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4494 };
4495 static struct node_hstate node_hstates[MAX_NUMNODES];
4496
4497 /*
4498 * A subset of global hstate attributes for node devices
4499 */
4500 static struct attribute *per_node_hstate_attrs[] = {
4501 &nr_hugepages_attr.attr,
4502 &free_hugepages_attr.attr,
4503 &surplus_hugepages_attr.attr,
4504 NULL,
4505 };
4506
4507 static const struct attribute_group per_node_hstate_attr_group = {
4508 .attrs = per_node_hstate_attrs,
4509 };
4510
4511 /*
4512 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4513 * Returns node id via non-NULL nidp.
4514 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4515 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4516 {
4517 int nid;
4518
4519 for (nid = 0; nid < nr_node_ids; nid++) {
4520 struct node_hstate *nhs = &node_hstates[nid];
4521 int i;
4522 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4523 if (nhs->hstate_kobjs[i] == kobj) {
4524 if (nidp)
4525 *nidp = nid;
4526 return &hstates[i];
4527 }
4528 }
4529
4530 BUG();
4531 return NULL;
4532 }
4533
4534 /*
4535 * Unregister hstate attributes from a single node device.
4536 * No-op if no hstate attributes attached.
4537 */
hugetlb_unregister_node(struct node * node)4538 void hugetlb_unregister_node(struct node *node)
4539 {
4540 struct hstate *h;
4541 struct node_hstate *nhs = &node_hstates[node->dev.id];
4542
4543 if (!nhs->hugepages_kobj)
4544 return; /* no hstate attributes */
4545
4546 for_each_hstate(h) {
4547 int idx = hstate_index(h);
4548 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4549
4550 if (!hstate_kobj)
4551 continue;
4552 if (h->demote_order)
4553 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4554 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4555 kobject_put(hstate_kobj);
4556 nhs->hstate_kobjs[idx] = NULL;
4557 }
4558
4559 kobject_put(nhs->hugepages_kobj);
4560 nhs->hugepages_kobj = NULL;
4561 }
4562
4563
4564 /*
4565 * Register hstate attributes for a single node device.
4566 * No-op if attributes already registered.
4567 */
hugetlb_register_node(struct node * node)4568 void hugetlb_register_node(struct node *node)
4569 {
4570 struct hstate *h;
4571 struct node_hstate *nhs = &node_hstates[node->dev.id];
4572 int err;
4573
4574 if (!hugetlb_sysfs_initialized)
4575 return;
4576
4577 if (nhs->hugepages_kobj)
4578 return; /* already allocated */
4579
4580 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4581 &node->dev.kobj);
4582 if (!nhs->hugepages_kobj)
4583 return;
4584
4585 for_each_hstate(h) {
4586 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4587 nhs->hstate_kobjs,
4588 &per_node_hstate_attr_group);
4589 if (err) {
4590 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4591 h->name, node->dev.id);
4592 hugetlb_unregister_node(node);
4593 break;
4594 }
4595 }
4596 }
4597
4598 /*
4599 * hugetlb init time: register hstate attributes for all registered node
4600 * devices of nodes that have memory. All on-line nodes should have
4601 * registered their associated device by this time.
4602 */
hugetlb_register_all_nodes(void)4603 static void __init hugetlb_register_all_nodes(void)
4604 {
4605 int nid;
4606
4607 for_each_online_node(nid)
4608 hugetlb_register_node(node_devices[nid]);
4609 }
4610 #else /* !CONFIG_NUMA */
4611
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4612 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4613 {
4614 BUG();
4615 if (nidp)
4616 *nidp = -1;
4617 return NULL;
4618 }
4619
hugetlb_register_all_nodes(void)4620 static void hugetlb_register_all_nodes(void) { }
4621
4622 #endif
4623
hugetlb_sysfs_init(void)4624 static void __init hugetlb_sysfs_init(void)
4625 {
4626 struct hstate *h;
4627 int err;
4628
4629 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4630 if (!hugepages_kobj)
4631 return;
4632
4633 for_each_hstate(h) {
4634 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4635 hstate_kobjs, &hstate_attr_group);
4636 if (err)
4637 pr_err("HugeTLB: Unable to add hstate %s\n", h->name);
4638 }
4639
4640 #ifdef CONFIG_NUMA
4641 hugetlb_sysfs_initialized = true;
4642 #endif
4643 hugetlb_register_all_nodes();
4644 }
4645
4646 #ifdef CONFIG_SYSCTL
4647 static void hugetlb_sysctl_init(void);
4648 #else
hugetlb_sysctl_init(void)4649 static inline void hugetlb_sysctl_init(void) { }
4650 #endif
4651
hugetlb_init(void)4652 static int __init hugetlb_init(void)
4653 {
4654 int i;
4655
4656 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4657 __NR_HPAGEFLAGS);
4658
4659 if (!hugepages_supported()) {
4660 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4661 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4662 return 0;
4663 }
4664
4665 /*
4666 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4667 * architectures depend on setup being done here.
4668 */
4669 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4670 if (!parsed_default_hugepagesz) {
4671 /*
4672 * If we did not parse a default huge page size, set
4673 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4674 * number of huge pages for this default size was implicitly
4675 * specified, set that here as well.
4676 * Note that the implicit setting will overwrite an explicit
4677 * setting. A warning will be printed in this case.
4678 */
4679 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4680 if (default_hstate_max_huge_pages) {
4681 if (default_hstate.max_huge_pages) {
4682 char buf[32];
4683
4684 string_get_size(huge_page_size(&default_hstate),
4685 1, STRING_UNITS_2, buf, 32);
4686 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4687 default_hstate.max_huge_pages, buf);
4688 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4689 default_hstate_max_huge_pages);
4690 }
4691 default_hstate.max_huge_pages =
4692 default_hstate_max_huge_pages;
4693
4694 for_each_online_node(i)
4695 default_hstate.max_huge_pages_node[i] =
4696 default_hugepages_in_node[i];
4697 }
4698 }
4699
4700 hugetlb_cma_check();
4701 hugetlb_init_hstates();
4702 gather_bootmem_prealloc();
4703 report_hugepages();
4704
4705 hugetlb_sysfs_init();
4706 hugetlb_cgroup_file_init();
4707 hugetlb_sysctl_init();
4708
4709 #ifdef CONFIG_SMP
4710 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4711 #else
4712 num_fault_mutexes = 1;
4713 #endif
4714 hugetlb_fault_mutex_table =
4715 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4716 GFP_KERNEL);
4717 BUG_ON(!hugetlb_fault_mutex_table);
4718
4719 for (i = 0; i < num_fault_mutexes; i++)
4720 mutex_init(&hugetlb_fault_mutex_table[i]);
4721 return 0;
4722 }
4723 subsys_initcall(hugetlb_init);
4724
4725 /* Overwritten by architectures with more huge page sizes */
__init(weak)4726 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4727 {
4728 return size == HPAGE_SIZE;
4729 }
4730
hugetlb_add_hstate(unsigned int order)4731 void __init hugetlb_add_hstate(unsigned int order)
4732 {
4733 struct hstate *h;
4734 unsigned long i;
4735
4736 if (size_to_hstate(PAGE_SIZE << order)) {
4737 return;
4738 }
4739 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4740 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4741 h = &hstates[hugetlb_max_hstate++];
4742 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4743 h->order = order;
4744 h->mask = ~(huge_page_size(h) - 1);
4745 for (i = 0; i < MAX_NUMNODES; ++i)
4746 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4747 INIT_LIST_HEAD(&h->hugepage_activelist);
4748 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4749 huge_page_size(h)/SZ_1K);
4750
4751 parsed_hstate = h;
4752 }
4753
hugetlb_node_alloc_supported(void)4754 bool __init __weak hugetlb_node_alloc_supported(void)
4755 {
4756 return true;
4757 }
4758
hugepages_clear_pages_in_node(void)4759 static void __init hugepages_clear_pages_in_node(void)
4760 {
4761 if (!hugetlb_max_hstate) {
4762 default_hstate_max_huge_pages = 0;
4763 memset(default_hugepages_in_node, 0,
4764 sizeof(default_hugepages_in_node));
4765 } else {
4766 parsed_hstate->max_huge_pages = 0;
4767 memset(parsed_hstate->max_huge_pages_node, 0,
4768 sizeof(parsed_hstate->max_huge_pages_node));
4769 }
4770 }
4771
hugetlb_add_param(char * s,int (* setup)(char *))4772 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4773 {
4774 size_t len;
4775 char *p;
4776
4777 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4778 return -EINVAL;
4779
4780 len = strlen(s) + 1;
4781 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4782 return -EINVAL;
4783
4784 p = &hstate_cmdline_buf[hstate_cmdline_index];
4785 memcpy(p, s, len);
4786 hstate_cmdline_index += len;
4787
4788 hugetlb_params[hugetlb_param_index].val = p;
4789 hugetlb_params[hugetlb_param_index].setup = setup;
4790
4791 hugetlb_param_index++;
4792
4793 return 0;
4794 }
4795
hugetlb_parse_params(void)4796 static __init void hugetlb_parse_params(void)
4797 {
4798 int i;
4799 struct hugetlb_cmdline *hcp;
4800
4801 for (i = 0; i < hugetlb_param_index; i++) {
4802 hcp = &hugetlb_params[i];
4803
4804 hcp->setup(hcp->val);
4805 }
4806
4807 hugetlb_cma_validate_params();
4808 }
4809
4810 /*
4811 * hugepages command line processing
4812 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4813 * specification. If not, ignore the hugepages value. hugepages can also
4814 * be the first huge page command line option in which case it implicitly
4815 * specifies the number of huge pages for the default size.
4816 */
hugepages_setup(char * s)4817 static int __init hugepages_setup(char *s)
4818 {
4819 unsigned long *mhp;
4820 static unsigned long *last_mhp;
4821 int node = NUMA_NO_NODE;
4822 int count;
4823 unsigned long tmp;
4824 char *p = s;
4825
4826 if (!parsed_valid_hugepagesz) {
4827 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4828 parsed_valid_hugepagesz = true;
4829 return -EINVAL;
4830 }
4831
4832 /*
4833 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4834 * yet, so this hugepages= parameter goes to the "default hstate".
4835 * Otherwise, it goes with the previously parsed hugepagesz or
4836 * default_hugepagesz.
4837 */
4838 else if (!hugetlb_max_hstate)
4839 mhp = &default_hstate_max_huge_pages;
4840 else
4841 mhp = &parsed_hstate->max_huge_pages;
4842
4843 if (mhp == last_mhp) {
4844 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4845 return 1;
4846 }
4847
4848 while (*p) {
4849 count = 0;
4850 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4851 goto invalid;
4852 /* Parameter is node format */
4853 if (p[count] == ':') {
4854 if (!hugetlb_node_alloc_supported()) {
4855 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4856 return 1;
4857 }
4858 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4859 goto invalid;
4860 node = array_index_nospec(tmp, MAX_NUMNODES);
4861 p += count + 1;
4862 /* Parse hugepages */
4863 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4864 goto invalid;
4865 if (!hugetlb_max_hstate)
4866 default_hugepages_in_node[node] = tmp;
4867 else
4868 parsed_hstate->max_huge_pages_node[node] = tmp;
4869 *mhp += tmp;
4870 /* Go to parse next node*/
4871 if (p[count] == ',')
4872 p += count + 1;
4873 else
4874 break;
4875 } else {
4876 if (p != s)
4877 goto invalid;
4878 *mhp = tmp;
4879 break;
4880 }
4881 }
4882
4883 last_mhp = mhp;
4884
4885 return 0;
4886
4887 invalid:
4888 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4889 hugepages_clear_pages_in_node();
4890 return -EINVAL;
4891 }
4892 hugetlb_early_param("hugepages", hugepages_setup);
4893
4894 /*
4895 * hugepagesz command line processing
4896 * A specific huge page size can only be specified once with hugepagesz.
4897 * hugepagesz is followed by hugepages on the command line. The global
4898 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4899 * hugepagesz argument was valid.
4900 */
hugepagesz_setup(char * s)4901 static int __init hugepagesz_setup(char *s)
4902 {
4903 unsigned long size;
4904 struct hstate *h;
4905
4906 parsed_valid_hugepagesz = false;
4907 size = (unsigned long)memparse(s, NULL);
4908
4909 if (!arch_hugetlb_valid_size(size)) {
4910 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4911 return -EINVAL;
4912 }
4913
4914 h = size_to_hstate(size);
4915 if (h) {
4916 /*
4917 * hstate for this size already exists. This is normally
4918 * an error, but is allowed if the existing hstate is the
4919 * default hstate. More specifically, it is only allowed if
4920 * the number of huge pages for the default hstate was not
4921 * previously specified.
4922 */
4923 if (!parsed_default_hugepagesz || h != &default_hstate ||
4924 default_hstate.max_huge_pages) {
4925 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4926 return -EINVAL;
4927 }
4928
4929 /*
4930 * No need to call hugetlb_add_hstate() as hstate already
4931 * exists. But, do set parsed_hstate so that a following
4932 * hugepages= parameter will be applied to this hstate.
4933 */
4934 parsed_hstate = h;
4935 parsed_valid_hugepagesz = true;
4936 return 0;
4937 }
4938
4939 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4940 parsed_valid_hugepagesz = true;
4941 return 0;
4942 }
4943 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4944
4945 /*
4946 * default_hugepagesz command line input
4947 * Only one instance of default_hugepagesz allowed on command line.
4948 */
default_hugepagesz_setup(char * s)4949 static int __init default_hugepagesz_setup(char *s)
4950 {
4951 unsigned long size;
4952 int i;
4953
4954 parsed_valid_hugepagesz = false;
4955 if (parsed_default_hugepagesz) {
4956 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4957 return -EINVAL;
4958 }
4959
4960 size = (unsigned long)memparse(s, NULL);
4961
4962 if (!arch_hugetlb_valid_size(size)) {
4963 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4964 return -EINVAL;
4965 }
4966
4967 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4968 parsed_valid_hugepagesz = true;
4969 parsed_default_hugepagesz = true;
4970 default_hstate_idx = hstate_index(size_to_hstate(size));
4971
4972 /*
4973 * The number of default huge pages (for this size) could have been
4974 * specified as the first hugetlb parameter: hugepages=X. If so,
4975 * then default_hstate_max_huge_pages is set. If the default huge
4976 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4977 * allocated here from bootmem allocator.
4978 */
4979 if (default_hstate_max_huge_pages) {
4980 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4981 /*
4982 * Since this is an early parameter, we can't check
4983 * NUMA node state yet, so loop through MAX_NUMNODES.
4984 */
4985 for (i = 0; i < MAX_NUMNODES; i++) {
4986 if (default_hugepages_in_node[i] != 0)
4987 default_hstate.max_huge_pages_node[i] =
4988 default_hugepages_in_node[i];
4989 }
4990 default_hstate_max_huge_pages = 0;
4991 }
4992
4993 return 0;
4994 }
4995 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
4996
hugetlb_bootmem_set_nodes(void)4997 void __init hugetlb_bootmem_set_nodes(void)
4998 {
4999 int i, nid;
5000 unsigned long start_pfn, end_pfn;
5001
5002 if (!nodes_empty(hugetlb_bootmem_nodes))
5003 return;
5004
5005 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5006 if (end_pfn > start_pfn)
5007 node_set(nid, hugetlb_bootmem_nodes);
5008 }
5009 }
5010
5011 static bool __hugetlb_bootmem_allocated __initdata;
5012
hugetlb_bootmem_allocated(void)5013 bool __init hugetlb_bootmem_allocated(void)
5014 {
5015 return __hugetlb_bootmem_allocated;
5016 }
5017
hugetlb_bootmem_alloc(void)5018 void __init hugetlb_bootmem_alloc(void)
5019 {
5020 struct hstate *h;
5021 int i;
5022
5023 if (__hugetlb_bootmem_allocated)
5024 return;
5025
5026 hugetlb_bootmem_set_nodes();
5027
5028 for (i = 0; i < MAX_NUMNODES; i++)
5029 INIT_LIST_HEAD(&huge_boot_pages[i]);
5030
5031 hugetlb_parse_params();
5032
5033 for_each_hstate(h) {
5034 h->next_nid_to_alloc = first_online_node;
5035
5036 if (hstate_is_gigantic(h))
5037 hugetlb_hstate_alloc_pages(h);
5038 }
5039
5040 __hugetlb_bootmem_allocated = true;
5041 }
5042
5043 /*
5044 * hugepage_alloc_threads command line parsing.
5045 *
5046 * When set, use this specific number of threads for the boot
5047 * allocation of hugepages.
5048 */
hugepage_alloc_threads_setup(char * s)5049 static int __init hugepage_alloc_threads_setup(char *s)
5050 {
5051 unsigned long allocation_threads;
5052
5053 if (kstrtoul(s, 0, &allocation_threads) != 0)
5054 return 1;
5055
5056 if (allocation_threads == 0)
5057 return 1;
5058
5059 hugepage_allocation_threads = allocation_threads;
5060
5061 return 1;
5062 }
5063 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
5064
allowed_mems_nr(struct hstate * h)5065 static unsigned int allowed_mems_nr(struct hstate *h)
5066 {
5067 int node;
5068 unsigned int nr = 0;
5069 nodemask_t *mbind_nodemask;
5070 unsigned int *array = h->free_huge_pages_node;
5071 gfp_t gfp_mask = htlb_alloc_mask(h);
5072
5073 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
5074 for_each_node_mask(node, cpuset_current_mems_allowed) {
5075 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
5076 nr += array[node];
5077 }
5078
5079 return nr;
5080 }
5081
5082 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)5083 static int proc_hugetlb_doulongvec_minmax(const struct ctl_table *table, int write,
5084 void *buffer, size_t *length,
5085 loff_t *ppos, unsigned long *out)
5086 {
5087 struct ctl_table dup_table;
5088
5089 /*
5090 * In order to avoid races with __do_proc_doulongvec_minmax(), we
5091 * can duplicate the @table and alter the duplicate of it.
5092 */
5093 dup_table = *table;
5094 dup_table.data = out;
5095
5096 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
5097 }
5098
hugetlb_sysctl_handler_common(bool obey_mempolicy,const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5099 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
5100 const struct ctl_table *table, int write,
5101 void *buffer, size_t *length, loff_t *ppos)
5102 {
5103 struct hstate *h = &default_hstate;
5104 unsigned long tmp = h->max_huge_pages;
5105 int ret;
5106
5107 if (!hugepages_supported())
5108 return -EOPNOTSUPP;
5109
5110 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5111 &tmp);
5112 if (ret)
5113 goto out;
5114
5115 if (write)
5116 ret = __nr_hugepages_store_common(obey_mempolicy, h,
5117 NUMA_NO_NODE, tmp, *length);
5118 out:
5119 return ret;
5120 }
5121
hugetlb_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5122 static int hugetlb_sysctl_handler(const struct ctl_table *table, int write,
5123 void *buffer, size_t *length, loff_t *ppos)
5124 {
5125
5126 return hugetlb_sysctl_handler_common(false, table, write,
5127 buffer, length, ppos);
5128 }
5129
5130 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5131 static int hugetlb_mempolicy_sysctl_handler(const struct ctl_table *table, int write,
5132 void *buffer, size_t *length, loff_t *ppos)
5133 {
5134 return hugetlb_sysctl_handler_common(true, table, write,
5135 buffer, length, ppos);
5136 }
5137 #endif /* CONFIG_NUMA */
5138
hugetlb_overcommit_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5139 static int hugetlb_overcommit_handler(const struct ctl_table *table, int write,
5140 void *buffer, size_t *length, loff_t *ppos)
5141 {
5142 struct hstate *h = &default_hstate;
5143 unsigned long tmp;
5144 int ret;
5145
5146 if (!hugepages_supported())
5147 return -EOPNOTSUPP;
5148
5149 tmp = h->nr_overcommit_huge_pages;
5150
5151 if (write && hstate_is_gigantic(h))
5152 return -EINVAL;
5153
5154 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
5155 &tmp);
5156 if (ret)
5157 goto out;
5158
5159 if (write) {
5160 spin_lock_irq(&hugetlb_lock);
5161 h->nr_overcommit_huge_pages = tmp;
5162 spin_unlock_irq(&hugetlb_lock);
5163 }
5164 out:
5165 return ret;
5166 }
5167
5168 static const struct ctl_table hugetlb_table[] = {
5169 {
5170 .procname = "nr_hugepages",
5171 .data = NULL,
5172 .maxlen = sizeof(unsigned long),
5173 .mode = 0644,
5174 .proc_handler = hugetlb_sysctl_handler,
5175 },
5176 #ifdef CONFIG_NUMA
5177 {
5178 .procname = "nr_hugepages_mempolicy",
5179 .data = NULL,
5180 .maxlen = sizeof(unsigned long),
5181 .mode = 0644,
5182 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
5183 },
5184 #endif
5185 {
5186 .procname = "hugetlb_shm_group",
5187 .data = &sysctl_hugetlb_shm_group,
5188 .maxlen = sizeof(gid_t),
5189 .mode = 0644,
5190 .proc_handler = proc_dointvec,
5191 },
5192 {
5193 .procname = "nr_overcommit_hugepages",
5194 .data = NULL,
5195 .maxlen = sizeof(unsigned long),
5196 .mode = 0644,
5197 .proc_handler = hugetlb_overcommit_handler,
5198 },
5199 };
5200
hugetlb_sysctl_init(void)5201 static void __init hugetlb_sysctl_init(void)
5202 {
5203 register_sysctl_init("vm", hugetlb_table);
5204 }
5205 #endif /* CONFIG_SYSCTL */
5206
hugetlb_report_meminfo(struct seq_file * m)5207 void hugetlb_report_meminfo(struct seq_file *m)
5208 {
5209 struct hstate *h;
5210 unsigned long total = 0;
5211
5212 if (!hugepages_supported())
5213 return;
5214
5215 for_each_hstate(h) {
5216 unsigned long count = h->nr_huge_pages;
5217
5218 total += huge_page_size(h) * count;
5219
5220 if (h == &default_hstate)
5221 seq_printf(m,
5222 "HugePages_Total: %5lu\n"
5223 "HugePages_Free: %5lu\n"
5224 "HugePages_Rsvd: %5lu\n"
5225 "HugePages_Surp: %5lu\n"
5226 "Hugepagesize: %8lu kB\n",
5227 count,
5228 h->free_huge_pages,
5229 h->resv_huge_pages,
5230 h->surplus_huge_pages,
5231 huge_page_size(h) / SZ_1K);
5232 }
5233
5234 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
5235 }
5236
hugetlb_report_node_meminfo(char * buf,int len,int nid)5237 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
5238 {
5239 struct hstate *h = &default_hstate;
5240
5241 if (!hugepages_supported())
5242 return 0;
5243
5244 return sysfs_emit_at(buf, len,
5245 "Node %d HugePages_Total: %5u\n"
5246 "Node %d HugePages_Free: %5u\n"
5247 "Node %d HugePages_Surp: %5u\n",
5248 nid, h->nr_huge_pages_node[nid],
5249 nid, h->free_huge_pages_node[nid],
5250 nid, h->surplus_huge_pages_node[nid]);
5251 }
5252
hugetlb_show_meminfo_node(int nid)5253 void hugetlb_show_meminfo_node(int nid)
5254 {
5255 struct hstate *h;
5256
5257 if (!hugepages_supported())
5258 return;
5259
5260 for_each_hstate(h)
5261 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
5262 nid,
5263 h->nr_huge_pages_node[nid],
5264 h->free_huge_pages_node[nid],
5265 h->surplus_huge_pages_node[nid],
5266 huge_page_size(h) / SZ_1K);
5267 }
5268
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)5269 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
5270 {
5271 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
5272 K(atomic_long_read(&mm->hugetlb_usage)));
5273 }
5274
5275 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)5276 unsigned long hugetlb_total_pages(void)
5277 {
5278 struct hstate *h;
5279 unsigned long nr_total_pages = 0;
5280
5281 for_each_hstate(h)
5282 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
5283 return nr_total_pages;
5284 }
5285
hugetlb_acct_memory(struct hstate * h,long delta)5286 static int hugetlb_acct_memory(struct hstate *h, long delta)
5287 {
5288 int ret = -ENOMEM;
5289
5290 if (!delta)
5291 return 0;
5292
5293 spin_lock_irq(&hugetlb_lock);
5294 /*
5295 * When cpuset is configured, it breaks the strict hugetlb page
5296 * reservation as the accounting is done on a global variable. Such
5297 * reservation is completely rubbish in the presence of cpuset because
5298 * the reservation is not checked against page availability for the
5299 * current cpuset. Application can still potentially OOM'ed by kernel
5300 * with lack of free htlb page in cpuset that the task is in.
5301 * Attempt to enforce strict accounting with cpuset is almost
5302 * impossible (or too ugly) because cpuset is too fluid that
5303 * task or memory node can be dynamically moved between cpusets.
5304 *
5305 * The change of semantics for shared hugetlb mapping with cpuset is
5306 * undesirable. However, in order to preserve some of the semantics,
5307 * we fall back to check against current free page availability as
5308 * a best attempt and hopefully to minimize the impact of changing
5309 * semantics that cpuset has.
5310 *
5311 * Apart from cpuset, we also have memory policy mechanism that
5312 * also determines from which node the kernel will allocate memory
5313 * in a NUMA system. So similar to cpuset, we also should consider
5314 * the memory policy of the current task. Similar to the description
5315 * above.
5316 */
5317 if (delta > 0) {
5318 if (gather_surplus_pages(h, delta) < 0)
5319 goto out;
5320
5321 if (delta > allowed_mems_nr(h)) {
5322 return_unused_surplus_pages(h, delta);
5323 goto out;
5324 }
5325 }
5326
5327 ret = 0;
5328 if (delta < 0)
5329 return_unused_surplus_pages(h, (unsigned long) -delta);
5330
5331 out:
5332 spin_unlock_irq(&hugetlb_lock);
5333 return ret;
5334 }
5335
hugetlb_vm_op_open(struct vm_area_struct * vma)5336 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
5337 {
5338 struct resv_map *resv = vma_resv_map(vma);
5339
5340 /*
5341 * HPAGE_RESV_OWNER indicates a private mapping.
5342 * This new VMA should share its siblings reservation map if present.
5343 * The VMA will only ever have a valid reservation map pointer where
5344 * it is being copied for another still existing VMA. As that VMA
5345 * has a reference to the reservation map it cannot disappear until
5346 * after this open call completes. It is therefore safe to take a
5347 * new reference here without additional locking.
5348 */
5349 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
5350 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
5351 kref_get(&resv->refs);
5352 }
5353
5354 /*
5355 * vma_lock structure for sharable mappings is vma specific.
5356 * Clear old pointer (if copied via vm_area_dup) and allocate
5357 * new structure. Before clearing, make sure vma_lock is not
5358 * for this vma.
5359 */
5360 if (vma->vm_flags & VM_MAYSHARE) {
5361 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
5362
5363 if (vma_lock) {
5364 if (vma_lock->vma != vma) {
5365 vma->vm_private_data = NULL;
5366 hugetlb_vma_lock_alloc(vma);
5367 } else
5368 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
5369 } else
5370 hugetlb_vma_lock_alloc(vma);
5371 }
5372 }
5373
hugetlb_vm_op_close(struct vm_area_struct * vma)5374 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
5375 {
5376 struct hstate *h = hstate_vma(vma);
5377 struct resv_map *resv;
5378 struct hugepage_subpool *spool = subpool_vma(vma);
5379 unsigned long reserve, start, end;
5380 long gbl_reserve;
5381
5382 hugetlb_vma_lock_free(vma);
5383
5384 resv = vma_resv_map(vma);
5385 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5386 return;
5387
5388 start = vma_hugecache_offset(h, vma, vma->vm_start);
5389 end = vma_hugecache_offset(h, vma, vma->vm_end);
5390
5391 reserve = (end - start) - region_count(resv, start, end);
5392 hugetlb_cgroup_uncharge_counter(resv, start, end);
5393 if (reserve) {
5394 /*
5395 * Decrement reserve counts. The global reserve count may be
5396 * adjusted if the subpool has a minimum size.
5397 */
5398 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
5399 hugetlb_acct_memory(h, -gbl_reserve);
5400 }
5401
5402 kref_put(&resv->refs, resv_map_release);
5403 }
5404
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)5405 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
5406 {
5407 if (addr & ~(huge_page_mask(hstate_vma(vma))))
5408 return -EINVAL;
5409 return 0;
5410 }
5411
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)5412 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
5413 {
5414 /*
5415 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
5416 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
5417 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
5418 * This function is called in the middle of a VMA split operation, with
5419 * MM, VMA and rmap all write-locked to prevent concurrent page table
5420 * walks (except hardware and gup_fast()).
5421 */
5422 vma_assert_write_locked(vma);
5423 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5424
5425 if (addr & ~PUD_MASK) {
5426 unsigned long floor = addr & PUD_MASK;
5427 unsigned long ceil = floor + PUD_SIZE;
5428
5429 if (floor >= vma->vm_start && ceil <= vma->vm_end) {
5430 /*
5431 * Locking:
5432 * Use take_locks=false here.
5433 * The file rmap lock is already held.
5434 * The hugetlb VMA lock can't be taken when we already
5435 * hold the file rmap lock, and we don't need it because
5436 * its purpose is to synchronize against concurrent page
5437 * table walks, which are not possible thanks to the
5438 * locks held by our caller.
5439 */
5440 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
5441 }
5442 }
5443 }
5444
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)5445 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
5446 {
5447 return huge_page_size(hstate_vma(vma));
5448 }
5449
5450 /*
5451 * We cannot handle pagefaults against hugetlb pages at all. They cause
5452 * handle_mm_fault() to try to instantiate regular-sized pages in the
5453 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
5454 * this far.
5455 */
hugetlb_vm_op_fault(struct vm_fault * vmf)5456 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
5457 {
5458 BUG();
5459 return 0;
5460 }
5461
5462 /*
5463 * When a new function is introduced to vm_operations_struct and added
5464 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
5465 * This is because under System V memory model, mappings created via
5466 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
5467 * their original vm_ops are overwritten with shm_vm_ops.
5468 */
5469 const struct vm_operations_struct hugetlb_vm_ops = {
5470 .fault = hugetlb_vm_op_fault,
5471 .open = hugetlb_vm_op_open,
5472 .close = hugetlb_vm_op_close,
5473 .may_split = hugetlb_vm_op_split,
5474 .pagesize = hugetlb_vm_op_pagesize,
5475 };
5476
make_huge_pte(struct vm_area_struct * vma,struct folio * folio,bool try_mkwrite)5477 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
5478 bool try_mkwrite)
5479 {
5480 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
5481 unsigned int shift = huge_page_shift(hstate_vma(vma));
5482
5483 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
5484 entry = pte_mkwrite_novma(pte_mkdirty(entry));
5485 } else {
5486 entry = pte_wrprotect(entry);
5487 }
5488 entry = pte_mkyoung(entry);
5489 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
5490
5491 return entry;
5492 }
5493
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5494 static void set_huge_ptep_writable(struct vm_area_struct *vma,
5495 unsigned long address, pte_t *ptep)
5496 {
5497 pte_t entry;
5498
5499 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
5500 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
5501 update_mmu_cache(vma, address, ptep);
5502 }
5503
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)5504 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
5505 unsigned long address, pte_t *ptep)
5506 {
5507 if (vma->vm_flags & VM_WRITE)
5508 set_huge_ptep_writable(vma, address, ptep);
5509 }
5510
is_hugetlb_entry_migration(pte_t pte)5511 bool is_hugetlb_entry_migration(pte_t pte)
5512 {
5513 swp_entry_t swp;
5514
5515 if (huge_pte_none(pte) || pte_present(pte))
5516 return false;
5517 swp = pte_to_swp_entry(pte);
5518 if (is_migration_entry(swp))
5519 return true;
5520 else
5521 return false;
5522 }
5523
is_hugetlb_entry_hwpoisoned(pte_t pte)5524 bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5525 {
5526 swp_entry_t swp;
5527
5528 if (huge_pte_none(pte) || pte_present(pte))
5529 return false;
5530 swp = pte_to_swp_entry(pte);
5531 if (is_hwpoison_entry(swp))
5532 return true;
5533 else
5534 return false;
5535 }
5536
5537 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5538 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5539 struct folio *new_folio, pte_t old, unsigned long sz)
5540 {
5541 pte_t newpte = make_huge_pte(vma, new_folio, true);
5542
5543 __folio_mark_uptodate(new_folio);
5544 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
5545 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5546 newpte = huge_pte_mkuffd_wp(newpte);
5547 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5548 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5549 folio_set_hugetlb_migratable(new_folio);
5550 }
5551
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5552 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5553 struct vm_area_struct *dst_vma,
5554 struct vm_area_struct *src_vma)
5555 {
5556 pte_t *src_pte, *dst_pte, entry;
5557 struct folio *pte_folio;
5558 unsigned long addr;
5559 bool cow = is_cow_mapping(src_vma->vm_flags);
5560 struct hstate *h = hstate_vma(src_vma);
5561 unsigned long sz = huge_page_size(h);
5562 unsigned long npages = pages_per_huge_page(h);
5563 struct mmu_notifier_range range;
5564 unsigned long last_addr_mask;
5565 int ret = 0;
5566
5567 if (cow) {
5568 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5569 src_vma->vm_start,
5570 src_vma->vm_end);
5571 mmu_notifier_invalidate_range_start(&range);
5572 vma_assert_write_locked(src_vma);
5573 raw_write_seqcount_begin(&src->write_protect_seq);
5574 } else {
5575 /*
5576 * For shared mappings the vma lock must be held before
5577 * calling hugetlb_walk() in the src vma. Otherwise, the
5578 * returned ptep could go away if part of a shared pmd and
5579 * another thread calls huge_pmd_unshare.
5580 */
5581 hugetlb_vma_lock_read(src_vma);
5582 }
5583
5584 last_addr_mask = hugetlb_mask_last_page(h);
5585 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5586 spinlock_t *src_ptl, *dst_ptl;
5587 src_pte = hugetlb_walk(src_vma, addr, sz);
5588 if (!src_pte) {
5589 addr |= last_addr_mask;
5590 continue;
5591 }
5592 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5593 if (!dst_pte) {
5594 ret = -ENOMEM;
5595 break;
5596 }
5597
5598 /*
5599 * If the pagetables are shared don't copy or take references.
5600 *
5601 * dst_pte == src_pte is the common case of src/dest sharing.
5602 * However, src could have 'unshared' and dst shares with
5603 * another vma. So page_count of ptep page is checked instead
5604 * to reliably determine whether pte is shared.
5605 */
5606 if (page_count(virt_to_page(dst_pte)) > 1) {
5607 addr |= last_addr_mask;
5608 continue;
5609 }
5610
5611 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5612 src_ptl = huge_pte_lockptr(h, src, src_pte);
5613 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5614 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5615 again:
5616 if (huge_pte_none(entry)) {
5617 /*
5618 * Skip if src entry none.
5619 */
5620 ;
5621 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5622 if (!userfaultfd_wp(dst_vma))
5623 entry = huge_pte_clear_uffd_wp(entry);
5624 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5625 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5626 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5627 bool uffd_wp = pte_swp_uffd_wp(entry);
5628
5629 if (!is_readable_migration_entry(swp_entry) && cow) {
5630 /*
5631 * COW mappings require pages in both
5632 * parent and child to be set to read.
5633 */
5634 swp_entry = make_readable_migration_entry(
5635 swp_offset(swp_entry));
5636 entry = swp_entry_to_pte(swp_entry);
5637 if (userfaultfd_wp(src_vma) && uffd_wp)
5638 entry = pte_swp_mkuffd_wp(entry);
5639 set_huge_pte_at(src, addr, src_pte, entry, sz);
5640 }
5641 if (!userfaultfd_wp(dst_vma))
5642 entry = huge_pte_clear_uffd_wp(entry);
5643 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5644 } else if (unlikely(is_pte_marker(entry))) {
5645 pte_marker marker = copy_pte_marker(
5646 pte_to_swp_entry(entry), dst_vma);
5647
5648 if (marker)
5649 set_huge_pte_at(dst, addr, dst_pte,
5650 make_pte_marker(marker), sz);
5651 } else {
5652 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5653 pte_folio = page_folio(pte_page(entry));
5654 folio_get(pte_folio);
5655
5656 /*
5657 * Failing to duplicate the anon rmap is a rare case
5658 * where we see pinned hugetlb pages while they're
5659 * prone to COW. We need to do the COW earlier during
5660 * fork.
5661 *
5662 * When pre-allocating the page or copying data, we
5663 * need to be without the pgtable locks since we could
5664 * sleep during the process.
5665 */
5666 if (!folio_test_anon(pte_folio)) {
5667 hugetlb_add_file_rmap(pte_folio);
5668 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
5669 pte_t src_pte_old = entry;
5670 struct folio *new_folio;
5671
5672 spin_unlock(src_ptl);
5673 spin_unlock(dst_ptl);
5674 /* Do not use reserve as it's private owned */
5675 new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5676 if (IS_ERR(new_folio)) {
5677 folio_put(pte_folio);
5678 ret = PTR_ERR(new_folio);
5679 break;
5680 }
5681 ret = copy_user_large_folio(new_folio, pte_folio,
5682 addr, dst_vma);
5683 folio_put(pte_folio);
5684 if (ret) {
5685 folio_put(new_folio);
5686 break;
5687 }
5688
5689 /* Install the new hugetlb folio if src pte stable */
5690 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5691 src_ptl = huge_pte_lockptr(h, src, src_pte);
5692 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5693 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5694 if (!pte_same(src_pte_old, entry)) {
5695 restore_reserve_on_error(h, dst_vma, addr,
5696 new_folio);
5697 folio_put(new_folio);
5698 /* huge_ptep of dst_pte won't change as in child */
5699 goto again;
5700 }
5701 hugetlb_install_folio(dst_vma, dst_pte, addr,
5702 new_folio, src_pte_old, sz);
5703 spin_unlock(src_ptl);
5704 spin_unlock(dst_ptl);
5705 continue;
5706 }
5707
5708 if (cow) {
5709 /*
5710 * No need to notify as we are downgrading page
5711 * table protection not changing it to point
5712 * to a new page.
5713 *
5714 * See Documentation/mm/mmu_notifier.rst
5715 */
5716 huge_ptep_set_wrprotect(src, addr, src_pte);
5717 entry = huge_pte_wrprotect(entry);
5718 }
5719
5720 if (!userfaultfd_wp(dst_vma))
5721 entry = huge_pte_clear_uffd_wp(entry);
5722
5723 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5724 hugetlb_count_add(npages, dst);
5725 }
5726 spin_unlock(src_ptl);
5727 spin_unlock(dst_ptl);
5728 }
5729
5730 if (cow) {
5731 raw_write_seqcount_end(&src->write_protect_seq);
5732 mmu_notifier_invalidate_range_end(&range);
5733 } else {
5734 hugetlb_vma_unlock_read(src_vma);
5735 }
5736
5737 return ret;
5738 }
5739
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5740 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5741 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5742 unsigned long sz)
5743 {
5744 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5745 struct hstate *h = hstate_vma(vma);
5746 struct mm_struct *mm = vma->vm_mm;
5747 spinlock_t *src_ptl, *dst_ptl;
5748 pte_t pte;
5749
5750 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5751 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5752
5753 /*
5754 * We don't have to worry about the ordering of src and dst ptlocks
5755 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5756 */
5757 if (src_ptl != dst_ptl)
5758 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5759
5760 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5761
5762 if (need_clear_uffd_wp && pte_marker_uffd_wp(pte))
5763 huge_pte_clear(mm, new_addr, dst_pte, sz);
5764 else {
5765 if (need_clear_uffd_wp) {
5766 if (pte_present(pte))
5767 pte = huge_pte_clear_uffd_wp(pte);
5768 else if (is_swap_pte(pte))
5769 pte = pte_swp_clear_uffd_wp(pte);
5770 }
5771 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5772 }
5773
5774 if (src_ptl != dst_ptl)
5775 spin_unlock(src_ptl);
5776 spin_unlock(dst_ptl);
5777 }
5778
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5779 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5780 struct vm_area_struct *new_vma,
5781 unsigned long old_addr, unsigned long new_addr,
5782 unsigned long len)
5783 {
5784 struct hstate *h = hstate_vma(vma);
5785 struct address_space *mapping = vma->vm_file->f_mapping;
5786 unsigned long sz = huge_page_size(h);
5787 struct mm_struct *mm = vma->vm_mm;
5788 unsigned long old_end = old_addr + len;
5789 unsigned long last_addr_mask;
5790 pte_t *src_pte, *dst_pte;
5791 struct mmu_notifier_range range;
5792 bool shared_pmd = false;
5793
5794 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5795 old_end);
5796 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5797 /*
5798 * In case of shared PMDs, we should cover the maximum possible
5799 * range.
5800 */
5801 flush_cache_range(vma, range.start, range.end);
5802
5803 mmu_notifier_invalidate_range_start(&range);
5804 last_addr_mask = hugetlb_mask_last_page(h);
5805 /* Prevent race with file truncation */
5806 hugetlb_vma_lock_write(vma);
5807 i_mmap_lock_write(mapping);
5808 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5809 src_pte = hugetlb_walk(vma, old_addr, sz);
5810 if (!src_pte) {
5811 old_addr |= last_addr_mask;
5812 new_addr |= last_addr_mask;
5813 continue;
5814 }
5815 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5816 continue;
5817
5818 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5819 shared_pmd = true;
5820 old_addr |= last_addr_mask;
5821 new_addr |= last_addr_mask;
5822 continue;
5823 }
5824
5825 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5826 if (!dst_pte)
5827 break;
5828
5829 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5830 }
5831
5832 if (shared_pmd)
5833 flush_hugetlb_tlb_range(vma, range.start, range.end);
5834 else
5835 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5836 mmu_notifier_invalidate_range_end(&range);
5837 i_mmap_unlock_write(mapping);
5838 hugetlb_vma_unlock_write(vma);
5839
5840 return len + old_addr - old_end;
5841 }
5842
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)5843 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5844 unsigned long start, unsigned long end,
5845 struct folio *folio, zap_flags_t zap_flags)
5846 {
5847 struct mm_struct *mm = vma->vm_mm;
5848 const bool folio_provided = !!folio;
5849 unsigned long address;
5850 pte_t *ptep;
5851 pte_t pte;
5852 spinlock_t *ptl;
5853 struct hstate *h = hstate_vma(vma);
5854 unsigned long sz = huge_page_size(h);
5855 bool adjust_reservation = false;
5856 unsigned long last_addr_mask;
5857 bool force_flush = false;
5858
5859 WARN_ON(!is_vm_hugetlb_page(vma));
5860 BUG_ON(start & ~huge_page_mask(h));
5861 BUG_ON(end & ~huge_page_mask(h));
5862
5863 /*
5864 * This is a hugetlb vma, all the pte entries should point
5865 * to huge page.
5866 */
5867 tlb_change_page_size(tlb, sz);
5868 tlb_start_vma(tlb, vma);
5869
5870 last_addr_mask = hugetlb_mask_last_page(h);
5871 address = start;
5872 for (; address < end; address += sz) {
5873 ptep = hugetlb_walk(vma, address, sz);
5874 if (!ptep) {
5875 address |= last_addr_mask;
5876 continue;
5877 }
5878
5879 ptl = huge_pte_lock(h, mm, ptep);
5880 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5881 spin_unlock(ptl);
5882 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5883 force_flush = true;
5884 address |= last_addr_mask;
5885 continue;
5886 }
5887
5888 pte = huge_ptep_get(mm, address, ptep);
5889 if (huge_pte_none(pte)) {
5890 spin_unlock(ptl);
5891 continue;
5892 }
5893
5894 /*
5895 * Migrating hugepage or HWPoisoned hugepage is already
5896 * unmapped and its refcount is dropped, so just clear pte here.
5897 */
5898 if (unlikely(!pte_present(pte))) {
5899 /*
5900 * If the pte was wr-protected by uffd-wp in any of the
5901 * swap forms, meanwhile the caller does not want to
5902 * drop the uffd-wp bit in this zap, then replace the
5903 * pte with a marker.
5904 */
5905 if (pte_swp_uffd_wp_any(pte) &&
5906 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5907 set_huge_pte_at(mm, address, ptep,
5908 make_pte_marker(PTE_MARKER_UFFD_WP),
5909 sz);
5910 else
5911 huge_pte_clear(mm, address, ptep, sz);
5912 spin_unlock(ptl);
5913 continue;
5914 }
5915
5916 /*
5917 * If a folio is supplied, it is because a specific
5918 * folio is being unmapped, not a range. Ensure the folio we
5919 * are about to unmap is the actual folio of interest.
5920 */
5921 if (folio_provided) {
5922 if (folio != page_folio(pte_page(pte))) {
5923 spin_unlock(ptl);
5924 continue;
5925 }
5926 /*
5927 * Mark the VMA as having unmapped its page so that
5928 * future faults in this VMA will fail rather than
5929 * looking like data was lost
5930 */
5931 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5932 } else {
5933 folio = page_folio(pte_page(pte));
5934 }
5935
5936 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5937 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5938 if (huge_pte_dirty(pte))
5939 folio_mark_dirty(folio);
5940 /* Leave a uffd-wp pte marker if needed */
5941 if (huge_pte_uffd_wp(pte) &&
5942 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5943 set_huge_pte_at(mm, address, ptep,
5944 make_pte_marker(PTE_MARKER_UFFD_WP),
5945 sz);
5946 hugetlb_count_sub(pages_per_huge_page(h), mm);
5947 hugetlb_remove_rmap(folio);
5948
5949 /*
5950 * Restore the reservation for anonymous page, otherwise the
5951 * backing page could be stolen by someone.
5952 * If there we are freeing a surplus, do not set the restore
5953 * reservation bit.
5954 */
5955 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5956 folio_test_anon(folio)) {
5957 folio_set_hugetlb_restore_reserve(folio);
5958 /* Reservation to be adjusted after the spin lock */
5959 adjust_reservation = true;
5960 }
5961
5962 spin_unlock(ptl);
5963
5964 /*
5965 * Adjust the reservation for the region that will have the
5966 * reserve restored. Keep in mind that vma_needs_reservation() changes
5967 * resv->adds_in_progress if it succeeds. If this is not done,
5968 * do_exit() will not see it, and will keep the reservation
5969 * forever.
5970 */
5971 if (adjust_reservation) {
5972 int rc = vma_needs_reservation(h, vma, address);
5973
5974 if (rc < 0)
5975 /* Pressumably allocate_file_region_entries failed
5976 * to allocate a file_region struct. Clear
5977 * hugetlb_restore_reserve so that global reserve
5978 * count will not be incremented by free_huge_folio.
5979 * Act as if we consumed the reservation.
5980 */
5981 folio_clear_hugetlb_restore_reserve(folio);
5982 else if (rc)
5983 vma_add_reservation(h, vma, address);
5984 }
5985
5986 tlb_remove_page_size(tlb, folio_page(folio, 0),
5987 folio_size(folio));
5988 /*
5989 * If we were instructed to unmap a specific folio, we're done.
5990 */
5991 if (folio_provided)
5992 break;
5993 }
5994 tlb_end_vma(tlb, vma);
5995
5996 /*
5997 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5998 * could defer the flush until now, since by holding i_mmap_rwsem we
5999 * guaranteed that the last refernece would not be dropped. But we must
6000 * do the flushing before we return, as otherwise i_mmap_rwsem will be
6001 * dropped and the last reference to the shared PMDs page might be
6002 * dropped as well.
6003 *
6004 * In theory we could defer the freeing of the PMD pages as well, but
6005 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
6006 * detect sharing, so we cannot defer the release of the page either.
6007 * Instead, do flush now.
6008 */
6009 if (force_flush)
6010 tlb_flush_mmu_tlbonly(tlb);
6011 }
6012
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6013 void __hugetlb_zap_begin(struct vm_area_struct *vma,
6014 unsigned long *start, unsigned long *end)
6015 {
6016 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6017 return;
6018
6019 adjust_range_if_pmd_sharing_possible(vma, start, end);
6020 hugetlb_vma_lock_write(vma);
6021 if (vma->vm_file)
6022 i_mmap_lock_write(vma->vm_file->f_mapping);
6023 }
6024
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)6025 void __hugetlb_zap_end(struct vm_area_struct *vma,
6026 struct zap_details *details)
6027 {
6028 zap_flags_t zap_flags = details ? details->zap_flags : 0;
6029
6030 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
6031 return;
6032
6033 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
6034 /*
6035 * Unlock and free the vma lock before releasing i_mmap_rwsem.
6036 * When the vma_lock is freed, this makes the vma ineligible
6037 * for pmd sharing. And, i_mmap_rwsem is required to set up
6038 * pmd sharing. This is important as page tables for this
6039 * unmapped range will be asynchrously deleted. If the page
6040 * tables are shared, there will be issues when accessed by
6041 * someone else.
6042 */
6043 __hugetlb_vma_unlock_write_free(vma);
6044 } else {
6045 hugetlb_vma_unlock_write(vma);
6046 }
6047
6048 if (vma->vm_file)
6049 i_mmap_unlock_write(vma->vm_file->f_mapping);
6050 }
6051
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)6052 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
6053 unsigned long end, struct folio *folio,
6054 zap_flags_t zap_flags)
6055 {
6056 struct mmu_notifier_range range;
6057 struct mmu_gather tlb;
6058
6059 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
6060 start, end);
6061 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6062 mmu_notifier_invalidate_range_start(&range);
6063 tlb_gather_mmu(&tlb, vma->vm_mm);
6064
6065 __unmap_hugepage_range(&tlb, vma, start, end,
6066 folio, zap_flags);
6067
6068 mmu_notifier_invalidate_range_end(&range);
6069 tlb_finish_mmu(&tlb);
6070 }
6071
6072 /*
6073 * This is called when the original mapper is failing to COW a MAP_PRIVATE
6074 * mapping it owns the reserve page for. The intention is to unmap the page
6075 * from other VMAs and let the children be SIGKILLed if they are faulting the
6076 * same region.
6077 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct folio * folio,unsigned long address)6078 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
6079 struct folio *folio, unsigned long address)
6080 {
6081 struct hstate *h = hstate_vma(vma);
6082 struct vm_area_struct *iter_vma;
6083 struct address_space *mapping;
6084 pgoff_t pgoff;
6085
6086 /*
6087 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
6088 * from page cache lookup which is in HPAGE_SIZE units.
6089 */
6090 address = address & huge_page_mask(h);
6091 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
6092 vma->vm_pgoff;
6093 mapping = vma->vm_file->f_mapping;
6094
6095 /*
6096 * Take the mapping lock for the duration of the table walk. As
6097 * this mapping should be shared between all the VMAs,
6098 * __unmap_hugepage_range() is called as the lock is already held
6099 */
6100 i_mmap_lock_write(mapping);
6101 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
6102 /* Do not unmap the current VMA */
6103 if (iter_vma == vma)
6104 continue;
6105
6106 /*
6107 * Shared VMAs have their own reserves and do not affect
6108 * MAP_PRIVATE accounting but it is possible that a shared
6109 * VMA is using the same page so check and skip such VMAs.
6110 */
6111 if (iter_vma->vm_flags & VM_MAYSHARE)
6112 continue;
6113
6114 /*
6115 * Unmap the page from other VMAs without their own reserves.
6116 * They get marked to be SIGKILLed if they fault in these
6117 * areas. This is because a future no-page fault on this VMA
6118 * could insert a zeroed page instead of the data existing
6119 * from the time of fork. This would look like data corruption
6120 */
6121 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
6122 unmap_hugepage_range(iter_vma, address,
6123 address + huge_page_size(h),
6124 folio, 0);
6125 }
6126 i_mmap_unlock_write(mapping);
6127 }
6128
6129 /*
6130 * hugetlb_wp() should be called with page lock of the original hugepage held.
6131 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
6132 * cannot race with other handlers or page migration.
6133 * Keep the pte_same checks anyway to make transition from the mutex easier.
6134 */
hugetlb_wp(struct folio * pagecache_folio,struct vm_fault * vmf)6135 static vm_fault_t hugetlb_wp(struct folio *pagecache_folio,
6136 struct vm_fault *vmf)
6137 {
6138 struct vm_area_struct *vma = vmf->vma;
6139 struct mm_struct *mm = vma->vm_mm;
6140 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6141 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
6142 struct hstate *h = hstate_vma(vma);
6143 struct folio *old_folio;
6144 struct folio *new_folio;
6145 bool cow_from_owner = 0;
6146 vm_fault_t ret = 0;
6147 struct mmu_notifier_range range;
6148
6149 /*
6150 * Never handle CoW for uffd-wp protected pages. It should be only
6151 * handled when the uffd-wp protection is removed.
6152 *
6153 * Note that only the CoW optimization path (in hugetlb_no_page())
6154 * can trigger this, because hugetlb_fault() will always resolve
6155 * uffd-wp bit first.
6156 */
6157 if (!unshare && huge_pte_uffd_wp(pte))
6158 return 0;
6159
6160 /* Let's take out MAP_SHARED mappings first. */
6161 if (vma->vm_flags & VM_MAYSHARE) {
6162 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
6163 return 0;
6164 }
6165
6166 old_folio = page_folio(pte_page(pte));
6167
6168 delayacct_wpcopy_start();
6169
6170 retry_avoidcopy:
6171 /*
6172 * If no-one else is actually using this page, we're the exclusive
6173 * owner and can reuse this page.
6174 *
6175 * Note that we don't rely on the (safer) folio refcount here, because
6176 * copying the hugetlb folio when there are unexpected (temporary)
6177 * folio references could harm simple fork()+exit() users when
6178 * we run out of free hugetlb folios: we would have to kill processes
6179 * in scenarios that used to work. As a side effect, there can still
6180 * be leaks between processes, for example, with FOLL_GET users.
6181 */
6182 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
6183 if (!PageAnonExclusive(&old_folio->page)) {
6184 folio_move_anon_rmap(old_folio, vma);
6185 SetPageAnonExclusive(&old_folio->page);
6186 }
6187 if (likely(!unshare))
6188 set_huge_ptep_maybe_writable(vma, vmf->address,
6189 vmf->pte);
6190
6191 delayacct_wpcopy_end();
6192 return 0;
6193 }
6194 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
6195 PageAnonExclusive(&old_folio->page), &old_folio->page);
6196
6197 /*
6198 * If the process that created a MAP_PRIVATE mapping is about to
6199 * perform a COW due to a shared page count, attempt to satisfy
6200 * the allocation without using the existing reserves. The pagecache
6201 * page is used to determine if the reserve at this address was
6202 * consumed or not. If reserves were used, a partial faulted mapping
6203 * at the time of fork() could consume its reserves on COW instead
6204 * of the full address range.
6205 */
6206 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
6207 old_folio != pagecache_folio)
6208 cow_from_owner = true;
6209
6210 folio_get(old_folio);
6211
6212 /*
6213 * Drop page table lock as buddy allocator may be called. It will
6214 * be acquired again before returning to the caller, as expected.
6215 */
6216 spin_unlock(vmf->ptl);
6217 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
6218
6219 if (IS_ERR(new_folio)) {
6220 /*
6221 * If a process owning a MAP_PRIVATE mapping fails to COW,
6222 * it is due to references held by a child and an insufficient
6223 * huge page pool. To guarantee the original mappers
6224 * reliability, unmap the page from child processes. The child
6225 * may get SIGKILLed if it later faults.
6226 */
6227 if (cow_from_owner) {
6228 struct address_space *mapping = vma->vm_file->f_mapping;
6229 pgoff_t idx;
6230 u32 hash;
6231
6232 folio_put(old_folio);
6233 /*
6234 * Drop hugetlb_fault_mutex and vma_lock before
6235 * unmapping. unmapping needs to hold vma_lock
6236 * in write mode. Dropping vma_lock in read mode
6237 * here is OK as COW mappings do not interact with
6238 * PMD sharing.
6239 *
6240 * Reacquire both after unmap operation.
6241 */
6242 idx = vma_hugecache_offset(h, vma, vmf->address);
6243 hash = hugetlb_fault_mutex_hash(mapping, idx);
6244 hugetlb_vma_unlock_read(vma);
6245 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6246
6247 unmap_ref_private(mm, vma, old_folio, vmf->address);
6248
6249 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6250 hugetlb_vma_lock_read(vma);
6251 spin_lock(vmf->ptl);
6252 vmf->pte = hugetlb_walk(vma, vmf->address,
6253 huge_page_size(h));
6254 if (likely(vmf->pte &&
6255 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
6256 goto retry_avoidcopy;
6257 /*
6258 * race occurs while re-acquiring page table
6259 * lock, and our job is done.
6260 */
6261 delayacct_wpcopy_end();
6262 return 0;
6263 }
6264
6265 ret = vmf_error(PTR_ERR(new_folio));
6266 goto out_release_old;
6267 }
6268
6269 /*
6270 * When the original hugepage is shared one, it does not have
6271 * anon_vma prepared.
6272 */
6273 ret = __vmf_anon_prepare(vmf);
6274 if (unlikely(ret))
6275 goto out_release_all;
6276
6277 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
6278 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
6279 goto out_release_all;
6280 }
6281 __folio_mark_uptodate(new_folio);
6282
6283 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
6284 vmf->address + huge_page_size(h));
6285 mmu_notifier_invalidate_range_start(&range);
6286
6287 /*
6288 * Retake the page table lock to check for racing updates
6289 * before the page tables are altered
6290 */
6291 spin_lock(vmf->ptl);
6292 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
6293 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
6294 pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
6295
6296 /* Break COW or unshare */
6297 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
6298 hugetlb_remove_rmap(old_folio);
6299 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
6300 if (huge_pte_uffd_wp(pte))
6301 newpte = huge_pte_mkuffd_wp(newpte);
6302 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
6303 huge_page_size(h));
6304 folio_set_hugetlb_migratable(new_folio);
6305 /* Make the old page be freed below */
6306 new_folio = old_folio;
6307 }
6308 spin_unlock(vmf->ptl);
6309 mmu_notifier_invalidate_range_end(&range);
6310 out_release_all:
6311 /*
6312 * No restore in case of successful pagetable update (Break COW or
6313 * unshare)
6314 */
6315 if (new_folio != old_folio)
6316 restore_reserve_on_error(h, vma, vmf->address, new_folio);
6317 folio_put(new_folio);
6318 out_release_old:
6319 folio_put(old_folio);
6320
6321 spin_lock(vmf->ptl); /* Caller expects lock to be held */
6322
6323 delayacct_wpcopy_end();
6324 return ret;
6325 }
6326
6327 /*
6328 * Return whether there is a pagecache page to back given address within VMA.
6329 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6330 bool hugetlbfs_pagecache_present(struct hstate *h,
6331 struct vm_area_struct *vma, unsigned long address)
6332 {
6333 struct address_space *mapping = vma->vm_file->f_mapping;
6334 pgoff_t idx = linear_page_index(vma, address);
6335 struct folio *folio;
6336
6337 folio = filemap_get_folio(mapping, idx);
6338 if (IS_ERR(folio))
6339 return false;
6340 folio_put(folio);
6341 return true;
6342 }
6343
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)6344 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
6345 pgoff_t idx)
6346 {
6347 struct inode *inode = mapping->host;
6348 struct hstate *h = hstate_inode(inode);
6349 int err;
6350
6351 idx <<= huge_page_order(h);
6352 __folio_set_locked(folio);
6353 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
6354
6355 if (unlikely(err)) {
6356 __folio_clear_locked(folio);
6357 return err;
6358 }
6359 folio_clear_hugetlb_restore_reserve(folio);
6360
6361 /*
6362 * mark folio dirty so that it will not be removed from cache/file
6363 * by non-hugetlbfs specific code paths.
6364 */
6365 folio_mark_dirty(folio);
6366
6367 spin_lock(&inode->i_lock);
6368 inode->i_blocks += blocks_per_huge_page(h);
6369 spin_unlock(&inode->i_lock);
6370 return 0;
6371 }
6372
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)6373 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
6374 struct address_space *mapping,
6375 unsigned long reason)
6376 {
6377 u32 hash;
6378
6379 /*
6380 * vma_lock and hugetlb_fault_mutex must be dropped before handling
6381 * userfault. Also mmap_lock could be dropped due to handling
6382 * userfault, any vma operation should be careful from here.
6383 */
6384 hugetlb_vma_unlock_read(vmf->vma);
6385 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6386 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6387 return handle_userfault(vmf, reason);
6388 }
6389
6390 /*
6391 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
6392 * false if pte changed or is changing.
6393 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)6394 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
6395 pte_t *ptep, pte_t old_pte)
6396 {
6397 spinlock_t *ptl;
6398 bool same;
6399
6400 ptl = huge_pte_lock(h, mm, ptep);
6401 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
6402 spin_unlock(ptl);
6403
6404 return same;
6405 }
6406
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)6407 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
6408 struct vm_fault *vmf)
6409 {
6410 struct vm_area_struct *vma = vmf->vma;
6411 struct mm_struct *mm = vma->vm_mm;
6412 struct hstate *h = hstate_vma(vma);
6413 vm_fault_t ret = VM_FAULT_SIGBUS;
6414 int anon_rmap = 0;
6415 unsigned long size;
6416 struct folio *folio;
6417 pte_t new_pte;
6418 bool new_folio, new_pagecache_folio = false;
6419 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
6420
6421 /*
6422 * Currently, we are forced to kill the process in the event the
6423 * original mapper has unmapped pages from the child due to a failed
6424 * COW/unsharing. Warn that such a situation has occurred as it may not
6425 * be obvious.
6426 */
6427 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
6428 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
6429 current->pid);
6430 goto out;
6431 }
6432
6433 /*
6434 * Use page lock to guard against racing truncation
6435 * before we get page_table_lock.
6436 */
6437 new_folio = false;
6438 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
6439 if (IS_ERR(folio)) {
6440 size = i_size_read(mapping->host) >> huge_page_shift(h);
6441 if (vmf->pgoff >= size)
6442 goto out;
6443 /* Check for page in userfault range */
6444 if (userfaultfd_missing(vma)) {
6445 /*
6446 * Since hugetlb_no_page() was examining pte
6447 * without pgtable lock, we need to re-test under
6448 * lock because the pte may not be stable and could
6449 * have changed from under us. Try to detect
6450 * either changed or during-changing ptes and retry
6451 * properly when needed.
6452 *
6453 * Note that userfaultfd is actually fine with
6454 * false positives (e.g. caused by pte changed),
6455 * but not wrong logical events (e.g. caused by
6456 * reading a pte during changing). The latter can
6457 * confuse the userspace, so the strictness is very
6458 * much preferred. E.g., MISSING event should
6459 * never happen on the page after UFFDIO_COPY has
6460 * correctly installed the page and returned.
6461 */
6462 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6463 ret = 0;
6464 goto out;
6465 }
6466
6467 return hugetlb_handle_userfault(vmf, mapping,
6468 VM_UFFD_MISSING);
6469 }
6470
6471 if (!(vma->vm_flags & VM_MAYSHARE)) {
6472 ret = __vmf_anon_prepare(vmf);
6473 if (unlikely(ret))
6474 goto out;
6475 }
6476
6477 folio = alloc_hugetlb_folio(vma, vmf->address, false);
6478 if (IS_ERR(folio)) {
6479 /*
6480 * Returning error will result in faulting task being
6481 * sent SIGBUS. The hugetlb fault mutex prevents two
6482 * tasks from racing to fault in the same page which
6483 * could result in false unable to allocate errors.
6484 * Page migration does not take the fault mutex, but
6485 * does a clear then write of pte's under page table
6486 * lock. Page fault code could race with migration,
6487 * notice the clear pte and try to allocate a page
6488 * here. Before returning error, get ptl and make
6489 * sure there really is no pte entry.
6490 */
6491 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
6492 ret = vmf_error(PTR_ERR(folio));
6493 else
6494 ret = 0;
6495 goto out;
6496 }
6497 folio_zero_user(folio, vmf->real_address);
6498 __folio_mark_uptodate(folio);
6499 new_folio = true;
6500
6501 if (vma->vm_flags & VM_MAYSHARE) {
6502 int err = hugetlb_add_to_page_cache(folio, mapping,
6503 vmf->pgoff);
6504 if (err) {
6505 /*
6506 * err can't be -EEXIST which implies someone
6507 * else consumed the reservation since hugetlb
6508 * fault mutex is held when add a hugetlb page
6509 * to the page cache. So it's safe to call
6510 * restore_reserve_on_error() here.
6511 */
6512 restore_reserve_on_error(h, vma, vmf->address,
6513 folio);
6514 folio_put(folio);
6515 ret = VM_FAULT_SIGBUS;
6516 goto out;
6517 }
6518 new_pagecache_folio = true;
6519 } else {
6520 folio_lock(folio);
6521 anon_rmap = 1;
6522 }
6523 } else {
6524 /*
6525 * If memory error occurs between mmap() and fault, some process
6526 * don't have hwpoisoned swap entry for errored virtual address.
6527 * So we need to block hugepage fault by PG_hwpoison bit check.
6528 */
6529 if (unlikely(folio_test_hwpoison(folio))) {
6530 ret = VM_FAULT_HWPOISON_LARGE |
6531 VM_FAULT_SET_HINDEX(hstate_index(h));
6532 goto backout_unlocked;
6533 }
6534
6535 /* Check for page in userfault range. */
6536 if (userfaultfd_minor(vma)) {
6537 folio_unlock(folio);
6538 folio_put(folio);
6539 /* See comment in userfaultfd_missing() block above */
6540 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
6541 ret = 0;
6542 goto out;
6543 }
6544 return hugetlb_handle_userfault(vmf, mapping,
6545 VM_UFFD_MINOR);
6546 }
6547 }
6548
6549 /*
6550 * If we are going to COW a private mapping later, we examine the
6551 * pending reservations for this page now. This will ensure that
6552 * any allocations necessary to record that reservation occur outside
6553 * the spinlock.
6554 */
6555 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6556 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
6557 ret = VM_FAULT_OOM;
6558 goto backout_unlocked;
6559 }
6560 /* Just decrements count, does not deallocate */
6561 vma_end_reservation(h, vma, vmf->address);
6562 }
6563
6564 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
6565 ret = 0;
6566 /* If pte changed from under us, retry */
6567 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
6568 goto backout;
6569
6570 if (anon_rmap)
6571 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
6572 else
6573 hugetlb_add_file_rmap(folio);
6574 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
6575 /*
6576 * If this pte was previously wr-protected, keep it wr-protected even
6577 * if populated.
6578 */
6579 if (unlikely(pte_marker_uffd_wp(vmf->orig_pte)))
6580 new_pte = huge_pte_mkuffd_wp(new_pte);
6581 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
6582
6583 hugetlb_count_add(pages_per_huge_page(h), mm);
6584 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6585 /* Optimization, do the COW without a second fault */
6586 ret = hugetlb_wp(folio, vmf);
6587 }
6588
6589 spin_unlock(vmf->ptl);
6590
6591 /*
6592 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6593 * found in the pagecache may not have hugetlb_migratable if they have
6594 * been isolated for migration.
6595 */
6596 if (new_folio)
6597 folio_set_hugetlb_migratable(folio);
6598
6599 folio_unlock(folio);
6600 out:
6601 hugetlb_vma_unlock_read(vma);
6602
6603 /*
6604 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
6605 * the only way ret can be set to VM_FAULT_RETRY.
6606 */
6607 if (unlikely(ret & VM_FAULT_RETRY))
6608 vma_end_read(vma);
6609
6610 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6611 return ret;
6612
6613 backout:
6614 spin_unlock(vmf->ptl);
6615 backout_unlocked:
6616 if (new_folio && !new_pagecache_folio)
6617 restore_reserve_on_error(h, vma, vmf->address, folio);
6618
6619 folio_unlock(folio);
6620 folio_put(folio);
6621 goto out;
6622 }
6623
6624 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6625 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6626 {
6627 unsigned long key[2];
6628 u32 hash;
6629
6630 key[0] = (unsigned long) mapping;
6631 key[1] = idx;
6632
6633 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6634
6635 return hash & (num_fault_mutexes - 1);
6636 }
6637 #else
6638 /*
6639 * For uniprocessor systems we always use a single mutex, so just
6640 * return 0 and avoid the hashing overhead.
6641 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6642 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6643 {
6644 return 0;
6645 }
6646 #endif
6647
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6648 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6649 unsigned long address, unsigned int flags)
6650 {
6651 vm_fault_t ret;
6652 u32 hash;
6653 struct folio *folio = NULL;
6654 struct folio *pagecache_folio = NULL;
6655 struct hstate *h = hstate_vma(vma);
6656 struct address_space *mapping;
6657 int need_wait_lock = 0;
6658 struct vm_fault vmf = {
6659 .vma = vma,
6660 .address = address & huge_page_mask(h),
6661 .real_address = address,
6662 .flags = flags,
6663 .pgoff = vma_hugecache_offset(h, vma,
6664 address & huge_page_mask(h)),
6665 /* TODO: Track hugetlb faults using vm_fault */
6666
6667 /*
6668 * Some fields may not be initialized, be careful as it may
6669 * be hard to debug if called functions make assumptions
6670 */
6671 };
6672
6673 /*
6674 * Serialize hugepage allocation and instantiation, so that we don't
6675 * get spurious allocation failures if two CPUs race to instantiate
6676 * the same page in the page cache.
6677 */
6678 mapping = vma->vm_file->f_mapping;
6679 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6680 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6681
6682 /*
6683 * Acquire vma lock before calling huge_pte_alloc and hold
6684 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6685 * being called elsewhere and making the vmf.pte no longer valid.
6686 */
6687 hugetlb_vma_lock_read(vma);
6688 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6689 if (!vmf.pte) {
6690 hugetlb_vma_unlock_read(vma);
6691 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6692 return VM_FAULT_OOM;
6693 }
6694
6695 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6696 if (huge_pte_none_mostly(vmf.orig_pte)) {
6697 if (is_pte_marker(vmf.orig_pte)) {
6698 pte_marker marker =
6699 pte_marker_get(pte_to_swp_entry(vmf.orig_pte));
6700
6701 if (marker & PTE_MARKER_POISONED) {
6702 ret = VM_FAULT_HWPOISON_LARGE |
6703 VM_FAULT_SET_HINDEX(hstate_index(h));
6704 goto out_mutex;
6705 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6706 /* This isn't supported in hugetlb. */
6707 ret = VM_FAULT_SIGSEGV;
6708 goto out_mutex;
6709 }
6710 }
6711
6712 /*
6713 * Other PTE markers should be handled the same way as none PTE.
6714 *
6715 * hugetlb_no_page will drop vma lock and hugetlb fault
6716 * mutex internally, which make us return immediately.
6717 */
6718 return hugetlb_no_page(mapping, &vmf);
6719 }
6720
6721 ret = 0;
6722
6723 /*
6724 * vmf.orig_pte could be a migration/hwpoison vmf.orig_pte at this
6725 * point, so this check prevents the kernel from going below assuming
6726 * that we have an active hugepage in pagecache. This goto expects
6727 * the 2nd page fault, and is_hugetlb_entry_(migration|hwpoisoned)
6728 * check will properly handle it.
6729 */
6730 if (!pte_present(vmf.orig_pte)) {
6731 if (unlikely(is_hugetlb_entry_migration(vmf.orig_pte))) {
6732 /*
6733 * Release the hugetlb fault lock now, but retain
6734 * the vma lock, because it is needed to guard the
6735 * huge_pte_lockptr() later in
6736 * migration_entry_wait_huge(). The vma lock will
6737 * be released there.
6738 */
6739 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6740 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6741 return 0;
6742 } else if (unlikely(is_hugetlb_entry_hwpoisoned(vmf.orig_pte)))
6743 ret = VM_FAULT_HWPOISON_LARGE |
6744 VM_FAULT_SET_HINDEX(hstate_index(h));
6745 goto out_mutex;
6746 }
6747
6748 /*
6749 * If we are going to COW/unshare the mapping later, we examine the
6750 * pending reservations for this page now. This will ensure that any
6751 * allocations necessary to record that reservation occur outside the
6752 * spinlock. Also lookup the pagecache page now as it is used to
6753 * determine if a reservation has been consumed.
6754 */
6755 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6756 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6757 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6758 ret = VM_FAULT_OOM;
6759 goto out_mutex;
6760 }
6761 /* Just decrements count, does not deallocate */
6762 vma_end_reservation(h, vma, vmf.address);
6763
6764 pagecache_folio = filemap_lock_hugetlb_folio(h, mapping,
6765 vmf.pgoff);
6766 if (IS_ERR(pagecache_folio))
6767 pagecache_folio = NULL;
6768 }
6769
6770 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6771
6772 /* Check for a racing update before calling hugetlb_wp() */
6773 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6774 goto out_ptl;
6775
6776 /* Handle userfault-wp first, before trying to lock more pages */
6777 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6778 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6779 if (!userfaultfd_wp_async(vma)) {
6780 spin_unlock(vmf.ptl);
6781 if (pagecache_folio) {
6782 folio_unlock(pagecache_folio);
6783 folio_put(pagecache_folio);
6784 }
6785 hugetlb_vma_unlock_read(vma);
6786 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6787 return handle_userfault(&vmf, VM_UFFD_WP);
6788 }
6789
6790 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6791 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6792 huge_page_size(hstate_vma(vma)));
6793 /* Fallthrough to CoW */
6794 }
6795
6796 /*
6797 * hugetlb_wp() requires page locks of pte_page(vmf.orig_pte) and
6798 * pagecache_folio, so here we need take the former one
6799 * when folio != pagecache_folio or !pagecache_folio.
6800 */
6801 folio = page_folio(pte_page(vmf.orig_pte));
6802 if (folio != pagecache_folio)
6803 if (!folio_trylock(folio)) {
6804 need_wait_lock = 1;
6805 goto out_ptl;
6806 }
6807
6808 folio_get(folio);
6809
6810 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6811 if (!huge_pte_write(vmf.orig_pte)) {
6812 ret = hugetlb_wp(pagecache_folio, &vmf);
6813 goto out_put_page;
6814 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6815 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6816 }
6817 }
6818 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6819 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6820 flags & FAULT_FLAG_WRITE))
6821 update_mmu_cache(vma, vmf.address, vmf.pte);
6822 out_put_page:
6823 if (folio != pagecache_folio)
6824 folio_unlock(folio);
6825 folio_put(folio);
6826 out_ptl:
6827 spin_unlock(vmf.ptl);
6828
6829 if (pagecache_folio) {
6830 folio_unlock(pagecache_folio);
6831 folio_put(pagecache_folio);
6832 }
6833 out_mutex:
6834 hugetlb_vma_unlock_read(vma);
6835
6836 /*
6837 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6838 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6839 */
6840 if (unlikely(ret & VM_FAULT_RETRY))
6841 vma_end_read(vma);
6842
6843 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6844 /*
6845 * Generally it's safe to hold refcount during waiting page lock. But
6846 * here we just wait to defer the next page fault to avoid busy loop and
6847 * the page is not used after unlocked before returning from the current
6848 * page fault. So we are safe from accessing freed page, even if we wait
6849 * here without taking refcount.
6850 */
6851 if (need_wait_lock)
6852 folio_wait_locked(folio);
6853 return ret;
6854 }
6855
6856 #ifdef CONFIG_USERFAULTFD
6857 /*
6858 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6859 */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6860 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6861 struct vm_area_struct *vma, unsigned long address)
6862 {
6863 struct mempolicy *mpol;
6864 nodemask_t *nodemask;
6865 struct folio *folio;
6866 gfp_t gfp_mask;
6867 int node;
6868
6869 gfp_mask = htlb_alloc_mask(h);
6870 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6871 /*
6872 * This is used to allocate a temporary hugetlb to hold the copied
6873 * content, which will then be copied again to the final hugetlb
6874 * consuming a reservation. Set the alloc_fallback to false to indicate
6875 * that breaking the per-node hugetlb pool is not allowed in this case.
6876 */
6877 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6878 mpol_cond_put(mpol);
6879
6880 return folio;
6881 }
6882
6883 /*
6884 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6885 * with modifications for hugetlb pages.
6886 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6887 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6888 struct vm_area_struct *dst_vma,
6889 unsigned long dst_addr,
6890 unsigned long src_addr,
6891 uffd_flags_t flags,
6892 struct folio **foliop)
6893 {
6894 struct mm_struct *dst_mm = dst_vma->vm_mm;
6895 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6896 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6897 struct hstate *h = hstate_vma(dst_vma);
6898 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6899 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6900 unsigned long size = huge_page_size(h);
6901 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6902 pte_t _dst_pte;
6903 spinlock_t *ptl;
6904 int ret = -ENOMEM;
6905 struct folio *folio;
6906 bool folio_in_pagecache = false;
6907
6908 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6909 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6910
6911 /* Don't overwrite any existing PTEs (even markers) */
6912 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6913 spin_unlock(ptl);
6914 return -EEXIST;
6915 }
6916
6917 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6918 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6919
6920 /* No need to invalidate - it was non-present before */
6921 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6922
6923 spin_unlock(ptl);
6924 return 0;
6925 }
6926
6927 if (is_continue) {
6928 ret = -EFAULT;
6929 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6930 if (IS_ERR(folio))
6931 goto out;
6932 folio_in_pagecache = true;
6933 } else if (!*foliop) {
6934 /* If a folio already exists, then it's UFFDIO_COPY for
6935 * a non-missing case. Return -EEXIST.
6936 */
6937 if (vm_shared &&
6938 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6939 ret = -EEXIST;
6940 goto out;
6941 }
6942
6943 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6944 if (IS_ERR(folio)) {
6945 ret = -ENOMEM;
6946 goto out;
6947 }
6948
6949 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6950 false);
6951
6952 /* fallback to copy_from_user outside mmap_lock */
6953 if (unlikely(ret)) {
6954 ret = -ENOENT;
6955 /* Free the allocated folio which may have
6956 * consumed a reservation.
6957 */
6958 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6959 folio_put(folio);
6960
6961 /* Allocate a temporary folio to hold the copied
6962 * contents.
6963 */
6964 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6965 if (!folio) {
6966 ret = -ENOMEM;
6967 goto out;
6968 }
6969 *foliop = folio;
6970 /* Set the outparam foliop and return to the caller to
6971 * copy the contents outside the lock. Don't free the
6972 * folio.
6973 */
6974 goto out;
6975 }
6976 } else {
6977 if (vm_shared &&
6978 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6979 folio_put(*foliop);
6980 ret = -EEXIST;
6981 *foliop = NULL;
6982 goto out;
6983 }
6984
6985 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6986 if (IS_ERR(folio)) {
6987 folio_put(*foliop);
6988 ret = -ENOMEM;
6989 *foliop = NULL;
6990 goto out;
6991 }
6992 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6993 folio_put(*foliop);
6994 *foliop = NULL;
6995 if (ret) {
6996 folio_put(folio);
6997 goto out;
6998 }
6999 }
7000
7001 /*
7002 * If we just allocated a new page, we need a memory barrier to ensure
7003 * that preceding stores to the page become visible before the
7004 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
7005 * is what we need.
7006 *
7007 * In the case where we have not allocated a new page (is_continue),
7008 * the page must already be uptodate. UFFDIO_CONTINUE already includes
7009 * an earlier smp_wmb() to ensure that prior stores will be visible
7010 * before the set_pte_at() write.
7011 */
7012 if (!is_continue)
7013 __folio_mark_uptodate(folio);
7014 else
7015 WARN_ON_ONCE(!folio_test_uptodate(folio));
7016
7017 /* Add shared, newly allocated pages to the page cache. */
7018 if (vm_shared && !is_continue) {
7019 ret = -EFAULT;
7020 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
7021 goto out_release_nounlock;
7022
7023 /*
7024 * Serialization between remove_inode_hugepages() and
7025 * hugetlb_add_to_page_cache() below happens through the
7026 * hugetlb_fault_mutex_table that here must be hold by
7027 * the caller.
7028 */
7029 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
7030 if (ret)
7031 goto out_release_nounlock;
7032 folio_in_pagecache = true;
7033 }
7034
7035 ptl = huge_pte_lock(h, dst_mm, dst_pte);
7036
7037 ret = -EIO;
7038 if (folio_test_hwpoison(folio))
7039 goto out_release_unlock;
7040
7041 /*
7042 * We allow to overwrite a pte marker: consider when both MISSING|WP
7043 * registered, we firstly wr-protect a none pte which has no page cache
7044 * page backing it, then access the page.
7045 */
7046 ret = -EEXIST;
7047 if (!huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte)))
7048 goto out_release_unlock;
7049
7050 if (folio_in_pagecache)
7051 hugetlb_add_file_rmap(folio);
7052 else
7053 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
7054
7055 /*
7056 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
7057 * with wp flag set, don't set pte write bit.
7058 */
7059 _dst_pte = make_huge_pte(dst_vma, folio,
7060 !wp_enabled && !(is_continue && !vm_shared));
7061 /*
7062 * Always mark UFFDIO_COPY page dirty; note that this may not be
7063 * extremely important for hugetlbfs for now since swapping is not
7064 * supported, but we should still be clear in that this page cannot be
7065 * thrown away at will, even if write bit not set.
7066 */
7067 _dst_pte = huge_pte_mkdirty(_dst_pte);
7068 _dst_pte = pte_mkyoung(_dst_pte);
7069
7070 if (wp_enabled)
7071 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
7072
7073 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
7074
7075 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
7076
7077 /* No need to invalidate - it was non-present before */
7078 update_mmu_cache(dst_vma, dst_addr, dst_pte);
7079
7080 spin_unlock(ptl);
7081 if (!is_continue)
7082 folio_set_hugetlb_migratable(folio);
7083 if (vm_shared || is_continue)
7084 folio_unlock(folio);
7085 ret = 0;
7086 out:
7087 return ret;
7088 out_release_unlock:
7089 spin_unlock(ptl);
7090 if (vm_shared || is_continue)
7091 folio_unlock(folio);
7092 out_release_nounlock:
7093 if (!folio_in_pagecache)
7094 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
7095 folio_put(folio);
7096 goto out;
7097 }
7098 #endif /* CONFIG_USERFAULTFD */
7099
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)7100 long hugetlb_change_protection(struct vm_area_struct *vma,
7101 unsigned long address, unsigned long end,
7102 pgprot_t newprot, unsigned long cp_flags)
7103 {
7104 struct mm_struct *mm = vma->vm_mm;
7105 unsigned long start = address;
7106 pte_t *ptep;
7107 pte_t pte;
7108 struct hstate *h = hstate_vma(vma);
7109 long pages = 0, psize = huge_page_size(h);
7110 bool shared_pmd = false;
7111 struct mmu_notifier_range range;
7112 unsigned long last_addr_mask;
7113 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
7114 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
7115
7116 /*
7117 * In the case of shared PMDs, the area to flush could be beyond
7118 * start/end. Set range.start/range.end to cover the maximum possible
7119 * range if PMD sharing is possible.
7120 */
7121 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
7122 0, mm, start, end);
7123 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
7124
7125 BUG_ON(address >= end);
7126 flush_cache_range(vma, range.start, range.end);
7127
7128 mmu_notifier_invalidate_range_start(&range);
7129 hugetlb_vma_lock_write(vma);
7130 i_mmap_lock_write(vma->vm_file->f_mapping);
7131 last_addr_mask = hugetlb_mask_last_page(h);
7132 for (; address < end; address += psize) {
7133 spinlock_t *ptl;
7134 ptep = hugetlb_walk(vma, address, psize);
7135 if (!ptep) {
7136 if (!uffd_wp) {
7137 address |= last_addr_mask;
7138 continue;
7139 }
7140 /*
7141 * Userfaultfd wr-protect requires pgtable
7142 * pre-allocations to install pte markers.
7143 */
7144 ptep = huge_pte_alloc(mm, vma, address, psize);
7145 if (!ptep) {
7146 pages = -ENOMEM;
7147 break;
7148 }
7149 }
7150 ptl = huge_pte_lock(h, mm, ptep);
7151 if (huge_pmd_unshare(mm, vma, address, ptep)) {
7152 /*
7153 * When uffd-wp is enabled on the vma, unshare
7154 * shouldn't happen at all. Warn about it if it
7155 * happened due to some reason.
7156 */
7157 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
7158 pages++;
7159 spin_unlock(ptl);
7160 shared_pmd = true;
7161 address |= last_addr_mask;
7162 continue;
7163 }
7164 pte = huge_ptep_get(mm, address, ptep);
7165 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
7166 /* Nothing to do. */
7167 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
7168 swp_entry_t entry = pte_to_swp_entry(pte);
7169 struct page *page = pfn_swap_entry_to_page(entry);
7170 pte_t newpte = pte;
7171
7172 if (is_writable_migration_entry(entry)) {
7173 if (PageAnon(page))
7174 entry = make_readable_exclusive_migration_entry(
7175 swp_offset(entry));
7176 else
7177 entry = make_readable_migration_entry(
7178 swp_offset(entry));
7179 newpte = swp_entry_to_pte(entry);
7180 pages++;
7181 }
7182
7183 if (uffd_wp)
7184 newpte = pte_swp_mkuffd_wp(newpte);
7185 else if (uffd_wp_resolve)
7186 newpte = pte_swp_clear_uffd_wp(newpte);
7187 if (!pte_same(pte, newpte))
7188 set_huge_pte_at(mm, address, ptep, newpte, psize);
7189 } else if (unlikely(is_pte_marker(pte))) {
7190 /*
7191 * Do nothing on a poison marker; page is
7192 * corrupted, permissons do not apply. Here
7193 * pte_marker_uffd_wp()==true implies !poison
7194 * because they're mutual exclusive.
7195 */
7196 if (pte_marker_uffd_wp(pte) && uffd_wp_resolve)
7197 /* Safe to modify directly (non-present->none). */
7198 huge_pte_clear(mm, address, ptep, psize);
7199 } else if (!huge_pte_none(pte)) {
7200 pte_t old_pte;
7201 unsigned int shift = huge_page_shift(hstate_vma(vma));
7202
7203 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
7204 pte = huge_pte_modify(old_pte, newprot);
7205 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
7206 if (uffd_wp)
7207 pte = huge_pte_mkuffd_wp(pte);
7208 else if (uffd_wp_resolve)
7209 pte = huge_pte_clear_uffd_wp(pte);
7210 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
7211 pages++;
7212 } else {
7213 /* None pte */
7214 if (unlikely(uffd_wp))
7215 /* Safe to modify directly (none->non-present). */
7216 set_huge_pte_at(mm, address, ptep,
7217 make_pte_marker(PTE_MARKER_UFFD_WP),
7218 psize);
7219 }
7220 spin_unlock(ptl);
7221 }
7222 /*
7223 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
7224 * may have cleared our pud entry and done put_page on the page table:
7225 * once we release i_mmap_rwsem, another task can do the final put_page
7226 * and that page table be reused and filled with junk. If we actually
7227 * did unshare a page of pmds, flush the range corresponding to the pud.
7228 */
7229 if (shared_pmd)
7230 flush_hugetlb_tlb_range(vma, range.start, range.end);
7231 else
7232 flush_hugetlb_tlb_range(vma, start, end);
7233 /*
7234 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
7235 * downgrading page table protection not changing it to point to a new
7236 * page.
7237 *
7238 * See Documentation/mm/mmu_notifier.rst
7239 */
7240 i_mmap_unlock_write(vma->vm_file->f_mapping);
7241 hugetlb_vma_unlock_write(vma);
7242 mmu_notifier_invalidate_range_end(&range);
7243
7244 return pages > 0 ? (pages << h->order) : pages;
7245 }
7246
7247 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)7248 bool hugetlb_reserve_pages(struct inode *inode,
7249 long from, long to,
7250 struct vm_area_struct *vma,
7251 vm_flags_t vm_flags)
7252 {
7253 long chg = -1, add = -1, spool_resv, gbl_resv;
7254 struct hstate *h = hstate_inode(inode);
7255 struct hugepage_subpool *spool = subpool_inode(inode);
7256 struct resv_map *resv_map;
7257 struct hugetlb_cgroup *h_cg = NULL;
7258 long gbl_reserve, regions_needed = 0;
7259
7260 /* This should never happen */
7261 if (from > to) {
7262 VM_WARN(1, "%s called with a negative range\n", __func__);
7263 return false;
7264 }
7265
7266 /*
7267 * vma specific semaphore used for pmd sharing and fault/truncation
7268 * synchronization
7269 */
7270 hugetlb_vma_lock_alloc(vma);
7271
7272 /*
7273 * Only apply hugepage reservation if asked. At fault time, an
7274 * attempt will be made for VM_NORESERVE to allocate a page
7275 * without using reserves
7276 */
7277 if (vm_flags & VM_NORESERVE)
7278 return true;
7279
7280 /*
7281 * Shared mappings base their reservation on the number of pages that
7282 * are already allocated on behalf of the file. Private mappings need
7283 * to reserve the full area even if read-only as mprotect() may be
7284 * called to make the mapping read-write. Assume !vma is a shm mapping
7285 */
7286 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7287 /*
7288 * resv_map can not be NULL as hugetlb_reserve_pages is only
7289 * called for inodes for which resv_maps were created (see
7290 * hugetlbfs_get_inode).
7291 */
7292 resv_map = inode_resv_map(inode);
7293
7294 chg = region_chg(resv_map, from, to, ®ions_needed);
7295 } else {
7296 /* Private mapping. */
7297 resv_map = resv_map_alloc();
7298 if (!resv_map)
7299 goto out_err;
7300
7301 chg = to - from;
7302
7303 set_vma_resv_map(vma, resv_map);
7304 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
7305 }
7306
7307 if (chg < 0)
7308 goto out_err;
7309
7310 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
7311 chg * pages_per_huge_page(h), &h_cg) < 0)
7312 goto out_err;
7313
7314 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
7315 /* For private mappings, the hugetlb_cgroup uncharge info hangs
7316 * of the resv_map.
7317 */
7318 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
7319 }
7320
7321 /*
7322 * There must be enough pages in the subpool for the mapping. If
7323 * the subpool has a minimum size, there may be some global
7324 * reservations already in place (gbl_reserve).
7325 */
7326 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
7327 if (gbl_reserve < 0)
7328 goto out_uncharge_cgroup;
7329
7330 /*
7331 * Check enough hugepages are available for the reservation.
7332 * Hand the pages back to the subpool if there are not
7333 */
7334 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
7335 goto out_put_pages;
7336
7337 /*
7338 * Account for the reservations made. Shared mappings record regions
7339 * that have reservations as they are shared by multiple VMAs.
7340 * When the last VMA disappears, the region map says how much
7341 * the reservation was and the page cache tells how much of
7342 * the reservation was consumed. Private mappings are per-VMA and
7343 * only the consumed reservations are tracked. When the VMA
7344 * disappears, the original reservation is the VMA size and the
7345 * consumed reservations are stored in the map. Hence, nothing
7346 * else has to be done for private mappings here
7347 */
7348 if (!vma || vma->vm_flags & VM_MAYSHARE) {
7349 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
7350
7351 if (unlikely(add < 0)) {
7352 hugetlb_acct_memory(h, -gbl_reserve);
7353 goto out_put_pages;
7354 } else if (unlikely(chg > add)) {
7355 /*
7356 * pages in this range were added to the reserve
7357 * map between region_chg and region_add. This
7358 * indicates a race with alloc_hugetlb_folio. Adjust
7359 * the subpool and reserve counts modified above
7360 * based on the difference.
7361 */
7362 long rsv_adjust;
7363
7364 /*
7365 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
7366 * reference to h_cg->css. See comment below for detail.
7367 */
7368 hugetlb_cgroup_uncharge_cgroup_rsvd(
7369 hstate_index(h),
7370 (chg - add) * pages_per_huge_page(h), h_cg);
7371
7372 rsv_adjust = hugepage_subpool_put_pages(spool,
7373 chg - add);
7374 hugetlb_acct_memory(h, -rsv_adjust);
7375 } else if (h_cg) {
7376 /*
7377 * The file_regions will hold their own reference to
7378 * h_cg->css. So we should release the reference held
7379 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
7380 * done.
7381 */
7382 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7383 }
7384 }
7385 return true;
7386
7387 out_put_pages:
7388 spool_resv = chg - gbl_reserve;
7389 if (spool_resv) {
7390 /* put sub pool's reservation back, chg - gbl_reserve */
7391 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
7392 /*
7393 * subpool's reserved pages can not be put back due to race,
7394 * return to hstate.
7395 */
7396 hugetlb_acct_memory(h, -gbl_resv);
7397 }
7398 out_uncharge_cgroup:
7399 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7400 chg * pages_per_huge_page(h), h_cg);
7401 out_err:
7402 hugetlb_vma_lock_free(vma);
7403 if (!vma || vma->vm_flags & VM_MAYSHARE)
7404 /* Only call region_abort if the region_chg succeeded but the
7405 * region_add failed or didn't run.
7406 */
7407 if (chg >= 0 && add < 0)
7408 region_abort(resv_map, from, to, regions_needed);
7409 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
7410 kref_put(&resv_map->refs, resv_map_release);
7411 set_vma_resv_map(vma, NULL);
7412 }
7413 return false;
7414 }
7415
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)7416 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7417 long freed)
7418 {
7419 struct hstate *h = hstate_inode(inode);
7420 struct resv_map *resv_map = inode_resv_map(inode);
7421 long chg = 0;
7422 struct hugepage_subpool *spool = subpool_inode(inode);
7423 long gbl_reserve;
7424
7425 /*
7426 * Since this routine can be called in the evict inode path for all
7427 * hugetlbfs inodes, resv_map could be NULL.
7428 */
7429 if (resv_map) {
7430 chg = region_del(resv_map, start, end);
7431 /*
7432 * region_del() can fail in the rare case where a region
7433 * must be split and another region descriptor can not be
7434 * allocated. If end == LONG_MAX, it will not fail.
7435 */
7436 if (chg < 0)
7437 return chg;
7438 }
7439
7440 spin_lock(&inode->i_lock);
7441 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7442 spin_unlock(&inode->i_lock);
7443
7444 /*
7445 * If the subpool has a minimum size, the number of global
7446 * reservations to be released may be adjusted.
7447 *
7448 * Note that !resv_map implies freed == 0. So (chg - freed)
7449 * won't go negative.
7450 */
7451 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7452 hugetlb_acct_memory(h, -gbl_reserve);
7453
7454 return 0;
7455 }
7456
7457 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)7458 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7459 struct vm_area_struct *vma,
7460 unsigned long addr, pgoff_t idx)
7461 {
7462 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7463 svma->vm_start;
7464 unsigned long sbase = saddr & PUD_MASK;
7465 unsigned long s_end = sbase + PUD_SIZE;
7466
7467 /* Allow segments to share if only one is marked locked */
7468 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7469 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7470
7471 /*
7472 * match the virtual addresses, permission and the alignment of the
7473 * page table page.
7474 *
7475 * Also, vma_lock (vm_private_data) is required for sharing.
7476 */
7477 if (pmd_index(addr) != pmd_index(saddr) ||
7478 vm_flags != svm_flags ||
7479 !range_in_vma(svma, sbase, s_end) ||
7480 !svma->vm_private_data)
7481 return 0;
7482
7483 return saddr;
7484 }
7485
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7486 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7487 {
7488 unsigned long start = addr & PUD_MASK;
7489 unsigned long end = start + PUD_SIZE;
7490
7491 #ifdef CONFIG_USERFAULTFD
7492 if (uffd_disable_huge_pmd_share(vma))
7493 return false;
7494 #endif
7495 /*
7496 * check on proper vm_flags and page table alignment
7497 */
7498 if (!(vma->vm_flags & VM_MAYSHARE))
7499 return false;
7500 if (!vma->vm_private_data) /* vma lock required for sharing */
7501 return false;
7502 if (!range_in_vma(vma, start, end))
7503 return false;
7504 return true;
7505 }
7506
7507 /*
7508 * Determine if start,end range within vma could be mapped by shared pmd.
7509 * If yes, adjust start and end to cover range associated with possible
7510 * shared pmd mappings.
7511 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7512 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7513 unsigned long *start, unsigned long *end)
7514 {
7515 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7516 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7517
7518 /*
7519 * vma needs to span at least one aligned PUD size, and the range
7520 * must be at least partially within in.
7521 */
7522 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7523 (*end <= v_start) || (*start >= v_end))
7524 return;
7525
7526 /* Extend the range to be PUD aligned for a worst case scenario */
7527 if (*start > v_start)
7528 *start = ALIGN_DOWN(*start, PUD_SIZE);
7529
7530 if (*end < v_end)
7531 *end = ALIGN(*end, PUD_SIZE);
7532 }
7533
7534 /*
7535 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7536 * and returns the corresponding pte. While this is not necessary for the
7537 * !shared pmd case because we can allocate the pmd later as well, it makes the
7538 * code much cleaner. pmd allocation is essential for the shared case because
7539 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7540 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7541 * bad pmd for sharing.
7542 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7543 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7544 unsigned long addr, pud_t *pud)
7545 {
7546 struct address_space *mapping = vma->vm_file->f_mapping;
7547 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7548 vma->vm_pgoff;
7549 struct vm_area_struct *svma;
7550 unsigned long saddr;
7551 pte_t *spte = NULL;
7552 pte_t *pte;
7553
7554 i_mmap_lock_read(mapping);
7555 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7556 if (svma == vma)
7557 continue;
7558
7559 saddr = page_table_shareable(svma, vma, addr, idx);
7560 if (saddr) {
7561 spte = hugetlb_walk(svma, saddr,
7562 vma_mmu_pagesize(svma));
7563 if (spte) {
7564 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
7565 break;
7566 }
7567 }
7568 }
7569
7570 if (!spte)
7571 goto out;
7572
7573 spin_lock(&mm->page_table_lock);
7574 if (pud_none(*pud)) {
7575 pud_populate(mm, pud,
7576 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7577 mm_inc_nr_pmds(mm);
7578 } else {
7579 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
7580 }
7581 spin_unlock(&mm->page_table_lock);
7582 out:
7583 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7584 i_mmap_unlock_read(mapping);
7585 return pte;
7586 }
7587
7588 /*
7589 * unmap huge page backed by shared pte.
7590 *
7591 * Called with page table lock held.
7592 *
7593 * returns: 1 successfully unmapped a shared pte page
7594 * 0 the underlying pte page is not shared, or it is the last user
7595 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7596 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7597 unsigned long addr, pte_t *ptep)
7598 {
7599 unsigned long sz = huge_page_size(hstate_vma(vma));
7600 pgd_t *pgd = pgd_offset(mm, addr);
7601 p4d_t *p4d = p4d_offset(pgd, addr);
7602 pud_t *pud = pud_offset(p4d, addr);
7603
7604 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7605 hugetlb_vma_assert_locked(vma);
7606 if (sz != PMD_SIZE)
7607 return 0;
7608 if (!ptdesc_pmd_pts_count(virt_to_ptdesc(ptep)))
7609 return 0;
7610
7611 pud_clear(pud);
7612 /*
7613 * Once our caller drops the rmap lock, some other process might be
7614 * using this page table as a normal, non-hugetlb page table.
7615 * Wait for pending gup_fast() in other threads to finish before letting
7616 * that happen.
7617 */
7618 tlb_remove_table_sync_one();
7619 ptdesc_pmd_pts_dec(virt_to_ptdesc(ptep));
7620 mm_dec_nr_pmds(mm);
7621 return 1;
7622 }
7623
7624 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7625
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7626 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7627 unsigned long addr, pud_t *pud)
7628 {
7629 return NULL;
7630 }
7631
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7632 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7633 unsigned long addr, pte_t *ptep)
7634 {
7635 return 0;
7636 }
7637
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7638 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7639 unsigned long *start, unsigned long *end)
7640 {
7641 }
7642
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7643 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7644 {
7645 return false;
7646 }
7647 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7648
7649 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7650 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7651 unsigned long addr, unsigned long sz)
7652 {
7653 pgd_t *pgd;
7654 p4d_t *p4d;
7655 pud_t *pud;
7656 pte_t *pte = NULL;
7657
7658 pgd = pgd_offset(mm, addr);
7659 p4d = p4d_alloc(mm, pgd, addr);
7660 if (!p4d)
7661 return NULL;
7662 pud = pud_alloc(mm, p4d, addr);
7663 if (pud) {
7664 if (sz == PUD_SIZE) {
7665 pte = (pte_t *)pud;
7666 } else {
7667 BUG_ON(sz != PMD_SIZE);
7668 if (want_pmd_share(vma, addr) && pud_none(*pud))
7669 pte = huge_pmd_share(mm, vma, addr, pud);
7670 else
7671 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7672 }
7673 }
7674
7675 if (pte) {
7676 pte_t pteval = ptep_get_lockless(pte);
7677
7678 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7679 }
7680
7681 return pte;
7682 }
7683
7684 /*
7685 * huge_pte_offset() - Walk the page table to resolve the hugepage
7686 * entry at address @addr
7687 *
7688 * Return: Pointer to page table entry (PUD or PMD) for
7689 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7690 * size @sz doesn't match the hugepage size at this level of the page
7691 * table.
7692 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7693 pte_t *huge_pte_offset(struct mm_struct *mm,
7694 unsigned long addr, unsigned long sz)
7695 {
7696 pgd_t *pgd;
7697 p4d_t *p4d;
7698 pud_t *pud;
7699 pmd_t *pmd;
7700
7701 pgd = pgd_offset(mm, addr);
7702 if (!pgd_present(*pgd))
7703 return NULL;
7704 p4d = p4d_offset(pgd, addr);
7705 if (!p4d_present(*p4d))
7706 return NULL;
7707
7708 pud = pud_offset(p4d, addr);
7709 if (sz == PUD_SIZE)
7710 /* must be pud huge, non-present or none */
7711 return (pte_t *)pud;
7712 if (!pud_present(*pud))
7713 return NULL;
7714 /* must have a valid entry and size to go further */
7715
7716 pmd = pmd_offset(pud, addr);
7717 /* must be pmd huge, non-present or none */
7718 return (pte_t *)pmd;
7719 }
7720
7721 /*
7722 * Return a mask that can be used to update an address to the last huge
7723 * page in a page table page mapping size. Used to skip non-present
7724 * page table entries when linearly scanning address ranges. Architectures
7725 * with unique huge page to page table relationships can define their own
7726 * version of this routine.
7727 */
hugetlb_mask_last_page(struct hstate * h)7728 unsigned long hugetlb_mask_last_page(struct hstate *h)
7729 {
7730 unsigned long hp_size = huge_page_size(h);
7731
7732 if (hp_size == PUD_SIZE)
7733 return P4D_SIZE - PUD_SIZE;
7734 else if (hp_size == PMD_SIZE)
7735 return PUD_SIZE - PMD_SIZE;
7736 else
7737 return 0UL;
7738 }
7739
7740 #else
7741
7742 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7743 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7744 {
7745 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7746 if (huge_page_size(h) == PMD_SIZE)
7747 return PUD_SIZE - PMD_SIZE;
7748 #endif
7749 return 0UL;
7750 }
7751
7752 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7753
7754 /**
7755 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7756 * @folio: the folio to isolate
7757 * @list: the list to add the folio to on success
7758 *
7759 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7760 * isolated/non-migratable, and moving it from the active list to the
7761 * given list.
7762 *
7763 * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7764 * it is already isolated/non-migratable.
7765 *
7766 * On success, an additional folio reference is taken that must be dropped
7767 * using folio_putback_hugetlb() to undo the isolation.
7768 *
7769 * Return: True if isolation worked, otherwise False.
7770 */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7771 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7772 {
7773 bool ret = true;
7774
7775 spin_lock_irq(&hugetlb_lock);
7776 if (!folio_test_hugetlb(folio) ||
7777 !folio_test_hugetlb_migratable(folio) ||
7778 !folio_try_get(folio)) {
7779 ret = false;
7780 goto unlock;
7781 }
7782 folio_clear_hugetlb_migratable(folio);
7783 list_move_tail(&folio->lru, list);
7784 unlock:
7785 spin_unlock_irq(&hugetlb_lock);
7786 return ret;
7787 }
7788
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7789 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7790 {
7791 int ret = 0;
7792
7793 *hugetlb = false;
7794 spin_lock_irq(&hugetlb_lock);
7795 if (folio_test_hugetlb(folio)) {
7796 *hugetlb = true;
7797 if (folio_test_hugetlb_freed(folio))
7798 ret = 0;
7799 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7800 ret = folio_try_get(folio);
7801 else
7802 ret = -EBUSY;
7803 }
7804 spin_unlock_irq(&hugetlb_lock);
7805 return ret;
7806 }
7807
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7808 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7809 bool *migratable_cleared)
7810 {
7811 int ret;
7812
7813 spin_lock_irq(&hugetlb_lock);
7814 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7815 spin_unlock_irq(&hugetlb_lock);
7816 return ret;
7817 }
7818
7819 /**
7820 * folio_putback_hugetlb - unisolate a hugetlb folio
7821 * @folio: the isolated hugetlb folio
7822 *
7823 * Putback/un-isolate the hugetlb folio that was previous isolated using
7824 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7825 * back onto the active list.
7826 *
7827 * Will drop the additional folio reference obtained through
7828 * folio_isolate_hugetlb().
7829 */
folio_putback_hugetlb(struct folio * folio)7830 void folio_putback_hugetlb(struct folio *folio)
7831 {
7832 spin_lock_irq(&hugetlb_lock);
7833 folio_set_hugetlb_migratable(folio);
7834 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7835 spin_unlock_irq(&hugetlb_lock);
7836 folio_put(folio);
7837 }
7838
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7839 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7840 {
7841 struct hstate *h = folio_hstate(old_folio);
7842
7843 hugetlb_cgroup_migrate(old_folio, new_folio);
7844 set_page_owner_migrate_reason(&new_folio->page, reason);
7845
7846 /*
7847 * transfer temporary state of the new hugetlb folio. This is
7848 * reverse to other transitions because the newpage is going to
7849 * be final while the old one will be freed so it takes over
7850 * the temporary status.
7851 *
7852 * Also note that we have to transfer the per-node surplus state
7853 * here as well otherwise the global surplus count will not match
7854 * the per-node's.
7855 */
7856 if (folio_test_hugetlb_temporary(new_folio)) {
7857 int old_nid = folio_nid(old_folio);
7858 int new_nid = folio_nid(new_folio);
7859
7860 folio_set_hugetlb_temporary(old_folio);
7861 folio_clear_hugetlb_temporary(new_folio);
7862
7863
7864 /*
7865 * There is no need to transfer the per-node surplus state
7866 * when we do not cross the node.
7867 */
7868 if (new_nid == old_nid)
7869 return;
7870 spin_lock_irq(&hugetlb_lock);
7871 if (h->surplus_huge_pages_node[old_nid]) {
7872 h->surplus_huge_pages_node[old_nid]--;
7873 h->surplus_huge_pages_node[new_nid]++;
7874 }
7875 spin_unlock_irq(&hugetlb_lock);
7876 }
7877
7878 /*
7879 * Our old folio is isolated and has "migratable" cleared until it
7880 * is putback. As migration succeeded, set the new folio "migratable"
7881 * and add it to the active list.
7882 */
7883 spin_lock_irq(&hugetlb_lock);
7884 folio_set_hugetlb_migratable(new_folio);
7885 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7886 spin_unlock_irq(&hugetlb_lock);
7887 }
7888
7889 /*
7890 * If @take_locks is false, the caller must ensure that no concurrent page table
7891 * access can happen (except for gup_fast() and hardware page walks).
7892 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
7893 * concurrent page fault handling) and the file rmap lock.
7894 */
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool take_locks)7895 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7896 unsigned long start,
7897 unsigned long end,
7898 bool take_locks)
7899 {
7900 struct hstate *h = hstate_vma(vma);
7901 unsigned long sz = huge_page_size(h);
7902 struct mm_struct *mm = vma->vm_mm;
7903 struct mmu_notifier_range range;
7904 unsigned long address;
7905 spinlock_t *ptl;
7906 pte_t *ptep;
7907
7908 if (!(vma->vm_flags & VM_MAYSHARE))
7909 return;
7910
7911 if (start >= end)
7912 return;
7913
7914 flush_cache_range(vma, start, end);
7915 /*
7916 * No need to call adjust_range_if_pmd_sharing_possible(), because
7917 * we have already done the PUD_SIZE alignment.
7918 */
7919 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7920 start, end);
7921 mmu_notifier_invalidate_range_start(&range);
7922 if (take_locks) {
7923 hugetlb_vma_lock_write(vma);
7924 i_mmap_lock_write(vma->vm_file->f_mapping);
7925 } else {
7926 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7927 }
7928 for (address = start; address < end; address += PUD_SIZE) {
7929 ptep = hugetlb_walk(vma, address, sz);
7930 if (!ptep)
7931 continue;
7932 ptl = huge_pte_lock(h, mm, ptep);
7933 huge_pmd_unshare(mm, vma, address, ptep);
7934 spin_unlock(ptl);
7935 }
7936 flush_hugetlb_tlb_range(vma, start, end);
7937 if (take_locks) {
7938 i_mmap_unlock_write(vma->vm_file->f_mapping);
7939 hugetlb_vma_unlock_write(vma);
7940 }
7941 /*
7942 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7943 * Documentation/mm/mmu_notifier.rst.
7944 */
7945 mmu_notifier_invalidate_range_end(&range);
7946 }
7947
7948 /*
7949 * This function will unconditionally remove all the shared pmd pgtable entries
7950 * within the specific vma for a hugetlbfs memory range.
7951 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7952 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7953 {
7954 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7955 ALIGN_DOWN(vma->vm_end, PUD_SIZE),
7956 /* take_locks = */ true);
7957 }
7958
7959 /*
7960 * For hugetlb, mremap() is an odd edge case - while the VMA copying is
7961 * performed, we permit both the old and new VMAs to reference the same
7962 * reservation.
7963 *
7964 * We fix this up after the operation succeeds, or if a newly allocated VMA
7965 * is closed as a result of a failure to allocate memory.
7966 */
fixup_hugetlb_reservations(struct vm_area_struct * vma)7967 void fixup_hugetlb_reservations(struct vm_area_struct *vma)
7968 {
7969 if (is_vm_hugetlb_page(vma))
7970 clear_vma_resv_huge_pages(vma);
7971 }
7972