1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/minmax.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_choices.h>
27 #include <linux/string_helpers.h>
28 #include <linux/swap.h>
29 #include <linux/leafops.h>
30 #include <linux/jhash.h>
31 #include <linux/numa.h>
32 #include <linux/llist.h>
33 #include <linux/cma.h>
34 #include <linux/migrate.h>
35 #include <linux/nospec.h>
36 #include <linux/delayacct.h>
37 #include <linux/memory.h>
38 #include <linux/mm_inline.h>
39 #include <linux/padata.h>
40 #include <linux/pgalloc.h>
41
42 #include <asm/page.h>
43 #include <asm/tlb.h>
44 #include <asm/setup.h>
45
46 #include <linux/io.h>
47 #include <linux/node.h>
48 #include <linux/page_owner.h>
49 #include "internal.h"
50 #include "hugetlb_vmemmap.h"
51 #include "hugetlb_cma.h"
52 #include "hugetlb_internal.h"
53 #include <linux/page-isolation.h>
54
55 int hugetlb_max_hstate __read_mostly;
56 unsigned int default_hstate_idx;
57 struct hstate hstates[HUGE_MAX_HSTATE];
58
59 __initdata nodemask_t hugetlb_bootmem_nodes;
60 __initdata struct list_head huge_boot_pages[MAX_NUMNODES];
61 static unsigned long hstate_boot_nrinvalid[HUGE_MAX_HSTATE] __initdata;
62
63 /*
64 * Due to ordering constraints across the init code for various
65 * architectures, hugetlb hstate cmdline parameters can't simply
66 * be early_param. early_param might call the setup function
67 * before valid hugetlb page sizes are determined, leading to
68 * incorrect rejection of valid hugepagesz= options.
69 *
70 * So, record the parameters early and consume them whenever the
71 * init code is ready for them, by calling hugetlb_parse_params().
72 */
73
74 /* one (hugepagesz=,hugepages=) pair per hstate, one default_hugepagesz */
75 #define HUGE_MAX_CMDLINE_ARGS (2 * HUGE_MAX_HSTATE + 1)
76 struct hugetlb_cmdline {
77 char *val;
78 int (*setup)(char *val);
79 };
80
81 /* for command line parsing */
82 static struct hstate * __initdata parsed_hstate;
83 static unsigned long __initdata default_hstate_max_huge_pages;
84 static bool __initdata parsed_valid_hugepagesz = true;
85 static bool __initdata parsed_default_hugepagesz;
86 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
87 static unsigned long hugepage_allocation_threads __initdata;
88
89 static char hstate_cmdline_buf[COMMAND_LINE_SIZE] __initdata;
90 static int hstate_cmdline_index __initdata;
91 static struct hugetlb_cmdline hugetlb_params[HUGE_MAX_CMDLINE_ARGS] __initdata;
92 static int hugetlb_param_index __initdata;
93 static __init int hugetlb_add_param(char *s, int (*setup)(char *val));
94 static __init void hugetlb_parse_params(void);
95
96 #define hugetlb_early_param(str, func) \
97 static __init int func##args(char *s) \
98 { \
99 return hugetlb_add_param(s, func); \
100 } \
101 early_param(str, func##args)
102
103 /*
104 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
105 * free_huge_pages, and surplus_huge_pages.
106 */
107 __cacheline_aligned_in_smp DEFINE_SPINLOCK(hugetlb_lock);
108
109 /*
110 * Serializes faults on the same logical page. This is used to
111 * prevent spurious OOMs when the hugepage pool is fully utilized.
112 */
113 static int num_fault_mutexes __ro_after_init;
114 struct mutex *hugetlb_fault_mutex_table __ro_after_init;
115
116 /* Forward declaration */
117 static int hugetlb_acct_memory(struct hstate *h, long delta);
118 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
119 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
120 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
121 unsigned long start, unsigned long end, bool take_locks);
122 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
123
subpool_is_free(struct hugepage_subpool * spool)124 static inline bool subpool_is_free(struct hugepage_subpool *spool)
125 {
126 if (spool->count)
127 return false;
128 if (spool->max_hpages != -1)
129 return spool->used_hpages == 0;
130 if (spool->min_hpages != -1)
131 return spool->rsv_hpages == spool->min_hpages;
132
133 return true;
134 }
135
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)136 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
137 unsigned long irq_flags)
138 {
139 spin_unlock_irqrestore(&spool->lock, irq_flags);
140
141 /* If no pages are used, and no other handles to the subpool
142 * remain, give up any reservations based on minimum size and
143 * free the subpool */
144 if (subpool_is_free(spool)) {
145 if (spool->min_hpages != -1)
146 hugetlb_acct_memory(spool->hstate,
147 -spool->min_hpages);
148 kfree(spool);
149 }
150 }
151
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)152 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
153 long min_hpages)
154 {
155 struct hugepage_subpool *spool;
156
157 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
158 if (!spool)
159 return NULL;
160
161 spin_lock_init(&spool->lock);
162 spool->count = 1;
163 spool->max_hpages = max_hpages;
164 spool->hstate = h;
165 spool->min_hpages = min_hpages;
166
167 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
168 kfree(spool);
169 return NULL;
170 }
171 spool->rsv_hpages = min_hpages;
172
173 return spool;
174 }
175
hugepage_put_subpool(struct hugepage_subpool * spool)176 void hugepage_put_subpool(struct hugepage_subpool *spool)
177 {
178 unsigned long flags;
179
180 spin_lock_irqsave(&spool->lock, flags);
181 BUG_ON(!spool->count);
182 spool->count--;
183 unlock_or_release_subpool(spool, flags);
184 }
185
186 /*
187 * Subpool accounting for allocating and reserving pages.
188 * Return -ENOMEM if there are not enough resources to satisfy the
189 * request. Otherwise, return the number of pages by which the
190 * global pools must be adjusted (upward). The returned value may
191 * only be different than the passed value (delta) in the case where
192 * a subpool minimum size must be maintained.
193 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)194 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
195 long delta)
196 {
197 long ret = delta;
198
199 if (!spool)
200 return ret;
201
202 spin_lock_irq(&spool->lock);
203
204 if (spool->max_hpages != -1) { /* maximum size accounting */
205 if ((spool->used_hpages + delta) <= spool->max_hpages)
206 spool->used_hpages += delta;
207 else {
208 ret = -ENOMEM;
209 goto unlock_ret;
210 }
211 }
212
213 /* minimum size accounting */
214 if (spool->min_hpages != -1 && spool->rsv_hpages) {
215 if (delta > spool->rsv_hpages) {
216 /*
217 * Asking for more reserves than those already taken on
218 * behalf of subpool. Return difference.
219 */
220 ret = delta - spool->rsv_hpages;
221 spool->rsv_hpages = 0;
222 } else {
223 ret = 0; /* reserves already accounted for */
224 spool->rsv_hpages -= delta;
225 }
226 }
227
228 unlock_ret:
229 spin_unlock_irq(&spool->lock);
230 return ret;
231 }
232
233 /*
234 * Subpool accounting for freeing and unreserving pages.
235 * Return the number of global page reservations that must be dropped.
236 * The return value may only be different than the passed value (delta)
237 * in the case where a subpool minimum size must be maintained.
238 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)239 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
240 long delta)
241 {
242 long ret = delta;
243 unsigned long flags;
244
245 if (!spool)
246 return delta;
247
248 spin_lock_irqsave(&spool->lock, flags);
249
250 if (spool->max_hpages != -1) /* maximum size accounting */
251 spool->used_hpages -= delta;
252
253 /* minimum size accounting */
254 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
255 if (spool->rsv_hpages + delta <= spool->min_hpages)
256 ret = 0;
257 else
258 ret = spool->rsv_hpages + delta - spool->min_hpages;
259
260 spool->rsv_hpages += delta;
261 if (spool->rsv_hpages > spool->min_hpages)
262 spool->rsv_hpages = spool->min_hpages;
263 }
264
265 /*
266 * If hugetlbfs_put_super couldn't free spool due to an outstanding
267 * quota reference, free it now.
268 */
269 unlock_or_release_subpool(spool, flags);
270
271 return ret;
272 }
273
subpool_vma(struct vm_area_struct * vma)274 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
275 {
276 return subpool_inode(file_inode(vma->vm_file));
277 }
278
279 /*
280 * hugetlb vma_lock helper routines
281 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)282 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
283 {
284 if (__vma_shareable_lock(vma)) {
285 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286
287 down_read(&vma_lock->rw_sema);
288 } else if (__vma_private_lock(vma)) {
289 struct resv_map *resv_map = vma_resv_map(vma);
290
291 down_read(&resv_map->rw_sema);
292 }
293 }
294
hugetlb_vma_unlock_read(struct vm_area_struct * vma)295 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
296 {
297 if (__vma_shareable_lock(vma)) {
298 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
299
300 up_read(&vma_lock->rw_sema);
301 } else if (__vma_private_lock(vma)) {
302 struct resv_map *resv_map = vma_resv_map(vma);
303
304 up_read(&resv_map->rw_sema);
305 }
306 }
307
hugetlb_vma_lock_write(struct vm_area_struct * vma)308 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
309 {
310 if (__vma_shareable_lock(vma)) {
311 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
312
313 down_write(&vma_lock->rw_sema);
314 } else if (__vma_private_lock(vma)) {
315 struct resv_map *resv_map = vma_resv_map(vma);
316
317 down_write(&resv_map->rw_sema);
318 }
319 }
320
hugetlb_vma_unlock_write(struct vm_area_struct * vma)321 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
322 {
323 if (__vma_shareable_lock(vma)) {
324 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
325
326 up_write(&vma_lock->rw_sema);
327 } else if (__vma_private_lock(vma)) {
328 struct resv_map *resv_map = vma_resv_map(vma);
329
330 up_write(&resv_map->rw_sema);
331 }
332 }
333
hugetlb_vma_trylock_write(struct vm_area_struct * vma)334 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
335 {
336
337 if (__vma_shareable_lock(vma)) {
338 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
339
340 return down_write_trylock(&vma_lock->rw_sema);
341 } else if (__vma_private_lock(vma)) {
342 struct resv_map *resv_map = vma_resv_map(vma);
343
344 return down_write_trylock(&resv_map->rw_sema);
345 }
346
347 return 1;
348 }
349
hugetlb_vma_assert_locked(struct vm_area_struct * vma)350 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
351 {
352 if (__vma_shareable_lock(vma)) {
353 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
354
355 lockdep_assert_held(&vma_lock->rw_sema);
356 } else if (__vma_private_lock(vma)) {
357 struct resv_map *resv_map = vma_resv_map(vma);
358
359 lockdep_assert_held(&resv_map->rw_sema);
360 }
361 }
362
hugetlb_vma_lock_release(struct kref * kref)363 void hugetlb_vma_lock_release(struct kref *kref)
364 {
365 struct hugetlb_vma_lock *vma_lock = container_of(kref,
366 struct hugetlb_vma_lock, refs);
367
368 kfree(vma_lock);
369 }
370
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)371 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
372 {
373 struct vm_area_struct *vma = vma_lock->vma;
374
375 /*
376 * vma_lock structure may or not be released as a result of put,
377 * it certainly will no longer be attached to vma so clear pointer.
378 * Semaphore synchronizes access to vma_lock->vma field.
379 */
380 vma_lock->vma = NULL;
381 vma->vm_private_data = NULL;
382 up_write(&vma_lock->rw_sema);
383 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
384 }
385
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)386 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
387 {
388 if (__vma_shareable_lock(vma)) {
389 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
390
391 __hugetlb_vma_unlock_write_put(vma_lock);
392 } else if (__vma_private_lock(vma)) {
393 struct resv_map *resv_map = vma_resv_map(vma);
394
395 /* no free for anon vmas, but still need to unlock */
396 up_write(&resv_map->rw_sema);
397 }
398 }
399
hugetlb_vma_lock_free(struct vm_area_struct * vma)400 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
401 {
402 /*
403 * Only present in sharable vmas.
404 */
405 if (!vma || !__vma_shareable_lock(vma))
406 return;
407
408 if (vma->vm_private_data) {
409 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
410
411 down_write(&vma_lock->rw_sema);
412 __hugetlb_vma_unlock_write_put(vma_lock);
413 }
414 }
415
416 /*
417 * vma specific semaphore used for pmd sharing and fault/truncation
418 * synchronization
419 */
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)420 int hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
421 {
422 struct hugetlb_vma_lock *vma_lock;
423
424 /* Only establish in (flags) sharable vmas */
425 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
426 return 0;
427
428 /* Should never get here with non-NULL vm_private_data */
429 if (vma->vm_private_data)
430 return -EINVAL;
431
432 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
433 if (!vma_lock) {
434 /*
435 * If we can not allocate structure, then vma can not
436 * participate in pmd sharing. This is only a possible
437 * performance enhancement and memory saving issue.
438 * However, the lock is also used to synchronize page
439 * faults with truncation. If the lock is not present,
440 * unlikely races could leave pages in a file past i_size
441 * until the file is removed. Warn in the unlikely case of
442 * allocation failure.
443 */
444 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
445 return -EINVAL;
446 }
447
448 kref_init(&vma_lock->refs);
449 init_rwsem(&vma_lock->rw_sema);
450 vma_lock->vma = vma;
451 vma->vm_private_data = vma_lock;
452
453 return 0;
454 }
455
456 /* Helper that removes a struct file_region from the resv_map cache and returns
457 * it for use.
458 */
459 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)460 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
461 {
462 struct file_region *nrg;
463
464 VM_BUG_ON(resv->region_cache_count <= 0);
465
466 resv->region_cache_count--;
467 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
468 list_del(&nrg->link);
469
470 nrg->from = from;
471 nrg->to = to;
472
473 return nrg;
474 }
475
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)476 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
477 struct file_region *rg)
478 {
479 #ifdef CONFIG_CGROUP_HUGETLB
480 nrg->reservation_counter = rg->reservation_counter;
481 nrg->css = rg->css;
482 if (rg->css)
483 css_get(rg->css);
484 #endif
485 }
486
487 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)488 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
489 struct hstate *h,
490 struct resv_map *resv,
491 struct file_region *nrg)
492 {
493 #ifdef CONFIG_CGROUP_HUGETLB
494 if (h_cg) {
495 nrg->reservation_counter =
496 &h_cg->rsvd_hugepage[hstate_index(h)];
497 nrg->css = &h_cg->css;
498 /*
499 * The caller will hold exactly one h_cg->css reference for the
500 * whole contiguous reservation region. But this area might be
501 * scattered when there are already some file_regions reside in
502 * it. As a result, many file_regions may share only one css
503 * reference. In order to ensure that one file_region must hold
504 * exactly one h_cg->css reference, we should do css_get for
505 * each file_region and leave the reference held by caller
506 * untouched.
507 */
508 css_get(&h_cg->css);
509 if (!resv->pages_per_hpage)
510 resv->pages_per_hpage = pages_per_huge_page(h);
511 /* pages_per_hpage should be the same for all entries in
512 * a resv_map.
513 */
514 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
515 } else {
516 nrg->reservation_counter = NULL;
517 nrg->css = NULL;
518 }
519 #endif
520 }
521
put_uncharge_info(struct file_region * rg)522 static void put_uncharge_info(struct file_region *rg)
523 {
524 #ifdef CONFIG_CGROUP_HUGETLB
525 if (rg->css)
526 css_put(rg->css);
527 #endif
528 }
529
has_same_uncharge_info(struct file_region * rg,struct file_region * org)530 static bool has_same_uncharge_info(struct file_region *rg,
531 struct file_region *org)
532 {
533 #ifdef CONFIG_CGROUP_HUGETLB
534 return rg->reservation_counter == org->reservation_counter &&
535 rg->css == org->css;
536
537 #else
538 return true;
539 #endif
540 }
541
coalesce_file_region(struct resv_map * resv,struct file_region * rg)542 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
543 {
544 struct file_region *nrg, *prg;
545
546 prg = list_prev_entry(rg, link);
547 if (&prg->link != &resv->regions && prg->to == rg->from &&
548 has_same_uncharge_info(prg, rg)) {
549 prg->to = rg->to;
550
551 list_del(&rg->link);
552 put_uncharge_info(rg);
553 kfree(rg);
554
555 rg = prg;
556 }
557
558 nrg = list_next_entry(rg, link);
559 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
560 has_same_uncharge_info(nrg, rg)) {
561 nrg->from = rg->from;
562
563 list_del(&rg->link);
564 put_uncharge_info(rg);
565 kfree(rg);
566 }
567 }
568
569 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)570 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
571 long to, struct hstate *h, struct hugetlb_cgroup *cg,
572 long *regions_needed)
573 {
574 struct file_region *nrg;
575
576 if (!regions_needed) {
577 nrg = get_file_region_entry_from_cache(map, from, to);
578 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
579 list_add(&nrg->link, rg);
580 coalesce_file_region(map, nrg);
581 } else {
582 *regions_needed += 1;
583 }
584
585 return to - from;
586 }
587
588 /*
589 * Must be called with resv->lock held.
590 *
591 * Calling this with regions_needed != NULL will count the number of pages
592 * to be added but will not modify the linked list. And regions_needed will
593 * indicate the number of file_regions needed in the cache to carry out to add
594 * the regions for this range.
595 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)596 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
597 struct hugetlb_cgroup *h_cg,
598 struct hstate *h, long *regions_needed)
599 {
600 long add = 0;
601 struct list_head *head = &resv->regions;
602 long last_accounted_offset = f;
603 struct file_region *iter, *trg = NULL;
604 struct list_head *rg = NULL;
605
606 if (regions_needed)
607 *regions_needed = 0;
608
609 /* In this loop, we essentially handle an entry for the range
610 * [last_accounted_offset, iter->from), at every iteration, with some
611 * bounds checking.
612 */
613 list_for_each_entry_safe(iter, trg, head, link) {
614 /* Skip irrelevant regions that start before our range. */
615 if (iter->from < f) {
616 /* If this region ends after the last accounted offset,
617 * then we need to update last_accounted_offset.
618 */
619 if (iter->to > last_accounted_offset)
620 last_accounted_offset = iter->to;
621 continue;
622 }
623
624 /* When we find a region that starts beyond our range, we've
625 * finished.
626 */
627 if (iter->from >= t) {
628 rg = iter->link.prev;
629 break;
630 }
631
632 /* Add an entry for last_accounted_offset -> iter->from, and
633 * update last_accounted_offset.
634 */
635 if (iter->from > last_accounted_offset)
636 add += hugetlb_resv_map_add(resv, iter->link.prev,
637 last_accounted_offset,
638 iter->from, h, h_cg,
639 regions_needed);
640
641 last_accounted_offset = iter->to;
642 }
643
644 /* Handle the case where our range extends beyond
645 * last_accounted_offset.
646 */
647 if (!rg)
648 rg = head->prev;
649 if (last_accounted_offset < t)
650 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
651 t, h, h_cg, regions_needed);
652
653 return add;
654 }
655
656 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
657 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)658 static int allocate_file_region_entries(struct resv_map *resv,
659 int regions_needed)
660 __must_hold(&resv->lock)
661 {
662 LIST_HEAD(allocated_regions);
663 int to_allocate = 0, i = 0;
664 struct file_region *trg = NULL, *rg = NULL;
665
666 VM_BUG_ON(regions_needed < 0);
667
668 /*
669 * Check for sufficient descriptors in the cache to accommodate
670 * the number of in progress add operations plus regions_needed.
671 *
672 * This is a while loop because when we drop the lock, some other call
673 * to region_add or region_del may have consumed some region_entries,
674 * so we keep looping here until we finally have enough entries for
675 * (adds_in_progress + regions_needed).
676 */
677 while (resv->region_cache_count <
678 (resv->adds_in_progress + regions_needed)) {
679 to_allocate = resv->adds_in_progress + regions_needed -
680 resv->region_cache_count;
681
682 /* At this point, we should have enough entries in the cache
683 * for all the existing adds_in_progress. We should only be
684 * needing to allocate for regions_needed.
685 */
686 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
687
688 spin_unlock(&resv->lock);
689 for (i = 0; i < to_allocate; i++) {
690 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
691 if (!trg)
692 goto out_of_memory;
693 list_add(&trg->link, &allocated_regions);
694 }
695
696 spin_lock(&resv->lock);
697
698 list_splice(&allocated_regions, &resv->region_cache);
699 resv->region_cache_count += to_allocate;
700 }
701
702 return 0;
703
704 out_of_memory:
705 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
706 list_del(&rg->link);
707 kfree(rg);
708 }
709 return -ENOMEM;
710 }
711
712 /*
713 * Add the huge page range represented by [f, t) to the reserve
714 * map. Regions will be taken from the cache to fill in this range.
715 * Sufficient regions should exist in the cache due to the previous
716 * call to region_chg with the same range, but in some cases the cache will not
717 * have sufficient entries due to races with other code doing region_add or
718 * region_del. The extra needed entries will be allocated.
719 *
720 * regions_needed is the out value provided by a previous call to region_chg.
721 *
722 * Return the number of new huge pages added to the map. This number is greater
723 * than or equal to zero. If file_region entries needed to be allocated for
724 * this operation and we were not able to allocate, it returns -ENOMEM.
725 * region_add of regions of length 1 never allocate file_regions and cannot
726 * fail; region_chg will always allocate at least 1 entry and a region_add for
727 * 1 page will only require at most 1 entry.
728 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)729 static long region_add(struct resv_map *resv, long f, long t,
730 long in_regions_needed, struct hstate *h,
731 struct hugetlb_cgroup *h_cg)
732 {
733 long add = 0, actual_regions_needed = 0;
734
735 spin_lock(&resv->lock);
736 retry:
737
738 /* Count how many regions are actually needed to execute this add. */
739 add_reservation_in_range(resv, f, t, NULL, NULL,
740 &actual_regions_needed);
741
742 /*
743 * Check for sufficient descriptors in the cache to accommodate
744 * this add operation. Note that actual_regions_needed may be greater
745 * than in_regions_needed, as the resv_map may have been modified since
746 * the region_chg call. In this case, we need to make sure that we
747 * allocate extra entries, such that we have enough for all the
748 * existing adds_in_progress, plus the excess needed for this
749 * operation.
750 */
751 if (actual_regions_needed > in_regions_needed &&
752 resv->region_cache_count <
753 resv->adds_in_progress +
754 (actual_regions_needed - in_regions_needed)) {
755 /* region_add operation of range 1 should never need to
756 * allocate file_region entries.
757 */
758 VM_BUG_ON(t - f <= 1);
759
760 if (allocate_file_region_entries(
761 resv, actual_regions_needed - in_regions_needed)) {
762 return -ENOMEM;
763 }
764
765 goto retry;
766 }
767
768 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
769
770 resv->adds_in_progress -= in_regions_needed;
771
772 spin_unlock(&resv->lock);
773 return add;
774 }
775
776 /*
777 * Examine the existing reserve map and determine how many
778 * huge pages in the specified range [f, t) are NOT currently
779 * represented. This routine is called before a subsequent
780 * call to region_add that will actually modify the reserve
781 * map to add the specified range [f, t). region_chg does
782 * not change the number of huge pages represented by the
783 * map. A number of new file_region structures is added to the cache as a
784 * placeholder, for the subsequent region_add call to use. At least 1
785 * file_region structure is added.
786 *
787 * out_regions_needed is the number of regions added to the
788 * resv->adds_in_progress. This value needs to be provided to a follow up call
789 * to region_add or region_abort for proper accounting.
790 *
791 * Returns the number of huge pages that need to be added to the existing
792 * reservation map for the range [f, t). This number is greater or equal to
793 * zero. -ENOMEM is returned if a new file_region structure or cache entry
794 * is needed and can not be allocated.
795 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)796 static long region_chg(struct resv_map *resv, long f, long t,
797 long *out_regions_needed)
798 {
799 long chg = 0;
800
801 spin_lock(&resv->lock);
802
803 /* Count how many hugepages in this range are NOT represented. */
804 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
805 out_regions_needed);
806
807 if (*out_regions_needed == 0)
808 *out_regions_needed = 1;
809
810 if (allocate_file_region_entries(resv, *out_regions_needed))
811 return -ENOMEM;
812
813 resv->adds_in_progress += *out_regions_needed;
814
815 spin_unlock(&resv->lock);
816 return chg;
817 }
818
819 /*
820 * Abort the in progress add operation. The adds_in_progress field
821 * of the resv_map keeps track of the operations in progress between
822 * calls to region_chg and region_add. Operations are sometimes
823 * aborted after the call to region_chg. In such cases, region_abort
824 * is called to decrement the adds_in_progress counter. regions_needed
825 * is the value returned by the region_chg call, it is used to decrement
826 * the adds_in_progress counter.
827 *
828 * NOTE: The range arguments [f, t) are not needed or used in this
829 * routine. They are kept to make reading the calling code easier as
830 * arguments will match the associated region_chg call.
831 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)832 static void region_abort(struct resv_map *resv, long f, long t,
833 long regions_needed)
834 {
835 spin_lock(&resv->lock);
836 VM_BUG_ON(!resv->region_cache_count);
837 resv->adds_in_progress -= regions_needed;
838 spin_unlock(&resv->lock);
839 }
840
841 /*
842 * Delete the specified range [f, t) from the reserve map. If the
843 * t parameter is LONG_MAX, this indicates that ALL regions after f
844 * should be deleted. Locate the regions which intersect [f, t)
845 * and either trim, delete or split the existing regions.
846 *
847 * Returns the number of huge pages deleted from the reserve map.
848 * In the normal case, the return value is zero or more. In the
849 * case where a region must be split, a new region descriptor must
850 * be allocated. If the allocation fails, -ENOMEM will be returned.
851 * NOTE: If the parameter t == LONG_MAX, then we will never split
852 * a region and possibly return -ENOMEM. Callers specifying
853 * t == LONG_MAX do not need to check for -ENOMEM error.
854 */
region_del(struct resv_map * resv,long f,long t)855 static long region_del(struct resv_map *resv, long f, long t)
856 {
857 struct list_head *head = &resv->regions;
858 struct file_region *rg, *trg;
859 struct file_region *nrg = NULL;
860 long del = 0;
861
862 retry:
863 spin_lock(&resv->lock);
864 list_for_each_entry_safe(rg, trg, head, link) {
865 /*
866 * Skip regions before the range to be deleted. file_region
867 * ranges are normally of the form [from, to). However, there
868 * may be a "placeholder" entry in the map which is of the form
869 * (from, to) with from == to. Check for placeholder entries
870 * at the beginning of the range to be deleted.
871 */
872 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
873 continue;
874
875 if (rg->from >= t)
876 break;
877
878 if (f > rg->from && t < rg->to) { /* Must split region */
879 /*
880 * Check for an entry in the cache before dropping
881 * lock and attempting allocation.
882 */
883 if (!nrg &&
884 resv->region_cache_count > resv->adds_in_progress) {
885 nrg = list_first_entry(&resv->region_cache,
886 struct file_region,
887 link);
888 list_del(&nrg->link);
889 resv->region_cache_count--;
890 }
891
892 if (!nrg) {
893 spin_unlock(&resv->lock);
894 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
895 if (!nrg)
896 return -ENOMEM;
897 goto retry;
898 }
899
900 del += t - f;
901 hugetlb_cgroup_uncharge_file_region(
902 resv, rg, t - f, false);
903
904 /* New entry for end of split region */
905 nrg->from = t;
906 nrg->to = rg->to;
907
908 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
909
910 INIT_LIST_HEAD(&nrg->link);
911
912 /* Original entry is trimmed */
913 rg->to = f;
914
915 list_add(&nrg->link, &rg->link);
916 nrg = NULL;
917 break;
918 }
919
920 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
921 del += rg->to - rg->from;
922 hugetlb_cgroup_uncharge_file_region(resv, rg,
923 rg->to - rg->from, true);
924 list_del(&rg->link);
925 kfree(rg);
926 continue;
927 }
928
929 if (f <= rg->from) { /* Trim beginning of region */
930 hugetlb_cgroup_uncharge_file_region(resv, rg,
931 t - rg->from, false);
932
933 del += t - rg->from;
934 rg->from = t;
935 } else { /* Trim end of region */
936 hugetlb_cgroup_uncharge_file_region(resv, rg,
937 rg->to - f, false);
938
939 del += rg->to - f;
940 rg->to = f;
941 }
942 }
943
944 spin_unlock(&resv->lock);
945 kfree(nrg);
946 return del;
947 }
948
949 /*
950 * A rare out of memory error was encountered which prevented removal of
951 * the reserve map region for a page. The huge page itself was free'ed
952 * and removed from the page cache. This routine will adjust the subpool
953 * usage count, and the global reserve count if needed. By incrementing
954 * these counts, the reserve map entry which could not be deleted will
955 * appear as a "reserved" entry instead of simply dangling with incorrect
956 * counts.
957 */
hugetlb_fix_reserve_counts(struct inode * inode)958 void hugetlb_fix_reserve_counts(struct inode *inode)
959 {
960 struct hugepage_subpool *spool = subpool_inode(inode);
961 long rsv_adjust;
962 bool reserved = false;
963
964 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
965 if (rsv_adjust > 0) {
966 struct hstate *h = hstate_inode(inode);
967
968 if (!hugetlb_acct_memory(h, 1))
969 reserved = true;
970 } else if (!rsv_adjust) {
971 reserved = true;
972 }
973
974 if (!reserved)
975 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
976 }
977
978 /*
979 * Count and return the number of huge pages in the reserve map
980 * that intersect with the range [f, t).
981 */
region_count(struct resv_map * resv,long f,long t)982 static long region_count(struct resv_map *resv, long f, long t)
983 {
984 struct list_head *head = &resv->regions;
985 struct file_region *rg;
986 long chg = 0;
987
988 spin_lock(&resv->lock);
989 /* Locate each segment we overlap with, and count that overlap. */
990 list_for_each_entry(rg, head, link) {
991 long seg_from;
992 long seg_to;
993
994 if (rg->to <= f)
995 continue;
996 if (rg->from >= t)
997 break;
998
999 seg_from = max(rg->from, f);
1000 seg_to = min(rg->to, t);
1001
1002 chg += seg_to - seg_from;
1003 }
1004 spin_unlock(&resv->lock);
1005
1006 return chg;
1007 }
1008
1009 /*
1010 * Convert the address within this vma to the page offset within
1011 * the mapping, huge page units here.
1012 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1013 static pgoff_t vma_hugecache_offset(struct hstate *h,
1014 struct vm_area_struct *vma, unsigned long address)
1015 {
1016 return ((address - vma->vm_start) >> huge_page_shift(h)) +
1017 (vma->vm_pgoff >> huge_page_order(h));
1018 }
1019
1020 /**
1021 * vma_kernel_pagesize - Page size granularity for this VMA.
1022 * @vma: The user mapping.
1023 *
1024 * Folios in this VMA will be aligned to, and at least the size of the
1025 * number of bytes returned by this function.
1026 *
1027 * Return: The default size of the folios allocated when backing a VMA.
1028 */
vma_kernel_pagesize(struct vm_area_struct * vma)1029 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1030 {
1031 if (vma->vm_ops && vma->vm_ops->pagesize)
1032 return vma->vm_ops->pagesize(vma);
1033 return PAGE_SIZE;
1034 }
1035 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1036
1037 /*
1038 * Return the page size being used by the MMU to back a VMA. In the majority
1039 * of cases, the page size used by the kernel matches the MMU size. On
1040 * architectures where it differs, an architecture-specific 'strong'
1041 * version of this symbol is required.
1042 */
vma_mmu_pagesize(struct vm_area_struct * vma)1043 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1044 {
1045 return vma_kernel_pagesize(vma);
1046 }
1047
1048 /*
1049 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1050 * bits of the reservation map pointer, which are always clear due to
1051 * alignment.
1052 */
1053 #define HPAGE_RESV_OWNER (1UL << 0)
1054 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1055 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1056
1057 /*
1058 * These helpers are used to track how many pages are reserved for
1059 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1060 * is guaranteed to have their future faults succeed.
1061 *
1062 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1063 * the reserve counters are updated with the hugetlb_lock held. It is safe
1064 * to reset the VMA at fork() time as it is not in use yet and there is no
1065 * chance of the global counters getting corrupted as a result of the values.
1066 *
1067 * The private mapping reservation is represented in a subtly different
1068 * manner to a shared mapping. A shared mapping has a region map associated
1069 * with the underlying file, this region map represents the backing file
1070 * pages which have ever had a reservation assigned which this persists even
1071 * after the page is instantiated. A private mapping has a region map
1072 * associated with the original mmap which is attached to all VMAs which
1073 * reference it, this region map represents those offsets which have consumed
1074 * reservation ie. where pages have been instantiated.
1075 */
get_vma_private_data(struct vm_area_struct * vma)1076 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1077 {
1078 return (unsigned long)vma->vm_private_data;
1079 }
1080
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1081 static void set_vma_private_data(struct vm_area_struct *vma,
1082 unsigned long value)
1083 {
1084 vma->vm_private_data = (void *)value;
1085 }
1086
1087 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1088 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1089 struct hugetlb_cgroup *h_cg,
1090 struct hstate *h)
1091 {
1092 #ifdef CONFIG_CGROUP_HUGETLB
1093 if (!h_cg || !h) {
1094 resv_map->reservation_counter = NULL;
1095 resv_map->pages_per_hpage = 0;
1096 resv_map->css = NULL;
1097 } else {
1098 resv_map->reservation_counter =
1099 &h_cg->rsvd_hugepage[hstate_index(h)];
1100 resv_map->pages_per_hpage = pages_per_huge_page(h);
1101 resv_map->css = &h_cg->css;
1102 }
1103 #endif
1104 }
1105
resv_map_alloc(void)1106 struct resv_map *resv_map_alloc(void)
1107 {
1108 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1109 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1110
1111 if (!resv_map || !rg) {
1112 kfree(resv_map);
1113 kfree(rg);
1114 return NULL;
1115 }
1116
1117 kref_init(&resv_map->refs);
1118 spin_lock_init(&resv_map->lock);
1119 INIT_LIST_HEAD(&resv_map->regions);
1120 init_rwsem(&resv_map->rw_sema);
1121
1122 resv_map->adds_in_progress = 0;
1123 /*
1124 * Initialize these to 0. On shared mappings, 0's here indicate these
1125 * fields don't do cgroup accounting. On private mappings, these will be
1126 * re-initialized to the proper values, to indicate that hugetlb cgroup
1127 * reservations are to be un-charged from here.
1128 */
1129 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1130
1131 INIT_LIST_HEAD(&resv_map->region_cache);
1132 list_add(&rg->link, &resv_map->region_cache);
1133 resv_map->region_cache_count = 1;
1134
1135 return resv_map;
1136 }
1137
resv_map_release(struct kref * ref)1138 void resv_map_release(struct kref *ref)
1139 {
1140 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1141 struct list_head *head = &resv_map->region_cache;
1142 struct file_region *rg, *trg;
1143
1144 /* Clear out any active regions before we release the map. */
1145 region_del(resv_map, 0, LONG_MAX);
1146
1147 /* ... and any entries left in the cache */
1148 list_for_each_entry_safe(rg, trg, head, link) {
1149 list_del(&rg->link);
1150 kfree(rg);
1151 }
1152
1153 VM_BUG_ON(resv_map->adds_in_progress);
1154
1155 kfree(resv_map);
1156 }
1157
inode_resv_map(struct inode * inode)1158 static inline struct resv_map *inode_resv_map(struct inode *inode)
1159 {
1160 /*
1161 * At inode evict time, i_mapping may not point to the original
1162 * address space within the inode. This original address space
1163 * contains the pointer to the resv_map. So, always use the
1164 * address space embedded within the inode.
1165 * The VERY common case is inode->mapping == &inode->i_data but,
1166 * this may not be true for device special inodes.
1167 */
1168 return (struct resv_map *)(&inode->i_data)->i_private_data;
1169 }
1170
vma_resv_map(struct vm_area_struct * vma)1171 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1172 {
1173 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1174 if (vma->vm_flags & VM_MAYSHARE) {
1175 struct address_space *mapping = vma->vm_file->f_mapping;
1176 struct inode *inode = mapping->host;
1177
1178 return inode_resv_map(inode);
1179
1180 } else {
1181 return (struct resv_map *)(get_vma_private_data(vma) &
1182 ~HPAGE_RESV_MASK);
1183 }
1184 }
1185
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1186 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1187 {
1188 VM_WARN_ON_ONCE_VMA(!is_vm_hugetlb_page(vma), vma);
1189 VM_WARN_ON_ONCE_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1190
1191 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1192 }
1193
set_vma_desc_resv_map(struct vm_area_desc * desc,struct resv_map * map)1194 static void set_vma_desc_resv_map(struct vm_area_desc *desc, struct resv_map *map)
1195 {
1196 VM_WARN_ON_ONCE(!is_vma_hugetlb_flags(&desc->vma_flags));
1197 VM_WARN_ON_ONCE(vma_desc_test_flags(desc, VMA_MAYSHARE_BIT));
1198
1199 desc->private_data = map;
1200 }
1201
set_vma_desc_resv_flags(struct vm_area_desc * desc,unsigned long flags)1202 static void set_vma_desc_resv_flags(struct vm_area_desc *desc, unsigned long flags)
1203 {
1204 VM_WARN_ON_ONCE(!is_vma_hugetlb_flags(&desc->vma_flags));
1205 VM_WARN_ON_ONCE(vma_desc_test_flags(desc, VMA_MAYSHARE_BIT));
1206
1207 desc->private_data = (void *)((unsigned long)desc->private_data | flags);
1208 }
1209
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1210 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1211 {
1212 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1213
1214 return (get_vma_private_data(vma) & flag) != 0;
1215 }
1216
is_vma_desc_resv_set(struct vm_area_desc * desc,unsigned long flag)1217 static bool is_vma_desc_resv_set(struct vm_area_desc *desc, unsigned long flag)
1218 {
1219 VM_WARN_ON_ONCE(!is_vma_hugetlb_flags(&desc->vma_flags));
1220
1221 return ((unsigned long)desc->private_data) & flag;
1222 }
1223
__vma_private_lock(struct vm_area_struct * vma)1224 bool __vma_private_lock(struct vm_area_struct *vma)
1225 {
1226 return !(vma->vm_flags & VM_MAYSHARE) &&
1227 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1228 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1229 }
1230
hugetlb_dup_vma_private(struct vm_area_struct * vma)1231 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1232 {
1233 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1234 /*
1235 * Clear vm_private_data
1236 * - For shared mappings this is a per-vma semaphore that may be
1237 * allocated in a subsequent call to hugetlb_vm_op_open.
1238 * Before clearing, make sure pointer is not associated with vma
1239 * as this will leak the structure. This is the case when called
1240 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1241 * been called to allocate a new structure.
1242 * - For MAP_PRIVATE mappings, this is the reserve map which does
1243 * not apply to children. Faults generated by the children are
1244 * not guaranteed to succeed, even if read-only.
1245 */
1246 if (vma->vm_flags & VM_MAYSHARE) {
1247 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1248
1249 if (vma_lock && vma_lock->vma != vma)
1250 vma->vm_private_data = NULL;
1251 } else {
1252 vma->vm_private_data = NULL;
1253 }
1254 }
1255
1256 /*
1257 * Reset and decrement one ref on hugepage private reservation.
1258 * Called with mm->mmap_lock writer semaphore held.
1259 * This function should be only used by mremap and operate on
1260 * same sized vma. It should never come here with last ref on the
1261 * reservation.
1262 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1263 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1264 {
1265 /*
1266 * Clear the old hugetlb private page reservation.
1267 * It has already been transferred to new_vma.
1268 *
1269 * During a mremap() operation of a hugetlb vma we call move_vma()
1270 * which copies vma into new_vma and unmaps vma. After the copy
1271 * operation both new_vma and vma share a reference to the resv_map
1272 * struct, and at that point vma is about to be unmapped. We don't
1273 * want to return the reservation to the pool at unmap of vma because
1274 * the reservation still lives on in new_vma, so simply decrement the
1275 * ref here and remove the resv_map reference from this vma.
1276 */
1277 struct resv_map *reservations = vma_resv_map(vma);
1278
1279 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1280 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1281 kref_put(&reservations->refs, resv_map_release);
1282 }
1283
1284 hugetlb_dup_vma_private(vma);
1285 }
1286
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1287 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1288 {
1289 int nid = folio_nid(folio);
1290
1291 lockdep_assert_held(&hugetlb_lock);
1292 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1293
1294 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1295 h->free_huge_pages++;
1296 h->free_huge_pages_node[nid]++;
1297 folio_set_hugetlb_freed(folio);
1298 }
1299
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1300 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1301 int nid)
1302 {
1303 struct folio *folio;
1304 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1305
1306 lockdep_assert_held(&hugetlb_lock);
1307 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1308 if (pin && !folio_is_longterm_pinnable(folio))
1309 continue;
1310
1311 if (folio_test_hwpoison(folio))
1312 continue;
1313
1314 if (is_migrate_isolate_page(&folio->page))
1315 continue;
1316
1317 list_move(&folio->lru, &h->hugepage_activelist);
1318 folio_ref_unfreeze(folio, 1);
1319 folio_clear_hugetlb_freed(folio);
1320 h->free_huge_pages--;
1321 h->free_huge_pages_node[nid]--;
1322 return folio;
1323 }
1324
1325 return NULL;
1326 }
1327
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1328 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1329 int nid, nodemask_t *nmask)
1330 {
1331 unsigned int cpuset_mems_cookie;
1332 struct zonelist *zonelist;
1333 struct zone *zone;
1334 struct zoneref *z;
1335 int node = NUMA_NO_NODE;
1336
1337 /* 'nid' should not be NUMA_NO_NODE. Try to catch any misuse of it and rectifiy. */
1338 if (nid == NUMA_NO_NODE)
1339 nid = numa_node_id();
1340
1341 zonelist = node_zonelist(nid, gfp_mask);
1342
1343 retry_cpuset:
1344 cpuset_mems_cookie = read_mems_allowed_begin();
1345 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1346 struct folio *folio;
1347
1348 if (!cpuset_zone_allowed(zone, gfp_mask))
1349 continue;
1350 /*
1351 * no need to ask again on the same node. Pool is node rather than
1352 * zone aware
1353 */
1354 if (zone_to_nid(zone) == node)
1355 continue;
1356 node = zone_to_nid(zone);
1357
1358 folio = dequeue_hugetlb_folio_node_exact(h, node);
1359 if (folio)
1360 return folio;
1361 }
1362 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1363 goto retry_cpuset;
1364
1365 return NULL;
1366 }
1367
available_huge_pages(struct hstate * h)1368 static unsigned long available_huge_pages(struct hstate *h)
1369 {
1370 return h->free_huge_pages - h->resv_huge_pages;
1371 }
1372
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,long gbl_chg)1373 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1374 struct vm_area_struct *vma,
1375 unsigned long address, long gbl_chg)
1376 {
1377 struct folio *folio = NULL;
1378 struct mempolicy *mpol;
1379 gfp_t gfp_mask;
1380 nodemask_t *nodemask;
1381 int nid;
1382
1383 /*
1384 * gbl_chg==1 means the allocation requires a new page that was not
1385 * reserved before. Making sure there's at least one free page.
1386 */
1387 if (gbl_chg && !available_huge_pages(h))
1388 goto err;
1389
1390 gfp_mask = htlb_alloc_mask(h);
1391 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1392
1393 if (mpol_is_preferred_many(mpol)) {
1394 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1395 nid, nodemask);
1396
1397 /* Fallback to all nodes if page==NULL */
1398 nodemask = NULL;
1399 }
1400
1401 if (!folio)
1402 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1403 nid, nodemask);
1404
1405 mpol_cond_put(mpol);
1406 return folio;
1407
1408 err:
1409 return NULL;
1410 }
1411
1412 #if defined(CONFIG_ARCH_HAS_GIGANTIC_PAGE) && defined(CONFIG_CONTIG_ALLOC)
alloc_gigantic_frozen_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1413 static struct folio *alloc_gigantic_frozen_folio(int order, gfp_t gfp_mask,
1414 int nid, nodemask_t *nodemask)
1415 {
1416 struct folio *folio;
1417
1418 folio = hugetlb_cma_alloc_frozen_folio(order, gfp_mask, nid, nodemask);
1419 if (folio)
1420 return folio;
1421
1422 if (hugetlb_cma_exclusive_alloc())
1423 return NULL;
1424
1425 folio = (struct folio *)alloc_contig_frozen_pages(1 << order, gfp_mask,
1426 nid, nodemask);
1427 return folio;
1428 }
1429 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE || !CONFIG_CONTIG_ALLOC */
alloc_gigantic_frozen_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1430 static struct folio *alloc_gigantic_frozen_folio(int order, gfp_t gfp_mask, int nid,
1431 nodemask_t *nodemask)
1432 {
1433 return NULL;
1434 }
1435 #endif
1436
1437 /*
1438 * Remove hugetlb folio from lists.
1439 * If vmemmap exists for the folio, clear the hugetlb flag so that the
1440 * folio appears as just a compound page. Otherwise, wait until after
1441 * allocating vmemmap to clear the flag.
1442 *
1443 * Must be called with hugetlb lock held.
1444 */
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1445 void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1446 bool adjust_surplus)
1447 {
1448 int nid = folio_nid(folio);
1449
1450 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1451 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1452
1453 lockdep_assert_held(&hugetlb_lock);
1454 if (hstate_is_gigantic_no_runtime(h))
1455 return;
1456
1457 list_del(&folio->lru);
1458
1459 if (folio_test_hugetlb_freed(folio)) {
1460 folio_clear_hugetlb_freed(folio);
1461 h->free_huge_pages--;
1462 h->free_huge_pages_node[nid]--;
1463 }
1464 if (adjust_surplus) {
1465 h->surplus_huge_pages--;
1466 h->surplus_huge_pages_node[nid]--;
1467 }
1468
1469 /*
1470 * We can only clear the hugetlb flag after allocating vmemmap
1471 * pages. Otherwise, someone (memory error handling) may try to write
1472 * to tail struct pages.
1473 */
1474 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1475 __folio_clear_hugetlb(folio);
1476
1477 h->nr_huge_pages--;
1478 h->nr_huge_pages_node[nid]--;
1479 }
1480
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1481 void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1482 bool adjust_surplus)
1483 {
1484 int nid = folio_nid(folio);
1485
1486 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1487
1488 lockdep_assert_held(&hugetlb_lock);
1489
1490 INIT_LIST_HEAD(&folio->lru);
1491 h->nr_huge_pages++;
1492 h->nr_huge_pages_node[nid]++;
1493
1494 if (adjust_surplus) {
1495 h->surplus_huge_pages++;
1496 h->surplus_huge_pages_node[nid]++;
1497 }
1498
1499 __folio_set_hugetlb(folio);
1500 folio_change_private(folio, NULL);
1501 /*
1502 * We have to set hugetlb_vmemmap_optimized again as above
1503 * folio_change_private(folio, NULL) cleared it.
1504 */
1505 folio_set_hugetlb_vmemmap_optimized(folio);
1506
1507 arch_clear_hugetlb_flags(folio);
1508 enqueue_hugetlb_folio(h, folio);
1509 }
1510
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1511 static void __update_and_free_hugetlb_folio(struct hstate *h,
1512 struct folio *folio)
1513 {
1514 bool clear_flag = folio_test_hugetlb_vmemmap_optimized(folio);
1515
1516 if (hstate_is_gigantic_no_runtime(h))
1517 return;
1518
1519 /*
1520 * If we don't know which subpages are hwpoisoned, we can't free
1521 * the hugepage, so it's leaked intentionally.
1522 */
1523 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1524 return;
1525
1526 /*
1527 * If folio is not vmemmap optimized (!clear_flag), then the folio
1528 * is no longer identified as a hugetlb page. hugetlb_vmemmap_restore_folio
1529 * can only be passed hugetlb pages and will BUG otherwise.
1530 */
1531 if (clear_flag && hugetlb_vmemmap_restore_folio(h, folio)) {
1532 spin_lock_irq(&hugetlb_lock);
1533 /*
1534 * If we cannot allocate vmemmap pages, just refuse to free the
1535 * page and put the page back on the hugetlb free list and treat
1536 * as a surplus page.
1537 */
1538 add_hugetlb_folio(h, folio, true);
1539 spin_unlock_irq(&hugetlb_lock);
1540 return;
1541 }
1542
1543 /*
1544 * If vmemmap pages were allocated above, then we need to clear the
1545 * hugetlb flag under the hugetlb lock.
1546 */
1547 if (folio_test_hugetlb(folio)) {
1548 spin_lock_irq(&hugetlb_lock);
1549 __folio_clear_hugetlb(folio);
1550 spin_unlock_irq(&hugetlb_lock);
1551 }
1552
1553 /*
1554 * Move PageHWPoison flag from head page to the raw error pages,
1555 * which makes any healthy subpages reusable.
1556 */
1557 if (unlikely(folio_test_hwpoison(folio)))
1558 folio_clear_hugetlb_hwpoison(folio);
1559
1560 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1561 if (folio_test_hugetlb_cma(folio))
1562 hugetlb_cma_free_frozen_folio(folio);
1563 else
1564 free_frozen_pages(&folio->page, folio_order(folio));
1565 }
1566
1567 /*
1568 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1569 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1570 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1571 * the vmemmap pages.
1572 *
1573 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1574 * freed and frees them one-by-one. As the page->mapping pointer is going
1575 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1576 * structure of a lockless linked list of huge pages to be freed.
1577 */
1578 static LLIST_HEAD(hpage_freelist);
1579
free_hpage_workfn(struct work_struct * work)1580 static void free_hpage_workfn(struct work_struct *work)
1581 {
1582 struct llist_node *node;
1583
1584 node = llist_del_all(&hpage_freelist);
1585
1586 while (node) {
1587 struct folio *folio;
1588 struct hstate *h;
1589
1590 folio = container_of((struct address_space **)node,
1591 struct folio, mapping);
1592 node = node->next;
1593 folio->mapping = NULL;
1594 /*
1595 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1596 * folio_hstate() is going to trigger because a previous call to
1597 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1598 * not use folio_hstate() directly.
1599 */
1600 h = size_to_hstate(folio_size(folio));
1601
1602 __update_and_free_hugetlb_folio(h, folio);
1603
1604 cond_resched();
1605 }
1606 }
1607 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1608
flush_free_hpage_work(struct hstate * h)1609 static inline void flush_free_hpage_work(struct hstate *h)
1610 {
1611 if (hugetlb_vmemmap_optimizable(h))
1612 flush_work(&free_hpage_work);
1613 }
1614
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1615 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1616 bool atomic)
1617 {
1618 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1619 __update_and_free_hugetlb_folio(h, folio);
1620 return;
1621 }
1622
1623 /*
1624 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1625 *
1626 * Only call schedule_work() if hpage_freelist is previously
1627 * empty. Otherwise, schedule_work() had been called but the workfn
1628 * hasn't retrieved the list yet.
1629 */
1630 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1631 schedule_work(&free_hpage_work);
1632 }
1633
bulk_vmemmap_restore_error(struct hstate * h,struct list_head * folio_list,struct list_head * non_hvo_folios)1634 static void bulk_vmemmap_restore_error(struct hstate *h,
1635 struct list_head *folio_list,
1636 struct list_head *non_hvo_folios)
1637 {
1638 struct folio *folio, *t_folio;
1639
1640 if (!list_empty(non_hvo_folios)) {
1641 /*
1642 * Free any restored hugetlb pages so that restore of the
1643 * entire list can be retried.
1644 * The idea is that in the common case of ENOMEM errors freeing
1645 * hugetlb pages with vmemmap we will free up memory so that we
1646 * can allocate vmemmap for more hugetlb pages.
1647 */
1648 list_for_each_entry_safe(folio, t_folio, non_hvo_folios, lru) {
1649 list_del(&folio->lru);
1650 spin_lock_irq(&hugetlb_lock);
1651 __folio_clear_hugetlb(folio);
1652 spin_unlock_irq(&hugetlb_lock);
1653 update_and_free_hugetlb_folio(h, folio, false);
1654 cond_resched();
1655 }
1656 } else {
1657 /*
1658 * In the case where there are no folios which can be
1659 * immediately freed, we loop through the list trying to restore
1660 * vmemmap individually in the hope that someone elsewhere may
1661 * have done something to cause success (such as freeing some
1662 * memory). If unable to restore a hugetlb page, the hugetlb
1663 * page is made a surplus page and removed from the list.
1664 * If are able to restore vmemmap and free one hugetlb page, we
1665 * quit processing the list to retry the bulk operation.
1666 */
1667 list_for_each_entry_safe(folio, t_folio, folio_list, lru)
1668 if (hugetlb_vmemmap_restore_folio(h, folio)) {
1669 list_del(&folio->lru);
1670 spin_lock_irq(&hugetlb_lock);
1671 add_hugetlb_folio(h, folio, true);
1672 spin_unlock_irq(&hugetlb_lock);
1673 } else {
1674 list_del(&folio->lru);
1675 spin_lock_irq(&hugetlb_lock);
1676 __folio_clear_hugetlb(folio);
1677 spin_unlock_irq(&hugetlb_lock);
1678 update_and_free_hugetlb_folio(h, folio, false);
1679 cond_resched();
1680 break;
1681 }
1682 }
1683 }
1684
update_and_free_pages_bulk(struct hstate * h,struct list_head * folio_list)1685 static void update_and_free_pages_bulk(struct hstate *h,
1686 struct list_head *folio_list)
1687 {
1688 long ret;
1689 struct folio *folio, *t_folio;
1690 LIST_HEAD(non_hvo_folios);
1691
1692 /*
1693 * First allocate required vmemmmap (if necessary) for all folios.
1694 * Carefully handle errors and free up any available hugetlb pages
1695 * in an effort to make forward progress.
1696 */
1697 retry:
1698 ret = hugetlb_vmemmap_restore_folios(h, folio_list, &non_hvo_folios);
1699 if (ret < 0) {
1700 bulk_vmemmap_restore_error(h, folio_list, &non_hvo_folios);
1701 goto retry;
1702 }
1703
1704 /*
1705 * At this point, list should be empty, ret should be >= 0 and there
1706 * should only be pages on the non_hvo_folios list.
1707 * Do note that the non_hvo_folios list could be empty.
1708 * Without HVO enabled, ret will be 0 and there is no need to call
1709 * __folio_clear_hugetlb as this was done previously.
1710 */
1711 VM_WARN_ON(!list_empty(folio_list));
1712 VM_WARN_ON(ret < 0);
1713 if (!list_empty(&non_hvo_folios) && ret) {
1714 spin_lock_irq(&hugetlb_lock);
1715 list_for_each_entry(folio, &non_hvo_folios, lru)
1716 __folio_clear_hugetlb(folio);
1717 spin_unlock_irq(&hugetlb_lock);
1718 }
1719
1720 list_for_each_entry_safe(folio, t_folio, &non_hvo_folios, lru) {
1721 update_and_free_hugetlb_folio(h, folio, false);
1722 cond_resched();
1723 }
1724 }
1725
size_to_hstate(unsigned long size)1726 struct hstate *size_to_hstate(unsigned long size)
1727 {
1728 struct hstate *h;
1729
1730 for_each_hstate(h) {
1731 if (huge_page_size(h) == size)
1732 return h;
1733 }
1734 return NULL;
1735 }
1736
free_huge_folio(struct folio * folio)1737 void free_huge_folio(struct folio *folio)
1738 {
1739 /*
1740 * Can't pass hstate in here because it is called from the
1741 * generic mm code.
1742 */
1743 struct hstate *h = folio_hstate(folio);
1744 int nid = folio_nid(folio);
1745 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1746 bool restore_reserve;
1747 unsigned long flags;
1748
1749 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1750 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1751
1752 hugetlb_set_folio_subpool(folio, NULL);
1753 if (folio_test_anon(folio))
1754 __ClearPageAnonExclusive(&folio->page);
1755 folio->mapping = NULL;
1756 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1757 folio_clear_hugetlb_restore_reserve(folio);
1758
1759 /*
1760 * If HPageRestoreReserve was set on page, page allocation consumed a
1761 * reservation. If the page was associated with a subpool, there
1762 * would have been a page reserved in the subpool before allocation
1763 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1764 * reservation, do not call hugepage_subpool_put_pages() as this will
1765 * remove the reserved page from the subpool.
1766 */
1767 if (!restore_reserve) {
1768 /*
1769 * A return code of zero implies that the subpool will be
1770 * under its minimum size if the reservation is not restored
1771 * after page is free. Therefore, force restore_reserve
1772 * operation.
1773 */
1774 if (hugepage_subpool_put_pages(spool, 1) == 0)
1775 restore_reserve = true;
1776 }
1777
1778 spin_lock_irqsave(&hugetlb_lock, flags);
1779 folio_clear_hugetlb_migratable(folio);
1780 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1781 pages_per_huge_page(h), folio);
1782 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1783 pages_per_huge_page(h), folio);
1784 lruvec_stat_mod_folio(folio, NR_HUGETLB, -pages_per_huge_page(h));
1785 mem_cgroup_uncharge(folio);
1786 if (restore_reserve)
1787 h->resv_huge_pages++;
1788
1789 if (folio_test_hugetlb_temporary(folio)) {
1790 remove_hugetlb_folio(h, folio, false);
1791 spin_unlock_irqrestore(&hugetlb_lock, flags);
1792 update_and_free_hugetlb_folio(h, folio, true);
1793 } else if (h->surplus_huge_pages_node[nid]) {
1794 /* remove the page from active list */
1795 remove_hugetlb_folio(h, folio, true);
1796 spin_unlock_irqrestore(&hugetlb_lock, flags);
1797 update_and_free_hugetlb_folio(h, folio, true);
1798 } else {
1799 arch_clear_hugetlb_flags(folio);
1800 enqueue_hugetlb_folio(h, folio);
1801 spin_unlock_irqrestore(&hugetlb_lock, flags);
1802 }
1803 }
1804
1805 /*
1806 * Must be called with the hugetlb lock held
1807 */
account_new_hugetlb_folio(struct hstate * h,struct folio * folio)1808 static void account_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1809 {
1810 lockdep_assert_held(&hugetlb_lock);
1811 h->nr_huge_pages++;
1812 h->nr_huge_pages_node[folio_nid(folio)]++;
1813 }
1814
init_new_hugetlb_folio(struct folio * folio)1815 void init_new_hugetlb_folio(struct folio *folio)
1816 {
1817 __folio_set_hugetlb(folio);
1818 INIT_LIST_HEAD(&folio->lru);
1819 hugetlb_set_folio_subpool(folio, NULL);
1820 set_hugetlb_cgroup(folio, NULL);
1821 set_hugetlb_cgroup_rsvd(folio, NULL);
1822 }
1823
1824 /*
1825 * Find and lock address space (mapping) in write mode.
1826 *
1827 * Upon entry, the folio is locked which means that folio_mapping() is
1828 * stable. Due to locking order, we can only trylock_write. If we can
1829 * not get the lock, simply return NULL to caller.
1830 */
hugetlb_folio_mapping_lock_write(struct folio * folio)1831 struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio)
1832 {
1833 struct address_space *mapping = folio_mapping(folio);
1834
1835 if (!mapping)
1836 return mapping;
1837
1838 if (i_mmap_trylock_write(mapping))
1839 return mapping;
1840
1841 return NULL;
1842 }
1843
alloc_buddy_frozen_folio(int order,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1844 static struct folio *alloc_buddy_frozen_folio(int order, gfp_t gfp_mask,
1845 int nid, nodemask_t *nmask, nodemask_t *node_alloc_noretry)
1846 {
1847 struct folio *folio;
1848 bool alloc_try_hard = true;
1849
1850 /*
1851 * By default we always try hard to allocate the folio with
1852 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating folios in
1853 * a loop (to adjust global huge page counts) and previous allocation
1854 * failed, do not continue to try hard on the same node. Use the
1855 * node_alloc_noretry bitmap to manage this state information.
1856 */
1857 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1858 alloc_try_hard = false;
1859 if (alloc_try_hard)
1860 gfp_mask |= __GFP_RETRY_MAYFAIL;
1861
1862 folio = (struct folio *)__alloc_frozen_pages(gfp_mask, order, nid, nmask);
1863
1864 /*
1865 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a
1866 * folio this indicates an overall state change. Clear bit so
1867 * that we resume normal 'try hard' allocations.
1868 */
1869 if (node_alloc_noretry && folio && !alloc_try_hard)
1870 node_clear(nid, *node_alloc_noretry);
1871
1872 /*
1873 * If we tried hard to get a folio but failed, set bit so that
1874 * subsequent attempts will not try as hard until there is an
1875 * overall state change.
1876 */
1877 if (node_alloc_noretry && !folio && alloc_try_hard)
1878 node_set(nid, *node_alloc_noretry);
1879
1880 if (!folio) {
1881 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1882 return NULL;
1883 }
1884
1885 __count_vm_event(HTLB_BUDDY_PGALLOC);
1886 return folio;
1887 }
1888
only_alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1889 static struct folio *only_alloc_fresh_hugetlb_folio(struct hstate *h,
1890 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1891 nodemask_t *node_alloc_noretry)
1892 {
1893 struct folio *folio;
1894 int order = huge_page_order(h);
1895
1896 if (nid == NUMA_NO_NODE)
1897 nid = numa_mem_id();
1898
1899 if (order_is_gigantic(order))
1900 folio = alloc_gigantic_frozen_folio(order, gfp_mask, nid, nmask);
1901 else
1902 folio = alloc_buddy_frozen_folio(order, gfp_mask, nid, nmask,
1903 node_alloc_noretry);
1904 if (folio)
1905 init_new_hugetlb_folio(folio);
1906 return folio;
1907 }
1908
1909 /*
1910 * Common helper to allocate a fresh hugetlb folio. All specific allocators
1911 * should use this function to get new hugetlb folio
1912 *
1913 * Note that returned folio is 'frozen': ref count of head page and all tail
1914 * pages is zero, and the accounting must be done in the caller.
1915 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1916 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
1917 gfp_t gfp_mask, int nid, nodemask_t *nmask)
1918 {
1919 struct folio *folio;
1920
1921 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
1922 if (folio)
1923 hugetlb_vmemmap_optimize_folio(h, folio);
1924 return folio;
1925 }
1926
prep_and_add_allocated_folios(struct hstate * h,struct list_head * folio_list)1927 void prep_and_add_allocated_folios(struct hstate *h,
1928 struct list_head *folio_list)
1929 {
1930 unsigned long flags;
1931 struct folio *folio, *tmp_f;
1932
1933 /* Send list for bulk vmemmap optimization processing */
1934 hugetlb_vmemmap_optimize_folios(h, folio_list);
1935
1936 /* Add all new pool pages to free lists in one lock cycle */
1937 spin_lock_irqsave(&hugetlb_lock, flags);
1938 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
1939 account_new_hugetlb_folio(h, folio);
1940 enqueue_hugetlb_folio(h, folio);
1941 }
1942 spin_unlock_irqrestore(&hugetlb_lock, flags);
1943 }
1944
1945 /*
1946 * Allocates a fresh hugetlb page in a node interleaved manner. The page
1947 * will later be added to the appropriate hugetlb pool.
1948 */
alloc_pool_huge_folio(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry,int * next_node)1949 static struct folio *alloc_pool_huge_folio(struct hstate *h,
1950 nodemask_t *nodes_allowed,
1951 nodemask_t *node_alloc_noretry,
1952 int *next_node)
1953 {
1954 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1955 int nr_nodes, node;
1956
1957 for_each_node_mask_to_alloc(next_node, nr_nodes, node, nodes_allowed) {
1958 struct folio *folio;
1959
1960 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, node,
1961 nodes_allowed, node_alloc_noretry);
1962 if (folio)
1963 return folio;
1964 }
1965
1966 return NULL;
1967 }
1968
1969 /*
1970 * Remove huge page from pool from next node to free. Attempt to keep
1971 * persistent huge pages more or less balanced over allowed nodes.
1972 * This routine only 'removes' the hugetlb page. The caller must make
1973 * an additional call to free the page to low level allocators.
1974 * Called with hugetlb_lock locked.
1975 */
remove_pool_hugetlb_folio(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1976 static struct folio *remove_pool_hugetlb_folio(struct hstate *h,
1977 nodemask_t *nodes_allowed, bool acct_surplus)
1978 {
1979 int nr_nodes, node;
1980 struct folio *folio = NULL;
1981
1982 lockdep_assert_held(&hugetlb_lock);
1983 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1984 /*
1985 * If we're returning unused surplus pages, only examine
1986 * nodes with surplus pages.
1987 */
1988 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1989 !list_empty(&h->hugepage_freelists[node])) {
1990 folio = list_entry(h->hugepage_freelists[node].next,
1991 struct folio, lru);
1992 remove_hugetlb_folio(h, folio, acct_surplus);
1993 break;
1994 }
1995 }
1996
1997 return folio;
1998 }
1999
2000 /*
2001 * Dissolve a given free hugetlb folio into free buddy pages. This function
2002 * does nothing for in-use hugetlb folios and non-hugetlb folios.
2003 * This function returns values like below:
2004 *
2005 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2006 * when the system is under memory pressure and the feature of
2007 * freeing unused vmemmap pages associated with each hugetlb page
2008 * is enabled.
2009 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2010 * (allocated or reserved.)
2011 * 0: successfully dissolved free hugepages or the page is not a
2012 * hugepage (considered as already dissolved)
2013 */
dissolve_free_hugetlb_folio(struct folio * folio)2014 int dissolve_free_hugetlb_folio(struct folio *folio)
2015 {
2016 int rc = -EBUSY;
2017
2018 retry:
2019 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2020 if (!folio_test_hugetlb(folio))
2021 return 0;
2022
2023 spin_lock_irq(&hugetlb_lock);
2024 if (!folio_test_hugetlb(folio)) {
2025 rc = 0;
2026 goto out;
2027 }
2028
2029 if (!folio_ref_count(folio)) {
2030 struct hstate *h = folio_hstate(folio);
2031 bool adjust_surplus = false;
2032
2033 if (!available_huge_pages(h))
2034 goto out;
2035
2036 /*
2037 * We should make sure that the page is already on the free list
2038 * when it is dissolved.
2039 */
2040 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2041 spin_unlock_irq(&hugetlb_lock);
2042 cond_resched();
2043
2044 /*
2045 * Theoretically, we should return -EBUSY when we
2046 * encounter this race. In fact, we have a chance
2047 * to successfully dissolve the page if we do a
2048 * retry. Because the race window is quite small.
2049 * If we seize this opportunity, it is an optimization
2050 * for increasing the success rate of dissolving page.
2051 */
2052 goto retry;
2053 }
2054
2055 if (h->surplus_huge_pages_node[folio_nid(folio)])
2056 adjust_surplus = true;
2057 remove_hugetlb_folio(h, folio, adjust_surplus);
2058 h->max_huge_pages--;
2059 spin_unlock_irq(&hugetlb_lock);
2060
2061 /*
2062 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2063 * before freeing the page. update_and_free_hugtlb_folio will fail to
2064 * free the page if it can not allocate required vmemmap. We
2065 * need to adjust max_huge_pages if the page is not freed.
2066 * Attempt to allocate vmemmmap here so that we can take
2067 * appropriate action on failure.
2068 *
2069 * The folio_test_hugetlb check here is because
2070 * remove_hugetlb_folio will clear hugetlb folio flag for
2071 * non-vmemmap optimized hugetlb folios.
2072 */
2073 if (folio_test_hugetlb(folio)) {
2074 rc = hugetlb_vmemmap_restore_folio(h, folio);
2075 if (rc) {
2076 spin_lock_irq(&hugetlb_lock);
2077 add_hugetlb_folio(h, folio, adjust_surplus);
2078 h->max_huge_pages++;
2079 goto out;
2080 }
2081 } else {
2082 rc = 0;
2083 }
2084
2085 update_and_free_hugetlb_folio(h, folio, false);
2086 return rc;
2087 }
2088 out:
2089 spin_unlock_irq(&hugetlb_lock);
2090 return rc;
2091 }
2092
2093 /*
2094 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2095 * make specified memory blocks removable from the system.
2096 * Note that this will dissolve a free gigantic hugepage completely, if any
2097 * part of it lies within the given range.
2098 * Also note that if dissolve_free_hugetlb_folio() returns with an error, all
2099 * free hugetlb folios that were dissolved before that error are lost.
2100 */
dissolve_free_hugetlb_folios(unsigned long start_pfn,unsigned long end_pfn)2101 int dissolve_free_hugetlb_folios(unsigned long start_pfn, unsigned long end_pfn)
2102 {
2103 unsigned long pfn;
2104 struct folio *folio;
2105 int rc = 0;
2106 unsigned int order;
2107 struct hstate *h;
2108
2109 if (!hugepages_supported())
2110 return rc;
2111
2112 order = huge_page_order(&default_hstate);
2113 for_each_hstate(h)
2114 order = min(order, huge_page_order(h));
2115
2116 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2117 folio = pfn_folio(pfn);
2118 rc = dissolve_free_hugetlb_folio(folio);
2119 if (rc)
2120 break;
2121 }
2122
2123 return rc;
2124 }
2125
2126 /*
2127 * Allocates a fresh surplus page from the page allocator.
2128 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2129 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2130 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2131 {
2132 struct folio *folio = NULL;
2133
2134 if (hstate_is_gigantic_no_runtime(h))
2135 return NULL;
2136
2137 spin_lock_irq(&hugetlb_lock);
2138 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2139 goto out_unlock;
2140 spin_unlock_irq(&hugetlb_lock);
2141
2142 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2143 if (!folio)
2144 return NULL;
2145
2146 spin_lock_irq(&hugetlb_lock);
2147 /*
2148 * nr_huge_pages needs to be adjusted within the same lock cycle
2149 * as surplus_pages, otherwise it might confuse
2150 * persistent_huge_pages() momentarily.
2151 */
2152 account_new_hugetlb_folio(h, folio);
2153
2154 /*
2155 * We could have raced with the pool size change.
2156 * Double check that and simply deallocate the new page
2157 * if we would end up overcommiting the surpluses. Abuse
2158 * temporary page to workaround the nasty free_huge_folio
2159 * codeflow
2160 */
2161 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2162 folio_set_hugetlb_temporary(folio);
2163 spin_unlock_irq(&hugetlb_lock);
2164 free_huge_folio(folio);
2165 return NULL;
2166 }
2167
2168 h->surplus_huge_pages++;
2169 h->surplus_huge_pages_node[folio_nid(folio)]++;
2170
2171 out_unlock:
2172 spin_unlock_irq(&hugetlb_lock);
2173
2174 return folio;
2175 }
2176
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2177 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2178 int nid, nodemask_t *nmask)
2179 {
2180 struct folio *folio;
2181
2182 if (hstate_is_gigantic(h))
2183 return NULL;
2184
2185 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask);
2186 if (!folio)
2187 return NULL;
2188
2189 spin_lock_irq(&hugetlb_lock);
2190 account_new_hugetlb_folio(h, folio);
2191 spin_unlock_irq(&hugetlb_lock);
2192
2193 /* fresh huge pages are frozen */
2194 folio_ref_unfreeze(folio, 1);
2195 /*
2196 * We do not account these pages as surplus because they are only
2197 * temporary and will be released properly on the last reference
2198 */
2199 folio_set_hugetlb_temporary(folio);
2200
2201 return folio;
2202 }
2203
2204 /*
2205 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2206 */
2207 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2208 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2209 struct vm_area_struct *vma, unsigned long addr)
2210 {
2211 struct folio *folio = NULL;
2212 struct mempolicy *mpol;
2213 gfp_t gfp_mask = htlb_alloc_mask(h);
2214 int nid;
2215 nodemask_t *nodemask;
2216
2217 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2218 if (mpol_is_preferred_many(mpol)) {
2219 gfp_t gfp = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2220
2221 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2222
2223 /* Fallback to all nodes if page==NULL */
2224 nodemask = NULL;
2225 }
2226
2227 if (!folio)
2228 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2229 mpol_cond_put(mpol);
2230 return folio;
2231 }
2232
alloc_hugetlb_folio_reserve(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2233 struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
2234 nodemask_t *nmask, gfp_t gfp_mask)
2235 {
2236 struct folio *folio;
2237
2238 spin_lock_irq(&hugetlb_lock);
2239 if (!h->resv_huge_pages) {
2240 spin_unlock_irq(&hugetlb_lock);
2241 return NULL;
2242 }
2243
2244 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask, preferred_nid,
2245 nmask);
2246 if (folio)
2247 h->resv_huge_pages--;
2248
2249 spin_unlock_irq(&hugetlb_lock);
2250 return folio;
2251 }
2252
2253 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask,bool allow_alloc_fallback)2254 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2255 nodemask_t *nmask, gfp_t gfp_mask, bool allow_alloc_fallback)
2256 {
2257 spin_lock_irq(&hugetlb_lock);
2258 if (available_huge_pages(h)) {
2259 struct folio *folio;
2260
2261 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2262 preferred_nid, nmask);
2263 if (folio) {
2264 spin_unlock_irq(&hugetlb_lock);
2265 return folio;
2266 }
2267 }
2268 spin_unlock_irq(&hugetlb_lock);
2269
2270 /* We cannot fallback to other nodes, as we could break the per-node pool. */
2271 if (!allow_alloc_fallback)
2272 gfp_mask |= __GFP_THISNODE;
2273
2274 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2275 }
2276
policy_mbind_nodemask(gfp_t gfp)2277 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
2278 {
2279 #ifdef CONFIG_NUMA
2280 struct mempolicy *mpol = get_task_policy(current);
2281
2282 /*
2283 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
2284 * (from policy_nodemask) specifically for hugetlb case
2285 */
2286 if (mpol->mode == MPOL_BIND &&
2287 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
2288 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
2289 return &mpol->nodes;
2290 #endif
2291 return NULL;
2292 }
2293
2294 /*
2295 * Increase the hugetlb pool such that it can accommodate a reservation
2296 * of size 'delta'.
2297 */
gather_surplus_pages(struct hstate * h,long delta)2298 static int gather_surplus_pages(struct hstate *h, long delta)
2299 __must_hold(&hugetlb_lock)
2300 {
2301 LIST_HEAD(surplus_list);
2302 struct folio *folio, *tmp;
2303 int ret;
2304 long i;
2305 long needed, allocated;
2306 bool alloc_ok = true;
2307 nodemask_t *mbind_nodemask, alloc_nodemask;
2308
2309 mbind_nodemask = policy_mbind_nodemask(htlb_alloc_mask(h));
2310 if (mbind_nodemask)
2311 nodes_and(alloc_nodemask, *mbind_nodemask, cpuset_current_mems_allowed);
2312 else
2313 alloc_nodemask = cpuset_current_mems_allowed;
2314
2315 lockdep_assert_held(&hugetlb_lock);
2316 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2317 if (needed <= 0) {
2318 h->resv_huge_pages += delta;
2319 return 0;
2320 }
2321
2322 allocated = 0;
2323
2324 ret = -ENOMEM;
2325 retry:
2326 spin_unlock_irq(&hugetlb_lock);
2327 for (i = 0; i < needed; i++) {
2328 folio = NULL;
2329
2330 /*
2331 * It is okay to use NUMA_NO_NODE because we use numa_mem_id()
2332 * down the road to pick the current node if that is the case.
2333 */
2334 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2335 NUMA_NO_NODE, &alloc_nodemask);
2336 if (!folio) {
2337 alloc_ok = false;
2338 break;
2339 }
2340 list_add(&folio->lru, &surplus_list);
2341 cond_resched();
2342 }
2343 allocated += i;
2344
2345 /*
2346 * After retaking hugetlb_lock, we need to recalculate 'needed'
2347 * because either resv_huge_pages or free_huge_pages may have changed.
2348 */
2349 spin_lock_irq(&hugetlb_lock);
2350 needed = (h->resv_huge_pages + delta) -
2351 (h->free_huge_pages + allocated);
2352 if (needed > 0) {
2353 if (alloc_ok)
2354 goto retry;
2355 /*
2356 * We were not able to allocate enough pages to
2357 * satisfy the entire reservation so we free what
2358 * we've allocated so far.
2359 */
2360 goto free;
2361 }
2362 /*
2363 * The surplus_list now contains _at_least_ the number of extra pages
2364 * needed to accommodate the reservation. Add the appropriate number
2365 * of pages to the hugetlb pool and free the extras back to the buddy
2366 * allocator. Commit the entire reservation here to prevent another
2367 * process from stealing the pages as they are added to the pool but
2368 * before they are reserved.
2369 */
2370 needed += allocated;
2371 h->resv_huge_pages += delta;
2372 ret = 0;
2373
2374 /* Free the needed pages to the hugetlb pool */
2375 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2376 if ((--needed) < 0)
2377 break;
2378 /* Add the page to the hugetlb allocator */
2379 enqueue_hugetlb_folio(h, folio);
2380 }
2381 free:
2382 spin_unlock_irq(&hugetlb_lock);
2383
2384 /*
2385 * Free unnecessary surplus pages to the buddy allocator.
2386 * Pages have no ref count, call free_huge_folio directly.
2387 */
2388 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2389 free_huge_folio(folio);
2390 spin_lock_irq(&hugetlb_lock);
2391
2392 return ret;
2393 }
2394
2395 /*
2396 * This routine has two main purposes:
2397 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2398 * in unused_resv_pages. This corresponds to the prior adjustments made
2399 * to the associated reservation map.
2400 * 2) Free any unused surplus pages that may have been allocated to satisfy
2401 * the reservation. As many as unused_resv_pages may be freed.
2402 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2403 static void return_unused_surplus_pages(struct hstate *h,
2404 unsigned long unused_resv_pages)
2405 {
2406 unsigned long nr_pages;
2407 LIST_HEAD(page_list);
2408
2409 lockdep_assert_held(&hugetlb_lock);
2410 /* Uncommit the reservation */
2411 h->resv_huge_pages -= unused_resv_pages;
2412
2413 if (hstate_is_gigantic_no_runtime(h))
2414 goto out;
2415
2416 /*
2417 * Part (or even all) of the reservation could have been backed
2418 * by pre-allocated pages. Only free surplus pages.
2419 */
2420 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2421
2422 /*
2423 * We want to release as many surplus pages as possible, spread
2424 * evenly across all nodes with memory. Iterate across these nodes
2425 * until we can no longer free unreserved surplus pages. This occurs
2426 * when the nodes with surplus pages have no free pages.
2427 * remove_pool_hugetlb_folio() will balance the freed pages across the
2428 * on-line nodes with memory and will handle the hstate accounting.
2429 */
2430 while (nr_pages--) {
2431 struct folio *folio;
2432
2433 folio = remove_pool_hugetlb_folio(h, &node_states[N_MEMORY], 1);
2434 if (!folio)
2435 goto out;
2436
2437 list_add(&folio->lru, &page_list);
2438 }
2439
2440 out:
2441 spin_unlock_irq(&hugetlb_lock);
2442 update_and_free_pages_bulk(h, &page_list);
2443 spin_lock_irq(&hugetlb_lock);
2444 }
2445
2446
2447 /*
2448 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2449 * are used by the huge page allocation routines to manage reservations.
2450 *
2451 * vma_needs_reservation is called to determine if the huge page at addr
2452 * within the vma has an associated reservation. If a reservation is
2453 * needed, the value 1 is returned. The caller is then responsible for
2454 * managing the global reservation and subpool usage counts. After
2455 * the huge page has been allocated, vma_commit_reservation is called
2456 * to add the page to the reservation map. If the page allocation fails,
2457 * the reservation must be ended instead of committed. vma_end_reservation
2458 * is called in such cases.
2459 *
2460 * In the normal case, vma_commit_reservation returns the same value
2461 * as the preceding vma_needs_reservation call. The only time this
2462 * is not the case is if a reserve map was changed between calls. It
2463 * is the responsibility of the caller to notice the difference and
2464 * take appropriate action.
2465 *
2466 * vma_add_reservation is used in error paths where a reservation must
2467 * be restored when a newly allocated huge page must be freed. It is
2468 * to be called after calling vma_needs_reservation to determine if a
2469 * reservation exists.
2470 *
2471 * vma_del_reservation is used in error paths where an entry in the reserve
2472 * map was created during huge page allocation and must be removed. It is to
2473 * be called after calling vma_needs_reservation to determine if a reservation
2474 * exists.
2475 */
2476 enum vma_resv_mode {
2477 VMA_NEEDS_RESV,
2478 VMA_COMMIT_RESV,
2479 VMA_END_RESV,
2480 VMA_ADD_RESV,
2481 VMA_DEL_RESV,
2482 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2483 static long __vma_reservation_common(struct hstate *h,
2484 struct vm_area_struct *vma, unsigned long addr,
2485 enum vma_resv_mode mode)
2486 {
2487 struct resv_map *resv;
2488 pgoff_t idx;
2489 long ret;
2490 long dummy_out_regions_needed;
2491
2492 resv = vma_resv_map(vma);
2493 if (!resv)
2494 return 1;
2495
2496 idx = vma_hugecache_offset(h, vma, addr);
2497 switch (mode) {
2498 case VMA_NEEDS_RESV:
2499 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2500 /* We assume that vma_reservation_* routines always operate on
2501 * 1 page, and that adding to resv map a 1 page entry can only
2502 * ever require 1 region.
2503 */
2504 VM_BUG_ON(dummy_out_regions_needed != 1);
2505 break;
2506 case VMA_COMMIT_RESV:
2507 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2508 /* region_add calls of range 1 should never fail. */
2509 VM_BUG_ON(ret < 0);
2510 break;
2511 case VMA_END_RESV:
2512 region_abort(resv, idx, idx + 1, 1);
2513 ret = 0;
2514 break;
2515 case VMA_ADD_RESV:
2516 if (vma->vm_flags & VM_MAYSHARE) {
2517 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2518 /* region_add calls of range 1 should never fail. */
2519 VM_BUG_ON(ret < 0);
2520 } else {
2521 region_abort(resv, idx, idx + 1, 1);
2522 ret = region_del(resv, idx, idx + 1);
2523 }
2524 break;
2525 case VMA_DEL_RESV:
2526 if (vma->vm_flags & VM_MAYSHARE) {
2527 region_abort(resv, idx, idx + 1, 1);
2528 ret = region_del(resv, idx, idx + 1);
2529 } else {
2530 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2531 /* region_add calls of range 1 should never fail. */
2532 VM_BUG_ON(ret < 0);
2533 }
2534 break;
2535 default:
2536 BUG();
2537 }
2538
2539 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2540 return ret;
2541 /*
2542 * We know private mapping must have HPAGE_RESV_OWNER set.
2543 *
2544 * In most cases, reserves always exist for private mappings.
2545 * However, a file associated with mapping could have been
2546 * hole punched or truncated after reserves were consumed.
2547 * As subsequent fault on such a range will not use reserves.
2548 * Subtle - The reserve map for private mappings has the
2549 * opposite meaning than that of shared mappings. If NO
2550 * entry is in the reserve map, it means a reservation exists.
2551 * If an entry exists in the reserve map, it means the
2552 * reservation has already been consumed. As a result, the
2553 * return value of this routine is the opposite of the
2554 * value returned from reserve map manipulation routines above.
2555 */
2556 if (ret > 0)
2557 return 0;
2558 if (ret == 0)
2559 return 1;
2560 return ret;
2561 }
2562
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2563 static long vma_needs_reservation(struct hstate *h,
2564 struct vm_area_struct *vma, unsigned long addr)
2565 {
2566 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2567 }
2568
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2569 static long vma_commit_reservation(struct hstate *h,
2570 struct vm_area_struct *vma, unsigned long addr)
2571 {
2572 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2573 }
2574
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2575 static void vma_end_reservation(struct hstate *h,
2576 struct vm_area_struct *vma, unsigned long addr)
2577 {
2578 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2579 }
2580
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2581 static long vma_add_reservation(struct hstate *h,
2582 struct vm_area_struct *vma, unsigned long addr)
2583 {
2584 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2585 }
2586
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2587 static long vma_del_reservation(struct hstate *h,
2588 struct vm_area_struct *vma, unsigned long addr)
2589 {
2590 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2591 }
2592
2593 /*
2594 * This routine is called to restore reservation information on error paths.
2595 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2596 * and the hugetlb mutex should remain held when calling this routine.
2597 *
2598 * It handles two specific cases:
2599 * 1) A reservation was in place and the folio consumed the reservation.
2600 * hugetlb_restore_reserve is set in the folio.
2601 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2602 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2603 *
2604 * In case 1, free_huge_folio later in the error path will increment the
2605 * global reserve count. But, free_huge_folio does not have enough context
2606 * to adjust the reservation map. This case deals primarily with private
2607 * mappings. Adjust the reserve map here to be consistent with global
2608 * reserve count adjustments to be made by free_huge_folio. Make sure the
2609 * reserve map indicates there is a reservation present.
2610 *
2611 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2612 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2613 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2614 unsigned long address, struct folio *folio)
2615 {
2616 long rc = vma_needs_reservation(h, vma, address);
2617
2618 if (folio_test_hugetlb_restore_reserve(folio)) {
2619 if (unlikely(rc < 0))
2620 /*
2621 * Rare out of memory condition in reserve map
2622 * manipulation. Clear hugetlb_restore_reserve so
2623 * that global reserve count will not be incremented
2624 * by free_huge_folio. This will make it appear
2625 * as though the reservation for this folio was
2626 * consumed. This may prevent the task from
2627 * faulting in the folio at a later time. This
2628 * is better than inconsistent global huge page
2629 * accounting of reserve counts.
2630 */
2631 folio_clear_hugetlb_restore_reserve(folio);
2632 else if (rc)
2633 (void)vma_add_reservation(h, vma, address);
2634 else
2635 vma_end_reservation(h, vma, address);
2636 } else {
2637 if (!rc) {
2638 /*
2639 * This indicates there is an entry in the reserve map
2640 * not added by alloc_hugetlb_folio. We know it was added
2641 * before the alloc_hugetlb_folio call, otherwise
2642 * hugetlb_restore_reserve would be set on the folio.
2643 * Remove the entry so that a subsequent allocation
2644 * does not consume a reservation.
2645 */
2646 rc = vma_del_reservation(h, vma, address);
2647 if (rc < 0)
2648 /*
2649 * VERY rare out of memory condition. Since
2650 * we can not delete the entry, set
2651 * hugetlb_restore_reserve so that the reserve
2652 * count will be incremented when the folio
2653 * is freed. This reserve will be consumed
2654 * on a subsequent allocation.
2655 */
2656 folio_set_hugetlb_restore_reserve(folio);
2657 } else if (rc < 0) {
2658 /*
2659 * Rare out of memory condition from
2660 * vma_needs_reservation call. Memory allocation is
2661 * only attempted if a new entry is needed. Therefore,
2662 * this implies there is not an entry in the
2663 * reserve map.
2664 *
2665 * For shared mappings, no entry in the map indicates
2666 * no reservation. We are done.
2667 */
2668 if (!(vma->vm_flags & VM_MAYSHARE))
2669 /*
2670 * For private mappings, no entry indicates
2671 * a reservation is present. Since we can
2672 * not add an entry, set hugetlb_restore_reserve
2673 * on the folio so reserve count will be
2674 * incremented when freed. This reserve will
2675 * be consumed on a subsequent allocation.
2676 */
2677 folio_set_hugetlb_restore_reserve(folio);
2678 } else {
2679 /*
2680 * No reservation present, do nothing
2681 */
2682 vma_end_reservation(h, vma, address);
2683 }
2684 }
2685 }
2686
2687 /*
2688 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2689 * the old one
2690 * @old_folio: Old folio to dissolve
2691 * @list: List to isolate the page in case we need to
2692 * Returns 0 on success, otherwise negated error.
2693 */
alloc_and_dissolve_hugetlb_folio(struct folio * old_folio,struct list_head * list)2694 static int alloc_and_dissolve_hugetlb_folio(struct folio *old_folio,
2695 struct list_head *list)
2696 {
2697 gfp_t gfp_mask;
2698 struct hstate *h;
2699 int nid = folio_nid(old_folio);
2700 struct folio *new_folio = NULL;
2701 int ret = 0;
2702
2703 retry:
2704 /*
2705 * The old_folio might have been dissolved from under our feet, so make sure
2706 * to carefully check the state under the lock.
2707 */
2708 spin_lock_irq(&hugetlb_lock);
2709 if (!folio_test_hugetlb(old_folio)) {
2710 /*
2711 * Freed from under us. Drop new_folio too.
2712 */
2713 goto free_new;
2714 } else if (folio_ref_count(old_folio)) {
2715 bool isolated;
2716
2717 /*
2718 * Someone has grabbed the folio, try to isolate it here.
2719 * Fail with -EBUSY if not possible.
2720 */
2721 spin_unlock_irq(&hugetlb_lock);
2722 isolated = folio_isolate_hugetlb(old_folio, list);
2723 ret = isolated ? 0 : -EBUSY;
2724 spin_lock_irq(&hugetlb_lock);
2725 goto free_new;
2726 } else if (!folio_test_hugetlb_freed(old_folio)) {
2727 /*
2728 * Folio's refcount is 0 but it has not been enqueued in the
2729 * freelist yet. Race window is small, so we can succeed here if
2730 * we retry.
2731 */
2732 spin_unlock_irq(&hugetlb_lock);
2733 cond_resched();
2734 goto retry;
2735 } else {
2736 h = folio_hstate(old_folio);
2737 if (!new_folio) {
2738 spin_unlock_irq(&hugetlb_lock);
2739 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2740 new_folio = alloc_fresh_hugetlb_folio(h, gfp_mask,
2741 nid, NULL);
2742 if (!new_folio)
2743 return -ENOMEM;
2744 goto retry;
2745 }
2746
2747 /*
2748 * Ok, old_folio is still a genuine free hugepage. Remove it from
2749 * the freelist and decrease the counters. These will be
2750 * incremented again when calling account_new_hugetlb_folio()
2751 * and enqueue_hugetlb_folio() for new_folio. The counters will
2752 * remain stable since this happens under the lock.
2753 */
2754 remove_hugetlb_folio(h, old_folio, false);
2755
2756 /*
2757 * Ref count on new_folio is already zero as it was dropped
2758 * earlier. It can be directly added to the pool free list.
2759 */
2760 account_new_hugetlb_folio(h, new_folio);
2761 enqueue_hugetlb_folio(h, new_folio);
2762
2763 /*
2764 * Folio has been replaced, we can safely free the old one.
2765 */
2766 spin_unlock_irq(&hugetlb_lock);
2767 update_and_free_hugetlb_folio(h, old_folio, false);
2768 }
2769
2770 return ret;
2771
2772 free_new:
2773 spin_unlock_irq(&hugetlb_lock);
2774 if (new_folio)
2775 update_and_free_hugetlb_folio(h, new_folio, false);
2776
2777 return ret;
2778 }
2779
isolate_or_dissolve_huge_folio(struct folio * folio,struct list_head * list)2780 int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list)
2781 {
2782 int ret = -EBUSY;
2783
2784 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2785 if (!folio_test_hugetlb(folio))
2786 return 0;
2787
2788 /*
2789 * Fence off gigantic pages as there is a cyclic dependency between
2790 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2791 * of bailing out right away without further retrying.
2792 */
2793 if (order_is_gigantic(folio_order(folio)))
2794 return -ENOMEM;
2795
2796 if (folio_ref_count(folio) && folio_isolate_hugetlb(folio, list))
2797 ret = 0;
2798 else if (!folio_ref_count(folio))
2799 ret = alloc_and_dissolve_hugetlb_folio(folio, list);
2800
2801 return ret;
2802 }
2803
2804 /*
2805 * replace_free_hugepage_folios - Replace free hugepage folios in a given pfn
2806 * range with new folios.
2807 * @start_pfn: start pfn of the given pfn range
2808 * @end_pfn: end pfn of the given pfn range
2809 * Returns 0 on success, otherwise negated error.
2810 */
replace_free_hugepage_folios(unsigned long start_pfn,unsigned long end_pfn)2811 int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn)
2812 {
2813 unsigned long nr = 0;
2814 struct page *page;
2815 struct hstate *h;
2816 LIST_HEAD(list);
2817 int ret = 0;
2818
2819 /* Avoid pfn iterations if no free non-gigantic huge pages */
2820 for_each_hstate(h) {
2821 if (hstate_is_gigantic(h))
2822 continue;
2823
2824 nr += h->free_huge_pages;
2825 if (nr)
2826 break;
2827 }
2828
2829 if (!nr)
2830 return 0;
2831
2832 while (start_pfn < end_pfn) {
2833 page = pfn_to_page(start_pfn);
2834 nr = 1;
2835
2836 if (PageHuge(page) || PageCompound(page)) {
2837 struct folio *folio = page_folio(page);
2838
2839 nr = folio_nr_pages(folio) - folio_page_idx(folio, page);
2840
2841 /*
2842 * Don't disrupt normal path by vainly holding
2843 * hugetlb_lock
2844 */
2845 if (folio_test_hugetlb(folio) && !folio_ref_count(folio)) {
2846 if (order_is_gigantic(folio_order(folio))) {
2847 ret = -ENOMEM;
2848 break;
2849 }
2850
2851 ret = alloc_and_dissolve_hugetlb_folio(folio, &list);
2852 if (ret)
2853 break;
2854
2855 putback_movable_pages(&list);
2856 }
2857 } else if (PageBuddy(page)) {
2858 /*
2859 * Buddy order check without zone lock is unsafe and
2860 * the order is maybe invalid, but race should be
2861 * small, and the worst thing is skipping free hugetlb.
2862 */
2863 const unsigned int order = buddy_order_unsafe(page);
2864
2865 if (order <= MAX_PAGE_ORDER)
2866 nr = 1UL << order;
2867 }
2868 start_pfn += nr;
2869 }
2870
2871 return ret;
2872 }
2873
wait_for_freed_hugetlb_folios(void)2874 void wait_for_freed_hugetlb_folios(void)
2875 {
2876 if (llist_empty(&hpage_freelist))
2877 return;
2878
2879 flush_work(&free_hpage_work);
2880 }
2881
2882 typedef enum {
2883 /*
2884 * For either 0/1: we checked the per-vma resv map, and one resv
2885 * count either can be reused (0), or an extra needed (1).
2886 */
2887 MAP_CHG_REUSE = 0,
2888 MAP_CHG_NEEDED = 1,
2889 /*
2890 * Cannot use per-vma resv count can be used, hence a new resv
2891 * count is enforced.
2892 *
2893 * NOTE: This is mostly identical to MAP_CHG_NEEDED, except
2894 * that currently vma_needs_reservation() has an unwanted side
2895 * effect to either use end() or commit() to complete the
2896 * transaction. Hence it needs to differentiate from NEEDED.
2897 */
2898 MAP_CHG_ENFORCED = 2,
2899 } map_chg_state;
2900
2901 /*
2902 * NOTE! "cow_from_owner" represents a very hacky usage only used in CoW
2903 * faults of hugetlb private mappings on top of a non-page-cache folio (in
2904 * which case even if there's a private vma resv map it won't cover such
2905 * allocation). New call sites should (probably) never set it to true!!
2906 * When it's set, the allocation will bypass all vma level reservations.
2907 */
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,bool cow_from_owner)2908 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
2909 unsigned long addr, bool cow_from_owner)
2910 {
2911 struct hugepage_subpool *spool = subpool_vma(vma);
2912 struct hstate *h = hstate_vma(vma);
2913 struct folio *folio;
2914 long retval, gbl_chg, gbl_reserve;
2915 map_chg_state map_chg;
2916 int ret, idx;
2917 struct hugetlb_cgroup *h_cg = NULL;
2918 gfp_t gfp = htlb_alloc_mask(h) | __GFP_RETRY_MAYFAIL;
2919
2920 idx = hstate_index(h);
2921
2922 /* Whether we need a separate per-vma reservation? */
2923 if (cow_from_owner) {
2924 /*
2925 * Special case! Since it's a CoW on top of a reserved
2926 * page, the private resv map doesn't count. So it cannot
2927 * consume the per-vma resv map even if it's reserved.
2928 */
2929 map_chg = MAP_CHG_ENFORCED;
2930 } else {
2931 /*
2932 * Examine the region/reserve map to determine if the process
2933 * has a reservation for the page to be allocated. A return
2934 * code of zero indicates a reservation exists (no change).
2935 */
2936 retval = vma_needs_reservation(h, vma, addr);
2937 if (retval < 0)
2938 return ERR_PTR(-ENOMEM);
2939 map_chg = retval ? MAP_CHG_NEEDED : MAP_CHG_REUSE;
2940 }
2941
2942 /*
2943 * Whether we need a separate global reservation?
2944 *
2945 * Processes that did not create the mapping will have no
2946 * reserves as indicated by the region/reserve map. Check
2947 * that the allocation will not exceed the subpool limit.
2948 * Or if it can get one from the pool reservation directly.
2949 */
2950 if (map_chg) {
2951 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2952 if (gbl_chg < 0)
2953 goto out_end_reservation;
2954 } else {
2955 /*
2956 * If we have the vma reservation ready, no need for extra
2957 * global reservation.
2958 */
2959 gbl_chg = 0;
2960 }
2961
2962 /*
2963 * If this allocation is not consuming a per-vma reservation,
2964 * charge the hugetlb cgroup now.
2965 */
2966 if (map_chg) {
2967 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2968 idx, pages_per_huge_page(h), &h_cg);
2969 if (ret)
2970 goto out_subpool_put;
2971 }
2972
2973 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2974 if (ret)
2975 goto out_uncharge_cgroup_reservation;
2976
2977 spin_lock_irq(&hugetlb_lock);
2978 /*
2979 * glb_chg is passed to indicate whether or not a page must be taken
2980 * from the global free pool (global change). gbl_chg == 0 indicates
2981 * a reservation exists for the allocation.
2982 */
2983 folio = dequeue_hugetlb_folio_vma(h, vma, addr, gbl_chg);
2984 if (!folio) {
2985 spin_unlock_irq(&hugetlb_lock);
2986 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
2987 if (!folio)
2988 goto out_uncharge_cgroup;
2989 spin_lock_irq(&hugetlb_lock);
2990 list_add(&folio->lru, &h->hugepage_activelist);
2991 folio_ref_unfreeze(folio, 1);
2992 /* Fall through */
2993 }
2994
2995 /*
2996 * Either dequeued or buddy-allocated folio needs to add special
2997 * mark to the folio when it consumes a global reservation.
2998 */
2999 if (!gbl_chg) {
3000 folio_set_hugetlb_restore_reserve(folio);
3001 h->resv_huge_pages--;
3002 }
3003
3004 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3005 /* If allocation is not consuming a reservation, also store the
3006 * hugetlb_cgroup pointer on the page.
3007 */
3008 if (map_chg) {
3009 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3010 h_cg, folio);
3011 }
3012
3013 spin_unlock_irq(&hugetlb_lock);
3014
3015 hugetlb_set_folio_subpool(folio, spool);
3016
3017 if (map_chg != MAP_CHG_ENFORCED) {
3018 /* commit() is only needed if the map_chg is not enforced */
3019 retval = vma_commit_reservation(h, vma, addr);
3020 /*
3021 * Check for possible race conditions. When it happens..
3022 * The page was added to the reservation map between
3023 * vma_needs_reservation and vma_commit_reservation.
3024 * This indicates a race with hugetlb_reserve_pages.
3025 * Adjust for the subpool count incremented above AND
3026 * in hugetlb_reserve_pages for the same page. Also,
3027 * the reservation count added in hugetlb_reserve_pages
3028 * no longer applies.
3029 */
3030 if (unlikely(map_chg == MAP_CHG_NEEDED && retval == 0)) {
3031 long rsv_adjust;
3032
3033 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3034 hugetlb_acct_memory(h, -rsv_adjust);
3035 spin_lock_irq(&hugetlb_lock);
3036 hugetlb_cgroup_uncharge_folio_rsvd(
3037 hstate_index(h), pages_per_huge_page(h), folio);
3038 spin_unlock_irq(&hugetlb_lock);
3039 }
3040 }
3041
3042 ret = mem_cgroup_charge_hugetlb(folio, gfp);
3043 /*
3044 * Unconditionally increment NR_HUGETLB here. If it turns out that
3045 * mem_cgroup_charge_hugetlb failed, then immediately free the page and
3046 * decrement NR_HUGETLB.
3047 */
3048 lruvec_stat_mod_folio(folio, NR_HUGETLB, pages_per_huge_page(h));
3049
3050 if (ret == -ENOMEM) {
3051 free_huge_folio(folio);
3052 return ERR_PTR(-ENOMEM);
3053 }
3054
3055 return folio;
3056
3057 out_uncharge_cgroup:
3058 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3059 out_uncharge_cgroup_reservation:
3060 if (map_chg)
3061 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3062 h_cg);
3063 out_subpool_put:
3064 /*
3065 * put page to subpool iff the quota of subpool's rsv_hpages is used
3066 * during hugepage_subpool_get_pages.
3067 */
3068 if (map_chg && !gbl_chg) {
3069 gbl_reserve = hugepage_subpool_put_pages(spool, 1);
3070 hugetlb_acct_memory(h, -gbl_reserve);
3071 }
3072
3073
3074 out_end_reservation:
3075 if (map_chg != MAP_CHG_ENFORCED)
3076 vma_end_reservation(h, vma, addr);
3077 return ERR_PTR(-ENOSPC);
3078 }
3079
alloc_bootmem(struct hstate * h,int nid,bool node_exact)3080 static __init void *alloc_bootmem(struct hstate *h, int nid, bool node_exact)
3081 {
3082 struct huge_bootmem_page *m;
3083 int listnode = nid;
3084
3085 if (hugetlb_early_cma(h))
3086 m = hugetlb_cma_alloc_bootmem(h, &listnode, node_exact);
3087 else {
3088 if (node_exact)
3089 m = memblock_alloc_exact_nid_raw(huge_page_size(h),
3090 huge_page_size(h), 0,
3091 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3092 else {
3093 m = memblock_alloc_try_nid_raw(huge_page_size(h),
3094 huge_page_size(h), 0,
3095 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3096 /*
3097 * For pre-HVO to work correctly, pages need to be on
3098 * the list for the node they were actually allocated
3099 * from. That node may be different in the case of
3100 * fallback by memblock_alloc_try_nid_raw. So,
3101 * extract the actual node first.
3102 */
3103 if (m)
3104 listnode = early_pfn_to_nid(PHYS_PFN(virt_to_phys(m)));
3105 }
3106
3107 if (m) {
3108 m->flags = 0;
3109 m->cma = NULL;
3110 }
3111 }
3112
3113 if (m) {
3114 /*
3115 * Use the beginning of the huge page to store the
3116 * huge_bootmem_page struct (until gather_bootmem
3117 * puts them into the mem_map).
3118 *
3119 * Put them into a private list first because mem_map
3120 * is not up yet.
3121 */
3122 INIT_LIST_HEAD(&m->list);
3123 list_add(&m->list, &huge_boot_pages[listnode]);
3124 m->hstate = h;
3125 }
3126
3127 return m;
3128 }
3129
3130 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3131 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3132 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3133 {
3134 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3135 int nr_nodes, node = nid;
3136
3137 /* do node specific alloc */
3138 if (nid != NUMA_NO_NODE) {
3139 m = alloc_bootmem(h, node, true);
3140 if (!m)
3141 return 0;
3142 goto found;
3143 }
3144
3145 /* allocate from next node when distributing huge pages */
3146 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node,
3147 &hugetlb_bootmem_nodes) {
3148 m = alloc_bootmem(h, node, false);
3149 if (!m)
3150 return 0;
3151 goto found;
3152 }
3153
3154 found:
3155
3156 /*
3157 * Only initialize the head struct page in memmap_init_reserved_pages,
3158 * rest of the struct pages will be initialized by the HugeTLB
3159 * subsystem itself.
3160 * The head struct page is used to get folio information by the HugeTLB
3161 * subsystem like zone id and node id.
3162 */
3163 memblock_reserved_mark_noinit(virt_to_phys((void *)m + PAGE_SIZE),
3164 huge_page_size(h) - PAGE_SIZE);
3165
3166 return 1;
3167 }
3168
3169 /* Initialize [start_page:end_page_number] tail struct pages of a hugepage */
hugetlb_folio_init_tail_vmemmap(struct folio * folio,unsigned long start_page_number,unsigned long end_page_number)3170 static void __init hugetlb_folio_init_tail_vmemmap(struct folio *folio,
3171 unsigned long start_page_number,
3172 unsigned long end_page_number)
3173 {
3174 enum zone_type zone = folio_zonenum(folio);
3175 int nid = folio_nid(folio);
3176 struct page *page = folio_page(folio, start_page_number);
3177 unsigned long head_pfn = folio_pfn(folio);
3178 unsigned long pfn, end_pfn = head_pfn + end_page_number;
3179
3180 /*
3181 * As we marked all tail pages with memblock_reserved_mark_noinit(),
3182 * we must initialize them ourselves here.
3183 */
3184 for (pfn = head_pfn + start_page_number; pfn < end_pfn; page++, pfn++) {
3185 __init_single_page(page, pfn, zone, nid);
3186 prep_compound_tail((struct page *)folio, pfn - head_pfn);
3187 set_page_count(page, 0);
3188 }
3189 }
3190
hugetlb_folio_init_vmemmap(struct folio * folio,struct hstate * h,unsigned long nr_pages)3191 static void __init hugetlb_folio_init_vmemmap(struct folio *folio,
3192 struct hstate *h,
3193 unsigned long nr_pages)
3194 {
3195 int ret;
3196
3197 /*
3198 * This is an open-coded prep_compound_page() whereby we avoid
3199 * walking pages twice by initializing/preparing+freezing them in the
3200 * same go.
3201 */
3202 __folio_clear_reserved(folio);
3203 __folio_set_head(folio);
3204 ret = folio_ref_freeze(folio, 1);
3205 VM_BUG_ON(!ret);
3206 hugetlb_folio_init_tail_vmemmap(folio, 1, nr_pages);
3207 prep_compound_head(&folio->page, huge_page_order(h));
3208 }
3209
hugetlb_bootmem_page_prehvo(struct huge_bootmem_page * m)3210 static bool __init hugetlb_bootmem_page_prehvo(struct huge_bootmem_page *m)
3211 {
3212 return m->flags & HUGE_BOOTMEM_HVO;
3213 }
3214
hugetlb_bootmem_page_earlycma(struct huge_bootmem_page * m)3215 static bool __init hugetlb_bootmem_page_earlycma(struct huge_bootmem_page *m)
3216 {
3217 return m->flags & HUGE_BOOTMEM_CMA;
3218 }
3219
3220 /*
3221 * memblock-allocated pageblocks might not have the migrate type set
3222 * if marked with the 'noinit' flag. Set it to the default (MIGRATE_MOVABLE)
3223 * here, or MIGRATE_CMA if this was a page allocated through an early CMA
3224 * reservation.
3225 *
3226 * In case of vmemmap optimized folios, the tail vmemmap pages are mapped
3227 * read-only, but that's ok - for sparse vmemmap this does not write to
3228 * the page structure.
3229 */
hugetlb_bootmem_init_migratetype(struct folio * folio,struct hstate * h)3230 static void __init hugetlb_bootmem_init_migratetype(struct folio *folio,
3231 struct hstate *h)
3232 {
3233 unsigned long nr_pages = pages_per_huge_page(h), i;
3234
3235 WARN_ON_ONCE(!pageblock_aligned(folio_pfn(folio)));
3236
3237 for (i = 0; i < nr_pages; i += pageblock_nr_pages) {
3238 if (folio_test_hugetlb_cma(folio))
3239 init_cma_pageblock(folio_page(folio, i));
3240 else
3241 init_pageblock_migratetype(folio_page(folio, i),
3242 MIGRATE_MOVABLE, false);
3243 }
3244 }
3245
prep_and_add_bootmem_folios(struct hstate * h,struct list_head * folio_list)3246 static void __init prep_and_add_bootmem_folios(struct hstate *h,
3247 struct list_head *folio_list)
3248 {
3249 unsigned long flags;
3250 struct folio *folio, *tmp_f;
3251
3252 /* Send list for bulk vmemmap optimization processing */
3253 hugetlb_vmemmap_optimize_bootmem_folios(h, folio_list);
3254
3255 list_for_each_entry_safe(folio, tmp_f, folio_list, lru) {
3256 if (!folio_test_hugetlb_vmemmap_optimized(folio)) {
3257 /*
3258 * If HVO fails, initialize all tail struct pages
3259 * We do not worry about potential long lock hold
3260 * time as this is early in boot and there should
3261 * be no contention.
3262 */
3263 hugetlb_folio_init_tail_vmemmap(folio,
3264 HUGETLB_VMEMMAP_RESERVE_PAGES,
3265 pages_per_huge_page(h));
3266 }
3267 hugetlb_bootmem_init_migratetype(folio, h);
3268 /* Subdivide locks to achieve better parallel performance */
3269 spin_lock_irqsave(&hugetlb_lock, flags);
3270 account_new_hugetlb_folio(h, folio);
3271 enqueue_hugetlb_folio(h, folio);
3272 spin_unlock_irqrestore(&hugetlb_lock, flags);
3273 }
3274 }
3275
hugetlb_bootmem_page_zones_valid(int nid,struct huge_bootmem_page * m)3276 bool __init hugetlb_bootmem_page_zones_valid(int nid,
3277 struct huge_bootmem_page *m)
3278 {
3279 unsigned long start_pfn;
3280 bool valid;
3281
3282 if (m->flags & HUGE_BOOTMEM_ZONES_VALID) {
3283 /*
3284 * Already validated, skip check.
3285 */
3286 return true;
3287 }
3288
3289 if (hugetlb_bootmem_page_earlycma(m)) {
3290 valid = cma_validate_zones(m->cma);
3291 goto out;
3292 }
3293
3294 start_pfn = virt_to_phys(m) >> PAGE_SHIFT;
3295
3296 valid = !pfn_range_intersects_zones(nid, start_pfn,
3297 pages_per_huge_page(m->hstate));
3298 out:
3299 if (!valid)
3300 hstate_boot_nrinvalid[hstate_index(m->hstate)]++;
3301
3302 return valid;
3303 }
3304
3305 /*
3306 * Free a bootmem page that was found to be invalid (intersecting with
3307 * multiple zones).
3308 *
3309 * Since it intersects with multiple zones, we can't just do a free
3310 * operation on all pages at once, but instead have to walk all
3311 * pages, freeing them one by one.
3312 */
hugetlb_bootmem_free_invalid_page(int nid,struct page * page,struct hstate * h)3313 static void __init hugetlb_bootmem_free_invalid_page(int nid, struct page *page,
3314 struct hstate *h)
3315 {
3316 unsigned long npages = pages_per_huge_page(h);
3317 unsigned long pfn;
3318
3319 while (npages--) {
3320 pfn = page_to_pfn(page);
3321 __init_page_from_nid(pfn, nid);
3322 free_reserved_page(page);
3323 page++;
3324 }
3325 }
3326
3327 /*
3328 * Put bootmem huge pages into the standard lists after mem_map is up.
3329 * Note: This only applies to gigantic (order > MAX_PAGE_ORDER) pages.
3330 */
gather_bootmem_prealloc_node(unsigned long nid)3331 static void __init gather_bootmem_prealloc_node(unsigned long nid)
3332 {
3333 LIST_HEAD(folio_list);
3334 struct huge_bootmem_page *m, *tm;
3335 struct hstate *h = NULL, *prev_h = NULL;
3336
3337 list_for_each_entry_safe(m, tm, &huge_boot_pages[nid], list) {
3338 struct page *page = virt_to_page(m);
3339 struct folio *folio = (void *)page;
3340
3341 h = m->hstate;
3342 if (!hugetlb_bootmem_page_zones_valid(nid, m)) {
3343 /*
3344 * Can't use this page. Initialize the
3345 * page structures if that hasn't already
3346 * been done, and give them to the page
3347 * allocator.
3348 */
3349 hugetlb_bootmem_free_invalid_page(nid, page, h);
3350 continue;
3351 }
3352
3353 /*
3354 * It is possible to have multiple huge page sizes (hstates)
3355 * in this list. If so, process each size separately.
3356 */
3357 if (h != prev_h && prev_h != NULL)
3358 prep_and_add_bootmem_folios(prev_h, &folio_list);
3359 prev_h = h;
3360
3361 VM_BUG_ON(!hstate_is_gigantic(h));
3362 WARN_ON(folio_ref_count(folio) != 1);
3363
3364 hugetlb_folio_init_vmemmap(folio, h,
3365 HUGETLB_VMEMMAP_RESERVE_PAGES);
3366 init_new_hugetlb_folio(folio);
3367
3368 if (hugetlb_bootmem_page_prehvo(m))
3369 /*
3370 * If pre-HVO was done, just set the
3371 * flag, the HVO code will then skip
3372 * this folio.
3373 */
3374 folio_set_hugetlb_vmemmap_optimized(folio);
3375
3376 if (hugetlb_bootmem_page_earlycma(m))
3377 folio_set_hugetlb_cma(folio);
3378
3379 list_add(&folio->lru, &folio_list);
3380
3381 /*
3382 * We need to restore the 'stolen' pages to totalram_pages
3383 * in order to fix confusing memory reports from free(1) and
3384 * other side-effects, like CommitLimit going negative.
3385 *
3386 * For CMA pages, this is done in init_cma_pageblock
3387 * (via hugetlb_bootmem_init_migratetype), so skip it here.
3388 */
3389 if (!folio_test_hugetlb_cma(folio))
3390 adjust_managed_page_count(page, pages_per_huge_page(h));
3391 cond_resched();
3392 }
3393
3394 prep_and_add_bootmem_folios(h, &folio_list);
3395 }
3396
gather_bootmem_prealloc_parallel(unsigned long start,unsigned long end,void * arg)3397 static void __init gather_bootmem_prealloc_parallel(unsigned long start,
3398 unsigned long end, void *arg)
3399 {
3400 int nid;
3401
3402 for (nid = start; nid < end; nid++)
3403 gather_bootmem_prealloc_node(nid);
3404 }
3405
gather_bootmem_prealloc(void)3406 static void __init gather_bootmem_prealloc(void)
3407 {
3408 struct padata_mt_job job = {
3409 .thread_fn = gather_bootmem_prealloc_parallel,
3410 .fn_arg = NULL,
3411 .start = 0,
3412 .size = nr_node_ids,
3413 .align = 1,
3414 .min_chunk = 1,
3415 .max_threads = num_node_state(N_MEMORY),
3416 .numa_aware = true,
3417 };
3418
3419 padata_do_multithreaded(&job);
3420 }
3421
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3422 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3423 {
3424 unsigned long i;
3425 char buf[32];
3426 LIST_HEAD(folio_list);
3427
3428 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3429 if (hstate_is_gigantic(h)) {
3430 if (!alloc_bootmem_huge_page(h, nid))
3431 break;
3432 } else {
3433 struct folio *folio;
3434 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3435
3436 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3437 &node_states[N_MEMORY], NULL);
3438 if (!folio && !list_empty(&folio_list) &&
3439 hugetlb_vmemmap_optimizable_size(h)) {
3440 prep_and_add_allocated_folios(h, &folio_list);
3441 INIT_LIST_HEAD(&folio_list);
3442 folio = only_alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3443 &node_states[N_MEMORY], NULL);
3444 }
3445 if (!folio)
3446 break;
3447 list_add(&folio->lru, &folio_list);
3448 }
3449 cond_resched();
3450 }
3451
3452 if (!list_empty(&folio_list))
3453 prep_and_add_allocated_folios(h, &folio_list);
3454
3455 if (i == h->max_huge_pages_node[nid])
3456 return;
3457
3458 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3459 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3460 h->max_huge_pages_node[nid], buf, nid, i);
3461 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3462 h->max_huge_pages_node[nid] = i;
3463 }
3464
hugetlb_hstate_alloc_pages_specific_nodes(struct hstate * h)3465 static bool __init hugetlb_hstate_alloc_pages_specific_nodes(struct hstate *h)
3466 {
3467 int i;
3468 bool node_specific_alloc = false;
3469
3470 for_each_online_node(i) {
3471 if (h->max_huge_pages_node[i] > 0) {
3472 hugetlb_hstate_alloc_pages_onenode(h, i);
3473 node_specific_alloc = true;
3474 }
3475 }
3476
3477 return node_specific_alloc;
3478 }
3479
hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated,struct hstate * h)3480 static void __init hugetlb_hstate_alloc_pages_errcheck(unsigned long allocated, struct hstate *h)
3481 {
3482 if (allocated < h->max_huge_pages) {
3483 char buf[32];
3484
3485 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3486 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3487 h->max_huge_pages, buf, allocated);
3488 h->max_huge_pages = allocated;
3489 }
3490 }
3491
hugetlb_pages_alloc_boot_node(unsigned long start,unsigned long end,void * arg)3492 static void __init hugetlb_pages_alloc_boot_node(unsigned long start, unsigned long end, void *arg)
3493 {
3494 struct hstate *h = (struct hstate *)arg;
3495 int i, num = end - start;
3496 nodemask_t node_alloc_noretry;
3497 LIST_HEAD(folio_list);
3498 int next_node = first_online_node;
3499
3500 /* Bit mask controlling how hard we retry per-node allocations.*/
3501 nodes_clear(node_alloc_noretry);
3502
3503 for (i = 0; i < num; ++i) {
3504 struct folio *folio;
3505
3506 if (hugetlb_vmemmap_optimizable_size(h) &&
3507 (si_mem_available() == 0) && !list_empty(&folio_list)) {
3508 prep_and_add_allocated_folios(h, &folio_list);
3509 INIT_LIST_HEAD(&folio_list);
3510 }
3511 folio = alloc_pool_huge_folio(h, &node_states[N_MEMORY],
3512 &node_alloc_noretry, &next_node);
3513 if (!folio)
3514 break;
3515
3516 list_move(&folio->lru, &folio_list);
3517 cond_resched();
3518 }
3519
3520 prep_and_add_allocated_folios(h, &folio_list);
3521 }
3522
hugetlb_gigantic_pages_alloc_boot(struct hstate * h)3523 static unsigned long __init hugetlb_gigantic_pages_alloc_boot(struct hstate *h)
3524 {
3525 unsigned long i;
3526
3527 for (i = 0; i < h->max_huge_pages; ++i) {
3528 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3529 break;
3530 cond_resched();
3531 }
3532
3533 return i;
3534 }
3535
hugetlb_pages_alloc_boot(struct hstate * h)3536 static unsigned long __init hugetlb_pages_alloc_boot(struct hstate *h)
3537 {
3538 struct padata_mt_job job = {
3539 .fn_arg = h,
3540 .align = 1,
3541 .numa_aware = true
3542 };
3543
3544 unsigned long jiffies_start;
3545 unsigned long jiffies_end;
3546 unsigned long remaining;
3547
3548 job.thread_fn = hugetlb_pages_alloc_boot_node;
3549
3550 /*
3551 * job.max_threads is 25% of the available cpu threads by default.
3552 *
3553 * On large servers with terabytes of memory, huge page allocation
3554 * can consume a considerably amount of time.
3555 *
3556 * Tests below show how long it takes to allocate 1 TiB of memory with 2MiB huge pages.
3557 * 2MiB huge pages. Using more threads can significantly improve allocation time.
3558 *
3559 * +-----------------------+-------+-------+-------+-------+-------+
3560 * | threads | 8 | 16 | 32 | 64 | 128 |
3561 * +-----------------------+-------+-------+-------+-------+-------+
3562 * | skylake 144 cpus | 44s | 22s | 16s | 19s | 20s |
3563 * | cascade lake 192 cpus | 39s | 20s | 11s | 10s | 9s |
3564 * +-----------------------+-------+-------+-------+-------+-------+
3565 */
3566 if (hugepage_allocation_threads == 0) {
3567 hugepage_allocation_threads = num_online_cpus() / 4;
3568 hugepage_allocation_threads = max(hugepage_allocation_threads, 1);
3569 }
3570
3571 job.max_threads = hugepage_allocation_threads;
3572
3573 jiffies_start = jiffies;
3574 do {
3575 remaining = h->max_huge_pages - h->nr_huge_pages;
3576
3577 job.start = h->nr_huge_pages;
3578 job.size = remaining;
3579 job.min_chunk = remaining / hugepage_allocation_threads;
3580 padata_do_multithreaded(&job);
3581
3582 if (h->nr_huge_pages == h->max_huge_pages)
3583 break;
3584
3585 /*
3586 * Retry only if the vmemmap optimization might have been able to free
3587 * some memory back to the system.
3588 */
3589 if (!hugetlb_vmemmap_optimizable(h))
3590 break;
3591
3592 /* Continue if progress was made in last iteration */
3593 } while (remaining != (h->max_huge_pages - h->nr_huge_pages));
3594
3595 jiffies_end = jiffies;
3596
3597 pr_info("HugeTLB: allocation took %dms with hugepage_allocation_threads=%ld\n",
3598 jiffies_to_msecs(jiffies_end - jiffies_start),
3599 hugepage_allocation_threads);
3600
3601 return h->nr_huge_pages;
3602 }
3603
3604 /*
3605 * NOTE: this routine is called in different contexts for gigantic and
3606 * non-gigantic pages.
3607 * - For gigantic pages, this is called early in the boot process and
3608 * pages are allocated from memblock allocated or something similar.
3609 * Gigantic pages are actually added to pools later with the routine
3610 * gather_bootmem_prealloc.
3611 * - For non-gigantic pages, this is called later in the boot process after
3612 * all of mm is up and functional. Pages are allocated from buddy and
3613 * then added to hugetlb pools.
3614 */
hugetlb_hstate_alloc_pages(struct hstate * h)3615 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3616 {
3617 unsigned long allocated;
3618
3619 /*
3620 * Skip gigantic hugepages allocation if early CMA
3621 * reservations are not available.
3622 */
3623 if (hstate_is_gigantic(h) && hugetlb_cma_total_size() &&
3624 !hugetlb_early_cma(h)) {
3625 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3626 return;
3627 }
3628
3629 if (!h->max_huge_pages)
3630 return;
3631
3632 /* do node specific alloc */
3633 if (hugetlb_hstate_alloc_pages_specific_nodes(h))
3634 return;
3635
3636 /* below will do all node balanced alloc */
3637 if (hstate_is_gigantic(h))
3638 allocated = hugetlb_gigantic_pages_alloc_boot(h);
3639 else
3640 allocated = hugetlb_pages_alloc_boot(h);
3641
3642 hugetlb_hstate_alloc_pages_errcheck(allocated, h);
3643 }
3644
hugetlb_init_hstates(void)3645 static void __init hugetlb_init_hstates(void)
3646 {
3647 struct hstate *h, *h2;
3648
3649 for_each_hstate(h) {
3650 /*
3651 * Always reset to first_memory_node here, even if
3652 * next_nid_to_alloc was set before - we can't
3653 * reference hugetlb_bootmem_nodes after init, and
3654 * first_memory_node is right for all further allocations.
3655 */
3656 h->next_nid_to_alloc = first_memory_node;
3657 h->next_nid_to_free = first_memory_node;
3658
3659 /* oversize hugepages were init'ed in early boot */
3660 if (!hstate_is_gigantic(h))
3661 hugetlb_hstate_alloc_pages(h);
3662
3663 /*
3664 * Set demote order for each hstate. Note that
3665 * h->demote_order is initially 0.
3666 * - We can not demote gigantic pages if runtime freeing
3667 * is not supported, so skip this.
3668 * - If CMA allocation is possible, we can not demote
3669 * HUGETLB_PAGE_ORDER or smaller size pages.
3670 */
3671 if (hstate_is_gigantic_no_runtime(h))
3672 continue;
3673 if (hugetlb_cma_total_size() && h->order <= HUGETLB_PAGE_ORDER)
3674 continue;
3675 for_each_hstate(h2) {
3676 if (h2 == h)
3677 continue;
3678 if (h2->order < h->order &&
3679 h2->order > h->demote_order)
3680 h->demote_order = h2->order;
3681 }
3682 }
3683 }
3684
report_hugepages(void)3685 static void __init report_hugepages(void)
3686 {
3687 struct hstate *h;
3688 unsigned long nrinvalid;
3689
3690 for_each_hstate(h) {
3691 char buf[32];
3692
3693 nrinvalid = hstate_boot_nrinvalid[hstate_index(h)];
3694 h->max_huge_pages -= nrinvalid;
3695
3696 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3697 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3698 buf, h->nr_huge_pages);
3699 if (nrinvalid)
3700 pr_info("HugeTLB: %s page size: %lu invalid page%s discarded\n",
3701 buf, nrinvalid, str_plural(nrinvalid));
3702 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3703 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3704 }
3705 }
3706
3707 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3708 static void try_to_free_low(struct hstate *h, unsigned long count,
3709 nodemask_t *nodes_allowed)
3710 {
3711 int i;
3712 LIST_HEAD(page_list);
3713
3714 lockdep_assert_held(&hugetlb_lock);
3715 if (hstate_is_gigantic(h))
3716 return;
3717
3718 /*
3719 * Collect pages to be freed on a list, and free after dropping lock
3720 */
3721 for_each_node_mask(i, *nodes_allowed) {
3722 struct folio *folio, *next;
3723 struct list_head *freel = &h->hugepage_freelists[i];
3724 list_for_each_entry_safe(folio, next, freel, lru) {
3725 if (count >= h->nr_huge_pages)
3726 goto out;
3727 if (folio_test_highmem(folio))
3728 continue;
3729 remove_hugetlb_folio(h, folio, false);
3730 list_add(&folio->lru, &page_list);
3731 }
3732 }
3733
3734 out:
3735 spin_unlock_irq(&hugetlb_lock);
3736 update_and_free_pages_bulk(h, &page_list);
3737 spin_lock_irq(&hugetlb_lock);
3738 }
3739 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3740 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3741 nodemask_t *nodes_allowed)
3742 {
3743 }
3744 #endif
3745
3746 /*
3747 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3748 * balanced by operating on them in a round-robin fashion.
3749 * Returns 1 if an adjustment was made.
3750 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3751 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3752 int delta)
3753 {
3754 int nr_nodes, node;
3755
3756 lockdep_assert_held(&hugetlb_lock);
3757 VM_BUG_ON(delta != -1 && delta != 1);
3758
3759 if (delta < 0) {
3760 for_each_node_mask_to_alloc(&h->next_nid_to_alloc, nr_nodes, node, nodes_allowed) {
3761 if (h->surplus_huge_pages_node[node])
3762 goto found;
3763 }
3764 } else {
3765 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3766 if (h->surplus_huge_pages_node[node] <
3767 h->nr_huge_pages_node[node])
3768 goto found;
3769 }
3770 }
3771 return 0;
3772
3773 found:
3774 h->surplus_huge_pages += delta;
3775 h->surplus_huge_pages_node[node] += delta;
3776 return 1;
3777 }
3778
3779 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3780 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3781 nodemask_t *nodes_allowed)
3782 {
3783 unsigned long persistent_free_count;
3784 unsigned long min_count;
3785 unsigned long allocated;
3786 struct folio *folio;
3787 LIST_HEAD(page_list);
3788 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3789
3790 /*
3791 * Bit mask controlling how hard we retry per-node allocations.
3792 * If we can not allocate the bit mask, do not attempt to allocate
3793 * the requested huge pages.
3794 */
3795 if (node_alloc_noretry)
3796 nodes_clear(*node_alloc_noretry);
3797 else
3798 return -ENOMEM;
3799
3800 /*
3801 * resize_lock mutex prevents concurrent adjustments to number of
3802 * pages in hstate via the proc/sysfs interfaces.
3803 */
3804 mutex_lock(&h->resize_lock);
3805 flush_free_hpage_work(h);
3806 spin_lock_irq(&hugetlb_lock);
3807
3808 /*
3809 * Check for a node specific request.
3810 * Changing node specific huge page count may require a corresponding
3811 * change to the global count. In any case, the passed node mask
3812 * (nodes_allowed) will restrict alloc/free to the specified node.
3813 */
3814 if (nid != NUMA_NO_NODE) {
3815 unsigned long old_count = count;
3816
3817 count += persistent_huge_pages(h) -
3818 (h->nr_huge_pages_node[nid] -
3819 h->surplus_huge_pages_node[nid]);
3820 /*
3821 * User may have specified a large count value which caused the
3822 * above calculation to overflow. In this case, they wanted
3823 * to allocate as many huge pages as possible. Set count to
3824 * largest possible value to align with their intention.
3825 */
3826 if (count < old_count)
3827 count = ULONG_MAX;
3828 }
3829
3830 /*
3831 * Gigantic pages runtime allocation depend on the capability for large
3832 * page range allocation.
3833 * If the system does not provide this feature, return an error when
3834 * the user tries to allocate gigantic pages but let the user free the
3835 * boottime allocated gigantic pages.
3836 */
3837 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3838 if (count > persistent_huge_pages(h)) {
3839 spin_unlock_irq(&hugetlb_lock);
3840 mutex_unlock(&h->resize_lock);
3841 NODEMASK_FREE(node_alloc_noretry);
3842 return -EINVAL;
3843 }
3844 /* Fall through to decrease pool */
3845 }
3846
3847 /*
3848 * Increase the pool size
3849 * First take pages out of surplus state. Then make up the
3850 * remaining difference by allocating fresh huge pages.
3851 *
3852 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3853 * to convert a surplus huge page to a normal huge page. That is
3854 * not critical, though, it just means the overall size of the
3855 * pool might be one hugepage larger than it needs to be, but
3856 * within all the constraints specified by the sysctls.
3857 */
3858 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3859 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3860 break;
3861 }
3862
3863 allocated = 0;
3864 while (count > (persistent_huge_pages(h) + allocated)) {
3865 /*
3866 * If this allocation races such that we no longer need the
3867 * page, free_huge_folio will handle it by freeing the page
3868 * and reducing the surplus.
3869 */
3870 spin_unlock_irq(&hugetlb_lock);
3871
3872 /* yield cpu to avoid soft lockup */
3873 cond_resched();
3874
3875 folio = alloc_pool_huge_folio(h, nodes_allowed,
3876 node_alloc_noretry,
3877 &h->next_nid_to_alloc);
3878 if (!folio) {
3879 prep_and_add_allocated_folios(h, &page_list);
3880 spin_lock_irq(&hugetlb_lock);
3881 goto out;
3882 }
3883
3884 list_add(&folio->lru, &page_list);
3885 allocated++;
3886
3887 /* Bail for signals. Probably ctrl-c from user */
3888 if (signal_pending(current)) {
3889 prep_and_add_allocated_folios(h, &page_list);
3890 spin_lock_irq(&hugetlb_lock);
3891 goto out;
3892 }
3893
3894 spin_lock_irq(&hugetlb_lock);
3895 }
3896
3897 /* Add allocated pages to the pool */
3898 if (!list_empty(&page_list)) {
3899 spin_unlock_irq(&hugetlb_lock);
3900 prep_and_add_allocated_folios(h, &page_list);
3901 spin_lock_irq(&hugetlb_lock);
3902 }
3903
3904 /*
3905 * Decrease the pool size
3906 * First return free pages to the buddy allocator (being careful
3907 * to keep enough around to satisfy reservations). Then place
3908 * pages into surplus state as needed so the pool will shrink
3909 * to the desired size as pages become free.
3910 *
3911 * By placing pages into the surplus state independent of the
3912 * overcommit value, we are allowing the surplus pool size to
3913 * exceed overcommit. There are few sane options here. Since
3914 * alloc_surplus_hugetlb_folio() is checking the global counter,
3915 * though, we'll note that we're not allowed to exceed surplus
3916 * and won't grow the pool anywhere else. Not until one of the
3917 * sysctls are changed, or the surplus pages go out of use.
3918 *
3919 * min_count is the expected number of persistent pages, we
3920 * shouldn't calculate min_count by using
3921 * resv_huge_pages + persistent_huge_pages() - free_huge_pages,
3922 * because there may exist free surplus huge pages, and this will
3923 * lead to subtracting twice. Free surplus huge pages come from HVO
3924 * failing to restore vmemmap, see comments in the callers of
3925 * hugetlb_vmemmap_restore_folio(). Thus, we should calculate
3926 * persistent free count first.
3927 */
3928 persistent_free_count = h->free_huge_pages;
3929 if (h->free_huge_pages > persistent_huge_pages(h)) {
3930 if (h->free_huge_pages > h->surplus_huge_pages)
3931 persistent_free_count -= h->surplus_huge_pages;
3932 else
3933 persistent_free_count = 0;
3934 }
3935 min_count = h->resv_huge_pages + persistent_huge_pages(h) - persistent_free_count;
3936 min_count = max(count, min_count);
3937 try_to_free_low(h, min_count, nodes_allowed);
3938
3939 /*
3940 * Collect pages to be removed on list without dropping lock
3941 */
3942 while (min_count < persistent_huge_pages(h)) {
3943 folio = remove_pool_hugetlb_folio(h, nodes_allowed, 0);
3944 if (!folio)
3945 break;
3946
3947 list_add(&folio->lru, &page_list);
3948 }
3949 /* free the pages after dropping lock */
3950 spin_unlock_irq(&hugetlb_lock);
3951 update_and_free_pages_bulk(h, &page_list);
3952 flush_free_hpage_work(h);
3953 spin_lock_irq(&hugetlb_lock);
3954
3955 while (count < persistent_huge_pages(h)) {
3956 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3957 break;
3958 }
3959 out:
3960 h->max_huge_pages = persistent_huge_pages(h);
3961 spin_unlock_irq(&hugetlb_lock);
3962 mutex_unlock(&h->resize_lock);
3963
3964 NODEMASK_FREE(node_alloc_noretry);
3965
3966 return 0;
3967 }
3968
demote_free_hugetlb_folios(struct hstate * src,struct hstate * dst,struct list_head * src_list)3969 static long demote_free_hugetlb_folios(struct hstate *src, struct hstate *dst,
3970 struct list_head *src_list)
3971 {
3972 long rc;
3973 struct folio *folio, *next;
3974 LIST_HEAD(dst_list);
3975 LIST_HEAD(ret_list);
3976
3977 rc = hugetlb_vmemmap_restore_folios(src, src_list, &ret_list);
3978 list_splice_init(&ret_list, src_list);
3979
3980 /*
3981 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3982 * Without the mutex, pages added to target hstate could be marked
3983 * as surplus.
3984 *
3985 * Note that we already hold src->resize_lock. To prevent deadlock,
3986 * use the convention of always taking larger size hstate mutex first.
3987 */
3988 mutex_lock(&dst->resize_lock);
3989
3990 list_for_each_entry_safe(folio, next, src_list, lru) {
3991 int i;
3992 bool cma;
3993
3994 if (folio_test_hugetlb_vmemmap_optimized(folio))
3995 continue;
3996
3997 cma = folio_test_hugetlb_cma(folio);
3998
3999 list_del(&folio->lru);
4000
4001 split_page_owner(&folio->page, huge_page_order(src), huge_page_order(dst));
4002 pgalloc_tag_split(folio, huge_page_order(src), huge_page_order(dst));
4003
4004 for (i = 0; i < pages_per_huge_page(src); i += pages_per_huge_page(dst)) {
4005 struct page *page = folio_page(folio, i);
4006 /* Careful: see __split_huge_page_tail() */
4007 struct folio *new_folio = (struct folio *)page;
4008
4009 clear_compound_head(page);
4010 prep_compound_page(page, dst->order);
4011
4012 new_folio->mapping = NULL;
4013 init_new_hugetlb_folio(new_folio);
4014 /* Copy the CMA flag so that it is freed correctly */
4015 if (cma)
4016 folio_set_hugetlb_cma(new_folio);
4017 list_add(&new_folio->lru, &dst_list);
4018 }
4019 }
4020
4021 prep_and_add_allocated_folios(dst, &dst_list);
4022
4023 mutex_unlock(&dst->resize_lock);
4024
4025 return rc;
4026 }
4027
demote_pool_huge_page(struct hstate * src,nodemask_t * nodes_allowed,unsigned long nr_to_demote)4028 long demote_pool_huge_page(struct hstate *src, nodemask_t *nodes_allowed,
4029 unsigned long nr_to_demote)
4030 __must_hold(&hugetlb_lock)
4031 {
4032 int nr_nodes, node;
4033 struct hstate *dst;
4034 long rc = 0;
4035 long nr_demoted = 0;
4036
4037 lockdep_assert_held(&hugetlb_lock);
4038
4039 /* We should never get here if no demote order */
4040 if (!src->demote_order) {
4041 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
4042 return -EINVAL; /* internal error */
4043 }
4044 dst = size_to_hstate(PAGE_SIZE << src->demote_order);
4045
4046 for_each_node_mask_to_free(src, nr_nodes, node, nodes_allowed) {
4047 LIST_HEAD(list);
4048 struct folio *folio, *next;
4049
4050 list_for_each_entry_safe(folio, next, &src->hugepage_freelists[node], lru) {
4051 if (folio_test_hwpoison(folio))
4052 continue;
4053
4054 remove_hugetlb_folio(src, folio, false);
4055 list_add(&folio->lru, &list);
4056
4057 if (++nr_demoted == nr_to_demote)
4058 break;
4059 }
4060
4061 spin_unlock_irq(&hugetlb_lock);
4062
4063 rc = demote_free_hugetlb_folios(src, dst, &list);
4064
4065 spin_lock_irq(&hugetlb_lock);
4066
4067 list_for_each_entry_safe(folio, next, &list, lru) {
4068 list_del(&folio->lru);
4069 add_hugetlb_folio(src, folio, false);
4070
4071 nr_demoted--;
4072 }
4073
4074 if (rc < 0 || nr_demoted == nr_to_demote)
4075 break;
4076 }
4077
4078 /*
4079 * Not absolutely necessary, but for consistency update max_huge_pages
4080 * based on pool changes for the demoted page.
4081 */
4082 src->max_huge_pages -= nr_demoted;
4083 dst->max_huge_pages += nr_demoted << (huge_page_order(src) - huge_page_order(dst));
4084
4085 if (rc < 0)
4086 return rc;
4087
4088 if (nr_demoted)
4089 return nr_demoted;
4090 /*
4091 * Only way to get here is if all pages on free lists are poisoned.
4092 * Return -EBUSY so that caller will not retry.
4093 */
4094 return -EBUSY;
4095 }
4096
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)4097 ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
4098 struct hstate *h, int nid,
4099 unsigned long count, size_t len)
4100 {
4101 int err;
4102 nodemask_t nodes_allowed, *n_mask;
4103
4104 if (hstate_is_gigantic_no_runtime(h))
4105 return -EINVAL;
4106
4107 if (nid == NUMA_NO_NODE) {
4108 /*
4109 * global hstate attribute
4110 */
4111 if (!(obey_mempolicy &&
4112 init_nodemask_of_mempolicy(&nodes_allowed)))
4113 n_mask = &node_states[N_MEMORY];
4114 else
4115 n_mask = &nodes_allowed;
4116 } else {
4117 /*
4118 * Node specific request. count adjustment happens in
4119 * set_max_huge_pages() after acquiring hugetlb_lock.
4120 */
4121 init_nodemask_of_node(&nodes_allowed, nid);
4122 n_mask = &nodes_allowed;
4123 }
4124
4125 err = set_max_huge_pages(h, count, nid, n_mask);
4126
4127 return err ? err : len;
4128 }
4129
hugetlb_init(void)4130 static int __init hugetlb_init(void)
4131 {
4132 int i;
4133
4134 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4135 __NR_HPAGEFLAGS);
4136 BUILD_BUG_ON_INVALID(HUGETLB_PAGE_ORDER > MAX_FOLIO_ORDER);
4137
4138 if (!hugepages_supported()) {
4139 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4140 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4141 return 0;
4142 }
4143
4144 /*
4145 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4146 * architectures depend on setup being done here.
4147 */
4148 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4149 if (!parsed_default_hugepagesz) {
4150 /*
4151 * If we did not parse a default huge page size, set
4152 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4153 * number of huge pages for this default size was implicitly
4154 * specified, set that here as well.
4155 * Note that the implicit setting will overwrite an explicit
4156 * setting. A warning will be printed in this case.
4157 */
4158 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4159 if (default_hstate_max_huge_pages) {
4160 if (default_hstate.max_huge_pages) {
4161 char buf[32];
4162
4163 string_get_size(huge_page_size(&default_hstate),
4164 1, STRING_UNITS_2, buf, 32);
4165 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4166 default_hstate.max_huge_pages, buf);
4167 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4168 default_hstate_max_huge_pages);
4169 }
4170 default_hstate.max_huge_pages =
4171 default_hstate_max_huge_pages;
4172
4173 for_each_online_node(i)
4174 default_hstate.max_huge_pages_node[i] =
4175 default_hugepages_in_node[i];
4176 }
4177 }
4178
4179 hugetlb_init_hstates();
4180 gather_bootmem_prealloc();
4181 report_hugepages();
4182
4183 hugetlb_sysfs_init();
4184 hugetlb_cgroup_file_init();
4185 hugetlb_sysctl_init();
4186
4187 #ifdef CONFIG_SMP
4188 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4189 #else
4190 num_fault_mutexes = 1;
4191 #endif
4192 hugetlb_fault_mutex_table =
4193 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4194 GFP_KERNEL);
4195 BUG_ON(!hugetlb_fault_mutex_table);
4196
4197 for (i = 0; i < num_fault_mutexes; i++)
4198 mutex_init(&hugetlb_fault_mutex_table[i]);
4199 return 0;
4200 }
4201 subsys_initcall(hugetlb_init);
4202
4203 /* Overwritten by architectures with more huge page sizes */
__init(weak)4204 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4205 {
4206 return size == HPAGE_SIZE;
4207 }
4208
hugetlb_add_hstate(unsigned int order)4209 void __init hugetlb_add_hstate(unsigned int order)
4210 {
4211 struct hstate *h;
4212 unsigned long i;
4213
4214 if (size_to_hstate(PAGE_SIZE << order)) {
4215 return;
4216 }
4217 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4218 BUG_ON(order < order_base_2(__NR_USED_SUBPAGE));
4219 WARN_ON(order > MAX_FOLIO_ORDER);
4220 h = &hstates[hugetlb_max_hstate++];
4221 __mutex_init(&h->resize_lock, "resize mutex", &h->resize_key);
4222 h->order = order;
4223 h->mask = ~(huge_page_size(h) - 1);
4224 for (i = 0; i < MAX_NUMNODES; ++i)
4225 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4226 INIT_LIST_HEAD(&h->hugepage_activelist);
4227 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4228 huge_page_size(h)/SZ_1K);
4229
4230 parsed_hstate = h;
4231 }
4232
hugetlb_node_alloc_supported(void)4233 bool __init __weak hugetlb_node_alloc_supported(void)
4234 {
4235 return true;
4236 }
4237
hugepages_clear_pages_in_node(void)4238 static void __init hugepages_clear_pages_in_node(void)
4239 {
4240 if (!hugetlb_max_hstate) {
4241 default_hstate_max_huge_pages = 0;
4242 memset(default_hugepages_in_node, 0,
4243 sizeof(default_hugepages_in_node));
4244 } else {
4245 parsed_hstate->max_huge_pages = 0;
4246 memset(parsed_hstate->max_huge_pages_node, 0,
4247 sizeof(parsed_hstate->max_huge_pages_node));
4248 }
4249 }
4250
hugetlb_add_param(char * s,int (* setup)(char *))4251 static __init int hugetlb_add_param(char *s, int (*setup)(char *))
4252 {
4253 size_t len;
4254 char *p;
4255
4256 if (hugetlb_param_index >= HUGE_MAX_CMDLINE_ARGS)
4257 return -EINVAL;
4258
4259 len = strlen(s) + 1;
4260 if (len + hstate_cmdline_index > sizeof(hstate_cmdline_buf))
4261 return -EINVAL;
4262
4263 p = &hstate_cmdline_buf[hstate_cmdline_index];
4264 memcpy(p, s, len);
4265 hstate_cmdline_index += len;
4266
4267 hugetlb_params[hugetlb_param_index].val = p;
4268 hugetlb_params[hugetlb_param_index].setup = setup;
4269
4270 hugetlb_param_index++;
4271
4272 return 0;
4273 }
4274
hugetlb_parse_params(void)4275 static __init void hugetlb_parse_params(void)
4276 {
4277 int i;
4278 struct hugetlb_cmdline *hcp;
4279
4280 for (i = 0; i < hugetlb_param_index; i++) {
4281 hcp = &hugetlb_params[i];
4282
4283 hcp->setup(hcp->val);
4284 }
4285
4286 hugetlb_cma_validate_params();
4287 }
4288
4289 /*
4290 * hugepages command line processing
4291 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4292 * specification. If not, ignore the hugepages value. hugepages can also
4293 * be the first huge page command line option in which case it implicitly
4294 * specifies the number of huge pages for the default size.
4295 */
hugepages_setup(char * s)4296 static int __init hugepages_setup(char *s)
4297 {
4298 unsigned long *mhp;
4299 static unsigned long *last_mhp;
4300 int node = NUMA_NO_NODE;
4301 int count;
4302 unsigned long tmp;
4303 char *p = s;
4304
4305 if (!hugepages_supported()) {
4306 pr_warn("HugeTLB: hugepages unsupported, ignoring hugepages=%s cmdline\n", s);
4307 return 0;
4308 }
4309
4310 if (!parsed_valid_hugepagesz) {
4311 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4312 parsed_valid_hugepagesz = true;
4313 return -EINVAL;
4314 }
4315
4316 /*
4317 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4318 * yet, so this hugepages= parameter goes to the "default hstate".
4319 * Otherwise, it goes with the previously parsed hugepagesz or
4320 * default_hugepagesz.
4321 */
4322 else if (!hugetlb_max_hstate)
4323 mhp = &default_hstate_max_huge_pages;
4324 else
4325 mhp = &parsed_hstate->max_huge_pages;
4326
4327 if (mhp == last_mhp) {
4328 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4329 return 1;
4330 }
4331
4332 while (*p) {
4333 count = 0;
4334 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4335 goto invalid;
4336 /* Parameter is node format */
4337 if (p[count] == ':') {
4338 if (!hugetlb_node_alloc_supported()) {
4339 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4340 return 1;
4341 }
4342 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4343 goto invalid;
4344 node = array_index_nospec(tmp, MAX_NUMNODES);
4345 p += count + 1;
4346 /* Parse hugepages */
4347 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4348 goto invalid;
4349 if (!hugetlb_max_hstate)
4350 default_hugepages_in_node[node] = tmp;
4351 else
4352 parsed_hstate->max_huge_pages_node[node] = tmp;
4353 *mhp += tmp;
4354 /* Go to parse next node*/
4355 if (p[count] == ',')
4356 p += count + 1;
4357 else
4358 break;
4359 } else {
4360 if (p != s)
4361 goto invalid;
4362 *mhp = tmp;
4363 break;
4364 }
4365 }
4366
4367 last_mhp = mhp;
4368
4369 return 0;
4370
4371 invalid:
4372 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4373 hugepages_clear_pages_in_node();
4374 return -EINVAL;
4375 }
4376 hugetlb_early_param("hugepages", hugepages_setup);
4377
4378 /*
4379 * hugepagesz command line processing
4380 * A specific huge page size can only be specified once with hugepagesz.
4381 * hugepagesz is followed by hugepages on the command line. The global
4382 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4383 * hugepagesz argument was valid.
4384 */
hugepagesz_setup(char * s)4385 static int __init hugepagesz_setup(char *s)
4386 {
4387 unsigned long size;
4388 struct hstate *h;
4389
4390 if (!hugepages_supported()) {
4391 pr_warn("HugeTLB: hugepages unsupported, ignoring hugepagesz=%s cmdline\n", s);
4392 return 0;
4393 }
4394
4395 parsed_valid_hugepagesz = false;
4396 size = (unsigned long)memparse(s, NULL);
4397
4398 if (!arch_hugetlb_valid_size(size)) {
4399 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4400 return -EINVAL;
4401 }
4402
4403 h = size_to_hstate(size);
4404 if (h) {
4405 /*
4406 * hstate for this size already exists. This is normally
4407 * an error, but is allowed if the existing hstate is the
4408 * default hstate. More specifically, it is only allowed if
4409 * the number of huge pages for the default hstate was not
4410 * previously specified.
4411 */
4412 if (!parsed_default_hugepagesz || h != &default_hstate ||
4413 default_hstate.max_huge_pages) {
4414 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4415 return -EINVAL;
4416 }
4417
4418 /*
4419 * No need to call hugetlb_add_hstate() as hstate already
4420 * exists. But, do set parsed_hstate so that a following
4421 * hugepages= parameter will be applied to this hstate.
4422 */
4423 parsed_hstate = h;
4424 parsed_valid_hugepagesz = true;
4425 return 0;
4426 }
4427
4428 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4429 parsed_valid_hugepagesz = true;
4430 return 0;
4431 }
4432 hugetlb_early_param("hugepagesz", hugepagesz_setup);
4433
4434 /*
4435 * default_hugepagesz command line input
4436 * Only one instance of default_hugepagesz allowed on command line.
4437 */
default_hugepagesz_setup(char * s)4438 static int __init default_hugepagesz_setup(char *s)
4439 {
4440 unsigned long size;
4441 int i;
4442
4443 if (!hugepages_supported()) {
4444 pr_warn("HugeTLB: hugepages unsupported, ignoring default_hugepagesz=%s cmdline\n",
4445 s);
4446 return 0;
4447 }
4448
4449 parsed_valid_hugepagesz = false;
4450 if (parsed_default_hugepagesz) {
4451 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4452 return -EINVAL;
4453 }
4454
4455 size = (unsigned long)memparse(s, NULL);
4456
4457 if (!arch_hugetlb_valid_size(size)) {
4458 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4459 return -EINVAL;
4460 }
4461
4462 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4463 parsed_valid_hugepagesz = true;
4464 parsed_default_hugepagesz = true;
4465 default_hstate_idx = hstate_index(size_to_hstate(size));
4466
4467 /*
4468 * The number of default huge pages (for this size) could have been
4469 * specified as the first hugetlb parameter: hugepages=X. If so,
4470 * then default_hstate_max_huge_pages is set. If the default huge
4471 * page size is gigantic (> MAX_PAGE_ORDER), then the pages must be
4472 * allocated here from bootmem allocator.
4473 */
4474 if (default_hstate_max_huge_pages) {
4475 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4476 /*
4477 * Since this is an early parameter, we can't check
4478 * NUMA node state yet, so loop through MAX_NUMNODES.
4479 */
4480 for (i = 0; i < MAX_NUMNODES; i++) {
4481 if (default_hugepages_in_node[i] != 0)
4482 default_hstate.max_huge_pages_node[i] =
4483 default_hugepages_in_node[i];
4484 }
4485 default_hstate_max_huge_pages = 0;
4486 }
4487
4488 return 0;
4489 }
4490 hugetlb_early_param("default_hugepagesz", default_hugepagesz_setup);
4491
hugetlb_bootmem_set_nodes(void)4492 void __init hugetlb_bootmem_set_nodes(void)
4493 {
4494 int i, nid;
4495 unsigned long start_pfn, end_pfn;
4496
4497 if (!nodes_empty(hugetlb_bootmem_nodes))
4498 return;
4499
4500 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4501 if (end_pfn > start_pfn)
4502 node_set(nid, hugetlb_bootmem_nodes);
4503 }
4504 }
4505
hugetlb_bootmem_alloc(void)4506 void __init hugetlb_bootmem_alloc(void)
4507 {
4508 struct hstate *h;
4509 int i;
4510
4511 hugetlb_bootmem_set_nodes();
4512
4513 for (i = 0; i < MAX_NUMNODES; i++)
4514 INIT_LIST_HEAD(&huge_boot_pages[i]);
4515
4516 hugetlb_parse_params();
4517
4518 for_each_hstate(h) {
4519 h->next_nid_to_alloc = first_online_node;
4520
4521 if (hstate_is_gigantic(h))
4522 hugetlb_hstate_alloc_pages(h);
4523 }
4524 }
4525
4526 /*
4527 * hugepage_alloc_threads command line parsing.
4528 *
4529 * When set, use this specific number of threads for the boot
4530 * allocation of hugepages.
4531 */
hugepage_alloc_threads_setup(char * s)4532 static int __init hugepage_alloc_threads_setup(char *s)
4533 {
4534 unsigned long allocation_threads;
4535
4536 if (kstrtoul(s, 0, &allocation_threads) != 0)
4537 return 1;
4538
4539 if (allocation_threads == 0)
4540 return 1;
4541
4542 hugepage_allocation_threads = allocation_threads;
4543
4544 return 1;
4545 }
4546 __setup("hugepage_alloc_threads=", hugepage_alloc_threads_setup);
4547
allowed_mems_nr(struct hstate * h)4548 static unsigned int allowed_mems_nr(struct hstate *h)
4549 {
4550 int node;
4551 unsigned int nr = 0;
4552 nodemask_t *mbind_nodemask;
4553 unsigned int *array = h->free_huge_pages_node;
4554 gfp_t gfp_mask = htlb_alloc_mask(h);
4555
4556 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4557 for_each_node_mask(node, cpuset_current_mems_allowed) {
4558 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4559 nr += array[node];
4560 }
4561
4562 return nr;
4563 }
4564
hugetlb_report_meminfo(struct seq_file * m)4565 void hugetlb_report_meminfo(struct seq_file *m)
4566 {
4567 struct hstate *h;
4568 unsigned long total = 0;
4569
4570 if (!hugepages_supported())
4571 return;
4572
4573 for_each_hstate(h) {
4574 unsigned long count = h->nr_huge_pages;
4575
4576 total += huge_page_size(h) * count;
4577
4578 if (h == &default_hstate)
4579 seq_printf(m,
4580 "HugePages_Total: %5lu\n"
4581 "HugePages_Free: %5lu\n"
4582 "HugePages_Rsvd: %5lu\n"
4583 "HugePages_Surp: %5lu\n"
4584 "Hugepagesize: %8lu kB\n",
4585 count,
4586 h->free_huge_pages,
4587 h->resv_huge_pages,
4588 h->surplus_huge_pages,
4589 huge_page_size(h) / SZ_1K);
4590 }
4591
4592 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4593 }
4594
hugetlb_report_node_meminfo(char * buf,int len,int nid)4595 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4596 {
4597 struct hstate *h = &default_hstate;
4598
4599 if (!hugepages_supported())
4600 return 0;
4601
4602 return sysfs_emit_at(buf, len,
4603 "Node %d HugePages_Total: %5u\n"
4604 "Node %d HugePages_Free: %5u\n"
4605 "Node %d HugePages_Surp: %5u\n",
4606 nid, h->nr_huge_pages_node[nid],
4607 nid, h->free_huge_pages_node[nid],
4608 nid, h->surplus_huge_pages_node[nid]);
4609 }
4610
hugetlb_show_meminfo_node(int nid)4611 void hugetlb_show_meminfo_node(int nid)
4612 {
4613 struct hstate *h;
4614
4615 if (!hugepages_supported())
4616 return;
4617
4618 for_each_hstate(h)
4619 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4620 nid,
4621 h->nr_huge_pages_node[nid],
4622 h->free_huge_pages_node[nid],
4623 h->surplus_huge_pages_node[nid],
4624 huge_page_size(h) / SZ_1K);
4625 }
4626
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4627 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4628 {
4629 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4630 K(atomic_long_read(&mm->hugetlb_usage)));
4631 }
4632
4633 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4634 unsigned long hugetlb_total_pages(void)
4635 {
4636 struct hstate *h;
4637 unsigned long nr_total_pages = 0;
4638
4639 for_each_hstate(h)
4640 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4641 return nr_total_pages;
4642 }
4643
hugetlb_acct_memory(struct hstate * h,long delta)4644 static int hugetlb_acct_memory(struct hstate *h, long delta)
4645 {
4646 int ret = -ENOMEM;
4647
4648 if (!delta)
4649 return 0;
4650
4651 spin_lock_irq(&hugetlb_lock);
4652 /*
4653 * When cpuset is configured, it breaks the strict hugetlb page
4654 * reservation as the accounting is done on a global variable. Such
4655 * reservation is completely rubbish in the presence of cpuset because
4656 * the reservation is not checked against page availability for the
4657 * current cpuset. Application can still potentially OOM'ed by kernel
4658 * with lack of free htlb page in cpuset that the task is in.
4659 * Attempt to enforce strict accounting with cpuset is almost
4660 * impossible (or too ugly) because cpuset is too fluid that
4661 * task or memory node can be dynamically moved between cpusets.
4662 *
4663 * The change of semantics for shared hugetlb mapping with cpuset is
4664 * undesirable. However, in order to preserve some of the semantics,
4665 * we fall back to check against current free page availability as
4666 * a best attempt and hopefully to minimize the impact of changing
4667 * semantics that cpuset has.
4668 *
4669 * Apart from cpuset, we also have memory policy mechanism that
4670 * also determines from which node the kernel will allocate memory
4671 * in a NUMA system. So similar to cpuset, we also should consider
4672 * the memory policy of the current task. Similar to the description
4673 * above.
4674 */
4675 if (delta > 0) {
4676 if (gather_surplus_pages(h, delta) < 0)
4677 goto out;
4678
4679 if (delta > allowed_mems_nr(h)) {
4680 return_unused_surplus_pages(h, delta);
4681 goto out;
4682 }
4683 }
4684
4685 ret = 0;
4686 if (delta < 0)
4687 return_unused_surplus_pages(h, (unsigned long) -delta);
4688
4689 out:
4690 spin_unlock_irq(&hugetlb_lock);
4691 return ret;
4692 }
4693
hugetlb_vm_op_open(struct vm_area_struct * vma)4694 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4695 {
4696 struct resv_map *resv = vma_resv_map(vma);
4697
4698 /*
4699 * HPAGE_RESV_OWNER indicates a private mapping.
4700 * This new VMA should share its siblings reservation map if present.
4701 * The VMA will only ever have a valid reservation map pointer where
4702 * it is being copied for another still existing VMA. As that VMA
4703 * has a reference to the reservation map it cannot disappear until
4704 * after this open call completes. It is therefore safe to take a
4705 * new reference here without additional locking.
4706 */
4707 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4708 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4709 kref_get(&resv->refs);
4710 }
4711
4712 /*
4713 * vma_lock structure for sharable mappings is vma specific.
4714 * Clear old pointer (if copied via vm_area_dup) and allocate
4715 * new structure. Before clearing, make sure vma_lock is not
4716 * for this vma.
4717 */
4718 if (vma->vm_flags & VM_MAYSHARE) {
4719 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4720
4721 if (vma_lock) {
4722 if (vma_lock->vma != vma) {
4723 vma->vm_private_data = NULL;
4724 hugetlb_vma_lock_alloc(vma);
4725 } else {
4726 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4727 }
4728 } else {
4729 hugetlb_vma_lock_alloc(vma);
4730 }
4731 }
4732 }
4733
hugetlb_vm_op_close(struct vm_area_struct * vma)4734 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4735 {
4736 struct hstate *h = hstate_vma(vma);
4737 struct resv_map *resv;
4738 struct hugepage_subpool *spool = subpool_vma(vma);
4739 unsigned long reserve, start, end;
4740 long gbl_reserve;
4741
4742 hugetlb_vma_lock_free(vma);
4743
4744 resv = vma_resv_map(vma);
4745 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4746 return;
4747
4748 start = vma_hugecache_offset(h, vma, vma->vm_start);
4749 end = vma_hugecache_offset(h, vma, vma->vm_end);
4750
4751 reserve = (end - start) - region_count(resv, start, end);
4752 hugetlb_cgroup_uncharge_counter(resv, start, end);
4753 if (reserve) {
4754 /*
4755 * Decrement reserve counts. The global reserve count may be
4756 * adjusted if the subpool has a minimum size.
4757 */
4758 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4759 hugetlb_acct_memory(h, -gbl_reserve);
4760 }
4761
4762 kref_put(&resv->refs, resv_map_release);
4763 }
4764
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)4765 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4766 {
4767 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4768 return -EINVAL;
4769 return 0;
4770 }
4771
hugetlb_split(struct vm_area_struct * vma,unsigned long addr)4772 void hugetlb_split(struct vm_area_struct *vma, unsigned long addr)
4773 {
4774 /*
4775 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4776 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4777 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4778 * This function is called in the middle of a VMA split operation, with
4779 * MM, VMA and rmap all write-locked to prevent concurrent page table
4780 * walks (except hardware and gup_fast()).
4781 */
4782 vma_assert_write_locked(vma);
4783 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
4784
4785 if (addr & ~PUD_MASK) {
4786 unsigned long floor = addr & PUD_MASK;
4787 unsigned long ceil = floor + PUD_SIZE;
4788
4789 if (floor >= vma->vm_start && ceil <= vma->vm_end) {
4790 /*
4791 * Locking:
4792 * Use take_locks=false here.
4793 * The file rmap lock is already held.
4794 * The hugetlb VMA lock can't be taken when we already
4795 * hold the file rmap lock, and we don't need it because
4796 * its purpose is to synchronize against concurrent page
4797 * table walks, which are not possible thanks to the
4798 * locks held by our caller.
4799 */
4800 hugetlb_unshare_pmds(vma, floor, ceil, /* take_locks = */ false);
4801 }
4802 }
4803 }
4804
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)4805 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4806 {
4807 return huge_page_size(hstate_vma(vma));
4808 }
4809
4810 /*
4811 * We cannot handle pagefaults against hugetlb pages at all. They cause
4812 * handle_mm_fault() to try to instantiate regular-sized pages in the
4813 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4814 * this far.
4815 */
hugetlb_vm_op_fault(struct vm_fault * vmf)4816 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4817 {
4818 BUG();
4819 return 0;
4820 }
4821
4822 /*
4823 * When a new function is introduced to vm_operations_struct and added
4824 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4825 * This is because under System V memory model, mappings created via
4826 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4827 * their original vm_ops are overwritten with shm_vm_ops.
4828 */
4829 const struct vm_operations_struct hugetlb_vm_ops = {
4830 .fault = hugetlb_vm_op_fault,
4831 .open = hugetlb_vm_op_open,
4832 .close = hugetlb_vm_op_close,
4833 .may_split = hugetlb_vm_op_split,
4834 .pagesize = hugetlb_vm_op_pagesize,
4835 };
4836
make_huge_pte(struct vm_area_struct * vma,struct folio * folio,bool try_mkwrite)4837 static pte_t make_huge_pte(struct vm_area_struct *vma, struct folio *folio,
4838 bool try_mkwrite)
4839 {
4840 pte_t entry = folio_mk_pte(folio, vma->vm_page_prot);
4841 unsigned int shift = huge_page_shift(hstate_vma(vma));
4842
4843 if (try_mkwrite && (vma->vm_flags & VM_WRITE)) {
4844 entry = pte_mkwrite_novma(pte_mkdirty(entry));
4845 } else {
4846 entry = pte_wrprotect(entry);
4847 }
4848 entry = pte_mkyoung(entry);
4849 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4850
4851 return entry;
4852 }
4853
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4854 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4855 unsigned long address, pte_t *ptep)
4856 {
4857 pte_t entry;
4858
4859 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(vma->vm_mm, address, ptep)));
4860 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4861 update_mmu_cache(vma, address, ptep);
4862 }
4863
set_huge_ptep_maybe_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4864 static void set_huge_ptep_maybe_writable(struct vm_area_struct *vma,
4865 unsigned long address, pte_t *ptep)
4866 {
4867 if (vma->vm_flags & VM_WRITE)
4868 set_huge_ptep_writable(vma, address, ptep);
4869 }
4870
4871 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)4872 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4873 struct folio *new_folio, pte_t old, unsigned long sz)
4874 {
4875 pte_t newpte = make_huge_pte(vma, new_folio, true);
4876
4877 __folio_mark_uptodate(new_folio);
4878 hugetlb_add_new_anon_rmap(new_folio, vma, addr);
4879 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
4880 newpte = huge_pte_mkuffd_wp(newpte);
4881 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
4882 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4883 folio_set_hugetlb_migratable(new_folio);
4884 }
4885
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)4886 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4887 struct vm_area_struct *dst_vma,
4888 struct vm_area_struct *src_vma)
4889 {
4890 pte_t *src_pte, *dst_pte, entry;
4891 struct folio *pte_folio;
4892 unsigned long addr;
4893 bool cow = is_cow_mapping(src_vma->vm_flags);
4894 struct hstate *h = hstate_vma(src_vma);
4895 unsigned long sz = huge_page_size(h);
4896 unsigned long npages = pages_per_huge_page(h);
4897 struct mmu_notifier_range range;
4898 unsigned long last_addr_mask;
4899 softleaf_t softleaf;
4900 int ret = 0;
4901
4902 if (cow) {
4903 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
4904 src_vma->vm_start,
4905 src_vma->vm_end);
4906 mmu_notifier_invalidate_range_start(&range);
4907 vma_assert_write_locked(src_vma);
4908 raw_write_seqcount_begin(&src->write_protect_seq);
4909 } else {
4910 /*
4911 * For shared mappings the vma lock must be held before
4912 * calling hugetlb_walk() in the src vma. Otherwise, the
4913 * returned ptep could go away if part of a shared pmd and
4914 * another thread calls huge_pmd_unshare.
4915 */
4916 hugetlb_vma_lock_read(src_vma);
4917 }
4918
4919 last_addr_mask = hugetlb_mask_last_page(h);
4920 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4921 spinlock_t *src_ptl, *dst_ptl;
4922 src_pte = hugetlb_walk(src_vma, addr, sz);
4923 if (!src_pte) {
4924 addr |= last_addr_mask;
4925 continue;
4926 }
4927 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4928 if (!dst_pte) {
4929 ret = -ENOMEM;
4930 break;
4931 }
4932
4933 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
4934 /* If the pagetables are shared, there is nothing to do */
4935 if (ptdesc_pmd_is_shared(virt_to_ptdesc(dst_pte))) {
4936 addr |= last_addr_mask;
4937 continue;
4938 }
4939 #endif
4940
4941 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4942 src_ptl = huge_pte_lockptr(h, src, src_pte);
4943 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4944 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
4945 again:
4946 if (huge_pte_none(entry)) {
4947 /* Skip if src entry none. */
4948 goto next;
4949 }
4950
4951 softleaf = softleaf_from_pte(entry);
4952 if (unlikely(softleaf_is_hwpoison(softleaf))) {
4953 if (!userfaultfd_wp(dst_vma))
4954 entry = huge_pte_clear_uffd_wp(entry);
4955 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
4956 } else if (unlikely(softleaf_is_migration(softleaf))) {
4957 bool uffd_wp = pte_swp_uffd_wp(entry);
4958
4959 if (!softleaf_is_migration_read(softleaf) && cow) {
4960 /*
4961 * COW mappings require pages in both
4962 * parent and child to be set to read.
4963 */
4964 softleaf = make_readable_migration_entry(
4965 swp_offset(softleaf));
4966 entry = swp_entry_to_pte(softleaf);
4967 if (userfaultfd_wp(src_vma) && uffd_wp)
4968 entry = pte_swp_mkuffd_wp(entry);
4969 set_huge_pte_at(src, addr, src_pte, entry, sz);
4970 }
4971 if (!userfaultfd_wp(dst_vma))
4972 entry = huge_pte_clear_uffd_wp(entry);
4973 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
4974 } else if (unlikely(pte_is_marker(entry))) {
4975 const pte_marker marker = copy_pte_marker(softleaf, dst_vma);
4976
4977 if (marker)
4978 set_huge_pte_at(dst, addr, dst_pte,
4979 make_pte_marker(marker), sz);
4980 } else {
4981 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
4982 pte_folio = page_folio(pte_page(entry));
4983 folio_get(pte_folio);
4984
4985 /*
4986 * Failing to duplicate the anon rmap is a rare case
4987 * where we see pinned hugetlb pages while they're
4988 * prone to COW. We need to do the COW earlier during
4989 * fork.
4990 *
4991 * When pre-allocating the page or copying data, we
4992 * need to be without the pgtable locks since we could
4993 * sleep during the process.
4994 */
4995 if (!folio_test_anon(pte_folio)) {
4996 hugetlb_add_file_rmap(pte_folio);
4997 } else if (hugetlb_try_dup_anon_rmap(pte_folio, src_vma)) {
4998 pte_t src_pte_old = entry;
4999 struct folio *new_folio;
5000
5001 spin_unlock(src_ptl);
5002 spin_unlock(dst_ptl);
5003 /* Do not use reserve as it's private owned */
5004 new_folio = alloc_hugetlb_folio(dst_vma, addr, false);
5005 if (IS_ERR(new_folio)) {
5006 folio_put(pte_folio);
5007 ret = PTR_ERR(new_folio);
5008 break;
5009 }
5010 ret = copy_user_large_folio(new_folio, pte_folio,
5011 addr, dst_vma);
5012 folio_put(pte_folio);
5013 if (ret) {
5014 folio_put(new_folio);
5015 break;
5016 }
5017
5018 /* Install the new hugetlb folio if src pte stable */
5019 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5020 src_ptl = huge_pte_lockptr(h, src, src_pte);
5021 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5022 entry = huge_ptep_get(src_vma->vm_mm, addr, src_pte);
5023 if (!pte_same(src_pte_old, entry)) {
5024 restore_reserve_on_error(h, dst_vma, addr,
5025 new_folio);
5026 folio_put(new_folio);
5027 /* huge_ptep of dst_pte won't change as in child */
5028 goto again;
5029 }
5030 hugetlb_install_folio(dst_vma, dst_pte, addr,
5031 new_folio, src_pte_old, sz);
5032 goto next;
5033 }
5034
5035 if (cow) {
5036 /*
5037 * No need to notify as we are downgrading page
5038 * table protection not changing it to point
5039 * to a new page.
5040 *
5041 * See Documentation/mm/mmu_notifier.rst
5042 */
5043 huge_ptep_set_wrprotect(src, addr, src_pte);
5044 entry = huge_pte_wrprotect(entry);
5045 }
5046
5047 if (!userfaultfd_wp(dst_vma))
5048 entry = huge_pte_clear_uffd_wp(entry);
5049
5050 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5051 hugetlb_count_add(npages, dst);
5052 }
5053
5054 next:
5055 spin_unlock(src_ptl);
5056 spin_unlock(dst_ptl);
5057 }
5058
5059 if (cow) {
5060 raw_write_seqcount_end(&src->write_protect_seq);
5061 mmu_notifier_invalidate_range_end(&range);
5062 } else {
5063 hugetlb_vma_unlock_read(src_vma);
5064 }
5065
5066 return ret;
5067 }
5068
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5069 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5070 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5071 unsigned long sz)
5072 {
5073 bool need_clear_uffd_wp = vma_has_uffd_without_event_remap(vma);
5074 struct hstate *h = hstate_vma(vma);
5075 struct mm_struct *mm = vma->vm_mm;
5076 spinlock_t *src_ptl, *dst_ptl;
5077 pte_t pte;
5078
5079 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5080 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5081
5082 /*
5083 * We don't have to worry about the ordering of src and dst ptlocks
5084 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5085 */
5086 if (src_ptl != dst_ptl)
5087 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5088
5089 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte, sz);
5090
5091 if (need_clear_uffd_wp && pte_is_uffd_wp_marker(pte)) {
5092 huge_pte_clear(mm, new_addr, dst_pte, sz);
5093 } else {
5094 if (need_clear_uffd_wp) {
5095 if (pte_present(pte))
5096 pte = huge_pte_clear_uffd_wp(pte);
5097 else
5098 pte = pte_swp_clear_uffd_wp(pte);
5099 }
5100 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5101 }
5102
5103 if (src_ptl != dst_ptl)
5104 spin_unlock(src_ptl);
5105 spin_unlock(dst_ptl);
5106 }
5107
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5108 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5109 struct vm_area_struct *new_vma,
5110 unsigned long old_addr, unsigned long new_addr,
5111 unsigned long len)
5112 {
5113 struct hstate *h = hstate_vma(vma);
5114 struct address_space *mapping = vma->vm_file->f_mapping;
5115 unsigned long sz = huge_page_size(h);
5116 struct mm_struct *mm = vma->vm_mm;
5117 unsigned long old_end = old_addr + len;
5118 unsigned long last_addr_mask;
5119 pte_t *src_pte, *dst_pte;
5120 struct mmu_notifier_range range;
5121 struct mmu_gather tlb;
5122
5123 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5124 old_end);
5125 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5126 /*
5127 * In case of shared PMDs, we should cover the maximum possible
5128 * range.
5129 */
5130 flush_cache_range(vma, range.start, range.end);
5131 tlb_gather_mmu_vma(&tlb, vma);
5132
5133 mmu_notifier_invalidate_range_start(&range);
5134 last_addr_mask = hugetlb_mask_last_page(h);
5135 /* Prevent race with file truncation */
5136 hugetlb_vma_lock_write(vma);
5137 i_mmap_lock_write(mapping);
5138 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5139 src_pte = hugetlb_walk(vma, old_addr, sz);
5140 if (!src_pte) {
5141 old_addr |= last_addr_mask;
5142 new_addr |= last_addr_mask;
5143 continue;
5144 }
5145 if (huge_pte_none(huge_ptep_get(mm, old_addr, src_pte)))
5146 continue;
5147
5148 if (huge_pmd_unshare(&tlb, vma, old_addr, src_pte)) {
5149 old_addr |= last_addr_mask;
5150 new_addr |= last_addr_mask;
5151 continue;
5152 }
5153
5154 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5155 if (!dst_pte)
5156 break;
5157
5158 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5159 tlb_remove_huge_tlb_entry(h, &tlb, src_pte, old_addr);
5160 }
5161
5162 tlb_flush_mmu_tlbonly(&tlb);
5163 huge_pmd_unshare_flush(&tlb, vma);
5164
5165 mmu_notifier_invalidate_range_end(&range);
5166 i_mmap_unlock_write(mapping);
5167 hugetlb_vma_unlock_write(vma);
5168 tlb_finish_mmu(&tlb);
5169
5170 return len + old_addr - old_end;
5171 }
5172
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)5173 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5174 unsigned long start, unsigned long end,
5175 struct folio *folio, zap_flags_t zap_flags)
5176 {
5177 struct mm_struct *mm = vma->vm_mm;
5178 const bool folio_provided = !!folio;
5179 unsigned long address;
5180 pte_t *ptep;
5181 pte_t pte;
5182 spinlock_t *ptl;
5183 struct hstate *h = hstate_vma(vma);
5184 unsigned long sz = huge_page_size(h);
5185 bool adjust_reservation;
5186 unsigned long last_addr_mask;
5187
5188 WARN_ON(!is_vm_hugetlb_page(vma));
5189 BUG_ON(start & ~huge_page_mask(h));
5190 BUG_ON(end & ~huge_page_mask(h));
5191
5192 /*
5193 * This is a hugetlb vma, all the pte entries should point
5194 * to huge page.
5195 */
5196 tlb_change_page_size(tlb, sz);
5197 tlb_start_vma(tlb, vma);
5198
5199 last_addr_mask = hugetlb_mask_last_page(h);
5200 address = start;
5201 for (; address < end; address += sz) {
5202 ptep = hugetlb_walk(vma, address, sz);
5203 if (!ptep) {
5204 address |= last_addr_mask;
5205 continue;
5206 }
5207
5208 ptl = huge_pte_lock(h, mm, ptep);
5209 if (huge_pmd_unshare(tlb, vma, address, ptep)) {
5210 spin_unlock(ptl);
5211 address |= last_addr_mask;
5212 continue;
5213 }
5214
5215 pte = huge_ptep_get(mm, address, ptep);
5216 if (huge_pte_none(pte)) {
5217 spin_unlock(ptl);
5218 continue;
5219 }
5220
5221 /*
5222 * Migrating hugepage or HWPoisoned hugepage is already
5223 * unmapped and its refcount is dropped, so just clear pte here.
5224 */
5225 if (unlikely(!pte_present(pte))) {
5226 /*
5227 * If the pte was wr-protected by uffd-wp in any of the
5228 * swap forms, meanwhile the caller does not want to
5229 * drop the uffd-wp bit in this zap, then replace the
5230 * pte with a marker.
5231 */
5232 if (pte_swp_uffd_wp_any(pte) &&
5233 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5234 set_huge_pte_at(mm, address, ptep,
5235 make_pte_marker(PTE_MARKER_UFFD_WP),
5236 sz);
5237 else
5238 huge_pte_clear(mm, address, ptep, sz);
5239 spin_unlock(ptl);
5240 continue;
5241 }
5242
5243 /*
5244 * If a folio is supplied, it is because a specific
5245 * folio is being unmapped, not a range. Ensure the folio we
5246 * are about to unmap is the actual folio of interest.
5247 */
5248 if (folio_provided) {
5249 if (folio != page_folio(pte_page(pte))) {
5250 spin_unlock(ptl);
5251 continue;
5252 }
5253 /*
5254 * Mark the VMA as having unmapped its page so that
5255 * future faults in this VMA will fail rather than
5256 * looking like data was lost
5257 */
5258 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5259 } else {
5260 folio = page_folio(pte_page(pte));
5261 }
5262
5263 pte = huge_ptep_get_and_clear(mm, address, ptep, sz);
5264 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5265 if (huge_pte_dirty(pte))
5266 folio_mark_dirty(folio);
5267 /* Leave a uffd-wp pte marker if needed */
5268 if (huge_pte_uffd_wp(pte) &&
5269 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5270 set_huge_pte_at(mm, address, ptep,
5271 make_pte_marker(PTE_MARKER_UFFD_WP),
5272 sz);
5273 hugetlb_count_sub(pages_per_huge_page(h), mm);
5274 hugetlb_remove_rmap(folio);
5275 spin_unlock(ptl);
5276
5277 /*
5278 * Restore the reservation for anonymous page, otherwise the
5279 * backing page could be stolen by someone.
5280 * If there we are freeing a surplus, do not set the restore
5281 * reservation bit.
5282 */
5283 adjust_reservation = false;
5284
5285 spin_lock_irq(&hugetlb_lock);
5286 if (!h->surplus_huge_pages && __vma_private_lock(vma) &&
5287 folio_test_anon(folio)) {
5288 folio_set_hugetlb_restore_reserve(folio);
5289 /* Reservation to be adjusted after the spin lock */
5290 adjust_reservation = true;
5291 }
5292 spin_unlock_irq(&hugetlb_lock);
5293
5294 /*
5295 * Adjust the reservation for the region that will have the
5296 * reserve restored. Keep in mind that vma_needs_reservation() changes
5297 * resv->adds_in_progress if it succeeds. If this is not done,
5298 * do_exit() will not see it, and will keep the reservation
5299 * forever.
5300 */
5301 if (adjust_reservation) {
5302 int rc = vma_needs_reservation(h, vma, address);
5303
5304 if (rc < 0)
5305 /* Pressumably allocate_file_region_entries failed
5306 * to allocate a file_region struct. Clear
5307 * hugetlb_restore_reserve so that global reserve
5308 * count will not be incremented by free_huge_folio.
5309 * Act as if we consumed the reservation.
5310 */
5311 folio_clear_hugetlb_restore_reserve(folio);
5312 else if (rc)
5313 vma_add_reservation(h, vma, address);
5314 }
5315
5316 tlb_remove_page_size(tlb, folio_page(folio, 0),
5317 folio_size(folio));
5318 /*
5319 * If we were instructed to unmap a specific folio, we're done.
5320 */
5321 if (folio_provided)
5322 break;
5323 }
5324 tlb_end_vma(tlb, vma);
5325
5326 huge_pmd_unshare_flush(tlb, vma);
5327 }
5328
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5329 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5330 unsigned long *start, unsigned long *end)
5331 {
5332 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5333 return;
5334
5335 adjust_range_if_pmd_sharing_possible(vma, start, end);
5336 hugetlb_vma_lock_write(vma);
5337 if (vma->vm_file)
5338 i_mmap_lock_write(vma->vm_file->f_mapping);
5339 }
5340
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5341 void __hugetlb_zap_end(struct vm_area_struct *vma,
5342 struct zap_details *details)
5343 {
5344 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5345
5346 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5347 return;
5348
5349 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5350 /*
5351 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5352 * When the vma_lock is freed, this makes the vma ineligible
5353 * for pmd sharing. And, i_mmap_rwsem is required to set up
5354 * pmd sharing. This is important as page tables for this
5355 * unmapped range will be asynchrously deleted. If the page
5356 * tables are shared, there will be issues when accessed by
5357 * someone else.
5358 */
5359 __hugetlb_vma_unlock_write_free(vma);
5360 } else {
5361 hugetlb_vma_unlock_write(vma);
5362 }
5363
5364 if (vma->vm_file)
5365 i_mmap_unlock_write(vma->vm_file->f_mapping);
5366 }
5367
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct folio * folio,zap_flags_t zap_flags)5368 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5369 unsigned long end, struct folio *folio,
5370 zap_flags_t zap_flags)
5371 {
5372 struct mmu_notifier_range range;
5373 struct mmu_gather tlb;
5374
5375 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5376 start, end);
5377 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5378 mmu_notifier_invalidate_range_start(&range);
5379 tlb_gather_mmu(&tlb, vma->vm_mm);
5380
5381 __unmap_hugepage_range(&tlb, vma, start, end,
5382 folio, zap_flags);
5383
5384 mmu_notifier_invalidate_range_end(&range);
5385 tlb_finish_mmu(&tlb);
5386 }
5387
5388 /*
5389 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5390 * mapping it owns the reserve page for. The intention is to unmap the page
5391 * from other VMAs and let the children be SIGKILLed if they are faulting the
5392 * same region.
5393 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct folio * folio,unsigned long address)5394 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5395 struct folio *folio, unsigned long address)
5396 {
5397 struct hstate *h = hstate_vma(vma);
5398 struct vm_area_struct *iter_vma;
5399 struct address_space *mapping;
5400 pgoff_t pgoff;
5401
5402 /*
5403 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5404 * from page cache lookup which is in HPAGE_SIZE units.
5405 */
5406 address = address & huge_page_mask(h);
5407 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5408 vma->vm_pgoff;
5409 mapping = vma->vm_file->f_mapping;
5410
5411 /*
5412 * Take the mapping lock for the duration of the table walk. As
5413 * this mapping should be shared between all the VMAs,
5414 * __unmap_hugepage_range() is called as the lock is already held
5415 */
5416 i_mmap_lock_write(mapping);
5417 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5418 /* Do not unmap the current VMA */
5419 if (iter_vma == vma)
5420 continue;
5421
5422 /*
5423 * Shared VMAs have their own reserves and do not affect
5424 * MAP_PRIVATE accounting but it is possible that a shared
5425 * VMA is using the same page so check and skip such VMAs.
5426 */
5427 if (iter_vma->vm_flags & VM_MAYSHARE)
5428 continue;
5429
5430 /*
5431 * Unmap the page from other VMAs without their own reserves.
5432 * They get marked to be SIGKILLed if they fault in these
5433 * areas. This is because a future no-page fault on this VMA
5434 * could insert a zeroed page instead of the data existing
5435 * from the time of fork. This would look like data corruption
5436 */
5437 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5438 unmap_hugepage_range(iter_vma, address,
5439 address + huge_page_size(h),
5440 folio, 0);
5441 }
5442 i_mmap_unlock_write(mapping);
5443 }
5444
5445 /*
5446 * hugetlb_wp() should be called with page lock of the original hugepage held.
5447 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5448 * cannot race with other handlers or page migration.
5449 * Keep the pte_same checks anyway to make transition from the mutex easier.
5450 */
hugetlb_wp(struct vm_fault * vmf)5451 static vm_fault_t hugetlb_wp(struct vm_fault *vmf)
5452 {
5453 struct vm_area_struct *vma = vmf->vma;
5454 struct mm_struct *mm = vma->vm_mm;
5455 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5456 pte_t pte = huge_ptep_get(mm, vmf->address, vmf->pte);
5457 struct hstate *h = hstate_vma(vma);
5458 struct folio *old_folio;
5459 struct folio *new_folio;
5460 bool cow_from_owner = 0;
5461 vm_fault_t ret = 0;
5462 struct mmu_notifier_range range;
5463
5464 /*
5465 * Never handle CoW for uffd-wp protected pages. It should be only
5466 * handled when the uffd-wp protection is removed.
5467 *
5468 * Note that only the CoW optimization path (in hugetlb_no_page())
5469 * can trigger this, because hugetlb_fault() will always resolve
5470 * uffd-wp bit first.
5471 */
5472 if (!unshare && huge_pte_uffd_wp(pte))
5473 return 0;
5474
5475 /* Let's take out MAP_SHARED mappings first. */
5476 if (vma->vm_flags & VM_MAYSHARE) {
5477 set_huge_ptep_writable(vma, vmf->address, vmf->pte);
5478 return 0;
5479 }
5480
5481 old_folio = page_folio(pte_page(pte));
5482
5483 delayacct_wpcopy_start();
5484
5485 retry_avoidcopy:
5486 /*
5487 * If no-one else is actually using this page, we're the exclusive
5488 * owner and can reuse this page.
5489 *
5490 * Note that we don't rely on the (safer) folio refcount here, because
5491 * copying the hugetlb folio when there are unexpected (temporary)
5492 * folio references could harm simple fork()+exit() users when
5493 * we run out of free hugetlb folios: we would have to kill processes
5494 * in scenarios that used to work. As a side effect, there can still
5495 * be leaks between processes, for example, with FOLL_GET users.
5496 */
5497 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5498 if (!PageAnonExclusive(&old_folio->page)) {
5499 folio_move_anon_rmap(old_folio, vma);
5500 SetPageAnonExclusive(&old_folio->page);
5501 }
5502 if (likely(!unshare))
5503 set_huge_ptep_maybe_writable(vma, vmf->address,
5504 vmf->pte);
5505
5506 delayacct_wpcopy_end();
5507 return 0;
5508 }
5509 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5510 PageAnonExclusive(&old_folio->page), &old_folio->page);
5511
5512 /*
5513 * If the process that created a MAP_PRIVATE mapping is about to perform
5514 * a COW due to a shared page count, attempt to satisfy the allocation
5515 * without using the existing reserves.
5516 * In order to determine where this is a COW on a MAP_PRIVATE mapping it
5517 * is enough to check whether the old_folio is anonymous. This means that
5518 * the reserve for this address was consumed. If reserves were used, a
5519 * partial faulted mapping at the fime of fork() could consume its reserves
5520 * on COW instead of the full address range.
5521 */
5522 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5523 folio_test_anon(old_folio))
5524 cow_from_owner = true;
5525
5526 folio_get(old_folio);
5527
5528 /*
5529 * Drop page table lock as buddy allocator may be called. It will
5530 * be acquired again before returning to the caller, as expected.
5531 */
5532 spin_unlock(vmf->ptl);
5533 new_folio = alloc_hugetlb_folio(vma, vmf->address, cow_from_owner);
5534
5535 if (IS_ERR(new_folio)) {
5536 /*
5537 * If a process owning a MAP_PRIVATE mapping fails to COW,
5538 * it is due to references held by a child and an insufficient
5539 * huge page pool. To guarantee the original mappers
5540 * reliability, unmap the page from child processes. The child
5541 * may get SIGKILLed if it later faults.
5542 */
5543 if (cow_from_owner) {
5544 struct address_space *mapping = vma->vm_file->f_mapping;
5545 pgoff_t idx;
5546 u32 hash;
5547
5548 folio_put(old_folio);
5549 /*
5550 * Drop hugetlb_fault_mutex and vma_lock before
5551 * unmapping. unmapping needs to hold vma_lock
5552 * in write mode. Dropping vma_lock in read mode
5553 * here is OK as COW mappings do not interact with
5554 * PMD sharing.
5555 *
5556 * Reacquire both after unmap operation.
5557 */
5558 idx = vma_hugecache_offset(h, vma, vmf->address);
5559 hash = hugetlb_fault_mutex_hash(mapping, idx);
5560 hugetlb_vma_unlock_read(vma);
5561 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5562
5563 unmap_ref_private(mm, vma, old_folio, vmf->address);
5564
5565 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5566 hugetlb_vma_lock_read(vma);
5567 spin_lock(vmf->ptl);
5568 vmf->pte = hugetlb_walk(vma, vmf->address,
5569 huge_page_size(h));
5570 if (likely(vmf->pte &&
5571 pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte)))
5572 goto retry_avoidcopy;
5573 /*
5574 * race occurs while re-acquiring page table
5575 * lock, and our job is done.
5576 */
5577 delayacct_wpcopy_end();
5578 return 0;
5579 }
5580
5581 ret = vmf_error(PTR_ERR(new_folio));
5582 goto out_release_old;
5583 }
5584
5585 /*
5586 * When the original hugepage is shared one, it does not have
5587 * anon_vma prepared.
5588 */
5589 ret = __vmf_anon_prepare(vmf);
5590 if (unlikely(ret))
5591 goto out_release_all;
5592
5593 if (copy_user_large_folio(new_folio, old_folio, vmf->real_address, vma)) {
5594 ret = VM_FAULT_HWPOISON_LARGE | VM_FAULT_SET_HINDEX(hstate_index(h));
5595 goto out_release_all;
5596 }
5597 __folio_mark_uptodate(new_folio);
5598
5599 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, vmf->address,
5600 vmf->address + huge_page_size(h));
5601 mmu_notifier_invalidate_range_start(&range);
5602
5603 /*
5604 * Retake the page table lock to check for racing updates
5605 * before the page tables are altered
5606 */
5607 spin_lock(vmf->ptl);
5608 vmf->pte = hugetlb_walk(vma, vmf->address, huge_page_size(h));
5609 if (likely(vmf->pte && pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), pte))) {
5610 pte_t newpte = make_huge_pte(vma, new_folio, !unshare);
5611
5612 /* Break COW or unshare */
5613 huge_ptep_clear_flush(vma, vmf->address, vmf->pte);
5614 hugetlb_remove_rmap(old_folio);
5615 hugetlb_add_new_anon_rmap(new_folio, vma, vmf->address);
5616 if (huge_pte_uffd_wp(pte))
5617 newpte = huge_pte_mkuffd_wp(newpte);
5618 set_huge_pte_at(mm, vmf->address, vmf->pte, newpte,
5619 huge_page_size(h));
5620 folio_set_hugetlb_migratable(new_folio);
5621 /* Make the old page be freed below */
5622 new_folio = old_folio;
5623 }
5624 spin_unlock(vmf->ptl);
5625 mmu_notifier_invalidate_range_end(&range);
5626 out_release_all:
5627 /*
5628 * No restore in case of successful pagetable update (Break COW or
5629 * unshare)
5630 */
5631 if (new_folio != old_folio)
5632 restore_reserve_on_error(h, vma, vmf->address, new_folio);
5633 folio_put(new_folio);
5634 out_release_old:
5635 folio_put(old_folio);
5636
5637 spin_lock(vmf->ptl); /* Caller expects lock to be held */
5638
5639 delayacct_wpcopy_end();
5640 return ret;
5641 }
5642
5643 /*
5644 * Return whether there is a pagecache page to back given address within VMA.
5645 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5646 bool hugetlbfs_pagecache_present(struct hstate *h,
5647 struct vm_area_struct *vma, unsigned long address)
5648 {
5649 struct address_space *mapping = vma->vm_file->f_mapping;
5650 pgoff_t idx = linear_page_index(vma, address);
5651 struct folio *folio;
5652
5653 folio = filemap_get_folio(mapping, idx);
5654 if (IS_ERR(folio))
5655 return false;
5656 folio_put(folio);
5657 return true;
5658 }
5659
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)5660 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5661 pgoff_t idx)
5662 {
5663 struct inode *inode = mapping->host;
5664 struct hstate *h = hstate_inode(inode);
5665 int err;
5666
5667 idx <<= huge_page_order(h);
5668 __folio_set_locked(folio);
5669 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5670
5671 if (unlikely(err)) {
5672 __folio_clear_locked(folio);
5673 return err;
5674 }
5675 folio_clear_hugetlb_restore_reserve(folio);
5676
5677 /*
5678 * mark folio dirty so that it will not be removed from cache/file
5679 * by non-hugetlbfs specific code paths.
5680 */
5681 folio_mark_dirty(folio);
5682
5683 spin_lock(&inode->i_lock);
5684 inode->i_blocks += blocks_per_huge_page(h);
5685 spin_unlock(&inode->i_lock);
5686 return 0;
5687 }
5688
hugetlb_handle_userfault(struct vm_fault * vmf,struct address_space * mapping,unsigned long reason)5689 static inline vm_fault_t hugetlb_handle_userfault(struct vm_fault *vmf,
5690 struct address_space *mapping,
5691 unsigned long reason)
5692 {
5693 u32 hash;
5694
5695 /*
5696 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5697 * userfault. Also mmap_lock could be dropped due to handling
5698 * userfault, any vma operation should be careful from here.
5699 */
5700 hugetlb_vma_unlock_read(vmf->vma);
5701 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
5702 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5703 return handle_userfault(vmf, reason);
5704 }
5705
5706 /*
5707 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5708 * false if pte changed or is changing.
5709 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t old_pte)5710 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm, unsigned long addr,
5711 pte_t *ptep, pte_t old_pte)
5712 {
5713 spinlock_t *ptl;
5714 bool same;
5715
5716 ptl = huge_pte_lock(h, mm, ptep);
5717 same = pte_same(huge_ptep_get(mm, addr, ptep), old_pte);
5718 spin_unlock(ptl);
5719
5720 return same;
5721 }
5722
hugetlb_no_page(struct address_space * mapping,struct vm_fault * vmf)5723 static vm_fault_t hugetlb_no_page(struct address_space *mapping,
5724 struct vm_fault *vmf)
5725 {
5726 u32 hash = hugetlb_fault_mutex_hash(mapping, vmf->pgoff);
5727 bool new_folio, new_anon_folio = false;
5728 struct vm_area_struct *vma = vmf->vma;
5729 struct mm_struct *mm = vma->vm_mm;
5730 struct hstate *h = hstate_vma(vma);
5731 vm_fault_t ret = VM_FAULT_SIGBUS;
5732 bool folio_locked = true;
5733 struct folio *folio;
5734 unsigned long size;
5735 pte_t new_pte;
5736
5737 /*
5738 * Currently, we are forced to kill the process in the event the
5739 * original mapper has unmapped pages from the child due to a failed
5740 * COW/unsharing. Warn that such a situation has occurred as it may not
5741 * be obvious.
5742 */
5743 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5744 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5745 current->pid);
5746 goto out;
5747 }
5748
5749 /*
5750 * Use page lock to guard against racing truncation
5751 * before we get page_table_lock.
5752 */
5753 new_folio = false;
5754 folio = filemap_lock_hugetlb_folio(h, mapping, vmf->pgoff);
5755 if (IS_ERR(folio)) {
5756 size = i_size_read(mapping->host) >> huge_page_shift(h);
5757 if (vmf->pgoff >= size)
5758 goto out;
5759 /* Check for page in userfault range */
5760 if (userfaultfd_missing(vma)) {
5761 /*
5762 * Since hugetlb_no_page() was examining pte
5763 * without pgtable lock, we need to re-test under
5764 * lock because the pte may not be stable and could
5765 * have changed from under us. Try to detect
5766 * either changed or during-changing ptes and retry
5767 * properly when needed.
5768 *
5769 * Note that userfaultfd is actually fine with
5770 * false positives (e.g. caused by pte changed),
5771 * but not wrong logical events (e.g. caused by
5772 * reading a pte during changing). The latter can
5773 * confuse the userspace, so the strictness is very
5774 * much preferred. E.g., MISSING event should
5775 * never happen on the page after UFFDIO_COPY has
5776 * correctly installed the page and returned.
5777 */
5778 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
5779 ret = 0;
5780 goto out;
5781 }
5782
5783 return hugetlb_handle_userfault(vmf, mapping,
5784 VM_UFFD_MISSING);
5785 }
5786
5787 if (!(vma->vm_flags & VM_MAYSHARE)) {
5788 ret = __vmf_anon_prepare(vmf);
5789 if (unlikely(ret))
5790 goto out;
5791 }
5792
5793 folio = alloc_hugetlb_folio(vma, vmf->address, false);
5794 if (IS_ERR(folio)) {
5795 /*
5796 * Returning error will result in faulting task being
5797 * sent SIGBUS. The hugetlb fault mutex prevents two
5798 * tasks from racing to fault in the same page which
5799 * could result in false unable to allocate errors.
5800 * Page migration does not take the fault mutex, but
5801 * does a clear then write of pte's under page table
5802 * lock. Page fault code could race with migration,
5803 * notice the clear pte and try to allocate a page
5804 * here. Before returning error, get ptl and make
5805 * sure there really is no pte entry.
5806 */
5807 if (hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte))
5808 ret = vmf_error(PTR_ERR(folio));
5809 else
5810 ret = 0;
5811 goto out;
5812 }
5813 folio_zero_user(folio, vmf->real_address);
5814 __folio_mark_uptodate(folio);
5815 new_folio = true;
5816
5817 if (vma->vm_flags & VM_MAYSHARE) {
5818 int err = hugetlb_add_to_page_cache(folio, mapping,
5819 vmf->pgoff);
5820 if (err) {
5821 /*
5822 * err can't be -EEXIST which implies someone
5823 * else consumed the reservation since hugetlb
5824 * fault mutex is held when add a hugetlb page
5825 * to the page cache. So it's safe to call
5826 * restore_reserve_on_error() here.
5827 */
5828 restore_reserve_on_error(h, vma, vmf->address,
5829 folio);
5830 folio_put(folio);
5831 ret = VM_FAULT_SIGBUS;
5832 goto out;
5833 }
5834 } else {
5835 new_anon_folio = true;
5836 folio_lock(folio);
5837 }
5838 } else {
5839 /*
5840 * If memory error occurs between mmap() and fault, some process
5841 * don't have hwpoisoned swap entry for errored virtual address.
5842 * So we need to block hugepage fault by PG_hwpoison bit check.
5843 */
5844 if (unlikely(folio_test_hwpoison(folio))) {
5845 ret = VM_FAULT_HWPOISON_LARGE |
5846 VM_FAULT_SET_HINDEX(hstate_index(h));
5847 goto backout_unlocked;
5848 }
5849
5850 /* Check for page in userfault range. */
5851 if (userfaultfd_minor(vma)) {
5852 folio_unlock(folio);
5853 folio_put(folio);
5854 /* See comment in userfaultfd_missing() block above */
5855 if (!hugetlb_pte_stable(h, mm, vmf->address, vmf->pte, vmf->orig_pte)) {
5856 ret = 0;
5857 goto out;
5858 }
5859 return hugetlb_handle_userfault(vmf, mapping,
5860 VM_UFFD_MINOR);
5861 }
5862 }
5863
5864 /*
5865 * If we are going to COW a private mapping later, we examine the
5866 * pending reservations for this page now. This will ensure that
5867 * any allocations necessary to record that reservation occur outside
5868 * the spinlock.
5869 */
5870 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5871 if (vma_needs_reservation(h, vma, vmf->address) < 0) {
5872 ret = VM_FAULT_OOM;
5873 goto backout_unlocked;
5874 }
5875 /* Just decrements count, does not deallocate */
5876 vma_end_reservation(h, vma, vmf->address);
5877 }
5878
5879 vmf->ptl = huge_pte_lock(h, mm, vmf->pte);
5880 ret = 0;
5881 /* If pte changed from under us, retry */
5882 if (!pte_same(huge_ptep_get(mm, vmf->address, vmf->pte), vmf->orig_pte))
5883 goto backout;
5884
5885 if (new_anon_folio)
5886 hugetlb_add_new_anon_rmap(folio, vma, vmf->address);
5887 else
5888 hugetlb_add_file_rmap(folio);
5889 new_pte = make_huge_pte(vma, folio, vma->vm_flags & VM_SHARED);
5890 /*
5891 * If this pte was previously wr-protected, keep it wr-protected even
5892 * if populated.
5893 */
5894 if (unlikely(pte_is_uffd_wp_marker(vmf->orig_pte)))
5895 new_pte = huge_pte_mkuffd_wp(new_pte);
5896 set_huge_pte_at(mm, vmf->address, vmf->pte, new_pte, huge_page_size(h));
5897
5898 hugetlb_count_add(pages_per_huge_page(h), mm);
5899 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5900 /*
5901 * No need to keep file folios locked. See comment in
5902 * hugetlb_fault().
5903 */
5904 if (!new_anon_folio) {
5905 folio_locked = false;
5906 folio_unlock(folio);
5907 }
5908 /* Optimization, do the COW without a second fault */
5909 ret = hugetlb_wp(vmf);
5910 }
5911
5912 spin_unlock(vmf->ptl);
5913
5914 /*
5915 * Only set hugetlb_migratable in newly allocated pages. Existing pages
5916 * found in the pagecache may not have hugetlb_migratable if they have
5917 * been isolated for migration.
5918 */
5919 if (new_folio)
5920 folio_set_hugetlb_migratable(folio);
5921
5922 if (folio_locked)
5923 folio_unlock(folio);
5924 out:
5925 hugetlb_vma_unlock_read(vma);
5926
5927 /*
5928 * We must check to release the per-VMA lock. __vmf_anon_prepare() is
5929 * the only way ret can be set to VM_FAULT_RETRY.
5930 */
5931 if (unlikely(ret & VM_FAULT_RETRY))
5932 vma_end_read(vma);
5933
5934 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5935 return ret;
5936
5937 backout:
5938 spin_unlock(vmf->ptl);
5939 backout_unlocked:
5940 /* We only need to restore reservations for private mappings */
5941 if (new_anon_folio)
5942 restore_reserve_on_error(h, vma, vmf->address, folio);
5943
5944 folio_unlock(folio);
5945 folio_put(folio);
5946 goto out;
5947 }
5948
5949 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5950 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5951 {
5952 unsigned long key[2];
5953 u32 hash;
5954
5955 key[0] = (unsigned long) mapping;
5956 key[1] = idx;
5957
5958 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5959
5960 return hash & (num_fault_mutexes - 1);
5961 }
5962 #else
5963 /*
5964 * For uniprocessor systems we always use a single mutex, so just
5965 * return 0 and avoid the hashing overhead.
5966 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)5967 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5968 {
5969 return 0;
5970 }
5971 #endif
5972
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)5973 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5974 unsigned long address, unsigned int flags)
5975 {
5976 vm_fault_t ret;
5977 u32 hash;
5978 struct folio *folio = NULL;
5979 struct hstate *h = hstate_vma(vma);
5980 struct address_space *mapping;
5981 bool need_wait_lock = false;
5982 struct vm_fault vmf = {
5983 .vma = vma,
5984 .address = address & huge_page_mask(h),
5985 .real_address = address,
5986 .flags = flags,
5987 .pgoff = vma_hugecache_offset(h, vma,
5988 address & huge_page_mask(h)),
5989 /* TODO: Track hugetlb faults using vm_fault */
5990
5991 /*
5992 * Some fields may not be initialized, be careful as it may
5993 * be hard to debug if called functions make assumptions
5994 */
5995 };
5996
5997 /*
5998 * Serialize hugepage allocation and instantiation, so that we don't
5999 * get spurious allocation failures if two CPUs race to instantiate
6000 * the same page in the page cache.
6001 */
6002 mapping = vma->vm_file->f_mapping;
6003 hash = hugetlb_fault_mutex_hash(mapping, vmf.pgoff);
6004 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6005
6006 /*
6007 * Acquire vma lock before calling huge_pte_alloc and hold
6008 * until finished with vmf.pte. This prevents huge_pmd_unshare from
6009 * being called elsewhere and making the vmf.pte no longer valid.
6010 */
6011 hugetlb_vma_lock_read(vma);
6012 vmf.pte = huge_pte_alloc(mm, vma, vmf.address, huge_page_size(h));
6013 if (!vmf.pte) {
6014 hugetlb_vma_unlock_read(vma);
6015 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6016 return VM_FAULT_OOM;
6017 }
6018
6019 vmf.orig_pte = huge_ptep_get(mm, vmf.address, vmf.pte);
6020 if (huge_pte_none(vmf.orig_pte))
6021 /*
6022 * hugetlb_no_page will drop vma lock and hugetlb fault
6023 * mutex internally, which make us return immediately.
6024 */
6025 return hugetlb_no_page(mapping, &vmf);
6026
6027 if (pte_is_marker(vmf.orig_pte)) {
6028 const pte_marker marker =
6029 softleaf_to_marker(softleaf_from_pte(vmf.orig_pte));
6030
6031 if (marker & PTE_MARKER_POISONED) {
6032 ret = VM_FAULT_HWPOISON_LARGE |
6033 VM_FAULT_SET_HINDEX(hstate_index(h));
6034 goto out_mutex;
6035 } else if (WARN_ON_ONCE(marker & PTE_MARKER_GUARD)) {
6036 /* This isn't supported in hugetlb. */
6037 ret = VM_FAULT_SIGSEGV;
6038 goto out_mutex;
6039 }
6040
6041 return hugetlb_no_page(mapping, &vmf);
6042 }
6043
6044 ret = 0;
6045
6046 /* Not present, either a migration or a hwpoisoned entry */
6047 if (!pte_present(vmf.orig_pte) && !huge_pte_none(vmf.orig_pte)) {
6048 const softleaf_t softleaf = softleaf_from_pte(vmf.orig_pte);
6049
6050 if (softleaf_is_migration(softleaf)) {
6051 /*
6052 * Release the hugetlb fault lock now, but retain
6053 * the vma lock, because it is needed to guard the
6054 * huge_pte_lockptr() later in
6055 * migration_entry_wait_huge(). The vma lock will
6056 * be released there.
6057 */
6058 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6059 migration_entry_wait_huge(vma, vmf.address, vmf.pte);
6060 return 0;
6061 }
6062 if (softleaf_is_hwpoison(softleaf)) {
6063 ret = VM_FAULT_HWPOISON_LARGE |
6064 VM_FAULT_SET_HINDEX(hstate_index(h));
6065 }
6066
6067 goto out_mutex;
6068 }
6069
6070 /*
6071 * If we are going to COW/unshare the mapping later, we examine the
6072 * pending reservations for this page now. This will ensure that any
6073 * allocations necessary to record that reservation occur outside the
6074 * spinlock.
6075 */
6076 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6077 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(vmf.orig_pte)) {
6078 if (vma_needs_reservation(h, vma, vmf.address) < 0) {
6079 ret = VM_FAULT_OOM;
6080 goto out_mutex;
6081 }
6082 /* Just decrements count, does not deallocate */
6083 vma_end_reservation(h, vma, vmf.address);
6084 }
6085
6086 vmf.ptl = huge_pte_lock(h, mm, vmf.pte);
6087
6088 /* Check for a racing update before calling hugetlb_wp() */
6089 if (unlikely(!pte_same(vmf.orig_pte, huge_ptep_get(mm, vmf.address, vmf.pte))))
6090 goto out_ptl;
6091
6092 /* Handle userfault-wp first, before trying to lock more pages */
6093 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(mm, vmf.address, vmf.pte)) &&
6094 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(vmf.orig_pte)) {
6095 if (!userfaultfd_wp_async(vma)) {
6096 spin_unlock(vmf.ptl);
6097 hugetlb_vma_unlock_read(vma);
6098 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6099 return handle_userfault(&vmf, VM_UFFD_WP);
6100 }
6101
6102 vmf.orig_pte = huge_pte_clear_uffd_wp(vmf.orig_pte);
6103 set_huge_pte_at(mm, vmf.address, vmf.pte, vmf.orig_pte,
6104 huge_page_size(hstate_vma(vma)));
6105 /* Fallthrough to CoW */
6106 }
6107
6108 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6109 if (!huge_pte_write(vmf.orig_pte)) {
6110 /*
6111 * Anonymous folios need to be lock since hugetlb_wp()
6112 * checks whether we can re-use the folio exclusively
6113 * for us in case we are the only user of it.
6114 */
6115 folio = page_folio(pte_page(vmf.orig_pte));
6116 if (folio_test_anon(folio) && !folio_trylock(folio)) {
6117 need_wait_lock = true;
6118 goto out_ptl;
6119 }
6120 folio_get(folio);
6121 ret = hugetlb_wp(&vmf);
6122 if (folio_test_anon(folio))
6123 folio_unlock(folio);
6124 folio_put(folio);
6125 goto out_ptl;
6126 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6127 vmf.orig_pte = huge_pte_mkdirty(vmf.orig_pte);
6128 }
6129 }
6130 vmf.orig_pte = pte_mkyoung(vmf.orig_pte);
6131 if (huge_ptep_set_access_flags(vma, vmf.address, vmf.pte, vmf.orig_pte,
6132 flags & FAULT_FLAG_WRITE))
6133 update_mmu_cache(vma, vmf.address, vmf.pte);
6134 out_ptl:
6135 spin_unlock(vmf.ptl);
6136 out_mutex:
6137 hugetlb_vma_unlock_read(vma);
6138
6139 /*
6140 * We must check to release the per-VMA lock. __vmf_anon_prepare() in
6141 * hugetlb_wp() is the only way ret can be set to VM_FAULT_RETRY.
6142 */
6143 if (unlikely(ret & VM_FAULT_RETRY))
6144 vma_end_read(vma);
6145
6146 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6147 /*
6148 * hugetlb_wp drops all the locks, but the folio lock, before trying to
6149 * unmap the folio from other processes. During that window, if another
6150 * process mapping that folio faults in, it will take the mutex and then
6151 * it will wait on folio_lock, causing an ABBA deadlock.
6152 * Use trylock instead and bail out if we fail.
6153 *
6154 * Ideally, we should hold a refcount on the folio we wait for, but we do
6155 * not want to use the folio after it becomes unlocked, but rather just
6156 * wait for it to become unlocked, so hopefully next fault successes on
6157 * the trylock.
6158 */
6159 if (need_wait_lock)
6160 folio_wait_locked(folio);
6161 return ret;
6162 }
6163
6164 #ifdef CONFIG_USERFAULTFD
6165 /*
6166 * Can probably be eliminated, but still used by hugetlb_mfill_atomic_pte().
6167 */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)6168 static struct folio *alloc_hugetlb_folio_vma(struct hstate *h,
6169 struct vm_area_struct *vma, unsigned long address)
6170 {
6171 struct mempolicy *mpol;
6172 nodemask_t *nodemask;
6173 struct folio *folio;
6174 gfp_t gfp_mask;
6175 int node;
6176
6177 gfp_mask = htlb_alloc_mask(h);
6178 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
6179 /*
6180 * This is used to allocate a temporary hugetlb to hold the copied
6181 * content, which will then be copied again to the final hugetlb
6182 * consuming a reservation. Set the alloc_fallback to false to indicate
6183 * that breaking the per-node hugetlb pool is not allowed in this case.
6184 */
6185 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask, false);
6186 mpol_cond_put(mpol);
6187
6188 return folio;
6189 }
6190
6191 /*
6192 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6193 * with modifications for hugetlb pages.
6194 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6195 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6196 struct vm_area_struct *dst_vma,
6197 unsigned long dst_addr,
6198 unsigned long src_addr,
6199 uffd_flags_t flags,
6200 struct folio **foliop)
6201 {
6202 struct mm_struct *dst_mm = dst_vma->vm_mm;
6203 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6204 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6205 struct hstate *h = hstate_vma(dst_vma);
6206 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6207 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6208 unsigned long size = huge_page_size(h);
6209 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6210 pte_t _dst_pte;
6211 spinlock_t *ptl;
6212 int ret = -ENOMEM;
6213 struct folio *folio;
6214 bool folio_in_pagecache = false;
6215 pte_t dst_ptep;
6216
6217 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6218 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6219
6220 /* Don't overwrite any existing PTEs (even markers) */
6221 if (!huge_pte_none(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
6222 spin_unlock(ptl);
6223 return -EEXIST;
6224 }
6225
6226 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6227 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6228
6229 /* No need to invalidate - it was non-present before */
6230 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6231
6232 spin_unlock(ptl);
6233 return 0;
6234 }
6235
6236 if (is_continue) {
6237 ret = -EFAULT;
6238 folio = filemap_lock_hugetlb_folio(h, mapping, idx);
6239 if (IS_ERR(folio))
6240 goto out;
6241 folio_in_pagecache = true;
6242 } else if (!*foliop) {
6243 /* If a folio already exists, then it's UFFDIO_COPY for
6244 * a non-missing case. Return -EEXIST.
6245 */
6246 if (vm_shared &&
6247 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6248 ret = -EEXIST;
6249 goto out;
6250 }
6251
6252 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6253 if (IS_ERR(folio)) {
6254 pte_t *actual_pte = hugetlb_walk(dst_vma, dst_addr, PMD_SIZE);
6255 if (actual_pte) {
6256 ret = -EEXIST;
6257 goto out;
6258 }
6259 ret = -ENOMEM;
6260 goto out;
6261 }
6262
6263 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6264 false);
6265
6266 /* fallback to copy_from_user outside mmap_lock */
6267 if (unlikely(ret)) {
6268 ret = -ENOENT;
6269 /* Free the allocated folio which may have
6270 * consumed a reservation.
6271 */
6272 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6273 folio_put(folio);
6274
6275 /* Allocate a temporary folio to hold the copied
6276 * contents.
6277 */
6278 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6279 if (!folio) {
6280 ret = -ENOMEM;
6281 goto out;
6282 }
6283 *foliop = folio;
6284 /* Set the outparam foliop and return to the caller to
6285 * copy the contents outside the lock. Don't free the
6286 * folio.
6287 */
6288 goto out;
6289 }
6290 } else {
6291 if (vm_shared &&
6292 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6293 folio_put(*foliop);
6294 ret = -EEXIST;
6295 *foliop = NULL;
6296 goto out;
6297 }
6298
6299 folio = alloc_hugetlb_folio(dst_vma, dst_addr, false);
6300 if (IS_ERR(folio)) {
6301 folio_put(*foliop);
6302 ret = -ENOMEM;
6303 *foliop = NULL;
6304 goto out;
6305 }
6306 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6307 folio_put(*foliop);
6308 *foliop = NULL;
6309 if (ret) {
6310 folio_put(folio);
6311 goto out;
6312 }
6313 }
6314
6315 /*
6316 * If we just allocated a new page, we need a memory barrier to ensure
6317 * that preceding stores to the page become visible before the
6318 * set_pte_at() write. The memory barrier inside __folio_mark_uptodate
6319 * is what we need.
6320 *
6321 * In the case where we have not allocated a new page (is_continue),
6322 * the page must already be uptodate. UFFDIO_CONTINUE already includes
6323 * an earlier smp_wmb() to ensure that prior stores will be visible
6324 * before the set_pte_at() write.
6325 */
6326 if (!is_continue)
6327 __folio_mark_uptodate(folio);
6328 else
6329 WARN_ON_ONCE(!folio_test_uptodate(folio));
6330
6331 /* Add shared, newly allocated pages to the page cache. */
6332 if (vm_shared && !is_continue) {
6333 ret = -EFAULT;
6334 if (idx >= (i_size_read(mapping->host) >> huge_page_shift(h)))
6335 goto out_release_nounlock;
6336
6337 /*
6338 * Serialization between remove_inode_hugepages() and
6339 * hugetlb_add_to_page_cache() below happens through the
6340 * hugetlb_fault_mutex_table that here must be hold by
6341 * the caller.
6342 */
6343 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6344 if (ret)
6345 goto out_release_nounlock;
6346 folio_in_pagecache = true;
6347 }
6348
6349 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6350
6351 ret = -EIO;
6352 if (folio_test_hwpoison(folio))
6353 goto out_release_unlock;
6354
6355 ret = -EEXIST;
6356
6357 dst_ptep = huge_ptep_get(dst_mm, dst_addr, dst_pte);
6358 /*
6359 * See comment about UFFD marker overwriting in
6360 * mfill_atomic_install_pte().
6361 */
6362 if (!huge_pte_none(dst_ptep) && !pte_is_uffd_marker(dst_ptep))
6363 goto out_release_unlock;
6364
6365 if (folio_in_pagecache)
6366 hugetlb_add_file_rmap(folio);
6367 else
6368 hugetlb_add_new_anon_rmap(folio, dst_vma, dst_addr);
6369
6370 /*
6371 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6372 * with wp flag set, don't set pte write bit.
6373 */
6374 _dst_pte = make_huge_pte(dst_vma, folio,
6375 !wp_enabled && !(is_continue && !vm_shared));
6376 /*
6377 * Always mark UFFDIO_COPY page dirty; note that this may not be
6378 * extremely important for hugetlbfs for now since swapping is not
6379 * supported, but we should still be clear in that this page cannot be
6380 * thrown away at will, even if write bit not set.
6381 */
6382 _dst_pte = huge_pte_mkdirty(_dst_pte);
6383 _dst_pte = pte_mkyoung(_dst_pte);
6384
6385 if (wp_enabled)
6386 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6387
6388 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, size);
6389
6390 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6391
6392 /* No need to invalidate - it was non-present before */
6393 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6394
6395 spin_unlock(ptl);
6396 if (!is_continue)
6397 folio_set_hugetlb_migratable(folio);
6398 if (vm_shared || is_continue)
6399 folio_unlock(folio);
6400 ret = 0;
6401 out:
6402 return ret;
6403 out_release_unlock:
6404 spin_unlock(ptl);
6405 if (vm_shared || is_continue)
6406 folio_unlock(folio);
6407 out_release_nounlock:
6408 if (!folio_in_pagecache)
6409 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6410 folio_put(folio);
6411 goto out;
6412 }
6413 #endif /* CONFIG_USERFAULTFD */
6414
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6415 long hugetlb_change_protection(struct vm_area_struct *vma,
6416 unsigned long address, unsigned long end,
6417 pgprot_t newprot, unsigned long cp_flags)
6418 {
6419 struct mm_struct *mm = vma->vm_mm;
6420 unsigned long start = address;
6421 pte_t *ptep;
6422 pte_t pte;
6423 struct hstate *h = hstate_vma(vma);
6424 long pages = 0, psize = huge_page_size(h);
6425 struct mmu_notifier_range range;
6426 unsigned long last_addr_mask;
6427 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6428 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6429 struct mmu_gather tlb;
6430
6431 /*
6432 * In the case of shared PMDs, the area to flush could be beyond
6433 * start/end. Set range.start/range.end to cover the maximum possible
6434 * range if PMD sharing is possible.
6435 */
6436 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6437 0, mm, start, end);
6438 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6439
6440 BUG_ON(address >= end);
6441 flush_cache_range(vma, range.start, range.end);
6442 tlb_gather_mmu_vma(&tlb, vma);
6443
6444 mmu_notifier_invalidate_range_start(&range);
6445 hugetlb_vma_lock_write(vma);
6446 i_mmap_lock_write(vma->vm_file->f_mapping);
6447 last_addr_mask = hugetlb_mask_last_page(h);
6448 for (; address < end; address += psize) {
6449 softleaf_t entry;
6450 spinlock_t *ptl;
6451
6452 ptep = hugetlb_walk(vma, address, psize);
6453 if (!ptep) {
6454 if (!uffd_wp) {
6455 address |= last_addr_mask;
6456 continue;
6457 }
6458 /*
6459 * Userfaultfd wr-protect requires pgtable
6460 * pre-allocations to install pte markers.
6461 */
6462 ptep = huge_pte_alloc(mm, vma, address, psize);
6463 if (!ptep) {
6464 pages = -ENOMEM;
6465 break;
6466 }
6467 }
6468 ptl = huge_pte_lock(h, mm, ptep);
6469 if (huge_pmd_unshare(&tlb, vma, address, ptep)) {
6470 /*
6471 * When uffd-wp is enabled on the vma, unshare
6472 * shouldn't happen at all. Warn about it if it
6473 * happened due to some reason.
6474 */
6475 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6476 pages++;
6477 spin_unlock(ptl);
6478 address |= last_addr_mask;
6479 continue;
6480 }
6481 pte = huge_ptep_get(mm, address, ptep);
6482 if (huge_pte_none(pte)) {
6483 if (unlikely(uffd_wp))
6484 /* Safe to modify directly (none->non-present). */
6485 set_huge_pte_at(mm, address, ptep,
6486 make_pte_marker(PTE_MARKER_UFFD_WP),
6487 psize);
6488 goto next;
6489 }
6490
6491 entry = softleaf_from_pte(pte);
6492 if (unlikely(softleaf_is_hwpoison(entry))) {
6493 /* Nothing to do. */
6494 } else if (unlikely(softleaf_is_migration(entry))) {
6495 struct folio *folio = softleaf_to_folio(entry);
6496 pte_t newpte = pte;
6497
6498 if (softleaf_is_migration_write(entry)) {
6499 if (folio_test_anon(folio))
6500 entry = make_readable_exclusive_migration_entry(
6501 swp_offset(entry));
6502 else
6503 entry = make_readable_migration_entry(
6504 swp_offset(entry));
6505 newpte = swp_entry_to_pte(entry);
6506 pages++;
6507 }
6508
6509 if (uffd_wp)
6510 newpte = pte_swp_mkuffd_wp(newpte);
6511 else if (uffd_wp_resolve)
6512 newpte = pte_swp_clear_uffd_wp(newpte);
6513 if (!pte_same(pte, newpte))
6514 set_huge_pte_at(mm, address, ptep, newpte, psize);
6515 } else if (unlikely(pte_is_marker(pte))) {
6516 /*
6517 * Do nothing on a poison marker; page is
6518 * corrupted, permissions do not apply. Here
6519 * pte_marker_uffd_wp()==true implies !poison
6520 * because they're mutual exclusive.
6521 */
6522 if (pte_is_uffd_wp_marker(pte) && uffd_wp_resolve)
6523 /* Safe to modify directly (non-present->none). */
6524 huge_pte_clear(mm, address, ptep, psize);
6525 } else {
6526 pte_t old_pte;
6527 unsigned int shift = huge_page_shift(hstate_vma(vma));
6528
6529 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6530 pte = huge_pte_modify(old_pte, newprot);
6531 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6532 if (uffd_wp)
6533 pte = huge_pte_mkuffd_wp(pte);
6534 else if (uffd_wp_resolve)
6535 pte = huge_pte_clear_uffd_wp(pte);
6536 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6537 pages++;
6538 tlb_remove_huge_tlb_entry(h, &tlb, ptep, address);
6539 }
6540
6541 next:
6542 spin_unlock(ptl);
6543 cond_resched();
6544 }
6545
6546 tlb_flush_mmu_tlbonly(&tlb);
6547 huge_pmd_unshare_flush(&tlb, vma);
6548 /*
6549 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6550 * downgrading page table protection not changing it to point to a new
6551 * page.
6552 *
6553 * See Documentation/mm/mmu_notifier.rst
6554 */
6555 i_mmap_unlock_write(vma->vm_file->f_mapping);
6556 hugetlb_vma_unlock_write(vma);
6557 mmu_notifier_invalidate_range_end(&range);
6558 tlb_finish_mmu(&tlb);
6559
6560 return pages > 0 ? (pages << h->order) : pages;
6561 }
6562
6563 /*
6564 * Update the reservation map for the range [from, to].
6565 *
6566 * Returns the number of entries that would be added to the reservation map
6567 * associated with the range [from, to]. This number is greater or equal to
6568 * zero. -EINVAL or -ENOMEM is returned in case of any errors.
6569 */
6570
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_desc * desc,vma_flags_t vma_flags)6571 long hugetlb_reserve_pages(struct inode *inode,
6572 long from, long to,
6573 struct vm_area_desc *desc,
6574 vma_flags_t vma_flags)
6575 {
6576 long chg = -1, add = -1, spool_resv, gbl_resv;
6577 struct hstate *h = hstate_inode(inode);
6578 struct hugepage_subpool *spool = subpool_inode(inode);
6579 struct resv_map *resv_map;
6580 struct hugetlb_cgroup *h_cg = NULL;
6581 long gbl_reserve, regions_needed = 0;
6582 int err;
6583
6584 /* This should never happen */
6585 if (from > to) {
6586 VM_WARN(1, "%s called with a negative range\n", __func__);
6587 return -EINVAL;
6588 }
6589
6590 /*
6591 * Only apply hugepage reservation if asked. At fault time, an
6592 * attempt will be made for VM_NORESERVE to allocate a page
6593 * without using reserves
6594 */
6595 if (vma_flags_test(&vma_flags, VMA_NORESERVE_BIT))
6596 return 0;
6597
6598 /*
6599 * Shared mappings base their reservation on the number of pages that
6600 * are already allocated on behalf of the file. Private mappings need
6601 * to reserve the full area even if read-only as mprotect() may be
6602 * called to make the mapping read-write. Assume !desc is a shm mapping
6603 */
6604 if (!desc || vma_desc_test_flags(desc, VMA_MAYSHARE_BIT)) {
6605 /*
6606 * resv_map can not be NULL as hugetlb_reserve_pages is only
6607 * called for inodes for which resv_maps were created (see
6608 * hugetlbfs_get_inode).
6609 */
6610 resv_map = inode_resv_map(inode);
6611
6612 chg = region_chg(resv_map, from, to, ®ions_needed);
6613 } else {
6614 /* Private mapping. */
6615 resv_map = resv_map_alloc();
6616 if (!resv_map) {
6617 err = -ENOMEM;
6618 goto out_err;
6619 }
6620
6621 chg = to - from;
6622
6623 set_vma_desc_resv_map(desc, resv_map);
6624 set_vma_desc_resv_flags(desc, HPAGE_RESV_OWNER);
6625 }
6626
6627 if (chg < 0) {
6628 /* region_chg() above can return -ENOMEM */
6629 err = (chg == -ENOMEM) ? -ENOMEM : -EINVAL;
6630 goto out_err;
6631 }
6632
6633 err = hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6634 chg * pages_per_huge_page(h), &h_cg);
6635 if (err < 0)
6636 goto out_err;
6637
6638 if (desc && !vma_desc_test_flags(desc, VMA_MAYSHARE_BIT) && h_cg) {
6639 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6640 * of the resv_map.
6641 */
6642 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6643 }
6644
6645 /*
6646 * There must be enough pages in the subpool for the mapping. If
6647 * the subpool has a minimum size, there may be some global
6648 * reservations already in place (gbl_reserve).
6649 */
6650 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6651 if (gbl_reserve < 0) {
6652 err = gbl_reserve;
6653 goto out_uncharge_cgroup;
6654 }
6655
6656 /*
6657 * Check enough hugepages are available for the reservation.
6658 * Hand the pages back to the subpool if there are not
6659 */
6660 err = hugetlb_acct_memory(h, gbl_reserve);
6661 if (err < 0)
6662 goto out_put_pages;
6663
6664 /*
6665 * Account for the reservations made. Shared mappings record regions
6666 * that have reservations as they are shared by multiple VMAs.
6667 * When the last VMA disappears, the region map says how much
6668 * the reservation was and the page cache tells how much of
6669 * the reservation was consumed. Private mappings are per-VMA and
6670 * only the consumed reservations are tracked. When the VMA
6671 * disappears, the original reservation is the VMA size and the
6672 * consumed reservations are stored in the map. Hence, nothing
6673 * else has to be done for private mappings here
6674 */
6675 if (!desc || vma_desc_test_flags(desc, VMA_MAYSHARE_BIT)) {
6676 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6677
6678 if (unlikely(add < 0)) {
6679 hugetlb_acct_memory(h, -gbl_reserve);
6680 err = add;
6681 goto out_put_pages;
6682 } else if (unlikely(chg > add)) {
6683 /*
6684 * pages in this range were added to the reserve
6685 * map between region_chg and region_add. This
6686 * indicates a race with alloc_hugetlb_folio. Adjust
6687 * the subpool and reserve counts modified above
6688 * based on the difference.
6689 */
6690 long rsv_adjust;
6691
6692 /*
6693 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6694 * reference to h_cg->css. See comment below for detail.
6695 */
6696 hugetlb_cgroup_uncharge_cgroup_rsvd(
6697 hstate_index(h),
6698 (chg - add) * pages_per_huge_page(h), h_cg);
6699
6700 rsv_adjust = hugepage_subpool_put_pages(spool,
6701 chg - add);
6702 hugetlb_acct_memory(h, -rsv_adjust);
6703 } else if (h_cg) {
6704 /*
6705 * The file_regions will hold their own reference to
6706 * h_cg->css. So we should release the reference held
6707 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6708 * done.
6709 */
6710 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6711 }
6712 }
6713 return chg;
6714
6715 out_put_pages:
6716 spool_resv = chg - gbl_reserve;
6717 if (spool_resv) {
6718 /* put sub pool's reservation back, chg - gbl_reserve */
6719 gbl_resv = hugepage_subpool_put_pages(spool, spool_resv);
6720 /*
6721 * subpool's reserved pages can not be put back due to race,
6722 * return to hstate.
6723 */
6724 hugetlb_acct_memory(h, -gbl_resv);
6725 }
6726 /* Restore used_hpages for pages that failed global reservation */
6727 if (gbl_reserve && spool) {
6728 unsigned long flags;
6729
6730 spin_lock_irqsave(&spool->lock, flags);
6731 if (spool->max_hpages != -1)
6732 spool->used_hpages -= gbl_reserve;
6733 unlock_or_release_subpool(spool, flags);
6734 }
6735 out_uncharge_cgroup:
6736 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6737 chg * pages_per_huge_page(h), h_cg);
6738 out_err:
6739 if (!desc || vma_desc_test_flags(desc, VMA_MAYSHARE_BIT))
6740 /* Only call region_abort if the region_chg succeeded but the
6741 * region_add failed or didn't run.
6742 */
6743 if (chg >= 0 && add < 0)
6744 region_abort(resv_map, from, to, regions_needed);
6745 if (desc && is_vma_desc_resv_set(desc, HPAGE_RESV_OWNER)) {
6746 kref_put(&resv_map->refs, resv_map_release);
6747 set_vma_desc_resv_map(desc, NULL);
6748 }
6749 return err;
6750 }
6751
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)6752 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6753 long freed)
6754 {
6755 struct hstate *h = hstate_inode(inode);
6756 struct resv_map *resv_map = inode_resv_map(inode);
6757 long chg = 0;
6758 struct hugepage_subpool *spool = subpool_inode(inode);
6759 long gbl_reserve;
6760
6761 /*
6762 * Since this routine can be called in the evict inode path for all
6763 * hugetlbfs inodes, resv_map could be NULL.
6764 */
6765 if (resv_map) {
6766 chg = region_del(resv_map, start, end);
6767 /*
6768 * region_del() can fail in the rare case where a region
6769 * must be split and another region descriptor can not be
6770 * allocated. If end == LONG_MAX, it will not fail.
6771 */
6772 if (chg < 0)
6773 return chg;
6774 }
6775
6776 spin_lock(&inode->i_lock);
6777 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6778 spin_unlock(&inode->i_lock);
6779
6780 /*
6781 * If the subpool has a minimum size, the number of global
6782 * reservations to be released may be adjusted.
6783 *
6784 * Note that !resv_map implies freed == 0. So (chg - freed)
6785 * won't go negative.
6786 */
6787 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6788 hugetlb_acct_memory(h, -gbl_reserve);
6789
6790 return 0;
6791 }
6792
6793 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)6794 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6795 struct vm_area_struct *vma,
6796 unsigned long addr, pgoff_t idx)
6797 {
6798 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6799 svma->vm_start;
6800 unsigned long sbase = saddr & PUD_MASK;
6801 unsigned long s_end = sbase + PUD_SIZE;
6802
6803 /* Allow segments to share if only one is marked locked */
6804 vm_flags_t vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6805 vm_flags_t svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6806
6807 /*
6808 * match the virtual addresses, permission and the alignment of the
6809 * page table page.
6810 *
6811 * Also, vma_lock (vm_private_data) is required for sharing.
6812 */
6813 if (pmd_index(addr) != pmd_index(saddr) ||
6814 vm_flags != svm_flags ||
6815 !range_in_vma(svma, sbase, s_end) ||
6816 !svma->vm_private_data)
6817 return 0;
6818
6819 return saddr;
6820 }
6821
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6822 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6823 {
6824 unsigned long start = addr & PUD_MASK;
6825 unsigned long end = start + PUD_SIZE;
6826
6827 #ifdef CONFIG_USERFAULTFD
6828 if (uffd_disable_huge_pmd_share(vma))
6829 return false;
6830 #endif
6831 /*
6832 * check on proper vm_flags and page table alignment
6833 */
6834 if (!(vma->vm_flags & VM_MAYSHARE))
6835 return false;
6836 if (!vma->vm_private_data) /* vma lock required for sharing */
6837 return false;
6838 if (!range_in_vma(vma, start, end))
6839 return false;
6840 return true;
6841 }
6842
6843 /*
6844 * Determine if start,end range within vma could be mapped by shared pmd.
6845 * If yes, adjust start and end to cover range associated with possible
6846 * shared pmd mappings.
6847 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6848 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6849 unsigned long *start, unsigned long *end)
6850 {
6851 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6852 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6853
6854 /*
6855 * vma needs to span at least one aligned PUD size, and the range
6856 * must be at least partially within in.
6857 */
6858 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6859 (*end <= v_start) || (*start >= v_end))
6860 return;
6861
6862 /* Extend the range to be PUD aligned for a worst case scenario */
6863 if (*start > v_start)
6864 *start = ALIGN_DOWN(*start, PUD_SIZE);
6865
6866 if (*end < v_end)
6867 *end = ALIGN(*end, PUD_SIZE);
6868 }
6869
6870 /*
6871 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6872 * and returns the corresponding pte. While this is not necessary for the
6873 * !shared pmd case because we can allocate the pmd later as well, it makes the
6874 * code much cleaner. pmd allocation is essential for the shared case because
6875 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6876 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6877 * bad pmd for sharing.
6878 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6879 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6880 unsigned long addr, pud_t *pud)
6881 {
6882 struct address_space *mapping = vma->vm_file->f_mapping;
6883 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6884 vma->vm_pgoff;
6885 struct vm_area_struct *svma;
6886 unsigned long saddr;
6887 pte_t *spte = NULL;
6888 pte_t *pte;
6889
6890 i_mmap_lock_read(mapping);
6891 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6892 if (svma == vma)
6893 continue;
6894
6895 saddr = page_table_shareable(svma, vma, addr, idx);
6896 if (saddr) {
6897 spte = hugetlb_walk(svma, saddr,
6898 vma_mmu_pagesize(svma));
6899 if (spte) {
6900 ptdesc_pmd_pts_inc(virt_to_ptdesc(spte));
6901 break;
6902 }
6903 }
6904 }
6905
6906 if (!spte)
6907 goto out;
6908
6909 spin_lock(&mm->page_table_lock);
6910 if (pud_none(*pud)) {
6911 pud_populate(mm, pud,
6912 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6913 mm_inc_nr_pmds(mm);
6914 } else {
6915 ptdesc_pmd_pts_dec(virt_to_ptdesc(spte));
6916 }
6917 spin_unlock(&mm->page_table_lock);
6918 out:
6919 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6920 i_mmap_unlock_read(mapping);
6921 return pte;
6922 }
6923
6924 /**
6925 * huge_pmd_unshare - Unmap a pmd table if it is shared by multiple users
6926 * @tlb: the current mmu_gather.
6927 * @vma: the vma covering the pmd table.
6928 * @addr: the address we are trying to unshare.
6929 * @ptep: pointer into the (pmd) page table.
6930 *
6931 * Called with the page table lock held, the i_mmap_rwsem held in write mode
6932 * and the hugetlb vma lock held in write mode.
6933 *
6934 * Note: The caller must call huge_pmd_unshare_flush() before dropping the
6935 * i_mmap_rwsem.
6936 *
6937 * Returns: 1 if it was a shared PMD table and it got unmapped, or 0 if it
6938 * was not a shared PMD table.
6939 */
huge_pmd_unshare(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)6940 int huge_pmd_unshare(struct mmu_gather *tlb, struct vm_area_struct *vma,
6941 unsigned long addr, pte_t *ptep)
6942 {
6943 unsigned long sz = huge_page_size(hstate_vma(vma));
6944 struct mm_struct *mm = vma->vm_mm;
6945 pgd_t *pgd = pgd_offset(mm, addr);
6946 p4d_t *p4d = p4d_offset(pgd, addr);
6947 pud_t *pud = pud_offset(p4d, addr);
6948
6949 if (sz != PMD_SIZE)
6950 return 0;
6951 if (!ptdesc_pmd_is_shared(virt_to_ptdesc(ptep)))
6952 return 0;
6953 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6954 hugetlb_vma_assert_locked(vma);
6955 pud_clear(pud);
6956
6957 tlb_unshare_pmd_ptdesc(tlb, virt_to_ptdesc(ptep), addr);
6958
6959 mm_dec_nr_pmds(mm);
6960 return 1;
6961 }
6962
6963 /*
6964 * huge_pmd_unshare_flush - Complete a sequence of huge_pmd_unshare() calls
6965 * @tlb: the current mmu_gather.
6966 * @vma: the vma covering the pmd table.
6967 *
6968 * Perform necessary TLB flushes or IPI broadcasts to synchronize PMD table
6969 * unsharing with concurrent page table walkers.
6970 *
6971 * This function must be called after a sequence of huge_pmd_unshare()
6972 * calls while still holding the i_mmap_rwsem.
6973 */
huge_pmd_unshare_flush(struct mmu_gather * tlb,struct vm_area_struct * vma)6974 void huge_pmd_unshare_flush(struct mmu_gather *tlb, struct vm_area_struct *vma)
6975 {
6976 /*
6977 * We must synchronize page table unsharing such that nobody will
6978 * try reusing a previously-shared page table while it might still
6979 * be in use by previous sharers (TLB, GUP_fast).
6980 */
6981 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6982
6983 tlb_flush_unshared_tables(tlb);
6984 }
6985
6986 #else /* !CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
6987
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6988 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6989 unsigned long addr, pud_t *pud)
6990 {
6991 return NULL;
6992 }
6993
huge_pmd_unshare(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)6994 int huge_pmd_unshare(struct mmu_gather *tlb, struct vm_area_struct *vma,
6995 unsigned long addr, pte_t *ptep)
6996 {
6997 return 0;
6998 }
6999
huge_pmd_unshare_flush(struct mmu_gather * tlb,struct vm_area_struct * vma)7000 void huge_pmd_unshare_flush(struct mmu_gather *tlb, struct vm_area_struct *vma)
7001 {
7002 }
7003
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7004 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7005 unsigned long *start, unsigned long *end)
7006 {
7007 }
7008
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7009 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7010 {
7011 return false;
7012 }
7013 #endif /* CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING */
7014
7015 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7016 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7017 unsigned long addr, unsigned long sz)
7018 {
7019 pgd_t *pgd;
7020 p4d_t *p4d;
7021 pud_t *pud;
7022 pte_t *pte = NULL;
7023
7024 pgd = pgd_offset(mm, addr);
7025 p4d = p4d_alloc(mm, pgd, addr);
7026 if (!p4d)
7027 return NULL;
7028 pud = pud_alloc(mm, p4d, addr);
7029 if (pud) {
7030 if (sz == PUD_SIZE) {
7031 pte = (pte_t *)pud;
7032 } else {
7033 BUG_ON(sz != PMD_SIZE);
7034 if (want_pmd_share(vma, addr) && pud_none(*pud))
7035 pte = huge_pmd_share(mm, vma, addr, pud);
7036 else
7037 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7038 }
7039 }
7040
7041 if (pte) {
7042 pte_t pteval = ptep_get_lockless(pte);
7043
7044 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7045 }
7046
7047 return pte;
7048 }
7049
7050 /*
7051 * huge_pte_offset() - Walk the page table to resolve the hugepage
7052 * entry at address @addr
7053 *
7054 * Return: Pointer to page table entry (PUD or PMD) for
7055 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7056 * size @sz doesn't match the hugepage size at this level of the page
7057 * table.
7058 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7059 pte_t *huge_pte_offset(struct mm_struct *mm,
7060 unsigned long addr, unsigned long sz)
7061 {
7062 pgd_t *pgd;
7063 p4d_t *p4d;
7064 pud_t *pud;
7065 pmd_t *pmd;
7066
7067 pgd = pgd_offset(mm, addr);
7068 if (!pgd_present(*pgd))
7069 return NULL;
7070 p4d = p4d_offset(pgd, addr);
7071 if (!p4d_present(*p4d))
7072 return NULL;
7073
7074 pud = pud_offset(p4d, addr);
7075 if (sz == PUD_SIZE)
7076 /* must be pud huge, non-present or none */
7077 return (pte_t *)pud;
7078 if (!pud_present(*pud))
7079 return NULL;
7080 /* must have a valid entry and size to go further */
7081
7082 pmd = pmd_offset(pud, addr);
7083 /* must be pmd huge, non-present or none */
7084 return (pte_t *)pmd;
7085 }
7086
7087 /*
7088 * Return a mask that can be used to update an address to the last huge
7089 * page in a page table page mapping size. Used to skip non-present
7090 * page table entries when linearly scanning address ranges. Architectures
7091 * with unique huge page to page table relationships can define their own
7092 * version of this routine.
7093 */
hugetlb_mask_last_page(struct hstate * h)7094 unsigned long hugetlb_mask_last_page(struct hstate *h)
7095 {
7096 unsigned long hp_size = huge_page_size(h);
7097
7098 if (hp_size == PUD_SIZE)
7099 return P4D_SIZE - PUD_SIZE;
7100 else if (hp_size == PMD_SIZE)
7101 return PUD_SIZE - PMD_SIZE;
7102 else
7103 return 0UL;
7104 }
7105
7106 #else
7107
7108 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7109 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7110 {
7111 #ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
7112 if (huge_page_size(h) == PMD_SIZE)
7113 return PUD_SIZE - PMD_SIZE;
7114 #endif
7115 return 0UL;
7116 }
7117
7118 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7119
7120 /**
7121 * folio_isolate_hugetlb - try to isolate an allocated hugetlb folio
7122 * @folio: the folio to isolate
7123 * @list: the list to add the folio to on success
7124 *
7125 * Isolate an allocated (refcount > 0) hugetlb folio, marking it as
7126 * isolated/non-migratable, and moving it from the active list to the
7127 * given list.
7128 *
7129 * Isolation will fail if @folio is not an allocated hugetlb folio, or if
7130 * it is already isolated/non-migratable.
7131 *
7132 * On success, an additional folio reference is taken that must be dropped
7133 * using folio_putback_hugetlb() to undo the isolation.
7134 *
7135 * Return: True if isolation worked, otherwise False.
7136 */
folio_isolate_hugetlb(struct folio * folio,struct list_head * list)7137 bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
7138 {
7139 bool ret = true;
7140
7141 spin_lock_irq(&hugetlb_lock);
7142 if (!folio_test_hugetlb(folio) ||
7143 !folio_test_hugetlb_migratable(folio) ||
7144 !folio_try_get(folio)) {
7145 ret = false;
7146 goto unlock;
7147 }
7148 folio_clear_hugetlb_migratable(folio);
7149 list_move_tail(&folio->lru, list);
7150 unlock:
7151 spin_unlock_irq(&hugetlb_lock);
7152 return ret;
7153 }
7154
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7155 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7156 {
7157 int ret = 0;
7158
7159 *hugetlb = false;
7160 spin_lock_irq(&hugetlb_lock);
7161 if (folio_test_hugetlb(folio)) {
7162 *hugetlb = true;
7163 if (folio_test_hugetlb_freed(folio))
7164 ret = 0;
7165 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7166 ret = folio_try_get(folio);
7167 else
7168 ret = -EBUSY;
7169 }
7170 spin_unlock_irq(&hugetlb_lock);
7171 return ret;
7172 }
7173
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7174 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7175 bool *migratable_cleared)
7176 {
7177 int ret;
7178
7179 spin_lock_irq(&hugetlb_lock);
7180 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7181 spin_unlock_irq(&hugetlb_lock);
7182 return ret;
7183 }
7184
7185 /**
7186 * folio_putback_hugetlb - unisolate a hugetlb folio
7187 * @folio: the isolated hugetlb folio
7188 *
7189 * Putback/un-isolate the hugetlb folio that was previous isolated using
7190 * folio_isolate_hugetlb(): marking it non-isolated/migratable and putting it
7191 * back onto the active list.
7192 *
7193 * Will drop the additional folio reference obtained through
7194 * folio_isolate_hugetlb().
7195 */
folio_putback_hugetlb(struct folio * folio)7196 void folio_putback_hugetlb(struct folio *folio)
7197 {
7198 spin_lock_irq(&hugetlb_lock);
7199 folio_set_hugetlb_migratable(folio);
7200 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7201 spin_unlock_irq(&hugetlb_lock);
7202 folio_put(folio);
7203 }
7204
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7205 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7206 {
7207 struct hstate *h = folio_hstate(old_folio);
7208
7209 hugetlb_cgroup_migrate(old_folio, new_folio);
7210 folio_set_owner_migrate_reason(new_folio, reason);
7211
7212 /*
7213 * transfer temporary state of the new hugetlb folio. This is
7214 * reverse to other transitions because the newpage is going to
7215 * be final while the old one will be freed so it takes over
7216 * the temporary status.
7217 *
7218 * Also note that we have to transfer the per-node surplus state
7219 * here as well otherwise the global surplus count will not match
7220 * the per-node's.
7221 */
7222 if (folio_test_hugetlb_temporary(new_folio)) {
7223 int old_nid = folio_nid(old_folio);
7224 int new_nid = folio_nid(new_folio);
7225
7226 folio_set_hugetlb_temporary(old_folio);
7227 folio_clear_hugetlb_temporary(new_folio);
7228
7229
7230 /*
7231 * There is no need to transfer the per-node surplus state
7232 * when we do not cross the node.
7233 */
7234 if (new_nid == old_nid)
7235 return;
7236 spin_lock_irq(&hugetlb_lock);
7237 if (h->surplus_huge_pages_node[old_nid]) {
7238 h->surplus_huge_pages_node[old_nid]--;
7239 h->surplus_huge_pages_node[new_nid]++;
7240 }
7241 spin_unlock_irq(&hugetlb_lock);
7242 }
7243
7244 /*
7245 * Our old folio is isolated and has "migratable" cleared until it
7246 * is putback. As migration succeeded, set the new folio "migratable"
7247 * and add it to the active list.
7248 */
7249 spin_lock_irq(&hugetlb_lock);
7250 folio_set_hugetlb_migratable(new_folio);
7251 list_move_tail(&new_folio->lru, &(folio_hstate(new_folio))->hugepage_activelist);
7252 spin_unlock_irq(&hugetlb_lock);
7253 }
7254
7255 /*
7256 * If @take_locks is false, the caller must ensure that no concurrent page table
7257 * access can happen (except for gup_fast() and hardware page walks).
7258 * If @take_locks is true, we take the hugetlb VMA lock (to lock out things like
7259 * concurrent page fault handling) and the file rmap lock.
7260 */
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end,bool take_locks)7261 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7262 unsigned long start,
7263 unsigned long end,
7264 bool take_locks)
7265 {
7266 struct hstate *h = hstate_vma(vma);
7267 unsigned long sz = huge_page_size(h);
7268 struct mm_struct *mm = vma->vm_mm;
7269 struct mmu_notifier_range range;
7270 struct mmu_gather tlb;
7271 unsigned long address;
7272 spinlock_t *ptl;
7273 pte_t *ptep;
7274
7275 if (!(vma->vm_flags & VM_MAYSHARE))
7276 return;
7277
7278 if (start >= end)
7279 return;
7280
7281 flush_cache_range(vma, start, end);
7282 tlb_gather_mmu_vma(&tlb, vma);
7283
7284 /*
7285 * No need to call adjust_range_if_pmd_sharing_possible(), because
7286 * we have already done the PUD_SIZE alignment.
7287 */
7288 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7289 start, end);
7290 mmu_notifier_invalidate_range_start(&range);
7291 if (take_locks) {
7292 hugetlb_vma_lock_write(vma);
7293 i_mmap_lock_write(vma->vm_file->f_mapping);
7294 } else {
7295 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7296 }
7297 for (address = start; address < end; address += PUD_SIZE) {
7298 ptep = hugetlb_walk(vma, address, sz);
7299 if (!ptep)
7300 continue;
7301 ptl = huge_pte_lock(h, mm, ptep);
7302 huge_pmd_unshare(&tlb, vma, address, ptep);
7303 spin_unlock(ptl);
7304 }
7305 huge_pmd_unshare_flush(&tlb, vma);
7306 if (take_locks) {
7307 i_mmap_unlock_write(vma->vm_file->f_mapping);
7308 hugetlb_vma_unlock_write(vma);
7309 }
7310 /*
7311 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7312 * Documentation/mm/mmu_notifier.rst.
7313 */
7314 mmu_notifier_invalidate_range_end(&range);
7315 tlb_finish_mmu(&tlb);
7316 }
7317
7318 /*
7319 * This function will unconditionally remove all the shared pmd pgtable entries
7320 * within the specific vma for a hugetlbfs memory range.
7321 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7322 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7323 {
7324 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7325 ALIGN_DOWN(vma->vm_end, PUD_SIZE),
7326 /* take_locks = */ true);
7327 }
7328
7329 /*
7330 * For hugetlb, mremap() is an odd edge case - while the VMA copying is
7331 * performed, we permit both the old and new VMAs to reference the same
7332 * reservation.
7333 *
7334 * We fix this up after the operation succeeds, or if a newly allocated VMA
7335 * is closed as a result of a failure to allocate memory.
7336 */
fixup_hugetlb_reservations(struct vm_area_struct * vma)7337 void fixup_hugetlb_reservations(struct vm_area_struct *vma)
7338 {
7339 if (is_vm_hugetlb_page(vma))
7340 clear_vma_resv_huge_pages(vma);
7341 }
7342