1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2019 Linaro, Ltd, Rob Herring <robh@kernel.org> */
3 /* Copyright 2023 Collabora ltd. */
4
5 #include <drm/drm_debugfs.h>
6 #include <drm/drm_drv.h>
7 #include <drm/drm_exec.h>
8 #include <drm/drm_gpuvm.h>
9 #include <drm/drm_managed.h>
10 #include <drm/gpu_scheduler.h>
11 #include <drm/panthor_drm.h>
12
13 #include <linux/atomic.h>
14 #include <linux/bitfield.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-pgtable.h>
21 #include <linux/iommu.h>
22 #include <linux/kmemleak.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/rwsem.h>
26 #include <linux/sched.h>
27 #include <linux/shmem_fs.h>
28 #include <linux/sizes.h>
29
30 #include "panthor_device.h"
31 #include "panthor_gem.h"
32 #include "panthor_gpu.h"
33 #include "panthor_heap.h"
34 #include "panthor_mmu.h"
35 #include "panthor_regs.h"
36 #include "panthor_sched.h"
37
38 #define MAX_AS_SLOTS 32
39
40 struct panthor_vm;
41
42 /**
43 * struct panthor_as_slot - Address space slot
44 */
45 struct panthor_as_slot {
46 /** @vm: VM bound to this slot. NULL is no VM is bound. */
47 struct panthor_vm *vm;
48 };
49
50 /**
51 * struct panthor_mmu - MMU related data
52 */
53 struct panthor_mmu {
54 /** @irq: The MMU irq. */
55 struct panthor_irq irq;
56
57 /**
58 * @as: Address space related fields.
59 *
60 * The GPU has a limited number of address spaces (AS) slots, forcing
61 * us to re-assign them to re-assign slots on-demand.
62 */
63 struct {
64 /** @as.slots_lock: Lock protecting access to all other AS fields. */
65 struct mutex slots_lock;
66
67 /** @as.alloc_mask: Bitmask encoding the allocated slots. */
68 unsigned long alloc_mask;
69
70 /** @as.faulty_mask: Bitmask encoding the faulty slots. */
71 unsigned long faulty_mask;
72
73 /** @as.slots: VMs currently bound to the AS slots. */
74 struct panthor_as_slot slots[MAX_AS_SLOTS];
75
76 /**
77 * @as.lru_list: List of least recently used VMs.
78 *
79 * We use this list to pick a VM to evict when all slots are
80 * used.
81 *
82 * There should be no more active VMs than there are AS slots,
83 * so this LRU is just here to keep VMs bound until there's
84 * a need to release a slot, thus avoid unnecessary TLB/cache
85 * flushes.
86 */
87 struct list_head lru_list;
88 } as;
89
90 /** @vm: VMs management fields */
91 struct {
92 /** @vm.lock: Lock protecting access to list. */
93 struct mutex lock;
94
95 /** @vm.list: List containing all VMs. */
96 struct list_head list;
97
98 /** @vm.reset_in_progress: True if a reset is in progress. */
99 bool reset_in_progress;
100
101 /** @vm.wq: Workqueue used for the VM_BIND queues. */
102 struct workqueue_struct *wq;
103 } vm;
104 };
105
106 /**
107 * struct panthor_vm_pool - VM pool object
108 */
109 struct panthor_vm_pool {
110 /** @xa: Array used for VM handle tracking. */
111 struct xarray xa;
112 };
113
114 /**
115 * struct panthor_vma - GPU mapping object
116 *
117 * This is used to track GEM mappings in GPU space.
118 */
119 struct panthor_vma {
120 /** @base: Inherits from drm_gpuva. */
121 struct drm_gpuva base;
122
123 /** @node: Used to implement deferred release of VMAs. */
124 struct list_head node;
125
126 /**
127 * @flags: Combination of drm_panthor_vm_bind_op_flags.
128 *
129 * Only map related flags are accepted.
130 */
131 u32 flags;
132 };
133
134 /**
135 * struct panthor_vm_op_ctx - VM operation context
136 *
137 * With VM operations potentially taking place in a dma-signaling path, we
138 * need to make sure everything that might require resource allocation is
139 * pre-allocated upfront. This is what this operation context is far.
140 *
141 * We also collect resources that have been freed, so we can release them
142 * asynchronously, and let the VM_BIND scheduler process the next VM_BIND
143 * request.
144 */
145 struct panthor_vm_op_ctx {
146 /** @rsvd_page_tables: Pages reserved for the MMU page table update. */
147 struct {
148 /** @rsvd_page_tables.count: Number of pages reserved. */
149 u32 count;
150
151 /** @rsvd_page_tables.ptr: Point to the first unused page in the @pages table. */
152 u32 ptr;
153
154 /**
155 * @rsvd_page_tables.pages: Array of pages to be used for an MMU page table update.
156 *
157 * After an VM operation, there might be free pages left in this array.
158 * They should be returned to the pt_cache as part of the op_ctx cleanup.
159 */
160 void **pages;
161 } rsvd_page_tables;
162
163 /**
164 * @preallocated_vmas: Pre-allocated VMAs to handle the remap case.
165 *
166 * Partial unmap requests or map requests overlapping existing mappings will
167 * trigger a remap call, which need to register up to three panthor_vma objects
168 * (one for the new mapping, and two for the previous and next mappings).
169 */
170 struct panthor_vma *preallocated_vmas[3];
171
172 /** @flags: Combination of drm_panthor_vm_bind_op_flags. */
173 u32 flags;
174
175 /** @va: Virtual range targeted by the VM operation. */
176 struct {
177 /** @va.addr: Start address. */
178 u64 addr;
179
180 /** @va.range: Range size. */
181 u64 range;
182 } va;
183
184 /**
185 * @returned_vmas: List of panthor_vma objects returned after a VM operation.
186 *
187 * For unmap operations, this will contain all VMAs that were covered by the
188 * specified VA range.
189 *
190 * For map operations, this will contain all VMAs that previously mapped to
191 * the specified VA range.
192 *
193 * Those VMAs, and the resources they point to will be released as part of
194 * the op_ctx cleanup operation.
195 */
196 struct list_head returned_vmas;
197
198 /** @map: Fields specific to a map operation. */
199 struct {
200 /** @map.vm_bo: Buffer object to map. */
201 struct drm_gpuvm_bo *vm_bo;
202
203 /** @map.bo_offset: Offset in the buffer object. */
204 u64 bo_offset;
205
206 /**
207 * @map.sgt: sg-table pointing to pages backing the GEM object.
208 *
209 * This is gathered at job creation time, such that we don't have
210 * to allocate in ::run_job().
211 */
212 struct sg_table *sgt;
213
214 /**
215 * @map.new_vma: The new VMA object that will be inserted to the VA tree.
216 */
217 struct panthor_vma *new_vma;
218 } map;
219 };
220
221 /**
222 * struct panthor_vm - VM object
223 *
224 * A VM is an object representing a GPU (or MCU) virtual address space.
225 * It embeds the MMU page table for this address space, a tree containing
226 * all the virtual mappings of GEM objects, and other things needed to manage
227 * the VM.
228 *
229 * Except for the MCU VM, which is managed by the kernel, all other VMs are
230 * created by userspace and mostly managed by userspace, using the
231 * %DRM_IOCTL_PANTHOR_VM_BIND ioctl.
232 *
233 * A portion of the virtual address space is reserved for kernel objects,
234 * like heap chunks, and userspace gets to decide how much of the virtual
235 * address space is left to the kernel (half of the virtual address space
236 * by default).
237 */
238 struct panthor_vm {
239 /**
240 * @base: Inherit from drm_gpuvm.
241 *
242 * We delegate all the VA management to the common drm_gpuvm framework
243 * and only implement hooks to update the MMU page table.
244 */
245 struct drm_gpuvm base;
246
247 /**
248 * @sched: Scheduler used for asynchronous VM_BIND request.
249 *
250 * We use a 1:1 scheduler here.
251 */
252 struct drm_gpu_scheduler sched;
253
254 /**
255 * @entity: Scheduling entity representing the VM_BIND queue.
256 *
257 * There's currently one bind queue per VM. It doesn't make sense to
258 * allow more given the VM operations are serialized anyway.
259 */
260 struct drm_sched_entity entity;
261
262 /** @ptdev: Device. */
263 struct panthor_device *ptdev;
264
265 /** @memattr: Value to program to the AS_MEMATTR register. */
266 u64 memattr;
267
268 /** @pgtbl_ops: Page table operations. */
269 struct io_pgtable_ops *pgtbl_ops;
270
271 /** @root_page_table: Stores the root page table pointer. */
272 void *root_page_table;
273
274 /**
275 * @op_lock: Lock used to serialize operations on a VM.
276 *
277 * The serialization of jobs queued to the VM_BIND queue is already
278 * taken care of by drm_sched, but we need to serialize synchronous
279 * and asynchronous VM_BIND request. This is what this lock is for.
280 */
281 struct mutex op_lock;
282
283 /**
284 * @op_ctx: The context attached to the currently executing VM operation.
285 *
286 * NULL when no operation is in progress.
287 */
288 struct panthor_vm_op_ctx *op_ctx;
289
290 /**
291 * @mm: Memory management object representing the auto-VA/kernel-VA.
292 *
293 * Used to auto-allocate VA space for kernel-managed objects (tiler
294 * heaps, ...).
295 *
296 * For the MCU VM, this is managing the VA range that's used to map
297 * all shared interfaces.
298 *
299 * For user VMs, the range is specified by userspace, and must not
300 * exceed half of the VA space addressable.
301 */
302 struct drm_mm mm;
303
304 /** @mm_lock: Lock protecting the @mm field. */
305 struct mutex mm_lock;
306
307 /** @kernel_auto_va: Automatic VA-range for kernel BOs. */
308 struct {
309 /** @kernel_auto_va.start: Start of the automatic VA-range for kernel BOs. */
310 u64 start;
311
312 /** @kernel_auto_va.size: Size of the automatic VA-range for kernel BOs. */
313 u64 end;
314 } kernel_auto_va;
315
316 /** @as: Address space related fields. */
317 struct {
318 /**
319 * @as.id: ID of the address space this VM is bound to.
320 *
321 * A value of -1 means the VM is inactive/not bound.
322 */
323 int id;
324
325 /** @as.active_cnt: Number of active users of this VM. */
326 refcount_t active_cnt;
327
328 /**
329 * @as.lru_node: Used to instead the VM in the panthor_mmu::as::lru_list.
330 *
331 * Active VMs should not be inserted in the LRU list.
332 */
333 struct list_head lru_node;
334 } as;
335
336 /**
337 * @heaps: Tiler heap related fields.
338 */
339 struct {
340 /**
341 * @heaps.pool: The heap pool attached to this VM.
342 *
343 * Will stay NULL until someone creates a heap context on this VM.
344 */
345 struct panthor_heap_pool *pool;
346
347 /** @heaps.lock: Lock used to protect access to @pool. */
348 struct mutex lock;
349 } heaps;
350
351 /** @node: Used to insert the VM in the panthor_mmu::vm::list. */
352 struct list_head node;
353
354 /** @for_mcu: True if this is the MCU VM. */
355 bool for_mcu;
356
357 /**
358 * @destroyed: True if the VM was destroyed.
359 *
360 * No further bind requests should be queued to a destroyed VM.
361 */
362 bool destroyed;
363
364 /**
365 * @unusable: True if the VM has turned unusable because something
366 * bad happened during an asynchronous request.
367 *
368 * We don't try to recover from such failures, because this implies
369 * informing userspace about the specific operation that failed, and
370 * hoping the userspace driver can replay things from there. This all
371 * sounds very complicated for little gain.
372 *
373 * Instead, we should just flag the VM as unusable, and fail any
374 * further request targeting this VM.
375 *
376 * We also provide a way to query a VM state, so userspace can destroy
377 * it and create a new one.
378 *
379 * As an analogy, this would be mapped to a VK_ERROR_DEVICE_LOST
380 * situation, where the logical device needs to be re-created.
381 */
382 bool unusable;
383
384 /**
385 * @unhandled_fault: Unhandled fault happened.
386 *
387 * This should be reported to the scheduler, and the queue/group be
388 * flagged as faulty as a result.
389 */
390 bool unhandled_fault;
391 };
392
393 /**
394 * struct panthor_vm_bind_job - VM bind job
395 */
396 struct panthor_vm_bind_job {
397 /** @base: Inherit from drm_sched_job. */
398 struct drm_sched_job base;
399
400 /** @refcount: Reference count. */
401 struct kref refcount;
402
403 /** @cleanup_op_ctx_work: Work used to cleanup the VM operation context. */
404 struct work_struct cleanup_op_ctx_work;
405
406 /** @vm: VM targeted by the VM operation. */
407 struct panthor_vm *vm;
408
409 /** @ctx: Operation context. */
410 struct panthor_vm_op_ctx ctx;
411 };
412
413 /*
414 * @pt_cache: Cache used to allocate MMU page tables.
415 *
416 * The pre-allocation pattern forces us to over-allocate to plan for
417 * the worst case scenario, and return the pages we didn't use.
418 *
419 * Having a kmem_cache allows us to speed allocations.
420 */
421 static struct kmem_cache *pt_cache;
422
423 /**
424 * alloc_pt() - Custom page table allocator
425 * @cookie: Cookie passed at page table allocation time.
426 * @size: Size of the page table. This size should be fixed,
427 * and determined at creation time based on the granule size.
428 * @gfp: GFP flags.
429 *
430 * We want a custom allocator so we can use a cache for page table
431 * allocations and amortize the cost of the over-reservation that's
432 * done to allow asynchronous VM operations.
433 *
434 * Return: non-NULL on success, NULL if the allocation failed for any
435 * reason.
436 */
alloc_pt(void * cookie,size_t size,gfp_t gfp)437 static void *alloc_pt(void *cookie, size_t size, gfp_t gfp)
438 {
439 struct panthor_vm *vm = cookie;
440 void *page;
441
442 /* Allocation of the root page table happening during init. */
443 if (unlikely(!vm->root_page_table)) {
444 struct page *p;
445
446 drm_WARN_ON(&vm->ptdev->base, vm->op_ctx);
447 p = alloc_pages_node(dev_to_node(vm->ptdev->base.dev),
448 gfp | __GFP_ZERO, get_order(size));
449 page = p ? page_address(p) : NULL;
450 vm->root_page_table = page;
451 return page;
452 }
453
454 /* We're not supposed to have anything bigger than 4k here, because we picked a
455 * 4k granule size at init time.
456 */
457 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
458 return NULL;
459
460 /* We must have some op_ctx attached to the VM and it must have at least one
461 * free page.
462 */
463 if (drm_WARN_ON(&vm->ptdev->base, !vm->op_ctx) ||
464 drm_WARN_ON(&vm->ptdev->base,
465 vm->op_ctx->rsvd_page_tables.ptr >= vm->op_ctx->rsvd_page_tables.count))
466 return NULL;
467
468 page = vm->op_ctx->rsvd_page_tables.pages[vm->op_ctx->rsvd_page_tables.ptr++];
469 memset(page, 0, SZ_4K);
470
471 /* Page table entries don't use virtual addresses, which trips out
472 * kmemleak. kmemleak_alloc_phys() might work, but physical addresses
473 * are mixed with other fields, and I fear kmemleak won't detect that
474 * either.
475 *
476 * Let's just ignore memory passed to the page-table driver for now.
477 */
478 kmemleak_ignore(page);
479 return page;
480 }
481
482 /**
483 * free_pt() - Custom page table free function
484 * @cookie: Cookie passed at page table allocation time.
485 * @data: Page table to free.
486 * @size: Size of the page table. This size should be fixed,
487 * and determined at creation time based on the granule size.
488 */
free_pt(void * cookie,void * data,size_t size)489 static void free_pt(void *cookie, void *data, size_t size)
490 {
491 struct panthor_vm *vm = cookie;
492
493 if (unlikely(vm->root_page_table == data)) {
494 free_pages((unsigned long)data, get_order(size));
495 vm->root_page_table = NULL;
496 return;
497 }
498
499 if (drm_WARN_ON(&vm->ptdev->base, size != SZ_4K))
500 return;
501
502 /* Return the page to the pt_cache. */
503 kmem_cache_free(pt_cache, data);
504 }
505
wait_ready(struct panthor_device * ptdev,u32 as_nr)506 static int wait_ready(struct panthor_device *ptdev, u32 as_nr)
507 {
508 int ret;
509 u32 val;
510
511 /* Wait for the MMU status to indicate there is no active command, in
512 * case one is pending.
513 */
514 ret = gpu_read_relaxed_poll_timeout_atomic(ptdev, AS_STATUS(as_nr), val,
515 !(val & AS_STATUS_AS_ACTIVE),
516 10, 100000);
517
518 if (ret) {
519 panthor_device_schedule_reset(ptdev);
520 drm_err(&ptdev->base, "AS_ACTIVE bit stuck\n");
521 }
522
523 return ret;
524 }
525
write_cmd(struct panthor_device * ptdev,u32 as_nr,u32 cmd)526 static int write_cmd(struct panthor_device *ptdev, u32 as_nr, u32 cmd)
527 {
528 int status;
529
530 /* write AS_COMMAND when MMU is ready to accept another command */
531 status = wait_ready(ptdev, as_nr);
532 if (!status)
533 gpu_write(ptdev, AS_COMMAND(as_nr), cmd);
534
535 return status;
536 }
537
lock_region(struct panthor_device * ptdev,u32 as_nr,u64 region_start,u64 size)538 static void lock_region(struct panthor_device *ptdev, u32 as_nr,
539 u64 region_start, u64 size)
540 {
541 u8 region_width;
542 u64 region;
543 u64 region_end = region_start + size;
544
545 if (!size)
546 return;
547
548 /*
549 * The locked region is a naturally aligned power of 2 block encoded as
550 * log2 minus(1).
551 * Calculate the desired start/end and look for the highest bit which
552 * differs. The smallest naturally aligned block must include this bit
553 * change, the desired region starts with this bit (and subsequent bits)
554 * zeroed and ends with the bit (and subsequent bits) set to one.
555 */
556 region_width = max(fls64(region_start ^ (region_end - 1)),
557 const_ilog2(AS_LOCK_REGION_MIN_SIZE)) - 1;
558
559 /*
560 * Mask off the low bits of region_start (which would be ignored by
561 * the hardware anyway)
562 */
563 region_start &= GENMASK_ULL(63, region_width);
564
565 region = region_width | region_start;
566
567 /* Lock the region that needs to be updated */
568 gpu_write64(ptdev, AS_LOCKADDR(as_nr), region);
569 write_cmd(ptdev, as_nr, AS_COMMAND_LOCK);
570 }
571
mmu_hw_do_operation_locked(struct panthor_device * ptdev,int as_nr,u64 iova,u64 size,u32 op)572 static int mmu_hw_do_operation_locked(struct panthor_device *ptdev, int as_nr,
573 u64 iova, u64 size, u32 op)
574 {
575 const u32 l2_flush_op = CACHE_CLEAN | CACHE_INV;
576 u32 lsc_flush_op;
577 int ret;
578
579 lockdep_assert_held(&ptdev->mmu->as.slots_lock);
580
581 switch (op) {
582 case AS_COMMAND_FLUSH_MEM:
583 lsc_flush_op = CACHE_CLEAN | CACHE_INV;
584 break;
585 case AS_COMMAND_FLUSH_PT:
586 lsc_flush_op = 0;
587 break;
588 default:
589 drm_WARN(&ptdev->base, 1, "Unexpected AS_COMMAND: %d", op);
590 return -EINVAL;
591 }
592
593 if (as_nr < 0)
594 return 0;
595
596 /*
597 * If the AS number is greater than zero, then we can be sure
598 * the device is up and running, so we don't need to explicitly
599 * power it up
600 */
601
602 lock_region(ptdev, as_nr, iova, size);
603
604 ret = wait_ready(ptdev, as_nr);
605 if (ret)
606 return ret;
607
608 ret = panthor_gpu_flush_caches(ptdev, l2_flush_op, lsc_flush_op, 0);
609 if (ret)
610 return ret;
611
612 /*
613 * Explicitly unlock the region as the AS is not unlocked automatically
614 * at the end of the GPU_CONTROL cache flush command, unlike
615 * AS_COMMAND_FLUSH_MEM or AS_COMMAND_FLUSH_PT.
616 */
617 write_cmd(ptdev, as_nr, AS_COMMAND_UNLOCK);
618
619 /* Wait for the unlock command to complete */
620 return wait_ready(ptdev, as_nr);
621 }
622
mmu_hw_do_operation(struct panthor_vm * vm,u64 iova,u64 size,u32 op)623 static int mmu_hw_do_operation(struct panthor_vm *vm,
624 u64 iova, u64 size, u32 op)
625 {
626 struct panthor_device *ptdev = vm->ptdev;
627 int ret;
628
629 mutex_lock(&ptdev->mmu->as.slots_lock);
630 ret = mmu_hw_do_operation_locked(ptdev, vm->as.id, iova, size, op);
631 mutex_unlock(&ptdev->mmu->as.slots_lock);
632
633 return ret;
634 }
635
panthor_mmu_as_enable(struct panthor_device * ptdev,u32 as_nr,u64 transtab,u64 transcfg,u64 memattr)636 static int panthor_mmu_as_enable(struct panthor_device *ptdev, u32 as_nr,
637 u64 transtab, u64 transcfg, u64 memattr)
638 {
639 int ret;
640
641 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
642 if (ret)
643 return ret;
644
645 gpu_write64(ptdev, AS_TRANSTAB(as_nr), transtab);
646 gpu_write64(ptdev, AS_MEMATTR(as_nr), memattr);
647 gpu_write64(ptdev, AS_TRANSCFG(as_nr), transcfg);
648
649 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
650 }
651
panthor_mmu_as_disable(struct panthor_device * ptdev,u32 as_nr)652 static int panthor_mmu_as_disable(struct panthor_device *ptdev, u32 as_nr)
653 {
654 int ret;
655
656 ret = mmu_hw_do_operation_locked(ptdev, as_nr, 0, ~0ULL, AS_COMMAND_FLUSH_MEM);
657 if (ret)
658 return ret;
659
660 gpu_write64(ptdev, AS_TRANSTAB(as_nr), 0);
661 gpu_write64(ptdev, AS_MEMATTR(as_nr), 0);
662 gpu_write64(ptdev, AS_TRANSCFG(as_nr), AS_TRANSCFG_ADRMODE_UNMAPPED);
663
664 return write_cmd(ptdev, as_nr, AS_COMMAND_UPDATE);
665 }
666
panthor_mmu_fault_mask(struct panthor_device * ptdev,u32 value)667 static u32 panthor_mmu_fault_mask(struct panthor_device *ptdev, u32 value)
668 {
669 /* Bits 16 to 31 mean REQ_COMPLETE. */
670 return value & GENMASK(15, 0);
671 }
672
panthor_mmu_as_fault_mask(struct panthor_device * ptdev,u32 as)673 static u32 panthor_mmu_as_fault_mask(struct panthor_device *ptdev, u32 as)
674 {
675 return BIT(as);
676 }
677
678 /**
679 * panthor_vm_has_unhandled_faults() - Check if a VM has unhandled faults
680 * @vm: VM to check.
681 *
682 * Return: true if the VM has unhandled faults, false otherwise.
683 */
panthor_vm_has_unhandled_faults(struct panthor_vm * vm)684 bool panthor_vm_has_unhandled_faults(struct panthor_vm *vm)
685 {
686 return vm->unhandled_fault;
687 }
688
689 /**
690 * panthor_vm_is_unusable() - Check if the VM is still usable
691 * @vm: VM to check.
692 *
693 * Return: true if the VM is unusable, false otherwise.
694 */
panthor_vm_is_unusable(struct panthor_vm * vm)695 bool panthor_vm_is_unusable(struct panthor_vm *vm)
696 {
697 return vm->unusable;
698 }
699
panthor_vm_release_as_locked(struct panthor_vm * vm)700 static void panthor_vm_release_as_locked(struct panthor_vm *vm)
701 {
702 struct panthor_device *ptdev = vm->ptdev;
703
704 lockdep_assert_held(&ptdev->mmu->as.slots_lock);
705
706 if (drm_WARN_ON(&ptdev->base, vm->as.id < 0))
707 return;
708
709 ptdev->mmu->as.slots[vm->as.id].vm = NULL;
710 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
711 refcount_set(&vm->as.active_cnt, 0);
712 list_del_init(&vm->as.lru_node);
713 vm->as.id = -1;
714 }
715
716 /**
717 * panthor_vm_active() - Flag a VM as active
718 * @vm: VM to flag as active.
719 *
720 * Assigns an address space to a VM so it can be used by the GPU/MCU.
721 *
722 * Return: 0 on success, a negative error code otherwise.
723 */
panthor_vm_active(struct panthor_vm * vm)724 int panthor_vm_active(struct panthor_vm *vm)
725 {
726 struct panthor_device *ptdev = vm->ptdev;
727 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
728 struct io_pgtable_cfg *cfg = &io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg;
729 int ret = 0, as, cookie;
730 u64 transtab, transcfg;
731
732 if (!drm_dev_enter(&ptdev->base, &cookie))
733 return -ENODEV;
734
735 if (refcount_inc_not_zero(&vm->as.active_cnt))
736 goto out_dev_exit;
737
738 mutex_lock(&ptdev->mmu->as.slots_lock);
739
740 if (refcount_inc_not_zero(&vm->as.active_cnt))
741 goto out_unlock;
742
743 as = vm->as.id;
744 if (as >= 0) {
745 /* Unhandled pagefault on this AS, the MMU was disabled. We need to
746 * re-enable the MMU after clearing+unmasking the AS interrupts.
747 */
748 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as))
749 goto out_enable_as;
750
751 goto out_make_active;
752 }
753
754 /* Check for a free AS */
755 if (vm->for_mcu) {
756 drm_WARN_ON(&ptdev->base, ptdev->mmu->as.alloc_mask & BIT(0));
757 as = 0;
758 } else {
759 as = ffz(ptdev->mmu->as.alloc_mask | BIT(0));
760 }
761
762 if (!(BIT(as) & ptdev->gpu_info.as_present)) {
763 struct panthor_vm *lru_vm;
764
765 lru_vm = list_first_entry_or_null(&ptdev->mmu->as.lru_list,
766 struct panthor_vm,
767 as.lru_node);
768 if (drm_WARN_ON(&ptdev->base, !lru_vm)) {
769 ret = -EBUSY;
770 goto out_unlock;
771 }
772
773 drm_WARN_ON(&ptdev->base, refcount_read(&lru_vm->as.active_cnt));
774 as = lru_vm->as.id;
775 panthor_vm_release_as_locked(lru_vm);
776 }
777
778 /* Assign the free or reclaimed AS to the FD */
779 vm->as.id = as;
780 set_bit(as, &ptdev->mmu->as.alloc_mask);
781 ptdev->mmu->as.slots[as].vm = vm;
782
783 out_enable_as:
784 transtab = cfg->arm_lpae_s1_cfg.ttbr;
785 transcfg = AS_TRANSCFG_PTW_MEMATTR_WB |
786 AS_TRANSCFG_PTW_RA |
787 AS_TRANSCFG_ADRMODE_AARCH64_4K |
788 AS_TRANSCFG_INA_BITS(55 - va_bits);
789 if (ptdev->coherent)
790 transcfg |= AS_TRANSCFG_PTW_SH_OS;
791
792 /* If the VM is re-activated, we clear the fault. */
793 vm->unhandled_fault = false;
794
795 /* Unhandled pagefault on this AS, clear the fault and re-enable interrupts
796 * before enabling the AS.
797 */
798 if (ptdev->mmu->as.faulty_mask & panthor_mmu_as_fault_mask(ptdev, as)) {
799 gpu_write(ptdev, MMU_INT_CLEAR, panthor_mmu_as_fault_mask(ptdev, as));
800 ptdev->mmu->as.faulty_mask &= ~panthor_mmu_as_fault_mask(ptdev, as);
801 ptdev->mmu->irq.mask |= panthor_mmu_as_fault_mask(ptdev, as);
802 gpu_write(ptdev, MMU_INT_MASK, ~ptdev->mmu->as.faulty_mask);
803 }
804
805 ret = panthor_mmu_as_enable(vm->ptdev, vm->as.id, transtab, transcfg, vm->memattr);
806
807 out_make_active:
808 if (!ret) {
809 refcount_set(&vm->as.active_cnt, 1);
810 list_del_init(&vm->as.lru_node);
811 }
812
813 out_unlock:
814 mutex_unlock(&ptdev->mmu->as.slots_lock);
815
816 out_dev_exit:
817 drm_dev_exit(cookie);
818 return ret;
819 }
820
821 /**
822 * panthor_vm_idle() - Flag a VM idle
823 * @vm: VM to flag as idle.
824 *
825 * When we know the GPU is done with the VM (no more jobs to process),
826 * we can relinquish the AS slot attached to this VM, if any.
827 *
828 * We don't release the slot immediately, but instead place the VM in
829 * the LRU list, so it can be evicted if another VM needs an AS slot.
830 * This way, VMs keep attached to the AS they were given until we run
831 * out of free slot, limiting the number of MMU operations (TLB flush
832 * and other AS updates).
833 */
panthor_vm_idle(struct panthor_vm * vm)834 void panthor_vm_idle(struct panthor_vm *vm)
835 {
836 struct panthor_device *ptdev = vm->ptdev;
837
838 if (!refcount_dec_and_mutex_lock(&vm->as.active_cnt, &ptdev->mmu->as.slots_lock))
839 return;
840
841 if (!drm_WARN_ON(&ptdev->base, vm->as.id == -1 || !list_empty(&vm->as.lru_node)))
842 list_add_tail(&vm->as.lru_node, &ptdev->mmu->as.lru_list);
843
844 refcount_set(&vm->as.active_cnt, 0);
845 mutex_unlock(&ptdev->mmu->as.slots_lock);
846 }
847
panthor_vm_page_size(struct panthor_vm * vm)848 u32 panthor_vm_page_size(struct panthor_vm *vm)
849 {
850 const struct io_pgtable *pgt = io_pgtable_ops_to_pgtable(vm->pgtbl_ops);
851 u32 pg_shift = ffs(pgt->cfg.pgsize_bitmap) - 1;
852
853 return 1u << pg_shift;
854 }
855
panthor_vm_stop(struct panthor_vm * vm)856 static void panthor_vm_stop(struct panthor_vm *vm)
857 {
858 drm_sched_stop(&vm->sched, NULL);
859 }
860
panthor_vm_start(struct panthor_vm * vm)861 static void panthor_vm_start(struct panthor_vm *vm)
862 {
863 drm_sched_start(&vm->sched, 0);
864 }
865
866 /**
867 * panthor_vm_as() - Get the AS slot attached to a VM
868 * @vm: VM to get the AS slot of.
869 *
870 * Return: -1 if the VM is not assigned an AS slot yet, >= 0 otherwise.
871 */
panthor_vm_as(struct panthor_vm * vm)872 int panthor_vm_as(struct panthor_vm *vm)
873 {
874 return vm->as.id;
875 }
876
get_pgsize(u64 addr,size_t size,size_t * count)877 static size_t get_pgsize(u64 addr, size_t size, size_t *count)
878 {
879 /*
880 * io-pgtable only operates on multiple pages within a single table
881 * entry, so we need to split at boundaries of the table size, i.e.
882 * the next block size up. The distance from address A to the next
883 * boundary of block size B is logically B - A % B, but in unsigned
884 * two's complement where B is a power of two we get the equivalence
885 * B - A % B == (B - A) % B == (n * B - A) % B, and choose n = 0 :)
886 */
887 size_t blk_offset = -addr % SZ_2M;
888
889 if (blk_offset || size < SZ_2M) {
890 *count = min_not_zero(blk_offset, size) / SZ_4K;
891 return SZ_4K;
892 }
893 blk_offset = -addr % SZ_1G ?: SZ_1G;
894 *count = min(blk_offset, size) / SZ_2M;
895 return SZ_2M;
896 }
897
panthor_vm_flush_range(struct panthor_vm * vm,u64 iova,u64 size)898 static int panthor_vm_flush_range(struct panthor_vm *vm, u64 iova, u64 size)
899 {
900 struct panthor_device *ptdev = vm->ptdev;
901 int ret = 0, cookie;
902
903 if (vm->as.id < 0)
904 return 0;
905
906 /* If the device is unplugged, we just silently skip the flush. */
907 if (!drm_dev_enter(&ptdev->base, &cookie))
908 return 0;
909
910 ret = mmu_hw_do_operation(vm, iova, size, AS_COMMAND_FLUSH_PT);
911
912 drm_dev_exit(cookie);
913 return ret;
914 }
915
panthor_vm_unmap_pages(struct panthor_vm * vm,u64 iova,u64 size)916 static int panthor_vm_unmap_pages(struct panthor_vm *vm, u64 iova, u64 size)
917 {
918 struct panthor_device *ptdev = vm->ptdev;
919 struct io_pgtable_ops *ops = vm->pgtbl_ops;
920 u64 offset = 0;
921
922 drm_dbg(&ptdev->base, "unmap: as=%d, iova=%llx, len=%llx", vm->as.id, iova, size);
923
924 while (offset < size) {
925 size_t unmapped_sz = 0, pgcount;
926 size_t pgsize = get_pgsize(iova + offset, size - offset, &pgcount);
927
928 unmapped_sz = ops->unmap_pages(ops, iova + offset, pgsize, pgcount, NULL);
929
930 if (drm_WARN_ON(&ptdev->base, unmapped_sz != pgsize * pgcount)) {
931 drm_err(&ptdev->base, "failed to unmap range %llx-%llx (requested range %llx-%llx)\n",
932 iova + offset + unmapped_sz,
933 iova + offset + pgsize * pgcount,
934 iova, iova + size);
935 panthor_vm_flush_range(vm, iova, offset + unmapped_sz);
936 return -EINVAL;
937 }
938 offset += unmapped_sz;
939 }
940
941 return panthor_vm_flush_range(vm, iova, size);
942 }
943
944 static int
panthor_vm_map_pages(struct panthor_vm * vm,u64 iova,int prot,struct sg_table * sgt,u64 offset,u64 size)945 panthor_vm_map_pages(struct panthor_vm *vm, u64 iova, int prot,
946 struct sg_table *sgt, u64 offset, u64 size)
947 {
948 struct panthor_device *ptdev = vm->ptdev;
949 unsigned int count;
950 struct scatterlist *sgl;
951 struct io_pgtable_ops *ops = vm->pgtbl_ops;
952 u64 start_iova = iova;
953 int ret;
954
955 if (!size)
956 return 0;
957
958 for_each_sgtable_dma_sg(sgt, sgl, count) {
959 dma_addr_t paddr = sg_dma_address(sgl);
960 size_t len = sg_dma_len(sgl);
961
962 if (len <= offset) {
963 offset -= len;
964 continue;
965 }
966
967 paddr += offset;
968 len -= offset;
969 len = min_t(size_t, len, size);
970 size -= len;
971
972 drm_dbg(&ptdev->base, "map: as=%d, iova=%llx, paddr=%pad, len=%zx",
973 vm->as.id, iova, &paddr, len);
974
975 while (len) {
976 size_t pgcount, mapped = 0;
977 size_t pgsize = get_pgsize(iova | paddr, len, &pgcount);
978
979 ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot,
980 GFP_KERNEL, &mapped);
981 iova += mapped;
982 paddr += mapped;
983 len -= mapped;
984
985 if (drm_WARN_ON(&ptdev->base, !ret && !mapped))
986 ret = -ENOMEM;
987
988 if (ret) {
989 /* If something failed, unmap what we've already mapped before
990 * returning. The unmap call is not supposed to fail.
991 */
992 drm_WARN_ON(&ptdev->base,
993 panthor_vm_unmap_pages(vm, start_iova,
994 iova - start_iova));
995 return ret;
996 }
997 }
998
999 if (!size)
1000 break;
1001
1002 offset = 0;
1003 }
1004
1005 return panthor_vm_flush_range(vm, start_iova, iova - start_iova);
1006 }
1007
flags_to_prot(u32 flags)1008 static int flags_to_prot(u32 flags)
1009 {
1010 int prot = 0;
1011
1012 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC)
1013 prot |= IOMMU_NOEXEC;
1014
1015 if (!(flags & DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED))
1016 prot |= IOMMU_CACHE;
1017
1018 if (flags & DRM_PANTHOR_VM_BIND_OP_MAP_READONLY)
1019 prot |= IOMMU_READ;
1020 else
1021 prot |= IOMMU_READ | IOMMU_WRITE;
1022
1023 return prot;
1024 }
1025
1026 /**
1027 * panthor_vm_alloc_va() - Allocate a region in the auto-va space
1028 * @vm: VM to allocate a region on.
1029 * @va: start of the VA range. Can be PANTHOR_VM_KERNEL_AUTO_VA if the user
1030 * wants the VA to be automatically allocated from the auto-VA range.
1031 * @size: size of the VA range.
1032 * @va_node: drm_mm_node to initialize. Must be zero-initialized.
1033 *
1034 * Some GPU objects, like heap chunks, are fully managed by the kernel and
1035 * need to be mapped to the userspace VM, in the region reserved for kernel
1036 * objects.
1037 *
1038 * This function takes care of allocating a region in the kernel auto-VA space.
1039 *
1040 * Return: 0 on success, an error code otherwise.
1041 */
1042 int
panthor_vm_alloc_va(struct panthor_vm * vm,u64 va,u64 size,struct drm_mm_node * va_node)1043 panthor_vm_alloc_va(struct panthor_vm *vm, u64 va, u64 size,
1044 struct drm_mm_node *va_node)
1045 {
1046 ssize_t vm_pgsz = panthor_vm_page_size(vm);
1047 int ret;
1048
1049 if (!size || !IS_ALIGNED(size, vm_pgsz))
1050 return -EINVAL;
1051
1052 if (va != PANTHOR_VM_KERNEL_AUTO_VA && !IS_ALIGNED(va, vm_pgsz))
1053 return -EINVAL;
1054
1055 mutex_lock(&vm->mm_lock);
1056 if (va != PANTHOR_VM_KERNEL_AUTO_VA) {
1057 va_node->start = va;
1058 va_node->size = size;
1059 ret = drm_mm_reserve_node(&vm->mm, va_node);
1060 } else {
1061 ret = drm_mm_insert_node_in_range(&vm->mm, va_node, size,
1062 size >= SZ_2M ? SZ_2M : SZ_4K,
1063 0, vm->kernel_auto_va.start,
1064 vm->kernel_auto_va.end,
1065 DRM_MM_INSERT_BEST);
1066 }
1067 mutex_unlock(&vm->mm_lock);
1068
1069 return ret;
1070 }
1071
1072 /**
1073 * panthor_vm_free_va() - Free a region allocated with panthor_vm_alloc_va()
1074 * @vm: VM to free the region on.
1075 * @va_node: Memory node representing the region to free.
1076 */
panthor_vm_free_va(struct panthor_vm * vm,struct drm_mm_node * va_node)1077 void panthor_vm_free_va(struct panthor_vm *vm, struct drm_mm_node *va_node)
1078 {
1079 mutex_lock(&vm->mm_lock);
1080 drm_mm_remove_node(va_node);
1081 mutex_unlock(&vm->mm_lock);
1082 }
1083
panthor_vm_bo_put(struct drm_gpuvm_bo * vm_bo)1084 static void panthor_vm_bo_put(struct drm_gpuvm_bo *vm_bo)
1085 {
1086 struct panthor_gem_object *bo = to_panthor_bo(vm_bo->obj);
1087 struct drm_gpuvm *vm = vm_bo->vm;
1088 bool unpin;
1089
1090 /* We must retain the GEM before calling drm_gpuvm_bo_put(),
1091 * otherwise the mutex might be destroyed while we hold it.
1092 * Same goes for the VM, since we take the VM resv lock.
1093 */
1094 drm_gem_object_get(&bo->base.base);
1095 drm_gpuvm_get(vm);
1096
1097 /* We take the resv lock to protect against concurrent accesses to the
1098 * gpuvm evicted/extobj lists that are modified in
1099 * drm_gpuvm_bo_destroy(), which is called if drm_gpuvm_bo_put()
1100 * releases sthe last vm_bo reference.
1101 * We take the BO GPUVA list lock to protect the vm_bo removal from the
1102 * GEM vm_bo list.
1103 */
1104 dma_resv_lock(drm_gpuvm_resv(vm), NULL);
1105 mutex_lock(&bo->base.base.gpuva.lock);
1106 unpin = drm_gpuvm_bo_put(vm_bo);
1107 mutex_unlock(&bo->base.base.gpuva.lock);
1108 dma_resv_unlock(drm_gpuvm_resv(vm));
1109
1110 /* If the vm_bo object was destroyed, release the pin reference that
1111 * was hold by this object.
1112 */
1113 if (unpin && !drm_gem_is_imported(&bo->base.base))
1114 drm_gem_shmem_unpin(&bo->base);
1115
1116 drm_gpuvm_put(vm);
1117 drm_gem_object_put(&bo->base.base);
1118 }
1119
panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1120 static void panthor_vm_cleanup_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1121 struct panthor_vm *vm)
1122 {
1123 struct panthor_vma *vma, *tmp_vma;
1124
1125 u32 remaining_pt_count = op_ctx->rsvd_page_tables.count -
1126 op_ctx->rsvd_page_tables.ptr;
1127
1128 if (remaining_pt_count) {
1129 kmem_cache_free_bulk(pt_cache, remaining_pt_count,
1130 op_ctx->rsvd_page_tables.pages +
1131 op_ctx->rsvd_page_tables.ptr);
1132 }
1133
1134 kfree(op_ctx->rsvd_page_tables.pages);
1135
1136 if (op_ctx->map.vm_bo)
1137 panthor_vm_bo_put(op_ctx->map.vm_bo);
1138
1139 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++)
1140 kfree(op_ctx->preallocated_vmas[i]);
1141
1142 list_for_each_entry_safe(vma, tmp_vma, &op_ctx->returned_vmas, node) {
1143 list_del(&vma->node);
1144 panthor_vm_bo_put(vma->base.vm_bo);
1145 kfree(vma);
1146 }
1147 }
1148
1149 static struct panthor_vma *
panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx * op_ctx)1150 panthor_vm_op_ctx_get_vma(struct panthor_vm_op_ctx *op_ctx)
1151 {
1152 for (u32 i = 0; i < ARRAY_SIZE(op_ctx->preallocated_vmas); i++) {
1153 struct panthor_vma *vma = op_ctx->preallocated_vmas[i];
1154
1155 if (vma) {
1156 op_ctx->preallocated_vmas[i] = NULL;
1157 return vma;
1158 }
1159 }
1160
1161 return NULL;
1162 }
1163
1164 static int
panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx * op_ctx)1165 panthor_vm_op_ctx_prealloc_vmas(struct panthor_vm_op_ctx *op_ctx)
1166 {
1167 u32 vma_count;
1168
1169 switch (op_ctx->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
1170 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
1171 /* One VMA for the new mapping, and two more VMAs for the remap case
1172 * which might contain both a prev and next VA.
1173 */
1174 vma_count = 3;
1175 break;
1176
1177 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
1178 /* Two VMAs can be needed for an unmap, as an unmap can happen
1179 * in the middle of a drm_gpuva, requiring a remap with both
1180 * prev & next VA. Or an unmap can span more than one drm_gpuva
1181 * where the first and last ones are covered partially, requring
1182 * a remap for the first with a prev VA and remap for the last
1183 * with a next VA.
1184 */
1185 vma_count = 2;
1186 break;
1187
1188 default:
1189 return 0;
1190 }
1191
1192 for (u32 i = 0; i < vma_count; i++) {
1193 struct panthor_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1194
1195 if (!vma)
1196 return -ENOMEM;
1197
1198 op_ctx->preallocated_vmas[i] = vma;
1199 }
1200
1201 return 0;
1202 }
1203
1204 #define PANTHOR_VM_BIND_OP_MAP_FLAGS \
1205 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
1206 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
1207 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED | \
1208 DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
1209
panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)1210 static int panthor_vm_prepare_map_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1211 struct panthor_vm *vm,
1212 struct panthor_gem_object *bo,
1213 u64 offset,
1214 u64 size, u64 va,
1215 u32 flags)
1216 {
1217 struct drm_gpuvm_bo *preallocated_vm_bo;
1218 struct sg_table *sgt = NULL;
1219 u64 pt_count;
1220 int ret;
1221
1222 if (!bo)
1223 return -EINVAL;
1224
1225 if ((flags & ~PANTHOR_VM_BIND_OP_MAP_FLAGS) ||
1226 (flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) != DRM_PANTHOR_VM_BIND_OP_TYPE_MAP)
1227 return -EINVAL;
1228
1229 /* Make sure the VA and size are in-bounds. */
1230 if (size > bo->base.base.size || offset > bo->base.base.size - size)
1231 return -EINVAL;
1232
1233 /* If the BO has an exclusive VM attached, it can't be mapped to other VMs. */
1234 if (bo->exclusive_vm_root_gem &&
1235 bo->exclusive_vm_root_gem != panthor_vm_root_gem(vm))
1236 return -EINVAL;
1237
1238 memset(op_ctx, 0, sizeof(*op_ctx));
1239 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1240 op_ctx->flags = flags;
1241 op_ctx->va.range = size;
1242 op_ctx->va.addr = va;
1243
1244 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1245 if (ret)
1246 goto err_cleanup;
1247
1248 if (!drm_gem_is_imported(&bo->base.base)) {
1249 /* Pre-reserve the BO pages, so the map operation doesn't have to
1250 * allocate.
1251 */
1252 ret = drm_gem_shmem_pin(&bo->base);
1253 if (ret)
1254 goto err_cleanup;
1255 }
1256
1257 sgt = drm_gem_shmem_get_pages_sgt(&bo->base);
1258 if (IS_ERR(sgt)) {
1259 if (!drm_gem_is_imported(&bo->base.base))
1260 drm_gem_shmem_unpin(&bo->base);
1261
1262 ret = PTR_ERR(sgt);
1263 goto err_cleanup;
1264 }
1265
1266 op_ctx->map.sgt = sgt;
1267
1268 preallocated_vm_bo = drm_gpuvm_bo_create(&vm->base, &bo->base.base);
1269 if (!preallocated_vm_bo) {
1270 if (!drm_gem_is_imported(&bo->base.base))
1271 drm_gem_shmem_unpin(&bo->base);
1272
1273 ret = -ENOMEM;
1274 goto err_cleanup;
1275 }
1276
1277 /* drm_gpuvm_bo_obtain_prealloc() will call drm_gpuvm_bo_put() on our
1278 * pre-allocated BO if the <BO,VM> association exists. Given we
1279 * only have one ref on preallocated_vm_bo, drm_gpuvm_bo_destroy() will
1280 * be called immediately, and we have to hold the VM resv lock when
1281 * calling this function.
1282 */
1283 dma_resv_lock(panthor_vm_resv(vm), NULL);
1284 mutex_lock(&bo->base.base.gpuva.lock);
1285 op_ctx->map.vm_bo = drm_gpuvm_bo_obtain_prealloc(preallocated_vm_bo);
1286 mutex_unlock(&bo->base.base.gpuva.lock);
1287 dma_resv_unlock(panthor_vm_resv(vm));
1288
1289 /* If the a vm_bo for this <VM,BO> combination exists, it already
1290 * retains a pin ref, and we can release the one we took earlier.
1291 *
1292 * If our pre-allocated vm_bo is picked, it now retains the pin ref,
1293 * which will be released in panthor_vm_bo_put().
1294 */
1295 if (preallocated_vm_bo != op_ctx->map.vm_bo &&
1296 !drm_gem_is_imported(&bo->base.base))
1297 drm_gem_shmem_unpin(&bo->base);
1298
1299 op_ctx->map.bo_offset = offset;
1300
1301 /* L1, L2 and L3 page tables.
1302 * We could optimize L3 allocation by iterating over the sgt and merging
1303 * 2M contiguous blocks, but it's simpler to over-provision and return
1304 * the pages if they're not used.
1305 */
1306 pt_count = ((ALIGN(va + size, 1ull << 39) - ALIGN_DOWN(va, 1ull << 39)) >> 39) +
1307 ((ALIGN(va + size, 1ull << 30) - ALIGN_DOWN(va, 1ull << 30)) >> 30) +
1308 ((ALIGN(va + size, 1ull << 21) - ALIGN_DOWN(va, 1ull << 21)) >> 21);
1309
1310 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1311 sizeof(*op_ctx->rsvd_page_tables.pages),
1312 GFP_KERNEL);
1313 if (!op_ctx->rsvd_page_tables.pages) {
1314 ret = -ENOMEM;
1315 goto err_cleanup;
1316 }
1317
1318 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1319 op_ctx->rsvd_page_tables.pages);
1320 op_ctx->rsvd_page_tables.count = ret;
1321 if (ret != pt_count) {
1322 ret = -ENOMEM;
1323 goto err_cleanup;
1324 }
1325
1326 /* Insert BO into the extobj list last, when we know nothing can fail. */
1327 dma_resv_lock(panthor_vm_resv(vm), NULL);
1328 drm_gpuvm_bo_extobj_add(op_ctx->map.vm_bo);
1329 dma_resv_unlock(panthor_vm_resv(vm));
1330
1331 return 0;
1332
1333 err_cleanup:
1334 panthor_vm_cleanup_op_ctx(op_ctx, vm);
1335 return ret;
1336 }
1337
panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm,u64 va,u64 size)1338 static int panthor_vm_prepare_unmap_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1339 struct panthor_vm *vm,
1340 u64 va, u64 size)
1341 {
1342 u32 pt_count = 0;
1343 int ret;
1344
1345 memset(op_ctx, 0, sizeof(*op_ctx));
1346 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1347 op_ctx->va.range = size;
1348 op_ctx->va.addr = va;
1349 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP;
1350
1351 /* Pre-allocate L3 page tables to account for the split-2M-block
1352 * situation on unmap.
1353 */
1354 if (va != ALIGN(va, SZ_2M))
1355 pt_count++;
1356
1357 if (va + size != ALIGN(va + size, SZ_2M) &&
1358 ALIGN(va + size, SZ_2M) != ALIGN(va, SZ_2M))
1359 pt_count++;
1360
1361 ret = panthor_vm_op_ctx_prealloc_vmas(op_ctx);
1362 if (ret)
1363 goto err_cleanup;
1364
1365 if (pt_count) {
1366 op_ctx->rsvd_page_tables.pages = kcalloc(pt_count,
1367 sizeof(*op_ctx->rsvd_page_tables.pages),
1368 GFP_KERNEL);
1369 if (!op_ctx->rsvd_page_tables.pages) {
1370 ret = -ENOMEM;
1371 goto err_cleanup;
1372 }
1373
1374 ret = kmem_cache_alloc_bulk(pt_cache, GFP_KERNEL, pt_count,
1375 op_ctx->rsvd_page_tables.pages);
1376 if (ret != pt_count) {
1377 ret = -ENOMEM;
1378 goto err_cleanup;
1379 }
1380 op_ctx->rsvd_page_tables.count = pt_count;
1381 }
1382
1383 return 0;
1384
1385 err_cleanup:
1386 panthor_vm_cleanup_op_ctx(op_ctx, vm);
1387 return ret;
1388 }
1389
panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx * op_ctx,struct panthor_vm * vm)1390 static void panthor_vm_prepare_sync_only_op_ctx(struct panthor_vm_op_ctx *op_ctx,
1391 struct panthor_vm *vm)
1392 {
1393 memset(op_ctx, 0, sizeof(*op_ctx));
1394 INIT_LIST_HEAD(&op_ctx->returned_vmas);
1395 op_ctx->flags = DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY;
1396 }
1397
1398 /**
1399 * panthor_vm_get_bo_for_va() - Get the GEM object mapped at a virtual address
1400 * @vm: VM to look into.
1401 * @va: Virtual address to search for.
1402 * @bo_offset: Offset of the GEM object mapped at this virtual address.
1403 * Only valid on success.
1404 *
1405 * The object returned by this function might no longer be mapped when the
1406 * function returns. It's the caller responsibility to ensure there's no
1407 * concurrent map/unmap operations making the returned value invalid, or
1408 * make sure it doesn't matter if the object is no longer mapped.
1409 *
1410 * Return: A valid pointer on success, an ERR_PTR() otherwise.
1411 */
1412 struct panthor_gem_object *
panthor_vm_get_bo_for_va(struct panthor_vm * vm,u64 va,u64 * bo_offset)1413 panthor_vm_get_bo_for_va(struct panthor_vm *vm, u64 va, u64 *bo_offset)
1414 {
1415 struct panthor_gem_object *bo = ERR_PTR(-ENOENT);
1416 struct drm_gpuva *gpuva;
1417 struct panthor_vma *vma;
1418
1419 /* Take the VM lock to prevent concurrent map/unmap operations. */
1420 mutex_lock(&vm->op_lock);
1421 gpuva = drm_gpuva_find_first(&vm->base, va, 1);
1422 vma = gpuva ? container_of(gpuva, struct panthor_vma, base) : NULL;
1423 if (vma && vma->base.gem.obj) {
1424 drm_gem_object_get(vma->base.gem.obj);
1425 bo = to_panthor_bo(vma->base.gem.obj);
1426 *bo_offset = vma->base.gem.offset + (va - vma->base.va.addr);
1427 }
1428 mutex_unlock(&vm->op_lock);
1429
1430 return bo;
1431 }
1432
1433 #define PANTHOR_VM_MIN_KERNEL_VA_SIZE SZ_256M
1434
1435 static u64
panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create * args,u64 full_va_range)1436 panthor_vm_create_get_user_va_range(const struct drm_panthor_vm_create *args,
1437 u64 full_va_range)
1438 {
1439 u64 user_va_range;
1440
1441 /* Make sure we have a minimum amount of VA space for kernel objects. */
1442 if (full_va_range < PANTHOR_VM_MIN_KERNEL_VA_SIZE)
1443 return 0;
1444
1445 if (args->user_va_range) {
1446 /* Use the user provided value if != 0. */
1447 user_va_range = args->user_va_range;
1448 } else if (TASK_SIZE_OF(current) < full_va_range) {
1449 /* If the task VM size is smaller than the GPU VA range, pick this
1450 * as our default user VA range, so userspace can CPU/GPU map buffers
1451 * at the same address.
1452 */
1453 user_va_range = TASK_SIZE_OF(current);
1454 } else {
1455 /* If the GPU VA range is smaller than the task VM size, we
1456 * just have to live with the fact we won't be able to map
1457 * all buffers at the same GPU/CPU address.
1458 *
1459 * If the GPU VA range is bigger than 4G (more than 32-bit of
1460 * VA), we split the range in two, and assign half of it to
1461 * the user and the other half to the kernel, if it's not, we
1462 * keep the kernel VA space as small as possible.
1463 */
1464 user_va_range = full_va_range > SZ_4G ?
1465 full_va_range / 2 :
1466 full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1467 }
1468
1469 if (full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE < user_va_range)
1470 user_va_range = full_va_range - PANTHOR_VM_MIN_KERNEL_VA_SIZE;
1471
1472 return user_va_range;
1473 }
1474
1475 #define PANTHOR_VM_CREATE_FLAGS 0
1476
1477 static int
panthor_vm_create_check_args(const struct panthor_device * ptdev,const struct drm_panthor_vm_create * args,u64 * kernel_va_start,u64 * kernel_va_range)1478 panthor_vm_create_check_args(const struct panthor_device *ptdev,
1479 const struct drm_panthor_vm_create *args,
1480 u64 *kernel_va_start, u64 *kernel_va_range)
1481 {
1482 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
1483 u64 full_va_range = 1ull << va_bits;
1484 u64 user_va_range;
1485
1486 if (args->flags & ~PANTHOR_VM_CREATE_FLAGS)
1487 return -EINVAL;
1488
1489 user_va_range = panthor_vm_create_get_user_va_range(args, full_va_range);
1490 if (!user_va_range || (args->user_va_range && args->user_va_range > user_va_range))
1491 return -EINVAL;
1492
1493 /* Pick a kernel VA range that's a power of two, to have a clear split. */
1494 *kernel_va_range = rounddown_pow_of_two(full_va_range - user_va_range);
1495 *kernel_va_start = full_va_range - *kernel_va_range;
1496 return 0;
1497 }
1498
1499 /*
1500 * Only 32 VMs per open file. If that becomes a limiting factor, we can
1501 * increase this number.
1502 */
1503 #define PANTHOR_MAX_VMS_PER_FILE 32
1504
1505 /**
1506 * panthor_vm_pool_create_vm() - Create a VM
1507 * @ptdev: The panthor device
1508 * @pool: The VM to create this VM on.
1509 * @args: VM creation args.
1510 *
1511 * Return: a positive VM ID on success, a negative error code otherwise.
1512 */
panthor_vm_pool_create_vm(struct panthor_device * ptdev,struct panthor_vm_pool * pool,struct drm_panthor_vm_create * args)1513 int panthor_vm_pool_create_vm(struct panthor_device *ptdev,
1514 struct panthor_vm_pool *pool,
1515 struct drm_panthor_vm_create *args)
1516 {
1517 u64 kernel_va_start, kernel_va_range;
1518 struct panthor_vm *vm;
1519 int ret;
1520 u32 id;
1521
1522 ret = panthor_vm_create_check_args(ptdev, args, &kernel_va_start, &kernel_va_range);
1523 if (ret)
1524 return ret;
1525
1526 vm = panthor_vm_create(ptdev, false, kernel_va_start, kernel_va_range,
1527 kernel_va_start, kernel_va_range);
1528 if (IS_ERR(vm))
1529 return PTR_ERR(vm);
1530
1531 ret = xa_alloc(&pool->xa, &id, vm,
1532 XA_LIMIT(1, PANTHOR_MAX_VMS_PER_FILE), GFP_KERNEL);
1533
1534 if (ret) {
1535 panthor_vm_put(vm);
1536 return ret;
1537 }
1538
1539 args->user_va_range = kernel_va_start;
1540 return id;
1541 }
1542
panthor_vm_destroy(struct panthor_vm * vm)1543 static void panthor_vm_destroy(struct panthor_vm *vm)
1544 {
1545 if (!vm)
1546 return;
1547
1548 vm->destroyed = true;
1549
1550 mutex_lock(&vm->heaps.lock);
1551 panthor_heap_pool_destroy(vm->heaps.pool);
1552 vm->heaps.pool = NULL;
1553 mutex_unlock(&vm->heaps.lock);
1554
1555 drm_WARN_ON(&vm->ptdev->base,
1556 panthor_vm_unmap_range(vm, vm->base.mm_start, vm->base.mm_range));
1557 panthor_vm_put(vm);
1558 }
1559
1560 /**
1561 * panthor_vm_pool_destroy_vm() - Destroy a VM.
1562 * @pool: VM pool.
1563 * @handle: VM handle.
1564 *
1565 * This function doesn't free the VM object or its resources, it just kills
1566 * all mappings, and makes sure nothing can be mapped after that point.
1567 *
1568 * If there was any active jobs at the time this function is called, these
1569 * jobs should experience page faults and be killed as a result.
1570 *
1571 * The VM resources are freed when the last reference on the VM object is
1572 * dropped.
1573 *
1574 * Return: %0 for success, negative errno value for failure
1575 */
panthor_vm_pool_destroy_vm(struct panthor_vm_pool * pool,u32 handle)1576 int panthor_vm_pool_destroy_vm(struct panthor_vm_pool *pool, u32 handle)
1577 {
1578 struct panthor_vm *vm;
1579
1580 vm = xa_erase(&pool->xa, handle);
1581
1582 panthor_vm_destroy(vm);
1583
1584 return vm ? 0 : -EINVAL;
1585 }
1586
1587 /**
1588 * panthor_vm_pool_get_vm() - Retrieve VM object bound to a VM handle
1589 * @pool: VM pool to check.
1590 * @handle: Handle of the VM to retrieve.
1591 *
1592 * Return: A valid pointer if the VM exists, NULL otherwise.
1593 */
1594 struct panthor_vm *
panthor_vm_pool_get_vm(struct panthor_vm_pool * pool,u32 handle)1595 panthor_vm_pool_get_vm(struct panthor_vm_pool *pool, u32 handle)
1596 {
1597 struct panthor_vm *vm;
1598
1599 xa_lock(&pool->xa);
1600 vm = panthor_vm_get(xa_load(&pool->xa, handle));
1601 xa_unlock(&pool->xa);
1602
1603 return vm;
1604 }
1605
1606 /**
1607 * panthor_vm_pool_destroy() - Destroy a VM pool.
1608 * @pfile: File.
1609 *
1610 * Destroy all VMs in the pool, and release the pool resources.
1611 *
1612 * Note that VMs can outlive the pool they were created from if other
1613 * objects hold a reference to there VMs.
1614 */
panthor_vm_pool_destroy(struct panthor_file * pfile)1615 void panthor_vm_pool_destroy(struct panthor_file *pfile)
1616 {
1617 struct panthor_vm *vm;
1618 unsigned long i;
1619
1620 if (!pfile->vms)
1621 return;
1622
1623 xa_for_each(&pfile->vms->xa, i, vm)
1624 panthor_vm_destroy(vm);
1625
1626 xa_destroy(&pfile->vms->xa);
1627 kfree(pfile->vms);
1628 }
1629
1630 /**
1631 * panthor_vm_pool_create() - Create a VM pool
1632 * @pfile: File.
1633 *
1634 * Return: 0 on success, a negative error code otherwise.
1635 */
panthor_vm_pool_create(struct panthor_file * pfile)1636 int panthor_vm_pool_create(struct panthor_file *pfile)
1637 {
1638 pfile->vms = kzalloc(sizeof(*pfile->vms), GFP_KERNEL);
1639 if (!pfile->vms)
1640 return -ENOMEM;
1641
1642 xa_init_flags(&pfile->vms->xa, XA_FLAGS_ALLOC1);
1643 return 0;
1644 }
1645
1646 /* dummy TLB ops, the real TLB flush happens in panthor_vm_flush_range() */
mmu_tlb_flush_all(void * cookie)1647 static void mmu_tlb_flush_all(void *cookie)
1648 {
1649 }
1650
mmu_tlb_flush_walk(unsigned long iova,size_t size,size_t granule,void * cookie)1651 static void mmu_tlb_flush_walk(unsigned long iova, size_t size, size_t granule, void *cookie)
1652 {
1653 }
1654
1655 static const struct iommu_flush_ops mmu_tlb_ops = {
1656 .tlb_flush_all = mmu_tlb_flush_all,
1657 .tlb_flush_walk = mmu_tlb_flush_walk,
1658 };
1659
access_type_name(struct panthor_device * ptdev,u32 fault_status)1660 static const char *access_type_name(struct panthor_device *ptdev,
1661 u32 fault_status)
1662 {
1663 switch (fault_status & AS_FAULTSTATUS_ACCESS_TYPE_MASK) {
1664 case AS_FAULTSTATUS_ACCESS_TYPE_ATOMIC:
1665 return "ATOMIC";
1666 case AS_FAULTSTATUS_ACCESS_TYPE_READ:
1667 return "READ";
1668 case AS_FAULTSTATUS_ACCESS_TYPE_WRITE:
1669 return "WRITE";
1670 case AS_FAULTSTATUS_ACCESS_TYPE_EX:
1671 return "EXECUTE";
1672 default:
1673 drm_WARN_ON(&ptdev->base, 1);
1674 return NULL;
1675 }
1676 }
1677
panthor_mmu_irq_handler(struct panthor_device * ptdev,u32 status)1678 static void panthor_mmu_irq_handler(struct panthor_device *ptdev, u32 status)
1679 {
1680 bool has_unhandled_faults = false;
1681
1682 status = panthor_mmu_fault_mask(ptdev, status);
1683 while (status) {
1684 u32 as = ffs(status | (status >> 16)) - 1;
1685 u32 mask = panthor_mmu_as_fault_mask(ptdev, as);
1686 u32 new_int_mask;
1687 u64 addr;
1688 u32 fault_status;
1689 u32 exception_type;
1690 u32 access_type;
1691 u32 source_id;
1692
1693 fault_status = gpu_read(ptdev, AS_FAULTSTATUS(as));
1694 addr = gpu_read64(ptdev, AS_FAULTADDRESS(as));
1695
1696 /* decode the fault status */
1697 exception_type = fault_status & 0xFF;
1698 access_type = (fault_status >> 8) & 0x3;
1699 source_id = (fault_status >> 16);
1700
1701 mutex_lock(&ptdev->mmu->as.slots_lock);
1702
1703 ptdev->mmu->as.faulty_mask |= mask;
1704 new_int_mask =
1705 panthor_mmu_fault_mask(ptdev, ~ptdev->mmu->as.faulty_mask);
1706
1707 /* terminal fault, print info about the fault */
1708 drm_err(&ptdev->base,
1709 "Unhandled Page fault in AS%d at VA 0x%016llX\n"
1710 "raw fault status: 0x%X\n"
1711 "decoded fault status: %s\n"
1712 "exception type 0x%X: %s\n"
1713 "access type 0x%X: %s\n"
1714 "source id 0x%X\n",
1715 as, addr,
1716 fault_status,
1717 (fault_status & (1 << 10) ? "DECODER FAULT" : "SLAVE FAULT"),
1718 exception_type, panthor_exception_name(ptdev, exception_type),
1719 access_type, access_type_name(ptdev, fault_status),
1720 source_id);
1721
1722 /* We don't handle VM faults at the moment, so let's just clear the
1723 * interrupt and let the writer/reader crash.
1724 * Note that COMPLETED irqs are never cleared, but this is fine
1725 * because they are always masked.
1726 */
1727 gpu_write(ptdev, MMU_INT_CLEAR, mask);
1728
1729 /* Ignore MMU interrupts on this AS until it's been
1730 * re-enabled.
1731 */
1732 ptdev->mmu->irq.mask = new_int_mask;
1733
1734 if (ptdev->mmu->as.slots[as].vm)
1735 ptdev->mmu->as.slots[as].vm->unhandled_fault = true;
1736
1737 /* Disable the MMU to kill jobs on this AS. */
1738 panthor_mmu_as_disable(ptdev, as);
1739 mutex_unlock(&ptdev->mmu->as.slots_lock);
1740
1741 status &= ~mask;
1742 has_unhandled_faults = true;
1743 }
1744
1745 if (has_unhandled_faults)
1746 panthor_sched_report_mmu_fault(ptdev);
1747 }
1748 PANTHOR_IRQ_HANDLER(mmu, MMU, panthor_mmu_irq_handler);
1749
1750 /**
1751 * panthor_mmu_suspend() - Suspend the MMU logic
1752 * @ptdev: Device.
1753 *
1754 * All we do here is de-assign the AS slots on all active VMs, so things
1755 * get flushed to the main memory, and no further access to these VMs are
1756 * possible.
1757 *
1758 * We also suspend the MMU IRQ.
1759 */
panthor_mmu_suspend(struct panthor_device * ptdev)1760 void panthor_mmu_suspend(struct panthor_device *ptdev)
1761 {
1762 mutex_lock(&ptdev->mmu->as.slots_lock);
1763 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1764 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1765
1766 if (vm) {
1767 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
1768 panthor_vm_release_as_locked(vm);
1769 }
1770 }
1771 mutex_unlock(&ptdev->mmu->as.slots_lock);
1772
1773 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1774 }
1775
1776 /**
1777 * panthor_mmu_resume() - Resume the MMU logic
1778 * @ptdev: Device.
1779 *
1780 * Resume the IRQ.
1781 *
1782 * We don't re-enable previously active VMs. We assume other parts of the
1783 * driver will call panthor_vm_active() on the VMs they intend to use.
1784 */
panthor_mmu_resume(struct panthor_device * ptdev)1785 void panthor_mmu_resume(struct panthor_device *ptdev)
1786 {
1787 mutex_lock(&ptdev->mmu->as.slots_lock);
1788 ptdev->mmu->as.alloc_mask = 0;
1789 ptdev->mmu->as.faulty_mask = 0;
1790 mutex_unlock(&ptdev->mmu->as.slots_lock);
1791
1792 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1793 }
1794
1795 /**
1796 * panthor_mmu_pre_reset() - Prepare for a reset
1797 * @ptdev: Device.
1798 *
1799 * Suspend the IRQ, and make sure all VM_BIND queues are stopped, so we
1800 * don't get asked to do a VM operation while the GPU is down.
1801 *
1802 * We don't cleanly shutdown the AS slots here, because the reset might
1803 * come from an AS_ACTIVE_BIT stuck situation.
1804 */
panthor_mmu_pre_reset(struct panthor_device * ptdev)1805 void panthor_mmu_pre_reset(struct panthor_device *ptdev)
1806 {
1807 struct panthor_vm *vm;
1808
1809 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
1810
1811 mutex_lock(&ptdev->mmu->vm.lock);
1812 ptdev->mmu->vm.reset_in_progress = true;
1813 list_for_each_entry(vm, &ptdev->mmu->vm.list, node)
1814 panthor_vm_stop(vm);
1815 mutex_unlock(&ptdev->mmu->vm.lock);
1816 }
1817
1818 /**
1819 * panthor_mmu_post_reset() - Restore things after a reset
1820 * @ptdev: Device.
1821 *
1822 * Put the MMU logic back in action after a reset. That implies resuming the
1823 * IRQ and re-enabling the VM_BIND queues.
1824 */
panthor_mmu_post_reset(struct panthor_device * ptdev)1825 void panthor_mmu_post_reset(struct panthor_device *ptdev)
1826 {
1827 struct panthor_vm *vm;
1828
1829 mutex_lock(&ptdev->mmu->as.slots_lock);
1830
1831 /* Now that the reset is effective, we can assume that none of the
1832 * AS slots are setup, and clear the faulty flags too.
1833 */
1834 ptdev->mmu->as.alloc_mask = 0;
1835 ptdev->mmu->as.faulty_mask = 0;
1836
1837 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
1838 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
1839
1840 if (vm)
1841 panthor_vm_release_as_locked(vm);
1842 }
1843
1844 mutex_unlock(&ptdev->mmu->as.slots_lock);
1845
1846 panthor_mmu_irq_resume(&ptdev->mmu->irq, panthor_mmu_fault_mask(ptdev, ~0));
1847
1848 /* Restart the VM_BIND queues. */
1849 mutex_lock(&ptdev->mmu->vm.lock);
1850 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
1851 panthor_vm_start(vm);
1852 }
1853 ptdev->mmu->vm.reset_in_progress = false;
1854 mutex_unlock(&ptdev->mmu->vm.lock);
1855 }
1856
panthor_vm_free(struct drm_gpuvm * gpuvm)1857 static void panthor_vm_free(struct drm_gpuvm *gpuvm)
1858 {
1859 struct panthor_vm *vm = container_of(gpuvm, struct panthor_vm, base);
1860 struct panthor_device *ptdev = vm->ptdev;
1861
1862 mutex_lock(&vm->heaps.lock);
1863 if (drm_WARN_ON(&ptdev->base, vm->heaps.pool))
1864 panthor_heap_pool_destroy(vm->heaps.pool);
1865 mutex_unlock(&vm->heaps.lock);
1866 mutex_destroy(&vm->heaps.lock);
1867
1868 mutex_lock(&ptdev->mmu->vm.lock);
1869 list_del(&vm->node);
1870 /* Restore the scheduler state so we can call drm_sched_entity_destroy()
1871 * and drm_sched_fini(). If get there, that means we have no job left
1872 * and no new jobs can be queued, so we can start the scheduler without
1873 * risking interfering with the reset.
1874 */
1875 if (ptdev->mmu->vm.reset_in_progress)
1876 panthor_vm_start(vm);
1877 mutex_unlock(&ptdev->mmu->vm.lock);
1878
1879 drm_sched_entity_destroy(&vm->entity);
1880 drm_sched_fini(&vm->sched);
1881
1882 mutex_lock(&ptdev->mmu->as.slots_lock);
1883 if (vm->as.id >= 0) {
1884 int cookie;
1885
1886 if (drm_dev_enter(&ptdev->base, &cookie)) {
1887 panthor_mmu_as_disable(ptdev, vm->as.id);
1888 drm_dev_exit(cookie);
1889 }
1890
1891 ptdev->mmu->as.slots[vm->as.id].vm = NULL;
1892 clear_bit(vm->as.id, &ptdev->mmu->as.alloc_mask);
1893 list_del(&vm->as.lru_node);
1894 }
1895 mutex_unlock(&ptdev->mmu->as.slots_lock);
1896
1897 free_io_pgtable_ops(vm->pgtbl_ops);
1898
1899 drm_mm_takedown(&vm->mm);
1900 kfree(vm);
1901 }
1902
1903 /**
1904 * panthor_vm_put() - Release a reference on a VM
1905 * @vm: VM to release the reference on. Can be NULL.
1906 */
panthor_vm_put(struct panthor_vm * vm)1907 void panthor_vm_put(struct panthor_vm *vm)
1908 {
1909 drm_gpuvm_put(vm ? &vm->base : NULL);
1910 }
1911
1912 /**
1913 * panthor_vm_get() - Get a VM reference
1914 * @vm: VM to get the reference on. Can be NULL.
1915 *
1916 * Return: @vm value.
1917 */
panthor_vm_get(struct panthor_vm * vm)1918 struct panthor_vm *panthor_vm_get(struct panthor_vm *vm)
1919 {
1920 if (vm)
1921 drm_gpuvm_get(&vm->base);
1922
1923 return vm;
1924 }
1925
1926 /**
1927 * panthor_vm_get_heap_pool() - Get the heap pool attached to a VM
1928 * @vm: VM to query the heap pool on.
1929 * @create: True if the heap pool should be created when it doesn't exist.
1930 *
1931 * Heap pools are per-VM. This function allows one to retrieve the heap pool
1932 * attached to a VM.
1933 *
1934 * If no heap pool exists yet, and @create is true, we create one.
1935 *
1936 * The returned panthor_heap_pool should be released with panthor_heap_pool_put().
1937 *
1938 * Return: A valid pointer on success, an ERR_PTR() otherwise.
1939 */
panthor_vm_get_heap_pool(struct panthor_vm * vm,bool create)1940 struct panthor_heap_pool *panthor_vm_get_heap_pool(struct panthor_vm *vm, bool create)
1941 {
1942 struct panthor_heap_pool *pool;
1943
1944 mutex_lock(&vm->heaps.lock);
1945 if (!vm->heaps.pool && create) {
1946 if (vm->destroyed)
1947 pool = ERR_PTR(-EINVAL);
1948 else
1949 pool = panthor_heap_pool_create(vm->ptdev, vm);
1950
1951 if (!IS_ERR(pool))
1952 vm->heaps.pool = panthor_heap_pool_get(pool);
1953 } else {
1954 pool = panthor_heap_pool_get(vm->heaps.pool);
1955 if (!pool)
1956 pool = ERR_PTR(-ENOENT);
1957 }
1958 mutex_unlock(&vm->heaps.lock);
1959
1960 return pool;
1961 }
1962
1963 /**
1964 * panthor_vm_heaps_sizes() - Calculate size of all heap chunks across all
1965 * heaps over all the heap pools in a VM
1966 * @pfile: File.
1967 * @stats: Memory stats to be updated.
1968 *
1969 * Calculate all heap chunk sizes in all heap pools bound to a VM. If the VM
1970 * is active, record the size as active as well.
1971 */
panthor_vm_heaps_sizes(struct panthor_file * pfile,struct drm_memory_stats * stats)1972 void panthor_vm_heaps_sizes(struct panthor_file *pfile, struct drm_memory_stats *stats)
1973 {
1974 struct panthor_vm *vm;
1975 unsigned long i;
1976
1977 if (!pfile->vms)
1978 return;
1979
1980 xa_lock(&pfile->vms->xa);
1981 xa_for_each(&pfile->vms->xa, i, vm) {
1982 size_t size = panthor_heap_pool_size(vm->heaps.pool);
1983 stats->resident += size;
1984 if (vm->as.id >= 0)
1985 stats->active += size;
1986 }
1987 xa_unlock(&pfile->vms->xa);
1988 }
1989
mair_to_memattr(u64 mair,bool coherent)1990 static u64 mair_to_memattr(u64 mair, bool coherent)
1991 {
1992 u64 memattr = 0;
1993 u32 i;
1994
1995 for (i = 0; i < 8; i++) {
1996 u8 in_attr = mair >> (8 * i), out_attr;
1997 u8 outer = in_attr >> 4, inner = in_attr & 0xf;
1998
1999 /* For caching to be enabled, inner and outer caching policy
2000 * have to be both write-back, if one of them is write-through
2001 * or non-cacheable, we just choose non-cacheable. Device
2002 * memory is also translated to non-cacheable.
2003 */
2004 if (!(outer & 3) || !(outer & 4) || !(inner & 4)) {
2005 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_NC |
2006 AS_MEMATTR_AARCH64_SH_MIDGARD_INNER |
2007 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(false, false);
2008 } else {
2009 out_attr = AS_MEMATTR_AARCH64_INNER_OUTER_WB |
2010 AS_MEMATTR_AARCH64_INNER_ALLOC_EXPL(inner & 1, inner & 2);
2011 /* Use SH_MIDGARD_INNER mode when device isn't coherent,
2012 * so SH_IS, which is used when IOMMU_CACHE is set, maps
2013 * to Mali's internal-shareable mode. As per the Mali
2014 * Spec, inner and outer-shareable modes aren't allowed
2015 * for WB memory when coherency is disabled.
2016 * Use SH_CPU_INNER mode when coherency is enabled, so
2017 * that SH_IS actually maps to the standard definition of
2018 * inner-shareable.
2019 */
2020 if (!coherent)
2021 out_attr |= AS_MEMATTR_AARCH64_SH_MIDGARD_INNER;
2022 else
2023 out_attr |= AS_MEMATTR_AARCH64_SH_CPU_INNER;
2024 }
2025
2026 memattr |= (u64)out_attr << (8 * i);
2027 }
2028
2029 return memattr;
2030 }
2031
panthor_vma_link(struct panthor_vm * vm,struct panthor_vma * vma,struct drm_gpuvm_bo * vm_bo)2032 static void panthor_vma_link(struct panthor_vm *vm,
2033 struct panthor_vma *vma,
2034 struct drm_gpuvm_bo *vm_bo)
2035 {
2036 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
2037
2038 mutex_lock(&bo->base.base.gpuva.lock);
2039 drm_gpuva_link(&vma->base, vm_bo);
2040 drm_WARN_ON(&vm->ptdev->base, drm_gpuvm_bo_put(vm_bo));
2041 mutex_unlock(&bo->base.base.gpuva.lock);
2042 }
2043
panthor_vma_unlink(struct panthor_vm * vm,struct panthor_vma * vma)2044 static void panthor_vma_unlink(struct panthor_vm *vm,
2045 struct panthor_vma *vma)
2046 {
2047 struct panthor_gem_object *bo = to_panthor_bo(vma->base.gem.obj);
2048 struct drm_gpuvm_bo *vm_bo = drm_gpuvm_bo_get(vma->base.vm_bo);
2049
2050 mutex_lock(&bo->base.base.gpuva.lock);
2051 drm_gpuva_unlink(&vma->base);
2052 mutex_unlock(&bo->base.base.gpuva.lock);
2053
2054 /* drm_gpuva_unlink() release the vm_bo, but we manually retained it
2055 * when entering this function, so we can implement deferred VMA
2056 * destruction. Re-assign it here.
2057 */
2058 vma->base.vm_bo = vm_bo;
2059 list_add_tail(&vma->node, &vm->op_ctx->returned_vmas);
2060 }
2061
panthor_vma_init(struct panthor_vma * vma,u32 flags)2062 static void panthor_vma_init(struct panthor_vma *vma, u32 flags)
2063 {
2064 INIT_LIST_HEAD(&vma->node);
2065 vma->flags = flags;
2066 }
2067
2068 #define PANTHOR_VM_MAP_FLAGS \
2069 (DRM_PANTHOR_VM_BIND_OP_MAP_READONLY | \
2070 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC | \
2071 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED)
2072
panthor_gpuva_sm_step_map(struct drm_gpuva_op * op,void * priv)2073 static int panthor_gpuva_sm_step_map(struct drm_gpuva_op *op, void *priv)
2074 {
2075 struct panthor_vm *vm = priv;
2076 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2077 struct panthor_vma *vma = panthor_vm_op_ctx_get_vma(op_ctx);
2078 int ret;
2079
2080 if (!vma)
2081 return -EINVAL;
2082
2083 panthor_vma_init(vma, op_ctx->flags & PANTHOR_VM_MAP_FLAGS);
2084
2085 ret = panthor_vm_map_pages(vm, op->map.va.addr, flags_to_prot(vma->flags),
2086 op_ctx->map.sgt, op->map.gem.offset,
2087 op->map.va.range);
2088 if (ret)
2089 return ret;
2090
2091 /* Ref owned by the mapping now, clear the obj field so we don't release the
2092 * pinning/obj ref behind GPUVA's back.
2093 */
2094 drm_gpuva_map(&vm->base, &vma->base, &op->map);
2095 panthor_vma_link(vm, vma, op_ctx->map.vm_bo);
2096 op_ctx->map.vm_bo = NULL;
2097 return 0;
2098 }
2099
panthor_gpuva_sm_step_remap(struct drm_gpuva_op * op,void * priv)2100 static int panthor_gpuva_sm_step_remap(struct drm_gpuva_op *op,
2101 void *priv)
2102 {
2103 struct panthor_vma *unmap_vma = container_of(op->remap.unmap->va, struct panthor_vma, base);
2104 struct panthor_vm *vm = priv;
2105 struct panthor_vm_op_ctx *op_ctx = vm->op_ctx;
2106 struct panthor_vma *prev_vma = NULL, *next_vma = NULL;
2107 u64 unmap_start, unmap_range;
2108 int ret;
2109
2110 drm_gpuva_op_remap_to_unmap_range(&op->remap, &unmap_start, &unmap_range);
2111 ret = panthor_vm_unmap_pages(vm, unmap_start, unmap_range);
2112 if (ret)
2113 return ret;
2114
2115 if (op->remap.prev) {
2116 prev_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2117 panthor_vma_init(prev_vma, unmap_vma->flags);
2118 }
2119
2120 if (op->remap.next) {
2121 next_vma = panthor_vm_op_ctx_get_vma(op_ctx);
2122 panthor_vma_init(next_vma, unmap_vma->flags);
2123 }
2124
2125 drm_gpuva_remap(prev_vma ? &prev_vma->base : NULL,
2126 next_vma ? &next_vma->base : NULL,
2127 &op->remap);
2128
2129 if (prev_vma) {
2130 /* panthor_vma_link() transfers the vm_bo ownership to
2131 * the VMA object. Since the vm_bo we're passing is still
2132 * owned by the old mapping which will be released when this
2133 * mapping is destroyed, we need to grab a ref here.
2134 */
2135 panthor_vma_link(vm, prev_vma,
2136 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2137 }
2138
2139 if (next_vma) {
2140 panthor_vma_link(vm, next_vma,
2141 drm_gpuvm_bo_get(op->remap.unmap->va->vm_bo));
2142 }
2143
2144 panthor_vma_unlink(vm, unmap_vma);
2145 return 0;
2146 }
2147
panthor_gpuva_sm_step_unmap(struct drm_gpuva_op * op,void * priv)2148 static int panthor_gpuva_sm_step_unmap(struct drm_gpuva_op *op,
2149 void *priv)
2150 {
2151 struct panthor_vma *unmap_vma = container_of(op->unmap.va, struct panthor_vma, base);
2152 struct panthor_vm *vm = priv;
2153 int ret;
2154
2155 ret = panthor_vm_unmap_pages(vm, unmap_vma->base.va.addr,
2156 unmap_vma->base.va.range);
2157 if (drm_WARN_ON(&vm->ptdev->base, ret))
2158 return ret;
2159
2160 drm_gpuva_unmap(&op->unmap);
2161 panthor_vma_unlink(vm, unmap_vma);
2162 return 0;
2163 }
2164
2165 static const struct drm_gpuvm_ops panthor_gpuvm_ops = {
2166 .vm_free = panthor_vm_free,
2167 .sm_step_map = panthor_gpuva_sm_step_map,
2168 .sm_step_remap = panthor_gpuva_sm_step_remap,
2169 .sm_step_unmap = panthor_gpuva_sm_step_unmap,
2170 };
2171
2172 /**
2173 * panthor_vm_resv() - Get the dma_resv object attached to a VM.
2174 * @vm: VM to get the dma_resv of.
2175 *
2176 * Return: A dma_resv object.
2177 */
panthor_vm_resv(struct panthor_vm * vm)2178 struct dma_resv *panthor_vm_resv(struct panthor_vm *vm)
2179 {
2180 return drm_gpuvm_resv(&vm->base);
2181 }
2182
panthor_vm_root_gem(struct panthor_vm * vm)2183 struct drm_gem_object *panthor_vm_root_gem(struct panthor_vm *vm)
2184 {
2185 if (!vm)
2186 return NULL;
2187
2188 return vm->base.r_obj;
2189 }
2190
2191 static int
panthor_vm_exec_op(struct panthor_vm * vm,struct panthor_vm_op_ctx * op,bool flag_vm_unusable_on_failure)2192 panthor_vm_exec_op(struct panthor_vm *vm, struct panthor_vm_op_ctx *op,
2193 bool flag_vm_unusable_on_failure)
2194 {
2195 u32 op_type = op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK;
2196 int ret;
2197
2198 if (op_type == DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY)
2199 return 0;
2200
2201 mutex_lock(&vm->op_lock);
2202 vm->op_ctx = op;
2203 switch (op_type) {
2204 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP: {
2205 const struct drm_gpuvm_map_req map_req = {
2206 .map.va.addr = op->va.addr,
2207 .map.va.range = op->va.range,
2208 .map.gem.obj = op->map.vm_bo->obj,
2209 .map.gem.offset = op->map.bo_offset,
2210 };
2211
2212 if (vm->unusable) {
2213 ret = -EINVAL;
2214 break;
2215 }
2216
2217 ret = drm_gpuvm_sm_map(&vm->base, vm, &map_req);
2218 break;
2219 }
2220
2221 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2222 ret = drm_gpuvm_sm_unmap(&vm->base, vm, op->va.addr, op->va.range);
2223 break;
2224
2225 default:
2226 ret = -EINVAL;
2227 break;
2228 }
2229
2230 if (ret && flag_vm_unusable_on_failure)
2231 vm->unusable = true;
2232
2233 vm->op_ctx = NULL;
2234 mutex_unlock(&vm->op_lock);
2235
2236 return ret;
2237 }
2238
2239 static struct dma_fence *
panthor_vm_bind_run_job(struct drm_sched_job * sched_job)2240 panthor_vm_bind_run_job(struct drm_sched_job *sched_job)
2241 {
2242 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2243 bool cookie;
2244 int ret;
2245
2246 /* Not only we report an error whose result is propagated to the
2247 * drm_sched finished fence, but we also flag the VM as unusable, because
2248 * a failure in the async VM_BIND results in an inconsistent state. VM needs
2249 * to be destroyed and recreated.
2250 */
2251 cookie = dma_fence_begin_signalling();
2252 ret = panthor_vm_exec_op(job->vm, &job->ctx, true);
2253 dma_fence_end_signalling(cookie);
2254
2255 return ret ? ERR_PTR(ret) : NULL;
2256 }
2257
panthor_vm_bind_job_release(struct kref * kref)2258 static void panthor_vm_bind_job_release(struct kref *kref)
2259 {
2260 struct panthor_vm_bind_job *job = container_of(kref, struct panthor_vm_bind_job, refcount);
2261
2262 if (job->base.s_fence)
2263 drm_sched_job_cleanup(&job->base);
2264
2265 panthor_vm_cleanup_op_ctx(&job->ctx, job->vm);
2266 panthor_vm_put(job->vm);
2267 kfree(job);
2268 }
2269
2270 /**
2271 * panthor_vm_bind_job_put() - Release a VM_BIND job reference
2272 * @sched_job: Job to release the reference on.
2273 */
panthor_vm_bind_job_put(struct drm_sched_job * sched_job)2274 void panthor_vm_bind_job_put(struct drm_sched_job *sched_job)
2275 {
2276 struct panthor_vm_bind_job *job =
2277 container_of(sched_job, struct panthor_vm_bind_job, base);
2278
2279 if (sched_job)
2280 kref_put(&job->refcount, panthor_vm_bind_job_release);
2281 }
2282
2283 static void
panthor_vm_bind_free_job(struct drm_sched_job * sched_job)2284 panthor_vm_bind_free_job(struct drm_sched_job *sched_job)
2285 {
2286 struct panthor_vm_bind_job *job =
2287 container_of(sched_job, struct panthor_vm_bind_job, base);
2288
2289 drm_sched_job_cleanup(sched_job);
2290
2291 /* Do the heavy cleanups asynchronously, so we're out of the
2292 * dma-signaling path and can acquire dma-resv locks safely.
2293 */
2294 queue_work(panthor_cleanup_wq, &job->cleanup_op_ctx_work);
2295 }
2296
2297 static enum drm_gpu_sched_stat
panthor_vm_bind_timedout_job(struct drm_sched_job * sched_job)2298 panthor_vm_bind_timedout_job(struct drm_sched_job *sched_job)
2299 {
2300 WARN(1, "VM_BIND ops are synchronous for now, there should be no timeout!");
2301 return DRM_GPU_SCHED_STAT_RESET;
2302 }
2303
2304 static const struct drm_sched_backend_ops panthor_vm_bind_ops = {
2305 .run_job = panthor_vm_bind_run_job,
2306 .free_job = panthor_vm_bind_free_job,
2307 .timedout_job = panthor_vm_bind_timedout_job,
2308 };
2309
2310 /**
2311 * panthor_vm_create() - Create a VM
2312 * @ptdev: Device.
2313 * @for_mcu: True if this is the FW MCU VM.
2314 * @kernel_va_start: Start of the range reserved for kernel BO mapping.
2315 * @kernel_va_size: Size of the range reserved for kernel BO mapping.
2316 * @auto_kernel_va_start: Start of the auto-VA kernel range.
2317 * @auto_kernel_va_size: Size of the auto-VA kernel range.
2318 *
2319 * Return: A valid pointer on success, an ERR_PTR() otherwise.
2320 */
2321 struct panthor_vm *
panthor_vm_create(struct panthor_device * ptdev,bool for_mcu,u64 kernel_va_start,u64 kernel_va_size,u64 auto_kernel_va_start,u64 auto_kernel_va_size)2322 panthor_vm_create(struct panthor_device *ptdev, bool for_mcu,
2323 u64 kernel_va_start, u64 kernel_va_size,
2324 u64 auto_kernel_va_start, u64 auto_kernel_va_size)
2325 {
2326 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2327 u32 pa_bits = GPU_MMU_FEATURES_PA_BITS(ptdev->gpu_info.mmu_features);
2328 u64 full_va_range = 1ull << va_bits;
2329 struct drm_gem_object *dummy_gem;
2330 struct drm_gpu_scheduler *sched;
2331 const struct drm_sched_init_args sched_args = {
2332 .ops = &panthor_vm_bind_ops,
2333 .submit_wq = ptdev->mmu->vm.wq,
2334 .num_rqs = 1,
2335 .credit_limit = 1,
2336 /* Bind operations are synchronous for now, no timeout needed. */
2337 .timeout = MAX_SCHEDULE_TIMEOUT,
2338 .name = "panthor-vm-bind",
2339 .dev = ptdev->base.dev,
2340 };
2341 struct io_pgtable_cfg pgtbl_cfg;
2342 u64 mair, min_va, va_range;
2343 struct panthor_vm *vm;
2344 int ret;
2345
2346 vm = kzalloc(sizeof(*vm), GFP_KERNEL);
2347 if (!vm)
2348 return ERR_PTR(-ENOMEM);
2349
2350 /* We allocate a dummy GEM for the VM. */
2351 dummy_gem = drm_gpuvm_resv_object_alloc(&ptdev->base);
2352 if (!dummy_gem) {
2353 ret = -ENOMEM;
2354 goto err_free_vm;
2355 }
2356
2357 mutex_init(&vm->heaps.lock);
2358 vm->for_mcu = for_mcu;
2359 vm->ptdev = ptdev;
2360 mutex_init(&vm->op_lock);
2361
2362 if (for_mcu) {
2363 /* CSF MCU is a cortex M7, and can only address 4G */
2364 min_va = 0;
2365 va_range = SZ_4G;
2366 } else {
2367 min_va = 0;
2368 va_range = full_va_range;
2369 }
2370
2371 mutex_init(&vm->mm_lock);
2372 drm_mm_init(&vm->mm, kernel_va_start, kernel_va_size);
2373 vm->kernel_auto_va.start = auto_kernel_va_start;
2374 vm->kernel_auto_va.end = vm->kernel_auto_va.start + auto_kernel_va_size - 1;
2375
2376 INIT_LIST_HEAD(&vm->node);
2377 INIT_LIST_HEAD(&vm->as.lru_node);
2378 vm->as.id = -1;
2379 refcount_set(&vm->as.active_cnt, 0);
2380
2381 pgtbl_cfg = (struct io_pgtable_cfg) {
2382 .pgsize_bitmap = SZ_4K | SZ_2M,
2383 .ias = va_bits,
2384 .oas = pa_bits,
2385 .coherent_walk = ptdev->coherent,
2386 .tlb = &mmu_tlb_ops,
2387 .iommu_dev = ptdev->base.dev,
2388 .alloc = alloc_pt,
2389 .free = free_pt,
2390 };
2391
2392 vm->pgtbl_ops = alloc_io_pgtable_ops(ARM_64_LPAE_S1, &pgtbl_cfg, vm);
2393 if (!vm->pgtbl_ops) {
2394 ret = -EINVAL;
2395 goto err_mm_takedown;
2396 }
2397
2398 ret = drm_sched_init(&vm->sched, &sched_args);
2399 if (ret)
2400 goto err_free_io_pgtable;
2401
2402 sched = &vm->sched;
2403 ret = drm_sched_entity_init(&vm->entity, 0, &sched, 1, NULL);
2404 if (ret)
2405 goto err_sched_fini;
2406
2407 mair = io_pgtable_ops_to_pgtable(vm->pgtbl_ops)->cfg.arm_lpae_s1_cfg.mair;
2408 vm->memattr = mair_to_memattr(mair, ptdev->coherent);
2409
2410 mutex_lock(&ptdev->mmu->vm.lock);
2411 list_add_tail(&vm->node, &ptdev->mmu->vm.list);
2412
2413 /* If a reset is in progress, stop the scheduler. */
2414 if (ptdev->mmu->vm.reset_in_progress)
2415 panthor_vm_stop(vm);
2416 mutex_unlock(&ptdev->mmu->vm.lock);
2417
2418 /* We intentionally leave the reserved range to zero, because we want kernel VMAs
2419 * to be handled the same way user VMAs are.
2420 */
2421 drm_gpuvm_init(&vm->base, for_mcu ? "panthor-MCU-VM" : "panthor-GPU-VM",
2422 DRM_GPUVM_RESV_PROTECTED | DRM_GPUVM_IMMEDIATE_MODE,
2423 &ptdev->base, dummy_gem, min_va, va_range, 0, 0,
2424 &panthor_gpuvm_ops);
2425 drm_gem_object_put(dummy_gem);
2426 return vm;
2427
2428 err_sched_fini:
2429 drm_sched_fini(&vm->sched);
2430
2431 err_free_io_pgtable:
2432 free_io_pgtable_ops(vm->pgtbl_ops);
2433
2434 err_mm_takedown:
2435 drm_mm_takedown(&vm->mm);
2436 drm_gem_object_put(dummy_gem);
2437
2438 err_free_vm:
2439 kfree(vm);
2440 return ERR_PTR(ret);
2441 }
2442
2443 static int
panthor_vm_bind_prepare_op_ctx(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op,struct panthor_vm_op_ctx * op_ctx)2444 panthor_vm_bind_prepare_op_ctx(struct drm_file *file,
2445 struct panthor_vm *vm,
2446 const struct drm_panthor_vm_bind_op *op,
2447 struct panthor_vm_op_ctx *op_ctx)
2448 {
2449 ssize_t vm_pgsz = panthor_vm_page_size(vm);
2450 struct drm_gem_object *gem;
2451 int ret;
2452
2453 /* Aligned on page size. */
2454 if (!IS_ALIGNED(op->va | op->size | op->bo_offset, vm_pgsz))
2455 return -EINVAL;
2456
2457 switch (op->flags & DRM_PANTHOR_VM_BIND_OP_TYPE_MASK) {
2458 case DRM_PANTHOR_VM_BIND_OP_TYPE_MAP:
2459 gem = drm_gem_object_lookup(file, op->bo_handle);
2460 ret = panthor_vm_prepare_map_op_ctx(op_ctx, vm,
2461 gem ? to_panthor_bo(gem) : NULL,
2462 op->bo_offset,
2463 op->size,
2464 op->va,
2465 op->flags);
2466 drm_gem_object_put(gem);
2467 return ret;
2468
2469 case DRM_PANTHOR_VM_BIND_OP_TYPE_UNMAP:
2470 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2471 return -EINVAL;
2472
2473 if (op->bo_handle || op->bo_offset)
2474 return -EINVAL;
2475
2476 return panthor_vm_prepare_unmap_op_ctx(op_ctx, vm, op->va, op->size);
2477
2478 case DRM_PANTHOR_VM_BIND_OP_TYPE_SYNC_ONLY:
2479 if (op->flags & ~DRM_PANTHOR_VM_BIND_OP_TYPE_MASK)
2480 return -EINVAL;
2481
2482 if (op->bo_handle || op->bo_offset)
2483 return -EINVAL;
2484
2485 if (op->va || op->size)
2486 return -EINVAL;
2487
2488 if (!op->syncs.count)
2489 return -EINVAL;
2490
2491 panthor_vm_prepare_sync_only_op_ctx(op_ctx, vm);
2492 return 0;
2493
2494 default:
2495 return -EINVAL;
2496 }
2497 }
2498
panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct * work)2499 static void panthor_vm_bind_job_cleanup_op_ctx_work(struct work_struct *work)
2500 {
2501 struct panthor_vm_bind_job *job =
2502 container_of(work, struct panthor_vm_bind_job, cleanup_op_ctx_work);
2503
2504 panthor_vm_bind_job_put(&job->base);
2505 }
2506
2507 /**
2508 * panthor_vm_bind_job_create() - Create a VM_BIND job
2509 * @file: File.
2510 * @vm: VM targeted by the VM_BIND job.
2511 * @op: VM operation data.
2512 *
2513 * Return: A valid pointer on success, an ERR_PTR() otherwise.
2514 */
2515 struct drm_sched_job *
panthor_vm_bind_job_create(struct drm_file * file,struct panthor_vm * vm,const struct drm_panthor_vm_bind_op * op)2516 panthor_vm_bind_job_create(struct drm_file *file,
2517 struct panthor_vm *vm,
2518 const struct drm_panthor_vm_bind_op *op)
2519 {
2520 struct panthor_vm_bind_job *job;
2521 int ret;
2522
2523 if (!vm)
2524 return ERR_PTR(-EINVAL);
2525
2526 if (vm->destroyed || vm->unusable)
2527 return ERR_PTR(-EINVAL);
2528
2529 job = kzalloc(sizeof(*job), GFP_KERNEL);
2530 if (!job)
2531 return ERR_PTR(-ENOMEM);
2532
2533 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &job->ctx);
2534 if (ret) {
2535 kfree(job);
2536 return ERR_PTR(ret);
2537 }
2538
2539 INIT_WORK(&job->cleanup_op_ctx_work, panthor_vm_bind_job_cleanup_op_ctx_work);
2540 kref_init(&job->refcount);
2541 job->vm = panthor_vm_get(vm);
2542
2543 ret = drm_sched_job_init(&job->base, &vm->entity, 1, vm, file->client_id);
2544 if (ret)
2545 goto err_put_job;
2546
2547 return &job->base;
2548
2549 err_put_job:
2550 panthor_vm_bind_job_put(&job->base);
2551 return ERR_PTR(ret);
2552 }
2553
2554 /**
2555 * panthor_vm_bind_job_prepare_resvs() - Prepare VM_BIND job dma_resvs
2556 * @exec: The locking/preparation context.
2557 * @sched_job: The job to prepare resvs on.
2558 *
2559 * Locks and prepare the VM resv.
2560 *
2561 * If this is a map operation, locks and prepares the GEM resv.
2562 *
2563 * Return: 0 on success, a negative error code otherwise.
2564 */
panthor_vm_bind_job_prepare_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2565 int panthor_vm_bind_job_prepare_resvs(struct drm_exec *exec,
2566 struct drm_sched_job *sched_job)
2567 {
2568 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2569 int ret;
2570
2571 /* Acquire the VM lock an reserve a slot for this VM bind job. */
2572 ret = drm_gpuvm_prepare_vm(&job->vm->base, exec, 1);
2573 if (ret)
2574 return ret;
2575
2576 if (job->ctx.map.vm_bo) {
2577 /* Lock/prepare the GEM being mapped. */
2578 ret = drm_exec_prepare_obj(exec, job->ctx.map.vm_bo->obj, 1);
2579 if (ret)
2580 return ret;
2581 }
2582
2583 return 0;
2584 }
2585
2586 /**
2587 * panthor_vm_bind_job_update_resvs() - Update the resv objects touched by a job
2588 * @exec: drm_exec context.
2589 * @sched_job: Job to update the resvs on.
2590 */
panthor_vm_bind_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)2591 void panthor_vm_bind_job_update_resvs(struct drm_exec *exec,
2592 struct drm_sched_job *sched_job)
2593 {
2594 struct panthor_vm_bind_job *job = container_of(sched_job, struct panthor_vm_bind_job, base);
2595
2596 /* Explicit sync => we just register our job finished fence as bookkeep. */
2597 drm_gpuvm_resv_add_fence(&job->vm->base, exec,
2598 &sched_job->s_fence->finished,
2599 DMA_RESV_USAGE_BOOKKEEP,
2600 DMA_RESV_USAGE_BOOKKEEP);
2601 }
2602
panthor_vm_update_resvs(struct panthor_vm * vm,struct drm_exec * exec,struct dma_fence * fence,enum dma_resv_usage private_usage,enum dma_resv_usage extobj_usage)2603 void panthor_vm_update_resvs(struct panthor_vm *vm, struct drm_exec *exec,
2604 struct dma_fence *fence,
2605 enum dma_resv_usage private_usage,
2606 enum dma_resv_usage extobj_usage)
2607 {
2608 drm_gpuvm_resv_add_fence(&vm->base, exec, fence, private_usage, extobj_usage);
2609 }
2610
2611 /**
2612 * panthor_vm_bind_exec_sync_op() - Execute a VM_BIND operation synchronously.
2613 * @file: File.
2614 * @vm: VM targeted by the VM operation.
2615 * @op: Data describing the VM operation.
2616 *
2617 * Return: 0 on success, a negative error code otherwise.
2618 */
panthor_vm_bind_exec_sync_op(struct drm_file * file,struct panthor_vm * vm,struct drm_panthor_vm_bind_op * op)2619 int panthor_vm_bind_exec_sync_op(struct drm_file *file,
2620 struct panthor_vm *vm,
2621 struct drm_panthor_vm_bind_op *op)
2622 {
2623 struct panthor_vm_op_ctx op_ctx;
2624 int ret;
2625
2626 /* No sync objects allowed on synchronous operations. */
2627 if (op->syncs.count)
2628 return -EINVAL;
2629
2630 if (!op->size)
2631 return 0;
2632
2633 ret = panthor_vm_bind_prepare_op_ctx(file, vm, op, &op_ctx);
2634 if (ret)
2635 return ret;
2636
2637 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2638 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2639
2640 return ret;
2641 }
2642
2643 /**
2644 * panthor_vm_map_bo_range() - Map a GEM object range to a VM
2645 * @vm: VM to map the GEM to.
2646 * @bo: GEM object to map.
2647 * @offset: Offset in the GEM object.
2648 * @size: Size to map.
2649 * @va: Virtual address to map the object to.
2650 * @flags: Combination of drm_panthor_vm_bind_op_flags flags.
2651 * Only map-related flags are valid.
2652 *
2653 * Internal use only. For userspace requests, use
2654 * panthor_vm_bind_exec_sync_op() instead.
2655 *
2656 * Return: 0 on success, a negative error code otherwise.
2657 */
panthor_vm_map_bo_range(struct panthor_vm * vm,struct panthor_gem_object * bo,u64 offset,u64 size,u64 va,u32 flags)2658 int panthor_vm_map_bo_range(struct panthor_vm *vm, struct panthor_gem_object *bo,
2659 u64 offset, u64 size, u64 va, u32 flags)
2660 {
2661 struct panthor_vm_op_ctx op_ctx;
2662 int ret;
2663
2664 ret = panthor_vm_prepare_map_op_ctx(&op_ctx, vm, bo, offset, size, va, flags);
2665 if (ret)
2666 return ret;
2667
2668 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2669 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2670
2671 return ret;
2672 }
2673
2674 /**
2675 * panthor_vm_unmap_range() - Unmap a portion of the VA space
2676 * @vm: VM to unmap the region from.
2677 * @va: Virtual address to unmap. Must be 4k aligned.
2678 * @size: Size of the region to unmap. Must be 4k aligned.
2679 *
2680 * Internal use only. For userspace requests, use
2681 * panthor_vm_bind_exec_sync_op() instead.
2682 *
2683 * Return: 0 on success, a negative error code otherwise.
2684 */
panthor_vm_unmap_range(struct panthor_vm * vm,u64 va,u64 size)2685 int panthor_vm_unmap_range(struct panthor_vm *vm, u64 va, u64 size)
2686 {
2687 struct panthor_vm_op_ctx op_ctx;
2688 int ret;
2689
2690 ret = panthor_vm_prepare_unmap_op_ctx(&op_ctx, vm, va, size);
2691 if (ret)
2692 return ret;
2693
2694 ret = panthor_vm_exec_op(vm, &op_ctx, false);
2695 panthor_vm_cleanup_op_ctx(&op_ctx, vm);
2696
2697 return ret;
2698 }
2699
2700 /**
2701 * panthor_vm_prepare_mapped_bos_resvs() - Prepare resvs on VM BOs.
2702 * @exec: Locking/preparation context.
2703 * @vm: VM targeted by the GPU job.
2704 * @slot_count: Number of slots to reserve.
2705 *
2706 * GPU jobs assume all BOs bound to the VM at the time the job is submitted
2707 * are available when the job is executed. In order to guarantee that, we
2708 * need to reserve a slot on all BOs mapped to a VM and update this slot with
2709 * the job fence after its submission.
2710 *
2711 * Return: 0 on success, a negative error code otherwise.
2712 */
panthor_vm_prepare_mapped_bos_resvs(struct drm_exec * exec,struct panthor_vm * vm,u32 slot_count)2713 int panthor_vm_prepare_mapped_bos_resvs(struct drm_exec *exec, struct panthor_vm *vm,
2714 u32 slot_count)
2715 {
2716 int ret;
2717
2718 /* Acquire the VM lock and reserve a slot for this GPU job. */
2719 ret = drm_gpuvm_prepare_vm(&vm->base, exec, slot_count);
2720 if (ret)
2721 return ret;
2722
2723 return drm_gpuvm_prepare_objects(&vm->base, exec, slot_count);
2724 }
2725
2726 /**
2727 * panthor_mmu_unplug() - Unplug the MMU logic
2728 * @ptdev: Device.
2729 *
2730 * No access to the MMU regs should be done after this function is called.
2731 * We suspend the IRQ and disable all VMs to guarantee that.
2732 */
panthor_mmu_unplug(struct panthor_device * ptdev)2733 void panthor_mmu_unplug(struct panthor_device *ptdev)
2734 {
2735 if (!IS_ENABLED(CONFIG_PM) || pm_runtime_active(ptdev->base.dev))
2736 panthor_mmu_irq_suspend(&ptdev->mmu->irq);
2737
2738 mutex_lock(&ptdev->mmu->as.slots_lock);
2739 for (u32 i = 0; i < ARRAY_SIZE(ptdev->mmu->as.slots); i++) {
2740 struct panthor_vm *vm = ptdev->mmu->as.slots[i].vm;
2741
2742 if (vm) {
2743 drm_WARN_ON(&ptdev->base, panthor_mmu_as_disable(ptdev, i));
2744 panthor_vm_release_as_locked(vm);
2745 }
2746 }
2747 mutex_unlock(&ptdev->mmu->as.slots_lock);
2748 }
2749
panthor_mmu_release_wq(struct drm_device * ddev,void * res)2750 static void panthor_mmu_release_wq(struct drm_device *ddev, void *res)
2751 {
2752 destroy_workqueue(res);
2753 }
2754
2755 /**
2756 * panthor_mmu_init() - Initialize the MMU logic.
2757 * @ptdev: Device.
2758 *
2759 * Return: 0 on success, a negative error code otherwise.
2760 */
panthor_mmu_init(struct panthor_device * ptdev)2761 int panthor_mmu_init(struct panthor_device *ptdev)
2762 {
2763 u32 va_bits = GPU_MMU_FEATURES_VA_BITS(ptdev->gpu_info.mmu_features);
2764 struct panthor_mmu *mmu;
2765 int ret, irq;
2766
2767 mmu = drmm_kzalloc(&ptdev->base, sizeof(*mmu), GFP_KERNEL);
2768 if (!mmu)
2769 return -ENOMEM;
2770
2771 INIT_LIST_HEAD(&mmu->as.lru_list);
2772
2773 ret = drmm_mutex_init(&ptdev->base, &mmu->as.slots_lock);
2774 if (ret)
2775 return ret;
2776
2777 INIT_LIST_HEAD(&mmu->vm.list);
2778 ret = drmm_mutex_init(&ptdev->base, &mmu->vm.lock);
2779 if (ret)
2780 return ret;
2781
2782 ptdev->mmu = mmu;
2783
2784 irq = platform_get_irq_byname(to_platform_device(ptdev->base.dev), "mmu");
2785 if (irq <= 0)
2786 return -ENODEV;
2787
2788 ret = panthor_request_mmu_irq(ptdev, &mmu->irq, irq,
2789 panthor_mmu_fault_mask(ptdev, ~0));
2790 if (ret)
2791 return ret;
2792
2793 mmu->vm.wq = alloc_workqueue("panthor-vm-bind", WQ_UNBOUND, 0);
2794 if (!mmu->vm.wq)
2795 return -ENOMEM;
2796
2797 /* On 32-bit kernels, the VA space is limited by the io_pgtable_ops abstraction,
2798 * which passes iova as an unsigned long. Patch the mmu_features to reflect this
2799 * limitation.
2800 */
2801 if (va_bits > BITS_PER_LONG) {
2802 ptdev->gpu_info.mmu_features &= ~GENMASK(7, 0);
2803 ptdev->gpu_info.mmu_features |= BITS_PER_LONG;
2804 }
2805
2806 return drmm_add_action_or_reset(&ptdev->base, panthor_mmu_release_wq, mmu->vm.wq);
2807 }
2808
2809 #ifdef CONFIG_DEBUG_FS
show_vm_gpuvas(struct panthor_vm * vm,struct seq_file * m)2810 static int show_vm_gpuvas(struct panthor_vm *vm, struct seq_file *m)
2811 {
2812 int ret;
2813
2814 mutex_lock(&vm->op_lock);
2815 ret = drm_debugfs_gpuva_info(m, &vm->base);
2816 mutex_unlock(&vm->op_lock);
2817
2818 return ret;
2819 }
2820
show_each_vm(struct seq_file * m,void * arg)2821 static int show_each_vm(struct seq_file *m, void *arg)
2822 {
2823 struct drm_info_node *node = (struct drm_info_node *)m->private;
2824 struct drm_device *ddev = node->minor->dev;
2825 struct panthor_device *ptdev = container_of(ddev, struct panthor_device, base);
2826 int (*show)(struct panthor_vm *, struct seq_file *) = node->info_ent->data;
2827 struct panthor_vm *vm;
2828 int ret = 0;
2829
2830 mutex_lock(&ptdev->mmu->vm.lock);
2831 list_for_each_entry(vm, &ptdev->mmu->vm.list, node) {
2832 ret = show(vm, m);
2833 if (ret < 0)
2834 break;
2835
2836 seq_puts(m, "\n");
2837 }
2838 mutex_unlock(&ptdev->mmu->vm.lock);
2839
2840 return ret;
2841 }
2842
2843 static struct drm_info_list panthor_mmu_debugfs_list[] = {
2844 DRM_DEBUGFS_GPUVA_INFO(show_each_vm, show_vm_gpuvas),
2845 };
2846
2847 /**
2848 * panthor_mmu_debugfs_init() - Initialize MMU debugfs entries
2849 * @minor: Minor.
2850 */
panthor_mmu_debugfs_init(struct drm_minor * minor)2851 void panthor_mmu_debugfs_init(struct drm_minor *minor)
2852 {
2853 drm_debugfs_create_files(panthor_mmu_debugfs_list,
2854 ARRAY_SIZE(panthor_mmu_debugfs_list),
2855 minor->debugfs_root, minor);
2856 }
2857 #endif /* CONFIG_DEBUG_FS */
2858
2859 /**
2860 * panthor_mmu_pt_cache_init() - Initialize the page table cache.
2861 *
2862 * Return: 0 on success, a negative error code otherwise.
2863 */
panthor_mmu_pt_cache_init(void)2864 int panthor_mmu_pt_cache_init(void)
2865 {
2866 pt_cache = kmem_cache_create("panthor-mmu-pt", SZ_4K, SZ_4K, 0, NULL);
2867 if (!pt_cache)
2868 return -ENOMEM;
2869
2870 return 0;
2871 }
2872
2873 /**
2874 * panthor_mmu_pt_cache_fini() - Destroy the page table cache.
2875 */
panthor_mmu_pt_cache_fini(void)2876 void panthor_mmu_pt_cache_fini(void)
2877 {
2878 kmem_cache_destroy(pt_cache);
2879 }
2880