xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision ab431bc39741e9d9bd3102688439e1864c857a74)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 #include <net/page_pool/helpers.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
ravb_modify(struct net_device * ndev,enum ravb_reg reg,u32 clear,u32 set)43 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
44 		 u32 set)
45 {
46 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
47 }
48 
ravb_wait(struct net_device * ndev,enum ravb_reg reg,u32 mask,u32 value)49 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
50 {
51 	int i;
52 
53 	for (i = 0; i < 10000; i++) {
54 		if ((ravb_read(ndev, reg) & mask) == value)
55 			return 0;
56 		udelay(10);
57 	}
58 	return -ETIMEDOUT;
59 }
60 
ravb_set_opmode(struct net_device * ndev,u32 opmode)61 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
62 {
63 	u32 csr_ops = 1U << (opmode & CCC_OPC);
64 	u32 ccc_mask = CCC_OPC;
65 	int error;
66 
67 	/* If gPTP active in config mode is supported it needs to be configured
68 	 * along with CSEL and operating mode in the same access. This is a
69 	 * hardware limitation.
70 	 */
71 	if (opmode & CCC_GAC)
72 		ccc_mask |= CCC_GAC | CCC_CSEL;
73 
74 	/* Set operating mode */
75 	ravb_modify(ndev, CCC, ccc_mask, opmode);
76 	/* Check if the operating mode is changed to the requested one */
77 	error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
78 	if (error) {
79 		netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
80 			   opmode & CCC_OPC);
81 	}
82 
83 	return error;
84 }
85 
ravb_set_rate_gbeth(struct net_device * ndev)86 static void ravb_set_rate_gbeth(struct net_device *ndev)
87 {
88 	struct ravb_private *priv = netdev_priv(ndev);
89 
90 	switch (priv->speed) {
91 	case 10:		/* 10BASE */
92 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
93 		break;
94 	case 100:		/* 100BASE */
95 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
96 		break;
97 	case 1000:		/* 1000BASE */
98 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
99 		break;
100 	}
101 }
102 
ravb_set_rate_rcar(struct net_device * ndev)103 static void ravb_set_rate_rcar(struct net_device *ndev)
104 {
105 	struct ravb_private *priv = netdev_priv(ndev);
106 
107 	switch (priv->speed) {
108 	case 100:		/* 100BASE */
109 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
110 		break;
111 	case 1000:		/* 1000BASE */
112 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
113 		break;
114 	}
115 }
116 
117 /* Get MAC address from the MAC address registers
118  *
119  * Ethernet AVB device doesn't have ROM for MAC address.
120  * This function gets the MAC address that was used by a bootloader.
121  */
ravb_read_mac_address(struct device_node * np,struct net_device * ndev)122 static void ravb_read_mac_address(struct device_node *np,
123 				  struct net_device *ndev)
124 {
125 	int ret;
126 
127 	ret = of_get_ethdev_address(np, ndev);
128 	if (ret) {
129 		u32 mahr = ravb_read(ndev, MAHR);
130 		u32 malr = ravb_read(ndev, MALR);
131 		u8 addr[ETH_ALEN];
132 
133 		addr[0] = (mahr >> 24) & 0xFF;
134 		addr[1] = (mahr >> 16) & 0xFF;
135 		addr[2] = (mahr >>  8) & 0xFF;
136 		addr[3] = (mahr >>  0) & 0xFF;
137 		addr[4] = (malr >>  8) & 0xFF;
138 		addr[5] = (malr >>  0) & 0xFF;
139 		eth_hw_addr_set(ndev, addr);
140 	}
141 }
142 
ravb_mdio_ctrl(struct mdiobb_ctrl * ctrl,u32 mask,int set)143 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
144 {
145 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
146 						 mdiobb);
147 
148 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
149 }
150 
151 /* MDC pin control */
ravb_set_mdc(struct mdiobb_ctrl * ctrl,int level)152 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
153 {
154 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
155 }
156 
157 /* Data I/O pin control */
ravb_set_mdio_dir(struct mdiobb_ctrl * ctrl,int output)158 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
159 {
160 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
161 }
162 
163 /* Set data bit */
ravb_set_mdio_data(struct mdiobb_ctrl * ctrl,int value)164 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
165 {
166 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
167 }
168 
169 /* Get data bit */
ravb_get_mdio_data(struct mdiobb_ctrl * ctrl)170 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
171 {
172 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
173 						 mdiobb);
174 
175 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
176 }
177 
178 /* MDIO bus control struct */
179 static const struct mdiobb_ops bb_ops = {
180 	.owner = THIS_MODULE,
181 	.set_mdc = ravb_set_mdc,
182 	.set_mdio_dir = ravb_set_mdio_dir,
183 	.set_mdio_data = ravb_set_mdio_data,
184 	.get_mdio_data = ravb_get_mdio_data,
185 };
186 
187 static struct ravb_rx_desc *
ravb_rx_get_desc(struct ravb_private * priv,unsigned int q,unsigned int i)188 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
189 		 unsigned int i)
190 {
191 	return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
192 }
193 
194 /* Free TX skb function for AVB-IP */
ravb_tx_free(struct net_device * ndev,int q,bool free_txed_only)195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 	struct ravb_private *priv = netdev_priv(ndev);
198 	struct net_device_stats *stats = &priv->stats[q];
199 	unsigned int num_tx_desc = priv->num_tx_desc;
200 	struct ravb_tx_desc *desc;
201 	unsigned int entry;
202 	int free_num = 0;
203 	u32 size;
204 
205 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 		bool txed;
207 
208 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 					     num_tx_desc);
210 		desc = &priv->tx_ring[q][entry];
211 		txed = desc->die_dt == DT_FEMPTY;
212 		if (free_txed_only && !txed)
213 			break;
214 		/* Descriptor type must be checked before all other reads */
215 		dma_rmb();
216 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 		/* Free the original skb. */
218 		if (priv->tx_skb[q][entry / num_tx_desc]) {
219 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 					 size, DMA_TO_DEVICE);
221 			/* Last packet descriptor? */
222 			if (entry % num_tx_desc == num_tx_desc - 1) {
223 				entry /= num_tx_desc;
224 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 				priv->tx_skb[q][entry] = NULL;
226 				if (txed)
227 					stats->tx_packets++;
228 			}
229 			free_num++;
230 		}
231 		if (txed)
232 			stats->tx_bytes += size;
233 		desc->die_dt = DT_EEMPTY;
234 	}
235 	return free_num;
236 }
237 
ravb_rx_ring_free(struct net_device * ndev,int q)238 static void ravb_rx_ring_free(struct net_device *ndev, int q)
239 {
240 	struct ravb_private *priv = netdev_priv(ndev);
241 	unsigned int ring_size;
242 
243 	if (!priv->rx_ring[q].raw)
244 		return;
245 
246 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
247 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
248 			  priv->rx_desc_dma[q]);
249 	priv->rx_ring[q].raw = NULL;
250 }
251 
252 /* Free skb's and DMA buffers for Ethernet AVB */
ravb_ring_free(struct net_device * ndev,int q)253 static void ravb_ring_free(struct net_device *ndev, int q)
254 {
255 	struct ravb_private *priv = netdev_priv(ndev);
256 	unsigned int num_tx_desc = priv->num_tx_desc;
257 	unsigned int ring_size;
258 	unsigned int i;
259 
260 	ravb_rx_ring_free(ndev, q);
261 
262 	if (priv->tx_ring[q]) {
263 		ravb_tx_free(ndev, q, false);
264 
265 		ring_size = sizeof(struct ravb_tx_desc) *
266 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
267 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
268 				  priv->tx_desc_dma[q]);
269 		priv->tx_ring[q] = NULL;
270 	}
271 
272 	/* Free RX buffers */
273 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
274 		if (priv->rx_buffers[q][i].page)
275 			page_pool_put_page(priv->rx_pool[q],
276 					   priv->rx_buffers[q][i].page,
277 					   0, true);
278 	}
279 	kfree(priv->rx_buffers[q]);
280 	priv->rx_buffers[q] = NULL;
281 	page_pool_destroy(priv->rx_pool[q]);
282 
283 	/* Free aligned TX buffers */
284 	kfree(priv->tx_align[q]);
285 	priv->tx_align[q] = NULL;
286 
287 	/* Free TX skb ringbuffer.
288 	 * SKBs are freed by ravb_tx_free() call above.
289 	 */
290 	kfree(priv->tx_skb[q]);
291 	priv->tx_skb[q] = NULL;
292 }
293 
294 static int
ravb_alloc_rx_buffer(struct net_device * ndev,int q,u32 entry,gfp_t gfp_mask,struct ravb_rx_desc * rx_desc)295 ravb_alloc_rx_buffer(struct net_device *ndev, int q, u32 entry, gfp_t gfp_mask,
296 		     struct ravb_rx_desc *rx_desc)
297 {
298 	struct ravb_private *priv = netdev_priv(ndev);
299 	const struct ravb_hw_info *info = priv->info;
300 	struct ravb_rx_buffer *rx_buff;
301 	dma_addr_t dma_addr;
302 	unsigned int size;
303 
304 	rx_buff = &priv->rx_buffers[q][entry];
305 	size = info->rx_buffer_size;
306 	rx_buff->page = page_pool_alloc(priv->rx_pool[q], &rx_buff->offset,
307 					&size, gfp_mask);
308 	if (unlikely(!rx_buff->page)) {
309 		/* We just set the data size to 0 for a failed mapping which
310 		 * should prevent DMA from happening...
311 		 */
312 		rx_desc->ds_cc = cpu_to_le16(0);
313 		return -ENOMEM;
314 	}
315 
316 	dma_addr = page_pool_get_dma_addr(rx_buff->page) + rx_buff->offset;
317 	dma_sync_single_for_device(ndev->dev.parent, dma_addr,
318 				   info->rx_buffer_size, DMA_FROM_DEVICE);
319 	rx_desc->dptr = cpu_to_le32(dma_addr);
320 
321 	/* The end of the RX buffer is used to store skb shared data, so we need
322 	 * to ensure that the hardware leaves enough space for this.
323 	 */
324 	rx_desc->ds_cc = cpu_to_le16(info->rx_buffer_size -
325 				     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) -
326 				     ETH_FCS_LEN + sizeof(__sum16));
327 	return 0;
328 }
329 
330 static u32
ravb_rx_ring_refill(struct net_device * ndev,int q,u32 count,gfp_t gfp_mask)331 ravb_rx_ring_refill(struct net_device *ndev, int q, u32 count, gfp_t gfp_mask)
332 {
333 	struct ravb_private *priv = netdev_priv(ndev);
334 	struct ravb_rx_desc *rx_desc;
335 	u32 i, entry;
336 
337 	for (i = 0; i < count; i++) {
338 		entry = (priv->dirty_rx[q] + i) % priv->num_rx_ring[q];
339 		rx_desc = ravb_rx_get_desc(priv, q, entry);
340 
341 		if (!priv->rx_buffers[q][entry].page) {
342 			if (unlikely(ravb_alloc_rx_buffer(ndev, q, entry,
343 							  gfp_mask, rx_desc)))
344 				break;
345 		}
346 		/* Descriptor type must be set after all the above writes */
347 		dma_wmb();
348 		rx_desc->die_dt = DT_FEMPTY;
349 	}
350 
351 	return i;
352 }
353 
354 /* Format skb and descriptor buffer for Ethernet AVB */
ravb_ring_format(struct net_device * ndev,int q)355 static void ravb_ring_format(struct net_device *ndev, int q)
356 {
357 	struct ravb_private *priv = netdev_priv(ndev);
358 	unsigned int num_tx_desc = priv->num_tx_desc;
359 	struct ravb_rx_desc *rx_desc;
360 	struct ravb_tx_desc *tx_desc;
361 	struct ravb_desc *desc;
362 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
363 				    num_tx_desc;
364 	unsigned int i;
365 
366 	priv->cur_rx[q] = 0;
367 	priv->cur_tx[q] = 0;
368 	priv->dirty_rx[q] = 0;
369 	priv->dirty_tx[q] = 0;
370 
371 	/* Regular RX descriptors have already been initialized by
372 	 * ravb_rx_ring_refill(), we just need to initialize the final link
373 	 * descriptor.
374 	 */
375 	rx_desc = ravb_rx_get_desc(priv, q, priv->num_rx_ring[q]);
376 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
377 	rx_desc->die_dt = DT_LINKFIX; /* type */
378 
379 	memset(priv->tx_ring[q], 0, tx_ring_size);
380 	/* Build TX ring buffer */
381 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
382 	     i++, tx_desc++) {
383 		tx_desc->die_dt = DT_EEMPTY;
384 		if (num_tx_desc > 1) {
385 			tx_desc++;
386 			tx_desc->die_dt = DT_EEMPTY;
387 		}
388 	}
389 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
390 	tx_desc->die_dt = DT_LINKFIX; /* type */
391 
392 	/* RX descriptor base address for best effort */
393 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
394 	desc->die_dt = DT_LINKFIX; /* type */
395 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
396 
397 	/* TX descriptor base address for best effort */
398 	desc = &priv->desc_bat[q];
399 	desc->die_dt = DT_LINKFIX; /* type */
400 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
401 }
402 
ravb_alloc_rx_desc(struct net_device * ndev,int q)403 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
404 {
405 	struct ravb_private *priv = netdev_priv(ndev);
406 	unsigned int ring_size;
407 
408 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
409 
410 	priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
411 						  &priv->rx_desc_dma[q],
412 						  GFP_KERNEL);
413 
414 	return priv->rx_ring[q].raw;
415 }
416 
417 /* Init skb and descriptor buffer for Ethernet AVB */
ravb_ring_init(struct net_device * ndev,int q)418 static int ravb_ring_init(struct net_device *ndev, int q)
419 {
420 	struct ravb_private *priv = netdev_priv(ndev);
421 	unsigned int num_tx_desc = priv->num_tx_desc;
422 	struct page_pool_params params = {
423 		.order = 0,
424 		.flags = PP_FLAG_DMA_MAP,
425 		.pool_size = priv->num_rx_ring[q],
426 		.nid = NUMA_NO_NODE,
427 		.dev = ndev->dev.parent,
428 		.dma_dir = DMA_FROM_DEVICE,
429 	};
430 	unsigned int ring_size;
431 	u32 num_filled;
432 
433 	/* Allocate RX page pool and buffers */
434 	priv->rx_pool[q] = page_pool_create(&params);
435 	if (IS_ERR(priv->rx_pool[q]))
436 		goto error;
437 
438 	/* Allocate RX buffers */
439 	priv->rx_buffers[q] = kcalloc(priv->num_rx_ring[q],
440 				      sizeof(*priv->rx_buffers[q]), GFP_KERNEL);
441 	if (!priv->rx_buffers[q])
442 		goto error;
443 
444 	/* Allocate TX skb rings */
445 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
446 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
447 	if (!priv->tx_skb[q])
448 		goto error;
449 
450 	/* Allocate all RX descriptors. */
451 	if (!ravb_alloc_rx_desc(ndev, q))
452 		goto error;
453 
454 	/* Populate RX ring buffer. */
455 	priv->dirty_rx[q] = 0;
456 	ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
457 	memset(priv->rx_ring[q].raw, 0, ring_size);
458 	num_filled = ravb_rx_ring_refill(ndev, q, priv->num_rx_ring[q],
459 					 GFP_KERNEL);
460 	if (num_filled != priv->num_rx_ring[q])
461 		goto error;
462 
463 	if (num_tx_desc > 1) {
464 		/* Allocate rings for the aligned buffers */
465 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
466 					    DPTR_ALIGN - 1, GFP_KERNEL);
467 		if (!priv->tx_align[q])
468 			goto error;
469 	}
470 
471 	/* Allocate all TX descriptors. */
472 	ring_size = sizeof(struct ravb_tx_desc) *
473 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
474 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
475 					      &priv->tx_desc_dma[q],
476 					      GFP_KERNEL);
477 	if (!priv->tx_ring[q])
478 		goto error;
479 
480 	return 0;
481 
482 error:
483 	ravb_ring_free(ndev, q);
484 
485 	return -ENOMEM;
486 }
487 
ravb_csum_init_gbeth(struct net_device * ndev)488 static void ravb_csum_init_gbeth(struct net_device *ndev)
489 {
490 	bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
491 	bool rx_enable = ndev->features & NETIF_F_RXCSUM;
492 
493 	if (!(tx_enable || rx_enable))
494 		goto done;
495 
496 	ravb_write(ndev, 0, CSR0);
497 	if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
498 		netdev_err(ndev, "Timeout enabling hardware checksum\n");
499 
500 		if (tx_enable)
501 			ndev->features &= ~NETIF_F_HW_CSUM;
502 
503 		if (rx_enable)
504 			ndev->features &= ~NETIF_F_RXCSUM;
505 	} else {
506 		if (tx_enable)
507 			ravb_write(ndev, CSR1_CSUM_ENABLE, CSR1);
508 
509 		if (rx_enable)
510 			ravb_write(ndev, CSR2_CSUM_ENABLE, CSR2);
511 	}
512 
513 done:
514 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
515 }
516 
ravb_emac_init_gbeth(struct net_device * ndev)517 static void ravb_emac_init_gbeth(struct net_device *ndev)
518 {
519 	struct ravb_private *priv = netdev_priv(ndev);
520 
521 	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
522 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
523 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
524 	} else {
525 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
526 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
527 			    CXR31_SEL_LINK0);
528 	}
529 
530 	/* Receive frame limit set register */
531 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
532 
533 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
534 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
535 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
536 			 ECMR_TXF | ECMR_RXF, ECMR);
537 
538 	ravb_set_rate_gbeth(ndev);
539 
540 	/* Set MAC address */
541 	ravb_write(ndev,
542 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
543 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
544 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
545 
546 	/* E-MAC status register clear */
547 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
548 
549 	ravb_csum_init_gbeth(ndev);
550 
551 	/* E-MAC interrupt enable register */
552 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
553 }
554 
ravb_emac_init_rcar(struct net_device * ndev)555 static void ravb_emac_init_rcar(struct net_device *ndev)
556 {
557 	struct ravb_private *priv = netdev_priv(ndev);
558 
559 	/* Set receive frame length
560 	 *
561 	 * The length set here describes the frame from the destination address
562 	 * up to and including the CRC data. However only the frame data,
563 	 * excluding the CRC, are transferred to memory. To allow for the
564 	 * largest frames add the CRC length to the maximum Rx descriptor size.
565 	 */
566 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
567 
568 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
569 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
570 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
571 		   ECMR_TE | ECMR_RE, ECMR);
572 
573 	ravb_set_rate_rcar(ndev);
574 
575 	/* Set MAC address */
576 	ravb_write(ndev,
577 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
578 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
579 	ravb_write(ndev,
580 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
581 
582 	/* E-MAC status register clear */
583 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
584 
585 	/* E-MAC interrupt enable register */
586 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
587 }
588 
ravb_emac_init_rcar_gen4(struct net_device * ndev)589 static void ravb_emac_init_rcar_gen4(struct net_device *ndev)
590 {
591 	struct ravb_private *priv = netdev_priv(ndev);
592 	bool mii = priv->phy_interface == PHY_INTERFACE_MODE_MII;
593 
594 	ravb_modify(ndev, APSR, APSR_MIISELECT, mii ? APSR_MIISELECT : 0);
595 
596 	ravb_emac_init_rcar(ndev);
597 }
598 
599 /* E-MAC init function */
ravb_emac_init(struct net_device * ndev)600 static void ravb_emac_init(struct net_device *ndev)
601 {
602 	struct ravb_private *priv = netdev_priv(ndev);
603 	const struct ravb_hw_info *info = priv->info;
604 
605 	info->emac_init(ndev);
606 }
607 
ravb_dmac_init_gbeth(struct net_device * ndev)608 static int ravb_dmac_init_gbeth(struct net_device *ndev)
609 {
610 	struct ravb_private *priv = netdev_priv(ndev);
611 	int error;
612 
613 	error = ravb_ring_init(ndev, RAVB_BE);
614 	if (error)
615 		return error;
616 
617 	/* Descriptor format */
618 	ravb_ring_format(ndev, RAVB_BE);
619 
620 	/* Set DMAC RX */
621 	ravb_write(ndev, 0x60000000, RCR);
622 
623 	/* Set Max Frame Length (RTC) */
624 	ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
625 
626 	/* Set FIFO size */
627 	ravb_write(ndev, 0x00222200, TGC);
628 
629 	ravb_write(ndev, 0, TCCR);
630 
631 	/* Frame receive */
632 	ravb_write(ndev, RIC0_FRE0, RIC0);
633 	/* Disable FIFO full warning */
634 	ravb_write(ndev, 0x0, RIC1);
635 	/* Receive FIFO full error, descriptor empty */
636 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
637 
638 	ravb_write(ndev, TIC_FTE0, TIC);
639 
640 	return 0;
641 }
642 
ravb_dmac_init_rcar(struct net_device * ndev)643 static int ravb_dmac_init_rcar(struct net_device *ndev)
644 {
645 	struct ravb_private *priv = netdev_priv(ndev);
646 	const struct ravb_hw_info *info = priv->info;
647 	int error;
648 
649 	error = ravb_ring_init(ndev, RAVB_BE);
650 	if (error)
651 		return error;
652 	error = ravb_ring_init(ndev, RAVB_NC);
653 	if (error) {
654 		ravb_ring_free(ndev, RAVB_BE);
655 		return error;
656 	}
657 
658 	/* Descriptor format */
659 	ravb_ring_format(ndev, RAVB_BE);
660 	ravb_ring_format(ndev, RAVB_NC);
661 
662 	/* Set AVB RX */
663 	ravb_write(ndev,
664 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
665 
666 	/* Set FIFO size */
667 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
668 
669 	/* Timestamp enable */
670 	ravb_write(ndev, TCCR_TFEN, TCCR);
671 
672 	/* Interrupt init: */
673 	if (info->multi_irqs) {
674 		/* Clear DIL.DPLx */
675 		ravb_write(ndev, 0, DIL);
676 		/* Set queue specific interrupt */
677 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
678 	}
679 	/* Frame receive */
680 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
681 	/* Disable FIFO full warning */
682 	ravb_write(ndev, 0, RIC1);
683 	/* Receive FIFO full error, descriptor empty */
684 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
685 	/* Frame transmitted, timestamp FIFO updated */
686 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
687 
688 	return 0;
689 }
690 
691 /* Device init function for Ethernet AVB */
ravb_dmac_init(struct net_device * ndev)692 static int ravb_dmac_init(struct net_device *ndev)
693 {
694 	struct ravb_private *priv = netdev_priv(ndev);
695 	const struct ravb_hw_info *info = priv->info;
696 	int error;
697 
698 	/* Set CONFIG mode */
699 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
700 	if (error)
701 		return error;
702 
703 	error = info->dmac_init(ndev);
704 	if (error)
705 		return error;
706 
707 	/* Setting the control will start the AVB-DMAC process. */
708 	return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
709 }
710 
ravb_get_tx_tstamp(struct net_device * ndev)711 static void ravb_get_tx_tstamp(struct net_device *ndev)
712 {
713 	struct ravb_private *priv = netdev_priv(ndev);
714 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
715 	struct skb_shared_hwtstamps shhwtstamps;
716 	struct sk_buff *skb;
717 	struct timespec64 ts;
718 	u16 tag, tfa_tag;
719 	int count;
720 	u32 tfa2;
721 
722 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
723 	while (count--) {
724 		tfa2 = ravb_read(ndev, TFA2);
725 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
726 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
727 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
728 			    ravb_read(ndev, TFA1);
729 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
730 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
731 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
732 					 list) {
733 			skb = ts_skb->skb;
734 			tag = ts_skb->tag;
735 			list_del(&ts_skb->list);
736 			kfree(ts_skb);
737 			if (tag == tfa_tag) {
738 				skb_tstamp_tx(skb, &shhwtstamps);
739 				dev_consume_skb_any(skb);
740 				break;
741 			} else {
742 				dev_kfree_skb_any(skb);
743 			}
744 		}
745 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
746 	}
747 }
748 
ravb_rx_csum_gbeth(struct sk_buff * skb)749 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
750 {
751 	struct skb_shared_info *shinfo = skb_shinfo(skb);
752 	size_t csum_len;
753 	u16 *hw_csum;
754 
755 	/* The hardware checksum status is contained in 4 bytes appended to
756 	 * packet data.
757 	 *
758 	 * For ipv4, the first 2 bytes are the ip header checksum status. We can
759 	 * ignore this as it will always be re-checked in inet_gro_receive().
760 	 *
761 	 * The last 2 bytes are the protocol checksum status which will be zero
762 	 * if the checksum has been validated.
763 	 */
764 	csum_len = sizeof(*hw_csum) * 2;
765 	if (unlikely(skb->len < csum_len))
766 		return;
767 
768 	if (skb_is_nonlinear(skb)) {
769 		skb_frag_t *last_frag = &shinfo->frags[shinfo->nr_frags - 1];
770 
771 		hw_csum = (u16 *)(skb_frag_address(last_frag) +
772 				  skb_frag_size(last_frag));
773 		skb_frag_size_sub(last_frag, csum_len);
774 	} else {
775 		hw_csum = (u16 *)skb_tail_pointer(skb);
776 		skb_trim(skb, skb->len - csum_len);
777 	}
778 
779 	if (!get_unaligned(--hw_csum))
780 		skb->ip_summed = CHECKSUM_UNNECESSARY;
781 }
782 
ravb_rx_csum(struct sk_buff * skb)783 static void ravb_rx_csum(struct sk_buff *skb)
784 {
785 	u8 *hw_csum;
786 
787 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
788 	 * appended to packet data
789 	 */
790 	if (unlikely(skb->len < sizeof(__sum16)))
791 		return;
792 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
793 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
794 	skb->ip_summed = CHECKSUM_COMPLETE;
795 	skb_trim(skb, skb->len - sizeof(__sum16));
796 }
797 
798 /* Packet receive function for Gigabit Ethernet */
ravb_rx_gbeth(struct net_device * ndev,int budget,int q)799 static int ravb_rx_gbeth(struct net_device *ndev, int budget, int q)
800 {
801 	struct ravb_private *priv = netdev_priv(ndev);
802 	const struct ravb_hw_info *info = priv->info;
803 	struct net_device_stats *stats;
804 	struct ravb_rx_desc *desc;
805 	int rx_packets = 0;
806 	u8  desc_status;
807 	u16 desc_len;
808 	u8  die_dt;
809 	int entry;
810 	int limit;
811 	int i;
812 
813 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
814 	stats = &priv->stats[q];
815 
816 	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
817 		struct sk_buff *skb = NULL;
818 
819 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
820 		desc = &priv->rx_ring[q].desc[entry];
821 		if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
822 			break;
823 
824 		/* Descriptor type must be checked before all other reads */
825 		dma_rmb();
826 		desc_status = desc->msc;
827 		desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
828 
829 		/* We use 0-byte descriptors to mark the DMA mapping errors */
830 		if (!desc_len)
831 			continue;
832 
833 		if (desc_status & MSC_MC)
834 			stats->multicast++;
835 
836 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
837 			stats->rx_errors++;
838 			if (desc_status & MSC_CRC)
839 				stats->rx_crc_errors++;
840 			if (desc_status & MSC_RFE)
841 				stats->rx_frame_errors++;
842 			if (desc_status & (MSC_RTLF | MSC_RTSF))
843 				stats->rx_length_errors++;
844 			if (desc_status & MSC_CEEF)
845 				stats->rx_missed_errors++;
846 		} else {
847 			struct ravb_rx_buffer *rx_buff;
848 			void *rx_addr;
849 
850 			rx_buff = &priv->rx_buffers[q][entry];
851 			rx_addr = page_address(rx_buff->page) + rx_buff->offset;
852 			die_dt = desc->die_dt & 0xF0;
853 			dma_sync_single_for_cpu(ndev->dev.parent,
854 						le32_to_cpu(desc->dptr),
855 						desc_len, DMA_FROM_DEVICE);
856 
857 			switch (die_dt) {
858 			case DT_FSINGLE:
859 			case DT_FSTART:
860 				/* Start of packet: Set initial data length. */
861 				skb = napi_build_skb(rx_addr,
862 						     info->rx_buffer_size);
863 				if (unlikely(!skb)) {
864 					stats->rx_errors++;
865 					page_pool_put_page(priv->rx_pool[q],
866 							   rx_buff->page, 0,
867 							   true);
868 					goto refill;
869 				}
870 				skb_mark_for_recycle(skb);
871 				skb_put(skb, desc_len);
872 
873 				/* Save this skb if the packet spans multiple
874 				 * descriptors.
875 				 */
876 				if (die_dt == DT_FSTART)
877 					priv->rx_1st_skb = skb;
878 				break;
879 
880 			case DT_FMID:
881 			case DT_FEND:
882 				/* Continuing a packet: Add this buffer as an RX
883 				 * frag.
884 				 */
885 
886 				/* rx_1st_skb will be NULL if napi_build_skb()
887 				 * failed for the first descriptor of a
888 				 * multi-descriptor packet.
889 				 */
890 				if (unlikely(!priv->rx_1st_skb)) {
891 					stats->rx_errors++;
892 					page_pool_put_page(priv->rx_pool[q],
893 							   rx_buff->page, 0,
894 							   true);
895 
896 					/* We may find a DT_FSINGLE or DT_FSTART
897 					 * descriptor in the queue which we can
898 					 * process, so don't give up yet.
899 					 */
900 					continue;
901 				}
902 				skb_add_rx_frag(priv->rx_1st_skb,
903 						skb_shinfo(priv->rx_1st_skb)->nr_frags,
904 						rx_buff->page, rx_buff->offset,
905 						desc_len, info->rx_buffer_size);
906 
907 				/* Set skb to point at the whole packet so that
908 				 * we only need one code path for finishing a
909 				 * packet.
910 				 */
911 				skb = priv->rx_1st_skb;
912 			}
913 
914 			switch (die_dt) {
915 			case DT_FSINGLE:
916 			case DT_FEND:
917 				/* Finishing a packet: Determine protocol &
918 				 * checksum, hand off to NAPI and update our
919 				 * stats.
920 				 */
921 				skb->protocol = eth_type_trans(skb, ndev);
922 				if (ndev->features & NETIF_F_RXCSUM)
923 					ravb_rx_csum_gbeth(skb);
924 				stats->rx_bytes += skb->len;
925 				napi_gro_receive(&priv->napi[q], skb);
926 				rx_packets++;
927 
928 				/* Clear rx_1st_skb so that it will only be
929 				 * non-NULL when valid.
930 				 */
931 				priv->rx_1st_skb = NULL;
932 			}
933 
934 			/* Mark this RX buffer as consumed. */
935 			rx_buff->page = NULL;
936 		}
937 	}
938 
939 refill:
940 	/* Refill the RX ring buffers. */
941 	priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
942 						 priv->cur_rx[q] - priv->dirty_rx[q],
943 						 GFP_ATOMIC);
944 
945 	stats->rx_packets += rx_packets;
946 	return rx_packets;
947 }
948 
949 /* Packet receive function for Ethernet AVB */
ravb_rx_rcar(struct net_device * ndev,int budget,int q)950 static int ravb_rx_rcar(struct net_device *ndev, int budget, int q)
951 {
952 	struct ravb_private *priv = netdev_priv(ndev);
953 	const struct ravb_hw_info *info = priv->info;
954 	struct net_device_stats *stats = &priv->stats[q];
955 	struct ravb_ex_rx_desc *desc;
956 	unsigned int limit, i;
957 	struct sk_buff *skb;
958 	struct timespec64 ts;
959 	int rx_packets = 0;
960 	u8  desc_status;
961 	u16 pkt_len;
962 	int entry;
963 
964 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
965 	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
966 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
967 		desc = &priv->rx_ring[q].ex_desc[entry];
968 		if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
969 			break;
970 
971 		/* Descriptor type must be checked before all other reads */
972 		dma_rmb();
973 		desc_status = desc->msc;
974 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
975 
976 		/* We use 0-byte descriptors to mark the DMA mapping errors */
977 		if (!pkt_len)
978 			continue;
979 
980 		if (desc_status & MSC_MC)
981 			stats->multicast++;
982 
983 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
984 				   MSC_CEEF)) {
985 			stats->rx_errors++;
986 			if (desc_status & MSC_CRC)
987 				stats->rx_crc_errors++;
988 			if (desc_status & MSC_RFE)
989 				stats->rx_frame_errors++;
990 			if (desc_status & (MSC_RTLF | MSC_RTSF))
991 				stats->rx_length_errors++;
992 			if (desc_status & MSC_CEEF)
993 				stats->rx_missed_errors++;
994 		} else {
995 			u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
996 			struct ravb_rx_buffer *rx_buff;
997 			void *rx_addr;
998 
999 			rx_buff = &priv->rx_buffers[q][entry];
1000 			rx_addr = page_address(rx_buff->page) + rx_buff->offset;
1001 			dma_sync_single_for_cpu(ndev->dev.parent,
1002 						le32_to_cpu(desc->dptr),
1003 						pkt_len, DMA_FROM_DEVICE);
1004 
1005 			skb = napi_build_skb(rx_addr, info->rx_buffer_size);
1006 			if (unlikely(!skb)) {
1007 				stats->rx_errors++;
1008 				page_pool_put_page(priv->rx_pool[q],
1009 						   rx_buff->page, 0, true);
1010 				break;
1011 			}
1012 			skb_mark_for_recycle(skb);
1013 			get_ts &= (q == RAVB_NC) ?
1014 					RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
1015 					~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1016 			if (get_ts) {
1017 				struct skb_shared_hwtstamps *shhwtstamps;
1018 
1019 				shhwtstamps = skb_hwtstamps(skb);
1020 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1021 				ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
1022 					     32) | le32_to_cpu(desc->ts_sl);
1023 				ts.tv_nsec = le32_to_cpu(desc->ts_n);
1024 				shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
1025 			}
1026 
1027 			skb_put(skb, pkt_len);
1028 			skb->protocol = eth_type_trans(skb, ndev);
1029 			if (ndev->features & NETIF_F_RXCSUM)
1030 				ravb_rx_csum(skb);
1031 			napi_gro_receive(&priv->napi[q], skb);
1032 			rx_packets++;
1033 			stats->rx_bytes += pkt_len;
1034 
1035 			/* Mark this RX buffer as consumed. */
1036 			rx_buff->page = NULL;
1037 		}
1038 	}
1039 
1040 	/* Refill the RX ring buffers. */
1041 	priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
1042 						 priv->cur_rx[q] - priv->dirty_rx[q],
1043 						 GFP_ATOMIC);
1044 
1045 	stats->rx_packets += rx_packets;
1046 	return rx_packets;
1047 }
1048 
1049 /* Packet receive function for Ethernet AVB */
ravb_rx(struct net_device * ndev,int budget,int q)1050 static int ravb_rx(struct net_device *ndev, int budget, int q)
1051 {
1052 	struct ravb_private *priv = netdev_priv(ndev);
1053 	const struct ravb_hw_info *info = priv->info;
1054 
1055 	return info->receive(ndev, budget, q);
1056 }
1057 
ravb_rcv_snd_disable(struct net_device * ndev)1058 static void ravb_rcv_snd_disable(struct net_device *ndev)
1059 {
1060 	/* Disable TX and RX */
1061 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1062 }
1063 
ravb_rcv_snd_enable(struct net_device * ndev)1064 static void ravb_rcv_snd_enable(struct net_device *ndev)
1065 {
1066 	/* Enable TX and RX */
1067 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1068 }
1069 
1070 /* function for waiting dma process finished */
ravb_stop_dma(struct net_device * ndev)1071 static int ravb_stop_dma(struct net_device *ndev)
1072 {
1073 	struct ravb_private *priv = netdev_priv(ndev);
1074 	const struct ravb_hw_info *info = priv->info;
1075 	int error;
1076 
1077 	/* Wait for stopping the hardware TX process */
1078 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1079 
1080 	if (error)
1081 		return error;
1082 
1083 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1084 			  0);
1085 	if (error)
1086 		return error;
1087 
1088 	/* Stop the E-MAC's RX/TX processes. */
1089 	ravb_rcv_snd_disable(ndev);
1090 
1091 	/* Wait for stopping the RX DMA process */
1092 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1093 	if (error)
1094 		return error;
1095 
1096 	/* Stop AVB-DMAC process */
1097 	return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1098 }
1099 
1100 /* E-MAC interrupt handler */
ravb_emac_interrupt_unlocked(struct net_device * ndev)1101 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1102 {
1103 	struct ravb_private *priv = netdev_priv(ndev);
1104 	u32 ecsr, psr;
1105 
1106 	ecsr = ravb_read(ndev, ECSR);
1107 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1108 
1109 	if (ecsr & ECSR_MPD)
1110 		pm_wakeup_event(&priv->pdev->dev, 0);
1111 	if (ecsr & ECSR_ICD)
1112 		ndev->stats.tx_carrier_errors++;
1113 	if (ecsr & ECSR_LCHNG) {
1114 		/* Link changed */
1115 		if (priv->no_avb_link)
1116 			return;
1117 		psr = ravb_read(ndev, PSR);
1118 		if (priv->avb_link_active_low)
1119 			psr ^= PSR_LMON;
1120 		if (!(psr & PSR_LMON)) {
1121 			/* DIsable RX and TX */
1122 			ravb_rcv_snd_disable(ndev);
1123 		} else {
1124 			/* Enable RX and TX */
1125 			ravb_rcv_snd_enable(ndev);
1126 		}
1127 	}
1128 }
1129 
ravb_emac_interrupt(int irq,void * dev_id)1130 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1131 {
1132 	struct net_device *ndev = dev_id;
1133 	struct ravb_private *priv = netdev_priv(ndev);
1134 	struct device *dev = &priv->pdev->dev;
1135 	irqreturn_t result = IRQ_HANDLED;
1136 
1137 	pm_runtime_get_noresume(dev);
1138 
1139 	if (unlikely(!pm_runtime_active(dev))) {
1140 		result = IRQ_NONE;
1141 		goto out_rpm_put;
1142 	}
1143 
1144 	spin_lock(&priv->lock);
1145 	ravb_emac_interrupt_unlocked(ndev);
1146 	spin_unlock(&priv->lock);
1147 
1148 out_rpm_put:
1149 	pm_runtime_put_noidle(dev);
1150 	return result;
1151 }
1152 
1153 /* Error interrupt handler */
ravb_error_interrupt(struct net_device * ndev)1154 static void ravb_error_interrupt(struct net_device *ndev)
1155 {
1156 	struct ravb_private *priv = netdev_priv(ndev);
1157 	u32 eis, ris2;
1158 
1159 	eis = ravb_read(ndev, EIS);
1160 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1161 	if (eis & EIS_QFS) {
1162 		ris2 = ravb_read(ndev, RIS2);
1163 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1164 			   RIS2);
1165 
1166 		/* Receive Descriptor Empty int */
1167 		if (ris2 & RIS2_QFF0)
1168 			priv->stats[RAVB_BE].rx_over_errors++;
1169 
1170 		/* Receive Descriptor Empty int */
1171 		if (ris2 & RIS2_QFF1)
1172 			priv->stats[RAVB_NC].rx_over_errors++;
1173 
1174 		/* Receive FIFO Overflow int */
1175 		if (ris2 & RIS2_RFFF)
1176 			priv->rx_fifo_errors++;
1177 	}
1178 }
1179 
ravb_queue_interrupt(struct net_device * ndev,int q)1180 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1181 {
1182 	struct ravb_private *priv = netdev_priv(ndev);
1183 	const struct ravb_hw_info *info = priv->info;
1184 	u32 ris0 = ravb_read(ndev, RIS0);
1185 	u32 ric0 = ravb_read(ndev, RIC0);
1186 	u32 tis  = ravb_read(ndev, TIS);
1187 	u32 tic  = ravb_read(ndev, TIC);
1188 
1189 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1190 		if (napi_schedule_prep(&priv->napi[q])) {
1191 			/* Mask RX and TX interrupts */
1192 			if (!info->irq_en_dis) {
1193 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1194 				ravb_write(ndev, tic & ~BIT(q), TIC);
1195 			} else {
1196 				ravb_write(ndev, BIT(q), RID0);
1197 				ravb_write(ndev, BIT(q), TID);
1198 			}
1199 			__napi_schedule(&priv->napi[q]);
1200 		} else {
1201 			netdev_warn(ndev,
1202 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1203 				    ris0, ric0);
1204 			netdev_warn(ndev,
1205 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1206 				    tis, tic);
1207 		}
1208 		return true;
1209 	}
1210 	return false;
1211 }
1212 
ravb_timestamp_interrupt(struct net_device * ndev)1213 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1214 {
1215 	u32 tis = ravb_read(ndev, TIS);
1216 
1217 	if (tis & TIS_TFUF) {
1218 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1219 		ravb_get_tx_tstamp(ndev);
1220 		return true;
1221 	}
1222 	return false;
1223 }
1224 
ravb_interrupt(int irq,void * dev_id)1225 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1226 {
1227 	struct net_device *ndev = dev_id;
1228 	struct ravb_private *priv = netdev_priv(ndev);
1229 	const struct ravb_hw_info *info = priv->info;
1230 	struct device *dev = &priv->pdev->dev;
1231 	irqreturn_t result = IRQ_NONE;
1232 	u32 iss;
1233 
1234 	pm_runtime_get_noresume(dev);
1235 
1236 	if (unlikely(!pm_runtime_active(dev)))
1237 		goto out_rpm_put;
1238 
1239 	spin_lock(&priv->lock);
1240 	/* Get interrupt status */
1241 	iss = ravb_read(ndev, ISS);
1242 
1243 	/* Received and transmitted interrupts */
1244 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1245 		int q;
1246 
1247 		/* Timestamp updated */
1248 		if (ravb_timestamp_interrupt(ndev))
1249 			result = IRQ_HANDLED;
1250 
1251 		/* Network control and best effort queue RX/TX */
1252 		if (info->nc_queues) {
1253 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1254 				if (ravb_queue_interrupt(ndev, q))
1255 					result = IRQ_HANDLED;
1256 			}
1257 		} else {
1258 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1259 				result = IRQ_HANDLED;
1260 		}
1261 	}
1262 
1263 	/* E-MAC status summary */
1264 	if (iss & ISS_MS) {
1265 		ravb_emac_interrupt_unlocked(ndev);
1266 		result = IRQ_HANDLED;
1267 	}
1268 
1269 	/* Error status summary */
1270 	if (iss & ISS_ES) {
1271 		ravb_error_interrupt(ndev);
1272 		result = IRQ_HANDLED;
1273 	}
1274 
1275 	/* gPTP interrupt status summary */
1276 	if (iss & ISS_CGIS) {
1277 		ravb_ptp_interrupt(ndev);
1278 		result = IRQ_HANDLED;
1279 	}
1280 
1281 	spin_unlock(&priv->lock);
1282 
1283 out_rpm_put:
1284 	pm_runtime_put_noidle(dev);
1285 	return result;
1286 }
1287 
1288 /* Timestamp/Error/gPTP interrupt handler */
ravb_multi_interrupt(int irq,void * dev_id)1289 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1290 {
1291 	struct net_device *ndev = dev_id;
1292 	struct ravb_private *priv = netdev_priv(ndev);
1293 	struct device *dev = &priv->pdev->dev;
1294 	irqreturn_t result = IRQ_NONE;
1295 	u32 iss;
1296 
1297 	pm_runtime_get_noresume(dev);
1298 
1299 	if (unlikely(!pm_runtime_active(dev)))
1300 		goto out_rpm_put;
1301 
1302 	spin_lock(&priv->lock);
1303 	/* Get interrupt status */
1304 	iss = ravb_read(ndev, ISS);
1305 
1306 	/* Timestamp updated */
1307 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1308 		result = IRQ_HANDLED;
1309 
1310 	/* Error status summary */
1311 	if (iss & ISS_ES) {
1312 		ravb_error_interrupt(ndev);
1313 		result = IRQ_HANDLED;
1314 	}
1315 
1316 	/* gPTP interrupt status summary */
1317 	if (iss & ISS_CGIS) {
1318 		ravb_ptp_interrupt(ndev);
1319 		result = IRQ_HANDLED;
1320 	}
1321 
1322 	spin_unlock(&priv->lock);
1323 
1324 out_rpm_put:
1325 	pm_runtime_put_noidle(dev);
1326 	return result;
1327 }
1328 
ravb_dma_interrupt(int irq,void * dev_id,int q)1329 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1330 {
1331 	struct net_device *ndev = dev_id;
1332 	struct ravb_private *priv = netdev_priv(ndev);
1333 	struct device *dev = &priv->pdev->dev;
1334 	irqreturn_t result = IRQ_NONE;
1335 
1336 	pm_runtime_get_noresume(dev);
1337 
1338 	if (unlikely(!pm_runtime_active(dev)))
1339 		goto out_rpm_put;
1340 
1341 	spin_lock(&priv->lock);
1342 
1343 	/* Network control/Best effort queue RX/TX */
1344 	if (ravb_queue_interrupt(ndev, q))
1345 		result = IRQ_HANDLED;
1346 
1347 	spin_unlock(&priv->lock);
1348 
1349 out_rpm_put:
1350 	pm_runtime_put_noidle(dev);
1351 	return result;
1352 }
1353 
ravb_be_interrupt(int irq,void * dev_id)1354 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1355 {
1356 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1357 }
1358 
ravb_nc_interrupt(int irq,void * dev_id)1359 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1360 {
1361 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1362 }
1363 
ravb_poll(struct napi_struct * napi,int budget)1364 static int ravb_poll(struct napi_struct *napi, int budget)
1365 {
1366 	struct net_device *ndev = napi->dev;
1367 	struct ravb_private *priv = netdev_priv(ndev);
1368 	const struct ravb_hw_info *info = priv->info;
1369 	unsigned long flags;
1370 	int q = napi - priv->napi;
1371 	int mask = BIT(q);
1372 	int work_done;
1373 
1374 	/* Processing RX Descriptor Ring */
1375 	/* Clear RX interrupt */
1376 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1377 	work_done = ravb_rx(ndev, budget, q);
1378 
1379 	/* Processing TX Descriptor Ring */
1380 	spin_lock_irqsave(&priv->lock, flags);
1381 	/* Clear TX interrupt */
1382 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1383 	ravb_tx_free(ndev, q, true);
1384 	netif_wake_subqueue(ndev, q);
1385 	spin_unlock_irqrestore(&priv->lock, flags);
1386 
1387 	/* Receive error message handling */
1388 	priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1389 	if (info->nc_queues)
1390 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1391 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1392 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1393 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1394 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1395 
1396 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1397 		/* Re-enable RX/TX interrupts */
1398 		spin_lock_irqsave(&priv->lock, flags);
1399 		if (!info->irq_en_dis) {
1400 			ravb_modify(ndev, RIC0, mask, mask);
1401 			ravb_modify(ndev, TIC,  mask, mask);
1402 		} else {
1403 			ravb_write(ndev, mask, RIE0);
1404 			ravb_write(ndev, mask, TIE);
1405 		}
1406 		spin_unlock_irqrestore(&priv->lock, flags);
1407 	}
1408 
1409 	return work_done;
1410 }
1411 
ravb_set_duplex_gbeth(struct net_device * ndev)1412 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1413 {
1414 	struct ravb_private *priv = netdev_priv(ndev);
1415 
1416 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1417 }
1418 
1419 /* PHY state control function */
ravb_adjust_link(struct net_device * ndev)1420 static void ravb_adjust_link(struct net_device *ndev)
1421 {
1422 	struct ravb_private *priv = netdev_priv(ndev);
1423 	const struct ravb_hw_info *info = priv->info;
1424 	struct phy_device *phydev = ndev->phydev;
1425 	bool new_state = false;
1426 	unsigned long flags;
1427 
1428 	spin_lock_irqsave(&priv->lock, flags);
1429 
1430 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1431 	if (priv->no_avb_link)
1432 		ravb_rcv_snd_disable(ndev);
1433 
1434 	if (phydev->link) {
1435 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1436 			new_state = true;
1437 			priv->duplex = phydev->duplex;
1438 			ravb_set_duplex_gbeth(ndev);
1439 		}
1440 
1441 		if (phydev->speed != priv->speed) {
1442 			new_state = true;
1443 			priv->speed = phydev->speed;
1444 			info->set_rate(ndev);
1445 		}
1446 		if (!priv->link) {
1447 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1448 			new_state = true;
1449 			priv->link = phydev->link;
1450 		}
1451 	} else if (priv->link) {
1452 		new_state = true;
1453 		priv->link = 0;
1454 		priv->speed = 0;
1455 		if (info->half_duplex)
1456 			priv->duplex = -1;
1457 	}
1458 
1459 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1460 	if (priv->no_avb_link && phydev->link)
1461 		ravb_rcv_snd_enable(ndev);
1462 
1463 	spin_unlock_irqrestore(&priv->lock, flags);
1464 
1465 	if (new_state && netif_msg_link(priv))
1466 		phy_print_status(phydev);
1467 }
1468 
1469 /* PHY init function */
ravb_phy_init(struct net_device * ndev)1470 static int ravb_phy_init(struct net_device *ndev)
1471 {
1472 	struct device_node *np = ndev->dev.parent->of_node;
1473 	struct ravb_private *priv = netdev_priv(ndev);
1474 	const struct ravb_hw_info *info = priv->info;
1475 	struct phy_device *phydev;
1476 	struct device_node *pn;
1477 	phy_interface_t iface;
1478 	int err;
1479 
1480 	priv->link = 0;
1481 	priv->speed = 0;
1482 	priv->duplex = -1;
1483 
1484 	/* Try connecting to PHY */
1485 	pn = of_parse_phandle(np, "phy-handle", 0);
1486 	if (!pn) {
1487 		/* In the case of a fixed PHY, the DT node associated
1488 		 * to the PHY is the Ethernet MAC DT node.
1489 		 */
1490 		if (of_phy_is_fixed_link(np)) {
1491 			err = of_phy_register_fixed_link(np);
1492 			if (err)
1493 				return err;
1494 		}
1495 		pn = of_node_get(np);
1496 	}
1497 
1498 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1499 				     : priv->phy_interface;
1500 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1501 	of_node_put(pn);
1502 	if (!phydev) {
1503 		netdev_err(ndev, "failed to connect PHY\n");
1504 		err = -ENOENT;
1505 		goto err_deregister_fixed_link;
1506 	}
1507 
1508 	if (!info->half_duplex) {
1509 		/* 10BASE, Pause and Asym Pause is not supported */
1510 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1511 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1512 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1513 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1514 
1515 		/* Half Duplex is not supported */
1516 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1517 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1518 	}
1519 
1520 	phy_attached_info(phydev);
1521 
1522 	return 0;
1523 
1524 err_deregister_fixed_link:
1525 	if (of_phy_is_fixed_link(np))
1526 		of_phy_deregister_fixed_link(np);
1527 
1528 	return err;
1529 }
1530 
1531 /* PHY control start function */
ravb_phy_start(struct net_device * ndev)1532 static int ravb_phy_start(struct net_device *ndev)
1533 {
1534 	int error;
1535 
1536 	error = ravb_phy_init(ndev);
1537 	if (error)
1538 		return error;
1539 
1540 	phy_start(ndev->phydev);
1541 
1542 	return 0;
1543 }
1544 
ravb_get_msglevel(struct net_device * ndev)1545 static u32 ravb_get_msglevel(struct net_device *ndev)
1546 {
1547 	struct ravb_private *priv = netdev_priv(ndev);
1548 
1549 	return priv->msg_enable;
1550 }
1551 
ravb_set_msglevel(struct net_device * ndev,u32 value)1552 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1553 {
1554 	struct ravb_private *priv = netdev_priv(ndev);
1555 
1556 	priv->msg_enable = value;
1557 }
1558 
1559 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1560 	"rx_queue_0_current",
1561 	"tx_queue_0_current",
1562 	"rx_queue_0_dirty",
1563 	"tx_queue_0_dirty",
1564 	"rx_queue_0_packets",
1565 	"tx_queue_0_packets",
1566 	"rx_queue_0_bytes",
1567 	"tx_queue_0_bytes",
1568 	"rx_queue_0_mcast_packets",
1569 	"rx_queue_0_errors",
1570 	"rx_queue_0_crc_errors",
1571 	"rx_queue_0_frame_errors",
1572 	"rx_queue_0_length_errors",
1573 	"rx_queue_0_csum_offload_errors",
1574 	"rx_queue_0_over_errors",
1575 };
1576 
1577 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1578 	"rx_queue_0_current",
1579 	"tx_queue_0_current",
1580 	"rx_queue_0_dirty",
1581 	"tx_queue_0_dirty",
1582 	"rx_queue_0_packets",
1583 	"tx_queue_0_packets",
1584 	"rx_queue_0_bytes",
1585 	"tx_queue_0_bytes",
1586 	"rx_queue_0_mcast_packets",
1587 	"rx_queue_0_errors",
1588 	"rx_queue_0_crc_errors",
1589 	"rx_queue_0_frame_errors",
1590 	"rx_queue_0_length_errors",
1591 	"rx_queue_0_missed_errors",
1592 	"rx_queue_0_over_errors",
1593 
1594 	"rx_queue_1_current",
1595 	"tx_queue_1_current",
1596 	"rx_queue_1_dirty",
1597 	"tx_queue_1_dirty",
1598 	"rx_queue_1_packets",
1599 	"tx_queue_1_packets",
1600 	"rx_queue_1_bytes",
1601 	"tx_queue_1_bytes",
1602 	"rx_queue_1_mcast_packets",
1603 	"rx_queue_1_errors",
1604 	"rx_queue_1_crc_errors",
1605 	"rx_queue_1_frame_errors",
1606 	"rx_queue_1_length_errors",
1607 	"rx_queue_1_missed_errors",
1608 	"rx_queue_1_over_errors",
1609 };
1610 
ravb_get_sset_count(struct net_device * netdev,int sset)1611 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1612 {
1613 	struct ravb_private *priv = netdev_priv(netdev);
1614 	const struct ravb_hw_info *info = priv->info;
1615 
1616 	switch (sset) {
1617 	case ETH_SS_STATS:
1618 		return info->stats_len;
1619 	default:
1620 		return -EOPNOTSUPP;
1621 	}
1622 }
1623 
ravb_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * estats,u64 * data)1624 static void ravb_get_ethtool_stats(struct net_device *ndev,
1625 				   struct ethtool_stats *estats, u64 *data)
1626 {
1627 	struct ravb_private *priv = netdev_priv(ndev);
1628 	const struct ravb_hw_info *info = priv->info;
1629 	int num_rx_q;
1630 	int i = 0;
1631 	int q;
1632 
1633 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1634 	/* Device-specific stats */
1635 	for (q = RAVB_BE; q < num_rx_q; q++) {
1636 		struct net_device_stats *stats = &priv->stats[q];
1637 
1638 		data[i++] = priv->cur_rx[q];
1639 		data[i++] = priv->cur_tx[q];
1640 		data[i++] = priv->dirty_rx[q];
1641 		data[i++] = priv->dirty_tx[q];
1642 		data[i++] = stats->rx_packets;
1643 		data[i++] = stats->tx_packets;
1644 		data[i++] = stats->rx_bytes;
1645 		data[i++] = stats->tx_bytes;
1646 		data[i++] = stats->multicast;
1647 		data[i++] = stats->rx_errors;
1648 		data[i++] = stats->rx_crc_errors;
1649 		data[i++] = stats->rx_frame_errors;
1650 		data[i++] = stats->rx_length_errors;
1651 		data[i++] = stats->rx_missed_errors;
1652 		data[i++] = stats->rx_over_errors;
1653 	}
1654 }
1655 
ravb_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1656 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1657 {
1658 	struct ravb_private *priv = netdev_priv(ndev);
1659 	const struct ravb_hw_info *info = priv->info;
1660 
1661 	switch (stringset) {
1662 	case ETH_SS_STATS:
1663 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1664 		break;
1665 	}
1666 }
1667 
ravb_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1668 static void ravb_get_ringparam(struct net_device *ndev,
1669 			       struct ethtool_ringparam *ring,
1670 			       struct kernel_ethtool_ringparam *kernel_ring,
1671 			       struct netlink_ext_ack *extack)
1672 {
1673 	struct ravb_private *priv = netdev_priv(ndev);
1674 
1675 	ring->rx_max_pending = BE_RX_RING_MAX;
1676 	ring->tx_max_pending = BE_TX_RING_MAX;
1677 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1678 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1679 }
1680 
ravb_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1681 static int ravb_set_ringparam(struct net_device *ndev,
1682 			      struct ethtool_ringparam *ring,
1683 			      struct kernel_ethtool_ringparam *kernel_ring,
1684 			      struct netlink_ext_ack *extack)
1685 {
1686 	struct ravb_private *priv = netdev_priv(ndev);
1687 	const struct ravb_hw_info *info = priv->info;
1688 	int error;
1689 
1690 	if (ring->tx_pending > BE_TX_RING_MAX ||
1691 	    ring->rx_pending > BE_RX_RING_MAX ||
1692 	    ring->tx_pending < BE_TX_RING_MIN ||
1693 	    ring->rx_pending < BE_RX_RING_MIN)
1694 		return -EINVAL;
1695 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1696 		return -EINVAL;
1697 
1698 	if (netif_running(ndev)) {
1699 		netif_device_detach(ndev);
1700 		/* Stop PTP Clock driver */
1701 		if (info->gptp)
1702 			ravb_ptp_stop(ndev);
1703 		/* Wait for DMA stopping */
1704 		error = ravb_stop_dma(ndev);
1705 		if (error) {
1706 			netdev_err(ndev,
1707 				   "cannot set ringparam! Any AVB processes are still running?\n");
1708 			return error;
1709 		}
1710 		synchronize_irq(ndev->irq);
1711 
1712 		/* Free all the skb's in the RX queue and the DMA buffers. */
1713 		ravb_ring_free(ndev, RAVB_BE);
1714 		if (info->nc_queues)
1715 			ravb_ring_free(ndev, RAVB_NC);
1716 	}
1717 
1718 	/* Set new parameters */
1719 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1720 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1721 
1722 	if (netif_running(ndev)) {
1723 		error = ravb_dmac_init(ndev);
1724 		if (error) {
1725 			netdev_err(ndev,
1726 				   "%s: ravb_dmac_init() failed, error %d\n",
1727 				   __func__, error);
1728 			return error;
1729 		}
1730 
1731 		ravb_emac_init(ndev);
1732 
1733 		/* Initialise PTP Clock driver */
1734 		if (info->gptp)
1735 			ravb_ptp_init(ndev, priv->pdev);
1736 
1737 		netif_device_attach(ndev);
1738 	}
1739 
1740 	return 0;
1741 }
1742 
ravb_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)1743 static int ravb_get_ts_info(struct net_device *ndev,
1744 			    struct kernel_ethtool_ts_info *info)
1745 {
1746 	struct ravb_private *priv = netdev_priv(ndev);
1747 	const struct ravb_hw_info *hw_info = priv->info;
1748 
1749 	if (hw_info->gptp || hw_info->ccc_gac) {
1750 		info->so_timestamping =
1751 			SOF_TIMESTAMPING_TX_SOFTWARE |
1752 			SOF_TIMESTAMPING_TX_HARDWARE |
1753 			SOF_TIMESTAMPING_RX_HARDWARE |
1754 			SOF_TIMESTAMPING_RAW_HARDWARE;
1755 		info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1756 		info->rx_filters =
1757 			(1 << HWTSTAMP_FILTER_NONE) |
1758 			(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1759 			(1 << HWTSTAMP_FILTER_ALL);
1760 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1761 	}
1762 
1763 	return 0;
1764 }
1765 
ravb_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1766 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1767 {
1768 	struct ravb_private *priv = netdev_priv(ndev);
1769 
1770 	wol->supported = WAKE_MAGIC;
1771 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1772 }
1773 
ravb_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1774 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1775 {
1776 	struct ravb_private *priv = netdev_priv(ndev);
1777 	const struct ravb_hw_info *info = priv->info;
1778 
1779 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1780 		return -EOPNOTSUPP;
1781 
1782 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1783 
1784 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1785 
1786 	return 0;
1787 }
1788 
1789 static const struct ethtool_ops ravb_ethtool_ops = {
1790 	.nway_reset		= phy_ethtool_nway_reset,
1791 	.get_msglevel		= ravb_get_msglevel,
1792 	.set_msglevel		= ravb_set_msglevel,
1793 	.get_link		= ethtool_op_get_link,
1794 	.get_strings		= ravb_get_strings,
1795 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1796 	.get_sset_count		= ravb_get_sset_count,
1797 	.get_ringparam		= ravb_get_ringparam,
1798 	.set_ringparam		= ravb_set_ringparam,
1799 	.get_ts_info		= ravb_get_ts_info,
1800 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1801 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1802 	.get_wol		= ravb_get_wol,
1803 	.set_wol		= ravb_set_wol,
1804 };
1805 
ravb_set_config_mode(struct net_device * ndev)1806 static int ravb_set_config_mode(struct net_device *ndev)
1807 {
1808 	struct ravb_private *priv = netdev_priv(ndev);
1809 	const struct ravb_hw_info *info = priv->info;
1810 	int error;
1811 
1812 	if (info->gptp) {
1813 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1814 		if (error)
1815 			return error;
1816 		/* Set CSEL value */
1817 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1818 	} else if (info->ccc_gac) {
1819 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1820 	} else {
1821 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1822 	}
1823 
1824 	return error;
1825 }
1826 
ravb_set_gti(struct net_device * ndev)1827 static void ravb_set_gti(struct net_device *ndev)
1828 {
1829 	struct ravb_private *priv = netdev_priv(ndev);
1830 	const struct ravb_hw_info *info = priv->info;
1831 
1832 	if (!(info->gptp || info->ccc_gac))
1833 		return;
1834 
1835 	ravb_write(ndev, priv->gti_tiv, GTI);
1836 
1837 	/* Request GTI loading */
1838 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1839 }
1840 
ravb_compute_gti(struct net_device * ndev)1841 static int ravb_compute_gti(struct net_device *ndev)
1842 {
1843 	struct ravb_private *priv = netdev_priv(ndev);
1844 	const struct ravb_hw_info *info = priv->info;
1845 	struct device *dev = ndev->dev.parent;
1846 	unsigned long rate;
1847 	u64 inc;
1848 
1849 	if (!(info->gptp || info->ccc_gac))
1850 		return 0;
1851 
1852 	if (info->gptp_ref_clk)
1853 		rate = clk_get_rate(priv->gptp_clk);
1854 	else
1855 		rate = clk_get_rate(priv->clk);
1856 	if (!rate)
1857 		return -EINVAL;
1858 
1859 	inc = div64_ul(1000000000ULL << 20, rate);
1860 
1861 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1862 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1863 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1864 		return -EINVAL;
1865 	}
1866 	priv->gti_tiv = inc;
1867 
1868 	return 0;
1869 }
1870 
1871 /* Set tx and rx clock internal delay modes */
ravb_parse_delay_mode(struct device_node * np,struct net_device * ndev)1872 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1873 {
1874 	struct ravb_private *priv = netdev_priv(ndev);
1875 	bool explicit_delay = false;
1876 	u32 delay;
1877 
1878 	if (!priv->info->internal_delay)
1879 		return;
1880 
1881 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1882 		/* Valid values are 0 and 1800, according to DT bindings */
1883 		priv->rxcidm = !!delay;
1884 		explicit_delay = true;
1885 	}
1886 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1887 		/* Valid values are 0 and 2000, according to DT bindings */
1888 		priv->txcidm = !!delay;
1889 		explicit_delay = true;
1890 	}
1891 
1892 	if (explicit_delay)
1893 		return;
1894 
1895 	/* Fall back to legacy rgmii-*id behavior */
1896 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1897 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1898 		priv->rxcidm = 1;
1899 		priv->rgmii_override = 1;
1900 	}
1901 
1902 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1903 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1904 		priv->txcidm = 1;
1905 		priv->rgmii_override = 1;
1906 	}
1907 }
1908 
ravb_set_delay_mode(struct net_device * ndev)1909 static void ravb_set_delay_mode(struct net_device *ndev)
1910 {
1911 	struct ravb_private *priv = netdev_priv(ndev);
1912 	u32 set = 0;
1913 
1914 	if (!priv->info->internal_delay)
1915 		return;
1916 
1917 	if (priv->rxcidm)
1918 		set |= APSR_RDM;
1919 	if (priv->txcidm)
1920 		set |= APSR_TDM;
1921 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1922 }
1923 
1924 /* Network device open function for Ethernet AVB */
ravb_open(struct net_device * ndev)1925 static int ravb_open(struct net_device *ndev)
1926 {
1927 	struct ravb_private *priv = netdev_priv(ndev);
1928 	const struct ravb_hw_info *info = priv->info;
1929 	struct device *dev = &priv->pdev->dev;
1930 	int error;
1931 
1932 	napi_enable(&priv->napi[RAVB_BE]);
1933 	if (info->nc_queues)
1934 		napi_enable(&priv->napi[RAVB_NC]);
1935 
1936 	error = pm_runtime_resume_and_get(dev);
1937 	if (error < 0)
1938 		goto out_napi_off;
1939 
1940 	/* Set AVB config mode */
1941 	error = ravb_set_config_mode(ndev);
1942 	if (error)
1943 		goto out_rpm_put;
1944 
1945 	ravb_set_delay_mode(ndev);
1946 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1947 
1948 	/* Device init */
1949 	error = ravb_dmac_init(ndev);
1950 	if (error)
1951 		goto out_set_reset;
1952 
1953 	ravb_emac_init(ndev);
1954 
1955 	ravb_set_gti(ndev);
1956 
1957 	/* Initialise PTP Clock driver */
1958 	if (info->gptp || info->ccc_gac)
1959 		ravb_ptp_init(ndev, priv->pdev);
1960 
1961 	/* PHY control start */
1962 	error = ravb_phy_start(ndev);
1963 	if (error)
1964 		goto out_ptp_stop;
1965 
1966 	netif_tx_start_all_queues(ndev);
1967 
1968 	return 0;
1969 
1970 out_ptp_stop:
1971 	/* Stop PTP Clock driver */
1972 	if (info->gptp || info->ccc_gac)
1973 		ravb_ptp_stop(ndev);
1974 	ravb_stop_dma(ndev);
1975 out_set_reset:
1976 	ravb_set_opmode(ndev, CCC_OPC_RESET);
1977 out_rpm_put:
1978 	pm_runtime_mark_last_busy(dev);
1979 	pm_runtime_put_autosuspend(dev);
1980 out_napi_off:
1981 	if (info->nc_queues)
1982 		napi_disable(&priv->napi[RAVB_NC]);
1983 	napi_disable(&priv->napi[RAVB_BE]);
1984 	return error;
1985 }
1986 
1987 /* Timeout function for Ethernet AVB */
ravb_tx_timeout(struct net_device * ndev,unsigned int txqueue)1988 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1989 {
1990 	struct ravb_private *priv = netdev_priv(ndev);
1991 
1992 	netif_err(priv, tx_err, ndev,
1993 		  "transmit timed out, status %08x, resetting...\n",
1994 		  ravb_read(ndev, ISS));
1995 
1996 	/* tx_errors count up */
1997 	ndev->stats.tx_errors++;
1998 
1999 	schedule_work(&priv->work);
2000 }
2001 
ravb_tx_timeout_work(struct work_struct * work)2002 static void ravb_tx_timeout_work(struct work_struct *work)
2003 {
2004 	struct ravb_private *priv = container_of(work, struct ravb_private,
2005 						 work);
2006 	const struct ravb_hw_info *info = priv->info;
2007 	struct net_device *ndev = priv->ndev;
2008 	int error;
2009 
2010 	if (!rtnl_trylock()) {
2011 		usleep_range(1000, 2000);
2012 		schedule_work(&priv->work);
2013 		return;
2014 	}
2015 
2016 	netif_tx_stop_all_queues(ndev);
2017 
2018 	/* Stop PTP Clock driver */
2019 	if (info->gptp)
2020 		ravb_ptp_stop(ndev);
2021 
2022 	/* Wait for DMA stopping */
2023 	if (ravb_stop_dma(ndev)) {
2024 		/* If ravb_stop_dma() fails, the hardware is still operating
2025 		 * for TX and/or RX. So, this should not call the following
2026 		 * functions because ravb_dmac_init() is possible to fail too.
2027 		 * Also, this should not retry ravb_stop_dma() again and again
2028 		 * here because it's possible to wait forever. So, this just
2029 		 * re-enables the TX and RX and skip the following
2030 		 * re-initialization procedure.
2031 		 */
2032 		ravb_rcv_snd_enable(ndev);
2033 		goto out;
2034 	}
2035 
2036 	ravb_ring_free(ndev, RAVB_BE);
2037 	if (info->nc_queues)
2038 		ravb_ring_free(ndev, RAVB_NC);
2039 
2040 	/* Device init */
2041 	error = ravb_dmac_init(ndev);
2042 	if (error) {
2043 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
2044 		 * should return here to avoid re-enabling the TX and RX in
2045 		 * ravb_emac_init().
2046 		 */
2047 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2048 			   __func__, error);
2049 		goto out_unlock;
2050 	}
2051 	ravb_emac_init(ndev);
2052 
2053 out:
2054 	/* Initialise PTP Clock driver */
2055 	if (info->gptp)
2056 		ravb_ptp_init(ndev, priv->pdev);
2057 
2058 	netif_tx_start_all_queues(ndev);
2059 
2060 out_unlock:
2061 	rtnl_unlock();
2062 }
2063 
ravb_can_tx_csum_gbeth(struct sk_buff * skb)2064 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2065 {
2066 	u16 net_protocol = ntohs(skb->protocol);
2067 	u8 inner_protocol;
2068 
2069 	/* GbEth IP can calculate the checksum if:
2070 	 * - there are zero or one VLAN headers with TPID=0x8100
2071 	 * - the network protocol is IPv4 or IPv6
2072 	 * - the transport protocol is TCP, UDP or ICMP
2073 	 * - the packet is not fragmented
2074 	 */
2075 
2076 	if (net_protocol == ETH_P_8021Q) {
2077 		struct vlan_hdr vhdr, *vh;
2078 
2079 		vh = skb_header_pointer(skb, ETH_HLEN, sizeof(vhdr), &vhdr);
2080 		if (!vh)
2081 			return false;
2082 
2083 		net_protocol = ntohs(vh->h_vlan_encapsulated_proto);
2084 	}
2085 
2086 	switch (net_protocol) {
2087 	case ETH_P_IP:
2088 		inner_protocol = ip_hdr(skb)->protocol;
2089 		break;
2090 	case ETH_P_IPV6:
2091 		inner_protocol = ipv6_hdr(skb)->nexthdr;
2092 		break;
2093 	default:
2094 		return false;
2095 	}
2096 
2097 	switch (inner_protocol) {
2098 	case IPPROTO_TCP:
2099 	case IPPROTO_UDP:
2100 		return true;
2101 	default:
2102 		return false;
2103 	}
2104 }
2105 
2106 /* Packet transmit function for Ethernet AVB */
ravb_start_xmit(struct sk_buff * skb,struct net_device * ndev)2107 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2108 {
2109 	struct ravb_private *priv = netdev_priv(ndev);
2110 	const struct ravb_hw_info *info = priv->info;
2111 	unsigned int num_tx_desc = priv->num_tx_desc;
2112 	u16 q = skb_get_queue_mapping(skb);
2113 	struct ravb_tstamp_skb *ts_skb;
2114 	struct ravb_tx_desc *desc;
2115 	unsigned long flags;
2116 	dma_addr_t dma_addr;
2117 	void *buffer;
2118 	u32 entry;
2119 	u32 len;
2120 
2121 	if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2122 		skb_checksum_help(skb);
2123 
2124 	spin_lock_irqsave(&priv->lock, flags);
2125 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2126 	    num_tx_desc) {
2127 		netif_err(priv, tx_queued, ndev,
2128 			  "still transmitting with the full ring!\n");
2129 		netif_stop_subqueue(ndev, q);
2130 		spin_unlock_irqrestore(&priv->lock, flags);
2131 		return NETDEV_TX_BUSY;
2132 	}
2133 
2134 	if (skb_put_padto(skb, ETH_ZLEN))
2135 		goto exit;
2136 
2137 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2138 	priv->tx_skb[q][entry / num_tx_desc] = skb;
2139 
2140 	if (num_tx_desc > 1) {
2141 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2142 			 entry / num_tx_desc * DPTR_ALIGN;
2143 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2144 
2145 		/* Zero length DMA descriptors are problematic as they seem
2146 		 * to terminate DMA transfers. Avoid them by simply using a
2147 		 * length of DPTR_ALIGN (4) when skb data is aligned to
2148 		 * DPTR_ALIGN.
2149 		 *
2150 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
2151 		 * bytes of data by the call to skb_put_padto() above this
2152 		 * is safe with respect to both the length of the first DMA
2153 		 * descriptor (len) overflowing the available data and the
2154 		 * length of the second DMA descriptor (skb->len - len)
2155 		 * being negative.
2156 		 */
2157 		if (len == 0)
2158 			len = DPTR_ALIGN;
2159 
2160 		memcpy(buffer, skb->data, len);
2161 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2162 					  DMA_TO_DEVICE);
2163 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2164 			goto drop;
2165 
2166 		desc = &priv->tx_ring[q][entry];
2167 		desc->ds_tagl = cpu_to_le16(len);
2168 		desc->dptr = cpu_to_le32(dma_addr);
2169 
2170 		buffer = skb->data + len;
2171 		len = skb->len - len;
2172 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2173 					  DMA_TO_DEVICE);
2174 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2175 			goto unmap;
2176 
2177 		desc++;
2178 	} else {
2179 		desc = &priv->tx_ring[q][entry];
2180 		len = skb->len;
2181 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2182 					  DMA_TO_DEVICE);
2183 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2184 			goto drop;
2185 	}
2186 	desc->ds_tagl = cpu_to_le16(len);
2187 	desc->dptr = cpu_to_le32(dma_addr);
2188 
2189 	/* TX timestamp required */
2190 	if (info->gptp || info->ccc_gac) {
2191 		if (q == RAVB_NC) {
2192 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2193 			if (!ts_skb) {
2194 				if (num_tx_desc > 1) {
2195 					desc--;
2196 					dma_unmap_single(ndev->dev.parent, dma_addr,
2197 							 len, DMA_TO_DEVICE);
2198 				}
2199 				goto unmap;
2200 			}
2201 			ts_skb->skb = skb_get(skb);
2202 			ts_skb->tag = priv->ts_skb_tag++;
2203 			priv->ts_skb_tag &= 0x3ff;
2204 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2205 
2206 			/* TAG and timestamp required flag */
2207 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2208 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2209 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2210 		}
2211 
2212 		skb_tx_timestamp(skb);
2213 	}
2214 
2215 	if (num_tx_desc > 1) {
2216 		desc->die_dt = DT_FEND;
2217 		desc--;
2218 		/* When using multi-descriptors, DT_FEND needs to get written
2219 		 * before DT_FSTART, but the compiler may reorder the memory
2220 		 * writes in an attempt to optimize the code.
2221 		 * Use a dma_wmb() barrier to make sure DT_FEND and DT_FSTART
2222 		 * are written exactly in the order shown in the code.
2223 		 * This is particularly important for cases where the DMA engine
2224 		 * is already running when we are running this code. If the DMA
2225 		 * sees DT_FSTART without the corresponding DT_FEND it will enter
2226 		 * an error condition.
2227 		 */
2228 		dma_wmb();
2229 		desc->die_dt = DT_FSTART;
2230 	} else {
2231 		/* Descriptor type must be set after all the above writes */
2232 		dma_wmb();
2233 		desc->die_dt = DT_FSINGLE;
2234 	}
2235 
2236 	/* Before ringing the doorbell we need to make sure that the latest
2237 	 * writes have been committed to memory, otherwise it could delay
2238 	 * things until the doorbell is rang again.
2239 	 * This is in replacement of the read operation mentioned in the HW
2240 	 * manuals.
2241 	 */
2242 	dma_wmb();
2243 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2244 
2245 	priv->cur_tx[q] += num_tx_desc;
2246 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2247 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2248 	    !ravb_tx_free(ndev, q, true))
2249 		netif_stop_subqueue(ndev, q);
2250 
2251 exit:
2252 	spin_unlock_irqrestore(&priv->lock, flags);
2253 	return NETDEV_TX_OK;
2254 
2255 unmap:
2256 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2257 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2258 drop:
2259 	dev_kfree_skb_any(skb);
2260 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2261 	goto exit;
2262 }
2263 
ravb_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)2264 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2265 			     struct net_device *sb_dev)
2266 {
2267 	/* If skb needs TX timestamp, it is handled in network control queue */
2268 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2269 							       RAVB_BE;
2270 
2271 }
2272 
ravb_get_stats(struct net_device * ndev)2273 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2274 {
2275 	struct ravb_private *priv = netdev_priv(ndev);
2276 	const struct ravb_hw_info *info = priv->info;
2277 	struct net_device_stats *nstats, *stats0, *stats1;
2278 	struct device *dev = &priv->pdev->dev;
2279 
2280 	nstats = &ndev->stats;
2281 
2282 	pm_runtime_get_noresume(dev);
2283 
2284 	if (!pm_runtime_active(dev))
2285 		goto out_rpm_put;
2286 
2287 	stats0 = &priv->stats[RAVB_BE];
2288 
2289 	if (info->tx_counters) {
2290 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2291 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2292 	}
2293 
2294 	if (info->carrier_counters) {
2295 		nstats->collisions += ravb_read(ndev, CXR41);
2296 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2297 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2298 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2299 	}
2300 
2301 	nstats->rx_packets = stats0->rx_packets;
2302 	nstats->tx_packets = stats0->tx_packets;
2303 	nstats->rx_bytes = stats0->rx_bytes;
2304 	nstats->tx_bytes = stats0->tx_bytes;
2305 	nstats->multicast = stats0->multicast;
2306 	nstats->rx_errors = stats0->rx_errors;
2307 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2308 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2309 	nstats->rx_length_errors = stats0->rx_length_errors;
2310 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2311 	nstats->rx_over_errors = stats0->rx_over_errors;
2312 	if (info->nc_queues) {
2313 		stats1 = &priv->stats[RAVB_NC];
2314 
2315 		nstats->rx_packets += stats1->rx_packets;
2316 		nstats->tx_packets += stats1->tx_packets;
2317 		nstats->rx_bytes += stats1->rx_bytes;
2318 		nstats->tx_bytes += stats1->tx_bytes;
2319 		nstats->multicast += stats1->multicast;
2320 		nstats->rx_errors += stats1->rx_errors;
2321 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2322 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2323 		nstats->rx_length_errors += stats1->rx_length_errors;
2324 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2325 		nstats->rx_over_errors += stats1->rx_over_errors;
2326 	}
2327 
2328 out_rpm_put:
2329 	pm_runtime_put_noidle(dev);
2330 	return nstats;
2331 }
2332 
2333 /* Update promiscuous bit */
ravb_set_rx_mode(struct net_device * ndev)2334 static void ravb_set_rx_mode(struct net_device *ndev)
2335 {
2336 	struct ravb_private *priv = netdev_priv(ndev);
2337 	unsigned long flags;
2338 
2339 	spin_lock_irqsave(&priv->lock, flags);
2340 	ravb_modify(ndev, ECMR, ECMR_PRM,
2341 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2342 	spin_unlock_irqrestore(&priv->lock, flags);
2343 }
2344 
2345 /* Device close function for Ethernet AVB */
ravb_close(struct net_device * ndev)2346 static int ravb_close(struct net_device *ndev)
2347 {
2348 	struct device_node *np = ndev->dev.parent->of_node;
2349 	struct ravb_private *priv = netdev_priv(ndev);
2350 	const struct ravb_hw_info *info = priv->info;
2351 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2352 	struct device *dev = &priv->pdev->dev;
2353 	int error;
2354 
2355 	netif_tx_stop_all_queues(ndev);
2356 
2357 	/* Disable interrupts by clearing the interrupt masks. */
2358 	ravb_write(ndev, 0, RIC0);
2359 	ravb_write(ndev, 0, RIC2);
2360 	ravb_write(ndev, 0, TIC);
2361 
2362 	/* PHY disconnect */
2363 	if (ndev->phydev) {
2364 		phy_stop(ndev->phydev);
2365 		phy_disconnect(ndev->phydev);
2366 		if (of_phy_is_fixed_link(np))
2367 			of_phy_deregister_fixed_link(np);
2368 	}
2369 
2370 	/* Stop PTP Clock driver */
2371 	if (info->gptp || info->ccc_gac)
2372 		ravb_ptp_stop(ndev);
2373 
2374 	/* Set the config mode to stop the AVB-DMAC's processes */
2375 	if (ravb_stop_dma(ndev) < 0)
2376 		netdev_err(ndev,
2377 			   "device will be stopped after h/w processes are done.\n");
2378 
2379 	/* Clear the timestamp list */
2380 	if (info->gptp || info->ccc_gac) {
2381 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2382 			list_del(&ts_skb->list);
2383 			kfree_skb(ts_skb->skb);
2384 			kfree(ts_skb);
2385 		}
2386 	}
2387 
2388 	cancel_work_sync(&priv->work);
2389 
2390 	if (info->nc_queues)
2391 		napi_disable(&priv->napi[RAVB_NC]);
2392 	napi_disable(&priv->napi[RAVB_BE]);
2393 
2394 	/* Free all the skb's in the RX queue and the DMA buffers. */
2395 	ravb_ring_free(ndev, RAVB_BE);
2396 	if (info->nc_queues)
2397 		ravb_ring_free(ndev, RAVB_NC);
2398 
2399 	/* Update statistics. */
2400 	ravb_get_stats(ndev);
2401 
2402 	/* Set reset mode. */
2403 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2404 	if (error)
2405 		return error;
2406 
2407 	pm_runtime_mark_last_busy(dev);
2408 	pm_runtime_put_autosuspend(dev);
2409 
2410 	return 0;
2411 }
2412 
ravb_hwtstamp_get(struct net_device * ndev,struct ifreq * req)2413 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2414 {
2415 	struct ravb_private *priv = netdev_priv(ndev);
2416 	struct hwtstamp_config config;
2417 
2418 	config.flags = 0;
2419 	config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2420 						HWTSTAMP_TX_OFF;
2421 	switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2422 	case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2423 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2424 		break;
2425 	case RAVB_RXTSTAMP_TYPE_ALL:
2426 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2427 		break;
2428 	default:
2429 		config.rx_filter = HWTSTAMP_FILTER_NONE;
2430 	}
2431 
2432 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2433 		-EFAULT : 0;
2434 }
2435 
2436 /* Control hardware time stamping */
ravb_hwtstamp_set(struct net_device * ndev,struct ifreq * req)2437 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2438 {
2439 	struct ravb_private *priv = netdev_priv(ndev);
2440 	struct hwtstamp_config config;
2441 	u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2442 	u32 tstamp_tx_ctrl;
2443 
2444 	if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2445 		return -EFAULT;
2446 
2447 	switch (config.tx_type) {
2448 	case HWTSTAMP_TX_OFF:
2449 		tstamp_tx_ctrl = 0;
2450 		break;
2451 	case HWTSTAMP_TX_ON:
2452 		tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2453 		break;
2454 	default:
2455 		return -ERANGE;
2456 	}
2457 
2458 	switch (config.rx_filter) {
2459 	case HWTSTAMP_FILTER_NONE:
2460 		tstamp_rx_ctrl = 0;
2461 		break;
2462 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2463 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2464 		break;
2465 	default:
2466 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2467 		tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2468 	}
2469 
2470 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2471 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2472 
2473 	return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2474 		-EFAULT : 0;
2475 }
2476 
2477 /* ioctl to device function */
ravb_do_ioctl(struct net_device * ndev,struct ifreq * req,int cmd)2478 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2479 {
2480 	struct phy_device *phydev = ndev->phydev;
2481 
2482 	if (!netif_running(ndev))
2483 		return -EINVAL;
2484 
2485 	if (!phydev)
2486 		return -ENODEV;
2487 
2488 	switch (cmd) {
2489 	case SIOCGHWTSTAMP:
2490 		return ravb_hwtstamp_get(ndev, req);
2491 	case SIOCSHWTSTAMP:
2492 		return ravb_hwtstamp_set(ndev, req);
2493 	}
2494 
2495 	return phy_mii_ioctl(phydev, req, cmd);
2496 }
2497 
ravb_change_mtu(struct net_device * ndev,int new_mtu)2498 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2499 {
2500 	struct ravb_private *priv = netdev_priv(ndev);
2501 
2502 	WRITE_ONCE(ndev->mtu, new_mtu);
2503 
2504 	if (netif_running(ndev)) {
2505 		synchronize_irq(priv->emac_irq);
2506 		ravb_emac_init(ndev);
2507 	}
2508 
2509 	netdev_update_features(ndev);
2510 
2511 	return 0;
2512 }
2513 
ravb_set_rx_csum(struct net_device * ndev,bool enable)2514 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2515 {
2516 	struct ravb_private *priv = netdev_priv(ndev);
2517 	unsigned long flags;
2518 
2519 	spin_lock_irqsave(&priv->lock, flags);
2520 
2521 	/* Disable TX and RX */
2522 	ravb_rcv_snd_disable(ndev);
2523 
2524 	/* Modify RX Checksum setting */
2525 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2526 
2527 	/* Enable TX and RX */
2528 	ravb_rcv_snd_enable(ndev);
2529 
2530 	spin_unlock_irqrestore(&priv->lock, flags);
2531 }
2532 
ravb_endisable_csum_gbeth(struct net_device * ndev,enum ravb_reg reg,u32 val,u32 mask)2533 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2534 				     u32 val, u32 mask)
2535 {
2536 	u32 csr0 = CSR0_TPE | CSR0_RPE;
2537 	int ret;
2538 
2539 	ravb_write(ndev, csr0 & ~mask, CSR0);
2540 	ret = ravb_wait(ndev, CSR0, mask, 0);
2541 	if (!ret)
2542 		ravb_write(ndev, val, reg);
2543 
2544 	ravb_write(ndev, csr0, CSR0);
2545 
2546 	return ret;
2547 }
2548 
ravb_set_features_gbeth(struct net_device * ndev,netdev_features_t features)2549 static int ravb_set_features_gbeth(struct net_device *ndev,
2550 				   netdev_features_t features)
2551 {
2552 	netdev_features_t changed = ndev->features ^ features;
2553 	struct ravb_private *priv = netdev_priv(ndev);
2554 	unsigned long flags;
2555 	int ret = 0;
2556 	u32 val;
2557 
2558 	spin_lock_irqsave(&priv->lock, flags);
2559 	if (changed & NETIF_F_RXCSUM) {
2560 		if (features & NETIF_F_RXCSUM)
2561 			val = CSR2_CSUM_ENABLE;
2562 		else
2563 			val = 0;
2564 
2565 		ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2566 		if (ret)
2567 			goto done;
2568 	}
2569 
2570 	if (changed & NETIF_F_HW_CSUM) {
2571 		if (features & NETIF_F_HW_CSUM)
2572 			val = CSR1_CSUM_ENABLE;
2573 		else
2574 			val = 0;
2575 
2576 		ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2577 		if (ret)
2578 			goto done;
2579 	}
2580 
2581 done:
2582 	spin_unlock_irqrestore(&priv->lock, flags);
2583 
2584 	return ret;
2585 }
2586 
ravb_set_features_rcar(struct net_device * ndev,netdev_features_t features)2587 static int ravb_set_features_rcar(struct net_device *ndev,
2588 				  netdev_features_t features)
2589 {
2590 	netdev_features_t changed = ndev->features ^ features;
2591 
2592 	if (changed & NETIF_F_RXCSUM)
2593 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2594 
2595 	return 0;
2596 }
2597 
ravb_set_features(struct net_device * ndev,netdev_features_t features)2598 static int ravb_set_features(struct net_device *ndev,
2599 			     netdev_features_t features)
2600 {
2601 	struct ravb_private *priv = netdev_priv(ndev);
2602 	const struct ravb_hw_info *info = priv->info;
2603 	struct device *dev = &priv->pdev->dev;
2604 	int ret;
2605 
2606 	pm_runtime_get_noresume(dev);
2607 
2608 	if (pm_runtime_active(dev))
2609 		ret = info->set_feature(ndev, features);
2610 	else
2611 		ret = 0;
2612 
2613 	pm_runtime_put_noidle(dev);
2614 
2615 	if (ret)
2616 		return ret;
2617 
2618 	ndev->features = features;
2619 
2620 	return 0;
2621 }
2622 
2623 static const struct net_device_ops ravb_netdev_ops = {
2624 	.ndo_open		= ravb_open,
2625 	.ndo_stop		= ravb_close,
2626 	.ndo_start_xmit		= ravb_start_xmit,
2627 	.ndo_select_queue	= ravb_select_queue,
2628 	.ndo_get_stats		= ravb_get_stats,
2629 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2630 	.ndo_tx_timeout		= ravb_tx_timeout,
2631 	.ndo_eth_ioctl		= ravb_do_ioctl,
2632 	.ndo_change_mtu		= ravb_change_mtu,
2633 	.ndo_validate_addr	= eth_validate_addr,
2634 	.ndo_set_mac_address	= eth_mac_addr,
2635 	.ndo_set_features	= ravb_set_features,
2636 };
2637 
2638 /* MDIO bus init function */
ravb_mdio_init(struct ravb_private * priv)2639 static int ravb_mdio_init(struct ravb_private *priv)
2640 {
2641 	struct platform_device *pdev = priv->pdev;
2642 	struct device *dev = &pdev->dev;
2643 	struct device_node *mdio_node;
2644 	struct phy_device *phydev;
2645 	struct device_node *pn;
2646 	int error;
2647 
2648 	/* Bitbang init */
2649 	priv->mdiobb.ops = &bb_ops;
2650 
2651 	/* MII controller setting */
2652 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2653 	if (!priv->mii_bus)
2654 		return -ENOMEM;
2655 
2656 	/* Hook up MII support for ethtool */
2657 	priv->mii_bus->name = "ravb_mii";
2658 	priv->mii_bus->parent = dev;
2659 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2660 		 pdev->name, pdev->id);
2661 
2662 	/* Register MDIO bus */
2663 	mdio_node = of_get_child_by_name(dev->of_node, "mdio");
2664 	if (!mdio_node) {
2665 		/* backwards compatibility for DT lacking mdio subnode */
2666 		mdio_node = of_node_get(dev->of_node);
2667 	}
2668 	error = of_mdiobus_register(priv->mii_bus, mdio_node);
2669 	of_node_put(mdio_node);
2670 	if (error)
2671 		goto out_free_bus;
2672 
2673 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2674 	phydev = of_phy_find_device(pn);
2675 	if (phydev) {
2676 		phydev->mac_managed_pm = true;
2677 		put_device(&phydev->mdio.dev);
2678 	}
2679 	of_node_put(pn);
2680 
2681 	return 0;
2682 
2683 out_free_bus:
2684 	free_mdio_bitbang(priv->mii_bus);
2685 	return error;
2686 }
2687 
2688 /* MDIO bus release function */
ravb_mdio_release(struct ravb_private * priv)2689 static int ravb_mdio_release(struct ravb_private *priv)
2690 {
2691 	/* Unregister mdio bus */
2692 	mdiobus_unregister(priv->mii_bus);
2693 
2694 	/* Free bitbang info */
2695 	free_mdio_bitbang(priv->mii_bus);
2696 
2697 	return 0;
2698 }
2699 
2700 static const struct ravb_hw_info ravb_gen2_hw_info = {
2701 	.receive = ravb_rx_rcar,
2702 	.set_rate = ravb_set_rate_rcar,
2703 	.set_feature = ravb_set_features_rcar,
2704 	.dmac_init = ravb_dmac_init_rcar,
2705 	.emac_init = ravb_emac_init_rcar,
2706 	.gstrings_stats = ravb_gstrings_stats,
2707 	.gstrings_size = sizeof(ravb_gstrings_stats),
2708 	.net_hw_features = NETIF_F_RXCSUM,
2709 	.net_features = NETIF_F_RXCSUM,
2710 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2711 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2712 	.tx_max_frame_size = SZ_2K,
2713 	.rx_max_frame_size = SZ_2K,
2714 	.rx_buffer_size = SZ_2K +
2715 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2716 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2717 	.aligned_tx = 1,
2718 	.gptp = 1,
2719 	.nc_queues = 1,
2720 	.magic_pkt = 1,
2721 };
2722 
2723 static const struct ravb_hw_info ravb_gen3_hw_info = {
2724 	.receive = ravb_rx_rcar,
2725 	.set_rate = ravb_set_rate_rcar,
2726 	.set_feature = ravb_set_features_rcar,
2727 	.dmac_init = ravb_dmac_init_rcar,
2728 	.emac_init = ravb_emac_init_rcar,
2729 	.gstrings_stats = ravb_gstrings_stats,
2730 	.gstrings_size = sizeof(ravb_gstrings_stats),
2731 	.net_hw_features = NETIF_F_RXCSUM,
2732 	.net_features = NETIF_F_RXCSUM,
2733 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2734 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2735 	.tx_max_frame_size = SZ_2K,
2736 	.rx_max_frame_size = SZ_2K,
2737 	.rx_buffer_size = SZ_2K +
2738 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2739 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2740 	.internal_delay = 1,
2741 	.tx_counters = 1,
2742 	.multi_irqs = 1,
2743 	.irq_en_dis = 1,
2744 	.ccc_gac = 1,
2745 	.nc_queues = 1,
2746 	.magic_pkt = 1,
2747 };
2748 
2749 static const struct ravb_hw_info ravb_gen4_hw_info = {
2750 	.receive = ravb_rx_rcar,
2751 	.set_rate = ravb_set_rate_rcar,
2752 	.set_feature = ravb_set_features_rcar,
2753 	.dmac_init = ravb_dmac_init_rcar,
2754 	.emac_init = ravb_emac_init_rcar_gen4,
2755 	.gstrings_stats = ravb_gstrings_stats,
2756 	.gstrings_size = sizeof(ravb_gstrings_stats),
2757 	.net_hw_features = NETIF_F_RXCSUM,
2758 	.net_features = NETIF_F_RXCSUM,
2759 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2760 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2761 	.tx_max_frame_size = SZ_2K,
2762 	.rx_max_frame_size = SZ_2K,
2763 	.rx_buffer_size = SZ_2K +
2764 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2765 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2766 	.internal_delay = 1,
2767 	.tx_counters = 1,
2768 	.multi_irqs = 1,
2769 	.irq_en_dis = 1,
2770 	.ccc_gac = 1,
2771 	.nc_queues = 1,
2772 	.magic_pkt = 1,
2773 };
2774 
2775 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2776 	.receive = ravb_rx_rcar,
2777 	.set_rate = ravb_set_rate_rcar,
2778 	.set_feature = ravb_set_features_rcar,
2779 	.dmac_init = ravb_dmac_init_rcar,
2780 	.emac_init = ravb_emac_init_rcar,
2781 	.gstrings_stats = ravb_gstrings_stats,
2782 	.gstrings_size = sizeof(ravb_gstrings_stats),
2783 	.net_hw_features = NETIF_F_RXCSUM,
2784 	.net_features = NETIF_F_RXCSUM,
2785 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2786 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2787 	.tx_max_frame_size = SZ_2K,
2788 	.rx_max_frame_size = SZ_2K,
2789 	.rx_buffer_size = SZ_2K +
2790 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2791 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2792 	.multi_irqs = 1,
2793 	.err_mgmt_irqs = 1,
2794 	.gptp = 1,
2795 	.gptp_ref_clk = 1,
2796 	.nc_queues = 1,
2797 	.magic_pkt = 1,
2798 };
2799 
2800 static const struct ravb_hw_info gbeth_hw_info = {
2801 	.receive = ravb_rx_gbeth,
2802 	.set_rate = ravb_set_rate_gbeth,
2803 	.set_feature = ravb_set_features_gbeth,
2804 	.dmac_init = ravb_dmac_init_gbeth,
2805 	.emac_init = ravb_emac_init_gbeth,
2806 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2807 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2808 	.net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2809 	.net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2810 	.vlan_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2811 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2812 	.tccr_mask = TCCR_TSRQ0,
2813 	.tx_max_frame_size = 1522,
2814 	.rx_max_frame_size = SZ_8K,
2815 	.rx_buffer_size = SZ_2K,
2816 	.rx_desc_size = sizeof(struct ravb_rx_desc),
2817 	.aligned_tx = 1,
2818 	.coalesce_irqs = 1,
2819 	.tx_counters = 1,
2820 	.carrier_counters = 1,
2821 	.half_duplex = 1,
2822 };
2823 
2824 static const struct of_device_id ravb_match_table[] = {
2825 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2826 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2827 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2828 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2829 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2830 	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen4_hw_info },
2831 	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2832 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2833 	{ }
2834 };
2835 MODULE_DEVICE_TABLE(of, ravb_match_table);
2836 
ravb_setup_irq(struct ravb_private * priv,const char * irq_name,const char * ch,int * irq,irq_handler_t handler)2837 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2838 			  const char *ch, int *irq, irq_handler_t handler)
2839 {
2840 	struct platform_device *pdev = priv->pdev;
2841 	struct net_device *ndev = priv->ndev;
2842 	struct device *dev = &pdev->dev;
2843 	const char *devname = dev_name(dev);
2844 	unsigned long flags;
2845 	int error, irq_num;
2846 
2847 	if (irq_name) {
2848 		devname = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", devname, ch);
2849 		if (!devname)
2850 			return -ENOMEM;
2851 
2852 		irq_num = platform_get_irq_byname(pdev, irq_name);
2853 		flags = 0;
2854 	} else {
2855 		irq_num = platform_get_irq(pdev, 0);
2856 		flags = IRQF_SHARED;
2857 	}
2858 	if (irq_num < 0)
2859 		return irq_num;
2860 
2861 	if (irq)
2862 		*irq = irq_num;
2863 
2864 	error = devm_request_irq(dev, irq_num, handler, flags, devname, ndev);
2865 	if (error)
2866 		netdev_err(ndev, "cannot request IRQ %s\n", devname);
2867 
2868 	return error;
2869 }
2870 
ravb_setup_irqs(struct ravb_private * priv)2871 static int ravb_setup_irqs(struct ravb_private *priv)
2872 {
2873 	const struct ravb_hw_info *info = priv->info;
2874 	struct net_device *ndev = priv->ndev;
2875 	const char *irq_name, *emac_irq_name;
2876 	int error;
2877 
2878 	if (!info->multi_irqs)
2879 		return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2880 
2881 	if (info->err_mgmt_irqs) {
2882 		irq_name = "dia";
2883 		emac_irq_name = "line3";
2884 	} else {
2885 		irq_name = "ch22";
2886 		emac_irq_name = "ch24";
2887 	}
2888 
2889 	error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2890 	if (error)
2891 		return error;
2892 
2893 	error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2894 			       ravb_emac_interrupt);
2895 	if (error)
2896 		return error;
2897 
2898 	if (info->err_mgmt_irqs) {
2899 		error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2900 		if (error)
2901 			return error;
2902 
2903 		error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2904 		if (error)
2905 			return error;
2906 	}
2907 
2908 	error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2909 	if (error)
2910 		return error;
2911 
2912 	error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2913 	if (error)
2914 		return error;
2915 
2916 	error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2917 	if (error)
2918 		return error;
2919 
2920 	return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2921 }
2922 
ravb_probe(struct platform_device * pdev)2923 static int ravb_probe(struct platform_device *pdev)
2924 {
2925 	struct device_node *np = pdev->dev.of_node;
2926 	const struct ravb_hw_info *info;
2927 	struct reset_control *rstc;
2928 	struct ravb_private *priv;
2929 	struct net_device *ndev;
2930 	struct resource *res;
2931 	int error, q;
2932 
2933 	if (!np) {
2934 		dev_err(&pdev->dev,
2935 			"this driver is required to be instantiated from device tree\n");
2936 		return -EINVAL;
2937 	}
2938 
2939 	rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2940 	if (IS_ERR(rstc))
2941 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2942 				     "failed to get cpg reset\n");
2943 
2944 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2945 				  NUM_TX_QUEUE, NUM_RX_QUEUE);
2946 	if (!ndev)
2947 		return -ENOMEM;
2948 
2949 	info = of_device_get_match_data(&pdev->dev);
2950 
2951 	ndev->features = info->net_features;
2952 	ndev->hw_features = info->net_hw_features;
2953 	ndev->vlan_features = info->vlan_features;
2954 
2955 	error = reset_control_deassert(rstc);
2956 	if (error)
2957 		goto out_free_netdev;
2958 
2959 	SET_NETDEV_DEV(ndev, &pdev->dev);
2960 
2961 	priv = netdev_priv(ndev);
2962 	priv->info = info;
2963 	priv->rstc = rstc;
2964 	priv->ndev = ndev;
2965 	priv->pdev = pdev;
2966 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2967 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2968 	if (info->nc_queues) {
2969 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2970 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2971 	}
2972 
2973 	error = ravb_setup_irqs(priv);
2974 	if (error)
2975 		goto out_reset_assert;
2976 
2977 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2978 	if (IS_ERR(priv->clk)) {
2979 		error = PTR_ERR(priv->clk);
2980 		goto out_reset_assert;
2981 	}
2982 
2983 	if (info->gptp_ref_clk) {
2984 		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2985 		if (IS_ERR(priv->gptp_clk)) {
2986 			error = PTR_ERR(priv->gptp_clk);
2987 			goto out_reset_assert;
2988 		}
2989 	}
2990 
2991 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2992 	if (IS_ERR(priv->refclk)) {
2993 		error = PTR_ERR(priv->refclk);
2994 		goto out_reset_assert;
2995 	}
2996 	clk_prepare(priv->refclk);
2997 
2998 	platform_set_drvdata(pdev, ndev);
2999 	pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
3000 	pm_runtime_use_autosuspend(&pdev->dev);
3001 	pm_runtime_enable(&pdev->dev);
3002 	error = pm_runtime_resume_and_get(&pdev->dev);
3003 	if (error < 0)
3004 		goto out_rpm_disable;
3005 
3006 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
3007 	if (IS_ERR(priv->addr)) {
3008 		error = PTR_ERR(priv->addr);
3009 		goto out_rpm_put;
3010 	}
3011 
3012 	/* The Ether-specific entries in the device structure. */
3013 	ndev->base_addr = res->start;
3014 
3015 	spin_lock_init(&priv->lock);
3016 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
3017 
3018 	error = of_get_phy_mode(np, &priv->phy_interface);
3019 	if (error && error != -ENODEV)
3020 		goto out_rpm_put;
3021 
3022 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
3023 	priv->avb_link_active_low =
3024 		of_property_read_bool(np, "renesas,ether-link-active-low");
3025 
3026 	ndev->max_mtu = info->tx_max_frame_size -
3027 		(ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3028 	ndev->min_mtu = ETH_MIN_MTU;
3029 
3030 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
3031 	 * Use two descriptor to handle such situation. First descriptor to
3032 	 * handle aligned data buffer and second descriptor to handle the
3033 	 * overflow data because of alignment.
3034 	 */
3035 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
3036 
3037 	/* Set function */
3038 	ndev->netdev_ops = &ravb_netdev_ops;
3039 	ndev->ethtool_ops = &ravb_ethtool_ops;
3040 
3041 	error = ravb_compute_gti(ndev);
3042 	if (error)
3043 		goto out_rpm_put;
3044 
3045 	ravb_parse_delay_mode(np, ndev);
3046 
3047 	/* Allocate descriptor base address table */
3048 	priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
3049 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
3050 					    &priv->desc_bat_dma, GFP_KERNEL);
3051 	if (!priv->desc_bat) {
3052 		dev_err(&pdev->dev,
3053 			"Cannot allocate desc base address table (size %d bytes)\n",
3054 			priv->desc_bat_size);
3055 		error = -ENOMEM;
3056 		goto out_rpm_put;
3057 	}
3058 	for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
3059 		priv->desc_bat[q].die_dt = DT_EOS;
3060 
3061 	/* Initialise HW timestamp list */
3062 	INIT_LIST_HEAD(&priv->ts_skb_list);
3063 
3064 	/* Debug message level */
3065 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
3066 
3067 	/* Set config mode as this is needed for PHY initialization. */
3068 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
3069 	if (error)
3070 		goto out_rpm_put;
3071 
3072 	/* Read and set MAC address */
3073 	ravb_read_mac_address(np, ndev);
3074 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3075 		dev_warn(&pdev->dev,
3076 			 "no valid MAC address supplied, using a random one\n");
3077 		eth_hw_addr_random(ndev);
3078 	}
3079 
3080 	/* MDIO bus init */
3081 	error = ravb_mdio_init(priv);
3082 	if (error) {
3083 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
3084 		goto out_reset_mode;
3085 	}
3086 
3087 	/* Undo previous switch to config opmode. */
3088 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3089 	if (error)
3090 		goto out_mdio_release;
3091 
3092 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
3093 	if (info->nc_queues)
3094 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
3095 
3096 	if (info->coalesce_irqs) {
3097 		netdev_sw_irq_coalesce_default_on(ndev);
3098 		if (num_present_cpus() == 1)
3099 			netif_threaded_enable(ndev);
3100 	}
3101 
3102 	/* Network device register */
3103 	error = register_netdev(ndev);
3104 	if (error)
3105 		goto out_napi_del;
3106 
3107 	device_set_wakeup_capable(&pdev->dev, 1);
3108 
3109 	/* Print device information */
3110 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
3111 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3112 
3113 	pm_runtime_mark_last_busy(&pdev->dev);
3114 	pm_runtime_put_autosuspend(&pdev->dev);
3115 
3116 	return 0;
3117 
3118 out_napi_del:
3119 	if (info->nc_queues)
3120 		netif_napi_del(&priv->napi[RAVB_NC]);
3121 
3122 	netif_napi_del(&priv->napi[RAVB_BE]);
3123 out_mdio_release:
3124 	ravb_mdio_release(priv);
3125 out_reset_mode:
3126 	ravb_set_opmode(ndev, CCC_OPC_RESET);
3127 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3128 			  priv->desc_bat_dma);
3129 out_rpm_put:
3130 	pm_runtime_put(&pdev->dev);
3131 out_rpm_disable:
3132 	pm_runtime_disable(&pdev->dev);
3133 	pm_runtime_dont_use_autosuspend(&pdev->dev);
3134 	clk_unprepare(priv->refclk);
3135 out_reset_assert:
3136 	reset_control_assert(rstc);
3137 out_free_netdev:
3138 	free_netdev(ndev);
3139 	return error;
3140 }
3141 
ravb_remove(struct platform_device * pdev)3142 static void ravb_remove(struct platform_device *pdev)
3143 {
3144 	struct net_device *ndev = platform_get_drvdata(pdev);
3145 	struct ravb_private *priv = netdev_priv(ndev);
3146 	const struct ravb_hw_info *info = priv->info;
3147 	struct device *dev = &priv->pdev->dev;
3148 	int error;
3149 
3150 	error = pm_runtime_resume_and_get(dev);
3151 	if (error < 0)
3152 		return;
3153 
3154 	unregister_netdev(ndev);
3155 	if (info->nc_queues)
3156 		netif_napi_del(&priv->napi[RAVB_NC]);
3157 	netif_napi_del(&priv->napi[RAVB_BE]);
3158 
3159 	ravb_mdio_release(priv);
3160 
3161 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3162 			  priv->desc_bat_dma);
3163 
3164 	pm_runtime_put_sync_suspend(&pdev->dev);
3165 	pm_runtime_disable(&pdev->dev);
3166 	pm_runtime_dont_use_autosuspend(dev);
3167 	clk_unprepare(priv->refclk);
3168 	reset_control_assert(priv->rstc);
3169 	free_netdev(ndev);
3170 	platform_set_drvdata(pdev, NULL);
3171 }
3172 
ravb_wol_setup(struct net_device * ndev)3173 static int ravb_wol_setup(struct net_device *ndev)
3174 {
3175 	struct ravb_private *priv = netdev_priv(ndev);
3176 	const struct ravb_hw_info *info = priv->info;
3177 
3178 	/* Disable interrupts by clearing the interrupt masks. */
3179 	ravb_write(ndev, 0, RIC0);
3180 	ravb_write(ndev, 0, RIC2);
3181 	ravb_write(ndev, 0, TIC);
3182 
3183 	/* Only allow ECI interrupts */
3184 	synchronize_irq(priv->emac_irq);
3185 	if (info->nc_queues)
3186 		napi_disable(&priv->napi[RAVB_NC]);
3187 	napi_disable(&priv->napi[RAVB_BE]);
3188 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3189 
3190 	/* Enable MagicPacket */
3191 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3192 
3193 	if (priv->info->ccc_gac)
3194 		ravb_ptp_stop(ndev);
3195 
3196 	return enable_irq_wake(priv->emac_irq);
3197 }
3198 
ravb_wol_restore(struct net_device * ndev)3199 static int ravb_wol_restore(struct net_device *ndev)
3200 {
3201 	struct ravb_private *priv = netdev_priv(ndev);
3202 	const struct ravb_hw_info *info = priv->info;
3203 	int error;
3204 
3205 	/* Set reset mode to rearm the WoL logic. */
3206 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3207 	if (error)
3208 		return error;
3209 
3210 	/* Set AVB config mode. */
3211 	error = ravb_set_config_mode(ndev);
3212 	if (error)
3213 		return error;
3214 
3215 	if (priv->info->ccc_gac)
3216 		ravb_ptp_init(ndev, priv->pdev);
3217 
3218 	if (info->nc_queues)
3219 		napi_enable(&priv->napi[RAVB_NC]);
3220 	napi_enable(&priv->napi[RAVB_BE]);
3221 
3222 	/* Disable MagicPacket */
3223 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3224 
3225 	ravb_close(ndev);
3226 
3227 	return disable_irq_wake(priv->emac_irq);
3228 }
3229 
ravb_suspend(struct device * dev)3230 static int ravb_suspend(struct device *dev)
3231 {
3232 	struct net_device *ndev = dev_get_drvdata(dev);
3233 	struct ravb_private *priv = netdev_priv(ndev);
3234 	int ret;
3235 
3236 	if (!netif_running(ndev))
3237 		goto reset_assert;
3238 
3239 	netif_device_detach(ndev);
3240 
3241 	rtnl_lock();
3242 	if (priv->wol_enabled) {
3243 		ret = ravb_wol_setup(ndev);
3244 		rtnl_unlock();
3245 		return ret;
3246 	}
3247 
3248 	ret = ravb_close(ndev);
3249 	rtnl_unlock();
3250 	if (ret)
3251 		return ret;
3252 
3253 	ret = pm_runtime_force_suspend(&priv->pdev->dev);
3254 	if (ret)
3255 		return ret;
3256 
3257 reset_assert:
3258 	return reset_control_assert(priv->rstc);
3259 }
3260 
ravb_resume(struct device * dev)3261 static int ravb_resume(struct device *dev)
3262 {
3263 	struct net_device *ndev = dev_get_drvdata(dev);
3264 	struct ravb_private *priv = netdev_priv(ndev);
3265 	int ret;
3266 
3267 	ret = reset_control_deassert(priv->rstc);
3268 	if (ret)
3269 		return ret;
3270 
3271 	if (!netif_running(ndev))
3272 		return 0;
3273 
3274 	rtnl_lock();
3275 	/* If WoL is enabled restore the interface. */
3276 	if (priv->wol_enabled)
3277 		ret = ravb_wol_restore(ndev);
3278 	else
3279 		ret = pm_runtime_force_resume(dev);
3280 	if (ret) {
3281 		rtnl_unlock();
3282 		return ret;
3283 	}
3284 
3285 	/* Reopening the interface will restore the device to the working state. */
3286 	ret = ravb_open(ndev);
3287 	rtnl_unlock();
3288 	if (ret < 0)
3289 		goto out_rpm_put;
3290 
3291 	ravb_set_rx_mode(ndev);
3292 	netif_device_attach(ndev);
3293 
3294 	return 0;
3295 
3296 out_rpm_put:
3297 	if (!priv->wol_enabled) {
3298 		pm_runtime_mark_last_busy(dev);
3299 		pm_runtime_put_autosuspend(dev);
3300 	}
3301 
3302 	return ret;
3303 }
3304 
ravb_runtime_suspend(struct device * dev)3305 static int ravb_runtime_suspend(struct device *dev)
3306 {
3307 	struct net_device *ndev = dev_get_drvdata(dev);
3308 	struct ravb_private *priv = netdev_priv(ndev);
3309 
3310 	clk_disable(priv->refclk);
3311 
3312 	return 0;
3313 }
3314 
ravb_runtime_resume(struct device * dev)3315 static int ravb_runtime_resume(struct device *dev)
3316 {
3317 	struct net_device *ndev = dev_get_drvdata(dev);
3318 	struct ravb_private *priv = netdev_priv(ndev);
3319 
3320 	return clk_enable(priv->refclk);
3321 }
3322 
3323 static const struct dev_pm_ops ravb_dev_pm_ops = {
3324 	SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3325 	RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3326 };
3327 
3328 static struct platform_driver ravb_driver = {
3329 	.probe		= ravb_probe,
3330 	.remove		= ravb_remove,
3331 	.driver = {
3332 		.name	= "ravb",
3333 		.pm	= pm_ptr(&ravb_dev_pm_ops),
3334 		.of_match_table = ravb_match_table,
3335 	},
3336 };
3337 
3338 module_platform_driver(ravb_driver);
3339 
3340 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3341 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3342 MODULE_LICENSE("GPL v2");
3343