1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3 *
4 * Copyright (C) 2014-2019 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7 *
8 * Based on the SuperH Ethernet driver
9 */
10
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_mdio.h>
25 #include <linux/of_net.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/slab.h>
29 #include <linux/spinlock.h>
30 #include <linux/reset.h>
31 #include <linux/math64.h>
32 #include <net/ip.h>
33 #include <net/page_pool/helpers.h>
34
35 #include "ravb.h"
36
37 #define RAVB_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR | \
41 NETIF_MSG_TX_ERR)
42
ravb_modify(struct net_device * ndev,enum ravb_reg reg,u32 clear,u32 set)43 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
44 u32 set)
45 {
46 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
47 }
48
ravb_wait(struct net_device * ndev,enum ravb_reg reg,u32 mask,u32 value)49 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
50 {
51 int i;
52
53 for (i = 0; i < 10000; i++) {
54 if ((ravb_read(ndev, reg) & mask) == value)
55 return 0;
56 udelay(10);
57 }
58 return -ETIMEDOUT;
59 }
60
ravb_set_opmode(struct net_device * ndev,u32 opmode)61 static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
62 {
63 u32 csr_ops = 1U << (opmode & CCC_OPC);
64 u32 ccc_mask = CCC_OPC;
65 int error;
66
67 /* If gPTP active in config mode is supported it needs to be configured
68 * along with CSEL and operating mode in the same access. This is a
69 * hardware limitation.
70 */
71 if (opmode & CCC_GAC)
72 ccc_mask |= CCC_GAC | CCC_CSEL;
73
74 /* Set operating mode */
75 ravb_modify(ndev, CCC, ccc_mask, opmode);
76 /* Check if the operating mode is changed to the requested one */
77 error = ravb_wait(ndev, CSR, CSR_OPS, csr_ops);
78 if (error) {
79 netdev_err(ndev, "failed to switch device to requested mode (%u)\n",
80 opmode & CCC_OPC);
81 }
82
83 return error;
84 }
85
ravb_set_rate_gbeth(struct net_device * ndev)86 static void ravb_set_rate_gbeth(struct net_device *ndev)
87 {
88 struct ravb_private *priv = netdev_priv(ndev);
89
90 switch (priv->speed) {
91 case 10: /* 10BASE */
92 ravb_write(ndev, GBETH_GECMR_SPEED_10, GECMR);
93 break;
94 case 100: /* 100BASE */
95 ravb_write(ndev, GBETH_GECMR_SPEED_100, GECMR);
96 break;
97 case 1000: /* 1000BASE */
98 ravb_write(ndev, GBETH_GECMR_SPEED_1000, GECMR);
99 break;
100 }
101 }
102
ravb_set_rate_rcar(struct net_device * ndev)103 static void ravb_set_rate_rcar(struct net_device *ndev)
104 {
105 struct ravb_private *priv = netdev_priv(ndev);
106
107 switch (priv->speed) {
108 case 100: /* 100BASE */
109 ravb_write(ndev, GECMR_SPEED_100, GECMR);
110 break;
111 case 1000: /* 1000BASE */
112 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
113 break;
114 }
115 }
116
117 /* Get MAC address from the MAC address registers
118 *
119 * Ethernet AVB device doesn't have ROM for MAC address.
120 * This function gets the MAC address that was used by a bootloader.
121 */
ravb_read_mac_address(struct device_node * np,struct net_device * ndev)122 static void ravb_read_mac_address(struct device_node *np,
123 struct net_device *ndev)
124 {
125 int ret;
126
127 ret = of_get_ethdev_address(np, ndev);
128 if (ret) {
129 u32 mahr = ravb_read(ndev, MAHR);
130 u32 malr = ravb_read(ndev, MALR);
131 u8 addr[ETH_ALEN];
132
133 addr[0] = (mahr >> 24) & 0xFF;
134 addr[1] = (mahr >> 16) & 0xFF;
135 addr[2] = (mahr >> 8) & 0xFF;
136 addr[3] = (mahr >> 0) & 0xFF;
137 addr[4] = (malr >> 8) & 0xFF;
138 addr[5] = (malr >> 0) & 0xFF;
139 eth_hw_addr_set(ndev, addr);
140 }
141 }
142
ravb_mdio_ctrl(struct mdiobb_ctrl * ctrl,u32 mask,int set)143 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
144 {
145 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
146 mdiobb);
147
148 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
149 }
150
151 /* MDC pin control */
ravb_set_mdc(struct mdiobb_ctrl * ctrl,int level)152 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
153 {
154 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
155 }
156
157 /* Data I/O pin control */
ravb_set_mdio_dir(struct mdiobb_ctrl * ctrl,int output)158 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
159 {
160 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
161 }
162
163 /* Set data bit */
ravb_set_mdio_data(struct mdiobb_ctrl * ctrl,int value)164 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
165 {
166 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
167 }
168
169 /* Get data bit */
ravb_get_mdio_data(struct mdiobb_ctrl * ctrl)170 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
171 {
172 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
173 mdiobb);
174
175 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
176 }
177
178 /* MDIO bus control struct */
179 static const struct mdiobb_ops bb_ops = {
180 .owner = THIS_MODULE,
181 .set_mdc = ravb_set_mdc,
182 .set_mdio_dir = ravb_set_mdio_dir,
183 .set_mdio_data = ravb_set_mdio_data,
184 .get_mdio_data = ravb_get_mdio_data,
185 };
186
187 static struct ravb_rx_desc *
ravb_rx_get_desc(struct ravb_private * priv,unsigned int q,unsigned int i)188 ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
189 unsigned int i)
190 {
191 return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
192 }
193
194 /* Free TX skb function for AVB-IP */
ravb_tx_free(struct net_device * ndev,int q,bool free_txed_only)195 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
196 {
197 struct ravb_private *priv = netdev_priv(ndev);
198 struct net_device_stats *stats = &priv->stats[q];
199 unsigned int num_tx_desc = priv->num_tx_desc;
200 struct ravb_tx_desc *desc;
201 unsigned int entry;
202 int free_num = 0;
203 u32 size;
204
205 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
206 bool txed;
207
208 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
209 num_tx_desc);
210 desc = &priv->tx_ring[q][entry];
211 txed = desc->die_dt == DT_FEMPTY;
212 if (free_txed_only && !txed)
213 break;
214 /* Descriptor type must be checked before all other reads */
215 dma_rmb();
216 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
217 /* Free the original skb. */
218 if (priv->tx_skb[q][entry / num_tx_desc]) {
219 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
220 size, DMA_TO_DEVICE);
221 /* Last packet descriptor? */
222 if (entry % num_tx_desc == num_tx_desc - 1) {
223 entry /= num_tx_desc;
224 dev_kfree_skb_any(priv->tx_skb[q][entry]);
225 priv->tx_skb[q][entry] = NULL;
226 if (txed)
227 stats->tx_packets++;
228 }
229 free_num++;
230 }
231 if (txed)
232 stats->tx_bytes += size;
233 desc->die_dt = DT_EEMPTY;
234 }
235 return free_num;
236 }
237
ravb_rx_ring_free(struct net_device * ndev,int q)238 static void ravb_rx_ring_free(struct net_device *ndev, int q)
239 {
240 struct ravb_private *priv = netdev_priv(ndev);
241 unsigned int ring_size;
242
243 if (!priv->rx_ring[q].raw)
244 return;
245
246 ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
247 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q].raw,
248 priv->rx_desc_dma[q]);
249 priv->rx_ring[q].raw = NULL;
250 }
251
252 /* Free skb's and DMA buffers for Ethernet AVB */
ravb_ring_free(struct net_device * ndev,int q)253 static void ravb_ring_free(struct net_device *ndev, int q)
254 {
255 struct ravb_private *priv = netdev_priv(ndev);
256 unsigned int num_tx_desc = priv->num_tx_desc;
257 unsigned int ring_size;
258 unsigned int i;
259
260 ravb_rx_ring_free(ndev, q);
261
262 if (priv->tx_ring[q]) {
263 ravb_tx_free(ndev, q, false);
264
265 ring_size = sizeof(struct ravb_tx_desc) *
266 (priv->num_tx_ring[q] * num_tx_desc + 1);
267 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
268 priv->tx_desc_dma[q]);
269 priv->tx_ring[q] = NULL;
270 }
271
272 /* Free RX buffers */
273 for (i = 0; i < priv->num_rx_ring[q]; i++) {
274 if (priv->rx_buffers[q][i].page)
275 page_pool_put_page(priv->rx_pool[q],
276 priv->rx_buffers[q][i].page,
277 0, true);
278 }
279 kfree(priv->rx_buffers[q]);
280 priv->rx_buffers[q] = NULL;
281 page_pool_destroy(priv->rx_pool[q]);
282
283 /* Free aligned TX buffers */
284 kfree(priv->tx_align[q]);
285 priv->tx_align[q] = NULL;
286
287 /* Free TX skb ringbuffer.
288 * SKBs are freed by ravb_tx_free() call above.
289 */
290 kfree(priv->tx_skb[q]);
291 priv->tx_skb[q] = NULL;
292 }
293
294 static int
ravb_alloc_rx_buffer(struct net_device * ndev,int q,u32 entry,gfp_t gfp_mask,struct ravb_rx_desc * rx_desc)295 ravb_alloc_rx_buffer(struct net_device *ndev, int q, u32 entry, gfp_t gfp_mask,
296 struct ravb_rx_desc *rx_desc)
297 {
298 struct ravb_private *priv = netdev_priv(ndev);
299 const struct ravb_hw_info *info = priv->info;
300 struct ravb_rx_buffer *rx_buff;
301 dma_addr_t dma_addr;
302 unsigned int size;
303
304 rx_buff = &priv->rx_buffers[q][entry];
305 size = info->rx_buffer_size;
306 rx_buff->page = page_pool_alloc(priv->rx_pool[q], &rx_buff->offset,
307 &size, gfp_mask);
308 if (unlikely(!rx_buff->page)) {
309 /* We just set the data size to 0 for a failed mapping which
310 * should prevent DMA from happening...
311 */
312 rx_desc->ds_cc = cpu_to_le16(0);
313 return -ENOMEM;
314 }
315
316 dma_addr = page_pool_get_dma_addr(rx_buff->page) + rx_buff->offset;
317 dma_sync_single_for_device(ndev->dev.parent, dma_addr,
318 info->rx_buffer_size, DMA_FROM_DEVICE);
319 rx_desc->dptr = cpu_to_le32(dma_addr);
320
321 /* The end of the RX buffer is used to store skb shared data, so we need
322 * to ensure that the hardware leaves enough space for this.
323 */
324 rx_desc->ds_cc = cpu_to_le16(info->rx_buffer_size -
325 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) -
326 ETH_FCS_LEN + sizeof(__sum16));
327 return 0;
328 }
329
330 static u32
ravb_rx_ring_refill(struct net_device * ndev,int q,u32 count,gfp_t gfp_mask)331 ravb_rx_ring_refill(struct net_device *ndev, int q, u32 count, gfp_t gfp_mask)
332 {
333 struct ravb_private *priv = netdev_priv(ndev);
334 struct ravb_rx_desc *rx_desc;
335 u32 i, entry;
336
337 for (i = 0; i < count; i++) {
338 entry = (priv->dirty_rx[q] + i) % priv->num_rx_ring[q];
339 rx_desc = ravb_rx_get_desc(priv, q, entry);
340
341 if (!priv->rx_buffers[q][entry].page) {
342 if (unlikely(ravb_alloc_rx_buffer(ndev, q, entry,
343 gfp_mask, rx_desc)))
344 break;
345 }
346 /* Descriptor type must be set after all the above writes */
347 dma_wmb();
348 rx_desc->die_dt = DT_FEMPTY;
349 }
350
351 return i;
352 }
353
354 /* Format skb and descriptor buffer for Ethernet AVB */
ravb_ring_format(struct net_device * ndev,int q)355 static void ravb_ring_format(struct net_device *ndev, int q)
356 {
357 struct ravb_private *priv = netdev_priv(ndev);
358 unsigned int num_tx_desc = priv->num_tx_desc;
359 struct ravb_rx_desc *rx_desc;
360 struct ravb_tx_desc *tx_desc;
361 struct ravb_desc *desc;
362 unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
363 num_tx_desc;
364 unsigned int i;
365
366 priv->cur_rx[q] = 0;
367 priv->cur_tx[q] = 0;
368 priv->dirty_rx[q] = 0;
369 priv->dirty_tx[q] = 0;
370
371 /* Regular RX descriptors have already been initialized by
372 * ravb_rx_ring_refill(), we just need to initialize the final link
373 * descriptor.
374 */
375 rx_desc = ravb_rx_get_desc(priv, q, priv->num_rx_ring[q]);
376 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
377 rx_desc->die_dt = DT_LINKFIX; /* type */
378
379 memset(priv->tx_ring[q], 0, tx_ring_size);
380 /* Build TX ring buffer */
381 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
382 i++, tx_desc++) {
383 tx_desc->die_dt = DT_EEMPTY;
384 if (num_tx_desc > 1) {
385 tx_desc++;
386 tx_desc->die_dt = DT_EEMPTY;
387 }
388 }
389 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
390 tx_desc->die_dt = DT_LINKFIX; /* type */
391
392 /* RX descriptor base address for best effort */
393 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
394 desc->die_dt = DT_LINKFIX; /* type */
395 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
396
397 /* TX descriptor base address for best effort */
398 desc = &priv->desc_bat[q];
399 desc->die_dt = DT_LINKFIX; /* type */
400 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
401 }
402
ravb_alloc_rx_desc(struct net_device * ndev,int q)403 static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
404 {
405 struct ravb_private *priv = netdev_priv(ndev);
406 unsigned int ring_size;
407
408 ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
409
410 priv->rx_ring[q].raw = dma_alloc_coherent(ndev->dev.parent, ring_size,
411 &priv->rx_desc_dma[q],
412 GFP_KERNEL);
413
414 return priv->rx_ring[q].raw;
415 }
416
417 /* Init skb and descriptor buffer for Ethernet AVB */
ravb_ring_init(struct net_device * ndev,int q)418 static int ravb_ring_init(struct net_device *ndev, int q)
419 {
420 struct ravb_private *priv = netdev_priv(ndev);
421 unsigned int num_tx_desc = priv->num_tx_desc;
422 struct page_pool_params params = {
423 .order = 0,
424 .flags = PP_FLAG_DMA_MAP,
425 .pool_size = priv->num_rx_ring[q],
426 .nid = NUMA_NO_NODE,
427 .dev = ndev->dev.parent,
428 .dma_dir = DMA_FROM_DEVICE,
429 };
430 unsigned int ring_size;
431 u32 num_filled;
432
433 /* Allocate RX page pool and buffers */
434 priv->rx_pool[q] = page_pool_create(¶ms);
435 if (IS_ERR(priv->rx_pool[q]))
436 goto error;
437
438 /* Allocate RX buffers */
439 priv->rx_buffers[q] = kcalloc(priv->num_rx_ring[q],
440 sizeof(*priv->rx_buffers[q]), GFP_KERNEL);
441 if (!priv->rx_buffers[q])
442 goto error;
443
444 /* Allocate TX skb rings */
445 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
446 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
447 if (!priv->tx_skb[q])
448 goto error;
449
450 /* Allocate all RX descriptors. */
451 if (!ravb_alloc_rx_desc(ndev, q))
452 goto error;
453
454 /* Populate RX ring buffer. */
455 priv->dirty_rx[q] = 0;
456 ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
457 memset(priv->rx_ring[q].raw, 0, ring_size);
458 num_filled = ravb_rx_ring_refill(ndev, q, priv->num_rx_ring[q],
459 GFP_KERNEL);
460 if (num_filled != priv->num_rx_ring[q])
461 goto error;
462
463 if (num_tx_desc > 1) {
464 /* Allocate rings for the aligned buffers */
465 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
466 DPTR_ALIGN - 1, GFP_KERNEL);
467 if (!priv->tx_align[q])
468 goto error;
469 }
470
471 /* Allocate all TX descriptors. */
472 ring_size = sizeof(struct ravb_tx_desc) *
473 (priv->num_tx_ring[q] * num_tx_desc + 1);
474 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
475 &priv->tx_desc_dma[q],
476 GFP_KERNEL);
477 if (!priv->tx_ring[q])
478 goto error;
479
480 return 0;
481
482 error:
483 ravb_ring_free(ndev, q);
484
485 return -ENOMEM;
486 }
487
ravb_csum_init_gbeth(struct net_device * ndev)488 static void ravb_csum_init_gbeth(struct net_device *ndev)
489 {
490 bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
491 bool rx_enable = ndev->features & NETIF_F_RXCSUM;
492
493 if (!(tx_enable || rx_enable))
494 goto done;
495
496 ravb_write(ndev, 0, CSR0);
497 if (ravb_wait(ndev, CSR0, CSR0_TPE | CSR0_RPE, 0)) {
498 netdev_err(ndev, "Timeout enabling hardware checksum\n");
499
500 if (tx_enable)
501 ndev->features &= ~NETIF_F_HW_CSUM;
502
503 if (rx_enable)
504 ndev->features &= ~NETIF_F_RXCSUM;
505 } else {
506 if (tx_enable)
507 ravb_write(ndev, CSR1_CSUM_ENABLE, CSR1);
508
509 if (rx_enable)
510 ravb_write(ndev, CSR2_CSUM_ENABLE, CSR2);
511 }
512
513 done:
514 ravb_write(ndev, CSR0_TPE | CSR0_RPE, CSR0);
515 }
516
ravb_emac_init_gbeth(struct net_device * ndev)517 static void ravb_emac_init_gbeth(struct net_device *ndev)
518 {
519 struct ravb_private *priv = netdev_priv(ndev);
520
521 if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
522 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_MII, CXR35);
523 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1, 0);
524 } else {
525 ravb_write(ndev, (1000 << 16) | CXR35_SEL_XMII_RGMII, CXR35);
526 ravb_modify(ndev, CXR31, CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
527 CXR31_SEL_LINK0);
528 }
529
530 /* Receive frame limit set register */
531 ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
532
533 /* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
534 ravb_write(ndev, ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
535 ECMR_TE | ECMR_RE | ECMR_RCPT |
536 ECMR_TXF | ECMR_RXF, ECMR);
537
538 ravb_set_rate_gbeth(ndev);
539
540 /* Set MAC address */
541 ravb_write(ndev,
542 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
543 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
544 ravb_write(ndev, (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
545
546 /* E-MAC status register clear */
547 ravb_write(ndev, ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, ECSR);
548
549 ravb_csum_init_gbeth(ndev);
550
551 /* E-MAC interrupt enable register */
552 ravb_write(ndev, ECSIPR_ICDIP, ECSIPR);
553 }
554
ravb_emac_init_rcar(struct net_device * ndev)555 static void ravb_emac_init_rcar(struct net_device *ndev)
556 {
557 struct ravb_private *priv = netdev_priv(ndev);
558
559 /* Set receive frame length
560 *
561 * The length set here describes the frame from the destination address
562 * up to and including the CRC data. However only the frame data,
563 * excluding the CRC, are transferred to memory. To allow for the
564 * largest frames add the CRC length to the maximum Rx descriptor size.
565 */
566 ravb_write(ndev, priv->info->rx_max_frame_size + ETH_FCS_LEN, RFLR);
567
568 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
569 ravb_write(ndev, ECMR_ZPF | ECMR_DM |
570 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
571 ECMR_TE | ECMR_RE, ECMR);
572
573 ravb_set_rate_rcar(ndev);
574
575 /* Set MAC address */
576 ravb_write(ndev,
577 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
578 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
579 ravb_write(ndev,
580 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
581
582 /* E-MAC status register clear */
583 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
584
585 /* E-MAC interrupt enable register */
586 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
587 }
588
ravb_emac_init_rcar_gen4(struct net_device * ndev)589 static void ravb_emac_init_rcar_gen4(struct net_device *ndev)
590 {
591 struct ravb_private *priv = netdev_priv(ndev);
592 bool mii = priv->phy_interface == PHY_INTERFACE_MODE_MII;
593
594 ravb_modify(ndev, APSR, APSR_MIISELECT, mii ? APSR_MIISELECT : 0);
595
596 ravb_emac_init_rcar(ndev);
597 }
598
599 /* E-MAC init function */
ravb_emac_init(struct net_device * ndev)600 static void ravb_emac_init(struct net_device *ndev)
601 {
602 struct ravb_private *priv = netdev_priv(ndev);
603 const struct ravb_hw_info *info = priv->info;
604
605 info->emac_init(ndev);
606 }
607
ravb_dmac_init_gbeth(struct net_device * ndev)608 static int ravb_dmac_init_gbeth(struct net_device *ndev)
609 {
610 struct ravb_private *priv = netdev_priv(ndev);
611 int error;
612
613 error = ravb_ring_init(ndev, RAVB_BE);
614 if (error)
615 return error;
616
617 /* Descriptor format */
618 ravb_ring_format(ndev, RAVB_BE);
619
620 /* Set DMAC RX */
621 ravb_write(ndev, 0x60000000, RCR);
622
623 /* Set Max Frame Length (RTC) */
624 ravb_write(ndev, 0x7ffc0000 | priv->info->rx_max_frame_size, RTC);
625
626 /* Set FIFO size */
627 ravb_write(ndev, 0x00222200, TGC);
628
629 ravb_write(ndev, 0, TCCR);
630
631 /* Frame receive */
632 ravb_write(ndev, RIC0_FRE0, RIC0);
633 /* Disable FIFO full warning */
634 ravb_write(ndev, 0x0, RIC1);
635 /* Receive FIFO full error, descriptor empty */
636 ravb_write(ndev, RIC2_QFE0 | RIC2_RFFE, RIC2);
637
638 ravb_write(ndev, TIC_FTE0, TIC);
639
640 return 0;
641 }
642
ravb_dmac_init_rcar(struct net_device * ndev)643 static int ravb_dmac_init_rcar(struct net_device *ndev)
644 {
645 struct ravb_private *priv = netdev_priv(ndev);
646 const struct ravb_hw_info *info = priv->info;
647 int error;
648
649 error = ravb_ring_init(ndev, RAVB_BE);
650 if (error)
651 return error;
652 error = ravb_ring_init(ndev, RAVB_NC);
653 if (error) {
654 ravb_ring_free(ndev, RAVB_BE);
655 return error;
656 }
657
658 /* Descriptor format */
659 ravb_ring_format(ndev, RAVB_BE);
660 ravb_ring_format(ndev, RAVB_NC);
661
662 /* Set AVB RX */
663 ravb_write(ndev,
664 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
665
666 /* Set FIFO size */
667 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
668
669 /* Timestamp enable */
670 ravb_write(ndev, TCCR_TFEN, TCCR);
671
672 /* Interrupt init: */
673 if (info->multi_irqs) {
674 /* Clear DIL.DPLx */
675 ravb_write(ndev, 0, DIL);
676 /* Set queue specific interrupt */
677 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
678 }
679 /* Frame receive */
680 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
681 /* Disable FIFO full warning */
682 ravb_write(ndev, 0, RIC1);
683 /* Receive FIFO full error, descriptor empty */
684 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
685 /* Frame transmitted, timestamp FIFO updated */
686 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
687
688 return 0;
689 }
690
691 /* Device init function for Ethernet AVB */
ravb_dmac_init(struct net_device * ndev)692 static int ravb_dmac_init(struct net_device *ndev)
693 {
694 struct ravb_private *priv = netdev_priv(ndev);
695 const struct ravb_hw_info *info = priv->info;
696 int error;
697
698 /* Set CONFIG mode */
699 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
700 if (error)
701 return error;
702
703 error = info->dmac_init(ndev);
704 if (error)
705 return error;
706
707 /* Setting the control will start the AVB-DMAC process. */
708 return ravb_set_opmode(ndev, CCC_OPC_OPERATION);
709 }
710
ravb_get_tx_tstamp(struct net_device * ndev)711 static void ravb_get_tx_tstamp(struct net_device *ndev)
712 {
713 struct ravb_private *priv = netdev_priv(ndev);
714 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
715 struct skb_shared_hwtstamps shhwtstamps;
716 struct sk_buff *skb;
717 struct timespec64 ts;
718 u16 tag, tfa_tag;
719 int count;
720 u32 tfa2;
721
722 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
723 while (count--) {
724 tfa2 = ravb_read(ndev, TFA2);
725 tfa_tag = (tfa2 & TFA2_TST) >> 16;
726 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
727 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
728 ravb_read(ndev, TFA1);
729 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
730 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
731 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
732 list) {
733 skb = ts_skb->skb;
734 tag = ts_skb->tag;
735 list_del(&ts_skb->list);
736 kfree(ts_skb);
737 if (tag == tfa_tag) {
738 skb_tstamp_tx(skb, &shhwtstamps);
739 dev_consume_skb_any(skb);
740 break;
741 } else {
742 dev_kfree_skb_any(skb);
743 }
744 }
745 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
746 }
747 }
748
ravb_rx_csum_gbeth(struct sk_buff * skb)749 static void ravb_rx_csum_gbeth(struct sk_buff *skb)
750 {
751 struct skb_shared_info *shinfo = skb_shinfo(skb);
752 size_t csum_len;
753 u16 *hw_csum;
754
755 /* The hardware checksum status is contained in 4 bytes appended to
756 * packet data.
757 *
758 * For ipv4, the first 2 bytes are the ip header checksum status. We can
759 * ignore this as it will always be re-checked in inet_gro_receive().
760 *
761 * The last 2 bytes are the protocol checksum status which will be zero
762 * if the checksum has been validated.
763 */
764 csum_len = sizeof(*hw_csum) * 2;
765 if (unlikely(skb->len < csum_len))
766 return;
767
768 if (skb_is_nonlinear(skb)) {
769 skb_frag_t *last_frag = &shinfo->frags[shinfo->nr_frags - 1];
770
771 hw_csum = (u16 *)(skb_frag_address(last_frag) +
772 skb_frag_size(last_frag));
773 skb_frag_size_sub(last_frag, csum_len);
774 } else {
775 hw_csum = (u16 *)skb_tail_pointer(skb);
776 skb_trim(skb, skb->len - csum_len);
777 }
778
779 if (!get_unaligned(--hw_csum))
780 skb->ip_summed = CHECKSUM_UNNECESSARY;
781 }
782
ravb_rx_csum(struct sk_buff * skb)783 static void ravb_rx_csum(struct sk_buff *skb)
784 {
785 u8 *hw_csum;
786
787 /* The hardware checksum is contained in sizeof(__sum16) (2) bytes
788 * appended to packet data
789 */
790 if (unlikely(skb->len < sizeof(__sum16)))
791 return;
792 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
793 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
794 skb->ip_summed = CHECKSUM_COMPLETE;
795 skb_trim(skb, skb->len - sizeof(__sum16));
796 }
797
798 /* Packet receive function for Gigabit Ethernet */
ravb_rx_gbeth(struct net_device * ndev,int budget,int q)799 static int ravb_rx_gbeth(struct net_device *ndev, int budget, int q)
800 {
801 struct ravb_private *priv = netdev_priv(ndev);
802 const struct ravb_hw_info *info = priv->info;
803 struct net_device_stats *stats;
804 struct ravb_rx_desc *desc;
805 struct sk_buff *skb;
806 int rx_packets = 0;
807 u8 desc_status;
808 u16 desc_len;
809 u8 die_dt;
810 int entry;
811 int limit;
812 int i;
813
814 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
815 stats = &priv->stats[q];
816
817 for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
818 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
819 desc = &priv->rx_ring[q].desc[entry];
820 if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
821 break;
822
823 /* Descriptor type must be checked before all other reads */
824 dma_rmb();
825 desc_status = desc->msc;
826 desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
827
828 /* We use 0-byte descriptors to mark the DMA mapping errors */
829 if (!desc_len)
830 continue;
831
832 if (desc_status & MSC_MC)
833 stats->multicast++;
834
835 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
836 stats->rx_errors++;
837 if (desc_status & MSC_CRC)
838 stats->rx_crc_errors++;
839 if (desc_status & MSC_RFE)
840 stats->rx_frame_errors++;
841 if (desc_status & (MSC_RTLF | MSC_RTSF))
842 stats->rx_length_errors++;
843 if (desc_status & MSC_CEEF)
844 stats->rx_missed_errors++;
845 } else {
846 struct ravb_rx_buffer *rx_buff;
847 void *rx_addr;
848
849 rx_buff = &priv->rx_buffers[q][entry];
850 rx_addr = page_address(rx_buff->page) + rx_buff->offset;
851 die_dt = desc->die_dt & 0xF0;
852 dma_sync_single_for_cpu(ndev->dev.parent,
853 le32_to_cpu(desc->dptr),
854 desc_len, DMA_FROM_DEVICE);
855
856 switch (die_dt) {
857 case DT_FSINGLE:
858 case DT_FSTART:
859 /* Start of packet: Set initial data length. */
860 skb = napi_build_skb(rx_addr,
861 info->rx_buffer_size);
862 if (unlikely(!skb)) {
863 stats->rx_errors++;
864 page_pool_put_page(priv->rx_pool[q],
865 rx_buff->page, 0,
866 true);
867 goto refill;
868 }
869 skb_mark_for_recycle(skb);
870 skb_put(skb, desc_len);
871
872 /* Save this skb if the packet spans multiple
873 * descriptors.
874 */
875 if (die_dt == DT_FSTART)
876 priv->rx_1st_skb = skb;
877 break;
878
879 case DT_FMID:
880 case DT_FEND:
881 /* Continuing a packet: Add this buffer as an RX
882 * frag.
883 */
884
885 /* rx_1st_skb will be NULL if napi_build_skb()
886 * failed for the first descriptor of a
887 * multi-descriptor packet.
888 */
889 if (unlikely(!priv->rx_1st_skb)) {
890 stats->rx_errors++;
891 page_pool_put_page(priv->rx_pool[q],
892 rx_buff->page, 0,
893 true);
894
895 /* We may find a DT_FSINGLE or DT_FSTART
896 * descriptor in the queue which we can
897 * process, so don't give up yet.
898 */
899 continue;
900 }
901 skb_add_rx_frag(priv->rx_1st_skb,
902 skb_shinfo(priv->rx_1st_skb)->nr_frags,
903 rx_buff->page, rx_buff->offset,
904 desc_len, info->rx_buffer_size);
905
906 /* Set skb to point at the whole packet so that
907 * we only need one code path for finishing a
908 * packet.
909 */
910 skb = priv->rx_1st_skb;
911 }
912
913 switch (die_dt) {
914 case DT_FSINGLE:
915 case DT_FEND:
916 /* Finishing a packet: Determine protocol &
917 * checksum, hand off to NAPI and update our
918 * stats.
919 */
920 skb->protocol = eth_type_trans(skb, ndev);
921 if (ndev->features & NETIF_F_RXCSUM)
922 ravb_rx_csum_gbeth(skb);
923 stats->rx_bytes += skb->len;
924 napi_gro_receive(&priv->napi[q], skb);
925 rx_packets++;
926
927 /* Clear rx_1st_skb so that it will only be
928 * non-NULL when valid.
929 */
930 priv->rx_1st_skb = NULL;
931 }
932
933 /* Mark this RX buffer as consumed. */
934 rx_buff->page = NULL;
935 }
936 }
937
938 refill:
939 /* Refill the RX ring buffers. */
940 priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
941 priv->cur_rx[q] - priv->dirty_rx[q],
942 GFP_ATOMIC);
943
944 stats->rx_packets += rx_packets;
945 return rx_packets;
946 }
947
948 /* Packet receive function for Ethernet AVB */
ravb_rx_rcar(struct net_device * ndev,int budget,int q)949 static int ravb_rx_rcar(struct net_device *ndev, int budget, int q)
950 {
951 struct ravb_private *priv = netdev_priv(ndev);
952 const struct ravb_hw_info *info = priv->info;
953 struct net_device_stats *stats = &priv->stats[q];
954 struct ravb_ex_rx_desc *desc;
955 unsigned int limit, i;
956 struct sk_buff *skb;
957 struct timespec64 ts;
958 int rx_packets = 0;
959 u8 desc_status;
960 u16 pkt_len;
961 int entry;
962
963 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
964 for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
965 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
966 desc = &priv->rx_ring[q].ex_desc[entry];
967 if (rx_packets == budget || desc->die_dt == DT_FEMPTY)
968 break;
969
970 /* Descriptor type must be checked before all other reads */
971 dma_rmb();
972 desc_status = desc->msc;
973 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
974
975 /* We use 0-byte descriptors to mark the DMA mapping errors */
976 if (!pkt_len)
977 continue;
978
979 if (desc_status & MSC_MC)
980 stats->multicast++;
981
982 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
983 MSC_CEEF)) {
984 stats->rx_errors++;
985 if (desc_status & MSC_CRC)
986 stats->rx_crc_errors++;
987 if (desc_status & MSC_RFE)
988 stats->rx_frame_errors++;
989 if (desc_status & (MSC_RTLF | MSC_RTSF))
990 stats->rx_length_errors++;
991 if (desc_status & MSC_CEEF)
992 stats->rx_missed_errors++;
993 } else {
994 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
995 struct ravb_rx_buffer *rx_buff;
996 void *rx_addr;
997
998 rx_buff = &priv->rx_buffers[q][entry];
999 rx_addr = page_address(rx_buff->page) + rx_buff->offset;
1000 dma_sync_single_for_cpu(ndev->dev.parent,
1001 le32_to_cpu(desc->dptr),
1002 pkt_len, DMA_FROM_DEVICE);
1003
1004 skb = napi_build_skb(rx_addr, info->rx_buffer_size);
1005 if (unlikely(!skb)) {
1006 stats->rx_errors++;
1007 page_pool_put_page(priv->rx_pool[q],
1008 rx_buff->page, 0, true);
1009 break;
1010 }
1011 skb_mark_for_recycle(skb);
1012 get_ts &= (q == RAVB_NC) ?
1013 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
1014 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1015 if (get_ts) {
1016 struct skb_shared_hwtstamps *shhwtstamps;
1017
1018 shhwtstamps = skb_hwtstamps(skb);
1019 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1020 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
1021 32) | le32_to_cpu(desc->ts_sl);
1022 ts.tv_nsec = le32_to_cpu(desc->ts_n);
1023 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
1024 }
1025
1026 skb_put(skb, pkt_len);
1027 skb->protocol = eth_type_trans(skb, ndev);
1028 if (ndev->features & NETIF_F_RXCSUM)
1029 ravb_rx_csum(skb);
1030 napi_gro_receive(&priv->napi[q], skb);
1031 rx_packets++;
1032 stats->rx_bytes += pkt_len;
1033
1034 /* Mark this RX buffer as consumed. */
1035 rx_buff->page = NULL;
1036 }
1037 }
1038
1039 /* Refill the RX ring buffers. */
1040 priv->dirty_rx[q] += ravb_rx_ring_refill(ndev, q,
1041 priv->cur_rx[q] - priv->dirty_rx[q],
1042 GFP_ATOMIC);
1043
1044 stats->rx_packets += rx_packets;
1045 return rx_packets;
1046 }
1047
1048 /* Packet receive function for Ethernet AVB */
ravb_rx(struct net_device * ndev,int budget,int q)1049 static int ravb_rx(struct net_device *ndev, int budget, int q)
1050 {
1051 struct ravb_private *priv = netdev_priv(ndev);
1052 const struct ravb_hw_info *info = priv->info;
1053
1054 return info->receive(ndev, budget, q);
1055 }
1056
ravb_rcv_snd_disable(struct net_device * ndev)1057 static void ravb_rcv_snd_disable(struct net_device *ndev)
1058 {
1059 /* Disable TX and RX */
1060 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
1061 }
1062
ravb_rcv_snd_enable(struct net_device * ndev)1063 static void ravb_rcv_snd_enable(struct net_device *ndev)
1064 {
1065 /* Enable TX and RX */
1066 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
1067 }
1068
1069 /* function for waiting dma process finished */
ravb_stop_dma(struct net_device * ndev)1070 static int ravb_stop_dma(struct net_device *ndev)
1071 {
1072 struct ravb_private *priv = netdev_priv(ndev);
1073 const struct ravb_hw_info *info = priv->info;
1074 int error;
1075
1076 /* Wait for stopping the hardware TX process */
1077 error = ravb_wait(ndev, TCCR, info->tccr_mask, 0);
1078
1079 if (error)
1080 return error;
1081
1082 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1083 0);
1084 if (error)
1085 return error;
1086
1087 /* Stop the E-MAC's RX/TX processes. */
1088 ravb_rcv_snd_disable(ndev);
1089
1090 /* Wait for stopping the RX DMA process */
1091 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
1092 if (error)
1093 return error;
1094
1095 /* Stop AVB-DMAC process */
1096 return ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1097 }
1098
1099 /* E-MAC interrupt handler */
ravb_emac_interrupt_unlocked(struct net_device * ndev)1100 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1101 {
1102 struct ravb_private *priv = netdev_priv(ndev);
1103 u32 ecsr, psr;
1104
1105 ecsr = ravb_read(ndev, ECSR);
1106 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
1107
1108 if (ecsr & ECSR_MPD)
1109 pm_wakeup_event(&priv->pdev->dev, 0);
1110 if (ecsr & ECSR_ICD)
1111 ndev->stats.tx_carrier_errors++;
1112 if (ecsr & ECSR_LCHNG) {
1113 /* Link changed */
1114 if (priv->no_avb_link)
1115 return;
1116 psr = ravb_read(ndev, PSR);
1117 if (priv->avb_link_active_low)
1118 psr ^= PSR_LMON;
1119 if (!(psr & PSR_LMON)) {
1120 /* DIsable RX and TX */
1121 ravb_rcv_snd_disable(ndev);
1122 } else {
1123 /* Enable RX and TX */
1124 ravb_rcv_snd_enable(ndev);
1125 }
1126 }
1127 }
1128
ravb_emac_interrupt(int irq,void * dev_id)1129 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1130 {
1131 struct net_device *ndev = dev_id;
1132 struct ravb_private *priv = netdev_priv(ndev);
1133 struct device *dev = &priv->pdev->dev;
1134 irqreturn_t result = IRQ_HANDLED;
1135
1136 pm_runtime_get_noresume(dev);
1137
1138 if (unlikely(!pm_runtime_active(dev))) {
1139 result = IRQ_NONE;
1140 goto out_rpm_put;
1141 }
1142
1143 spin_lock(&priv->lock);
1144 ravb_emac_interrupt_unlocked(ndev);
1145 spin_unlock(&priv->lock);
1146
1147 out_rpm_put:
1148 pm_runtime_put_noidle(dev);
1149 return result;
1150 }
1151
1152 /* Error interrupt handler */
ravb_error_interrupt(struct net_device * ndev)1153 static void ravb_error_interrupt(struct net_device *ndev)
1154 {
1155 struct ravb_private *priv = netdev_priv(ndev);
1156 u32 eis, ris2;
1157
1158 eis = ravb_read(ndev, EIS);
1159 ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
1160 if (eis & EIS_QFS) {
1161 ris2 = ravb_read(ndev, RIS2);
1162 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1163 RIS2);
1164
1165 /* Receive Descriptor Empty int */
1166 if (ris2 & RIS2_QFF0)
1167 priv->stats[RAVB_BE].rx_over_errors++;
1168
1169 /* Receive Descriptor Empty int */
1170 if (ris2 & RIS2_QFF1)
1171 priv->stats[RAVB_NC].rx_over_errors++;
1172
1173 /* Receive FIFO Overflow int */
1174 if (ris2 & RIS2_RFFF)
1175 priv->rx_fifo_errors++;
1176 }
1177 }
1178
ravb_queue_interrupt(struct net_device * ndev,int q)1179 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1180 {
1181 struct ravb_private *priv = netdev_priv(ndev);
1182 const struct ravb_hw_info *info = priv->info;
1183 u32 ris0 = ravb_read(ndev, RIS0);
1184 u32 ric0 = ravb_read(ndev, RIC0);
1185 u32 tis = ravb_read(ndev, TIS);
1186 u32 tic = ravb_read(ndev, TIC);
1187
1188 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
1189 if (napi_schedule_prep(&priv->napi[q])) {
1190 /* Mask RX and TX interrupts */
1191 if (!info->irq_en_dis) {
1192 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
1193 ravb_write(ndev, tic & ~BIT(q), TIC);
1194 } else {
1195 ravb_write(ndev, BIT(q), RID0);
1196 ravb_write(ndev, BIT(q), TID);
1197 }
1198 __napi_schedule(&priv->napi[q]);
1199 } else {
1200 netdev_warn(ndev,
1201 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1202 ris0, ric0);
1203 netdev_warn(ndev,
1204 " tx status 0x%08x, tx mask 0x%08x.\n",
1205 tis, tic);
1206 }
1207 return true;
1208 }
1209 return false;
1210 }
1211
ravb_timestamp_interrupt(struct net_device * ndev)1212 static bool ravb_timestamp_interrupt(struct net_device *ndev)
1213 {
1214 u32 tis = ravb_read(ndev, TIS);
1215
1216 if (tis & TIS_TFUF) {
1217 ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
1218 ravb_get_tx_tstamp(ndev);
1219 return true;
1220 }
1221 return false;
1222 }
1223
ravb_interrupt(int irq,void * dev_id)1224 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1225 {
1226 struct net_device *ndev = dev_id;
1227 struct ravb_private *priv = netdev_priv(ndev);
1228 const struct ravb_hw_info *info = priv->info;
1229 struct device *dev = &priv->pdev->dev;
1230 irqreturn_t result = IRQ_NONE;
1231 u32 iss;
1232
1233 pm_runtime_get_noresume(dev);
1234
1235 if (unlikely(!pm_runtime_active(dev)))
1236 goto out_rpm_put;
1237
1238 spin_lock(&priv->lock);
1239 /* Get interrupt status */
1240 iss = ravb_read(ndev, ISS);
1241
1242 /* Received and transmitted interrupts */
1243 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1244 int q;
1245
1246 /* Timestamp updated */
1247 if (ravb_timestamp_interrupt(ndev))
1248 result = IRQ_HANDLED;
1249
1250 /* Network control and best effort queue RX/TX */
1251 if (info->nc_queues) {
1252 for (q = RAVB_NC; q >= RAVB_BE; q--) {
1253 if (ravb_queue_interrupt(ndev, q))
1254 result = IRQ_HANDLED;
1255 }
1256 } else {
1257 if (ravb_queue_interrupt(ndev, RAVB_BE))
1258 result = IRQ_HANDLED;
1259 }
1260 }
1261
1262 /* E-MAC status summary */
1263 if (iss & ISS_MS) {
1264 ravb_emac_interrupt_unlocked(ndev);
1265 result = IRQ_HANDLED;
1266 }
1267
1268 /* Error status summary */
1269 if (iss & ISS_ES) {
1270 ravb_error_interrupt(ndev);
1271 result = IRQ_HANDLED;
1272 }
1273
1274 /* gPTP interrupt status summary */
1275 if (iss & ISS_CGIS) {
1276 ravb_ptp_interrupt(ndev);
1277 result = IRQ_HANDLED;
1278 }
1279
1280 spin_unlock(&priv->lock);
1281
1282 out_rpm_put:
1283 pm_runtime_put_noidle(dev);
1284 return result;
1285 }
1286
1287 /* Timestamp/Error/gPTP interrupt handler */
ravb_multi_interrupt(int irq,void * dev_id)1288 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1289 {
1290 struct net_device *ndev = dev_id;
1291 struct ravb_private *priv = netdev_priv(ndev);
1292 struct device *dev = &priv->pdev->dev;
1293 irqreturn_t result = IRQ_NONE;
1294 u32 iss;
1295
1296 pm_runtime_get_noresume(dev);
1297
1298 if (unlikely(!pm_runtime_active(dev)))
1299 goto out_rpm_put;
1300
1301 spin_lock(&priv->lock);
1302 /* Get interrupt status */
1303 iss = ravb_read(ndev, ISS);
1304
1305 /* Timestamp updated */
1306 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1307 result = IRQ_HANDLED;
1308
1309 /* Error status summary */
1310 if (iss & ISS_ES) {
1311 ravb_error_interrupt(ndev);
1312 result = IRQ_HANDLED;
1313 }
1314
1315 /* gPTP interrupt status summary */
1316 if (iss & ISS_CGIS) {
1317 ravb_ptp_interrupt(ndev);
1318 result = IRQ_HANDLED;
1319 }
1320
1321 spin_unlock(&priv->lock);
1322
1323 out_rpm_put:
1324 pm_runtime_put_noidle(dev);
1325 return result;
1326 }
1327
ravb_dma_interrupt(int irq,void * dev_id,int q)1328 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1329 {
1330 struct net_device *ndev = dev_id;
1331 struct ravb_private *priv = netdev_priv(ndev);
1332 struct device *dev = &priv->pdev->dev;
1333 irqreturn_t result = IRQ_NONE;
1334
1335 pm_runtime_get_noresume(dev);
1336
1337 if (unlikely(!pm_runtime_active(dev)))
1338 goto out_rpm_put;
1339
1340 spin_lock(&priv->lock);
1341
1342 /* Network control/Best effort queue RX/TX */
1343 if (ravb_queue_interrupt(ndev, q))
1344 result = IRQ_HANDLED;
1345
1346 spin_unlock(&priv->lock);
1347
1348 out_rpm_put:
1349 pm_runtime_put_noidle(dev);
1350 return result;
1351 }
1352
ravb_be_interrupt(int irq,void * dev_id)1353 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1354 {
1355 return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
1356 }
1357
ravb_nc_interrupt(int irq,void * dev_id)1358 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1359 {
1360 return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
1361 }
1362
ravb_poll(struct napi_struct * napi,int budget)1363 static int ravb_poll(struct napi_struct *napi, int budget)
1364 {
1365 struct net_device *ndev = napi->dev;
1366 struct ravb_private *priv = netdev_priv(ndev);
1367 const struct ravb_hw_info *info = priv->info;
1368 unsigned long flags;
1369 int q = napi - priv->napi;
1370 int mask = BIT(q);
1371 int work_done;
1372
1373 /* Processing RX Descriptor Ring */
1374 /* Clear RX interrupt */
1375 ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
1376 work_done = ravb_rx(ndev, budget, q);
1377
1378 /* Processing TX Descriptor Ring */
1379 spin_lock_irqsave(&priv->lock, flags);
1380 /* Clear TX interrupt */
1381 ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
1382 ravb_tx_free(ndev, q, true);
1383 netif_wake_subqueue(ndev, q);
1384 spin_unlock_irqrestore(&priv->lock, flags);
1385
1386 /* Receive error message handling */
1387 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1388 if (info->nc_queues)
1389 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1390 if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1391 ndev->stats.rx_over_errors = priv->rx_over_errors;
1392 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1393 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1394
1395 if (work_done < budget && napi_complete_done(napi, work_done)) {
1396 /* Re-enable RX/TX interrupts */
1397 spin_lock_irqsave(&priv->lock, flags);
1398 if (!info->irq_en_dis) {
1399 ravb_modify(ndev, RIC0, mask, mask);
1400 ravb_modify(ndev, TIC, mask, mask);
1401 } else {
1402 ravb_write(ndev, mask, RIE0);
1403 ravb_write(ndev, mask, TIE);
1404 }
1405 spin_unlock_irqrestore(&priv->lock, flags);
1406 }
1407
1408 return work_done;
1409 }
1410
ravb_set_duplex_gbeth(struct net_device * ndev)1411 static void ravb_set_duplex_gbeth(struct net_device *ndev)
1412 {
1413 struct ravb_private *priv = netdev_priv(ndev);
1414
1415 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex > 0 ? ECMR_DM : 0);
1416 }
1417
1418 /* PHY state control function */
ravb_adjust_link(struct net_device * ndev)1419 static void ravb_adjust_link(struct net_device *ndev)
1420 {
1421 struct ravb_private *priv = netdev_priv(ndev);
1422 const struct ravb_hw_info *info = priv->info;
1423 struct phy_device *phydev = ndev->phydev;
1424 bool new_state = false;
1425 unsigned long flags;
1426
1427 spin_lock_irqsave(&priv->lock, flags);
1428
1429 /* Disable TX and RX right over here, if E-MAC change is ignored */
1430 if (priv->no_avb_link)
1431 ravb_rcv_snd_disable(ndev);
1432
1433 if (phydev->link) {
1434 if (info->half_duplex && phydev->duplex != priv->duplex) {
1435 new_state = true;
1436 priv->duplex = phydev->duplex;
1437 ravb_set_duplex_gbeth(ndev);
1438 }
1439
1440 if (phydev->speed != priv->speed) {
1441 new_state = true;
1442 priv->speed = phydev->speed;
1443 info->set_rate(ndev);
1444 }
1445 if (!priv->link) {
1446 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
1447 new_state = true;
1448 priv->link = phydev->link;
1449 }
1450 } else if (priv->link) {
1451 new_state = true;
1452 priv->link = 0;
1453 priv->speed = 0;
1454 if (info->half_duplex)
1455 priv->duplex = -1;
1456 }
1457
1458 /* Enable TX and RX right over here, if E-MAC change is ignored */
1459 if (priv->no_avb_link && phydev->link)
1460 ravb_rcv_snd_enable(ndev);
1461
1462 spin_unlock_irqrestore(&priv->lock, flags);
1463
1464 if (new_state && netif_msg_link(priv))
1465 phy_print_status(phydev);
1466 }
1467
1468 /* PHY init function */
ravb_phy_init(struct net_device * ndev)1469 static int ravb_phy_init(struct net_device *ndev)
1470 {
1471 struct device_node *np = ndev->dev.parent->of_node;
1472 struct ravb_private *priv = netdev_priv(ndev);
1473 const struct ravb_hw_info *info = priv->info;
1474 struct phy_device *phydev;
1475 struct device_node *pn;
1476 phy_interface_t iface;
1477 int err;
1478
1479 priv->link = 0;
1480 priv->speed = 0;
1481 priv->duplex = -1;
1482
1483 /* Try connecting to PHY */
1484 pn = of_parse_phandle(np, "phy-handle", 0);
1485 if (!pn) {
1486 /* In the case of a fixed PHY, the DT node associated
1487 * to the PHY is the Ethernet MAC DT node.
1488 */
1489 if (of_phy_is_fixed_link(np)) {
1490 err = of_phy_register_fixed_link(np);
1491 if (err)
1492 return err;
1493 }
1494 pn = of_node_get(np);
1495 }
1496
1497 iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1498 : priv->phy_interface;
1499 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0, iface);
1500 of_node_put(pn);
1501 if (!phydev) {
1502 netdev_err(ndev, "failed to connect PHY\n");
1503 err = -ENOENT;
1504 goto err_deregister_fixed_link;
1505 }
1506
1507 if (!info->half_duplex) {
1508 /* 10BASE, Pause and Asym Pause is not supported */
1509 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1510 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1511 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1512 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1513
1514 /* Half Duplex is not supported */
1515 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1516 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1517 }
1518
1519 phy_attached_info(phydev);
1520
1521 return 0;
1522
1523 err_deregister_fixed_link:
1524 if (of_phy_is_fixed_link(np))
1525 of_phy_deregister_fixed_link(np);
1526
1527 return err;
1528 }
1529
1530 /* PHY control start function */
ravb_phy_start(struct net_device * ndev)1531 static int ravb_phy_start(struct net_device *ndev)
1532 {
1533 int error;
1534
1535 error = ravb_phy_init(ndev);
1536 if (error)
1537 return error;
1538
1539 phy_start(ndev->phydev);
1540
1541 return 0;
1542 }
1543
ravb_get_msglevel(struct net_device * ndev)1544 static u32 ravb_get_msglevel(struct net_device *ndev)
1545 {
1546 struct ravb_private *priv = netdev_priv(ndev);
1547
1548 return priv->msg_enable;
1549 }
1550
ravb_set_msglevel(struct net_device * ndev,u32 value)1551 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1552 {
1553 struct ravb_private *priv = netdev_priv(ndev);
1554
1555 priv->msg_enable = value;
1556 }
1557
1558 static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1559 "rx_queue_0_current",
1560 "tx_queue_0_current",
1561 "rx_queue_0_dirty",
1562 "tx_queue_0_dirty",
1563 "rx_queue_0_packets",
1564 "tx_queue_0_packets",
1565 "rx_queue_0_bytes",
1566 "tx_queue_0_bytes",
1567 "rx_queue_0_mcast_packets",
1568 "rx_queue_0_errors",
1569 "rx_queue_0_crc_errors",
1570 "rx_queue_0_frame_errors",
1571 "rx_queue_0_length_errors",
1572 "rx_queue_0_csum_offload_errors",
1573 "rx_queue_0_over_errors",
1574 };
1575
1576 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1577 "rx_queue_0_current",
1578 "tx_queue_0_current",
1579 "rx_queue_0_dirty",
1580 "tx_queue_0_dirty",
1581 "rx_queue_0_packets",
1582 "tx_queue_0_packets",
1583 "rx_queue_0_bytes",
1584 "tx_queue_0_bytes",
1585 "rx_queue_0_mcast_packets",
1586 "rx_queue_0_errors",
1587 "rx_queue_0_crc_errors",
1588 "rx_queue_0_frame_errors",
1589 "rx_queue_0_length_errors",
1590 "rx_queue_0_missed_errors",
1591 "rx_queue_0_over_errors",
1592
1593 "rx_queue_1_current",
1594 "tx_queue_1_current",
1595 "rx_queue_1_dirty",
1596 "tx_queue_1_dirty",
1597 "rx_queue_1_packets",
1598 "tx_queue_1_packets",
1599 "rx_queue_1_bytes",
1600 "tx_queue_1_bytes",
1601 "rx_queue_1_mcast_packets",
1602 "rx_queue_1_errors",
1603 "rx_queue_1_crc_errors",
1604 "rx_queue_1_frame_errors",
1605 "rx_queue_1_length_errors",
1606 "rx_queue_1_missed_errors",
1607 "rx_queue_1_over_errors",
1608 };
1609
ravb_get_sset_count(struct net_device * netdev,int sset)1610 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1611 {
1612 struct ravb_private *priv = netdev_priv(netdev);
1613 const struct ravb_hw_info *info = priv->info;
1614
1615 switch (sset) {
1616 case ETH_SS_STATS:
1617 return info->stats_len;
1618 default:
1619 return -EOPNOTSUPP;
1620 }
1621 }
1622
ravb_get_ethtool_stats(struct net_device * ndev,struct ethtool_stats * estats,u64 * data)1623 static void ravb_get_ethtool_stats(struct net_device *ndev,
1624 struct ethtool_stats *estats, u64 *data)
1625 {
1626 struct ravb_private *priv = netdev_priv(ndev);
1627 const struct ravb_hw_info *info = priv->info;
1628 int num_rx_q;
1629 int i = 0;
1630 int q;
1631
1632 num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1633 /* Device-specific stats */
1634 for (q = RAVB_BE; q < num_rx_q; q++) {
1635 struct net_device_stats *stats = &priv->stats[q];
1636
1637 data[i++] = priv->cur_rx[q];
1638 data[i++] = priv->cur_tx[q];
1639 data[i++] = priv->dirty_rx[q];
1640 data[i++] = priv->dirty_tx[q];
1641 data[i++] = stats->rx_packets;
1642 data[i++] = stats->tx_packets;
1643 data[i++] = stats->rx_bytes;
1644 data[i++] = stats->tx_bytes;
1645 data[i++] = stats->multicast;
1646 data[i++] = stats->rx_errors;
1647 data[i++] = stats->rx_crc_errors;
1648 data[i++] = stats->rx_frame_errors;
1649 data[i++] = stats->rx_length_errors;
1650 data[i++] = stats->rx_missed_errors;
1651 data[i++] = stats->rx_over_errors;
1652 }
1653 }
1654
ravb_get_strings(struct net_device * ndev,u32 stringset,u8 * data)1655 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1656 {
1657 struct ravb_private *priv = netdev_priv(ndev);
1658 const struct ravb_hw_info *info = priv->info;
1659
1660 switch (stringset) {
1661 case ETH_SS_STATS:
1662 memcpy(data, info->gstrings_stats, info->gstrings_size);
1663 break;
1664 }
1665 }
1666
ravb_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1667 static void ravb_get_ringparam(struct net_device *ndev,
1668 struct ethtool_ringparam *ring,
1669 struct kernel_ethtool_ringparam *kernel_ring,
1670 struct netlink_ext_ack *extack)
1671 {
1672 struct ravb_private *priv = netdev_priv(ndev);
1673
1674 ring->rx_max_pending = BE_RX_RING_MAX;
1675 ring->tx_max_pending = BE_TX_RING_MAX;
1676 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1677 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1678 }
1679
ravb_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1680 static int ravb_set_ringparam(struct net_device *ndev,
1681 struct ethtool_ringparam *ring,
1682 struct kernel_ethtool_ringparam *kernel_ring,
1683 struct netlink_ext_ack *extack)
1684 {
1685 struct ravb_private *priv = netdev_priv(ndev);
1686 const struct ravb_hw_info *info = priv->info;
1687 int error;
1688
1689 if (ring->tx_pending > BE_TX_RING_MAX ||
1690 ring->rx_pending > BE_RX_RING_MAX ||
1691 ring->tx_pending < BE_TX_RING_MIN ||
1692 ring->rx_pending < BE_RX_RING_MIN)
1693 return -EINVAL;
1694 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1695 return -EINVAL;
1696
1697 if (netif_running(ndev)) {
1698 netif_device_detach(ndev);
1699 /* Stop PTP Clock driver */
1700 if (info->gptp)
1701 ravb_ptp_stop(ndev);
1702 /* Wait for DMA stopping */
1703 error = ravb_stop_dma(ndev);
1704 if (error) {
1705 netdev_err(ndev,
1706 "cannot set ringparam! Any AVB processes are still running?\n");
1707 return error;
1708 }
1709 synchronize_irq(ndev->irq);
1710
1711 /* Free all the skb's in the RX queue and the DMA buffers. */
1712 ravb_ring_free(ndev, RAVB_BE);
1713 if (info->nc_queues)
1714 ravb_ring_free(ndev, RAVB_NC);
1715 }
1716
1717 /* Set new parameters */
1718 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1719 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1720
1721 if (netif_running(ndev)) {
1722 error = ravb_dmac_init(ndev);
1723 if (error) {
1724 netdev_err(ndev,
1725 "%s: ravb_dmac_init() failed, error %d\n",
1726 __func__, error);
1727 return error;
1728 }
1729
1730 ravb_emac_init(ndev);
1731
1732 /* Initialise PTP Clock driver */
1733 if (info->gptp)
1734 ravb_ptp_init(ndev, priv->pdev);
1735
1736 netif_device_attach(ndev);
1737 }
1738
1739 return 0;
1740 }
1741
ravb_get_ts_info(struct net_device * ndev,struct kernel_ethtool_ts_info * info)1742 static int ravb_get_ts_info(struct net_device *ndev,
1743 struct kernel_ethtool_ts_info *info)
1744 {
1745 struct ravb_private *priv = netdev_priv(ndev);
1746 const struct ravb_hw_info *hw_info = priv->info;
1747
1748 if (hw_info->gptp || hw_info->ccc_gac) {
1749 info->so_timestamping =
1750 SOF_TIMESTAMPING_TX_SOFTWARE |
1751 SOF_TIMESTAMPING_TX_HARDWARE |
1752 SOF_TIMESTAMPING_RX_HARDWARE |
1753 SOF_TIMESTAMPING_RAW_HARDWARE;
1754 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1755 info->rx_filters =
1756 (1 << HWTSTAMP_FILTER_NONE) |
1757 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1758 (1 << HWTSTAMP_FILTER_ALL);
1759 info->phc_index = ptp_clock_index(priv->ptp.clock);
1760 }
1761
1762 return 0;
1763 }
1764
ravb_get_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1765 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1766 {
1767 struct ravb_private *priv = netdev_priv(ndev);
1768
1769 wol->supported = WAKE_MAGIC;
1770 wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1771 }
1772
ravb_set_wol(struct net_device * ndev,struct ethtool_wolinfo * wol)1773 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1774 {
1775 struct ravb_private *priv = netdev_priv(ndev);
1776 const struct ravb_hw_info *info = priv->info;
1777
1778 if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1779 return -EOPNOTSUPP;
1780
1781 priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1782
1783 device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1784
1785 return 0;
1786 }
1787
1788 static const struct ethtool_ops ravb_ethtool_ops = {
1789 .nway_reset = phy_ethtool_nway_reset,
1790 .get_msglevel = ravb_get_msglevel,
1791 .set_msglevel = ravb_set_msglevel,
1792 .get_link = ethtool_op_get_link,
1793 .get_strings = ravb_get_strings,
1794 .get_ethtool_stats = ravb_get_ethtool_stats,
1795 .get_sset_count = ravb_get_sset_count,
1796 .get_ringparam = ravb_get_ringparam,
1797 .set_ringparam = ravb_set_ringparam,
1798 .get_ts_info = ravb_get_ts_info,
1799 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1800 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1801 .get_wol = ravb_get_wol,
1802 .set_wol = ravb_set_wol,
1803 };
1804
ravb_set_config_mode(struct net_device * ndev)1805 static int ravb_set_config_mode(struct net_device *ndev)
1806 {
1807 struct ravb_private *priv = netdev_priv(ndev);
1808 const struct ravb_hw_info *info = priv->info;
1809 int error;
1810
1811 if (info->gptp) {
1812 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1813 if (error)
1814 return error;
1815 /* Set CSEL value */
1816 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1817 } else if (info->ccc_gac) {
1818 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1819 } else {
1820 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
1821 }
1822
1823 return error;
1824 }
1825
ravb_set_gti(struct net_device * ndev)1826 static void ravb_set_gti(struct net_device *ndev)
1827 {
1828 struct ravb_private *priv = netdev_priv(ndev);
1829 const struct ravb_hw_info *info = priv->info;
1830
1831 if (!(info->gptp || info->ccc_gac))
1832 return;
1833
1834 ravb_write(ndev, priv->gti_tiv, GTI);
1835
1836 /* Request GTI loading */
1837 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1838 }
1839
ravb_compute_gti(struct net_device * ndev)1840 static int ravb_compute_gti(struct net_device *ndev)
1841 {
1842 struct ravb_private *priv = netdev_priv(ndev);
1843 const struct ravb_hw_info *info = priv->info;
1844 struct device *dev = ndev->dev.parent;
1845 unsigned long rate;
1846 u64 inc;
1847
1848 if (!(info->gptp || info->ccc_gac))
1849 return 0;
1850
1851 if (info->gptp_ref_clk)
1852 rate = clk_get_rate(priv->gptp_clk);
1853 else
1854 rate = clk_get_rate(priv->clk);
1855 if (!rate)
1856 return -EINVAL;
1857
1858 inc = div64_ul(1000000000ULL << 20, rate);
1859
1860 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1861 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1862 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1863 return -EINVAL;
1864 }
1865 priv->gti_tiv = inc;
1866
1867 return 0;
1868 }
1869
1870 /* Set tx and rx clock internal delay modes */
ravb_parse_delay_mode(struct device_node * np,struct net_device * ndev)1871 static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1872 {
1873 struct ravb_private *priv = netdev_priv(ndev);
1874 bool explicit_delay = false;
1875 u32 delay;
1876
1877 if (!priv->info->internal_delay)
1878 return;
1879
1880 if (!of_property_read_u32(np, "rx-internal-delay-ps", &delay)) {
1881 /* Valid values are 0 and 1800, according to DT bindings */
1882 priv->rxcidm = !!delay;
1883 explicit_delay = true;
1884 }
1885 if (!of_property_read_u32(np, "tx-internal-delay-ps", &delay)) {
1886 /* Valid values are 0 and 2000, according to DT bindings */
1887 priv->txcidm = !!delay;
1888 explicit_delay = true;
1889 }
1890
1891 if (explicit_delay)
1892 return;
1893
1894 /* Fall back to legacy rgmii-*id behavior */
1895 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1896 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1897 priv->rxcidm = 1;
1898 priv->rgmii_override = 1;
1899 }
1900
1901 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1902 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1903 priv->txcidm = 1;
1904 priv->rgmii_override = 1;
1905 }
1906 }
1907
ravb_set_delay_mode(struct net_device * ndev)1908 static void ravb_set_delay_mode(struct net_device *ndev)
1909 {
1910 struct ravb_private *priv = netdev_priv(ndev);
1911 u32 set = 0;
1912
1913 if (!priv->info->internal_delay)
1914 return;
1915
1916 if (priv->rxcidm)
1917 set |= APSR_RDM;
1918 if (priv->txcidm)
1919 set |= APSR_TDM;
1920 ravb_modify(ndev, APSR, APSR_RDM | APSR_TDM, set);
1921 }
1922
1923 /* Network device open function for Ethernet AVB */
ravb_open(struct net_device * ndev)1924 static int ravb_open(struct net_device *ndev)
1925 {
1926 struct ravb_private *priv = netdev_priv(ndev);
1927 const struct ravb_hw_info *info = priv->info;
1928 struct device *dev = &priv->pdev->dev;
1929 int error;
1930
1931 napi_enable(&priv->napi[RAVB_BE]);
1932 if (info->nc_queues)
1933 napi_enable(&priv->napi[RAVB_NC]);
1934
1935 error = pm_runtime_resume_and_get(dev);
1936 if (error < 0)
1937 goto out_napi_off;
1938
1939 /* Set AVB config mode */
1940 error = ravb_set_config_mode(ndev);
1941 if (error)
1942 goto out_rpm_put;
1943
1944 ravb_set_delay_mode(ndev);
1945 ravb_write(ndev, priv->desc_bat_dma, DBAT);
1946
1947 /* Device init */
1948 error = ravb_dmac_init(ndev);
1949 if (error)
1950 goto out_set_reset;
1951
1952 ravb_emac_init(ndev);
1953
1954 ravb_set_gti(ndev);
1955
1956 /* Initialise PTP Clock driver */
1957 if (info->gptp || info->ccc_gac)
1958 ravb_ptp_init(ndev, priv->pdev);
1959
1960 /* PHY control start */
1961 error = ravb_phy_start(ndev);
1962 if (error)
1963 goto out_ptp_stop;
1964
1965 netif_tx_start_all_queues(ndev);
1966
1967 return 0;
1968
1969 out_ptp_stop:
1970 /* Stop PTP Clock driver */
1971 if (info->gptp || info->ccc_gac)
1972 ravb_ptp_stop(ndev);
1973 ravb_stop_dma(ndev);
1974 out_set_reset:
1975 ravb_set_opmode(ndev, CCC_OPC_RESET);
1976 out_rpm_put:
1977 pm_runtime_mark_last_busy(dev);
1978 pm_runtime_put_autosuspend(dev);
1979 out_napi_off:
1980 if (info->nc_queues)
1981 napi_disable(&priv->napi[RAVB_NC]);
1982 napi_disable(&priv->napi[RAVB_BE]);
1983 return error;
1984 }
1985
1986 /* Timeout function for Ethernet AVB */
ravb_tx_timeout(struct net_device * ndev,unsigned int txqueue)1987 static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1988 {
1989 struct ravb_private *priv = netdev_priv(ndev);
1990
1991 netif_err(priv, tx_err, ndev,
1992 "transmit timed out, status %08x, resetting...\n",
1993 ravb_read(ndev, ISS));
1994
1995 /* tx_errors count up */
1996 ndev->stats.tx_errors++;
1997
1998 schedule_work(&priv->work);
1999 }
2000
ravb_tx_timeout_work(struct work_struct * work)2001 static void ravb_tx_timeout_work(struct work_struct *work)
2002 {
2003 struct ravb_private *priv = container_of(work, struct ravb_private,
2004 work);
2005 const struct ravb_hw_info *info = priv->info;
2006 struct net_device *ndev = priv->ndev;
2007 int error;
2008
2009 if (!rtnl_trylock()) {
2010 usleep_range(1000, 2000);
2011 schedule_work(&priv->work);
2012 return;
2013 }
2014
2015 netif_tx_stop_all_queues(ndev);
2016
2017 /* Stop PTP Clock driver */
2018 if (info->gptp)
2019 ravb_ptp_stop(ndev);
2020
2021 /* Wait for DMA stopping */
2022 if (ravb_stop_dma(ndev)) {
2023 /* If ravb_stop_dma() fails, the hardware is still operating
2024 * for TX and/or RX. So, this should not call the following
2025 * functions because ravb_dmac_init() is possible to fail too.
2026 * Also, this should not retry ravb_stop_dma() again and again
2027 * here because it's possible to wait forever. So, this just
2028 * re-enables the TX and RX and skip the following
2029 * re-initialization procedure.
2030 */
2031 ravb_rcv_snd_enable(ndev);
2032 goto out;
2033 }
2034
2035 ravb_ring_free(ndev, RAVB_BE);
2036 if (info->nc_queues)
2037 ravb_ring_free(ndev, RAVB_NC);
2038
2039 /* Device init */
2040 error = ravb_dmac_init(ndev);
2041 if (error) {
2042 /* If ravb_dmac_init() fails, descriptors are freed. So, this
2043 * should return here to avoid re-enabling the TX and RX in
2044 * ravb_emac_init().
2045 */
2046 netdev_err(ndev, "%s: ravb_dmac_init() failed, error %d\n",
2047 __func__, error);
2048 goto out_unlock;
2049 }
2050 ravb_emac_init(ndev);
2051
2052 out:
2053 /* Initialise PTP Clock driver */
2054 if (info->gptp)
2055 ravb_ptp_init(ndev, priv->pdev);
2056
2057 netif_tx_start_all_queues(ndev);
2058
2059 out_unlock:
2060 rtnl_unlock();
2061 }
2062
ravb_can_tx_csum_gbeth(struct sk_buff * skb)2063 static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2064 {
2065 u16 net_protocol = ntohs(skb->protocol);
2066 u8 inner_protocol;
2067
2068 /* GbEth IP can calculate the checksum if:
2069 * - there are zero or one VLAN headers with TPID=0x8100
2070 * - the network protocol is IPv4 or IPv6
2071 * - the transport protocol is TCP, UDP or ICMP
2072 * - the packet is not fragmented
2073 */
2074
2075 if (net_protocol == ETH_P_8021Q) {
2076 struct vlan_hdr vhdr, *vh;
2077
2078 vh = skb_header_pointer(skb, ETH_HLEN, sizeof(vhdr), &vhdr);
2079 if (!vh)
2080 return false;
2081
2082 net_protocol = ntohs(vh->h_vlan_encapsulated_proto);
2083 }
2084
2085 switch (net_protocol) {
2086 case ETH_P_IP:
2087 inner_protocol = ip_hdr(skb)->protocol;
2088 break;
2089 case ETH_P_IPV6:
2090 inner_protocol = ipv6_hdr(skb)->nexthdr;
2091 break;
2092 default:
2093 return false;
2094 }
2095
2096 switch (inner_protocol) {
2097 case IPPROTO_TCP:
2098 case IPPROTO_UDP:
2099 return true;
2100 default:
2101 return false;
2102 }
2103 }
2104
2105 /* Packet transmit function for Ethernet AVB */
ravb_start_xmit(struct sk_buff * skb,struct net_device * ndev)2106 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2107 {
2108 struct ravb_private *priv = netdev_priv(ndev);
2109 const struct ravb_hw_info *info = priv->info;
2110 unsigned int num_tx_desc = priv->num_tx_desc;
2111 u16 q = skb_get_queue_mapping(skb);
2112 struct ravb_tstamp_skb *ts_skb;
2113 struct ravb_tx_desc *desc;
2114 unsigned long flags;
2115 dma_addr_t dma_addr;
2116 void *buffer;
2117 u32 entry;
2118 u32 len;
2119
2120 if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2121 skb_checksum_help(skb);
2122
2123 spin_lock_irqsave(&priv->lock, flags);
2124 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2125 num_tx_desc) {
2126 netif_err(priv, tx_queued, ndev,
2127 "still transmitting with the full ring!\n");
2128 netif_stop_subqueue(ndev, q);
2129 spin_unlock_irqrestore(&priv->lock, flags);
2130 return NETDEV_TX_BUSY;
2131 }
2132
2133 if (skb_put_padto(skb, ETH_ZLEN))
2134 goto exit;
2135
2136 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2137 priv->tx_skb[q][entry / num_tx_desc] = skb;
2138
2139 if (num_tx_desc > 1) {
2140 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2141 entry / num_tx_desc * DPTR_ALIGN;
2142 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2143
2144 /* Zero length DMA descriptors are problematic as they seem
2145 * to terminate DMA transfers. Avoid them by simply using a
2146 * length of DPTR_ALIGN (4) when skb data is aligned to
2147 * DPTR_ALIGN.
2148 *
2149 * As skb is guaranteed to have at least ETH_ZLEN (60)
2150 * bytes of data by the call to skb_put_padto() above this
2151 * is safe with respect to both the length of the first DMA
2152 * descriptor (len) overflowing the available data and the
2153 * length of the second DMA descriptor (skb->len - len)
2154 * being negative.
2155 */
2156 if (len == 0)
2157 len = DPTR_ALIGN;
2158
2159 memcpy(buffer, skb->data, len);
2160 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2161 DMA_TO_DEVICE);
2162 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2163 goto drop;
2164
2165 desc = &priv->tx_ring[q][entry];
2166 desc->ds_tagl = cpu_to_le16(len);
2167 desc->dptr = cpu_to_le32(dma_addr);
2168
2169 buffer = skb->data + len;
2170 len = skb->len - len;
2171 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2172 DMA_TO_DEVICE);
2173 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2174 goto unmap;
2175
2176 desc++;
2177 } else {
2178 desc = &priv->tx_ring[q][entry];
2179 len = skb->len;
2180 dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2181 DMA_TO_DEVICE);
2182 if (dma_mapping_error(ndev->dev.parent, dma_addr))
2183 goto drop;
2184 }
2185 desc->ds_tagl = cpu_to_le16(len);
2186 desc->dptr = cpu_to_le32(dma_addr);
2187
2188 /* TX timestamp required */
2189 if (info->gptp || info->ccc_gac) {
2190 if (q == RAVB_NC) {
2191 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
2192 if (!ts_skb) {
2193 if (num_tx_desc > 1) {
2194 desc--;
2195 dma_unmap_single(ndev->dev.parent, dma_addr,
2196 len, DMA_TO_DEVICE);
2197 }
2198 goto unmap;
2199 }
2200 ts_skb->skb = skb_get(skb);
2201 ts_skb->tag = priv->ts_skb_tag++;
2202 priv->ts_skb_tag &= 0x3ff;
2203 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
2204
2205 /* TAG and timestamp required flag */
2206 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2207 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2208 desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2209 }
2210
2211 skb_tx_timestamp(skb);
2212 }
2213 /* Descriptor type must be set after all the above writes */
2214 dma_wmb();
2215 if (num_tx_desc > 1) {
2216 desc->die_dt = DT_FEND;
2217 desc--;
2218 desc->die_dt = DT_FSTART;
2219 } else {
2220 desc->die_dt = DT_FSINGLE;
2221 }
2222 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
2223
2224 priv->cur_tx[q] += num_tx_desc;
2225 if (priv->cur_tx[q] - priv->dirty_tx[q] >
2226 (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2227 !ravb_tx_free(ndev, q, true))
2228 netif_stop_subqueue(ndev, q);
2229
2230 exit:
2231 spin_unlock_irqrestore(&priv->lock, flags);
2232 return NETDEV_TX_OK;
2233
2234 unmap:
2235 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2236 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2237 drop:
2238 dev_kfree_skb_any(skb);
2239 priv->tx_skb[q][entry / num_tx_desc] = NULL;
2240 goto exit;
2241 }
2242
ravb_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)2243 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2244 struct net_device *sb_dev)
2245 {
2246 /* If skb needs TX timestamp, it is handled in network control queue */
2247 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2248 RAVB_BE;
2249
2250 }
2251
ravb_get_stats(struct net_device * ndev)2252 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2253 {
2254 struct ravb_private *priv = netdev_priv(ndev);
2255 const struct ravb_hw_info *info = priv->info;
2256 struct net_device_stats *nstats, *stats0, *stats1;
2257 struct device *dev = &priv->pdev->dev;
2258
2259 nstats = &ndev->stats;
2260
2261 pm_runtime_get_noresume(dev);
2262
2263 if (!pm_runtime_active(dev))
2264 goto out_rpm_put;
2265
2266 stats0 = &priv->stats[RAVB_BE];
2267
2268 if (info->tx_counters) {
2269 nstats->tx_dropped += ravb_read(ndev, TROCR);
2270 ravb_write(ndev, 0, TROCR); /* (write clear) */
2271 }
2272
2273 if (info->carrier_counters) {
2274 nstats->collisions += ravb_read(ndev, CXR41);
2275 ravb_write(ndev, 0, CXR41); /* (write clear) */
2276 nstats->tx_carrier_errors += ravb_read(ndev, CXR42);
2277 ravb_write(ndev, 0, CXR42); /* (write clear) */
2278 }
2279
2280 nstats->rx_packets = stats0->rx_packets;
2281 nstats->tx_packets = stats0->tx_packets;
2282 nstats->rx_bytes = stats0->rx_bytes;
2283 nstats->tx_bytes = stats0->tx_bytes;
2284 nstats->multicast = stats0->multicast;
2285 nstats->rx_errors = stats0->rx_errors;
2286 nstats->rx_crc_errors = stats0->rx_crc_errors;
2287 nstats->rx_frame_errors = stats0->rx_frame_errors;
2288 nstats->rx_length_errors = stats0->rx_length_errors;
2289 nstats->rx_missed_errors = stats0->rx_missed_errors;
2290 nstats->rx_over_errors = stats0->rx_over_errors;
2291 if (info->nc_queues) {
2292 stats1 = &priv->stats[RAVB_NC];
2293
2294 nstats->rx_packets += stats1->rx_packets;
2295 nstats->tx_packets += stats1->tx_packets;
2296 nstats->rx_bytes += stats1->rx_bytes;
2297 nstats->tx_bytes += stats1->tx_bytes;
2298 nstats->multicast += stats1->multicast;
2299 nstats->rx_errors += stats1->rx_errors;
2300 nstats->rx_crc_errors += stats1->rx_crc_errors;
2301 nstats->rx_frame_errors += stats1->rx_frame_errors;
2302 nstats->rx_length_errors += stats1->rx_length_errors;
2303 nstats->rx_missed_errors += stats1->rx_missed_errors;
2304 nstats->rx_over_errors += stats1->rx_over_errors;
2305 }
2306
2307 out_rpm_put:
2308 pm_runtime_put_noidle(dev);
2309 return nstats;
2310 }
2311
2312 /* Update promiscuous bit */
ravb_set_rx_mode(struct net_device * ndev)2313 static void ravb_set_rx_mode(struct net_device *ndev)
2314 {
2315 struct ravb_private *priv = netdev_priv(ndev);
2316 unsigned long flags;
2317
2318 spin_lock_irqsave(&priv->lock, flags);
2319 ravb_modify(ndev, ECMR, ECMR_PRM,
2320 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2321 spin_unlock_irqrestore(&priv->lock, flags);
2322 }
2323
2324 /* Device close function for Ethernet AVB */
ravb_close(struct net_device * ndev)2325 static int ravb_close(struct net_device *ndev)
2326 {
2327 struct device_node *np = ndev->dev.parent->of_node;
2328 struct ravb_private *priv = netdev_priv(ndev);
2329 const struct ravb_hw_info *info = priv->info;
2330 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2331 struct device *dev = &priv->pdev->dev;
2332 int error;
2333
2334 netif_tx_stop_all_queues(ndev);
2335
2336 /* Disable interrupts by clearing the interrupt masks. */
2337 ravb_write(ndev, 0, RIC0);
2338 ravb_write(ndev, 0, RIC2);
2339 ravb_write(ndev, 0, TIC);
2340
2341 /* PHY disconnect */
2342 if (ndev->phydev) {
2343 phy_stop(ndev->phydev);
2344 phy_disconnect(ndev->phydev);
2345 if (of_phy_is_fixed_link(np))
2346 of_phy_deregister_fixed_link(np);
2347 }
2348
2349 /* Stop PTP Clock driver */
2350 if (info->gptp || info->ccc_gac)
2351 ravb_ptp_stop(ndev);
2352
2353 /* Set the config mode to stop the AVB-DMAC's processes */
2354 if (ravb_stop_dma(ndev) < 0)
2355 netdev_err(ndev,
2356 "device will be stopped after h/w processes are done.\n");
2357
2358 /* Clear the timestamp list */
2359 if (info->gptp || info->ccc_gac) {
2360 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2361 list_del(&ts_skb->list);
2362 kfree_skb(ts_skb->skb);
2363 kfree(ts_skb);
2364 }
2365 }
2366
2367 cancel_work_sync(&priv->work);
2368
2369 if (info->nc_queues)
2370 napi_disable(&priv->napi[RAVB_NC]);
2371 napi_disable(&priv->napi[RAVB_BE]);
2372
2373 /* Free all the skb's in the RX queue and the DMA buffers. */
2374 ravb_ring_free(ndev, RAVB_BE);
2375 if (info->nc_queues)
2376 ravb_ring_free(ndev, RAVB_NC);
2377
2378 /* Update statistics. */
2379 ravb_get_stats(ndev);
2380
2381 /* Set reset mode. */
2382 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
2383 if (error)
2384 return error;
2385
2386 pm_runtime_mark_last_busy(dev);
2387 pm_runtime_put_autosuspend(dev);
2388
2389 return 0;
2390 }
2391
ravb_hwtstamp_get(struct net_device * ndev,struct ifreq * req)2392 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2393 {
2394 struct ravb_private *priv = netdev_priv(ndev);
2395 struct hwtstamp_config config;
2396
2397 config.flags = 0;
2398 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2399 HWTSTAMP_TX_OFF;
2400 switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2401 case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2402 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2403 break;
2404 case RAVB_RXTSTAMP_TYPE_ALL:
2405 config.rx_filter = HWTSTAMP_FILTER_ALL;
2406 break;
2407 default:
2408 config.rx_filter = HWTSTAMP_FILTER_NONE;
2409 }
2410
2411 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2412 -EFAULT : 0;
2413 }
2414
2415 /* Control hardware time stamping */
ravb_hwtstamp_set(struct net_device * ndev,struct ifreq * req)2416 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2417 {
2418 struct ravb_private *priv = netdev_priv(ndev);
2419 struct hwtstamp_config config;
2420 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2421 u32 tstamp_tx_ctrl;
2422
2423 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
2424 return -EFAULT;
2425
2426 switch (config.tx_type) {
2427 case HWTSTAMP_TX_OFF:
2428 tstamp_tx_ctrl = 0;
2429 break;
2430 case HWTSTAMP_TX_ON:
2431 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2432 break;
2433 default:
2434 return -ERANGE;
2435 }
2436
2437 switch (config.rx_filter) {
2438 case HWTSTAMP_FILTER_NONE:
2439 tstamp_rx_ctrl = 0;
2440 break;
2441 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2442 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2443 break;
2444 default:
2445 config.rx_filter = HWTSTAMP_FILTER_ALL;
2446 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2447 }
2448
2449 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2450 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2451
2452 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
2453 -EFAULT : 0;
2454 }
2455
2456 /* ioctl to device function */
ravb_do_ioctl(struct net_device * ndev,struct ifreq * req,int cmd)2457 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2458 {
2459 struct phy_device *phydev = ndev->phydev;
2460
2461 if (!netif_running(ndev))
2462 return -EINVAL;
2463
2464 if (!phydev)
2465 return -ENODEV;
2466
2467 switch (cmd) {
2468 case SIOCGHWTSTAMP:
2469 return ravb_hwtstamp_get(ndev, req);
2470 case SIOCSHWTSTAMP:
2471 return ravb_hwtstamp_set(ndev, req);
2472 }
2473
2474 return phy_mii_ioctl(phydev, req, cmd);
2475 }
2476
ravb_change_mtu(struct net_device * ndev,int new_mtu)2477 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2478 {
2479 struct ravb_private *priv = netdev_priv(ndev);
2480
2481 WRITE_ONCE(ndev->mtu, new_mtu);
2482
2483 if (netif_running(ndev)) {
2484 synchronize_irq(priv->emac_irq);
2485 ravb_emac_init(ndev);
2486 }
2487
2488 netdev_update_features(ndev);
2489
2490 return 0;
2491 }
2492
ravb_set_rx_csum(struct net_device * ndev,bool enable)2493 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2494 {
2495 struct ravb_private *priv = netdev_priv(ndev);
2496 unsigned long flags;
2497
2498 spin_lock_irqsave(&priv->lock, flags);
2499
2500 /* Disable TX and RX */
2501 ravb_rcv_snd_disable(ndev);
2502
2503 /* Modify RX Checksum setting */
2504 ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
2505
2506 /* Enable TX and RX */
2507 ravb_rcv_snd_enable(ndev);
2508
2509 spin_unlock_irqrestore(&priv->lock, flags);
2510 }
2511
ravb_endisable_csum_gbeth(struct net_device * ndev,enum ravb_reg reg,u32 val,u32 mask)2512 static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2513 u32 val, u32 mask)
2514 {
2515 u32 csr0 = CSR0_TPE | CSR0_RPE;
2516 int ret;
2517
2518 ravb_write(ndev, csr0 & ~mask, CSR0);
2519 ret = ravb_wait(ndev, CSR0, mask, 0);
2520 if (!ret)
2521 ravb_write(ndev, val, reg);
2522
2523 ravb_write(ndev, csr0, CSR0);
2524
2525 return ret;
2526 }
2527
ravb_set_features_gbeth(struct net_device * ndev,netdev_features_t features)2528 static int ravb_set_features_gbeth(struct net_device *ndev,
2529 netdev_features_t features)
2530 {
2531 netdev_features_t changed = ndev->features ^ features;
2532 struct ravb_private *priv = netdev_priv(ndev);
2533 unsigned long flags;
2534 int ret = 0;
2535 u32 val;
2536
2537 spin_lock_irqsave(&priv->lock, flags);
2538 if (changed & NETIF_F_RXCSUM) {
2539 if (features & NETIF_F_RXCSUM)
2540 val = CSR2_CSUM_ENABLE;
2541 else
2542 val = 0;
2543
2544 ret = ravb_endisable_csum_gbeth(ndev, CSR2, val, CSR0_RPE);
2545 if (ret)
2546 goto done;
2547 }
2548
2549 if (changed & NETIF_F_HW_CSUM) {
2550 if (features & NETIF_F_HW_CSUM)
2551 val = CSR1_CSUM_ENABLE;
2552 else
2553 val = 0;
2554
2555 ret = ravb_endisable_csum_gbeth(ndev, CSR1, val, CSR0_TPE);
2556 if (ret)
2557 goto done;
2558 }
2559
2560 done:
2561 spin_unlock_irqrestore(&priv->lock, flags);
2562
2563 return ret;
2564 }
2565
ravb_set_features_rcar(struct net_device * ndev,netdev_features_t features)2566 static int ravb_set_features_rcar(struct net_device *ndev,
2567 netdev_features_t features)
2568 {
2569 netdev_features_t changed = ndev->features ^ features;
2570
2571 if (changed & NETIF_F_RXCSUM)
2572 ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
2573
2574 return 0;
2575 }
2576
ravb_set_features(struct net_device * ndev,netdev_features_t features)2577 static int ravb_set_features(struct net_device *ndev,
2578 netdev_features_t features)
2579 {
2580 struct ravb_private *priv = netdev_priv(ndev);
2581 const struct ravb_hw_info *info = priv->info;
2582 struct device *dev = &priv->pdev->dev;
2583 int ret;
2584
2585 pm_runtime_get_noresume(dev);
2586
2587 if (pm_runtime_active(dev))
2588 ret = info->set_feature(ndev, features);
2589 else
2590 ret = 0;
2591
2592 pm_runtime_put_noidle(dev);
2593
2594 if (ret)
2595 return ret;
2596
2597 ndev->features = features;
2598
2599 return 0;
2600 }
2601
2602 static const struct net_device_ops ravb_netdev_ops = {
2603 .ndo_open = ravb_open,
2604 .ndo_stop = ravb_close,
2605 .ndo_start_xmit = ravb_start_xmit,
2606 .ndo_select_queue = ravb_select_queue,
2607 .ndo_get_stats = ravb_get_stats,
2608 .ndo_set_rx_mode = ravb_set_rx_mode,
2609 .ndo_tx_timeout = ravb_tx_timeout,
2610 .ndo_eth_ioctl = ravb_do_ioctl,
2611 .ndo_change_mtu = ravb_change_mtu,
2612 .ndo_validate_addr = eth_validate_addr,
2613 .ndo_set_mac_address = eth_mac_addr,
2614 .ndo_set_features = ravb_set_features,
2615 };
2616
2617 /* MDIO bus init function */
ravb_mdio_init(struct ravb_private * priv)2618 static int ravb_mdio_init(struct ravb_private *priv)
2619 {
2620 struct platform_device *pdev = priv->pdev;
2621 struct device *dev = &pdev->dev;
2622 struct device_node *mdio_node;
2623 struct phy_device *phydev;
2624 struct device_node *pn;
2625 int error;
2626
2627 /* Bitbang init */
2628 priv->mdiobb.ops = &bb_ops;
2629
2630 /* MII controller setting */
2631 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
2632 if (!priv->mii_bus)
2633 return -ENOMEM;
2634
2635 /* Hook up MII support for ethtool */
2636 priv->mii_bus->name = "ravb_mii";
2637 priv->mii_bus->parent = dev;
2638 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2639 pdev->name, pdev->id);
2640
2641 /* Register MDIO bus */
2642 mdio_node = of_get_child_by_name(dev->of_node, "mdio");
2643 if (!mdio_node) {
2644 /* backwards compatibility for DT lacking mdio subnode */
2645 mdio_node = of_node_get(dev->of_node);
2646 }
2647 error = of_mdiobus_register(priv->mii_bus, mdio_node);
2648 of_node_put(mdio_node);
2649 if (error)
2650 goto out_free_bus;
2651
2652 pn = of_parse_phandle(dev->of_node, "phy-handle", 0);
2653 phydev = of_phy_find_device(pn);
2654 if (phydev) {
2655 phydev->mac_managed_pm = true;
2656 put_device(&phydev->mdio.dev);
2657 }
2658 of_node_put(pn);
2659
2660 return 0;
2661
2662 out_free_bus:
2663 free_mdio_bitbang(priv->mii_bus);
2664 return error;
2665 }
2666
2667 /* MDIO bus release function */
ravb_mdio_release(struct ravb_private * priv)2668 static int ravb_mdio_release(struct ravb_private *priv)
2669 {
2670 /* Unregister mdio bus */
2671 mdiobus_unregister(priv->mii_bus);
2672
2673 /* Free bitbang info */
2674 free_mdio_bitbang(priv->mii_bus);
2675
2676 return 0;
2677 }
2678
2679 static const struct ravb_hw_info ravb_gen2_hw_info = {
2680 .receive = ravb_rx_rcar,
2681 .set_rate = ravb_set_rate_rcar,
2682 .set_feature = ravb_set_features_rcar,
2683 .dmac_init = ravb_dmac_init_rcar,
2684 .emac_init = ravb_emac_init_rcar,
2685 .gstrings_stats = ravb_gstrings_stats,
2686 .gstrings_size = sizeof(ravb_gstrings_stats),
2687 .net_hw_features = NETIF_F_RXCSUM,
2688 .net_features = NETIF_F_RXCSUM,
2689 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2690 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2691 .tx_max_frame_size = SZ_2K,
2692 .rx_max_frame_size = SZ_2K,
2693 .rx_buffer_size = SZ_2K +
2694 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2695 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2696 .aligned_tx = 1,
2697 .gptp = 1,
2698 .nc_queues = 1,
2699 .magic_pkt = 1,
2700 };
2701
2702 static const struct ravb_hw_info ravb_gen3_hw_info = {
2703 .receive = ravb_rx_rcar,
2704 .set_rate = ravb_set_rate_rcar,
2705 .set_feature = ravb_set_features_rcar,
2706 .dmac_init = ravb_dmac_init_rcar,
2707 .emac_init = ravb_emac_init_rcar,
2708 .gstrings_stats = ravb_gstrings_stats,
2709 .gstrings_size = sizeof(ravb_gstrings_stats),
2710 .net_hw_features = NETIF_F_RXCSUM,
2711 .net_features = NETIF_F_RXCSUM,
2712 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2713 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2714 .tx_max_frame_size = SZ_2K,
2715 .rx_max_frame_size = SZ_2K,
2716 .rx_buffer_size = SZ_2K +
2717 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2718 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2719 .internal_delay = 1,
2720 .tx_counters = 1,
2721 .multi_irqs = 1,
2722 .irq_en_dis = 1,
2723 .ccc_gac = 1,
2724 .nc_queues = 1,
2725 .magic_pkt = 1,
2726 };
2727
2728 static const struct ravb_hw_info ravb_gen4_hw_info = {
2729 .receive = ravb_rx_rcar,
2730 .set_rate = ravb_set_rate_rcar,
2731 .set_feature = ravb_set_features_rcar,
2732 .dmac_init = ravb_dmac_init_rcar,
2733 .emac_init = ravb_emac_init_rcar_gen4,
2734 .gstrings_stats = ravb_gstrings_stats,
2735 .gstrings_size = sizeof(ravb_gstrings_stats),
2736 .net_hw_features = NETIF_F_RXCSUM,
2737 .net_features = NETIF_F_RXCSUM,
2738 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2739 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2740 .tx_max_frame_size = SZ_2K,
2741 .rx_max_frame_size = SZ_2K,
2742 .rx_buffer_size = SZ_2K +
2743 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2744 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2745 .internal_delay = 1,
2746 .tx_counters = 1,
2747 .multi_irqs = 1,
2748 .irq_en_dis = 1,
2749 .ccc_gac = 1,
2750 .nc_queues = 1,
2751 .magic_pkt = 1,
2752 };
2753
2754 static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2755 .receive = ravb_rx_rcar,
2756 .set_rate = ravb_set_rate_rcar,
2757 .set_feature = ravb_set_features_rcar,
2758 .dmac_init = ravb_dmac_init_rcar,
2759 .emac_init = ravb_emac_init_rcar,
2760 .gstrings_stats = ravb_gstrings_stats,
2761 .gstrings_size = sizeof(ravb_gstrings_stats),
2762 .net_hw_features = NETIF_F_RXCSUM,
2763 .net_features = NETIF_F_RXCSUM,
2764 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2765 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2766 .rx_max_frame_size = SZ_2K,
2767 .rx_buffer_size = SZ_2K +
2768 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
2769 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2770 .multi_irqs = 1,
2771 .err_mgmt_irqs = 1,
2772 .gptp = 1,
2773 .gptp_ref_clk = 1,
2774 .nc_queues = 1,
2775 .magic_pkt = 1,
2776 };
2777
2778 static const struct ravb_hw_info gbeth_hw_info = {
2779 .receive = ravb_rx_gbeth,
2780 .set_rate = ravb_set_rate_gbeth,
2781 .set_feature = ravb_set_features_gbeth,
2782 .dmac_init = ravb_dmac_init_gbeth,
2783 .emac_init = ravb_emac_init_gbeth,
2784 .gstrings_stats = ravb_gstrings_stats_gbeth,
2785 .gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2786 .net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2787 .net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2788 .vlan_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2789 .stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2790 .tccr_mask = TCCR_TSRQ0,
2791 .tx_max_frame_size = 1522,
2792 .rx_max_frame_size = SZ_8K,
2793 .rx_buffer_size = SZ_2K,
2794 .rx_desc_size = sizeof(struct ravb_rx_desc),
2795 .aligned_tx = 1,
2796 .coalesce_irqs = 1,
2797 .tx_counters = 1,
2798 .carrier_counters = 1,
2799 .half_duplex = 1,
2800 };
2801
2802 static const struct of_device_id ravb_match_table[] = {
2803 { .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2804 { .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2805 { .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2806 { .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2807 { .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2808 { .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen4_hw_info },
2809 { .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2810 { .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2811 { }
2812 };
2813 MODULE_DEVICE_TABLE(of, ravb_match_table);
2814
ravb_setup_irq(struct ravb_private * priv,const char * irq_name,const char * ch,int * irq,irq_handler_t handler)2815 static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2816 const char *ch, int *irq, irq_handler_t handler)
2817 {
2818 struct platform_device *pdev = priv->pdev;
2819 struct net_device *ndev = priv->ndev;
2820 struct device *dev = &pdev->dev;
2821 const char *devname = dev_name(dev);
2822 unsigned long flags;
2823 int error, irq_num;
2824
2825 if (irq_name) {
2826 devname = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", devname, ch);
2827 if (!devname)
2828 return -ENOMEM;
2829
2830 irq_num = platform_get_irq_byname(pdev, irq_name);
2831 flags = 0;
2832 } else {
2833 irq_num = platform_get_irq(pdev, 0);
2834 flags = IRQF_SHARED;
2835 }
2836 if (irq_num < 0)
2837 return irq_num;
2838
2839 if (irq)
2840 *irq = irq_num;
2841
2842 error = devm_request_irq(dev, irq_num, handler, flags, devname, ndev);
2843 if (error)
2844 netdev_err(ndev, "cannot request IRQ %s\n", devname);
2845
2846 return error;
2847 }
2848
ravb_setup_irqs(struct ravb_private * priv)2849 static int ravb_setup_irqs(struct ravb_private *priv)
2850 {
2851 const struct ravb_hw_info *info = priv->info;
2852 struct net_device *ndev = priv->ndev;
2853 const char *irq_name, *emac_irq_name;
2854 int error;
2855
2856 if (!info->multi_irqs)
2857 return ravb_setup_irq(priv, NULL, NULL, &ndev->irq, ravb_interrupt);
2858
2859 if (info->err_mgmt_irqs) {
2860 irq_name = "dia";
2861 emac_irq_name = "line3";
2862 } else {
2863 irq_name = "ch22";
2864 emac_irq_name = "ch24";
2865 }
2866
2867 error = ravb_setup_irq(priv, irq_name, "ch22:multi", &ndev->irq, ravb_multi_interrupt);
2868 if (error)
2869 return error;
2870
2871 error = ravb_setup_irq(priv, emac_irq_name, "ch24:emac", &priv->emac_irq,
2872 ravb_emac_interrupt);
2873 if (error)
2874 return error;
2875
2876 if (info->err_mgmt_irqs) {
2877 error = ravb_setup_irq(priv, "err_a", "err_a", NULL, ravb_multi_interrupt);
2878 if (error)
2879 return error;
2880
2881 error = ravb_setup_irq(priv, "mgmt_a", "mgmt_a", NULL, ravb_multi_interrupt);
2882 if (error)
2883 return error;
2884 }
2885
2886 error = ravb_setup_irq(priv, "ch0", "ch0:rx_be", NULL, ravb_be_interrupt);
2887 if (error)
2888 return error;
2889
2890 error = ravb_setup_irq(priv, "ch1", "ch1:rx_nc", NULL, ravb_nc_interrupt);
2891 if (error)
2892 return error;
2893
2894 error = ravb_setup_irq(priv, "ch18", "ch18:tx_be", NULL, ravb_be_interrupt);
2895 if (error)
2896 return error;
2897
2898 return ravb_setup_irq(priv, "ch19", "ch19:tx_nc", NULL, ravb_nc_interrupt);
2899 }
2900
ravb_probe(struct platform_device * pdev)2901 static int ravb_probe(struct platform_device *pdev)
2902 {
2903 struct device_node *np = pdev->dev.of_node;
2904 const struct ravb_hw_info *info;
2905 struct reset_control *rstc;
2906 struct ravb_private *priv;
2907 struct net_device *ndev;
2908 struct resource *res;
2909 int error, q;
2910
2911 if (!np) {
2912 dev_err(&pdev->dev,
2913 "this driver is required to be instantiated from device tree\n");
2914 return -EINVAL;
2915 }
2916
2917 rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
2918 if (IS_ERR(rstc))
2919 return dev_err_probe(&pdev->dev, PTR_ERR(rstc),
2920 "failed to get cpg reset\n");
2921
2922 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2923 NUM_TX_QUEUE, NUM_RX_QUEUE);
2924 if (!ndev)
2925 return -ENOMEM;
2926
2927 info = of_device_get_match_data(&pdev->dev);
2928
2929 ndev->features = info->net_features;
2930 ndev->hw_features = info->net_hw_features;
2931 ndev->vlan_features = info->vlan_features;
2932
2933 error = reset_control_deassert(rstc);
2934 if (error)
2935 goto out_free_netdev;
2936
2937 SET_NETDEV_DEV(ndev, &pdev->dev);
2938
2939 priv = netdev_priv(ndev);
2940 priv->info = info;
2941 priv->rstc = rstc;
2942 priv->ndev = ndev;
2943 priv->pdev = pdev;
2944 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2945 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2946 if (info->nc_queues) {
2947 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2948 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2949 }
2950
2951 error = ravb_setup_irqs(priv);
2952 if (error)
2953 goto out_reset_assert;
2954
2955 priv->clk = devm_clk_get(&pdev->dev, NULL);
2956 if (IS_ERR(priv->clk)) {
2957 error = PTR_ERR(priv->clk);
2958 goto out_reset_assert;
2959 }
2960
2961 if (info->gptp_ref_clk) {
2962 priv->gptp_clk = devm_clk_get(&pdev->dev, "gptp");
2963 if (IS_ERR(priv->gptp_clk)) {
2964 error = PTR_ERR(priv->gptp_clk);
2965 goto out_reset_assert;
2966 }
2967 }
2968
2969 priv->refclk = devm_clk_get_optional(&pdev->dev, "refclk");
2970 if (IS_ERR(priv->refclk)) {
2971 error = PTR_ERR(priv->refclk);
2972 goto out_reset_assert;
2973 }
2974 clk_prepare(priv->refclk);
2975
2976 platform_set_drvdata(pdev, ndev);
2977 pm_runtime_set_autosuspend_delay(&pdev->dev, 100);
2978 pm_runtime_use_autosuspend(&pdev->dev);
2979 pm_runtime_enable(&pdev->dev);
2980 error = pm_runtime_resume_and_get(&pdev->dev);
2981 if (error < 0)
2982 goto out_rpm_disable;
2983
2984 priv->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2985 if (IS_ERR(priv->addr)) {
2986 error = PTR_ERR(priv->addr);
2987 goto out_rpm_put;
2988 }
2989
2990 /* The Ether-specific entries in the device structure. */
2991 ndev->base_addr = res->start;
2992
2993 spin_lock_init(&priv->lock);
2994 INIT_WORK(&priv->work, ravb_tx_timeout_work);
2995
2996 error = of_get_phy_mode(np, &priv->phy_interface);
2997 if (error && error != -ENODEV)
2998 goto out_rpm_put;
2999
3000 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
3001 priv->avb_link_active_low =
3002 of_property_read_bool(np, "renesas,ether-link-active-low");
3003
3004 ndev->max_mtu = info->tx_max_frame_size -
3005 (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
3006 ndev->min_mtu = ETH_MIN_MTU;
3007
3008 /* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
3009 * Use two descriptor to handle such situation. First descriptor to
3010 * handle aligned data buffer and second descriptor to handle the
3011 * overflow data because of alignment.
3012 */
3013 priv->num_tx_desc = info->aligned_tx ? 2 : 1;
3014
3015 /* Set function */
3016 ndev->netdev_ops = &ravb_netdev_ops;
3017 ndev->ethtool_ops = &ravb_ethtool_ops;
3018
3019 error = ravb_compute_gti(ndev);
3020 if (error)
3021 goto out_rpm_put;
3022
3023 ravb_parse_delay_mode(np, ndev);
3024
3025 /* Allocate descriptor base address table */
3026 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
3027 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
3028 &priv->desc_bat_dma, GFP_KERNEL);
3029 if (!priv->desc_bat) {
3030 dev_err(&pdev->dev,
3031 "Cannot allocate desc base address table (size %d bytes)\n",
3032 priv->desc_bat_size);
3033 error = -ENOMEM;
3034 goto out_rpm_put;
3035 }
3036 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
3037 priv->desc_bat[q].die_dt = DT_EOS;
3038
3039 /* Initialise HW timestamp list */
3040 INIT_LIST_HEAD(&priv->ts_skb_list);
3041
3042 /* Debug message level */
3043 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
3044
3045 /* Set config mode as this is needed for PHY initialization. */
3046 error = ravb_set_opmode(ndev, CCC_OPC_CONFIG);
3047 if (error)
3048 goto out_rpm_put;
3049
3050 /* Read and set MAC address */
3051 ravb_read_mac_address(np, ndev);
3052 if (!is_valid_ether_addr(ndev->dev_addr)) {
3053 dev_warn(&pdev->dev,
3054 "no valid MAC address supplied, using a random one\n");
3055 eth_hw_addr_random(ndev);
3056 }
3057
3058 /* MDIO bus init */
3059 error = ravb_mdio_init(priv);
3060 if (error) {
3061 dev_err(&pdev->dev, "failed to initialize MDIO\n");
3062 goto out_reset_mode;
3063 }
3064
3065 /* Undo previous switch to config opmode. */
3066 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3067 if (error)
3068 goto out_mdio_release;
3069
3070 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll);
3071 if (info->nc_queues)
3072 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll);
3073
3074 if (info->coalesce_irqs) {
3075 netdev_sw_irq_coalesce_default_on(ndev);
3076 if (num_present_cpus() == 1)
3077 dev_set_threaded(ndev, true);
3078 }
3079
3080 /* Network device register */
3081 error = register_netdev(ndev);
3082 if (error)
3083 goto out_napi_del;
3084
3085 device_set_wakeup_capable(&pdev->dev, 1);
3086
3087 /* Print device information */
3088 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
3089 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
3090
3091 pm_runtime_mark_last_busy(&pdev->dev);
3092 pm_runtime_put_autosuspend(&pdev->dev);
3093
3094 return 0;
3095
3096 out_napi_del:
3097 if (info->nc_queues)
3098 netif_napi_del(&priv->napi[RAVB_NC]);
3099
3100 netif_napi_del(&priv->napi[RAVB_BE]);
3101 out_mdio_release:
3102 ravb_mdio_release(priv);
3103 out_reset_mode:
3104 ravb_set_opmode(ndev, CCC_OPC_RESET);
3105 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3106 priv->desc_bat_dma);
3107 out_rpm_put:
3108 pm_runtime_put(&pdev->dev);
3109 out_rpm_disable:
3110 pm_runtime_disable(&pdev->dev);
3111 pm_runtime_dont_use_autosuspend(&pdev->dev);
3112 clk_unprepare(priv->refclk);
3113 out_reset_assert:
3114 reset_control_assert(rstc);
3115 out_free_netdev:
3116 free_netdev(ndev);
3117 return error;
3118 }
3119
ravb_remove(struct platform_device * pdev)3120 static void ravb_remove(struct platform_device *pdev)
3121 {
3122 struct net_device *ndev = platform_get_drvdata(pdev);
3123 struct ravb_private *priv = netdev_priv(ndev);
3124 const struct ravb_hw_info *info = priv->info;
3125 struct device *dev = &priv->pdev->dev;
3126 int error;
3127
3128 error = pm_runtime_resume_and_get(dev);
3129 if (error < 0)
3130 return;
3131
3132 unregister_netdev(ndev);
3133 if (info->nc_queues)
3134 netif_napi_del(&priv->napi[RAVB_NC]);
3135 netif_napi_del(&priv->napi[RAVB_BE]);
3136
3137 ravb_mdio_release(priv);
3138
3139 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
3140 priv->desc_bat_dma);
3141
3142 pm_runtime_put_sync_suspend(&pdev->dev);
3143 pm_runtime_disable(&pdev->dev);
3144 pm_runtime_dont_use_autosuspend(dev);
3145 clk_unprepare(priv->refclk);
3146 reset_control_assert(priv->rstc);
3147 free_netdev(ndev);
3148 platform_set_drvdata(pdev, NULL);
3149 }
3150
ravb_wol_setup(struct net_device * ndev)3151 static int ravb_wol_setup(struct net_device *ndev)
3152 {
3153 struct ravb_private *priv = netdev_priv(ndev);
3154 const struct ravb_hw_info *info = priv->info;
3155
3156 /* Disable interrupts by clearing the interrupt masks. */
3157 ravb_write(ndev, 0, RIC0);
3158 ravb_write(ndev, 0, RIC2);
3159 ravb_write(ndev, 0, TIC);
3160
3161 /* Only allow ECI interrupts */
3162 synchronize_irq(priv->emac_irq);
3163 if (info->nc_queues)
3164 napi_disable(&priv->napi[RAVB_NC]);
3165 napi_disable(&priv->napi[RAVB_BE]);
3166 ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
3167
3168 /* Enable MagicPacket */
3169 ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
3170
3171 if (priv->info->ccc_gac)
3172 ravb_ptp_stop(ndev);
3173
3174 return enable_irq_wake(priv->emac_irq);
3175 }
3176
ravb_wol_restore(struct net_device * ndev)3177 static int ravb_wol_restore(struct net_device *ndev)
3178 {
3179 struct ravb_private *priv = netdev_priv(ndev);
3180 const struct ravb_hw_info *info = priv->info;
3181 int error;
3182
3183 /* Set reset mode to rearm the WoL logic. */
3184 error = ravb_set_opmode(ndev, CCC_OPC_RESET);
3185 if (error)
3186 return error;
3187
3188 /* Set AVB config mode. */
3189 error = ravb_set_config_mode(ndev);
3190 if (error)
3191 return error;
3192
3193 if (priv->info->ccc_gac)
3194 ravb_ptp_init(ndev, priv->pdev);
3195
3196 if (info->nc_queues)
3197 napi_enable(&priv->napi[RAVB_NC]);
3198 napi_enable(&priv->napi[RAVB_BE]);
3199
3200 /* Disable MagicPacket */
3201 ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
3202
3203 ravb_close(ndev);
3204
3205 return disable_irq_wake(priv->emac_irq);
3206 }
3207
ravb_suspend(struct device * dev)3208 static int ravb_suspend(struct device *dev)
3209 {
3210 struct net_device *ndev = dev_get_drvdata(dev);
3211 struct ravb_private *priv = netdev_priv(ndev);
3212 int ret;
3213
3214 if (!netif_running(ndev))
3215 goto reset_assert;
3216
3217 netif_device_detach(ndev);
3218
3219 if (priv->wol_enabled)
3220 return ravb_wol_setup(ndev);
3221
3222 ret = ravb_close(ndev);
3223 if (ret)
3224 return ret;
3225
3226 ret = pm_runtime_force_suspend(&priv->pdev->dev);
3227 if (ret)
3228 return ret;
3229
3230 reset_assert:
3231 return reset_control_assert(priv->rstc);
3232 }
3233
ravb_resume(struct device * dev)3234 static int ravb_resume(struct device *dev)
3235 {
3236 struct net_device *ndev = dev_get_drvdata(dev);
3237 struct ravb_private *priv = netdev_priv(ndev);
3238 int ret;
3239
3240 ret = reset_control_deassert(priv->rstc);
3241 if (ret)
3242 return ret;
3243
3244 if (!netif_running(ndev))
3245 return 0;
3246
3247 /* If WoL is enabled restore the interface. */
3248 if (priv->wol_enabled) {
3249 ret = ravb_wol_restore(ndev);
3250 if (ret)
3251 return ret;
3252 } else {
3253 ret = pm_runtime_force_resume(dev);
3254 if (ret)
3255 return ret;
3256 }
3257
3258 /* Reopening the interface will restore the device to the working state. */
3259 ret = ravb_open(ndev);
3260 if (ret < 0)
3261 goto out_rpm_put;
3262
3263 ravb_set_rx_mode(ndev);
3264 netif_device_attach(ndev);
3265
3266 return 0;
3267
3268 out_rpm_put:
3269 if (!priv->wol_enabled) {
3270 pm_runtime_mark_last_busy(dev);
3271 pm_runtime_put_autosuspend(dev);
3272 }
3273
3274 return ret;
3275 }
3276
ravb_runtime_suspend(struct device * dev)3277 static int ravb_runtime_suspend(struct device *dev)
3278 {
3279 struct net_device *ndev = dev_get_drvdata(dev);
3280 struct ravb_private *priv = netdev_priv(ndev);
3281
3282 clk_disable(priv->refclk);
3283
3284 return 0;
3285 }
3286
ravb_runtime_resume(struct device * dev)3287 static int ravb_runtime_resume(struct device *dev)
3288 {
3289 struct net_device *ndev = dev_get_drvdata(dev);
3290 struct ravb_private *priv = netdev_priv(ndev);
3291
3292 return clk_enable(priv->refclk);
3293 }
3294
3295 static const struct dev_pm_ops ravb_dev_pm_ops = {
3296 SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3297 RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3298 };
3299
3300 static struct platform_driver ravb_driver = {
3301 .probe = ravb_probe,
3302 .remove = ravb_remove,
3303 .driver = {
3304 .name = "ravb",
3305 .pm = pm_ptr(&ravb_dev_pm_ops),
3306 .of_match_table = ravb_match_table,
3307 },
3308 };
3309
3310 module_platform_driver(ravb_driver);
3311
3312 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3313 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3314 MODULE_LICENSE("GPL v2");
3315