1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16
17 /*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap
22 */
23 #define VMALLOC_START (MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END (VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30
31 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32
33 #ifndef __ASSEMBLY__
34
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
44 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
45
46 /* Set stride and tlb_level in flush_*_tlb_range */
47 #define flush_pmd_tlb_range(vma, addr, end) \
48 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
49 #define flush_pud_tlb_range(vma, addr, end) \
50 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
51 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
52
53 /*
54 * Outside of a few very special situations (e.g. hibernation), we always
55 * use broadcast TLB invalidation instructions, therefore a spurious page
56 * fault on one CPU which has been handled concurrently by another CPU
57 * does not need to perform additional invalidation.
58 */
59 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
60
61 /*
62 * ZERO_PAGE is a global shared page that is always zero: used
63 * for zero-mapped memory areas etc..
64 */
65 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
66 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
67
68 #define pte_ERROR(e) \
69 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
70
71 /*
72 * Macros to convert between a physical address and its placement in a
73 * page table entry, taking care of 52-bit addresses.
74 */
75 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)76 static inline phys_addr_t __pte_to_phys(pte_t pte)
77 {
78 pte_val(pte) &= ~PTE_MAYBE_SHARED;
79 return (pte_val(pte) & PTE_ADDR_LOW) |
80 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
81 }
__phys_to_pte_val(phys_addr_t phys)82 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
83 {
84 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
85 }
86 #else
87 #define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_LOW)
88 #define __phys_to_pte_val(phys) (phys)
89 #endif
90
91 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
92 #define pfn_pte(pfn,prot) \
93 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
94
95 #define pte_none(pte) (!pte_val(pte))
96 #define __pte_clear(mm, addr, ptep) \
97 __set_pte(ptep, __pte(0))
98 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
99
100 /*
101 * The following only work if pte_present(). Undefined behaviour otherwise.
102 */
103 #define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte))
104 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
105 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
106 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
107 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY))
108 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
109 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
110 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
111 #define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP))
112 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
113 PTE_ATTRINDX(MT_NORMAL_TAGGED))
114
115 #define pte_cont_addr_end(addr, end) \
116 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
117 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
118 })
119
120 #define pmd_cont_addr_end(addr, end) \
121 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
122 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
123 })
124
125 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte))
126 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
127 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
128
129 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
130 #define pte_present_invalid(pte) \
131 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
132 /*
133 * Execute-only user mappings do not have the PTE_USER bit set. All valid
134 * kernel mappings have the PTE_UXN bit set.
135 */
136 #define pte_valid_not_user(pte) \
137 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
138 /*
139 * Returns true if the pte is valid and has the contiguous bit set.
140 */
141 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte))
142 /*
143 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
144 * so that we don't erroneously return false for pages that have been
145 * remapped as PROT_NONE but are yet to be flushed from the TLB.
146 * Note that we can't make any assumptions based on the state of the access
147 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
148 * TLB.
149 */
150 #define pte_accessible(mm, pte) \
151 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
152
por_el0_allows_pkey(u8 pkey,bool write,bool execute)153 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
154 {
155 u64 por;
156
157 if (!system_supports_poe())
158 return true;
159
160 por = read_sysreg_s(SYS_POR_EL0);
161
162 if (write)
163 return por_elx_allows_write(por, pkey);
164
165 if (execute)
166 return por_elx_allows_exec(por, pkey);
167
168 return por_elx_allows_read(por, pkey);
169 }
170
171 /*
172 * p??_access_permitted() is true for valid user mappings (PTE_USER
173 * bit set, subject to the write permission check). For execute-only
174 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
175 * not set) must return false. PROT_NONE mappings do not have the
176 * PTE_VALID bit set.
177 */
178 #define pte_access_permitted_no_overlay(pte, write) \
179 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
180 #define pte_access_permitted(pte, write) \
181 (pte_access_permitted_no_overlay(pte, write) && \
182 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
183 #define pmd_access_permitted(pmd, write) \
184 (pte_access_permitted(pmd_pte(pmd), (write)))
185 #define pud_access_permitted(pud, write) \
186 (pte_access_permitted(pud_pte(pud), (write)))
187
clear_pte_bit(pte_t pte,pgprot_t prot)188 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
189 {
190 pte_val(pte) &= ~pgprot_val(prot);
191 return pte;
192 }
193
set_pte_bit(pte_t pte,pgprot_t prot)194 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
195 {
196 pte_val(pte) |= pgprot_val(prot);
197 return pte;
198 }
199
clear_pmd_bit(pmd_t pmd,pgprot_t prot)200 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
201 {
202 pmd_val(pmd) &= ~pgprot_val(prot);
203 return pmd;
204 }
205
set_pmd_bit(pmd_t pmd,pgprot_t prot)206 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
207 {
208 pmd_val(pmd) |= pgprot_val(prot);
209 return pmd;
210 }
211
pte_mkwrite_novma(pte_t pte)212 static inline pte_t pte_mkwrite_novma(pte_t pte)
213 {
214 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
215 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
216 return pte;
217 }
218
pte_mkclean(pte_t pte)219 static inline pte_t pte_mkclean(pte_t pte)
220 {
221 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
222 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
223
224 return pte;
225 }
226
pte_mkdirty(pte_t pte)227 static inline pte_t pte_mkdirty(pte_t pte)
228 {
229 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
230
231 if (pte_write(pte))
232 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
233
234 return pte;
235 }
236
pte_wrprotect(pte_t pte)237 static inline pte_t pte_wrprotect(pte_t pte)
238 {
239 /*
240 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
241 * clear), set the PTE_DIRTY bit.
242 */
243 if (pte_hw_dirty(pte))
244 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
245
246 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
247 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
248 return pte;
249 }
250
pte_mkold(pte_t pte)251 static inline pte_t pte_mkold(pte_t pte)
252 {
253 return clear_pte_bit(pte, __pgprot(PTE_AF));
254 }
255
pte_mkyoung(pte_t pte)256 static inline pte_t pte_mkyoung(pte_t pte)
257 {
258 return set_pte_bit(pte, __pgprot(PTE_AF));
259 }
260
pte_mkspecial(pte_t pte)261 static inline pte_t pte_mkspecial(pte_t pte)
262 {
263 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
264 }
265
pte_mkcont(pte_t pte)266 static inline pte_t pte_mkcont(pte_t pte)
267 {
268 return set_pte_bit(pte, __pgprot(PTE_CONT));
269 }
270
pte_mknoncont(pte_t pte)271 static inline pte_t pte_mknoncont(pte_t pte)
272 {
273 return clear_pte_bit(pte, __pgprot(PTE_CONT));
274 }
275
pte_mkpresent(pte_t pte)276 static inline pte_t pte_mkpresent(pte_t pte)
277 {
278 return set_pte_bit(pte, __pgprot(PTE_VALID));
279 }
280
pte_mkinvalid(pte_t pte)281 static inline pte_t pte_mkinvalid(pte_t pte)
282 {
283 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
284 pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
285 return pte;
286 }
287
pmd_mkcont(pmd_t pmd)288 static inline pmd_t pmd_mkcont(pmd_t pmd)
289 {
290 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
291 }
292
pte_mkdevmap(pte_t pte)293 static inline pte_t pte_mkdevmap(pte_t pte)
294 {
295 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
296 }
297
298 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)299 static inline int pte_uffd_wp(pte_t pte)
300 {
301 return !!(pte_val(pte) & PTE_UFFD_WP);
302 }
303
pte_mkuffd_wp(pte_t pte)304 static inline pte_t pte_mkuffd_wp(pte_t pte)
305 {
306 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
307 }
308
pte_clear_uffd_wp(pte_t pte)309 static inline pte_t pte_clear_uffd_wp(pte_t pte)
310 {
311 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
312 }
313 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
314
__set_pte_nosync(pte_t * ptep,pte_t pte)315 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
316 {
317 WRITE_ONCE(*ptep, pte);
318 }
319
__set_pte(pte_t * ptep,pte_t pte)320 static inline void __set_pte(pte_t *ptep, pte_t pte)
321 {
322 __set_pte_nosync(ptep, pte);
323
324 /*
325 * Only if the new pte is valid and kernel, otherwise TLB maintenance
326 * or update_mmu_cache() have the necessary barriers.
327 */
328 if (pte_valid_not_user(pte)) {
329 dsb(ishst);
330 isb();
331 }
332 }
333
__ptep_get(pte_t * ptep)334 static inline pte_t __ptep_get(pte_t *ptep)
335 {
336 return READ_ONCE(*ptep);
337 }
338
339 extern void __sync_icache_dcache(pte_t pteval);
340 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
341
342 /*
343 * PTE bits configuration in the presence of hardware Dirty Bit Management
344 * (PTE_WRITE == PTE_DBM):
345 *
346 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
347 * 0 0 | 1 0 0
348 * 0 1 | 1 1 0
349 * 1 0 | 1 0 1
350 * 1 1 | 0 1 x
351 *
352 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
353 * the page fault mechanism. Checking the dirty status of a pte becomes:
354 *
355 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
356 */
357
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)358 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
359 pte_t pte)
360 {
361 pte_t old_pte;
362
363 if (!IS_ENABLED(CONFIG_DEBUG_VM))
364 return;
365
366 old_pte = __ptep_get(ptep);
367
368 if (!pte_valid(old_pte) || !pte_valid(pte))
369 return;
370 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
371 return;
372
373 /*
374 * Check for potential race with hardware updates of the pte
375 * (__ptep_set_access_flags safely changes valid ptes without going
376 * through an invalid entry).
377 */
378 VM_WARN_ONCE(!pte_young(pte),
379 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
380 __func__, pte_val(old_pte), pte_val(pte));
381 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
382 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
383 __func__, pte_val(old_pte), pte_val(pte));
384 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
385 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
386 __func__, pte_val(old_pte), pte_val(pte));
387 }
388
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)389 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
390 {
391 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
392 __sync_icache_dcache(pte);
393
394 /*
395 * If the PTE would provide user space access to the tags associated
396 * with it then ensure that the MTE tags are synchronised. Although
397 * pte_access_permitted_no_overlay() returns false for exec only
398 * mappings, they don't expose tags (instruction fetches don't check
399 * tags).
400 */
401 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
402 !pte_special(pte) && pte_tagged(pte))
403 mte_sync_tags(pte, nr_pages);
404 }
405
406 /*
407 * Select all bits except the pfn
408 */
409 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)410 static inline pgprot_t pte_pgprot(pte_t pte)
411 {
412 unsigned long pfn = pte_pfn(pte);
413
414 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
415 }
416
417 #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)418 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
419 {
420 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
421 }
422
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)423 static inline void __set_ptes(struct mm_struct *mm,
424 unsigned long __always_unused addr,
425 pte_t *ptep, pte_t pte, unsigned int nr)
426 {
427 page_table_check_ptes_set(mm, ptep, pte, nr);
428 __sync_cache_and_tags(pte, nr);
429
430 for (;;) {
431 __check_safe_pte_update(mm, ptep, pte);
432 __set_pte(ptep, pte);
433 if (--nr == 0)
434 break;
435 ptep++;
436 pte = pte_advance_pfn(pte, 1);
437 }
438 }
439
440 /*
441 * Hugetlb definitions.
442 */
443 #define HUGE_MAX_HSTATE 4
444 #define HPAGE_SHIFT PMD_SHIFT
445 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
446 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
447 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
448
pgd_pte(pgd_t pgd)449 static inline pte_t pgd_pte(pgd_t pgd)
450 {
451 return __pte(pgd_val(pgd));
452 }
453
p4d_pte(p4d_t p4d)454 static inline pte_t p4d_pte(p4d_t p4d)
455 {
456 return __pte(p4d_val(p4d));
457 }
458
pud_pte(pud_t pud)459 static inline pte_t pud_pte(pud_t pud)
460 {
461 return __pte(pud_val(pud));
462 }
463
pte_pud(pte_t pte)464 static inline pud_t pte_pud(pte_t pte)
465 {
466 return __pud(pte_val(pte));
467 }
468
pud_pmd(pud_t pud)469 static inline pmd_t pud_pmd(pud_t pud)
470 {
471 return __pmd(pud_val(pud));
472 }
473
pmd_pte(pmd_t pmd)474 static inline pte_t pmd_pte(pmd_t pmd)
475 {
476 return __pte(pmd_val(pmd));
477 }
478
pte_pmd(pte_t pte)479 static inline pmd_t pte_pmd(pte_t pte)
480 {
481 return __pmd(pte_val(pte));
482 }
483
mk_pud_sect_prot(pgprot_t prot)484 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
485 {
486 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
487 }
488
mk_pmd_sect_prot(pgprot_t prot)489 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
490 {
491 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
492 }
493
pte_swp_mkexclusive(pte_t pte)494 static inline pte_t pte_swp_mkexclusive(pte_t pte)
495 {
496 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
497 }
498
pte_swp_exclusive(pte_t pte)499 static inline int pte_swp_exclusive(pte_t pte)
500 {
501 return pte_val(pte) & PTE_SWP_EXCLUSIVE;
502 }
503
pte_swp_clear_exclusive(pte_t pte)504 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
505 {
506 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
507 }
508
509 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)510 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
511 {
512 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
513 }
514
pte_swp_uffd_wp(pte_t pte)515 static inline int pte_swp_uffd_wp(pte_t pte)
516 {
517 return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
518 }
519
pte_swp_clear_uffd_wp(pte_t pte)520 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
521 {
522 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
523 }
524 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
525
526 #ifdef CONFIG_NUMA_BALANCING
527 /*
528 * See the comment in include/linux/pgtable.h
529 */
pte_protnone(pte_t pte)530 static inline int pte_protnone(pte_t pte)
531 {
532 /*
533 * pte_present_invalid() tells us that the pte is invalid from HW
534 * perspective but present from SW perspective, so the fields are to be
535 * interpretted as per the HW layout. The second 2 checks are the unique
536 * encoding that we use for PROT_NONE. It is insufficient to only use
537 * the first check because we share the same encoding scheme with pmds
538 * which support pmd_mkinvalid(), so can be present-invalid without
539 * being PROT_NONE.
540 */
541 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
542 }
543
pmd_protnone(pmd_t pmd)544 static inline int pmd_protnone(pmd_t pmd)
545 {
546 return pte_protnone(pmd_pte(pmd));
547 }
548 #endif
549
550 #define pmd_present(pmd) pte_present(pmd_pte(pmd))
551
552 /*
553 * THP definitions.
554 */
555
556 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)557 static inline int pmd_trans_huge(pmd_t pmd)
558 {
559 return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
560 }
561 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
562
563 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
564 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
565 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
566 #define pmd_user(pmd) pte_user(pmd_pte(pmd))
567 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
568 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
569 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
570 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
571 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
572 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
573 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
574 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
575 #define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
576 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
577 #define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd))
578 #define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
579 #define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
580 #define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd))
581 #define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
582 #define pmd_swp_clear_uffd_wp(pmd) \
583 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
584 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
585
586 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
587
588 #define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
589
590 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
591 #define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd))
592 #endif
pmd_mkdevmap(pmd_t pmd)593 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
594 {
595 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
596 }
597
598 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
599 #define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL)))
pmd_mkspecial(pmd_t pmd)600 static inline pmd_t pmd_mkspecial(pmd_t pmd)
601 {
602 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
603 }
604 #endif
605
606 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
607 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
608 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
609 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
610 #define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
611
612 #define pud_young(pud) pte_young(pud_pte(pud))
613 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
614 #define pud_write(pud) pte_write(pud_pte(pud))
615
616 #define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT))
617
618 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
619 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
620 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
621 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
622
623 #ifdef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
624 #define pud_special(pte) pte_special(pud_pte(pud))
625 #define pud_mkspecial(pte) pte_pud(pte_mkspecial(pud_pte(pud)))
626 #endif
627
628 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)629 static inline pgprot_t pmd_pgprot(pmd_t pmd)
630 {
631 unsigned long pfn = pmd_pfn(pmd);
632
633 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
634 }
635
636 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)637 static inline pgprot_t pud_pgprot(pud_t pud)
638 {
639 unsigned long pfn = pud_pfn(pud);
640
641 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
642 }
643
__set_pte_at(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)644 static inline void __set_pte_at(struct mm_struct *mm,
645 unsigned long __always_unused addr,
646 pte_t *ptep, pte_t pte, unsigned int nr)
647 {
648 __sync_cache_and_tags(pte, nr);
649 __check_safe_pte_update(mm, ptep, pte);
650 __set_pte(ptep, pte);
651 }
652
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t pmd)653 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
654 pmd_t *pmdp, pmd_t pmd)
655 {
656 page_table_check_pmd_set(mm, pmdp, pmd);
657 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd),
658 PMD_SIZE >> PAGE_SHIFT);
659 }
660
set_pud_at(struct mm_struct * mm,unsigned long addr,pud_t * pudp,pud_t pud)661 static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
662 pud_t *pudp, pud_t pud)
663 {
664 page_table_check_pud_set(mm, pudp, pud);
665 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud),
666 PUD_SIZE >> PAGE_SHIFT);
667 }
668
669 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
670 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
671
672 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
673 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
674
675 #define __pgprot_modify(prot,mask,bits) \
676 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
677
678 #define pgprot_nx(prot) \
679 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
680
681 #define pgprot_decrypted(prot) \
682 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
683 #define pgprot_encrypted(prot) \
684 __pgprot_modify(prot, PROT_NS_SHARED, 0)
685
686 /*
687 * Mark the prot value as uncacheable and unbufferable.
688 */
689 #define pgprot_noncached(prot) \
690 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
691 #define pgprot_writecombine(prot) \
692 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
693 #define pgprot_device(prot) \
694 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
695 #define pgprot_tagged(prot) \
696 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
697 #define pgprot_mhp pgprot_tagged
698 /*
699 * DMA allocations for non-coherent devices use what the Arm architecture calls
700 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
701 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
702 * is intended for MMIO and thus forbids speculation, preserves access size,
703 * requires strict alignment and can also force write responses to come from the
704 * endpoint.
705 */
706 #define pgprot_dmacoherent(prot) \
707 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
708 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
709
710 #define __HAVE_PHYS_MEM_ACCESS_PROT
711 struct file;
712 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
713 unsigned long size, pgprot_t vma_prot);
714
715 #define pmd_none(pmd) (!pmd_val(pmd))
716
717 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
718 PMD_TYPE_TABLE)
719 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
720 PMD_TYPE_SECT)
721 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
722 #define pmd_bad(pmd) (!pmd_table(pmd))
723
724 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
725 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
726
727 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)728 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)729 static inline bool pud_table(pud_t pud) { return true; }
730 #else
731 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
732 PUD_TYPE_SECT)
733 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
734 PUD_TYPE_TABLE)
735 #endif
736
737 extern pgd_t init_pg_dir[];
738 extern pgd_t init_pg_end[];
739 extern pgd_t swapper_pg_dir[];
740 extern pgd_t idmap_pg_dir[];
741 extern pgd_t tramp_pg_dir[];
742 extern pgd_t reserved_pg_dir[];
743
744 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
745
in_swapper_pgdir(void * addr)746 static inline bool in_swapper_pgdir(void *addr)
747 {
748 return ((unsigned long)addr & PAGE_MASK) ==
749 ((unsigned long)swapper_pg_dir & PAGE_MASK);
750 }
751
set_pmd(pmd_t * pmdp,pmd_t pmd)752 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
753 {
754 #ifdef __PAGETABLE_PMD_FOLDED
755 if (in_swapper_pgdir(pmdp)) {
756 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
757 return;
758 }
759 #endif /* __PAGETABLE_PMD_FOLDED */
760
761 WRITE_ONCE(*pmdp, pmd);
762
763 if (pmd_valid(pmd)) {
764 dsb(ishst);
765 isb();
766 }
767 }
768
pmd_clear(pmd_t * pmdp)769 static inline void pmd_clear(pmd_t *pmdp)
770 {
771 set_pmd(pmdp, __pmd(0));
772 }
773
pmd_page_paddr(pmd_t pmd)774 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
775 {
776 return __pmd_to_phys(pmd);
777 }
778
pmd_page_vaddr(pmd_t pmd)779 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
780 {
781 return (unsigned long)__va(pmd_page_paddr(pmd));
782 }
783
784 /* Find an entry in the third-level page table. */
785 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
786
787 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
788 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
789 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
790
791 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
792
793 /* use ONLY for statically allocated translation tables */
794 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
795
796 /*
797 * Conversion functions: convert a page and protection to a page entry,
798 * and a page entry and page directory to the page they refer to.
799 */
800 #define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot)
801
802 #if CONFIG_PGTABLE_LEVELS > 2
803
804 #define pmd_ERROR(e) \
805 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
806
807 #define pud_none(pud) (!pud_val(pud))
808 #define pud_bad(pud) (!pud_table(pud))
809 #define pud_present(pud) pte_present(pud_pte(pud))
810 #ifndef __PAGETABLE_PMD_FOLDED
811 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
812 #else
813 #define pud_leaf(pud) false
814 #endif
815 #define pud_valid(pud) pte_valid(pud_pte(pud))
816 #define pud_user(pud) pte_user(pud_pte(pud))
817 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
818
819 static inline bool pgtable_l4_enabled(void);
820
set_pud(pud_t * pudp,pud_t pud)821 static inline void set_pud(pud_t *pudp, pud_t pud)
822 {
823 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
824 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
825 return;
826 }
827
828 WRITE_ONCE(*pudp, pud);
829
830 if (pud_valid(pud)) {
831 dsb(ishst);
832 isb();
833 }
834 }
835
pud_clear(pud_t * pudp)836 static inline void pud_clear(pud_t *pudp)
837 {
838 set_pud(pudp, __pud(0));
839 }
840
pud_page_paddr(pud_t pud)841 static inline phys_addr_t pud_page_paddr(pud_t pud)
842 {
843 return __pud_to_phys(pud);
844 }
845
pud_pgtable(pud_t pud)846 static inline pmd_t *pud_pgtable(pud_t pud)
847 {
848 return (pmd_t *)__va(pud_page_paddr(pud));
849 }
850
851 /* Find an entry in the second-level page table. */
852 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
853
854 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
855 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
856 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
857
858 #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
859
860 /* use ONLY for statically allocated translation tables */
861 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
862
863 #else
864
865 #define pud_valid(pud) false
866 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
867 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
868
869 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
870 #define pmd_set_fixmap(addr) NULL
871 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
872 #define pmd_clear_fixmap()
873
874 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
875
876 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
877
878 #if CONFIG_PGTABLE_LEVELS > 3
879
pgtable_l4_enabled(void)880 static __always_inline bool pgtable_l4_enabled(void)
881 {
882 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
883 return true;
884 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
885 return vabits_actual == VA_BITS;
886 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
887 }
888
mm_pud_folded(const struct mm_struct * mm)889 static inline bool mm_pud_folded(const struct mm_struct *mm)
890 {
891 return !pgtable_l4_enabled();
892 }
893 #define mm_pud_folded mm_pud_folded
894
895 #define pud_ERROR(e) \
896 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
897
898 #define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d))
899 #define p4d_bad(p4d) (pgtable_l4_enabled() && !(p4d_val(p4d) & 2))
900 #define p4d_present(p4d) (!p4d_none(p4d))
901
set_p4d(p4d_t * p4dp,p4d_t p4d)902 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
903 {
904 if (in_swapper_pgdir(p4dp)) {
905 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
906 return;
907 }
908
909 WRITE_ONCE(*p4dp, p4d);
910 dsb(ishst);
911 isb();
912 }
913
p4d_clear(p4d_t * p4dp)914 static inline void p4d_clear(p4d_t *p4dp)
915 {
916 if (pgtable_l4_enabled())
917 set_p4d(p4dp, __p4d(0));
918 }
919
p4d_page_paddr(p4d_t p4d)920 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
921 {
922 return __p4d_to_phys(p4d);
923 }
924
925 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
926
p4d_to_folded_pud(p4d_t * p4dp,unsigned long addr)927 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
928 {
929 /* Ensure that 'p4dp' indexes a page table according to 'addr' */
930 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
931
932 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
933 }
934
p4d_pgtable(p4d_t p4d)935 static inline pud_t *p4d_pgtable(p4d_t p4d)
936 {
937 return (pud_t *)__va(p4d_page_paddr(p4d));
938 }
939
pud_offset_phys(p4d_t * p4dp,unsigned long addr)940 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
941 {
942 BUG_ON(!pgtable_l4_enabled());
943
944 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
945 }
946
947 static inline
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long addr)948 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
949 {
950 if (!pgtable_l4_enabled())
951 return p4d_to_folded_pud(p4dp, addr);
952 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
953 }
954 #define pud_offset_lockless pud_offset_lockless
955
pud_offset(p4d_t * p4dp,unsigned long addr)956 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
957 {
958 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
959 }
960 #define pud_offset pud_offset
961
pud_set_fixmap(unsigned long addr)962 static inline pud_t *pud_set_fixmap(unsigned long addr)
963 {
964 if (!pgtable_l4_enabled())
965 return NULL;
966 return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
967 }
968
pud_set_fixmap_offset(p4d_t * p4dp,unsigned long addr)969 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
970 {
971 if (!pgtable_l4_enabled())
972 return p4d_to_folded_pud(p4dp, addr);
973 return pud_set_fixmap(pud_offset_phys(p4dp, addr));
974 }
975
pud_clear_fixmap(void)976 static inline void pud_clear_fixmap(void)
977 {
978 if (pgtable_l4_enabled())
979 clear_fixmap(FIX_PUD);
980 }
981
982 /* use ONLY for statically allocated translation tables */
pud_offset_kimg(p4d_t * p4dp,u64 addr)983 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
984 {
985 if (!pgtable_l4_enabled())
986 return p4d_to_folded_pud(p4dp, addr);
987 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
988 }
989
990 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
991
992 #else
993
pgtable_l4_enabled(void)994 static inline bool pgtable_l4_enabled(void) { return false; }
995
996 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
997
998 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
999 #define pud_set_fixmap(addr) NULL
1000 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
1001 #define pud_clear_fixmap()
1002
1003 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
1004
1005 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
1006
1007 #if CONFIG_PGTABLE_LEVELS > 4
1008
pgtable_l5_enabled(void)1009 static __always_inline bool pgtable_l5_enabled(void)
1010 {
1011 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1012 return vabits_actual == VA_BITS;
1013 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1014 }
1015
mm_p4d_folded(const struct mm_struct * mm)1016 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1017 {
1018 return !pgtable_l5_enabled();
1019 }
1020 #define mm_p4d_folded mm_p4d_folded
1021
1022 #define p4d_ERROR(e) \
1023 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1024
1025 #define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd))
1026 #define pgd_bad(pgd) (pgtable_l5_enabled() && !(pgd_val(pgd) & 2))
1027 #define pgd_present(pgd) (!pgd_none(pgd))
1028
set_pgd(pgd_t * pgdp,pgd_t pgd)1029 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1030 {
1031 if (in_swapper_pgdir(pgdp)) {
1032 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1033 return;
1034 }
1035
1036 WRITE_ONCE(*pgdp, pgd);
1037 dsb(ishst);
1038 isb();
1039 }
1040
pgd_clear(pgd_t * pgdp)1041 static inline void pgd_clear(pgd_t *pgdp)
1042 {
1043 if (pgtable_l5_enabled())
1044 set_pgd(pgdp, __pgd(0));
1045 }
1046
pgd_page_paddr(pgd_t pgd)1047 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1048 {
1049 return __pgd_to_phys(pgd);
1050 }
1051
1052 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1053
pgd_to_folded_p4d(pgd_t * pgdp,unsigned long addr)1054 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1055 {
1056 /* Ensure that 'pgdp' indexes a page table according to 'addr' */
1057 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1058
1059 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1060 }
1061
p4d_offset_phys(pgd_t * pgdp,unsigned long addr)1062 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1063 {
1064 BUG_ON(!pgtable_l5_enabled());
1065
1066 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1067 }
1068
1069 static inline
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1070 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1071 {
1072 if (!pgtable_l5_enabled())
1073 return pgd_to_folded_p4d(pgdp, addr);
1074 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1075 }
1076 #define p4d_offset_lockless p4d_offset_lockless
1077
p4d_offset(pgd_t * pgdp,unsigned long addr)1078 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1079 {
1080 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1081 }
1082
p4d_set_fixmap(unsigned long addr)1083 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1084 {
1085 if (!pgtable_l5_enabled())
1086 return NULL;
1087 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1088 }
1089
p4d_set_fixmap_offset(pgd_t * pgdp,unsigned long addr)1090 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1091 {
1092 if (!pgtable_l5_enabled())
1093 return pgd_to_folded_p4d(pgdp, addr);
1094 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1095 }
1096
p4d_clear_fixmap(void)1097 static inline void p4d_clear_fixmap(void)
1098 {
1099 if (pgtable_l5_enabled())
1100 clear_fixmap(FIX_P4D);
1101 }
1102
1103 /* use ONLY for statically allocated translation tables */
p4d_offset_kimg(pgd_t * pgdp,u64 addr)1104 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1105 {
1106 if (!pgtable_l5_enabled())
1107 return pgd_to_folded_p4d(pgdp, addr);
1108 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1109 }
1110
1111 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1112
1113 #else
1114
pgtable_l5_enabled(void)1115 static inline bool pgtable_l5_enabled(void) { return false; }
1116
1117 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1118
1119 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1120 #define p4d_set_fixmap(addr) NULL
1121 #define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp)
1122 #define p4d_clear_fixmap()
1123
1124 #define p4d_offset_kimg(dir,addr) ((p4d_t *)dir)
1125
1126 static inline
p4d_offset_lockless_folded(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1127 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1128 {
1129 /*
1130 * With runtime folding of the pud, pud_offset_lockless() passes
1131 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1132 * will offset the pointer assuming that it points into
1133 * a page-table page. However, the fast GUP path passes us a
1134 * pgd_t allocated on the stack and so we must use the original
1135 * pointer in 'pgdp' to construct the p4d pointer instead of
1136 * using the generic p4d_offset_lockless() implementation.
1137 *
1138 * Note: reusing the original pointer means that we may
1139 * dereference the same (live) page-table entry multiple times.
1140 * This is safe because it is still only loaded once in the
1141 * context of each level and the CPU guarantees same-address
1142 * read-after-read ordering.
1143 */
1144 return p4d_offset(pgdp, addr);
1145 }
1146 #define p4d_offset_lockless p4d_offset_lockless_folded
1147
1148 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
1149
1150 #define pgd_ERROR(e) \
1151 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1152
1153 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1154 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
1155
pte_modify(pte_t pte,pgprot_t newprot)1156 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1157 {
1158 /*
1159 * Normal and Normal-Tagged are two different memory types and indices
1160 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1161 */
1162 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1163 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1164 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1165
1166 /* preserve the hardware dirty information */
1167 if (pte_hw_dirty(pte))
1168 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1169
1170 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1171 /*
1172 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1173 * dirtiness again.
1174 */
1175 if (pte_sw_dirty(pte))
1176 pte = pte_mkdirty(pte);
1177 return pte;
1178 }
1179
pmd_modify(pmd_t pmd,pgprot_t newprot)1180 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1181 {
1182 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1183 }
1184
1185 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1186 unsigned long address, pte_t *ptep,
1187 pte_t entry, int dirty);
1188
1189 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1190 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)1191 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1192 unsigned long address, pmd_t *pmdp,
1193 pmd_t entry, int dirty)
1194 {
1195 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1196 pmd_pte(entry), dirty);
1197 }
1198
pud_devmap(pud_t pud)1199 static inline int pud_devmap(pud_t pud)
1200 {
1201 return 0;
1202 }
1203
pgd_devmap(pgd_t pgd)1204 static inline int pgd_devmap(pgd_t pgd)
1205 {
1206 return 0;
1207 }
1208 #endif
1209
1210 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1211 static inline bool pte_user_accessible_page(pte_t pte)
1212 {
1213 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1214 }
1215
pmd_user_accessible_page(pmd_t pmd)1216 static inline bool pmd_user_accessible_page(pmd_t pmd)
1217 {
1218 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1219 }
1220
pud_user_accessible_page(pud_t pud)1221 static inline bool pud_user_accessible_page(pud_t pud)
1222 {
1223 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1224 }
1225 #endif
1226
1227 /*
1228 * Atomic pte/pmd modifications.
1229 */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1230 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1231 unsigned long address,
1232 pte_t *ptep)
1233 {
1234 pte_t old_pte, pte;
1235
1236 pte = __ptep_get(ptep);
1237 do {
1238 old_pte = pte;
1239 pte = pte_mkold(pte);
1240 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1241 pte_val(old_pte), pte_val(pte));
1242 } while (pte_val(pte) != pte_val(old_pte));
1243
1244 return pte_young(pte);
1245 }
1246
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1247 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1248 unsigned long address, pte_t *ptep)
1249 {
1250 int young = __ptep_test_and_clear_young(vma, address, ptep);
1251
1252 if (young) {
1253 /*
1254 * We can elide the trailing DSB here since the worst that can
1255 * happen is that a CPU continues to use the young entry in its
1256 * TLB and we mistakenly reclaim the associated page. The
1257 * window for such an event is bounded by the next
1258 * context-switch, which provides a DSB to complete the TLB
1259 * invalidation.
1260 */
1261 flush_tlb_page_nosync(vma, address);
1262 }
1263
1264 return young;
1265 }
1266
1267 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1268 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1269 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1270 unsigned long address,
1271 pmd_t *pmdp)
1272 {
1273 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1274 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1275 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1276 }
1277 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1278
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)1279 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1280 unsigned long address, pte_t *ptep)
1281 {
1282 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1283
1284 page_table_check_pte_clear(mm, pte);
1285
1286 return pte;
1287 }
1288
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1289 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1290 pte_t *ptep, unsigned int nr, int full)
1291 {
1292 for (;;) {
1293 __ptep_get_and_clear(mm, addr, ptep);
1294 if (--nr == 0)
1295 break;
1296 ptep++;
1297 addr += PAGE_SIZE;
1298 }
1299 }
1300
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1301 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1302 unsigned long addr, pte_t *ptep,
1303 unsigned int nr, int full)
1304 {
1305 pte_t pte, tmp_pte;
1306
1307 pte = __ptep_get_and_clear(mm, addr, ptep);
1308 while (--nr) {
1309 ptep++;
1310 addr += PAGE_SIZE;
1311 tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1312 if (pte_dirty(tmp_pte))
1313 pte = pte_mkdirty(pte);
1314 if (pte_young(tmp_pte))
1315 pte = pte_mkyoung(pte);
1316 }
1317 return pte;
1318 }
1319
1320 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1321 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1322 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1323 unsigned long address, pmd_t *pmdp)
1324 {
1325 pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
1326
1327 page_table_check_pmd_clear(mm, pmd);
1328
1329 return pmd;
1330 }
1331 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1332
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1333 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1334 unsigned long address, pte_t *ptep,
1335 pte_t pte)
1336 {
1337 pte_t old_pte;
1338
1339 do {
1340 old_pte = pte;
1341 pte = pte_wrprotect(pte);
1342 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1343 pte_val(old_pte), pte_val(pte));
1344 } while (pte_val(pte) != pte_val(old_pte));
1345 }
1346
1347 /*
1348 * __ptep_set_wrprotect - mark read-only while trasferring potential hardware
1349 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1350 */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1351 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1352 unsigned long address, pte_t *ptep)
1353 {
1354 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1355 }
1356
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1357 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1358 pte_t *ptep, unsigned int nr)
1359 {
1360 unsigned int i;
1361
1362 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1363 __ptep_set_wrprotect(mm, address, ptep);
1364 }
1365
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1366 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1367 unsigned long addr, pte_t *ptep,
1368 pte_t pte, cydp_t flags)
1369 {
1370 pte_t old_pte;
1371
1372 do {
1373 old_pte = pte;
1374
1375 if (flags & CYDP_CLEAR_YOUNG)
1376 pte = pte_mkold(pte);
1377 if (flags & CYDP_CLEAR_DIRTY)
1378 pte = pte_mkclean(pte);
1379
1380 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1381 pte_val(old_pte), pte_val(pte));
1382 } while (pte_val(pte) != pte_val(old_pte));
1383 }
1384
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1385 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1386 unsigned long addr, pte_t *ptep,
1387 unsigned int nr, cydp_t flags)
1388 {
1389 pte_t pte;
1390
1391 for (;;) {
1392 pte = __ptep_get(ptep);
1393
1394 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1395 __set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1396 else
1397 __clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1398
1399 if (--nr == 0)
1400 break;
1401 ptep++;
1402 addr += PAGE_SIZE;
1403 }
1404 }
1405
1406 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1407 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1408 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1409 unsigned long address, pmd_t *pmdp)
1410 {
1411 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1412 }
1413
1414 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1415 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1416 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1417 {
1418 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1419 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1420 }
1421 #endif
1422
1423 /*
1424 * Encode and decode a swap entry:
1425 * bits 0-1: present (must be zero)
1426 * bits 2: remember PG_anon_exclusive
1427 * bit 3: remember uffd-wp state
1428 * bits 6-10: swap type
1429 * bit 11: PTE_PRESENT_INVALID (must be zero)
1430 * bits 12-61: swap offset
1431 */
1432 #define __SWP_TYPE_SHIFT 6
1433 #define __SWP_TYPE_BITS 5
1434 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
1435 #define __SWP_OFFSET_SHIFT 12
1436 #define __SWP_OFFSET_BITS 50
1437 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
1438
1439 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1440 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1441 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1442
1443 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1444 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
1445
1446 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1447 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1448 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1449 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1450
1451 /*
1452 * Ensure that there are not more swap files than can be encoded in the kernel
1453 * PTEs.
1454 */
1455 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1456
1457 #ifdef CONFIG_ARM64_MTE
1458
1459 #define __HAVE_ARCH_PREPARE_TO_SWAP
1460 extern int arch_prepare_to_swap(struct folio *folio);
1461
1462 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1463 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1464 {
1465 if (system_supports_mte())
1466 mte_invalidate_tags(type, offset);
1467 }
1468
arch_swap_invalidate_area(int type)1469 static inline void arch_swap_invalidate_area(int type)
1470 {
1471 if (system_supports_mte())
1472 mte_invalidate_tags_area(type);
1473 }
1474
1475 #define __HAVE_ARCH_SWAP_RESTORE
1476 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1477
1478 #endif /* CONFIG_ARM64_MTE */
1479
1480 /*
1481 * On AArch64, the cache coherency is handled via the __set_ptes() function.
1482 */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1483 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1484 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1485 unsigned int nr)
1486 {
1487 /*
1488 * We don't do anything here, so there's a very small chance of
1489 * us retaking a user fault which we just fixed up. The alternative
1490 * is doing a dsb(ishst), but that penalises the fastpath.
1491 */
1492 }
1493
1494 #define update_mmu_cache(vma, addr, ptep) \
1495 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1496 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1497
1498 #ifdef CONFIG_ARM64_PA_BITS_52
1499 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1500 #else
1501 #define phys_to_ttbr(addr) (addr)
1502 #endif
1503
1504 /*
1505 * On arm64 without hardware Access Flag, copying from user will fail because
1506 * the pte is old and cannot be marked young. So we always end up with zeroed
1507 * page after fork() + CoW for pfn mappings. We don't always have a
1508 * hardware-managed access flag on arm64.
1509 */
1510 #define arch_has_hw_pte_young cpu_has_hw_af
1511
1512 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1513 #define arch_has_hw_nonleaf_pmd_young system_supports_haft
1514 #endif
1515
1516 /*
1517 * Experimentally, it's cheap to set the access flag in hardware and we
1518 * benefit from prefaulting mappings as 'old' to start with.
1519 */
1520 #define arch_wants_old_prefaulted_pte cpu_has_hw_af
1521
pud_sect_supported(void)1522 static inline bool pud_sect_supported(void)
1523 {
1524 return PAGE_SIZE == SZ_4K;
1525 }
1526
1527
1528 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1529 #define ptep_modify_prot_start ptep_modify_prot_start
1530 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1531 unsigned long addr, pte_t *ptep);
1532
1533 #define ptep_modify_prot_commit ptep_modify_prot_commit
1534 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1535 unsigned long addr, pte_t *ptep,
1536 pte_t old_pte, pte_t new_pte);
1537
1538 #ifdef CONFIG_ARM64_CONTPTE
1539
1540 /*
1541 * The contpte APIs are used to transparently manage the contiguous bit in ptes
1542 * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1543 * a private implementation detail of the public ptep API (see below).
1544 */
1545 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1546 pte_t *ptep, pte_t pte);
1547 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1548 pte_t *ptep, pte_t pte);
1549 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1550 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1551 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1552 pte_t *ptep, pte_t pte, unsigned int nr);
1553 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1554 pte_t *ptep, unsigned int nr, int full);
1555 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1556 unsigned long addr, pte_t *ptep,
1557 unsigned int nr, int full);
1558 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1559 unsigned long addr, pte_t *ptep);
1560 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1561 unsigned long addr, pte_t *ptep);
1562 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1563 pte_t *ptep, unsigned int nr);
1564 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1565 unsigned long addr, pte_t *ptep,
1566 pte_t entry, int dirty);
1567 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1568 unsigned long addr, pte_t *ptep,
1569 unsigned int nr, cydp_t flags);
1570
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1571 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1572 unsigned long addr, pte_t *ptep, pte_t pte)
1573 {
1574 /*
1575 * Only bother trying if both the virtual and physical addresses are
1576 * aligned and correspond to the last entry in a contig range. The core
1577 * code mostly modifies ranges from low to high, so this is the likely
1578 * the last modification in the contig range, so a good time to fold.
1579 * We can't fold special mappings, because there is no associated folio.
1580 */
1581
1582 const unsigned long contmask = CONT_PTES - 1;
1583 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1584
1585 if (unlikely(valign)) {
1586 bool palign = (pte_pfn(pte) & contmask) == contmask;
1587
1588 if (unlikely(palign &&
1589 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1590 __contpte_try_fold(mm, addr, ptep, pte);
1591 }
1592 }
1593
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1594 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1595 unsigned long addr, pte_t *ptep, pte_t pte)
1596 {
1597 if (unlikely(pte_valid_cont(pte)))
1598 __contpte_try_unfold(mm, addr, ptep, pte);
1599 }
1600
1601 #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1602 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1603 {
1604 if (!pte_valid_cont(pte))
1605 return 1;
1606
1607 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1608 }
1609
1610 /*
1611 * The below functions constitute the public API that arm64 presents to the
1612 * core-mm to manipulate PTE entries within their page tables (or at least this
1613 * is the subset of the API that arm64 needs to implement). These public
1614 * versions will automatically and transparently apply the contiguous bit where
1615 * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1616 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1617 * private versions, which are prefixed with double underscore. All of these
1618 * APIs except for ptep_get_lockless() are expected to be called with the PTL
1619 * held. Although the contiguous bit is considered private to the
1620 * implementation, it is deliberately allowed to leak through the getters (e.g.
1621 * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1622 * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1623 * its possible a pte will be passed to a setter with the contiguous bit set, so
1624 * we explicitly clear the contiguous bit in those cases to prevent accidentally
1625 * setting it in the pgtable.
1626 */
1627
1628 #define ptep_get ptep_get
ptep_get(pte_t * ptep)1629 static inline pte_t ptep_get(pte_t *ptep)
1630 {
1631 pte_t pte = __ptep_get(ptep);
1632
1633 if (likely(!pte_valid_cont(pte)))
1634 return pte;
1635
1636 return contpte_ptep_get(ptep, pte);
1637 }
1638
1639 #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1640 static inline pte_t ptep_get_lockless(pte_t *ptep)
1641 {
1642 pte_t pte = __ptep_get(ptep);
1643
1644 if (likely(!pte_valid_cont(pte)))
1645 return pte;
1646
1647 return contpte_ptep_get_lockless(ptep);
1648 }
1649
set_pte(pte_t * ptep,pte_t pte)1650 static inline void set_pte(pte_t *ptep, pte_t pte)
1651 {
1652 /*
1653 * We don't have the mm or vaddr so cannot unfold contig entries (since
1654 * it requires tlb maintenance). set_pte() is not used in core code, so
1655 * this should never even be called. Regardless do our best to service
1656 * any call and emit a warning if there is any attempt to set a pte on
1657 * top of an existing contig range.
1658 */
1659 pte_t orig_pte = __ptep_get(ptep);
1660
1661 WARN_ON_ONCE(pte_valid_cont(orig_pte));
1662 __set_pte(ptep, pte_mknoncont(pte));
1663 }
1664
1665 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1666 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1667 pte_t *ptep, pte_t pte, unsigned int nr)
1668 {
1669 pte = pte_mknoncont(pte);
1670
1671 if (likely(nr == 1)) {
1672 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1673 __set_ptes(mm, addr, ptep, pte, 1);
1674 contpte_try_fold(mm, addr, ptep, pte);
1675 } else {
1676 contpte_set_ptes(mm, addr, ptep, pte, nr);
1677 }
1678 }
1679
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1680 static inline void pte_clear(struct mm_struct *mm,
1681 unsigned long addr, pte_t *ptep)
1682 {
1683 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1684 __pte_clear(mm, addr, ptep);
1685 }
1686
1687 #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1688 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1689 pte_t *ptep, unsigned int nr, int full)
1690 {
1691 if (likely(nr == 1)) {
1692 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1693 __clear_full_ptes(mm, addr, ptep, nr, full);
1694 } else {
1695 contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1696 }
1697 }
1698
1699 #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1700 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1701 unsigned long addr, pte_t *ptep,
1702 unsigned int nr, int full)
1703 {
1704 pte_t pte;
1705
1706 if (likely(nr == 1)) {
1707 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1708 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1709 } else {
1710 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1711 }
1712
1713 return pte;
1714 }
1715
1716 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1717 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1718 unsigned long addr, pte_t *ptep)
1719 {
1720 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1721 return __ptep_get_and_clear(mm, addr, ptep);
1722 }
1723
1724 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1725 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1726 unsigned long addr, pte_t *ptep)
1727 {
1728 pte_t orig_pte = __ptep_get(ptep);
1729
1730 if (likely(!pte_valid_cont(orig_pte)))
1731 return __ptep_test_and_clear_young(vma, addr, ptep);
1732
1733 return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1734 }
1735
1736 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1737 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1738 unsigned long addr, pte_t *ptep)
1739 {
1740 pte_t orig_pte = __ptep_get(ptep);
1741
1742 if (likely(!pte_valid_cont(orig_pte)))
1743 return __ptep_clear_flush_young(vma, addr, ptep);
1744
1745 return contpte_ptep_clear_flush_young(vma, addr, ptep);
1746 }
1747
1748 #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1749 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1750 unsigned long addr, pte_t *ptep, unsigned int nr)
1751 {
1752 if (likely(nr == 1)) {
1753 /*
1754 * Optimization: wrprotect_ptes() can only be called for present
1755 * ptes so we only need to check contig bit as condition for
1756 * unfold, and we can remove the contig bit from the pte we read
1757 * to avoid re-reading. This speeds up fork() which is sensitive
1758 * for order-0 folios. Equivalent to contpte_try_unfold().
1759 */
1760 pte_t orig_pte = __ptep_get(ptep);
1761
1762 if (unlikely(pte_cont(orig_pte))) {
1763 __contpte_try_unfold(mm, addr, ptep, orig_pte);
1764 orig_pte = pte_mknoncont(orig_pte);
1765 }
1766 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1767 } else {
1768 contpte_wrprotect_ptes(mm, addr, ptep, nr);
1769 }
1770 }
1771
1772 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1773 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1774 unsigned long addr, pte_t *ptep)
1775 {
1776 wrprotect_ptes(mm, addr, ptep, 1);
1777 }
1778
1779 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1780 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1781 unsigned long addr, pte_t *ptep,
1782 pte_t entry, int dirty)
1783 {
1784 pte_t orig_pte = __ptep_get(ptep);
1785
1786 entry = pte_mknoncont(entry);
1787
1788 if (likely(!pte_valid_cont(orig_pte)))
1789 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1790
1791 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1792 }
1793
1794 #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1795 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1796 unsigned long addr, pte_t *ptep,
1797 unsigned int nr, cydp_t flags)
1798 {
1799 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1800 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1801 else
1802 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1803 }
1804
1805 #else /* CONFIG_ARM64_CONTPTE */
1806
1807 #define ptep_get __ptep_get
1808 #define set_pte __set_pte
1809 #define set_ptes __set_ptes
1810 #define pte_clear __pte_clear
1811 #define clear_full_ptes __clear_full_ptes
1812 #define get_and_clear_full_ptes __get_and_clear_full_ptes
1813 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1814 #define ptep_get_and_clear __ptep_get_and_clear
1815 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1816 #define ptep_test_and_clear_young __ptep_test_and_clear_young
1817 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1818 #define ptep_clear_flush_young __ptep_clear_flush_young
1819 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1820 #define ptep_set_wrprotect __ptep_set_wrprotect
1821 #define wrprotect_ptes __wrprotect_ptes
1822 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1823 #define ptep_set_access_flags __ptep_set_access_flags
1824 #define clear_young_dirty_ptes __clear_young_dirty_ptes
1825
1826 #endif /* CONFIG_ARM64_CONTPTE */
1827
1828 #endif /* !__ASSEMBLY__ */
1829
1830 #endif /* __ASM_PGTABLE_H */
1831