1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8 /*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
51 *
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include <linux/reboot.h>
93 #include "ubi.h"
94 #include "wl.h"
95
96 /* Number of physical eraseblocks reserved for wear-leveling purposes */
97 #define WL_RESERVED_PEBS 1
98
99 /*
100 * Maximum difference between two erase counters. If this threshold is
101 * exceeded, the WL sub-system starts moving data from used physical
102 * eraseblocks with low erase counter to free physical eraseblocks with high
103 * erase counter.
104 */
105 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
106
107 /*
108 * When a physical eraseblock is moved, the WL sub-system has to pick the target
109 * physical eraseblock to move to. The simplest way would be just to pick the
110 * one with the highest erase counter. But in certain workloads this could lead
111 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
112 * situation when the picked physical eraseblock is constantly erased after the
113 * data is written to it. So, we have a constant which limits the highest erase
114 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
115 * does not pick eraseblocks with erase counter greater than the lowest erase
116 * counter plus %WL_FREE_MAX_DIFF.
117 */
118 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
119
120 /*
121 * Maximum number of consecutive background thread failures which is enough to
122 * switch to read-only mode.
123 */
124 #define WL_MAX_FAILURES 32
125
126 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
127 static int self_check_in_wl_tree(const struct ubi_device *ubi,
128 struct ubi_wl_entry *e, struct rb_root *root);
129 static int self_check_in_pq(const struct ubi_device *ubi,
130 struct ubi_wl_entry *e);
131 static int ubi_wl_reboot_notifier(struct notifier_block *n,
132 unsigned long state, void *cmd);
133
134 /**
135 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
136 * @e: the wear-leveling entry to add
137 * @root: the root of the tree
138 *
139 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
140 * the @ubi->used and @ubi->free RB-trees.
141 */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)142 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
143 {
144 struct rb_node **p, *parent = NULL;
145
146 p = &root->rb_node;
147 while (*p) {
148 struct ubi_wl_entry *e1;
149
150 parent = *p;
151 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
152
153 if (e->ec < e1->ec)
154 p = &(*p)->rb_left;
155 else if (e->ec > e1->ec)
156 p = &(*p)->rb_right;
157 else {
158 ubi_assert(e->pnum != e1->pnum);
159 if (e->pnum < e1->pnum)
160 p = &(*p)->rb_left;
161 else
162 p = &(*p)->rb_right;
163 }
164 }
165
166 rb_link_node(&e->u.rb, parent, p);
167 rb_insert_color(&e->u.rb, root);
168 }
169
170 /**
171 * wl_entry_destroy - destroy a wear-leveling entry.
172 * @ubi: UBI device description object
173 * @e: the wear-leveling entry to add
174 *
175 * This function destroys a wear leveling entry and removes
176 * the reference from the lookup table.
177 */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)178 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
179 {
180 ubi->lookuptbl[e->pnum] = NULL;
181 kmem_cache_free(ubi_wl_entry_slab, e);
182 }
183
184 /**
185 * do_work - do one pending work.
186 * @ubi: UBI device description object
187 * @executed: whether there is one work is executed
188 *
189 * This function returns zero in case of success and a negative error code in
190 * case of failure. If @executed is not NULL and there is one work executed,
191 * @executed is set as %1, otherwise @executed is set as %0.
192 */
do_work(struct ubi_device * ubi,int * executed)193 static int do_work(struct ubi_device *ubi, int *executed)
194 {
195 int err;
196 struct ubi_work *wrk;
197
198 cond_resched();
199
200 /*
201 * @ubi->work_sem is used to synchronize with the workers. Workers take
202 * it in read mode, so many of them may be doing works at a time. But
203 * the queue flush code has to be sure the whole queue of works is
204 * done, and it takes the mutex in write mode.
205 */
206 down_read(&ubi->work_sem);
207 spin_lock(&ubi->wl_lock);
208 if (list_empty(&ubi->works)) {
209 spin_unlock(&ubi->wl_lock);
210 up_read(&ubi->work_sem);
211 if (executed)
212 *executed = 0;
213 return 0;
214 }
215
216 if (executed)
217 *executed = 1;
218 wrk = list_entry(ubi->works.next, struct ubi_work, list);
219 list_del(&wrk->list);
220 ubi->works_count -= 1;
221 ubi_assert(ubi->works_count >= 0);
222 spin_unlock(&ubi->wl_lock);
223
224 /*
225 * Call the worker function. Do not touch the work structure
226 * after this call as it will have been freed or reused by that
227 * time by the worker function.
228 */
229 err = wrk->func(ubi, wrk, 0);
230 if (err)
231 ubi_err(ubi, "work failed with error code %d", err);
232 up_read(&ubi->work_sem);
233
234 return err;
235 }
236
237 /**
238 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
239 * @e: the wear-leveling entry to check
240 * @root: the root of the tree
241 *
242 * This function returns non-zero if @e is in the @root RB-tree and zero if it
243 * is not.
244 */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)245 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
246 {
247 struct rb_node *p;
248
249 p = root->rb_node;
250 while (p) {
251 struct ubi_wl_entry *e1;
252
253 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
254
255 if (e->pnum == e1->pnum) {
256 ubi_assert(e == e1);
257 return 1;
258 }
259
260 if (e->ec < e1->ec)
261 p = p->rb_left;
262 else if (e->ec > e1->ec)
263 p = p->rb_right;
264 else {
265 ubi_assert(e->pnum != e1->pnum);
266 if (e->pnum < e1->pnum)
267 p = p->rb_left;
268 else
269 p = p->rb_right;
270 }
271 }
272
273 return 0;
274 }
275
276 /**
277 * in_pq - check if a wear-leveling entry is present in the protection queue.
278 * @ubi: UBI device description object
279 * @e: the wear-leveling entry to check
280 *
281 * This function returns non-zero if @e is in the protection queue and zero
282 * if it is not.
283 */
in_pq(const struct ubi_device * ubi,struct ubi_wl_entry * e)284 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
285 {
286 struct ubi_wl_entry *p;
287 int i;
288
289 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
290 list_for_each_entry(p, &ubi->pq[i], u.list)
291 if (p == e)
292 return 1;
293
294 return 0;
295 }
296
297 /**
298 * prot_queue_add - add physical eraseblock to the protection queue.
299 * @ubi: UBI device description object
300 * @e: the physical eraseblock to add
301 *
302 * This function adds @e to the tail of the protection queue @ubi->pq, where
303 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
304 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
305 * be locked.
306 */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)307 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
308 {
309 int pq_tail = ubi->pq_head - 1;
310
311 if (pq_tail < 0)
312 pq_tail = UBI_PROT_QUEUE_LEN - 1;
313 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
314 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
315 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
316 }
317
318 /**
319 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
320 * @ubi: UBI device description object
321 * @root: the RB-tree where to look for
322 * @diff: maximum possible difference from the smallest erase counter
323 * @pick_max: pick PEB even its erase counter beyonds 'min_ec + @diff'
324 *
325 * This function looks for a wear leveling entry with erase counter closest to
326 * min + @diff, where min is the smallest erase counter.
327 */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff,int pick_max)328 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
329 struct rb_root *root, int diff,
330 int pick_max)
331 {
332 struct rb_node *p;
333 struct ubi_wl_entry *e;
334 int max;
335
336 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
337 max = e->ec + diff;
338
339 p = root->rb_node;
340 while (p) {
341 struct ubi_wl_entry *e1;
342
343 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
344 if (e1->ec >= max) {
345 if (pick_max)
346 e = e1;
347 p = p->rb_left;
348 } else {
349 p = p->rb_right;
350 e = e1;
351 }
352 }
353
354 return e;
355 }
356
357 /**
358 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
359 * @ubi: UBI device description object
360 * @root: the RB-tree where to look for
361 *
362 * This function looks for a wear leveling entry with medium erase counter,
363 * but not greater or equivalent than the lowest erase counter plus
364 * %WL_FREE_MAX_DIFF/2.
365 */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)366 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
367 struct rb_root *root)
368 {
369 struct ubi_wl_entry *e, *first, *last;
370
371 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
372 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
373
374 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
375 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
376
377 /*
378 * If no fastmap has been written and fm_anchor is not
379 * reserved and this WL entry can be used as anchor PEB
380 * hold it back and return the second best WL entry such
381 * that fastmap can use the anchor PEB later.
382 */
383 e = may_reserve_for_fm(ubi, e, root);
384 } else
385 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2, 0);
386
387 return e;
388 }
389
390 /**
391 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
392 * refill_wl_user_pool().
393 * @ubi: UBI device description object
394 *
395 * This function returns a wear leveling entry in case of success and
396 * NULL in case of failure.
397 */
wl_get_wle(struct ubi_device * ubi)398 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
399 {
400 struct ubi_wl_entry *e;
401
402 e = find_mean_wl_entry(ubi, &ubi->free);
403 if (!e) {
404 ubi_err(ubi, "no free eraseblocks");
405 return NULL;
406 }
407
408 self_check_in_wl_tree(ubi, e, &ubi->free);
409
410 /*
411 * Move the physical eraseblock to the protection queue where it will
412 * be protected from being moved for some time.
413 */
414 rb_erase(&e->u.rb, &ubi->free);
415 ubi->free_count--;
416 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
417
418 return e;
419 }
420
421 /**
422 * prot_queue_del - remove a physical eraseblock from the protection queue.
423 * @ubi: UBI device description object
424 * @pnum: the physical eraseblock to remove
425 *
426 * This function deletes PEB @pnum from the protection queue and returns zero
427 * in case of success and %-ENODEV if the PEB was not found.
428 */
prot_queue_del(struct ubi_device * ubi,int pnum)429 static int prot_queue_del(struct ubi_device *ubi, int pnum)
430 {
431 struct ubi_wl_entry *e;
432
433 e = ubi->lookuptbl[pnum];
434 if (!e)
435 return -ENODEV;
436
437 if (self_check_in_pq(ubi, e))
438 return -ENODEV;
439
440 list_del(&e->u.list);
441 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
442 return 0;
443 }
444
445 /**
446 * ubi_sync_erase - synchronously erase a physical eraseblock.
447 * @ubi: UBI device description object
448 * @e: the physical eraseblock to erase
449 * @torture: if the physical eraseblock has to be tortured
450 *
451 * This function returns zero in case of success and a negative error code in
452 * case of failure.
453 */
ubi_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)454 int ubi_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture)
455 {
456 int err;
457 struct ubi_ec_hdr *ec_hdr;
458 unsigned long long ec = e->ec;
459
460 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
461
462 err = self_check_ec(ubi, e->pnum, e->ec);
463 if (err)
464 return -EINVAL;
465
466 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
467 if (!ec_hdr)
468 return -ENOMEM;
469
470 err = ubi_io_sync_erase(ubi, e->pnum, torture);
471 if (err < 0)
472 goto out_free;
473
474 ec += err;
475 if (ec > UBI_MAX_ERASECOUNTER) {
476 /*
477 * Erase counter overflow. Upgrade UBI and use 64-bit
478 * erase counters internally.
479 */
480 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
481 e->pnum, ec);
482 err = -EINVAL;
483 goto out_free;
484 }
485
486 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
487
488 ec_hdr->ec = cpu_to_be64(ec);
489
490 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
491 if (err)
492 goto out_free;
493
494 e->ec = ec;
495 spin_lock(&ubi->wl_lock);
496 if (e->ec > ubi->max_ec)
497 ubi->max_ec = e->ec;
498 spin_unlock(&ubi->wl_lock);
499
500 out_free:
501 kfree(ec_hdr);
502 return err;
503 }
504
505 /**
506 * serve_prot_queue - check if it is time to stop protecting PEBs.
507 * @ubi: UBI device description object
508 *
509 * This function is called after each erase operation and removes PEBs from the
510 * tail of the protection queue. These PEBs have been protected for long enough
511 * and should be moved to the used tree.
512 */
serve_prot_queue(struct ubi_device * ubi)513 static void serve_prot_queue(struct ubi_device *ubi)
514 {
515 struct ubi_wl_entry *e, *tmp;
516 int count;
517
518 /*
519 * There may be several protected physical eraseblock to remove,
520 * process them all.
521 */
522 repeat:
523 count = 0;
524 spin_lock(&ubi->wl_lock);
525 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
526 dbg_wl("PEB %d EC %d protection over, move to used tree",
527 e->pnum, e->ec);
528
529 list_del(&e->u.list);
530 wl_tree_add(e, &ubi->used);
531 if (count++ > 32) {
532 /*
533 * Let's be nice and avoid holding the spinlock for
534 * too long.
535 */
536 spin_unlock(&ubi->wl_lock);
537 cond_resched();
538 goto repeat;
539 }
540 }
541
542 ubi->pq_head += 1;
543 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
544 ubi->pq_head = 0;
545 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
546 spin_unlock(&ubi->wl_lock);
547 }
548
549 /**
550 * __schedule_ubi_work - schedule a work.
551 * @ubi: UBI device description object
552 * @wrk: the work to schedule
553 *
554 * This function adds a work defined by @wrk to the tail of the pending works
555 * list. Can only be used if ubi->work_sem is already held in read mode!
556 */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)557 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
558 {
559 spin_lock(&ubi->wl_lock);
560 list_add_tail(&wrk->list, &ubi->works);
561 ubi_assert(ubi->works_count >= 0);
562 ubi->works_count += 1;
563 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
564 wake_up_process(ubi->bgt_thread);
565 spin_unlock(&ubi->wl_lock);
566 }
567
568 /**
569 * schedule_ubi_work - schedule a work.
570 * @ubi: UBI device description object
571 * @wrk: the work to schedule
572 *
573 * This function adds a work defined by @wrk to the tail of the pending works
574 * list.
575 */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)576 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
577 {
578 down_read(&ubi->work_sem);
579 __schedule_ubi_work(ubi, wrk);
580 up_read(&ubi->work_sem);
581 }
582
583 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
584 int shutdown);
585
586 /**
587 * schedule_erase - schedule an erase work.
588 * @ubi: UBI device description object
589 * @e: the WL entry of the physical eraseblock to erase
590 * @vol_id: the volume ID that last used this PEB
591 * @lnum: the last used logical eraseblock number for the PEB
592 * @torture: if the physical eraseblock has to be tortured
593 * @nested: denotes whether the work_sem is already held
594 *
595 * This function returns zero in case of success and a %-ENOMEM in case of
596 * failure.
597 */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture,bool nested)598 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
599 int vol_id, int lnum, int torture, bool nested)
600 {
601 struct ubi_work *wl_wrk;
602
603 ubi_assert(e);
604
605 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
606 e->pnum, e->ec, torture);
607
608 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
609 if (!wl_wrk)
610 return -ENOMEM;
611
612 wl_wrk->func = &erase_worker;
613 wl_wrk->e = e;
614 wl_wrk->vol_id = vol_id;
615 wl_wrk->lnum = lnum;
616 wl_wrk->torture = torture;
617
618 if (nested)
619 __schedule_ubi_work(ubi, wl_wrk);
620 else
621 schedule_ubi_work(ubi, wl_wrk);
622 return 0;
623 }
624
625 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
626 /**
627 * do_sync_erase - run the erase worker synchronously.
628 * @ubi: UBI device description object
629 * @e: the WL entry of the physical eraseblock to erase
630 * @vol_id: the volume ID that last used this PEB
631 * @lnum: the last used logical eraseblock number for the PEB
632 * @torture: if the physical eraseblock has to be tortured
633 *
634 */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)635 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
636 int vol_id, int lnum, int torture)
637 {
638 struct ubi_work wl_wrk;
639
640 dbg_wl("sync erase of PEB %i", e->pnum);
641
642 wl_wrk.e = e;
643 wl_wrk.vol_id = vol_id;
644 wl_wrk.lnum = lnum;
645 wl_wrk.torture = torture;
646
647 return __erase_worker(ubi, &wl_wrk);
648 }
649
650 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
651 /**
652 * wear_leveling_worker - wear-leveling worker function.
653 * @ubi: UBI device description object
654 * @wrk: the work object
655 * @shutdown: non-zero if the worker has to free memory and exit
656 * because the WL-subsystem is shutting down
657 *
658 * This function copies a more worn out physical eraseblock to a less worn out
659 * one. Returns zero in case of success and a negative error code in case of
660 * failure.
661 */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)662 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
663 int shutdown)
664 {
665 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
666 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
667 struct ubi_wl_entry *e1, *e2;
668 struct ubi_vid_io_buf *vidb;
669 struct ubi_vid_hdr *vid_hdr;
670 int dst_leb_clean = 0;
671
672 kfree(wrk);
673 if (shutdown)
674 return 0;
675
676 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
677 if (!vidb)
678 return -ENOMEM;
679
680 vid_hdr = ubi_get_vid_hdr(vidb);
681
682 down_read(&ubi->fm_eba_sem);
683 mutex_lock(&ubi->move_mutex);
684 spin_lock(&ubi->wl_lock);
685 ubi_assert(!ubi->move_from && !ubi->move_to);
686 ubi_assert(!ubi->move_to_put);
687
688 #ifdef CONFIG_MTD_UBI_FASTMAP
689 if (!next_peb_for_wl(ubi, true) ||
690 #else
691 if (!ubi->free.rb_node ||
692 #endif
693 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
694 /*
695 * No free physical eraseblocks? Well, they must be waiting in
696 * the queue to be erased. Cancel movement - it will be
697 * triggered again when a free physical eraseblock appears.
698 *
699 * No used physical eraseblocks? They must be temporarily
700 * protected from being moved. They will be moved to the
701 * @ubi->used tree later and the wear-leveling will be
702 * triggered again.
703 */
704 dbg_wl("cancel WL, a list is empty: free %d, used %d",
705 !ubi->free.rb_node, !ubi->used.rb_node);
706 goto out_cancel;
707 }
708
709 #ifdef CONFIG_MTD_UBI_FASTMAP
710 e1 = find_anchor_wl_entry(&ubi->used);
711 if (e1 && ubi->fm_anchor &&
712 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
713 ubi->fm_do_produce_anchor = 1;
714 /*
715 * fm_anchor is no longer considered a good anchor.
716 * NULL assignment also prevents multiple wear level checks
717 * of this PEB.
718 */
719 wl_tree_add(ubi->fm_anchor, &ubi->free);
720 ubi->fm_anchor = NULL;
721 ubi->free_count++;
722 }
723
724 if (ubi->fm_do_produce_anchor) {
725 if (!e1)
726 goto out_cancel;
727 e2 = get_peb_for_wl(ubi);
728 if (!e2)
729 goto out_cancel;
730
731 self_check_in_wl_tree(ubi, e1, &ubi->used);
732 rb_erase(&e1->u.rb, &ubi->used);
733 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
734 ubi->fm_do_produce_anchor = 0;
735 } else if (!ubi->scrub.rb_node) {
736 #else
737 if (!ubi->scrub.rb_node) {
738 #endif
739 /*
740 * Now pick the least worn-out used physical eraseblock and a
741 * highly worn-out free physical eraseblock. If the erase
742 * counters differ much enough, start wear-leveling.
743 */
744 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
745 e2 = get_peb_for_wl(ubi);
746 if (!e2)
747 goto out_cancel;
748
749 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
750 dbg_wl("no WL needed: min used EC %d, max free EC %d",
751 e1->ec, e2->ec);
752
753 /* Give the unused PEB back */
754 wl_tree_add(e2, &ubi->free);
755 ubi->free_count++;
756 goto out_cancel;
757 }
758 self_check_in_wl_tree(ubi, e1, &ubi->used);
759 rb_erase(&e1->u.rb, &ubi->used);
760 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
761 e1->pnum, e1->ec, e2->pnum, e2->ec);
762 } else {
763 /* Perform scrubbing */
764 scrubbing = 1;
765 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
766 e2 = get_peb_for_wl(ubi);
767 if (!e2)
768 goto out_cancel;
769
770 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
771 rb_erase(&e1->u.rb, &ubi->scrub);
772 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
773 }
774
775 ubi->move_from = e1;
776 ubi->move_to = e2;
777 spin_unlock(&ubi->wl_lock);
778
779 /*
780 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
781 * We so far do not know which logical eraseblock our physical
782 * eraseblock (@e1) belongs to. We have to read the volume identifier
783 * header first.
784 *
785 * Note, we are protected from this PEB being unmapped and erased. The
786 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
787 * which is being moved was unmapped.
788 */
789
790 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
791 if (err && err != UBI_IO_BITFLIPS) {
792 dst_leb_clean = 1;
793 if (err == UBI_IO_FF) {
794 /*
795 * We are trying to move PEB without a VID header. UBI
796 * always write VID headers shortly after the PEB was
797 * given, so we have a situation when it has not yet
798 * had a chance to write it, because it was preempted.
799 * So add this PEB to the protection queue so far,
800 * because presumably more data will be written there
801 * (including the missing VID header), and then we'll
802 * move it.
803 */
804 dbg_wl("PEB %d has no VID header", e1->pnum);
805 protect = 1;
806 goto out_not_moved;
807 } else if (err == UBI_IO_FF_BITFLIPS) {
808 /*
809 * The same situation as %UBI_IO_FF, but bit-flips were
810 * detected. It is better to schedule this PEB for
811 * scrubbing.
812 */
813 dbg_wl("PEB %d has no VID header but has bit-flips",
814 e1->pnum);
815 scrubbing = 1;
816 goto out_not_moved;
817 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
818 /*
819 * While a full scan would detect interrupted erasures
820 * at attach time we can face them here when attached from
821 * Fastmap.
822 */
823 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
824 e1->pnum);
825 erase = 1;
826 goto out_not_moved;
827 }
828
829 ubi_err(ubi, "error %d while reading VID header from PEB %d",
830 err, e1->pnum);
831 goto out_error;
832 }
833
834 vol_id = be32_to_cpu(vid_hdr->vol_id);
835 lnum = be32_to_cpu(vid_hdr->lnum);
836
837 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
838 if (err) {
839 if (err == MOVE_CANCEL_RACE) {
840 /*
841 * The LEB has not been moved because the volume is
842 * being deleted or the PEB has been put meanwhile. We
843 * should prevent this PEB from being selected for
844 * wear-leveling movement again, so put it to the
845 * protection queue.
846 */
847 protect = 1;
848 dst_leb_clean = 1;
849 goto out_not_moved;
850 }
851 if (err == MOVE_RETRY) {
852 /*
853 * For source PEB:
854 * 1. The scrubbing is set for scrub type PEB, it will
855 * be put back into ubi->scrub list.
856 * 2. Non-scrub type PEB will be put back into ubi->used
857 * list.
858 */
859 keep = 1;
860 dst_leb_clean = 1;
861 goto out_not_moved;
862 }
863 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
864 err == MOVE_TARGET_RD_ERR) {
865 /*
866 * Target PEB had bit-flips or write error - torture it.
867 */
868 torture = 1;
869 keep = 1;
870 goto out_not_moved;
871 }
872
873 if (err == MOVE_SOURCE_RD_ERR) {
874 /*
875 * An error happened while reading the source PEB. Do
876 * not switch to R/O mode in this case, and give the
877 * upper layers a possibility to recover from this,
878 * e.g. by unmapping corresponding LEB. Instead, just
879 * put this PEB to the @ubi->erroneous list to prevent
880 * UBI from trying to move it over and over again.
881 */
882 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
883 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
884 ubi->erroneous_peb_count);
885 goto out_error;
886 }
887 dst_leb_clean = 1;
888 erroneous = 1;
889 goto out_not_moved;
890 }
891
892 if (err < 0)
893 goto out_error;
894
895 ubi_assert(0);
896 }
897
898 /* The PEB has been successfully moved */
899 if (scrubbing)
900 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
901 e1->pnum, vol_id, lnum, e2->pnum);
902 ubi_free_vid_buf(vidb);
903
904 spin_lock(&ubi->wl_lock);
905 if (!ubi->move_to_put) {
906 wl_tree_add(e2, &ubi->used);
907 e2 = NULL;
908 }
909 ubi->move_from = ubi->move_to = NULL;
910 ubi->move_to_put = ubi->wl_scheduled = 0;
911 spin_unlock(&ubi->wl_lock);
912
913 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
914 if (err) {
915 if (e2) {
916 spin_lock(&ubi->wl_lock);
917 wl_entry_destroy(ubi, e2);
918 spin_unlock(&ubi->wl_lock);
919 }
920 goto out_ro;
921 }
922
923 if (e2) {
924 /*
925 * Well, the target PEB was put meanwhile, schedule it for
926 * erasure.
927 */
928 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
929 e2->pnum, vol_id, lnum);
930 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
931 if (err)
932 goto out_ro;
933 }
934
935 dbg_wl("done");
936 mutex_unlock(&ubi->move_mutex);
937 up_read(&ubi->fm_eba_sem);
938 return 0;
939
940 /*
941 * For some reasons the LEB was not moved, might be an error, might be
942 * something else. @e1 was not changed, so return it back. @e2 might
943 * have been changed, schedule it for erasure.
944 */
945 out_not_moved:
946 if (vol_id != -1)
947 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
948 e1->pnum, vol_id, lnum, e2->pnum, err);
949 else
950 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
951 e1->pnum, e2->pnum, err);
952 spin_lock(&ubi->wl_lock);
953 if (protect)
954 prot_queue_add(ubi, e1);
955 else if (erroneous) {
956 wl_tree_add(e1, &ubi->erroneous);
957 ubi->erroneous_peb_count += 1;
958 } else if (scrubbing)
959 wl_tree_add(e1, &ubi->scrub);
960 else if (keep)
961 wl_tree_add(e1, &ubi->used);
962 if (dst_leb_clean) {
963 wl_tree_add(e2, &ubi->free);
964 ubi->free_count++;
965 }
966
967 ubi_assert(!ubi->move_to_put);
968 ubi->move_from = ubi->move_to = NULL;
969 ubi->wl_scheduled = 0;
970 spin_unlock(&ubi->wl_lock);
971
972 ubi_free_vid_buf(vidb);
973 if (dst_leb_clean) {
974 ensure_wear_leveling(ubi, 1);
975 } else {
976 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
977 if (err)
978 goto out_ro;
979 }
980
981 if (erase) {
982 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
983 if (err)
984 goto out_ro;
985 }
986
987 mutex_unlock(&ubi->move_mutex);
988 up_read(&ubi->fm_eba_sem);
989 return 0;
990
991 out_error:
992 if (vol_id != -1)
993 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
994 err, e1->pnum, e2->pnum);
995 else
996 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
997 err, e1->pnum, vol_id, lnum, e2->pnum);
998 spin_lock(&ubi->wl_lock);
999 ubi->move_from = ubi->move_to = NULL;
1000 ubi->move_to_put = ubi->wl_scheduled = 0;
1001 wl_entry_destroy(ubi, e1);
1002 wl_entry_destroy(ubi, e2);
1003 spin_unlock(&ubi->wl_lock);
1004
1005 ubi_free_vid_buf(vidb);
1006
1007 out_ro:
1008 ubi_ro_mode(ubi);
1009 mutex_unlock(&ubi->move_mutex);
1010 up_read(&ubi->fm_eba_sem);
1011 ubi_assert(err != 0);
1012 return err < 0 ? err : -EIO;
1013
1014 out_cancel:
1015 ubi->wl_scheduled = 0;
1016 spin_unlock(&ubi->wl_lock);
1017 mutex_unlock(&ubi->move_mutex);
1018 up_read(&ubi->fm_eba_sem);
1019 ubi_free_vid_buf(vidb);
1020 return 0;
1021 }
1022
1023 /**
1024 * ensure_wear_leveling - schedule wear-leveling if it is needed.
1025 * @ubi: UBI device description object
1026 * @nested: set to non-zero if this function is called from UBI worker
1027 *
1028 * This function checks if it is time to start wear-leveling and schedules it
1029 * if yes. This function returns zero in case of success and a negative error
1030 * code in case of failure.
1031 */
1032 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1033 {
1034 int err = 0;
1035 struct ubi_work *wrk;
1036
1037 spin_lock(&ubi->wl_lock);
1038 if (ubi->wl_scheduled)
1039 /* Wear-leveling is already in the work queue */
1040 goto out_unlock;
1041
1042 /*
1043 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1044 * WL worker has to be scheduled anyway.
1045 */
1046 if (!ubi->scrub.rb_node) {
1047 #ifdef CONFIG_MTD_UBI_FASTMAP
1048 if (!need_wear_leveling(ubi))
1049 goto out_unlock;
1050 #else
1051 struct ubi_wl_entry *e1;
1052 struct ubi_wl_entry *e2;
1053
1054 if (!ubi->used.rb_node || !ubi->free.rb_node)
1055 /* No physical eraseblocks - no deal */
1056 goto out_unlock;
1057
1058 /*
1059 * We schedule wear-leveling only if the difference between the
1060 * lowest erase counter of used physical eraseblocks and a high
1061 * erase counter of free physical eraseblocks is greater than
1062 * %UBI_WL_THRESHOLD.
1063 */
1064 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1065 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
1066
1067 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1068 goto out_unlock;
1069 #endif
1070 dbg_wl("schedule wear-leveling");
1071 } else
1072 dbg_wl("schedule scrubbing");
1073
1074 ubi->wl_scheduled = 1;
1075 spin_unlock(&ubi->wl_lock);
1076
1077 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1078 if (!wrk) {
1079 err = -ENOMEM;
1080 goto out_cancel;
1081 }
1082
1083 wrk->func = &wear_leveling_worker;
1084 if (nested)
1085 __schedule_ubi_work(ubi, wrk);
1086 else
1087 schedule_ubi_work(ubi, wrk);
1088 return err;
1089
1090 out_cancel:
1091 spin_lock(&ubi->wl_lock);
1092 ubi->wl_scheduled = 0;
1093 out_unlock:
1094 spin_unlock(&ubi->wl_lock);
1095 return err;
1096 }
1097
1098 /**
1099 * __erase_worker - physical eraseblock erase worker function.
1100 * @ubi: UBI device description object
1101 * @wl_wrk: the work object
1102 *
1103 * This function erases a physical eraseblock and perform torture testing if
1104 * needed. It also takes care about marking the physical eraseblock bad if
1105 * needed. Returns zero in case of success and a negative error code in case of
1106 * failure.
1107 */
1108 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1109 {
1110 struct ubi_wl_entry *e = wl_wrk->e;
1111 int pnum = e->pnum;
1112 int vol_id = wl_wrk->vol_id;
1113 int lnum = wl_wrk->lnum;
1114 int err, available_consumed = 0;
1115
1116 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1117 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1118
1119 err = ubi_sync_erase(ubi, e, wl_wrk->torture);
1120 if (!err) {
1121 spin_lock(&ubi->wl_lock);
1122
1123 if (!ubi->fm_disabled && !ubi->fm_anchor &&
1124 e->pnum < UBI_FM_MAX_START) {
1125 /*
1126 * Abort anchor production, if needed it will be
1127 * enabled again in the wear leveling started below.
1128 */
1129 ubi->fm_anchor = e;
1130 ubi->fm_do_produce_anchor = 0;
1131 } else {
1132 wl_tree_add(e, &ubi->free);
1133 ubi->free_count++;
1134 }
1135
1136 spin_unlock(&ubi->wl_lock);
1137
1138 /*
1139 * One more erase operation has happened, take care about
1140 * protected physical eraseblocks.
1141 */
1142 serve_prot_queue(ubi);
1143
1144 /* And take care about wear-leveling */
1145 err = ensure_wear_leveling(ubi, 1);
1146 return err;
1147 }
1148
1149 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1150
1151 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1152 err == -EBUSY) {
1153 int err1;
1154
1155 /* Re-schedule the LEB for erasure */
1156 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true);
1157 if (err1) {
1158 spin_lock(&ubi->wl_lock);
1159 wl_entry_destroy(ubi, e);
1160 spin_unlock(&ubi->wl_lock);
1161 err = err1;
1162 goto out_ro;
1163 }
1164 return err;
1165 }
1166
1167 spin_lock(&ubi->wl_lock);
1168 wl_entry_destroy(ubi, e);
1169 spin_unlock(&ubi->wl_lock);
1170 if (err != -EIO)
1171 /*
1172 * If this is not %-EIO, we have no idea what to do. Scheduling
1173 * this physical eraseblock for erasure again would cause
1174 * errors again and again. Well, lets switch to R/O mode.
1175 */
1176 goto out_ro;
1177
1178 /* It is %-EIO, the PEB went bad */
1179
1180 if (!ubi->bad_allowed) {
1181 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1182 goto out_ro;
1183 }
1184
1185 spin_lock(&ubi->volumes_lock);
1186 if (ubi->beb_rsvd_pebs == 0) {
1187 if (ubi->avail_pebs == 0) {
1188 spin_unlock(&ubi->volumes_lock);
1189 ubi_err(ubi, "no reserved/available physical eraseblocks");
1190 goto out_ro;
1191 }
1192 ubi->avail_pebs -= 1;
1193 available_consumed = 1;
1194 }
1195 spin_unlock(&ubi->volumes_lock);
1196
1197 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1198 err = ubi_io_mark_bad(ubi, pnum);
1199 if (err)
1200 goto out_ro;
1201
1202 spin_lock(&ubi->volumes_lock);
1203 if (ubi->beb_rsvd_pebs > 0) {
1204 if (available_consumed) {
1205 /*
1206 * The amount of reserved PEBs increased since we last
1207 * checked.
1208 */
1209 ubi->avail_pebs += 1;
1210 available_consumed = 0;
1211 }
1212 ubi->beb_rsvd_pebs -= 1;
1213 }
1214 ubi->bad_peb_count += 1;
1215 ubi->good_peb_count -= 1;
1216 ubi_calculate_reserved(ubi);
1217 if (available_consumed)
1218 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1219 else if (ubi->beb_rsvd_pebs)
1220 ubi_msg(ubi, "%d PEBs left in the reserve",
1221 ubi->beb_rsvd_pebs);
1222 else
1223 ubi_warn(ubi, "last PEB from the reserve was used");
1224 spin_unlock(&ubi->volumes_lock);
1225
1226 return err;
1227
1228 out_ro:
1229 if (available_consumed) {
1230 spin_lock(&ubi->volumes_lock);
1231 ubi->avail_pebs += 1;
1232 spin_unlock(&ubi->volumes_lock);
1233 }
1234 ubi_ro_mode(ubi);
1235 return err;
1236 }
1237
1238 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1239 int shutdown)
1240 {
1241 int ret;
1242
1243 if (shutdown) {
1244 struct ubi_wl_entry *e = wl_wrk->e;
1245
1246 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1247 kfree(wl_wrk);
1248 wl_entry_destroy(ubi, e);
1249 return 0;
1250 }
1251
1252 ret = __erase_worker(ubi, wl_wrk);
1253 kfree(wl_wrk);
1254 return ret;
1255 }
1256
1257 /**
1258 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1259 * @ubi: UBI device description object
1260 * @vol_id: the volume ID that last used this PEB
1261 * @lnum: the last used logical eraseblock number for the PEB
1262 * @pnum: physical eraseblock to return
1263 * @torture: if this physical eraseblock has to be tortured
1264 *
1265 * This function is called to return physical eraseblock @pnum to the pool of
1266 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1267 * occurred to this @pnum and it has to be tested. This function returns zero
1268 * in case of success, and a negative error code in case of failure.
1269 */
1270 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1271 int pnum, int torture)
1272 {
1273 int err;
1274 struct ubi_wl_entry *e;
1275
1276 dbg_wl("PEB %d", pnum);
1277 ubi_assert(pnum >= 0);
1278 ubi_assert(pnum < ubi->peb_count);
1279
1280 down_read(&ubi->fm_protect);
1281
1282 retry:
1283 spin_lock(&ubi->wl_lock);
1284 e = ubi->lookuptbl[pnum];
1285 if (!e) {
1286 /*
1287 * This wl entry has been removed for some errors by other
1288 * process (eg. wear leveling worker), corresponding process
1289 * (except __erase_worker, which cannot concurrent with
1290 * ubi_wl_put_peb) will set ubi ro_mode at the same time,
1291 * just ignore this wl entry.
1292 */
1293 spin_unlock(&ubi->wl_lock);
1294 up_read(&ubi->fm_protect);
1295 return 0;
1296 }
1297 if (e == ubi->move_from) {
1298 /*
1299 * User is putting the physical eraseblock which was selected to
1300 * be moved. It will be scheduled for erasure in the
1301 * wear-leveling worker.
1302 */
1303 dbg_wl("PEB %d is being moved, wait", pnum);
1304 spin_unlock(&ubi->wl_lock);
1305
1306 /* Wait for the WL worker by taking the @ubi->move_mutex */
1307 mutex_lock(&ubi->move_mutex);
1308 mutex_unlock(&ubi->move_mutex);
1309 goto retry;
1310 } else if (e == ubi->move_to) {
1311 /*
1312 * User is putting the physical eraseblock which was selected
1313 * as the target the data is moved to. It may happen if the EBA
1314 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1315 * but the WL sub-system has not put the PEB to the "used" tree
1316 * yet, but it is about to do this. So we just set a flag which
1317 * will tell the WL worker that the PEB is not needed anymore
1318 * and should be scheduled for erasure.
1319 */
1320 dbg_wl("PEB %d is the target of data moving", pnum);
1321 ubi_assert(!ubi->move_to_put);
1322 ubi->move_to_put = 1;
1323 spin_unlock(&ubi->wl_lock);
1324 up_read(&ubi->fm_protect);
1325 return 0;
1326 } else {
1327 if (in_wl_tree(e, &ubi->used)) {
1328 self_check_in_wl_tree(ubi, e, &ubi->used);
1329 rb_erase(&e->u.rb, &ubi->used);
1330 } else if (in_wl_tree(e, &ubi->scrub)) {
1331 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1332 rb_erase(&e->u.rb, &ubi->scrub);
1333 } else if (in_wl_tree(e, &ubi->erroneous)) {
1334 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1335 rb_erase(&e->u.rb, &ubi->erroneous);
1336 ubi->erroneous_peb_count -= 1;
1337 ubi_assert(ubi->erroneous_peb_count >= 0);
1338 /* Erroneous PEBs should be tortured */
1339 torture = 1;
1340 } else {
1341 err = prot_queue_del(ubi, e->pnum);
1342 if (err) {
1343 ubi_err(ubi, "PEB %d not found", pnum);
1344 ubi_ro_mode(ubi);
1345 spin_unlock(&ubi->wl_lock);
1346 up_read(&ubi->fm_protect);
1347 return err;
1348 }
1349 }
1350 }
1351 spin_unlock(&ubi->wl_lock);
1352
1353 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1354 if (err) {
1355 spin_lock(&ubi->wl_lock);
1356 wl_tree_add(e, &ubi->used);
1357 spin_unlock(&ubi->wl_lock);
1358 }
1359
1360 up_read(&ubi->fm_protect);
1361 return err;
1362 }
1363
1364 /**
1365 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1366 * @ubi: UBI device description object
1367 * @pnum: the physical eraseblock to schedule
1368 *
1369 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1370 * needs scrubbing. This function schedules a physical eraseblock for
1371 * scrubbing which is done in background. This function returns zero in case of
1372 * success and a negative error code in case of failure.
1373 */
1374 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1375 {
1376 struct ubi_wl_entry *e;
1377
1378 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1379
1380 retry:
1381 spin_lock(&ubi->wl_lock);
1382 e = ubi->lookuptbl[pnum];
1383 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1384 in_wl_tree(e, &ubi->erroneous)) {
1385 spin_unlock(&ubi->wl_lock);
1386 return 0;
1387 }
1388
1389 if (e == ubi->move_to) {
1390 /*
1391 * This physical eraseblock was used to move data to. The data
1392 * was moved but the PEB was not yet inserted to the proper
1393 * tree. We should just wait a little and let the WL worker
1394 * proceed.
1395 */
1396 spin_unlock(&ubi->wl_lock);
1397 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1398 yield();
1399 goto retry;
1400 }
1401
1402 if (in_wl_tree(e, &ubi->used)) {
1403 self_check_in_wl_tree(ubi, e, &ubi->used);
1404 rb_erase(&e->u.rb, &ubi->used);
1405 } else {
1406 int err;
1407
1408 err = prot_queue_del(ubi, e->pnum);
1409 if (err) {
1410 ubi_err(ubi, "PEB %d not found", pnum);
1411 ubi_ro_mode(ubi);
1412 spin_unlock(&ubi->wl_lock);
1413 return err;
1414 }
1415 }
1416
1417 wl_tree_add(e, &ubi->scrub);
1418 spin_unlock(&ubi->wl_lock);
1419
1420 /*
1421 * Technically scrubbing is the same as wear-leveling, so it is done
1422 * by the WL worker.
1423 */
1424 return ensure_wear_leveling(ubi, 0);
1425 }
1426
1427 /**
1428 * ubi_wl_flush - flush all pending works.
1429 * @ubi: UBI device description object
1430 * @vol_id: the volume id to flush for
1431 * @lnum: the logical eraseblock number to flush for
1432 *
1433 * This function executes all pending works for a particular volume id /
1434 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1435 * acts as a wildcard for all of the corresponding volume numbers or logical
1436 * eraseblock numbers. It returns zero in case of success and a negative error
1437 * code in case of failure.
1438 */
1439 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1440 {
1441 int err = 0;
1442 int found = 1;
1443
1444 /*
1445 * Erase while the pending works queue is not empty, but not more than
1446 * the number of currently pending works.
1447 */
1448 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1449 vol_id, lnum, ubi->works_count);
1450
1451 while (found) {
1452 struct ubi_work *wrk, *tmp;
1453 found = 0;
1454
1455 down_read(&ubi->work_sem);
1456 spin_lock(&ubi->wl_lock);
1457 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1458 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1459 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1460 list_del(&wrk->list);
1461 ubi->works_count -= 1;
1462 ubi_assert(ubi->works_count >= 0);
1463 spin_unlock(&ubi->wl_lock);
1464
1465 err = wrk->func(ubi, wrk, 0);
1466 if (err) {
1467 up_read(&ubi->work_sem);
1468 return err;
1469 }
1470
1471 spin_lock(&ubi->wl_lock);
1472 found = 1;
1473 break;
1474 }
1475 }
1476 spin_unlock(&ubi->wl_lock);
1477 up_read(&ubi->work_sem);
1478 }
1479
1480 /*
1481 * Make sure all the works which have been done in parallel are
1482 * finished.
1483 */
1484 down_write(&ubi->work_sem);
1485 up_write(&ubi->work_sem);
1486
1487 return err;
1488 }
1489
1490 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1491 {
1492 if (in_wl_tree(e, &ubi->scrub))
1493 return false;
1494 else if (in_wl_tree(e, &ubi->erroneous))
1495 return false;
1496 else if (ubi->move_from == e)
1497 return false;
1498 else if (ubi->move_to == e)
1499 return false;
1500
1501 return true;
1502 }
1503
1504 /**
1505 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1506 * @ubi: UBI device description object
1507 * @pnum: the physical eraseblock to schedule
1508 * @force: don't read the block, assume bitflips happened and take action.
1509 *
1510 * This function reads the given eraseblock and checks if bitflips occured.
1511 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1512 * If scrubbing is forced with @force, the eraseblock is not read,
1513 * but scheduled for scrubbing right away.
1514 *
1515 * Returns:
1516 * %EINVAL, PEB is out of range
1517 * %ENOENT, PEB is no longer used by UBI
1518 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1519 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1520 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1521 * %0, no bit flips detected
1522 */
1523 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1524 {
1525 int err = 0;
1526 struct ubi_wl_entry *e;
1527
1528 if (pnum < 0 || pnum >= ubi->peb_count) {
1529 err = -EINVAL;
1530 goto out;
1531 }
1532
1533 /*
1534 * Pause all parallel work, otherwise it can happen that the
1535 * erase worker frees a wl entry under us.
1536 */
1537 down_write(&ubi->work_sem);
1538
1539 /*
1540 * Make sure that the wl entry does not change state while
1541 * inspecting it.
1542 */
1543 spin_lock(&ubi->wl_lock);
1544 e = ubi->lookuptbl[pnum];
1545 if (!e) {
1546 spin_unlock(&ubi->wl_lock);
1547 err = -ENOENT;
1548 goto out_resume;
1549 }
1550
1551 /*
1552 * Does it make sense to check this PEB?
1553 */
1554 if (!scrub_possible(ubi, e)) {
1555 spin_unlock(&ubi->wl_lock);
1556 err = -EBUSY;
1557 goto out_resume;
1558 }
1559 spin_unlock(&ubi->wl_lock);
1560
1561 if (!force) {
1562 mutex_lock(&ubi->buf_mutex);
1563 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1564 mutex_unlock(&ubi->buf_mutex);
1565 }
1566
1567 if (force || err == UBI_IO_BITFLIPS) {
1568 /*
1569 * Okay, bit flip happened, let's figure out what we can do.
1570 */
1571 spin_lock(&ubi->wl_lock);
1572
1573 /*
1574 * Recheck. We released wl_lock, UBI might have killed the
1575 * wl entry under us.
1576 */
1577 e = ubi->lookuptbl[pnum];
1578 if (!e) {
1579 spin_unlock(&ubi->wl_lock);
1580 err = -ENOENT;
1581 goto out_resume;
1582 }
1583
1584 /*
1585 * Need to re-check state
1586 */
1587 if (!scrub_possible(ubi, e)) {
1588 spin_unlock(&ubi->wl_lock);
1589 err = -EBUSY;
1590 goto out_resume;
1591 }
1592
1593 if (in_pq(ubi, e)) {
1594 prot_queue_del(ubi, e->pnum);
1595 wl_tree_add(e, &ubi->scrub);
1596 spin_unlock(&ubi->wl_lock);
1597
1598 err = ensure_wear_leveling(ubi, 1);
1599 } else if (in_wl_tree(e, &ubi->used)) {
1600 rb_erase(&e->u.rb, &ubi->used);
1601 wl_tree_add(e, &ubi->scrub);
1602 spin_unlock(&ubi->wl_lock);
1603
1604 err = ensure_wear_leveling(ubi, 1);
1605 } else if (in_wl_tree(e, &ubi->free)) {
1606 rb_erase(&e->u.rb, &ubi->free);
1607 ubi->free_count--;
1608 spin_unlock(&ubi->wl_lock);
1609
1610 /*
1611 * This PEB is empty we can schedule it for
1612 * erasure right away. No wear leveling needed.
1613 */
1614 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1615 force ? 0 : 1, true);
1616 } else {
1617 spin_unlock(&ubi->wl_lock);
1618 err = -EAGAIN;
1619 }
1620
1621 if (!err && !force)
1622 err = -EUCLEAN;
1623 } else {
1624 err = 0;
1625 }
1626
1627 out_resume:
1628 up_write(&ubi->work_sem);
1629 out:
1630
1631 return err;
1632 }
1633
1634 /**
1635 * tree_destroy - destroy an RB-tree.
1636 * @ubi: UBI device description object
1637 * @root: the root of the tree to destroy
1638 */
1639 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1640 {
1641 struct rb_node *rb;
1642 struct ubi_wl_entry *e;
1643
1644 rb = root->rb_node;
1645 while (rb) {
1646 if (rb->rb_left)
1647 rb = rb->rb_left;
1648 else if (rb->rb_right)
1649 rb = rb->rb_right;
1650 else {
1651 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1652
1653 rb = rb_parent(rb);
1654 if (rb) {
1655 if (rb->rb_left == &e->u.rb)
1656 rb->rb_left = NULL;
1657 else
1658 rb->rb_right = NULL;
1659 }
1660
1661 wl_entry_destroy(ubi, e);
1662 }
1663 }
1664 }
1665
1666 /**
1667 * ubi_thread - UBI background thread.
1668 * @u: the UBI device description object pointer
1669 */
1670 int ubi_thread(void *u)
1671 {
1672 int failures = 0;
1673 struct ubi_device *ubi = u;
1674
1675 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1676 ubi->bgt_name, task_pid_nr(current));
1677
1678 set_freezable();
1679 for (;;) {
1680 int err;
1681
1682 if (kthread_should_stop())
1683 break;
1684
1685 if (try_to_freeze())
1686 continue;
1687
1688 spin_lock(&ubi->wl_lock);
1689 if (list_empty(&ubi->works) || ubi->ro_mode ||
1690 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1691 set_current_state(TASK_INTERRUPTIBLE);
1692 spin_unlock(&ubi->wl_lock);
1693
1694 /*
1695 * Check kthread_should_stop() after we set the task
1696 * state to guarantee that we either see the stop bit
1697 * and exit or the task state is reset to runnable such
1698 * that it's not scheduled out indefinitely and detects
1699 * the stop bit at kthread_should_stop().
1700 */
1701 if (kthread_should_stop()) {
1702 set_current_state(TASK_RUNNING);
1703 break;
1704 }
1705
1706 schedule();
1707 continue;
1708 }
1709 spin_unlock(&ubi->wl_lock);
1710
1711 err = do_work(ubi, NULL);
1712 if (err) {
1713 ubi_err(ubi, "%s: work failed with error code %d",
1714 ubi->bgt_name, err);
1715 if (failures++ > WL_MAX_FAILURES) {
1716 /*
1717 * Too many failures, disable the thread and
1718 * switch to read-only mode.
1719 */
1720 ubi_msg(ubi, "%s: %d consecutive failures",
1721 ubi->bgt_name, WL_MAX_FAILURES);
1722 ubi_ro_mode(ubi);
1723 ubi->thread_enabled = 0;
1724 continue;
1725 }
1726 } else
1727 failures = 0;
1728
1729 cond_resched();
1730 }
1731
1732 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1733 ubi->thread_enabled = 0;
1734 return 0;
1735 }
1736
1737 /**
1738 * shutdown_work - shutdown all pending works.
1739 * @ubi: UBI device description object
1740 */
1741 static void shutdown_work(struct ubi_device *ubi)
1742 {
1743 while (!list_empty(&ubi->works)) {
1744 struct ubi_work *wrk;
1745
1746 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1747 list_del(&wrk->list);
1748 wrk->func(ubi, wrk, 1);
1749 ubi->works_count -= 1;
1750 ubi_assert(ubi->works_count >= 0);
1751 }
1752 }
1753
1754 /**
1755 * erase_aeb - erase a PEB given in UBI attach info PEB
1756 * @ubi: UBI device description object
1757 * @aeb: UBI attach info PEB
1758 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1759 */
1760 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1761 {
1762 struct ubi_wl_entry *e;
1763 int err;
1764
1765 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1766 if (!e)
1767 return -ENOMEM;
1768
1769 e->pnum = aeb->pnum;
1770 e->ec = aeb->ec;
1771 ubi->lookuptbl[e->pnum] = e;
1772
1773 if (sync) {
1774 err = ubi_sync_erase(ubi, e, false);
1775 if (err)
1776 goto out_free;
1777
1778 wl_tree_add(e, &ubi->free);
1779 ubi->free_count++;
1780 } else {
1781 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1782 if (err)
1783 goto out_free;
1784 }
1785
1786 return 0;
1787
1788 out_free:
1789 wl_entry_destroy(ubi, e);
1790
1791 return err;
1792 }
1793
1794 /**
1795 * ubi_wl_init - initialize the WL sub-system using attaching information.
1796 * @ubi: UBI device description object
1797 * @ai: attaching information
1798 *
1799 * This function returns zero in case of success, and a negative error code in
1800 * case of failure.
1801 */
1802 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1803 {
1804 int err, i, reserved_pebs, found_pebs = 0;
1805 struct rb_node *rb1, *rb2;
1806 struct ubi_ainf_volume *av;
1807 struct ubi_ainf_peb *aeb, *tmp;
1808 struct ubi_wl_entry *e;
1809
1810 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1811 spin_lock_init(&ubi->wl_lock);
1812 mutex_init(&ubi->move_mutex);
1813 init_rwsem(&ubi->work_sem);
1814 ubi->max_ec = ai->max_ec;
1815 INIT_LIST_HEAD(&ubi->works);
1816
1817 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1818
1819 err = -ENOMEM;
1820 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1821 if (!ubi->lookuptbl)
1822 return err;
1823
1824 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1825 INIT_LIST_HEAD(&ubi->pq[i]);
1826 ubi->pq_head = 0;
1827
1828 ubi->free_count = 0;
1829 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1830 cond_resched();
1831
1832 err = erase_aeb(ubi, aeb, false);
1833 if (err)
1834 goto out_free;
1835
1836 found_pebs++;
1837 }
1838
1839 list_for_each_entry(aeb, &ai->free, u.list) {
1840 cond_resched();
1841
1842 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1843 if (!e) {
1844 err = -ENOMEM;
1845 goto out_free;
1846 }
1847
1848 e->pnum = aeb->pnum;
1849 e->ec = aeb->ec;
1850 ubi_assert(e->ec >= 0);
1851
1852 wl_tree_add(e, &ubi->free);
1853 ubi->free_count++;
1854
1855 ubi->lookuptbl[e->pnum] = e;
1856
1857 found_pebs++;
1858 }
1859
1860 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1861 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1862 cond_resched();
1863
1864 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1865 if (!e) {
1866 err = -ENOMEM;
1867 goto out_free;
1868 }
1869
1870 e->pnum = aeb->pnum;
1871 e->ec = aeb->ec;
1872 ubi->lookuptbl[e->pnum] = e;
1873
1874 if (!aeb->scrub) {
1875 dbg_wl("add PEB %d EC %d to the used tree",
1876 e->pnum, e->ec);
1877 wl_tree_add(e, &ubi->used);
1878 } else {
1879 dbg_wl("add PEB %d EC %d to the scrub tree",
1880 e->pnum, e->ec);
1881 wl_tree_add(e, &ubi->scrub);
1882 }
1883
1884 found_pebs++;
1885 }
1886 }
1887
1888 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1889 cond_resched();
1890
1891 e = ubi_find_fm_block(ubi, aeb->pnum);
1892
1893 if (e) {
1894 ubi_assert(!ubi->lookuptbl[e->pnum]);
1895 ubi->lookuptbl[e->pnum] = e;
1896 } else {
1897 bool sync = false;
1898
1899 /*
1900 * Usually old Fastmap PEBs are scheduled for erasure
1901 * and we don't have to care about them but if we face
1902 * an power cut before scheduling them we need to
1903 * take care of them here.
1904 */
1905 if (ubi->lookuptbl[aeb->pnum])
1906 continue;
1907
1908 /*
1909 * The fastmap update code might not find a free PEB for
1910 * writing the fastmap anchor to and then reuses the
1911 * current fastmap anchor PEB. When this PEB gets erased
1912 * and a power cut happens before it is written again we
1913 * must make sure that the fastmap attach code doesn't
1914 * find any outdated fastmap anchors, hence we erase the
1915 * outdated fastmap anchor PEBs synchronously here.
1916 */
1917 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1918 sync = true;
1919
1920 err = erase_aeb(ubi, aeb, sync);
1921 if (err)
1922 goto out_free;
1923 }
1924
1925 found_pebs++;
1926 }
1927
1928 dbg_wl("found %i PEBs", found_pebs);
1929
1930 ubi_assert(ubi->good_peb_count == found_pebs);
1931
1932 reserved_pebs = WL_RESERVED_PEBS;
1933 ubi_fastmap_init(ubi, &reserved_pebs);
1934
1935 if (ubi->avail_pebs < reserved_pebs) {
1936 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1937 ubi->avail_pebs, reserved_pebs);
1938 if (ubi->corr_peb_count)
1939 ubi_err(ubi, "%d PEBs are corrupted and not used",
1940 ubi->corr_peb_count);
1941 err = -ENOSPC;
1942 goto out_free;
1943 }
1944 ubi->avail_pebs -= reserved_pebs;
1945 ubi->rsvd_pebs += reserved_pebs;
1946
1947 /* Schedule wear-leveling if needed */
1948 err = ensure_wear_leveling(ubi, 0);
1949 if (err)
1950 goto out_free;
1951
1952 #ifdef CONFIG_MTD_UBI_FASTMAP
1953 if (!ubi->ro_mode && !ubi->fm_disabled)
1954 ubi_ensure_anchor_pebs(ubi);
1955 #endif
1956
1957 if (!ubi->wl_reboot_notifier.notifier_call) {
1958 ubi->wl_reboot_notifier.notifier_call = ubi_wl_reboot_notifier;
1959 ubi->wl_reboot_notifier.priority = 1; /* Higher than MTD */
1960 register_reboot_notifier(&ubi->wl_reboot_notifier);
1961 }
1962
1963 return 0;
1964
1965 out_free:
1966 shutdown_work(ubi);
1967 tree_destroy(ubi, &ubi->used);
1968 tree_destroy(ubi, &ubi->free);
1969 tree_destroy(ubi, &ubi->scrub);
1970 kfree(ubi->lookuptbl);
1971 return err;
1972 }
1973
1974 /**
1975 * protection_queue_destroy - destroy the protection queue.
1976 * @ubi: UBI device description object
1977 */
1978 static void protection_queue_destroy(struct ubi_device *ubi)
1979 {
1980 int i;
1981 struct ubi_wl_entry *e, *tmp;
1982
1983 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1984 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1985 list_del(&e->u.list);
1986 wl_entry_destroy(ubi, e);
1987 }
1988 }
1989 }
1990
1991 /**
1992 * ubi_wl_close - close the wear-leveling sub-system.
1993 * @ubi: UBI device description object
1994 */
1995 void ubi_wl_close(struct ubi_device *ubi)
1996 {
1997 dbg_wl("close the WL sub-system");
1998 ubi_fastmap_close(ubi);
1999 shutdown_work(ubi);
2000 protection_queue_destroy(ubi);
2001 tree_destroy(ubi, &ubi->used);
2002 tree_destroy(ubi, &ubi->erroneous);
2003 tree_destroy(ubi, &ubi->free);
2004 tree_destroy(ubi, &ubi->scrub);
2005 kfree(ubi->lookuptbl);
2006 }
2007
2008 static int ubi_wl_reboot_notifier(struct notifier_block *n,
2009 unsigned long state, void *cmd)
2010 {
2011 struct ubi_device *ubi;
2012
2013 ubi = container_of(n, struct ubi_device, wl_reboot_notifier);
2014 ubi_wl_close(ubi);
2015
2016 return NOTIFY_DONE;
2017 }
2018
2019 /**
2020 * self_check_ec - make sure that the erase counter of a PEB is correct.
2021 * @ubi: UBI device description object
2022 * @pnum: the physical eraseblock number to check
2023 * @ec: the erase counter to check
2024 *
2025 * This function returns zero if the erase counter of physical eraseblock @pnum
2026 * is equivalent to @ec, and a negative error code if not or if an error
2027 * occurred.
2028 */
2029 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
2030 {
2031 int err;
2032 long long read_ec;
2033 struct ubi_ec_hdr *ec_hdr;
2034
2035 if (!ubi_dbg_chk_gen(ubi))
2036 return 0;
2037
2038 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
2039 if (!ec_hdr)
2040 return -ENOMEM;
2041
2042 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
2043 if (err && err != UBI_IO_BITFLIPS) {
2044 /* The header does not have to exist */
2045 err = 0;
2046 goto out_free;
2047 }
2048
2049 read_ec = be64_to_cpu(ec_hdr->ec);
2050 if (ec != read_ec && read_ec - ec > 1) {
2051 ubi_err(ubi, "self-check failed for PEB %d", pnum);
2052 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
2053 dump_stack();
2054 err = 1;
2055 } else
2056 err = 0;
2057
2058 out_free:
2059 kfree(ec_hdr);
2060 return err;
2061 }
2062
2063 /**
2064 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
2065 * @ubi: UBI device description object
2066 * @e: the wear-leveling entry to check
2067 * @root: the root of the tree
2068 *
2069 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2070 * is not.
2071 */
2072 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2073 struct ubi_wl_entry *e, struct rb_root *root)
2074 {
2075 if (!ubi_dbg_chk_gen(ubi))
2076 return 0;
2077
2078 if (in_wl_tree(e, root))
2079 return 0;
2080
2081 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2082 e->pnum, e->ec, root);
2083 dump_stack();
2084 return -EINVAL;
2085 }
2086
2087 /**
2088 * self_check_in_pq - check if wear-leveling entry is in the protection
2089 * queue.
2090 * @ubi: UBI device description object
2091 * @e: the wear-leveling entry to check
2092 *
2093 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2094 */
2095 static int self_check_in_pq(const struct ubi_device *ubi,
2096 struct ubi_wl_entry *e)
2097 {
2098 if (!ubi_dbg_chk_gen(ubi))
2099 return 0;
2100
2101 if (in_pq(ubi, e))
2102 return 0;
2103
2104 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2105 e->pnum, e->ec);
2106 dump_stack();
2107 return -EINVAL;
2108 }
2109 #ifndef CONFIG_MTD_UBI_FASTMAP
2110 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2111 {
2112 struct ubi_wl_entry *e;
2113
2114 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0);
2115 self_check_in_wl_tree(ubi, e, &ubi->free);
2116 ubi->free_count--;
2117 ubi_assert(ubi->free_count >= 0);
2118 rb_erase(&e->u.rb, &ubi->free);
2119
2120 return e;
2121 }
2122
2123 /**
2124 * produce_free_peb - produce a free physical eraseblock.
2125 * @ubi: UBI device description object
2126 *
2127 * This function tries to make a free PEB by means of synchronous execution of
2128 * pending works. This may be needed if, for example the background thread is
2129 * disabled. Returns zero in case of success and a negative error code in case
2130 * of failure.
2131 */
2132 static int produce_free_peb(struct ubi_device *ubi)
2133 {
2134 int err;
2135
2136 while (!ubi->free.rb_node && ubi->works_count) {
2137 spin_unlock(&ubi->wl_lock);
2138
2139 dbg_wl("do one work synchronously");
2140 err = do_work(ubi, NULL);
2141
2142 spin_lock(&ubi->wl_lock);
2143 if (err)
2144 return err;
2145 }
2146
2147 return 0;
2148 }
2149
2150 /**
2151 * ubi_wl_get_peb - get a physical eraseblock.
2152 * @ubi: UBI device description object
2153 *
2154 * This function returns a physical eraseblock in case of success and a
2155 * negative error code in case of failure.
2156 * Returns with ubi->fm_eba_sem held in read mode!
2157 */
2158 int ubi_wl_get_peb(struct ubi_device *ubi)
2159 {
2160 int err;
2161 struct ubi_wl_entry *e;
2162
2163 retry:
2164 down_read(&ubi->fm_eba_sem);
2165 spin_lock(&ubi->wl_lock);
2166 if (!ubi->free.rb_node) {
2167 if (ubi->works_count == 0) {
2168 ubi_err(ubi, "no free eraseblocks");
2169 ubi_assert(list_empty(&ubi->works));
2170 spin_unlock(&ubi->wl_lock);
2171 return -ENOSPC;
2172 }
2173
2174 err = produce_free_peb(ubi);
2175 if (err < 0) {
2176 spin_unlock(&ubi->wl_lock);
2177 return err;
2178 }
2179 spin_unlock(&ubi->wl_lock);
2180 up_read(&ubi->fm_eba_sem);
2181 goto retry;
2182
2183 }
2184 e = wl_get_wle(ubi);
2185 prot_queue_add(ubi, e);
2186 spin_unlock(&ubi->wl_lock);
2187
2188 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2189 ubi->peb_size - ubi->vid_hdr_aloffset);
2190 if (err) {
2191 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2192 return err;
2193 }
2194
2195 return e->pnum;
2196 }
2197 #else
2198 #include "fastmap-wl.c"
2199 #endif
2200