1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_vf_lib_private.h"
6 #include "ice_base.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_flow.h"
11 #include "ice_eswitch.h"
12 #include "ice_virtchnl_allowlist.h"
13 #include "ice_flex_pipe.h"
14 #include "ice_vf_vsi_vlan_ops.h"
15 #include "ice_vlan.h"
16
17 /**
18 * ice_free_vf_entries - Free all VF entries from the hash table
19 * @pf: pointer to the PF structure
20 *
21 * Iterate over the VF hash table, removing and releasing all VF entries.
22 * Called during VF teardown or as cleanup during failed VF initialization.
23 */
ice_free_vf_entries(struct ice_pf * pf)24 static void ice_free_vf_entries(struct ice_pf *pf)
25 {
26 struct ice_vfs *vfs = &pf->vfs;
27 struct hlist_node *tmp;
28 struct ice_vf *vf;
29 unsigned int bkt;
30
31 /* Remove all VFs from the hash table and release their main
32 * reference. Once all references to the VF are dropped, ice_put_vf()
33 * will call ice_release_vf which will remove the VF memory.
34 */
35 lockdep_assert_held(&vfs->table_lock);
36
37 hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
38 hash_del_rcu(&vf->entry);
39 ice_put_vf(vf);
40 }
41 }
42
43 /**
44 * ice_free_vf_res - Free a VF's resources
45 * @vf: pointer to the VF info
46 */
ice_free_vf_res(struct ice_vf * vf)47 static void ice_free_vf_res(struct ice_vf *vf)
48 {
49 struct ice_pf *pf = vf->pf;
50 int i, last_vector_idx;
51
52 /* First, disable VF's configuration API to prevent OS from
53 * accessing the VF's VSI after it's freed or invalidated.
54 */
55 clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
56 ice_vf_fdir_exit(vf);
57 /* free VF control VSI */
58 if (vf->ctrl_vsi_idx != ICE_NO_VSI)
59 ice_vf_ctrl_vsi_release(vf);
60
61 /* free VSI and disconnect it from the parent uplink */
62 if (vf->lan_vsi_idx != ICE_NO_VSI) {
63 ice_vf_vsi_release(vf);
64 vf->num_mac = 0;
65 }
66
67 last_vector_idx = vf->first_vector_idx + vf->num_msix - 1;
68
69 /* clear VF MDD event information */
70 memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
71 memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
72
73 /* Disable interrupts so that VF starts in a known state */
74 for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
75 wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
76 ice_flush(&pf->hw);
77 }
78 /* reset some of the state variables keeping track of the resources */
79 clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
80 clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
81 }
82
83 /**
84 * ice_dis_vf_mappings
85 * @vf: pointer to the VF structure
86 */
ice_dis_vf_mappings(struct ice_vf * vf)87 static void ice_dis_vf_mappings(struct ice_vf *vf)
88 {
89 struct ice_pf *pf = vf->pf;
90 struct ice_vsi *vsi;
91 struct device *dev;
92 int first, last, v;
93 struct ice_hw *hw;
94
95 hw = &pf->hw;
96 vsi = ice_get_vf_vsi(vf);
97 if (WARN_ON(!vsi))
98 return;
99
100 dev = ice_pf_to_dev(pf);
101 wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
102 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
103
104 first = vf->first_vector_idx;
105 last = first + vf->num_msix - 1;
106 for (v = first; v <= last; v++) {
107 u32 reg;
108
109 reg = FIELD_PREP(GLINT_VECT2FUNC_IS_PF_M, 1) |
110 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
111 wr32(hw, GLINT_VECT2FUNC(v), reg);
112 }
113
114 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
115 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
116 else
117 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
118
119 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
120 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
121 else
122 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
123 }
124
125 /**
126 * ice_sriov_free_msix_res - Reset/free any used MSIX resources
127 * @pf: pointer to the PF structure
128 *
129 * Since no MSIX entries are taken from the pf->irq_tracker then just clear
130 * the pf->sriov_base_vector.
131 *
132 * Returns 0 on success, and -EINVAL on error.
133 */
ice_sriov_free_msix_res(struct ice_pf * pf)134 static int ice_sriov_free_msix_res(struct ice_pf *pf)
135 {
136 if (!pf)
137 return -EINVAL;
138
139 bitmap_free(pf->sriov_irq_bm);
140 pf->sriov_irq_size = 0;
141 pf->sriov_base_vector = 0;
142
143 return 0;
144 }
145
146 /**
147 * ice_free_vfs - Free all VFs
148 * @pf: pointer to the PF structure
149 */
ice_free_vfs(struct ice_pf * pf)150 void ice_free_vfs(struct ice_pf *pf)
151 {
152 struct device *dev = ice_pf_to_dev(pf);
153 struct ice_vfs *vfs = &pf->vfs;
154 struct ice_hw *hw = &pf->hw;
155 struct ice_vf *vf;
156 unsigned int bkt;
157
158 if (!ice_has_vfs(pf))
159 return;
160
161 while (test_and_set_bit(ICE_VF_DIS, pf->state))
162 usleep_range(1000, 2000);
163
164 /* Disable IOV before freeing resources. This lets any VF drivers
165 * running in the host get themselves cleaned up before we yank
166 * the carpet out from underneath their feet.
167 */
168 if (!pci_vfs_assigned(pf->pdev))
169 pci_disable_sriov(pf->pdev);
170 else
171 dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
172
173 mutex_lock(&vfs->table_lock);
174
175 ice_for_each_vf(pf, bkt, vf) {
176 mutex_lock(&vf->cfg_lock);
177
178 ice_eswitch_detach_vf(pf, vf);
179 ice_dis_vf_qs(vf);
180
181 if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
182 /* disable VF qp mappings and set VF disable state */
183 ice_dis_vf_mappings(vf);
184 set_bit(ICE_VF_STATE_DIS, vf->vf_states);
185 ice_free_vf_res(vf);
186 }
187
188 if (!pci_vfs_assigned(pf->pdev)) {
189 u32 reg_idx, bit_idx;
190
191 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
192 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
193 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
194 }
195
196 /* clear malicious info since the VF is getting released */
197 if (!ice_is_feature_supported(pf, ICE_F_MBX_LIMIT))
198 list_del(&vf->mbx_info.list_entry);
199
200 mutex_unlock(&vf->cfg_lock);
201 }
202
203 if (ice_sriov_free_msix_res(pf))
204 dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
205
206 vfs->num_qps_per = 0;
207 ice_free_vf_entries(pf);
208
209 mutex_unlock(&vfs->table_lock);
210
211 clear_bit(ICE_VF_DIS, pf->state);
212 clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
213 }
214
215 /**
216 * ice_vf_vsi_setup - Set up a VF VSI
217 * @vf: VF to setup VSI for
218 *
219 * Returns pointer to the successfully allocated VSI struct on success,
220 * otherwise returns NULL on failure.
221 */
ice_vf_vsi_setup(struct ice_vf * vf)222 static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
223 {
224 struct ice_vsi_cfg_params params = {};
225 struct ice_pf *pf = vf->pf;
226 struct ice_vsi *vsi;
227
228 params.type = ICE_VSI_VF;
229 params.port_info = ice_vf_get_port_info(vf);
230 params.vf = vf;
231 params.flags = ICE_VSI_FLAG_INIT;
232
233 vsi = ice_vsi_setup(pf, ¶ms);
234
235 if (!vsi) {
236 dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
237 ice_vf_invalidate_vsi(vf);
238 return NULL;
239 }
240
241 vf->lan_vsi_idx = vsi->idx;
242
243 return vsi;
244 }
245
246
247 /**
248 * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
249 * @vf: VF to enable MSIX mappings for
250 *
251 * Some of the registers need to be indexed/configured using hardware global
252 * device values and other registers need 0-based values, which represent PF
253 * based values.
254 */
ice_ena_vf_msix_mappings(struct ice_vf * vf)255 static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
256 {
257 int device_based_first_msix, device_based_last_msix;
258 int pf_based_first_msix, pf_based_last_msix, v;
259 struct ice_pf *pf = vf->pf;
260 int device_based_vf_id;
261 struct ice_hw *hw;
262 u32 reg;
263
264 hw = &pf->hw;
265 pf_based_first_msix = vf->first_vector_idx;
266 pf_based_last_msix = (pf_based_first_msix + vf->num_msix) - 1;
267
268 device_based_first_msix = pf_based_first_msix +
269 pf->hw.func_caps.common_cap.msix_vector_first_id;
270 device_based_last_msix =
271 (device_based_first_msix + vf->num_msix) - 1;
272 device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
273
274 reg = FIELD_PREP(VPINT_ALLOC_FIRST_M, device_based_first_msix) |
275 FIELD_PREP(VPINT_ALLOC_LAST_M, device_based_last_msix) |
276 VPINT_ALLOC_VALID_M;
277 wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
278
279 reg = FIELD_PREP(VPINT_ALLOC_PCI_FIRST_M, device_based_first_msix) |
280 FIELD_PREP(VPINT_ALLOC_PCI_LAST_M, device_based_last_msix) |
281 VPINT_ALLOC_PCI_VALID_M;
282 wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
283
284 /* map the interrupts to its functions */
285 for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
286 reg = FIELD_PREP(GLINT_VECT2FUNC_VF_NUM_M, device_based_vf_id) |
287 FIELD_PREP(GLINT_VECT2FUNC_PF_NUM_M, hw->pf_id);
288 wr32(hw, GLINT_VECT2FUNC(v), reg);
289 }
290
291 /* Map mailbox interrupt to VF MSI-X vector 0 */
292 wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
293 }
294
295 /**
296 * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
297 * @vf: VF to enable the mappings for
298 * @max_txq: max Tx queues allowed on the VF's VSI
299 * @max_rxq: max Rx queues allowed on the VF's VSI
300 */
ice_ena_vf_q_mappings(struct ice_vf * vf,u16 max_txq,u16 max_rxq)301 static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
302 {
303 struct device *dev = ice_pf_to_dev(vf->pf);
304 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
305 struct ice_hw *hw = &vf->pf->hw;
306 u32 reg;
307
308 if (WARN_ON(!vsi))
309 return;
310
311 /* set regardless of mapping mode */
312 wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
313
314 /* VF Tx queues allocation */
315 if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
316 /* set the VF PF Tx queue range
317 * VFNUMQ value should be set to (number of queues - 1). A value
318 * of 0 means 1 queue and a value of 255 means 256 queues
319 */
320 reg = FIELD_PREP(VPLAN_TX_QBASE_VFFIRSTQ_M, vsi->txq_map[0]) |
321 FIELD_PREP(VPLAN_TX_QBASE_VFNUMQ_M, max_txq - 1);
322 wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
323 } else {
324 dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
325 }
326
327 /* set regardless of mapping mode */
328 wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
329
330 /* VF Rx queues allocation */
331 if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
332 /* set the VF PF Rx queue range
333 * VFNUMQ value should be set to (number of queues - 1). A value
334 * of 0 means 1 queue and a value of 255 means 256 queues
335 */
336 reg = FIELD_PREP(VPLAN_RX_QBASE_VFFIRSTQ_M, vsi->rxq_map[0]) |
337 FIELD_PREP(VPLAN_RX_QBASE_VFNUMQ_M, max_rxq - 1);
338 wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
339 } else {
340 dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
341 }
342 }
343
344 /**
345 * ice_ena_vf_mappings - enable VF MSIX and queue mapping
346 * @vf: pointer to the VF structure
347 */
ice_ena_vf_mappings(struct ice_vf * vf)348 static void ice_ena_vf_mappings(struct ice_vf *vf)
349 {
350 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
351
352 if (WARN_ON(!vsi))
353 return;
354
355 ice_ena_vf_msix_mappings(vf);
356 ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
357 }
358
359 /**
360 * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
361 * @vf: VF to calculate the register index for
362 * @q_vector: a q_vector associated to the VF
363 */
ice_calc_vf_reg_idx(struct ice_vf * vf,struct ice_q_vector * q_vector)364 void ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
365 {
366 if (!vf || !q_vector)
367 return;
368
369 /* always add one to account for the OICR being the first MSIX */
370 q_vector->vf_reg_idx = q_vector->v_idx + ICE_NONQ_VECS_VF;
371 q_vector->reg_idx = vf->first_vector_idx + q_vector->vf_reg_idx;
372 }
373
374 /**
375 * ice_sriov_set_msix_res - Set any used MSIX resources
376 * @pf: pointer to PF structure
377 * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
378 *
379 * This function allows SR-IOV resources to be taken from the end of the PF's
380 * allowed HW MSIX vectors so that the irq_tracker will not be affected. We
381 * just set the pf->sriov_base_vector and return success.
382 *
383 * If there are not enough resources available, return an error. This should
384 * always be caught by ice_set_per_vf_res().
385 *
386 * Return 0 on success, and -EINVAL when there are not enough MSIX vectors
387 * in the PF's space available for SR-IOV.
388 */
ice_sriov_set_msix_res(struct ice_pf * pf,u16 num_msix_needed)389 static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
390 {
391 u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
392 int vectors_used = ice_get_max_used_msix_vector(pf);
393 int sriov_base_vector;
394
395 sriov_base_vector = total_vectors - num_msix_needed;
396
397 /* make sure we only grab irq_tracker entries from the list end and
398 * that we have enough available MSIX vectors
399 */
400 if (sriov_base_vector < vectors_used)
401 return -EINVAL;
402
403 pf->sriov_base_vector = sriov_base_vector;
404
405 return 0;
406 }
407
408 /**
409 * ice_set_per_vf_res - check if vectors and queues are available
410 * @pf: pointer to the PF structure
411 * @num_vfs: the number of SR-IOV VFs being configured
412 *
413 * First, determine HW interrupts from common pool. If we allocate fewer VFs, we
414 * get more vectors and can enable more queues per VF. Note that this does not
415 * grab any vectors from the SW pool already allocated. Also note, that all
416 * vector counts include one for each VF's miscellaneous interrupt vector
417 * (i.e. OICR).
418 *
419 * Minimum VFs - 2 vectors, 1 queue pair
420 * Small VFs - 5 vectors, 4 queue pairs
421 * Medium VFs - 17 vectors, 16 queue pairs
422 *
423 * Second, determine number of queue pairs per VF by starting with a pre-defined
424 * maximum each VF supports. If this is not possible, then we adjust based on
425 * queue pairs available on the device.
426 *
427 * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
428 * by each VF during VF initialization and reset.
429 */
ice_set_per_vf_res(struct ice_pf * pf,u16 num_vfs)430 static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
431 {
432 int vectors_used = ice_get_max_used_msix_vector(pf);
433 u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
434 int msix_avail_per_vf, msix_avail_for_sriov;
435 struct device *dev = ice_pf_to_dev(pf);
436 int err;
437
438 lockdep_assert_held(&pf->vfs.table_lock);
439
440 if (!num_vfs)
441 return -EINVAL;
442
443 /* determine MSI-X resources per VF */
444 msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
445 vectors_used;
446 msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
447 if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
448 num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
449 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
450 num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
451 } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
452 num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
453 } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
454 num_msix_per_vf = ICE_MIN_INTR_PER_VF;
455 } else {
456 dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
457 msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
458 num_vfs);
459 return -ENOSPC;
460 }
461
462 num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
463 ICE_MAX_RSS_QS_PER_VF);
464 avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
465 if (!avail_qs)
466 num_txq = 0;
467 else if (num_txq > avail_qs)
468 num_txq = rounddown_pow_of_two(avail_qs);
469
470 num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
471 ICE_MAX_RSS_QS_PER_VF);
472 avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
473 if (!avail_qs)
474 num_rxq = 0;
475 else if (num_rxq > avail_qs)
476 num_rxq = rounddown_pow_of_two(avail_qs);
477
478 if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
479 dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
480 ICE_MIN_QS_PER_VF, num_vfs);
481 return -ENOSPC;
482 }
483
484 err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
485 if (err) {
486 dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
487 num_vfs, err);
488 return err;
489 }
490
491 /* only allow equal Tx/Rx queue count (i.e. queue pairs) */
492 pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
493 pf->vfs.num_msix_per = num_msix_per_vf;
494 dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
495 num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
496
497 return 0;
498 }
499
500 /**
501 * ice_sriov_get_irqs - get irqs for SR-IOV usacase
502 * @pf: pointer to PF structure
503 * @needed: number of irqs to get
504 *
505 * This returns the first MSI-X vector index in PF space that is used by this
506 * VF. This index is used when accessing PF relative registers such as
507 * GLINT_VECT2FUNC and GLINT_DYN_CTL.
508 * This will always be the OICR index in the AVF driver so any functionality
509 * using vf->first_vector_idx for queue configuration_id: id of VF which will
510 * use this irqs
511 *
512 * Only SRIOV specific vectors are tracked in sriov_irq_bm. SRIOV vectors are
513 * allocated from the end of global irq index. First bit in sriov_irq_bm means
514 * last irq index etc. It simplifies extension of SRIOV vectors.
515 * They will be always located from sriov_base_vector to the last irq
516 * index. While increasing/decreasing sriov_base_vector can be moved.
517 */
ice_sriov_get_irqs(struct ice_pf * pf,u16 needed)518 static int ice_sriov_get_irqs(struct ice_pf *pf, u16 needed)
519 {
520 int res = bitmap_find_next_zero_area(pf->sriov_irq_bm,
521 pf->sriov_irq_size, 0, needed, 0);
522 /* conversion from number in bitmap to global irq index */
523 int index = pf->sriov_irq_size - res - needed;
524
525 if (res >= pf->sriov_irq_size || index < pf->sriov_base_vector)
526 return -ENOENT;
527
528 bitmap_set(pf->sriov_irq_bm, res, needed);
529 return index;
530 }
531
532 /**
533 * ice_sriov_free_irqs - free irqs used by the VF
534 * @pf: pointer to PF structure
535 * @vf: pointer to VF structure
536 */
ice_sriov_free_irqs(struct ice_pf * pf,struct ice_vf * vf)537 static void ice_sriov_free_irqs(struct ice_pf *pf, struct ice_vf *vf)
538 {
539 /* Move back from first vector index to first index in bitmap */
540 int bm_i = pf->sriov_irq_size - vf->first_vector_idx - vf->num_msix;
541
542 bitmap_clear(pf->sriov_irq_bm, bm_i, vf->num_msix);
543 vf->first_vector_idx = 0;
544 }
545
546 /**
547 * ice_init_vf_vsi_res - initialize/setup VF VSI resources
548 * @vf: VF to initialize/setup the VSI for
549 *
550 * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
551 * VF VSI's broadcast filter and is only used during initial VF creation.
552 */
ice_init_vf_vsi_res(struct ice_vf * vf)553 static int ice_init_vf_vsi_res(struct ice_vf *vf)
554 {
555 struct ice_pf *pf = vf->pf;
556 struct ice_vsi *vsi;
557 int err;
558
559 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
560 if (vf->first_vector_idx < 0)
561 return -ENOMEM;
562
563 vsi = ice_vf_vsi_setup(vf);
564 if (!vsi)
565 return -ENOMEM;
566
567 err = ice_vf_init_host_cfg(vf, vsi);
568 if (err)
569 goto release_vsi;
570
571 return 0;
572
573 release_vsi:
574 ice_vf_vsi_release(vf);
575 return err;
576 }
577
578 /**
579 * ice_start_vfs - start VFs so they are ready to be used by SR-IOV
580 * @pf: PF the VFs are associated with
581 */
ice_start_vfs(struct ice_pf * pf)582 static int ice_start_vfs(struct ice_pf *pf)
583 {
584 struct ice_hw *hw = &pf->hw;
585 unsigned int bkt, it_cnt;
586 struct ice_vf *vf;
587 int retval;
588
589 lockdep_assert_held(&pf->vfs.table_lock);
590
591 it_cnt = 0;
592 ice_for_each_vf(pf, bkt, vf) {
593 vf->vf_ops->clear_reset_trigger(vf);
594
595 retval = ice_init_vf_vsi_res(vf);
596 if (retval) {
597 dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
598 vf->vf_id, retval);
599 goto teardown;
600 }
601
602 retval = ice_eswitch_attach_vf(pf, vf);
603 if (retval) {
604 dev_err(ice_pf_to_dev(pf), "Failed to attach VF %d to eswitch, error %d",
605 vf->vf_id, retval);
606 ice_vf_vsi_release(vf);
607 goto teardown;
608 }
609
610 set_bit(ICE_VF_STATE_INIT, vf->vf_states);
611 ice_ena_vf_mappings(vf);
612 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
613 it_cnt++;
614 }
615
616 ice_flush(hw);
617 return 0;
618
619 teardown:
620 ice_for_each_vf(pf, bkt, vf) {
621 if (it_cnt == 0)
622 break;
623
624 ice_dis_vf_mappings(vf);
625 ice_vf_vsi_release(vf);
626 it_cnt--;
627 }
628
629 return retval;
630 }
631
632 /**
633 * ice_sriov_free_vf - Free VF memory after all references are dropped
634 * @vf: pointer to VF to free
635 *
636 * Called by ice_put_vf through ice_release_vf once the last reference to a VF
637 * structure has been dropped.
638 */
ice_sriov_free_vf(struct ice_vf * vf)639 static void ice_sriov_free_vf(struct ice_vf *vf)
640 {
641 mutex_destroy(&vf->cfg_lock);
642
643 kfree_rcu(vf, rcu);
644 }
645
646 /**
647 * ice_sriov_clear_reset_state - clears VF Reset status register
648 * @vf: the vf to configure
649 */
ice_sriov_clear_reset_state(struct ice_vf * vf)650 static void ice_sriov_clear_reset_state(struct ice_vf *vf)
651 {
652 struct ice_hw *hw = &vf->pf->hw;
653
654 /* Clear the reset status register so that VF immediately sees that
655 * the device is resetting, even if hardware hasn't yet gotten around
656 * to clearing VFGEN_RSTAT for us.
657 */
658 wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
659 }
660
661 /**
662 * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
663 * @vf: the vf to configure
664 */
ice_sriov_clear_mbx_register(struct ice_vf * vf)665 static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
666 {
667 struct ice_pf *pf = vf->pf;
668
669 wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
670 wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
671 }
672
673 /**
674 * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
675 * @vf: pointer to VF structure
676 * @is_vflr: true if reset occurred due to VFLR
677 *
678 * Trigger and cleanup after a VF reset for a SR-IOV VF.
679 */
ice_sriov_trigger_reset_register(struct ice_vf * vf,bool is_vflr)680 static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
681 {
682 struct ice_pf *pf = vf->pf;
683 u32 reg, reg_idx, bit_idx;
684 unsigned int vf_abs_id, i;
685 struct device *dev;
686 struct ice_hw *hw;
687
688 dev = ice_pf_to_dev(pf);
689 hw = &pf->hw;
690 vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
691
692 /* In the case of a VFLR, HW has already reset the VF and we just need
693 * to clean up. Otherwise we must first trigger the reset using the
694 * VFRTRIG register.
695 */
696 if (!is_vflr) {
697 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
698 reg |= VPGEN_VFRTRIG_VFSWR_M;
699 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
700 }
701
702 /* clear the VFLR bit in GLGEN_VFLRSTAT */
703 reg_idx = (vf_abs_id) / 32;
704 bit_idx = (vf_abs_id) % 32;
705 wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
706 ice_flush(hw);
707
708 wr32(hw, PF_PCI_CIAA,
709 VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
710 for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
711 reg = rd32(hw, PF_PCI_CIAD);
712 /* no transactions pending so stop polling */
713 if ((reg & VF_TRANS_PENDING_M) == 0)
714 break;
715
716 dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
717 udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
718 }
719 }
720
721 /**
722 * ice_sriov_poll_reset_status - poll SRIOV VF reset status
723 * @vf: pointer to VF structure
724 *
725 * Returns true when reset is successful, else returns false
726 */
ice_sriov_poll_reset_status(struct ice_vf * vf)727 static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
728 {
729 struct ice_pf *pf = vf->pf;
730 unsigned int i;
731 u32 reg;
732
733 for (i = 0; i < 10; i++) {
734 /* VF reset requires driver to first reset the VF and then
735 * poll the status register to make sure that the reset
736 * completed successfully.
737 */
738 reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
739 if (reg & VPGEN_VFRSTAT_VFRD_M)
740 return true;
741
742 /* only sleep if the reset is not done */
743 usleep_range(10, 20);
744 }
745 return false;
746 }
747
748 /**
749 * ice_sriov_clear_reset_trigger - enable VF to access hardware
750 * @vf: VF to enabled hardware access for
751 */
ice_sriov_clear_reset_trigger(struct ice_vf * vf)752 static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
753 {
754 struct ice_hw *hw = &vf->pf->hw;
755 u32 reg;
756
757 reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
758 reg &= ~VPGEN_VFRTRIG_VFSWR_M;
759 wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
760 ice_flush(hw);
761 }
762
763 /**
764 * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
765 * @vf: VF to perform tasks on
766 */
ice_sriov_post_vsi_rebuild(struct ice_vf * vf)767 static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
768 {
769 ice_ena_vf_mappings(vf);
770 wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
771 }
772
773 static const struct ice_vf_ops ice_sriov_vf_ops = {
774 .reset_type = ICE_VF_RESET,
775 .free = ice_sriov_free_vf,
776 .clear_reset_state = ice_sriov_clear_reset_state,
777 .clear_mbx_register = ice_sriov_clear_mbx_register,
778 .trigger_reset_register = ice_sriov_trigger_reset_register,
779 .poll_reset_status = ice_sriov_poll_reset_status,
780 .clear_reset_trigger = ice_sriov_clear_reset_trigger,
781 .irq_close = NULL,
782 .post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
783 };
784
785 /**
786 * ice_create_vf_entries - Allocate and insert VF entries
787 * @pf: pointer to the PF structure
788 * @num_vfs: the number of VFs to allocate
789 *
790 * Allocate new VF entries and insert them into the hash table. Set some
791 * basic default fields for initializing the new VFs.
792 *
793 * After this function exits, the hash table will have num_vfs entries
794 * inserted.
795 *
796 * Returns 0 on success or an integer error code on failure.
797 */
ice_create_vf_entries(struct ice_pf * pf,u16 num_vfs)798 static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
799 {
800 struct pci_dev *pdev = pf->pdev;
801 struct ice_vfs *vfs = &pf->vfs;
802 struct pci_dev *vfdev = NULL;
803 struct ice_vf *vf;
804 u16 vf_pdev_id;
805 int err, pos;
806
807 lockdep_assert_held(&vfs->table_lock);
808
809 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
810 pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &vf_pdev_id);
811
812 for (u16 vf_id = 0; vf_id < num_vfs; vf_id++) {
813 vf = kzalloc(sizeof(*vf), GFP_KERNEL);
814 if (!vf) {
815 err = -ENOMEM;
816 goto err_free_entries;
817 }
818 kref_init(&vf->refcnt);
819
820 vf->pf = pf;
821 vf->vf_id = vf_id;
822
823 /* set sriov vf ops for VFs created during SRIOV flow */
824 vf->vf_ops = &ice_sriov_vf_ops;
825
826 ice_initialize_vf_entry(vf);
827
828 do {
829 vfdev = pci_get_device(pdev->vendor, vf_pdev_id, vfdev);
830 } while (vfdev && vfdev->physfn != pdev);
831 vf->vfdev = vfdev;
832 vf->vf_sw_id = pf->first_sw;
833
834 pci_dev_get(vfdev);
835
836 hash_add_rcu(vfs->table, &vf->entry, vf_id);
837 }
838
839 /* Decrement of refcount done by pci_get_device() inside the loop does
840 * not touch the last iteration's vfdev, so it has to be done manually
841 * to balance pci_dev_get() added within the loop.
842 */
843 pci_dev_put(vfdev);
844
845 return 0;
846
847 err_free_entries:
848 ice_free_vf_entries(pf);
849 return err;
850 }
851
852 /**
853 * ice_ena_vfs - enable VFs so they are ready to be used
854 * @pf: pointer to the PF structure
855 * @num_vfs: number of VFs to enable
856 */
ice_ena_vfs(struct ice_pf * pf,u16 num_vfs)857 static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
858 {
859 int total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
860 struct device *dev = ice_pf_to_dev(pf);
861 struct ice_hw *hw = &pf->hw;
862 int ret;
863
864 pf->sriov_irq_bm = bitmap_zalloc(total_vectors, GFP_KERNEL);
865 if (!pf->sriov_irq_bm)
866 return -ENOMEM;
867 pf->sriov_irq_size = total_vectors;
868
869 /* Disable global interrupt 0 so we don't try to handle the VFLR. */
870 wr32(hw, GLINT_DYN_CTL(pf->oicr_irq.index),
871 ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
872 set_bit(ICE_OICR_INTR_DIS, pf->state);
873 ice_flush(hw);
874
875 ret = pci_enable_sriov(pf->pdev, num_vfs);
876 if (ret)
877 goto err_unroll_intr;
878
879 mutex_lock(&pf->vfs.table_lock);
880
881 ret = ice_set_per_vf_res(pf, num_vfs);
882 if (ret) {
883 dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
884 num_vfs, ret);
885 goto err_unroll_sriov;
886 }
887
888 ret = ice_create_vf_entries(pf, num_vfs);
889 if (ret) {
890 dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
891 num_vfs);
892 goto err_unroll_sriov;
893 }
894
895 ret = ice_start_vfs(pf);
896 if (ret) {
897 dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
898 ret = -EAGAIN;
899 goto err_unroll_vf_entries;
900 }
901
902 clear_bit(ICE_VF_DIS, pf->state);
903
904 /* rearm global interrupts */
905 if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
906 ice_irq_dynamic_ena(hw, NULL, NULL);
907
908 mutex_unlock(&pf->vfs.table_lock);
909
910 return 0;
911
912 err_unroll_vf_entries:
913 ice_free_vf_entries(pf);
914 err_unroll_sriov:
915 mutex_unlock(&pf->vfs.table_lock);
916 pci_disable_sriov(pf->pdev);
917 err_unroll_intr:
918 /* rearm interrupts here */
919 ice_irq_dynamic_ena(hw, NULL, NULL);
920 clear_bit(ICE_OICR_INTR_DIS, pf->state);
921 bitmap_free(pf->sriov_irq_bm);
922 return ret;
923 }
924
925 /**
926 * ice_pci_sriov_ena - Enable or change number of VFs
927 * @pf: pointer to the PF structure
928 * @num_vfs: number of VFs to allocate
929 *
930 * Returns 0 on success and negative on failure
931 */
ice_pci_sriov_ena(struct ice_pf * pf,int num_vfs)932 static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
933 {
934 struct device *dev = ice_pf_to_dev(pf);
935 int err;
936
937 if (!num_vfs) {
938 ice_free_vfs(pf);
939 return 0;
940 }
941
942 if (num_vfs > pf->vfs.num_supported) {
943 dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
944 num_vfs, pf->vfs.num_supported);
945 return -EOPNOTSUPP;
946 }
947
948 dev_info(dev, "Enabling %d VFs\n", num_vfs);
949 err = ice_ena_vfs(pf, num_vfs);
950 if (err) {
951 dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
952 return err;
953 }
954
955 set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
956 return 0;
957 }
958
959 /**
960 * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
961 * @pf: PF to enabled SR-IOV on
962 */
ice_check_sriov_allowed(struct ice_pf * pf)963 static int ice_check_sriov_allowed(struct ice_pf *pf)
964 {
965 struct device *dev = ice_pf_to_dev(pf);
966
967 if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
968 dev_err(dev, "This device is not capable of SR-IOV\n");
969 return -EOPNOTSUPP;
970 }
971
972 if (ice_is_safe_mode(pf)) {
973 dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
974 return -EOPNOTSUPP;
975 }
976
977 if (!ice_pf_state_is_nominal(pf)) {
978 dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
979 return -EBUSY;
980 }
981
982 return 0;
983 }
984
985 /**
986 * ice_sriov_get_vf_total_msix - return number of MSI-X used by VFs
987 * @pdev: pointer to pci_dev struct
988 *
989 * The function is called via sysfs ops
990 */
ice_sriov_get_vf_total_msix(struct pci_dev * pdev)991 u32 ice_sriov_get_vf_total_msix(struct pci_dev *pdev)
992 {
993 struct ice_pf *pf = pci_get_drvdata(pdev);
994
995 return pf->sriov_irq_size - ice_get_max_used_msix_vector(pf);
996 }
997
ice_sriov_move_base_vector(struct ice_pf * pf,int move)998 static int ice_sriov_move_base_vector(struct ice_pf *pf, int move)
999 {
1000 if (pf->sriov_base_vector - move < ice_get_max_used_msix_vector(pf))
1001 return -ENOMEM;
1002
1003 pf->sriov_base_vector -= move;
1004 return 0;
1005 }
1006
ice_sriov_remap_vectors(struct ice_pf * pf,u16 restricted_id)1007 static void ice_sriov_remap_vectors(struct ice_pf *pf, u16 restricted_id)
1008 {
1009 u16 vf_ids[ICE_MAX_SRIOV_VFS];
1010 struct ice_vf *tmp_vf;
1011 int to_remap = 0, bkt;
1012
1013 /* For better irqs usage try to remap irqs of VFs
1014 * that aren't running yet
1015 */
1016 ice_for_each_vf(pf, bkt, tmp_vf) {
1017 /* skip VF which is changing the number of MSI-X */
1018 if (restricted_id == tmp_vf->vf_id ||
1019 test_bit(ICE_VF_STATE_ACTIVE, tmp_vf->vf_states))
1020 continue;
1021
1022 ice_dis_vf_mappings(tmp_vf);
1023 ice_sriov_free_irqs(pf, tmp_vf);
1024
1025 vf_ids[to_remap] = tmp_vf->vf_id;
1026 to_remap += 1;
1027 }
1028
1029 for (int i = 0; i < to_remap; i++) {
1030 tmp_vf = ice_get_vf_by_id(pf, vf_ids[i]);
1031 if (!tmp_vf)
1032 continue;
1033
1034 tmp_vf->first_vector_idx =
1035 ice_sriov_get_irqs(pf, tmp_vf->num_msix);
1036 /* there is no need to rebuild VSI as we are only changing the
1037 * vector indexes not amount of MSI-X or queues
1038 */
1039 ice_ena_vf_mappings(tmp_vf);
1040 ice_put_vf(tmp_vf);
1041 }
1042 }
1043
1044 /**
1045 * ice_sriov_set_msix_vec_count
1046 * @vf_dev: pointer to pci_dev struct of VF device
1047 * @msix_vec_count: new value for MSI-X amount on this VF
1048 *
1049 * Set requested MSI-X, queues and registers for @vf_dev.
1050 *
1051 * First do some sanity checks like if there are any VFs, if the new value
1052 * is correct etc. Then disable old mapping (MSI-X and queues registers), change
1053 * MSI-X and queues, rebuild VSI and enable new mapping.
1054 *
1055 * If it is possible (driver not binded to VF) try to remap also other VFs to
1056 * linearize irqs register usage.
1057 */
ice_sriov_set_msix_vec_count(struct pci_dev * vf_dev,int msix_vec_count)1058 int ice_sriov_set_msix_vec_count(struct pci_dev *vf_dev, int msix_vec_count)
1059 {
1060 struct pci_dev *pdev = pci_physfn(vf_dev);
1061 struct ice_pf *pf = pci_get_drvdata(pdev);
1062 u16 prev_msix, prev_queues, queues;
1063 bool needs_rebuild = false;
1064 struct ice_vsi *vsi;
1065 struct ice_vf *vf;
1066 int id;
1067
1068 if (!ice_get_num_vfs(pf))
1069 return -ENOENT;
1070
1071 if (!msix_vec_count)
1072 return 0;
1073
1074 queues = msix_vec_count;
1075 /* add 1 MSI-X for OICR */
1076 msix_vec_count += 1;
1077
1078 if (queues > min(ice_get_avail_txq_count(pf),
1079 ice_get_avail_rxq_count(pf)))
1080 return -EINVAL;
1081
1082 if (msix_vec_count < ICE_MIN_INTR_PER_VF)
1083 return -EINVAL;
1084
1085 /* Transition of PCI VF function number to function_id */
1086 for (id = 0; id < pci_num_vf(pdev); id++) {
1087 if (vf_dev->devfn == pci_iov_virtfn_devfn(pdev, id))
1088 break;
1089 }
1090
1091 if (id == pci_num_vf(pdev))
1092 return -ENOENT;
1093
1094 vf = ice_get_vf_by_id(pf, id);
1095
1096 if (!vf)
1097 return -ENOENT;
1098
1099 vsi = ice_get_vf_vsi(vf);
1100 if (!vsi) {
1101 ice_put_vf(vf);
1102 return -ENOENT;
1103 }
1104
1105 prev_msix = vf->num_msix;
1106 prev_queues = vf->num_vf_qs;
1107
1108 if (ice_sriov_move_base_vector(pf, msix_vec_count - prev_msix)) {
1109 ice_put_vf(vf);
1110 return -ENOSPC;
1111 }
1112
1113 ice_dis_vf_mappings(vf);
1114 ice_sriov_free_irqs(pf, vf);
1115
1116 /* Remap all VFs beside the one is now configured */
1117 ice_sriov_remap_vectors(pf, vf->vf_id);
1118
1119 vf->num_msix = msix_vec_count;
1120 vf->num_vf_qs = queues;
1121 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1122 if (vf->first_vector_idx < 0)
1123 goto unroll;
1124
1125 vsi->req_txq = queues;
1126 vsi->req_rxq = queues;
1127
1128 if (ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT)) {
1129 /* Try to rebuild with previous values */
1130 needs_rebuild = true;
1131 goto unroll;
1132 }
1133
1134 dev_info(ice_pf_to_dev(pf),
1135 "Changing VF %d resources to %d vectors and %d queues\n",
1136 vf->vf_id, vf->num_msix, vf->num_vf_qs);
1137
1138 ice_ena_vf_mappings(vf);
1139 ice_put_vf(vf);
1140
1141 return 0;
1142
1143 unroll:
1144 dev_info(ice_pf_to_dev(pf),
1145 "Can't set %d vectors on VF %d, falling back to %d\n",
1146 vf->num_msix, vf->vf_id, prev_msix);
1147
1148 vf->num_msix = prev_msix;
1149 vf->num_vf_qs = prev_queues;
1150 vf->first_vector_idx = ice_sriov_get_irqs(pf, vf->num_msix);
1151 if (vf->first_vector_idx < 0) {
1152 ice_put_vf(vf);
1153 return -EINVAL;
1154 }
1155
1156 if (needs_rebuild) {
1157 vsi->req_txq = prev_queues;
1158 vsi->req_rxq = prev_queues;
1159
1160 ice_vsi_rebuild(vsi, ICE_VSI_FLAG_NO_INIT);
1161 }
1162
1163 ice_ena_vf_mappings(vf);
1164 ice_put_vf(vf);
1165
1166 return -EINVAL;
1167 }
1168
1169 /**
1170 * ice_sriov_configure - Enable or change number of VFs via sysfs
1171 * @pdev: pointer to a pci_dev structure
1172 * @num_vfs: number of VFs to allocate or 0 to free VFs
1173 *
1174 * This function is called when the user updates the number of VFs in sysfs. On
1175 * success return whatever num_vfs was set to by the caller. Return negative on
1176 * failure.
1177 */
ice_sriov_configure(struct pci_dev * pdev,int num_vfs)1178 int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
1179 {
1180 struct ice_pf *pf = pci_get_drvdata(pdev);
1181 struct device *dev = ice_pf_to_dev(pf);
1182 int err;
1183
1184 err = ice_check_sriov_allowed(pf);
1185 if (err)
1186 return err;
1187
1188 if (!num_vfs) {
1189 if (!pci_vfs_assigned(pdev)) {
1190 ice_free_vfs(pf);
1191 return 0;
1192 }
1193
1194 dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
1195 return -EBUSY;
1196 }
1197
1198 err = ice_pci_sriov_ena(pf, num_vfs);
1199 if (err)
1200 return err;
1201
1202 return num_vfs;
1203 }
1204
1205 /**
1206 * ice_process_vflr_event - Free VF resources via IRQ calls
1207 * @pf: pointer to the PF structure
1208 *
1209 * called from the VFLR IRQ handler to
1210 * free up VF resources and state variables
1211 */
ice_process_vflr_event(struct ice_pf * pf)1212 void ice_process_vflr_event(struct ice_pf *pf)
1213 {
1214 struct ice_hw *hw = &pf->hw;
1215 struct ice_vf *vf;
1216 unsigned int bkt;
1217 u32 reg;
1218
1219 if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
1220 !ice_has_vfs(pf))
1221 return;
1222
1223 mutex_lock(&pf->vfs.table_lock);
1224 ice_for_each_vf(pf, bkt, vf) {
1225 u32 reg_idx, bit_idx;
1226
1227 reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
1228 bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
1229 /* read GLGEN_VFLRSTAT register to find out the flr VFs */
1230 reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
1231 if (reg & BIT(bit_idx))
1232 /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
1233 ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
1234 }
1235 mutex_unlock(&pf->vfs.table_lock);
1236 }
1237
1238 /**
1239 * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
1240 * @pf: PF used to index all VFs
1241 * @pfq: queue index relative to the PF's function space
1242 *
1243 * If no VF is found who owns the pfq then return NULL, otherwise return a
1244 * pointer to the VF who owns the pfq
1245 *
1246 * If this function returns non-NULL, it acquires a reference count of the VF
1247 * structure. The caller is responsible for calling ice_put_vf() to drop this
1248 * reference.
1249 */
ice_get_vf_from_pfq(struct ice_pf * pf,u16 pfq)1250 static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
1251 {
1252 struct ice_vf *vf;
1253 unsigned int bkt;
1254
1255 rcu_read_lock();
1256 ice_for_each_vf_rcu(pf, bkt, vf) {
1257 struct ice_vsi *vsi;
1258 u16 rxq_idx;
1259
1260 vsi = ice_get_vf_vsi(vf);
1261 if (!vsi)
1262 continue;
1263
1264 ice_for_each_rxq(vsi, rxq_idx)
1265 if (vsi->rxq_map[rxq_idx] == pfq) {
1266 struct ice_vf *found;
1267
1268 if (kref_get_unless_zero(&vf->refcnt))
1269 found = vf;
1270 else
1271 found = NULL;
1272 rcu_read_unlock();
1273 return found;
1274 }
1275 }
1276 rcu_read_unlock();
1277
1278 return NULL;
1279 }
1280
1281 /**
1282 * ice_globalq_to_pfq - convert from global queue index to PF space queue index
1283 * @pf: PF used for conversion
1284 * @globalq: global queue index used to convert to PF space queue index
1285 */
ice_globalq_to_pfq(struct ice_pf * pf,u32 globalq)1286 static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
1287 {
1288 return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
1289 }
1290
1291 /**
1292 * ice_vf_lan_overflow_event - handle LAN overflow event for a VF
1293 * @pf: PF that the LAN overflow event happened on
1294 * @event: structure holding the event information for the LAN overflow event
1295 *
1296 * Determine if the LAN overflow event was caused by a VF queue. If it was not
1297 * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
1298 * reset on the offending VF.
1299 */
1300 void
ice_vf_lan_overflow_event(struct ice_pf * pf,struct ice_rq_event_info * event)1301 ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1302 {
1303 u32 gldcb_rtctq, queue;
1304 struct ice_vf *vf;
1305
1306 gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
1307 dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
1308
1309 /* event returns device global Rx queue number */
1310 queue = FIELD_GET(GLDCB_RTCTQ_RXQNUM_M, gldcb_rtctq);
1311
1312 vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
1313 if (!vf)
1314 return;
1315
1316 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
1317 ice_put_vf(vf);
1318 }
1319
1320 /**
1321 * ice_set_vf_spoofchk
1322 * @netdev: network interface device structure
1323 * @vf_id: VF identifier
1324 * @ena: flag to enable or disable feature
1325 *
1326 * Enable or disable VF spoof checking
1327 */
ice_set_vf_spoofchk(struct net_device * netdev,int vf_id,bool ena)1328 int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
1329 {
1330 struct ice_netdev_priv *np = netdev_priv(netdev);
1331 struct ice_pf *pf = np->vsi->back;
1332 struct ice_vsi *vf_vsi;
1333 struct device *dev;
1334 struct ice_vf *vf;
1335 int ret;
1336
1337 dev = ice_pf_to_dev(pf);
1338
1339 vf = ice_get_vf_by_id(pf, vf_id);
1340 if (!vf)
1341 return -EINVAL;
1342
1343 ret = ice_check_vf_ready_for_cfg(vf);
1344 if (ret)
1345 goto out_put_vf;
1346
1347 vf_vsi = ice_get_vf_vsi(vf);
1348 if (!vf_vsi) {
1349 netdev_err(netdev, "VSI %d for VF %d is null\n",
1350 vf->lan_vsi_idx, vf->vf_id);
1351 ret = -EINVAL;
1352 goto out_put_vf;
1353 }
1354
1355 if (vf_vsi->type != ICE_VSI_VF) {
1356 netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
1357 vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
1358 ret = -ENODEV;
1359 goto out_put_vf;
1360 }
1361
1362 if (ena == vf->spoofchk) {
1363 dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
1364 ret = 0;
1365 goto out_put_vf;
1366 }
1367
1368 ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
1369 if (ret)
1370 dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
1371 ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
1372 else
1373 vf->spoofchk = ena;
1374
1375 out_put_vf:
1376 ice_put_vf(vf);
1377 return ret;
1378 }
1379
1380 /**
1381 * ice_get_vf_cfg
1382 * @netdev: network interface device structure
1383 * @vf_id: VF identifier
1384 * @ivi: VF configuration structure
1385 *
1386 * return VF configuration
1387 */
1388 int
ice_get_vf_cfg(struct net_device * netdev,int vf_id,struct ifla_vf_info * ivi)1389 ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
1390 {
1391 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1392 struct ice_vf *vf;
1393 int ret;
1394
1395 vf = ice_get_vf_by_id(pf, vf_id);
1396 if (!vf)
1397 return -EINVAL;
1398
1399 ret = ice_check_vf_ready_for_cfg(vf);
1400 if (ret)
1401 goto out_put_vf;
1402
1403 ivi->vf = vf_id;
1404 ether_addr_copy(ivi->mac, vf->hw_lan_addr);
1405
1406 /* VF configuration for VLAN and applicable QoS */
1407 ivi->vlan = ice_vf_get_port_vlan_id(vf);
1408 ivi->qos = ice_vf_get_port_vlan_prio(vf);
1409 if (ice_vf_is_port_vlan_ena(vf))
1410 ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
1411
1412 ivi->trusted = vf->trusted;
1413 ivi->spoofchk = vf->spoofchk;
1414 if (!vf->link_forced)
1415 ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
1416 else if (vf->link_up)
1417 ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
1418 else
1419 ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
1420 ivi->max_tx_rate = vf->max_tx_rate;
1421 ivi->min_tx_rate = vf->min_tx_rate;
1422
1423 out_put_vf:
1424 ice_put_vf(vf);
1425 return ret;
1426 }
1427
1428 /**
1429 * __ice_set_vf_mac - program VF MAC address
1430 * @pf: PF to be configure
1431 * @vf_id: VF identifier
1432 * @mac: MAC address
1433 *
1434 * program VF MAC address
1435 * Return: zero on success or an error code on failure
1436 */
__ice_set_vf_mac(struct ice_pf * pf,u16 vf_id,const u8 * mac)1437 int __ice_set_vf_mac(struct ice_pf *pf, u16 vf_id, const u8 *mac)
1438 {
1439 struct device *dev;
1440 struct ice_vf *vf;
1441 int ret;
1442
1443 dev = ice_pf_to_dev(pf);
1444 if (is_multicast_ether_addr(mac)) {
1445 dev_err(dev, "%pM not a valid unicast address\n", mac);
1446 return -EINVAL;
1447 }
1448
1449 vf = ice_get_vf_by_id(pf, vf_id);
1450 if (!vf)
1451 return -EINVAL;
1452
1453 /* nothing left to do, unicast MAC already set */
1454 if (ether_addr_equal(vf->dev_lan_addr, mac) &&
1455 ether_addr_equal(vf->hw_lan_addr, mac)) {
1456 ret = 0;
1457 goto out_put_vf;
1458 }
1459
1460 ret = ice_check_vf_ready_for_cfg(vf);
1461 if (ret)
1462 goto out_put_vf;
1463
1464 mutex_lock(&vf->cfg_lock);
1465
1466 /* VF is notified of its new MAC via the PF's response to the
1467 * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
1468 */
1469 ether_addr_copy(vf->dev_lan_addr, mac);
1470 ether_addr_copy(vf->hw_lan_addr, mac);
1471 if (is_zero_ether_addr(mac)) {
1472 /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
1473 vf->pf_set_mac = false;
1474 dev_info(dev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
1475 vf->vf_id);
1476 } else {
1477 /* PF will add MAC rule for the VF */
1478 vf->pf_set_mac = true;
1479 dev_info(dev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
1480 mac, vf_id);
1481 }
1482
1483 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1484 mutex_unlock(&vf->cfg_lock);
1485
1486 out_put_vf:
1487 ice_put_vf(vf);
1488 return ret;
1489 }
1490
1491 /**
1492 * ice_set_vf_mac - .ndo_set_vf_mac handler
1493 * @netdev: network interface device structure
1494 * @vf_id: VF identifier
1495 * @mac: MAC address
1496 *
1497 * program VF MAC address
1498 * Return: zero on success or an error code on failure
1499 */
ice_set_vf_mac(struct net_device * netdev,int vf_id,u8 * mac)1500 int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1501 {
1502 return __ice_set_vf_mac(ice_netdev_to_pf(netdev), vf_id, mac);
1503 }
1504
1505 /**
1506 * ice_set_vf_trust
1507 * @netdev: network interface device structure
1508 * @vf_id: VF identifier
1509 * @trusted: Boolean value to enable/disable trusted VF
1510 *
1511 * Enable or disable a given VF as trusted
1512 */
ice_set_vf_trust(struct net_device * netdev,int vf_id,bool trusted)1513 int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
1514 {
1515 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1516 struct ice_vf *vf;
1517 int ret;
1518
1519 vf = ice_get_vf_by_id(pf, vf_id);
1520 if (!vf)
1521 return -EINVAL;
1522
1523 if (ice_is_eswitch_mode_switchdev(pf)) {
1524 dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
1525 return -EOPNOTSUPP;
1526 }
1527
1528 ret = ice_check_vf_ready_for_cfg(vf);
1529 if (ret)
1530 goto out_put_vf;
1531
1532 /* Check if already trusted */
1533 if (trusted == vf->trusted) {
1534 ret = 0;
1535 goto out_put_vf;
1536 }
1537
1538 mutex_lock(&vf->cfg_lock);
1539
1540 vf->trusted = trusted;
1541 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1542 dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
1543 vf_id, trusted ? "" : "un");
1544
1545 mutex_unlock(&vf->cfg_lock);
1546
1547 out_put_vf:
1548 ice_put_vf(vf);
1549 return ret;
1550 }
1551
1552 /**
1553 * ice_set_vf_link_state
1554 * @netdev: network interface device structure
1555 * @vf_id: VF identifier
1556 * @link_state: required link state
1557 *
1558 * Set VF's link state, irrespective of physical link state status
1559 */
ice_set_vf_link_state(struct net_device * netdev,int vf_id,int link_state)1560 int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
1561 {
1562 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1563 struct ice_vf *vf;
1564 int ret;
1565
1566 vf = ice_get_vf_by_id(pf, vf_id);
1567 if (!vf)
1568 return -EINVAL;
1569
1570 ret = ice_check_vf_ready_for_cfg(vf);
1571 if (ret)
1572 goto out_put_vf;
1573
1574 switch (link_state) {
1575 case IFLA_VF_LINK_STATE_AUTO:
1576 vf->link_forced = false;
1577 break;
1578 case IFLA_VF_LINK_STATE_ENABLE:
1579 vf->link_forced = true;
1580 vf->link_up = true;
1581 break;
1582 case IFLA_VF_LINK_STATE_DISABLE:
1583 vf->link_forced = true;
1584 vf->link_up = false;
1585 break;
1586 default:
1587 ret = -EINVAL;
1588 goto out_put_vf;
1589 }
1590
1591 ice_vc_notify_vf_link_state(vf);
1592
1593 out_put_vf:
1594 ice_put_vf(vf);
1595 return ret;
1596 }
1597
1598 /**
1599 * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
1600 * @pf: PF associated with VFs
1601 */
ice_calc_all_vfs_min_tx_rate(struct ice_pf * pf)1602 static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
1603 {
1604 struct ice_vf *vf;
1605 unsigned int bkt;
1606 int rate = 0;
1607
1608 rcu_read_lock();
1609 ice_for_each_vf_rcu(pf, bkt, vf)
1610 rate += vf->min_tx_rate;
1611 rcu_read_unlock();
1612
1613 return rate;
1614 }
1615
1616 /**
1617 * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
1618 * @vf: VF trying to configure min_tx_rate
1619 * @min_tx_rate: min Tx rate in Mbps
1620 *
1621 * Check if the min_tx_rate being passed in will cause oversubscription of total
1622 * min_tx_rate based on the current link speed and all other VFs configured
1623 * min_tx_rate
1624 *
1625 * Return true if the passed min_tx_rate would cause oversubscription, else
1626 * return false
1627 */
1628 static bool
ice_min_tx_rate_oversubscribed(struct ice_vf * vf,int min_tx_rate)1629 ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
1630 {
1631 struct ice_vsi *vsi = ice_get_vf_vsi(vf);
1632 int all_vfs_min_tx_rate;
1633 int link_speed_mbps;
1634
1635 if (WARN_ON(!vsi))
1636 return false;
1637
1638 link_speed_mbps = ice_get_link_speed_mbps(vsi);
1639 all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
1640
1641 /* this VF's previous rate is being overwritten */
1642 all_vfs_min_tx_rate -= vf->min_tx_rate;
1643
1644 if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
1645 dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
1646 min_tx_rate, vf->vf_id,
1647 all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
1648 link_speed_mbps);
1649 return true;
1650 }
1651
1652 return false;
1653 }
1654
1655 /**
1656 * ice_set_vf_bw - set min/max VF bandwidth
1657 * @netdev: network interface device structure
1658 * @vf_id: VF identifier
1659 * @min_tx_rate: Minimum Tx rate in Mbps
1660 * @max_tx_rate: Maximum Tx rate in Mbps
1661 */
1662 int
ice_set_vf_bw(struct net_device * netdev,int vf_id,int min_tx_rate,int max_tx_rate)1663 ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
1664 int max_tx_rate)
1665 {
1666 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1667 struct ice_vsi *vsi;
1668 struct device *dev;
1669 struct ice_vf *vf;
1670 int ret;
1671
1672 dev = ice_pf_to_dev(pf);
1673
1674 vf = ice_get_vf_by_id(pf, vf_id);
1675 if (!vf)
1676 return -EINVAL;
1677
1678 ret = ice_check_vf_ready_for_cfg(vf);
1679 if (ret)
1680 goto out_put_vf;
1681
1682 vsi = ice_get_vf_vsi(vf);
1683 if (!vsi) {
1684 ret = -EINVAL;
1685 goto out_put_vf;
1686 }
1687
1688 if (min_tx_rate && ice_is_dcb_active(pf)) {
1689 dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
1690 ret = -EOPNOTSUPP;
1691 goto out_put_vf;
1692 }
1693
1694 if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
1695 ret = -EINVAL;
1696 goto out_put_vf;
1697 }
1698
1699 if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
1700 ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
1701 if (ret) {
1702 dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
1703 vf->vf_id);
1704 goto out_put_vf;
1705 }
1706
1707 vf->min_tx_rate = min_tx_rate;
1708 }
1709
1710 if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
1711 ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
1712 if (ret) {
1713 dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
1714 vf->vf_id);
1715 goto out_put_vf;
1716 }
1717
1718 vf->max_tx_rate = max_tx_rate;
1719 }
1720
1721 out_put_vf:
1722 ice_put_vf(vf);
1723 return ret;
1724 }
1725
1726 /**
1727 * ice_get_vf_stats - populate some stats for the VF
1728 * @netdev: the netdev of the PF
1729 * @vf_id: the host OS identifier (0-255)
1730 * @vf_stats: pointer to the OS memory to be initialized
1731 */
ice_get_vf_stats(struct net_device * netdev,int vf_id,struct ifla_vf_stats * vf_stats)1732 int ice_get_vf_stats(struct net_device *netdev, int vf_id,
1733 struct ifla_vf_stats *vf_stats)
1734 {
1735 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1736 struct ice_eth_stats *stats;
1737 struct ice_vsi *vsi;
1738 struct ice_vf *vf;
1739 int ret;
1740
1741 vf = ice_get_vf_by_id(pf, vf_id);
1742 if (!vf)
1743 return -EINVAL;
1744
1745 ret = ice_check_vf_ready_for_cfg(vf);
1746 if (ret)
1747 goto out_put_vf;
1748
1749 vsi = ice_get_vf_vsi(vf);
1750 if (!vsi) {
1751 ret = -EINVAL;
1752 goto out_put_vf;
1753 }
1754
1755 ice_update_eth_stats(vsi);
1756 stats = &vsi->eth_stats;
1757
1758 memset(vf_stats, 0, sizeof(*vf_stats));
1759
1760 vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
1761 stats->rx_multicast;
1762 vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
1763 stats->tx_multicast;
1764 vf_stats->rx_bytes = stats->rx_bytes;
1765 vf_stats->tx_bytes = stats->tx_bytes;
1766 vf_stats->broadcast = stats->rx_broadcast;
1767 vf_stats->multicast = stats->rx_multicast;
1768 vf_stats->rx_dropped = stats->rx_discards;
1769 vf_stats->tx_dropped = stats->tx_discards;
1770
1771 out_put_vf:
1772 ice_put_vf(vf);
1773 return ret;
1774 }
1775
1776 /**
1777 * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
1778 * @hw: hardware structure used to check the VLAN mode
1779 * @vlan_proto: VLAN TPID being checked
1780 *
1781 * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
1782 * and ETH_P_8021AD are supported. If the device is configured in Single VLAN
1783 * Mode (SVM), then only ETH_P_8021Q is supported.
1784 */
1785 static bool
ice_is_supported_port_vlan_proto(struct ice_hw * hw,u16 vlan_proto)1786 ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
1787 {
1788 bool is_supported = false;
1789
1790 switch (vlan_proto) {
1791 case ETH_P_8021Q:
1792 is_supported = true;
1793 break;
1794 case ETH_P_8021AD:
1795 if (ice_is_dvm_ena(hw))
1796 is_supported = true;
1797 break;
1798 }
1799
1800 return is_supported;
1801 }
1802
1803 /**
1804 * ice_set_vf_port_vlan
1805 * @netdev: network interface device structure
1806 * @vf_id: VF identifier
1807 * @vlan_id: VLAN ID being set
1808 * @qos: priority setting
1809 * @vlan_proto: VLAN protocol
1810 *
1811 * program VF Port VLAN ID and/or QoS
1812 */
1813 int
ice_set_vf_port_vlan(struct net_device * netdev,int vf_id,u16 vlan_id,u8 qos,__be16 vlan_proto)1814 ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
1815 __be16 vlan_proto)
1816 {
1817 struct ice_pf *pf = ice_netdev_to_pf(netdev);
1818 u16 local_vlan_proto = ntohs(vlan_proto);
1819 struct device *dev;
1820 struct ice_vf *vf;
1821 int ret;
1822
1823 dev = ice_pf_to_dev(pf);
1824
1825 if (vlan_id >= VLAN_N_VID || qos > 7) {
1826 dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
1827 vf_id, vlan_id, qos);
1828 return -EINVAL;
1829 }
1830
1831 if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
1832 dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
1833 local_vlan_proto);
1834 return -EPROTONOSUPPORT;
1835 }
1836
1837 vf = ice_get_vf_by_id(pf, vf_id);
1838 if (!vf)
1839 return -EINVAL;
1840
1841 ret = ice_check_vf_ready_for_cfg(vf);
1842 if (ret)
1843 goto out_put_vf;
1844
1845 if (ice_vf_get_port_vlan_prio(vf) == qos &&
1846 ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
1847 ice_vf_get_port_vlan_id(vf) == vlan_id) {
1848 /* duplicate request, so just return success */
1849 dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
1850 vlan_id, qos, local_vlan_proto);
1851 ret = 0;
1852 goto out_put_vf;
1853 }
1854
1855 mutex_lock(&vf->cfg_lock);
1856
1857 vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
1858 if (ice_vf_is_port_vlan_ena(vf))
1859 dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
1860 vlan_id, qos, local_vlan_proto, vf_id);
1861 else
1862 dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
1863
1864 ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
1865 mutex_unlock(&vf->cfg_lock);
1866
1867 out_put_vf:
1868 ice_put_vf(vf);
1869 return ret;
1870 }
1871
1872 /**
1873 * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
1874 * @vf: pointer to the VF structure
1875 */
ice_print_vf_rx_mdd_event(struct ice_vf * vf)1876 void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
1877 {
1878 struct ice_pf *pf = vf->pf;
1879 struct device *dev;
1880
1881 dev = ice_pf_to_dev(pf);
1882
1883 dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1884 vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
1885 vf->dev_lan_addr,
1886 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1887 ? "on" : "off");
1888 }
1889
1890 /**
1891 * ice_print_vf_tx_mdd_event - print VF Tx malicious driver detect event
1892 * @vf: pointer to the VF structure
1893 */
ice_print_vf_tx_mdd_event(struct ice_vf * vf)1894 void ice_print_vf_tx_mdd_event(struct ice_vf *vf)
1895 {
1896 struct ice_pf *pf = vf->pf;
1897 struct device *dev;
1898
1899 dev = ice_pf_to_dev(pf);
1900
1901 dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
1902 vf->mdd_tx_events.count, pf->hw.pf_id, vf->vf_id,
1903 vf->dev_lan_addr,
1904 test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
1905 ? "on" : "off");
1906 }
1907
1908 /**
1909 * ice_print_vfs_mdd_events - print VFs malicious driver detect event
1910 * @pf: pointer to the PF structure
1911 *
1912 * Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
1913 */
ice_print_vfs_mdd_events(struct ice_pf * pf)1914 void ice_print_vfs_mdd_events(struct ice_pf *pf)
1915 {
1916 struct ice_vf *vf;
1917 unsigned int bkt;
1918
1919 /* check that there are pending MDD events to print */
1920 if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
1921 return;
1922
1923 /* VF MDD event logs are rate limited to one second intervals */
1924 if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
1925 return;
1926
1927 pf->vfs.last_printed_mdd_jiffies = jiffies;
1928
1929 mutex_lock(&pf->vfs.table_lock);
1930 ice_for_each_vf(pf, bkt, vf) {
1931 /* only print Rx MDD event message if there are new events */
1932 if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
1933 vf->mdd_rx_events.last_printed =
1934 vf->mdd_rx_events.count;
1935 ice_print_vf_rx_mdd_event(vf);
1936 }
1937
1938 /* only print Tx MDD event message if there are new events */
1939 if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
1940 vf->mdd_tx_events.last_printed =
1941 vf->mdd_tx_events.count;
1942 ice_print_vf_tx_mdd_event(vf);
1943 }
1944 }
1945 mutex_unlock(&pf->vfs.table_lock);
1946 }
1947
1948 /**
1949 * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
1950 * @pf: pointer to the PF structure
1951 *
1952 * Called when recovering from a PF FLR to restore interrupt capability to
1953 * the VFs.
1954 */
ice_restore_all_vfs_msi_state(struct ice_pf * pf)1955 void ice_restore_all_vfs_msi_state(struct ice_pf *pf)
1956 {
1957 struct ice_vf *vf;
1958 u32 bkt;
1959
1960 ice_for_each_vf(pf, bkt, vf)
1961 pci_restore_msi_state(vf->vfdev);
1962 }
1963