xref: /linux/mm/zswap.c (revision c69ca4e992e3fd08d3d9fb9e498cb11d1c3e21c7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * zswap.c - zswap driver file
4  *
5  * zswap is a cache that takes pages that are in the process
6  * of being swapped out and attempts to compress and store them in a
7  * RAM-based memory pool.  This can result in a significant I/O reduction on
8  * the swap device and, in the case where decompressing from RAM is faster
9  * than reading from the swap device, can also improve workload performance.
10  *
11  * Copyright (C) 2012  Seth Jennings <sjenning@linux.vnet.ibm.com>
12 */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <crypto/acompress.h>
29 #include <crypto/scatterwalk.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38 #include <linux/zsmalloc.h>
39 
40 #include "swap.h"
41 #include "internal.h"
42 
43 /*********************************
44 * statistics
45 **********************************/
46 /* The number of pages currently stored in zswap */
47 atomic_long_t zswap_stored_pages = ATOMIC_LONG_INIT(0);
48 /* The number of incompressible pages currently stored in zswap */
49 static atomic_long_t zswap_stored_incompressible_pages = ATOMIC_LONG_INIT(0);
50 
51 /*
52  * The statistics below are not protected from concurrent access for
53  * performance reasons so they may not be a 100% accurate.  However,
54  * they do provide useful information on roughly how many times a
55  * certain event is occurring.
56 */
57 
58 /* Pool limit was hit (see zswap_max_pool_percent) */
59 static u64 zswap_pool_limit_hit;
60 /* Pages written back when pool limit was reached */
61 static u64 zswap_written_back_pages;
62 /* Store failed due to a reclaim failure after pool limit was reached */
63 static u64 zswap_reject_reclaim_fail;
64 /* Store failed due to compression algorithm failure */
65 static u64 zswap_reject_compress_fail;
66 /* Compressed page was too big for the allocator to (optimally) store */
67 static u64 zswap_reject_compress_poor;
68 /* Load or writeback failed due to decompression failure */
69 static u64 zswap_decompress_fail;
70 /* Store failed because underlying allocator could not get memory */
71 static u64 zswap_reject_alloc_fail;
72 /* Store failed because the entry metadata could not be allocated (rare) */
73 static u64 zswap_reject_kmemcache_fail;
74 
75 /* Shrinker work queue */
76 static struct workqueue_struct *shrink_wq;
77 /* Pool limit was hit, we need to calm down */
78 static bool zswap_pool_reached_full;
79 
80 /*********************************
81 * tunables
82 **********************************/
83 
84 #define ZSWAP_PARAM_UNSET ""
85 
86 static int zswap_setup(void);
87 
88 /* Enable/disable zswap */
89 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
90 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
91 static int zswap_enabled_param_set(const char *,
92 				   const struct kernel_param *);
93 static const struct kernel_param_ops zswap_enabled_param_ops = {
94 	.set =		zswap_enabled_param_set,
95 	.get =		param_get_bool,
96 };
97 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
98 
99 /* Crypto compressor to use */
100 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
101 static int zswap_compressor_param_set(const char *,
102 				      const struct kernel_param *);
103 static const struct kernel_param_ops zswap_compressor_param_ops = {
104 	.set =		zswap_compressor_param_set,
105 	.get =		param_get_charp,
106 	.free =		param_free_charp,
107 };
108 module_param_cb(compressor, &zswap_compressor_param_ops,
109 		&zswap_compressor, 0644);
110 
111 /* The maximum percentage of memory that the compressed pool can occupy */
112 static unsigned int zswap_max_pool_percent = 20;
113 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
114 
115 /* The threshold for accepting new pages after the max_pool_percent was hit */
116 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
117 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
118 		   uint, 0644);
119 
120 /* Enable/disable memory pressure-based shrinker. */
121 static bool zswap_shrinker_enabled = IS_ENABLED(
122 		CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
123 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
124 
125 bool zswap_is_enabled(void)
126 {
127 	return zswap_enabled;
128 }
129 
130 bool zswap_never_enabled(void)
131 {
132 	return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
133 }
134 
135 /*********************************
136 * data structures
137 **********************************/
138 
139 struct crypto_acomp_ctx {
140 	struct crypto_acomp *acomp;
141 	struct acomp_req *req;
142 	struct crypto_wait wait;
143 	u8 *buffer;
144 	struct mutex mutex;
145 };
146 
147 /*
148  * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
149  * The only case where lru_lock is not acquired while holding tree.lock is
150  * when a zswap_entry is taken off the lru for writeback, in that case it
151  * needs to be verified that it's still valid in the tree.
152  */
153 struct zswap_pool {
154 	struct zs_pool *zs_pool;
155 	struct crypto_acomp_ctx __percpu *acomp_ctx;
156 	struct percpu_ref ref;
157 	struct list_head list;
158 	struct work_struct release_work;
159 	struct hlist_node node;
160 	char tfm_name[CRYPTO_MAX_ALG_NAME];
161 };
162 
163 /* Global LRU lists shared by all zswap pools. */
164 static struct list_lru zswap_list_lru;
165 
166 /* The lock protects zswap_next_shrink updates. */
167 static DEFINE_SPINLOCK(zswap_shrink_lock);
168 static struct mem_cgroup *zswap_next_shrink;
169 static struct work_struct zswap_shrink_work;
170 static struct shrinker *zswap_shrinker;
171 
172 /*
173  * struct zswap_entry
174  *
175  * This structure contains the metadata for tracking a single compressed
176  * page within zswap.
177  *
178  * swpentry - associated swap entry, the offset indexes into the xarray
179  * length - the length in bytes of the compressed page data.  Needed during
180  *          decompression.
181  * referenced - true if the entry recently entered the zswap pool. Unset by the
182  *              writeback logic. The entry is only reclaimed by the writeback
183  *              logic if referenced is unset. See comments in the shrinker
184  *              section for context.
185  * pool - the zswap_pool the entry's data is in
186  * handle - zsmalloc allocation handle that stores the compressed page data
187  * objcg - the obj_cgroup that the compressed memory is charged to
188  * lru - handle to the pool's lru used to evict pages.
189  */
190 struct zswap_entry {
191 	swp_entry_t swpentry;
192 	unsigned int length;
193 	bool referenced;
194 	struct zswap_pool *pool;
195 	unsigned long handle;
196 	struct obj_cgroup *objcg;
197 	struct list_head lru;
198 };
199 
200 static struct xarray *zswap_trees[MAX_SWAPFILES];
201 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
202 
203 /* RCU-protected iteration */
204 static LIST_HEAD(zswap_pools);
205 /* protects zswap_pools list modification */
206 static DEFINE_SPINLOCK(zswap_pools_lock);
207 /* pool counter to provide unique names to zsmalloc */
208 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
209 
210 enum zswap_init_type {
211 	ZSWAP_UNINIT,
212 	ZSWAP_INIT_SUCCEED,
213 	ZSWAP_INIT_FAILED
214 };
215 
216 static enum zswap_init_type zswap_init_state;
217 
218 /* used to ensure the integrity of initialization */
219 static DEFINE_MUTEX(zswap_init_lock);
220 
221 /* init completed, but couldn't create the initial pool */
222 static bool zswap_has_pool;
223 
224 /*********************************
225 * helpers and fwd declarations
226 **********************************/
227 
228 /* One swap address space for each 64M swap space */
229 #define ZSWAP_ADDRESS_SPACE_SHIFT 14
230 #define ZSWAP_ADDRESS_SPACE_PAGES (1 << ZSWAP_ADDRESS_SPACE_SHIFT)
231 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
232 {
233 	return &zswap_trees[swp_type(swp)][swp_offset(swp)
234 		>> ZSWAP_ADDRESS_SPACE_SHIFT];
235 }
236 
237 #define zswap_pool_debug(msg, p)			\
238 	pr_debug("%s pool %s\n", msg, (p)->tfm_name)
239 
240 /*********************************
241 * pool functions
242 **********************************/
243 static void __zswap_pool_empty(struct percpu_ref *ref);
244 
245 static struct zswap_pool *zswap_pool_create(char *compressor)
246 {
247 	struct zswap_pool *pool;
248 	char name[38]; /* 'zswap' + 32 char (max) num + \0 */
249 	int ret, cpu;
250 
251 	if (!zswap_has_pool && !strcmp(compressor, ZSWAP_PARAM_UNSET))
252 		return NULL;
253 
254 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
255 	if (!pool)
256 		return NULL;
257 
258 	/* unique name for each pool specifically required by zsmalloc */
259 	snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
260 	pool->zs_pool = zs_create_pool(name);
261 	if (!pool->zs_pool)
262 		goto error;
263 
264 	strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
265 
266 	pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
267 	if (!pool->acomp_ctx) {
268 		pr_err("percpu alloc failed\n");
269 		goto error;
270 	}
271 
272 	for_each_possible_cpu(cpu)
273 		mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex);
274 
275 	ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
276 				       &pool->node);
277 	if (ret)
278 		goto error;
279 
280 	/* being the current pool takes 1 ref; this func expects the
281 	 * caller to always add the new pool as the current pool
282 	 */
283 	ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
284 			      PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
285 	if (ret)
286 		goto ref_fail;
287 	INIT_LIST_HEAD(&pool->list);
288 
289 	zswap_pool_debug("created", pool);
290 
291 	return pool;
292 
293 ref_fail:
294 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
295 error:
296 	if (pool->acomp_ctx)
297 		free_percpu(pool->acomp_ctx);
298 	if (pool->zs_pool)
299 		zs_destroy_pool(pool->zs_pool);
300 	kfree(pool);
301 	return NULL;
302 }
303 
304 static struct zswap_pool *__zswap_pool_create_fallback(void)
305 {
306 	if (!crypto_has_acomp(zswap_compressor, 0, 0) &&
307 	    strcmp(zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
308 		pr_err("compressor %s not available, using default %s\n",
309 		       zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
310 		param_free_charp(&zswap_compressor);
311 		zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
312 	}
313 
314 	/* Default compressor should be available. Kconfig bug? */
315 	if (WARN_ON_ONCE(!crypto_has_acomp(zswap_compressor, 0, 0))) {
316 		zswap_compressor = ZSWAP_PARAM_UNSET;
317 		return NULL;
318 	}
319 
320 	return zswap_pool_create(zswap_compressor);
321 }
322 
323 static void zswap_pool_destroy(struct zswap_pool *pool)
324 {
325 	zswap_pool_debug("destroying", pool);
326 
327 	cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
328 	free_percpu(pool->acomp_ctx);
329 
330 	zs_destroy_pool(pool->zs_pool);
331 	kfree(pool);
332 }
333 
334 static void __zswap_pool_release(struct work_struct *work)
335 {
336 	struct zswap_pool *pool = container_of(work, typeof(*pool),
337 						release_work);
338 
339 	synchronize_rcu();
340 
341 	/* nobody should have been able to get a ref... */
342 	WARN_ON(!percpu_ref_is_zero(&pool->ref));
343 	percpu_ref_exit(&pool->ref);
344 
345 	/* pool is now off zswap_pools list and has no references. */
346 	zswap_pool_destroy(pool);
347 }
348 
349 static struct zswap_pool *zswap_pool_current(void);
350 
351 static void __zswap_pool_empty(struct percpu_ref *ref)
352 {
353 	struct zswap_pool *pool;
354 
355 	pool = container_of(ref, typeof(*pool), ref);
356 
357 	spin_lock_bh(&zswap_pools_lock);
358 
359 	WARN_ON(pool == zswap_pool_current());
360 
361 	list_del_rcu(&pool->list);
362 
363 	INIT_WORK(&pool->release_work, __zswap_pool_release);
364 	schedule_work(&pool->release_work);
365 
366 	spin_unlock_bh(&zswap_pools_lock);
367 }
368 
369 static int __must_check zswap_pool_tryget(struct zswap_pool *pool)
370 {
371 	if (!pool)
372 		return 0;
373 
374 	return percpu_ref_tryget(&pool->ref);
375 }
376 
377 /* The caller must already have a reference. */
378 static void zswap_pool_get(struct zswap_pool *pool)
379 {
380 	percpu_ref_get(&pool->ref);
381 }
382 
383 static void zswap_pool_put(struct zswap_pool *pool)
384 {
385 	percpu_ref_put(&pool->ref);
386 }
387 
388 static struct zswap_pool *__zswap_pool_current(void)
389 {
390 	struct zswap_pool *pool;
391 
392 	pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
393 	WARN_ONCE(!pool && zswap_has_pool,
394 		  "%s: no page storage pool!\n", __func__);
395 
396 	return pool;
397 }
398 
399 static struct zswap_pool *zswap_pool_current(void)
400 {
401 	assert_spin_locked(&zswap_pools_lock);
402 
403 	return __zswap_pool_current();
404 }
405 
406 static struct zswap_pool *zswap_pool_current_get(void)
407 {
408 	struct zswap_pool *pool;
409 
410 	rcu_read_lock();
411 
412 	pool = __zswap_pool_current();
413 	if (!zswap_pool_tryget(pool))
414 		pool = NULL;
415 
416 	rcu_read_unlock();
417 
418 	return pool;
419 }
420 
421 /* type and compressor must be null-terminated */
422 static struct zswap_pool *zswap_pool_find_get(char *compressor)
423 {
424 	struct zswap_pool *pool;
425 
426 	assert_spin_locked(&zswap_pools_lock);
427 
428 	list_for_each_entry_rcu(pool, &zswap_pools, list) {
429 		if (strcmp(pool->tfm_name, compressor))
430 			continue;
431 		/* if we can't get it, it's about to be destroyed */
432 		if (!zswap_pool_tryget(pool))
433 			continue;
434 		return pool;
435 	}
436 
437 	return NULL;
438 }
439 
440 static unsigned long zswap_max_pages(void)
441 {
442 	return totalram_pages() * zswap_max_pool_percent / 100;
443 }
444 
445 static unsigned long zswap_accept_thr_pages(void)
446 {
447 	return zswap_max_pages() * zswap_accept_thr_percent / 100;
448 }
449 
450 unsigned long zswap_total_pages(void)
451 {
452 	struct zswap_pool *pool;
453 	unsigned long total = 0;
454 
455 	rcu_read_lock();
456 	list_for_each_entry_rcu(pool, &zswap_pools, list)
457 		total += zs_get_total_pages(pool->zs_pool);
458 	rcu_read_unlock();
459 
460 	return total;
461 }
462 
463 static bool zswap_check_limits(void)
464 {
465 	unsigned long cur_pages = zswap_total_pages();
466 	unsigned long max_pages = zswap_max_pages();
467 
468 	if (cur_pages >= max_pages) {
469 		zswap_pool_limit_hit++;
470 		zswap_pool_reached_full = true;
471 	} else if (zswap_pool_reached_full &&
472 		   cur_pages <= zswap_accept_thr_pages()) {
473 			zswap_pool_reached_full = false;
474 	}
475 	return zswap_pool_reached_full;
476 }
477 
478 /*********************************
479 * param callbacks
480 **********************************/
481 
482 static int zswap_compressor_param_set(const char *val, const struct kernel_param *kp)
483 {
484 	struct zswap_pool *pool, *put_pool = NULL;
485 	char *s = strstrip((char *)val);
486 	bool create_pool = false;
487 	int ret = 0;
488 
489 	mutex_lock(&zswap_init_lock);
490 	switch (zswap_init_state) {
491 	case ZSWAP_UNINIT:
492 		/* Handled in zswap_setup() */
493 		ret = param_set_charp(s, kp);
494 		break;
495 	case ZSWAP_INIT_SUCCEED:
496 		if (!zswap_has_pool || strcmp(s, *(char **)kp->arg))
497 			create_pool = true;
498 		break;
499 	case ZSWAP_INIT_FAILED:
500 		pr_err("can't set param, initialization failed\n");
501 		ret = -ENODEV;
502 	}
503 	mutex_unlock(&zswap_init_lock);
504 
505 	if (!create_pool)
506 		return ret;
507 
508 	if (!crypto_has_acomp(s, 0, 0)) {
509 		pr_err("compressor %s not available\n", s);
510 		return -ENOENT;
511 	}
512 
513 	spin_lock_bh(&zswap_pools_lock);
514 
515 	pool = zswap_pool_find_get(s);
516 	if (pool) {
517 		zswap_pool_debug("using existing", pool);
518 		WARN_ON(pool == zswap_pool_current());
519 		list_del_rcu(&pool->list);
520 	}
521 
522 	spin_unlock_bh(&zswap_pools_lock);
523 
524 	if (!pool)
525 		pool = zswap_pool_create(s);
526 	else {
527 		/*
528 		 * Restore the initial ref dropped by percpu_ref_kill()
529 		 * when the pool was decommissioned and switch it again
530 		 * to percpu mode.
531 		 */
532 		percpu_ref_resurrect(&pool->ref);
533 
534 		/* Drop the ref from zswap_pool_find_get(). */
535 		zswap_pool_put(pool);
536 	}
537 
538 	if (pool)
539 		ret = param_set_charp(s, kp);
540 	else
541 		ret = -EINVAL;
542 
543 	spin_lock_bh(&zswap_pools_lock);
544 
545 	if (!ret) {
546 		put_pool = zswap_pool_current();
547 		list_add_rcu(&pool->list, &zswap_pools);
548 		zswap_has_pool = true;
549 	} else if (pool) {
550 		/*
551 		 * Add the possibly pre-existing pool to the end of the pools
552 		 * list; if it's new (and empty) then it'll be removed and
553 		 * destroyed by the put after we drop the lock
554 		 */
555 		list_add_tail_rcu(&pool->list, &zswap_pools);
556 		put_pool = pool;
557 	}
558 
559 	spin_unlock_bh(&zswap_pools_lock);
560 
561 	/*
562 	 * Drop the ref from either the old current pool,
563 	 * or the new pool we failed to add
564 	 */
565 	if (put_pool)
566 		percpu_ref_kill(&put_pool->ref);
567 
568 	return ret;
569 }
570 
571 static int zswap_enabled_param_set(const char *val,
572 				   const struct kernel_param *kp)
573 {
574 	int ret = -ENODEV;
575 
576 	/* if this is load-time (pre-init) param setting, only set param. */
577 	if (system_state != SYSTEM_RUNNING)
578 		return param_set_bool(val, kp);
579 
580 	mutex_lock(&zswap_init_lock);
581 	switch (zswap_init_state) {
582 	case ZSWAP_UNINIT:
583 		if (zswap_setup())
584 			break;
585 		fallthrough;
586 	case ZSWAP_INIT_SUCCEED:
587 		if (!zswap_has_pool)
588 			pr_err("can't enable, no pool configured\n");
589 		else
590 			ret = param_set_bool(val, kp);
591 		break;
592 	case ZSWAP_INIT_FAILED:
593 		pr_err("can't enable, initialization failed\n");
594 	}
595 	mutex_unlock(&zswap_init_lock);
596 
597 	return ret;
598 }
599 
600 /*********************************
601 * lru functions
602 **********************************/
603 
604 /* should be called under RCU */
605 #ifdef CONFIG_MEMCG
606 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
607 {
608 	return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
609 }
610 #else
611 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
612 {
613 	return NULL;
614 }
615 #endif
616 
617 static inline int entry_to_nid(struct zswap_entry *entry)
618 {
619 	return page_to_nid(virt_to_page(entry));
620 }
621 
622 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
623 {
624 	int nid = entry_to_nid(entry);
625 	struct mem_cgroup *memcg;
626 
627 	/*
628 	 * Note that it is safe to use rcu_read_lock() here, even in the face of
629 	 * concurrent memcg offlining:
630 	 *
631 	 * 1. list_lru_add() is called before list_lru_one is dead. The
632 	 *    new entry will be reparented to memcg's parent's list_lru.
633 	 * 2. list_lru_add() is called after list_lru_one is dead. The
634 	 *    new entry will be added directly to memcg's parent's list_lru.
635 	 *
636 	 * Similar reasoning holds for list_lru_del().
637 	 */
638 	rcu_read_lock();
639 	memcg = mem_cgroup_from_entry(entry);
640 	/* will always succeed */
641 	list_lru_add(list_lru, &entry->lru, nid, memcg);
642 	rcu_read_unlock();
643 }
644 
645 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
646 {
647 	int nid = entry_to_nid(entry);
648 	struct mem_cgroup *memcg;
649 
650 	rcu_read_lock();
651 	memcg = mem_cgroup_from_entry(entry);
652 	/* will always succeed */
653 	list_lru_del(list_lru, &entry->lru, nid, memcg);
654 	rcu_read_unlock();
655 }
656 
657 void zswap_lruvec_state_init(struct lruvec *lruvec)
658 {
659 	atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
660 }
661 
662 void zswap_folio_swapin(struct folio *folio)
663 {
664 	struct lruvec *lruvec;
665 
666 	if (folio) {
667 		lruvec = folio_lruvec(folio);
668 		atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
669 	}
670 }
671 
672 /*
673  * This function should be called when a memcg is being offlined.
674  *
675  * Since the global shrinker shrink_worker() may hold a reference
676  * of the memcg, we must check and release the reference in
677  * zswap_next_shrink.
678  *
679  * shrink_worker() must handle the case where this function releases
680  * the reference of memcg being shrunk.
681  */
682 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
683 {
684 	/* lock out zswap shrinker walking memcg tree */
685 	spin_lock(&zswap_shrink_lock);
686 	if (zswap_next_shrink == memcg) {
687 		do {
688 			zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
689 		} while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
690 	}
691 	spin_unlock(&zswap_shrink_lock);
692 }
693 
694 /*********************************
695 * zswap entry functions
696 **********************************/
697 static struct kmem_cache *zswap_entry_cache;
698 
699 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
700 {
701 	struct zswap_entry *entry;
702 	entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
703 	if (!entry)
704 		return NULL;
705 	return entry;
706 }
707 
708 static void zswap_entry_cache_free(struct zswap_entry *entry)
709 {
710 	kmem_cache_free(zswap_entry_cache, entry);
711 }
712 
713 /*
714  * Carries out the common pattern of freeing an entry's zsmalloc allocation,
715  * freeing the entry itself, and decrementing the number of stored pages.
716  */
717 static void zswap_entry_free(struct zswap_entry *entry)
718 {
719 	zswap_lru_del(&zswap_list_lru, entry);
720 	zs_free(entry->pool->zs_pool, entry->handle);
721 	zswap_pool_put(entry->pool);
722 	if (entry->objcg) {
723 		obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
724 		obj_cgroup_put(entry->objcg);
725 	}
726 	if (entry->length == PAGE_SIZE)
727 		atomic_long_dec(&zswap_stored_incompressible_pages);
728 	zswap_entry_cache_free(entry);
729 	atomic_long_dec(&zswap_stored_pages);
730 }
731 
732 /*********************************
733 * compressed storage functions
734 **********************************/
735 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
736 {
737 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
738 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
739 	struct crypto_acomp *acomp = NULL;
740 	struct acomp_req *req = NULL;
741 	u8 *buffer = NULL;
742 	int ret;
743 
744 	buffer = kmalloc_node(PAGE_SIZE, GFP_KERNEL, cpu_to_node(cpu));
745 	if (!buffer) {
746 		ret = -ENOMEM;
747 		goto fail;
748 	}
749 
750 	acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
751 	if (IS_ERR(acomp)) {
752 		pr_err("could not alloc crypto acomp %s : %pe\n",
753 				pool->tfm_name, acomp);
754 		ret = PTR_ERR(acomp);
755 		goto fail;
756 	}
757 
758 	req = acomp_request_alloc(acomp);
759 	if (!req) {
760 		pr_err("could not alloc crypto acomp_request %s\n",
761 		       pool->tfm_name);
762 		ret = -ENOMEM;
763 		goto fail;
764 	}
765 
766 	/*
767 	 * Only hold the mutex after completing allocations, otherwise we may
768 	 * recurse into zswap through reclaim and attempt to hold the mutex
769 	 * again resulting in a deadlock.
770 	 */
771 	mutex_lock(&acomp_ctx->mutex);
772 	crypto_init_wait(&acomp_ctx->wait);
773 
774 	/*
775 	 * if the backend of acomp is async zip, crypto_req_done() will wakeup
776 	 * crypto_wait_req(); if the backend of acomp is scomp, the callback
777 	 * won't be called, crypto_wait_req() will return without blocking.
778 	 */
779 	acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
780 				   crypto_req_done, &acomp_ctx->wait);
781 
782 	acomp_ctx->buffer = buffer;
783 	acomp_ctx->acomp = acomp;
784 	acomp_ctx->req = req;
785 	mutex_unlock(&acomp_ctx->mutex);
786 	return 0;
787 
788 fail:
789 	if (!IS_ERR_OR_NULL(acomp))
790 		crypto_free_acomp(acomp);
791 	kfree(buffer);
792 	return ret;
793 }
794 
795 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
796 {
797 	struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
798 	struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
799 	struct acomp_req *req;
800 	struct crypto_acomp *acomp;
801 	u8 *buffer;
802 
803 	if (IS_ERR_OR_NULL(acomp_ctx))
804 		return 0;
805 
806 	mutex_lock(&acomp_ctx->mutex);
807 	req = acomp_ctx->req;
808 	acomp = acomp_ctx->acomp;
809 	buffer = acomp_ctx->buffer;
810 	acomp_ctx->req = NULL;
811 	acomp_ctx->acomp = NULL;
812 	acomp_ctx->buffer = NULL;
813 	mutex_unlock(&acomp_ctx->mutex);
814 
815 	/*
816 	 * Do the actual freeing after releasing the mutex to avoid subtle
817 	 * locking dependencies causing deadlocks.
818 	 */
819 	if (!IS_ERR_OR_NULL(req))
820 		acomp_request_free(req);
821 	if (!IS_ERR_OR_NULL(acomp))
822 		crypto_free_acomp(acomp);
823 	kfree(buffer);
824 
825 	return 0;
826 }
827 
828 static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool)
829 {
830 	struct crypto_acomp_ctx *acomp_ctx;
831 
832 	for (;;) {
833 		acomp_ctx = raw_cpu_ptr(pool->acomp_ctx);
834 		mutex_lock(&acomp_ctx->mutex);
835 		if (likely(acomp_ctx->req))
836 			return acomp_ctx;
837 		/*
838 		 * It is possible that we were migrated to a different CPU after
839 		 * getting the per-CPU ctx but before the mutex was acquired. If
840 		 * the old CPU got offlined, zswap_cpu_comp_dead() could have
841 		 * already freed ctx->req (among other things) and set it to
842 		 * NULL. Just try again on the new CPU that we ended up on.
843 		 */
844 		mutex_unlock(&acomp_ctx->mutex);
845 	}
846 }
847 
848 static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx)
849 {
850 	mutex_unlock(&acomp_ctx->mutex);
851 }
852 
853 static bool zswap_compress(struct page *page, struct zswap_entry *entry,
854 			   struct zswap_pool *pool)
855 {
856 	struct crypto_acomp_ctx *acomp_ctx;
857 	struct scatterlist input, output;
858 	int comp_ret = 0, alloc_ret = 0;
859 	unsigned int dlen = PAGE_SIZE;
860 	unsigned long handle;
861 	gfp_t gfp;
862 	u8 *dst;
863 	bool mapped = false;
864 
865 	acomp_ctx = acomp_ctx_get_cpu_lock(pool);
866 	dst = acomp_ctx->buffer;
867 	sg_init_table(&input, 1);
868 	sg_set_page(&input, page, PAGE_SIZE, 0);
869 
870 	sg_init_one(&output, dst, PAGE_SIZE);
871 	acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
872 
873 	/*
874 	 * it maybe looks a little bit silly that we send an asynchronous request,
875 	 * then wait for its completion synchronously. This makes the process look
876 	 * synchronous in fact.
877 	 * Theoretically, acomp supports users send multiple acomp requests in one
878 	 * acomp instance, then get those requests done simultaneously. but in this
879 	 * case, zswap actually does store and load page by page, there is no
880 	 * existing method to send the second page before the first page is done
881 	 * in one thread doing zswap.
882 	 * but in different threads running on different cpu, we have different
883 	 * acomp instance, so multiple threads can do (de)compression in parallel.
884 	 */
885 	comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
886 	dlen = acomp_ctx->req->dlen;
887 
888 	/*
889 	 * If a page cannot be compressed into a size smaller than PAGE_SIZE,
890 	 * save the content as is without a compression, to keep the LRU order
891 	 * of writebacks.  If writeback is disabled, reject the page since it
892 	 * only adds metadata overhead.  swap_writeout() will put the page back
893 	 * to the active LRU list in the case.
894 	 */
895 	if (comp_ret || !dlen || dlen >= PAGE_SIZE) {
896 		if (!mem_cgroup_zswap_writeback_enabled(
897 					folio_memcg(page_folio(page)))) {
898 			comp_ret = comp_ret ? comp_ret : -EINVAL;
899 			goto unlock;
900 		}
901 		comp_ret = 0;
902 		dlen = PAGE_SIZE;
903 		dst = kmap_local_page(page);
904 		mapped = true;
905 	}
906 
907 	gfp = GFP_NOWAIT | __GFP_NORETRY | __GFP_HIGHMEM | __GFP_MOVABLE;
908 	handle = zs_malloc(pool->zs_pool, dlen, gfp, page_to_nid(page));
909 	if (IS_ERR_VALUE(handle)) {
910 		alloc_ret = PTR_ERR((void *)handle);
911 		goto unlock;
912 	}
913 
914 	zs_obj_write(pool->zs_pool, handle, dst, dlen);
915 	entry->handle = handle;
916 	entry->length = dlen;
917 
918 unlock:
919 	if (mapped)
920 		kunmap_local(dst);
921 	if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
922 		zswap_reject_compress_poor++;
923 	else if (comp_ret)
924 		zswap_reject_compress_fail++;
925 	else if (alloc_ret)
926 		zswap_reject_alloc_fail++;
927 
928 	acomp_ctx_put_unlock(acomp_ctx);
929 	return comp_ret == 0 && alloc_ret == 0;
930 }
931 
932 static bool zswap_decompress(struct zswap_entry *entry, struct folio *folio)
933 {
934 	struct zswap_pool *pool = entry->pool;
935 	struct scatterlist input[2]; /* zsmalloc returns an SG list 1-2 entries */
936 	struct scatterlist output;
937 	struct crypto_acomp_ctx *acomp_ctx;
938 	int ret = 0, dlen;
939 
940 	acomp_ctx = acomp_ctx_get_cpu_lock(pool);
941 	zs_obj_read_sg_begin(pool->zs_pool, entry->handle, input, entry->length);
942 
943 	/* zswap entries of length PAGE_SIZE are not compressed. */
944 	if (entry->length == PAGE_SIZE) {
945 		WARN_ON_ONCE(input->length != PAGE_SIZE);
946 		memcpy_from_sglist(kmap_local_folio(folio, 0), input, 0, PAGE_SIZE);
947 		dlen = PAGE_SIZE;
948 	} else {
949 		sg_init_table(&output, 1);
950 		sg_set_folio(&output, folio, PAGE_SIZE, 0);
951 		acomp_request_set_params(acomp_ctx->req, input, &output,
952 					 entry->length, PAGE_SIZE);
953 		ret = crypto_acomp_decompress(acomp_ctx->req);
954 		ret = crypto_wait_req(ret, &acomp_ctx->wait);
955 		dlen = acomp_ctx->req->dlen;
956 	}
957 
958 	zs_obj_read_sg_end(pool->zs_pool, entry->handle);
959 	acomp_ctx_put_unlock(acomp_ctx);
960 
961 	if (!ret && dlen == PAGE_SIZE)
962 		return true;
963 
964 	zswap_decompress_fail++;
965 	pr_alert_ratelimited("Decompression error from zswap (%d:%lu %s %u->%d)\n",
966 						swp_type(entry->swpentry),
967 						swp_offset(entry->swpentry),
968 						entry->pool->tfm_name,
969 						entry->length, dlen);
970 	return false;
971 }
972 
973 /*********************************
974 * writeback code
975 **********************************/
976 /*
977  * Attempts to free an entry by adding a folio to the swap cache,
978  * decompressing the entry data into the folio, and issuing a
979  * bio write to write the folio back to the swap device.
980  *
981  * This can be thought of as a "resumed writeback" of the folio
982  * to the swap device.  We are basically resuming the same swap
983  * writeback path that was intercepted with the zswap_store()
984  * in the first place.  After the folio has been decompressed into
985  * the swap cache, the compressed version stored by zswap can be
986  * freed.
987  */
988 static int zswap_writeback_entry(struct zswap_entry *entry,
989 				 swp_entry_t swpentry)
990 {
991 	struct xarray *tree;
992 	pgoff_t offset = swp_offset(swpentry);
993 	struct folio *folio;
994 	struct mempolicy *mpol;
995 	bool folio_was_allocated;
996 	struct swap_info_struct *si;
997 	int ret = 0;
998 
999 	/* try to allocate swap cache folio */
1000 	si = get_swap_device(swpentry);
1001 	if (!si)
1002 		return -EEXIST;
1003 
1004 	mpol = get_task_policy(current);
1005 	folio = swap_cache_alloc_folio(swpentry, GFP_KERNEL, mpol,
1006 				       NO_INTERLEAVE_INDEX, &folio_was_allocated);
1007 	put_swap_device(si);
1008 	if (!folio)
1009 		return -ENOMEM;
1010 
1011 	/*
1012 	 * Found an existing folio, we raced with swapin or concurrent
1013 	 * shrinker. We generally writeback cold folios from zswap, and
1014 	 * swapin means the folio just became hot, so skip this folio.
1015 	 * For unlikely concurrent shrinker case, it will be unlinked
1016 	 * and freed when invalidated by the concurrent shrinker anyway.
1017 	 */
1018 	if (!folio_was_allocated) {
1019 		ret = -EEXIST;
1020 		goto out;
1021 	}
1022 
1023 	/*
1024 	 * folio is locked, and the swapcache is now secured against
1025 	 * concurrent swapping to and from the slot, and concurrent
1026 	 * swapoff so we can safely dereference the zswap tree here.
1027 	 * Verify that the swap entry hasn't been invalidated and recycled
1028 	 * behind our backs, to avoid overwriting a new swap folio with
1029 	 * old compressed data. Only when this is successful can the entry
1030 	 * be dereferenced.
1031 	 */
1032 	tree = swap_zswap_tree(swpentry);
1033 	if (entry != xa_load(tree, offset)) {
1034 		ret = -ENOMEM;
1035 		goto out;
1036 	}
1037 
1038 	if (!zswap_decompress(entry, folio)) {
1039 		ret = -EIO;
1040 		goto out;
1041 	}
1042 
1043 	xa_erase(tree, offset);
1044 
1045 	count_vm_event(ZSWPWB);
1046 	if (entry->objcg)
1047 		count_objcg_events(entry->objcg, ZSWPWB, 1);
1048 
1049 	zswap_entry_free(entry);
1050 
1051 	/* folio is up to date */
1052 	folio_mark_uptodate(folio);
1053 
1054 	/* move it to the tail of the inactive list after end_writeback */
1055 	folio_set_reclaim(folio);
1056 
1057 	/* start writeback */
1058 	__swap_writepage(folio, NULL);
1059 
1060 out:
1061 	if (ret && ret != -EEXIST) {
1062 		swap_cache_del_folio(folio);
1063 		folio_unlock(folio);
1064 	}
1065 	folio_put(folio);
1066 	return ret;
1067 }
1068 
1069 /*********************************
1070 * shrinker functions
1071 **********************************/
1072 /*
1073  * The dynamic shrinker is modulated by the following factors:
1074  *
1075  * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1076  *    the entry a second chance) before rotating it in the LRU list. If the
1077  *    entry is considered again by the shrinker, with its referenced bit unset,
1078  *    it is written back. The writeback rate as a result is dynamically
1079  *    adjusted by the pool activities - if the pool is dominated by new entries
1080  *    (i.e lots of recent zswapouts), these entries will be protected and
1081  *    the writeback rate will slow down. On the other hand, if the pool has a
1082  *    lot of stagnant entries, these entries will be reclaimed immediately,
1083  *    effectively increasing the writeback rate.
1084  *
1085  * 2. Swapins counter: If we observe swapins, it is a sign that we are
1086  *    overshrinking and should slow down. We maintain a swapins counter, which
1087  *    is consumed and subtract from the number of eligible objects on the LRU
1088  *    in zswap_shrinker_count().
1089  *
1090  * 3. Compression ratio. The better the workload compresses, the less gains we
1091  *    can expect from writeback. We scale down the number of objects available
1092  *    for reclaim by this ratio.
1093  */
1094 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1095 				       void *arg)
1096 {
1097 	struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1098 	bool *encountered_page_in_swapcache = (bool *)arg;
1099 	swp_entry_t swpentry;
1100 	enum lru_status ret = LRU_REMOVED_RETRY;
1101 	int writeback_result;
1102 
1103 	/*
1104 	 * Second chance algorithm: if the entry has its referenced bit set, give it
1105 	 * a second chance. Only clear the referenced bit and rotate it in the
1106 	 * zswap's LRU list.
1107 	 */
1108 	if (entry->referenced) {
1109 		entry->referenced = false;
1110 		return LRU_ROTATE;
1111 	}
1112 
1113 	/*
1114 	 * As soon as we drop the LRU lock, the entry can be freed by
1115 	 * a concurrent invalidation. This means the following:
1116 	 *
1117 	 * 1. We extract the swp_entry_t to the stack, allowing
1118 	 *    zswap_writeback_entry() to pin the swap entry and
1119 	 *    then validate the zswap entry against that swap entry's
1120 	 *    tree using pointer value comparison. Only when that
1121 	 *    is successful can the entry be dereferenced.
1122 	 *
1123 	 * 2. Usually, objects are taken off the LRU for reclaim. In
1124 	 *    this case this isn't possible, because if reclaim fails
1125 	 *    for whatever reason, we have no means of knowing if the
1126 	 *    entry is alive to put it back on the LRU.
1127 	 *
1128 	 *    So rotate it before dropping the lock. If the entry is
1129 	 *    written back or invalidated, the free path will unlink
1130 	 *    it. For failures, rotation is the right thing as well.
1131 	 *
1132 	 *    Temporary failures, where the same entry should be tried
1133 	 *    again immediately, almost never happen for this shrinker.
1134 	 *    We don't do any trylocking; -ENOMEM comes closest,
1135 	 *    but that's extremely rare and doesn't happen spuriously
1136 	 *    either. Don't bother distinguishing this case.
1137 	 */
1138 	list_move_tail(item, &l->list);
1139 
1140 	/*
1141 	 * Once the lru lock is dropped, the entry might get freed. The
1142 	 * swpentry is copied to the stack, and entry isn't deref'd again
1143 	 * until the entry is verified to still be alive in the tree.
1144 	 */
1145 	swpentry = entry->swpentry;
1146 
1147 	/*
1148 	 * It's safe to drop the lock here because we return either
1149 	 * LRU_REMOVED_RETRY, LRU_RETRY or LRU_STOP.
1150 	 */
1151 	spin_unlock(&l->lock);
1152 
1153 	writeback_result = zswap_writeback_entry(entry, swpentry);
1154 
1155 	if (writeback_result) {
1156 		zswap_reject_reclaim_fail++;
1157 		ret = LRU_RETRY;
1158 
1159 		/*
1160 		 * Encountering a page already in swap cache is a sign that we are shrinking
1161 		 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1162 		 * shrinker context).
1163 		 */
1164 		if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1165 			ret = LRU_STOP;
1166 			*encountered_page_in_swapcache = true;
1167 		}
1168 	} else {
1169 		zswap_written_back_pages++;
1170 	}
1171 
1172 	return ret;
1173 }
1174 
1175 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1176 		struct shrink_control *sc)
1177 {
1178 	unsigned long shrink_ret;
1179 	bool encountered_page_in_swapcache = false;
1180 
1181 	if (!zswap_shrinker_enabled ||
1182 			!mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1183 		sc->nr_scanned = 0;
1184 		return SHRINK_STOP;
1185 	}
1186 
1187 	shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1188 		&encountered_page_in_swapcache);
1189 
1190 	if (encountered_page_in_swapcache)
1191 		return SHRINK_STOP;
1192 
1193 	return shrink_ret ? shrink_ret : SHRINK_STOP;
1194 }
1195 
1196 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1197 		struct shrink_control *sc)
1198 {
1199 	struct mem_cgroup *memcg = sc->memcg;
1200 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1201 	atomic_long_t *nr_disk_swapins =
1202 		&lruvec->zswap_lruvec_state.nr_disk_swapins;
1203 	unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1204 		nr_remain;
1205 
1206 	if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1207 		return 0;
1208 
1209 	/*
1210 	 * The shrinker resumes swap writeback, which will enter block
1211 	 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1212 	 * rules (may_enter_fs()), which apply on a per-folio basis.
1213 	 */
1214 	if (!gfp_has_io_fs(sc->gfp_mask))
1215 		return 0;
1216 
1217 	/*
1218 	 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1219 	 * have them per-node and thus per-lruvec. Careful if memcg is
1220 	 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1221 	 * for the lruvec, but not for memcg_page_state().
1222 	 *
1223 	 * Without memcg, use the zswap pool-wide metrics.
1224 	 */
1225 	if (!mem_cgroup_disabled()) {
1226 		mem_cgroup_flush_stats(memcg);
1227 		nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1228 		nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1229 	} else {
1230 		nr_backing = zswap_total_pages();
1231 		nr_stored = atomic_long_read(&zswap_stored_pages);
1232 	}
1233 
1234 	if (!nr_stored)
1235 		return 0;
1236 
1237 	nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1238 	if (!nr_freeable)
1239 		return 0;
1240 
1241 	/*
1242 	 * Subtract from the lru size the number of pages that are recently swapped
1243 	 * in from disk. The idea is that had we protect the zswap's LRU by this
1244 	 * amount of pages, these disk swapins would not have happened.
1245 	 */
1246 	nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1247 	do {
1248 		if (nr_freeable >= nr_disk_swapins_cur)
1249 			nr_remain = 0;
1250 		else
1251 			nr_remain = nr_disk_swapins_cur - nr_freeable;
1252 	} while (!atomic_long_try_cmpxchg(
1253 		nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1254 
1255 	nr_freeable -= nr_disk_swapins_cur - nr_remain;
1256 	if (!nr_freeable)
1257 		return 0;
1258 
1259 	/*
1260 	 * Scale the number of freeable pages by the memory saving factor.
1261 	 * This ensures that the better zswap compresses memory, the fewer
1262 	 * pages we will evict to swap (as it will otherwise incur IO for
1263 	 * relatively small memory saving).
1264 	 */
1265 	return mult_frac(nr_freeable, nr_backing, nr_stored);
1266 }
1267 
1268 static struct shrinker *zswap_alloc_shrinker(void)
1269 {
1270 	struct shrinker *shrinker;
1271 
1272 	shrinker =
1273 		shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1274 	if (!shrinker)
1275 		return NULL;
1276 
1277 	shrinker->scan_objects = zswap_shrinker_scan;
1278 	shrinker->count_objects = zswap_shrinker_count;
1279 	shrinker->batch = 0;
1280 	shrinker->seeks = DEFAULT_SEEKS;
1281 	return shrinker;
1282 }
1283 
1284 static int shrink_memcg(struct mem_cgroup *memcg)
1285 {
1286 	int nid, shrunk = 0, scanned = 0;
1287 
1288 	if (!mem_cgroup_zswap_writeback_enabled(memcg))
1289 		return -ENOENT;
1290 
1291 	/*
1292 	 * Skip zombies because their LRUs are reparented and we would be
1293 	 * reclaiming from the parent instead of the dead memcg.
1294 	 */
1295 	if (memcg && !mem_cgroup_online(memcg))
1296 		return -ENOENT;
1297 
1298 	for_each_node_state(nid, N_NORMAL_MEMORY) {
1299 		unsigned long nr_to_walk = 1;
1300 
1301 		shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1302 					    &shrink_memcg_cb, NULL, &nr_to_walk);
1303 		scanned += 1 - nr_to_walk;
1304 	}
1305 
1306 	if (!scanned)
1307 		return -ENOENT;
1308 
1309 	return shrunk ? 0 : -EAGAIN;
1310 }
1311 
1312 static void shrink_worker(struct work_struct *w)
1313 {
1314 	struct mem_cgroup *memcg;
1315 	int ret, failures = 0, attempts = 0;
1316 	unsigned long thr;
1317 
1318 	/* Reclaim down to the accept threshold */
1319 	thr = zswap_accept_thr_pages();
1320 
1321 	/*
1322 	 * Global reclaim will select cgroup in a round-robin fashion from all
1323 	 * online memcgs, but memcgs that have no pages in zswap and
1324 	 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1325 	 * candidates for shrinking.
1326 	 *
1327 	 * Shrinking will be aborted if we encounter the following
1328 	 * MAX_RECLAIM_RETRIES times:
1329 	 * - No writeback-candidate memcgs found in a memcg tree walk.
1330 	 * - Shrinking a writeback-candidate memcg failed.
1331 	 *
1332 	 * We save iteration cursor memcg into zswap_next_shrink,
1333 	 * which can be modified by the offline memcg cleaner
1334 	 * zswap_memcg_offline_cleanup().
1335 	 *
1336 	 * Since the offline cleaner is called only once, we cannot leave an
1337 	 * offline memcg reference in zswap_next_shrink.
1338 	 * We can rely on the cleaner only if we get online memcg under lock.
1339 	 *
1340 	 * If we get an offline memcg, we cannot determine if the cleaner has
1341 	 * already been called or will be called later. We must put back the
1342 	 * reference before returning from this function. Otherwise, the
1343 	 * offline memcg left in zswap_next_shrink will hold the reference
1344 	 * until the next run of shrink_worker().
1345 	 */
1346 	do {
1347 		/*
1348 		 * Start shrinking from the next memcg after zswap_next_shrink.
1349 		 * When the offline cleaner has already advanced the cursor,
1350 		 * advancing the cursor here overlooks one memcg, but this
1351 		 * should be negligibly rare.
1352 		 *
1353 		 * If we get an online memcg, keep the extra reference in case
1354 		 * the original one obtained by mem_cgroup_iter() is dropped by
1355 		 * zswap_memcg_offline_cleanup() while we are shrinking the
1356 		 * memcg.
1357 		 */
1358 		spin_lock(&zswap_shrink_lock);
1359 		do {
1360 			memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1361 			zswap_next_shrink = memcg;
1362 		} while (memcg && !mem_cgroup_tryget_online(memcg));
1363 		spin_unlock(&zswap_shrink_lock);
1364 
1365 		if (!memcg) {
1366 			/*
1367 			 * Continue shrinking without incrementing failures if
1368 			 * we found candidate memcgs in the last tree walk.
1369 			 */
1370 			if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1371 				break;
1372 
1373 			attempts = 0;
1374 			goto resched;
1375 		}
1376 
1377 		ret = shrink_memcg(memcg);
1378 		/* drop the extra reference */
1379 		mem_cgroup_put(memcg);
1380 
1381 		/*
1382 		 * There are no writeback-candidate pages in the memcg.
1383 		 * This is not an issue as long as we can find another memcg
1384 		 * with pages in zswap. Skip this without incrementing attempts
1385 		 * and failures.
1386 		 */
1387 		if (ret == -ENOENT)
1388 			continue;
1389 		++attempts;
1390 
1391 		if (ret && ++failures == MAX_RECLAIM_RETRIES)
1392 			break;
1393 resched:
1394 		cond_resched();
1395 	} while (zswap_total_pages() > thr);
1396 }
1397 
1398 /*********************************
1399 * main API
1400 **********************************/
1401 
1402 static bool zswap_store_page(struct page *page,
1403 			     struct obj_cgroup *objcg,
1404 			     struct zswap_pool *pool)
1405 {
1406 	swp_entry_t page_swpentry = page_swap_entry(page);
1407 	struct zswap_entry *entry, *old;
1408 
1409 	/* allocate entry */
1410 	entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1411 	if (!entry) {
1412 		zswap_reject_kmemcache_fail++;
1413 		return false;
1414 	}
1415 
1416 	if (!zswap_compress(page, entry, pool))
1417 		goto compress_failed;
1418 
1419 	old = xa_store(swap_zswap_tree(page_swpentry),
1420 		       swp_offset(page_swpentry),
1421 		       entry, GFP_KERNEL);
1422 	if (xa_is_err(old)) {
1423 		int err = xa_err(old);
1424 
1425 		WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1426 		zswap_reject_alloc_fail++;
1427 		goto store_failed;
1428 	}
1429 
1430 	/*
1431 	 * We may have had an existing entry that became stale when
1432 	 * the folio was redirtied and now the new version is being
1433 	 * swapped out. Get rid of the old.
1434 	 */
1435 	if (old)
1436 		zswap_entry_free(old);
1437 
1438 	/*
1439 	 * The entry is successfully compressed and stored in the tree, there is
1440 	 * no further possibility of failure. Grab refs to the pool and objcg,
1441 	 * charge zswap memory, and increment zswap_stored_pages.
1442 	 * The opposite actions will be performed by zswap_entry_free()
1443 	 * when the entry is removed from the tree.
1444 	 */
1445 	zswap_pool_get(pool);
1446 	if (objcg) {
1447 		obj_cgroup_get(objcg);
1448 		obj_cgroup_charge_zswap(objcg, entry->length);
1449 	}
1450 	atomic_long_inc(&zswap_stored_pages);
1451 	if (entry->length == PAGE_SIZE)
1452 		atomic_long_inc(&zswap_stored_incompressible_pages);
1453 
1454 	/*
1455 	 * We finish initializing the entry while it's already in xarray.
1456 	 * This is safe because:
1457 	 *
1458 	 * 1. Concurrent stores and invalidations are excluded by folio lock.
1459 	 *
1460 	 * 2. Writeback is excluded by the entry not being on the LRU yet.
1461 	 *    The publishing order matters to prevent writeback from seeing
1462 	 *    an incoherent entry.
1463 	 */
1464 	entry->pool = pool;
1465 	entry->swpentry = page_swpentry;
1466 	entry->objcg = objcg;
1467 	entry->referenced = true;
1468 	if (entry->length) {
1469 		INIT_LIST_HEAD(&entry->lru);
1470 		zswap_lru_add(&zswap_list_lru, entry);
1471 	}
1472 
1473 	return true;
1474 
1475 store_failed:
1476 	zs_free(pool->zs_pool, entry->handle);
1477 compress_failed:
1478 	zswap_entry_cache_free(entry);
1479 	return false;
1480 }
1481 
1482 bool zswap_store(struct folio *folio)
1483 {
1484 	long nr_pages = folio_nr_pages(folio);
1485 	swp_entry_t swp = folio->swap;
1486 	struct obj_cgroup *objcg = NULL;
1487 	struct mem_cgroup *memcg = NULL;
1488 	struct zswap_pool *pool;
1489 	bool ret = false;
1490 	long index;
1491 
1492 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1493 	VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1494 
1495 	if (!zswap_enabled)
1496 		goto check_old;
1497 
1498 	objcg = get_obj_cgroup_from_folio(folio);
1499 	if (objcg && !obj_cgroup_may_zswap(objcg)) {
1500 		memcg = get_mem_cgroup_from_objcg(objcg);
1501 		if (shrink_memcg(memcg)) {
1502 			mem_cgroup_put(memcg);
1503 			goto put_objcg;
1504 		}
1505 		mem_cgroup_put(memcg);
1506 	}
1507 
1508 	if (zswap_check_limits())
1509 		goto put_objcg;
1510 
1511 	pool = zswap_pool_current_get();
1512 	if (!pool)
1513 		goto put_objcg;
1514 
1515 	if (objcg) {
1516 		memcg = get_mem_cgroup_from_objcg(objcg);
1517 		if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1518 			mem_cgroup_put(memcg);
1519 			goto put_pool;
1520 		}
1521 		mem_cgroup_put(memcg);
1522 	}
1523 
1524 	for (index = 0; index < nr_pages; ++index) {
1525 		struct page *page = folio_page(folio, index);
1526 
1527 		if (!zswap_store_page(page, objcg, pool))
1528 			goto put_pool;
1529 	}
1530 
1531 	if (objcg)
1532 		count_objcg_events(objcg, ZSWPOUT, nr_pages);
1533 
1534 	count_vm_events(ZSWPOUT, nr_pages);
1535 
1536 	ret = true;
1537 
1538 put_pool:
1539 	zswap_pool_put(pool);
1540 put_objcg:
1541 	obj_cgroup_put(objcg);
1542 	if (!ret && zswap_pool_reached_full)
1543 		queue_work(shrink_wq, &zswap_shrink_work);
1544 check_old:
1545 	/*
1546 	 * If the zswap store fails or zswap is disabled, we must invalidate
1547 	 * the possibly stale entries which were previously stored at the
1548 	 * offsets corresponding to each page of the folio. Otherwise,
1549 	 * writeback could overwrite the new data in the swapfile.
1550 	 */
1551 	if (!ret) {
1552 		unsigned type = swp_type(swp);
1553 		pgoff_t offset = swp_offset(swp);
1554 		struct zswap_entry *entry;
1555 		struct xarray *tree;
1556 
1557 		for (index = 0; index < nr_pages; ++index) {
1558 			tree = swap_zswap_tree(swp_entry(type, offset + index));
1559 			entry = xa_erase(tree, offset + index);
1560 			if (entry)
1561 				zswap_entry_free(entry);
1562 		}
1563 	}
1564 
1565 	return ret;
1566 }
1567 
1568 /**
1569  * zswap_load() - load a folio from zswap
1570  * @folio: folio to load
1571  *
1572  * Return: 0 on success, with the folio unlocked and marked up-to-date, or one
1573  * of the following error codes:
1574  *
1575  *  -EIO: if the swapped out content was in zswap, but could not be loaded
1576  *  into the page due to a decompression failure. The folio is unlocked, but
1577  *  NOT marked up-to-date, so that an IO error is emitted (e.g. do_swap_page()
1578  *  will SIGBUS).
1579  *
1580  *  -EINVAL: if the swapped out content was in zswap, but the page belongs
1581  *  to a large folio, which is not supported by zswap. The folio is unlocked,
1582  *  but NOT marked up-to-date, so that an IO error is emitted (e.g.
1583  *  do_swap_page() will SIGBUS).
1584  *
1585  *  -ENOENT: if the swapped out content was not in zswap. The folio remains
1586  *  locked on return.
1587  */
1588 int zswap_load(struct folio *folio)
1589 {
1590 	swp_entry_t swp = folio->swap;
1591 	pgoff_t offset = swp_offset(swp);
1592 	bool swapcache = folio_test_swapcache(folio);
1593 	struct xarray *tree = swap_zswap_tree(swp);
1594 	struct zswap_entry *entry;
1595 
1596 	VM_WARN_ON_ONCE(!folio_test_locked(folio));
1597 
1598 	if (zswap_never_enabled())
1599 		return -ENOENT;
1600 
1601 	/*
1602 	 * Large folios should not be swapped in while zswap is being used, as
1603 	 * they are not properly handled. Zswap does not properly load large
1604 	 * folios, and a large folio may only be partially in zswap.
1605 	 */
1606 	if (WARN_ON_ONCE(folio_test_large(folio))) {
1607 		folio_unlock(folio);
1608 		return -EINVAL;
1609 	}
1610 
1611 	entry = xa_load(tree, offset);
1612 	if (!entry)
1613 		return -ENOENT;
1614 
1615 	if (!zswap_decompress(entry, folio)) {
1616 		folio_unlock(folio);
1617 		return -EIO;
1618 	}
1619 
1620 	folio_mark_uptodate(folio);
1621 
1622 	count_vm_event(ZSWPIN);
1623 	if (entry->objcg)
1624 		count_objcg_events(entry->objcg, ZSWPIN, 1);
1625 
1626 	/*
1627 	 * When reading into the swapcache, invalidate our entry. The
1628 	 * swapcache can be the authoritative owner of the page and
1629 	 * its mappings, and the pressure that results from having two
1630 	 * in-memory copies outweighs any benefits of caching the
1631 	 * compression work.
1632 	 *
1633 	 * (Most swapins go through the swapcache. The notable
1634 	 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1635 	 * files, which reads into a private page and may free it if
1636 	 * the fault fails. We remain the primary owner of the entry.)
1637 	 */
1638 	if (swapcache) {
1639 		folio_mark_dirty(folio);
1640 		xa_erase(tree, offset);
1641 		zswap_entry_free(entry);
1642 	}
1643 
1644 	folio_unlock(folio);
1645 	return 0;
1646 }
1647 
1648 void zswap_invalidate(swp_entry_t swp)
1649 {
1650 	pgoff_t offset = swp_offset(swp);
1651 	struct xarray *tree = swap_zswap_tree(swp);
1652 	struct zswap_entry *entry;
1653 
1654 	if (xa_empty(tree))
1655 		return;
1656 
1657 	entry = xa_erase(tree, offset);
1658 	if (entry)
1659 		zswap_entry_free(entry);
1660 }
1661 
1662 int zswap_swapon(int type, unsigned long nr_pages)
1663 {
1664 	struct xarray *trees, *tree;
1665 	unsigned int nr, i;
1666 
1667 	nr = DIV_ROUND_UP(nr_pages, ZSWAP_ADDRESS_SPACE_PAGES);
1668 	trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1669 	if (!trees) {
1670 		pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1671 		return -ENOMEM;
1672 	}
1673 
1674 	for (i = 0; i < nr; i++)
1675 		xa_init(trees + i);
1676 
1677 	nr_zswap_trees[type] = nr;
1678 	zswap_trees[type] = trees;
1679 	return 0;
1680 }
1681 
1682 void zswap_swapoff(int type)
1683 {
1684 	struct xarray *trees = zswap_trees[type];
1685 	unsigned int i;
1686 
1687 	if (!trees)
1688 		return;
1689 
1690 	/* try_to_unuse() invalidated all the entries already */
1691 	for (i = 0; i < nr_zswap_trees[type]; i++)
1692 		WARN_ON_ONCE(!xa_empty(trees + i));
1693 
1694 	kvfree(trees);
1695 	nr_zswap_trees[type] = 0;
1696 	zswap_trees[type] = NULL;
1697 }
1698 
1699 /*********************************
1700 * debugfs functions
1701 **********************************/
1702 #ifdef CONFIG_DEBUG_FS
1703 #include <linux/debugfs.h>
1704 
1705 static struct dentry *zswap_debugfs_root;
1706 
1707 static int debugfs_get_total_size(void *data, u64 *val)
1708 {
1709 	*val = zswap_total_pages() * PAGE_SIZE;
1710 	return 0;
1711 }
1712 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1713 
1714 static int debugfs_get_stored_pages(void *data, u64 *val)
1715 {
1716 	*val = atomic_long_read(&zswap_stored_pages);
1717 	return 0;
1718 }
1719 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n");
1720 
1721 static int debugfs_get_stored_incompressible_pages(void *data, u64 *val)
1722 {
1723 	*val = atomic_long_read(&zswap_stored_incompressible_pages);
1724 	return 0;
1725 }
1726 DEFINE_DEBUGFS_ATTRIBUTE(stored_incompressible_pages_fops,
1727 		debugfs_get_stored_incompressible_pages, NULL, "%llu\n");
1728 
1729 static int zswap_debugfs_init(void)
1730 {
1731 	if (!debugfs_initialized())
1732 		return -ENODEV;
1733 
1734 	zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1735 
1736 	debugfs_create_u64("pool_limit_hit", 0444,
1737 			   zswap_debugfs_root, &zswap_pool_limit_hit);
1738 	debugfs_create_u64("reject_reclaim_fail", 0444,
1739 			   zswap_debugfs_root, &zswap_reject_reclaim_fail);
1740 	debugfs_create_u64("reject_alloc_fail", 0444,
1741 			   zswap_debugfs_root, &zswap_reject_alloc_fail);
1742 	debugfs_create_u64("reject_kmemcache_fail", 0444,
1743 			   zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1744 	debugfs_create_u64("reject_compress_fail", 0444,
1745 			   zswap_debugfs_root, &zswap_reject_compress_fail);
1746 	debugfs_create_u64("reject_compress_poor", 0444,
1747 			   zswap_debugfs_root, &zswap_reject_compress_poor);
1748 	debugfs_create_u64("decompress_fail", 0444,
1749 			   zswap_debugfs_root, &zswap_decompress_fail);
1750 	debugfs_create_u64("written_back_pages", 0444,
1751 			   zswap_debugfs_root, &zswap_written_back_pages);
1752 	debugfs_create_file("pool_total_size", 0444,
1753 			    zswap_debugfs_root, NULL, &total_size_fops);
1754 	debugfs_create_file("stored_pages", 0444,
1755 			    zswap_debugfs_root, NULL, &stored_pages_fops);
1756 	debugfs_create_file("stored_incompressible_pages", 0444,
1757 			    zswap_debugfs_root, NULL,
1758 			    &stored_incompressible_pages_fops);
1759 
1760 	return 0;
1761 }
1762 #else
1763 static int zswap_debugfs_init(void)
1764 {
1765 	return 0;
1766 }
1767 #endif
1768 
1769 /*********************************
1770 * module init and exit
1771 **********************************/
1772 static int zswap_setup(void)
1773 {
1774 	struct zswap_pool *pool;
1775 	int ret;
1776 
1777 	zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1778 	if (!zswap_entry_cache) {
1779 		pr_err("entry cache creation failed\n");
1780 		goto cache_fail;
1781 	}
1782 
1783 	ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1784 				      "mm/zswap_pool:prepare",
1785 				      zswap_cpu_comp_prepare,
1786 				      zswap_cpu_comp_dead);
1787 	if (ret)
1788 		goto hp_fail;
1789 
1790 	shrink_wq = alloc_workqueue("zswap-shrink",
1791 			WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1792 	if (!shrink_wq)
1793 		goto shrink_wq_fail;
1794 
1795 	zswap_shrinker = zswap_alloc_shrinker();
1796 	if (!zswap_shrinker)
1797 		goto shrinker_fail;
1798 	if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1799 		goto lru_fail;
1800 	shrinker_register(zswap_shrinker);
1801 
1802 	INIT_WORK(&zswap_shrink_work, shrink_worker);
1803 
1804 	pool = __zswap_pool_create_fallback();
1805 	if (pool) {
1806 		pr_info("loaded using pool %s\n", pool->tfm_name);
1807 		list_add(&pool->list, &zswap_pools);
1808 		zswap_has_pool = true;
1809 		static_branch_enable(&zswap_ever_enabled);
1810 	} else {
1811 		pr_err("pool creation failed\n");
1812 		zswap_enabled = false;
1813 	}
1814 
1815 	if (zswap_debugfs_init())
1816 		pr_warn("debugfs initialization failed\n");
1817 	zswap_init_state = ZSWAP_INIT_SUCCEED;
1818 	return 0;
1819 
1820 lru_fail:
1821 	shrinker_free(zswap_shrinker);
1822 shrinker_fail:
1823 	destroy_workqueue(shrink_wq);
1824 shrink_wq_fail:
1825 	cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1826 hp_fail:
1827 	kmem_cache_destroy(zswap_entry_cache);
1828 cache_fail:
1829 	/* if built-in, we aren't unloaded on failure; don't allow use */
1830 	zswap_init_state = ZSWAP_INIT_FAILED;
1831 	zswap_enabled = false;
1832 	return -ENOMEM;
1833 }
1834 
1835 static int __init zswap_init(void)
1836 {
1837 	if (!zswap_enabled)
1838 		return 0;
1839 	return zswap_setup();
1840 }
1841 /* must be late so crypto has time to come up */
1842 late_initcall(zswap_init);
1843 
1844 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1845 MODULE_DESCRIPTION("Compressed cache for swap pages");
1846