xref: /linux/arch/arm64/include/asm/pgtable.h (revision 403d1338a4a59cfebb4ded53fa35fbd5119f36b1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2012 ARM Ltd.
4  */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7 
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10 
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16 
17 /*
18  * VMALLOC range.
19  *
20  * VMALLOC_START: beginning of the kernel vmalloc space
21  * VMALLOC_END: extends to the available space below vmemmap
22  */
23 #define VMALLOC_START		(MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END		(VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES	((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END		(VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30 
31 #define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32 
33 #ifndef __ASSEMBLY__
34 
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42 
emit_pte_barriers(void)43 static inline void emit_pte_barriers(void)
44 {
45 	/*
46 	 * These barriers are emitted under certain conditions after a pte entry
47 	 * was modified (see e.g. __set_pte_complete()). The dsb makes the store
48 	 * visible to the table walker. The isb ensures that any previous
49 	 * speculative "invalid translation" marker that is in the CPU's
50 	 * pipeline gets cleared, so that any access to that address after
51 	 * setting the pte to valid won't cause a spurious fault. If the thread
52 	 * gets preempted after storing to the pgtable but before emitting these
53 	 * barriers, __switch_to() emits a dsb which ensure the walker gets to
54 	 * see the store. There is no guarantee of an isb being issued though.
55 	 * This is safe because it will still get issued (albeit on a
56 	 * potentially different CPU) when the thread starts running again,
57 	 * before any access to the address.
58 	 */
59 	dsb(ishst);
60 	isb();
61 }
62 
queue_pte_barriers(void)63 static inline void queue_pte_barriers(void)
64 {
65 	unsigned long flags;
66 
67 	if (in_interrupt()) {
68 		emit_pte_barriers();
69 		return;
70 	}
71 
72 	flags = read_thread_flags();
73 
74 	if (flags & BIT(TIF_LAZY_MMU)) {
75 		/* Avoid the atomic op if already set. */
76 		if (!(flags & BIT(TIF_LAZY_MMU_PENDING)))
77 			set_thread_flag(TIF_LAZY_MMU_PENDING);
78 	} else {
79 		emit_pte_barriers();
80 	}
81 }
82 
83 #define  __HAVE_ARCH_ENTER_LAZY_MMU_MODE
arch_enter_lazy_mmu_mode(void)84 static inline void arch_enter_lazy_mmu_mode(void)
85 {
86 	/*
87 	 * lazy_mmu_mode is not supposed to permit nesting. But in practice this
88 	 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation
89 	 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change
90 	 * permissions on the linear map with apply_to_page_range(), which
91 	 * re-enters lazy_mmu_mode. So we tolerate nesting in our
92 	 * implementation. The first call to arch_leave_lazy_mmu_mode() will
93 	 * flush and clear the flag such that the remainder of the work in the
94 	 * outer nest behaves as if outside of lazy mmu mode. This is safe and
95 	 * keeps tracking simple.
96 	 */
97 
98 	if (in_interrupt())
99 		return;
100 
101 	set_thread_flag(TIF_LAZY_MMU);
102 }
103 
arch_flush_lazy_mmu_mode(void)104 static inline void arch_flush_lazy_mmu_mode(void)
105 {
106 	if (in_interrupt())
107 		return;
108 
109 	if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING))
110 		emit_pte_barriers();
111 }
112 
arch_leave_lazy_mmu_mode(void)113 static inline void arch_leave_lazy_mmu_mode(void)
114 {
115 	if (in_interrupt())
116 		return;
117 
118 	arch_flush_lazy_mmu_mode();
119 	clear_thread_flag(TIF_LAZY_MMU);
120 }
121 
122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
124 
125 /* Set stride and tlb_level in flush_*_tlb_range */
126 #define flush_pmd_tlb_range(vma, addr, end)	\
127 	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
128 #define flush_pud_tlb_range(vma, addr, end)	\
129 	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
131 
132 /*
133  * Outside of a few very special situations (e.g. hibernation), we always
134  * use broadcast TLB invalidation instructions, therefore a spurious page
135  * fault on one CPU which has been handled concurrently by another CPU
136  * does not need to perform additional invalidation.
137  */
138 #define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
139 
140 /*
141  * ZERO_PAGE is a global shared page that is always zero: used
142  * for zero-mapped memory areas etc..
143  */
144 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
145 #define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
146 
147 #define pte_ERROR(e)	\
148 	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
149 
150 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)151 static inline phys_addr_t __pte_to_phys(pte_t pte)
152 {
153 	pte_val(pte) &= ~PTE_MAYBE_SHARED;
154 	return (pte_val(pte) & PTE_ADDR_LOW) |
155 		((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
156 }
__phys_to_pte_val(phys_addr_t phys)157 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
158 {
159 	return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
160 }
161 #else
__pte_to_phys(pte_t pte)162 static inline phys_addr_t __pte_to_phys(pte_t pte)
163 {
164 	return pte_val(pte) & PTE_ADDR_LOW;
165 }
166 
__phys_to_pte_val(phys_addr_t phys)167 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
168 {
169 	return phys;
170 }
171 #endif
172 
173 #define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
174 #define pfn_pte(pfn,prot)	\
175 	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
176 
177 #define pte_none(pte)		(!pte_val(pte))
178 #define __pte_clear(mm, addr, ptep) \
179 				__set_pte(ptep, __pte(0))
180 #define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
181 
182 /*
183  * The following only work if pte_present(). Undefined behaviour otherwise.
184  */
185 #define pte_present(pte)	(pte_valid(pte) || pte_present_invalid(pte))
186 #define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
187 #define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
188 #define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
189 #define pte_rdonly(pte)		(!!(pte_val(pte) & PTE_RDONLY))
190 #define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
191 #define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
192 #define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
193 #define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
194 #define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
195 				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
196 
197 #define pte_cont_addr_end(addr, end)						\
198 ({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
199 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
200 })
201 
202 #define pmd_cont_addr_end(addr, end)						\
203 ({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
204 	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
205 })
206 
207 #define pte_hw_dirty(pte)	(pte_write(pte) && !pte_rdonly(pte))
208 #define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
209 #define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
210 
211 #define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
212 #define pte_present_invalid(pte) \
213 	((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
214 /*
215  * Execute-only user mappings do not have the PTE_USER bit set. All valid
216  * kernel mappings have the PTE_UXN bit set.
217  */
218 #define pte_valid_not_user(pte) \
219 	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
220 /*
221  * Returns true if the pte is valid and has the contiguous bit set.
222  */
223 #define pte_valid_cont(pte)	(pte_valid(pte) && pte_cont(pte))
224 /*
225  * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
226  * so that we don't erroneously return false for pages that have been
227  * remapped as PROT_NONE but are yet to be flushed from the TLB.
228  * Note that we can't make any assumptions based on the state of the access
229  * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
230  * TLB.
231  */
232 #define pte_accessible(mm, pte)	\
233 	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
234 
por_el0_allows_pkey(u8 pkey,bool write,bool execute)235 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
236 {
237 	u64 por;
238 
239 	if (!system_supports_poe())
240 		return true;
241 
242 	por = read_sysreg_s(SYS_POR_EL0);
243 
244 	if (write)
245 		return por_elx_allows_write(por, pkey);
246 
247 	if (execute)
248 		return por_elx_allows_exec(por, pkey);
249 
250 	return por_elx_allows_read(por, pkey);
251 }
252 
253 /*
254  * p??_access_permitted() is true for valid user mappings (PTE_USER
255  * bit set, subject to the write permission check). For execute-only
256  * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
257  * not set) must return false. PROT_NONE mappings do not have the
258  * PTE_VALID bit set.
259  */
260 #define pte_access_permitted_no_overlay(pte, write) \
261 	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
262 #define pte_access_permitted(pte, write) \
263 	(pte_access_permitted_no_overlay(pte, write) && \
264 	por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
265 #define pmd_access_permitted(pmd, write) \
266 	(pte_access_permitted(pmd_pte(pmd), (write)))
267 #define pud_access_permitted(pud, write) \
268 	(pte_access_permitted(pud_pte(pud), (write)))
269 
clear_pte_bit(pte_t pte,pgprot_t prot)270 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
271 {
272 	pte_val(pte) &= ~pgprot_val(prot);
273 	return pte;
274 }
275 
set_pte_bit(pte_t pte,pgprot_t prot)276 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
277 {
278 	pte_val(pte) |= pgprot_val(prot);
279 	return pte;
280 }
281 
clear_pmd_bit(pmd_t pmd,pgprot_t prot)282 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
283 {
284 	pmd_val(pmd) &= ~pgprot_val(prot);
285 	return pmd;
286 }
287 
set_pmd_bit(pmd_t pmd,pgprot_t prot)288 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
289 {
290 	pmd_val(pmd) |= pgprot_val(prot);
291 	return pmd;
292 }
293 
pte_mkwrite_novma(pte_t pte)294 static inline pte_t pte_mkwrite_novma(pte_t pte)
295 {
296 	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
297 	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
298 	return pte;
299 }
300 
pte_mkclean(pte_t pte)301 static inline pte_t pte_mkclean(pte_t pte)
302 {
303 	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
304 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
305 
306 	return pte;
307 }
308 
pte_mkdirty(pte_t pte)309 static inline pte_t pte_mkdirty(pte_t pte)
310 {
311 	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
312 
313 	if (pte_write(pte))
314 		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
315 
316 	return pte;
317 }
318 
pte_wrprotect(pte_t pte)319 static inline pte_t pte_wrprotect(pte_t pte)
320 {
321 	/*
322 	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
323 	 * clear), set the PTE_DIRTY bit.
324 	 */
325 	if (pte_hw_dirty(pte))
326 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
327 
328 	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
329 	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
330 	return pte;
331 }
332 
pte_mkold(pte_t pte)333 static inline pte_t pte_mkold(pte_t pte)
334 {
335 	return clear_pte_bit(pte, __pgprot(PTE_AF));
336 }
337 
pte_mkyoung(pte_t pte)338 static inline pte_t pte_mkyoung(pte_t pte)
339 {
340 	return set_pte_bit(pte, __pgprot(PTE_AF));
341 }
342 
pte_mkspecial(pte_t pte)343 static inline pte_t pte_mkspecial(pte_t pte)
344 {
345 	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
346 }
347 
pte_mkcont(pte_t pte)348 static inline pte_t pte_mkcont(pte_t pte)
349 {
350 	return set_pte_bit(pte, __pgprot(PTE_CONT));
351 }
352 
pte_mknoncont(pte_t pte)353 static inline pte_t pte_mknoncont(pte_t pte)
354 {
355 	return clear_pte_bit(pte, __pgprot(PTE_CONT));
356 }
357 
pte_mkvalid(pte_t pte)358 static inline pte_t pte_mkvalid(pte_t pte)
359 {
360 	return set_pte_bit(pte, __pgprot(PTE_VALID));
361 }
362 
pte_mkinvalid(pte_t pte)363 static inline pte_t pte_mkinvalid(pte_t pte)
364 {
365 	pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
366 	pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
367 	return pte;
368 }
369 
pmd_mkcont(pmd_t pmd)370 static inline pmd_t pmd_mkcont(pmd_t pmd)
371 {
372 	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
373 }
374 
pte_mkdevmap(pte_t pte)375 static inline pte_t pte_mkdevmap(pte_t pte)
376 {
377 	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
378 }
379 
380 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)381 static inline int pte_uffd_wp(pte_t pte)
382 {
383 	return !!(pte_val(pte) & PTE_UFFD_WP);
384 }
385 
pte_mkuffd_wp(pte_t pte)386 static inline pte_t pte_mkuffd_wp(pte_t pte)
387 {
388 	return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
389 }
390 
pte_clear_uffd_wp(pte_t pte)391 static inline pte_t pte_clear_uffd_wp(pte_t pte)
392 {
393 	return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
394 }
395 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
396 
__set_pte_nosync(pte_t * ptep,pte_t pte)397 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
398 {
399 	WRITE_ONCE(*ptep, pte);
400 }
401 
__set_pte_complete(pte_t pte)402 static inline void __set_pte_complete(pte_t pte)
403 {
404 	/*
405 	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
406 	 * has the necessary barriers.
407 	 */
408 	if (pte_valid_not_user(pte))
409 		queue_pte_barriers();
410 }
411 
__set_pte(pte_t * ptep,pte_t pte)412 static inline void __set_pte(pte_t *ptep, pte_t pte)
413 {
414 	__set_pte_nosync(ptep, pte);
415 	__set_pte_complete(pte);
416 }
417 
__ptep_get(pte_t * ptep)418 static inline pte_t __ptep_get(pte_t *ptep)
419 {
420 	return READ_ONCE(*ptep);
421 }
422 
423 extern void __sync_icache_dcache(pte_t pteval);
424 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
425 
426 /*
427  * PTE bits configuration in the presence of hardware Dirty Bit Management
428  * (PTE_WRITE == PTE_DBM):
429  *
430  * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
431  *   0      0      |   1           0          0
432  *   0      1      |   1           1          0
433  *   1      0      |   1           0          1
434  *   1      1      |   0           1          x
435  *
436  * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
437  * the page fault mechanism. Checking the dirty status of a pte becomes:
438  *
439  *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
440  */
441 
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)442 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
443 					   pte_t pte)
444 {
445 	pte_t old_pte;
446 
447 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
448 		return;
449 
450 	old_pte = __ptep_get(ptep);
451 
452 	if (!pte_valid(old_pte) || !pte_valid(pte))
453 		return;
454 	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
455 		return;
456 
457 	/*
458 	 * Check for potential race with hardware updates of the pte
459 	 * (__ptep_set_access_flags safely changes valid ptes without going
460 	 * through an invalid entry).
461 	 */
462 	VM_WARN_ONCE(!pte_young(pte),
463 		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
464 		     __func__, pte_val(old_pte), pte_val(pte));
465 	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
466 		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
467 		     __func__, pte_val(old_pte), pte_val(pte));
468 	VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
469 		     "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
470 		     __func__, pte_val(old_pte), pte_val(pte));
471 }
472 
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)473 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
474 {
475 	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
476 		__sync_icache_dcache(pte);
477 
478 	/*
479 	 * If the PTE would provide user space access to the tags associated
480 	 * with it then ensure that the MTE tags are synchronised.  Although
481 	 * pte_access_permitted_no_overlay() returns false for exec only
482 	 * mappings, they don't expose tags (instruction fetches don't check
483 	 * tags).
484 	 */
485 	if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
486 	    !pte_special(pte) && pte_tagged(pte))
487 		mte_sync_tags(pte, nr_pages);
488 }
489 
490 /*
491  * Select all bits except the pfn
492  */
493 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)494 static inline pgprot_t pte_pgprot(pte_t pte)
495 {
496 	unsigned long pfn = pte_pfn(pte);
497 
498 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
499 }
500 
501 #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)502 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
503 {
504 	return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
505 }
506 
507 /*
508  * Hugetlb definitions.
509  */
510 #define HUGE_MAX_HSTATE		4
511 #define HPAGE_SHIFT		PMD_SHIFT
512 #define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
513 #define HPAGE_MASK		(~(HPAGE_SIZE - 1))
514 #define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
515 
pgd_pte(pgd_t pgd)516 static inline pte_t pgd_pte(pgd_t pgd)
517 {
518 	return __pte(pgd_val(pgd));
519 }
520 
p4d_pte(p4d_t p4d)521 static inline pte_t p4d_pte(p4d_t p4d)
522 {
523 	return __pte(p4d_val(p4d));
524 }
525 
pud_pte(pud_t pud)526 static inline pte_t pud_pte(pud_t pud)
527 {
528 	return __pte(pud_val(pud));
529 }
530 
pte_pud(pte_t pte)531 static inline pud_t pte_pud(pte_t pte)
532 {
533 	return __pud(pte_val(pte));
534 }
535 
pud_pmd(pud_t pud)536 static inline pmd_t pud_pmd(pud_t pud)
537 {
538 	return __pmd(pud_val(pud));
539 }
540 
pmd_pte(pmd_t pmd)541 static inline pte_t pmd_pte(pmd_t pmd)
542 {
543 	return __pte(pmd_val(pmd));
544 }
545 
pte_pmd(pte_t pte)546 static inline pmd_t pte_pmd(pte_t pte)
547 {
548 	return __pmd(pte_val(pte));
549 }
550 
mk_pud_sect_prot(pgprot_t prot)551 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
552 {
553 	return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT);
554 }
555 
mk_pmd_sect_prot(pgprot_t prot)556 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
557 {
558 	return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
559 }
560 
pte_swp_mkexclusive(pte_t pte)561 static inline pte_t pte_swp_mkexclusive(pte_t pte)
562 {
563 	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
564 }
565 
pte_swp_exclusive(pte_t pte)566 static inline bool pte_swp_exclusive(pte_t pte)
567 {
568 	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
569 }
570 
pte_swp_clear_exclusive(pte_t pte)571 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
572 {
573 	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
574 }
575 
576 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)577 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
578 {
579 	return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
580 }
581 
pte_swp_uffd_wp(pte_t pte)582 static inline int pte_swp_uffd_wp(pte_t pte)
583 {
584 	return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
585 }
586 
pte_swp_clear_uffd_wp(pte_t pte)587 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
588 {
589 	return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
590 }
591 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
592 
593 #ifdef CONFIG_NUMA_BALANCING
594 /*
595  * See the comment in include/linux/pgtable.h
596  */
pte_protnone(pte_t pte)597 static inline int pte_protnone(pte_t pte)
598 {
599 	/*
600 	 * pte_present_invalid() tells us that the pte is invalid from HW
601 	 * perspective but present from SW perspective, so the fields are to be
602 	 * interpretted as per the HW layout. The second 2 checks are the unique
603 	 * encoding that we use for PROT_NONE. It is insufficient to only use
604 	 * the first check because we share the same encoding scheme with pmds
605 	 * which support pmd_mkinvalid(), so can be present-invalid without
606 	 * being PROT_NONE.
607 	 */
608 	return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
609 }
610 
pmd_protnone(pmd_t pmd)611 static inline int pmd_protnone(pmd_t pmd)
612 {
613 	return pte_protnone(pmd_pte(pmd));
614 }
615 #endif
616 
617 #define pmd_present(pmd)	pte_present(pmd_pte(pmd))
618 #define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
619 #define pmd_young(pmd)		pte_young(pmd_pte(pmd))
620 #define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
621 #define pmd_user(pmd)		pte_user(pmd_pte(pmd))
622 #define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
623 #define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
624 #define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
625 #define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
626 #define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
627 #define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
628 #define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
629 #define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
630 #define pmd_mkinvalid(pmd)	pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
631 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
632 #define pmd_uffd_wp(pmd)	pte_uffd_wp(pmd_pte(pmd))
633 #define pmd_mkuffd_wp(pmd)	pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
634 #define pmd_clear_uffd_wp(pmd)	pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
635 #define pmd_swp_uffd_wp(pmd)	pte_swp_uffd_wp(pmd_pte(pmd))
636 #define pmd_swp_mkuffd_wp(pmd)	pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
637 #define pmd_swp_clear_uffd_wp(pmd) \
638 				pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
639 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
640 
641 #define pmd_write(pmd)		pte_write(pmd_pte(pmd))
642 
pmd_mkhuge(pmd_t pmd)643 static inline pmd_t pmd_mkhuge(pmd_t pmd)
644 {
645 	/*
646 	 * It's possible that the pmd is present-invalid on entry
647 	 * and in that case it needs to remain present-invalid on
648 	 * exit. So ensure the VALID bit does not get modified.
649 	 */
650 	pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID;
651 	pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID;
652 
653 	return __pmd((pmd_val(pmd) & ~mask) | val);
654 }
655 
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
657 #define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
658 #endif
pmd_mkdevmap(pmd_t pmd)659 static inline pmd_t pmd_mkdevmap(pmd_t pmd)
660 {
661 	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
662 }
663 
664 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
665 #define pmd_special(pte)	(!!((pmd_val(pte) & PTE_SPECIAL)))
pmd_mkspecial(pmd_t pmd)666 static inline pmd_t pmd_mkspecial(pmd_t pmd)
667 {
668 	return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
669 }
670 #endif
671 
672 #define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
673 #define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
674 #define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
675 #define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
676 
677 #define pud_young(pud)		pte_young(pud_pte(pud))
678 #define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
679 #define pud_write(pud)		pte_write(pud_pte(pud))
680 
pud_mkhuge(pud_t pud)681 static inline pud_t pud_mkhuge(pud_t pud)
682 {
683 	/*
684 	 * It's possible that the pud is present-invalid on entry
685 	 * and in that case it needs to remain present-invalid on
686 	 * exit. So ensure the VALID bit does not get modified.
687 	 */
688 	pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID;
689 	pudval_t val = PUD_TYPE_SECT & ~PTE_VALID;
690 
691 	return __pud((pud_val(pud) & ~mask) | val);
692 }
693 
694 #define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
695 #define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
696 #define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
697 #define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
698 
699 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)700 static inline pgprot_t pmd_pgprot(pmd_t pmd)
701 {
702 	unsigned long pfn = pmd_pfn(pmd);
703 
704 	return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
705 }
706 
707 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)708 static inline pgprot_t pud_pgprot(pud_t pud)
709 {
710 	unsigned long pfn = pud_pfn(pud);
711 
712 	return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
713 }
714 
__set_ptes_anysz(struct mm_struct * mm,pte_t * ptep,pte_t pte,unsigned int nr,unsigned long pgsize)715 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep,
716 				    pte_t pte, unsigned int nr,
717 				    unsigned long pgsize)
718 {
719 	unsigned long stride = pgsize >> PAGE_SHIFT;
720 
721 	switch (pgsize) {
722 	case PAGE_SIZE:
723 		page_table_check_ptes_set(mm, ptep, pte, nr);
724 		break;
725 	case PMD_SIZE:
726 		page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr);
727 		break;
728 #ifndef __PAGETABLE_PMD_FOLDED
729 	case PUD_SIZE:
730 		page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr);
731 		break;
732 #endif
733 	default:
734 		VM_WARN_ON(1);
735 	}
736 
737 	__sync_cache_and_tags(pte, nr * stride);
738 
739 	for (;;) {
740 		__check_safe_pte_update(mm, ptep, pte);
741 		__set_pte_nosync(ptep, pte);
742 		if (--nr == 0)
743 			break;
744 		ptep++;
745 		pte = pte_advance_pfn(pte, stride);
746 	}
747 
748 	__set_pte_complete(pte);
749 }
750 
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)751 static inline void __set_ptes(struct mm_struct *mm,
752 			      unsigned long __always_unused addr,
753 			      pte_t *ptep, pte_t pte, unsigned int nr)
754 {
755 	__set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE);
756 }
757 
__set_pmds(struct mm_struct * mm,unsigned long __always_unused addr,pmd_t * pmdp,pmd_t pmd,unsigned int nr)758 static inline void __set_pmds(struct mm_struct *mm,
759 			      unsigned long __always_unused addr,
760 			      pmd_t *pmdp, pmd_t pmd, unsigned int nr)
761 {
762 	__set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE);
763 }
764 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1)
765 
__set_puds(struct mm_struct * mm,unsigned long __always_unused addr,pud_t * pudp,pud_t pud,unsigned int nr)766 static inline void __set_puds(struct mm_struct *mm,
767 			      unsigned long __always_unused addr,
768 			      pud_t *pudp, pud_t pud, unsigned int nr)
769 {
770 	__set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE);
771 }
772 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1)
773 
774 #define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
775 #define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
776 
777 #define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
778 #define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
779 
780 #define __pgprot_modify(prot,mask,bits) \
781 	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
782 
783 #define pgprot_nx(prot) \
784 	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
785 
786 #define pgprot_decrypted(prot) \
787 	__pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
788 #define pgprot_encrypted(prot) \
789 	__pgprot_modify(prot, PROT_NS_SHARED, 0)
790 
791 /*
792  * Mark the prot value as uncacheable and unbufferable.
793  */
794 #define pgprot_noncached(prot) \
795 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
796 #define pgprot_writecombine(prot) \
797 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
798 #define pgprot_device(prot) \
799 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
800 #define pgprot_tagged(prot) \
801 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
802 #define pgprot_mhp	pgprot_tagged
803 /*
804  * DMA allocations for non-coherent devices use what the Arm architecture calls
805  * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
806  * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
807  * is intended for MMIO and thus forbids speculation, preserves access size,
808  * requires strict alignment and can also force write responses to come from the
809  * endpoint.
810  */
811 #define pgprot_dmacoherent(prot) \
812 	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
813 			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
814 
815 #define __HAVE_PHYS_MEM_ACCESS_PROT
816 struct file;
817 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
818 				     unsigned long size, pgprot_t vma_prot);
819 
820 #define pmd_none(pmd)		(!pmd_val(pmd))
821 
822 #define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
823 				 PMD_TYPE_TABLE)
824 #define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
825 				 PMD_TYPE_SECT)
826 #define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
827 #define pmd_bad(pmd)		(!pmd_table(pmd))
828 
829 #define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
830 #define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
831 
832 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)833 static inline int pmd_trans_huge(pmd_t pmd)
834 {
835 	/*
836 	 * If pmd is present-invalid, pmd_table() won't detect it
837 	 * as a table, so force the valid bit for the comparison.
838 	 */
839 	return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
840 }
841 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
842 
843 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)844 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)845 static inline bool pud_table(pud_t pud) { return true; }
846 #else
847 #define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
848 				 PUD_TYPE_SECT)
849 #define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
850 				 PUD_TYPE_TABLE)
851 #endif
852 
853 extern pgd_t swapper_pg_dir[];
854 extern pgd_t idmap_pg_dir[];
855 extern pgd_t tramp_pg_dir[];
856 extern pgd_t reserved_pg_dir[];
857 
858 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
859 
in_swapper_pgdir(void * addr)860 static inline bool in_swapper_pgdir(void *addr)
861 {
862 	return ((unsigned long)addr & PAGE_MASK) ==
863 	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
864 }
865 
set_pmd(pmd_t * pmdp,pmd_t pmd)866 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
867 {
868 #ifdef __PAGETABLE_PMD_FOLDED
869 	if (in_swapper_pgdir(pmdp)) {
870 		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
871 		return;
872 	}
873 #endif /* __PAGETABLE_PMD_FOLDED */
874 
875 	WRITE_ONCE(*pmdp, pmd);
876 
877 	if (pmd_valid(pmd))
878 		queue_pte_barriers();
879 }
880 
pmd_clear(pmd_t * pmdp)881 static inline void pmd_clear(pmd_t *pmdp)
882 {
883 	set_pmd(pmdp, __pmd(0));
884 }
885 
pmd_page_paddr(pmd_t pmd)886 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
887 {
888 	return __pmd_to_phys(pmd);
889 }
890 
pmd_page_vaddr(pmd_t pmd)891 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
892 {
893 	return (unsigned long)__va(pmd_page_paddr(pmd));
894 }
895 
896 /* Find an entry in the third-level page table. */
897 #define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
898 
899 #define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
900 #define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
901 #define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
902 
903 #define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
904 
905 /* use ONLY for statically allocated translation tables */
906 #define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
907 
908 #if CONFIG_PGTABLE_LEVELS > 2
909 
910 #define pmd_ERROR(e)	\
911 	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
912 
913 #define pud_none(pud)		(!pud_val(pud))
914 #define pud_bad(pud)		((pud_val(pud) & PUD_TYPE_MASK) != \
915 				 PUD_TYPE_TABLE)
916 #define pud_present(pud)	pte_present(pud_pte(pud))
917 #ifndef __PAGETABLE_PMD_FOLDED
918 #define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
919 #else
920 #define pud_leaf(pud)		false
921 #endif
922 #define pud_valid(pud)		pte_valid(pud_pte(pud))
923 #define pud_user(pud)		pte_user(pud_pte(pud))
924 #define pud_user_exec(pud)	pte_user_exec(pud_pte(pud))
925 
926 static inline bool pgtable_l4_enabled(void);
927 
set_pud(pud_t * pudp,pud_t pud)928 static inline void set_pud(pud_t *pudp, pud_t pud)
929 {
930 	if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
931 		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
932 		return;
933 	}
934 
935 	WRITE_ONCE(*pudp, pud);
936 
937 	if (pud_valid(pud))
938 		queue_pte_barriers();
939 }
940 
pud_clear(pud_t * pudp)941 static inline void pud_clear(pud_t *pudp)
942 {
943 	set_pud(pudp, __pud(0));
944 }
945 
pud_page_paddr(pud_t pud)946 static inline phys_addr_t pud_page_paddr(pud_t pud)
947 {
948 	return __pud_to_phys(pud);
949 }
950 
pud_pgtable(pud_t pud)951 static inline pmd_t *pud_pgtable(pud_t pud)
952 {
953 	return (pmd_t *)__va(pud_page_paddr(pud));
954 }
955 
956 /* Find an entry in the second-level page table. */
957 #define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
958 
959 #define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
960 #define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
961 #define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
962 
963 #define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
964 
965 /* use ONLY for statically allocated translation tables */
966 #define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
967 
968 #else
969 
970 #define pud_valid(pud)		false
971 #define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
972 #define pud_user_exec(pud)	pud_user(pud) /* Always 0 with folding */
973 
974 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
975 #define pmd_set_fixmap(addr)		NULL
976 #define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
977 #define pmd_clear_fixmap()
978 
979 #define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
980 
981 #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
982 
983 #if CONFIG_PGTABLE_LEVELS > 3
984 
pgtable_l4_enabled(void)985 static __always_inline bool pgtable_l4_enabled(void)
986 {
987 	if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
988 		return true;
989 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
990 		return vabits_actual == VA_BITS;
991 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
992 }
993 
mm_pud_folded(const struct mm_struct * mm)994 static inline bool mm_pud_folded(const struct mm_struct *mm)
995 {
996 	return !pgtable_l4_enabled();
997 }
998 #define mm_pud_folded  mm_pud_folded
999 
1000 #define pud_ERROR(e)	\
1001 	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
1002 
1003 #define p4d_none(p4d)		(pgtable_l4_enabled() && !p4d_val(p4d))
1004 #define p4d_bad(p4d)		(pgtable_l4_enabled() && \
1005 				((p4d_val(p4d) & P4D_TYPE_MASK) != \
1006 				 P4D_TYPE_TABLE))
1007 #define p4d_present(p4d)	(!p4d_none(p4d))
1008 
set_p4d(p4d_t * p4dp,p4d_t p4d)1009 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1010 {
1011 	if (in_swapper_pgdir(p4dp)) {
1012 		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
1013 		return;
1014 	}
1015 
1016 	WRITE_ONCE(*p4dp, p4d);
1017 	queue_pte_barriers();
1018 }
1019 
p4d_clear(p4d_t * p4dp)1020 static inline void p4d_clear(p4d_t *p4dp)
1021 {
1022 	if (pgtable_l4_enabled())
1023 		set_p4d(p4dp, __p4d(0));
1024 }
1025 
p4d_page_paddr(p4d_t p4d)1026 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
1027 {
1028 	return __p4d_to_phys(p4d);
1029 }
1030 
1031 #define pud_index(addr)		(((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
1032 
p4d_to_folded_pud(p4d_t * p4dp,unsigned long addr)1033 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
1034 {
1035 	/* Ensure that 'p4dp' indexes a page table according to 'addr' */
1036 	VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
1037 
1038 	return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
1039 }
1040 
p4d_pgtable(p4d_t p4d)1041 static inline pud_t *p4d_pgtable(p4d_t p4d)
1042 {
1043 	return (pud_t *)__va(p4d_page_paddr(p4d));
1044 }
1045 
pud_offset_phys(p4d_t * p4dp,unsigned long addr)1046 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
1047 {
1048 	BUG_ON(!pgtable_l4_enabled());
1049 
1050 	return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
1051 }
1052 
1053 static inline
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long addr)1054 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
1055 {
1056 	if (!pgtable_l4_enabled())
1057 		return p4d_to_folded_pud(p4dp, addr);
1058 	return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
1059 }
1060 #define pud_offset_lockless pud_offset_lockless
1061 
pud_offset(p4d_t * p4dp,unsigned long addr)1062 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
1063 {
1064 	return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
1065 }
1066 #define pud_offset	pud_offset
1067 
pud_set_fixmap(unsigned long addr)1068 static inline pud_t *pud_set_fixmap(unsigned long addr)
1069 {
1070 	if (!pgtable_l4_enabled())
1071 		return NULL;
1072 	return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
1073 }
1074 
pud_set_fixmap_offset(p4d_t * p4dp,unsigned long addr)1075 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
1076 {
1077 	if (!pgtable_l4_enabled())
1078 		return p4d_to_folded_pud(p4dp, addr);
1079 	return pud_set_fixmap(pud_offset_phys(p4dp, addr));
1080 }
1081 
pud_clear_fixmap(void)1082 static inline void pud_clear_fixmap(void)
1083 {
1084 	if (pgtable_l4_enabled())
1085 		clear_fixmap(FIX_PUD);
1086 }
1087 
1088 /* use ONLY for statically allocated translation tables */
pud_offset_kimg(p4d_t * p4dp,u64 addr)1089 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
1090 {
1091 	if (!pgtable_l4_enabled())
1092 		return p4d_to_folded_pud(p4dp, addr);
1093 	return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
1094 }
1095 
1096 #define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
1097 
1098 #else
1099 
pgtable_l4_enabled(void)1100 static inline bool pgtable_l4_enabled(void) { return false; }
1101 
1102 #define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
1103 
1104 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
1105 #define pud_set_fixmap(addr)		NULL
1106 #define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
1107 #define pud_clear_fixmap()
1108 
1109 #define pud_offset_kimg(dir,addr)	((pud_t *)dir)
1110 
1111 #endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1112 
1113 #if CONFIG_PGTABLE_LEVELS > 4
1114 
pgtable_l5_enabled(void)1115 static __always_inline bool pgtable_l5_enabled(void)
1116 {
1117 	if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1118 		return vabits_actual == VA_BITS;
1119 	return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1120 }
1121 
mm_p4d_folded(const struct mm_struct * mm)1122 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1123 {
1124 	return !pgtable_l5_enabled();
1125 }
1126 #define mm_p4d_folded  mm_p4d_folded
1127 
1128 #define p4d_ERROR(e)	\
1129 	pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1130 
1131 #define pgd_none(pgd)		(pgtable_l5_enabled() && !pgd_val(pgd))
1132 #define pgd_bad(pgd)		(pgtable_l5_enabled() && \
1133 				((pgd_val(pgd) & PGD_TYPE_MASK) != \
1134 				 PGD_TYPE_TABLE))
1135 #define pgd_present(pgd)	(!pgd_none(pgd))
1136 
set_pgd(pgd_t * pgdp,pgd_t pgd)1137 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1138 {
1139 	if (in_swapper_pgdir(pgdp)) {
1140 		set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1141 		return;
1142 	}
1143 
1144 	WRITE_ONCE(*pgdp, pgd);
1145 	queue_pte_barriers();
1146 }
1147 
pgd_clear(pgd_t * pgdp)1148 static inline void pgd_clear(pgd_t *pgdp)
1149 {
1150 	if (pgtable_l5_enabled())
1151 		set_pgd(pgdp, __pgd(0));
1152 }
1153 
pgd_page_paddr(pgd_t pgd)1154 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1155 {
1156 	return __pgd_to_phys(pgd);
1157 }
1158 
1159 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1160 
pgd_to_folded_p4d(pgd_t * pgdp,unsigned long addr)1161 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1162 {
1163 	/* Ensure that 'pgdp' indexes a page table according to 'addr' */
1164 	VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1165 
1166 	return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1167 }
1168 
p4d_offset_phys(pgd_t * pgdp,unsigned long addr)1169 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1170 {
1171 	BUG_ON(!pgtable_l5_enabled());
1172 
1173 	return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1174 }
1175 
1176 static inline
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1177 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1178 {
1179 	if (!pgtable_l5_enabled())
1180 		return pgd_to_folded_p4d(pgdp, addr);
1181 	return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1182 }
1183 #define p4d_offset_lockless p4d_offset_lockless
1184 
p4d_offset(pgd_t * pgdp,unsigned long addr)1185 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1186 {
1187 	return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1188 }
1189 
p4d_set_fixmap(unsigned long addr)1190 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1191 {
1192 	if (!pgtable_l5_enabled())
1193 		return NULL;
1194 	return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1195 }
1196 
p4d_set_fixmap_offset(pgd_t * pgdp,unsigned long addr)1197 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1198 {
1199 	if (!pgtable_l5_enabled())
1200 		return pgd_to_folded_p4d(pgdp, addr);
1201 	return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1202 }
1203 
p4d_clear_fixmap(void)1204 static inline void p4d_clear_fixmap(void)
1205 {
1206 	if (pgtable_l5_enabled())
1207 		clear_fixmap(FIX_P4D);
1208 }
1209 
1210 /* use ONLY for statically allocated translation tables */
p4d_offset_kimg(pgd_t * pgdp,u64 addr)1211 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1212 {
1213 	if (!pgtable_l5_enabled())
1214 		return pgd_to_folded_p4d(pgdp, addr);
1215 	return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1216 }
1217 
1218 #define pgd_page(pgd)		pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1219 
1220 #else
1221 
pgtable_l5_enabled(void)1222 static inline bool pgtable_l5_enabled(void) { return false; }
1223 
1224 #define p4d_index(addr)		(((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1225 
1226 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1227 #define p4d_set_fixmap(addr)		NULL
1228 #define p4d_set_fixmap_offset(p4dp, addr)	((p4d_t *)p4dp)
1229 #define p4d_clear_fixmap()
1230 
1231 #define p4d_offset_kimg(dir,addr)	((p4d_t *)dir)
1232 
1233 static inline
p4d_offset_lockless_folded(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1234 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1235 {
1236 	/*
1237 	 * With runtime folding of the pud, pud_offset_lockless() passes
1238 	 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1239 	 * will offset the pointer assuming that it points into
1240 	 * a page-table page. However, the fast GUP path passes us a
1241 	 * pgd_t allocated on the stack and so we must use the original
1242 	 * pointer in 'pgdp' to construct the p4d pointer instead of
1243 	 * using the generic p4d_offset_lockless() implementation.
1244 	 *
1245 	 * Note: reusing the original pointer means that we may
1246 	 * dereference the same (live) page-table entry multiple times.
1247 	 * This is safe because it is still only loaded once in the
1248 	 * context of each level and the CPU guarantees same-address
1249 	 * read-after-read ordering.
1250 	 */
1251 	return p4d_offset(pgdp, addr);
1252 }
1253 #define p4d_offset_lockless p4d_offset_lockless_folded
1254 
1255 #endif  /* CONFIG_PGTABLE_LEVELS > 4 */
1256 
1257 #define pgd_ERROR(e)	\
1258 	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1259 
1260 #define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1261 #define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
1262 
pte_modify(pte_t pte,pgprot_t newprot)1263 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1264 {
1265 	/*
1266 	 * Normal and Normal-Tagged are two different memory types and indices
1267 	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1268 	 */
1269 	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1270 			      PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1271 			      PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1272 
1273 	/* preserve the hardware dirty information */
1274 	if (pte_hw_dirty(pte))
1275 		pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1276 
1277 	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1278 	/*
1279 	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1280 	 * dirtiness again.
1281 	 */
1282 	if (pte_sw_dirty(pte))
1283 		pte = pte_mkdirty(pte);
1284 	return pte;
1285 }
1286 
pmd_modify(pmd_t pmd,pgprot_t newprot)1287 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1288 {
1289 	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1290 }
1291 
1292 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1293 				 unsigned long address, pte_t *ptep,
1294 				 pte_t entry, int dirty);
1295 
1296 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1297 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)1298 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1299 					unsigned long address, pmd_t *pmdp,
1300 					pmd_t entry, int dirty)
1301 {
1302 	return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1303 							pmd_pte(entry), dirty);
1304 }
1305 
pud_devmap(pud_t pud)1306 static inline int pud_devmap(pud_t pud)
1307 {
1308 	return 0;
1309 }
1310 
pgd_devmap(pgd_t pgd)1311 static inline int pgd_devmap(pgd_t pgd)
1312 {
1313 	return 0;
1314 }
1315 #endif
1316 
1317 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1318 static inline bool pte_user_accessible_page(pte_t pte)
1319 {
1320 	return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1321 }
1322 
pmd_user_accessible_page(pmd_t pmd)1323 static inline bool pmd_user_accessible_page(pmd_t pmd)
1324 {
1325 	return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1326 }
1327 
pud_user_accessible_page(pud_t pud)1328 static inline bool pud_user_accessible_page(pud_t pud)
1329 {
1330 	return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1331 }
1332 #endif
1333 
1334 /*
1335  * Atomic pte/pmd modifications.
1336  */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1337 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1338 					      unsigned long address,
1339 					      pte_t *ptep)
1340 {
1341 	pte_t old_pte, pte;
1342 
1343 	pte = __ptep_get(ptep);
1344 	do {
1345 		old_pte = pte;
1346 		pte = pte_mkold(pte);
1347 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1348 					       pte_val(old_pte), pte_val(pte));
1349 	} while (pte_val(pte) != pte_val(old_pte));
1350 
1351 	return pte_young(pte);
1352 }
1353 
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1354 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1355 					 unsigned long address, pte_t *ptep)
1356 {
1357 	int young = __ptep_test_and_clear_young(vma, address, ptep);
1358 
1359 	if (young) {
1360 		/*
1361 		 * We can elide the trailing DSB here since the worst that can
1362 		 * happen is that a CPU continues to use the young entry in its
1363 		 * TLB and we mistakenly reclaim the associated page. The
1364 		 * window for such an event is bounded by the next
1365 		 * context-switch, which provides a DSB to complete the TLB
1366 		 * invalidation.
1367 		 */
1368 		flush_tlb_page_nosync(vma, address);
1369 	}
1370 
1371 	return young;
1372 }
1373 
1374 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1375 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1376 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1377 					    unsigned long address,
1378 					    pmd_t *pmdp)
1379 {
1380 	/* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1381 	VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1382 	return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1383 }
1384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1385 
__ptep_get_and_clear_anysz(struct mm_struct * mm,pte_t * ptep,unsigned long pgsize)1386 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm,
1387 					       pte_t *ptep,
1388 					       unsigned long pgsize)
1389 {
1390 	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1391 
1392 	switch (pgsize) {
1393 	case PAGE_SIZE:
1394 		page_table_check_pte_clear(mm, pte);
1395 		break;
1396 	case PMD_SIZE:
1397 		page_table_check_pmd_clear(mm, pte_pmd(pte));
1398 		break;
1399 #ifndef __PAGETABLE_PMD_FOLDED
1400 	case PUD_SIZE:
1401 		page_table_check_pud_clear(mm, pte_pud(pte));
1402 		break;
1403 #endif
1404 	default:
1405 		VM_WARN_ON(1);
1406 	}
1407 
1408 	return pte;
1409 }
1410 
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)1411 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1412 				       unsigned long address, pte_t *ptep)
1413 {
1414 	return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE);
1415 }
1416 
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1417 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1418 				pte_t *ptep, unsigned int nr, int full)
1419 {
1420 	for (;;) {
1421 		__ptep_get_and_clear(mm, addr, ptep);
1422 		if (--nr == 0)
1423 			break;
1424 		ptep++;
1425 		addr += PAGE_SIZE;
1426 	}
1427 }
1428 
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1429 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1430 				unsigned long addr, pte_t *ptep,
1431 				unsigned int nr, int full)
1432 {
1433 	pte_t pte, tmp_pte;
1434 
1435 	pte = __ptep_get_and_clear(mm, addr, ptep);
1436 	while (--nr) {
1437 		ptep++;
1438 		addr += PAGE_SIZE;
1439 		tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1440 		if (pte_dirty(tmp_pte))
1441 			pte = pte_mkdirty(pte);
1442 		if (pte_young(tmp_pte))
1443 			pte = pte_mkyoung(pte);
1444 	}
1445 	return pte;
1446 }
1447 
1448 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1449 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1450 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1451 					    unsigned long address, pmd_t *pmdp)
1452 {
1453 	return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE));
1454 }
1455 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1456 
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1457 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1458 					unsigned long address, pte_t *ptep,
1459 					pte_t pte)
1460 {
1461 	pte_t old_pte;
1462 
1463 	do {
1464 		old_pte = pte;
1465 		pte = pte_wrprotect(pte);
1466 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1467 					       pte_val(old_pte), pte_val(pte));
1468 	} while (pte_val(pte) != pte_val(old_pte));
1469 }
1470 
1471 /*
1472  * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1473  * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1474  */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1475 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1476 					unsigned long address, pte_t *ptep)
1477 {
1478 	___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1479 }
1480 
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1481 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1482 				pte_t *ptep, unsigned int nr)
1483 {
1484 	unsigned int i;
1485 
1486 	for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1487 		__ptep_set_wrprotect(mm, address, ptep);
1488 }
1489 
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1490 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1491 					   unsigned long addr, pte_t *ptep,
1492 					   pte_t pte, cydp_t flags)
1493 {
1494 	pte_t old_pte;
1495 
1496 	do {
1497 		old_pte = pte;
1498 
1499 		if (flags & CYDP_CLEAR_YOUNG)
1500 			pte = pte_mkold(pte);
1501 		if (flags & CYDP_CLEAR_DIRTY)
1502 			pte = pte_mkclean(pte);
1503 
1504 		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1505 					       pte_val(old_pte), pte_val(pte));
1506 	} while (pte_val(pte) != pte_val(old_pte));
1507 }
1508 
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1509 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1510 					    unsigned long addr, pte_t *ptep,
1511 					    unsigned int nr, cydp_t flags)
1512 {
1513 	pte_t pte;
1514 
1515 	for (;;) {
1516 		pte = __ptep_get(ptep);
1517 
1518 		if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1519 			__set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1520 		else
1521 			__clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1522 
1523 		if (--nr == 0)
1524 			break;
1525 		ptep++;
1526 		addr += PAGE_SIZE;
1527 	}
1528 }
1529 
1530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1531 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1532 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1533 				      unsigned long address, pmd_t *pmdp)
1534 {
1535 	__ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1536 }
1537 
1538 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1539 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1540 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1541 {
1542 	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1543 	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1544 }
1545 #endif
1546 
1547 /*
1548  * Encode and decode a swap entry:
1549  *	bits 0-1:	present (must be zero)
1550  *	bits 2:		remember PG_anon_exclusive
1551  *	bit  3:		remember uffd-wp state
1552  *	bits 6-10:	swap type
1553  *	bit  11:	PTE_PRESENT_INVALID (must be zero)
1554  *	bits 12-61:	swap offset
1555  */
1556 #define __SWP_TYPE_SHIFT	6
1557 #define __SWP_TYPE_BITS		5
1558 #define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
1559 #define __SWP_OFFSET_SHIFT	12
1560 #define __SWP_OFFSET_BITS	50
1561 #define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
1562 
1563 #define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1564 #define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1565 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1566 
1567 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1568 #define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
1569 
1570 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1571 #define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
1572 #define __swp_entry_to_pmd(swp)		__pmd((swp).val)
1573 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1574 
1575 /*
1576  * Ensure that there are not more swap files than can be encoded in the kernel
1577  * PTEs.
1578  */
1579 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1580 
1581 #ifdef CONFIG_ARM64_MTE
1582 
1583 #define __HAVE_ARCH_PREPARE_TO_SWAP
1584 extern int arch_prepare_to_swap(struct folio *folio);
1585 
1586 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1587 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1588 {
1589 	if (system_supports_mte())
1590 		mte_invalidate_tags(type, offset);
1591 }
1592 
arch_swap_invalidate_area(int type)1593 static inline void arch_swap_invalidate_area(int type)
1594 {
1595 	if (system_supports_mte())
1596 		mte_invalidate_tags_area(type);
1597 }
1598 
1599 #define __HAVE_ARCH_SWAP_RESTORE
1600 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1601 
1602 #endif /* CONFIG_ARM64_MTE */
1603 
1604 /*
1605  * On AArch64, the cache coherency is handled via the __set_ptes() function.
1606  */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1607 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1608 		struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1609 		unsigned int nr)
1610 {
1611 	/*
1612 	 * We don't do anything here, so there's a very small chance of
1613 	 * us retaking a user fault which we just fixed up. The alternative
1614 	 * is doing a dsb(ishst), but that penalises the fastpath.
1615 	 */
1616 }
1617 
1618 #define update_mmu_cache(vma, addr, ptep) \
1619 	update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1620 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1621 
1622 #ifdef CONFIG_ARM64_PA_BITS_52
1623 #define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1624 #else
1625 #define phys_to_ttbr(addr)	(addr)
1626 #endif
1627 
1628 /*
1629  * On arm64 without hardware Access Flag, copying from user will fail because
1630  * the pte is old and cannot be marked young. So we always end up with zeroed
1631  * page after fork() + CoW for pfn mappings. We don't always have a
1632  * hardware-managed access flag on arm64.
1633  */
1634 #define arch_has_hw_pte_young		cpu_has_hw_af
1635 
1636 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1637 #define arch_has_hw_nonleaf_pmd_young	system_supports_haft
1638 #endif
1639 
1640 /*
1641  * Experimentally, it's cheap to set the access flag in hardware and we
1642  * benefit from prefaulting mappings as 'old' to start with.
1643  */
1644 #define arch_wants_old_prefaulted_pte	cpu_has_hw_af
1645 
pud_sect_supported(void)1646 static inline bool pud_sect_supported(void)
1647 {
1648 	return PAGE_SIZE == SZ_4K;
1649 }
1650 
1651 
1652 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1653 #define ptep_modify_prot_start ptep_modify_prot_start
1654 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1655 				    unsigned long addr, pte_t *ptep);
1656 
1657 #define ptep_modify_prot_commit ptep_modify_prot_commit
1658 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1659 				    unsigned long addr, pte_t *ptep,
1660 				    pte_t old_pte, pte_t new_pte);
1661 
1662 #ifdef CONFIG_ARM64_CONTPTE
1663 
1664 /*
1665  * The contpte APIs are used to transparently manage the contiguous bit in ptes
1666  * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1667  * a private implementation detail of the public ptep API (see below).
1668  */
1669 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1670 				pte_t *ptep, pte_t pte);
1671 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1672 				pte_t *ptep, pte_t pte);
1673 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1674 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1675 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1676 				pte_t *ptep, pte_t pte, unsigned int nr);
1677 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1678 				pte_t *ptep, unsigned int nr, int full);
1679 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1680 				unsigned long addr, pte_t *ptep,
1681 				unsigned int nr, int full);
1682 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1683 				unsigned long addr, pte_t *ptep);
1684 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1685 				unsigned long addr, pte_t *ptep);
1686 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1687 				pte_t *ptep, unsigned int nr);
1688 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1689 				unsigned long addr, pte_t *ptep,
1690 				pte_t entry, int dirty);
1691 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1692 				unsigned long addr, pte_t *ptep,
1693 				unsigned int nr, cydp_t flags);
1694 
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1695 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1696 				unsigned long addr, pte_t *ptep, pte_t pte)
1697 {
1698 	/*
1699 	 * Only bother trying if both the virtual and physical addresses are
1700 	 * aligned and correspond to the last entry in a contig range. The core
1701 	 * code mostly modifies ranges from low to high, so this is the likely
1702 	 * the last modification in the contig range, so a good time to fold.
1703 	 * We can't fold special mappings, because there is no associated folio.
1704 	 */
1705 
1706 	const unsigned long contmask = CONT_PTES - 1;
1707 	bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1708 
1709 	if (unlikely(valign)) {
1710 		bool palign = (pte_pfn(pte) & contmask) == contmask;
1711 
1712 		if (unlikely(palign &&
1713 		    pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1714 			__contpte_try_fold(mm, addr, ptep, pte);
1715 	}
1716 }
1717 
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1718 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1719 				unsigned long addr, pte_t *ptep, pte_t pte)
1720 {
1721 	if (unlikely(pte_valid_cont(pte)))
1722 		__contpte_try_unfold(mm, addr, ptep, pte);
1723 }
1724 
1725 #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1726 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1727 {
1728 	if (!pte_valid_cont(pte))
1729 		return 1;
1730 
1731 	return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1732 }
1733 
1734 /*
1735  * The below functions constitute the public API that arm64 presents to the
1736  * core-mm to manipulate PTE entries within their page tables (or at least this
1737  * is the subset of the API that arm64 needs to implement). These public
1738  * versions will automatically and transparently apply the contiguous bit where
1739  * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1740  * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1741  * private versions, which are prefixed with double underscore. All of these
1742  * APIs except for ptep_get_lockless() are expected to be called with the PTL
1743  * held. Although the contiguous bit is considered private to the
1744  * implementation, it is deliberately allowed to leak through the getters (e.g.
1745  * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1746  * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1747  * its possible a pte will be passed to a setter with the contiguous bit set, so
1748  * we explicitly clear the contiguous bit in those cases to prevent accidentally
1749  * setting it in the pgtable.
1750  */
1751 
1752 #define ptep_get ptep_get
ptep_get(pte_t * ptep)1753 static inline pte_t ptep_get(pte_t *ptep)
1754 {
1755 	pte_t pte = __ptep_get(ptep);
1756 
1757 	if (likely(!pte_valid_cont(pte)))
1758 		return pte;
1759 
1760 	return contpte_ptep_get(ptep, pte);
1761 }
1762 
1763 #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1764 static inline pte_t ptep_get_lockless(pte_t *ptep)
1765 {
1766 	pte_t pte = __ptep_get(ptep);
1767 
1768 	if (likely(!pte_valid_cont(pte)))
1769 		return pte;
1770 
1771 	return contpte_ptep_get_lockless(ptep);
1772 }
1773 
set_pte(pte_t * ptep,pte_t pte)1774 static inline void set_pte(pte_t *ptep, pte_t pte)
1775 {
1776 	/*
1777 	 * We don't have the mm or vaddr so cannot unfold contig entries (since
1778 	 * it requires tlb maintenance). set_pte() is not used in core code, so
1779 	 * this should never even be called. Regardless do our best to service
1780 	 * any call and emit a warning if there is any attempt to set a pte on
1781 	 * top of an existing contig range.
1782 	 */
1783 	pte_t orig_pte = __ptep_get(ptep);
1784 
1785 	WARN_ON_ONCE(pte_valid_cont(orig_pte));
1786 	__set_pte(ptep, pte_mknoncont(pte));
1787 }
1788 
1789 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1790 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1791 				pte_t *ptep, pte_t pte, unsigned int nr)
1792 {
1793 	pte = pte_mknoncont(pte);
1794 
1795 	if (likely(nr == 1)) {
1796 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1797 		__set_ptes(mm, addr, ptep, pte, 1);
1798 		contpte_try_fold(mm, addr, ptep, pte);
1799 	} else {
1800 		contpte_set_ptes(mm, addr, ptep, pte, nr);
1801 	}
1802 }
1803 
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1804 static inline void pte_clear(struct mm_struct *mm,
1805 				unsigned long addr, pte_t *ptep)
1806 {
1807 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1808 	__pte_clear(mm, addr, ptep);
1809 }
1810 
1811 #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1812 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1813 				pte_t *ptep, unsigned int nr, int full)
1814 {
1815 	if (likely(nr == 1)) {
1816 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1817 		__clear_full_ptes(mm, addr, ptep, nr, full);
1818 	} else {
1819 		contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1820 	}
1821 }
1822 
1823 #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1824 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1825 				unsigned long addr, pte_t *ptep,
1826 				unsigned int nr, int full)
1827 {
1828 	pte_t pte;
1829 
1830 	if (likely(nr == 1)) {
1831 		contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1832 		pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1833 	} else {
1834 		pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1835 	}
1836 
1837 	return pte;
1838 }
1839 
1840 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1841 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1842 				unsigned long addr, pte_t *ptep)
1843 {
1844 	contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1845 	return __ptep_get_and_clear(mm, addr, ptep);
1846 }
1847 
1848 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1849 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1850 				unsigned long addr, pte_t *ptep)
1851 {
1852 	pte_t orig_pte = __ptep_get(ptep);
1853 
1854 	if (likely(!pte_valid_cont(orig_pte)))
1855 		return __ptep_test_and_clear_young(vma, addr, ptep);
1856 
1857 	return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1858 }
1859 
1860 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1861 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1862 				unsigned long addr, pte_t *ptep)
1863 {
1864 	pte_t orig_pte = __ptep_get(ptep);
1865 
1866 	if (likely(!pte_valid_cont(orig_pte)))
1867 		return __ptep_clear_flush_young(vma, addr, ptep);
1868 
1869 	return contpte_ptep_clear_flush_young(vma, addr, ptep);
1870 }
1871 
1872 #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1873 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1874 				unsigned long addr, pte_t *ptep, unsigned int nr)
1875 {
1876 	if (likely(nr == 1)) {
1877 		/*
1878 		 * Optimization: wrprotect_ptes() can only be called for present
1879 		 * ptes so we only need to check contig bit as condition for
1880 		 * unfold, and we can remove the contig bit from the pte we read
1881 		 * to avoid re-reading. This speeds up fork() which is sensitive
1882 		 * for order-0 folios. Equivalent to contpte_try_unfold().
1883 		 */
1884 		pte_t orig_pte = __ptep_get(ptep);
1885 
1886 		if (unlikely(pte_cont(orig_pte))) {
1887 			__contpte_try_unfold(mm, addr, ptep, orig_pte);
1888 			orig_pte = pte_mknoncont(orig_pte);
1889 		}
1890 		___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1891 	} else {
1892 		contpte_wrprotect_ptes(mm, addr, ptep, nr);
1893 	}
1894 }
1895 
1896 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1897 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1898 				unsigned long addr, pte_t *ptep)
1899 {
1900 	wrprotect_ptes(mm, addr, ptep, 1);
1901 }
1902 
1903 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1904 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1905 				unsigned long addr, pte_t *ptep,
1906 				pte_t entry, int dirty)
1907 {
1908 	pte_t orig_pte = __ptep_get(ptep);
1909 
1910 	entry = pte_mknoncont(entry);
1911 
1912 	if (likely(!pte_valid_cont(orig_pte)))
1913 		return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1914 
1915 	return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1916 }
1917 
1918 #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1919 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1920 					  unsigned long addr, pte_t *ptep,
1921 					  unsigned int nr, cydp_t flags)
1922 {
1923 	if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1924 		__clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1925 	else
1926 		contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1927 }
1928 
1929 #else /* CONFIG_ARM64_CONTPTE */
1930 
1931 #define ptep_get				__ptep_get
1932 #define set_pte					__set_pte
1933 #define set_ptes				__set_ptes
1934 #define pte_clear				__pte_clear
1935 #define clear_full_ptes				__clear_full_ptes
1936 #define get_and_clear_full_ptes			__get_and_clear_full_ptes
1937 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1938 #define ptep_get_and_clear			__ptep_get_and_clear
1939 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1940 #define ptep_test_and_clear_young		__ptep_test_and_clear_young
1941 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1942 #define ptep_clear_flush_young			__ptep_clear_flush_young
1943 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1944 #define ptep_set_wrprotect			__ptep_set_wrprotect
1945 #define wrprotect_ptes				__wrprotect_ptes
1946 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1947 #define ptep_set_access_flags			__ptep_set_access_flags
1948 #define clear_young_dirty_ptes			__clear_young_dirty_ptes
1949 
1950 #endif /* CONFIG_ARM64_CONTPTE */
1951 
1952 #endif /* !__ASSEMBLY__ */
1953 
1954 #endif /* __ASM_PGTABLE_H */
1955