1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3 *
4 * Copyright (C) 2014-2019 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7 *
8 * Based on the SuperH Ethernet driver
9 */
10
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 #include <net/page_pool/helpers.h>
34
35 #include "ravb.h"
36
37 #define RAVB_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR | \
41 NETIF_MSG_TX_ERR)
42
ravb_modify(struct net_device * ndev,enum ravb_reg reg,u32 clear,u32 set)43 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
44 u32 set)
45 {
46 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
47 }
48
ravb_wait(struct net_device * ndev,enum ravb_reg reg,u32 mask,u32 value)49 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
50 {
51 int i;
52
53 for (i = 0; i < 10000; i++) {
54 if ((ravb_read(ndev, reg) & mask) == value)
55 return 0;
56 udelay(10);
57 }
58 return -ETIMEDOUT;
59 }
60
ravb_set_opmode(struct net_device * ndev,u32 opmode)61 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
62 {
63 u32 csr_ops = 1U << (opmode & CCC_OPC);
64 u32 ccc_mask = CCC_OPC;
65 int error;
66
67 /* If gPTP active in config mode is supported it needs to be configured
68 * along with CSEL and operating mode in the same access. This is a
69 * hardware limitation.
70 */
71 if (opmode & CCC_GAC)
72 ccc_mask |= CCC_GAC | CCC_CSEL;
73
74 /* Set operating mode */
75 ravb_modify(ndev, CCC, ccc_mask, opmode);
76 /* Check if the operating mode is changed to the requested one */
77 error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
78 if (error) {
79 netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
80 opmode & CCC_OPC);
81 }
82
83 return error;
84 }
85
ravb_set_rate_gbeth(struct net_device * ndev)86 static void ravb_set_rate_gbeth(struct net_device *ndev)
87 {
88 struct ravb_private *priv = netdev_priv(ndev);
89
90 switch (priv->speed) {
91 case 10: /* 10BASE */
92 ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
93 break;
94 case 100: /* 100BASE */
95 ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
96 break;
97 case 1000: /* 1000BASE */
98 ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
99 break;
100 }
101 }
102
ravb_set_rate_rcar(struct net_device * ndev)103 static void ravb_set_rate_rcar(struct net_device *ndev)
104 {
105 struct ravb_private *priv = netdev_priv(ndev);
106
107 switch (priv->speed) {
108 case 100: /* 100BASE */
109 ravb_write(ndev, GECMR_SPEED_100, GECMR);
110 break;
111 case 1000: /* 1000BASE */
112 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
113 break;
114 }
115 }
116
117 /* Get MAC address from the MAC address registers
118 *
119 * Ethernet AVB device doesn't have ROM for MAC address.
120 * This function gets the MAC address that was used by a bootloader.
121 */
ravb_read_mac_address(struct device_node * np,struct net_device * ndev)122 static void ravb_read_mac_address(struct device_node *np,
123 struct net_device *ndev)
124 {
125 int ret;
126
127 ret = of_get_ethdev_address(np, ndev);
128 if (ret) {
129 u32 mahr = ravb_read(ndev, MAHR);
130 u32 malr = ravb_read(ndev, MALR);
131 u8 addr[ETH_ALEN];
132
133 addr[0] = (mahr >> 24) & 0xFF;
134 addr[1] = (mahr >> 16) & 0xFF;
135 addr[2] = (mahr >> 8) & 0xFF;
136 addr[3] = (mahr >> 0) & 0xFF;
137 addr[4] = (malr >> 8) & 0xFF;
138 addr[5] = (malr >> 0) & 0xFF;
139 eth_hw_addr_set(ndev, addr);
140 }
141 }
142
ravb_mdio_ctrl(struct mdiobb_ctrl * ctrl,u32 mask,int set)143 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
144 {
145 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
146 mdiobb);
147
148 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
149 }
150
151 /* MDC pin control */
ravb_set_mdc(struct mdiobb_ctrl * ctrl,int level)152 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
153 {
154 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
155 }
156
157 /* Data I/O pin control */
ravb_set_mdio_dir(struct mdiobb_ctrl * ctrl,int output)158 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
159 {
160 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
161 }
162
163 /* Set data bit */
ravb_set_mdio_data(struct mdiobb_ctrl * ctrl,int value)164 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
165 {
166 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
167 }
168
169 /* Get data bit */
ravb_get_mdio_data(struct mdiobb_ctrl * ctrl)170 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
171 {
172 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
173 mdiobb);
174
175 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
176 }
177
178 /* MDIO bus control struct */
179 static const struct mdiobb_ops bb_ops = {
180 .owner = THIS_MODULE,
181 .set_mdc = ravb_set_mdc,
182 .set_mdio_dir = ravb_set_mdio_dir,
183 .set_mdio_data = ravb_set_mdio_data,
184 .get_mdio_data = ravb_get_mdio_data,
185 };
186
187 static struct ravb_rx_desc *
ravb_rx_get_desc(struct ravb_private * priv,unsigned int q,unsigned int i)188 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
189 unsigned int i)
190 {
191 return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
192 }
193
194 /* Free TX skb function for AVB-IP */
ravb_tx_free(struct net_device * ndev,int q,bool free_txed_only)195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 struct ravb_private *priv = netdev_priv(ndev);
198 struct net_device_stats *stats = &priv->stats[q];
199 unsigned int num_tx_desc = priv->num_tx_desc;
200 struct ravb_tx_desc *desc;
201 unsigned int entry;
202 int free_num = 0;
203 u32 size;
204
205 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 bool txed;
207
208 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 num_tx_desc);
210 desc = &priv->tx_ring[q][entry];
211 txed = desc->die_dt == DT_FEMPTY;
212 if (free_txed_only && !txed)
213 break;
214 /* Descriptor type must be checked before all other reads */
215 dma_rmb();
216 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 /* Free the original skb. */
218 if (priv->tx_skb[q][entry / num_tx_desc]) {
219 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 size, DMA_TO_DEVICE);
221 /* Last packet descriptor? */
222 if (entry % num_tx_desc == num_tx_desc - 1) {
223 entry /= num_tx_desc;
224 dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 priv->tx_skb[q][entry] = NULL;
226 if (txed)
227 stats->tx_packets++;
228 }
229 free_num++;
230 }
231 if (txed)
232 stats->tx_bytes += size;
233 desc->die_dt = DT_EEMPTY;
234 }
235 return free_num;
236 }
237
ravb_rx_ring_free(struct net_device * ndev,int q)238 static void ravb_rx_ring_free(struct net_device *ndev, int q)
239 {
240 struct ravb_private *priv = netdev_priv(ndev);
241 unsigned int ring_size;
242
243 if (!priv->rx_ring[q].raw)
244 return;
245
246 ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
247 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
248 priv->rx_desc_dma[q]);
249 priv->rx_ring[q].raw = NULL;
250 }
251
252 /* Free skb's and DMA buffers for Ethernet AVB */
ravb_ring_free(struct net_device * ndev,int q)253 static void ravb_ring_free(struct net_device *ndev, int q)
254 {
255 struct ravb_private *priv = netdev_priv(ndev);
256 unsigned int num_tx_desc = priv->num_tx_desc;
257 unsigned int ring_size;
258 unsigned int i;
259
260 ravb_rx_ring_free(ndev, q);
261
262 if (priv->tx_ring[q]) {
263 ravb_tx_free(ndev, q, false);
264
265 ring_size = sizeof(struct ravb_tx_desc) *
266 (priv->num_tx_ring[q] * num_tx_desc + 1);
267 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
268 priv->tx_desc_dma[q]);
269 priv->tx_ring[q] = NULL;
270 }
271
272 /* Free RX buffers */
273 for (i = 0; i < priv->num_rx_ring[q]; i++) {
274 if (priv->rx_buffers[q][i].page)
275 page_pool_put_page(priv->rx_pool[q],
276 priv->rx_buffers[q][i].page,
277 0, true);
278 }
279 kfree(priv->rx_buffers[q]);
280 priv->rx_buffers[q] = NULL;
281 page_pool_destroy(priv->rx_pool[q]);
282
283 /* Free aligned TX buffers */
284 kfree(priv->tx_align[q]);
285 priv->tx_align[q] = NULL;
286
287 /* Free TX skb ringbuffer.
288 * SKBs are freed by ravb_tx_free() call above.
289 */
290 kfree(priv->tx_skb[q]);
291 priv->tx_skb[q] = NULL;
292 }
293
294 static int
ravb_alloc_rx_buffer(struct net_device * ndev,int q,u32 entry,gfp_t gfp_mask,struct ravb_rx_desc * rx_desc)295 ravb_alloc_rx_buffer(struct net_device *ndev, int q, u32 entry, gfp_t gfp_mask,
296 struct ravb_rx_desc *rx_desc)
297 {
298 struct ravb_private *priv = netdev_priv(ndev);
299 const struct ravb_hw_info *info = priv->info;
300 struct ravb_rx_buffer *rx_buff;
301 dma_addr_t dma_addr;
302 unsigned int size;
303
304 rx_buff = &priv->rx_buffers[q][entry];
305 size = info->rx_buffer_size;
306 rx_buff->page = page_pool_alloc(priv->rx_pool[q], &rx_buff->offset,
307 &size, gfp_mask);
308 if (unlikely(!rx_buff->page)) {
309 /* We just set the data size to 0 for a failed mapping which
310 * should prevent DMA from happening...
311 */
312 rx_desc->ds_cc = cpu_to_le16(0);
313 return -ENOMEM;
314 }
315
316 dma_addr = page_pool_get_dma_addr(rx_buff->page) + rx_buff->offset;
317 dma_sync_single_for_device(ndev->dev.parent, dma_addr,
318 info->rx_buffer_size, DMA_FROM_DEVICE);
319 rx_desc->dptr = cpu_to_le32(dma_addr);
320
321 /* The end of the RX buffer is used to store skb shared data, so we need
322 * to ensure that the hardware leaves enough space for this.
323 */
324 rx_desc->ds_cc = cpu_to_le16(info->rx_buffer_size -
325 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) -
326 ETH_FCS_LEN + sizeof(__sum16));
327 return 0;
328 }
329
330 static u32
ravb_rx_ring_refill(struct net_device * ndev,int q,u32 count,gfp_t gfp_mask)331 ravb_rx_ring_refill(struct net_device *ndev, int q, u32 count, gfp_t gfp_mask)
332 {
333 struct ravb_private *priv = netdev_priv(ndev);
334 struct ravb_rx_desc *rx_desc;
335 u32 i, entry;
336
337 for (i = 0; i < count; i++) {
338 entry = (priv->dirty_rx[q] + i) % priv->num_rx_ring[q];
339 rx_desc = ravb_rx_get_desc(priv, q, entry);
340
341 if (!priv->rx_buffers[q][entry].page) {
342 if (unlikely(ravb_alloc_rx_buffer(ndev, q, entry,
343 gfp_mask, rx_desc)))
344 break;
345 }
346 /* Descriptor type must be set after all the above writes */
347 dma_wmb();
348 rx_desc->die_dt = DT_FEMPTY;
349 }
350
351 return i;
352 }
353
354 /* Format skb and descriptor buffer for Ethernet AVB */
ravb_ring_format(struct net_device * ndev,int q)355 static void ravb_ring_format(struct net_device *ndev, int q)
356 {
357 struct ravb_private *priv = netdev_priv(ndev);
358 unsigned int num_tx_desc = priv->num_tx_desc;
359 struct ravb_rx_desc *rx_desc;
360 struct ravb_tx_desc *tx_desc;
361 struct ravb_desc *desc;
362 unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
363 num_tx_desc;
364 unsigned int i;
365
366 priv->cur_rx[q] = 0;
367 priv->cur_tx[q] = 0;
368 priv->dirty_rx[q] = 0;
369 priv->dirty_tx[q] = 0;
370
371 /* Regular RX descriptors have already been initialized by
372 * ravb_rx_ring_refill(), we just need to initialize the final link
373 * descriptor.
374 */
375 rx_desc = ravb_rx_get_desc(priv, q, priv->num_rx_ring[q]);
376 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
377 rx_desc->die_dt = DT_LINKFIX; /* type */
378
379 memset(priv->tx_ring[q], 0, tx_ring_size);
380 /* Build TX ring buffer */
381 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
382 i++, tx_desc++) {
383 tx_desc->die_dt = DT_EEMPTY;
384 if (num_tx_desc > 1) {
385 tx_desc++;
386 tx_desc->die_dt = DT_EEMPTY;
387 }
388 }
389 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
390 tx_desc->die_dt = DT_LINKFIX; /* type */
391
392 /* RX descriptor base address for best effort */
393 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
394 desc->die_dt = DT_LINKFIX; /* type */
395 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
396
397 /* TX descriptor base address for best effort */
398 desc = &priv->desc_bat[q];
399 desc->die_dt = DT_LINKFIX; /* type */
400 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
401 }
402
ravb_alloc_rx_desc(struct net_device * ndev,int q)403 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
404 {
405 struct ravb_private *priv = netdev_priv(ndev);
406 unsigned int ring_size;
407
408 ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
409
410 priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
411 &priv->rx_desc_dma[q],
412 GFP_KERNEL);
413
414 return priv->rx_ring[q].raw;
415 }
416
417 /* Init skb and descriptor buffer for Ethernet AVB */
ravb_ring_init(struct net_device * ndev,int q)418 static int ravb_ring_init(struct net_device *ndev, int q)
419 {
420 struct ravb_private *priv = netdev_priv(ndev);
421 unsigned int num_tx_desc = priv->num_tx_desc;
422 struct page_pool_params params = {
423 .order = 0,
424 .flags = PP_FLAG_DMA_MAP,
425 .pool_size = priv->num_rx_ring[q],
426 .nid = NUMA_NO_NODE,
427 .dev = ndev->dev.parent,
428 .dma_dir = DMA_FROM_DEVICE,
429 };
430 unsigned int ring_size;
431 u32 num_filled;
432
433 /* Allocate RX page pool and buffers */
434 priv->rx_pool[q] = page_pool_create(¶ms);
435 if (IS_ERR(priv->rx_pool[q]))
436 goto error;
437
438 /* Allocate RX buffers */
439 priv->rx_buffers[q] = kcalloc(priv->num_rx_ring[q],
440 sizeof(*priv->rx_buffers[q]), GFP_KERNEL);
441 if (!priv->rx_buffers[q])
442 goto error;
443
444 /* Allocate TX skb rings */
445 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
446 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
447 if (!priv->tx_skb[q])
448 goto error;
449
450 /* Allocate all RX descriptors. */
451 if (!ravb_alloc_rx_desc(ndev, q))
452 goto error;
453
454 /* Populate RX ring buffer. */
455 priv->dirty_rx[q] = 0;
456 ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
457 memset(priv->rx_ring[q].raw, 0, ring_size);
458 num_filled = ravb_rx_ring_refill(ndev, q, priv->num_rx_ring[q],
459 GFP_KERNEL);
460 if (num_filled != priv->num_rx_ring[q])
461 goto error;
462
463 if (num_tx_desc > 1) {
464 /* Allocate rings for the aligned buffers */
465 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
466 DPTR_ALIGN - 1, GFP_KERNEL);
467 if (!priv->tx_align[q])
468 goto error;
469 }
470
471 /* Allocate all TX descriptors. */
472 ring_size = sizeof(struct ravb_tx_desc) *
473 (priv->num_tx_ring[q] * num_tx_desc + 1);
474 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
475 &priv->tx_desc_dma[q],
476 GFP_KERNEL);
477 if (!priv->tx_ring[q])
478 goto error;
479
480 return 0;
481
482 error:
483 ravb_ring_free(ndev, q);
484
485 return -ENOMEM;
486 }
487
ravb_csum_init_gbeth(struct net_device * ndev)488 static void ravb_csum_init_gbeth(struct net_device *ndev)
489 {
490 bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
491 bool rx_enable = ndev->features & NETIF_F_RXCSUM;
492
493 if (!(tx_enable || rx_enable))
494 goto done;
495
496 ravb_write(ndev, 0, CSR0);
497 if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
498 netdev_err(ndev, "Timeout enabling hardware checksum\n");
499
500 if (tx_enable)
501 ndev->features &= ~NETIF_F_HW_CSUM;
502
503 if (rx_enable)
504 ndev->features &= ~NETIF_F_RXCSUM;
505 } else {
506 if (tx_enable)
507 ravb_write(ndev, CSR1_CSUM_ENABLE, CSR1);
508
509 if (rx_enable)
510 ravb_write(ndev, CSR2_CSUM_ENABLE, CSR2);
511 }
512
513 done:
514 ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
515 }
516
ravb_emac_init_gbeth(struct net_device * ndev)517 static void ravb_emac_init_gbeth(struct net_device *ndev)
518 {
519 struct ravb_private *priv = netdev_priv(ndev);
520
521 if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
522 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
523 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
524 } else {
525 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
526 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
527 CXR31_SEL_LINK0);
528 }
529
530 /* Receive frame limit set register */
531 ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
532
533 /* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
534 ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
535 ECMR_TE | ECMR_RE | ECMR_RCPT |
536 ECMR_TXF | ECMR_RXF, ECMR);
537
538 ravb_set_rate_gbeth(ndev);
539
540 /* Set MAC address */
541 ravb_write(ndev,
542 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
543 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
544 ravb_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
545
546 /* E-MAC status register clear */
547 ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
548
549 ravb_csum_init_gbeth(ndev);
550
551 /* E-MAC interrupt enable register */
552 ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
553 }
554
ravb_emac_init_rcar(struct net_device * ndev)555 static void ravb_emac_init_rcar(struct net_device *ndev)
556 {
557 struct ravb_private *priv = netdev_priv(ndev);
558
559 /* Set receive frame length
560 *
561 * The length set here describes the frame from the destination address
562 * up to and including the CRC data. However only the frame data,
563 * excluding the CRC, are transferred to memory. To allow for the
564 * largest frames add the CRC length to the maximum Rx descriptor size.
565 */
566 ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
567
568 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
569 ravb_write(ndev, ECMR_ZPF | ECMR_DM |
570 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
571 ECMR_TE | ECMR_RE, ECMR);
572
573 ravb_set_rate_rcar(ndev);
574
575 /* Set MAC address */
576 ravb_write(ndev,
577 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
578 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
579 ravb_write(ndev,
580 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
581
582 /* E-MAC status register clear */
583 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
584
585 /* E-MAC interrupt enable register */
586 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
587 }
588
ravb_emac_init_rcar_gen4(struct net_device * ndev)589 static void ravb_emac_init_rcar_gen4(struct net_device *ndev)
590 {
591 struct ravb_private *priv = netdev_priv(ndev);
592 bool mii = priv->phy_interface == PHY_INTERFACE_MODE_MII;
593
594 ravb_modify(ndev, APSR, APSR_MIISELECT, mii ? APSR_MIISELECT : 0);
595
596 ravb_emac_init_rcar(ndev);
597 }
598
599 /* E-MAC init function */
ravb_emac_init(struct net_device * ndev)600 static void ravb_emac_init(struct net_device *ndev)
601 {
602 struct ravb_private *priv = netdev_priv(ndev);
603 const struct ravb_hw_info *info = priv->info;
604
605 info->emac_init(ndev);
606 }
607
ravb_dmac_init_gbeth(struct net_device * ndev)608 static int ravb_dmac_init_gbeth(struct net_device *ndev)
609 {
610 struct ravb_private *priv = netdev_priv(ndev);
611 int error;
612
613 error = ravb_ring_init(ndev, RAVB_BE);
614 if (error)
615 return error;
616
617 /* Descriptor format */
618 ravb_ring_format(ndev, RAVB_BE);
619
620 /* Set DMAC RX */
621 ravb_write(ndev, 0x60000000, RCR);
622
623 /* Set Max Frame Length (RTC) */
624 ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
625
626 /* Set FIFO size */
627 ravb_write(ndev, 0x00222200, TGC);
628
629 ravb_write(ndev, 0, TCCR);
630
631 /* Frame receive */
632 ravb_write(ndev, RIC0_FRE0, RIC0);
633 /* Disable FIFO full warning */
634 ravb_write(ndev, 0x0, RIC1);
635 /* Receive FIFO full error, descriptor empty */
636 ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
637
638 ravb_write(ndev, TIC_FTE0, TIC);
639
640 return 0;
641 }
642
ravb_dmac_init_rcar(struct net_device * ndev)643 static int ravb_dmac_init_rcar(struct net_device *ndev)
644 {
645 struct ravb_private *priv = netdev_priv(ndev);
646 const struct ravb_hw_info *info = priv->info;
647 int error;
648
649 error = ravb_ring_init(ndev, RAVB_BE);
650 if (error)
651 return error;
652 error = ravb_ring_init(ndev, RAVB_NC);
653 if (error) {
654 ravb_ring_free(ndev, RAVB_BE);
655 return error;
656 }
657
658 /* Descriptor format */
659 ravb_ring_format(ndev, RAVB_BE);
660 ravb_ring_format(ndev, RAVB_NC);
661
662 /* Set AVB RX */
663 ravb_write(ndev,
664 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
665
666 /* Set FIFO size */
667 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
668
669 /* Timestamp enable */
670 ravb_write(ndev, TCCR_TFEN, TCCR);
671
672 /* Interrupt init: */
673 if (info->multi_irqs) {
674 /* Clear DIL.DPLx */
675 ravb_write(ndev, 0, DIL);
676 /* Set queue specific interrupt */
677 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
678 }
679 /* Frame receive */
680 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
681 /* Disable FIFO full warning */
682 ravb_write(ndev, 0, RIC1);
683 /* Receive FIFO full error, descriptor empty */
684 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
685 /* Frame transmitted, timestamp FIFO updated */
686 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
687
688 return 0;
689 }
690
691 /* Device init function for Ethernet AVB */
ravb_dmac_init(struct net_device * ndev)692 static int ravb_dmac_init(struct net_device *ndev)
693 {
694 struct ravb_private *priv = netdev_priv(ndev);
695 const struct ravb_hw_info *info = priv->info;
696 int error;
697
698 /* Set CONFIG mode */
699 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
700 if (error)
701 return error;
702
703 error = info->dmac_init(ndev);
704 if (error)
705 return error;
706
707 /* Setting the control will start the AVB-DMAC process. */
708 return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
709 }
710
ravb_get_tx_tstamp(struct net_device * ndev)711 static void ravb_get_tx_tstamp(struct net_device *ndev)
712 {
713 struct ravb_private *priv = netdev_priv(ndev);
714 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
715 struct skb_shared_hwtstamps shhwtstamps;
716 struct sk_buff *skb;
717 struct timespec64 ts;
718 u16 tag, tfa_tag;
719 int count;
720 u32 tfa2;
721
722 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
723 while (count--) {
724 tfa2 = ravb_read(ndev, TFA2);
725 tfa_tag = (tfa2 & TFA2_TST) >> 16;
726 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
727 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
728 ravb_read(ndev, TFA1);
729 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
730 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
731 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
732 list) {
733 skb = ts_skb->skb;
734 tag = ts_skb->tag;
735 list_del(&ts_skb->list);
736 kfree(ts_skb);
737 if (tag == tfa_tag) {
738 skb_tstamp_tx(skb, &shhwtstamps);
739 dev_consume_skb_any(skb);
740 break;
741 } else {
742 dev_kfree_skb_any(skb);
743 }
744 }
745 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
746 }
747 }
748
ravb_rx_csum_gbeth(struct sk_buff * skb)749 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
750 {
751 struct skb_shared_info *shinfo = skb_shinfo(skb);
752 size_t csum_len;
753 u16 *hw_csum;
754
755 /* The hardware checksum status is contained in 4 bytes appended to
756 * packet data.
757 *
758 * For ipv4, the first 2 bytes are the ip header checksum status. We can
759 * ignore this as it will always be re-checked in inet_gro_receive().
760 *
761 * The last 2 bytes are the protocol checksum status which will be zero
762 * if the checksum has been validated.
763 */
764 csum_len = sizeof(*hw_csum) * 2;
765 if (unlikely(skb->len < csum_len))
766 return;
767
768 if (skb_is_nonlinear(skb)) {
769 skb_frag_t *last_frag = &shinfo->frags[shinfo->nr_frags - 1];
770
771 hw_csum = (u16 *)(skb_frag_address(last_frag) +
772 skb_frag_size(last_frag));
773 skb_frag_size_sub(last_frag, csum_len);
774 } else {
775 hw_csum = (u16 *)skb_tail_pointer(skb);
776 skb_trim(skb, skb->len - csum_len);
777 }
778
779 if (!get_unaligned(--hw_csum))
780 skb->ip_summed = CHECKSUM_UNNECESSARY;
781 }
782
ravb_rx_csum(struct sk_buff * skb)783 static void ravb_rx_csum(struct sk_buff *skb)
784 {
785 u8 *hw_csum;
786
787 /* The hardware checksum is contained in sizeof(__sum16) (2) bytes
788 * appended to packet data
789 */
790 if (unlikely(skb->len < sizeof(__sum16)))
791 return;
792 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
793 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
794 skb->ip_summed = CHECKSUM_COMPLETE;
795 skb_trim(skb, skb->len - sizeof(__sum16));
796 }
797
798 /* Packet receive function for Gigabit Ethernet */
ravb_rx_gbeth(struct net_device * ndev,int budget,int q)799 static int ravb_rx_gbeth(struct net_device *ndev, int budget, int q)
800 {
801 struct ravb_private *priv = netdev_priv(ndev);
802 const struct ravb_hw_info *info = priv->info;
803 struct net_device_stats *stats;
804 struct ravb_rx_desc *desc;
805 int rx_packets = 0;
806 u8 desc_status;
807 u16 desc_len;
808 u8 die_dt;
809 int entry;
810 int limit;
811 int i;
812
813 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
814 stats = &priv->stats[q];
815
816 for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
817 struct sk_buff *skb = NULL;
818
819 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
820 desc = &priv->rx_ring[q].desc[entry];
821 if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
822 break;
823
824 /* Descriptor type must be checked before all other reads */
825 dma_rmb();
826 desc_status = desc->msc;
827 desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
828
829 /* We use 0-byte descriptors to mark the DMA mapping errors */
830 if (!desc_len)
831 continue;
832
833 if (desc_status & MSC_MC)
834 stats->multicast++;
835
836 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
837 stats->rx_errors++;
838 if (desc_status & MSC_CRC)
839 stats->rx_crc_errors++;
840 if (desc_status & MSC_RFE)
841 stats->rx_frame_errors++;
842 if (desc_status & (MSC_RTLF | MSC_RTSF))
843 stats->rx_length_errors++;
844 if (desc_status & MSC_CEEF)
845 stats->rx_missed_errors++;
846 } else {
847 struct ravb_rx_buffer *rx_buff;
848 void *rx_addr;
849
850 rx_buff = &priv->rx_buffers[q][entry];
851 rx_addr = page_address(rx_buff->page) + rx_buff->offset;
852 die_dt = desc->die_dt & 0xF0;
853 dma_sync_single_for_cpu(ndev->dev.parent,
854 le32_to_cpu(desc->dptr),
855 desc_len, DMA_FROM_DEVICE);
856
857 switch (die_dt) {
858 case DT_FSINGLE:
859 case DT_FSTART:
860 /* Start of packet: Set initial data length. */
861 skb = napi_build_skb(rx_addr,
862 info->rx_buffer_size);
863 if (unlikely(!skb)) {
864 stats->rx_errors++;
865 page_pool_put_page(priv->rx_pool[q],
866 rx_buff->page, 0,
867 true);
868 goto refill;
869 }
870 skb_mark_for_recycle(skb);
871 skb_put(skb, desc_len);
872
873 /* Save this skb if the packet spans multiple
874 * descriptors.
875 */
876 if (die_dt == DT_FSTART)
877 priv->rx_1st_skb = skb;
878 break;
879
880 case DT_FMID:
881 case DT_FEND:
882 /* Continuing a packet: Add this buffer as an RX
883 * frag.
884 */
885
886 /* rx_1st_skb will be NULL if napi_build_skb()
887 * failed for the first descriptor of a
888 * multi-descriptor packet.
889 */
890 if (unlikely(!priv->rx_1st_skb)) {
891 stats->rx_errors++;
892 page_pool_put_page(priv->rx_pool[q],
893 rx_buff->page, 0,
894 true);
895
896 /* We may find a DT_FSINGLE or DT_FSTART
897 * descriptor in the queue which we can
898 * process, so don't give up yet.
899 */
900 continue;
901 }
902 skb_add_rx_frag(priv->rx_1st_skb,
903 skb_shinfo(priv->rx_1st_skb)->nr_frags,
904 rx_buff->page, rx_buff->offset,
905 desc_len, info->rx_buffer_size);
906
907 /* Set skb to point at the whole packet so that
908 * we only need one code path for finishing a
909 * packet.
910 */
911 skb = priv->rx_1st_skb;
912 }
913
914 switch (die_dt) {
915 case DT_FSINGLE:
916 case DT_FEND:
917 /* Finishing a packet: Determine protocol &
918 * checksum, hand off to NAPI and update our
919 * stats.
920 */
921 skb->protocol = eth_type_trans(skb, ndev);
922 if (ndev->features & NETIF_F_RXCSUM)
923 ravb_rx_csum_gbeth(skb);
924 stats->rx_bytes += skb->len;
925 napi_gro_receive(&priv->napi[q], skb);
926 rx_packets++;
927
928 /* Clear rx_1st_skb so that it will only be
929 * non-NULL when valid.
930 */
931 priv->rx_1st_skb = NULL;
932 }
933
934 /* Mark this RX buffer as consumed. */
935 rx_buff->page = NULL;
936 }
937 }
938
939 refill:
940 /* Refill the RX ring buffers. */
941 priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
942 priv->cur_rx[q] - priv->dirty_rx[q],
943 GFP_ATOMIC);
944
945 stats->rx_packets += rx_packets;
946 return rx_packets;
947 }
948
949 /* Packet receive function for Ethernet AVB */
ravb_rx_rcar(struct net_device * ndev,int budget,int q)950 static int ravb_rx_rcar(struct net_device *ndev, int budget, int q)
951 {
952 struct ravb_private *priv = netdev_priv(ndev);
953 const struct ravb_hw_info *info = priv->info;
954 struct net_device_stats *stats = &priv->stats[q];
955 struct ravb_ex_rx_desc *desc;
956 unsigned int limit, i;
957 struct sk_buff *skb;
958 struct timespec64 ts;
959 int rx_packets = 0;
960 u8 desc_status;
961 u16 pkt_len;
962 int entry;
963
964 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
965 for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
966 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
967 desc = &priv->rx_ring[q].ex_desc[entry];
968 if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
969 break;
970
971 /* Descriptor type must be checked before all other reads */
972 dma_rmb();
973 desc_status = desc->msc;
974 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
975
976 /* We use 0-byte descriptors to mark the DMA mapping errors */
977 if (!pkt_len)
978 continue;
979
980 if (desc_status & MSC_MC)
981 stats->multicast++;
982
983 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
984 MSC_CEEF)) {
985 stats->rx_errors++;
986 if (desc_status & MSC_CRC)
987 stats->rx_crc_errors++;
988 if (desc_status & MSC_RFE)
989 stats->rx_frame_errors++;
990 if (desc_status & (MSC_RTLF | MSC_RTSF))
991 stats->rx_length_errors++;
992 if (desc_status & MSC_CEEF)
993 stats->rx_missed_errors++;
994 } else {
995 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
996 struct ravb_rx_buffer *rx_buff;
997 void *rx_addr;
998
999 rx_buff = &priv->rx_buffers[q][entry];
1000 rx_addr = page_address(rx_buff->page) + rx_buff->offset;
1001 dma_sync_single_for_cpu(ndev->dev.parent,
1002 le32_to_cpu(desc->dptr),
1003 pkt_len, DMA_FROM_DEVICE);
1004
1005 skb = napi_build_skb(rx_addr, info->rx_buffer_size);
1006 if (unlikely(!skb)) {
1007 stats->rx_errors++;
1008 page_pool_put_page(priv->rx_pool[q],
1009 rx_buff->page, 0, true);
1010 break;
1011 }
1012 skb_mark_for_recycle(skb);
1013 get_ts &= (q == RAVB_NC) ?
1014 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
1015 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1016 if (get_ts) {
1017 struct skb_shared_hwtstamps *shhwtstamps;
1018
1019 shhwtstamps = skb_hwtstamps(skb);
1020 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1021 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
1022 32) | le32_to_cpu(desc->ts_sl);
1023 ts.tv_nsec = le32_to_cpu(desc->ts_n);
1024 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
1025 }
1026
1027 skb_put(skb, pkt_len);
1028 skb->protocol = eth_type_trans(skb, ndev);
1029 if (ndev->features & NETIF_F_RXCSUM)
1030 ravb_rx_csum(skb);
1031 napi_gro_receive(&priv->napi[q], skb);
1032 rx_packets++;
1033 stats->rx_bytes += pkt_len;
1034
1035 /* Mark this RX buffer as consumed. */
1036 rx_buff->page = NULL;
1037 }
1038 }
1039
1040 /* Refill the RX ring buffers. */
1041 priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
1042 priv->cur_rx[q] - priv->dirty_rx[q],
1043 GFP_ATOMIC);
1044
1045 stats->rx_packets += rx_packets;
1046 return rx_packets;
1047 }
1048
1049 /* Packet receive function for Ethernet AVB */
ravb_rx(struct net_device * ndev,int budget,int q)1050 static int ravb_rx(struct net_device *ndev, int budget, int q)
1051 {
1052 struct ravb_private *priv = netdev_priv(ndev);
1053 const struct ravb_hw_info *info = priv->info;
1054
1055 return info->receive(ndev, budget, q);
1056 }
1057
ravb_rcv_snd_disable(struct net_device * ndev)1058 static void ravb_rcv_snd_disable(struct net_device *ndev)
1059 {
1060 /* Disable TX and RX */
1061 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1062 }
1063
ravb_rcv_snd_enable(struct net_device * ndev)1064 static void ravb_rcv_snd_enable(struct net_device *ndev)
1065 {
1066 /* Enable TX and RX */
1067 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1068 }
1069
1070 /* function for waiting dma process finished */
ravb_stop_dma(struct net_device * ndev)1071 static int ravb_stop_dma(struct net_device *ndev)
1072 {
1073 struct ravb_private *priv = netdev_priv(ndev);
1074 const struct ravb_hw_info *info = priv->info;
1075 int error;
1076
1077 /* Wait for stopping the hardware TX process */
1078 error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1079
1080 if (error)
1081 return error;
1082
1083 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1084 0);
1085 if (error)
1086 return error;
1087
1088 /* Stop the E-MAC's RX/TX processes. */
1089 ravb_rcv_snd_disable(ndev);
1090
1091 /* Wait for stopping the RX DMA process */
1092 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1093 if (error)
1094 return error;
1095
1096 /* Stop AVB-DMAC process */
1097 return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1098 }
1099
1100 /* E-MAC interrupt handler */
ravb_emac_interrupt_unlocked(struct net_device * ndev)1101 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1102 {
1103 struct ravb_private *priv = netdev_priv(ndev);
1104 u32 ecsr, psr;
1105
1106 ecsr = ravb_read(ndev, ECSR);
1107 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
1108
1109 if (ecsr & ECSR_MPD)
1110 pm_wakeup_event(&priv->pdev->dev, 0);
1111 if (ecsr & ECSR_ICD)
1112 ndev->stats.tx_carrier_errors++;
1113 if (ecsr & ECSR_LCHNG) {
1114 /* Link changed */
1115 if (priv->no_avb_link)
1116 return;
1117 psr = ravb_read(ndev, PSR);
1118 if (priv->avb_link_active_low)
1119 psr ^= PSR_LMON;
1120 if (!(psr & PSR_LMON)) {
1121 /* DIsable RX and TX */
1122 ravb_rcv_snd_disable(ndev);
1123 } else {
1124 /* Enable RX and TX */
1125 ravb_rcv_snd_enable(ndev);
1126 }
1127 }
1128 }
1129
ravb_emac_interrupt(int irq,void * dev_id)1130 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1131 {
1132 struct net_device *ndev = dev_id;
1133 struct ravb_private *priv = netdev_priv(ndev);
1134 struct device *dev = &priv->pdev->dev;
1135 irqreturn_t result = IRQ_HANDLED;
1136
1137 pm_runtime_get_noresume(dev);
1138
1139 if (unlikely(!pm_runtime_active(dev))) {
1140 result = IRQ_NONE;
1141 goto out_rpm_put;
1142 }
1143
1144 spin_lock(&priv->lock);
1145 ravb_emac_interrupt_unlocked(ndev);
1146 spin_unlock(&priv->lock);
1147
1148 out_rpm_put:
1149 pm_runtime_put_noidle(dev);
1150 return result;
1151 }
1152
1153 /* Error interrupt handler */
ravb_error_interrupt(struct net_device * ndev)1154 static void ravb_error_interrupt(struct net_device *ndev)
1155 {
1156 struct ravb_private *priv = netdev_priv(ndev);
1157 u32 eis, ris2;
1158
1159 eis = ravb_read(ndev, EIS);
1160 ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1161 if (eis & EIS_QFS) {
1162 ris2 = ravb_read(ndev, RIS2);
1163 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1164 RIS2);
1165
1166 /* Receive Descriptor Empty int */
1167 if (ris2 & RIS2_QFF0)
1168 priv->stats[RAVB_BE].rx_over_errors++;
1169
1170 /* Receive Descriptor Empty int */
1171 if (ris2 & RIS2_QFF1)
1172 priv->stats[RAVB_NC].rx_over_errors++;
1173
1174 /* Receive FIFO Overflow int */
1175 if (ris2 & RIS2_RFFF)
1176 priv->rx_fifo_errors++;
1177 }
1178 }
1179
ravb_queue_interrupt(struct net_device * ndev,int q)1180 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1181 {
1182 struct ravb_private *priv = netdev_priv(ndev);
1183 const struct ravb_hw_info *info = priv->info;
1184 u32 ris0 = ravb_read(ndev, RIS0);
1185 u32 ric0 = ravb_read(ndev, RIC0);
1186 u32 tis = ravb_read(ndev, TIS);
1187 u32 tic = ravb_read(ndev, TIC);
1188
1189 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
1190 if (napi_schedule_prep(&priv->napi[q])) {
1191 /* Mask RX and TX interrupts */
1192 if (!info->irq_en_dis) {
1193 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1194 ravb_write(ndev, tic & ~BIT(q), TIC);
1195 } else {
1196 ravb_write(ndev, BIT(q), RID0);
1197 ravb_write(ndev, BIT(q), TID);
1198 }
1199 __napi_schedule(&priv->napi[q]);
1200 } else {
1201 netdev_warn(ndev,
1202 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1203 ris0, ric0);
1204 netdev_warn(ndev,
1205 " tx status 0x%08x, tx mask 0x%08x.\n",
1206 tis, tic);
1207 }
1208 return true;
1209 }
1210 return false;
1211 }
1212
ravb_timestamp_interrupt(struct net_device * ndev)1213 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1214 {
1215 u32 tis = ravb_read(ndev, TIS);
1216
1217 if (tis & TIS_TFUF) {
1218 ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1219 ravb_get_tx_tstamp(ndev);
1220 return true;
1221 }
1222 return false;
1223 }
1224
ravb_interrupt(int irq,void * dev_id)1225 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1226 {
1227 struct net_device *ndev = dev_id;
1228 struct ravb_private *priv = netdev_priv(ndev);
1229 const struct ravb_hw_info *info = priv->info;
1230 struct device *dev = &priv->pdev->dev;
1231 irqreturn_t result = IRQ_NONE;
1232 u32 iss;
1233
1234 pm_runtime_get_noresume(dev);
1235
1236 if (unlikely(!pm_runtime_active(dev)))
1237 goto out_rpm_put;
1238
1239 spin_lock(&priv->lock);
1240 /* Get interrupt status */
1241 iss = ravb_read(ndev, ISS);
1242
1243 /* Received and transmitted interrupts */
1244 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1245 int q;
1246
1247 /* Timestamp updated */
1248 if (ravb_timestamp_interrupt(ndev))
1249 result = IRQ_HANDLED;
1250
1251 /* Network control and best effort queue RX/TX */
1252 if (info->nc_queues) {
1253 for (q = RAVB_NC; q >= RAVB_BE; q--) {
1254 if (ravb_queue_interrupt(ndev, q))
1255 result = IRQ_HANDLED;
1256 }
1257 } else {
1258 if (ravb_queue_interrupt(ndev, RAVB_BE))
1259 result = IRQ_HANDLED;
1260 }
1261 }
1262
1263 /* E-MAC status summary */
1264 if (iss & ISS_MS) {
1265 ravb_emac_interrupt_unlocked(ndev);
1266 result = IRQ_HANDLED;
1267 }
1268
1269 /* Error status summary */
1270 if (iss & ISS_ES) {
1271 ravb_error_interrupt(ndev);
1272 result = IRQ_HANDLED;
1273 }
1274
1275 /* gPTP interrupt status summary */
1276 if (iss & ISS_CGIS) {
1277 ravb_ptp_interrupt(ndev);
1278 result = IRQ_HANDLED;
1279 }
1280
1281 spin_unlock(&priv->lock);
1282
1283 out_rpm_put:
1284 pm_runtime_put_noidle(dev);
1285 return result;
1286 }
1287
1288 /* Timestamp/Error/gPTP interrupt handler */
ravb_multi_interrupt(int irq,void * dev_id)1289 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1290 {
1291 struct net_device *ndev = dev_id;
1292 struct ravb_private *priv = netdev_priv(ndev);
1293 struct device *dev = &priv->pdev->dev;
1294 irqreturn_t result = IRQ_NONE;
1295 u32 iss;
1296
1297 pm_runtime_get_noresume(dev);
1298
1299 if (unlikely(!pm_runtime_active(dev)))
1300 goto out_rpm_put;
1301
1302 spin_lock(&priv->lock);
1303 /* Get interrupt status */
1304 iss = ravb_read(ndev, ISS);
1305
1306 /* Timestamp updated */
1307 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1308 result = IRQ_HANDLED;
1309
1310 /* Error status summary */
1311 if (iss & ISS_ES) {
1312 ravb_error_interrupt(ndev);
1313 result = IRQ_HANDLED;
1314 }
1315
1316 /* gPTP interrupt status summary */
1317 if (iss & ISS_CGIS) {
1318 ravb_ptp_interrupt(ndev);
1319 result = IRQ_HANDLED;
1320 }
1321
1322 spin_unlock(&priv->lock);
1323
1324 out_rpm_put:
1325 pm_runtime_put_noidle(dev);
1326 return result;
1327 }
1328
ravb_dma_interrupt(int irq,void * dev_id,int q)1329 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1330 {
1331 struct net_device *ndev = dev_id;
1332 struct ravb_private *priv = netdev_priv(ndev);
1333 struct device *dev = &priv->pdev->dev;
1334 irqreturn_t result = IRQ_NONE;
1335
1336 pm_runtime_get_noresume(dev);
1337
1338 if (unlikely(!pm_runtime_active(dev)))
1339 goto out_rpm_put;
1340
1341 spin_lock(&priv->lock);
1342
1343 /* Network control/Best effort queue RX/TX */
1344 if (ravb_queue_interrupt(ndev, q))
1345 result = IRQ_HANDLED;
1346
1347 spin_unlock(&priv->lock);
1348
1349 out_rpm_put:
1350 pm_runtime_put_noidle(dev);
1351 return result;
1352 }
1353
ravb_be_interrupt(int irq,void * dev_id)1354 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1355 {
1356 return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1357 }
1358
ravb_nc_interrupt(int irq,void * dev_id)1359 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1360 {
1361 return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1362 }
1363
ravb_poll(struct napi_struct * napi,int budget)1364 static int ravb_poll(struct napi_struct *napi, int budget)
1365 {
1366 struct net_device *ndev = napi->dev;
1367 struct ravb_private *priv = netdev_priv(ndev);
1368 const struct ravb_hw_info *info = priv->info;
1369 unsigned long flags;
1370 int q = napi - priv->napi;
1371 int mask = BIT(q);
1372 int work_done;
1373
1374 /* Processing RX Descriptor Ring */
1375 /* Clear RX interrupt */
1376 ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1377 work_done = ravb_rx(ndev, budget, q);
1378
1379 /* Processing TX Descriptor Ring */
1380 spin_lock_irqsave(&priv->lock, flags);
1381 /* Clear TX interrupt */
1382 ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1383 ravb_tx_free(ndev, q, true);
1384 netif_wake_subqueue(ndev, q);
1385 spin_unlock_irqrestore(&priv->lock, flags);
1386
1387 /* Receive error message handling */
1388 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1389 if (info->nc_queues)
1390 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1391 if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1392 ndev->stats.rx_over_errors = priv->rx_over_errors;
1393 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1394 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1395
1396 if (work_done < budget && napi_complete_done(napi, work_done)) {
1397 /* Re-enable RX/TX interrupts */
1398 spin_lock_irqsave(&priv->lock, flags);
1399 if (!info->irq_en_dis) {
1400 ravb_modify(ndev, RIC0, mask, mask);
1401 ravb_modify(ndev, TIC, mask, mask);
1402 } else {
1403 ravb_write(ndev, mask, RIE0);
1404 ravb_write(ndev, mask, TIE);
1405 }
1406 spin_unlock_irqrestore(&priv->lock, flags);
1407 }
1408
1409 return work_done;
1410 }
1411
ravb_set_duplex_gbeth(struct net_device * ndev)1412 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1413 {
1414 struct ravb_private *priv = netdev_priv(ndev);
1415
1416 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1417 }
1418
1419 /* PHY state control function */
ravb_adjust_link(struct net_device * ndev)1420 static void ravb_adjust_link(struct net_device *ndev)
1421 {
1422 struct ravb_private *priv = netdev_priv(ndev);
1423 const struct ravb_hw_info *info = priv->info;
1424 struct phy_device *phydev = ndev->phydev;
1425 bool new_state = false;
1426 unsigned long flags;
1427
1428 spin_lock_irqsave(&priv->lock, flags);
1429
1430 /* Disable TX and RX right over here, if E-MAC change is ignored */
1431 if (priv->no_avb_link)
1432 ravb_rcv_snd_disable(ndev);
1433
1434 if (phydev->link) {
1435 if (info->half_duplex && phydev->duplex != priv->duplex) {
1436 new_state = true;
1437 priv->duplex = phydev->duplex;
1438 ravb_set_duplex_gbeth(ndev);
1439 }
1440
1441 if (phydev->speed != priv->speed) {
1442 new_state = true;
1443 priv->speed = phydev->speed;
1444 info->set_rate(ndev);
1445 }
1446 if (!priv->link) {
1447 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1448 new_state = true;
1449 priv->link = phydev->link;
1450 }
1451 } else if (priv->link) {
1452 new_state = true;
1453 priv->link = 0;
1454 priv->speed = 0;
1455 if (info->half_duplex)
1456 priv->duplex = -1;
1457 }
1458
1459 /* Enable TX and RX right over here, if E-MAC change is ignored */
1460 if (priv->no_avb_link && phydev->link)
1461 ravb_rcv_snd_enable(ndev);
1462
1463 spin_unlock_irqrestore(&priv->lock, flags);
1464
1465 if (new_state && netif_msg_link(priv))
1466 phy_print_status(phydev);
1467 }
1468
1469 /* PHY init function */
ravb_phy_init(struct net_device * ndev)1470 static int ravb_phy_init(struct net_device *ndev)
1471 {
1472 struct device_node *np = ndev->dev.parent->of_node;
1473 struct ravb_private *priv = netdev_priv(ndev);
1474 const struct ravb_hw_info *info = priv->info;
1475 struct phy_device *phydev;
1476 struct device_node *pn;
1477 phy_interface_t iface;
1478 int err;
1479
1480 priv->link = 0;
1481 priv->speed = 0;
1482 priv->duplex = -1;
1483
1484 /* Try connecting to PHY */
1485 pn = of_parse_phandle(np, "phy-handle", 0);
1486 if (!pn) {
1487 /* In the case of a fixed PHY, the DT node associated
1488 * to the PHY is the Ethernet MAC DT node.
1489 */
1490 if (of_phy_is_fixed_link(np)) {
1491 err = of_phy_register_fixed_link(np);
1492 if (err)
1493 return err;
1494 }
1495 pn = of_node_get(np);
1496 }
1497
1498 iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1499 : priv->phy_interface;
1500 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1501 of_node_put(pn);
1502 if (!phydev) {
1503 netdev_err(ndev, "failed to connect PHY\n");
1504 err = -ENOENT;
1505 goto err_deregister_fixed_link;
1506 }
1507
1508 if (!info->half_duplex) {
1509 /* 10BASE, Pause and Asym Pause is not supported */
1510 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1511 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1512 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1513 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1514
1515 /* Half Duplex is not supported */
1516 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1517 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1518 }
1519
1520 phy_attached_info(phydev);
1521
1522 return 0;
1523
1524 err_deregister_fixed_link:
1525 if (of_phy_is_fixed_link(np))
1526 of_phy_deregister_fixed_link(np);
1527
1528 return err;
1529 }
1530
1531 /* PHY control start function */
ravb_phy_start(struct net_device * ndev)1532 static int ravb_phy_start(struct net_device *ndev)
1533 {
1534 int error;
1535
1536 error = ravb_phy_init(ndev);
1537 if (error)
1538 return error;
1539
1540 phy_start(ndev->phydev);
1541
1542 return 0;
1543 }
1544
ravb_get_msglevel(struct net_device * ndev)1545 static u32 ravb_get_msglevel(struct net_device *ndev)
1546 {
1547 struct ravb_private *priv = netdev_priv(ndev);
1548
1549 return priv->msg_enable;
1550 }
1551
ravb_set_msglevel(struct net_device * ndev,u32 value)1552 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1553 {
1554 struct ravb_private *priv = netdev_priv(ndev);
1555
1556 priv->msg_enable = value;
1557 }
1558
1559 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1560 "rx_queue_0_current",
1561 "tx_queue_0_current",
1562 "rx_queue_0_dirty",
1563 "tx_queue_0_dirty",
1564 "rx_queue_0_packets",
1565 "tx_queue_0_packets",
1566 "rx_queue_0_bytes",
1567 "tx_queue_0_bytes",
1568 "rx_queue_0_mcast_packets",
1569 "rx_queue_0_errors",
1570 "rx_queue_0_crc_errors",
1571 "rx_queue_0_frame_errors",
1572 "rx_queue_0_length_errors",
1573 "rx_queue_0_csum_offload_errors",
1574 "rx_queue_0_over_errors",
1575 };
1576
1577 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1578 "rx_queue_0_current",
1579 "tx_queue_0_current",
1580 "rx_queue_0_dirty",
1581 "tx_queue_0_dirty",
1582 "rx_queue_0_packets",
1583 "tx_queue_0_packets",
1584 "rx_queue_0_bytes",
1585 "tx_queue_0_bytes",
1586 "rx_queue_0_mcast_packets",
1587 "rx_queue_0_errors",
1588 "rx_queue_0_crc_errors",
1589 "rx_queue_0_frame_errors",
1590 "rx_queue_0_length_errors",
1591 "rx_queue_0_missed_errors",
1592 "rx_queue_0_over_errors",
1593
1594 "rx_queue_1_current",
1595 "tx_queue_1_current",
1596 "rx_queue_1_dirty",
1597 "tx_queue_1_dirty",
1598 "rx_queue_1_packets",
1599 "tx_queue_1_packets",
1600 "rx_queue_1_bytes",
1601 "tx_queue_1_bytes",
1602 "rx_queue_1_mcast_packets",
1603 "rx_queue_1_errors",
1604 "rx_queue_1_crc_errors",
1605 "rx_queue_1_frame_errors",
1606 "rx_queue_1_length_errors",
1607 "rx_queue_1_missed_errors",
1608 "rx_queue_1_over_errors",
1609 };
1610
ravb_get_sset_count(struct net_device * netdev,int sset)1611 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1612 {
1613 struct ravb_private *priv = netdev_priv(netdev);
1614 const struct ravb_hw_info *info = priv->info;
1615
1616 switch (sset) {
1617 case ETH_SS_STATS:
1618 return info->stats_len;
1619 default:
1620 return -EOPNOTSUPP;
1621 }
1622 }
1623
ravb_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * estats,u64 * data)1624 static void ravb_get_ethtool_stats(struct net_device *ndev,
1625 struct ethtool_stats *estats, u64 *data)
1626 {
1627 struct ravb_private *priv = netdev_priv(ndev);
1628 const struct ravb_hw_info *info = priv->info;
1629 int num_rx_q;
1630 int i = 0;
1631 int q;
1632
1633 num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1634 /* Device-specific stats */
1635 for (q = RAVB_BE; q < num_rx_q; q++) {
1636 struct net_device_stats *stats = &priv->stats[q];
1637
1638 data[i++] = priv->cur_rx[q];
1639 data[i++] = priv->cur_tx[q];
1640 data[i++] = priv->dirty_rx[q];
1641 data[i++] = priv->dirty_tx[q];
1642 data[i++] = stats->rx_packets;
1643 data[i++] = stats->tx_packets;
1644 data[i++] = stats->rx_bytes;
1645 data[i++] = stats->tx_bytes;
1646 data[i++] = stats->multicast;
1647 data[i++] = stats->rx_errors;
1648 data[i++] = stats->rx_crc_errors;
1649 data[i++] = stats->rx_frame_errors;
1650 data[i++] = stats->rx_length_errors;
1651 data[i++] = stats->rx_missed_errors;
1652 data[i++] = stats->rx_over_errors;
1653 }
1654 }
1655
ravb_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1656 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1657 {
1658 struct ravb_private *priv = netdev_priv(ndev);
1659 const struct ravb_hw_info *info = priv->info;
1660
1661 switch (stringset) {
1662 case ETH_SS_STATS:
1663 memcpy(data, info->gstrings_stats, info->gstrings_size);
1664 break;
1665 }
1666 }
1667
ravb_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1668 static void ravb_get_ringparam(struct net_device *ndev,
1669 struct ethtool_ringparam *ring,
1670 struct kernel_ethtool_ringparam *kernel_ring,
1671 struct netlink_ext_ack *extack)
1672 {
1673 struct ravb_private *priv = netdev_priv(ndev);
1674
1675 ring->rx_max_pending = BE_RX_RING_MAX;
1676 ring->tx_max_pending = BE_TX_RING_MAX;
1677 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1678 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1679 }
1680
ravb_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1681 static int ravb_set_ringparam(struct net_device *ndev,
1682 struct ethtool_ringparam *ring,
1683 struct kernel_ethtool_ringparam *kernel_ring,
1684 struct netlink_ext_ack *extack)
1685 {
1686 struct ravb_private *priv = netdev_priv(ndev);
1687 const struct ravb_hw_info *info = priv->info;
1688 int error;
1689
1690 if (ring->tx_pending > BE_TX_RING_MAX ||
1691 ring->rx_pending > BE_RX_RING_MAX ||
1692 ring->tx_pending < BE_TX_RING_MIN ||
1693 ring->rx_pending < BE_RX_RING_MIN)
1694 return -EINVAL;
1695 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1696 return -EINVAL;
1697
1698 if (netif_running(ndev)) {
1699 netif_device_detach(ndev);
1700 /* Stop PTP Clock driver */
1701 if (info->gptp)
1702 ravb_ptp_stop(ndev);
1703 /* Wait for DMA stopping */
1704 error = ravb_stop_dma(ndev);
1705 if (error) {
1706 netdev_err(ndev,
1707 "cannot set ringparam! Any AVB processes are still running?\n");
1708 return error;
1709 }
1710 synchronize_irq(ndev->irq);
1711
1712 /* Free all the skb's in the RX queue and the DMA buffers. */
1713 ravb_ring_free(ndev, RAVB_BE);
1714 if (info->nc_queues)
1715 ravb_ring_free(ndev, RAVB_NC);
1716 }
1717
1718 /* Set new parameters */
1719 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1720 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1721
1722 if (netif_running(ndev)) {
1723 error = ravb_dmac_init(ndev);
1724 if (error) {
1725 netdev_err(ndev,
1726 "%s: ravb_dmac_init() failed, error %d\n",
1727 __func__, error);
1728 return error;
1729 }
1730
1731 ravb_emac_init(ndev);
1732
1733 /* Initialise PTP Clock driver */
1734 if (info->gptp)
1735 ravb_ptp_init(ndev, priv->pdev);
1736
1737 netif_device_attach(ndev);
1738 }
1739
1740 return 0;
1741 }
1742
ravb_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)1743 static int ravb_get_ts_info(struct net_device *ndev,
1744 struct kernel_ethtool_ts_info *info)
1745 {
1746 struct ravb_private *priv = netdev_priv(ndev);
1747 const struct ravb_hw_info *hw_info = priv->info;
1748
1749 if (hw_info->gptp || hw_info->ccc_gac) {
1750 info->so_timestamping =
1751 SOF_TIMESTAMPING_TX_SOFTWARE |
1752 SOF_TIMESTAMPING_TX_HARDWARE |
1753 SOF_TIMESTAMPING_RX_HARDWARE |
1754 SOF_TIMESTAMPING_RAW_HARDWARE;
1755 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1756 info->rx_filters =
1757 (1 << HWTSTAMP_FILTER_NONE) |
1758 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1759 (1 << HWTSTAMP_FILTER_ALL);
1760 info->phc_index = ptp_clock_index(priv->ptp.clock);
1761 }
1762
1763 return 0;
1764 }
1765
ravb_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1766 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1767 {
1768 struct ravb_private *priv = netdev_priv(ndev);
1769
1770 wol->supported = WAKE_MAGIC;
1771 wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1772 }
1773
ravb_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1774 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1775 {
1776 struct ravb_private *priv = netdev_priv(ndev);
1777 const struct ravb_hw_info *info = priv->info;
1778
1779 if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1780 return -EOPNOTSUPP;
1781
1782 priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1783
1784 device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1785
1786 return 0;
1787 }
1788
1789 static const struct ethtool_ops ravb_ethtool_ops = {
1790 .nway_reset = phy_ethtool_nway_reset,
1791 .get_msglevel = ravb_get_msglevel,
1792 .set_msglevel = ravb_set_msglevel,
1793 .get_link = ethtool_op_get_link,
1794 .get_strings = ravb_get_strings,
1795 .get_ethtool_stats = ravb_get_ethtool_stats,
1796 .get_sset_count = ravb_get_sset_count,
1797 .get_ringparam = ravb_get_ringparam,
1798 .set_ringparam = ravb_set_ringparam,
1799 .get_ts_info = ravb_get_ts_info,
1800 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1801 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1802 .get_wol = ravb_get_wol,
1803 .set_wol = ravb_set_wol,
1804 };
1805
ravb_set_config_mode(struct net_device * ndev)1806 static int ravb_set_config_mode(struct net_device *ndev)
1807 {
1808 struct ravb_private *priv = netdev_priv(ndev);
1809 const struct ravb_hw_info *info = priv->info;
1810 int error;
1811
1812 if (info->gptp) {
1813 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1814 if (error)
1815 return error;
1816 /* Set CSEL value */
1817 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1818 } else if (info->ccc_gac) {
1819 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1820 } else {
1821 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1822 }
1823
1824 return error;
1825 }
1826
ravb_set_gti(struct net_device * ndev)1827 static void ravb_set_gti(struct net_device *ndev)
1828 {
1829 struct ravb_private *priv = netdev_priv(ndev);
1830 const struct ravb_hw_info *info = priv->info;
1831
1832 if (!(info->gptp || info->ccc_gac))
1833 return;
1834
1835 ravb_write(ndev, priv->gti_tiv, GTI);
1836
1837 /* Request GTI loading */
1838 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1839 }
1840
ravb_compute_gti(struct net_device * ndev)1841 static int ravb_compute_gti(struct net_device *ndev)
1842 {
1843 struct ravb_private *priv = netdev_priv(ndev);
1844 const struct ravb_hw_info *info = priv->info;
1845 struct device *dev = ndev->dev.parent;
1846 unsigned long rate;
1847 u64 inc;
1848
1849 if (!(info->gptp || info->ccc_gac))
1850 return 0;
1851
1852 if (info->gptp_ref_clk)
1853 rate = clk_get_rate(priv->gptp_clk);
1854 else
1855 rate = clk_get_rate(priv->clk);
1856 if (!rate)
1857 return -EINVAL;
1858
1859 inc = div64_ul(1000000000ULL << 20, rate);
1860
1861 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1862 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1863 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1864 return -EINVAL;
1865 }
1866 priv->gti_tiv = inc;
1867
1868 return 0;
1869 }
1870
1871 /* Set tx and rx clock internal delay modes */
ravb_parse_delay_mode(struct device_node * np,struct net_device * ndev)1872 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1873 {
1874 struct ravb_private *priv = netdev_priv(ndev);
1875 bool explicit_delay = false;
1876 u32 delay;
1877
1878 if (!priv->info->internal_delay)
1879 return;
1880
1881 if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1882 /* Valid values are 0 and 1800, according to DT bindings */
1883 priv->rxcidm = !!delay;
1884 explicit_delay = true;
1885 }
1886 if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1887 /* Valid values are 0 and 2000, according to DT bindings */
1888 priv->txcidm = !!delay;
1889 explicit_delay = true;
1890 }
1891
1892 if (explicit_delay)
1893 return;
1894
1895 /* Fall back to legacy rgmii-*id behavior */
1896 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1897 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1898 priv->rxcidm = 1;
1899 priv->rgmii_override = 1;
1900 }
1901
1902 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1903 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1904 priv->txcidm = 1;
1905 priv->rgmii_override = 1;
1906 }
1907 }
1908
ravb_set_delay_mode(struct net_device * ndev)1909 static void ravb_set_delay_mode(struct net_device *ndev)
1910 {
1911 struct ravb_private *priv = netdev_priv(ndev);
1912 u32 set = 0;
1913
1914 if (!priv->info->internal_delay)
1915 return;
1916
1917 if (priv->rxcidm)
1918 set |= APSR_RDM;
1919 if (priv->txcidm)
1920 set |= APSR_TDM;
1921 ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1922 }
1923
1924 /* Network device open function for Ethernet AVB */
ravb_open(struct net_device * ndev)1925 static int ravb_open(struct net_device *ndev)
1926 {
1927 struct ravb_private *priv = netdev_priv(ndev);
1928 const struct ravb_hw_info *info = priv->info;
1929 struct device *dev = &priv->pdev->dev;
1930 int error;
1931
1932 napi_enable(&priv->napi[RAVB_BE]);
1933 if (info->nc_queues)
1934 napi_enable(&priv->napi[RAVB_NC]);
1935
1936 error = pm_runtime_resume_and_get(dev);
1937 if (error < 0)
1938 goto out_napi_off;
1939
1940 /* Set AVB config mode */
1941 error = ravb_set_config_mode(ndev);
1942 if (error)
1943 goto out_rpm_put;
1944
1945 ravb_set_delay_mode(ndev);
1946 ravb_write(ndev, priv->desc_bat_dma, DBAT);
1947
1948 /* Device init */
1949 error = ravb_dmac_init(ndev);
1950 if (error)
1951 goto out_set_reset;
1952
1953 ravb_emac_init(ndev);
1954
1955 ravb_set_gti(ndev);
1956
1957 /* Initialise PTP Clock driver */
1958 if (info->gptp || info->ccc_gac)
1959 ravb_ptp_init(ndev, priv->pdev);
1960
1961 /* PHY control start */
1962 error = ravb_phy_start(ndev);
1963 if (error)
1964 goto out_ptp_stop;
1965
1966 netif_tx_start_all_queues(ndev);
1967
1968 return 0;
1969
1970 out_ptp_stop:
1971 /* Stop PTP Clock driver */
1972 if (info->gptp || info->ccc_gac)
1973 ravb_ptp_stop(ndev);
1974 ravb_stop_dma(ndev);
1975 out_set_reset:
1976 ravb_set_opmode(ndev, CCC_OPC_RESET);
1977 out_rpm_put:
1978 pm_runtime_mark_last_busy(dev);
1979 pm_runtime_put_autosuspend(dev);
1980 out_napi_off:
1981 if (info->nc_queues)
1982 napi_disable(&priv->napi[RAVB_NC]);
1983 napi_disable(&priv->napi[RAVB_BE]);
1984 return error;
1985 }
1986
1987 /* Timeout function for Ethernet AVB */
ravb_tx_timeout(struct net_device * ndev,unsigned int txqueue)1988 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1989 {
1990 struct ravb_private *priv = netdev_priv(ndev);
1991
1992 netif_err(priv, tx_err, ndev,
1993 "transmit timed out, status %08x, resetting...\n",
1994 ravb_read(ndev, ISS));
1995
1996 /* tx_errors count up */
1997 ndev->stats.tx_errors++;
1998
1999 schedule_work(&priv->work);
2000 }
2001
ravb_tx_timeout_work(struct work_struct * work)2002 static void ravb_tx_timeout_work(struct work_struct *work)
2003 {
2004 struct ravb_private *priv = container_of(work, struct ravb_private,
2005 work);
2006 const struct ravb_hw_info *info = priv->info;
2007 struct net_device *ndev = priv->ndev;
2008 int error;
2009
2010 if (!rtnl_trylock()) {
2011 usleep_range(1000, 2000);
2012 schedule_work(&priv->work);
2013 return;
2014 }
2015
2016 netif_tx_stop_all_queues(ndev);
2017
2018 /* Stop PTP Clock driver */
2019 if (info->gptp)
2020 ravb_ptp_stop(ndev);
2021
2022 /* Wait for DMA stopping */
2023 if (ravb_stop_dma(ndev)) {
2024 /* If ravb_stop_dma() fails, the hardware is still operating
2025 * for TX and/or RX. So, this should not call the following
2026 * functions because ravb_dmac_init() is possible to fail too.
2027 * Also, this should not retry ravb_stop_dma() again and again
2028 * here because it's possible to wait forever. So, this just
2029 * re-enables the TX and RX and skip the following
2030 * re-initialization procedure.
2031 */
2032 ravb_rcv_snd_enable(ndev);
2033 goto out;
2034 }
2035
2036 ravb_ring_free(ndev, RAVB_BE);
2037 if (info->nc_queues)
2038 ravb_ring_free(ndev, RAVB_NC);
2039
2040 /* Device init */
2041 error = ravb_dmac_init(ndev);
2042 if (error) {
2043 /* If ravb_dmac_init() fails, descriptors are freed. So, this
2044 * should return here to avoid re-enabling the TX and RX in
2045 * ravb_emac_init().
2046 */
2047 netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2048 __func__, error);
2049 goto out_unlock;
2050 }
2051 ravb_emac_init(ndev);
2052
2053 out:
2054 /* Initialise PTP Clock driver */
2055 if (info->gptp)
2056 ravb_ptp_init(ndev, priv->pdev);
2057
2058 netif_tx_start_all_queues(ndev);
2059
2060 out_unlock:
2061 rtnl_unlock();
2062 }
2063
ravb_can_tx_csum_gbeth(struct sk_buff * skb)2064 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2065 {
2066 u16 net_protocol = ntohs(skb->protocol);
2067 u8 inner_protocol;
2068
2069 /* GbEth IP can calculate the checksum if:
2070 * - there are zero or one VLAN headers with TPID=0x8100
2071 * - the network protocol is IPv4 or IPv6
2072 * - the transport protocol is TCP, UDP or ICMP
2073 * - the packet is not fragmented
2074 */
2075
2076 if (net_protocol == ETH_P_8021Q) {
2077 struct vlan_hdr vhdr, *vh;
2078
2079 vh = skb_header_pointer(skb, ETH_HLEN, sizeof(vhdr), &vhdr);
2080 if (!vh)
2081 return false;
2082
2083 net_protocol = ntohs(vh->h_vlan_encapsulated_proto);
2084 }
2085
2086 switch (net_protocol) {
2087 case ETH_P_IP:
2088 inner_protocol = ip_hdr(skb)->protocol;
2089 break;
2090 case ETH_P_IPV6:
2091 inner_protocol = ipv6_hdr(skb)->nexthdr;
2092 break;
2093 default:
2094 return false;
2095 }
2096
2097 switch (inner_protocol) {
2098 case IPPROTO_TCP:
2099 case IPPROTO_UDP:
2100 return true;
2101 default:
2102 return false;
2103 }
2104 }
2105
2106 /* Packet transmit function for Ethernet AVB */
ravb_start_xmit(struct sk_buff * skb,struct net_device * ndev)2107 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2108 {
2109 struct ravb_private *priv = netdev_priv(ndev);
2110 const struct ravb_hw_info *info = priv->info;
2111 unsigned int num_tx_desc = priv->num_tx_desc;
2112 u16 q = skb_get_queue_mapping(skb);
2113 struct ravb_tstamp_skb *ts_skb;
2114 struct ravb_tx_desc *desc;
2115 unsigned long flags;
2116 dma_addr_t dma_addr;
2117 void *buffer;
2118 u32 entry;
2119 u32 len;
2120
2121 if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2122 skb_checksum_help(skb);
2123
2124 spin_lock_irqsave(&priv->lock, flags);
2125 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2126 num_tx_desc) {
2127 netif_err(priv, tx_queued, ndev,
2128 "still transmitting with the full ring!\n");
2129 netif_stop_subqueue(ndev, q);
2130 spin_unlock_irqrestore(&priv->lock, flags);
2131 return NETDEV_TX_BUSY;
2132 }
2133
2134 if (skb_put_padto(skb, ETH_ZLEN))
2135 goto exit;
2136
2137 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2138 priv->tx_skb[q][entry / num_tx_desc] = skb;
2139
2140 if (num_tx_desc > 1) {
2141 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2142 entry / num_tx_desc * DPTR_ALIGN;
2143 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2144
2145 /* Zero length DMA descriptors are problematic as they seem
2146 * to terminate DMA transfers. Avoid them by simply using a
2147 * length of DPTR_ALIGN (4) when skb data is aligned to
2148 * DPTR_ALIGN.
2149 *
2150 * As skb is guaranteed to have at least ETH_ZLEN (60)
2151 * bytes of data by the call to skb_put_padto() above this
2152 * is safe with respect to both the length of the first DMA
2153 * descriptor (len) overflowing the available data and the
2154 * length of the second DMA descriptor (skb->len - len)
2155 * being negative.
2156 */
2157 if (len == 0)
2158 len = DPTR_ALIGN;
2159
2160 memcpy(buffer, skb->data, len);
2161 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2162 DMA_TO_DEVICE);
2163 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2164 goto drop;
2165
2166 desc = &priv->tx_ring[q][entry];
2167 desc->ds_tagl = cpu_to_le16(len);
2168 desc->dptr = cpu_to_le32(dma_addr);
2169
2170 buffer = skb->data + len;
2171 len = skb->len - len;
2172 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2173 DMA_TO_DEVICE);
2174 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2175 goto unmap;
2176
2177 desc++;
2178 } else {
2179 desc = &priv->tx_ring[q][entry];
2180 len = skb->len;
2181 dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2182 DMA_TO_DEVICE);
2183 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2184 goto drop;
2185 }
2186 desc->ds_tagl = cpu_to_le16(len);
2187 desc->dptr = cpu_to_le32(dma_addr);
2188
2189 /* TX timestamp required */
2190 if (info->gptp || info->ccc_gac) {
2191 if (q == RAVB_NC) {
2192 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2193 if (!ts_skb) {
2194 if (num_tx_desc > 1) {
2195 desc--;
2196 dma_unmap_single(ndev->dev.parent, dma_addr,
2197 len, DMA_TO_DEVICE);
2198 }
2199 goto unmap;
2200 }
2201 ts_skb->skb = skb_get(skb);
2202 ts_skb->tag = priv->ts_skb_tag++;
2203 priv->ts_skb_tag &= 0x3ff;
2204 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2205
2206 /* TAG and timestamp required flag */
2207 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2208 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2209 desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2210 }
2211
2212 skb_tx_timestamp(skb);
2213 }
2214
2215 if (num_tx_desc > 1) {
2216 desc->die_dt = DT_FEND;
2217 desc--;
2218 /* When using multi-descriptors, DT_FEND needs to get written
2219 * before DT_FSTART, but the compiler may reorder the memory
2220 * writes in an attempt to optimize the code.
2221 * Use a dma_wmb() barrier to make sure DT_FEND and DT_FSTART
2222 * are written exactly in the order shown in the code.
2223 * This is particularly important for cases where the DMA engine
2224 * is already running when we are running this code. If the DMA
2225 * sees DT_FSTART without the corresponding DT_FEND it will enter
2226 * an error condition.
2227 */
2228 dma_wmb();
2229 desc->die_dt = DT_FSTART;
2230 } else {
2231 /* Descriptor type must be set after all the above writes */
2232 dma_wmb();
2233 desc->die_dt = DT_FSINGLE;
2234 }
2235
2236 /* Before ringing the doorbell we need to make sure that the latest
2237 * writes have been committed to memory, otherwise it could delay
2238 * things until the doorbell is rang again.
2239 * This is in replacement of the read operation mentioned in the HW
2240 * manuals.
2241 */
2242 dma_wmb();
2243 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2244
2245 priv->cur_tx[q] += num_tx_desc;
2246 if (priv->cur_tx[q] - priv->dirty_tx[q] >
2247 (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2248 !ravb_tx_free(ndev, q, true))
2249 netif_stop_subqueue(ndev, q);
2250
2251 exit:
2252 spin_unlock_irqrestore(&priv->lock, flags);
2253 return NETDEV_TX_OK;
2254
2255 unmap:
2256 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2257 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2258 drop:
2259 dev_kfree_skb_any(skb);
2260 priv->tx_skb[q][entry / num_tx_desc] = NULL;
2261 goto exit;
2262 }
2263
ravb_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)2264 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2265 struct net_device *sb_dev)
2266 {
2267 /* If skb needs TX timestamp, it is handled in network control queue */
2268 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2269 RAVB_BE;
2270
2271 }
2272
ravb_get_stats(struct net_device * ndev)2273 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2274 {
2275 struct ravb_private *priv = netdev_priv(ndev);
2276 const struct ravb_hw_info *info = priv->info;
2277 struct net_device_stats *nstats, *stats0, *stats1;
2278 struct device *dev = &priv->pdev->dev;
2279
2280 nstats = &ndev->stats;
2281
2282 pm_runtime_get_noresume(dev);
2283
2284 if (!pm_runtime_active(dev))
2285 goto out_rpm_put;
2286
2287 stats0 = &priv->stats[RAVB_BE];
2288
2289 if (info->tx_counters) {
2290 nstats->tx_dropped += ravb_read(ndev, TROCR);
2291 ravb_write(ndev, 0, TROCR); /* (write clear) */
2292 }
2293
2294 if (info->carrier_counters) {
2295 nstats->collisions += ravb_read(ndev, CXR41);
2296 ravb_write(ndev, 0, CXR41); /* (write clear) */
2297 nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2298 ravb_write(ndev, 0, CXR42); /* (write clear) */
2299 }
2300
2301 nstats->rx_packets = stats0->rx_packets;
2302 nstats->tx_packets = stats0->tx_packets;
2303 nstats->rx_bytes = stats0->rx_bytes;
2304 nstats->tx_bytes = stats0->tx_bytes;
2305 nstats->multicast = stats0->multicast;
2306 nstats->rx_errors = stats0->rx_errors;
2307 nstats->rx_crc_errors = stats0->rx_crc_errors;
2308 nstats->rx_frame_errors = stats0->rx_frame_errors;
2309 nstats->rx_length_errors = stats0->rx_length_errors;
2310 nstats->rx_missed_errors = stats0->rx_missed_errors;
2311 nstats->rx_over_errors = stats0->rx_over_errors;
2312 if (info->nc_queues) {
2313 stats1 = &priv->stats[RAVB_NC];
2314
2315 nstats->rx_packets += stats1->rx_packets;
2316 nstats->tx_packets += stats1->tx_packets;
2317 nstats->rx_bytes += stats1->rx_bytes;
2318 nstats->tx_bytes += stats1->tx_bytes;
2319 nstats->multicast += stats1->multicast;
2320 nstats->rx_errors += stats1->rx_errors;
2321 nstats->rx_crc_errors += stats1->rx_crc_errors;
2322 nstats->rx_frame_errors += stats1->rx_frame_errors;
2323 nstats->rx_length_errors += stats1->rx_length_errors;
2324 nstats->rx_missed_errors += stats1->rx_missed_errors;
2325 nstats->rx_over_errors += stats1->rx_over_errors;
2326 }
2327
2328 out_rpm_put:
2329 pm_runtime_put_noidle(dev);
2330 return nstats;
2331 }
2332
2333 /* Update promiscuous bit */
ravb_set_rx_mode(struct net_device * ndev)2334 static void ravb_set_rx_mode(struct net_device *ndev)
2335 {
2336 struct ravb_private *priv = netdev_priv(ndev);
2337 unsigned long flags;
2338
2339 spin_lock_irqsave(&priv->lock, flags);
2340 ravb_modify(ndev, ECMR, ECMR_PRM,
2341 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2342 spin_unlock_irqrestore(&priv->lock, flags);
2343 }
2344
2345 /* Device close function for Ethernet AVB */
ravb_close(struct net_device * ndev)2346 static int ravb_close(struct net_device *ndev)
2347 {
2348 struct device_node *np = ndev->dev.parent->of_node;
2349 struct ravb_private *priv = netdev_priv(ndev);
2350 const struct ravb_hw_info *info = priv->info;
2351 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2352 struct device *dev = &priv->pdev->dev;
2353 int error;
2354
2355 netif_tx_stop_all_queues(ndev);
2356
2357 /* Disable interrupts by clearing the interrupt masks. */
2358 ravb_write(ndev, 0, RIC0);
2359 ravb_write(ndev, 0, RIC2);
2360 ravb_write(ndev, 0, TIC);
2361
2362 /* PHY disconnect */
2363 if (ndev->phydev) {
2364 phy_stop(ndev->phydev);
2365 phy_disconnect(ndev->phydev);
2366 if (of_phy_is_fixed_link(np))
2367 of_phy_deregister_fixed_link(np);
2368 }
2369
2370 /* Stop PTP Clock driver */
2371 if (info->gptp || info->ccc_gac)
2372 ravb_ptp_stop(ndev);
2373
2374 /* Set the config mode to stop the AVB-DMAC's processes */
2375 if (ravb_stop_dma(ndev) < 0)
2376 netdev_err(ndev,
2377 "device will be stopped after h/w processes are done.\n");
2378
2379 /* Clear the timestamp list */
2380 if (info->gptp || info->ccc_gac) {
2381 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2382 list_del(&ts_skb->list);
2383 kfree_skb(ts_skb->skb);
2384 kfree(ts_skb);
2385 }
2386 }
2387
2388 cancel_work_sync(&priv->work);
2389
2390 if (info->nc_queues)
2391 napi_disable(&priv->napi[RAVB_NC]);
2392 napi_disable(&priv->napi[RAVB_BE]);
2393
2394 /* Free all the skb's in the RX queue and the DMA buffers. */
2395 ravb_ring_free(ndev, RAVB_BE);
2396 if (info->nc_queues)
2397 ravb_ring_free(ndev, RAVB_NC);
2398
2399 /* Update statistics. */
2400 ravb_get_stats(ndev);
2401
2402 /* Set reset mode. */
2403 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2404 if (error)
2405 return error;
2406
2407 pm_runtime_mark_last_busy(dev);
2408 pm_runtime_put_autosuspend(dev);
2409
2410 return 0;
2411 }
2412
ravb_hwtstamp_get(struct net_device * ndev,struct ifreq * req)2413 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2414 {
2415 struct ravb_private *priv = netdev_priv(ndev);
2416 struct hwtstamp_config config;
2417
2418 config.flags = 0;
2419 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2420 HWTSTAMP_TX_OFF;
2421 switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2422 case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2423 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2424 break;
2425 case RAVB_RXTSTAMP_TYPE_ALL:
2426 config.rx_filter = HWTSTAMP_FILTER_ALL;
2427 break;
2428 default:
2429 config.rx_filter = HWTSTAMP_FILTER_NONE;
2430 }
2431
2432 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2433 -EFAULT : 0;
2434 }
2435
2436 /* Control hardware time stamping */
ravb_hwtstamp_set(struct net_device * ndev,struct ifreq * req)2437 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2438 {
2439 struct ravb_private *priv = netdev_priv(ndev);
2440 struct hwtstamp_config config;
2441 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2442 u32 tstamp_tx_ctrl;
2443
2444 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2445 return -EFAULT;
2446
2447 switch (config.tx_type) {
2448 case HWTSTAMP_TX_OFF:
2449 tstamp_tx_ctrl = 0;
2450 break;
2451 case HWTSTAMP_TX_ON:
2452 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2453 break;
2454 default:
2455 return -ERANGE;
2456 }
2457
2458 switch (config.rx_filter) {
2459 case HWTSTAMP_FILTER_NONE:
2460 tstamp_rx_ctrl = 0;
2461 break;
2462 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2463 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2464 break;
2465 default:
2466 config.rx_filter = HWTSTAMP_FILTER_ALL;
2467 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2468 }
2469
2470 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2471 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2472
2473 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2474 -EFAULT : 0;
2475 }
2476
2477 /* ioctl to device function */
ravb_do_ioctl(struct net_device * ndev,struct ifreq * req,int cmd)2478 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2479 {
2480 struct phy_device *phydev = ndev->phydev;
2481
2482 if (!netif_running(ndev))
2483 return -EINVAL;
2484
2485 if (!phydev)
2486 return -ENODEV;
2487
2488 switch (cmd) {
2489 case SIOCGHWTSTAMP:
2490 return ravb_hwtstamp_get(ndev, req);
2491 case SIOCSHWTSTAMP:
2492 return ravb_hwtstamp_set(ndev, req);
2493 }
2494
2495 return phy_mii_ioctl(phydev, req, cmd);
2496 }
2497
ravb_change_mtu(struct net_device * ndev,int new_mtu)2498 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2499 {
2500 struct ravb_private *priv = netdev_priv(ndev);
2501
2502 WRITE_ONCE(ndev->mtu, new_mtu);
2503
2504 if (netif_running(ndev)) {
2505 synchronize_irq(priv->emac_irq);
2506 ravb_emac_init(ndev);
2507 }
2508
2509 netdev_update_features(ndev);
2510
2511 return 0;
2512 }
2513
ravb_set_rx_csum(struct net_device * ndev,bool enable)2514 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2515 {
2516 struct ravb_private *priv = netdev_priv(ndev);
2517 unsigned long flags;
2518
2519 spin_lock_irqsave(&priv->lock, flags);
2520
2521 /* Disable TX and RX */
2522 ravb_rcv_snd_disable(ndev);
2523
2524 /* Modify RX Checksum setting */
2525 ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2526
2527 /* Enable TX and RX */
2528 ravb_rcv_snd_enable(ndev);
2529
2530 spin_unlock_irqrestore(&priv->lock, flags);
2531 }
2532
ravb_endisable_csum_gbeth(struct net_device * ndev,enum ravb_reg reg,u32 val,u32 mask)2533 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2534 u32 val, u32 mask)
2535 {
2536 u32 csr0 = CSR0_TPE | CSR0_RPE;
2537 int ret;
2538
2539 ravb_write(ndev, csr0 & ~mask, CSR0);
2540 ret = ravb_wait(ndev, CSR0, mask, 0);
2541 if (!ret)
2542 ravb_write(ndev, val, reg);
2543
2544 ravb_write(ndev, csr0, CSR0);
2545
2546 return ret;
2547 }
2548
ravb_set_features_gbeth(struct net_device * ndev,netdev_features_t features)2549 static int ravb_set_features_gbeth(struct net_device *ndev,
2550 netdev_features_t features)
2551 {
2552 netdev_features_t changed = ndev->features ^ features;
2553 struct ravb_private *priv = netdev_priv(ndev);
2554 unsigned long flags;
2555 int ret = 0;
2556 u32 val;
2557
2558 spin_lock_irqsave(&priv->lock, flags);
2559 if (changed & NETIF_F_RXCSUM) {
2560 if (features & NETIF_F_RXCSUM)
2561 val = CSR2_CSUM_ENABLE;
2562 else
2563 val = 0;
2564
2565 ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2566 if (ret)
2567 goto done;
2568 }
2569
2570 if (changed & NETIF_F_HW_CSUM) {
2571 if (features & NETIF_F_HW_CSUM)
2572 val = CSR1_CSUM_ENABLE;
2573 else
2574 val = 0;
2575
2576 ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2577 if (ret)
2578 goto done;
2579 }
2580
2581 done:
2582 spin_unlock_irqrestore(&priv->lock, flags);
2583
2584 return ret;
2585 }
2586
ravb_set_features_rcar(struct net_device * ndev,netdev_features_t features)2587 static int ravb_set_features_rcar(struct net_device *ndev,
2588 netdev_features_t features)
2589 {
2590 netdev_features_t changed = ndev->features ^ features;
2591
2592 if (changed & NETIF_F_RXCSUM)
2593 ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2594
2595 return 0;
2596 }
2597
ravb_set_features(struct net_device * ndev,netdev_features_t features)2598 static int ravb_set_features(struct net_device *ndev,
2599 netdev_features_t features)
2600 {
2601 struct ravb_private *priv = netdev_priv(ndev);
2602 const struct ravb_hw_info *info = priv->info;
2603 struct device *dev = &priv->pdev->dev;
2604 int ret;
2605
2606 pm_runtime_get_noresume(dev);
2607
2608 if (pm_runtime_active(dev))
2609 ret = info->set_feature(ndev, features);
2610 else
2611 ret = 0;
2612
2613 pm_runtime_put_noidle(dev);
2614
2615 if (ret)
2616 return ret;
2617
2618 ndev->features = features;
2619
2620 return 0;
2621 }
2622
2623 static const struct net_device_ops ravb_netdev_ops = {
2624 .ndo_open = ravb_open,
2625 .ndo_stop = ravb_close,
2626 .ndo_start_xmit = ravb_start_xmit,
2627 .ndo_select_queue = ravb_select_queue,
2628 .ndo_get_stats = ravb_get_stats,
2629 .ndo_set_rx_mode = ravb_set_rx_mode,
2630 .ndo_tx_timeout = ravb_tx_timeout,
2631 .ndo_eth_ioctl = ravb_do_ioctl,
2632 .ndo_change_mtu = ravb_change_mtu,
2633 .ndo_validate_addr = eth_validate_addr,
2634 .ndo_set_mac_address = eth_mac_addr,
2635 .ndo_set_features = ravb_set_features,
2636 };
2637
2638 /* MDIO bus init function */
ravb_mdio_init(struct ravb_private * priv)2639 static int ravb_mdio_init(struct ravb_private *priv)
2640 {
2641 struct platform_device *pdev = priv->pdev;
2642 struct device *dev = &pdev->dev;
2643 struct device_node *mdio_node;
2644 struct phy_device *phydev;
2645 struct device_node *pn;
2646 int error;
2647
2648 /* Bitbang init */
2649 priv->mdiobb.ops = &bb_ops;
2650
2651 /* MII controller setting */
2652 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2653 if (!priv->mii_bus)
2654 return -ENOMEM;
2655
2656 /* Hook up MII support for ethtool */
2657 priv->mii_bus->name = "ravb_mii";
2658 priv->mii_bus->parent = dev;
2659 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2660 pdev->name, pdev->id);
2661
2662 /* Register MDIO bus */
2663 mdio_node = of_get_child_by_name(dev->of_node, "mdio");
2664 if (!mdio_node) {
2665 /* backwards compatibility for DT lacking mdio subnode */
2666 mdio_node = of_node_get(dev->of_node);
2667 }
2668 error = of_mdiobus_register(priv->mii_bus, mdio_node);
2669 of_node_put(mdio_node);
2670 if (error)
2671 goto out_free_bus;
2672
2673 pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2674 phydev = of_phy_find_device(pn);
2675 if (phydev) {
2676 phydev->mac_managed_pm = true;
2677 put_device(&phydev->mdio.dev);
2678 }
2679 of_node_put(pn);
2680
2681 return 0;
2682
2683 out_free_bus:
2684 free_mdio_bitbang(priv->mii_bus);
2685 return error;
2686 }
2687
2688 /* MDIO bus release function */
ravb_mdio_release(struct ravb_private * priv)2689 static int ravb_mdio_release(struct ravb_private *priv)
2690 {
2691 /* Unregister mdio bus */
2692 mdiobus_unregister(priv->mii_bus);
2693
2694 /* Free bitbang info */
2695 free_mdio_bitbang(priv->mii_bus);
2696
2697 return 0;
2698 }
2699
2700 static const struct ravb_hw_info ravb_gen2_hw_info = {
2701 .receive = ravb_rx_rcar,
2702 .set_rate = ravb_set_rate_rcar,
2703 .set_feature = ravb_set_features_rcar,
2704 .dmac_init = ravb_dmac_init_rcar,
2705 .emac_init = ravb_emac_init_rcar,
2706 .gstrings_stats = ravb_gstrings_stats,
2707 .gstrings_size = sizeof(ravb_gstrings_stats),
2708 .net_hw_features = NETIF_F_RXCSUM,
2709 .net_features = NETIF_F_RXCSUM,
2710 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2711 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2712 .tx_max_frame_size = SZ_2K,
2713 .rx_max_frame_size = SZ_2K,
2714 .rx_buffer_size = SZ_2K +
2715 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2716 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2717 .aligned_tx = 1,
2718 .gptp = 1,
2719 .nc_queues = 1,
2720 .magic_pkt = 1,
2721 };
2722
2723 static const struct ravb_hw_info ravb_gen3_hw_info = {
2724 .receive = ravb_rx_rcar,
2725 .set_rate = ravb_set_rate_rcar,
2726 .set_feature = ravb_set_features_rcar,
2727 .dmac_init = ravb_dmac_init_rcar,
2728 .emac_init = ravb_emac_init_rcar,
2729 .gstrings_stats = ravb_gstrings_stats,
2730 .gstrings_size = sizeof(ravb_gstrings_stats),
2731 .net_hw_features = NETIF_F_RXCSUM,
2732 .net_features = NETIF_F_RXCSUM,
2733 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2734 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2735 .tx_max_frame_size = SZ_2K,
2736 .rx_max_frame_size = SZ_2K,
2737 .rx_buffer_size = SZ_2K +
2738 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2739 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2740 .internal_delay = 1,
2741 .tx_counters = 1,
2742 .multi_irqs = 1,
2743 .irq_en_dis = 1,
2744 .ccc_gac = 1,
2745 .nc_queues = 1,
2746 .magic_pkt = 1,
2747 };
2748
2749 static const struct ravb_hw_info ravb_gen4_hw_info = {
2750 .receive = ravb_rx_rcar,
2751 .set_rate = ravb_set_rate_rcar,
2752 .set_feature = ravb_set_features_rcar,
2753 .dmac_init = ravb_dmac_init_rcar,
2754 .emac_init = ravb_emac_init_rcar_gen4,
2755 .gstrings_stats = ravb_gstrings_stats,
2756 .gstrings_size = sizeof(ravb_gstrings_stats),
2757 .net_hw_features = NETIF_F_RXCSUM,
2758 .net_features = NETIF_F_RXCSUM,
2759 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2760 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2761 .tx_max_frame_size = SZ_2K,
2762 .rx_max_frame_size = SZ_2K,
2763 .rx_buffer_size = SZ_2K +
2764 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2765 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2766 .internal_delay = 1,
2767 .tx_counters = 1,
2768 .multi_irqs = 1,
2769 .irq_en_dis = 1,
2770 .ccc_gac = 1,
2771 .nc_queues = 1,
2772 .magic_pkt = 1,
2773 };
2774
2775 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2776 .receive = ravb_rx_rcar,
2777 .set_rate = ravb_set_rate_rcar,
2778 .set_feature = ravb_set_features_rcar,
2779 .dmac_init = ravb_dmac_init_rcar,
2780 .emac_init = ravb_emac_init_rcar,
2781 .gstrings_stats = ravb_gstrings_stats,
2782 .gstrings_size = sizeof(ravb_gstrings_stats),
2783 .net_hw_features = NETIF_F_RXCSUM,
2784 .net_features = NETIF_F_RXCSUM,
2785 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2786 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2787 .tx_max_frame_size = SZ_2K,
2788 .rx_max_frame_size = SZ_2K,
2789 .rx_buffer_size = SZ_2K +
2790 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2791 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2792 .multi_irqs = 1,
2793 .err_mgmt_irqs = 1,
2794 .gptp = 1,
2795 .gptp_ref_clk = 1,
2796 .nc_queues = 1,
2797 .magic_pkt = 1,
2798 };
2799
2800 static const struct ravb_hw_info gbeth_hw_info = {
2801 .receive = ravb_rx_gbeth,
2802 .set_rate = ravb_set_rate_gbeth,
2803 .set_feature = ravb_set_features_gbeth,
2804 .dmac_init = ravb_dmac_init_gbeth,
2805 .emac_init = ravb_emac_init_gbeth,
2806 .gstrings_stats = ravb_gstrings_stats_gbeth,
2807 .gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2808 .net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2809 .net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2810 .vlan_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2811 .stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2812 .tccr_mask = TCCR_TSRQ0,
2813 .tx_max_frame_size = 1522,
2814 .rx_max_frame_size = SZ_8K,
2815 .rx_buffer_size = SZ_2K,
2816 .rx_desc_size = sizeof(struct ravb_rx_desc),
2817 .aligned_tx = 1,
2818 .coalesce_irqs = 1,
2819 .tx_counters = 1,
2820 .carrier_counters = 1,
2821 .half_duplex = 1,
2822 };
2823
2824 static const struct of_device_id ravb_match_table[] = {
2825 { .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2826 { .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2827 { .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2828 { .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2829 { .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2830 { .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen4_hw_info },
2831 { .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2832 { .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2833 { }
2834 };
2835 MODULE_DEVICE_TABLE(of, ravb_match_table);
2836
ravb_setup_irq(struct ravb_private * priv,const char * irq_name,const char * ch,int * irq,irq_handler_t handler)2837 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2838 const char *ch, int *irq, irq_handler_t handler)
2839 {
2840 struct platform_device *pdev = priv->pdev;
2841 struct net_device *ndev = priv->ndev;
2842 struct device *dev = &pdev->dev;
2843 const char *devname = dev_name(dev);
2844 unsigned long flags;
2845 int error, irq_num;
2846
2847 if (irq_name) {
2848 devname = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", devname, ch);
2849 if (!devname)
2850 return -ENOMEM;
2851
2852 irq_num = platform_get_irq_byname(pdev, irq_name);
2853 flags = 0;
2854 } else {
2855 irq_num = platform_get_irq(pdev, 0);
2856 flags = IRQF_SHARED;
2857 }
2858 if (irq_num < 0)
2859 return irq_num;
2860
2861 if (irq)
2862 *irq = irq_num;
2863
2864 error = devm_request_irq(dev, irq_num, handler, flags, devname, ndev);
2865 if (error)
2866 netdev_err(ndev, "cannot request IRQ %s\n", devname);
2867
2868 return error;
2869 }
2870
ravb_setup_irqs(struct ravb_private * priv)2871 static int ravb_setup_irqs(struct ravb_private *priv)
2872 {
2873 const struct ravb_hw_info *info = priv->info;
2874 struct net_device *ndev = priv->ndev;
2875 const char *irq_name, *emac_irq_name;
2876 int error;
2877
2878 if (!info->multi_irqs)
2879 return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2880
2881 if (info->err_mgmt_irqs) {
2882 irq_name = "dia";
2883 emac_irq_name = "line3";
2884 } else {
2885 irq_name = "ch22";
2886 emac_irq_name = "ch24";
2887 }
2888
2889 error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2890 if (error)
2891 return error;
2892
2893 error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2894 ravb_emac_interrupt);
2895 if (error)
2896 return error;
2897
2898 if (info->err_mgmt_irqs) {
2899 error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2900 if (error)
2901 return error;
2902
2903 error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2904 if (error)
2905 return error;
2906 }
2907
2908 error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2909 if (error)
2910 return error;
2911
2912 error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2913 if (error)
2914 return error;
2915
2916 error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2917 if (error)
2918 return error;
2919
2920 return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2921 }
2922
ravb_probe(struct platform_device * pdev)2923 static int ravb_probe(struct platform_device *pdev)
2924 {
2925 struct device_node *np = pdev->dev.of_node;
2926 const struct ravb_hw_info *info;
2927 struct reset_control *rstc;
2928 struct ravb_private *priv;
2929 struct net_device *ndev;
2930 struct resource *res;
2931 int error, q;
2932
2933 if (!np) {
2934 dev_err(&pdev->dev,
2935 "this driver is required to be instantiated from device tree\n");
2936 return -EINVAL;
2937 }
2938
2939 rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2940 if (IS_ERR(rstc))
2941 return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2942 "failed to get cpg reset\n");
2943
2944 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2945 NUM_TX_QUEUE, NUM_RX_QUEUE);
2946 if (!ndev)
2947 return -ENOMEM;
2948
2949 info = of_device_get_match_data(&pdev->dev);
2950
2951 ndev->features = info->net_features;
2952 ndev->hw_features = info->net_hw_features;
2953 ndev->vlan_features = info->vlan_features;
2954
2955 error = reset_control_deassert(rstc);
2956 if (error)
2957 goto out_free_netdev;
2958
2959 SET_NETDEV_DEV(ndev, &pdev->dev);
2960
2961 priv = netdev_priv(ndev);
2962 priv->info = info;
2963 priv->rstc = rstc;
2964 priv->ndev = ndev;
2965 priv->pdev = pdev;
2966 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2967 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2968 if (info->nc_queues) {
2969 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2970 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2971 }
2972
2973 error = ravb_setup_irqs(priv);
2974 if (error)
2975 goto out_reset_assert;
2976
2977 priv->clk = devm_clk_get(&pdev->dev, NULL);
2978 if (IS_ERR(priv->clk)) {
2979 error = PTR_ERR(priv->clk);
2980 goto out_reset_assert;
2981 }
2982
2983 if (info->gptp_ref_clk) {
2984 priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2985 if (IS_ERR(priv->gptp_clk)) {
2986 error = PTR_ERR(priv->gptp_clk);
2987 goto out_reset_assert;
2988 }
2989 }
2990
2991 priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2992 if (IS_ERR(priv->refclk)) {
2993 error = PTR_ERR(priv->refclk);
2994 goto out_reset_assert;
2995 }
2996 clk_prepare(priv->refclk);
2997
2998 platform_set_drvdata(pdev, ndev);
2999 pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
3000 pm_runtime_use_autosuspend(&pdev->dev);
3001 pm_runtime_enable(&pdev->dev);
3002 error = pm_runtime_resume_and_get(&pdev->dev);
3003 if (error < 0)
3004 goto out_rpm_disable;
3005
3006 priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
3007 if (IS_ERR(priv->addr)) {
3008 error = PTR_ERR(priv->addr);
3009 goto out_rpm_put;
3010 }
3011
3012 /* The Ether-specific entries in the device structure. */
3013 ndev->base_addr = res->start;
3014
3015 spin_lock_init(&priv->lock);
3016 INIT_WORK(&priv->work, ravb_tx_timeout_work);
3017
3018 error = of_get_phy_mode(np, &priv->phy_interface);
3019 if (error && error != -ENODEV)
3020 goto out_rpm_put;
3021
3022 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
3023 priv->avb_link_active_low =
3024 of_property_read_bool(np, "renesas,ether-link-active-low");
3025
3026 ndev->max_mtu = info->tx_max_frame_size -
3027 (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3028 ndev->min_mtu = ETH_MIN_MTU;
3029
3030 /* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
3031 * Use two descriptor to handle such situation. First descriptor to
3032 * handle aligned data buffer and second descriptor to handle the
3033 * overflow data because of alignment.
3034 */
3035 priv->num_tx_desc = info->aligned_tx ? 2 : 1;
3036
3037 /* Set function */
3038 ndev->netdev_ops = &ravb_netdev_ops;
3039 ndev->ethtool_ops = &ravb_ethtool_ops;
3040
3041 error = ravb_compute_gti(ndev);
3042 if (error)
3043 goto out_rpm_put;
3044
3045 ravb_parse_delay_mode(np, ndev);
3046
3047 /* Allocate descriptor base address table */
3048 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
3049 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
3050 &priv->desc_bat_dma, GFP_KERNEL);
3051 if (!priv->desc_bat) {
3052 dev_err(&pdev->dev,
3053 "Cannot allocate desc base address table (size %d bytes)\n",
3054 priv->desc_bat_size);
3055 error = -ENOMEM;
3056 goto out_rpm_put;
3057 }
3058 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
3059 priv->desc_bat[q].die_dt = DT_EOS;
3060
3061 /* Initialise HW timestamp list */
3062 INIT_LIST_HEAD(&priv->ts_skb_list);
3063
3064 /* Debug message level */
3065 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
3066
3067 /* Set config mode as this is needed for PHY initialization. */
3068 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
3069 if (error)
3070 goto out_rpm_put;
3071
3072 /* Read and set MAC address */
3073 ravb_read_mac_address(np, ndev);
3074 if (!is_valid_ether_addr(ndev->dev_addr)) {
3075 dev_warn(&pdev->dev,
3076 "no valid MAC address supplied, using a random one\n");
3077 eth_hw_addr_random(ndev);
3078 }
3079
3080 /* MDIO bus init */
3081 error = ravb_mdio_init(priv);
3082 if (error) {
3083 dev_err(&pdev->dev, "failed to initialize MDIO\n");
3084 goto out_reset_mode;
3085 }
3086
3087 /* Undo previous switch to config opmode. */
3088 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3089 if (error)
3090 goto out_mdio_release;
3091
3092 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
3093 if (info->nc_queues)
3094 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
3095
3096 if (info->coalesce_irqs) {
3097 netdev_sw_irq_coalesce_default_on(ndev);
3098 if (num_present_cpus() == 1)
3099 netif_threaded_enable(ndev);
3100 }
3101
3102 /* Network device register */
3103 error = register_netdev(ndev);
3104 if (error)
3105 goto out_napi_del;
3106
3107 device_set_wakeup_capable(&pdev->dev, 1);
3108
3109 /* Print device information */
3110 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
3111 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3112
3113 pm_runtime_mark_last_busy(&pdev->dev);
3114 pm_runtime_put_autosuspend(&pdev->dev);
3115
3116 return 0;
3117
3118 out_napi_del:
3119 if (info->nc_queues)
3120 netif_napi_del(&priv->napi[RAVB_NC]);
3121
3122 netif_napi_del(&priv->napi[RAVB_BE]);
3123 out_mdio_release:
3124 ravb_mdio_release(priv);
3125 out_reset_mode:
3126 ravb_set_opmode(ndev, CCC_OPC_RESET);
3127 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3128 priv->desc_bat_dma);
3129 out_rpm_put:
3130 pm_runtime_put(&pdev->dev);
3131 out_rpm_disable:
3132 pm_runtime_disable(&pdev->dev);
3133 pm_runtime_dont_use_autosuspend(&pdev->dev);
3134 clk_unprepare(priv->refclk);
3135 out_reset_assert:
3136 reset_control_assert(rstc);
3137 out_free_netdev:
3138 free_netdev(ndev);
3139 return error;
3140 }
3141
ravb_remove(struct platform_device * pdev)3142 static void ravb_remove(struct platform_device *pdev)
3143 {
3144 struct net_device *ndev = platform_get_drvdata(pdev);
3145 struct ravb_private *priv = netdev_priv(ndev);
3146 const struct ravb_hw_info *info = priv->info;
3147 struct device *dev = &priv->pdev->dev;
3148 int error;
3149
3150 error = pm_runtime_resume_and_get(dev);
3151 if (error < 0)
3152 return;
3153
3154 unregister_netdev(ndev);
3155 if (info->nc_queues)
3156 netif_napi_del(&priv->napi[RAVB_NC]);
3157 netif_napi_del(&priv->napi[RAVB_BE]);
3158
3159 ravb_mdio_release(priv);
3160
3161 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3162 priv->desc_bat_dma);
3163
3164 pm_runtime_put_sync_suspend(&pdev->dev);
3165 pm_runtime_disable(&pdev->dev);
3166 pm_runtime_dont_use_autosuspend(dev);
3167 clk_unprepare(priv->refclk);
3168 reset_control_assert(priv->rstc);
3169 free_netdev(ndev);
3170 platform_set_drvdata(pdev, NULL);
3171 }
3172
ravb_wol_setup(struct net_device * ndev)3173 static int ravb_wol_setup(struct net_device *ndev)
3174 {
3175 struct ravb_private *priv = netdev_priv(ndev);
3176 const struct ravb_hw_info *info = priv->info;
3177
3178 /* Disable interrupts by clearing the interrupt masks. */
3179 ravb_write(ndev, 0, RIC0);
3180 ravb_write(ndev, 0, RIC2);
3181 ravb_write(ndev, 0, TIC);
3182
3183 /* Only allow ECI interrupts */
3184 synchronize_irq(priv->emac_irq);
3185 if (info->nc_queues)
3186 napi_disable(&priv->napi[RAVB_NC]);
3187 napi_disable(&priv->napi[RAVB_BE]);
3188 ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3189
3190 /* Enable MagicPacket */
3191 ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3192
3193 if (priv->info->ccc_gac)
3194 ravb_ptp_stop(ndev);
3195
3196 return enable_irq_wake(priv->emac_irq);
3197 }
3198
ravb_wol_restore(struct net_device * ndev)3199 static int ravb_wol_restore(struct net_device *ndev)
3200 {
3201 struct ravb_private *priv = netdev_priv(ndev);
3202 const struct ravb_hw_info *info = priv->info;
3203 int error;
3204
3205 /* Set reset mode to rearm the WoL logic. */
3206 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3207 if (error)
3208 return error;
3209
3210 /* Set AVB config mode. */
3211 error = ravb_set_config_mode(ndev);
3212 if (error)
3213 return error;
3214
3215 if (priv->info->ccc_gac)
3216 ravb_ptp_init(ndev, priv->pdev);
3217
3218 if (info->nc_queues)
3219 napi_enable(&priv->napi[RAVB_NC]);
3220 napi_enable(&priv->napi[RAVB_BE]);
3221
3222 /* Disable MagicPacket */
3223 ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3224
3225 ravb_close(ndev);
3226
3227 return disable_irq_wake(priv->emac_irq);
3228 }
3229
ravb_suspend(struct device * dev)3230 static int ravb_suspend(struct device *dev)
3231 {
3232 struct net_device *ndev = dev_get_drvdata(dev);
3233 struct ravb_private *priv = netdev_priv(ndev);
3234 int ret;
3235
3236 if (!netif_running(ndev))
3237 goto reset_assert;
3238
3239 netif_device_detach(ndev);
3240
3241 rtnl_lock();
3242 if (priv->wol_enabled) {
3243 ret = ravb_wol_setup(ndev);
3244 rtnl_unlock();
3245 return ret;
3246 }
3247
3248 ret = ravb_close(ndev);
3249 rtnl_unlock();
3250 if (ret)
3251 return ret;
3252
3253 ret = pm_runtime_force_suspend(&priv->pdev->dev);
3254 if (ret)
3255 return ret;
3256
3257 reset_assert:
3258 return reset_control_assert(priv->rstc);
3259 }
3260
ravb_resume(struct device * dev)3261 static int ravb_resume(struct device *dev)
3262 {
3263 struct net_device *ndev = dev_get_drvdata(dev);
3264 struct ravb_private *priv = netdev_priv(ndev);
3265 int ret;
3266
3267 ret = reset_control_deassert(priv->rstc);
3268 if (ret)
3269 return ret;
3270
3271 if (!netif_running(ndev))
3272 return 0;
3273
3274 rtnl_lock();
3275 /* If WoL is enabled restore the interface. */
3276 if (priv->wol_enabled)
3277 ret = ravb_wol_restore(ndev);
3278 else
3279 ret = pm_runtime_force_resume(dev);
3280 if (ret) {
3281 rtnl_unlock();
3282 return ret;
3283 }
3284
3285 /* Reopening the interface will restore the device to the working state. */
3286 ret = ravb_open(ndev);
3287 rtnl_unlock();
3288 if (ret < 0)
3289 goto out_rpm_put;
3290
3291 ravb_set_rx_mode(ndev);
3292 netif_device_attach(ndev);
3293
3294 return 0;
3295
3296 out_rpm_put:
3297 if (!priv->wol_enabled) {
3298 pm_runtime_mark_last_busy(dev);
3299 pm_runtime_put_autosuspend(dev);
3300 }
3301
3302 return ret;
3303 }
3304
ravb_runtime_suspend(struct device * dev)3305 static int ravb_runtime_suspend(struct device *dev)
3306 {
3307 struct net_device *ndev = dev_get_drvdata(dev);
3308 struct ravb_private *priv = netdev_priv(ndev);
3309
3310 clk_disable(priv->refclk);
3311
3312 return 0;
3313 }
3314
ravb_runtime_resume(struct device * dev)3315 static int ravb_runtime_resume(struct device *dev)
3316 {
3317 struct net_device *ndev = dev_get_drvdata(dev);
3318 struct ravb_private *priv = netdev_priv(ndev);
3319
3320 return clk_enable(priv->refclk);
3321 }
3322
3323 static const struct dev_pm_ops ravb_dev_pm_ops = {
3324 SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3325 RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3326 };
3327
3328 static struct platform_driver ravb_driver = {
3329 .probe = ravb_probe,
3330 .remove = ravb_remove,
3331 .driver = {
3332 .name = "ravb",
3333 .pm = pm_ptr(&ravb_dev_pm_ops),
3334 .of_match_table = ravb_match_table,
3335 },
3336 };
3337
3338 module_platform_driver(ravb_driver);
3339
3340 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3341 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3342 MODULE_LICENSE("GPL v2");
3343