xref: /linux/tools/perf/builtin-stat.c (revision c34e9ab9a612ee8b18273398ef75c207b01f516d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * builtin-stat.c
4  *
5  * Builtin stat command: Give a precise performance counters summary
6  * overview about any workload, CPU or specific PID.
7  *
8  * Sample output:
9 
10    $ perf stat ./hackbench 10
11 
12   Time: 0.118
13 
14   Performance counter stats for './hackbench 10':
15 
16        1708.761321 task-clock                #   11.037 CPUs utilized
17             41,190 context-switches          #    0.024 M/sec
18              6,735 CPU-migrations            #    0.004 M/sec
19             17,318 page-faults               #    0.010 M/sec
20      5,205,202,243 cycles                    #    3.046 GHz
21      3,856,436,920 stalled-cycles-frontend   #   74.09% frontend cycles idle
22      1,600,790,871 stalled-cycles-backend    #   30.75% backend  cycles idle
23      2,603,501,247 instructions              #    0.50  insns per cycle
24                                              #    1.48  stalled cycles per insn
25        484,357,498 branches                  #  283.455 M/sec
26          6,388,934 branch-misses             #    1.32% of all branches
27 
28         0.154822978  seconds time elapsed
29 
30  *
31  * Copyright (C) 2008-2011, Red Hat Inc, Ingo Molnar <mingo@redhat.com>
32  *
33  * Improvements and fixes by:
34  *
35  *   Arjan van de Ven <arjan@linux.intel.com>
36  *   Yanmin Zhang <yanmin.zhang@intel.com>
37  *   Wu Fengguang <fengguang.wu@intel.com>
38  *   Mike Galbraith <efault@gmx.de>
39  *   Paul Mackerras <paulus@samba.org>
40  *   Jaswinder Singh Rajput <jaswinder@kernel.org>
41  */
42 
43 #include "builtin.h"
44 #include "util/cgroup.h"
45 #include <subcmd/parse-options.h>
46 #include "util/parse-events.h"
47 #include "util/pmus.h"
48 #include "util/pmu.h"
49 #include "util/tool_pmu.h"
50 #include "util/event.h"
51 #include "util/evlist.h"
52 #include "util/evsel.h"
53 #include "util/debug.h"
54 #include "util/color.h"
55 #include "util/stat.h"
56 #include "util/header.h"
57 #include "util/cpumap.h"
58 #include "util/thread_map.h"
59 #include "util/counts.h"
60 #include "util/topdown.h"
61 #include "util/session.h"
62 #include "util/tool.h"
63 #include "util/string2.h"
64 #include "util/metricgroup.h"
65 #include "util/synthetic-events.h"
66 #include "util/target.h"
67 #include "util/time-utils.h"
68 #include "util/top.h"
69 #include "util/affinity.h"
70 #include "util/pfm.h"
71 #include "util/bpf_counter.h"
72 #include "util/iostat.h"
73 #include "util/util.h"
74 #include "util/intel-tpebs.h"
75 #include "asm/bug.h"
76 
77 #include <linux/time64.h>
78 #include <linux/zalloc.h>
79 #include <api/fs/fs.h>
80 #include <errno.h>
81 #include <signal.h>
82 #include <stdlib.h>
83 #include <sys/prctl.h>
84 #include <inttypes.h>
85 #include <locale.h>
86 #include <math.h>
87 #include <sys/types.h>
88 #include <sys/stat.h>
89 #include <sys/wait.h>
90 #include <unistd.h>
91 #include <sys/time.h>
92 #include <sys/resource.h>
93 #include <linux/err.h>
94 
95 #include <linux/ctype.h>
96 #include <perf/evlist.h>
97 #include <internal/threadmap.h>
98 
99 #define DEFAULT_SEPARATOR	" "
100 #define FREEZE_ON_SMI_PATH	"devices/cpu/freeze_on_smi"
101 
102 static void print_counters(struct timespec *ts, int argc, const char **argv);
103 
104 static struct evlist	*evsel_list;
105 static struct parse_events_option_args parse_events_option_args = {
106 	.evlistp = &evsel_list,
107 };
108 
109 static bool all_counters_use_bpf = true;
110 
111 static struct target target = {
112 	.uid	= UINT_MAX,
113 };
114 
115 #define METRIC_ONLY_LEN 20
116 
117 static volatile sig_atomic_t	child_pid			= -1;
118 static int			detailed_run			=  0;
119 static bool			transaction_run;
120 static bool			topdown_run			= false;
121 static bool			smi_cost			= false;
122 static bool			smi_reset			= false;
123 static int			big_num_opt			=  -1;
124 static const char		*pre_cmd			= NULL;
125 static const char		*post_cmd			= NULL;
126 static bool			sync_run			= false;
127 static bool			forever				= false;
128 static bool			force_metric_only		= false;
129 static struct timespec		ref_time;
130 static bool			append_file;
131 static bool			interval_count;
132 static const char		*output_name;
133 static int			output_fd;
134 static char			*metrics;
135 
136 struct perf_stat {
137 	bool			 record;
138 	struct perf_data	 data;
139 	struct perf_session	*session;
140 	u64			 bytes_written;
141 	struct perf_tool	 tool;
142 	bool			 maps_allocated;
143 	struct perf_cpu_map	*cpus;
144 	struct perf_thread_map *threads;
145 	enum aggr_mode		 aggr_mode;
146 	u32			 aggr_level;
147 };
148 
149 static struct perf_stat		perf_stat;
150 #define STAT_RECORD		perf_stat.record
151 
152 static volatile sig_atomic_t done = 0;
153 
154 static struct perf_stat_config stat_config = {
155 	.aggr_mode		= AGGR_GLOBAL,
156 	.aggr_level		= MAX_CACHE_LVL + 1,
157 	.scale			= true,
158 	.unit_width		= 4, /* strlen("unit") */
159 	.run_count		= 1,
160 	.metric_only_len	= METRIC_ONLY_LEN,
161 	.walltime_nsecs_stats	= &walltime_nsecs_stats,
162 	.ru_stats		= &ru_stats,
163 	.big_num		= true,
164 	.ctl_fd			= -1,
165 	.ctl_fd_ack		= -1,
166 	.iostat_run		= false,
167 };
168 
169 /* Options set from the command line. */
170 struct opt_aggr_mode {
171 	bool node, socket, die, cluster, cache, core, thread, no_aggr;
172 };
173 
174 /* Turn command line option into most generic aggregation mode setting. */
175 static enum aggr_mode opt_aggr_mode_to_aggr_mode(struct opt_aggr_mode *opt_mode)
176 {
177 	enum aggr_mode mode = AGGR_GLOBAL;
178 
179 	if (opt_mode->node)
180 		mode = AGGR_NODE;
181 	if (opt_mode->socket)
182 		mode = AGGR_SOCKET;
183 	if (opt_mode->die)
184 		mode = AGGR_DIE;
185 	if (opt_mode->cluster)
186 		mode = AGGR_CLUSTER;
187 	if (opt_mode->cache)
188 		mode = AGGR_CACHE;
189 	if (opt_mode->core)
190 		mode = AGGR_CORE;
191 	if (opt_mode->thread)
192 		mode = AGGR_THREAD;
193 	if (opt_mode->no_aggr)
194 		mode = AGGR_NONE;
195 	return mode;
196 }
197 
198 static void evlist__check_cpu_maps(struct evlist *evlist)
199 {
200 	struct evsel *evsel, *warned_leader = NULL;
201 
202 	evlist__for_each_entry(evlist, evsel) {
203 		struct evsel *leader = evsel__leader(evsel);
204 
205 		/* Check that leader matches cpus with each member. */
206 		if (leader == evsel)
207 			continue;
208 		if (perf_cpu_map__equal(leader->core.cpus, evsel->core.cpus))
209 			continue;
210 
211 		/* If there's mismatch disable the group and warn user. */
212 		if (warned_leader != leader) {
213 			char buf[200];
214 
215 			pr_warning("WARNING: grouped events cpus do not match.\n"
216 				"Events with CPUs not matching the leader will "
217 				"be removed from the group.\n");
218 			evsel__group_desc(leader, buf, sizeof(buf));
219 			pr_warning("  %s\n", buf);
220 			warned_leader = leader;
221 		}
222 		if (verbose > 0) {
223 			char buf[200];
224 
225 			cpu_map__snprint(leader->core.cpus, buf, sizeof(buf));
226 			pr_warning("     %s: %s\n", leader->name, buf);
227 			cpu_map__snprint(evsel->core.cpus, buf, sizeof(buf));
228 			pr_warning("     %s: %s\n", evsel->name, buf);
229 		}
230 
231 		evsel__remove_from_group(evsel, leader);
232 	}
233 }
234 
235 static inline void diff_timespec(struct timespec *r, struct timespec *a,
236 				 struct timespec *b)
237 {
238 	r->tv_sec = a->tv_sec - b->tv_sec;
239 	if (a->tv_nsec < b->tv_nsec) {
240 		r->tv_nsec = a->tv_nsec + NSEC_PER_SEC - b->tv_nsec;
241 		r->tv_sec--;
242 	} else {
243 		r->tv_nsec = a->tv_nsec - b->tv_nsec ;
244 	}
245 }
246 
247 static void perf_stat__reset_stats(void)
248 {
249 	evlist__reset_stats(evsel_list);
250 	perf_stat__reset_shadow_stats();
251 }
252 
253 static int process_synthesized_event(const struct perf_tool *tool __maybe_unused,
254 				     union perf_event *event,
255 				     struct perf_sample *sample __maybe_unused,
256 				     struct machine *machine __maybe_unused)
257 {
258 	if (perf_data__write(&perf_stat.data, event, event->header.size) < 0) {
259 		pr_err("failed to write perf data, error: %m\n");
260 		return -1;
261 	}
262 
263 	perf_stat.bytes_written += event->header.size;
264 	return 0;
265 }
266 
267 static int write_stat_round_event(u64 tm, u64 type)
268 {
269 	return perf_event__synthesize_stat_round(NULL, tm, type,
270 						 process_synthesized_event,
271 						 NULL);
272 }
273 
274 #define WRITE_STAT_ROUND_EVENT(time, interval) \
275 	write_stat_round_event(time, PERF_STAT_ROUND_TYPE__ ## interval)
276 
277 #define SID(e, x, y) xyarray__entry(e->core.sample_id, x, y)
278 
279 static int evsel__write_stat_event(struct evsel *counter, int cpu_map_idx, u32 thread,
280 				   struct perf_counts_values *count)
281 {
282 	struct perf_sample_id *sid = SID(counter, cpu_map_idx, thread);
283 	struct perf_cpu cpu = perf_cpu_map__cpu(evsel__cpus(counter), cpu_map_idx);
284 
285 	return perf_event__synthesize_stat(NULL, cpu, thread, sid->id, count,
286 					   process_synthesized_event, NULL);
287 }
288 
289 static int read_single_counter(struct evsel *counter, int cpu_map_idx, int thread)
290 {
291 	int err = evsel__read_counter(counter, cpu_map_idx, thread);
292 
293 	/*
294 	 * Reading user and system time will fail when the process
295 	 * terminates. Use the wait4 values in that case.
296 	 */
297 	if (err && cpu_map_idx == 0 &&
298 	    (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME ||
299 	     evsel__tool_event(counter) == TOOL_PMU__EVENT_SYSTEM_TIME)) {
300 		u64 val, *start_time;
301 		struct perf_counts_values *count =
302 			perf_counts(counter->counts, cpu_map_idx, thread);
303 
304 		start_time = xyarray__entry(counter->start_times, cpu_map_idx, thread);
305 		if (evsel__tool_event(counter) == TOOL_PMU__EVENT_USER_TIME)
306 			val = ru_stats.ru_utime_usec_stat.mean;
307 		else
308 			val = ru_stats.ru_stime_usec_stat.mean;
309 		count->ena = count->run = *start_time + val;
310 		count->val = val;
311 		return 0;
312 	}
313 	return err;
314 }
315 
316 /*
317  * Read out the results of a single counter:
318  * do not aggregate counts across CPUs in system-wide mode
319  */
320 static int read_counter_cpu(struct evsel *counter, int cpu_map_idx)
321 {
322 	int nthreads = perf_thread_map__nr(evsel_list->core.threads);
323 	int thread;
324 
325 	if (!counter->supported)
326 		return -ENOENT;
327 
328 	for (thread = 0; thread < nthreads; thread++) {
329 		struct perf_counts_values *count;
330 
331 		count = perf_counts(counter->counts, cpu_map_idx, thread);
332 
333 		/*
334 		 * The leader's group read loads data into its group members
335 		 * (via evsel__read_counter()) and sets their count->loaded.
336 		 */
337 		if (!perf_counts__is_loaded(counter->counts, cpu_map_idx, thread) &&
338 		    read_single_counter(counter, cpu_map_idx, thread)) {
339 			counter->counts->scaled = -1;
340 			perf_counts(counter->counts, cpu_map_idx, thread)->ena = 0;
341 			perf_counts(counter->counts, cpu_map_idx, thread)->run = 0;
342 			return -1;
343 		}
344 
345 		perf_counts__set_loaded(counter->counts, cpu_map_idx, thread, false);
346 
347 		if (STAT_RECORD) {
348 			if (evsel__write_stat_event(counter, cpu_map_idx, thread, count)) {
349 				pr_err("failed to write stat event\n");
350 				return -1;
351 			}
352 		}
353 
354 		if (verbose > 1) {
355 			fprintf(stat_config.output,
356 				"%s: %d: %" PRIu64 " %" PRIu64 " %" PRIu64 "\n",
357 					evsel__name(counter),
358 					perf_cpu_map__cpu(evsel__cpus(counter),
359 							  cpu_map_idx).cpu,
360 					count->val, count->ena, count->run);
361 		}
362 	}
363 
364 	return 0;
365 }
366 
367 static int read_affinity_counters(void)
368 {
369 	struct evlist_cpu_iterator evlist_cpu_itr;
370 	struct affinity saved_affinity, *affinity;
371 
372 	if (all_counters_use_bpf)
373 		return 0;
374 
375 	if (!target__has_cpu(&target) || target__has_per_thread(&target))
376 		affinity = NULL;
377 	else if (affinity__setup(&saved_affinity) < 0)
378 		return -1;
379 	else
380 		affinity = &saved_affinity;
381 
382 	evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
383 		struct evsel *counter = evlist_cpu_itr.evsel;
384 
385 		if (evsel__is_bpf(counter))
386 			continue;
387 
388 		if (!counter->err)
389 			counter->err = read_counter_cpu(counter, evlist_cpu_itr.cpu_map_idx);
390 	}
391 	if (affinity)
392 		affinity__cleanup(&saved_affinity);
393 
394 	return 0;
395 }
396 
397 static int read_bpf_map_counters(void)
398 {
399 	struct evsel *counter;
400 	int err;
401 
402 	evlist__for_each_entry(evsel_list, counter) {
403 		if (!evsel__is_bpf(counter))
404 			continue;
405 
406 		err = bpf_counter__read(counter);
407 		if (err)
408 			return err;
409 	}
410 	return 0;
411 }
412 
413 static int read_counters(void)
414 {
415 	if (!stat_config.stop_read_counter) {
416 		if (read_bpf_map_counters() ||
417 		    read_affinity_counters())
418 			return -1;
419 	}
420 	return 0;
421 }
422 
423 static void process_counters(void)
424 {
425 	struct evsel *counter;
426 
427 	evlist__for_each_entry(evsel_list, counter) {
428 		if (counter->err)
429 			pr_debug("failed to read counter %s\n", counter->name);
430 		if (counter->err == 0 && perf_stat_process_counter(&stat_config, counter))
431 			pr_warning("failed to process counter %s\n", counter->name);
432 		counter->err = 0;
433 	}
434 
435 	perf_stat_merge_counters(&stat_config, evsel_list);
436 	perf_stat_process_percore(&stat_config, evsel_list);
437 }
438 
439 static void process_interval(void)
440 {
441 	struct timespec ts, rs;
442 
443 	clock_gettime(CLOCK_MONOTONIC, &ts);
444 	diff_timespec(&rs, &ts, &ref_time);
445 
446 	evlist__reset_aggr_stats(evsel_list);
447 
448 	if (read_counters() == 0)
449 		process_counters();
450 
451 	if (STAT_RECORD) {
452 		if (WRITE_STAT_ROUND_EVENT(rs.tv_sec * NSEC_PER_SEC + rs.tv_nsec, INTERVAL))
453 			pr_err("failed to write stat round event\n");
454 	}
455 
456 	init_stats(&walltime_nsecs_stats);
457 	update_stats(&walltime_nsecs_stats, stat_config.interval * 1000000ULL);
458 	print_counters(&rs, 0, NULL);
459 }
460 
461 static bool handle_interval(unsigned int interval, int *times)
462 {
463 	if (interval) {
464 		process_interval();
465 		if (interval_count && !(--(*times)))
466 			return true;
467 	}
468 	return false;
469 }
470 
471 static int enable_counters(void)
472 {
473 	struct evsel *evsel;
474 	int err;
475 
476 	evlist__for_each_entry(evsel_list, evsel) {
477 		if (!evsel__is_bpf(evsel))
478 			continue;
479 
480 		err = bpf_counter__enable(evsel);
481 		if (err)
482 			return err;
483 	}
484 
485 	if (!target__enable_on_exec(&target)) {
486 		if (!all_counters_use_bpf)
487 			evlist__enable(evsel_list);
488 	}
489 	return 0;
490 }
491 
492 static void disable_counters(void)
493 {
494 	struct evsel *counter;
495 
496 	/*
497 	 * If we don't have tracee (attaching to task or cpu), counters may
498 	 * still be running. To get accurate group ratios, we must stop groups
499 	 * from counting before reading their constituent counters.
500 	 */
501 	if (!target__none(&target)) {
502 		evlist__for_each_entry(evsel_list, counter)
503 			bpf_counter__disable(counter);
504 		if (!all_counters_use_bpf)
505 			evlist__disable(evsel_list);
506 	}
507 }
508 
509 static volatile sig_atomic_t workload_exec_errno;
510 
511 /*
512  * evlist__prepare_workload will send a SIGUSR1
513  * if the fork fails, since we asked by setting its
514  * want_signal to true.
515  */
516 static void workload_exec_failed_signal(int signo __maybe_unused, siginfo_t *info,
517 					void *ucontext __maybe_unused)
518 {
519 	workload_exec_errno = info->si_value.sival_int;
520 }
521 
522 static bool evsel__should_store_id(struct evsel *counter)
523 {
524 	return STAT_RECORD || counter->core.attr.read_format & PERF_FORMAT_ID;
525 }
526 
527 static bool is_target_alive(struct target *_target,
528 			    struct perf_thread_map *threads)
529 {
530 	struct stat st;
531 	int i;
532 
533 	if (!target__has_task(_target))
534 		return true;
535 
536 	for (i = 0; i < threads->nr; i++) {
537 		char path[PATH_MAX];
538 
539 		scnprintf(path, PATH_MAX, "%s/%d", procfs__mountpoint(),
540 			  threads->map[i].pid);
541 
542 		if (!stat(path, &st))
543 			return true;
544 	}
545 
546 	return false;
547 }
548 
549 static void process_evlist(struct evlist *evlist, unsigned int interval)
550 {
551 	enum evlist_ctl_cmd cmd = EVLIST_CTL_CMD_UNSUPPORTED;
552 
553 	if (evlist__ctlfd_process(evlist, &cmd) > 0) {
554 		switch (cmd) {
555 		case EVLIST_CTL_CMD_ENABLE:
556 			fallthrough;
557 		case EVLIST_CTL_CMD_DISABLE:
558 			if (interval)
559 				process_interval();
560 			break;
561 		case EVLIST_CTL_CMD_SNAPSHOT:
562 		case EVLIST_CTL_CMD_ACK:
563 		case EVLIST_CTL_CMD_UNSUPPORTED:
564 		case EVLIST_CTL_CMD_EVLIST:
565 		case EVLIST_CTL_CMD_STOP:
566 		case EVLIST_CTL_CMD_PING:
567 		default:
568 			break;
569 		}
570 	}
571 }
572 
573 static void compute_tts(struct timespec *time_start, struct timespec *time_stop,
574 			int *time_to_sleep)
575 {
576 	int tts = *time_to_sleep;
577 	struct timespec time_diff;
578 
579 	diff_timespec(&time_diff, time_stop, time_start);
580 
581 	tts -= time_diff.tv_sec * MSEC_PER_SEC +
582 	       time_diff.tv_nsec / NSEC_PER_MSEC;
583 
584 	if (tts < 0)
585 		tts = 0;
586 
587 	*time_to_sleep = tts;
588 }
589 
590 static int dispatch_events(bool forks, int timeout, int interval, int *times)
591 {
592 	int child_exited = 0, status = 0;
593 	int time_to_sleep, sleep_time;
594 	struct timespec time_start, time_stop;
595 
596 	if (interval)
597 		sleep_time = interval;
598 	else if (timeout)
599 		sleep_time = timeout;
600 	else
601 		sleep_time = 1000;
602 
603 	time_to_sleep = sleep_time;
604 
605 	while (!done) {
606 		if (forks)
607 			child_exited = waitpid(child_pid, &status, WNOHANG);
608 		else
609 			child_exited = !is_target_alive(&target, evsel_list->core.threads) ? 1 : 0;
610 
611 		if (child_exited)
612 			break;
613 
614 		clock_gettime(CLOCK_MONOTONIC, &time_start);
615 		if (!(evlist__poll(evsel_list, time_to_sleep) > 0)) { /* poll timeout or EINTR */
616 			if (timeout || handle_interval(interval, times))
617 				break;
618 			time_to_sleep = sleep_time;
619 		} else { /* fd revent */
620 			process_evlist(evsel_list, interval);
621 			clock_gettime(CLOCK_MONOTONIC, &time_stop);
622 			compute_tts(&time_start, &time_stop, &time_to_sleep);
623 		}
624 	}
625 
626 	return status;
627 }
628 
629 enum counter_recovery {
630 	COUNTER_SKIP,
631 	COUNTER_RETRY,
632 	COUNTER_FATAL,
633 };
634 
635 static enum counter_recovery stat_handle_error(struct evsel *counter)
636 {
637 	char msg[BUFSIZ];
638 	/*
639 	 * PPC returns ENXIO for HW counters until 2.6.37
640 	 * (behavior changed with commit b0a873e).
641 	 */
642 	if (errno == EINVAL || errno == ENOSYS ||
643 	    errno == ENOENT || errno == ENXIO) {
644 		if (verbose > 0)
645 			ui__warning("%s event is not supported by the kernel.\n",
646 				    evsel__name(counter));
647 		counter->supported = false;
648 		/*
649 		 * errored is a sticky flag that means one of the counter's
650 		 * cpu event had a problem and needs to be reexamined.
651 		 */
652 		counter->errored = true;
653 
654 		if ((evsel__leader(counter) != counter) ||
655 		    !(counter->core.leader->nr_members > 1))
656 			return COUNTER_SKIP;
657 	} else if (evsel__fallback(counter, &target, errno, msg, sizeof(msg))) {
658 		if (verbose > 0)
659 			ui__warning("%s\n", msg);
660 		return COUNTER_RETRY;
661 	} else if (target__has_per_thread(&target) && errno != EOPNOTSUPP &&
662 		   evsel_list->core.threads &&
663 		   evsel_list->core.threads->err_thread != -1) {
664 		/*
665 		 * For global --per-thread case, skip current
666 		 * error thread.
667 		 */
668 		if (!thread_map__remove(evsel_list->core.threads,
669 					evsel_list->core.threads->err_thread)) {
670 			evsel_list->core.threads->err_thread = -1;
671 			return COUNTER_RETRY;
672 		}
673 	} else if (counter->skippable) {
674 		if (verbose > 0)
675 			ui__warning("skipping event %s that kernel failed to open .\n",
676 				    evsel__name(counter));
677 		counter->supported = false;
678 		counter->errored = true;
679 		return COUNTER_SKIP;
680 	}
681 
682 	if (errno == EOPNOTSUPP) {
683 		if (verbose > 0) {
684 			ui__warning("%s event is not supported by the kernel.\n",
685 				    evsel__name(counter));
686 		}
687 		counter->supported = false;
688 		counter->errored = true;
689 
690 		if ((evsel__leader(counter) != counter) ||
691 		    !(counter->core.leader->nr_members > 1))
692 			return COUNTER_SKIP;
693 	}
694 
695 	evsel__open_strerror(counter, &target, errno, msg, sizeof(msg));
696 	ui__error("%s\n", msg);
697 
698 	if (child_pid != -1)
699 		kill(child_pid, SIGTERM);
700 
701 	tpebs_delete();
702 
703 	return COUNTER_FATAL;
704 }
705 
706 static int __run_perf_stat(int argc, const char **argv, int run_idx)
707 {
708 	int interval = stat_config.interval;
709 	int times = stat_config.times;
710 	int timeout = stat_config.timeout;
711 	char msg[BUFSIZ];
712 	unsigned long long t0, t1;
713 	struct evsel *counter;
714 	size_t l;
715 	int status = 0;
716 	const bool forks = (argc > 0);
717 	bool is_pipe = STAT_RECORD ? perf_stat.data.is_pipe : false;
718 	struct evlist_cpu_iterator evlist_cpu_itr;
719 	struct affinity saved_affinity, *affinity = NULL;
720 	int err;
721 	bool second_pass = false;
722 
723 	if (forks) {
724 		if (evlist__prepare_workload(evsel_list, &target, argv, is_pipe, workload_exec_failed_signal) < 0) {
725 			perror("failed to prepare workload");
726 			return -1;
727 		}
728 		child_pid = evsel_list->workload.pid;
729 	}
730 
731 	if (!cpu_map__is_dummy(evsel_list->core.user_requested_cpus)) {
732 		if (affinity__setup(&saved_affinity) < 0) {
733 			err = -1;
734 			goto err_out;
735 		}
736 		affinity = &saved_affinity;
737 	}
738 
739 	evlist__for_each_entry(evsel_list, counter) {
740 		counter->reset_group = false;
741 		if (bpf_counter__load(counter, &target)) {
742 			err = -1;
743 			goto err_out;
744 		}
745 		if (!(evsel__is_bperf(counter)))
746 			all_counters_use_bpf = false;
747 	}
748 
749 	evlist__reset_aggr_stats(evsel_list);
750 
751 	evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
752 		counter = evlist_cpu_itr.evsel;
753 
754 		/*
755 		 * bperf calls evsel__open_per_cpu() in bperf__load(), so
756 		 * no need to call it again here.
757 		 */
758 		if (target.use_bpf)
759 			break;
760 
761 		if (counter->reset_group || counter->errored)
762 			continue;
763 		if (evsel__is_bperf(counter))
764 			continue;
765 try_again:
766 		if (create_perf_stat_counter(counter, &stat_config, &target,
767 					     evlist_cpu_itr.cpu_map_idx) < 0) {
768 
769 			/*
770 			 * Weak group failed. We cannot just undo this here
771 			 * because earlier CPUs might be in group mode, and the kernel
772 			 * doesn't support mixing group and non group reads. Defer
773 			 * it to later.
774 			 * Don't close here because we're in the wrong affinity.
775 			 */
776 			if ((errno == EINVAL || errno == EBADF) &&
777 				evsel__leader(counter) != counter &&
778 				counter->weak_group) {
779 				evlist__reset_weak_group(evsel_list, counter, false);
780 				assert(counter->reset_group);
781 				second_pass = true;
782 				continue;
783 			}
784 
785 			switch (stat_handle_error(counter)) {
786 			case COUNTER_FATAL:
787 				err = -1;
788 				goto err_out;
789 			case COUNTER_RETRY:
790 				goto try_again;
791 			case COUNTER_SKIP:
792 				continue;
793 			default:
794 				break;
795 			}
796 
797 		}
798 		counter->supported = true;
799 	}
800 
801 	if (second_pass) {
802 		/*
803 		 * Now redo all the weak group after closing them,
804 		 * and also close errored counters.
805 		 */
806 
807 		/* First close errored or weak retry */
808 		evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
809 			counter = evlist_cpu_itr.evsel;
810 
811 			if (!counter->reset_group && !counter->errored)
812 				continue;
813 
814 			perf_evsel__close_cpu(&counter->core, evlist_cpu_itr.cpu_map_idx);
815 		}
816 		/* Now reopen weak */
817 		evlist__for_each_cpu(evlist_cpu_itr, evsel_list, affinity) {
818 			counter = evlist_cpu_itr.evsel;
819 
820 			if (!counter->reset_group)
821 				continue;
822 try_again_reset:
823 			pr_debug2("reopening weak %s\n", evsel__name(counter));
824 			if (create_perf_stat_counter(counter, &stat_config, &target,
825 						     evlist_cpu_itr.cpu_map_idx) < 0) {
826 
827 				switch (stat_handle_error(counter)) {
828 				case COUNTER_FATAL:
829 					err = -1;
830 					goto err_out;
831 				case COUNTER_RETRY:
832 					goto try_again_reset;
833 				case COUNTER_SKIP:
834 					continue;
835 				default:
836 					break;
837 				}
838 			}
839 			counter->supported = true;
840 		}
841 	}
842 	affinity__cleanup(affinity);
843 	affinity = NULL;
844 
845 	evlist__for_each_entry(evsel_list, counter) {
846 		if (!counter->supported) {
847 			perf_evsel__free_fd(&counter->core);
848 			continue;
849 		}
850 
851 		l = strlen(counter->unit);
852 		if (l > stat_config.unit_width)
853 			stat_config.unit_width = l;
854 
855 		if (evsel__should_store_id(counter) &&
856 		    evsel__store_ids(counter, evsel_list)) {
857 			err = -1;
858 			goto err_out;
859 		}
860 	}
861 
862 	if (evlist__apply_filters(evsel_list, &counter, &target)) {
863 		pr_err("failed to set filter \"%s\" on event %s with %d (%s)\n",
864 			counter->filter, evsel__name(counter), errno,
865 			str_error_r(errno, msg, sizeof(msg)));
866 		return -1;
867 	}
868 
869 	if (STAT_RECORD) {
870 		int fd = perf_data__fd(&perf_stat.data);
871 
872 		if (is_pipe) {
873 			err = perf_header__write_pipe(perf_data__fd(&perf_stat.data));
874 		} else {
875 			err = perf_session__write_header(perf_stat.session, evsel_list,
876 							 fd, false);
877 		}
878 
879 		if (err < 0)
880 			goto err_out;
881 
882 		err = perf_event__synthesize_stat_events(&stat_config, NULL, evsel_list,
883 							 process_synthesized_event, is_pipe);
884 		if (err < 0)
885 			goto err_out;
886 
887 	}
888 
889 	if (target.initial_delay) {
890 		pr_info(EVLIST_DISABLED_MSG);
891 	} else {
892 		err = enable_counters();
893 		if (err) {
894 			err = -1;
895 			goto err_out;
896 		}
897 	}
898 
899 	/* Exec the command, if any */
900 	if (forks)
901 		evlist__start_workload(evsel_list);
902 
903 	if (target.initial_delay > 0) {
904 		usleep(target.initial_delay * USEC_PER_MSEC);
905 		err = enable_counters();
906 		if (err) {
907 			err = -1;
908 			goto err_out;
909 		}
910 
911 		pr_info(EVLIST_ENABLED_MSG);
912 	}
913 
914 	t0 = rdclock();
915 	clock_gettime(CLOCK_MONOTONIC, &ref_time);
916 
917 	if (forks) {
918 		if (interval || timeout || evlist__ctlfd_initialized(evsel_list))
919 			status = dispatch_events(forks, timeout, interval, &times);
920 		if (child_pid != -1) {
921 			if (timeout)
922 				kill(child_pid, SIGTERM);
923 			wait4(child_pid, &status, 0, &stat_config.ru_data);
924 		}
925 
926 		if (workload_exec_errno) {
927 			const char *emsg = str_error_r(workload_exec_errno, msg, sizeof(msg));
928 			pr_err("Workload failed: %s\n", emsg);
929 			err = -1;
930 			goto err_out;
931 		}
932 
933 		if (WIFSIGNALED(status))
934 			psignal(WTERMSIG(status), argv[0]);
935 	} else {
936 		status = dispatch_events(forks, timeout, interval, &times);
937 	}
938 
939 	disable_counters();
940 
941 	t1 = rdclock();
942 
943 	if (stat_config.walltime_run_table)
944 		stat_config.walltime_run[run_idx] = t1 - t0;
945 
946 	if (interval && stat_config.summary) {
947 		stat_config.interval = 0;
948 		stat_config.stop_read_counter = true;
949 		init_stats(&walltime_nsecs_stats);
950 		update_stats(&walltime_nsecs_stats, t1 - t0);
951 
952 		evlist__copy_prev_raw_counts(evsel_list);
953 		evlist__reset_prev_raw_counts(evsel_list);
954 		evlist__reset_aggr_stats(evsel_list);
955 	} else {
956 		update_stats(&walltime_nsecs_stats, t1 - t0);
957 		update_rusage_stats(&ru_stats, &stat_config.ru_data);
958 	}
959 
960 	/*
961 	 * Closing a group leader splits the group, and as we only disable
962 	 * group leaders, results in remaining events becoming enabled. To
963 	 * avoid arbitrary skew, we must read all counters before closing any
964 	 * group leaders.
965 	 */
966 	if (read_counters() == 0)
967 		process_counters();
968 
969 	/*
970 	 * We need to keep evsel_list alive, because it's processed
971 	 * later the evsel_list will be closed after.
972 	 */
973 	if (!STAT_RECORD)
974 		evlist__close(evsel_list);
975 
976 	return WEXITSTATUS(status);
977 
978 err_out:
979 	if (forks)
980 		evlist__cancel_workload(evsel_list);
981 
982 	affinity__cleanup(affinity);
983 	return err;
984 }
985 
986 /*
987  * Returns -1 for fatal errors which signifies to not continue
988  * when in repeat mode.
989  *
990  * Returns < -1 error codes when stat record is used. These
991  * result in the stat information being displayed, but writing
992  * to the file fails and is non fatal.
993  */
994 static int run_perf_stat(int argc, const char **argv, int run_idx)
995 {
996 	int ret;
997 
998 	if (pre_cmd) {
999 		ret = system(pre_cmd);
1000 		if (ret)
1001 			return ret;
1002 	}
1003 
1004 	if (sync_run)
1005 		sync();
1006 
1007 	ret = __run_perf_stat(argc, argv, run_idx);
1008 	if (ret)
1009 		return ret;
1010 
1011 	if (post_cmd) {
1012 		ret = system(post_cmd);
1013 		if (ret)
1014 			return ret;
1015 	}
1016 
1017 	return ret;
1018 }
1019 
1020 static void print_counters(struct timespec *ts, int argc, const char **argv)
1021 {
1022 	/* Do not print anything if we record to the pipe. */
1023 	if (STAT_RECORD && perf_stat.data.is_pipe)
1024 		return;
1025 	if (quiet)
1026 		return;
1027 
1028 	evlist__print_counters(evsel_list, &stat_config, &target, ts, argc, argv);
1029 }
1030 
1031 static volatile sig_atomic_t signr = -1;
1032 
1033 static void skip_signal(int signo)
1034 {
1035 	if ((child_pid == -1) || stat_config.interval)
1036 		done = 1;
1037 
1038 	signr = signo;
1039 	/*
1040 	 * render child_pid harmless
1041 	 * won't send SIGTERM to a random
1042 	 * process in case of race condition
1043 	 * and fast PID recycling
1044 	 */
1045 	child_pid = -1;
1046 }
1047 
1048 static void sig_atexit(void)
1049 {
1050 	sigset_t set, oset;
1051 
1052 	/*
1053 	 * avoid race condition with SIGCHLD handler
1054 	 * in skip_signal() which is modifying child_pid
1055 	 * goal is to avoid send SIGTERM to a random
1056 	 * process
1057 	 */
1058 	sigemptyset(&set);
1059 	sigaddset(&set, SIGCHLD);
1060 	sigprocmask(SIG_BLOCK, &set, &oset);
1061 
1062 	if (child_pid != -1)
1063 		kill(child_pid, SIGTERM);
1064 
1065 	sigprocmask(SIG_SETMASK, &oset, NULL);
1066 
1067 	if (signr == -1)
1068 		return;
1069 
1070 	signal(signr, SIG_DFL);
1071 	kill(getpid(), signr);
1072 }
1073 
1074 void perf_stat__set_big_num(int set)
1075 {
1076 	stat_config.big_num = (set != 0);
1077 }
1078 
1079 void perf_stat__set_no_csv_summary(int set)
1080 {
1081 	stat_config.no_csv_summary = (set != 0);
1082 }
1083 
1084 static int stat__set_big_num(const struct option *opt __maybe_unused,
1085 			     const char *s __maybe_unused, int unset)
1086 {
1087 	big_num_opt = unset ? 0 : 1;
1088 	perf_stat__set_big_num(!unset);
1089 	return 0;
1090 }
1091 
1092 static int enable_metric_only(const struct option *opt __maybe_unused,
1093 			      const char *s __maybe_unused, int unset)
1094 {
1095 	force_metric_only = true;
1096 	stat_config.metric_only = !unset;
1097 	return 0;
1098 }
1099 
1100 static int append_metric_groups(const struct option *opt __maybe_unused,
1101 			       const char *str,
1102 			       int unset __maybe_unused)
1103 {
1104 	if (metrics) {
1105 		char *tmp;
1106 
1107 		if (asprintf(&tmp, "%s,%s", metrics, str) < 0)
1108 			return -ENOMEM;
1109 		free(metrics);
1110 		metrics = tmp;
1111 	} else {
1112 		metrics = strdup(str);
1113 		if (!metrics)
1114 			return -ENOMEM;
1115 	}
1116 	return 0;
1117 }
1118 
1119 static int parse_control_option(const struct option *opt,
1120 				const char *str,
1121 				int unset __maybe_unused)
1122 {
1123 	struct perf_stat_config *config = opt->value;
1124 
1125 	return evlist__parse_control(str, &config->ctl_fd, &config->ctl_fd_ack, &config->ctl_fd_close);
1126 }
1127 
1128 static int parse_stat_cgroups(const struct option *opt,
1129 			      const char *str, int unset)
1130 {
1131 	if (stat_config.cgroup_list) {
1132 		pr_err("--cgroup and --for-each-cgroup cannot be used together\n");
1133 		return -1;
1134 	}
1135 
1136 	return parse_cgroups(opt, str, unset);
1137 }
1138 
1139 static int parse_cputype(const struct option *opt,
1140 			     const char *str,
1141 			     int unset __maybe_unused)
1142 {
1143 	const struct perf_pmu *pmu;
1144 	struct evlist *evlist = *(struct evlist **)opt->value;
1145 
1146 	if (!list_empty(&evlist->core.entries)) {
1147 		fprintf(stderr, "Must define cputype before events/metrics\n");
1148 		return -1;
1149 	}
1150 
1151 	pmu = perf_pmus__pmu_for_pmu_filter(str);
1152 	if (!pmu) {
1153 		fprintf(stderr, "--cputype %s is not supported!\n", str);
1154 		return -1;
1155 	}
1156 	parse_events_option_args.pmu_filter = pmu->name;
1157 
1158 	return 0;
1159 }
1160 
1161 static int parse_cache_level(const struct option *opt,
1162 			     const char *str,
1163 			     int unset __maybe_unused)
1164 {
1165 	int level;
1166 	struct opt_aggr_mode *opt_aggr_mode = (struct opt_aggr_mode *)opt->value;
1167 	u32 *aggr_level = (u32 *)opt->data;
1168 
1169 	/*
1170 	 * If no string is specified, aggregate based on the topology of
1171 	 * Last Level Cache (LLC). Since the LLC level can change from
1172 	 * architecture to architecture, set level greater than
1173 	 * MAX_CACHE_LVL which will be interpreted as LLC.
1174 	 */
1175 	if (str == NULL) {
1176 		level = MAX_CACHE_LVL + 1;
1177 		goto out;
1178 	}
1179 
1180 	/*
1181 	 * The format to specify cache level is LX or lX where X is the
1182 	 * cache level.
1183 	 */
1184 	if (strlen(str) != 2 || (str[0] != 'l' && str[0] != 'L')) {
1185 		pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n",
1186 		       MAX_CACHE_LVL,
1187 		       MAX_CACHE_LVL);
1188 		return -EINVAL;
1189 	}
1190 
1191 	level = atoi(&str[1]);
1192 	if (level < 1) {
1193 		pr_err("Cache level must be of form L[1-%d], or l[1-%d]\n",
1194 		       MAX_CACHE_LVL,
1195 		       MAX_CACHE_LVL);
1196 		return -EINVAL;
1197 	}
1198 
1199 	if (level > MAX_CACHE_LVL) {
1200 		pr_err("perf only supports max cache level of %d.\n"
1201 		       "Consider increasing MAX_CACHE_LVL\n", MAX_CACHE_LVL);
1202 		return -EINVAL;
1203 	}
1204 out:
1205 	opt_aggr_mode->cache = true;
1206 	*aggr_level = level;
1207 	return 0;
1208 }
1209 
1210 /**
1211  * Calculate the cache instance ID from the map in
1212  * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list
1213  * Cache instance ID is the first CPU reported in the shared_cpu_list file.
1214  */
1215 static int cpu__get_cache_id_from_map(struct perf_cpu cpu, char *map)
1216 {
1217 	int id;
1218 	struct perf_cpu_map *cpu_map = perf_cpu_map__new(map);
1219 
1220 	/*
1221 	 * If the map contains no CPU, consider the current CPU to
1222 	 * be the first online CPU in the cache domain else use the
1223 	 * first online CPU of the cache domain as the ID.
1224 	 */
1225 	id = perf_cpu_map__min(cpu_map).cpu;
1226 	if (id == -1)
1227 		id = cpu.cpu;
1228 
1229 	/* Free the perf_cpu_map used to find the cache ID */
1230 	perf_cpu_map__put(cpu_map);
1231 
1232 	return id;
1233 }
1234 
1235 /**
1236  * cpu__get_cache_id - Returns 0 if successful in populating the
1237  * cache level and cache id. Cache level is read from
1238  * /sys/devices/system/cpu/cpuX/cache/indexY/level where as cache instance ID
1239  * is the first CPU reported by
1240  * /sys/devices/system/cpu/cpuX/cache/indexY/shared_cpu_list
1241  */
1242 static int cpu__get_cache_details(struct perf_cpu cpu, struct perf_cache *cache)
1243 {
1244 	int ret = 0;
1245 	u32 cache_level = stat_config.aggr_level;
1246 	struct cpu_cache_level caches[MAX_CACHE_LVL];
1247 	u32 i = 0, caches_cnt = 0;
1248 
1249 	cache->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level;
1250 	cache->cache = -1;
1251 
1252 	ret = build_caches_for_cpu(cpu.cpu, caches, &caches_cnt);
1253 	if (ret) {
1254 		/*
1255 		 * If caches_cnt is not 0, cpu_cache_level data
1256 		 * was allocated when building the topology.
1257 		 * Free the allocated data before returning.
1258 		 */
1259 		if (caches_cnt)
1260 			goto free_caches;
1261 
1262 		return ret;
1263 	}
1264 
1265 	if (!caches_cnt)
1266 		return -1;
1267 
1268 	/*
1269 	 * Save the data for the highest level if no
1270 	 * level was specified by the user.
1271 	 */
1272 	if (cache_level > MAX_CACHE_LVL) {
1273 		int max_level_index = 0;
1274 
1275 		for (i = 1; i < caches_cnt; ++i) {
1276 			if (caches[i].level > caches[max_level_index].level)
1277 				max_level_index = i;
1278 		}
1279 
1280 		cache->cache_lvl = caches[max_level_index].level;
1281 		cache->cache = cpu__get_cache_id_from_map(cpu, caches[max_level_index].map);
1282 
1283 		/* Reset i to 0 to free entire caches[] */
1284 		i = 0;
1285 		goto free_caches;
1286 	}
1287 
1288 	for (i = 0; i < caches_cnt; ++i) {
1289 		if (caches[i].level == cache_level) {
1290 			cache->cache_lvl = cache_level;
1291 			cache->cache = cpu__get_cache_id_from_map(cpu, caches[i].map);
1292 		}
1293 
1294 		cpu_cache_level__free(&caches[i]);
1295 	}
1296 
1297 free_caches:
1298 	/*
1299 	 * Free all the allocated cpu_cache_level data.
1300 	 */
1301 	while (i < caches_cnt)
1302 		cpu_cache_level__free(&caches[i++]);
1303 
1304 	return ret;
1305 }
1306 
1307 /**
1308  * aggr_cpu_id__cache - Create an aggr_cpu_id with cache instache ID, cache
1309  * level, die and socket populated with the cache instache ID, cache level,
1310  * die and socket for cpu. The function signature is compatible with
1311  * aggr_cpu_id_get_t.
1312  */
1313 static struct aggr_cpu_id aggr_cpu_id__cache(struct perf_cpu cpu, void *data)
1314 {
1315 	int ret;
1316 	struct aggr_cpu_id id;
1317 	struct perf_cache cache;
1318 
1319 	id = aggr_cpu_id__die(cpu, data);
1320 	if (aggr_cpu_id__is_empty(&id))
1321 		return id;
1322 
1323 	ret = cpu__get_cache_details(cpu, &cache);
1324 	if (ret)
1325 		return id;
1326 
1327 	id.cache_lvl = cache.cache_lvl;
1328 	id.cache = cache.cache;
1329 	return id;
1330 }
1331 
1332 static const char *const aggr_mode__string[] = {
1333 	[AGGR_CORE] = "core",
1334 	[AGGR_CACHE] = "cache",
1335 	[AGGR_CLUSTER] = "cluster",
1336 	[AGGR_DIE] = "die",
1337 	[AGGR_GLOBAL] = "global",
1338 	[AGGR_NODE] = "node",
1339 	[AGGR_NONE] = "none",
1340 	[AGGR_SOCKET] = "socket",
1341 	[AGGR_THREAD] = "thread",
1342 	[AGGR_UNSET] = "unset",
1343 };
1344 
1345 static struct aggr_cpu_id perf_stat__get_socket(struct perf_stat_config *config __maybe_unused,
1346 						struct perf_cpu cpu)
1347 {
1348 	return aggr_cpu_id__socket(cpu, /*data=*/NULL);
1349 }
1350 
1351 static struct aggr_cpu_id perf_stat__get_die(struct perf_stat_config *config __maybe_unused,
1352 					     struct perf_cpu cpu)
1353 {
1354 	return aggr_cpu_id__die(cpu, /*data=*/NULL);
1355 }
1356 
1357 static struct aggr_cpu_id perf_stat__get_cache_id(struct perf_stat_config *config __maybe_unused,
1358 						  struct perf_cpu cpu)
1359 {
1360 	return aggr_cpu_id__cache(cpu, /*data=*/NULL);
1361 }
1362 
1363 static struct aggr_cpu_id perf_stat__get_cluster(struct perf_stat_config *config __maybe_unused,
1364 						 struct perf_cpu cpu)
1365 {
1366 	return aggr_cpu_id__cluster(cpu, /*data=*/NULL);
1367 }
1368 
1369 static struct aggr_cpu_id perf_stat__get_core(struct perf_stat_config *config __maybe_unused,
1370 					      struct perf_cpu cpu)
1371 {
1372 	return aggr_cpu_id__core(cpu, /*data=*/NULL);
1373 }
1374 
1375 static struct aggr_cpu_id perf_stat__get_node(struct perf_stat_config *config __maybe_unused,
1376 					      struct perf_cpu cpu)
1377 {
1378 	return aggr_cpu_id__node(cpu, /*data=*/NULL);
1379 }
1380 
1381 static struct aggr_cpu_id perf_stat__get_global(struct perf_stat_config *config __maybe_unused,
1382 						struct perf_cpu cpu)
1383 {
1384 	return aggr_cpu_id__global(cpu, /*data=*/NULL);
1385 }
1386 
1387 static struct aggr_cpu_id perf_stat__get_cpu(struct perf_stat_config *config __maybe_unused,
1388 					     struct perf_cpu cpu)
1389 {
1390 	return aggr_cpu_id__cpu(cpu, /*data=*/NULL);
1391 }
1392 
1393 static struct aggr_cpu_id perf_stat__get_aggr(struct perf_stat_config *config,
1394 					      aggr_get_id_t get_id, struct perf_cpu cpu)
1395 {
1396 	struct aggr_cpu_id id;
1397 
1398 	/* per-process mode - should use global aggr mode */
1399 	if (cpu.cpu == -1)
1400 		return get_id(config, cpu);
1401 
1402 	if (aggr_cpu_id__is_empty(&config->cpus_aggr_map->map[cpu.cpu]))
1403 		config->cpus_aggr_map->map[cpu.cpu] = get_id(config, cpu);
1404 
1405 	id = config->cpus_aggr_map->map[cpu.cpu];
1406 	return id;
1407 }
1408 
1409 static struct aggr_cpu_id perf_stat__get_socket_cached(struct perf_stat_config *config,
1410 						       struct perf_cpu cpu)
1411 {
1412 	return perf_stat__get_aggr(config, perf_stat__get_socket, cpu);
1413 }
1414 
1415 static struct aggr_cpu_id perf_stat__get_die_cached(struct perf_stat_config *config,
1416 						    struct perf_cpu cpu)
1417 {
1418 	return perf_stat__get_aggr(config, perf_stat__get_die, cpu);
1419 }
1420 
1421 static struct aggr_cpu_id perf_stat__get_cluster_cached(struct perf_stat_config *config,
1422 							struct perf_cpu cpu)
1423 {
1424 	return perf_stat__get_aggr(config, perf_stat__get_cluster, cpu);
1425 }
1426 
1427 static struct aggr_cpu_id perf_stat__get_cache_id_cached(struct perf_stat_config *config,
1428 							 struct perf_cpu cpu)
1429 {
1430 	return perf_stat__get_aggr(config, perf_stat__get_cache_id, cpu);
1431 }
1432 
1433 static struct aggr_cpu_id perf_stat__get_core_cached(struct perf_stat_config *config,
1434 						     struct perf_cpu cpu)
1435 {
1436 	return perf_stat__get_aggr(config, perf_stat__get_core, cpu);
1437 }
1438 
1439 static struct aggr_cpu_id perf_stat__get_node_cached(struct perf_stat_config *config,
1440 						     struct perf_cpu cpu)
1441 {
1442 	return perf_stat__get_aggr(config, perf_stat__get_node, cpu);
1443 }
1444 
1445 static struct aggr_cpu_id perf_stat__get_global_cached(struct perf_stat_config *config,
1446 						       struct perf_cpu cpu)
1447 {
1448 	return perf_stat__get_aggr(config, perf_stat__get_global, cpu);
1449 }
1450 
1451 static struct aggr_cpu_id perf_stat__get_cpu_cached(struct perf_stat_config *config,
1452 						    struct perf_cpu cpu)
1453 {
1454 	return perf_stat__get_aggr(config, perf_stat__get_cpu, cpu);
1455 }
1456 
1457 static aggr_cpu_id_get_t aggr_mode__get_aggr(enum aggr_mode aggr_mode)
1458 {
1459 	switch (aggr_mode) {
1460 	case AGGR_SOCKET:
1461 		return aggr_cpu_id__socket;
1462 	case AGGR_DIE:
1463 		return aggr_cpu_id__die;
1464 	case AGGR_CLUSTER:
1465 		return aggr_cpu_id__cluster;
1466 	case AGGR_CACHE:
1467 		return aggr_cpu_id__cache;
1468 	case AGGR_CORE:
1469 		return aggr_cpu_id__core;
1470 	case AGGR_NODE:
1471 		return aggr_cpu_id__node;
1472 	case AGGR_NONE:
1473 		return aggr_cpu_id__cpu;
1474 	case AGGR_GLOBAL:
1475 		return aggr_cpu_id__global;
1476 	case AGGR_THREAD:
1477 	case AGGR_UNSET:
1478 	case AGGR_MAX:
1479 	default:
1480 		return NULL;
1481 	}
1482 }
1483 
1484 static aggr_get_id_t aggr_mode__get_id(enum aggr_mode aggr_mode)
1485 {
1486 	switch (aggr_mode) {
1487 	case AGGR_SOCKET:
1488 		return perf_stat__get_socket_cached;
1489 	case AGGR_DIE:
1490 		return perf_stat__get_die_cached;
1491 	case AGGR_CLUSTER:
1492 		return perf_stat__get_cluster_cached;
1493 	case AGGR_CACHE:
1494 		return perf_stat__get_cache_id_cached;
1495 	case AGGR_CORE:
1496 		return perf_stat__get_core_cached;
1497 	case AGGR_NODE:
1498 		return perf_stat__get_node_cached;
1499 	case AGGR_NONE:
1500 		return perf_stat__get_cpu_cached;
1501 	case AGGR_GLOBAL:
1502 		return perf_stat__get_global_cached;
1503 	case AGGR_THREAD:
1504 	case AGGR_UNSET:
1505 	case AGGR_MAX:
1506 	default:
1507 		return NULL;
1508 	}
1509 }
1510 
1511 static int perf_stat_init_aggr_mode(void)
1512 {
1513 	int nr;
1514 	aggr_cpu_id_get_t get_id = aggr_mode__get_aggr(stat_config.aggr_mode);
1515 
1516 	if (get_id) {
1517 		bool needs_sort = stat_config.aggr_mode != AGGR_NONE;
1518 		stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus,
1519 							 get_id, /*data=*/NULL, needs_sort);
1520 		if (!stat_config.aggr_map) {
1521 			pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]);
1522 			return -1;
1523 		}
1524 		stat_config.aggr_get_id = aggr_mode__get_id(stat_config.aggr_mode);
1525 	}
1526 
1527 	if (stat_config.aggr_mode == AGGR_THREAD) {
1528 		nr = perf_thread_map__nr(evsel_list->core.threads);
1529 		stat_config.aggr_map = cpu_aggr_map__empty_new(nr);
1530 		if (stat_config.aggr_map == NULL)
1531 			return -ENOMEM;
1532 
1533 		for (int s = 0; s < nr; s++) {
1534 			struct aggr_cpu_id id = aggr_cpu_id__empty();
1535 
1536 			id.thread_idx = s;
1537 			stat_config.aggr_map->map[s] = id;
1538 		}
1539 		return 0;
1540 	}
1541 
1542 	/*
1543 	 * The evsel_list->cpus is the base we operate on,
1544 	 * taking the highest cpu number to be the size of
1545 	 * the aggregation translate cpumap.
1546 	 */
1547 	if (!perf_cpu_map__is_any_cpu_or_is_empty(evsel_list->core.user_requested_cpus))
1548 		nr = perf_cpu_map__max(evsel_list->core.user_requested_cpus).cpu;
1549 	else
1550 		nr = 0;
1551 	stat_config.cpus_aggr_map = cpu_aggr_map__empty_new(nr + 1);
1552 	return stat_config.cpus_aggr_map ? 0 : -ENOMEM;
1553 }
1554 
1555 static void cpu_aggr_map__delete(struct cpu_aggr_map *map)
1556 {
1557 	free(map);
1558 }
1559 
1560 static void perf_stat__exit_aggr_mode(void)
1561 {
1562 	cpu_aggr_map__delete(stat_config.aggr_map);
1563 	cpu_aggr_map__delete(stat_config.cpus_aggr_map);
1564 	stat_config.aggr_map = NULL;
1565 	stat_config.cpus_aggr_map = NULL;
1566 }
1567 
1568 static struct aggr_cpu_id perf_env__get_socket_aggr_by_cpu(struct perf_cpu cpu, void *data)
1569 {
1570 	struct perf_env *env = data;
1571 	struct aggr_cpu_id id = aggr_cpu_id__empty();
1572 
1573 	if (cpu.cpu != -1)
1574 		id.socket = env->cpu[cpu.cpu].socket_id;
1575 
1576 	return id;
1577 }
1578 
1579 static struct aggr_cpu_id perf_env__get_die_aggr_by_cpu(struct perf_cpu cpu, void *data)
1580 {
1581 	struct perf_env *env = data;
1582 	struct aggr_cpu_id id = aggr_cpu_id__empty();
1583 
1584 	if (cpu.cpu != -1) {
1585 		/*
1586 		 * die_id is relative to socket, so start
1587 		 * with the socket ID and then add die to
1588 		 * make a unique ID.
1589 		 */
1590 		id.socket = env->cpu[cpu.cpu].socket_id;
1591 		id.die = env->cpu[cpu.cpu].die_id;
1592 	}
1593 
1594 	return id;
1595 }
1596 
1597 static void perf_env__get_cache_id_for_cpu(struct perf_cpu cpu, struct perf_env *env,
1598 					   u32 cache_level, struct aggr_cpu_id *id)
1599 {
1600 	int i;
1601 	int caches_cnt = env->caches_cnt;
1602 	struct cpu_cache_level *caches = env->caches;
1603 
1604 	id->cache_lvl = (cache_level > MAX_CACHE_LVL) ? 0 : cache_level;
1605 	id->cache = -1;
1606 
1607 	if (!caches_cnt)
1608 		return;
1609 
1610 	for (i = caches_cnt - 1; i > -1; --i) {
1611 		struct perf_cpu_map *cpu_map;
1612 		int map_contains_cpu;
1613 
1614 		/*
1615 		 * If user has not specified a level, find the fist level with
1616 		 * the cpu in the map. Since building the map is expensive, do
1617 		 * this only if levels match.
1618 		 */
1619 		if (cache_level <= MAX_CACHE_LVL && caches[i].level != cache_level)
1620 			continue;
1621 
1622 		cpu_map = perf_cpu_map__new(caches[i].map);
1623 		map_contains_cpu = perf_cpu_map__idx(cpu_map, cpu);
1624 		perf_cpu_map__put(cpu_map);
1625 
1626 		if (map_contains_cpu != -1) {
1627 			id->cache_lvl = caches[i].level;
1628 			id->cache = cpu__get_cache_id_from_map(cpu, caches[i].map);
1629 			return;
1630 		}
1631 	}
1632 }
1633 
1634 static struct aggr_cpu_id perf_env__get_cache_aggr_by_cpu(struct perf_cpu cpu,
1635 							  void *data)
1636 {
1637 	struct perf_env *env = data;
1638 	struct aggr_cpu_id id = aggr_cpu_id__empty();
1639 
1640 	if (cpu.cpu != -1) {
1641 		u32 cache_level = (perf_stat.aggr_level) ?: stat_config.aggr_level;
1642 
1643 		id.socket = env->cpu[cpu.cpu].socket_id;
1644 		id.die = env->cpu[cpu.cpu].die_id;
1645 		perf_env__get_cache_id_for_cpu(cpu, env, cache_level, &id);
1646 	}
1647 
1648 	return id;
1649 }
1650 
1651 static struct aggr_cpu_id perf_env__get_cluster_aggr_by_cpu(struct perf_cpu cpu,
1652 							    void *data)
1653 {
1654 	struct perf_env *env = data;
1655 	struct aggr_cpu_id id = aggr_cpu_id__empty();
1656 
1657 	if (cpu.cpu != -1) {
1658 		id.socket = env->cpu[cpu.cpu].socket_id;
1659 		id.die = env->cpu[cpu.cpu].die_id;
1660 		id.cluster = env->cpu[cpu.cpu].cluster_id;
1661 	}
1662 
1663 	return id;
1664 }
1665 
1666 static struct aggr_cpu_id perf_env__get_core_aggr_by_cpu(struct perf_cpu cpu, void *data)
1667 {
1668 	struct perf_env *env = data;
1669 	struct aggr_cpu_id id = aggr_cpu_id__empty();
1670 
1671 	if (cpu.cpu != -1) {
1672 		/*
1673 		 * core_id is relative to socket, die and cluster, we need a
1674 		 * global id. So we set socket, die id, cluster id and core id.
1675 		 */
1676 		id.socket = env->cpu[cpu.cpu].socket_id;
1677 		id.die = env->cpu[cpu.cpu].die_id;
1678 		id.cluster = env->cpu[cpu.cpu].cluster_id;
1679 		id.core = env->cpu[cpu.cpu].core_id;
1680 	}
1681 
1682 	return id;
1683 }
1684 
1685 static struct aggr_cpu_id perf_env__get_cpu_aggr_by_cpu(struct perf_cpu cpu, void *data)
1686 {
1687 	struct perf_env *env = data;
1688 	struct aggr_cpu_id id = aggr_cpu_id__empty();
1689 
1690 	if (cpu.cpu != -1) {
1691 		/*
1692 		 * core_id is relative to socket and die,
1693 		 * we need a global id. So we set
1694 		 * socket, die id and core id
1695 		 */
1696 		id.socket = env->cpu[cpu.cpu].socket_id;
1697 		id.die = env->cpu[cpu.cpu].die_id;
1698 		id.core = env->cpu[cpu.cpu].core_id;
1699 		id.cpu = cpu;
1700 	}
1701 
1702 	return id;
1703 }
1704 
1705 static struct aggr_cpu_id perf_env__get_node_aggr_by_cpu(struct perf_cpu cpu, void *data)
1706 {
1707 	struct aggr_cpu_id id = aggr_cpu_id__empty();
1708 
1709 	id.node = perf_env__numa_node(data, cpu);
1710 	return id;
1711 }
1712 
1713 static struct aggr_cpu_id perf_env__get_global_aggr_by_cpu(struct perf_cpu cpu __maybe_unused,
1714 							   void *data __maybe_unused)
1715 {
1716 	struct aggr_cpu_id id = aggr_cpu_id__empty();
1717 
1718 	/* it always aggregates to the cpu 0 */
1719 	id.cpu = (struct perf_cpu){ .cpu = 0 };
1720 	return id;
1721 }
1722 
1723 static struct aggr_cpu_id perf_stat__get_socket_file(struct perf_stat_config *config __maybe_unused,
1724 						     struct perf_cpu cpu)
1725 {
1726 	return perf_env__get_socket_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1727 }
1728 static struct aggr_cpu_id perf_stat__get_die_file(struct perf_stat_config *config __maybe_unused,
1729 						  struct perf_cpu cpu)
1730 {
1731 	return perf_env__get_die_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1732 }
1733 
1734 static struct aggr_cpu_id perf_stat__get_cluster_file(struct perf_stat_config *config __maybe_unused,
1735 						      struct perf_cpu cpu)
1736 {
1737 	return perf_env__get_cluster_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1738 }
1739 
1740 static struct aggr_cpu_id perf_stat__get_cache_file(struct perf_stat_config *config __maybe_unused,
1741 						    struct perf_cpu cpu)
1742 {
1743 	return perf_env__get_cache_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1744 }
1745 
1746 static struct aggr_cpu_id perf_stat__get_core_file(struct perf_stat_config *config __maybe_unused,
1747 						   struct perf_cpu cpu)
1748 {
1749 	return perf_env__get_core_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1750 }
1751 
1752 static struct aggr_cpu_id perf_stat__get_cpu_file(struct perf_stat_config *config __maybe_unused,
1753 						  struct perf_cpu cpu)
1754 {
1755 	return perf_env__get_cpu_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1756 }
1757 
1758 static struct aggr_cpu_id perf_stat__get_node_file(struct perf_stat_config *config __maybe_unused,
1759 						   struct perf_cpu cpu)
1760 {
1761 	return perf_env__get_node_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1762 }
1763 
1764 static struct aggr_cpu_id perf_stat__get_global_file(struct perf_stat_config *config __maybe_unused,
1765 						     struct perf_cpu cpu)
1766 {
1767 	return perf_env__get_global_aggr_by_cpu(cpu, &perf_stat.session->header.env);
1768 }
1769 
1770 static aggr_cpu_id_get_t aggr_mode__get_aggr_file(enum aggr_mode aggr_mode)
1771 {
1772 	switch (aggr_mode) {
1773 	case AGGR_SOCKET:
1774 		return perf_env__get_socket_aggr_by_cpu;
1775 	case AGGR_DIE:
1776 		return perf_env__get_die_aggr_by_cpu;
1777 	case AGGR_CLUSTER:
1778 		return perf_env__get_cluster_aggr_by_cpu;
1779 	case AGGR_CACHE:
1780 		return perf_env__get_cache_aggr_by_cpu;
1781 	case AGGR_CORE:
1782 		return perf_env__get_core_aggr_by_cpu;
1783 	case AGGR_NODE:
1784 		return perf_env__get_node_aggr_by_cpu;
1785 	case AGGR_GLOBAL:
1786 		return perf_env__get_global_aggr_by_cpu;
1787 	case AGGR_NONE:
1788 		return perf_env__get_cpu_aggr_by_cpu;
1789 	case AGGR_THREAD:
1790 	case AGGR_UNSET:
1791 	case AGGR_MAX:
1792 	default:
1793 		return NULL;
1794 	}
1795 }
1796 
1797 static aggr_get_id_t aggr_mode__get_id_file(enum aggr_mode aggr_mode)
1798 {
1799 	switch (aggr_mode) {
1800 	case AGGR_SOCKET:
1801 		return perf_stat__get_socket_file;
1802 	case AGGR_DIE:
1803 		return perf_stat__get_die_file;
1804 	case AGGR_CLUSTER:
1805 		return perf_stat__get_cluster_file;
1806 	case AGGR_CACHE:
1807 		return perf_stat__get_cache_file;
1808 	case AGGR_CORE:
1809 		return perf_stat__get_core_file;
1810 	case AGGR_NODE:
1811 		return perf_stat__get_node_file;
1812 	case AGGR_GLOBAL:
1813 		return perf_stat__get_global_file;
1814 	case AGGR_NONE:
1815 		return perf_stat__get_cpu_file;
1816 	case AGGR_THREAD:
1817 	case AGGR_UNSET:
1818 	case AGGR_MAX:
1819 	default:
1820 		return NULL;
1821 	}
1822 }
1823 
1824 static int perf_stat_init_aggr_mode_file(struct perf_stat *st)
1825 {
1826 	struct perf_env *env = &st->session->header.env;
1827 	aggr_cpu_id_get_t get_id = aggr_mode__get_aggr_file(stat_config.aggr_mode);
1828 	bool needs_sort = stat_config.aggr_mode != AGGR_NONE;
1829 
1830 	if (stat_config.aggr_mode == AGGR_THREAD) {
1831 		int nr = perf_thread_map__nr(evsel_list->core.threads);
1832 
1833 		stat_config.aggr_map = cpu_aggr_map__empty_new(nr);
1834 		if (stat_config.aggr_map == NULL)
1835 			return -ENOMEM;
1836 
1837 		for (int s = 0; s < nr; s++) {
1838 			struct aggr_cpu_id id = aggr_cpu_id__empty();
1839 
1840 			id.thread_idx = s;
1841 			stat_config.aggr_map->map[s] = id;
1842 		}
1843 		return 0;
1844 	}
1845 
1846 	if (!get_id)
1847 		return 0;
1848 
1849 	stat_config.aggr_map = cpu_aggr_map__new(evsel_list->core.user_requested_cpus,
1850 						 get_id, env, needs_sort);
1851 	if (!stat_config.aggr_map) {
1852 		pr_err("cannot build %s map\n", aggr_mode__string[stat_config.aggr_mode]);
1853 		return -1;
1854 	}
1855 	stat_config.aggr_get_id = aggr_mode__get_id_file(stat_config.aggr_mode);
1856 	return 0;
1857 }
1858 
1859 /*
1860  * Add default events, if there were no attributes specified or
1861  * if -d/--detailed, -d -d or -d -d -d is used:
1862  */
1863 static int add_default_events(void)
1864 {
1865 	const char *pmu = parse_events_option_args.pmu_filter ?: "all";
1866 	struct parse_events_error err;
1867 	struct evlist *evlist = evlist__new();
1868 	struct evsel *evsel;
1869 	int ret = 0;
1870 
1871 	if (!evlist)
1872 		return -ENOMEM;
1873 
1874 	parse_events_error__init(&err);
1875 
1876 	/* Set attrs if no event is selected and !null_run: */
1877 	if (stat_config.null_run)
1878 		goto out;
1879 
1880 	if (transaction_run) {
1881 		/* Handle -T as -M transaction. Once platform specific metrics
1882 		 * support has been added to the json files, all architectures
1883 		 * will use this approach. To determine transaction support
1884 		 * on an architecture test for such a metric name.
1885 		 */
1886 		if (!metricgroup__has_metric(pmu, "transaction")) {
1887 			pr_err("Missing transaction metrics\n");
1888 			ret = -1;
1889 			goto out;
1890 		}
1891 		ret = metricgroup__parse_groups(evlist, pmu, "transaction",
1892 						stat_config.metric_no_group,
1893 						stat_config.metric_no_merge,
1894 						stat_config.metric_no_threshold,
1895 						stat_config.user_requested_cpu_list,
1896 						stat_config.system_wide,
1897 						stat_config.hardware_aware_grouping,
1898 						&stat_config.metric_events);
1899 		goto out;
1900 	}
1901 
1902 	if (smi_cost) {
1903 		int smi;
1904 
1905 		if (sysfs__read_int(FREEZE_ON_SMI_PATH, &smi) < 0) {
1906 			pr_err("freeze_on_smi is not supported.\n");
1907 			ret = -1;
1908 			goto out;
1909 		}
1910 
1911 		if (!smi) {
1912 			if (sysfs__write_int(FREEZE_ON_SMI_PATH, 1) < 0) {
1913 				pr_err("Failed to set freeze_on_smi.\n");
1914 				ret = -1;
1915 				goto out;
1916 			}
1917 			smi_reset = true;
1918 		}
1919 
1920 		if (!metricgroup__has_metric(pmu, "smi")) {
1921 			pr_err("Missing smi metrics\n");
1922 			ret = -1;
1923 			goto out;
1924 		}
1925 
1926 		if (!force_metric_only)
1927 			stat_config.metric_only = true;
1928 
1929 		ret = metricgroup__parse_groups(evlist, pmu, "smi",
1930 						stat_config.metric_no_group,
1931 						stat_config.metric_no_merge,
1932 						stat_config.metric_no_threshold,
1933 						stat_config.user_requested_cpu_list,
1934 						stat_config.system_wide,
1935 						stat_config.hardware_aware_grouping,
1936 						&stat_config.metric_events);
1937 		goto out;
1938 	}
1939 
1940 	if (topdown_run) {
1941 		unsigned int max_level = metricgroups__topdown_max_level();
1942 		char str[] = "TopdownL1";
1943 
1944 		if (!force_metric_only)
1945 			stat_config.metric_only = true;
1946 
1947 		if (!max_level) {
1948 			pr_err("Topdown requested but the topdown metric groups aren't present.\n"
1949 				"(See perf list the metric groups have names like TopdownL1)\n");
1950 			ret = -1;
1951 			goto out;
1952 		}
1953 		if (stat_config.topdown_level > max_level) {
1954 			pr_err("Invalid top-down metrics level. The max level is %u.\n", max_level);
1955 			ret = -1;
1956 			goto out;
1957 		} else if (!stat_config.topdown_level) {
1958 			stat_config.topdown_level = 1;
1959 		}
1960 		if (!stat_config.interval && !stat_config.metric_only) {
1961 			fprintf(stat_config.output,
1962 				"Topdown accuracy may decrease when measuring long periods.\n"
1963 				"Please print the result regularly, e.g. -I1000\n");
1964 		}
1965 		str[8] = stat_config.topdown_level + '0';
1966 		if (metricgroup__parse_groups(evlist,
1967 						pmu, str,
1968 						/*metric_no_group=*/false,
1969 						/*metric_no_merge=*/false,
1970 						/*metric_no_threshold=*/true,
1971 						stat_config.user_requested_cpu_list,
1972 						stat_config.system_wide,
1973 						stat_config.hardware_aware_grouping,
1974 						&stat_config.metric_events) < 0) {
1975 			ret = -1;
1976 			goto out;
1977 		}
1978 	}
1979 
1980 	if (!stat_config.topdown_level)
1981 		stat_config.topdown_level = 1;
1982 
1983 	if (!evlist->core.nr_entries && !evsel_list->core.nr_entries) {
1984 		/* No events so add defaults. */
1985 		if (target__has_cpu(&target))
1986 			ret = parse_events(evlist, "cpu-clock", &err);
1987 		else
1988 			ret = parse_events(evlist, "task-clock", &err);
1989 		if (ret)
1990 			goto out;
1991 
1992 		ret = parse_events(evlist,
1993 				"context-switches,"
1994 				"cpu-migrations,"
1995 				"page-faults,"
1996 				"instructions,"
1997 				"cycles,"
1998 				"stalled-cycles-frontend,"
1999 				"stalled-cycles-backend,"
2000 				"branches,"
2001 				"branch-misses",
2002 				&err);
2003 		if (ret)
2004 			goto out;
2005 
2006 		/*
2007 		 * Add TopdownL1 metrics if they exist. To minimize
2008 		 * multiplexing, don't request threshold computation.
2009 		 */
2010 		if (metricgroup__has_metric(pmu, "Default")) {
2011 			struct evlist *metric_evlist = evlist__new();
2012 
2013 			if (!metric_evlist) {
2014 				ret = -ENOMEM;
2015 				goto out;
2016 			}
2017 			if (metricgroup__parse_groups(metric_evlist, pmu, "Default",
2018 							/*metric_no_group=*/false,
2019 							/*metric_no_merge=*/false,
2020 							/*metric_no_threshold=*/true,
2021 							stat_config.user_requested_cpu_list,
2022 							stat_config.system_wide,
2023 							stat_config.hardware_aware_grouping,
2024 							&stat_config.metric_events) < 0) {
2025 				ret = -1;
2026 				goto out;
2027 			}
2028 
2029 			evlist__for_each_entry(metric_evlist, evsel)
2030 				evsel->default_metricgroup = true;
2031 
2032 			evlist__splice_list_tail(evlist, &metric_evlist->core.entries);
2033 			evlist__delete(metric_evlist);
2034 		}
2035 	}
2036 
2037 	/* Detailed events get appended to the event list: */
2038 
2039 	if (!ret && detailed_run >=  1) {
2040 		/*
2041 		 * Detailed stats (-d), covering the L1 and last level data
2042 		 * caches:
2043 		 */
2044 		ret = parse_events(evlist,
2045 				"L1-dcache-loads,"
2046 				"L1-dcache-load-misses,"
2047 				"LLC-loads,"
2048 				"LLC-load-misses",
2049 				&err);
2050 	}
2051 	if (!ret && detailed_run >=  2) {
2052 		/*
2053 		 * Very detailed stats (-d -d), covering the instruction cache
2054 		 * and the TLB caches:
2055 		 */
2056 		ret = parse_events(evlist,
2057 				"L1-icache-loads,"
2058 				"L1-icache-load-misses,"
2059 				"dTLB-loads,"
2060 				"dTLB-load-misses,"
2061 				"iTLB-loads,"
2062 				"iTLB-load-misses",
2063 				&err);
2064 	}
2065 	if (!ret && detailed_run >=  3) {
2066 		/*
2067 		 * Very, very detailed stats (-d -d -d), adding prefetch events:
2068 		 */
2069 		ret = parse_events(evlist,
2070 				"L1-dcache-prefetches,"
2071 				"L1-dcache-prefetch-misses",
2072 				&err);
2073 	}
2074 out:
2075 	if (!ret) {
2076 		evlist__for_each_entry(evlist, evsel) {
2077 			/*
2078 			 * Make at least one event non-skippable so fatal errors are visible.
2079 			 * 'cycles' always used to be default and non-skippable, so use that.
2080 			 */
2081 			if (strcmp("cycles", evsel__name(evsel)))
2082 				evsel->skippable = true;
2083 		}
2084 	}
2085 	parse_events_error__exit(&err);
2086 	evlist__splice_list_tail(evsel_list, &evlist->core.entries);
2087 	evlist__delete(evlist);
2088 	return ret;
2089 }
2090 
2091 static const char * const stat_record_usage[] = {
2092 	"perf stat record [<options>]",
2093 	NULL,
2094 };
2095 
2096 static void init_features(struct perf_session *session)
2097 {
2098 	int feat;
2099 
2100 	for (feat = HEADER_FIRST_FEATURE; feat < HEADER_LAST_FEATURE; feat++)
2101 		perf_header__set_feat(&session->header, feat);
2102 
2103 	perf_header__clear_feat(&session->header, HEADER_DIR_FORMAT);
2104 	perf_header__clear_feat(&session->header, HEADER_BUILD_ID);
2105 	perf_header__clear_feat(&session->header, HEADER_TRACING_DATA);
2106 	perf_header__clear_feat(&session->header, HEADER_BRANCH_STACK);
2107 	perf_header__clear_feat(&session->header, HEADER_AUXTRACE);
2108 }
2109 
2110 static int __cmd_record(const struct option stat_options[], struct opt_aggr_mode *opt_mode,
2111 			int argc, const char **argv)
2112 {
2113 	struct perf_session *session;
2114 	struct perf_data *data = &perf_stat.data;
2115 
2116 	argc = parse_options(argc, argv, stat_options, stat_record_usage,
2117 			     PARSE_OPT_STOP_AT_NON_OPTION);
2118 	stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(opt_mode);
2119 
2120 	if (output_name)
2121 		data->path = output_name;
2122 
2123 	if (stat_config.run_count != 1 || forever) {
2124 		pr_err("Cannot use -r option with perf stat record.\n");
2125 		return -1;
2126 	}
2127 
2128 	session = perf_session__new(data, NULL);
2129 	if (IS_ERR(session)) {
2130 		pr_err("Perf session creation failed\n");
2131 		return PTR_ERR(session);
2132 	}
2133 
2134 	init_features(session);
2135 
2136 	session->evlist   = evsel_list;
2137 	perf_stat.session = session;
2138 	perf_stat.record  = true;
2139 	return argc;
2140 }
2141 
2142 static int process_stat_round_event(struct perf_session *session,
2143 				    union perf_event *event)
2144 {
2145 	struct perf_record_stat_round *stat_round = &event->stat_round;
2146 	struct timespec tsh, *ts = NULL;
2147 	const char **argv = session->header.env.cmdline_argv;
2148 	int argc = session->header.env.nr_cmdline;
2149 
2150 	process_counters();
2151 
2152 	if (stat_round->type == PERF_STAT_ROUND_TYPE__FINAL)
2153 		update_stats(&walltime_nsecs_stats, stat_round->time);
2154 
2155 	if (stat_config.interval && stat_round->time) {
2156 		tsh.tv_sec  = stat_round->time / NSEC_PER_SEC;
2157 		tsh.tv_nsec = stat_round->time % NSEC_PER_SEC;
2158 		ts = &tsh;
2159 	}
2160 
2161 	print_counters(ts, argc, argv);
2162 	return 0;
2163 }
2164 
2165 static
2166 int process_stat_config_event(struct perf_session *session,
2167 			      union perf_event *event)
2168 {
2169 	const struct perf_tool *tool = session->tool;
2170 	struct perf_stat *st = container_of(tool, struct perf_stat, tool);
2171 
2172 	perf_event__read_stat_config(&stat_config, &event->stat_config);
2173 
2174 	if (perf_cpu_map__is_empty(st->cpus)) {
2175 		if (st->aggr_mode != AGGR_UNSET)
2176 			pr_warning("warning: processing task data, aggregation mode not set\n");
2177 	} else if (st->aggr_mode != AGGR_UNSET) {
2178 		stat_config.aggr_mode = st->aggr_mode;
2179 	}
2180 
2181 	if (perf_stat.data.is_pipe)
2182 		perf_stat_init_aggr_mode();
2183 	else
2184 		perf_stat_init_aggr_mode_file(st);
2185 
2186 	if (stat_config.aggr_map) {
2187 		int nr_aggr = stat_config.aggr_map->nr;
2188 
2189 		if (evlist__alloc_aggr_stats(session->evlist, nr_aggr) < 0) {
2190 			pr_err("cannot allocate aggr counts\n");
2191 			return -1;
2192 		}
2193 	}
2194 	return 0;
2195 }
2196 
2197 static int set_maps(struct perf_stat *st)
2198 {
2199 	if (!st->cpus || !st->threads)
2200 		return 0;
2201 
2202 	if (WARN_ONCE(st->maps_allocated, "stats double allocation\n"))
2203 		return -EINVAL;
2204 
2205 	perf_evlist__set_maps(&evsel_list->core, st->cpus, st->threads);
2206 
2207 	if (evlist__alloc_stats(&stat_config, evsel_list, /*alloc_raw=*/true))
2208 		return -ENOMEM;
2209 
2210 	st->maps_allocated = true;
2211 	return 0;
2212 }
2213 
2214 static
2215 int process_thread_map_event(struct perf_session *session,
2216 			     union perf_event *event)
2217 {
2218 	const struct perf_tool *tool = session->tool;
2219 	struct perf_stat *st = container_of(tool, struct perf_stat, tool);
2220 
2221 	if (st->threads) {
2222 		pr_warning("Extra thread map event, ignoring.\n");
2223 		return 0;
2224 	}
2225 
2226 	st->threads = thread_map__new_event(&event->thread_map);
2227 	if (!st->threads)
2228 		return -ENOMEM;
2229 
2230 	return set_maps(st);
2231 }
2232 
2233 static
2234 int process_cpu_map_event(struct perf_session *session,
2235 			  union perf_event *event)
2236 {
2237 	const struct perf_tool *tool = session->tool;
2238 	struct perf_stat *st = container_of(tool, struct perf_stat, tool);
2239 	struct perf_cpu_map *cpus;
2240 
2241 	if (st->cpus) {
2242 		pr_warning("Extra cpu map event, ignoring.\n");
2243 		return 0;
2244 	}
2245 
2246 	cpus = cpu_map__new_data(&event->cpu_map.data);
2247 	if (!cpus)
2248 		return -ENOMEM;
2249 
2250 	st->cpus = cpus;
2251 	return set_maps(st);
2252 }
2253 
2254 static const char * const stat_report_usage[] = {
2255 	"perf stat report [<options>]",
2256 	NULL,
2257 };
2258 
2259 static struct perf_stat perf_stat = {
2260 	.aggr_mode	= AGGR_UNSET,
2261 	.aggr_level	= 0,
2262 };
2263 
2264 static int __cmd_report(int argc, const char **argv)
2265 {
2266 	struct perf_session *session;
2267 	const struct option options[] = {
2268 	OPT_STRING('i', "input", &input_name, "file", "input file name"),
2269 	OPT_SET_UINT(0, "per-socket", &perf_stat.aggr_mode,
2270 		     "aggregate counts per processor socket", AGGR_SOCKET),
2271 	OPT_SET_UINT(0, "per-die", &perf_stat.aggr_mode,
2272 		     "aggregate counts per processor die", AGGR_DIE),
2273 	OPT_SET_UINT(0, "per-cluster", &perf_stat.aggr_mode,
2274 		     "aggregate counts perf processor cluster", AGGR_CLUSTER),
2275 	OPT_CALLBACK_OPTARG(0, "per-cache", &perf_stat.aggr_mode, &perf_stat.aggr_level,
2276 			    "cache level",
2277 			    "aggregate count at this cache level (Default: LLC)",
2278 			    parse_cache_level),
2279 	OPT_SET_UINT(0, "per-core", &perf_stat.aggr_mode,
2280 		     "aggregate counts per physical processor core", AGGR_CORE),
2281 	OPT_SET_UINT(0, "per-node", &perf_stat.aggr_mode,
2282 		     "aggregate counts per numa node", AGGR_NODE),
2283 	OPT_SET_UINT('A', "no-aggr", &perf_stat.aggr_mode,
2284 		     "disable CPU count aggregation", AGGR_NONE),
2285 	OPT_END()
2286 	};
2287 	struct stat st;
2288 	int ret;
2289 
2290 	argc = parse_options(argc, argv, options, stat_report_usage, 0);
2291 
2292 	if (!input_name || !strlen(input_name)) {
2293 		if (!fstat(STDIN_FILENO, &st) && S_ISFIFO(st.st_mode))
2294 			input_name = "-";
2295 		else
2296 			input_name = "perf.data";
2297 	}
2298 
2299 	perf_stat.data.path = input_name;
2300 	perf_stat.data.mode = PERF_DATA_MODE_READ;
2301 
2302 	perf_tool__init(&perf_stat.tool, /*ordered_events=*/false);
2303 	perf_stat.tool.attr		= perf_event__process_attr;
2304 	perf_stat.tool.event_update	= perf_event__process_event_update;
2305 	perf_stat.tool.thread_map	= process_thread_map_event;
2306 	perf_stat.tool.cpu_map		= process_cpu_map_event;
2307 	perf_stat.tool.stat_config	= process_stat_config_event;
2308 	perf_stat.tool.stat		= perf_event__process_stat_event;
2309 	perf_stat.tool.stat_round	= process_stat_round_event;
2310 
2311 	session = perf_session__new(&perf_stat.data, &perf_stat.tool);
2312 	if (IS_ERR(session))
2313 		return PTR_ERR(session);
2314 
2315 	perf_stat.session  = session;
2316 	stat_config.output = stderr;
2317 	evlist__delete(evsel_list);
2318 	evsel_list         = session->evlist;
2319 
2320 	ret = perf_session__process_events(session);
2321 	if (ret)
2322 		return ret;
2323 
2324 	perf_session__delete(session);
2325 	return 0;
2326 }
2327 
2328 static void setup_system_wide(int forks)
2329 {
2330 	/*
2331 	 * Make system wide (-a) the default target if
2332 	 * no target was specified and one of following
2333 	 * conditions is met:
2334 	 *
2335 	 *   - there's no workload specified
2336 	 *   - there is workload specified but all requested
2337 	 *     events are system wide events
2338 	 */
2339 	if (!target__none(&target))
2340 		return;
2341 
2342 	if (!forks)
2343 		target.system_wide = true;
2344 	else {
2345 		struct evsel *counter;
2346 
2347 		evlist__for_each_entry(evsel_list, counter) {
2348 			if (!counter->core.requires_cpu &&
2349 			    !evsel__name_is(counter, "duration_time")) {
2350 				return;
2351 			}
2352 		}
2353 
2354 		if (evsel_list->core.nr_entries)
2355 			target.system_wide = true;
2356 	}
2357 }
2358 
2359 int cmd_stat(int argc, const char **argv)
2360 {
2361 	struct opt_aggr_mode opt_mode = {};
2362 	struct option stat_options[] = {
2363 		OPT_BOOLEAN('T', "transaction", &transaction_run,
2364 			"hardware transaction statistics"),
2365 		OPT_CALLBACK('e', "event", &parse_events_option_args, "event",
2366 			"event selector. use 'perf list' to list available events",
2367 			parse_events_option),
2368 		OPT_CALLBACK(0, "filter", &evsel_list, "filter",
2369 			"event filter", parse_filter),
2370 		OPT_BOOLEAN('i', "no-inherit", &stat_config.no_inherit,
2371 			"child tasks do not inherit counters"),
2372 		OPT_STRING('p', "pid", &target.pid, "pid",
2373 			"stat events on existing process id"),
2374 		OPT_STRING('t', "tid", &target.tid, "tid",
2375 			"stat events on existing thread id"),
2376 #ifdef HAVE_BPF_SKEL
2377 		OPT_STRING('b', "bpf-prog", &target.bpf_str, "bpf-prog-id",
2378 			"stat events on existing bpf program id"),
2379 		OPT_BOOLEAN(0, "bpf-counters", &target.use_bpf,
2380 			"use bpf program to count events"),
2381 		OPT_STRING(0, "bpf-attr-map", &target.attr_map, "attr-map-path",
2382 			"path to perf_event_attr map"),
2383 #endif
2384 		OPT_BOOLEAN('a', "all-cpus", &target.system_wide,
2385 			"system-wide collection from all CPUs"),
2386 		OPT_BOOLEAN(0, "scale", &stat_config.scale,
2387 			"Use --no-scale to disable counter scaling for multiplexing"),
2388 		OPT_INCR('v', "verbose", &verbose,
2389 			"be more verbose (show counter open errors, etc)"),
2390 		OPT_INTEGER('r', "repeat", &stat_config.run_count,
2391 			"repeat command and print average + stddev (max: 100, forever: 0)"),
2392 		OPT_BOOLEAN(0, "table", &stat_config.walltime_run_table,
2393 			"display details about each run (only with -r option)"),
2394 		OPT_BOOLEAN('n', "null", &stat_config.null_run,
2395 			"null run - dont start any counters"),
2396 		OPT_INCR('d', "detailed", &detailed_run,
2397 			"detailed run - start a lot of events"),
2398 		OPT_BOOLEAN('S', "sync", &sync_run,
2399 			"call sync() before starting a run"),
2400 		OPT_CALLBACK_NOOPT('B', "big-num", NULL, NULL,
2401 				"print large numbers with thousands\' separators",
2402 				stat__set_big_num),
2403 		OPT_STRING('C', "cpu", &target.cpu_list, "cpu",
2404 			"list of cpus to monitor in system-wide"),
2405 		OPT_BOOLEAN('A', "no-aggr", &opt_mode.no_aggr,
2406 			"disable aggregation across CPUs or PMUs"),
2407 		OPT_BOOLEAN(0, "no-merge", &opt_mode.no_aggr,
2408 			"disable aggregation the same as -A or -no-aggr"),
2409 		OPT_BOOLEAN(0, "hybrid-merge", &stat_config.hybrid_merge,
2410 			"Merge identical named hybrid events"),
2411 		OPT_STRING('x', "field-separator", &stat_config.csv_sep, "separator",
2412 			"print counts with custom separator"),
2413 		OPT_BOOLEAN('j', "json-output", &stat_config.json_output,
2414 			"print counts in JSON format"),
2415 		OPT_CALLBACK('G', "cgroup", &evsel_list, "name",
2416 			"monitor event in cgroup name only", parse_stat_cgroups),
2417 		OPT_STRING(0, "for-each-cgroup", &stat_config.cgroup_list, "name",
2418 			"expand events for each cgroup"),
2419 		OPT_STRING('o', "output", &output_name, "file", "output file name"),
2420 		OPT_BOOLEAN(0, "append", &append_file, "append to the output file"),
2421 		OPT_INTEGER(0, "log-fd", &output_fd,
2422 			"log output to fd, instead of stderr"),
2423 		OPT_STRING(0, "pre", &pre_cmd, "command",
2424 			"command to run prior to the measured command"),
2425 		OPT_STRING(0, "post", &post_cmd, "command",
2426 			"command to run after to the measured command"),
2427 		OPT_UINTEGER('I', "interval-print", &stat_config.interval,
2428 			"print counts at regular interval in ms "
2429 			"(overhead is possible for values <= 100ms)"),
2430 		OPT_INTEGER(0, "interval-count", &stat_config.times,
2431 			"print counts for fixed number of times"),
2432 		OPT_BOOLEAN(0, "interval-clear", &stat_config.interval_clear,
2433 			"clear screen in between new interval"),
2434 		OPT_UINTEGER(0, "timeout", &stat_config.timeout,
2435 			"stop workload and print counts after a timeout period in ms (>= 10ms)"),
2436 		OPT_BOOLEAN(0, "per-socket", &opt_mode.socket,
2437 			"aggregate counts per processor socket"),
2438 		OPT_BOOLEAN(0, "per-die", &opt_mode.die, "aggregate counts per processor die"),
2439 		OPT_BOOLEAN(0, "per-cluster", &opt_mode.cluster,
2440 			"aggregate counts per processor cluster"),
2441 		OPT_CALLBACK_OPTARG(0, "per-cache", &opt_mode, &stat_config.aggr_level,
2442 				"cache level", "aggregate count at this cache level (Default: LLC)",
2443 				parse_cache_level),
2444 		OPT_BOOLEAN(0, "per-core", &opt_mode.core,
2445 			"aggregate counts per physical processor core"),
2446 		OPT_BOOLEAN(0, "per-thread", &opt_mode.thread, "aggregate counts per thread"),
2447 		OPT_BOOLEAN(0, "per-node", &opt_mode.node, "aggregate counts per numa node"),
2448 		OPT_INTEGER('D', "delay", &target.initial_delay,
2449 			"ms to wait before starting measurement after program start (-1: start with events disabled)"),
2450 		OPT_CALLBACK_NOOPT(0, "metric-only", &stat_config.metric_only, NULL,
2451 				"Only print computed metrics. No raw values", enable_metric_only),
2452 		OPT_BOOLEAN(0, "metric-no-group", &stat_config.metric_no_group,
2453 			"don't group metric events, impacts multiplexing"),
2454 		OPT_BOOLEAN(0, "metric-no-merge", &stat_config.metric_no_merge,
2455 			"don't try to share events between metrics in a group"),
2456 		OPT_BOOLEAN(0, "metric-no-threshold", &stat_config.metric_no_threshold,
2457 			"disable adding events for the metric threshold calculation"),
2458 		OPT_BOOLEAN(0, "topdown", &topdown_run,
2459 			"measure top-down statistics"),
2460 #ifdef HAVE_ARCH_X86_64_SUPPORT
2461 		OPT_BOOLEAN(0, "record-tpebs", &tpebs_recording,
2462 			"enable recording for tpebs when retire_latency required"),
2463 #endif
2464 		OPT_UINTEGER(0, "td-level", &stat_config.topdown_level,
2465 			"Set the metrics level for the top-down statistics (0: max level)"),
2466 		OPT_BOOLEAN(0, "smi-cost", &smi_cost,
2467 			"measure SMI cost"),
2468 		OPT_CALLBACK('M', "metrics", &evsel_list, "metric/metric group list",
2469 			"monitor specified metrics or metric groups (separated by ,)",
2470 			append_metric_groups),
2471 		OPT_BOOLEAN_FLAG(0, "all-kernel", &stat_config.all_kernel,
2472 				"Configure all used events to run in kernel space.",
2473 				PARSE_OPT_EXCLUSIVE),
2474 		OPT_BOOLEAN_FLAG(0, "all-user", &stat_config.all_user,
2475 				"Configure all used events to run in user space.",
2476 				PARSE_OPT_EXCLUSIVE),
2477 		OPT_BOOLEAN(0, "percore-show-thread", &stat_config.percore_show_thread,
2478 			"Use with 'percore' event qualifier to show the event "
2479 			"counts of one hardware thread by sum up total hardware "
2480 			"threads of same physical core"),
2481 		OPT_BOOLEAN(0, "summary", &stat_config.summary,
2482 			"print summary for interval mode"),
2483 		OPT_BOOLEAN(0, "no-csv-summary", &stat_config.no_csv_summary,
2484 			"don't print 'summary' for CSV summary output"),
2485 		OPT_BOOLEAN(0, "quiet", &quiet,
2486 			"don't print any output, messages or warnings (useful with record)"),
2487 		OPT_CALLBACK(0, "cputype", &evsel_list, "hybrid cpu type",
2488 			"Only enable events on applying cpu with this type "
2489 			"for hybrid platform (e.g. core or atom)",
2490 			parse_cputype),
2491 #ifdef HAVE_LIBPFM
2492 		OPT_CALLBACK(0, "pfm-events", &evsel_list, "event",
2493 			"libpfm4 event selector. use 'perf list' to list available events",
2494 			parse_libpfm_events_option),
2495 #endif
2496 		OPT_CALLBACK(0, "control", &stat_config, "fd:ctl-fd[,ack-fd] or fifo:ctl-fifo[,ack-fifo]",
2497 			"Listen on ctl-fd descriptor for command to control measurement ('enable': enable events, 'disable': disable events).\n"
2498 			"\t\t\t  Optionally send control command completion ('ack\\n') to ack-fd descriptor.\n"
2499 			"\t\t\t  Alternatively, ctl-fifo / ack-fifo will be opened and used as ctl-fd / ack-fd.",
2500 			parse_control_option),
2501 		OPT_CALLBACK_OPTARG(0, "iostat", &evsel_list, &stat_config, "default",
2502 				"measure I/O performance metrics provided by arch/platform",
2503 				iostat_parse),
2504 		OPT_END()
2505 	};
2506 	const char * const stat_usage[] = {
2507 		"perf stat [<options>] [<command>]",
2508 		NULL
2509 	};
2510 	int status = -EINVAL, run_idx, err;
2511 	const char *mode;
2512 	FILE *output = stderr;
2513 	unsigned int interval, timeout;
2514 	const char * const stat_subcommands[] = { "record", "report" };
2515 	char errbuf[BUFSIZ];
2516 
2517 	setlocale(LC_ALL, "");
2518 
2519 	evsel_list = evlist__new();
2520 	if (evsel_list == NULL)
2521 		return -ENOMEM;
2522 
2523 	parse_events__shrink_config_terms();
2524 
2525 	/* String-parsing callback-based options would segfault when negated */
2526 	set_option_flag(stat_options, 'e', "event", PARSE_OPT_NONEG);
2527 	set_option_flag(stat_options, 'M', "metrics", PARSE_OPT_NONEG);
2528 	set_option_flag(stat_options, 'G', "cgroup", PARSE_OPT_NONEG);
2529 
2530 	argc = parse_options_subcommand(argc, argv, stat_options, stat_subcommands,
2531 					(const char **) stat_usage,
2532 					PARSE_OPT_STOP_AT_NON_OPTION);
2533 
2534 	stat_config.aggr_mode = opt_aggr_mode_to_aggr_mode(&opt_mode);
2535 
2536 	if (stat_config.csv_sep) {
2537 		stat_config.csv_output = true;
2538 		if (!strcmp(stat_config.csv_sep, "\\t"))
2539 			stat_config.csv_sep = "\t";
2540 	} else
2541 		stat_config.csv_sep = DEFAULT_SEPARATOR;
2542 
2543 	if (argc && strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
2544 		argc = __cmd_record(stat_options, &opt_mode, argc, argv);
2545 		if (argc < 0)
2546 			return -1;
2547 	} else if (argc && strlen(argv[0]) > 2 && strstarts("report", argv[0]))
2548 		return __cmd_report(argc, argv);
2549 
2550 	interval = stat_config.interval;
2551 	timeout = stat_config.timeout;
2552 
2553 	/*
2554 	 * For record command the -o is already taken care of.
2555 	 */
2556 	if (!STAT_RECORD && output_name && strcmp(output_name, "-"))
2557 		output = NULL;
2558 
2559 	if (output_name && output_fd) {
2560 		fprintf(stderr, "cannot use both --output and --log-fd\n");
2561 		parse_options_usage(stat_usage, stat_options, "o", 1);
2562 		parse_options_usage(NULL, stat_options, "log-fd", 0);
2563 		goto out;
2564 	}
2565 
2566 	if (stat_config.metric_only && stat_config.aggr_mode == AGGR_THREAD) {
2567 		fprintf(stderr, "--metric-only is not supported with --per-thread\n");
2568 		goto out;
2569 	}
2570 
2571 	if (stat_config.metric_only && stat_config.run_count > 1) {
2572 		fprintf(stderr, "--metric-only is not supported with -r\n");
2573 		goto out;
2574 	}
2575 
2576 	if (stat_config.csv_output || (stat_config.metric_only && stat_config.json_output)) {
2577 		/*
2578 		 * Current CSV and metric-only JSON output doesn't display the
2579 		 * metric threshold so don't compute it.
2580 		 */
2581 		stat_config.metric_no_threshold = true;
2582 	}
2583 
2584 	if (stat_config.walltime_run_table && stat_config.run_count <= 1) {
2585 		fprintf(stderr, "--table is only supported with -r\n");
2586 		parse_options_usage(stat_usage, stat_options, "r", 1);
2587 		parse_options_usage(NULL, stat_options, "table", 0);
2588 		goto out;
2589 	}
2590 
2591 	if (output_fd < 0) {
2592 		fprintf(stderr, "argument to --log-fd must be a > 0\n");
2593 		parse_options_usage(stat_usage, stat_options, "log-fd", 0);
2594 		goto out;
2595 	}
2596 
2597 	if (!output && !quiet) {
2598 		struct timespec tm;
2599 		mode = append_file ? "a" : "w";
2600 
2601 		output = fopen(output_name, mode);
2602 		if (!output) {
2603 			perror("failed to create output file");
2604 			return -1;
2605 		}
2606 		if (!stat_config.json_output) {
2607 			clock_gettime(CLOCK_REALTIME, &tm);
2608 			fprintf(output, "# started on %s\n", ctime(&tm.tv_sec));
2609 		}
2610 	} else if (output_fd > 0) {
2611 		mode = append_file ? "a" : "w";
2612 		output = fdopen(output_fd, mode);
2613 		if (!output) {
2614 			perror("Failed opening logfd");
2615 			return -errno;
2616 		}
2617 	}
2618 
2619 	if (stat_config.interval_clear && !isatty(fileno(output))) {
2620 		fprintf(stderr, "--interval-clear does not work with output\n");
2621 		parse_options_usage(stat_usage, stat_options, "o", 1);
2622 		parse_options_usage(NULL, stat_options, "log-fd", 0);
2623 		parse_options_usage(NULL, stat_options, "interval-clear", 0);
2624 		return -1;
2625 	}
2626 
2627 	stat_config.output = output;
2628 
2629 	/*
2630 	 * let the spreadsheet do the pretty-printing
2631 	 */
2632 	if (stat_config.csv_output) {
2633 		/* User explicitly passed -B? */
2634 		if (big_num_opt == 1) {
2635 			fprintf(stderr, "-B option not supported with -x\n");
2636 			parse_options_usage(stat_usage, stat_options, "B", 1);
2637 			parse_options_usage(NULL, stat_options, "x", 1);
2638 			goto out;
2639 		} else /* Nope, so disable big number formatting */
2640 			stat_config.big_num = false;
2641 	} else if (big_num_opt == 0) /* User passed --no-big-num */
2642 		stat_config.big_num = false;
2643 
2644 	target.inherit = !stat_config.no_inherit;
2645 	err = target__validate(&target);
2646 	if (err) {
2647 		target__strerror(&target, err, errbuf, BUFSIZ);
2648 		pr_warning("%s\n", errbuf);
2649 	}
2650 
2651 	setup_system_wide(argc);
2652 
2653 	/*
2654 	 * Display user/system times only for single
2655 	 * run and when there's specified tracee.
2656 	 */
2657 	if ((stat_config.run_count == 1) && target__none(&target))
2658 		stat_config.ru_display = true;
2659 
2660 	if (stat_config.run_count < 0) {
2661 		pr_err("Run count must be a positive number\n");
2662 		parse_options_usage(stat_usage, stat_options, "r", 1);
2663 		goto out;
2664 	} else if (stat_config.run_count == 0) {
2665 		forever = true;
2666 		stat_config.run_count = 1;
2667 	}
2668 
2669 	if (stat_config.walltime_run_table) {
2670 		stat_config.walltime_run = zalloc(stat_config.run_count * sizeof(stat_config.walltime_run[0]));
2671 		if (!stat_config.walltime_run) {
2672 			pr_err("failed to setup -r option");
2673 			goto out;
2674 		}
2675 	}
2676 
2677 	if ((stat_config.aggr_mode == AGGR_THREAD) &&
2678 		!target__has_task(&target)) {
2679 		if (!target.system_wide || target.cpu_list) {
2680 			fprintf(stderr, "The --per-thread option is only "
2681 				"available when monitoring via -p -t -a "
2682 				"options or only --per-thread.\n");
2683 			parse_options_usage(NULL, stat_options, "p", 1);
2684 			parse_options_usage(NULL, stat_options, "t", 1);
2685 			goto out;
2686 		}
2687 	}
2688 
2689 	/*
2690 	 * no_aggr, cgroup are for system-wide only
2691 	 * --per-thread is aggregated per thread, we dont mix it with cpu mode
2692 	 */
2693 	if (((stat_config.aggr_mode != AGGR_GLOBAL &&
2694 	      stat_config.aggr_mode != AGGR_THREAD) ||
2695 	     (nr_cgroups || stat_config.cgroup_list)) &&
2696 	    !target__has_cpu(&target)) {
2697 		fprintf(stderr, "both cgroup and no-aggregation "
2698 			"modes only available in system-wide mode\n");
2699 
2700 		parse_options_usage(stat_usage, stat_options, "G", 1);
2701 		parse_options_usage(NULL, stat_options, "A", 1);
2702 		parse_options_usage(NULL, stat_options, "a", 1);
2703 		parse_options_usage(NULL, stat_options, "for-each-cgroup", 0);
2704 		goto out;
2705 	}
2706 
2707 	if (stat_config.iostat_run) {
2708 		status = iostat_prepare(evsel_list, &stat_config);
2709 		if (status)
2710 			goto out;
2711 		if (iostat_mode == IOSTAT_LIST) {
2712 			iostat_list(evsel_list, &stat_config);
2713 			goto out;
2714 		} else if (verbose > 0)
2715 			iostat_list(evsel_list, &stat_config);
2716 		if (iostat_mode == IOSTAT_RUN && !target__has_cpu(&target))
2717 			target.system_wide = true;
2718 	}
2719 
2720 	if ((stat_config.aggr_mode == AGGR_THREAD) && (target.system_wide))
2721 		target.per_thread = true;
2722 
2723 	stat_config.system_wide = target.system_wide;
2724 	if (target.cpu_list) {
2725 		stat_config.user_requested_cpu_list = strdup(target.cpu_list);
2726 		if (!stat_config.user_requested_cpu_list) {
2727 			status = -ENOMEM;
2728 			goto out;
2729 		}
2730 	}
2731 
2732 	/*
2733 	 * Metric parsing needs to be delayed as metrics may optimize events
2734 	 * knowing the target is system-wide.
2735 	 */
2736 	if (metrics) {
2737 		const char *pmu = parse_events_option_args.pmu_filter ?: "all";
2738 		int ret = metricgroup__parse_groups(evsel_list, pmu, metrics,
2739 						stat_config.metric_no_group,
2740 						stat_config.metric_no_merge,
2741 						stat_config.metric_no_threshold,
2742 						stat_config.user_requested_cpu_list,
2743 						stat_config.system_wide,
2744 						stat_config.hardware_aware_grouping,
2745 						&stat_config.metric_events);
2746 
2747 		zfree(&metrics);
2748 		if (ret) {
2749 			status = ret;
2750 			goto out;
2751 		}
2752 	}
2753 
2754 	if (add_default_events())
2755 		goto out;
2756 
2757 	if (stat_config.cgroup_list) {
2758 		if (nr_cgroups > 0) {
2759 			pr_err("--cgroup and --for-each-cgroup cannot be used together\n");
2760 			parse_options_usage(stat_usage, stat_options, "G", 1);
2761 			parse_options_usage(NULL, stat_options, "for-each-cgroup", 0);
2762 			goto out;
2763 		}
2764 
2765 		if (evlist__expand_cgroup(evsel_list, stat_config.cgroup_list,
2766 					  &stat_config.metric_events, true) < 0) {
2767 			parse_options_usage(stat_usage, stat_options,
2768 					    "for-each-cgroup", 0);
2769 			goto out;
2770 		}
2771 	}
2772 
2773 	evlist__warn_user_requested_cpus(evsel_list, target.cpu_list);
2774 
2775 	if (evlist__create_maps(evsel_list, &target) < 0) {
2776 		if (target__has_task(&target)) {
2777 			pr_err("Problems finding threads of monitor\n");
2778 			parse_options_usage(stat_usage, stat_options, "p", 1);
2779 			parse_options_usage(NULL, stat_options, "t", 1);
2780 		} else if (target__has_cpu(&target)) {
2781 			perror("failed to parse CPUs map");
2782 			parse_options_usage(stat_usage, stat_options, "C", 1);
2783 			parse_options_usage(NULL, stat_options, "a", 1);
2784 		}
2785 		goto out;
2786 	}
2787 
2788 	evlist__check_cpu_maps(evsel_list);
2789 
2790 	/*
2791 	 * Initialize thread_map with comm names,
2792 	 * so we could print it out on output.
2793 	 */
2794 	if (stat_config.aggr_mode == AGGR_THREAD) {
2795 		thread_map__read_comms(evsel_list->core.threads);
2796 	}
2797 
2798 	if (stat_config.aggr_mode == AGGR_NODE)
2799 		cpu__setup_cpunode_map();
2800 
2801 	if (stat_config.times && interval)
2802 		interval_count = true;
2803 	else if (stat_config.times && !interval) {
2804 		pr_err("interval-count option should be used together with "
2805 				"interval-print.\n");
2806 		parse_options_usage(stat_usage, stat_options, "interval-count", 0);
2807 		parse_options_usage(stat_usage, stat_options, "I", 1);
2808 		goto out;
2809 	}
2810 
2811 	if (timeout && timeout < 100) {
2812 		if (timeout < 10) {
2813 			pr_err("timeout must be >= 10ms.\n");
2814 			parse_options_usage(stat_usage, stat_options, "timeout", 0);
2815 			goto out;
2816 		} else
2817 			pr_warning("timeout < 100ms. "
2818 				   "The overhead percentage could be high in some cases. "
2819 				   "Please proceed with caution.\n");
2820 	}
2821 	if (timeout && interval) {
2822 		pr_err("timeout option is not supported with interval-print.\n");
2823 		parse_options_usage(stat_usage, stat_options, "timeout", 0);
2824 		parse_options_usage(stat_usage, stat_options, "I", 1);
2825 		goto out;
2826 	}
2827 
2828 	if (perf_stat_init_aggr_mode())
2829 		goto out;
2830 
2831 	if (evlist__alloc_stats(&stat_config, evsel_list, interval))
2832 		goto out;
2833 
2834 	/*
2835 	 * Set sample_type to PERF_SAMPLE_IDENTIFIER, which should be harmless
2836 	 * while avoiding that older tools show confusing messages.
2837 	 *
2838 	 * However for pipe sessions we need to keep it zero,
2839 	 * because script's perf_evsel__check_attr is triggered
2840 	 * by attr->sample_type != 0, and we can't run it on
2841 	 * stat sessions.
2842 	 */
2843 	stat_config.identifier = !(STAT_RECORD && perf_stat.data.is_pipe);
2844 
2845 	/*
2846 	 * We dont want to block the signals - that would cause
2847 	 * child tasks to inherit that and Ctrl-C would not work.
2848 	 * What we want is for Ctrl-C to work in the exec()-ed
2849 	 * task, but being ignored by perf stat itself:
2850 	 */
2851 	atexit(sig_atexit);
2852 	if (!forever)
2853 		signal(SIGINT,  skip_signal);
2854 	signal(SIGCHLD, skip_signal);
2855 	signal(SIGALRM, skip_signal);
2856 	signal(SIGABRT, skip_signal);
2857 
2858 	if (evlist__initialize_ctlfd(evsel_list, stat_config.ctl_fd, stat_config.ctl_fd_ack))
2859 		goto out;
2860 
2861 	/* Enable ignoring missing threads when -p option is defined. */
2862 	evlist__first(evsel_list)->ignore_missing_thread = target.pid;
2863 	status = 0;
2864 	for (run_idx = 0; forever || run_idx < stat_config.run_count; run_idx++) {
2865 		if (stat_config.run_count != 1 && verbose > 0)
2866 			fprintf(output, "[ perf stat: executing run #%d ... ]\n",
2867 				run_idx + 1);
2868 
2869 		if (run_idx != 0)
2870 			evlist__reset_prev_raw_counts(evsel_list);
2871 
2872 		status = run_perf_stat(argc, argv, run_idx);
2873 		if (status == -1)
2874 			break;
2875 
2876 		if (forever && !interval) {
2877 			print_counters(NULL, argc, argv);
2878 			perf_stat__reset_stats();
2879 		}
2880 	}
2881 
2882 	if (!forever && status != -1 && (!interval || stat_config.summary)) {
2883 		if (stat_config.run_count > 1)
2884 			evlist__copy_res_stats(&stat_config, evsel_list);
2885 		print_counters(NULL, argc, argv);
2886 	}
2887 
2888 	evlist__finalize_ctlfd(evsel_list);
2889 
2890 	if (STAT_RECORD) {
2891 		/*
2892 		 * We synthesize the kernel mmap record just so that older tools
2893 		 * don't emit warnings about not being able to resolve symbols
2894 		 * due to /proc/sys/kernel/kptr_restrict settings and instead provide
2895 		 * a saner message about no samples being in the perf.data file.
2896 		 *
2897 		 * This also serves to suppress a warning about f_header.data.size == 0
2898 		 * in header.c at the moment 'perf stat record' gets introduced, which
2899 		 * is not really needed once we start adding the stat specific PERF_RECORD_
2900 		 * records, but the need to suppress the kptr_restrict messages in older
2901 		 * tools remain  -acme
2902 		 */
2903 		int fd = perf_data__fd(&perf_stat.data);
2904 
2905 		err = perf_event__synthesize_kernel_mmap((void *)&perf_stat,
2906 							 process_synthesized_event,
2907 							 &perf_stat.session->machines.host);
2908 		if (err) {
2909 			pr_warning("Couldn't synthesize the kernel mmap record, harmless, "
2910 				   "older tools may produce warnings about this file\n.");
2911 		}
2912 
2913 		if (!interval) {
2914 			if (WRITE_STAT_ROUND_EVENT(walltime_nsecs_stats.max, FINAL))
2915 				pr_err("failed to write stat round event\n");
2916 		}
2917 
2918 		if (!perf_stat.data.is_pipe) {
2919 			perf_stat.session->header.data_size += perf_stat.bytes_written;
2920 			perf_session__write_header(perf_stat.session, evsel_list, fd, true);
2921 		}
2922 
2923 		evlist__close(evsel_list);
2924 		perf_session__delete(perf_stat.session);
2925 	}
2926 
2927 	perf_stat__exit_aggr_mode();
2928 	evlist__free_stats(evsel_list);
2929 out:
2930 	if (stat_config.iostat_run)
2931 		iostat_release(evsel_list);
2932 
2933 	zfree(&stat_config.walltime_run);
2934 	zfree(&stat_config.user_requested_cpu_list);
2935 
2936 	if (smi_cost && smi_reset)
2937 		sysfs__write_int(FREEZE_ON_SMI_PATH, 0);
2938 
2939 	evlist__delete(evsel_list);
2940 
2941 	metricgroup__rblist_exit(&stat_config.metric_events);
2942 	evlist__close_control(stat_config.ctl_fd, stat_config.ctl_fd_ack, &stat_config.ctl_fd_close);
2943 
2944 	return status;
2945 }
2946