1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5 #ifndef __ASM_PGTABLE_H
6 #define __ASM_PGTABLE_H
7
8 #include <asm/bug.h>
9 #include <asm/proc-fns.h>
10
11 #include <asm/memory.h>
12 #include <asm/mte.h>
13 #include <asm/pgtable-hwdef.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/tlbflush.h>
16
17 /*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap
22 */
23 #define VMALLOC_START (MODULES_END)
24 #if VA_BITS == VA_BITS_MIN
25 #define VMALLOC_END (VMEMMAP_START - SZ_8M)
26 #else
27 #define VMEMMAP_UNUSED_NPAGES ((_PAGE_OFFSET(vabits_actual) - PAGE_OFFSET) >> PAGE_SHIFT)
28 #define VMALLOC_END (VMEMMAP_START + VMEMMAP_UNUSED_NPAGES * sizeof(struct page) - SZ_8M)
29 #endif
30
31 #define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
32
33 #ifndef __ASSEMBLER__
34
35 #include <asm/cmpxchg.h>
36 #include <asm/fixmap.h>
37 #include <asm/por.h>
38 #include <linux/mmdebug.h>
39 #include <linux/mm_types.h>
40 #include <linux/sched.h>
41 #include <linux/page_table_check.h>
42
emit_pte_barriers(void)43 static inline void emit_pte_barriers(void)
44 {
45 /*
46 * These barriers are emitted under certain conditions after a pte entry
47 * was modified (see e.g. __set_pte_complete()). The dsb makes the store
48 * visible to the table walker. The isb ensures that any previous
49 * speculative "invalid translation" marker that is in the CPU's
50 * pipeline gets cleared, so that any access to that address after
51 * setting the pte to valid won't cause a spurious fault. If the thread
52 * gets preempted after storing to the pgtable but before emitting these
53 * barriers, __switch_to() emits a dsb which ensure the walker gets to
54 * see the store. There is no guarantee of an isb being issued though.
55 * This is safe because it will still get issued (albeit on a
56 * potentially different CPU) when the thread starts running again,
57 * before any access to the address.
58 */
59 dsb(ishst);
60 isb();
61 }
62
queue_pte_barriers(void)63 static inline void queue_pte_barriers(void)
64 {
65 unsigned long flags;
66
67 if (in_interrupt()) {
68 emit_pte_barriers();
69 return;
70 }
71
72 flags = read_thread_flags();
73
74 if (flags & BIT(TIF_LAZY_MMU)) {
75 /* Avoid the atomic op if already set. */
76 if (!(flags & BIT(TIF_LAZY_MMU_PENDING)))
77 set_thread_flag(TIF_LAZY_MMU_PENDING);
78 } else {
79 emit_pte_barriers();
80 }
81 }
82
83 #define __HAVE_ARCH_ENTER_LAZY_MMU_MODE
arch_enter_lazy_mmu_mode(void)84 static inline void arch_enter_lazy_mmu_mode(void)
85 {
86 /*
87 * lazy_mmu_mode is not supposed to permit nesting. But in practice this
88 * does happen with CONFIG_DEBUG_PAGEALLOC, where a page allocation
89 * inside a lazy_mmu_mode section (such as zap_pte_range()) will change
90 * permissions on the linear map with apply_to_page_range(), which
91 * re-enters lazy_mmu_mode. So we tolerate nesting in our
92 * implementation. The first call to arch_leave_lazy_mmu_mode() will
93 * flush and clear the flag such that the remainder of the work in the
94 * outer nest behaves as if outside of lazy mmu mode. This is safe and
95 * keeps tracking simple.
96 */
97
98 if (in_interrupt())
99 return;
100
101 set_thread_flag(TIF_LAZY_MMU);
102 }
103
arch_flush_lazy_mmu_mode(void)104 static inline void arch_flush_lazy_mmu_mode(void)
105 {
106 if (in_interrupt())
107 return;
108
109 if (test_and_clear_thread_flag(TIF_LAZY_MMU_PENDING))
110 emit_pte_barriers();
111 }
112
arch_leave_lazy_mmu_mode(void)113 static inline void arch_leave_lazy_mmu_mode(void)
114 {
115 if (in_interrupt())
116 return;
117
118 arch_flush_lazy_mmu_mode();
119 clear_thread_flag(TIF_LAZY_MMU);
120 }
121
122 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
123 #define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
124
125 /* Set stride and tlb_level in flush_*_tlb_range */
126 #define flush_pmd_tlb_range(vma, addr, end) \
127 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
128 #define flush_pud_tlb_range(vma, addr, end) \
129 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
130 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
131
132 /*
133 * We use local TLB invalidation instruction when reusing page in
134 * write protection fault handler to avoid TLBI broadcast in the hot
135 * path. This will cause spurious page faults if stale read-only TLB
136 * entries exist.
137 */
138 #define flush_tlb_fix_spurious_fault(vma, address, ptep) \
139 local_flush_tlb_page_nonotify(vma, address)
140
141 #define flush_tlb_fix_spurious_fault_pmd(vma, address, pmdp) \
142 local_flush_tlb_page_nonotify(vma, address)
143
144 /*
145 * ZERO_PAGE is a global shared page that is always zero: used
146 * for zero-mapped memory areas etc..
147 */
148 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
149 #define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page))
150
151 #define pte_ERROR(e) \
152 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
153
154 #ifdef CONFIG_ARM64_PA_BITS_52
__pte_to_phys(pte_t pte)155 static inline phys_addr_t __pte_to_phys(pte_t pte)
156 {
157 pte_val(pte) &= ~PTE_MAYBE_SHARED;
158 return (pte_val(pte) & PTE_ADDR_LOW) |
159 ((pte_val(pte) & PTE_ADDR_HIGH) << PTE_ADDR_HIGH_SHIFT);
160 }
__phys_to_pte_val(phys_addr_t phys)161 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
162 {
163 return (phys | (phys >> PTE_ADDR_HIGH_SHIFT)) & PHYS_TO_PTE_ADDR_MASK;
164 }
165 #else
__pte_to_phys(pte_t pte)166 static inline phys_addr_t __pte_to_phys(pte_t pte)
167 {
168 return pte_val(pte) & PTE_ADDR_LOW;
169 }
170
__phys_to_pte_val(phys_addr_t phys)171 static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
172 {
173 return phys;
174 }
175 #endif
176
177 #define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT)
178 #define pfn_pte(pfn,prot) \
179 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
180
181 #define pte_none(pte) (!pte_val(pte))
182 #define __pte_clear(mm, addr, ptep) \
183 __set_pte(ptep, __pte(0))
184 #define pte_page(pte) (pfn_to_page(pte_pfn(pte)))
185
186 /*
187 * The following only work if pte_present(). Undefined behaviour otherwise.
188 */
189 #define pte_present(pte) (pte_valid(pte) || pte_present_invalid(pte))
190 #define pte_young(pte) (!!(pte_val(pte) & PTE_AF))
191 #define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL))
192 #define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE))
193 #define pte_rdonly(pte) (!!(pte_val(pte) & PTE_RDONLY))
194 #define pte_user(pte) (!!(pte_val(pte) & PTE_USER))
195 #define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN))
196 #define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT))
197 #define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \
198 PTE_ATTRINDX(MT_NORMAL_TAGGED))
199
200 #define pte_cont_addr_end(addr, end) \
201 ({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \
202 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
203 })
204
205 #define pmd_cont_addr_end(addr, end) \
206 ({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \
207 (__boundary - 1 < (end) - 1) ? __boundary : (end); \
208 })
209
210 #define pte_hw_dirty(pte) (pte_write(pte) && !pte_rdonly(pte))
211 #define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY))
212 #define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte))
213
214 #define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID))
215 #define pte_present_invalid(pte) \
216 ((pte_val(pte) & (PTE_VALID | PTE_PRESENT_INVALID)) == PTE_PRESENT_INVALID)
217 /*
218 * Execute-only user mappings do not have the PTE_USER bit set. All valid
219 * kernel mappings have the PTE_UXN bit set.
220 */
221 #define pte_valid_not_user(pte) \
222 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
223 /*
224 * Returns true if the pte is valid and has the contiguous bit set.
225 */
226 #define pte_valid_cont(pte) (pte_valid(pte) && pte_cont(pte))
227 /*
228 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
229 * so that we don't erroneously return false for pages that have been
230 * remapped as PROT_NONE but are yet to be flushed from the TLB.
231 * Note that we can't make any assumptions based on the state of the access
232 * flag, since __ptep_clear_flush_young() elides a DSB when invalidating the
233 * TLB.
234 */
235 #define pte_accessible(mm, pte) \
236 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
237
por_el0_allows_pkey(u8 pkey,bool write,bool execute)238 static inline bool por_el0_allows_pkey(u8 pkey, bool write, bool execute)
239 {
240 u64 por;
241
242 if (!system_supports_poe())
243 return true;
244
245 por = read_sysreg_s(SYS_POR_EL0);
246
247 if (write)
248 return por_elx_allows_write(por, pkey);
249
250 if (execute)
251 return por_elx_allows_exec(por, pkey);
252
253 return por_elx_allows_read(por, pkey);
254 }
255
256 /*
257 * p??_access_permitted() is true for valid user mappings (PTE_USER
258 * bit set, subject to the write permission check). For execute-only
259 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
260 * not set) must return false. PROT_NONE mappings do not have the
261 * PTE_VALID bit set.
262 */
263 #define pte_access_permitted_no_overlay(pte, write) \
264 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
265 #define pte_access_permitted(pte, write) \
266 (pte_access_permitted_no_overlay(pte, write) && \
267 por_el0_allows_pkey(FIELD_GET(PTE_PO_IDX_MASK, pte_val(pte)), write, false))
268 #define pmd_access_permitted(pmd, write) \
269 (pte_access_permitted(pmd_pte(pmd), (write)))
270 #define pud_access_permitted(pud, write) \
271 (pte_access_permitted(pud_pte(pud), (write)))
272
clear_pte_bit(pte_t pte,pgprot_t prot)273 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
274 {
275 pte_val(pte) &= ~pgprot_val(prot);
276 return pte;
277 }
278
set_pte_bit(pte_t pte,pgprot_t prot)279 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
280 {
281 pte_val(pte) |= pgprot_val(prot);
282 return pte;
283 }
284
clear_pmd_bit(pmd_t pmd,pgprot_t prot)285 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
286 {
287 pmd_val(pmd) &= ~pgprot_val(prot);
288 return pmd;
289 }
290
set_pmd_bit(pmd_t pmd,pgprot_t prot)291 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
292 {
293 pmd_val(pmd) |= pgprot_val(prot);
294 return pmd;
295 }
296
pte_mkwrite_novma(pte_t pte)297 static inline pte_t pte_mkwrite_novma(pte_t pte)
298 {
299 pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
300 if (pte_sw_dirty(pte))
301 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
302 return pte;
303 }
304
pte_mkclean(pte_t pte)305 static inline pte_t pte_mkclean(pte_t pte)
306 {
307 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
308 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
309
310 return pte;
311 }
312
pte_mkdirty(pte_t pte)313 static inline pte_t pte_mkdirty(pte_t pte)
314 {
315 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
316
317 if (pte_write(pte))
318 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
319
320 return pte;
321 }
322
pte_wrprotect(pte_t pte)323 static inline pte_t pte_wrprotect(pte_t pte)
324 {
325 /*
326 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
327 * clear), set the PTE_DIRTY bit.
328 */
329 if (pte_hw_dirty(pte))
330 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
331
332 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
333 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
334 return pte;
335 }
336
pte_mkold(pte_t pte)337 static inline pte_t pte_mkold(pte_t pte)
338 {
339 return clear_pte_bit(pte, __pgprot(PTE_AF));
340 }
341
pte_mkyoung(pte_t pte)342 static inline pte_t pte_mkyoung(pte_t pte)
343 {
344 return set_pte_bit(pte, __pgprot(PTE_AF));
345 }
346
pte_mkspecial(pte_t pte)347 static inline pte_t pte_mkspecial(pte_t pte)
348 {
349 return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
350 }
351
pte_mkcont(pte_t pte)352 static inline pte_t pte_mkcont(pte_t pte)
353 {
354 return set_pte_bit(pte, __pgprot(PTE_CONT));
355 }
356
pte_mknoncont(pte_t pte)357 static inline pte_t pte_mknoncont(pte_t pte)
358 {
359 return clear_pte_bit(pte, __pgprot(PTE_CONT));
360 }
361
pte_mkvalid(pte_t pte)362 static inline pte_t pte_mkvalid(pte_t pte)
363 {
364 return set_pte_bit(pte, __pgprot(PTE_VALID));
365 }
366
pte_mkinvalid(pte_t pte)367 static inline pte_t pte_mkinvalid(pte_t pte)
368 {
369 pte = set_pte_bit(pte, __pgprot(PTE_PRESENT_INVALID));
370 pte = clear_pte_bit(pte, __pgprot(PTE_VALID));
371 return pte;
372 }
373
pmd_mkcont(pmd_t pmd)374 static inline pmd_t pmd_mkcont(pmd_t pmd)
375 {
376 return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
377 }
378
pmd_mknoncont(pmd_t pmd)379 static inline pmd_t pmd_mknoncont(pmd_t pmd)
380 {
381 return __pmd(pmd_val(pmd) & ~PMD_SECT_CONT);
382 }
383
384 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_uffd_wp(pte_t pte)385 static inline int pte_uffd_wp(pte_t pte)
386 {
387 return !!(pte_val(pte) & PTE_UFFD_WP);
388 }
389
pte_mkuffd_wp(pte_t pte)390 static inline pte_t pte_mkuffd_wp(pte_t pte)
391 {
392 return pte_wrprotect(set_pte_bit(pte, __pgprot(PTE_UFFD_WP)));
393 }
394
pte_clear_uffd_wp(pte_t pte)395 static inline pte_t pte_clear_uffd_wp(pte_t pte)
396 {
397 return clear_pte_bit(pte, __pgprot(PTE_UFFD_WP));
398 }
399 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
400
__set_pte_nosync(pte_t * ptep,pte_t pte)401 static inline void __set_pte_nosync(pte_t *ptep, pte_t pte)
402 {
403 WRITE_ONCE(*ptep, pte);
404 }
405
__set_pte_complete(pte_t pte)406 static inline void __set_pte_complete(pte_t pte)
407 {
408 /*
409 * Only if the new pte is valid and kernel, otherwise TLB maintenance
410 * has the necessary barriers.
411 */
412 if (pte_valid_not_user(pte))
413 queue_pte_barriers();
414 }
415
__set_pte(pte_t * ptep,pte_t pte)416 static inline void __set_pte(pte_t *ptep, pte_t pte)
417 {
418 __set_pte_nosync(ptep, pte);
419 __set_pte_complete(pte);
420 }
421
__ptep_get(pte_t * ptep)422 static inline pte_t __ptep_get(pte_t *ptep)
423 {
424 return READ_ONCE(*ptep);
425 }
426
427 extern void __sync_icache_dcache(pte_t pteval);
428 bool pgattr_change_is_safe(pteval_t old, pteval_t new);
429
430 /*
431 * PTE bits configuration in the presence of hardware Dirty Bit Management
432 * (PTE_WRITE == PTE_DBM):
433 *
434 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw)
435 * 0 0 | 1 0 0
436 * 0 1 | 1 1 0
437 * 1 0 | 1 0 1
438 * 1 1 | 0 1 x
439 *
440 * When hardware DBM is not present, the software PTE_DIRTY bit is updated via
441 * the page fault mechanism. Checking the dirty status of a pte becomes:
442 *
443 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
444 */
445
__check_safe_pte_update(struct mm_struct * mm,pte_t * ptep,pte_t pte)446 static inline void __check_safe_pte_update(struct mm_struct *mm, pte_t *ptep,
447 pte_t pte)
448 {
449 pte_t old_pte;
450
451 if (!IS_ENABLED(CONFIG_DEBUG_VM))
452 return;
453
454 old_pte = __ptep_get(ptep);
455
456 if (!pte_valid(old_pte) || !pte_valid(pte))
457 return;
458 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
459 return;
460
461 /*
462 * Check for potential race with hardware updates of the pte
463 * (__ptep_set_access_flags safely changes valid ptes without going
464 * through an invalid entry).
465 */
466 VM_WARN_ONCE(!pte_young(pte),
467 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
468 __func__, pte_val(old_pte), pte_val(pte));
469 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
470 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
471 __func__, pte_val(old_pte), pte_val(pte));
472 VM_WARN_ONCE(!pgattr_change_is_safe(pte_val(old_pte), pte_val(pte)),
473 "%s: unsafe attribute change: 0x%016llx -> 0x%016llx",
474 __func__, pte_val(old_pte), pte_val(pte));
475 }
476
__sync_cache_and_tags(pte_t pte,unsigned int nr_pages)477 static inline void __sync_cache_and_tags(pte_t pte, unsigned int nr_pages)
478 {
479 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
480 __sync_icache_dcache(pte);
481
482 /*
483 * If the PTE would provide user space access to the tags associated
484 * with it then ensure that the MTE tags are synchronised. Although
485 * pte_access_permitted_no_overlay() returns false for exec only
486 * mappings, they don't expose tags (instruction fetches don't check
487 * tags).
488 */
489 if (system_supports_mte() && pte_access_permitted_no_overlay(pte, false) &&
490 !pte_special(pte) && pte_tagged(pte))
491 mte_sync_tags(pte, nr_pages);
492 }
493
494 /*
495 * Select all bits except the pfn
496 */
497 #define pte_pgprot pte_pgprot
pte_pgprot(pte_t pte)498 static inline pgprot_t pte_pgprot(pte_t pte)
499 {
500 unsigned long pfn = pte_pfn(pte);
501
502 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
503 }
504
505 #define pte_advance_pfn pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)506 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
507 {
508 return pfn_pte(pte_pfn(pte) + nr, pte_pgprot(pte));
509 }
510
511 /*
512 * Hugetlb definitions.
513 */
514 #define HUGE_MAX_HSTATE 4
515 #define HPAGE_SHIFT PMD_SHIFT
516 #define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
517 #define HPAGE_MASK (~(HPAGE_SIZE - 1))
518 #define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
519
pgd_pte(pgd_t pgd)520 static inline pte_t pgd_pte(pgd_t pgd)
521 {
522 return __pte(pgd_val(pgd));
523 }
524
p4d_pte(p4d_t p4d)525 static inline pte_t p4d_pte(p4d_t p4d)
526 {
527 return __pte(p4d_val(p4d));
528 }
529
pud_pte(pud_t pud)530 static inline pte_t pud_pte(pud_t pud)
531 {
532 return __pte(pud_val(pud));
533 }
534
pte_pud(pte_t pte)535 static inline pud_t pte_pud(pte_t pte)
536 {
537 return __pud(pte_val(pte));
538 }
539
pud_pmd(pud_t pud)540 static inline pmd_t pud_pmd(pud_t pud)
541 {
542 return __pmd(pud_val(pud));
543 }
544
pmd_pte(pmd_t pmd)545 static inline pte_t pmd_pte(pmd_t pmd)
546 {
547 return __pte(pmd_val(pmd));
548 }
549
pte_pmd(pte_t pte)550 static inline pmd_t pte_pmd(pte_t pte)
551 {
552 return __pmd(pte_val(pte));
553 }
554
mk_pud_sect_prot(pgprot_t prot)555 static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
556 {
557 return __pgprot((pgprot_val(prot) & ~PUD_TYPE_MASK) | PUD_TYPE_SECT);
558 }
559
mk_pmd_sect_prot(pgprot_t prot)560 static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
561 {
562 return __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
563 }
564
pte_swp_mkexclusive(pte_t pte)565 static inline pte_t pte_swp_mkexclusive(pte_t pte)
566 {
567 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
568 }
569
pte_swp_exclusive(pte_t pte)570 static inline bool pte_swp_exclusive(pte_t pte)
571 {
572 return pte_val(pte) & PTE_SWP_EXCLUSIVE;
573 }
574
pte_swp_clear_exclusive(pte_t pte)575 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
576 {
577 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
578 }
579
580 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
pte_swp_mkuffd_wp(pte_t pte)581 static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
582 {
583 return set_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
584 }
585
pte_swp_uffd_wp(pte_t pte)586 static inline int pte_swp_uffd_wp(pte_t pte)
587 {
588 return !!(pte_val(pte) & PTE_SWP_UFFD_WP);
589 }
590
pte_swp_clear_uffd_wp(pte_t pte)591 static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
592 {
593 return clear_pte_bit(pte, __pgprot(PTE_SWP_UFFD_WP));
594 }
595 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
596
597 #ifdef CONFIG_NUMA_BALANCING
598 /*
599 * See the comment in include/linux/pgtable.h
600 */
pte_protnone(pte_t pte)601 static inline int pte_protnone(pte_t pte)
602 {
603 /*
604 * pte_present_invalid() tells us that the pte is invalid from HW
605 * perspective but present from SW perspective, so the fields are to be
606 * interpreted as per the HW layout. The second 2 checks are the unique
607 * encoding that we use for PROT_NONE. It is insufficient to only use
608 * the first check because we share the same encoding scheme with pmds
609 * which support pmd_mkinvalid(), so can be present-invalid without
610 * being PROT_NONE.
611 */
612 return pte_present_invalid(pte) && !pte_user(pte) && !pte_user_exec(pte);
613 }
614
pmd_protnone(pmd_t pmd)615 static inline int pmd_protnone(pmd_t pmd)
616 {
617 return pte_protnone(pmd_pte(pmd));
618 }
619 #endif
620
621 #define pmd_present(pmd) pte_present(pmd_pte(pmd))
622 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
623 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
624 #define pmd_valid(pmd) pte_valid(pmd_pte(pmd))
625 #define pmd_user(pmd) pte_user(pmd_pte(pmd))
626 #define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd))
627 #define pmd_cont(pmd) pte_cont(pmd_pte(pmd))
628 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
629 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
630 #define pmd_mkwrite_novma(pmd) pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
631 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
632 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
633 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
634 #define pmd_mkinvalid(pmd) pte_pmd(pte_mkinvalid(pmd_pte(pmd)))
635 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
636 #define pmd_uffd_wp(pmd) pte_uffd_wp(pmd_pte(pmd))
637 #define pmd_mkuffd_wp(pmd) pte_pmd(pte_mkuffd_wp(pmd_pte(pmd)))
638 #define pmd_clear_uffd_wp(pmd) pte_pmd(pte_clear_uffd_wp(pmd_pte(pmd)))
639 #define pmd_swp_uffd_wp(pmd) pte_swp_uffd_wp(pmd_pte(pmd))
640 #define pmd_swp_mkuffd_wp(pmd) pte_pmd(pte_swp_mkuffd_wp(pmd_pte(pmd)))
641 #define pmd_swp_clear_uffd_wp(pmd) \
642 pte_pmd(pte_swp_clear_uffd_wp(pmd_pte(pmd)))
643 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
644
645 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
646
pmd_mkhuge(pmd_t pmd)647 static inline pmd_t pmd_mkhuge(pmd_t pmd)
648 {
649 /*
650 * It's possible that the pmd is present-invalid on entry
651 * and in that case it needs to remain present-invalid on
652 * exit. So ensure the VALID bit does not get modified.
653 */
654 pmdval_t mask = PMD_TYPE_MASK & ~PTE_VALID;
655 pmdval_t val = PMD_TYPE_SECT & ~PTE_VALID;
656
657 return __pmd((pmd_val(pmd) & ~mask) | val);
658 }
659
660 #ifdef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
661 #define pmd_special(pte) (!!((pmd_val(pte) & PTE_SPECIAL)))
pmd_mkspecial(pmd_t pmd)662 static inline pmd_t pmd_mkspecial(pmd_t pmd)
663 {
664 return set_pmd_bit(pmd, __pgprot(PTE_SPECIAL));
665 }
666 #endif
667
668 #define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd))
669 #define __phys_to_pmd_val(phys) __phys_to_pte_val(phys)
670 #define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
671 #define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
672
673 #define pud_young(pud) pte_young(pud_pte(pud))
674 #define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud)))
675 #define pud_write(pud) pte_write(pud_pte(pud))
676
pud_mkhuge(pud_t pud)677 static inline pud_t pud_mkhuge(pud_t pud)
678 {
679 /*
680 * It's possible that the pud is present-invalid on entry
681 * and in that case it needs to remain present-invalid on
682 * exit. So ensure the VALID bit does not get modified.
683 */
684 pudval_t mask = PUD_TYPE_MASK & ~PTE_VALID;
685 pudval_t val = PUD_TYPE_SECT & ~PTE_VALID;
686
687 return __pud((pud_val(pud) & ~mask) | val);
688 }
689
690 #define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud))
691 #define __phys_to_pud_val(phys) __phys_to_pte_val(phys)
692 #define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
693 #define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
694
695 #define pmd_pgprot pmd_pgprot
pmd_pgprot(pmd_t pmd)696 static inline pgprot_t pmd_pgprot(pmd_t pmd)
697 {
698 unsigned long pfn = pmd_pfn(pmd);
699
700 return __pgprot(pmd_val(pfn_pmd(pfn, __pgprot(0))) ^ pmd_val(pmd));
701 }
702
703 #define pud_pgprot pud_pgprot
pud_pgprot(pud_t pud)704 static inline pgprot_t pud_pgprot(pud_t pud)
705 {
706 unsigned long pfn = pud_pfn(pud);
707
708 return __pgprot(pud_val(pfn_pud(pfn, __pgprot(0))) ^ pud_val(pud));
709 }
710
__set_ptes_anysz(struct mm_struct * mm,pte_t * ptep,pte_t pte,unsigned int nr,unsigned long pgsize)711 static inline void __set_ptes_anysz(struct mm_struct *mm, pte_t *ptep,
712 pte_t pte, unsigned int nr,
713 unsigned long pgsize)
714 {
715 unsigned long stride = pgsize >> PAGE_SHIFT;
716
717 switch (pgsize) {
718 case PAGE_SIZE:
719 page_table_check_ptes_set(mm, ptep, pte, nr);
720 break;
721 case PMD_SIZE:
722 page_table_check_pmds_set(mm, (pmd_t *)ptep, pte_pmd(pte), nr);
723 break;
724 #ifndef __PAGETABLE_PMD_FOLDED
725 case PUD_SIZE:
726 page_table_check_puds_set(mm, (pud_t *)ptep, pte_pud(pte), nr);
727 break;
728 #endif
729 default:
730 VM_WARN_ON(1);
731 }
732
733 __sync_cache_and_tags(pte, nr * stride);
734
735 for (;;) {
736 __check_safe_pte_update(mm, ptep, pte);
737 __set_pte_nosync(ptep, pte);
738 if (--nr == 0)
739 break;
740 ptep++;
741 pte = pte_advance_pfn(pte, stride);
742 }
743
744 __set_pte_complete(pte);
745 }
746
__set_ptes(struct mm_struct * mm,unsigned long __always_unused addr,pte_t * ptep,pte_t pte,unsigned int nr)747 static inline void __set_ptes(struct mm_struct *mm,
748 unsigned long __always_unused addr,
749 pte_t *ptep, pte_t pte, unsigned int nr)
750 {
751 __set_ptes_anysz(mm, ptep, pte, nr, PAGE_SIZE);
752 }
753
__set_pmds(struct mm_struct * mm,unsigned long __always_unused addr,pmd_t * pmdp,pmd_t pmd,unsigned int nr)754 static inline void __set_pmds(struct mm_struct *mm,
755 unsigned long __always_unused addr,
756 pmd_t *pmdp, pmd_t pmd, unsigned int nr)
757 {
758 __set_ptes_anysz(mm, (pte_t *)pmdp, pmd_pte(pmd), nr, PMD_SIZE);
759 }
760 #define set_pmd_at(mm, addr, pmdp, pmd) __set_pmds(mm, addr, pmdp, pmd, 1)
761
__set_puds(struct mm_struct * mm,unsigned long __always_unused addr,pud_t * pudp,pud_t pud,unsigned int nr)762 static inline void __set_puds(struct mm_struct *mm,
763 unsigned long __always_unused addr,
764 pud_t *pudp, pud_t pud, unsigned int nr)
765 {
766 __set_ptes_anysz(mm, (pte_t *)pudp, pud_pte(pud), nr, PUD_SIZE);
767 }
768 #define set_pud_at(mm, addr, pudp, pud) __set_puds(mm, addr, pudp, pud, 1)
769
770 #define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d))
771 #define __phys_to_p4d_val(phys) __phys_to_pte_val(phys)
772
773 #define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd))
774 #define __phys_to_pgd_val(phys) __phys_to_pte_val(phys)
775
776 #define __pgprot_modify(prot,mask,bits) \
777 __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
778
779 #define pgprot_nx(prot) \
780 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
781
782 #define pgprot_decrypted(prot) \
783 __pgprot_modify(prot, PROT_NS_SHARED, PROT_NS_SHARED)
784 #define pgprot_encrypted(prot) \
785 __pgprot_modify(prot, PROT_NS_SHARED, 0)
786
787 /*
788 * Mark the prot value as uncacheable and unbufferable.
789 */
790 #define pgprot_noncached(prot) \
791 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
792 #define pgprot_writecombine(prot) \
793 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
794 #define pgprot_device(prot) \
795 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
796 #define pgprot_tagged(prot) \
797 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
798 #define pgprot_mhp pgprot_tagged
799 /*
800 * DMA allocations for non-coherent devices use what the Arm architecture calls
801 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
802 * and merging of writes. This is different from "Device-nGnR[nE]" memory which
803 * is intended for MMIO and thus forbids speculation, preserves access size,
804 * requires strict alignment and can also force write responses to come from the
805 * endpoint.
806 */
807 #define pgprot_dmacoherent(prot) \
808 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \
809 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
810
811 #define __HAVE_PHYS_MEM_ACCESS_PROT
812 struct file;
813 extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
814 unsigned long size, pgprot_t vma_prot);
815
816 #define pmd_none(pmd) (!pmd_val(pmd))
817
818 #define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
819 PMD_TYPE_TABLE)
820 #define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
821 PMD_TYPE_SECT)
822 #define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd))
823 #define pmd_bad(pmd) (!pmd_table(pmd))
824
825 #define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
826 #define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
827
828 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)829 static inline int pmd_trans_huge(pmd_t pmd)
830 {
831 /*
832 * If pmd is present-invalid, pmd_table() won't detect it
833 * as a table, so force the valid bit for the comparison.
834 */
835 return pmd_present(pmd) && !pmd_table(__pmd(pmd_val(pmd) | PTE_VALID));
836 }
837 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
838
839 #if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
pud_sect(pud_t pud)840 static inline bool pud_sect(pud_t pud) { return false; }
pud_table(pud_t pud)841 static inline bool pud_table(pud_t pud) { return true; }
842 #else
843 #define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
844 PUD_TYPE_SECT)
845 #define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \
846 PUD_TYPE_TABLE)
847 #endif
848
849 extern pgd_t swapper_pg_dir[];
850 extern pgd_t idmap_pg_dir[];
851 extern pgd_t tramp_pg_dir[];
852 extern pgd_t reserved_pg_dir[];
853
854 extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
855
in_swapper_pgdir(void * addr)856 static inline bool in_swapper_pgdir(void *addr)
857 {
858 return ((unsigned long)addr & PAGE_MASK) ==
859 ((unsigned long)swapper_pg_dir & PAGE_MASK);
860 }
861
set_pmd(pmd_t * pmdp,pmd_t pmd)862 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
863 {
864 #ifdef __PAGETABLE_PMD_FOLDED
865 if (in_swapper_pgdir(pmdp)) {
866 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
867 return;
868 }
869 #endif /* __PAGETABLE_PMD_FOLDED */
870
871 WRITE_ONCE(*pmdp, pmd);
872
873 if (pmd_valid(pmd))
874 queue_pte_barriers();
875 }
876
pmd_clear(pmd_t * pmdp)877 static inline void pmd_clear(pmd_t *pmdp)
878 {
879 set_pmd(pmdp, __pmd(0));
880 }
881
pmd_page_paddr(pmd_t pmd)882 static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
883 {
884 return __pmd_to_phys(pmd);
885 }
886
pmd_page_vaddr(pmd_t pmd)887 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
888 {
889 return (unsigned long)__va(pmd_page_paddr(pmd));
890 }
891
892 /* Find an entry in the third-level page table. */
893 #define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
894
895 #define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr))
896 #define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr))
897 #define pte_clear_fixmap() clear_fixmap(FIX_PTE)
898
899 #define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd))
900
901 /* use ONLY for statically allocated translation tables */
902 #define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
903
904 #if CONFIG_PGTABLE_LEVELS > 2
905
906 #define pmd_ERROR(e) \
907 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
908
909 #define pud_none(pud) (!pud_val(pud))
910 #define pud_bad(pud) ((pud_val(pud) & PUD_TYPE_MASK) != \
911 PUD_TYPE_TABLE)
912 #define pud_present(pud) pte_present(pud_pte(pud))
913 #ifndef __PAGETABLE_PMD_FOLDED
914 #define pud_leaf(pud) (pud_present(pud) && !pud_table(pud))
915 #else
916 #define pud_leaf(pud) false
917 #endif
918 #define pud_valid(pud) pte_valid(pud_pte(pud))
919 #define pud_user(pud) pte_user(pud_pte(pud))
920 #define pud_user_exec(pud) pte_user_exec(pud_pte(pud))
921
922 static inline bool pgtable_l4_enabled(void);
923
set_pud(pud_t * pudp,pud_t pud)924 static inline void set_pud(pud_t *pudp, pud_t pud)
925 {
926 if (!pgtable_l4_enabled() && in_swapper_pgdir(pudp)) {
927 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
928 return;
929 }
930
931 WRITE_ONCE(*pudp, pud);
932
933 if (pud_valid(pud))
934 queue_pte_barriers();
935 }
936
pud_clear(pud_t * pudp)937 static inline void pud_clear(pud_t *pudp)
938 {
939 set_pud(pudp, __pud(0));
940 }
941
pud_page_paddr(pud_t pud)942 static inline phys_addr_t pud_page_paddr(pud_t pud)
943 {
944 return __pud_to_phys(pud);
945 }
946
pud_pgtable(pud_t pud)947 static inline pmd_t *pud_pgtable(pud_t pud)
948 {
949 return (pmd_t *)__va(pud_page_paddr(pud));
950 }
951
952 /* Find an entry in the second-level page table. */
953 #define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
954
955 #define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
956 #define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr))
957 #define pmd_clear_fixmap() clear_fixmap(FIX_PMD)
958
959 #define pud_page(pud) phys_to_page(__pud_to_phys(pud))
960
961 /* use ONLY for statically allocated translation tables */
962 #define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
963
964 #else
965
966 #define pud_valid(pud) false
967 #define pud_page_paddr(pud) ({ BUILD_BUG(); 0; })
968 #define pud_user_exec(pud) pud_user(pud) /* Always 0 with folding */
969
970 /* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
971 #define pmd_set_fixmap(addr) NULL
972 #define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp)
973 #define pmd_clear_fixmap()
974
975 #define pmd_offset_kimg(dir,addr) ((pmd_t *)dir)
976
977 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
978
979 #if CONFIG_PGTABLE_LEVELS > 3
980
pgtable_l4_enabled(void)981 static __always_inline bool pgtable_l4_enabled(void)
982 {
983 if (CONFIG_PGTABLE_LEVELS > 4 || !IS_ENABLED(CONFIG_ARM64_LPA2))
984 return true;
985 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
986 return vabits_actual == VA_BITS;
987 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
988 }
989
mm_pud_folded(const struct mm_struct * mm)990 static inline bool mm_pud_folded(const struct mm_struct *mm)
991 {
992 return !pgtable_l4_enabled();
993 }
994 #define mm_pud_folded mm_pud_folded
995
996 #define pud_ERROR(e) \
997 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
998
999 #define p4d_none(p4d) (pgtable_l4_enabled() && !p4d_val(p4d))
1000 #define p4d_bad(p4d) (pgtable_l4_enabled() && \
1001 ((p4d_val(p4d) & P4D_TYPE_MASK) != \
1002 P4D_TYPE_TABLE))
1003 #define p4d_present(p4d) (!p4d_none(p4d))
1004
set_p4d(p4d_t * p4dp,p4d_t p4d)1005 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
1006 {
1007 if (in_swapper_pgdir(p4dp)) {
1008 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
1009 return;
1010 }
1011
1012 WRITE_ONCE(*p4dp, p4d);
1013 queue_pte_barriers();
1014 }
1015
p4d_clear(p4d_t * p4dp)1016 static inline void p4d_clear(p4d_t *p4dp)
1017 {
1018 if (pgtable_l4_enabled())
1019 set_p4d(p4dp, __p4d(0));
1020 }
1021
p4d_page_paddr(p4d_t p4d)1022 static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
1023 {
1024 return __p4d_to_phys(p4d);
1025 }
1026
1027 #define pud_index(addr) (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))
1028
p4d_to_folded_pud(p4d_t * p4dp,unsigned long addr)1029 static inline pud_t *p4d_to_folded_pud(p4d_t *p4dp, unsigned long addr)
1030 {
1031 /* Ensure that 'p4dp' indexes a page table according to 'addr' */
1032 VM_BUG_ON(((addr >> P4D_SHIFT) ^ ((u64)p4dp >> 3)) % PTRS_PER_P4D);
1033
1034 return (pud_t *)PTR_ALIGN_DOWN(p4dp, PAGE_SIZE) + pud_index(addr);
1035 }
1036
p4d_pgtable(p4d_t p4d)1037 static inline pud_t *p4d_pgtable(p4d_t p4d)
1038 {
1039 return (pud_t *)__va(p4d_page_paddr(p4d));
1040 }
1041
pud_offset_phys(p4d_t * p4dp,unsigned long addr)1042 static inline phys_addr_t pud_offset_phys(p4d_t *p4dp, unsigned long addr)
1043 {
1044 BUG_ON(!pgtable_l4_enabled());
1045
1046 return p4d_page_paddr(READ_ONCE(*p4dp)) + pud_index(addr) * sizeof(pud_t);
1047 }
1048
1049 static inline
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long addr)1050 pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long addr)
1051 {
1052 if (!pgtable_l4_enabled())
1053 return p4d_to_folded_pud(p4dp, addr);
1054 return (pud_t *)__va(p4d_page_paddr(p4d)) + pud_index(addr);
1055 }
1056 #define pud_offset_lockless pud_offset_lockless
1057
pud_offset(p4d_t * p4dp,unsigned long addr)1058 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long addr)
1059 {
1060 return pud_offset_lockless(p4dp, READ_ONCE(*p4dp), addr);
1061 }
1062 #define pud_offset pud_offset
1063
pud_set_fixmap(unsigned long addr)1064 static inline pud_t *pud_set_fixmap(unsigned long addr)
1065 {
1066 if (!pgtable_l4_enabled())
1067 return NULL;
1068 return (pud_t *)set_fixmap_offset(FIX_PUD, addr);
1069 }
1070
pud_set_fixmap_offset(p4d_t * p4dp,unsigned long addr)1071 static inline pud_t *pud_set_fixmap_offset(p4d_t *p4dp, unsigned long addr)
1072 {
1073 if (!pgtable_l4_enabled())
1074 return p4d_to_folded_pud(p4dp, addr);
1075 return pud_set_fixmap(pud_offset_phys(p4dp, addr));
1076 }
1077
pud_clear_fixmap(void)1078 static inline void pud_clear_fixmap(void)
1079 {
1080 if (pgtable_l4_enabled())
1081 clear_fixmap(FIX_PUD);
1082 }
1083
1084 /* use ONLY for statically allocated translation tables */
pud_offset_kimg(p4d_t * p4dp,u64 addr)1085 static inline pud_t *pud_offset_kimg(p4d_t *p4dp, u64 addr)
1086 {
1087 if (!pgtable_l4_enabled())
1088 return p4d_to_folded_pud(p4dp, addr);
1089 return (pud_t *)__phys_to_kimg(pud_offset_phys(p4dp, addr));
1090 }
1091
1092 #define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
1093
1094 #else
1095
pgtable_l4_enabled(void)1096 static inline bool pgtable_l4_enabled(void) { return false; }
1097
1098 #define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;})
1099
1100 /* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
1101 #define pud_set_fixmap(addr) NULL
1102 #define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp)
1103 #define pud_clear_fixmap()
1104
1105 #define pud_offset_kimg(dir,addr) ((pud_t *)dir)
1106
1107 #endif /* CONFIG_PGTABLE_LEVELS > 3 */
1108
1109 #if CONFIG_PGTABLE_LEVELS > 4
1110
pgtable_l5_enabled(void)1111 static __always_inline bool pgtable_l5_enabled(void)
1112 {
1113 if (!alternative_has_cap_likely(ARM64_ALWAYS_BOOT))
1114 return vabits_actual == VA_BITS;
1115 return alternative_has_cap_unlikely(ARM64_HAS_VA52);
1116 }
1117
mm_p4d_folded(const struct mm_struct * mm)1118 static inline bool mm_p4d_folded(const struct mm_struct *mm)
1119 {
1120 return !pgtable_l5_enabled();
1121 }
1122 #define mm_p4d_folded mm_p4d_folded
1123
1124 #define p4d_ERROR(e) \
1125 pr_err("%s:%d: bad p4d %016llx.\n", __FILE__, __LINE__, p4d_val(e))
1126
1127 #define pgd_none(pgd) (pgtable_l5_enabled() && !pgd_val(pgd))
1128 #define pgd_bad(pgd) (pgtable_l5_enabled() && \
1129 ((pgd_val(pgd) & PGD_TYPE_MASK) != \
1130 PGD_TYPE_TABLE))
1131 #define pgd_present(pgd) (!pgd_none(pgd))
1132
set_pgd(pgd_t * pgdp,pgd_t pgd)1133 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
1134 {
1135 if (in_swapper_pgdir(pgdp)) {
1136 set_swapper_pgd(pgdp, __pgd(pgd_val(pgd)));
1137 return;
1138 }
1139
1140 WRITE_ONCE(*pgdp, pgd);
1141 queue_pte_barriers();
1142 }
1143
pgd_clear(pgd_t * pgdp)1144 static inline void pgd_clear(pgd_t *pgdp)
1145 {
1146 if (pgtable_l5_enabled())
1147 set_pgd(pgdp, __pgd(0));
1148 }
1149
pgd_page_paddr(pgd_t pgd)1150 static inline phys_addr_t pgd_page_paddr(pgd_t pgd)
1151 {
1152 return __pgd_to_phys(pgd);
1153 }
1154
1155 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1156
pgd_to_folded_p4d(pgd_t * pgdp,unsigned long addr)1157 static inline p4d_t *pgd_to_folded_p4d(pgd_t *pgdp, unsigned long addr)
1158 {
1159 /* Ensure that 'pgdp' indexes a page table according to 'addr' */
1160 VM_BUG_ON(((addr >> PGDIR_SHIFT) ^ ((u64)pgdp >> 3)) % PTRS_PER_PGD);
1161
1162 return (p4d_t *)PTR_ALIGN_DOWN(pgdp, PAGE_SIZE) + p4d_index(addr);
1163 }
1164
p4d_offset_phys(pgd_t * pgdp,unsigned long addr)1165 static inline phys_addr_t p4d_offset_phys(pgd_t *pgdp, unsigned long addr)
1166 {
1167 BUG_ON(!pgtable_l5_enabled());
1168
1169 return pgd_page_paddr(READ_ONCE(*pgdp)) + p4d_index(addr) * sizeof(p4d_t);
1170 }
1171
1172 static inline
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1173 p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1174 {
1175 if (!pgtable_l5_enabled())
1176 return pgd_to_folded_p4d(pgdp, addr);
1177 return (p4d_t *)__va(pgd_page_paddr(pgd)) + p4d_index(addr);
1178 }
1179 #define p4d_offset_lockless p4d_offset_lockless
1180
p4d_offset(pgd_t * pgdp,unsigned long addr)1181 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long addr)
1182 {
1183 return p4d_offset_lockless(pgdp, READ_ONCE(*pgdp), addr);
1184 }
1185
p4d_set_fixmap(unsigned long addr)1186 static inline p4d_t *p4d_set_fixmap(unsigned long addr)
1187 {
1188 if (!pgtable_l5_enabled())
1189 return NULL;
1190 return (p4d_t *)set_fixmap_offset(FIX_P4D, addr);
1191 }
1192
p4d_set_fixmap_offset(pgd_t * pgdp,unsigned long addr)1193 static inline p4d_t *p4d_set_fixmap_offset(pgd_t *pgdp, unsigned long addr)
1194 {
1195 if (!pgtable_l5_enabled())
1196 return pgd_to_folded_p4d(pgdp, addr);
1197 return p4d_set_fixmap(p4d_offset_phys(pgdp, addr));
1198 }
1199
p4d_clear_fixmap(void)1200 static inline void p4d_clear_fixmap(void)
1201 {
1202 if (pgtable_l5_enabled())
1203 clear_fixmap(FIX_P4D);
1204 }
1205
1206 /* use ONLY for statically allocated translation tables */
p4d_offset_kimg(pgd_t * pgdp,u64 addr)1207 static inline p4d_t *p4d_offset_kimg(pgd_t *pgdp, u64 addr)
1208 {
1209 if (!pgtable_l5_enabled())
1210 return pgd_to_folded_p4d(pgdp, addr);
1211 return (p4d_t *)__phys_to_kimg(p4d_offset_phys(pgdp, addr));
1212 }
1213
1214 #define pgd_page(pgd) pfn_to_page(__phys_to_pfn(__pgd_to_phys(pgd)))
1215
1216 #else
1217
pgtable_l5_enabled(void)1218 static inline bool pgtable_l5_enabled(void) { return false; }
1219
1220 #define p4d_index(addr) (((addr) >> P4D_SHIFT) & (PTRS_PER_P4D - 1))
1221
1222 /* Match p4d_offset folding in <asm/generic/pgtable-nop4d.h> */
1223 #define p4d_set_fixmap(addr) NULL
1224 #define p4d_set_fixmap_offset(p4dp, addr) ((p4d_t *)p4dp)
1225 #define p4d_clear_fixmap()
1226
1227 #define p4d_offset_kimg(dir,addr) ((p4d_t *)dir)
1228
1229 static inline
p4d_offset_lockless_folded(pgd_t * pgdp,pgd_t pgd,unsigned long addr)1230 p4d_t *p4d_offset_lockless_folded(pgd_t *pgdp, pgd_t pgd, unsigned long addr)
1231 {
1232 /*
1233 * With runtime folding of the pud, pud_offset_lockless() passes
1234 * the 'pgd_t *' we return here to p4d_to_folded_pud(), which
1235 * will offset the pointer assuming that it points into
1236 * a page-table page. However, the fast GUP path passes us a
1237 * pgd_t allocated on the stack and so we must use the original
1238 * pointer in 'pgdp' to construct the p4d pointer instead of
1239 * using the generic p4d_offset_lockless() implementation.
1240 *
1241 * Note: reusing the original pointer means that we may
1242 * dereference the same (live) page-table entry multiple times.
1243 * This is safe because it is still only loaded once in the
1244 * context of each level and the CPU guarantees same-address
1245 * read-after-read ordering.
1246 */
1247 return p4d_offset(pgdp, addr);
1248 }
1249 #define p4d_offset_lockless p4d_offset_lockless_folded
1250
1251 #endif /* CONFIG_PGTABLE_LEVELS > 4 */
1252
1253 #define pgd_ERROR(e) \
1254 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
1255
1256 #define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
1257 #define pgd_clear_fixmap() clear_fixmap(FIX_PGD)
1258
pte_modify(pte_t pte,pgprot_t newprot)1259 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1260 {
1261 /*
1262 * Normal and Normal-Tagged are two different memory types and indices
1263 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
1264 */
1265 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
1266 PTE_PRESENT_INVALID | PTE_VALID | PTE_WRITE |
1267 PTE_GP | PTE_ATTRINDX_MASK | PTE_PO_IDX_MASK;
1268
1269 /* preserve the hardware dirty information */
1270 if (pte_hw_dirty(pte))
1271 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
1272
1273 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
1274 /*
1275 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
1276 * dirtiness again.
1277 */
1278 if (pte_sw_dirty(pte))
1279 pte = pte_mkdirty(pte);
1280 return pte;
1281 }
1282
pmd_modify(pmd_t pmd,pgprot_t newprot)1283 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1284 {
1285 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
1286 }
1287
1288 extern int __ptep_set_access_flags(struct vm_area_struct *vma,
1289 unsigned long address, pte_t *ptep,
1290 pte_t entry, int dirty);
1291
1292 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1293 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)1294 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1295 unsigned long address, pmd_t *pmdp,
1296 pmd_t entry, int dirty)
1297 {
1298 return __ptep_set_access_flags(vma, address, (pte_t *)pmdp,
1299 pmd_pte(entry), dirty);
1300 }
1301 #endif
1302
1303 #ifdef CONFIG_PAGE_TABLE_CHECK
pte_user_accessible_page(pte_t pte)1304 static inline bool pte_user_accessible_page(pte_t pte)
1305 {
1306 return pte_valid(pte) && (pte_user(pte) || pte_user_exec(pte));
1307 }
1308
pmd_user_accessible_page(pmd_t pmd)1309 static inline bool pmd_user_accessible_page(pmd_t pmd)
1310 {
1311 return pmd_valid(pmd) && !pmd_table(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
1312 }
1313
pud_user_accessible_page(pud_t pud)1314 static inline bool pud_user_accessible_page(pud_t pud)
1315 {
1316 return pud_valid(pud) && !pud_table(pud) && (pud_user(pud) || pud_user_exec(pud));
1317 }
1318 #endif
1319
1320 /*
1321 * Atomic pte/pmd modifications.
1322 */
__ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1323 static inline int __ptep_test_and_clear_young(struct vm_area_struct *vma,
1324 unsigned long address,
1325 pte_t *ptep)
1326 {
1327 pte_t old_pte, pte;
1328
1329 pte = __ptep_get(ptep);
1330 do {
1331 old_pte = pte;
1332 pte = pte_mkold(pte);
1333 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1334 pte_val(old_pte), pte_val(pte));
1335 } while (pte_val(pte) != pte_val(old_pte));
1336
1337 return pte_young(pte);
1338 }
1339
__ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1340 static inline int __ptep_clear_flush_young(struct vm_area_struct *vma,
1341 unsigned long address, pte_t *ptep)
1342 {
1343 int young = __ptep_test_and_clear_young(vma, address, ptep);
1344
1345 if (young) {
1346 /*
1347 * We can elide the trailing DSB here since the worst that can
1348 * happen is that a CPU continues to use the young entry in its
1349 * TLB and we mistakenly reclaim the associated page. The
1350 * window for such an event is bounded by the next
1351 * context-switch, which provides a DSB to complete the TLB
1352 * invalidation.
1353 */
1354 flush_tlb_page_nosync(vma, address);
1355 }
1356
1357 return young;
1358 }
1359
1360 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
1361 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1362 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1363 unsigned long address,
1364 pmd_t *pmdp)
1365 {
1366 /* Operation applies to PMD table entry only if FEAT_HAFT is enabled */
1367 VM_WARN_ON(pmd_table(READ_ONCE(*pmdp)) && !system_supports_haft());
1368 return __ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
1369 }
1370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
1371
__ptep_get_and_clear_anysz(struct mm_struct * mm,pte_t * ptep,unsigned long pgsize)1372 static inline pte_t __ptep_get_and_clear_anysz(struct mm_struct *mm,
1373 pte_t *ptep,
1374 unsigned long pgsize)
1375 {
1376 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
1377
1378 switch (pgsize) {
1379 case PAGE_SIZE:
1380 page_table_check_pte_clear(mm, pte);
1381 break;
1382 case PMD_SIZE:
1383 page_table_check_pmd_clear(mm, pte_pmd(pte));
1384 break;
1385 #ifndef __PAGETABLE_PMD_FOLDED
1386 case PUD_SIZE:
1387 page_table_check_pud_clear(mm, pte_pud(pte));
1388 break;
1389 #endif
1390 default:
1391 VM_WARN_ON(1);
1392 }
1393
1394 return pte;
1395 }
1396
__ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)1397 static inline pte_t __ptep_get_and_clear(struct mm_struct *mm,
1398 unsigned long address, pte_t *ptep)
1399 {
1400 return __ptep_get_and_clear_anysz(mm, ptep, PAGE_SIZE);
1401 }
1402
__clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1403 static inline void __clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1404 pte_t *ptep, unsigned int nr, int full)
1405 {
1406 for (;;) {
1407 __ptep_get_and_clear(mm, addr, ptep);
1408 if (--nr == 0)
1409 break;
1410 ptep++;
1411 addr += PAGE_SIZE;
1412 }
1413 }
1414
__get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1415 static inline pte_t __get_and_clear_full_ptes(struct mm_struct *mm,
1416 unsigned long addr, pte_t *ptep,
1417 unsigned int nr, int full)
1418 {
1419 pte_t pte, tmp_pte;
1420
1421 pte = __ptep_get_and_clear(mm, addr, ptep);
1422 while (--nr) {
1423 ptep++;
1424 addr += PAGE_SIZE;
1425 tmp_pte = __ptep_get_and_clear(mm, addr, ptep);
1426 if (pte_dirty(tmp_pte))
1427 pte = pte_mkdirty(pte);
1428 if (pte_young(tmp_pte))
1429 pte = pte_mkyoung(pte);
1430 }
1431 return pte;
1432 }
1433
1434 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1435 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1436 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1437 unsigned long address, pmd_t *pmdp)
1438 {
1439 return pte_pmd(__ptep_get_and_clear_anysz(mm, (pte_t *)pmdp, PMD_SIZE));
1440 }
1441 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1442
___ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep,pte_t pte)1443 static inline void ___ptep_set_wrprotect(struct mm_struct *mm,
1444 unsigned long address, pte_t *ptep,
1445 pte_t pte)
1446 {
1447 pte_t old_pte;
1448
1449 do {
1450 old_pte = pte;
1451 pte = pte_wrprotect(pte);
1452 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1453 pte_val(old_pte), pte_val(pte));
1454 } while (pte_val(pte) != pte_val(old_pte));
1455 }
1456
1457 /*
1458 * __ptep_set_wrprotect - mark read-only while transferring potential hardware
1459 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
1460 */
__ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)1461 static inline void __ptep_set_wrprotect(struct mm_struct *mm,
1462 unsigned long address, pte_t *ptep)
1463 {
1464 ___ptep_set_wrprotect(mm, address, ptep, __ptep_get(ptep));
1465 }
1466
__wrprotect_ptes(struct mm_struct * mm,unsigned long address,pte_t * ptep,unsigned int nr)1467 static inline void __wrprotect_ptes(struct mm_struct *mm, unsigned long address,
1468 pte_t *ptep, unsigned int nr)
1469 {
1470 unsigned int i;
1471
1472 for (i = 0; i < nr; i++, address += PAGE_SIZE, ptep++)
1473 __ptep_set_wrprotect(mm, address, ptep);
1474 }
1475
__clear_young_dirty_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte,cydp_t flags)1476 static inline void __clear_young_dirty_pte(struct vm_area_struct *vma,
1477 unsigned long addr, pte_t *ptep,
1478 pte_t pte, cydp_t flags)
1479 {
1480 pte_t old_pte;
1481
1482 do {
1483 old_pte = pte;
1484
1485 if (flags & CYDP_CLEAR_YOUNG)
1486 pte = pte_mkold(pte);
1487 if (flags & CYDP_CLEAR_DIRTY)
1488 pte = pte_mkclean(pte);
1489
1490 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
1491 pte_val(old_pte), pte_val(pte));
1492 } while (pte_val(pte) != pte_val(old_pte));
1493 }
1494
__clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1495 static inline void __clear_young_dirty_ptes(struct vm_area_struct *vma,
1496 unsigned long addr, pte_t *ptep,
1497 unsigned int nr, cydp_t flags)
1498 {
1499 pte_t pte;
1500
1501 for (;;) {
1502 pte = __ptep_get(ptep);
1503
1504 if (flags == (CYDP_CLEAR_YOUNG | CYDP_CLEAR_DIRTY))
1505 __set_pte(ptep, pte_mkclean(pte_mkold(pte)));
1506 else
1507 __clear_young_dirty_pte(vma, addr, ptep, pte, flags);
1508
1509 if (--nr == 0)
1510 break;
1511 ptep++;
1512 addr += PAGE_SIZE;
1513 }
1514 }
1515
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)1518 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1519 unsigned long address, pmd_t *pmdp)
1520 {
1521 __ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
1522 }
1523
1524 #define pmdp_establish pmdp_establish
pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)1525 static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1526 unsigned long address, pmd_t *pmdp, pmd_t pmd)
1527 {
1528 page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1529 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
1530 }
1531 #endif
1532
1533 /*
1534 * Encode and decode a swap entry:
1535 * bits 0-1: present (must be zero)
1536 * bits 2: remember PG_anon_exclusive
1537 * bit 3: remember uffd-wp state
1538 * bits 6-10: swap type
1539 * bit 11: PTE_PRESENT_INVALID (must be zero)
1540 * bits 12-61: swap offset
1541 */
1542 #define __SWP_TYPE_SHIFT 6
1543 #define __SWP_TYPE_BITS 5
1544 #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
1545 #define __SWP_OFFSET_SHIFT 12
1546 #define __SWP_OFFSET_BITS 50
1547 #define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1)
1548
1549 #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
1550 #define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
1551 #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
1552
1553 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1554 #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
1555
1556 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1557 #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
1558 #define __swp_entry_to_pmd(swp) __pmd((swp).val)
1559 #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
1560
1561 /*
1562 * Ensure that there are not more swap files than can be encoded in the kernel
1563 * PTEs.
1564 */
1565 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
1566
1567 #ifdef CONFIG_ARM64_MTE
1568
1569 #define __HAVE_ARCH_PREPARE_TO_SWAP
1570 extern int arch_prepare_to_swap(struct folio *folio);
1571
1572 #define __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1573 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1574 {
1575 if (system_supports_mte())
1576 mte_invalidate_tags(type, offset);
1577 }
1578
arch_swap_invalidate_area(int type)1579 static inline void arch_swap_invalidate_area(int type)
1580 {
1581 if (system_supports_mte())
1582 mte_invalidate_tags_area(type);
1583 }
1584
1585 #define __HAVE_ARCH_SWAP_RESTORE
1586 extern void arch_swap_restore(swp_entry_t entry, struct folio *folio);
1587
1588 #endif /* CONFIG_ARM64_MTE */
1589
1590 /*
1591 * On AArch64, the cache coherency is handled via the __set_ptes() function.
1592 */
update_mmu_cache_range(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)1593 static inline void update_mmu_cache_range(struct vm_fault *vmf,
1594 struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
1595 unsigned int nr)
1596 {
1597 /*
1598 * We don't do anything here, so there's a very small chance of
1599 * us retaking a user fault which we just fixed up. The alternative
1600 * is doing a dsb(ishst), but that penalises the fastpath.
1601 */
1602 }
1603
1604 #define update_mmu_cache(vma, addr, ptep) \
1605 update_mmu_cache_range(NULL, vma, addr, ptep, 1)
1606 #define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
1607
1608 #ifdef CONFIG_ARM64_PA_BITS_52
1609 #define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
1610 #else
1611 #define phys_to_ttbr(addr) (addr)
1612 #endif
1613
1614 /*
1615 * On arm64 without hardware Access Flag, copying from user will fail because
1616 * the pte is old and cannot be marked young. So we always end up with zeroed
1617 * page after fork() + CoW for pfn mappings. We don't always have a
1618 * hardware-managed access flag on arm64.
1619 */
1620 #define arch_has_hw_pte_young cpu_has_hw_af
1621
1622 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
1623 #define arch_has_hw_nonleaf_pmd_young system_supports_haft
1624 #endif
1625
1626 /*
1627 * Experimentally, it's cheap to set the access flag in hardware and we
1628 * benefit from prefaulting mappings as 'old' to start with.
1629 */
1630 #define arch_wants_old_prefaulted_pte cpu_has_hw_af
1631
1632 /*
1633 * Request exec memory is read into pagecache in at least 64K folios. This size
1634 * can be contpte-mapped when 4K base pages are in use (16 pages into 1 iTLB
1635 * entry), and HPA can coalesce it (4 pages into 1 TLB entry) when 16K base
1636 * pages are in use.
1637 */
1638 #define exec_folio_order() ilog2(SZ_64K >> PAGE_SHIFT)
1639
pud_sect_supported(void)1640 static inline bool pud_sect_supported(void)
1641 {
1642 return PAGE_SIZE == SZ_4K;
1643 }
1644
1645
1646 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1647 #define ptep_modify_prot_start ptep_modify_prot_start
1648 extern pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1649 unsigned long addr, pte_t *ptep);
1650
1651 #define ptep_modify_prot_commit ptep_modify_prot_commit
1652 extern void ptep_modify_prot_commit(struct vm_area_struct *vma,
1653 unsigned long addr, pte_t *ptep,
1654 pte_t old_pte, pte_t new_pte);
1655
1656 #define modify_prot_start_ptes modify_prot_start_ptes
1657 extern pte_t modify_prot_start_ptes(struct vm_area_struct *vma,
1658 unsigned long addr, pte_t *ptep,
1659 unsigned int nr);
1660
1661 #define modify_prot_commit_ptes modify_prot_commit_ptes
1662 extern void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
1663 pte_t *ptep, pte_t old_pte, pte_t pte,
1664 unsigned int nr);
1665
1666 #ifdef CONFIG_ARM64_CONTPTE
1667
1668 /*
1669 * The contpte APIs are used to transparently manage the contiguous bit in ptes
1670 * where it is possible and makes sense to do so. The PTE_CONT bit is considered
1671 * a private implementation detail of the public ptep API (see below).
1672 */
1673 extern void __contpte_try_fold(struct mm_struct *mm, unsigned long addr,
1674 pte_t *ptep, pte_t pte);
1675 extern void __contpte_try_unfold(struct mm_struct *mm, unsigned long addr,
1676 pte_t *ptep, pte_t pte);
1677 extern pte_t contpte_ptep_get(pte_t *ptep, pte_t orig_pte);
1678 extern pte_t contpte_ptep_get_lockless(pte_t *orig_ptep);
1679 extern void contpte_set_ptes(struct mm_struct *mm, unsigned long addr,
1680 pte_t *ptep, pte_t pte, unsigned int nr);
1681 extern void contpte_clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1682 pte_t *ptep, unsigned int nr, int full);
1683 extern pte_t contpte_get_and_clear_full_ptes(struct mm_struct *mm,
1684 unsigned long addr, pte_t *ptep,
1685 unsigned int nr, int full);
1686 extern int contpte_ptep_test_and_clear_young(struct vm_area_struct *vma,
1687 unsigned long addr, pte_t *ptep);
1688 extern int contpte_ptep_clear_flush_young(struct vm_area_struct *vma,
1689 unsigned long addr, pte_t *ptep);
1690 extern void contpte_wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
1691 pte_t *ptep, unsigned int nr);
1692 extern int contpte_ptep_set_access_flags(struct vm_area_struct *vma,
1693 unsigned long addr, pte_t *ptep,
1694 pte_t entry, int dirty);
1695 extern void contpte_clear_young_dirty_ptes(struct vm_area_struct *vma,
1696 unsigned long addr, pte_t *ptep,
1697 unsigned int nr, cydp_t flags);
1698
contpte_try_fold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1699 static __always_inline void contpte_try_fold(struct mm_struct *mm,
1700 unsigned long addr, pte_t *ptep, pte_t pte)
1701 {
1702 /*
1703 * Only bother trying if both the virtual and physical addresses are
1704 * aligned and correspond to the last entry in a contig range. The core
1705 * code mostly modifies ranges from low to high, so this is the likely
1706 * the last modification in the contig range, so a good time to fold.
1707 * We can't fold special mappings, because there is no associated folio.
1708 */
1709
1710 const unsigned long contmask = CONT_PTES - 1;
1711 bool valign = ((addr >> PAGE_SHIFT) & contmask) == contmask;
1712
1713 if (unlikely(valign)) {
1714 bool palign = (pte_pfn(pte) & contmask) == contmask;
1715
1716 if (unlikely(palign &&
1717 pte_valid(pte) && !pte_cont(pte) && !pte_special(pte)))
1718 __contpte_try_fold(mm, addr, ptep, pte);
1719 }
1720 }
1721
contpte_try_unfold(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)1722 static __always_inline void contpte_try_unfold(struct mm_struct *mm,
1723 unsigned long addr, pte_t *ptep, pte_t pte)
1724 {
1725 if (unlikely(pte_valid_cont(pte)))
1726 __contpte_try_unfold(mm, addr, ptep, pte);
1727 }
1728
1729 #define pte_batch_hint pte_batch_hint
pte_batch_hint(pte_t * ptep,pte_t pte)1730 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
1731 {
1732 if (!pte_valid_cont(pte))
1733 return 1;
1734
1735 return CONT_PTES - (((unsigned long)ptep >> 3) & (CONT_PTES - 1));
1736 }
1737
1738 /*
1739 * The below functions constitute the public API that arm64 presents to the
1740 * core-mm to manipulate PTE entries within their page tables (or at least this
1741 * is the subset of the API that arm64 needs to implement). These public
1742 * versions will automatically and transparently apply the contiguous bit where
1743 * it makes sense to do so. Therefore any users that are contig-aware (e.g.
1744 * hugetlb, kernel mapper) should NOT use these APIs, but instead use the
1745 * private versions, which are prefixed with double underscore. All of these
1746 * APIs except for ptep_get_lockless() are expected to be called with the PTL
1747 * held. Although the contiguous bit is considered private to the
1748 * implementation, it is deliberately allowed to leak through the getters (e.g.
1749 * ptep_get()), back to core code. This is required so that pte_leaf_size() can
1750 * provide an accurate size for perf_get_pgtable_size(). But this leakage means
1751 * its possible a pte will be passed to a setter with the contiguous bit set, so
1752 * we explicitly clear the contiguous bit in those cases to prevent accidentally
1753 * setting it in the pgtable.
1754 */
1755
1756 #define ptep_get ptep_get
ptep_get(pte_t * ptep)1757 static inline pte_t ptep_get(pte_t *ptep)
1758 {
1759 pte_t pte = __ptep_get(ptep);
1760
1761 if (likely(!pte_valid_cont(pte)))
1762 return pte;
1763
1764 return contpte_ptep_get(ptep, pte);
1765 }
1766
1767 #define ptep_get_lockless ptep_get_lockless
ptep_get_lockless(pte_t * ptep)1768 static inline pte_t ptep_get_lockless(pte_t *ptep)
1769 {
1770 pte_t pte = __ptep_get(ptep);
1771
1772 if (likely(!pte_valid_cont(pte)))
1773 return pte;
1774
1775 return contpte_ptep_get_lockless(ptep);
1776 }
1777
set_pte(pte_t * ptep,pte_t pte)1778 static inline void set_pte(pte_t *ptep, pte_t pte)
1779 {
1780 /*
1781 * We don't have the mm or vaddr so cannot unfold contig entries (since
1782 * it requires tlb maintenance). set_pte() is not used in core code, so
1783 * this should never even be called. Regardless do our best to service
1784 * any call and emit a warning if there is any attempt to set a pte on
1785 * top of an existing contig range.
1786 */
1787 pte_t orig_pte = __ptep_get(ptep);
1788
1789 WARN_ON_ONCE(pte_valid_cont(orig_pte));
1790 __set_pte(ptep, pte_mknoncont(pte));
1791 }
1792
1793 #define set_ptes set_ptes
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)1794 static __always_inline void set_ptes(struct mm_struct *mm, unsigned long addr,
1795 pte_t *ptep, pte_t pte, unsigned int nr)
1796 {
1797 pte = pte_mknoncont(pte);
1798
1799 if (likely(nr == 1)) {
1800 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1801 __set_ptes(mm, addr, ptep, pte, 1);
1802 contpte_try_fold(mm, addr, ptep, pte);
1803 } else {
1804 contpte_set_ptes(mm, addr, ptep, pte, nr);
1805 }
1806 }
1807
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1808 static inline void pte_clear(struct mm_struct *mm,
1809 unsigned long addr, pte_t *ptep)
1810 {
1811 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1812 __pte_clear(mm, addr, ptep);
1813 }
1814
1815 #define clear_full_ptes clear_full_ptes
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1816 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
1817 pte_t *ptep, unsigned int nr, int full)
1818 {
1819 if (likely(nr == 1)) {
1820 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1821 __clear_full_ptes(mm, addr, ptep, nr, full);
1822 } else {
1823 contpte_clear_full_ptes(mm, addr, ptep, nr, full);
1824 }
1825 }
1826
1827 #define get_and_clear_full_ptes get_and_clear_full_ptes
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)1828 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
1829 unsigned long addr, pte_t *ptep,
1830 unsigned int nr, int full)
1831 {
1832 pte_t pte;
1833
1834 if (likely(nr == 1)) {
1835 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1836 pte = __get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1837 } else {
1838 pte = contpte_get_and_clear_full_ptes(mm, addr, ptep, nr, full);
1839 }
1840
1841 return pte;
1842 }
1843
1844 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1845 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1846 unsigned long addr, pte_t *ptep)
1847 {
1848 contpte_try_unfold(mm, addr, ptep, __ptep_get(ptep));
1849 return __ptep_get_and_clear(mm, addr, ptep);
1850 }
1851
1852 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1853 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1854 unsigned long addr, pte_t *ptep)
1855 {
1856 pte_t orig_pte = __ptep_get(ptep);
1857
1858 if (likely(!pte_valid_cont(orig_pte)))
1859 return __ptep_test_and_clear_young(vma, addr, ptep);
1860
1861 return contpte_ptep_test_and_clear_young(vma, addr, ptep);
1862 }
1863
1864 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1865 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1866 unsigned long addr, pte_t *ptep)
1867 {
1868 pte_t orig_pte = __ptep_get(ptep);
1869
1870 if (likely(!pte_valid_cont(orig_pte)))
1871 return __ptep_clear_flush_young(vma, addr, ptep);
1872
1873 return contpte_ptep_clear_flush_young(vma, addr, ptep);
1874 }
1875
1876 #define wrprotect_ptes wrprotect_ptes
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)1877 static __always_inline void wrprotect_ptes(struct mm_struct *mm,
1878 unsigned long addr, pte_t *ptep, unsigned int nr)
1879 {
1880 if (likely(nr == 1)) {
1881 /*
1882 * Optimization: wrprotect_ptes() can only be called for present
1883 * ptes so we only need to check contig bit as condition for
1884 * unfold, and we can remove the contig bit from the pte we read
1885 * to avoid re-reading. This speeds up fork() which is sensitive
1886 * for order-0 folios. Equivalent to contpte_try_unfold().
1887 */
1888 pte_t orig_pte = __ptep_get(ptep);
1889
1890 if (unlikely(pte_cont(orig_pte))) {
1891 __contpte_try_unfold(mm, addr, ptep, orig_pte);
1892 orig_pte = pte_mknoncont(orig_pte);
1893 }
1894 ___ptep_set_wrprotect(mm, addr, ptep, orig_pte);
1895 } else {
1896 contpte_wrprotect_ptes(mm, addr, ptep, nr);
1897 }
1898 }
1899
1900 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1901 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1902 unsigned long addr, pte_t *ptep)
1903 {
1904 wrprotect_ptes(mm, addr, ptep, 1);
1905 }
1906
1907 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1908 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1909 unsigned long addr, pte_t *ptep,
1910 pte_t entry, int dirty)
1911 {
1912 pte_t orig_pte = __ptep_get(ptep);
1913
1914 entry = pte_mknoncont(entry);
1915
1916 if (likely(!pte_valid_cont(orig_pte)))
1917 return __ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1918
1919 return contpte_ptep_set_access_flags(vma, addr, ptep, entry, dirty);
1920 }
1921
1922 #define clear_young_dirty_ptes clear_young_dirty_ptes
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)1923 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
1924 unsigned long addr, pte_t *ptep,
1925 unsigned int nr, cydp_t flags)
1926 {
1927 if (likely(nr == 1 && !pte_cont(__ptep_get(ptep))))
1928 __clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1929 else
1930 contpte_clear_young_dirty_ptes(vma, addr, ptep, nr, flags);
1931 }
1932
1933 #else /* CONFIG_ARM64_CONTPTE */
1934
1935 #define ptep_get __ptep_get
1936 #define set_pte __set_pte
1937 #define set_ptes __set_ptes
1938 #define pte_clear __pte_clear
1939 #define clear_full_ptes __clear_full_ptes
1940 #define get_and_clear_full_ptes __get_and_clear_full_ptes
1941 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1942 #define ptep_get_and_clear __ptep_get_and_clear
1943 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1944 #define ptep_test_and_clear_young __ptep_test_and_clear_young
1945 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1946 #define ptep_clear_flush_young __ptep_clear_flush_young
1947 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1948 #define ptep_set_wrprotect __ptep_set_wrprotect
1949 #define wrprotect_ptes __wrprotect_ptes
1950 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1951 #define ptep_set_access_flags __ptep_set_access_flags
1952 #define clear_young_dirty_ptes __clear_young_dirty_ptes
1953
1954 #endif /* CONFIG_ARM64_CONTPTE */
1955
1956 #endif /* !__ASSEMBLER__ */
1957
1958 #endif /* __ASM_PGTABLE_H */
1959