xref: /linux/drivers/net/ethernet/renesas/ravb_main.c (revision 3f1c07fc21c68bd3bd2df9d2c9441f6485e934d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3  *
4  * Copyright (C) 2014-2019 Renesas Electronics Corporation
5  * Copyright (C) 2015 Renesas Solutions Corp.
6  * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7  *
8  * Based on the SuperH Ethernet driver
9  */
10 
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 #include <net/page_pool/helpers.h>
34 
35 #include "ravb.h"
36 
37 #define RAVB_DEF_MSG_ENABLE \
38 		(NETIF_MSG_LINK	  | \
39 		 NETIF_MSG_TIMER  | \
40 		 NETIF_MSG_RX_ERR | \
41 		 NETIF_MSG_TX_ERR)
42 
ravb_modify(struct net_device * ndev,enum ravb_reg reg,u32 clear,u32 set)43 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
44 		 u32 set)
45 {
46 	ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
47 }
48 
ravb_wait(struct net_device * ndev,enum ravb_reg reg,u32 mask,u32 value)49 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
50 {
51 	int i;
52 
53 	for (i = 0; i < 10000; i++) {
54 		if ((ravb_read(ndev, reg) & mask) == value)
55 			return 0;
56 		udelay(10);
57 	}
58 	return -ETIMEDOUT;
59 }
60 
ravb_set_opmode(struct net_device * ndev,u32 opmode)61 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
62 {
63 	u32 csr_ops = 1U << (opmode & CCC_OPC);
64 	u32 ccc_mask = CCC_OPC;
65 	int error;
66 
67 	/* If gPTP active in config mode is supported it needs to be configured
68 	 * along with CSEL and operating mode in the same access. This is a
69 	 * hardware limitation.
70 	 */
71 	if (opmode & CCC_GAC)
72 		ccc_mask |= CCC_GAC | CCC_CSEL;
73 
74 	/* Set operating mode */
75 	ravb_modify(ndev, CCC, ccc_mask, opmode);
76 	/* Check if the operating mode is changed to the requested one */
77 	error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
78 	if (error) {
79 		netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
80 			   opmode & CCC_OPC);
81 	}
82 
83 	return error;
84 }
85 
ravb_set_rate_gbeth(struct net_device * ndev)86 static void ravb_set_rate_gbeth(struct net_device *ndev)
87 {
88 	struct ravb_private *priv = netdev_priv(ndev);
89 
90 	switch (priv->speed) {
91 	case 10:		/* 10BASE */
92 		ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
93 		break;
94 	case 100:		/* 100BASE */
95 		ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
96 		break;
97 	case 1000:		/* 1000BASE */
98 		ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
99 		break;
100 	}
101 }
102 
ravb_set_rate_rcar(struct net_device * ndev)103 static void ravb_set_rate_rcar(struct net_device *ndev)
104 {
105 	struct ravb_private *priv = netdev_priv(ndev);
106 
107 	switch (priv->speed) {
108 	case 100:		/* 100BASE */
109 		ravb_write(ndev, GECMR_SPEED_100, GECMR);
110 		break;
111 	case 1000:		/* 1000BASE */
112 		ravb_write(ndev, GECMR_SPEED_1000, GECMR);
113 		break;
114 	}
115 }
116 
117 /* Get MAC address from the MAC address registers
118  *
119  * Ethernet AVB device doesn't have ROM for MAC address.
120  * This function gets the MAC address that was used by a bootloader.
121  */
ravb_read_mac_address(struct device_node * np,struct net_device * ndev)122 static void ravb_read_mac_address(struct device_node *np,
123 				  struct net_device *ndev)
124 {
125 	int ret;
126 
127 	ret = of_get_ethdev_address(np, ndev);
128 	if (ret) {
129 		u32 mahr = ravb_read(ndev, MAHR);
130 		u32 malr = ravb_read(ndev, MALR);
131 		u8 addr[ETH_ALEN];
132 
133 		addr[0] = (mahr >> 24) & 0xFF;
134 		addr[1] = (mahr >> 16) & 0xFF;
135 		addr[2] = (mahr >>  8) & 0xFF;
136 		addr[3] = (mahr >>  0) & 0xFF;
137 		addr[4] = (malr >>  8) & 0xFF;
138 		addr[5] = (malr >>  0) & 0xFF;
139 		eth_hw_addr_set(ndev, addr);
140 	}
141 }
142 
ravb_mdio_ctrl(struct mdiobb_ctrl * ctrl,u32 mask,int set)143 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
144 {
145 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
146 						 mdiobb);
147 
148 	ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
149 }
150 
151 /* MDC pin control */
ravb_set_mdc(struct mdiobb_ctrl * ctrl,int level)152 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
153 {
154 	ravb_mdio_ctrl(ctrl, PIR_MDC, level);
155 }
156 
157 /* Data I/O pin control */
ravb_set_mdio_dir(struct mdiobb_ctrl * ctrl,int output)158 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
159 {
160 	ravb_mdio_ctrl(ctrl, PIR_MMD, output);
161 }
162 
163 /* Set data bit */
ravb_set_mdio_data(struct mdiobb_ctrl * ctrl,int value)164 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
165 {
166 	ravb_mdio_ctrl(ctrl, PIR_MDO, value);
167 }
168 
169 /* Get data bit */
ravb_get_mdio_data(struct mdiobb_ctrl * ctrl)170 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
171 {
172 	struct ravb_private *priv = container_of(ctrl, struct ravb_private,
173 						 mdiobb);
174 
175 	return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
176 }
177 
178 /* MDIO bus control struct */
179 static const struct mdiobb_ops bb_ops = {
180 	.owner = THIS_MODULE,
181 	.set_mdc = ravb_set_mdc,
182 	.set_mdio_dir = ravb_set_mdio_dir,
183 	.set_mdio_data = ravb_set_mdio_data,
184 	.get_mdio_data = ravb_get_mdio_data,
185 };
186 
187 static struct ravb_rx_desc *
ravb_rx_get_desc(struct ravb_private * priv,unsigned int q,unsigned int i)188 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
189 		 unsigned int i)
190 {
191 	return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
192 }
193 
194 /* Free TX skb function for AVB-IP */
ravb_tx_free(struct net_device * ndev,int q,bool free_txed_only)195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 	struct ravb_private *priv = netdev_priv(ndev);
198 	struct net_device_stats *stats = &priv->stats[q];
199 	unsigned int num_tx_desc = priv->num_tx_desc;
200 	struct ravb_tx_desc *desc;
201 	unsigned int entry;
202 	int free_num = 0;
203 	u32 size;
204 
205 	for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 		bool txed;
207 
208 		entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 					     num_tx_desc);
210 		desc = &priv->tx_ring[q][entry];
211 		txed = desc->die_dt == DT_FEMPTY;
212 		if (free_txed_only && !txed)
213 			break;
214 		/* Descriptor type must be checked before all other reads */
215 		dma_rmb();
216 		size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 		/* Free the original skb. */
218 		if (priv->tx_skb[q][entry / num_tx_desc]) {
219 			dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 					 size, DMA_TO_DEVICE);
221 			/* Last packet descriptor? */
222 			if (entry % num_tx_desc == num_tx_desc - 1) {
223 				entry /= num_tx_desc;
224 				dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 				priv->tx_skb[q][entry] = NULL;
226 				if (txed)
227 					stats->tx_packets++;
228 			}
229 			free_num++;
230 		}
231 		if (txed)
232 			stats->tx_bytes += size;
233 		desc->die_dt = DT_EEMPTY;
234 	}
235 	return free_num;
236 }
237 
ravb_rx_ring_free(struct net_device * ndev,int q)238 static void ravb_rx_ring_free(struct net_device *ndev, int q)
239 {
240 	struct ravb_private *priv = netdev_priv(ndev);
241 	unsigned int ring_size;
242 
243 	if (!priv->rx_ring[q].raw)
244 		return;
245 
246 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
247 	dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
248 			  priv->rx_desc_dma[q]);
249 	priv->rx_ring[q].raw = NULL;
250 }
251 
252 /* Free skb's and DMA buffers for Ethernet AVB */
ravb_ring_free(struct net_device * ndev,int q)253 static void ravb_ring_free(struct net_device *ndev, int q)
254 {
255 	struct ravb_private *priv = netdev_priv(ndev);
256 	unsigned int num_tx_desc = priv->num_tx_desc;
257 	unsigned int ring_size;
258 	unsigned int i;
259 
260 	ravb_rx_ring_free(ndev, q);
261 
262 	if (priv->tx_ring[q]) {
263 		ravb_tx_free(ndev, q, false);
264 
265 		ring_size = sizeof(struct ravb_tx_desc) *
266 			    (priv->num_tx_ring[q] * num_tx_desc + 1);
267 		dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
268 				  priv->tx_desc_dma[q]);
269 		priv->tx_ring[q] = NULL;
270 	}
271 
272 	/* Free RX buffers */
273 	for (i = 0; i < priv->num_rx_ring[q]; i++) {
274 		if (priv->rx_buffers[q][i].page)
275 			page_pool_put_page(priv->rx_pool[q],
276 					   priv->rx_buffers[q][i].page,
277 					   0, true);
278 	}
279 	kfree(priv->rx_buffers[q]);
280 	priv->rx_buffers[q] = NULL;
281 	page_pool_destroy(priv->rx_pool[q]);
282 
283 	/* Free aligned TX buffers */
284 	kfree(priv->tx_align[q]);
285 	priv->tx_align[q] = NULL;
286 
287 	/* Free TX skb ringbuffer.
288 	 * SKBs are freed by ravb_tx_free() call above.
289 	 */
290 	kfree(priv->tx_skb[q]);
291 	priv->tx_skb[q] = NULL;
292 }
293 
294 static int
ravb_alloc_rx_buffer(struct net_device * ndev,int q,u32 entry,gfp_t gfp_mask,struct ravb_rx_desc * rx_desc)295 ravb_alloc_rx_buffer(struct net_device *ndev, int q, u32 entry, gfp_t gfp_mask,
296 		     struct ravb_rx_desc *rx_desc)
297 {
298 	struct ravb_private *priv = netdev_priv(ndev);
299 	const struct ravb_hw_info *info = priv->info;
300 	struct ravb_rx_buffer *rx_buff;
301 	dma_addr_t dma_addr;
302 	unsigned int size;
303 
304 	rx_buff = &priv->rx_buffers[q][entry];
305 	size = info->rx_buffer_size;
306 	rx_buff->page = page_pool_alloc(priv->rx_pool[q], &rx_buff->offset,
307 					&size, gfp_mask);
308 	if (unlikely(!rx_buff->page)) {
309 		/* We just set the data size to 0 for a failed mapping which
310 		 * should prevent DMA from happening...
311 		 */
312 		rx_desc->ds_cc = cpu_to_le16(0);
313 		return -ENOMEM;
314 	}
315 
316 	dma_addr = page_pool_get_dma_addr(rx_buff->page) + rx_buff->offset;
317 	dma_sync_single_for_device(ndev->dev.parent, dma_addr,
318 				   info->rx_buffer_size, DMA_FROM_DEVICE);
319 	rx_desc->dptr = cpu_to_le32(dma_addr);
320 
321 	/* The end of the RX buffer is used to store skb shared data, so we need
322 	 * to ensure that the hardware leaves enough space for this.
323 	 */
324 	rx_desc->ds_cc = cpu_to_le16(info->rx_buffer_size -
325 				     SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) -
326 				     ETH_FCS_LEN + sizeof(__sum16));
327 	return 0;
328 }
329 
330 static u32
ravb_rx_ring_refill(struct net_device * ndev,int q,u32 count,gfp_t gfp_mask)331 ravb_rx_ring_refill(struct net_device *ndev, int q, u32 count, gfp_t gfp_mask)
332 {
333 	struct ravb_private *priv = netdev_priv(ndev);
334 	struct ravb_rx_desc *rx_desc;
335 	u32 i, entry;
336 
337 	for (i = 0; i < count; i++) {
338 		entry = (priv->dirty_rx[q] + i) % priv->num_rx_ring[q];
339 		rx_desc = ravb_rx_get_desc(priv, q, entry);
340 
341 		if (!priv->rx_buffers[q][entry].page) {
342 			if (unlikely(ravb_alloc_rx_buffer(ndev, q, entry,
343 							  gfp_mask, rx_desc)))
344 				break;
345 		}
346 		/* Descriptor type must be set after all the above writes */
347 		dma_wmb();
348 		rx_desc->die_dt = DT_FEMPTY;
349 	}
350 
351 	return i;
352 }
353 
354 /* Format skb and descriptor buffer for Ethernet AVB */
ravb_ring_format(struct net_device * ndev,int q)355 static void ravb_ring_format(struct net_device *ndev, int q)
356 {
357 	struct ravb_private *priv = netdev_priv(ndev);
358 	unsigned int num_tx_desc = priv->num_tx_desc;
359 	struct ravb_rx_desc *rx_desc;
360 	struct ravb_tx_desc *tx_desc;
361 	struct ravb_desc *desc;
362 	unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
363 				    num_tx_desc;
364 	unsigned int i;
365 
366 	priv->cur_rx[q] = 0;
367 	priv->cur_tx[q] = 0;
368 	priv->dirty_rx[q] = 0;
369 	priv->dirty_tx[q] = 0;
370 
371 	/* Regular RX descriptors have already been initialized by
372 	 * ravb_rx_ring_refill(), we just need to initialize the final link
373 	 * descriptor.
374 	 */
375 	rx_desc = ravb_rx_get_desc(priv, q, priv->num_rx_ring[q]);
376 	rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
377 	rx_desc->die_dt = DT_LINKFIX; /* type */
378 
379 	memset(priv->tx_ring[q], 0, tx_ring_size);
380 	/* Build TX ring buffer */
381 	for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
382 	     i++, tx_desc++) {
383 		tx_desc->die_dt = DT_EEMPTY;
384 		if (num_tx_desc > 1) {
385 			tx_desc++;
386 			tx_desc->die_dt = DT_EEMPTY;
387 		}
388 	}
389 	tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
390 	tx_desc->die_dt = DT_LINKFIX; /* type */
391 
392 	/* RX descriptor base address for best effort */
393 	desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
394 	desc->die_dt = DT_LINKFIX; /* type */
395 	desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
396 
397 	/* TX descriptor base address for best effort */
398 	desc = &priv->desc_bat[q];
399 	desc->die_dt = DT_LINKFIX; /* type */
400 	desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
401 }
402 
ravb_alloc_rx_desc(struct net_device * ndev,int q)403 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
404 {
405 	struct ravb_private *priv = netdev_priv(ndev);
406 	unsigned int ring_size;
407 
408 	ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
409 
410 	priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
411 						  &priv->rx_desc_dma[q],
412 						  GFP_KERNEL);
413 
414 	return priv->rx_ring[q].raw;
415 }
416 
417 /* Init skb and descriptor buffer for Ethernet AVB */
ravb_ring_init(struct net_device * ndev,int q)418 static int ravb_ring_init(struct net_device *ndev, int q)
419 {
420 	struct ravb_private *priv = netdev_priv(ndev);
421 	unsigned int num_tx_desc = priv->num_tx_desc;
422 	struct page_pool_params params = {
423 		.order = 0,
424 		.flags = PP_FLAG_DMA_MAP,
425 		.pool_size = priv->num_rx_ring[q],
426 		.nid = NUMA_NO_NODE,
427 		.dev = ndev->dev.parent,
428 		.dma_dir = DMA_FROM_DEVICE,
429 	};
430 	unsigned int ring_size;
431 	u32 num_filled;
432 
433 	/* Allocate RX page pool and buffers */
434 	priv->rx_pool[q] = page_pool_create(&params);
435 	if (IS_ERR(priv->rx_pool[q]))
436 		goto error;
437 
438 	/* Allocate RX buffers */
439 	priv->rx_buffers[q] = kcalloc(priv->num_rx_ring[q],
440 				      sizeof(*priv->rx_buffers[q]), GFP_KERNEL);
441 	if (!priv->rx_buffers[q])
442 		goto error;
443 
444 	/* Allocate TX skb rings */
445 	priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
446 				  sizeof(*priv->tx_skb[q]), GFP_KERNEL);
447 	if (!priv->tx_skb[q])
448 		goto error;
449 
450 	/* Allocate all RX descriptors. */
451 	if (!ravb_alloc_rx_desc(ndev, q))
452 		goto error;
453 
454 	/* Populate RX ring buffer. */
455 	priv->dirty_rx[q] = 0;
456 	ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
457 	memset(priv->rx_ring[q].raw, 0, ring_size);
458 	num_filled = ravb_rx_ring_refill(ndev, q, priv->num_rx_ring[q],
459 					 GFP_KERNEL);
460 	if (num_filled != priv->num_rx_ring[q])
461 		goto error;
462 
463 	if (num_tx_desc > 1) {
464 		/* Allocate rings for the aligned buffers */
465 		priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
466 					    DPTR_ALIGN - 1, GFP_KERNEL);
467 		if (!priv->tx_align[q])
468 			goto error;
469 	}
470 
471 	/* Allocate all TX descriptors. */
472 	ring_size = sizeof(struct ravb_tx_desc) *
473 		    (priv->num_tx_ring[q] * num_tx_desc + 1);
474 	priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
475 					      &priv->tx_desc_dma[q],
476 					      GFP_KERNEL);
477 	if (!priv->tx_ring[q])
478 		goto error;
479 
480 	return 0;
481 
482 error:
483 	ravb_ring_free(ndev, q);
484 
485 	return -ENOMEM;
486 }
487 
ravb_csum_init_gbeth(struct net_device * ndev)488 static void ravb_csum_init_gbeth(struct net_device *ndev)
489 {
490 	bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
491 	bool rx_enable = ndev->features & NETIF_F_RXCSUM;
492 
493 	if (!(tx_enable || rx_enable))
494 		goto done;
495 
496 	ravb_write(ndev, 0, CSR0);
497 	if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
498 		netdev_err(ndev, "Timeout enabling hardware checksum\n");
499 
500 		if (tx_enable)
501 			ndev->features &= ~NETIF_F_HW_CSUM;
502 
503 		if (rx_enable)
504 			ndev->features &= ~NETIF_F_RXCSUM;
505 	} else {
506 		if (tx_enable)
507 			ravb_write(ndev, CSR1_CSUM_ENABLE, CSR1);
508 
509 		if (rx_enable)
510 			ravb_write(ndev, CSR2_CSUM_ENABLE, CSR2);
511 	}
512 
513 done:
514 	ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
515 }
516 
ravb_emac_init_gbeth(struct net_device * ndev)517 static void ravb_emac_init_gbeth(struct net_device *ndev)
518 {
519 	struct ravb_private *priv = netdev_priv(ndev);
520 
521 	if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
522 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
523 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
524 	} else {
525 		ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
526 		ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
527 			    CXR31_SEL_LINK0);
528 	}
529 
530 	/* Receive frame limit set register */
531 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
532 
533 	/* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
534 	ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
535 			 ECMR_TE | ECMR_RE | ECMR_RCPT |
536 			 ECMR_TXF | ECMR_RXF, ECMR);
537 
538 	ravb_set_rate_gbeth(ndev);
539 
540 	/* Set MAC address */
541 	ravb_write(ndev,
542 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
543 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
544 	ravb_write(ndev, (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
545 
546 	/* E-MAC status register clear */
547 	ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
548 
549 	ravb_csum_init_gbeth(ndev);
550 
551 	/* E-MAC interrupt enable register */
552 	ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
553 }
554 
ravb_emac_init_rcar(struct net_device * ndev)555 static void ravb_emac_init_rcar(struct net_device *ndev)
556 {
557 	struct ravb_private *priv = netdev_priv(ndev);
558 
559 	/* Set receive frame length
560 	 *
561 	 * The length set here describes the frame from the destination address
562 	 * up to and including the CRC data. However only the frame data,
563 	 * excluding the CRC, are transferred to memory. To allow for the
564 	 * largest frames add the CRC length to the maximum Rx descriptor size.
565 	 */
566 	ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
567 
568 	/* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
569 	ravb_write(ndev, ECMR_ZPF | ECMR_DM |
570 		   (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
571 		   ECMR_TE | ECMR_RE, ECMR);
572 
573 	ravb_set_rate_rcar(ndev);
574 
575 	/* Set MAC address */
576 	ravb_write(ndev,
577 		   (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
578 		   (ndev->dev_addr[2] << 8)  | (ndev->dev_addr[3]), MAHR);
579 	ravb_write(ndev,
580 		   (ndev->dev_addr[4] << 8)  | (ndev->dev_addr[5]), MALR);
581 
582 	/* E-MAC status register clear */
583 	ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
584 
585 	/* E-MAC interrupt enable register */
586 	ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
587 }
588 
ravb_emac_init_rcar_gen4(struct net_device * ndev)589 static void ravb_emac_init_rcar_gen4(struct net_device *ndev)
590 {
591 	struct ravb_private *priv = netdev_priv(ndev);
592 	bool mii = priv->phy_interface == PHY_INTERFACE_MODE_MII;
593 
594 	ravb_modify(ndev, APSR, APSR_MIISELECT, mii ? APSR_MIISELECT : 0);
595 
596 	ravb_emac_init_rcar(ndev);
597 }
598 
599 /* E-MAC init function */
ravb_emac_init(struct net_device * ndev)600 static void ravb_emac_init(struct net_device *ndev)
601 {
602 	struct ravb_private *priv = netdev_priv(ndev);
603 	const struct ravb_hw_info *info = priv->info;
604 
605 	info->emac_init(ndev);
606 }
607 
ravb_dmac_init_gbeth(struct net_device * ndev)608 static int ravb_dmac_init_gbeth(struct net_device *ndev)
609 {
610 	struct ravb_private *priv = netdev_priv(ndev);
611 	int error;
612 
613 	error = ravb_ring_init(ndev, RAVB_BE);
614 	if (error)
615 		return error;
616 
617 	/* Descriptor format */
618 	ravb_ring_format(ndev, RAVB_BE);
619 
620 	/* Set DMAC RX */
621 	ravb_write(ndev, 0x60000000, RCR);
622 
623 	/* Set Max Frame Length (RTC) */
624 	ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
625 
626 	/* Set FIFO size */
627 	ravb_write(ndev, 0x00222200, TGC);
628 
629 	ravb_write(ndev, 0, TCCR);
630 
631 	/* Frame receive */
632 	ravb_write(ndev, RIC0_FRE0, RIC0);
633 	/* Disable FIFO full warning */
634 	ravb_write(ndev, 0x0, RIC1);
635 	/* Receive FIFO full error, descriptor empty */
636 	ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
637 
638 	ravb_write(ndev, TIC_FTE0, TIC);
639 
640 	return 0;
641 }
642 
ravb_dmac_init_rcar(struct net_device * ndev)643 static int ravb_dmac_init_rcar(struct net_device *ndev)
644 {
645 	struct ravb_private *priv = netdev_priv(ndev);
646 	const struct ravb_hw_info *info = priv->info;
647 	int error;
648 
649 	error = ravb_ring_init(ndev, RAVB_BE);
650 	if (error)
651 		return error;
652 	error = ravb_ring_init(ndev, RAVB_NC);
653 	if (error) {
654 		ravb_ring_free(ndev, RAVB_BE);
655 		return error;
656 	}
657 
658 	/* Descriptor format */
659 	ravb_ring_format(ndev, RAVB_BE);
660 	ravb_ring_format(ndev, RAVB_NC);
661 
662 	/* Set AVB RX */
663 	ravb_write(ndev,
664 		   RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
665 
666 	/* Set FIFO size */
667 	ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
668 
669 	/* Timestamp enable */
670 	ravb_write(ndev, TCCR_TFEN, TCCR);
671 
672 	/* Interrupt init: */
673 	if (info->multi_irqs) {
674 		/* Clear DIL.DPLx */
675 		ravb_write(ndev, 0, DIL);
676 		/* Set queue specific interrupt */
677 		ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
678 	}
679 	/* Frame receive */
680 	ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
681 	/* Disable FIFO full warning */
682 	ravb_write(ndev, 0, RIC1);
683 	/* Receive FIFO full error, descriptor empty */
684 	ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
685 	/* Frame transmitted, timestamp FIFO updated */
686 	ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
687 
688 	return 0;
689 }
690 
691 /* Device init function for Ethernet AVB */
ravb_dmac_init(struct net_device * ndev)692 static int ravb_dmac_init(struct net_device *ndev)
693 {
694 	struct ravb_private *priv = netdev_priv(ndev);
695 	const struct ravb_hw_info *info = priv->info;
696 	int error;
697 
698 	/* Set CONFIG mode */
699 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
700 	if (error)
701 		return error;
702 
703 	error = info->dmac_init(ndev);
704 	if (error)
705 		return error;
706 
707 	/* Setting the control will start the AVB-DMAC process. */
708 	return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
709 }
710 
ravb_get_tx_tstamp(struct net_device * ndev)711 static void ravb_get_tx_tstamp(struct net_device *ndev)
712 {
713 	struct ravb_private *priv = netdev_priv(ndev);
714 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
715 	struct skb_shared_hwtstamps shhwtstamps;
716 	struct sk_buff *skb;
717 	struct timespec64 ts;
718 	u16 tag, tfa_tag;
719 	int count;
720 	u32 tfa2;
721 
722 	count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
723 	while (count--) {
724 		tfa2 = ravb_read(ndev, TFA2);
725 		tfa_tag = (tfa2 & TFA2_TST) >> 16;
726 		ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
727 		ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
728 			    ravb_read(ndev, TFA1);
729 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
730 		shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
731 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
732 					 list) {
733 			skb = ts_skb->skb;
734 			tag = ts_skb->tag;
735 			list_del(&ts_skb->list);
736 			kfree(ts_skb);
737 			if (tag == tfa_tag) {
738 				skb_tstamp_tx(skb, &shhwtstamps);
739 				dev_consume_skb_any(skb);
740 				break;
741 			} else {
742 				dev_kfree_skb_any(skb);
743 			}
744 		}
745 		ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
746 	}
747 }
748 
ravb_rx_csum_gbeth(struct sk_buff * skb)749 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
750 {
751 	struct skb_shared_info *shinfo = skb_shinfo(skb);
752 	size_t csum_len;
753 	u16 *hw_csum;
754 
755 	/* The hardware checksum status is contained in 4 bytes appended to
756 	 * packet data.
757 	 *
758 	 * For ipv4, the first 2 bytes are the ip header checksum status. We can
759 	 * ignore this as it will always be re-checked in inet_gro_receive().
760 	 *
761 	 * The last 2 bytes are the protocol checksum status which will be zero
762 	 * if the checksum has been validated.
763 	 */
764 	csum_len = sizeof(*hw_csum) * 2;
765 	if (unlikely(skb->len < csum_len))
766 		return;
767 
768 	if (skb_is_nonlinear(skb)) {
769 		skb_frag_t *last_frag = &shinfo->frags[shinfo->nr_frags - 1];
770 
771 		hw_csum = (u16 *)(skb_frag_address(last_frag) +
772 				  skb_frag_size(last_frag));
773 		skb_frag_size_sub(last_frag, csum_len);
774 	} else {
775 		hw_csum = (u16 *)skb_tail_pointer(skb);
776 		skb_trim(skb, skb->len - csum_len);
777 	}
778 
779 	if (!get_unaligned(--hw_csum))
780 		skb->ip_summed = CHECKSUM_UNNECESSARY;
781 }
782 
ravb_rx_csum(struct sk_buff * skb)783 static void ravb_rx_csum(struct sk_buff *skb)
784 {
785 	u8 *hw_csum;
786 
787 	/* The hardware checksum is contained in sizeof(__sum16) (2) bytes
788 	 * appended to packet data
789 	 */
790 	if (unlikely(skb->len < sizeof(__sum16)))
791 		return;
792 	hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
793 	skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
794 	skb->ip_summed = CHECKSUM_COMPLETE;
795 	skb_trim(skb, skb->len - sizeof(__sum16));
796 }
797 
798 /* Packet receive function for Gigabit Ethernet */
ravb_rx_gbeth(struct net_device * ndev,int budget,int q)799 static int ravb_rx_gbeth(struct net_device *ndev, int budget, int q)
800 {
801 	struct ravb_private *priv = netdev_priv(ndev);
802 	const struct ravb_hw_info *info = priv->info;
803 	struct net_device_stats *stats;
804 	struct ravb_rx_desc *desc;
805 	int rx_packets = 0;
806 	u8  desc_status;
807 	u16 desc_len;
808 	u8  die_dt;
809 	int entry;
810 	int limit;
811 	int i;
812 
813 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
814 	stats = &priv->stats[q];
815 
816 	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
817 		struct sk_buff *skb = NULL;
818 
819 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
820 		desc = &priv->rx_ring[q].desc[entry];
821 		if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
822 			break;
823 
824 		/* Descriptor type must be checked before all other reads */
825 		dma_rmb();
826 		desc_status = desc->msc;
827 		desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
828 
829 		/* We use 0-byte descriptors to mark the DMA mapping errors */
830 		if (!desc_len)
831 			continue;
832 
833 		if (desc_status & MSC_MC)
834 			stats->multicast++;
835 
836 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
837 			stats->rx_errors++;
838 			if (desc_status & MSC_CRC)
839 				stats->rx_crc_errors++;
840 			if (desc_status & MSC_RFE)
841 				stats->rx_frame_errors++;
842 			if (desc_status & (MSC_RTLF | MSC_RTSF))
843 				stats->rx_length_errors++;
844 			if (desc_status & MSC_CEEF)
845 				stats->rx_missed_errors++;
846 		} else {
847 			struct ravb_rx_buffer *rx_buff;
848 			void *rx_addr;
849 
850 			rx_buff = &priv->rx_buffers[q][entry];
851 			rx_addr = page_address(rx_buff->page) + rx_buff->offset;
852 			die_dt = desc->die_dt & 0xF0;
853 			dma_sync_single_for_cpu(ndev->dev.parent,
854 						le32_to_cpu(desc->dptr),
855 						desc_len, DMA_FROM_DEVICE);
856 
857 			switch (die_dt) {
858 			case DT_FSINGLE:
859 			case DT_FSTART:
860 				/* Start of packet: Set initial data length. */
861 				skb = napi_build_skb(rx_addr,
862 						     info->rx_buffer_size);
863 				if (unlikely(!skb)) {
864 					stats->rx_errors++;
865 					page_pool_put_page(priv->rx_pool[q],
866 							   rx_buff->page, 0,
867 							   true);
868 					goto refill;
869 				}
870 				skb_mark_for_recycle(skb);
871 				skb_put(skb, desc_len);
872 
873 				/* Save this skb if the packet spans multiple
874 				 * descriptors.
875 				 */
876 				if (die_dt == DT_FSTART)
877 					priv->rx_1st_skb = skb;
878 				break;
879 
880 			case DT_FMID:
881 			case DT_FEND:
882 				/* Continuing a packet: Add this buffer as an RX
883 				 * frag.
884 				 */
885 
886 				/* rx_1st_skb will be NULL if napi_build_skb()
887 				 * failed for the first descriptor of a
888 				 * multi-descriptor packet.
889 				 */
890 				if (unlikely(!priv->rx_1st_skb)) {
891 					stats->rx_errors++;
892 					page_pool_put_page(priv->rx_pool[q],
893 							   rx_buff->page, 0,
894 							   true);
895 
896 					/* We may find a DT_FSINGLE or DT_FSTART
897 					 * descriptor in the queue which we can
898 					 * process, so don't give up yet.
899 					 */
900 					continue;
901 				}
902 				skb_add_rx_frag(priv->rx_1st_skb,
903 						skb_shinfo(priv->rx_1st_skb)->nr_frags,
904 						rx_buff->page, rx_buff->offset,
905 						desc_len, info->rx_buffer_size);
906 
907 				/* Set skb to point at the whole packet so that
908 				 * we only need one code path for finishing a
909 				 * packet.
910 				 */
911 				skb = priv->rx_1st_skb;
912 			}
913 
914 			switch (die_dt) {
915 			case DT_FSINGLE:
916 			case DT_FEND:
917 				/* Finishing a packet: Determine protocol &
918 				 * checksum, hand off to NAPI and update our
919 				 * stats.
920 				 */
921 				skb->protocol = eth_type_trans(skb, ndev);
922 				if (ndev->features & NETIF_F_RXCSUM)
923 					ravb_rx_csum_gbeth(skb);
924 				stats->rx_bytes += skb->len;
925 				napi_gro_receive(&priv->napi[q], skb);
926 				rx_packets++;
927 
928 				/* Clear rx_1st_skb so that it will only be
929 				 * non-NULL when valid.
930 				 */
931 				priv->rx_1st_skb = NULL;
932 			}
933 
934 			/* Mark this RX buffer as consumed. */
935 			rx_buff->page = NULL;
936 		}
937 	}
938 
939 refill:
940 	/* Refill the RX ring buffers. */
941 	priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
942 						 priv->cur_rx[q] - priv->dirty_rx[q],
943 						 GFP_ATOMIC);
944 
945 	stats->rx_packets += rx_packets;
946 	return rx_packets;
947 }
948 
ravb_rx_rcar_hwstamp(struct ravb_private * priv,int q,struct ravb_ex_rx_desc * desc,struct sk_buff * skb)949 static void ravb_rx_rcar_hwstamp(struct ravb_private *priv, int q,
950 				 struct ravb_ex_rx_desc *desc,
951 				 struct sk_buff *skb)
952 {
953 	struct skb_shared_hwtstamps *shhwtstamps;
954 	struct timespec64 ts;
955 	bool get_ts;
956 
957 	if (q == RAVB_NC)
958 		get_ts = priv->tstamp_rx_ctrl != HWTSTAMP_FILTER_NONE;
959 	else
960 		get_ts = priv->tstamp_rx_ctrl == HWTSTAMP_FILTER_ALL;
961 
962 	if (!get_ts)
963 		return;
964 
965 	shhwtstamps = skb_hwtstamps(skb);
966 	memset(shhwtstamps, 0, sizeof(*shhwtstamps));
967 	ts.tv_sec = ((u64)le16_to_cpu(desc->ts_sh) << 32)
968 		| le32_to_cpu(desc->ts_sl);
969 	ts.tv_nsec = le32_to_cpu(desc->ts_n);
970 	shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
971 }
972 
973 /* Packet receive function for Ethernet AVB */
ravb_rx_rcar(struct net_device * ndev,int budget,int q)974 static int ravb_rx_rcar(struct net_device *ndev, int budget, int q)
975 {
976 	struct ravb_private *priv = netdev_priv(ndev);
977 	const struct ravb_hw_info *info = priv->info;
978 	struct net_device_stats *stats = &priv->stats[q];
979 	struct ravb_ex_rx_desc *desc;
980 	unsigned int limit, i;
981 	struct sk_buff *skb;
982 	int rx_packets = 0;
983 	u8  desc_status;
984 	u16 pkt_len;
985 	int entry;
986 
987 	limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
988 	for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
989 		entry = priv->cur_rx[q] % priv->num_rx_ring[q];
990 		desc = &priv->rx_ring[q].ex_desc[entry];
991 		if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
992 			break;
993 
994 		/* Descriptor type must be checked before all other reads */
995 		dma_rmb();
996 		desc_status = desc->msc;
997 		pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
998 
999 		/* We use 0-byte descriptors to mark the DMA mapping errors */
1000 		if (!pkt_len)
1001 			continue;
1002 
1003 		if (desc_status & MSC_MC)
1004 			stats->multicast++;
1005 
1006 		if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
1007 				   MSC_CEEF)) {
1008 			stats->rx_errors++;
1009 			if (desc_status & MSC_CRC)
1010 				stats->rx_crc_errors++;
1011 			if (desc_status & MSC_RFE)
1012 				stats->rx_frame_errors++;
1013 			if (desc_status & (MSC_RTLF | MSC_RTSF))
1014 				stats->rx_length_errors++;
1015 			if (desc_status & MSC_CEEF)
1016 				stats->rx_missed_errors++;
1017 		} else {
1018 			struct ravb_rx_buffer *rx_buff;
1019 			void *rx_addr;
1020 
1021 			rx_buff = &priv->rx_buffers[q][entry];
1022 			rx_addr = page_address(rx_buff->page) + rx_buff->offset;
1023 			dma_sync_single_for_cpu(ndev->dev.parent,
1024 						le32_to_cpu(desc->dptr),
1025 						pkt_len, DMA_FROM_DEVICE);
1026 
1027 			skb = napi_build_skb(rx_addr, info->rx_buffer_size);
1028 			if (unlikely(!skb)) {
1029 				stats->rx_errors++;
1030 				page_pool_put_page(priv->rx_pool[q],
1031 						   rx_buff->page, 0, true);
1032 				break;
1033 			}
1034 			skb_mark_for_recycle(skb);
1035 
1036 			ravb_rx_rcar_hwstamp(priv, q, desc, skb);
1037 
1038 			skb_put(skb, pkt_len);
1039 			skb->protocol = eth_type_trans(skb, ndev);
1040 			if (ndev->features & NETIF_F_RXCSUM)
1041 				ravb_rx_csum(skb);
1042 			napi_gro_receive(&priv->napi[q], skb);
1043 			rx_packets++;
1044 			stats->rx_bytes += pkt_len;
1045 
1046 			/* Mark this RX buffer as consumed. */
1047 			rx_buff->page = NULL;
1048 		}
1049 	}
1050 
1051 	/* Refill the RX ring buffers. */
1052 	priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
1053 						 priv->cur_rx[q] - priv->dirty_rx[q],
1054 						 GFP_ATOMIC);
1055 
1056 	stats->rx_packets += rx_packets;
1057 	return rx_packets;
1058 }
1059 
1060 /* Packet receive function for Ethernet AVB */
ravb_rx(struct net_device * ndev,int budget,int q)1061 static int ravb_rx(struct net_device *ndev, int budget, int q)
1062 {
1063 	struct ravb_private *priv = netdev_priv(ndev);
1064 	const struct ravb_hw_info *info = priv->info;
1065 
1066 	return info->receive(ndev, budget, q);
1067 }
1068 
ravb_rcv_snd_disable(struct net_device * ndev)1069 static void ravb_rcv_snd_disable(struct net_device *ndev)
1070 {
1071 	/* Disable TX and RX */
1072 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1073 }
1074 
ravb_rcv_snd_enable(struct net_device * ndev)1075 static void ravb_rcv_snd_enable(struct net_device *ndev)
1076 {
1077 	/* Enable TX and RX */
1078 	ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1079 }
1080 
1081 /* function for waiting dma process finished */
ravb_stop_dma(struct net_device * ndev)1082 static int ravb_stop_dma(struct net_device *ndev)
1083 {
1084 	struct ravb_private *priv = netdev_priv(ndev);
1085 	const struct ravb_hw_info *info = priv->info;
1086 	int error;
1087 
1088 	/* Wait for stopping the hardware TX process */
1089 	error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1090 
1091 	if (error)
1092 		return error;
1093 
1094 	error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1095 			  0);
1096 	if (error)
1097 		return error;
1098 
1099 	/* Stop the E-MAC's RX/TX processes. */
1100 	ravb_rcv_snd_disable(ndev);
1101 
1102 	/* Wait for stopping the RX DMA process */
1103 	error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1104 	if (error)
1105 		return error;
1106 
1107 	/* Stop AVB-DMAC process */
1108 	return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1109 }
1110 
1111 /* E-MAC interrupt handler */
ravb_emac_interrupt_unlocked(struct net_device * ndev)1112 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1113 {
1114 	struct ravb_private *priv = netdev_priv(ndev);
1115 	u32 ecsr, psr;
1116 
1117 	ecsr = ravb_read(ndev, ECSR);
1118 	ravb_write(ndev, ecsr, ECSR);	/* clear interrupt */
1119 
1120 	if (ecsr & ECSR_MPD)
1121 		pm_wakeup_event(&priv->pdev->dev, 0);
1122 	if (ecsr & ECSR_ICD)
1123 		ndev->stats.tx_carrier_errors++;
1124 	if (ecsr & ECSR_LCHNG) {
1125 		/* Link changed */
1126 		if (priv->no_avb_link)
1127 			return;
1128 		psr = ravb_read(ndev, PSR);
1129 		if (priv->avb_link_active_low)
1130 			psr ^= PSR_LMON;
1131 		if (!(psr & PSR_LMON)) {
1132 			/* DIsable RX and TX */
1133 			ravb_rcv_snd_disable(ndev);
1134 		} else {
1135 			/* Enable RX and TX */
1136 			ravb_rcv_snd_enable(ndev);
1137 		}
1138 	}
1139 }
1140 
ravb_emac_interrupt(int irq,void * dev_id)1141 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1142 {
1143 	struct net_device *ndev = dev_id;
1144 	struct ravb_private *priv = netdev_priv(ndev);
1145 	struct device *dev = &priv->pdev->dev;
1146 	irqreturn_t result = IRQ_HANDLED;
1147 
1148 	pm_runtime_get_noresume(dev);
1149 
1150 	if (unlikely(!pm_runtime_active(dev))) {
1151 		result = IRQ_NONE;
1152 		goto out_rpm_put;
1153 	}
1154 
1155 	spin_lock(&priv->lock);
1156 	ravb_emac_interrupt_unlocked(ndev);
1157 	spin_unlock(&priv->lock);
1158 
1159 out_rpm_put:
1160 	pm_runtime_put_noidle(dev);
1161 	return result;
1162 }
1163 
1164 /* Error interrupt handler */
ravb_error_interrupt(struct net_device * ndev)1165 static void ravb_error_interrupt(struct net_device *ndev)
1166 {
1167 	struct ravb_private *priv = netdev_priv(ndev);
1168 	u32 eis, ris2;
1169 
1170 	eis = ravb_read(ndev, EIS);
1171 	ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1172 	if (eis & EIS_QFS) {
1173 		ris2 = ravb_read(ndev, RIS2);
1174 		ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1175 			   RIS2);
1176 
1177 		/* Receive Descriptor Empty int */
1178 		if (ris2 & RIS2_QFF0)
1179 			priv->stats[RAVB_BE].rx_over_errors++;
1180 
1181 		/* Receive Descriptor Empty int */
1182 		if (ris2 & RIS2_QFF1)
1183 			priv->stats[RAVB_NC].rx_over_errors++;
1184 
1185 		/* Receive FIFO Overflow int */
1186 		if (ris2 & RIS2_RFFF)
1187 			priv->rx_fifo_errors++;
1188 	}
1189 }
1190 
ravb_queue_interrupt(struct net_device * ndev,int q)1191 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1192 {
1193 	struct ravb_private *priv = netdev_priv(ndev);
1194 	const struct ravb_hw_info *info = priv->info;
1195 	u32 ris0 = ravb_read(ndev, RIS0);
1196 	u32 ric0 = ravb_read(ndev, RIC0);
1197 	u32 tis  = ravb_read(ndev, TIS);
1198 	u32 tic  = ravb_read(ndev, TIC);
1199 
1200 	if (((ris0 & ric0) & BIT(q)) || ((tis  & tic)  & BIT(q))) {
1201 		if (napi_schedule_prep(&priv->napi[q])) {
1202 			/* Mask RX and TX interrupts */
1203 			if (!info->irq_en_dis) {
1204 				ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1205 				ravb_write(ndev, tic & ~BIT(q), TIC);
1206 			} else {
1207 				ravb_write(ndev, BIT(q), RID0);
1208 				ravb_write(ndev, BIT(q), TID);
1209 			}
1210 			__napi_schedule(&priv->napi[q]);
1211 		} else {
1212 			netdev_warn(ndev,
1213 				    "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1214 				    ris0, ric0);
1215 			netdev_warn(ndev,
1216 				    "                    tx status 0x%08x, tx mask 0x%08x.\n",
1217 				    tis, tic);
1218 		}
1219 		return true;
1220 	}
1221 	return false;
1222 }
1223 
ravb_timestamp_interrupt(struct net_device * ndev)1224 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1225 {
1226 	u32 tis = ravb_read(ndev, TIS);
1227 
1228 	if (tis & TIS_TFUF) {
1229 		ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1230 		ravb_get_tx_tstamp(ndev);
1231 		return true;
1232 	}
1233 	return false;
1234 }
1235 
ravb_interrupt(int irq,void * dev_id)1236 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1237 {
1238 	struct net_device *ndev = dev_id;
1239 	struct ravb_private *priv = netdev_priv(ndev);
1240 	const struct ravb_hw_info *info = priv->info;
1241 	struct device *dev = &priv->pdev->dev;
1242 	irqreturn_t result = IRQ_NONE;
1243 	u32 iss;
1244 
1245 	pm_runtime_get_noresume(dev);
1246 
1247 	if (unlikely(!pm_runtime_active(dev)))
1248 		goto out_rpm_put;
1249 
1250 	spin_lock(&priv->lock);
1251 	/* Get interrupt status */
1252 	iss = ravb_read(ndev, ISS);
1253 
1254 	/* Received and transmitted interrupts */
1255 	if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1256 		int q;
1257 
1258 		/* Timestamp updated */
1259 		if (ravb_timestamp_interrupt(ndev))
1260 			result = IRQ_HANDLED;
1261 
1262 		/* Network control and best effort queue RX/TX */
1263 		if (info->nc_queues) {
1264 			for (q = RAVB_NC; q >= RAVB_BE; q--) {
1265 				if (ravb_queue_interrupt(ndev, q))
1266 					result = IRQ_HANDLED;
1267 			}
1268 		} else {
1269 			if (ravb_queue_interrupt(ndev, RAVB_BE))
1270 				result = IRQ_HANDLED;
1271 		}
1272 	}
1273 
1274 	/* E-MAC status summary */
1275 	if (iss & ISS_MS) {
1276 		ravb_emac_interrupt_unlocked(ndev);
1277 		result = IRQ_HANDLED;
1278 	}
1279 
1280 	/* Error status summary */
1281 	if (iss & ISS_ES) {
1282 		ravb_error_interrupt(ndev);
1283 		result = IRQ_HANDLED;
1284 	}
1285 
1286 	/* gPTP interrupt status summary */
1287 	if (iss & ISS_CGIS) {
1288 		ravb_ptp_interrupt(ndev);
1289 		result = IRQ_HANDLED;
1290 	}
1291 
1292 	spin_unlock(&priv->lock);
1293 
1294 out_rpm_put:
1295 	pm_runtime_put_noidle(dev);
1296 	return result;
1297 }
1298 
1299 /* Timestamp/Error/gPTP interrupt handler */
ravb_multi_interrupt(int irq,void * dev_id)1300 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1301 {
1302 	struct net_device *ndev = dev_id;
1303 	struct ravb_private *priv = netdev_priv(ndev);
1304 	struct device *dev = &priv->pdev->dev;
1305 	irqreturn_t result = IRQ_NONE;
1306 	u32 iss;
1307 
1308 	pm_runtime_get_noresume(dev);
1309 
1310 	if (unlikely(!pm_runtime_active(dev)))
1311 		goto out_rpm_put;
1312 
1313 	spin_lock(&priv->lock);
1314 	/* Get interrupt status */
1315 	iss = ravb_read(ndev, ISS);
1316 
1317 	/* Timestamp updated */
1318 	if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1319 		result = IRQ_HANDLED;
1320 
1321 	/* Error status summary */
1322 	if (iss & ISS_ES) {
1323 		ravb_error_interrupt(ndev);
1324 		result = IRQ_HANDLED;
1325 	}
1326 
1327 	/* gPTP interrupt status summary */
1328 	if (iss & ISS_CGIS) {
1329 		ravb_ptp_interrupt(ndev);
1330 		result = IRQ_HANDLED;
1331 	}
1332 
1333 	spin_unlock(&priv->lock);
1334 
1335 out_rpm_put:
1336 	pm_runtime_put_noidle(dev);
1337 	return result;
1338 }
1339 
ravb_dma_interrupt(int irq,void * dev_id,int q)1340 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1341 {
1342 	struct net_device *ndev = dev_id;
1343 	struct ravb_private *priv = netdev_priv(ndev);
1344 	struct device *dev = &priv->pdev->dev;
1345 	irqreturn_t result = IRQ_NONE;
1346 
1347 	pm_runtime_get_noresume(dev);
1348 
1349 	if (unlikely(!pm_runtime_active(dev)))
1350 		goto out_rpm_put;
1351 
1352 	spin_lock(&priv->lock);
1353 
1354 	/* Network control/Best effort queue RX/TX */
1355 	if (ravb_queue_interrupt(ndev, q))
1356 		result = IRQ_HANDLED;
1357 
1358 	spin_unlock(&priv->lock);
1359 
1360 out_rpm_put:
1361 	pm_runtime_put_noidle(dev);
1362 	return result;
1363 }
1364 
ravb_be_interrupt(int irq,void * dev_id)1365 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1366 {
1367 	return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1368 }
1369 
ravb_nc_interrupt(int irq,void * dev_id)1370 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1371 {
1372 	return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1373 }
1374 
ravb_poll(struct napi_struct * napi,int budget)1375 static int ravb_poll(struct napi_struct *napi, int budget)
1376 {
1377 	struct net_device *ndev = napi->dev;
1378 	struct ravb_private *priv = netdev_priv(ndev);
1379 	const struct ravb_hw_info *info = priv->info;
1380 	unsigned long flags;
1381 	int q = napi - priv->napi;
1382 	int mask = BIT(q);
1383 	int work_done;
1384 
1385 	/* Processing RX Descriptor Ring */
1386 	/* Clear RX interrupt */
1387 	ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1388 	work_done = ravb_rx(ndev, budget, q);
1389 
1390 	/* Processing TX Descriptor Ring */
1391 	spin_lock_irqsave(&priv->lock, flags);
1392 	/* Clear TX interrupt */
1393 	ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1394 	ravb_tx_free(ndev, q, true);
1395 	netif_wake_subqueue(ndev, q);
1396 	spin_unlock_irqrestore(&priv->lock, flags);
1397 
1398 	/* Receive error message handling */
1399 	priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1400 	if (info->nc_queues)
1401 		priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1402 	if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1403 		ndev->stats.rx_over_errors = priv->rx_over_errors;
1404 	if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1405 		ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1406 
1407 	if (work_done < budget && napi_complete_done(napi, work_done)) {
1408 		/* Re-enable RX/TX interrupts */
1409 		spin_lock_irqsave(&priv->lock, flags);
1410 		if (!info->irq_en_dis) {
1411 			ravb_modify(ndev, RIC0, mask, mask);
1412 			ravb_modify(ndev, TIC,  mask, mask);
1413 		} else {
1414 			ravb_write(ndev, mask, RIE0);
1415 			ravb_write(ndev, mask, TIE);
1416 		}
1417 		spin_unlock_irqrestore(&priv->lock, flags);
1418 	}
1419 
1420 	return work_done;
1421 }
1422 
ravb_set_duplex_gbeth(struct net_device * ndev)1423 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1424 {
1425 	struct ravb_private *priv = netdev_priv(ndev);
1426 
1427 	ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1428 }
1429 
1430 /* PHY state control function */
ravb_adjust_link(struct net_device * ndev)1431 static void ravb_adjust_link(struct net_device *ndev)
1432 {
1433 	struct ravb_private *priv = netdev_priv(ndev);
1434 	const struct ravb_hw_info *info = priv->info;
1435 	struct phy_device *phydev = ndev->phydev;
1436 	bool new_state = false;
1437 	unsigned long flags;
1438 
1439 	spin_lock_irqsave(&priv->lock, flags);
1440 
1441 	/* Disable TX and RX right over here, if E-MAC change is ignored */
1442 	if (priv->no_avb_link)
1443 		ravb_rcv_snd_disable(ndev);
1444 
1445 	if (phydev->link) {
1446 		if (info->half_duplex && phydev->duplex != priv->duplex) {
1447 			new_state = true;
1448 			priv->duplex = phydev->duplex;
1449 			ravb_set_duplex_gbeth(ndev);
1450 		}
1451 
1452 		if (phydev->speed != priv->speed) {
1453 			new_state = true;
1454 			priv->speed = phydev->speed;
1455 			info->set_rate(ndev);
1456 		}
1457 		if (!priv->link) {
1458 			ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1459 			new_state = true;
1460 			priv->link = phydev->link;
1461 		}
1462 	} else if (priv->link) {
1463 		new_state = true;
1464 		priv->link = 0;
1465 		priv->speed = 0;
1466 		if (info->half_duplex)
1467 			priv->duplex = -1;
1468 	}
1469 
1470 	/* Enable TX and RX right over here, if E-MAC change is ignored */
1471 	if (priv->no_avb_link && phydev->link)
1472 		ravb_rcv_snd_enable(ndev);
1473 
1474 	spin_unlock_irqrestore(&priv->lock, flags);
1475 
1476 	if (new_state && netif_msg_link(priv))
1477 		phy_print_status(phydev);
1478 }
1479 
1480 /* PHY init function */
ravb_phy_init(struct net_device * ndev)1481 static int ravb_phy_init(struct net_device *ndev)
1482 {
1483 	struct device_node *np = ndev->dev.parent->of_node;
1484 	struct ravb_private *priv = netdev_priv(ndev);
1485 	const struct ravb_hw_info *info = priv->info;
1486 	struct phy_device *phydev;
1487 	struct device_node *pn;
1488 	phy_interface_t iface;
1489 	int err;
1490 
1491 	priv->link = 0;
1492 	priv->speed = 0;
1493 	priv->duplex = -1;
1494 
1495 	/* Try connecting to PHY */
1496 	pn = of_parse_phandle(np, "phy-handle", 0);
1497 	if (!pn) {
1498 		/* In the case of a fixed PHY, the DT node associated
1499 		 * to the PHY is the Ethernet MAC DT node.
1500 		 */
1501 		if (of_phy_is_fixed_link(np)) {
1502 			err = of_phy_register_fixed_link(np);
1503 			if (err)
1504 				return err;
1505 		}
1506 		pn = of_node_get(np);
1507 	}
1508 
1509 	iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1510 				     : priv->phy_interface;
1511 	phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1512 	of_node_put(pn);
1513 	if (!phydev) {
1514 		netdev_err(ndev, "failed to connect PHY\n");
1515 		err = -ENOENT;
1516 		goto err_deregister_fixed_link;
1517 	}
1518 
1519 	if (!info->half_duplex) {
1520 		/* 10BASE, Pause and Asym Pause is not supported */
1521 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1522 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1523 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1524 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1525 
1526 		/* Half Duplex is not supported */
1527 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1528 		phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1529 	}
1530 
1531 	phy_attached_info(phydev);
1532 
1533 	return 0;
1534 
1535 err_deregister_fixed_link:
1536 	if (of_phy_is_fixed_link(np))
1537 		of_phy_deregister_fixed_link(np);
1538 
1539 	return err;
1540 }
1541 
1542 /* PHY control start function */
ravb_phy_start(struct net_device * ndev)1543 static int ravb_phy_start(struct net_device *ndev)
1544 {
1545 	int error;
1546 
1547 	error = ravb_phy_init(ndev);
1548 	if (error)
1549 		return error;
1550 
1551 	phy_start(ndev->phydev);
1552 
1553 	return 0;
1554 }
1555 
ravb_get_msglevel(struct net_device * ndev)1556 static u32 ravb_get_msglevel(struct net_device *ndev)
1557 {
1558 	struct ravb_private *priv = netdev_priv(ndev);
1559 
1560 	return priv->msg_enable;
1561 }
1562 
ravb_set_msglevel(struct net_device * ndev,u32 value)1563 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1564 {
1565 	struct ravb_private *priv = netdev_priv(ndev);
1566 
1567 	priv->msg_enable = value;
1568 }
1569 
1570 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1571 	"rx_queue_0_current",
1572 	"tx_queue_0_current",
1573 	"rx_queue_0_dirty",
1574 	"tx_queue_0_dirty",
1575 	"rx_queue_0_packets",
1576 	"tx_queue_0_packets",
1577 	"rx_queue_0_bytes",
1578 	"tx_queue_0_bytes",
1579 	"rx_queue_0_mcast_packets",
1580 	"rx_queue_0_errors",
1581 	"rx_queue_0_crc_errors",
1582 	"rx_queue_0_frame_errors",
1583 	"rx_queue_0_length_errors",
1584 	"rx_queue_0_csum_offload_errors",
1585 	"rx_queue_0_over_errors",
1586 };
1587 
1588 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1589 	"rx_queue_0_current",
1590 	"tx_queue_0_current",
1591 	"rx_queue_0_dirty",
1592 	"tx_queue_0_dirty",
1593 	"rx_queue_0_packets",
1594 	"tx_queue_0_packets",
1595 	"rx_queue_0_bytes",
1596 	"tx_queue_0_bytes",
1597 	"rx_queue_0_mcast_packets",
1598 	"rx_queue_0_errors",
1599 	"rx_queue_0_crc_errors",
1600 	"rx_queue_0_frame_errors",
1601 	"rx_queue_0_length_errors",
1602 	"rx_queue_0_missed_errors",
1603 	"rx_queue_0_over_errors",
1604 
1605 	"rx_queue_1_current",
1606 	"tx_queue_1_current",
1607 	"rx_queue_1_dirty",
1608 	"tx_queue_1_dirty",
1609 	"rx_queue_1_packets",
1610 	"tx_queue_1_packets",
1611 	"rx_queue_1_bytes",
1612 	"tx_queue_1_bytes",
1613 	"rx_queue_1_mcast_packets",
1614 	"rx_queue_1_errors",
1615 	"rx_queue_1_crc_errors",
1616 	"rx_queue_1_frame_errors",
1617 	"rx_queue_1_length_errors",
1618 	"rx_queue_1_missed_errors",
1619 	"rx_queue_1_over_errors",
1620 };
1621 
ravb_get_sset_count(struct net_device * netdev,int sset)1622 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1623 {
1624 	struct ravb_private *priv = netdev_priv(netdev);
1625 	const struct ravb_hw_info *info = priv->info;
1626 
1627 	switch (sset) {
1628 	case ETH_SS_STATS:
1629 		return info->stats_len;
1630 	default:
1631 		return -EOPNOTSUPP;
1632 	}
1633 }
1634 
ravb_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * estats,u64 * data)1635 static void ravb_get_ethtool_stats(struct net_device *ndev,
1636 				   struct ethtool_stats *estats, u64 *data)
1637 {
1638 	struct ravb_private *priv = netdev_priv(ndev);
1639 	const struct ravb_hw_info *info = priv->info;
1640 	int num_rx_q;
1641 	int i = 0;
1642 	int q;
1643 
1644 	num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1645 	/* Device-specific stats */
1646 	for (q = RAVB_BE; q < num_rx_q; q++) {
1647 		struct net_device_stats *stats = &priv->stats[q];
1648 
1649 		data[i++] = priv->cur_rx[q];
1650 		data[i++] = priv->cur_tx[q];
1651 		data[i++] = priv->dirty_rx[q];
1652 		data[i++] = priv->dirty_tx[q];
1653 		data[i++] = stats->rx_packets;
1654 		data[i++] = stats->tx_packets;
1655 		data[i++] = stats->rx_bytes;
1656 		data[i++] = stats->tx_bytes;
1657 		data[i++] = stats->multicast;
1658 		data[i++] = stats->rx_errors;
1659 		data[i++] = stats->rx_crc_errors;
1660 		data[i++] = stats->rx_frame_errors;
1661 		data[i++] = stats->rx_length_errors;
1662 		data[i++] = stats->rx_missed_errors;
1663 		data[i++] = stats->rx_over_errors;
1664 	}
1665 }
1666 
ravb_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1667 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1668 {
1669 	struct ravb_private *priv = netdev_priv(ndev);
1670 	const struct ravb_hw_info *info = priv->info;
1671 
1672 	switch (stringset) {
1673 	case ETH_SS_STATS:
1674 		memcpy(data, info->gstrings_stats, info->gstrings_size);
1675 		break;
1676 	}
1677 }
1678 
ravb_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1679 static void ravb_get_ringparam(struct net_device *ndev,
1680 			       struct ethtool_ringparam *ring,
1681 			       struct kernel_ethtool_ringparam *kernel_ring,
1682 			       struct netlink_ext_ack *extack)
1683 {
1684 	struct ravb_private *priv = netdev_priv(ndev);
1685 
1686 	ring->rx_max_pending = BE_RX_RING_MAX;
1687 	ring->tx_max_pending = BE_TX_RING_MAX;
1688 	ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1689 	ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1690 }
1691 
ravb_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1692 static int ravb_set_ringparam(struct net_device *ndev,
1693 			      struct ethtool_ringparam *ring,
1694 			      struct kernel_ethtool_ringparam *kernel_ring,
1695 			      struct netlink_ext_ack *extack)
1696 {
1697 	struct ravb_private *priv = netdev_priv(ndev);
1698 	const struct ravb_hw_info *info = priv->info;
1699 	int error;
1700 
1701 	if (ring->tx_pending > BE_TX_RING_MAX ||
1702 	    ring->rx_pending > BE_RX_RING_MAX ||
1703 	    ring->tx_pending < BE_TX_RING_MIN ||
1704 	    ring->rx_pending < BE_RX_RING_MIN)
1705 		return -EINVAL;
1706 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1707 		return -EINVAL;
1708 
1709 	if (netif_running(ndev)) {
1710 		netif_device_detach(ndev);
1711 		/* Stop PTP Clock driver */
1712 		if (info->gptp)
1713 			ravb_ptp_stop(ndev);
1714 		/* Wait for DMA stopping */
1715 		error = ravb_stop_dma(ndev);
1716 		if (error) {
1717 			netdev_err(ndev,
1718 				   "cannot set ringparam! Any AVB processes are still running?\n");
1719 			return error;
1720 		}
1721 		synchronize_irq(ndev->irq);
1722 
1723 		/* Free all the skb's in the RX queue and the DMA buffers. */
1724 		ravb_ring_free(ndev, RAVB_BE);
1725 		if (info->nc_queues)
1726 			ravb_ring_free(ndev, RAVB_NC);
1727 	}
1728 
1729 	/* Set new parameters */
1730 	priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1731 	priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1732 
1733 	if (netif_running(ndev)) {
1734 		error = ravb_dmac_init(ndev);
1735 		if (error) {
1736 			netdev_err(ndev,
1737 				   "%s: ravb_dmac_init() failed, error %d\n",
1738 				   __func__, error);
1739 			return error;
1740 		}
1741 
1742 		ravb_emac_init(ndev);
1743 
1744 		/* Initialise PTP Clock driver */
1745 		if (info->gptp)
1746 			ravb_ptp_init(ndev, priv->pdev);
1747 
1748 		netif_device_attach(ndev);
1749 	}
1750 
1751 	return 0;
1752 }
1753 
ravb_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)1754 static int ravb_get_ts_info(struct net_device *ndev,
1755 			    struct kernel_ethtool_ts_info *info)
1756 {
1757 	struct ravb_private *priv = netdev_priv(ndev);
1758 	const struct ravb_hw_info *hw_info = priv->info;
1759 
1760 	if (hw_info->gptp || hw_info->ccc_gac) {
1761 		info->so_timestamping =
1762 			SOF_TIMESTAMPING_TX_SOFTWARE |
1763 			SOF_TIMESTAMPING_TX_HARDWARE |
1764 			SOF_TIMESTAMPING_RX_HARDWARE |
1765 			SOF_TIMESTAMPING_RAW_HARDWARE;
1766 		info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1767 		info->rx_filters =
1768 			(1 << HWTSTAMP_FILTER_NONE) |
1769 			(1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1770 			(1 << HWTSTAMP_FILTER_ALL);
1771 		info->phc_index = ptp_clock_index(priv->ptp.clock);
1772 	}
1773 
1774 	return 0;
1775 }
1776 
ravb_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1777 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1778 {
1779 	struct ravb_private *priv = netdev_priv(ndev);
1780 
1781 	wol->supported = WAKE_MAGIC;
1782 	wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1783 }
1784 
ravb_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1785 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1786 {
1787 	struct ravb_private *priv = netdev_priv(ndev);
1788 	const struct ravb_hw_info *info = priv->info;
1789 
1790 	if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1791 		return -EOPNOTSUPP;
1792 
1793 	priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1794 
1795 	device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1796 
1797 	return 0;
1798 }
1799 
1800 static const struct ethtool_ops ravb_ethtool_ops = {
1801 	.nway_reset		= phy_ethtool_nway_reset,
1802 	.get_msglevel		= ravb_get_msglevel,
1803 	.set_msglevel		= ravb_set_msglevel,
1804 	.get_link		= ethtool_op_get_link,
1805 	.get_strings		= ravb_get_strings,
1806 	.get_ethtool_stats	= ravb_get_ethtool_stats,
1807 	.get_sset_count		= ravb_get_sset_count,
1808 	.get_ringparam		= ravb_get_ringparam,
1809 	.set_ringparam		= ravb_set_ringparam,
1810 	.get_ts_info		= ravb_get_ts_info,
1811 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
1812 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
1813 	.get_wol		= ravb_get_wol,
1814 	.set_wol		= ravb_set_wol,
1815 };
1816 
ravb_set_config_mode(struct net_device * ndev)1817 static int ravb_set_config_mode(struct net_device *ndev)
1818 {
1819 	struct ravb_private *priv = netdev_priv(ndev);
1820 	const struct ravb_hw_info *info = priv->info;
1821 	int error;
1822 
1823 	if (info->gptp) {
1824 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1825 		if (error)
1826 			return error;
1827 		/* Set CSEL value */
1828 		ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1829 	} else if (info->ccc_gac) {
1830 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1831 	} else {
1832 		error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1833 	}
1834 
1835 	return error;
1836 }
1837 
ravb_set_gti(struct net_device * ndev)1838 static void ravb_set_gti(struct net_device *ndev)
1839 {
1840 	struct ravb_private *priv = netdev_priv(ndev);
1841 	const struct ravb_hw_info *info = priv->info;
1842 
1843 	if (!(info->gptp || info->ccc_gac))
1844 		return;
1845 
1846 	ravb_write(ndev, priv->gti_tiv, GTI);
1847 
1848 	/* Request GTI loading */
1849 	ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1850 }
1851 
ravb_compute_gti(struct net_device * ndev)1852 static int ravb_compute_gti(struct net_device *ndev)
1853 {
1854 	struct ravb_private *priv = netdev_priv(ndev);
1855 	const struct ravb_hw_info *info = priv->info;
1856 	struct device *dev = ndev->dev.parent;
1857 	unsigned long rate;
1858 	u64 inc;
1859 
1860 	if (!(info->gptp || info->ccc_gac))
1861 		return 0;
1862 
1863 	if (info->gptp_ref_clk)
1864 		rate = clk_get_rate(priv->gptp_clk);
1865 	else
1866 		rate = clk_get_rate(priv->clk);
1867 	if (!rate)
1868 		return -EINVAL;
1869 
1870 	inc = div64_ul(1000000000ULL << 20, rate);
1871 
1872 	if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1873 		dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1874 			inc, GTI_TIV_MIN, GTI_TIV_MAX);
1875 		return -EINVAL;
1876 	}
1877 	priv->gti_tiv = inc;
1878 
1879 	return 0;
1880 }
1881 
1882 /* Set tx and rx clock internal delay modes */
ravb_parse_delay_mode(struct device_node * np,struct net_device * ndev)1883 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1884 {
1885 	struct ravb_private *priv = netdev_priv(ndev);
1886 	bool explicit_delay = false;
1887 	u32 delay;
1888 
1889 	if (!priv->info->internal_delay)
1890 		return;
1891 
1892 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1893 		/* Valid values are 0 and 1800, according to DT bindings */
1894 		priv->rxcidm = !!delay;
1895 		explicit_delay = true;
1896 	}
1897 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1898 		/* Valid values are 0 and 2000, according to DT bindings */
1899 		priv->txcidm = !!delay;
1900 		explicit_delay = true;
1901 	}
1902 
1903 	if (explicit_delay)
1904 		return;
1905 
1906 	/* Fall back to legacy rgmii-*id behavior */
1907 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1908 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1909 		priv->rxcidm = 1;
1910 		priv->rgmii_override = 1;
1911 	}
1912 
1913 	if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1914 	    priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1915 		priv->txcidm = 1;
1916 		priv->rgmii_override = 1;
1917 	}
1918 }
1919 
ravb_set_delay_mode(struct net_device * ndev)1920 static void ravb_set_delay_mode(struct net_device *ndev)
1921 {
1922 	struct ravb_private *priv = netdev_priv(ndev);
1923 	u32 set = 0;
1924 
1925 	if (!priv->info->internal_delay)
1926 		return;
1927 
1928 	if (priv->rxcidm)
1929 		set |= APSR_RDM;
1930 	if (priv->txcidm)
1931 		set |= APSR_TDM;
1932 	ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1933 }
1934 
1935 /* Network device open function for Ethernet AVB */
ravb_open(struct net_device * ndev)1936 static int ravb_open(struct net_device *ndev)
1937 {
1938 	struct ravb_private *priv = netdev_priv(ndev);
1939 	const struct ravb_hw_info *info = priv->info;
1940 	struct device *dev = &priv->pdev->dev;
1941 	int error;
1942 
1943 	napi_enable(&priv->napi[RAVB_BE]);
1944 	if (info->nc_queues)
1945 		napi_enable(&priv->napi[RAVB_NC]);
1946 
1947 	error = pm_runtime_resume_and_get(dev);
1948 	if (error < 0)
1949 		goto out_napi_off;
1950 
1951 	/* Set AVB config mode */
1952 	error = ravb_set_config_mode(ndev);
1953 	if (error)
1954 		goto out_rpm_put;
1955 
1956 	ravb_set_delay_mode(ndev);
1957 	ravb_write(ndev, priv->desc_bat_dma, DBAT);
1958 
1959 	/* Device init */
1960 	error = ravb_dmac_init(ndev);
1961 	if (error)
1962 		goto out_set_reset;
1963 
1964 	ravb_emac_init(ndev);
1965 
1966 	ravb_set_gti(ndev);
1967 
1968 	/* Initialise PTP Clock driver */
1969 	if (info->gptp || info->ccc_gac)
1970 		ravb_ptp_init(ndev, priv->pdev);
1971 
1972 	/* PHY control start */
1973 	error = ravb_phy_start(ndev);
1974 	if (error)
1975 		goto out_ptp_stop;
1976 
1977 	netif_tx_start_all_queues(ndev);
1978 
1979 	return 0;
1980 
1981 out_ptp_stop:
1982 	/* Stop PTP Clock driver */
1983 	if (info->gptp || info->ccc_gac)
1984 		ravb_ptp_stop(ndev);
1985 	ravb_stop_dma(ndev);
1986 out_set_reset:
1987 	ravb_set_opmode(ndev, CCC_OPC_RESET);
1988 out_rpm_put:
1989 	pm_runtime_put_autosuspend(dev);
1990 out_napi_off:
1991 	if (info->nc_queues)
1992 		napi_disable(&priv->napi[RAVB_NC]);
1993 	napi_disable(&priv->napi[RAVB_BE]);
1994 	return error;
1995 }
1996 
1997 /* Timeout function for Ethernet AVB */
ravb_tx_timeout(struct net_device * ndev,unsigned int txqueue)1998 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1999 {
2000 	struct ravb_private *priv = netdev_priv(ndev);
2001 
2002 	netif_err(priv, tx_err, ndev,
2003 		  "transmit timed out, status %08x, resetting...\n",
2004 		  ravb_read(ndev, ISS));
2005 
2006 	/* tx_errors count up */
2007 	ndev->stats.tx_errors++;
2008 
2009 	schedule_work(&priv->work);
2010 }
2011 
ravb_tx_timeout_work(struct work_struct * work)2012 static void ravb_tx_timeout_work(struct work_struct *work)
2013 {
2014 	struct ravb_private *priv = container_of(work, struct ravb_private,
2015 						 work);
2016 	const struct ravb_hw_info *info = priv->info;
2017 	struct net_device *ndev = priv->ndev;
2018 	int error;
2019 
2020 	if (!rtnl_trylock()) {
2021 		usleep_range(1000, 2000);
2022 		schedule_work(&priv->work);
2023 		return;
2024 	}
2025 
2026 	netif_tx_stop_all_queues(ndev);
2027 
2028 	/* Stop PTP Clock driver */
2029 	if (info->gptp)
2030 		ravb_ptp_stop(ndev);
2031 
2032 	/* Wait for DMA stopping */
2033 	if (ravb_stop_dma(ndev)) {
2034 		/* If ravb_stop_dma() fails, the hardware is still operating
2035 		 * for TX and/or RX. So, this should not call the following
2036 		 * functions because ravb_dmac_init() is possible to fail too.
2037 		 * Also, this should not retry ravb_stop_dma() again and again
2038 		 * here because it's possible to wait forever. So, this just
2039 		 * re-enables the TX and RX and skip the following
2040 		 * re-initialization procedure.
2041 		 */
2042 		ravb_rcv_snd_enable(ndev);
2043 		goto out;
2044 	}
2045 
2046 	ravb_ring_free(ndev, RAVB_BE);
2047 	if (info->nc_queues)
2048 		ravb_ring_free(ndev, RAVB_NC);
2049 
2050 	/* Device init */
2051 	error = ravb_dmac_init(ndev);
2052 	if (error) {
2053 		/* If ravb_dmac_init() fails, descriptors are freed. So, this
2054 		 * should return here to avoid re-enabling the TX and RX in
2055 		 * ravb_emac_init().
2056 		 */
2057 		netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2058 			   __func__, error);
2059 		goto out_unlock;
2060 	}
2061 	ravb_emac_init(ndev);
2062 
2063 out:
2064 	/* Initialise PTP Clock driver */
2065 	if (info->gptp)
2066 		ravb_ptp_init(ndev, priv->pdev);
2067 
2068 	netif_tx_start_all_queues(ndev);
2069 
2070 out_unlock:
2071 	rtnl_unlock();
2072 }
2073 
ravb_can_tx_csum_gbeth(struct sk_buff * skb)2074 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2075 {
2076 	u16 net_protocol = ntohs(skb->protocol);
2077 	u8 inner_protocol;
2078 
2079 	/* GbEth IP can calculate the checksum if:
2080 	 * - there are zero or one VLAN headers with TPID=0x8100
2081 	 * - the network protocol is IPv4 or IPv6
2082 	 * - the transport protocol is TCP, UDP or ICMP
2083 	 * - the packet is not fragmented
2084 	 */
2085 
2086 	if (net_protocol == ETH_P_8021Q) {
2087 		struct vlan_hdr vhdr, *vh;
2088 
2089 		vh = skb_header_pointer(skb, ETH_HLEN, sizeof(vhdr), &vhdr);
2090 		if (!vh)
2091 			return false;
2092 
2093 		net_protocol = ntohs(vh->h_vlan_encapsulated_proto);
2094 	}
2095 
2096 	switch (net_protocol) {
2097 	case ETH_P_IP:
2098 		inner_protocol = ip_hdr(skb)->protocol;
2099 		break;
2100 	case ETH_P_IPV6:
2101 		inner_protocol = ipv6_hdr(skb)->nexthdr;
2102 		break;
2103 	default:
2104 		return false;
2105 	}
2106 
2107 	switch (inner_protocol) {
2108 	case IPPROTO_TCP:
2109 	case IPPROTO_UDP:
2110 		return true;
2111 	default:
2112 		return false;
2113 	}
2114 }
2115 
2116 /* Packet transmit function for Ethernet AVB */
ravb_start_xmit(struct sk_buff * skb,struct net_device * ndev)2117 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2118 {
2119 	struct ravb_private *priv = netdev_priv(ndev);
2120 	const struct ravb_hw_info *info = priv->info;
2121 	unsigned int num_tx_desc = priv->num_tx_desc;
2122 	u16 q = skb_get_queue_mapping(skb);
2123 	struct ravb_tstamp_skb *ts_skb;
2124 	struct ravb_tx_desc *desc;
2125 	unsigned long flags;
2126 	dma_addr_t dma_addr;
2127 	void *buffer;
2128 	u32 entry;
2129 	u32 len;
2130 
2131 	if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2132 		skb_checksum_help(skb);
2133 
2134 	spin_lock_irqsave(&priv->lock, flags);
2135 	if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2136 	    num_tx_desc) {
2137 		netif_err(priv, tx_queued, ndev,
2138 			  "still transmitting with the full ring!\n");
2139 		netif_stop_subqueue(ndev, q);
2140 		spin_unlock_irqrestore(&priv->lock, flags);
2141 		return NETDEV_TX_BUSY;
2142 	}
2143 
2144 	if (skb_put_padto(skb, ETH_ZLEN))
2145 		goto exit;
2146 
2147 	entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2148 	priv->tx_skb[q][entry / num_tx_desc] = skb;
2149 
2150 	if (num_tx_desc > 1) {
2151 		buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2152 			 entry / num_tx_desc * DPTR_ALIGN;
2153 		len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2154 
2155 		/* Zero length DMA descriptors are problematic as they seem
2156 		 * to terminate DMA transfers. Avoid them by simply using a
2157 		 * length of DPTR_ALIGN (4) when skb data is aligned to
2158 		 * DPTR_ALIGN.
2159 		 *
2160 		 * As skb is guaranteed to have at least ETH_ZLEN (60)
2161 		 * bytes of data by the call to skb_put_padto() above this
2162 		 * is safe with respect to both the length of the first DMA
2163 		 * descriptor (len) overflowing the available data and the
2164 		 * length of the second DMA descriptor (skb->len - len)
2165 		 * being negative.
2166 		 */
2167 		if (len == 0)
2168 			len = DPTR_ALIGN;
2169 
2170 		memcpy(buffer, skb->data, len);
2171 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2172 					  DMA_TO_DEVICE);
2173 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2174 			goto drop;
2175 
2176 		desc = &priv->tx_ring[q][entry];
2177 		desc->ds_tagl = cpu_to_le16(len);
2178 		desc->dptr = cpu_to_le32(dma_addr);
2179 
2180 		buffer = skb->data + len;
2181 		len = skb->len - len;
2182 		dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2183 					  DMA_TO_DEVICE);
2184 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2185 			goto unmap;
2186 
2187 		desc++;
2188 	} else {
2189 		desc = &priv->tx_ring[q][entry];
2190 		len = skb->len;
2191 		dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2192 					  DMA_TO_DEVICE);
2193 		if (dma_mapping_error(ndev->dev.parent, dma_addr))
2194 			goto drop;
2195 	}
2196 	desc->ds_tagl = cpu_to_le16(len);
2197 	desc->dptr = cpu_to_le32(dma_addr);
2198 
2199 	/* TX timestamp required */
2200 	if (info->gptp || info->ccc_gac) {
2201 		if (q == RAVB_NC) {
2202 			ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2203 			if (!ts_skb) {
2204 				if (num_tx_desc > 1) {
2205 					desc--;
2206 					dma_unmap_single(ndev->dev.parent, dma_addr,
2207 							 len, DMA_TO_DEVICE);
2208 				}
2209 				goto unmap;
2210 			}
2211 			ts_skb->skb = skb_get(skb);
2212 			ts_skb->tag = priv->ts_skb_tag++;
2213 			priv->ts_skb_tag &= 0x3ff;
2214 			list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2215 
2216 			/* TAG and timestamp required flag */
2217 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2218 			desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2219 			desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2220 		}
2221 
2222 		skb_tx_timestamp(skb);
2223 	}
2224 
2225 	if (num_tx_desc > 1) {
2226 		desc->die_dt = DT_FEND;
2227 		desc--;
2228 		/* When using multi-descriptors, DT_FEND needs to get written
2229 		 * before DT_FSTART, but the compiler may reorder the memory
2230 		 * writes in an attempt to optimize the code.
2231 		 * Use a dma_wmb() barrier to make sure DT_FEND and DT_FSTART
2232 		 * are written exactly in the order shown in the code.
2233 		 * This is particularly important for cases where the DMA engine
2234 		 * is already running when we are running this code. If the DMA
2235 		 * sees DT_FSTART without the corresponding DT_FEND it will enter
2236 		 * an error condition.
2237 		 */
2238 		dma_wmb();
2239 		desc->die_dt = DT_FSTART;
2240 	} else {
2241 		/* Descriptor type must be set after all the above writes */
2242 		dma_wmb();
2243 		desc->die_dt = DT_FSINGLE;
2244 	}
2245 
2246 	/* Before ringing the doorbell we need to make sure that the latest
2247 	 * writes have been committed to memory, otherwise it could delay
2248 	 * things until the doorbell is rang again.
2249 	 * This is in replacement of the read operation mentioned in the HW
2250 	 * manuals.
2251 	 */
2252 	dma_wmb();
2253 	ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2254 
2255 	priv->cur_tx[q] += num_tx_desc;
2256 	if (priv->cur_tx[q] - priv->dirty_tx[q] >
2257 	    (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2258 	    !ravb_tx_free(ndev, q, true))
2259 		netif_stop_subqueue(ndev, q);
2260 
2261 exit:
2262 	spin_unlock_irqrestore(&priv->lock, flags);
2263 	return NETDEV_TX_OK;
2264 
2265 unmap:
2266 	dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2267 			 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2268 drop:
2269 	dev_kfree_skb_any(skb);
2270 	priv->tx_skb[q][entry / num_tx_desc] = NULL;
2271 	goto exit;
2272 }
2273 
ravb_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)2274 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2275 			     struct net_device *sb_dev)
2276 {
2277 	/* If skb needs TX timestamp, it is handled in network control queue */
2278 	return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2279 							       RAVB_BE;
2280 
2281 }
2282 
ravb_get_stats(struct net_device * ndev)2283 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2284 {
2285 	struct ravb_private *priv = netdev_priv(ndev);
2286 	const struct ravb_hw_info *info = priv->info;
2287 	struct net_device_stats *nstats, *stats0, *stats1;
2288 	struct device *dev = &priv->pdev->dev;
2289 
2290 	nstats = &ndev->stats;
2291 
2292 	pm_runtime_get_noresume(dev);
2293 
2294 	if (!pm_runtime_active(dev))
2295 		goto out_rpm_put;
2296 
2297 	stats0 = &priv->stats[RAVB_BE];
2298 
2299 	if (info->tx_counters) {
2300 		nstats->tx_dropped += ravb_read(ndev, TROCR);
2301 		ravb_write(ndev, 0, TROCR);	/* (write clear) */
2302 	}
2303 
2304 	if (info->carrier_counters) {
2305 		nstats->collisions += ravb_read(ndev, CXR41);
2306 		ravb_write(ndev, 0, CXR41);	/* (write clear) */
2307 		nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2308 		ravb_write(ndev, 0, CXR42);	/* (write clear) */
2309 	}
2310 
2311 	nstats->rx_packets = stats0->rx_packets;
2312 	nstats->tx_packets = stats0->tx_packets;
2313 	nstats->rx_bytes = stats0->rx_bytes;
2314 	nstats->tx_bytes = stats0->tx_bytes;
2315 	nstats->multicast = stats0->multicast;
2316 	nstats->rx_errors = stats0->rx_errors;
2317 	nstats->rx_crc_errors = stats0->rx_crc_errors;
2318 	nstats->rx_frame_errors = stats0->rx_frame_errors;
2319 	nstats->rx_length_errors = stats0->rx_length_errors;
2320 	nstats->rx_missed_errors = stats0->rx_missed_errors;
2321 	nstats->rx_over_errors = stats0->rx_over_errors;
2322 	if (info->nc_queues) {
2323 		stats1 = &priv->stats[RAVB_NC];
2324 
2325 		nstats->rx_packets += stats1->rx_packets;
2326 		nstats->tx_packets += stats1->tx_packets;
2327 		nstats->rx_bytes += stats1->rx_bytes;
2328 		nstats->tx_bytes += stats1->tx_bytes;
2329 		nstats->multicast += stats1->multicast;
2330 		nstats->rx_errors += stats1->rx_errors;
2331 		nstats->rx_crc_errors += stats1->rx_crc_errors;
2332 		nstats->rx_frame_errors += stats1->rx_frame_errors;
2333 		nstats->rx_length_errors += stats1->rx_length_errors;
2334 		nstats->rx_missed_errors += stats1->rx_missed_errors;
2335 		nstats->rx_over_errors += stats1->rx_over_errors;
2336 	}
2337 
2338 out_rpm_put:
2339 	pm_runtime_put_noidle(dev);
2340 	return nstats;
2341 }
2342 
2343 /* Update promiscuous bit */
ravb_set_rx_mode(struct net_device * ndev)2344 static void ravb_set_rx_mode(struct net_device *ndev)
2345 {
2346 	struct ravb_private *priv = netdev_priv(ndev);
2347 	unsigned long flags;
2348 
2349 	spin_lock_irqsave(&priv->lock, flags);
2350 	ravb_modify(ndev, ECMR, ECMR_PRM,
2351 		    ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2352 	spin_unlock_irqrestore(&priv->lock, flags);
2353 }
2354 
2355 /* Device close function for Ethernet AVB */
ravb_close(struct net_device * ndev)2356 static int ravb_close(struct net_device *ndev)
2357 {
2358 	struct device_node *np = ndev->dev.parent->of_node;
2359 	struct ravb_private *priv = netdev_priv(ndev);
2360 	const struct ravb_hw_info *info = priv->info;
2361 	struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2362 	struct device *dev = &priv->pdev->dev;
2363 	int error;
2364 
2365 	netif_tx_stop_all_queues(ndev);
2366 
2367 	/* Disable interrupts by clearing the interrupt masks. */
2368 	ravb_write(ndev, 0, RIC0);
2369 	ravb_write(ndev, 0, RIC2);
2370 	ravb_write(ndev, 0, TIC);
2371 
2372 	/* PHY disconnect */
2373 	if (ndev->phydev) {
2374 		phy_stop(ndev->phydev);
2375 		phy_disconnect(ndev->phydev);
2376 		if (of_phy_is_fixed_link(np))
2377 			of_phy_deregister_fixed_link(np);
2378 	}
2379 
2380 	/* Stop PTP Clock driver */
2381 	if (info->gptp || info->ccc_gac)
2382 		ravb_ptp_stop(ndev);
2383 
2384 	/* Set the config mode to stop the AVB-DMAC's processes */
2385 	if (ravb_stop_dma(ndev) < 0)
2386 		netdev_err(ndev,
2387 			   "device will be stopped after h/w processes are done.\n");
2388 
2389 	/* Clear the timestamp list */
2390 	if (info->gptp || info->ccc_gac) {
2391 		list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2392 			list_del(&ts_skb->list);
2393 			kfree_skb(ts_skb->skb);
2394 			kfree(ts_skb);
2395 		}
2396 	}
2397 
2398 	cancel_work_sync(&priv->work);
2399 
2400 	if (info->nc_queues)
2401 		napi_disable(&priv->napi[RAVB_NC]);
2402 	napi_disable(&priv->napi[RAVB_BE]);
2403 
2404 	/* Free all the skb's in the RX queue and the DMA buffers. */
2405 	ravb_ring_free(ndev, RAVB_BE);
2406 	if (info->nc_queues)
2407 		ravb_ring_free(ndev, RAVB_NC);
2408 
2409 	/* Update statistics. */
2410 	ravb_get_stats(ndev);
2411 
2412 	/* Set reset mode. */
2413 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2414 	if (error)
2415 		return error;
2416 
2417 	pm_runtime_put_autosuspend(dev);
2418 
2419 	return 0;
2420 }
2421 
ravb_hwtstamp_get(struct net_device * ndev,struct kernel_hwtstamp_config * config)2422 static int ravb_hwtstamp_get(struct net_device *ndev,
2423 			     struct kernel_hwtstamp_config *config)
2424 {
2425 	struct ravb_private *priv = netdev_priv(ndev);
2426 
2427 	config->flags = 0;
2428 	config->tx_type = priv->tstamp_tx_ctrl;
2429 	config->rx_filter = priv->tstamp_rx_ctrl;
2430 
2431 	return 0;
2432 }
2433 
2434 /* Control hardware time stamping */
ravb_hwtstamp_set(struct net_device * ndev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)2435 static int ravb_hwtstamp_set(struct net_device *ndev,
2436 			     struct kernel_hwtstamp_config *config,
2437 			     struct netlink_ext_ack *extack)
2438 {
2439 	struct ravb_private *priv = netdev_priv(ndev);
2440 	enum hwtstamp_rx_filters tstamp_rx_ctrl;
2441 	enum hwtstamp_tx_types tstamp_tx_ctrl;
2442 
2443 	switch (config->tx_type) {
2444 	case HWTSTAMP_TX_OFF:
2445 	case HWTSTAMP_TX_ON:
2446 		tstamp_tx_ctrl = config->tx_type;
2447 		break;
2448 	default:
2449 		return -ERANGE;
2450 	}
2451 
2452 	switch (config->rx_filter) {
2453 	case HWTSTAMP_FILTER_NONE:
2454 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2455 		tstamp_rx_ctrl = config->rx_filter;
2456 		break;
2457 	default:
2458 		config->rx_filter = HWTSTAMP_FILTER_ALL;
2459 		tstamp_rx_ctrl = HWTSTAMP_FILTER_ALL;
2460 	}
2461 
2462 	priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2463 	priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2464 
2465 	return 0;
2466 }
2467 
ravb_change_mtu(struct net_device * ndev,int new_mtu)2468 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2469 {
2470 	struct ravb_private *priv = netdev_priv(ndev);
2471 
2472 	WRITE_ONCE(ndev->mtu, new_mtu);
2473 
2474 	if (netif_running(ndev)) {
2475 		synchronize_irq(priv->emac_irq);
2476 		ravb_emac_init(ndev);
2477 	}
2478 
2479 	netdev_update_features(ndev);
2480 
2481 	return 0;
2482 }
2483 
ravb_set_rx_csum(struct net_device * ndev,bool enable)2484 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2485 {
2486 	struct ravb_private *priv = netdev_priv(ndev);
2487 	unsigned long flags;
2488 
2489 	spin_lock_irqsave(&priv->lock, flags);
2490 
2491 	/* Disable TX and RX */
2492 	ravb_rcv_snd_disable(ndev);
2493 
2494 	/* Modify RX Checksum setting */
2495 	ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2496 
2497 	/* Enable TX and RX */
2498 	ravb_rcv_snd_enable(ndev);
2499 
2500 	spin_unlock_irqrestore(&priv->lock, flags);
2501 }
2502 
ravb_endisable_csum_gbeth(struct net_device * ndev,enum ravb_reg reg,u32 val,u32 mask)2503 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2504 				     u32 val, u32 mask)
2505 {
2506 	u32 csr0 = CSR0_TPE | CSR0_RPE;
2507 	int ret;
2508 
2509 	ravb_write(ndev, csr0 & ~mask, CSR0);
2510 	ret = ravb_wait(ndev, CSR0, mask, 0);
2511 	if (!ret)
2512 		ravb_write(ndev, val, reg);
2513 
2514 	ravb_write(ndev, csr0, CSR0);
2515 
2516 	return ret;
2517 }
2518 
ravb_set_features_gbeth(struct net_device * ndev,netdev_features_t features)2519 static int ravb_set_features_gbeth(struct net_device *ndev,
2520 				   netdev_features_t features)
2521 {
2522 	netdev_features_t changed = ndev->features ^ features;
2523 	struct ravb_private *priv = netdev_priv(ndev);
2524 	unsigned long flags;
2525 	int ret = 0;
2526 	u32 val;
2527 
2528 	spin_lock_irqsave(&priv->lock, flags);
2529 	if (changed & NETIF_F_RXCSUM) {
2530 		if (features & NETIF_F_RXCSUM)
2531 			val = CSR2_CSUM_ENABLE;
2532 		else
2533 			val = 0;
2534 
2535 		ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2536 		if (ret)
2537 			goto done;
2538 	}
2539 
2540 	if (changed & NETIF_F_HW_CSUM) {
2541 		if (features & NETIF_F_HW_CSUM)
2542 			val = CSR1_CSUM_ENABLE;
2543 		else
2544 			val = 0;
2545 
2546 		ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2547 		if (ret)
2548 			goto done;
2549 	}
2550 
2551 done:
2552 	spin_unlock_irqrestore(&priv->lock, flags);
2553 
2554 	return ret;
2555 }
2556 
ravb_set_features_rcar(struct net_device * ndev,netdev_features_t features)2557 static int ravb_set_features_rcar(struct net_device *ndev,
2558 				  netdev_features_t features)
2559 {
2560 	netdev_features_t changed = ndev->features ^ features;
2561 
2562 	if (changed & NETIF_F_RXCSUM)
2563 		ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2564 
2565 	return 0;
2566 }
2567 
ravb_set_features(struct net_device * ndev,netdev_features_t features)2568 static int ravb_set_features(struct net_device *ndev,
2569 			     netdev_features_t features)
2570 {
2571 	struct ravb_private *priv = netdev_priv(ndev);
2572 	const struct ravb_hw_info *info = priv->info;
2573 	struct device *dev = &priv->pdev->dev;
2574 	int ret;
2575 
2576 	pm_runtime_get_noresume(dev);
2577 
2578 	if (pm_runtime_active(dev))
2579 		ret = info->set_feature(ndev, features);
2580 	else
2581 		ret = 0;
2582 
2583 	pm_runtime_put_noidle(dev);
2584 
2585 	if (ret)
2586 		return ret;
2587 
2588 	ndev->features = features;
2589 
2590 	return 0;
2591 }
2592 
2593 static const struct net_device_ops ravb_netdev_ops = {
2594 	.ndo_open		= ravb_open,
2595 	.ndo_stop		= ravb_close,
2596 	.ndo_start_xmit		= ravb_start_xmit,
2597 	.ndo_select_queue	= ravb_select_queue,
2598 	.ndo_get_stats		= ravb_get_stats,
2599 	.ndo_set_rx_mode	= ravb_set_rx_mode,
2600 	.ndo_tx_timeout		= ravb_tx_timeout,
2601 	.ndo_eth_ioctl		= phy_do_ioctl_running,
2602 	.ndo_change_mtu		= ravb_change_mtu,
2603 	.ndo_validate_addr	= eth_validate_addr,
2604 	.ndo_set_mac_address	= eth_mac_addr,
2605 	.ndo_set_features	= ravb_set_features,
2606 	.ndo_hwtstamp_get	= ravb_hwtstamp_get,
2607 	.ndo_hwtstamp_set	= ravb_hwtstamp_set,
2608 };
2609 
2610 /* MDIO bus init function */
ravb_mdio_init(struct ravb_private * priv)2611 static int ravb_mdio_init(struct ravb_private *priv)
2612 {
2613 	struct platform_device *pdev = priv->pdev;
2614 	struct device *dev = &pdev->dev;
2615 	struct device_node *mdio_node;
2616 	struct phy_device *phydev;
2617 	struct device_node *pn;
2618 	int error;
2619 
2620 	/* Bitbang init */
2621 	priv->mdiobb.ops = &bb_ops;
2622 
2623 	/* MII controller setting */
2624 	priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2625 	if (!priv->mii_bus)
2626 		return -ENOMEM;
2627 
2628 	/* Hook up MII support for ethtool */
2629 	priv->mii_bus->name = "ravb_mii";
2630 	priv->mii_bus->parent = dev;
2631 	snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2632 		 pdev->name, pdev->id);
2633 
2634 	/* Register MDIO bus */
2635 	mdio_node = of_get_child_by_name(dev->of_node, "mdio");
2636 	if (!mdio_node) {
2637 		/* backwards compatibility for DT lacking mdio subnode */
2638 		mdio_node = of_node_get(dev->of_node);
2639 	}
2640 	error = of_mdiobus_register(priv->mii_bus, mdio_node);
2641 	of_node_put(mdio_node);
2642 	if (error)
2643 		goto out_free_bus;
2644 
2645 	pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2646 	phydev = of_phy_find_device(pn);
2647 	if (phydev) {
2648 		phydev->mac_managed_pm = true;
2649 		put_device(&phydev->mdio.dev);
2650 	}
2651 	of_node_put(pn);
2652 
2653 	return 0;
2654 
2655 out_free_bus:
2656 	free_mdio_bitbang(priv->mii_bus);
2657 	return error;
2658 }
2659 
2660 /* MDIO bus release function */
ravb_mdio_release(struct ravb_private * priv)2661 static int ravb_mdio_release(struct ravb_private *priv)
2662 {
2663 	/* Unregister mdio bus */
2664 	mdiobus_unregister(priv->mii_bus);
2665 
2666 	/* Free bitbang info */
2667 	free_mdio_bitbang(priv->mii_bus);
2668 
2669 	return 0;
2670 }
2671 
2672 static const struct ravb_hw_info ravb_gen2_hw_info = {
2673 	.receive = ravb_rx_rcar,
2674 	.set_rate = ravb_set_rate_rcar,
2675 	.set_feature = ravb_set_features_rcar,
2676 	.dmac_init = ravb_dmac_init_rcar,
2677 	.emac_init = ravb_emac_init_rcar,
2678 	.gstrings_stats = ravb_gstrings_stats,
2679 	.gstrings_size = sizeof(ravb_gstrings_stats),
2680 	.net_hw_features = NETIF_F_RXCSUM,
2681 	.net_features = NETIF_F_RXCSUM,
2682 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2683 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2684 	.tx_max_frame_size = SZ_2K,
2685 	.rx_max_frame_size = SZ_2K,
2686 	.rx_buffer_size = SZ_2K +
2687 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2688 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2689 	.dbat_entry_num = 22,
2690 	.aligned_tx = 1,
2691 	.gptp = 1,
2692 	.nc_queues = 1,
2693 	.magic_pkt = 1,
2694 };
2695 
2696 static const struct ravb_hw_info ravb_gen3_hw_info = {
2697 	.receive = ravb_rx_rcar,
2698 	.set_rate = ravb_set_rate_rcar,
2699 	.set_feature = ravb_set_features_rcar,
2700 	.dmac_init = ravb_dmac_init_rcar,
2701 	.emac_init = ravb_emac_init_rcar,
2702 	.gstrings_stats = ravb_gstrings_stats,
2703 	.gstrings_size = sizeof(ravb_gstrings_stats),
2704 	.net_hw_features = NETIF_F_RXCSUM,
2705 	.net_features = NETIF_F_RXCSUM,
2706 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2707 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2708 	.tx_max_frame_size = SZ_2K,
2709 	.rx_max_frame_size = SZ_2K,
2710 	.rx_buffer_size = SZ_2K +
2711 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2712 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2713 	.dbat_entry_num = 22,
2714 	.internal_delay = 1,
2715 	.tx_counters = 1,
2716 	.multi_irqs = 1,
2717 	.irq_en_dis = 1,
2718 	.ccc_gac = 1,
2719 	.nc_queues = 1,
2720 	.magic_pkt = 1,
2721 };
2722 
2723 static const struct ravb_hw_info ravb_gen4_hw_info = {
2724 	.receive = ravb_rx_rcar,
2725 	.set_rate = ravb_set_rate_rcar,
2726 	.set_feature = ravb_set_features_rcar,
2727 	.dmac_init = ravb_dmac_init_rcar,
2728 	.emac_init = ravb_emac_init_rcar_gen4,
2729 	.gstrings_stats = ravb_gstrings_stats,
2730 	.gstrings_size = sizeof(ravb_gstrings_stats),
2731 	.net_hw_features = NETIF_F_RXCSUM,
2732 	.net_features = NETIF_F_RXCSUM,
2733 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2734 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2735 	.tx_max_frame_size = SZ_2K,
2736 	.rx_max_frame_size = SZ_2K,
2737 	.rx_buffer_size = SZ_2K +
2738 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2739 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2740 	.dbat_entry_num = 22,
2741 	.internal_delay = 1,
2742 	.tx_counters = 1,
2743 	.multi_irqs = 1,
2744 	.irq_en_dis = 1,
2745 	.ccc_gac = 1,
2746 	.nc_queues = 1,
2747 	.magic_pkt = 1,
2748 };
2749 
2750 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2751 	.receive = ravb_rx_rcar,
2752 	.set_rate = ravb_set_rate_rcar,
2753 	.set_feature = ravb_set_features_rcar,
2754 	.dmac_init = ravb_dmac_init_rcar,
2755 	.emac_init = ravb_emac_init_rcar,
2756 	.gstrings_stats = ravb_gstrings_stats,
2757 	.gstrings_size = sizeof(ravb_gstrings_stats),
2758 	.net_hw_features = NETIF_F_RXCSUM,
2759 	.net_features = NETIF_F_RXCSUM,
2760 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2761 	.tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2762 	.tx_max_frame_size = SZ_2K,
2763 	.rx_max_frame_size = SZ_2K,
2764 	.rx_buffer_size = SZ_2K +
2765 			  SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2766 	.rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2767 	.dbat_entry_num = 22,
2768 	.multi_irqs = 1,
2769 	.err_mgmt_irqs = 1,
2770 	.gptp = 1,
2771 	.gptp_ref_clk = 1,
2772 	.nc_queues = 1,
2773 	.magic_pkt = 1,
2774 };
2775 
2776 static const struct ravb_hw_info gbeth_hw_info = {
2777 	.receive = ravb_rx_gbeth,
2778 	.set_rate = ravb_set_rate_gbeth,
2779 	.set_feature = ravb_set_features_gbeth,
2780 	.dmac_init = ravb_dmac_init_gbeth,
2781 	.emac_init = ravb_emac_init_gbeth,
2782 	.gstrings_stats = ravb_gstrings_stats_gbeth,
2783 	.gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2784 	.net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2785 	.net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2786 	.vlan_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2787 	.stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2788 	.tccr_mask = TCCR_TSRQ0,
2789 	.tx_max_frame_size = 1522,
2790 	.rx_max_frame_size = SZ_8K,
2791 	.rx_buffer_size = SZ_2K,
2792 	.rx_desc_size = sizeof(struct ravb_rx_desc),
2793 	.dbat_entry_num = 2,
2794 	.aligned_tx = 1,
2795 	.coalesce_irqs = 1,
2796 	.tx_counters = 1,
2797 	.carrier_counters = 1,
2798 	.half_duplex = 1,
2799 };
2800 
2801 static const struct of_device_id ravb_match_table[] = {
2802 	{ .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2803 	{ .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2804 	{ .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2805 	{ .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2806 	{ .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2807 	{ .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen4_hw_info },
2808 	{ .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2809 	{ .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2810 	{ }
2811 };
2812 MODULE_DEVICE_TABLE(of, ravb_match_table);
2813 
ravb_setup_irq(struct ravb_private * priv,const char * irq_name,const char * ch,int * irq,irq_handler_t handler)2814 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2815 			  const char *ch, int *irq, irq_handler_t handler)
2816 {
2817 	struct platform_device *pdev = priv->pdev;
2818 	struct net_device *ndev = priv->ndev;
2819 	struct device *dev = &pdev->dev;
2820 	const char *devname = dev_name(dev);
2821 	unsigned long flags;
2822 	int error, irq_num;
2823 
2824 	if (irq_name) {
2825 		devname = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", devname, ch);
2826 		if (!devname)
2827 			return -ENOMEM;
2828 
2829 		irq_num = platform_get_irq_byname(pdev, irq_name);
2830 		flags = 0;
2831 	} else {
2832 		irq_num = platform_get_irq(pdev, 0);
2833 		flags = IRQF_SHARED;
2834 	}
2835 	if (irq_num < 0)
2836 		return irq_num;
2837 
2838 	if (irq)
2839 		*irq = irq_num;
2840 
2841 	error = devm_request_irq(dev, irq_num, handler, flags, devname, ndev);
2842 	if (error)
2843 		netdev_err(ndev, "cannot request IRQ %s\n", devname);
2844 
2845 	return error;
2846 }
2847 
ravb_setup_irqs(struct ravb_private * priv)2848 static int ravb_setup_irqs(struct ravb_private *priv)
2849 {
2850 	const struct ravb_hw_info *info = priv->info;
2851 	struct net_device *ndev = priv->ndev;
2852 	const char *irq_name, *emac_irq_name;
2853 	int error;
2854 
2855 	if (!info->multi_irqs)
2856 		return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2857 
2858 	if (info->err_mgmt_irqs) {
2859 		irq_name = "dia";
2860 		emac_irq_name = "line3";
2861 	} else {
2862 		irq_name = "ch22";
2863 		emac_irq_name = "ch24";
2864 	}
2865 
2866 	error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2867 	if (error)
2868 		return error;
2869 
2870 	error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2871 			       ravb_emac_interrupt);
2872 	if (error)
2873 		return error;
2874 
2875 	if (info->err_mgmt_irqs) {
2876 		error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2877 		if (error)
2878 			return error;
2879 
2880 		error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2881 		if (error)
2882 			return error;
2883 	}
2884 
2885 	error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2886 	if (error)
2887 		return error;
2888 
2889 	error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2890 	if (error)
2891 		return error;
2892 
2893 	error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2894 	if (error)
2895 		return error;
2896 
2897 	return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2898 }
2899 
ravb_probe(struct platform_device * pdev)2900 static int ravb_probe(struct platform_device *pdev)
2901 {
2902 	struct device_node *np = pdev->dev.of_node;
2903 	const struct ravb_hw_info *info;
2904 	struct reset_control *rstc;
2905 	struct ravb_private *priv;
2906 	struct net_device *ndev;
2907 	struct resource *res;
2908 	int error, q;
2909 
2910 	if (!np) {
2911 		dev_err(&pdev->dev,
2912 			"this driver is required to be instantiated from device tree\n");
2913 		return -EINVAL;
2914 	}
2915 
2916 	rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2917 	if (IS_ERR(rstc))
2918 		return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2919 				     "failed to get cpg reset\n");
2920 
2921 	info = of_device_get_match_data(&pdev->dev);
2922 
2923 	ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2924 				  info->nc_queues ? NUM_TX_QUEUE : 1,
2925 				  info->nc_queues ? NUM_RX_QUEUE : 1);
2926 	if (!ndev)
2927 		return -ENOMEM;
2928 
2929 	ndev->features = info->net_features;
2930 	ndev->hw_features = info->net_hw_features;
2931 	ndev->vlan_features = info->vlan_features;
2932 
2933 	error = reset_control_deassert(rstc);
2934 	if (error)
2935 		goto out_free_netdev;
2936 
2937 	SET_NETDEV_DEV(ndev, &pdev->dev);
2938 
2939 	priv = netdev_priv(ndev);
2940 	priv->info = info;
2941 	priv->rstc = rstc;
2942 	priv->ndev = ndev;
2943 	priv->pdev = pdev;
2944 	priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2945 	priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2946 	if (info->nc_queues) {
2947 		priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2948 		priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2949 	}
2950 
2951 	error = ravb_setup_irqs(priv);
2952 	if (error)
2953 		goto out_reset_assert;
2954 
2955 	priv->clk = devm_clk_get(&pdev->dev, NULL);
2956 	if (IS_ERR(priv->clk)) {
2957 		error = PTR_ERR(priv->clk);
2958 		goto out_reset_assert;
2959 	}
2960 
2961 	if (info->gptp_ref_clk) {
2962 		priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2963 		if (IS_ERR(priv->gptp_clk)) {
2964 			error = PTR_ERR(priv->gptp_clk);
2965 			goto out_reset_assert;
2966 		}
2967 	}
2968 
2969 	priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2970 	if (IS_ERR(priv->refclk)) {
2971 		error = PTR_ERR(priv->refclk);
2972 		goto out_reset_assert;
2973 	}
2974 	clk_prepare(priv->refclk);
2975 
2976 	platform_set_drvdata(pdev, ndev);
2977 	pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
2978 	pm_runtime_use_autosuspend(&pdev->dev);
2979 	pm_runtime_enable(&pdev->dev);
2980 	error = pm_runtime_resume_and_get(&pdev->dev);
2981 	if (error < 0)
2982 		goto out_rpm_disable;
2983 
2984 	priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2985 	if (IS_ERR(priv->addr)) {
2986 		error = PTR_ERR(priv->addr);
2987 		goto out_rpm_put;
2988 	}
2989 
2990 	/* The Ether-specific entries in the device structure. */
2991 	ndev->base_addr = res->start;
2992 
2993 	spin_lock_init(&priv->lock);
2994 	INIT_WORK(&priv->work, ravb_tx_timeout_work);
2995 
2996 	error = of_get_phy_mode(np, &priv->phy_interface);
2997 	if (error && error != -ENODEV)
2998 		goto out_rpm_put;
2999 
3000 	priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
3001 	priv->avb_link_active_low =
3002 		of_property_read_bool(np, "renesas,ether-link-active-low");
3003 
3004 	ndev->max_mtu = info->tx_max_frame_size -
3005 		(ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3006 	ndev->min_mtu = ETH_MIN_MTU;
3007 
3008 	/* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
3009 	 * Use two descriptor to handle such situation. First descriptor to
3010 	 * handle aligned data buffer and second descriptor to handle the
3011 	 * overflow data because of alignment.
3012 	 */
3013 	priv->num_tx_desc = info->aligned_tx ? 2 : 1;
3014 
3015 	/* Set function */
3016 	ndev->netdev_ops = &ravb_netdev_ops;
3017 	ndev->ethtool_ops = &ravb_ethtool_ops;
3018 
3019 	error = ravb_compute_gti(ndev);
3020 	if (error)
3021 		goto out_rpm_put;
3022 
3023 	ravb_parse_delay_mode(np, ndev);
3024 
3025 	/* Allocate descriptor base address table */
3026 	priv->desc_bat_size = sizeof(struct ravb_desc) * info->dbat_entry_num;
3027 	priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
3028 					    &priv->desc_bat_dma, GFP_KERNEL);
3029 	if (!priv->desc_bat) {
3030 		dev_err(&pdev->dev,
3031 			"Cannot allocate desc base address table (size %d bytes)\n",
3032 			priv->desc_bat_size);
3033 		error = -ENOMEM;
3034 		goto out_rpm_put;
3035 	}
3036 	for (q = RAVB_BE; q < info->dbat_entry_num; q++)
3037 		priv->desc_bat[q].die_dt = DT_EOS;
3038 
3039 	/* Initialise HW timestamp list */
3040 	INIT_LIST_HEAD(&priv->ts_skb_list);
3041 
3042 	/* Debug message level */
3043 	priv->msg_enable = RAVB_DEF_MSG_ENABLE;
3044 
3045 	/* Set config mode as this is needed for PHY initialization. */
3046 	error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
3047 	if (error)
3048 		goto out_rpm_put;
3049 
3050 	/* Read and set MAC address */
3051 	ravb_read_mac_address(np, ndev);
3052 	if (!is_valid_ether_addr(ndev->dev_addr)) {
3053 		dev_warn(&pdev->dev,
3054 			 "no valid MAC address supplied, using a random one\n");
3055 		eth_hw_addr_random(ndev);
3056 	}
3057 
3058 	/* MDIO bus init */
3059 	error = ravb_mdio_init(priv);
3060 	if (error) {
3061 		dev_err(&pdev->dev, "failed to initialize MDIO\n");
3062 		goto out_reset_mode;
3063 	}
3064 
3065 	/* Undo previous switch to config opmode. */
3066 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3067 	if (error)
3068 		goto out_mdio_release;
3069 
3070 	netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
3071 	if (info->nc_queues)
3072 		netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
3073 
3074 	if (info->coalesce_irqs) {
3075 		netdev_sw_irq_coalesce_default_on(ndev);
3076 		if (num_present_cpus() == 1)
3077 			netif_threaded_enable(ndev);
3078 	}
3079 
3080 	/* Network device register */
3081 	error = register_netdev(ndev);
3082 	if (error)
3083 		goto out_napi_del;
3084 
3085 	device_set_wakeup_capable(&pdev->dev, 1);
3086 
3087 	/* Print device information */
3088 	netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
3089 		    (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3090 
3091 	pm_runtime_put_autosuspend(&pdev->dev);
3092 
3093 	return 0;
3094 
3095 out_napi_del:
3096 	if (info->nc_queues)
3097 		netif_napi_del(&priv->napi[RAVB_NC]);
3098 
3099 	netif_napi_del(&priv->napi[RAVB_BE]);
3100 out_mdio_release:
3101 	ravb_mdio_release(priv);
3102 out_reset_mode:
3103 	ravb_set_opmode(ndev, CCC_OPC_RESET);
3104 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3105 			  priv->desc_bat_dma);
3106 out_rpm_put:
3107 	pm_runtime_put(&pdev->dev);
3108 out_rpm_disable:
3109 	pm_runtime_disable(&pdev->dev);
3110 	pm_runtime_dont_use_autosuspend(&pdev->dev);
3111 	clk_unprepare(priv->refclk);
3112 out_reset_assert:
3113 	reset_control_assert(rstc);
3114 out_free_netdev:
3115 	free_netdev(ndev);
3116 	return error;
3117 }
3118 
ravb_remove(struct platform_device * pdev)3119 static void ravb_remove(struct platform_device *pdev)
3120 {
3121 	struct net_device *ndev = platform_get_drvdata(pdev);
3122 	struct ravb_private *priv = netdev_priv(ndev);
3123 	const struct ravb_hw_info *info = priv->info;
3124 	struct device *dev = &priv->pdev->dev;
3125 	int error;
3126 
3127 	error = pm_runtime_resume_and_get(dev);
3128 	if (error < 0)
3129 		return;
3130 
3131 	unregister_netdev(ndev);
3132 	if (info->nc_queues)
3133 		netif_napi_del(&priv->napi[RAVB_NC]);
3134 	netif_napi_del(&priv->napi[RAVB_BE]);
3135 
3136 	ravb_mdio_release(priv);
3137 
3138 	dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3139 			  priv->desc_bat_dma);
3140 
3141 	pm_runtime_put_sync_suspend(&pdev->dev);
3142 	pm_runtime_disable(&pdev->dev);
3143 	pm_runtime_dont_use_autosuspend(dev);
3144 	clk_unprepare(priv->refclk);
3145 	reset_control_assert(priv->rstc);
3146 	free_netdev(ndev);
3147 	platform_set_drvdata(pdev, NULL);
3148 }
3149 
ravb_wol_setup(struct net_device * ndev)3150 static int ravb_wol_setup(struct net_device *ndev)
3151 {
3152 	struct ravb_private *priv = netdev_priv(ndev);
3153 	const struct ravb_hw_info *info = priv->info;
3154 
3155 	/* Disable interrupts by clearing the interrupt masks. */
3156 	ravb_write(ndev, 0, RIC0);
3157 	ravb_write(ndev, 0, RIC2);
3158 	ravb_write(ndev, 0, TIC);
3159 
3160 	/* Only allow ECI interrupts */
3161 	synchronize_irq(priv->emac_irq);
3162 	if (info->nc_queues)
3163 		napi_disable(&priv->napi[RAVB_NC]);
3164 	napi_disable(&priv->napi[RAVB_BE]);
3165 	ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3166 
3167 	/* Enable MagicPacket */
3168 	ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3169 
3170 	if (priv->info->ccc_gac)
3171 		ravb_ptp_stop(ndev);
3172 
3173 	return enable_irq_wake(priv->emac_irq);
3174 }
3175 
ravb_wol_restore(struct net_device * ndev)3176 static int ravb_wol_restore(struct net_device *ndev)
3177 {
3178 	struct ravb_private *priv = netdev_priv(ndev);
3179 	const struct ravb_hw_info *info = priv->info;
3180 	int error;
3181 
3182 	/* Set reset mode to rearm the WoL logic. */
3183 	error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3184 	if (error)
3185 		return error;
3186 
3187 	/* Set AVB config mode. */
3188 	error = ravb_set_config_mode(ndev);
3189 	if (error)
3190 		return error;
3191 
3192 	if (priv->info->ccc_gac)
3193 		ravb_ptp_init(ndev, priv->pdev);
3194 
3195 	if (info->nc_queues)
3196 		napi_enable(&priv->napi[RAVB_NC]);
3197 	napi_enable(&priv->napi[RAVB_BE]);
3198 
3199 	/* Disable MagicPacket */
3200 	ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3201 
3202 	ravb_close(ndev);
3203 
3204 	return disable_irq_wake(priv->emac_irq);
3205 }
3206 
ravb_suspend(struct device * dev)3207 static int ravb_suspend(struct device *dev)
3208 {
3209 	struct net_device *ndev = dev_get_drvdata(dev);
3210 	struct ravb_private *priv = netdev_priv(ndev);
3211 	int ret;
3212 
3213 	if (!netif_running(ndev))
3214 		goto reset_assert;
3215 
3216 	netif_device_detach(ndev);
3217 
3218 	rtnl_lock();
3219 	if (priv->wol_enabled) {
3220 		ret = ravb_wol_setup(ndev);
3221 		rtnl_unlock();
3222 		return ret;
3223 	}
3224 
3225 	ret = ravb_close(ndev);
3226 	rtnl_unlock();
3227 	if (ret)
3228 		return ret;
3229 
3230 	ret = pm_runtime_force_suspend(&priv->pdev->dev);
3231 	if (ret)
3232 		return ret;
3233 
3234 reset_assert:
3235 	return reset_control_assert(priv->rstc);
3236 }
3237 
ravb_resume(struct device * dev)3238 static int ravb_resume(struct device *dev)
3239 {
3240 	struct net_device *ndev = dev_get_drvdata(dev);
3241 	struct ravb_private *priv = netdev_priv(ndev);
3242 	int ret;
3243 
3244 	ret = reset_control_deassert(priv->rstc);
3245 	if (ret)
3246 		return ret;
3247 
3248 	if (!netif_running(ndev))
3249 		return 0;
3250 
3251 	rtnl_lock();
3252 	/* If WoL is enabled restore the interface. */
3253 	if (priv->wol_enabled)
3254 		ret = ravb_wol_restore(ndev);
3255 	else
3256 		ret = pm_runtime_force_resume(dev);
3257 	if (ret) {
3258 		rtnl_unlock();
3259 		return ret;
3260 	}
3261 
3262 	/* Reopening the interface will restore the device to the working state. */
3263 	ret = ravb_open(ndev);
3264 	rtnl_unlock();
3265 	if (ret < 0)
3266 		goto out_rpm_put;
3267 
3268 	ravb_set_rx_mode(ndev);
3269 	netif_device_attach(ndev);
3270 
3271 	return 0;
3272 
3273 out_rpm_put:
3274 	if (!priv->wol_enabled)
3275 		pm_runtime_put_autosuspend(dev);
3276 
3277 	return ret;
3278 }
3279 
ravb_runtime_suspend(struct device * dev)3280 static int ravb_runtime_suspend(struct device *dev)
3281 {
3282 	struct net_device *ndev = dev_get_drvdata(dev);
3283 	struct ravb_private *priv = netdev_priv(ndev);
3284 
3285 	clk_disable(priv->refclk);
3286 
3287 	return 0;
3288 }
3289 
ravb_runtime_resume(struct device * dev)3290 static int ravb_runtime_resume(struct device *dev)
3291 {
3292 	struct net_device *ndev = dev_get_drvdata(dev);
3293 	struct ravb_private *priv = netdev_priv(ndev);
3294 
3295 	return clk_enable(priv->refclk);
3296 }
3297 
3298 static const struct dev_pm_ops ravb_dev_pm_ops = {
3299 	SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3300 	RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3301 };
3302 
3303 static struct platform_driver ravb_driver = {
3304 	.probe		= ravb_probe,
3305 	.remove		= ravb_remove,
3306 	.driver = {
3307 		.name	= "ravb",
3308 		.pm	= pm_ptr(&ravb_dev_pm_ops),
3309 		.of_match_table = ravb_match_table,
3310 	},
3311 };
3312 
3313 module_platform_driver(ravb_driver);
3314 
3315 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3316 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3317 MODULE_LICENSE("GPL v2");
3318