1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 struct net_device *dev,
177 struct netlink_ext_ack *extack);
178
179 static DEFINE_MUTEX(ifalias_mutex);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 unsigned int val = net->dev_base_seq + 1;
190
191 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 #ifndef CONFIG_PREEMPT_RT
207
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 static_branch_enable(&use_backlog_threads_key);
213 return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 return static_branch_unlikely(&use_backlog_threads_key);
220 }
221
222 #else
223
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 return true;
227 }
228
229 #endif
230
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 unsigned long *flags)
233 {
234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 else
237 local_irq_save(*flags);
238 }
239
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 spin_lock_irq(&sd->input_pkt_queue.lock);
244 else
245 local_irq_disable();
246 }
247
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 unsigned long *flags)
250 {
251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 else
254 local_irq_restore(*flags);
255 }
256
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 spin_unlock_irq(&sd->input_pkt_queue.lock);
261 else
262 local_irq_enable();
263 }
264
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 const char *name)
267 {
268 struct netdev_name_node *name_node;
269
270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 if (!name_node)
272 return NULL;
273 INIT_HLIST_NODE(&name_node->hlist);
274 name_node->dev = dev;
275 name_node->name = name;
276 return name_node;
277 }
278
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 struct netdev_name_node *name_node;
283
284 name_node = netdev_name_node_alloc(dev, dev->name);
285 if (!name_node)
286 return NULL;
287 INIT_LIST_HEAD(&name_node->list);
288 return name_node;
289 }
290
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 kfree(name_node);
294 }
295
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 struct netdev_name_node *name_node)
298 {
299 hlist_add_head_rcu(&name_node->hlist,
300 dev_name_hash(net, name_node->name));
301 }
302
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 hlist_del_rcu(&name_node->hlist);
306 }
307
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 const char *name)
310 {
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318 }
319
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 const char *name)
322 {
323 struct hlist_head *head = dev_name_hash(net, name);
324 struct netdev_name_node *name_node;
325
326 hlist_for_each_entry_rcu(name_node, head, hlist)
327 if (!strcmp(name_node->name, name))
328 return name_node;
329 return NULL;
330 }
331
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 struct netdev_name_node *name_node;
341 struct net *net = dev_net(dev);
342
343 name_node = netdev_name_node_lookup(net, name);
344 if (name_node)
345 return -EEXIST;
346 name_node = netdev_name_node_alloc(dev, name);
347 if (!name_node)
348 return -ENOMEM;
349 netdev_name_node_add(net, name_node);
350 /* The node that holds dev->name acts as a head of per-device list. */
351 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352
353 return 0;
354 }
355
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 struct netdev_name_node *name_node =
359 container_of(head, struct netdev_name_node, rcu);
360
361 kfree(name_node->name);
362 netdev_name_node_free(name_node);
363 }
364
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 netdev_name_node_del(name_node);
368 list_del(&name_node->list);
369 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 struct netdev_name_node *name_node;
375 struct net *net = dev_net(dev);
376
377 name_node = netdev_name_node_lookup(net, name);
378 if (!name_node)
379 return -ENOENT;
380 /* lookup might have found our primary name or a name belonging
381 * to another device.
382 */
383 if (name_node == dev->name_node || name_node->dev != dev)
384 return -EINVAL;
385
386 __netdev_name_node_alt_destroy(name_node);
387 return 0;
388 }
389
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 struct netdev_name_node *name_node, *tmp;
393
394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 list_del(&name_node->list);
396 netdev_name_node_alt_free(&name_node->rcu);
397 }
398 }
399
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 struct netdev_name_node *name_node;
404 struct net *net = dev_net(dev);
405
406 ASSERT_RTNL();
407
408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 netdev_name_node_add(net, dev->name_node);
410 hlist_add_head_rcu(&dev->index_hlist,
411 dev_index_hash(net, dev->ifindex));
412
413 netdev_for_each_altname(dev, name_node)
414 netdev_name_node_add(net, name_node);
415
416 /* We reserved the ifindex, this can't fail */
417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418
419 dev_base_seq_inc(net);
420 }
421
422 /* Device list removal
423 * caller must respect a RCU grace period before freeing/reusing dev
424 */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 struct netdev_name_node *name_node;
428 struct net *net = dev_net(dev);
429
430 ASSERT_RTNL();
431
432 xa_erase(&net->dev_by_index, dev->ifindex);
433
434 netdev_for_each_altname(dev, name_node)
435 netdev_name_node_del(name_node);
436
437 /* Unlink dev from the device chain */
438 list_del_rcu(&dev->dev_list);
439 netdev_name_node_del(dev->name_node);
440 hlist_del_rcu(&dev->index_hlist);
441
442 dev_base_seq_inc(dev_net(dev));
443 }
444
445 /*
446 * Our notifier list
447 */
448
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450
451 /*
452 * Device drivers call our routines to queue packets here. We empty the
453 * queue in the local softnet handler.
454 */
455
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462 * PP consumers must pay attention to run APIs in the appropriate context
463 * (e.g. NAPI context).
464 */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468
469 #ifdef CONFIG_LOCKDEP
470 /*
471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472 * according to dev->type
473 */
474 static const unsigned short netdev_lock_type[] = {
475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490
491 static const char *const netdev_lock_name[] = {
492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510
netdev_lock_pos(unsigned short dev_type)511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 int i;
514
515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 if (netdev_lock_type[i] == dev_type)
517 return i;
518 /* the last key is used by default */
519 return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 unsigned short dev_type)
524 {
525 int i;
526
527 i = netdev_lock_pos(dev_type);
528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 netdev_lock_name[i]);
530 }
531
netdev_set_addr_lockdep_class(struct net_device * dev)532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 int i;
535
536 i = netdev_lock_pos(dev->type);
537 lockdep_set_class_and_name(&dev->addr_list_lock,
538 &netdev_addr_lock_key[i],
539 netdev_lock_name[i]);
540 }
541 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 unsigned short dev_type)
544 {
545 }
546
netdev_set_addr_lockdep_class(struct net_device * dev)547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551
552 /*******************************************************************************
553 *
554 * Protocol management and registration routines
555 *
556 *******************************************************************************/
557
558
559 /*
560 * Add a protocol ID to the list. Now that the input handler is
561 * smarter we can dispense with all the messy stuff that used to be
562 * here.
563 *
564 * BEWARE!!! Protocol handlers, mangling input packets,
565 * MUST BE last in hash buckets and checking protocol handlers
566 * MUST start from promiscuous ptype_all chain in net_bh.
567 * It is true now, do not change it.
568 * Explanation follows: if protocol handler, mangling packet, will
569 * be the first on list, it is not able to sense, that packet
570 * is cloned and should be copied-on-write, so that it will
571 * change it and subsequent readers will get broken packet.
572 * --ANK (980803)
573 */
574
ptype_head(const struct packet_type * pt)575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 if (pt->type == htons(ETH_P_ALL)) {
578 if (!pt->af_packet_net && !pt->dev)
579 return NULL;
580
581 return pt->dev ? &pt->dev->ptype_all :
582 &pt->af_packet_net->ptype_all;
583 }
584
585 if (pt->dev)
586 return &pt->dev->ptype_specific;
587
588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591
592 /**
593 * dev_add_pack - add packet handler
594 * @pt: packet type declaration
595 *
596 * Add a protocol handler to the networking stack. The passed &packet_type
597 * is linked into kernel lists and may not be freed until it has been
598 * removed from the kernel lists.
599 *
600 * This call does not sleep therefore it can not
601 * guarantee all CPU's that are in middle of receiving packets
602 * will see the new packet type (until the next received packet).
603 */
604
dev_add_pack(struct packet_type * pt)605 void dev_add_pack(struct packet_type *pt)
606 {
607 struct list_head *head = ptype_head(pt);
608
609 if (WARN_ON_ONCE(!head))
610 return;
611
612 spin_lock(&ptype_lock);
613 list_add_rcu(&pt->list, head);
614 spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617
618 /**
619 * __dev_remove_pack - remove packet handler
620 * @pt: packet type declaration
621 *
622 * Remove a protocol handler that was previously added to the kernel
623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
624 * from the kernel lists and can be freed or reused once this function
625 * returns.
626 *
627 * The packet type might still be in use by receivers
628 * and must not be freed until after all the CPU's have gone
629 * through a quiescent state.
630 */
__dev_remove_pack(struct packet_type * pt)631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 struct list_head *head = ptype_head(pt);
634 struct packet_type *pt1;
635
636 if (!head)
637 return;
638
639 spin_lock(&ptype_lock);
640
641 list_for_each_entry(pt1, head, list) {
642 if (pt == pt1) {
643 list_del_rcu(&pt->list);
644 goto out;
645 }
646 }
647
648 pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653
654 /**
655 * dev_remove_pack - remove packet handler
656 * @pt: packet type declaration
657 *
658 * Remove a protocol handler that was previously added to the kernel
659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
660 * from the kernel lists and can be freed or reused once this function
661 * returns.
662 *
663 * This call sleeps to guarantee that no CPU is looking at the packet
664 * type after return.
665 */
dev_remove_pack(struct packet_type * pt)666 void dev_remove_pack(struct packet_type *pt)
667 {
668 __dev_remove_pack(pt);
669
670 synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673
674
675 /*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681 /**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
dev_get_iflink(const struct net_device * dev)689 int dev_get_iflink(const struct net_device *dev)
690 {
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
dev_fwd_path(struct net_device_path_stack * stack)724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 int k = stack->num_paths++;
727
728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 return NULL;
730
731 return &stack->path[k];
732 }
733
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 struct net_device_path_stack *stack)
736 {
737 const struct net_device *last_dev;
738 struct net_device_path_ctx ctx = {
739 .dev = dev,
740 };
741 struct net_device_path *path;
742 int ret = 0;
743
744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 stack->num_paths = 0;
746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 last_dev = ctx.dev;
748 path = dev_fwd_path(stack);
749 if (!path)
750 return -1;
751
752 memset(path, 0, sizeof(struct net_device_path));
753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 if (ret < 0)
755 return -1;
756
757 if (WARN_ON_ONCE(last_dev == ctx.dev))
758 return -1;
759 }
760
761 if (!ctx.dev)
762 return ret;
763
764 path = dev_fwd_path(stack);
765 if (!path)
766 return -1;
767 path->type = DEV_PATH_ETHERNET;
768 path->dev = ctx.dev;
769
770 return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 struct napi_struct *napi;
779
780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 if (napi->napi_id == napi_id)
782 return napi;
783
784 return NULL;
785 }
786
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 struct napi_struct *napi;
792
793 napi = napi_by_id(napi_id);
794 if (!napi)
795 return NULL;
796
797 if (WARN_ON_ONCE(!napi->dev))
798 return NULL;
799 if (!net_eq(net, dev_net(napi->dev)))
800 return NULL;
801
802 return napi;
803 }
804
805 /**
806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807 * @net: the applicable net namespace
808 * @napi_id: ID of a NAPI of a target device
809 *
810 * Find a NAPI instance with @napi_id. Lock its device.
811 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
812 * netdev_unlock() must be called to release it.
813 *
814 * Return: pointer to NAPI, its device with lock held, NULL if not found.
815 */
816 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 struct napi_struct *napi;
820 struct net_device *dev;
821
822 rcu_read_lock();
823 napi = netdev_napi_by_id(net, napi_id);
824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 rcu_read_unlock();
826 return NULL;
827 }
828
829 dev = napi->dev;
830 dev_hold(dev);
831 rcu_read_unlock();
832
833 dev = __netdev_put_lock(dev, net);
834 if (!dev)
835 return NULL;
836
837 rcu_read_lock();
838 napi = netdev_napi_by_id(net, napi_id);
839 if (napi && napi->dev != dev)
840 napi = NULL;
841 rcu_read_unlock();
842
843 if (!napi)
844 netdev_unlock(dev);
845 return napi;
846 }
847
848 /**
849 * __dev_get_by_name - find a device by its name
850 * @net: the applicable net namespace
851 * @name: name to find
852 *
853 * Find an interface by name. Must be called under RTNL semaphore.
854 * If the name is found a pointer to the device is returned.
855 * If the name is not found then %NULL is returned. The
856 * reference counters are not incremented so the caller must be
857 * careful with locks.
858 */
859
__dev_get_by_name(struct net * net,const char * name)860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 struct netdev_name_node *node_name;
863
864 node_name = netdev_name_node_lookup(net, name);
865 return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868
869 /**
870 * dev_get_by_name_rcu - find a device by its name
871 * @net: the applicable net namespace
872 * @name: name to find
873 *
874 * Find an interface by name.
875 * If the name is found a pointer to the device is returned.
876 * If the name is not found then %NULL is returned.
877 * The reference counters are not incremented so the caller must be
878 * careful with locks. The caller must hold RCU lock.
879 */
880
dev_get_by_name_rcu(struct net * net,const char * name)881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 struct netdev_name_node *node_name;
884
885 node_name = netdev_name_node_lookup_rcu(net, name);
886 return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889
890 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 struct net_device *dev;
894
895 rcu_read_lock();
896 dev = dev_get_by_name_rcu(net, name);
897 dev_hold(dev);
898 rcu_read_unlock();
899 return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902
903 /**
904 * netdev_get_by_name() - find a device by its name
905 * @net: the applicable net namespace
906 * @name: name to find
907 * @tracker: tracking object for the acquired reference
908 * @gfp: allocation flags for the tracker
909 *
910 * Find an interface by name. This can be called from any
911 * context and does its own locking. The returned handle has
912 * the usage count incremented and the caller must use netdev_put() to
913 * release it when it is no longer needed. %NULL is returned if no
914 * matching device is found.
915 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 netdevice_tracker *tracker, gfp_t gfp)
918 {
919 struct net_device *dev;
920
921 dev = dev_get_by_name(net, name);
922 if (dev)
923 netdev_tracker_alloc(dev, tracker, gfp);
924 return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927
928 /**
929 * __dev_get_by_index - find a device by its ifindex
930 * @net: the applicable net namespace
931 * @ifindex: index of device
932 *
933 * Search for an interface by index. Returns %NULL if the device
934 * is not found or a pointer to the device. The device has not
935 * had its reference counter increased so the caller must be careful
936 * about locking. The caller must hold the RTNL semaphore.
937 */
938
__dev_get_by_index(struct net * net,int ifindex)939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 struct net_device *dev;
942 struct hlist_head *head = dev_index_hash(net, ifindex);
943
944 hlist_for_each_entry(dev, head, index_hlist)
945 if (dev->ifindex == ifindex)
946 return dev;
947
948 return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951
952 /**
953 * dev_get_by_index_rcu - find a device by its ifindex
954 * @net: the applicable net namespace
955 * @ifindex: index of device
956 *
957 * Search for an interface by index. Returns %NULL if the device
958 * is not found or a pointer to the device. The device has not
959 * had its reference counter increased so the caller must be careful
960 * about locking. The caller must hold RCU lock.
961 */
962
dev_get_by_index_rcu(struct net * net,int ifindex)963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 struct net_device *dev;
966 struct hlist_head *head = dev_index_hash(net, ifindex);
967
968 hlist_for_each_entry_rcu(dev, head, index_hlist)
969 if (dev->ifindex == ifindex)
970 return dev;
971
972 return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975
976 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 struct net_device *dev;
980
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 dev_hold(dev);
984 rcu_read_unlock();
985 return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988
989 /**
990 * netdev_get_by_index() - find a device by its ifindex
991 * @net: the applicable net namespace
992 * @ifindex: index of device
993 * @tracker: tracking object for the acquired reference
994 * @gfp: allocation flags for the tracker
995 *
996 * Search for an interface by index. Returns NULL if the device
997 * is not found or a pointer to the device. The device returned has
998 * had a reference added and the pointer is safe until the user calls
999 * netdev_put() to indicate they have finished with it.
1000 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 struct net_device *dev;
1005
1006 dev = dev_get_by_index(net, ifindex);
1007 if (dev)
1008 netdev_tracker_alloc(dev, tracker, gfp);
1009 return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012
1013 /**
1014 * dev_get_by_napi_id - find a device by napi_id
1015 * @napi_id: ID of the NAPI struct
1016 *
1017 * Search for an interface by NAPI ID. Returns %NULL if the device
1018 * is not found or a pointer to the device. The device has not had
1019 * its reference counter increased so the caller must be careful
1020 * about locking. The caller must hold RCU lock.
1021 */
dev_get_by_napi_id(unsigned int napi_id)1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 struct napi_struct *napi;
1025
1026 WARN_ON_ONCE(!rcu_read_lock_held());
1027
1028 if (!napi_id_valid(napi_id))
1029 return NULL;
1030
1031 napi = napi_by_id(napi_id);
1032
1033 return napi ? napi->dev : NULL;
1034 }
1035
1036 /* Release the held reference on the net_device, and if the net_device
1037 * is still registered try to lock the instance lock. If device is being
1038 * unregistered NULL will be returned (but the reference has been released,
1039 * either way!)
1040 *
1041 * This helper is intended for locking net_device after it has been looked up
1042 * using a lockless lookup helper. Lock prevents the instance from going away.
1043 */
__netdev_put_lock(struct net_device * dev,struct net * net)1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 netdev_lock(dev);
1047 if (dev->reg_state > NETREG_REGISTERED ||
1048 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 netdev_unlock(dev);
1050 dev_put(dev);
1051 return NULL;
1052 }
1053 dev_put(dev);
1054 return dev;
1055 }
1056
1057 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 netdev_lock_ops_compat(dev);
1061 if (dev->reg_state > NETREG_REGISTERED ||
1062 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 netdev_unlock_ops_compat(dev);
1064 dev_put(dev);
1065 return NULL;
1066 }
1067 dev_put(dev);
1068 return dev;
1069 }
1070
1071 /**
1072 * netdev_get_by_index_lock() - find a device by its ifindex
1073 * @net: the applicable net namespace
1074 * @ifindex: index of device
1075 *
1076 * Search for an interface by index. If a valid device
1077 * with @ifindex is found it will be returned with netdev->lock held.
1078 * netdev_unlock() must be called to release it.
1079 *
1080 * Return: pointer to a device with lock held, NULL if not found.
1081 */
netdev_get_by_index_lock(struct net * net,int ifindex)1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 struct net_device *dev;
1085
1086 dev = dev_get_by_index(net, ifindex);
1087 if (!dev)
1088 return NULL;
1089
1090 return __netdev_put_lock(dev, net);
1091 }
1092
1093 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 struct net_device *dev;
1097
1098 dev = dev_get_by_index(net, ifindex);
1099 if (!dev)
1100 return NULL;
1101
1102 return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104
1105 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 unsigned long *index)
1108 {
1109 if (dev)
1110 netdev_unlock(dev);
1111
1112 do {
1113 rcu_read_lock();
1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 if (!dev) {
1116 rcu_read_unlock();
1117 return NULL;
1118 }
1119 dev_hold(dev);
1120 rcu_read_unlock();
1121
1122 dev = __netdev_put_lock(dev, net);
1123 if (dev)
1124 return dev;
1125
1126 (*index)++;
1127 } while (true);
1128 }
1129
1130 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 unsigned long *index)
1133 {
1134 if (dev)
1135 netdev_unlock_ops_compat(dev);
1136
1137 do {
1138 rcu_read_lock();
1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 if (!dev) {
1141 rcu_read_unlock();
1142 return NULL;
1143 }
1144 dev_hold(dev);
1145 rcu_read_unlock();
1146
1147 dev = __netdev_put_lock_ops_compat(dev, net);
1148 if (dev)
1149 return dev;
1150
1151 (*index)++;
1152 } while (true);
1153 }
1154
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156
netdev_copy_name(struct net_device * dev,char * name)1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 unsigned int seq;
1160
1161 do {
1162 seq = read_seqbegin(&netdev_rename_lock);
1163 strscpy(name, dev->name, IFNAMSIZ);
1164 } while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166
1167 /**
1168 * netdev_get_name - get a netdevice name, knowing its ifindex.
1169 * @net: network namespace
1170 * @name: a pointer to the buffer where the name will be stored.
1171 * @ifindex: the ifindex of the interface to get the name from.
1172 */
netdev_get_name(struct net * net,char * name,int ifindex)1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 struct net_device *dev;
1176 int ret;
1177
1178 rcu_read_lock();
1179
1180 dev = dev_get_by_index_rcu(net, ifindex);
1181 if (!dev) {
1182 ret = -ENODEV;
1183 goto out;
1184 }
1185
1186 netdev_copy_name(dev, name);
1187
1188 ret = 0;
1189 out:
1190 rcu_read_unlock();
1191 return ret;
1192 }
1193
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 const char *ha)
1196 {
1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199
1200 /**
1201 * dev_getbyhwaddr_rcu - find a device by its hardware address
1202 * @net: the applicable net namespace
1203 * @type: media type of device
1204 * @ha: hardware address
1205 *
1206 * Search for an interface by MAC address. Returns NULL if the device
1207 * is not found or a pointer to the device.
1208 * The caller must hold RCU.
1209 * The returned device has not had its ref count increased
1210 * and the caller must therefore be careful about locking
1211 *
1212 */
1213
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 const char *ha)
1216 {
1217 struct net_device *dev;
1218
1219 for_each_netdev_rcu(net, dev)
1220 if (dev_addr_cmp(dev, type, ha))
1221 return dev;
1222
1223 return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226
1227 /**
1228 * dev_getbyhwaddr() - find a device by its hardware address
1229 * @net: the applicable net namespace
1230 * @type: media type of device
1231 * @ha: hardware address
1232 *
1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234 * rtnl_lock.
1235 *
1236 * Context: rtnl_lock() must be held.
1237 * Return: pointer to the net_device, or NULL if not found
1238 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 const char *ha)
1241 {
1242 struct net_device *dev;
1243
1244 ASSERT_RTNL();
1245 for_each_netdev(net, dev)
1246 if (dev_addr_cmp(dev, type, ha))
1247 return dev;
1248
1249 return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252
dev_getfirstbyhwtype(struct net * net,unsigned short type)1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 struct net_device *dev, *ret = NULL;
1256
1257 rcu_read_lock();
1258 for_each_netdev_rcu(net, dev)
1259 if (dev->type == type) {
1260 dev_hold(dev);
1261 ret = dev;
1262 break;
1263 }
1264 rcu_read_unlock();
1265 return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268
1269 /**
1270 * netdev_get_by_flags_rcu - find any device with given flags
1271 * @net: the applicable net namespace
1272 * @tracker: tracking object for the acquired reference
1273 * @if_flags: IFF_* values
1274 * @mask: bitmask of bits in if_flags to check
1275 *
1276 * Search for any interface with the given flags.
1277 *
1278 * Context: rcu_read_lock() must be held.
1279 * Returns: NULL if a device is not found or a pointer to the device.
1280 */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282 unsigned short if_flags, unsigned short mask)
1283 {
1284 struct net_device *dev;
1285
1286 for_each_netdev_rcu(net, dev) {
1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288 netdev_hold(dev, tracker, GFP_ATOMIC);
1289 return dev;
1290 }
1291 }
1292
1293 return NULL;
1294 }
1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296
1297 /**
1298 * dev_valid_name - check if name is okay for network device
1299 * @name: name string
1300 *
1301 * Network device names need to be valid file names to
1302 * allow sysfs to work. We also disallow any kind of
1303 * whitespace.
1304 */
dev_valid_name(const char * name)1305 bool dev_valid_name(const char *name)
1306 {
1307 if (*name == '\0')
1308 return false;
1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310 return false;
1311 if (!strcmp(name, ".") || !strcmp(name, ".."))
1312 return false;
1313
1314 while (*name) {
1315 if (*name == '/' || *name == ':' || isspace(*name))
1316 return false;
1317 name++;
1318 }
1319 return true;
1320 }
1321 EXPORT_SYMBOL(dev_valid_name);
1322
1323 /**
1324 * __dev_alloc_name - allocate a name for a device
1325 * @net: network namespace to allocate the device name in
1326 * @name: name format string
1327 * @res: result name string
1328 *
1329 * Passed a format string - eg "lt%d" it will try and find a suitable
1330 * id. It scans list of devices to build up a free map, then chooses
1331 * the first empty slot. The caller must hold the dev_base or rtnl lock
1332 * while allocating the name and adding the device in order to avoid
1333 * duplicates.
1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335 * Returns the number of the unit assigned or a negative errno code.
1336 */
1337
__dev_alloc_name(struct net * net,const char * name,char * res)1338 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339 {
1340 int i = 0;
1341 const char *p;
1342 const int max_netdevices = 8*PAGE_SIZE;
1343 unsigned long *inuse;
1344 struct net_device *d;
1345 char buf[IFNAMSIZ];
1346
1347 /* Verify the string as this thing may have come from the user.
1348 * There must be one "%d" and no other "%" characters.
1349 */
1350 p = strchr(name, '%');
1351 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352 return -EINVAL;
1353
1354 /* Use one page as a bit array of possible slots */
1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356 if (!inuse)
1357 return -ENOMEM;
1358
1359 for_each_netdev(net, d) {
1360 struct netdev_name_node *name_node;
1361
1362 netdev_for_each_altname(d, name_node) {
1363 if (!sscanf(name_node->name, name, &i))
1364 continue;
1365 if (i < 0 || i >= max_netdevices)
1366 continue;
1367
1368 /* avoid cases where sscanf is not exact inverse of printf */
1369 snprintf(buf, IFNAMSIZ, name, i);
1370 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371 __set_bit(i, inuse);
1372 }
1373 if (!sscanf(d->name, name, &i))
1374 continue;
1375 if (i < 0 || i >= max_netdevices)
1376 continue;
1377
1378 /* avoid cases where sscanf is not exact inverse of printf */
1379 snprintf(buf, IFNAMSIZ, name, i);
1380 if (!strncmp(buf, d->name, IFNAMSIZ))
1381 __set_bit(i, inuse);
1382 }
1383
1384 i = find_first_zero_bit(inuse, max_netdevices);
1385 bitmap_free(inuse);
1386 if (i == max_netdevices)
1387 return -ENFILE;
1388
1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390 strscpy(buf, name, IFNAMSIZ);
1391 snprintf(res, IFNAMSIZ, buf, i);
1392 return i;
1393 }
1394
1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397 const char *want_name, char *out_name,
1398 int dup_errno)
1399 {
1400 if (!dev_valid_name(want_name))
1401 return -EINVAL;
1402
1403 if (strchr(want_name, '%'))
1404 return __dev_alloc_name(net, want_name, out_name);
1405
1406 if (netdev_name_in_use(net, want_name))
1407 return -dup_errno;
1408 if (out_name != want_name)
1409 strscpy(out_name, want_name, IFNAMSIZ);
1410 return 0;
1411 }
1412
1413 /**
1414 * dev_alloc_name - allocate a name for a device
1415 * @dev: device
1416 * @name: name format string
1417 *
1418 * Passed a format string - eg "lt%d" it will try and find a suitable
1419 * id. It scans list of devices to build up a free map, then chooses
1420 * the first empty slot. The caller must hold the dev_base or rtnl lock
1421 * while allocating the name and adding the device in order to avoid
1422 * duplicates.
1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424 * Returns the number of the unit assigned or a negative errno code.
1425 */
1426
dev_alloc_name(struct net_device * dev,const char * name)1427 int dev_alloc_name(struct net_device *dev, const char *name)
1428 {
1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430 }
1431 EXPORT_SYMBOL(dev_alloc_name);
1432
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1433 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434 const char *name)
1435 {
1436 int ret;
1437
1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439 return ret < 0 ? ret : 0;
1440 }
1441
netif_change_name(struct net_device * dev,const char * newname)1442 int netif_change_name(struct net_device *dev, const char *newname)
1443 {
1444 struct net *net = dev_net(dev);
1445 unsigned char old_assign_type;
1446 char oldname[IFNAMSIZ];
1447 int err = 0;
1448 int ret;
1449
1450 ASSERT_RTNL_NET(net);
1451
1452 if (!strncmp(newname, dev->name, IFNAMSIZ))
1453 return 0;
1454
1455 memcpy(oldname, dev->name, IFNAMSIZ);
1456
1457 write_seqlock_bh(&netdev_rename_lock);
1458 err = dev_get_valid_name(net, dev, newname);
1459 write_sequnlock_bh(&netdev_rename_lock);
1460
1461 if (err < 0)
1462 return err;
1463
1464 if (oldname[0] && !strchr(oldname, '%'))
1465 netdev_info(dev, "renamed from %s%s\n", oldname,
1466 dev->flags & IFF_UP ? " (while UP)" : "");
1467
1468 old_assign_type = dev->name_assign_type;
1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470
1471 rollback:
1472 ret = device_rename(&dev->dev, dev->name);
1473 if (ret) {
1474 write_seqlock_bh(&netdev_rename_lock);
1475 memcpy(dev->name, oldname, IFNAMSIZ);
1476 write_sequnlock_bh(&netdev_rename_lock);
1477 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478 return ret;
1479 }
1480
1481 netdev_adjacent_rename_links(dev, oldname);
1482
1483 netdev_name_node_del(dev->name_node);
1484
1485 synchronize_net();
1486
1487 netdev_name_node_add(net, dev->name_node);
1488
1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490 ret = notifier_to_errno(ret);
1491
1492 if (ret) {
1493 /* err >= 0 after dev_alloc_name() or stores the first errno */
1494 if (err >= 0) {
1495 err = ret;
1496 write_seqlock_bh(&netdev_rename_lock);
1497 memcpy(dev->name, oldname, IFNAMSIZ);
1498 write_sequnlock_bh(&netdev_rename_lock);
1499 memcpy(oldname, newname, IFNAMSIZ);
1500 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501 old_assign_type = NET_NAME_RENAMED;
1502 goto rollback;
1503 } else {
1504 netdev_err(dev, "name change rollback failed: %d\n",
1505 ret);
1506 }
1507 }
1508
1509 return err;
1510 }
1511
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513 {
1514 struct dev_ifalias *new_alias = NULL;
1515
1516 if (len >= IFALIASZ)
1517 return -EINVAL;
1518
1519 if (len) {
1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521 if (!new_alias)
1522 return -ENOMEM;
1523
1524 memcpy(new_alias->ifalias, alias, len);
1525 new_alias->ifalias[len] = 0;
1526 }
1527
1528 mutex_lock(&ifalias_mutex);
1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530 mutex_is_locked(&ifalias_mutex));
1531 mutex_unlock(&ifalias_mutex);
1532
1533 if (new_alias)
1534 kfree_rcu(new_alias, rcuhead);
1535
1536 return len;
1537 }
1538
1539 /**
1540 * dev_get_alias - get ifalias of a device
1541 * @dev: device
1542 * @name: buffer to store name of ifalias
1543 * @len: size of buffer
1544 *
1545 * get ifalias for a device. Caller must make sure dev cannot go
1546 * away, e.g. rcu read lock or own a reference count to device.
1547 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549 {
1550 const struct dev_ifalias *alias;
1551 int ret = 0;
1552
1553 rcu_read_lock();
1554 alias = rcu_dereference(dev->ifalias);
1555 if (alias)
1556 ret = snprintf(name, len, "%s", alias->ifalias);
1557 rcu_read_unlock();
1558
1559 return ret;
1560 }
1561
1562 /**
1563 * netdev_features_change - device changes features
1564 * @dev: device to cause notification
1565 *
1566 * Called to indicate a device has changed features.
1567 */
netdev_features_change(struct net_device * dev)1568 void netdev_features_change(struct net_device *dev)
1569 {
1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571 }
1572 EXPORT_SYMBOL(netdev_features_change);
1573
netif_state_change(struct net_device * dev)1574 void netif_state_change(struct net_device *dev)
1575 {
1576 netdev_ops_assert_locked_or_invisible(dev);
1577
1578 if (dev->flags & IFF_UP) {
1579 struct netdev_notifier_change_info change_info = {
1580 .info.dev = dev,
1581 };
1582
1583 call_netdevice_notifiers_info(NETDEV_CHANGE,
1584 &change_info.info);
1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586 }
1587 }
1588
1589 /**
1590 * __netdev_notify_peers - notify network peers about existence of @dev,
1591 * to be called when rtnl lock is already held.
1592 * @dev: network device
1593 *
1594 * Generate traffic such that interested network peers are aware of
1595 * @dev, such as by generating a gratuitous ARP. This may be used when
1596 * a device wants to inform the rest of the network about some sort of
1597 * reconfiguration such as a failover event or virtual machine
1598 * migration.
1599 */
__netdev_notify_peers(struct net_device * dev)1600 void __netdev_notify_peers(struct net_device *dev)
1601 {
1602 ASSERT_RTNL();
1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605 }
1606 EXPORT_SYMBOL(__netdev_notify_peers);
1607
1608 /**
1609 * netdev_notify_peers - notify network peers about existence of @dev
1610 * @dev: network device
1611 *
1612 * Generate traffic such that interested network peers are aware of
1613 * @dev, such as by generating a gratuitous ARP. This may be used when
1614 * a device wants to inform the rest of the network about some sort of
1615 * reconfiguration such as a failover event or virtual machine
1616 * migration.
1617 */
netdev_notify_peers(struct net_device * dev)1618 void netdev_notify_peers(struct net_device *dev)
1619 {
1620 rtnl_lock();
1621 __netdev_notify_peers(dev);
1622 rtnl_unlock();
1623 }
1624 EXPORT_SYMBOL(netdev_notify_peers);
1625
1626 static int napi_threaded_poll(void *data);
1627
napi_kthread_create(struct napi_struct * n)1628 static int napi_kthread_create(struct napi_struct *n)
1629 {
1630 int err = 0;
1631
1632 /* Create and wake up the kthread once to put it in
1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1634 * warning and work with loadavg.
1635 */
1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637 n->dev->name, n->napi_id);
1638 if (IS_ERR(n->thread)) {
1639 err = PTR_ERR(n->thread);
1640 pr_err("kthread_run failed with err %d\n", err);
1641 n->thread = NULL;
1642 }
1643
1644 return err;
1645 }
1646
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648 {
1649 const struct net_device_ops *ops = dev->netdev_ops;
1650 int ret;
1651
1652 ASSERT_RTNL();
1653 dev_addr_check(dev);
1654
1655 if (!netif_device_present(dev)) {
1656 /* may be detached because parent is runtime-suspended */
1657 if (dev->dev.parent)
1658 pm_runtime_resume(dev->dev.parent);
1659 if (!netif_device_present(dev))
1660 return -ENODEV;
1661 }
1662
1663 /* Block netpoll from trying to do any rx path servicing.
1664 * If we don't do this there is a chance ndo_poll_controller
1665 * or ndo_poll may be running while we open the device
1666 */
1667 netpoll_poll_disable(dev);
1668
1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670 ret = notifier_to_errno(ret);
1671 if (ret)
1672 return ret;
1673
1674 set_bit(__LINK_STATE_START, &dev->state);
1675
1676 netdev_ops_assert_locked(dev);
1677
1678 if (ops->ndo_validate_addr)
1679 ret = ops->ndo_validate_addr(dev);
1680
1681 if (!ret && ops->ndo_open)
1682 ret = ops->ndo_open(dev);
1683
1684 netpoll_poll_enable(dev);
1685
1686 if (ret)
1687 clear_bit(__LINK_STATE_START, &dev->state);
1688 else {
1689 netif_set_up(dev, true);
1690 dev_set_rx_mode(dev);
1691 dev_activate(dev);
1692 add_device_randomness(dev->dev_addr, dev->addr_len);
1693 }
1694
1695 return ret;
1696 }
1697
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699 {
1700 int ret;
1701
1702 if (dev->flags & IFF_UP)
1703 return 0;
1704
1705 ret = __dev_open(dev, extack);
1706 if (ret < 0)
1707 return ret;
1708
1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710 call_netdevice_notifiers(NETDEV_UP, dev);
1711
1712 return ret;
1713 }
1714
__dev_close_many(struct list_head * head)1715 static void __dev_close_many(struct list_head *head)
1716 {
1717 struct net_device *dev;
1718
1719 ASSERT_RTNL();
1720 might_sleep();
1721
1722 list_for_each_entry(dev, head, close_list) {
1723 /* Temporarily disable netpoll until the interface is down */
1724 netpoll_poll_disable(dev);
1725
1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727
1728 clear_bit(__LINK_STATE_START, &dev->state);
1729
1730 /* Synchronize to scheduled poll. We cannot touch poll list, it
1731 * can be even on different cpu. So just clear netif_running().
1732 *
1733 * dev->stop() will invoke napi_disable() on all of it's
1734 * napi_struct instances on this device.
1735 */
1736 smp_mb__after_atomic(); /* Commit netif_running(). */
1737 }
1738
1739 dev_deactivate_many(head);
1740
1741 list_for_each_entry(dev, head, close_list) {
1742 const struct net_device_ops *ops = dev->netdev_ops;
1743
1744 /*
1745 * Call the device specific close. This cannot fail.
1746 * Only if device is UP
1747 *
1748 * We allow it to be called even after a DETACH hot-plug
1749 * event.
1750 */
1751
1752 netdev_ops_assert_locked(dev);
1753
1754 if (ops->ndo_stop)
1755 ops->ndo_stop(dev);
1756
1757 netif_set_up(dev, false);
1758 netpoll_poll_enable(dev);
1759 }
1760 }
1761
__dev_close(struct net_device * dev)1762 static void __dev_close(struct net_device *dev)
1763 {
1764 LIST_HEAD(single);
1765
1766 list_add(&dev->close_list, &single);
1767 __dev_close_many(&single);
1768 list_del(&single);
1769 }
1770
netif_close_many(struct list_head * head,bool unlink)1771 void netif_close_many(struct list_head *head, bool unlink)
1772 {
1773 struct net_device *dev, *tmp;
1774
1775 /* Remove the devices that don't need to be closed */
1776 list_for_each_entry_safe(dev, tmp, head, close_list)
1777 if (!(dev->flags & IFF_UP))
1778 list_del_init(&dev->close_list);
1779
1780 __dev_close_many(head);
1781
1782 list_for_each_entry_safe(dev, tmp, head, close_list) {
1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784 call_netdevice_notifiers(NETDEV_DOWN, dev);
1785 if (unlink)
1786 list_del_init(&dev->close_list);
1787 }
1788 }
1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1790
netif_close(struct net_device * dev)1791 void netif_close(struct net_device *dev)
1792 {
1793 if (dev->flags & IFF_UP) {
1794 LIST_HEAD(single);
1795
1796 list_add(&dev->close_list, &single);
1797 netif_close_many(&single, true);
1798 list_del(&single);
1799 }
1800 }
1801 EXPORT_SYMBOL(netif_close);
1802
netif_disable_lro(struct net_device * dev)1803 void netif_disable_lro(struct net_device *dev)
1804 {
1805 struct net_device *lower_dev;
1806 struct list_head *iter;
1807
1808 dev->wanted_features &= ~NETIF_F_LRO;
1809 netdev_update_features(dev);
1810
1811 if (unlikely(dev->features & NETIF_F_LRO))
1812 netdev_WARN(dev, "failed to disable LRO!\n");
1813
1814 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815 netdev_lock_ops(lower_dev);
1816 netif_disable_lro(lower_dev);
1817 netdev_unlock_ops(lower_dev);
1818 }
1819 }
1820 EXPORT_IPV6_MOD(netif_disable_lro);
1821
1822 /**
1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824 * @dev: device
1825 *
1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1827 * called under RTNL. This is needed if Generic XDP is installed on
1828 * the device.
1829 */
dev_disable_gro_hw(struct net_device * dev)1830 static void dev_disable_gro_hw(struct net_device *dev)
1831 {
1832 dev->wanted_features &= ~NETIF_F_GRO_HW;
1833 netdev_update_features(dev);
1834
1835 if (unlikely(dev->features & NETIF_F_GRO_HW))
1836 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837 }
1838
netdev_cmd_to_name(enum netdev_cmd cmd)1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840 {
1841 #define N(val) \
1842 case NETDEV_##val: \
1843 return "NETDEV_" __stringify(val);
1844 switch (cmd) {
1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856 N(XDP_FEAT_CHANGE)
1857 }
1858 #undef N
1859 return "UNKNOWN_NETDEV_EVENT";
1860 }
1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864 struct net_device *dev)
1865 {
1866 struct netdev_notifier_info info = {
1867 .dev = dev,
1868 };
1869
1870 return nb->notifier_call(nb, val, &info);
1871 }
1872
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1873 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874 struct net_device *dev)
1875 {
1876 int err;
1877
1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879 err = notifier_to_errno(err);
1880 if (err)
1881 return err;
1882
1883 if (!(dev->flags & IFF_UP))
1884 return 0;
1885
1886 call_netdevice_notifier(nb, NETDEV_UP, dev);
1887 return 0;
1888 }
1889
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891 struct net_device *dev)
1892 {
1893 if (dev->flags & IFF_UP) {
1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895 dev);
1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897 }
1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899 }
1900
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902 struct net *net)
1903 {
1904 struct net_device *dev;
1905 int err;
1906
1907 for_each_netdev(net, dev) {
1908 netdev_lock_ops(dev);
1909 err = call_netdevice_register_notifiers(nb, dev);
1910 netdev_unlock_ops(dev);
1911 if (err)
1912 goto rollback;
1913 }
1914 return 0;
1915
1916 rollback:
1917 for_each_netdev_continue_reverse(net, dev)
1918 call_netdevice_unregister_notifiers(nb, dev);
1919 return err;
1920 }
1921
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923 struct net *net)
1924 {
1925 struct net_device *dev;
1926
1927 for_each_netdev(net, dev)
1928 call_netdevice_unregister_notifiers(nb, dev);
1929 }
1930
1931 static int dev_boot_phase = 1;
1932
1933 /**
1934 * register_netdevice_notifier - register a network notifier block
1935 * @nb: notifier
1936 *
1937 * Register a notifier to be called when network device events occur.
1938 * The notifier passed is linked into the kernel structures and must
1939 * not be reused until it has been unregistered. A negative errno code
1940 * is returned on a failure.
1941 *
1942 * When registered all registration and up events are replayed
1943 * to the new notifier to allow device to have a race free
1944 * view of the network device list.
1945 */
1946
register_netdevice_notifier(struct notifier_block * nb)1947 int register_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 struct net *net;
1950 int err;
1951
1952 /* Close race with setup_net() and cleanup_net() */
1953 down_write(&pernet_ops_rwsem);
1954
1955 /* When RTNL is removed, we need protection for netdev_chain. */
1956 rtnl_lock();
1957
1958 err = raw_notifier_chain_register(&netdev_chain, nb);
1959 if (err)
1960 goto unlock;
1961 if (dev_boot_phase)
1962 goto unlock;
1963 for_each_net(net) {
1964 __rtnl_net_lock(net);
1965 err = call_netdevice_register_net_notifiers(nb, net);
1966 __rtnl_net_unlock(net);
1967 if (err)
1968 goto rollback;
1969 }
1970
1971 unlock:
1972 rtnl_unlock();
1973 up_write(&pernet_ops_rwsem);
1974 return err;
1975
1976 rollback:
1977 for_each_net_continue_reverse(net) {
1978 __rtnl_net_lock(net);
1979 call_netdevice_unregister_net_notifiers(nb, net);
1980 __rtnl_net_unlock(net);
1981 }
1982
1983 raw_notifier_chain_unregister(&netdev_chain, nb);
1984 goto unlock;
1985 }
1986 EXPORT_SYMBOL(register_netdevice_notifier);
1987
1988 /**
1989 * unregister_netdevice_notifier - unregister a network notifier block
1990 * @nb: notifier
1991 *
1992 * Unregister a notifier previously registered by
1993 * register_netdevice_notifier(). The notifier is unlinked into the
1994 * kernel structures and may then be reused. A negative errno code
1995 * is returned on a failure.
1996 *
1997 * After unregistering unregister and down device events are synthesized
1998 * for all devices on the device list to the removed notifier to remove
1999 * the need for special case cleanup code.
2000 */
2001
unregister_netdevice_notifier(struct notifier_block * nb)2002 int unregister_netdevice_notifier(struct notifier_block *nb)
2003 {
2004 struct net *net;
2005 int err;
2006
2007 /* Close race with setup_net() and cleanup_net() */
2008 down_write(&pernet_ops_rwsem);
2009 rtnl_lock();
2010 err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011 if (err)
2012 goto unlock;
2013
2014 for_each_net(net) {
2015 __rtnl_net_lock(net);
2016 call_netdevice_unregister_net_notifiers(nb, net);
2017 __rtnl_net_unlock(net);
2018 }
2019
2020 unlock:
2021 rtnl_unlock();
2022 up_write(&pernet_ops_rwsem);
2023 return err;
2024 }
2025 EXPORT_SYMBOL(unregister_netdevice_notifier);
2026
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2027 static int __register_netdevice_notifier_net(struct net *net,
2028 struct notifier_block *nb,
2029 bool ignore_call_fail)
2030 {
2031 int err;
2032
2033 err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034 if (err)
2035 return err;
2036 if (dev_boot_phase)
2037 return 0;
2038
2039 err = call_netdevice_register_net_notifiers(nb, net);
2040 if (err && !ignore_call_fail)
2041 goto chain_unregister;
2042
2043 return 0;
2044
2045 chain_unregister:
2046 raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047 return err;
2048 }
2049
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2050 static int __unregister_netdevice_notifier_net(struct net *net,
2051 struct notifier_block *nb)
2052 {
2053 int err;
2054
2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056 if (err)
2057 return err;
2058
2059 call_netdevice_unregister_net_notifiers(nb, net);
2060 return 0;
2061 }
2062
2063 /**
2064 * register_netdevice_notifier_net - register a per-netns network notifier block
2065 * @net: network namespace
2066 * @nb: notifier
2067 *
2068 * Register a notifier to be called when network device events occur.
2069 * The notifier passed is linked into the kernel structures and must
2070 * not be reused until it has been unregistered. A negative errno code
2071 * is returned on a failure.
2072 *
2073 * When registered all registration and up events are replayed
2074 * to the new notifier to allow device to have a race free
2075 * view of the network device list.
2076 */
2077
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079 {
2080 int err;
2081
2082 rtnl_net_lock(net);
2083 err = __register_netdevice_notifier_net(net, nb, false);
2084 rtnl_net_unlock(net);
2085
2086 return err;
2087 }
2088 EXPORT_SYMBOL(register_netdevice_notifier_net);
2089
2090 /**
2091 * unregister_netdevice_notifier_net - unregister a per-netns
2092 * network notifier block
2093 * @net: network namespace
2094 * @nb: notifier
2095 *
2096 * Unregister a notifier previously registered by
2097 * register_netdevice_notifier_net(). The notifier is unlinked from the
2098 * kernel structures and may then be reused. A negative errno code
2099 * is returned on a failure.
2100 *
2101 * After unregistering unregister and down device events are synthesized
2102 * for all devices on the device list to the removed notifier to remove
2103 * the need for special case cleanup code.
2104 */
2105
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2106 int unregister_netdevice_notifier_net(struct net *net,
2107 struct notifier_block *nb)
2108 {
2109 int err;
2110
2111 rtnl_net_lock(net);
2112 err = __unregister_netdevice_notifier_net(net, nb);
2113 rtnl_net_unlock(net);
2114
2115 return err;
2116 }
2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2119 static void __move_netdevice_notifier_net(struct net *src_net,
2120 struct net *dst_net,
2121 struct notifier_block *nb)
2122 {
2123 __unregister_netdevice_notifier_net(src_net, nb);
2124 __register_netdevice_notifier_net(dst_net, nb, true);
2125 }
2126
rtnl_net_dev_lock(struct net_device * dev)2127 static void rtnl_net_dev_lock(struct net_device *dev)
2128 {
2129 bool again;
2130
2131 do {
2132 struct net *net;
2133
2134 again = false;
2135
2136 /* netns might be being dismantled. */
2137 rcu_read_lock();
2138 net = dev_net_rcu(dev);
2139 net_passive_inc(net);
2140 rcu_read_unlock();
2141
2142 rtnl_net_lock(net);
2143
2144 #ifdef CONFIG_NET_NS
2145 /* dev might have been moved to another netns. */
2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147 rtnl_net_unlock(net);
2148 net_passive_dec(net);
2149 again = true;
2150 }
2151 #endif
2152 } while (again);
2153 }
2154
rtnl_net_dev_unlock(struct net_device * dev)2155 static void rtnl_net_dev_unlock(struct net_device *dev)
2156 {
2157 struct net *net = dev_net(dev);
2158
2159 rtnl_net_unlock(net);
2160 net_passive_dec(net);
2161 }
2162
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2163 int register_netdevice_notifier_dev_net(struct net_device *dev,
2164 struct notifier_block *nb,
2165 struct netdev_net_notifier *nn)
2166 {
2167 int err;
2168
2169 rtnl_net_dev_lock(dev);
2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171 if (!err) {
2172 nn->nb = nb;
2173 list_add(&nn->list, &dev->net_notifier_list);
2174 }
2175 rtnl_net_dev_unlock(dev);
2176
2177 return err;
2178 }
2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182 struct notifier_block *nb,
2183 struct netdev_net_notifier *nn)
2184 {
2185 int err;
2186
2187 rtnl_net_dev_lock(dev);
2188 list_del(&nn->list);
2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190 rtnl_net_dev_unlock(dev);
2191
2192 return err;
2193 }
2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197 struct net *net)
2198 {
2199 struct netdev_net_notifier *nn;
2200
2201 list_for_each_entry(nn, &dev->net_notifier_list, list)
2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203 }
2204
2205 /**
2206 * call_netdevice_notifiers_info - call all network notifier blocks
2207 * @val: value passed unmodified to notifier function
2208 * @info: notifier information data
2209 *
2210 * Call all network notifier blocks. Parameters and return value
2211 * are as for raw_notifier_call_chain().
2212 */
2213
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2214 int call_netdevice_notifiers_info(unsigned long val,
2215 struct netdev_notifier_info *info)
2216 {
2217 struct net *net = dev_net(info->dev);
2218 int ret;
2219
2220 ASSERT_RTNL();
2221
2222 /* Run per-netns notifier block chain first, then run the global one.
2223 * Hopefully, one day, the global one is going to be removed after
2224 * all notifier block registrators get converted to be per-netns.
2225 */
2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227 if (ret & NOTIFY_STOP_MASK)
2228 return ret;
2229 return raw_notifier_call_chain(&netdev_chain, val, info);
2230 }
2231
2232 /**
2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234 * for and rollback on error
2235 * @val_up: value passed unmodified to notifier function
2236 * @val_down: value passed unmodified to the notifier function when
2237 * recovering from an error on @val_up
2238 * @info: notifier information data
2239 *
2240 * Call all per-netns network notifier blocks, but not notifier blocks on
2241 * the global notifier chain. Parameters and return value are as for
2242 * raw_notifier_call_chain_robust().
2243 */
2244
2245 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2246 call_netdevice_notifiers_info_robust(unsigned long val_up,
2247 unsigned long val_down,
2248 struct netdev_notifier_info *info)
2249 {
2250 struct net *net = dev_net(info->dev);
2251
2252 ASSERT_RTNL();
2253
2254 return raw_notifier_call_chain_robust(&net->netdev_chain,
2255 val_up, val_down, info);
2256 }
2257
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2258 static int call_netdevice_notifiers_extack(unsigned long val,
2259 struct net_device *dev,
2260 struct netlink_ext_ack *extack)
2261 {
2262 struct netdev_notifier_info info = {
2263 .dev = dev,
2264 .extack = extack,
2265 };
2266
2267 return call_netdevice_notifiers_info(val, &info);
2268 }
2269
2270 /**
2271 * call_netdevice_notifiers - call all network notifier blocks
2272 * @val: value passed unmodified to notifier function
2273 * @dev: net_device pointer passed unmodified to notifier function
2274 *
2275 * Call all network notifier blocks. Parameters and return value
2276 * are as for raw_notifier_call_chain().
2277 */
2278
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280 {
2281 return call_netdevice_notifiers_extack(val, dev, NULL);
2282 }
2283 EXPORT_SYMBOL(call_netdevice_notifiers);
2284
2285 /**
2286 * call_netdevice_notifiers_mtu - call all network notifier blocks
2287 * @val: value passed unmodified to notifier function
2288 * @dev: net_device pointer passed unmodified to notifier function
2289 * @arg: additional u32 argument passed to the notifier function
2290 *
2291 * Call all network notifier blocks. Parameters and return value
2292 * are as for raw_notifier_call_chain().
2293 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2294 static int call_netdevice_notifiers_mtu(unsigned long val,
2295 struct net_device *dev, u32 arg)
2296 {
2297 struct netdev_notifier_info_ext info = {
2298 .info.dev = dev,
2299 .ext.mtu = arg,
2300 };
2301
2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303
2304 return call_netdevice_notifiers_info(val, &info.info);
2305 }
2306
2307 #ifdef CONFIG_NET_INGRESS
2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309
net_inc_ingress_queue(void)2310 void net_inc_ingress_queue(void)
2311 {
2312 static_branch_inc(&ingress_needed_key);
2313 }
2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315
net_dec_ingress_queue(void)2316 void net_dec_ingress_queue(void)
2317 {
2318 static_branch_dec(&ingress_needed_key);
2319 }
2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321 #endif
2322
2323 #ifdef CONFIG_NET_EGRESS
2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325
net_inc_egress_queue(void)2326 void net_inc_egress_queue(void)
2327 {
2328 static_branch_inc(&egress_needed_key);
2329 }
2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331
net_dec_egress_queue(void)2332 void net_dec_egress_queue(void)
2333 {
2334 static_branch_dec(&egress_needed_key);
2335 }
2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337 #endif
2338
2339 #ifdef CONFIG_NET_CLS_ACT
2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341 EXPORT_SYMBOL(tcf_sw_enabled_key);
2342 #endif
2343
2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345 EXPORT_SYMBOL(netstamp_needed_key);
2346 #ifdef CONFIG_JUMP_LABEL
2347 static atomic_t netstamp_needed_deferred;
2348 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2349 static void netstamp_clear(struct work_struct *work)
2350 {
2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352 int wanted;
2353
2354 wanted = atomic_add_return(deferred, &netstamp_wanted);
2355 if (wanted > 0)
2356 static_branch_enable(&netstamp_needed_key);
2357 else
2358 static_branch_disable(&netstamp_needed_key);
2359 }
2360 static DECLARE_WORK(netstamp_work, netstamp_clear);
2361 #endif
2362
net_enable_timestamp(void)2363 void net_enable_timestamp(void)
2364 {
2365 #ifdef CONFIG_JUMP_LABEL
2366 int wanted = atomic_read(&netstamp_wanted);
2367
2368 while (wanted > 0) {
2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370 return;
2371 }
2372 atomic_inc(&netstamp_needed_deferred);
2373 schedule_work(&netstamp_work);
2374 #else
2375 static_branch_inc(&netstamp_needed_key);
2376 #endif
2377 }
2378 EXPORT_SYMBOL(net_enable_timestamp);
2379
net_disable_timestamp(void)2380 void net_disable_timestamp(void)
2381 {
2382 #ifdef CONFIG_JUMP_LABEL
2383 int wanted = atomic_read(&netstamp_wanted);
2384
2385 while (wanted > 1) {
2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387 return;
2388 }
2389 atomic_dec(&netstamp_needed_deferred);
2390 schedule_work(&netstamp_work);
2391 #else
2392 static_branch_dec(&netstamp_needed_key);
2393 #endif
2394 }
2395 EXPORT_SYMBOL(net_disable_timestamp);
2396
net_timestamp_set(struct sk_buff * skb)2397 static inline void net_timestamp_set(struct sk_buff *skb)
2398 {
2399 skb->tstamp = 0;
2400 skb->tstamp_type = SKB_CLOCK_REALTIME;
2401 if (static_branch_unlikely(&netstamp_needed_key))
2402 skb->tstamp = ktime_get_real();
2403 }
2404
2405 #define net_timestamp_check(COND, SKB) \
2406 if (static_branch_unlikely(&netstamp_needed_key)) { \
2407 if ((COND) && !(SKB)->tstamp) \
2408 (SKB)->tstamp = ktime_get_real(); \
2409 } \
2410
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412 {
2413 return __is_skb_forwardable(dev, skb, true);
2414 }
2415 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418 bool check_mtu)
2419 {
2420 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421
2422 if (likely(!ret)) {
2423 skb->protocol = eth_type_trans(skb, dev);
2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425 }
2426
2427 return ret;
2428 }
2429
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431 {
2432 return __dev_forward_skb2(dev, skb, true);
2433 }
2434 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435
2436 /**
2437 * dev_forward_skb - loopback an skb to another netif
2438 *
2439 * @dev: destination network device
2440 * @skb: buffer to forward
2441 *
2442 * return values:
2443 * NET_RX_SUCCESS (no congestion)
2444 * NET_RX_DROP (packet was dropped, but freed)
2445 *
2446 * dev_forward_skb can be used for injecting an skb from the
2447 * start_xmit function of one device into the receive queue
2448 * of another device.
2449 *
2450 * The receiving device may be in another namespace, so
2451 * we have to clear all information in the skb that could
2452 * impact namespace isolation.
2453 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455 {
2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457 }
2458 EXPORT_SYMBOL_GPL(dev_forward_skb);
2459
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463 }
2464
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2465 static inline int deliver_skb(struct sk_buff *skb,
2466 struct packet_type *pt_prev,
2467 struct net_device *orig_dev)
2468 {
2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470 return -ENOMEM;
2471 refcount_inc(&skb->users);
2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473 }
2474
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476 struct packet_type **pt,
2477 struct net_device *orig_dev,
2478 __be16 type,
2479 struct list_head *ptype_list)
2480 {
2481 struct packet_type *ptype, *pt_prev = *pt;
2482
2483 list_for_each_entry_rcu(ptype, ptype_list, list) {
2484 if (ptype->type != type)
2485 continue;
2486 if (pt_prev)
2487 deliver_skb(skb, pt_prev, orig_dev);
2488 pt_prev = ptype;
2489 }
2490 *pt = pt_prev;
2491 }
2492
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494 {
2495 if (!ptype->af_packet_priv || !skb->sk)
2496 return false;
2497
2498 if (ptype->id_match)
2499 return ptype->id_match(ptype, skb->sk);
2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501 return true;
2502
2503 return false;
2504 }
2505
2506 /**
2507 * dev_nit_active_rcu - return true if any network interface taps are in use
2508 *
2509 * The caller must hold the RCU lock
2510 *
2511 * @dev: network device to check for the presence of taps
2512 */
dev_nit_active_rcu(const struct net_device * dev)2513 bool dev_nit_active_rcu(const struct net_device *dev)
2514 {
2515 /* Callers may hold either RCU or RCU BH lock */
2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517
2518 return !list_empty(&dev_net(dev)->ptype_all) ||
2519 !list_empty(&dev->ptype_all);
2520 }
2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522
2523 /*
2524 * Support routine. Sends outgoing frames to any network
2525 * taps currently in use.
2526 */
2527
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529 {
2530 struct packet_type *ptype, *pt_prev = NULL;
2531 struct list_head *ptype_list;
2532 struct sk_buff *skb2 = NULL;
2533
2534 rcu_read_lock();
2535 ptype_list = &dev_net_rcu(dev)->ptype_all;
2536 again:
2537 list_for_each_entry_rcu(ptype, ptype_list, list) {
2538 if (READ_ONCE(ptype->ignore_outgoing))
2539 continue;
2540
2541 /* Never send packets back to the socket
2542 * they originated from - MvS (miquels@drinkel.ow.org)
2543 */
2544 if (skb_loop_sk(ptype, skb))
2545 continue;
2546
2547 if (pt_prev) {
2548 deliver_skb(skb2, pt_prev, skb->dev);
2549 pt_prev = ptype;
2550 continue;
2551 }
2552
2553 /* need to clone skb, done only once */
2554 skb2 = skb_clone(skb, GFP_ATOMIC);
2555 if (!skb2)
2556 goto out_unlock;
2557
2558 net_timestamp_set(skb2);
2559
2560 /* skb->nh should be correctly
2561 * set by sender, so that the second statement is
2562 * just protection against buggy protocols.
2563 */
2564 skb_reset_mac_header(skb2);
2565
2566 if (skb_network_header(skb2) < skb2->data ||
2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569 ntohs(skb2->protocol),
2570 dev->name);
2571 skb_reset_network_header(skb2);
2572 }
2573
2574 skb2->transport_header = skb2->network_header;
2575 skb2->pkt_type = PACKET_OUTGOING;
2576 pt_prev = ptype;
2577 }
2578
2579 if (ptype_list != &dev->ptype_all) {
2580 ptype_list = &dev->ptype_all;
2581 goto again;
2582 }
2583 out_unlock:
2584 if (pt_prev) {
2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587 else
2588 kfree_skb(skb2);
2589 }
2590 rcu_read_unlock();
2591 }
2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593
2594 /**
2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596 * @dev: Network device
2597 * @txq: number of queues available
2598 *
2599 * If real_num_tx_queues is changed the tc mappings may no longer be
2600 * valid. To resolve this verify the tc mapping remains valid and if
2601 * not NULL the mapping. With no priorities mapping to this
2602 * offset/count pair it will no longer be used. In the worst case TC0
2603 * is invalid nothing can be done so disable priority mappings. If is
2604 * expected that drivers will fix this mapping if they can before
2605 * calling netif_set_real_num_tx_queues.
2606 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608 {
2609 int i;
2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611
2612 /* If TC0 is invalidated disable TC mapping */
2613 if (tc->offset + tc->count > txq) {
2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615 dev->num_tc = 0;
2616 return;
2617 }
2618
2619 /* Invalidated prio to tc mappings set to TC0 */
2620 for (i = 1; i < TC_BITMASK + 1; i++) {
2621 int q = netdev_get_prio_tc_map(dev, i);
2622
2623 tc = &dev->tc_to_txq[q];
2624 if (tc->offset + tc->count > txq) {
2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626 i, q);
2627 netdev_set_prio_tc_map(dev, i, 0);
2628 }
2629 }
2630 }
2631
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633 {
2634 if (dev->num_tc) {
2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636 int i;
2637
2638 /* walk through the TCs and see if it falls into any of them */
2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640 if ((txq - tc->offset) < tc->count)
2641 return i;
2642 }
2643
2644 /* didn't find it, just return -1 to indicate no match */
2645 return -1;
2646 }
2647
2648 return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_txq_to_tc);
2651
2652 #ifdef CONFIG_XPS
2653 static struct static_key xps_needed __read_mostly;
2654 static struct static_key xps_rxqs_needed __read_mostly;
2655 static DEFINE_MUTEX(xps_map_mutex);
2656 #define xmap_dereference(P) \
2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660 struct xps_dev_maps *old_maps, int tci, u16 index)
2661 {
2662 struct xps_map *map = NULL;
2663 int pos;
2664
2665 map = xmap_dereference(dev_maps->attr_map[tci]);
2666 if (!map)
2667 return false;
2668
2669 for (pos = map->len; pos--;) {
2670 if (map->queues[pos] != index)
2671 continue;
2672
2673 if (map->len > 1) {
2674 map->queues[pos] = map->queues[--map->len];
2675 break;
2676 }
2677
2678 if (old_maps)
2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681 kfree_rcu(map, rcu);
2682 return false;
2683 }
2684
2685 return true;
2686 }
2687
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2688 static bool remove_xps_queue_cpu(struct net_device *dev,
2689 struct xps_dev_maps *dev_maps,
2690 int cpu, u16 offset, u16 count)
2691 {
2692 int num_tc = dev_maps->num_tc;
2693 bool active = false;
2694 int tci;
2695
2696 for (tci = cpu * num_tc; num_tc--; tci++) {
2697 int i, j;
2698
2699 for (i = count, j = offset; i--; j++) {
2700 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701 break;
2702 }
2703
2704 active |= i < 0;
2705 }
2706
2707 return active;
2708 }
2709
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2710 static void reset_xps_maps(struct net_device *dev,
2711 struct xps_dev_maps *dev_maps,
2712 enum xps_map_type type)
2713 {
2714 static_key_slow_dec_cpuslocked(&xps_needed);
2715 if (type == XPS_RXQS)
2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717
2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719
2720 kfree_rcu(dev_maps, rcu);
2721 }
2722
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724 u16 offset, u16 count)
2725 {
2726 struct xps_dev_maps *dev_maps;
2727 bool active = false;
2728 int i, j;
2729
2730 dev_maps = xmap_dereference(dev->xps_maps[type]);
2731 if (!dev_maps)
2732 return;
2733
2734 for (j = 0; j < dev_maps->nr_ids; j++)
2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736 if (!active)
2737 reset_xps_maps(dev, dev_maps, type);
2738
2739 if (type == XPS_CPUS) {
2740 for (i = offset + (count - 1); count--; i--)
2741 netdev_queue_numa_node_write(
2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743 }
2744 }
2745
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747 u16 count)
2748 {
2749 if (!static_key_false(&xps_needed))
2750 return;
2751
2752 cpus_read_lock();
2753 mutex_lock(&xps_map_mutex);
2754
2755 if (static_key_false(&xps_rxqs_needed))
2756 clean_xps_maps(dev, XPS_RXQS, offset, count);
2757
2758 clean_xps_maps(dev, XPS_CPUS, offset, count);
2759
2760 mutex_unlock(&xps_map_mutex);
2761 cpus_read_unlock();
2762 }
2763
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765 {
2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767 }
2768
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770 u16 index, bool is_rxqs_map)
2771 {
2772 struct xps_map *new_map;
2773 int alloc_len = XPS_MIN_MAP_ALLOC;
2774 int i, pos;
2775
2776 for (pos = 0; map && pos < map->len; pos++) {
2777 if (map->queues[pos] != index)
2778 continue;
2779 return map;
2780 }
2781
2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783 if (map) {
2784 if (pos < map->alloc_len)
2785 return map;
2786
2787 alloc_len = map->alloc_len * 2;
2788 }
2789
2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791 * map
2792 */
2793 if (is_rxqs_map)
2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795 else
2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797 cpu_to_node(attr_index));
2798 if (!new_map)
2799 return NULL;
2800
2801 for (i = 0; i < pos; i++)
2802 new_map->queues[i] = map->queues[i];
2803 new_map->alloc_len = alloc_len;
2804 new_map->len = pos;
2805
2806 return new_map;
2807 }
2808
2809 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811 struct xps_dev_maps *new_dev_maps, int index,
2812 int tc, bool skip_tc)
2813 {
2814 int i, tci = index * dev_maps->num_tc;
2815 struct xps_map *map;
2816
2817 /* copy maps belonging to foreign traffic classes */
2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819 if (i == tc && skip_tc)
2820 continue;
2821
2822 /* fill in the new device map from the old device map */
2823 map = xmap_dereference(dev_maps->attr_map[tci]);
2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825 }
2826 }
2827
2828 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830 u16 index, enum xps_map_type type)
2831 {
2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833 const unsigned long *online_mask = NULL;
2834 bool active = false, copy = false;
2835 int i, j, tci, numa_node_id = -2;
2836 int maps_sz, num_tc = 1, tc = 0;
2837 struct xps_map *map, *new_map;
2838 unsigned int nr_ids;
2839
2840 WARN_ON_ONCE(index >= dev->num_tx_queues);
2841
2842 if (dev->num_tc) {
2843 /* Do not allow XPS on subordinate device directly */
2844 num_tc = dev->num_tc;
2845 if (num_tc < 0)
2846 return -EINVAL;
2847
2848 /* If queue belongs to subordinate dev use its map */
2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850
2851 tc = netdev_txq_to_tc(dev, index);
2852 if (tc < 0)
2853 return -EINVAL;
2854 }
2855
2856 mutex_lock(&xps_map_mutex);
2857
2858 dev_maps = xmap_dereference(dev->xps_maps[type]);
2859 if (type == XPS_RXQS) {
2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861 nr_ids = dev->num_rx_queues;
2862 } else {
2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864 if (num_possible_cpus() > 1)
2865 online_mask = cpumask_bits(cpu_online_mask);
2866 nr_ids = nr_cpu_ids;
2867 }
2868
2869 if (maps_sz < L1_CACHE_BYTES)
2870 maps_sz = L1_CACHE_BYTES;
2871
2872 /* The old dev_maps could be larger or smaller than the one we're
2873 * setting up now, as dev->num_tc or nr_ids could have been updated in
2874 * between. We could try to be smart, but let's be safe instead and only
2875 * copy foreign traffic classes if the two map sizes match.
2876 */
2877 if (dev_maps &&
2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879 copy = true;
2880
2881 /* allocate memory for queue storage */
2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883 j < nr_ids;) {
2884 if (!new_dev_maps) {
2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886 if (!new_dev_maps) {
2887 mutex_unlock(&xps_map_mutex);
2888 return -ENOMEM;
2889 }
2890
2891 new_dev_maps->nr_ids = nr_ids;
2892 new_dev_maps->num_tc = num_tc;
2893 }
2894
2895 tci = j * num_tc + tc;
2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897
2898 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899 if (!map)
2900 goto error;
2901
2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903 }
2904
2905 if (!new_dev_maps)
2906 goto out_no_new_maps;
2907
2908 if (!dev_maps) {
2909 /* Increment static keys at most once per type */
2910 static_key_slow_inc_cpuslocked(&xps_needed);
2911 if (type == XPS_RXQS)
2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913 }
2914
2915 for (j = 0; j < nr_ids; j++) {
2916 bool skip_tc = false;
2917
2918 tci = j * num_tc + tc;
2919 if (netif_attr_test_mask(j, mask, nr_ids) &&
2920 netif_attr_test_online(j, online_mask, nr_ids)) {
2921 /* add tx-queue to CPU/rx-queue maps */
2922 int pos = 0;
2923
2924 skip_tc = true;
2925
2926 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927 while ((pos < map->len) && (map->queues[pos] != index))
2928 pos++;
2929
2930 if (pos == map->len)
2931 map->queues[map->len++] = index;
2932 #ifdef CONFIG_NUMA
2933 if (type == XPS_CPUS) {
2934 if (numa_node_id == -2)
2935 numa_node_id = cpu_to_node(j);
2936 else if (numa_node_id != cpu_to_node(j))
2937 numa_node_id = -1;
2938 }
2939 #endif
2940 }
2941
2942 if (copy)
2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944 skip_tc);
2945 }
2946
2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948
2949 /* Cleanup old maps */
2950 if (!dev_maps)
2951 goto out_no_old_maps;
2952
2953 for (j = 0; j < dev_maps->nr_ids; j++) {
2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955 map = xmap_dereference(dev_maps->attr_map[tci]);
2956 if (!map)
2957 continue;
2958
2959 if (copy) {
2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961 if (map == new_map)
2962 continue;
2963 }
2964
2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966 kfree_rcu(map, rcu);
2967 }
2968 }
2969
2970 old_dev_maps = dev_maps;
2971
2972 out_no_old_maps:
2973 dev_maps = new_dev_maps;
2974 active = true;
2975
2976 out_no_new_maps:
2977 if (type == XPS_CPUS)
2978 /* update Tx queue numa node */
2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980 (numa_node_id >= 0) ?
2981 numa_node_id : NUMA_NO_NODE);
2982
2983 if (!dev_maps)
2984 goto out_no_maps;
2985
2986 /* removes tx-queue from unused CPUs/rx-queues */
2987 for (j = 0; j < dev_maps->nr_ids; j++) {
2988 tci = j * dev_maps->num_tc;
2989
2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991 if (i == tc &&
2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994 continue;
2995
2996 active |= remove_xps_queue(dev_maps,
2997 copy ? old_dev_maps : NULL,
2998 tci, index);
2999 }
3000 }
3001
3002 if (old_dev_maps)
3003 kfree_rcu(old_dev_maps, rcu);
3004
3005 /* free map if not active */
3006 if (!active)
3007 reset_xps_maps(dev, dev_maps, type);
3008
3009 out_no_maps:
3010 mutex_unlock(&xps_map_mutex);
3011
3012 return 0;
3013 error:
3014 /* remove any maps that we added */
3015 for (j = 0; j < nr_ids; j++) {
3016 for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018 map = copy ?
3019 xmap_dereference(dev_maps->attr_map[tci]) :
3020 NULL;
3021 if (new_map && new_map != map)
3022 kfree(new_map);
3023 }
3024 }
3025
3026 mutex_unlock(&xps_map_mutex);
3027
3028 kfree(new_dev_maps);
3029 return -ENOMEM;
3030 }
3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034 u16 index)
3035 {
3036 int ret;
3037
3038 cpus_read_lock();
3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040 cpus_read_unlock();
3041
3042 return ret;
3043 }
3044 EXPORT_SYMBOL(netif_set_xps_queue);
3045
3046 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3047 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048 {
3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050
3051 /* Unbind any subordinate channels */
3052 while (txq-- != &dev->_tx[0]) {
3053 if (txq->sb_dev)
3054 netdev_unbind_sb_channel(dev, txq->sb_dev);
3055 }
3056 }
3057
netdev_reset_tc(struct net_device * dev)3058 void netdev_reset_tc(struct net_device *dev)
3059 {
3060 #ifdef CONFIG_XPS
3061 netif_reset_xps_queues_gt(dev, 0);
3062 #endif
3063 netdev_unbind_all_sb_channels(dev);
3064
3065 /* Reset TC configuration of device */
3066 dev->num_tc = 0;
3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069 }
3070 EXPORT_SYMBOL(netdev_reset_tc);
3071
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073 {
3074 if (tc >= dev->num_tc)
3075 return -EINVAL;
3076
3077 #ifdef CONFIG_XPS
3078 netif_reset_xps_queues(dev, offset, count);
3079 #endif
3080 dev->tc_to_txq[tc].count = count;
3081 dev->tc_to_txq[tc].offset = offset;
3082 return 0;
3083 }
3084 EXPORT_SYMBOL(netdev_set_tc_queue);
3085
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087 {
3088 if (num_tc > TC_MAX_QUEUE)
3089 return -EINVAL;
3090
3091 #ifdef CONFIG_XPS
3092 netif_reset_xps_queues_gt(dev, 0);
3093 #endif
3094 netdev_unbind_all_sb_channels(dev);
3095
3096 dev->num_tc = num_tc;
3097 return 0;
3098 }
3099 EXPORT_SYMBOL(netdev_set_num_tc);
3100
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3101 void netdev_unbind_sb_channel(struct net_device *dev,
3102 struct net_device *sb_dev)
3103 {
3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105
3106 #ifdef CONFIG_XPS
3107 netif_reset_xps_queues_gt(sb_dev, 0);
3108 #endif
3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111
3112 while (txq-- != &dev->_tx[0]) {
3113 if (txq->sb_dev == sb_dev)
3114 txq->sb_dev = NULL;
3115 }
3116 }
3117 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3119 int netdev_bind_sb_channel_queue(struct net_device *dev,
3120 struct net_device *sb_dev,
3121 u8 tc, u16 count, u16 offset)
3122 {
3123 /* Make certain the sb_dev and dev are already configured */
3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125 return -EINVAL;
3126
3127 /* We cannot hand out queues we don't have */
3128 if ((offset + count) > dev->real_num_tx_queues)
3129 return -EINVAL;
3130
3131 /* Record the mapping */
3132 sb_dev->tc_to_txq[tc].count = count;
3133 sb_dev->tc_to_txq[tc].offset = offset;
3134
3135 /* Provide a way for Tx queue to find the tc_to_txq map or
3136 * XPS map for itself.
3137 */
3138 while (count--)
3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140
3141 return 0;
3142 }
3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144
netdev_set_sb_channel(struct net_device * dev,u16 channel)3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146 {
3147 /* Do not use a multiqueue device to represent a subordinate channel */
3148 if (netif_is_multiqueue(dev))
3149 return -ENODEV;
3150
3151 /* We allow channels 1 - 32767 to be used for subordinate channels.
3152 * Channel 0 is meant to be "native" mode and used only to represent
3153 * the main root device. We allow writing 0 to reset the device back
3154 * to normal mode after being used as a subordinate channel.
3155 */
3156 if (channel > S16_MAX)
3157 return -EINVAL;
3158
3159 dev->num_tc = -channel;
3160
3161 return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_set_sb_channel);
3164
3165 /*
3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170 {
3171 bool disabling;
3172 int rc;
3173
3174 disabling = txq < dev->real_num_tx_queues;
3175
3176 if (txq < 1 || txq > dev->num_tx_queues)
3177 return -EINVAL;
3178
3179 if (dev->reg_state == NETREG_REGISTERED ||
3180 dev->reg_state == NETREG_UNREGISTERING) {
3181 netdev_ops_assert_locked(dev);
3182
3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184 txq);
3185 if (rc)
3186 return rc;
3187
3188 if (dev->num_tc)
3189 netif_setup_tc(dev, txq);
3190
3191 net_shaper_set_real_num_tx_queues(dev, txq);
3192
3193 dev_qdisc_change_real_num_tx(dev, txq);
3194
3195 dev->real_num_tx_queues = txq;
3196
3197 if (disabling) {
3198 synchronize_net();
3199 qdisc_reset_all_tx_gt(dev, txq);
3200 #ifdef CONFIG_XPS
3201 netif_reset_xps_queues_gt(dev, txq);
3202 #endif
3203 }
3204 } else {
3205 dev->real_num_tx_queues = txq;
3206 }
3207
3208 return 0;
3209 }
3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211
3212 /**
3213 * netif_set_real_num_rx_queues - set actual number of RX queues used
3214 * @dev: Network device
3215 * @rxq: Actual number of RX queues
3216 *
3217 * This must be called either with the rtnl_lock held or before
3218 * registration of the net device. Returns 0 on success, or a
3219 * negative error code. If called before registration, it always
3220 * succeeds.
3221 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223 {
3224 int rc;
3225
3226 if (rxq < 1 || rxq > dev->num_rx_queues)
3227 return -EINVAL;
3228
3229 if (dev->reg_state == NETREG_REGISTERED) {
3230 netdev_ops_assert_locked(dev);
3231
3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233 rxq);
3234 if (rc)
3235 return rc;
3236 }
3237
3238 dev->real_num_rx_queues = rxq;
3239 return 0;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242
3243 /**
3244 * netif_set_real_num_queues - set actual number of RX and TX queues used
3245 * @dev: Network device
3246 * @txq: Actual number of TX queues
3247 * @rxq: Actual number of RX queues
3248 *
3249 * Set the real number of both TX and RX queues.
3250 * Does nothing if the number of queues is already correct.
3251 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3252 int netif_set_real_num_queues(struct net_device *dev,
3253 unsigned int txq, unsigned int rxq)
3254 {
3255 unsigned int old_rxq = dev->real_num_rx_queues;
3256 int err;
3257
3258 if (txq < 1 || txq > dev->num_tx_queues ||
3259 rxq < 1 || rxq > dev->num_rx_queues)
3260 return -EINVAL;
3261
3262 /* Start from increases, so the error path only does decreases -
3263 * decreases can't fail.
3264 */
3265 if (rxq > dev->real_num_rx_queues) {
3266 err = netif_set_real_num_rx_queues(dev, rxq);
3267 if (err)
3268 return err;
3269 }
3270 if (txq > dev->real_num_tx_queues) {
3271 err = netif_set_real_num_tx_queues(dev, txq);
3272 if (err)
3273 goto undo_rx;
3274 }
3275 if (rxq < dev->real_num_rx_queues)
3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277 if (txq < dev->real_num_tx_queues)
3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279
3280 return 0;
3281 undo_rx:
3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283 return err;
3284 }
3285 EXPORT_SYMBOL(netif_set_real_num_queues);
3286
3287 /**
3288 * netif_set_tso_max_size() - set the max size of TSO frames supported
3289 * @dev: netdev to update
3290 * @size: max skb->len of a TSO frame
3291 *
3292 * Set the limit on the size of TSO super-frames the device can handle.
3293 * Unless explicitly set the stack will assume the value of
3294 * %GSO_LEGACY_MAX_SIZE.
3295 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297 {
3298 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299 if (size < READ_ONCE(dev->gso_max_size))
3300 netif_set_gso_max_size(dev, size);
3301 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302 netif_set_gso_ipv4_max_size(dev, size);
3303 }
3304 EXPORT_SYMBOL(netif_set_tso_max_size);
3305
3306 /**
3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308 * @dev: netdev to update
3309 * @segs: max number of TCP segments
3310 *
3311 * Set the limit on the number of TCP segments the device can generate from
3312 * a single TSO super-frame.
3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316 {
3317 dev->tso_max_segs = segs;
3318 if (segs < READ_ONCE(dev->gso_max_segs))
3319 netif_set_gso_max_segs(dev, segs);
3320 }
3321 EXPORT_SYMBOL(netif_set_tso_max_segs);
3322
3323 /**
3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325 * @to: netdev to update
3326 * @from: netdev from which to copy the limits
3327 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329 {
3330 netif_set_tso_max_size(to, from->tso_max_size);
3331 netif_set_tso_max_segs(to, from->tso_max_segs);
3332 }
3333 EXPORT_SYMBOL(netif_inherit_tso_max);
3334
3335 /**
3336 * netif_get_num_default_rss_queues - default number of RSS queues
3337 *
3338 * Default value is the number of physical cores if there are only 1 or 2, or
3339 * divided by 2 if there are more.
3340 */
netif_get_num_default_rss_queues(void)3341 int netif_get_num_default_rss_queues(void)
3342 {
3343 cpumask_var_t cpus;
3344 int cpu, count = 0;
3345
3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347 return 1;
3348
3349 cpumask_copy(cpus, cpu_online_mask);
3350 for_each_cpu(cpu, cpus) {
3351 ++count;
3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353 }
3354 free_cpumask_var(cpus);
3355
3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357 }
3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359
__netif_reschedule(struct Qdisc * q)3360 static void __netif_reschedule(struct Qdisc *q)
3361 {
3362 struct softnet_data *sd;
3363 unsigned long flags;
3364
3365 local_irq_save(flags);
3366 sd = this_cpu_ptr(&softnet_data);
3367 q->next_sched = NULL;
3368 *sd->output_queue_tailp = q;
3369 sd->output_queue_tailp = &q->next_sched;
3370 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371 local_irq_restore(flags);
3372 }
3373
__netif_schedule(struct Qdisc * q)3374 void __netif_schedule(struct Qdisc *q)
3375 {
3376 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377 __netif_reschedule(q);
3378 }
3379 EXPORT_SYMBOL(__netif_schedule);
3380
3381 struct dev_kfree_skb_cb {
3382 enum skb_drop_reason reason;
3383 };
3384
get_kfree_skb_cb(const struct sk_buff * skb)3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386 {
3387 return (struct dev_kfree_skb_cb *)skb->cb;
3388 }
3389
netif_schedule_queue(struct netdev_queue * txq)3390 void netif_schedule_queue(struct netdev_queue *txq)
3391 {
3392 rcu_read_lock();
3393 if (!netif_xmit_stopped(txq)) {
3394 struct Qdisc *q = rcu_dereference(txq->qdisc);
3395
3396 __netif_schedule(q);
3397 }
3398 rcu_read_unlock();
3399 }
3400 EXPORT_SYMBOL(netif_schedule_queue);
3401
netif_tx_wake_queue(struct netdev_queue * dev_queue)3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403 {
3404 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405 struct Qdisc *q;
3406
3407 rcu_read_lock();
3408 q = rcu_dereference(dev_queue->qdisc);
3409 __netif_schedule(q);
3410 rcu_read_unlock();
3411 }
3412 }
3413 EXPORT_SYMBOL(netif_tx_wake_queue);
3414
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416 {
3417 unsigned long flags;
3418
3419 if (unlikely(!skb))
3420 return;
3421
3422 if (likely(refcount_read(&skb->users) == 1)) {
3423 smp_rmb();
3424 refcount_set(&skb->users, 0);
3425 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3426 return;
3427 }
3428 get_kfree_skb_cb(skb)->reason = reason;
3429 local_irq_save(flags);
3430 skb->next = __this_cpu_read(softnet_data.completion_queue);
3431 __this_cpu_write(softnet_data.completion_queue, skb);
3432 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433 local_irq_restore(flags);
3434 }
3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438 {
3439 if (in_hardirq() || irqs_disabled())
3440 dev_kfree_skb_irq_reason(skb, reason);
3441 else
3442 kfree_skb_reason(skb, reason);
3443 }
3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445
3446
3447 /**
3448 * netif_device_detach - mark device as removed
3449 * @dev: network device
3450 *
3451 * Mark device as removed from system and therefore no longer available.
3452 */
netif_device_detach(struct net_device * dev)3453 void netif_device_detach(struct net_device *dev)
3454 {
3455 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456 netif_running(dev)) {
3457 netif_tx_stop_all_queues(dev);
3458 }
3459 }
3460 EXPORT_SYMBOL(netif_device_detach);
3461
3462 /**
3463 * netif_device_attach - mark device as attached
3464 * @dev: network device
3465 *
3466 * Mark device as attached from system and restart if needed.
3467 */
netif_device_attach(struct net_device * dev)3468 void netif_device_attach(struct net_device *dev)
3469 {
3470 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471 netif_running(dev)) {
3472 netif_tx_wake_all_queues(dev);
3473 netdev_watchdog_up(dev);
3474 }
3475 }
3476 EXPORT_SYMBOL(netif_device_attach);
3477
3478 /*
3479 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480 * to be used as a distribution range.
3481 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3482 static u16 skb_tx_hash(const struct net_device *dev,
3483 const struct net_device *sb_dev,
3484 struct sk_buff *skb)
3485 {
3486 u32 hash;
3487 u16 qoffset = 0;
3488 u16 qcount = dev->real_num_tx_queues;
3489
3490 if (dev->num_tc) {
3491 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492
3493 qoffset = sb_dev->tc_to_txq[tc].offset;
3494 qcount = sb_dev->tc_to_txq[tc].count;
3495 if (unlikely(!qcount)) {
3496 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497 sb_dev->name, qoffset, tc);
3498 qoffset = 0;
3499 qcount = dev->real_num_tx_queues;
3500 }
3501 }
3502
3503 if (skb_rx_queue_recorded(skb)) {
3504 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505 hash = skb_get_rx_queue(skb);
3506 if (hash >= qoffset)
3507 hash -= qoffset;
3508 while (unlikely(hash >= qcount))
3509 hash -= qcount;
3510 return hash + qoffset;
3511 }
3512
3513 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514 }
3515
skb_warn_bad_offload(const struct sk_buff * skb)3516 void skb_warn_bad_offload(const struct sk_buff *skb)
3517 {
3518 static const netdev_features_t null_features;
3519 struct net_device *dev = skb->dev;
3520 const char *name = "";
3521
3522 if (!net_ratelimit())
3523 return;
3524
3525 if (dev) {
3526 if (dev->dev.parent)
3527 name = dev_driver_string(dev->dev.parent);
3528 else
3529 name = netdev_name(dev);
3530 }
3531 skb_dump(KERN_WARNING, skb, false);
3532 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533 name, dev ? &dev->features : &null_features,
3534 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535 }
3536
3537 /*
3538 * Invalidate hardware checksum when packet is to be mangled, and
3539 * complete checksum manually on outgoing path.
3540 */
skb_checksum_help(struct sk_buff * skb)3541 int skb_checksum_help(struct sk_buff *skb)
3542 {
3543 __wsum csum;
3544 int ret = 0, offset;
3545
3546 if (skb->ip_summed == CHECKSUM_COMPLETE)
3547 goto out_set_summed;
3548
3549 if (unlikely(skb_is_gso(skb))) {
3550 skb_warn_bad_offload(skb);
3551 return -EINVAL;
3552 }
3553
3554 if (!skb_frags_readable(skb)) {
3555 return -EFAULT;
3556 }
3557
3558 /* Before computing a checksum, we should make sure no frag could
3559 * be modified by an external entity : checksum could be wrong.
3560 */
3561 if (skb_has_shared_frag(skb)) {
3562 ret = __skb_linearize(skb);
3563 if (ret)
3564 goto out;
3565 }
3566
3567 offset = skb_checksum_start_offset(skb);
3568 ret = -EINVAL;
3569 if (unlikely(offset >= skb_headlen(skb))) {
3570 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572 offset, skb_headlen(skb));
3573 goto out;
3574 }
3575 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576
3577 offset += skb->csum_offset;
3578 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581 offset + sizeof(__sum16), skb_headlen(skb));
3582 goto out;
3583 }
3584 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585 if (ret)
3586 goto out;
3587
3588 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589 out_set_summed:
3590 skb->ip_summed = CHECKSUM_NONE;
3591 out:
3592 return ret;
3593 }
3594 EXPORT_SYMBOL(skb_checksum_help);
3595
3596 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3597 int skb_crc32c_csum_help(struct sk_buff *skb)
3598 {
3599 u32 crc;
3600 int ret = 0, offset, start;
3601
3602 if (skb->ip_summed != CHECKSUM_PARTIAL)
3603 goto out;
3604
3605 if (unlikely(skb_is_gso(skb)))
3606 goto out;
3607
3608 /* Before computing a checksum, we should make sure no frag could
3609 * be modified by an external entity : checksum could be wrong.
3610 */
3611 if (unlikely(skb_has_shared_frag(skb))) {
3612 ret = __skb_linearize(skb);
3613 if (ret)
3614 goto out;
3615 }
3616 start = skb_checksum_start_offset(skb);
3617 offset = start + offsetof(struct sctphdr, checksum);
3618 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619 ret = -EINVAL;
3620 goto out;
3621 }
3622
3623 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624 if (ret)
3625 goto out;
3626
3627 crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629 skb_reset_csum_not_inet(skb);
3630 out:
3631 return ret;
3632 }
3633 EXPORT_SYMBOL(skb_crc32c_csum_help);
3634 #endif /* CONFIG_NET_CRC32C */
3635
skb_network_protocol(struct sk_buff * skb,int * depth)3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637 {
3638 __be16 type = skb->protocol;
3639
3640 /* Tunnel gso handlers can set protocol to ethernet. */
3641 if (type == htons(ETH_P_TEB)) {
3642 struct ethhdr *eth;
3643
3644 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645 return 0;
3646
3647 eth = (struct ethhdr *)skb->data;
3648 type = eth->h_proto;
3649 }
3650
3651 return vlan_get_protocol_and_depth(skb, type, depth);
3652 }
3653
3654
3655 /* Take action when hardware reception checksum errors are detected. */
3656 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658 {
3659 netdev_err(dev, "hw csum failure\n");
3660 skb_dump(KERN_ERR, skb, true);
3661 dump_stack();
3662 }
3663
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665 {
3666 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667 }
3668 EXPORT_SYMBOL(netdev_rx_csum_fault);
3669 #endif
3670
3671 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 #ifdef CONFIG_HIGHMEM
3675 int i;
3676
3677 if (!(dev->features & NETIF_F_HIGHDMA)) {
3678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680 struct page *page = skb_frag_page(frag);
3681
3682 if (page && PageHighMem(page))
3683 return 1;
3684 }
3685 }
3686 #endif
3687 return 0;
3688 }
3689
3690 /* If MPLS offload request, verify we are testing hardware MPLS features
3691 * instead of standard features for the netdev.
3692 */
3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3694 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695 netdev_features_t features,
3696 __be16 type)
3697 {
3698 if (eth_p_mpls(type))
3699 features &= skb->dev->mpls_features;
3700
3701 return features;
3702 }
3703 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3704 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705 netdev_features_t features,
3706 __be16 type)
3707 {
3708 return features;
3709 }
3710 #endif
3711
harmonize_features(struct sk_buff * skb,netdev_features_t features)3712 static netdev_features_t harmonize_features(struct sk_buff *skb,
3713 netdev_features_t features)
3714 {
3715 __be16 type;
3716
3717 type = skb_network_protocol(skb, NULL);
3718 features = net_mpls_features(skb, features, type);
3719
3720 if (skb->ip_summed != CHECKSUM_NONE &&
3721 !can_checksum_protocol(features, type)) {
3722 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723 }
3724 if (illegal_highdma(skb->dev, skb))
3725 features &= ~NETIF_F_SG;
3726
3727 return features;
3728 }
3729
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3730 netdev_features_t passthru_features_check(struct sk_buff *skb,
3731 struct net_device *dev,
3732 netdev_features_t features)
3733 {
3734 return features;
3735 }
3736 EXPORT_SYMBOL(passthru_features_check);
3737
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3738 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739 struct net_device *dev,
3740 netdev_features_t features)
3741 {
3742 return vlan_features_check(skb, features);
3743 }
3744
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3745 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746 struct net_device *dev,
3747 netdev_features_t features)
3748 {
3749 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750
3751 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752 return features & ~NETIF_F_GSO_MASK;
3753
3754 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755 return features & ~NETIF_F_GSO_MASK;
3756
3757 if (!skb_shinfo(skb)->gso_type) {
3758 skb_warn_bad_offload(skb);
3759 return features & ~NETIF_F_GSO_MASK;
3760 }
3761
3762 /* Support for GSO partial features requires software
3763 * intervention before we can actually process the packets
3764 * so we need to strip support for any partial features now
3765 * and we can pull them back in after we have partially
3766 * segmented the frame.
3767 */
3768 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769 features &= ~dev->gso_partial_features;
3770
3771 /* Make sure to clear the IPv4 ID mangling feature if the
3772 * IPv4 header has the potential to be fragmented.
3773 */
3774 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3775 struct iphdr *iph = skb->encapsulation ?
3776 inner_ip_hdr(skb) : ip_hdr(skb);
3777
3778 if (!(iph->frag_off & htons(IP_DF)))
3779 features &= ~NETIF_F_TSO_MANGLEID;
3780 }
3781
3782 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3783 * so neither does TSO that depends on it.
3784 */
3785 if (features & NETIF_F_IPV6_CSUM &&
3786 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3787 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3788 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3789 skb_transport_header_was_set(skb) &&
3790 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3791 !ipv6_has_hopopt_jumbo(skb))
3792 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3793
3794 return features;
3795 }
3796
netif_skb_features(struct sk_buff * skb)3797 netdev_features_t netif_skb_features(struct sk_buff *skb)
3798 {
3799 struct net_device *dev = skb->dev;
3800 netdev_features_t features = dev->features;
3801
3802 if (skb_is_gso(skb))
3803 features = gso_features_check(skb, dev, features);
3804
3805 /* If encapsulation offload request, verify we are testing
3806 * hardware encapsulation features instead of standard
3807 * features for the netdev
3808 */
3809 if (skb->encapsulation)
3810 features &= dev->hw_enc_features;
3811
3812 if (skb_vlan_tagged(skb))
3813 features = netdev_intersect_features(features,
3814 dev->vlan_features |
3815 NETIF_F_HW_VLAN_CTAG_TX |
3816 NETIF_F_HW_VLAN_STAG_TX);
3817
3818 if (dev->netdev_ops->ndo_features_check)
3819 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3820 features);
3821 else
3822 features &= dflt_features_check(skb, dev, features);
3823
3824 return harmonize_features(skb, features);
3825 }
3826 EXPORT_SYMBOL(netif_skb_features);
3827
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3828 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3829 struct netdev_queue *txq, bool more)
3830 {
3831 unsigned int len;
3832 int rc;
3833
3834 if (dev_nit_active_rcu(dev))
3835 dev_queue_xmit_nit(skb, dev);
3836
3837 len = skb->len;
3838 trace_net_dev_start_xmit(skb, dev);
3839 rc = netdev_start_xmit(skb, dev, txq, more);
3840 trace_net_dev_xmit(skb, rc, dev, len);
3841
3842 return rc;
3843 }
3844
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3845 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3846 struct netdev_queue *txq, int *ret)
3847 {
3848 struct sk_buff *skb = first;
3849 int rc = NETDEV_TX_OK;
3850
3851 while (skb) {
3852 struct sk_buff *next = skb->next;
3853
3854 skb_mark_not_on_list(skb);
3855 rc = xmit_one(skb, dev, txq, next != NULL);
3856 if (unlikely(!dev_xmit_complete(rc))) {
3857 skb->next = next;
3858 goto out;
3859 }
3860
3861 skb = next;
3862 if (netif_tx_queue_stopped(txq) && skb) {
3863 rc = NETDEV_TX_BUSY;
3864 break;
3865 }
3866 }
3867
3868 out:
3869 *ret = rc;
3870 return skb;
3871 }
3872
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3873 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3874 netdev_features_t features)
3875 {
3876 if (skb_vlan_tag_present(skb) &&
3877 !vlan_hw_offload_capable(features, skb->vlan_proto))
3878 skb = __vlan_hwaccel_push_inside(skb);
3879 return skb;
3880 }
3881
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3882 int skb_csum_hwoffload_help(struct sk_buff *skb,
3883 const netdev_features_t features)
3884 {
3885 if (unlikely(skb_csum_is_sctp(skb)))
3886 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3887 skb_crc32c_csum_help(skb);
3888
3889 if (features & NETIF_F_HW_CSUM)
3890 return 0;
3891
3892 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3893 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3894 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3895 !ipv6_has_hopopt_jumbo(skb))
3896 goto sw_checksum;
3897
3898 switch (skb->csum_offset) {
3899 case offsetof(struct tcphdr, check):
3900 case offsetof(struct udphdr, check):
3901 return 0;
3902 }
3903 }
3904
3905 sw_checksum:
3906 return skb_checksum_help(skb);
3907 }
3908 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3909
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3910 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3911 struct net_device *dev)
3912 {
3913 struct skb_shared_info *shinfo;
3914 struct net_iov *niov;
3915
3916 if (likely(skb_frags_readable(skb)))
3917 goto out;
3918
3919 if (!dev->netmem_tx)
3920 goto out_free;
3921
3922 shinfo = skb_shinfo(skb);
3923
3924 if (shinfo->nr_frags > 0) {
3925 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3926 if (net_is_devmem_iov(niov) &&
3927 net_devmem_iov_binding(niov)->dev != dev)
3928 goto out_free;
3929 }
3930
3931 out:
3932 return skb;
3933
3934 out_free:
3935 kfree_skb(skb);
3936 return NULL;
3937 }
3938
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3939 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3940 {
3941 netdev_features_t features;
3942
3943 skb = validate_xmit_unreadable_skb(skb, dev);
3944 if (unlikely(!skb))
3945 goto out_null;
3946
3947 features = netif_skb_features(skb);
3948 skb = validate_xmit_vlan(skb, features);
3949 if (unlikely(!skb))
3950 goto out_null;
3951
3952 skb = sk_validate_xmit_skb(skb, dev);
3953 if (unlikely(!skb))
3954 goto out_null;
3955
3956 if (netif_needs_gso(skb, features)) {
3957 struct sk_buff *segs;
3958
3959 segs = skb_gso_segment(skb, features);
3960 if (IS_ERR(segs)) {
3961 goto out_kfree_skb;
3962 } else if (segs) {
3963 consume_skb(skb);
3964 skb = segs;
3965 }
3966 } else {
3967 if (skb_needs_linearize(skb, features) &&
3968 __skb_linearize(skb))
3969 goto out_kfree_skb;
3970
3971 /* If packet is not checksummed and device does not
3972 * support checksumming for this protocol, complete
3973 * checksumming here.
3974 */
3975 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3976 if (skb->encapsulation)
3977 skb_set_inner_transport_header(skb,
3978 skb_checksum_start_offset(skb));
3979 else
3980 skb_set_transport_header(skb,
3981 skb_checksum_start_offset(skb));
3982 if (skb_csum_hwoffload_help(skb, features))
3983 goto out_kfree_skb;
3984 }
3985 }
3986
3987 skb = validate_xmit_xfrm(skb, features, again);
3988
3989 return skb;
3990
3991 out_kfree_skb:
3992 kfree_skb(skb);
3993 out_null:
3994 dev_core_stats_tx_dropped_inc(dev);
3995 return NULL;
3996 }
3997
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3998 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3999 {
4000 struct sk_buff *next, *head = NULL, *tail;
4001
4002 for (; skb != NULL; skb = next) {
4003 next = skb->next;
4004 skb_mark_not_on_list(skb);
4005
4006 /* in case skb won't be segmented, point to itself */
4007 skb->prev = skb;
4008
4009 skb = validate_xmit_skb(skb, dev, again);
4010 if (!skb)
4011 continue;
4012
4013 if (!head)
4014 head = skb;
4015 else
4016 tail->next = skb;
4017 /* If skb was segmented, skb->prev points to
4018 * the last segment. If not, it still contains skb.
4019 */
4020 tail = skb->prev;
4021 }
4022 return head;
4023 }
4024 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4025
qdisc_pkt_len_init(struct sk_buff * skb)4026 static void qdisc_pkt_len_init(struct sk_buff *skb)
4027 {
4028 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4029
4030 qdisc_skb_cb(skb)->pkt_len = skb->len;
4031
4032 /* To get more precise estimation of bytes sent on wire,
4033 * we add to pkt_len the headers size of all segments
4034 */
4035 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4036 u16 gso_segs = shinfo->gso_segs;
4037 unsigned int hdr_len;
4038
4039 /* mac layer + network layer */
4040 if (!skb->encapsulation)
4041 hdr_len = skb_transport_offset(skb);
4042 else
4043 hdr_len = skb_inner_transport_offset(skb);
4044
4045 /* + transport layer */
4046 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4047 const struct tcphdr *th;
4048 struct tcphdr _tcphdr;
4049
4050 th = skb_header_pointer(skb, hdr_len,
4051 sizeof(_tcphdr), &_tcphdr);
4052 if (likely(th))
4053 hdr_len += __tcp_hdrlen(th);
4054 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4055 struct udphdr _udphdr;
4056
4057 if (skb_header_pointer(skb, hdr_len,
4058 sizeof(_udphdr), &_udphdr))
4059 hdr_len += sizeof(struct udphdr);
4060 }
4061
4062 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4063 int payload = skb->len - hdr_len;
4064
4065 /* Malicious packet. */
4066 if (payload <= 0)
4067 return;
4068 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4069 }
4070 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4071 }
4072 }
4073
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4074 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4075 struct sk_buff **to_free,
4076 struct netdev_queue *txq)
4077 {
4078 int rc;
4079
4080 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4081 if (rc == NET_XMIT_SUCCESS)
4082 trace_qdisc_enqueue(q, txq, skb);
4083 return rc;
4084 }
4085
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4086 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4087 struct net_device *dev,
4088 struct netdev_queue *txq)
4089 {
4090 spinlock_t *root_lock = qdisc_lock(q);
4091 struct sk_buff *to_free = NULL;
4092 bool contended;
4093 int rc;
4094
4095 qdisc_calculate_pkt_len(skb, q);
4096
4097 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4098
4099 if (q->flags & TCQ_F_NOLOCK) {
4100 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4101 qdisc_run_begin(q)) {
4102 /* Retest nolock_qdisc_is_empty() within the protection
4103 * of q->seqlock to protect from racing with requeuing.
4104 */
4105 if (unlikely(!nolock_qdisc_is_empty(q))) {
4106 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4107 __qdisc_run(q);
4108 qdisc_run_end(q);
4109
4110 goto no_lock_out;
4111 }
4112
4113 qdisc_bstats_cpu_update(q, skb);
4114 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4115 !nolock_qdisc_is_empty(q))
4116 __qdisc_run(q);
4117
4118 qdisc_run_end(q);
4119 return NET_XMIT_SUCCESS;
4120 }
4121
4122 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4123 qdisc_run(q);
4124
4125 no_lock_out:
4126 if (unlikely(to_free))
4127 kfree_skb_list_reason(to_free,
4128 tcf_get_drop_reason(to_free));
4129 return rc;
4130 }
4131
4132 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4133 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4134 return NET_XMIT_DROP;
4135 }
4136 /*
4137 * Heuristic to force contended enqueues to serialize on a
4138 * separate lock before trying to get qdisc main lock.
4139 * This permits qdisc->running owner to get the lock more
4140 * often and dequeue packets faster.
4141 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4142 * and then other tasks will only enqueue packets. The packets will be
4143 * sent after the qdisc owner is scheduled again. To prevent this
4144 * scenario the task always serialize on the lock.
4145 */
4146 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4147 if (unlikely(contended))
4148 spin_lock(&q->busylock);
4149
4150 spin_lock(root_lock);
4151 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4152 __qdisc_drop(skb, &to_free);
4153 rc = NET_XMIT_DROP;
4154 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4155 qdisc_run_begin(q)) {
4156 /*
4157 * This is a work-conserving queue; there are no old skbs
4158 * waiting to be sent out; and the qdisc is not running -
4159 * xmit the skb directly.
4160 */
4161
4162 qdisc_bstats_update(q, skb);
4163
4164 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4165 if (unlikely(contended)) {
4166 spin_unlock(&q->busylock);
4167 contended = false;
4168 }
4169 __qdisc_run(q);
4170 }
4171
4172 qdisc_run_end(q);
4173 rc = NET_XMIT_SUCCESS;
4174 } else {
4175 WRITE_ONCE(q->owner, smp_processor_id());
4176 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4177 WRITE_ONCE(q->owner, -1);
4178 if (qdisc_run_begin(q)) {
4179 if (unlikely(contended)) {
4180 spin_unlock(&q->busylock);
4181 contended = false;
4182 }
4183 __qdisc_run(q);
4184 qdisc_run_end(q);
4185 }
4186 }
4187 spin_unlock(root_lock);
4188 if (unlikely(to_free))
4189 kfree_skb_list_reason(to_free,
4190 tcf_get_drop_reason(to_free));
4191 if (unlikely(contended))
4192 spin_unlock(&q->busylock);
4193 return rc;
4194 }
4195
4196 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4197 static void skb_update_prio(struct sk_buff *skb)
4198 {
4199 const struct netprio_map *map;
4200 const struct sock *sk;
4201 unsigned int prioidx;
4202
4203 if (skb->priority)
4204 return;
4205 map = rcu_dereference_bh(skb->dev->priomap);
4206 if (!map)
4207 return;
4208 sk = skb_to_full_sk(skb);
4209 if (!sk)
4210 return;
4211
4212 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4213
4214 if (prioidx < map->priomap_len)
4215 skb->priority = map->priomap[prioidx];
4216 }
4217 #else
4218 #define skb_update_prio(skb)
4219 #endif
4220
4221 /**
4222 * dev_loopback_xmit - loop back @skb
4223 * @net: network namespace this loopback is happening in
4224 * @sk: sk needed to be a netfilter okfn
4225 * @skb: buffer to transmit
4226 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4227 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4228 {
4229 skb_reset_mac_header(skb);
4230 __skb_pull(skb, skb_network_offset(skb));
4231 skb->pkt_type = PACKET_LOOPBACK;
4232 if (skb->ip_summed == CHECKSUM_NONE)
4233 skb->ip_summed = CHECKSUM_UNNECESSARY;
4234 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4235 skb_dst_force(skb);
4236 netif_rx(skb);
4237 return 0;
4238 }
4239 EXPORT_SYMBOL(dev_loopback_xmit);
4240
4241 #ifdef CONFIG_NET_EGRESS
4242 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4243 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4244 {
4245 int qm = skb_get_queue_mapping(skb);
4246
4247 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4248 }
4249
4250 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4251 static bool netdev_xmit_txqueue_skipped(void)
4252 {
4253 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4254 }
4255
netdev_xmit_skip_txqueue(bool skip)4256 void netdev_xmit_skip_txqueue(bool skip)
4257 {
4258 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4259 }
4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4261
4262 #else
netdev_xmit_txqueue_skipped(void)4263 static bool netdev_xmit_txqueue_skipped(void)
4264 {
4265 return current->net_xmit.skip_txqueue;
4266 }
4267
netdev_xmit_skip_txqueue(bool skip)4268 void netdev_xmit_skip_txqueue(bool skip)
4269 {
4270 current->net_xmit.skip_txqueue = skip;
4271 }
4272 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4273 #endif
4274 #endif /* CONFIG_NET_EGRESS */
4275
4276 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4277 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4278 enum skb_drop_reason *drop_reason)
4279 {
4280 int ret = TC_ACT_UNSPEC;
4281 #ifdef CONFIG_NET_CLS_ACT
4282 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4283 struct tcf_result res;
4284
4285 if (!miniq)
4286 return ret;
4287
4288 /* Global bypass */
4289 if (!static_branch_likely(&tcf_sw_enabled_key))
4290 return ret;
4291
4292 /* Block-wise bypass */
4293 if (tcf_block_bypass_sw(miniq->block))
4294 return ret;
4295
4296 tc_skb_cb(skb)->mru = 0;
4297 tc_skb_cb(skb)->post_ct = false;
4298 tcf_set_drop_reason(skb, *drop_reason);
4299
4300 mini_qdisc_bstats_cpu_update(miniq, skb);
4301 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4302 /* Only tcf related quirks below. */
4303 switch (ret) {
4304 case TC_ACT_SHOT:
4305 *drop_reason = tcf_get_drop_reason(skb);
4306 mini_qdisc_qstats_cpu_drop(miniq);
4307 break;
4308 case TC_ACT_OK:
4309 case TC_ACT_RECLASSIFY:
4310 skb->tc_index = TC_H_MIN(res.classid);
4311 break;
4312 }
4313 #endif /* CONFIG_NET_CLS_ACT */
4314 return ret;
4315 }
4316
4317 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4318
tcx_inc(void)4319 void tcx_inc(void)
4320 {
4321 static_branch_inc(&tcx_needed_key);
4322 }
4323
tcx_dec(void)4324 void tcx_dec(void)
4325 {
4326 static_branch_dec(&tcx_needed_key);
4327 }
4328
4329 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4330 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4331 const bool needs_mac)
4332 {
4333 const struct bpf_mprog_fp *fp;
4334 const struct bpf_prog *prog;
4335 int ret = TCX_NEXT;
4336
4337 if (needs_mac)
4338 __skb_push(skb, skb->mac_len);
4339 bpf_mprog_foreach_prog(entry, fp, prog) {
4340 bpf_compute_data_pointers(skb);
4341 ret = bpf_prog_run(prog, skb);
4342 if (ret != TCX_NEXT)
4343 break;
4344 }
4345 if (needs_mac)
4346 __skb_pull(skb, skb->mac_len);
4347 return tcx_action_code(skb, ret);
4348 }
4349
4350 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4351 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4352 struct net_device *orig_dev, bool *another)
4353 {
4354 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4355 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4356 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4357 int sch_ret;
4358
4359 if (!entry)
4360 return skb;
4361
4362 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4363 if (*pt_prev) {
4364 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4365 *pt_prev = NULL;
4366 }
4367
4368 qdisc_skb_cb(skb)->pkt_len = skb->len;
4369 tcx_set_ingress(skb, true);
4370
4371 if (static_branch_unlikely(&tcx_needed_key)) {
4372 sch_ret = tcx_run(entry, skb, true);
4373 if (sch_ret != TC_ACT_UNSPEC)
4374 goto ingress_verdict;
4375 }
4376 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4377 ingress_verdict:
4378 switch (sch_ret) {
4379 case TC_ACT_REDIRECT:
4380 /* skb_mac_header check was done by BPF, so we can safely
4381 * push the L2 header back before redirecting to another
4382 * netdev.
4383 */
4384 __skb_push(skb, skb->mac_len);
4385 if (skb_do_redirect(skb) == -EAGAIN) {
4386 __skb_pull(skb, skb->mac_len);
4387 *another = true;
4388 break;
4389 }
4390 *ret = NET_RX_SUCCESS;
4391 bpf_net_ctx_clear(bpf_net_ctx);
4392 return NULL;
4393 case TC_ACT_SHOT:
4394 kfree_skb_reason(skb, drop_reason);
4395 *ret = NET_RX_DROP;
4396 bpf_net_ctx_clear(bpf_net_ctx);
4397 return NULL;
4398 /* used by tc_run */
4399 case TC_ACT_STOLEN:
4400 case TC_ACT_QUEUED:
4401 case TC_ACT_TRAP:
4402 consume_skb(skb);
4403 fallthrough;
4404 case TC_ACT_CONSUMED:
4405 *ret = NET_RX_SUCCESS;
4406 bpf_net_ctx_clear(bpf_net_ctx);
4407 return NULL;
4408 }
4409 bpf_net_ctx_clear(bpf_net_ctx);
4410
4411 return skb;
4412 }
4413
4414 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4415 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4416 {
4417 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4418 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4419 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4420 int sch_ret;
4421
4422 if (!entry)
4423 return skb;
4424
4425 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4426
4427 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4428 * already set by the caller.
4429 */
4430 if (static_branch_unlikely(&tcx_needed_key)) {
4431 sch_ret = tcx_run(entry, skb, false);
4432 if (sch_ret != TC_ACT_UNSPEC)
4433 goto egress_verdict;
4434 }
4435 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4436 egress_verdict:
4437 switch (sch_ret) {
4438 case TC_ACT_REDIRECT:
4439 /* No need to push/pop skb's mac_header here on egress! */
4440 skb_do_redirect(skb);
4441 *ret = NET_XMIT_SUCCESS;
4442 bpf_net_ctx_clear(bpf_net_ctx);
4443 return NULL;
4444 case TC_ACT_SHOT:
4445 kfree_skb_reason(skb, drop_reason);
4446 *ret = NET_XMIT_DROP;
4447 bpf_net_ctx_clear(bpf_net_ctx);
4448 return NULL;
4449 /* used by tc_run */
4450 case TC_ACT_STOLEN:
4451 case TC_ACT_QUEUED:
4452 case TC_ACT_TRAP:
4453 consume_skb(skb);
4454 fallthrough;
4455 case TC_ACT_CONSUMED:
4456 *ret = NET_XMIT_SUCCESS;
4457 bpf_net_ctx_clear(bpf_net_ctx);
4458 return NULL;
4459 }
4460 bpf_net_ctx_clear(bpf_net_ctx);
4461
4462 return skb;
4463 }
4464 #else
4465 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4466 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4467 struct net_device *orig_dev, bool *another)
4468 {
4469 return skb;
4470 }
4471
4472 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4473 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4474 {
4475 return skb;
4476 }
4477 #endif /* CONFIG_NET_XGRESS */
4478
4479 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4480 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4481 struct xps_dev_maps *dev_maps, unsigned int tci)
4482 {
4483 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4484 struct xps_map *map;
4485 int queue_index = -1;
4486
4487 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4488 return queue_index;
4489
4490 tci *= dev_maps->num_tc;
4491 tci += tc;
4492
4493 map = rcu_dereference(dev_maps->attr_map[tci]);
4494 if (map) {
4495 if (map->len == 1)
4496 queue_index = map->queues[0];
4497 else
4498 queue_index = map->queues[reciprocal_scale(
4499 skb_get_hash(skb), map->len)];
4500 if (unlikely(queue_index >= dev->real_num_tx_queues))
4501 queue_index = -1;
4502 }
4503 return queue_index;
4504 }
4505 #endif
4506
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4507 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4508 struct sk_buff *skb)
4509 {
4510 #ifdef CONFIG_XPS
4511 struct xps_dev_maps *dev_maps;
4512 struct sock *sk = skb->sk;
4513 int queue_index = -1;
4514
4515 if (!static_key_false(&xps_needed))
4516 return -1;
4517
4518 rcu_read_lock();
4519 if (!static_key_false(&xps_rxqs_needed))
4520 goto get_cpus_map;
4521
4522 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4523 if (dev_maps) {
4524 int tci = sk_rx_queue_get(sk);
4525
4526 if (tci >= 0)
4527 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4528 tci);
4529 }
4530
4531 get_cpus_map:
4532 if (queue_index < 0) {
4533 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4534 if (dev_maps) {
4535 unsigned int tci = skb->sender_cpu - 1;
4536
4537 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4538 tci);
4539 }
4540 }
4541 rcu_read_unlock();
4542
4543 return queue_index;
4544 #else
4545 return -1;
4546 #endif
4547 }
4548
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4549 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4550 struct net_device *sb_dev)
4551 {
4552 return 0;
4553 }
4554 EXPORT_SYMBOL(dev_pick_tx_zero);
4555
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4556 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4557 struct net_device *sb_dev)
4558 {
4559 struct sock *sk = skb->sk;
4560 int queue_index = sk_tx_queue_get(sk);
4561
4562 sb_dev = sb_dev ? : dev;
4563
4564 if (queue_index < 0 || skb->ooo_okay ||
4565 queue_index >= dev->real_num_tx_queues) {
4566 int new_index = get_xps_queue(dev, sb_dev, skb);
4567
4568 if (new_index < 0)
4569 new_index = skb_tx_hash(dev, sb_dev, skb);
4570
4571 if (queue_index != new_index && sk &&
4572 sk_fullsock(sk) &&
4573 rcu_access_pointer(sk->sk_dst_cache))
4574 sk_tx_queue_set(sk, new_index);
4575
4576 queue_index = new_index;
4577 }
4578
4579 return queue_index;
4580 }
4581 EXPORT_SYMBOL(netdev_pick_tx);
4582
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4583 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4584 struct sk_buff *skb,
4585 struct net_device *sb_dev)
4586 {
4587 int queue_index = 0;
4588
4589 #ifdef CONFIG_XPS
4590 u32 sender_cpu = skb->sender_cpu - 1;
4591
4592 if (sender_cpu >= (u32)NR_CPUS)
4593 skb->sender_cpu = raw_smp_processor_id() + 1;
4594 #endif
4595
4596 if (dev->real_num_tx_queues != 1) {
4597 const struct net_device_ops *ops = dev->netdev_ops;
4598
4599 if (ops->ndo_select_queue)
4600 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4601 else
4602 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4603
4604 queue_index = netdev_cap_txqueue(dev, queue_index);
4605 }
4606
4607 skb_set_queue_mapping(skb, queue_index);
4608 return netdev_get_tx_queue(dev, queue_index);
4609 }
4610
4611 /**
4612 * __dev_queue_xmit() - transmit a buffer
4613 * @skb: buffer to transmit
4614 * @sb_dev: suboordinate device used for L2 forwarding offload
4615 *
4616 * Queue a buffer for transmission to a network device. The caller must
4617 * have set the device and priority and built the buffer before calling
4618 * this function. The function can be called from an interrupt.
4619 *
4620 * When calling this method, interrupts MUST be enabled. This is because
4621 * the BH enable code must have IRQs enabled so that it will not deadlock.
4622 *
4623 * Regardless of the return value, the skb is consumed, so it is currently
4624 * difficult to retry a send to this method. (You can bump the ref count
4625 * before sending to hold a reference for retry if you are careful.)
4626 *
4627 * Return:
4628 * * 0 - buffer successfully transmitted
4629 * * positive qdisc return code - NET_XMIT_DROP etc.
4630 * * negative errno - other errors
4631 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4632 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4633 {
4634 struct net_device *dev = skb->dev;
4635 struct netdev_queue *txq = NULL;
4636 struct Qdisc *q;
4637 int rc = -ENOMEM;
4638 bool again = false;
4639
4640 skb_reset_mac_header(skb);
4641 skb_assert_len(skb);
4642
4643 if (unlikely(skb_shinfo(skb)->tx_flags &
4644 (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4645 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4646
4647 /* Disable soft irqs for various locks below. Also
4648 * stops preemption for RCU.
4649 */
4650 rcu_read_lock_bh();
4651
4652 skb_update_prio(skb);
4653
4654 qdisc_pkt_len_init(skb);
4655 tcx_set_ingress(skb, false);
4656 #ifdef CONFIG_NET_EGRESS
4657 if (static_branch_unlikely(&egress_needed_key)) {
4658 if (nf_hook_egress_active()) {
4659 skb = nf_hook_egress(skb, &rc, dev);
4660 if (!skb)
4661 goto out;
4662 }
4663
4664 netdev_xmit_skip_txqueue(false);
4665
4666 nf_skip_egress(skb, true);
4667 skb = sch_handle_egress(skb, &rc, dev);
4668 if (!skb)
4669 goto out;
4670 nf_skip_egress(skb, false);
4671
4672 if (netdev_xmit_txqueue_skipped())
4673 txq = netdev_tx_queue_mapping(dev, skb);
4674 }
4675 #endif
4676 /* If device/qdisc don't need skb->dst, release it right now while
4677 * its hot in this cpu cache.
4678 */
4679 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4680 skb_dst_drop(skb);
4681 else
4682 skb_dst_force(skb);
4683
4684 if (!txq)
4685 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4686
4687 q = rcu_dereference_bh(txq->qdisc);
4688
4689 trace_net_dev_queue(skb);
4690 if (q->enqueue) {
4691 rc = __dev_xmit_skb(skb, q, dev, txq);
4692 goto out;
4693 }
4694
4695 /* The device has no queue. Common case for software devices:
4696 * loopback, all the sorts of tunnels...
4697
4698 * Really, it is unlikely that netif_tx_lock protection is necessary
4699 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4700 * counters.)
4701 * However, it is possible, that they rely on protection
4702 * made by us here.
4703
4704 * Check this and shot the lock. It is not prone from deadlocks.
4705 *Either shot noqueue qdisc, it is even simpler 8)
4706 */
4707 if (dev->flags & IFF_UP) {
4708 int cpu = smp_processor_id(); /* ok because BHs are off */
4709
4710 /* Other cpus might concurrently change txq->xmit_lock_owner
4711 * to -1 or to their cpu id, but not to our id.
4712 */
4713 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4714 if (dev_xmit_recursion())
4715 goto recursion_alert;
4716
4717 skb = validate_xmit_skb(skb, dev, &again);
4718 if (!skb)
4719 goto out;
4720
4721 HARD_TX_LOCK(dev, txq, cpu);
4722
4723 if (!netif_xmit_stopped(txq)) {
4724 dev_xmit_recursion_inc();
4725 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4726 dev_xmit_recursion_dec();
4727 if (dev_xmit_complete(rc)) {
4728 HARD_TX_UNLOCK(dev, txq);
4729 goto out;
4730 }
4731 }
4732 HARD_TX_UNLOCK(dev, txq);
4733 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4734 dev->name);
4735 } else {
4736 /* Recursion is detected! It is possible,
4737 * unfortunately
4738 */
4739 recursion_alert:
4740 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4741 dev->name);
4742 }
4743 }
4744
4745 rc = -ENETDOWN;
4746 rcu_read_unlock_bh();
4747
4748 dev_core_stats_tx_dropped_inc(dev);
4749 kfree_skb_list(skb);
4750 return rc;
4751 out:
4752 rcu_read_unlock_bh();
4753 return rc;
4754 }
4755 EXPORT_SYMBOL(__dev_queue_xmit);
4756
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4757 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4758 {
4759 struct net_device *dev = skb->dev;
4760 struct sk_buff *orig_skb = skb;
4761 struct netdev_queue *txq;
4762 int ret = NETDEV_TX_BUSY;
4763 bool again = false;
4764
4765 if (unlikely(!netif_running(dev) ||
4766 !netif_carrier_ok(dev)))
4767 goto drop;
4768
4769 skb = validate_xmit_skb_list(skb, dev, &again);
4770 if (skb != orig_skb)
4771 goto drop;
4772
4773 skb_set_queue_mapping(skb, queue_id);
4774 txq = skb_get_tx_queue(dev, skb);
4775
4776 local_bh_disable();
4777
4778 dev_xmit_recursion_inc();
4779 HARD_TX_LOCK(dev, txq, smp_processor_id());
4780 if (!netif_xmit_frozen_or_drv_stopped(txq))
4781 ret = netdev_start_xmit(skb, dev, txq, false);
4782 HARD_TX_UNLOCK(dev, txq);
4783 dev_xmit_recursion_dec();
4784
4785 local_bh_enable();
4786 return ret;
4787 drop:
4788 dev_core_stats_tx_dropped_inc(dev);
4789 kfree_skb_list(skb);
4790 return NET_XMIT_DROP;
4791 }
4792 EXPORT_SYMBOL(__dev_direct_xmit);
4793
4794 /*************************************************************************
4795 * Receiver routines
4796 *************************************************************************/
4797 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4798
4799 int weight_p __read_mostly = 64; /* old backlog weight */
4800 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4801 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4802
4803 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4804 static inline void ____napi_schedule(struct softnet_data *sd,
4805 struct napi_struct *napi)
4806 {
4807 struct task_struct *thread;
4808
4809 lockdep_assert_irqs_disabled();
4810
4811 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4812 /* Paired with smp_mb__before_atomic() in
4813 * napi_enable()/netif_set_threaded().
4814 * Use READ_ONCE() to guarantee a complete
4815 * read on napi->thread. Only call
4816 * wake_up_process() when it's not NULL.
4817 */
4818 thread = READ_ONCE(napi->thread);
4819 if (thread) {
4820 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4821 goto use_local_napi;
4822
4823 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4824 wake_up_process(thread);
4825 return;
4826 }
4827 }
4828
4829 use_local_napi:
4830 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4831 list_add_tail(&napi->poll_list, &sd->poll_list);
4832 WRITE_ONCE(napi->list_owner, smp_processor_id());
4833 /* If not called from net_rx_action()
4834 * we have to raise NET_RX_SOFTIRQ.
4835 */
4836 if (!sd->in_net_rx_action)
4837 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4838 }
4839
4840 #ifdef CONFIG_RPS
4841
4842 struct static_key_false rps_needed __read_mostly;
4843 EXPORT_SYMBOL(rps_needed);
4844 struct static_key_false rfs_needed __read_mostly;
4845 EXPORT_SYMBOL(rfs_needed);
4846
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4847 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4848 {
4849 return hash_32(hash, flow_table->log);
4850 }
4851
4852 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4853 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4854 struct rps_dev_flow *rflow, u16 next_cpu)
4855 {
4856 if (next_cpu < nr_cpu_ids) {
4857 u32 head;
4858 #ifdef CONFIG_RFS_ACCEL
4859 struct netdev_rx_queue *rxqueue;
4860 struct rps_dev_flow_table *flow_table;
4861 struct rps_dev_flow *old_rflow;
4862 u16 rxq_index;
4863 u32 flow_id;
4864 int rc;
4865
4866 /* Should we steer this flow to a different hardware queue? */
4867 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4868 !(dev->features & NETIF_F_NTUPLE))
4869 goto out;
4870 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4871 if (rxq_index == skb_get_rx_queue(skb))
4872 goto out;
4873
4874 rxqueue = dev->_rx + rxq_index;
4875 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4876 if (!flow_table)
4877 goto out;
4878 flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4879 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4880 rxq_index, flow_id);
4881 if (rc < 0)
4882 goto out;
4883 old_rflow = rflow;
4884 rflow = &flow_table->flows[flow_id];
4885 WRITE_ONCE(rflow->filter, rc);
4886 if (old_rflow->filter == rc)
4887 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4888 out:
4889 #endif
4890 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4891 rps_input_queue_tail_save(&rflow->last_qtail, head);
4892 }
4893
4894 WRITE_ONCE(rflow->cpu, next_cpu);
4895 return rflow;
4896 }
4897
4898 /*
4899 * get_rps_cpu is called from netif_receive_skb and returns the target
4900 * CPU from the RPS map of the receiving queue for a given skb.
4901 * rcu_read_lock must be held on entry.
4902 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4903 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4904 struct rps_dev_flow **rflowp)
4905 {
4906 const struct rps_sock_flow_table *sock_flow_table;
4907 struct netdev_rx_queue *rxqueue = dev->_rx;
4908 struct rps_dev_flow_table *flow_table;
4909 struct rps_map *map;
4910 int cpu = -1;
4911 u32 tcpu;
4912 u32 hash;
4913
4914 if (skb_rx_queue_recorded(skb)) {
4915 u16 index = skb_get_rx_queue(skb);
4916
4917 if (unlikely(index >= dev->real_num_rx_queues)) {
4918 WARN_ONCE(dev->real_num_rx_queues > 1,
4919 "%s received packet on queue %u, but number "
4920 "of RX queues is %u\n",
4921 dev->name, index, dev->real_num_rx_queues);
4922 goto done;
4923 }
4924 rxqueue += index;
4925 }
4926
4927 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4928
4929 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4930 map = rcu_dereference(rxqueue->rps_map);
4931 if (!flow_table && !map)
4932 goto done;
4933
4934 skb_reset_network_header(skb);
4935 hash = skb_get_hash(skb);
4936 if (!hash)
4937 goto done;
4938
4939 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4940 if (flow_table && sock_flow_table) {
4941 struct rps_dev_flow *rflow;
4942 u32 next_cpu;
4943 u32 ident;
4944
4945 /* First check into global flow table if there is a match.
4946 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4947 */
4948 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4949 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4950 goto try_rps;
4951
4952 next_cpu = ident & net_hotdata.rps_cpu_mask;
4953
4954 /* OK, now we know there is a match,
4955 * we can look at the local (per receive queue) flow table
4956 */
4957 rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4958 tcpu = rflow->cpu;
4959
4960 /*
4961 * If the desired CPU (where last recvmsg was done) is
4962 * different from current CPU (one in the rx-queue flow
4963 * table entry), switch if one of the following holds:
4964 * - Current CPU is unset (>= nr_cpu_ids).
4965 * - Current CPU is offline.
4966 * - The current CPU's queue tail has advanced beyond the
4967 * last packet that was enqueued using this table entry.
4968 * This guarantees that all previous packets for the flow
4969 * have been dequeued, thus preserving in order delivery.
4970 */
4971 if (unlikely(tcpu != next_cpu) &&
4972 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4973 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4974 rflow->last_qtail)) >= 0)) {
4975 tcpu = next_cpu;
4976 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4977 }
4978
4979 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4980 *rflowp = rflow;
4981 cpu = tcpu;
4982 goto done;
4983 }
4984 }
4985
4986 try_rps:
4987
4988 if (map) {
4989 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4990 if (cpu_online(tcpu)) {
4991 cpu = tcpu;
4992 goto done;
4993 }
4994 }
4995
4996 done:
4997 return cpu;
4998 }
4999
5000 #ifdef CONFIG_RFS_ACCEL
5001
5002 /**
5003 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5004 * @dev: Device on which the filter was set
5005 * @rxq_index: RX queue index
5006 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5007 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5008 *
5009 * Drivers that implement ndo_rx_flow_steer() should periodically call
5010 * this function for each installed filter and remove the filters for
5011 * which it returns %true.
5012 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5013 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5014 u32 flow_id, u16 filter_id)
5015 {
5016 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5017 struct rps_dev_flow_table *flow_table;
5018 struct rps_dev_flow *rflow;
5019 bool expire = true;
5020 unsigned int cpu;
5021
5022 rcu_read_lock();
5023 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5024 if (flow_table && flow_id < (1UL << flow_table->log)) {
5025 rflow = &flow_table->flows[flow_id];
5026 cpu = READ_ONCE(rflow->cpu);
5027 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
5028 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
5029 READ_ONCE(rflow->last_qtail)) <
5030 (int)(10 << flow_table->log)))
5031 expire = false;
5032 }
5033 rcu_read_unlock();
5034 return expire;
5035 }
5036 EXPORT_SYMBOL(rps_may_expire_flow);
5037
5038 #endif /* CONFIG_RFS_ACCEL */
5039
5040 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5041 static void rps_trigger_softirq(void *data)
5042 {
5043 struct softnet_data *sd = data;
5044
5045 ____napi_schedule(sd, &sd->backlog);
5046 /* Pairs with READ_ONCE() in softnet_seq_show() */
5047 WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5048 }
5049
5050 #endif /* CONFIG_RPS */
5051
5052 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5053 static void trigger_rx_softirq(void *data)
5054 {
5055 struct softnet_data *sd = data;
5056
5057 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5058 smp_store_release(&sd->defer_ipi_scheduled, 0);
5059 }
5060
5061 /*
5062 * After we queued a packet into sd->input_pkt_queue,
5063 * we need to make sure this queue is serviced soon.
5064 *
5065 * - If this is another cpu queue, link it to our rps_ipi_list,
5066 * and make sure we will process rps_ipi_list from net_rx_action().
5067 *
5068 * - If this is our own queue, NAPI schedule our backlog.
5069 * Note that this also raises NET_RX_SOFTIRQ.
5070 */
napi_schedule_rps(struct softnet_data * sd)5071 static void napi_schedule_rps(struct softnet_data *sd)
5072 {
5073 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5074
5075 #ifdef CONFIG_RPS
5076 if (sd != mysd) {
5077 if (use_backlog_threads()) {
5078 __napi_schedule_irqoff(&sd->backlog);
5079 return;
5080 }
5081
5082 sd->rps_ipi_next = mysd->rps_ipi_list;
5083 mysd->rps_ipi_list = sd;
5084
5085 /* If not called from net_rx_action() or napi_threaded_poll()
5086 * we have to raise NET_RX_SOFTIRQ.
5087 */
5088 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5089 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5090 return;
5091 }
5092 #endif /* CONFIG_RPS */
5093 __napi_schedule_irqoff(&mysd->backlog);
5094 }
5095
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)5096 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5097 {
5098 unsigned long flags;
5099
5100 if (use_backlog_threads()) {
5101 backlog_lock_irq_save(sd, &flags);
5102
5103 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5104 __napi_schedule_irqoff(&sd->backlog);
5105
5106 backlog_unlock_irq_restore(sd, &flags);
5107
5108 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5109 smp_call_function_single_async(cpu, &sd->defer_csd);
5110 }
5111 }
5112
5113 #ifdef CONFIG_NET_FLOW_LIMIT
5114 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5115 #endif
5116
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5117 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5118 {
5119 #ifdef CONFIG_NET_FLOW_LIMIT
5120 struct sd_flow_limit *fl;
5121 struct softnet_data *sd;
5122 unsigned int old_flow, new_flow;
5123
5124 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5125 return false;
5126
5127 sd = this_cpu_ptr(&softnet_data);
5128
5129 rcu_read_lock();
5130 fl = rcu_dereference(sd->flow_limit);
5131 if (fl) {
5132 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5133 old_flow = fl->history[fl->history_head];
5134 fl->history[fl->history_head] = new_flow;
5135
5136 fl->history_head++;
5137 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5138
5139 if (likely(fl->buckets[old_flow]))
5140 fl->buckets[old_flow]--;
5141
5142 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5143 /* Pairs with READ_ONCE() in softnet_seq_show() */
5144 WRITE_ONCE(fl->count, fl->count + 1);
5145 rcu_read_unlock();
5146 return true;
5147 }
5148 }
5149 rcu_read_unlock();
5150 #endif
5151 return false;
5152 }
5153
5154 /*
5155 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5156 * queue (may be a remote CPU queue).
5157 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5158 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5159 unsigned int *qtail)
5160 {
5161 enum skb_drop_reason reason;
5162 struct softnet_data *sd;
5163 unsigned long flags;
5164 unsigned int qlen;
5165 int max_backlog;
5166 u32 tail;
5167
5168 reason = SKB_DROP_REASON_DEV_READY;
5169 if (!netif_running(skb->dev))
5170 goto bad_dev;
5171
5172 reason = SKB_DROP_REASON_CPU_BACKLOG;
5173 sd = &per_cpu(softnet_data, cpu);
5174
5175 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5176 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5177 if (unlikely(qlen > max_backlog))
5178 goto cpu_backlog_drop;
5179 backlog_lock_irq_save(sd, &flags);
5180 qlen = skb_queue_len(&sd->input_pkt_queue);
5181 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5182 if (!qlen) {
5183 /* Schedule NAPI for backlog device. We can use
5184 * non atomic operation as we own the queue lock.
5185 */
5186 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5187 &sd->backlog.state))
5188 napi_schedule_rps(sd);
5189 }
5190 __skb_queue_tail(&sd->input_pkt_queue, skb);
5191 tail = rps_input_queue_tail_incr(sd);
5192 backlog_unlock_irq_restore(sd, &flags);
5193
5194 /* save the tail outside of the critical section */
5195 rps_input_queue_tail_save(qtail, tail);
5196 return NET_RX_SUCCESS;
5197 }
5198
5199 backlog_unlock_irq_restore(sd, &flags);
5200
5201 cpu_backlog_drop:
5202 atomic_inc(&sd->dropped);
5203 bad_dev:
5204 dev_core_stats_rx_dropped_inc(skb->dev);
5205 kfree_skb_reason(skb, reason);
5206 return NET_RX_DROP;
5207 }
5208
netif_get_rxqueue(struct sk_buff * skb)5209 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5210 {
5211 struct net_device *dev = skb->dev;
5212 struct netdev_rx_queue *rxqueue;
5213
5214 rxqueue = dev->_rx;
5215
5216 if (skb_rx_queue_recorded(skb)) {
5217 u16 index = skb_get_rx_queue(skb);
5218
5219 if (unlikely(index >= dev->real_num_rx_queues)) {
5220 WARN_ONCE(dev->real_num_rx_queues > 1,
5221 "%s received packet on queue %u, but number "
5222 "of RX queues is %u\n",
5223 dev->name, index, dev->real_num_rx_queues);
5224
5225 return rxqueue; /* Return first rxqueue */
5226 }
5227 rxqueue += index;
5228 }
5229 return rxqueue;
5230 }
5231
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5232 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5233 const struct bpf_prog *xdp_prog)
5234 {
5235 void *orig_data, *orig_data_end, *hard_start;
5236 struct netdev_rx_queue *rxqueue;
5237 bool orig_bcast, orig_host;
5238 u32 mac_len, frame_sz;
5239 __be16 orig_eth_type;
5240 struct ethhdr *eth;
5241 u32 metalen, act;
5242 int off;
5243
5244 /* The XDP program wants to see the packet starting at the MAC
5245 * header.
5246 */
5247 mac_len = skb->data - skb_mac_header(skb);
5248 hard_start = skb->data - skb_headroom(skb);
5249
5250 /* SKB "head" area always have tailroom for skb_shared_info */
5251 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5252 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5253
5254 rxqueue = netif_get_rxqueue(skb);
5255 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5256 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5257 skb_headlen(skb) + mac_len, true);
5258 if (skb_is_nonlinear(skb)) {
5259 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5260 xdp_buff_set_frags_flag(xdp);
5261 } else {
5262 xdp_buff_clear_frags_flag(xdp);
5263 }
5264
5265 orig_data_end = xdp->data_end;
5266 orig_data = xdp->data;
5267 eth = (struct ethhdr *)xdp->data;
5268 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5269 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5270 orig_eth_type = eth->h_proto;
5271
5272 act = bpf_prog_run_xdp(xdp_prog, xdp);
5273
5274 /* check if bpf_xdp_adjust_head was used */
5275 off = xdp->data - orig_data;
5276 if (off) {
5277 if (off > 0)
5278 __skb_pull(skb, off);
5279 else if (off < 0)
5280 __skb_push(skb, -off);
5281
5282 skb->mac_header += off;
5283 skb_reset_network_header(skb);
5284 }
5285
5286 /* check if bpf_xdp_adjust_tail was used */
5287 off = xdp->data_end - orig_data_end;
5288 if (off != 0) {
5289 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5290 skb->len += off; /* positive on grow, negative on shrink */
5291 }
5292
5293 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5294 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5295 */
5296 if (xdp_buff_has_frags(xdp))
5297 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5298 else
5299 skb->data_len = 0;
5300
5301 /* check if XDP changed eth hdr such SKB needs update */
5302 eth = (struct ethhdr *)xdp->data;
5303 if ((orig_eth_type != eth->h_proto) ||
5304 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5305 skb->dev->dev_addr)) ||
5306 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5307 __skb_push(skb, ETH_HLEN);
5308 skb->pkt_type = PACKET_HOST;
5309 skb->protocol = eth_type_trans(skb, skb->dev);
5310 }
5311
5312 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5313 * before calling us again on redirect path. We do not call do_redirect
5314 * as we leave that up to the caller.
5315 *
5316 * Caller is responsible for managing lifetime of skb (i.e. calling
5317 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5318 */
5319 switch (act) {
5320 case XDP_REDIRECT:
5321 case XDP_TX:
5322 __skb_push(skb, mac_len);
5323 break;
5324 case XDP_PASS:
5325 metalen = xdp->data - xdp->data_meta;
5326 if (metalen)
5327 skb_metadata_set(skb, metalen);
5328 break;
5329 }
5330
5331 return act;
5332 }
5333
5334 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5335 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5336 {
5337 struct sk_buff *skb = *pskb;
5338 int err, hroom, troom;
5339
5340 local_lock_nested_bh(&system_page_pool.bh_lock);
5341 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5342 local_unlock_nested_bh(&system_page_pool.bh_lock);
5343 if (!err)
5344 return 0;
5345
5346 /* In case we have to go down the path and also linearize,
5347 * then lets do the pskb_expand_head() work just once here.
5348 */
5349 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5350 troom = skb->tail + skb->data_len - skb->end;
5351 err = pskb_expand_head(skb,
5352 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5353 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5354 if (err)
5355 return err;
5356
5357 return skb_linearize(skb);
5358 }
5359
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5360 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5361 struct xdp_buff *xdp,
5362 const struct bpf_prog *xdp_prog)
5363 {
5364 struct sk_buff *skb = *pskb;
5365 u32 mac_len, act = XDP_DROP;
5366
5367 /* Reinjected packets coming from act_mirred or similar should
5368 * not get XDP generic processing.
5369 */
5370 if (skb_is_redirected(skb))
5371 return XDP_PASS;
5372
5373 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5374 * bytes. This is the guarantee that also native XDP provides,
5375 * thus we need to do it here as well.
5376 */
5377 mac_len = skb->data - skb_mac_header(skb);
5378 __skb_push(skb, mac_len);
5379
5380 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5381 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5382 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5383 goto do_drop;
5384 }
5385
5386 __skb_pull(*pskb, mac_len);
5387
5388 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5389 switch (act) {
5390 case XDP_REDIRECT:
5391 case XDP_TX:
5392 case XDP_PASS:
5393 break;
5394 default:
5395 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5396 fallthrough;
5397 case XDP_ABORTED:
5398 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5399 fallthrough;
5400 case XDP_DROP:
5401 do_drop:
5402 kfree_skb(*pskb);
5403 break;
5404 }
5405
5406 return act;
5407 }
5408
5409 /* When doing generic XDP we have to bypass the qdisc layer and the
5410 * network taps in order to match in-driver-XDP behavior. This also means
5411 * that XDP packets are able to starve other packets going through a qdisc,
5412 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5413 * queues, so they do not have this starvation issue.
5414 */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5415 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5416 {
5417 struct net_device *dev = skb->dev;
5418 struct netdev_queue *txq;
5419 bool free_skb = true;
5420 int cpu, rc;
5421
5422 txq = netdev_core_pick_tx(dev, skb, NULL);
5423 cpu = smp_processor_id();
5424 HARD_TX_LOCK(dev, txq, cpu);
5425 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5426 rc = netdev_start_xmit(skb, dev, txq, 0);
5427 if (dev_xmit_complete(rc))
5428 free_skb = false;
5429 }
5430 HARD_TX_UNLOCK(dev, txq);
5431 if (free_skb) {
5432 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5433 dev_core_stats_tx_dropped_inc(dev);
5434 kfree_skb(skb);
5435 }
5436 }
5437
5438 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5439
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5440 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5441 {
5442 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5443
5444 if (xdp_prog) {
5445 struct xdp_buff xdp;
5446 u32 act;
5447 int err;
5448
5449 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5450 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5451 if (act != XDP_PASS) {
5452 switch (act) {
5453 case XDP_REDIRECT:
5454 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5455 &xdp, xdp_prog);
5456 if (err)
5457 goto out_redir;
5458 break;
5459 case XDP_TX:
5460 generic_xdp_tx(*pskb, xdp_prog);
5461 break;
5462 }
5463 bpf_net_ctx_clear(bpf_net_ctx);
5464 return XDP_DROP;
5465 }
5466 bpf_net_ctx_clear(bpf_net_ctx);
5467 }
5468 return XDP_PASS;
5469 out_redir:
5470 bpf_net_ctx_clear(bpf_net_ctx);
5471 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5472 return XDP_DROP;
5473 }
5474 EXPORT_SYMBOL_GPL(do_xdp_generic);
5475
netif_rx_internal(struct sk_buff * skb)5476 static int netif_rx_internal(struct sk_buff *skb)
5477 {
5478 int ret;
5479
5480 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5481
5482 trace_netif_rx(skb);
5483
5484 #ifdef CONFIG_RPS
5485 if (static_branch_unlikely(&rps_needed)) {
5486 struct rps_dev_flow voidflow, *rflow = &voidflow;
5487 int cpu;
5488
5489 rcu_read_lock();
5490
5491 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5492 if (cpu < 0)
5493 cpu = smp_processor_id();
5494
5495 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5496
5497 rcu_read_unlock();
5498 } else
5499 #endif
5500 {
5501 unsigned int qtail;
5502
5503 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5504 }
5505 return ret;
5506 }
5507
5508 /**
5509 * __netif_rx - Slightly optimized version of netif_rx
5510 * @skb: buffer to post
5511 *
5512 * This behaves as netif_rx except that it does not disable bottom halves.
5513 * As a result this function may only be invoked from the interrupt context
5514 * (either hard or soft interrupt).
5515 */
__netif_rx(struct sk_buff * skb)5516 int __netif_rx(struct sk_buff *skb)
5517 {
5518 int ret;
5519
5520 lockdep_assert_once(hardirq_count() | softirq_count());
5521
5522 trace_netif_rx_entry(skb);
5523 ret = netif_rx_internal(skb);
5524 trace_netif_rx_exit(ret);
5525 return ret;
5526 }
5527 EXPORT_SYMBOL(__netif_rx);
5528
5529 /**
5530 * netif_rx - post buffer to the network code
5531 * @skb: buffer to post
5532 *
5533 * This function receives a packet from a device driver and queues it for
5534 * the upper (protocol) levels to process via the backlog NAPI device. It
5535 * always succeeds. The buffer may be dropped during processing for
5536 * congestion control or by the protocol layers.
5537 * The network buffer is passed via the backlog NAPI device. Modern NIC
5538 * driver should use NAPI and GRO.
5539 * This function can used from interrupt and from process context. The
5540 * caller from process context must not disable interrupts before invoking
5541 * this function.
5542 *
5543 * return values:
5544 * NET_RX_SUCCESS (no congestion)
5545 * NET_RX_DROP (packet was dropped)
5546 *
5547 */
netif_rx(struct sk_buff * skb)5548 int netif_rx(struct sk_buff *skb)
5549 {
5550 bool need_bh_off = !(hardirq_count() | softirq_count());
5551 int ret;
5552
5553 if (need_bh_off)
5554 local_bh_disable();
5555 trace_netif_rx_entry(skb);
5556 ret = netif_rx_internal(skb);
5557 trace_netif_rx_exit(ret);
5558 if (need_bh_off)
5559 local_bh_enable();
5560 return ret;
5561 }
5562 EXPORT_SYMBOL(netif_rx);
5563
net_tx_action(void)5564 static __latent_entropy void net_tx_action(void)
5565 {
5566 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5567
5568 if (sd->completion_queue) {
5569 struct sk_buff *clist;
5570
5571 local_irq_disable();
5572 clist = sd->completion_queue;
5573 sd->completion_queue = NULL;
5574 local_irq_enable();
5575
5576 while (clist) {
5577 struct sk_buff *skb = clist;
5578
5579 clist = clist->next;
5580
5581 WARN_ON(refcount_read(&skb->users));
5582 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5583 trace_consume_skb(skb, net_tx_action);
5584 else
5585 trace_kfree_skb(skb, net_tx_action,
5586 get_kfree_skb_cb(skb)->reason, NULL);
5587
5588 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5589 __kfree_skb(skb);
5590 else
5591 __napi_kfree_skb(skb,
5592 get_kfree_skb_cb(skb)->reason);
5593 }
5594 }
5595
5596 if (sd->output_queue) {
5597 struct Qdisc *head;
5598
5599 local_irq_disable();
5600 head = sd->output_queue;
5601 sd->output_queue = NULL;
5602 sd->output_queue_tailp = &sd->output_queue;
5603 local_irq_enable();
5604
5605 rcu_read_lock();
5606
5607 while (head) {
5608 struct Qdisc *q = head;
5609 spinlock_t *root_lock = NULL;
5610
5611 head = head->next_sched;
5612
5613 /* We need to make sure head->next_sched is read
5614 * before clearing __QDISC_STATE_SCHED
5615 */
5616 smp_mb__before_atomic();
5617
5618 if (!(q->flags & TCQ_F_NOLOCK)) {
5619 root_lock = qdisc_lock(q);
5620 spin_lock(root_lock);
5621 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5622 &q->state))) {
5623 /* There is a synchronize_net() between
5624 * STATE_DEACTIVATED flag being set and
5625 * qdisc_reset()/some_qdisc_is_busy() in
5626 * dev_deactivate(), so we can safely bail out
5627 * early here to avoid data race between
5628 * qdisc_deactivate() and some_qdisc_is_busy()
5629 * for lockless qdisc.
5630 */
5631 clear_bit(__QDISC_STATE_SCHED, &q->state);
5632 continue;
5633 }
5634
5635 clear_bit(__QDISC_STATE_SCHED, &q->state);
5636 qdisc_run(q);
5637 if (root_lock)
5638 spin_unlock(root_lock);
5639 }
5640
5641 rcu_read_unlock();
5642 }
5643
5644 xfrm_dev_backlog(sd);
5645 }
5646
5647 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5648 /* This hook is defined here for ATM LANE */
5649 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5650 unsigned char *addr) __read_mostly;
5651 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5652 #endif
5653
5654 /**
5655 * netdev_is_rx_handler_busy - check if receive handler is registered
5656 * @dev: device to check
5657 *
5658 * Check if a receive handler is already registered for a given device.
5659 * Return true if there one.
5660 *
5661 * The caller must hold the rtnl_mutex.
5662 */
netdev_is_rx_handler_busy(struct net_device * dev)5663 bool netdev_is_rx_handler_busy(struct net_device *dev)
5664 {
5665 ASSERT_RTNL();
5666 return dev && rtnl_dereference(dev->rx_handler);
5667 }
5668 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5669
5670 /**
5671 * netdev_rx_handler_register - register receive handler
5672 * @dev: device to register a handler for
5673 * @rx_handler: receive handler to register
5674 * @rx_handler_data: data pointer that is used by rx handler
5675 *
5676 * Register a receive handler for a device. This handler will then be
5677 * called from __netif_receive_skb. A negative errno code is returned
5678 * on a failure.
5679 *
5680 * The caller must hold the rtnl_mutex.
5681 *
5682 * For a general description of rx_handler, see enum rx_handler_result.
5683 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5684 int netdev_rx_handler_register(struct net_device *dev,
5685 rx_handler_func_t *rx_handler,
5686 void *rx_handler_data)
5687 {
5688 if (netdev_is_rx_handler_busy(dev))
5689 return -EBUSY;
5690
5691 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5692 return -EINVAL;
5693
5694 /* Note: rx_handler_data must be set before rx_handler */
5695 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5696 rcu_assign_pointer(dev->rx_handler, rx_handler);
5697
5698 return 0;
5699 }
5700 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5701
5702 /**
5703 * netdev_rx_handler_unregister - unregister receive handler
5704 * @dev: device to unregister a handler from
5705 *
5706 * Unregister a receive handler from a device.
5707 *
5708 * The caller must hold the rtnl_mutex.
5709 */
netdev_rx_handler_unregister(struct net_device * dev)5710 void netdev_rx_handler_unregister(struct net_device *dev)
5711 {
5712
5713 ASSERT_RTNL();
5714 RCU_INIT_POINTER(dev->rx_handler, NULL);
5715 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5716 * section has a guarantee to see a non NULL rx_handler_data
5717 * as well.
5718 */
5719 synchronize_net();
5720 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5721 }
5722 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5723
5724 /*
5725 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5726 * the special handling of PFMEMALLOC skbs.
5727 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5728 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5729 {
5730 switch (skb->protocol) {
5731 case htons(ETH_P_ARP):
5732 case htons(ETH_P_IP):
5733 case htons(ETH_P_IPV6):
5734 case htons(ETH_P_8021Q):
5735 case htons(ETH_P_8021AD):
5736 return true;
5737 default:
5738 return false;
5739 }
5740 }
5741
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5742 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5743 int *ret, struct net_device *orig_dev)
5744 {
5745 if (nf_hook_ingress_active(skb)) {
5746 int ingress_retval;
5747
5748 if (*pt_prev) {
5749 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5750 *pt_prev = NULL;
5751 }
5752
5753 rcu_read_lock();
5754 ingress_retval = nf_hook_ingress(skb);
5755 rcu_read_unlock();
5756 return ingress_retval;
5757 }
5758 return 0;
5759 }
5760
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5761 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5762 struct packet_type **ppt_prev)
5763 {
5764 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5765 struct packet_type *ptype, *pt_prev;
5766 rx_handler_func_t *rx_handler;
5767 struct sk_buff *skb = *pskb;
5768 struct net_device *orig_dev;
5769 bool deliver_exact = false;
5770 int ret = NET_RX_DROP;
5771 __be16 type;
5772
5773 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5774
5775 trace_netif_receive_skb(skb);
5776
5777 orig_dev = skb->dev;
5778
5779 skb_reset_network_header(skb);
5780 #if !defined(CONFIG_DEBUG_NET)
5781 /* We plan to no longer reset the transport header here.
5782 * Give some time to fuzzers and dev build to catch bugs
5783 * in network stacks.
5784 */
5785 if (!skb_transport_header_was_set(skb))
5786 skb_reset_transport_header(skb);
5787 #endif
5788 skb_reset_mac_len(skb);
5789
5790 pt_prev = NULL;
5791
5792 another_round:
5793 skb->skb_iif = skb->dev->ifindex;
5794
5795 __this_cpu_inc(softnet_data.processed);
5796
5797 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5798 int ret2;
5799
5800 migrate_disable();
5801 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5802 &skb);
5803 migrate_enable();
5804
5805 if (ret2 != XDP_PASS) {
5806 ret = NET_RX_DROP;
5807 goto out;
5808 }
5809 }
5810
5811 if (eth_type_vlan(skb->protocol)) {
5812 skb = skb_vlan_untag(skb);
5813 if (unlikely(!skb))
5814 goto out;
5815 }
5816
5817 if (skb_skip_tc_classify(skb))
5818 goto skip_classify;
5819
5820 if (pfmemalloc)
5821 goto skip_taps;
5822
5823 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5824 list) {
5825 if (pt_prev)
5826 ret = deliver_skb(skb, pt_prev, orig_dev);
5827 pt_prev = ptype;
5828 }
5829
5830 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5831 if (pt_prev)
5832 ret = deliver_skb(skb, pt_prev, orig_dev);
5833 pt_prev = ptype;
5834 }
5835
5836 skip_taps:
5837 #ifdef CONFIG_NET_INGRESS
5838 if (static_branch_unlikely(&ingress_needed_key)) {
5839 bool another = false;
5840
5841 nf_skip_egress(skb, true);
5842 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5843 &another);
5844 if (another)
5845 goto another_round;
5846 if (!skb)
5847 goto out;
5848
5849 nf_skip_egress(skb, false);
5850 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5851 goto out;
5852 }
5853 #endif
5854 skb_reset_redirect(skb);
5855 skip_classify:
5856 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5857 drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5858 goto drop;
5859 }
5860
5861 if (skb_vlan_tag_present(skb)) {
5862 if (pt_prev) {
5863 ret = deliver_skb(skb, pt_prev, orig_dev);
5864 pt_prev = NULL;
5865 }
5866 if (vlan_do_receive(&skb))
5867 goto another_round;
5868 else if (unlikely(!skb))
5869 goto out;
5870 }
5871
5872 rx_handler = rcu_dereference(skb->dev->rx_handler);
5873 if (rx_handler) {
5874 if (pt_prev) {
5875 ret = deliver_skb(skb, pt_prev, orig_dev);
5876 pt_prev = NULL;
5877 }
5878 switch (rx_handler(&skb)) {
5879 case RX_HANDLER_CONSUMED:
5880 ret = NET_RX_SUCCESS;
5881 goto out;
5882 case RX_HANDLER_ANOTHER:
5883 goto another_round;
5884 case RX_HANDLER_EXACT:
5885 deliver_exact = true;
5886 break;
5887 case RX_HANDLER_PASS:
5888 break;
5889 default:
5890 BUG();
5891 }
5892 }
5893
5894 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5895 check_vlan_id:
5896 if (skb_vlan_tag_get_id(skb)) {
5897 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5898 * find vlan device.
5899 */
5900 skb->pkt_type = PACKET_OTHERHOST;
5901 } else if (eth_type_vlan(skb->protocol)) {
5902 /* Outer header is 802.1P with vlan 0, inner header is
5903 * 802.1Q or 802.1AD and vlan_do_receive() above could
5904 * not find vlan dev for vlan id 0.
5905 */
5906 __vlan_hwaccel_clear_tag(skb);
5907 skb = skb_vlan_untag(skb);
5908 if (unlikely(!skb))
5909 goto out;
5910 if (vlan_do_receive(&skb))
5911 /* After stripping off 802.1P header with vlan 0
5912 * vlan dev is found for inner header.
5913 */
5914 goto another_round;
5915 else if (unlikely(!skb))
5916 goto out;
5917 else
5918 /* We have stripped outer 802.1P vlan 0 header.
5919 * But could not find vlan dev.
5920 * check again for vlan id to set OTHERHOST.
5921 */
5922 goto check_vlan_id;
5923 }
5924 /* Note: we might in the future use prio bits
5925 * and set skb->priority like in vlan_do_receive()
5926 * For the time being, just ignore Priority Code Point
5927 */
5928 __vlan_hwaccel_clear_tag(skb);
5929 }
5930
5931 type = skb->protocol;
5932
5933 /* deliver only exact match when indicated */
5934 if (likely(!deliver_exact)) {
5935 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5936 &ptype_base[ntohs(type) &
5937 PTYPE_HASH_MASK]);
5938
5939 /* orig_dev and skb->dev could belong to different netns;
5940 * Even in such case we need to traverse only the list
5941 * coming from skb->dev, as the ptype owner (packet socket)
5942 * will use dev_net(skb->dev) to do namespace filtering.
5943 */
5944 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5945 &dev_net_rcu(skb->dev)->ptype_specific);
5946 }
5947
5948 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5949 &orig_dev->ptype_specific);
5950
5951 if (unlikely(skb->dev != orig_dev)) {
5952 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5953 &skb->dev->ptype_specific);
5954 }
5955
5956 if (pt_prev) {
5957 *ppt_prev = pt_prev;
5958 } else {
5959 drop:
5960 if (!deliver_exact)
5961 dev_core_stats_rx_dropped_inc(skb->dev);
5962 else
5963 dev_core_stats_rx_nohandler_inc(skb->dev);
5964
5965 kfree_skb_reason(skb, drop_reason);
5966 /* Jamal, now you will not able to escape explaining
5967 * me how you were going to use this. :-)
5968 */
5969 ret = NET_RX_DROP;
5970 }
5971
5972 out:
5973 /* The invariant here is that if *ppt_prev is not NULL
5974 * then skb should also be non-NULL.
5975 *
5976 * Apparently *ppt_prev assignment above holds this invariant due to
5977 * skb dereferencing near it.
5978 */
5979 *pskb = skb;
5980 return ret;
5981 }
5982
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5983 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5984 {
5985 struct net_device *orig_dev = skb->dev;
5986 struct packet_type *pt_prev = NULL;
5987 int ret;
5988
5989 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5990 if (pt_prev)
5991 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5992 skb->dev, pt_prev, orig_dev);
5993 return ret;
5994 }
5995
5996 /**
5997 * netif_receive_skb_core - special purpose version of netif_receive_skb
5998 * @skb: buffer to process
5999 *
6000 * More direct receive version of netif_receive_skb(). It should
6001 * only be used by callers that have a need to skip RPS and Generic XDP.
6002 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6003 *
6004 * This function may only be called from softirq context and interrupts
6005 * should be enabled.
6006 *
6007 * Return values (usually ignored):
6008 * NET_RX_SUCCESS: no congestion
6009 * NET_RX_DROP: packet was dropped
6010 */
netif_receive_skb_core(struct sk_buff * skb)6011 int netif_receive_skb_core(struct sk_buff *skb)
6012 {
6013 int ret;
6014
6015 rcu_read_lock();
6016 ret = __netif_receive_skb_one_core(skb, false);
6017 rcu_read_unlock();
6018
6019 return ret;
6020 }
6021 EXPORT_SYMBOL(netif_receive_skb_core);
6022
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6023 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6024 struct packet_type *pt_prev,
6025 struct net_device *orig_dev)
6026 {
6027 struct sk_buff *skb, *next;
6028
6029 if (!pt_prev)
6030 return;
6031 if (list_empty(head))
6032 return;
6033 if (pt_prev->list_func != NULL)
6034 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6035 ip_list_rcv, head, pt_prev, orig_dev);
6036 else
6037 list_for_each_entry_safe(skb, next, head, list) {
6038 skb_list_del_init(skb);
6039 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6040 }
6041 }
6042
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6043 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6044 {
6045 /* Fast-path assumptions:
6046 * - There is no RX handler.
6047 * - Only one packet_type matches.
6048 * If either of these fails, we will end up doing some per-packet
6049 * processing in-line, then handling the 'last ptype' for the whole
6050 * sublist. This can't cause out-of-order delivery to any single ptype,
6051 * because the 'last ptype' must be constant across the sublist, and all
6052 * other ptypes are handled per-packet.
6053 */
6054 /* Current (common) ptype of sublist */
6055 struct packet_type *pt_curr = NULL;
6056 /* Current (common) orig_dev of sublist */
6057 struct net_device *od_curr = NULL;
6058 struct sk_buff *skb, *next;
6059 LIST_HEAD(sublist);
6060
6061 list_for_each_entry_safe(skb, next, head, list) {
6062 struct net_device *orig_dev = skb->dev;
6063 struct packet_type *pt_prev = NULL;
6064
6065 skb_list_del_init(skb);
6066 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6067 if (!pt_prev)
6068 continue;
6069 if (pt_curr != pt_prev || od_curr != orig_dev) {
6070 /* dispatch old sublist */
6071 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6072 /* start new sublist */
6073 INIT_LIST_HEAD(&sublist);
6074 pt_curr = pt_prev;
6075 od_curr = orig_dev;
6076 }
6077 list_add_tail(&skb->list, &sublist);
6078 }
6079
6080 /* dispatch final sublist */
6081 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6082 }
6083
__netif_receive_skb(struct sk_buff * skb)6084 static int __netif_receive_skb(struct sk_buff *skb)
6085 {
6086 int ret;
6087
6088 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6089 unsigned int noreclaim_flag;
6090
6091 /*
6092 * PFMEMALLOC skbs are special, they should
6093 * - be delivered to SOCK_MEMALLOC sockets only
6094 * - stay away from userspace
6095 * - have bounded memory usage
6096 *
6097 * Use PF_MEMALLOC as this saves us from propagating the allocation
6098 * context down to all allocation sites.
6099 */
6100 noreclaim_flag = memalloc_noreclaim_save();
6101 ret = __netif_receive_skb_one_core(skb, true);
6102 memalloc_noreclaim_restore(noreclaim_flag);
6103 } else
6104 ret = __netif_receive_skb_one_core(skb, false);
6105
6106 return ret;
6107 }
6108
__netif_receive_skb_list(struct list_head * head)6109 static void __netif_receive_skb_list(struct list_head *head)
6110 {
6111 unsigned long noreclaim_flag = 0;
6112 struct sk_buff *skb, *next;
6113 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6114
6115 list_for_each_entry_safe(skb, next, head, list) {
6116 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6117 struct list_head sublist;
6118
6119 /* Handle the previous sublist */
6120 list_cut_before(&sublist, head, &skb->list);
6121 if (!list_empty(&sublist))
6122 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6123 pfmemalloc = !pfmemalloc;
6124 /* See comments in __netif_receive_skb */
6125 if (pfmemalloc)
6126 noreclaim_flag = memalloc_noreclaim_save();
6127 else
6128 memalloc_noreclaim_restore(noreclaim_flag);
6129 }
6130 }
6131 /* Handle the remaining sublist */
6132 if (!list_empty(head))
6133 __netif_receive_skb_list_core(head, pfmemalloc);
6134 /* Restore pflags */
6135 if (pfmemalloc)
6136 memalloc_noreclaim_restore(noreclaim_flag);
6137 }
6138
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6139 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6140 {
6141 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6142 struct bpf_prog *new = xdp->prog;
6143 int ret = 0;
6144
6145 switch (xdp->command) {
6146 case XDP_SETUP_PROG:
6147 rcu_assign_pointer(dev->xdp_prog, new);
6148 if (old)
6149 bpf_prog_put(old);
6150
6151 if (old && !new) {
6152 static_branch_dec(&generic_xdp_needed_key);
6153 } else if (new && !old) {
6154 static_branch_inc(&generic_xdp_needed_key);
6155 netif_disable_lro(dev);
6156 dev_disable_gro_hw(dev);
6157 }
6158 break;
6159
6160 default:
6161 ret = -EINVAL;
6162 break;
6163 }
6164
6165 return ret;
6166 }
6167
netif_receive_skb_internal(struct sk_buff * skb)6168 static int netif_receive_skb_internal(struct sk_buff *skb)
6169 {
6170 int ret;
6171
6172 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6173
6174 if (skb_defer_rx_timestamp(skb))
6175 return NET_RX_SUCCESS;
6176
6177 rcu_read_lock();
6178 #ifdef CONFIG_RPS
6179 if (static_branch_unlikely(&rps_needed)) {
6180 struct rps_dev_flow voidflow, *rflow = &voidflow;
6181 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6182
6183 if (cpu >= 0) {
6184 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6185 rcu_read_unlock();
6186 return ret;
6187 }
6188 }
6189 #endif
6190 ret = __netif_receive_skb(skb);
6191 rcu_read_unlock();
6192 return ret;
6193 }
6194
netif_receive_skb_list_internal(struct list_head * head)6195 void netif_receive_skb_list_internal(struct list_head *head)
6196 {
6197 struct sk_buff *skb, *next;
6198 LIST_HEAD(sublist);
6199
6200 list_for_each_entry_safe(skb, next, head, list) {
6201 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6202 skb);
6203 skb_list_del_init(skb);
6204 if (!skb_defer_rx_timestamp(skb))
6205 list_add_tail(&skb->list, &sublist);
6206 }
6207 list_splice_init(&sublist, head);
6208
6209 rcu_read_lock();
6210 #ifdef CONFIG_RPS
6211 if (static_branch_unlikely(&rps_needed)) {
6212 list_for_each_entry_safe(skb, next, head, list) {
6213 struct rps_dev_flow voidflow, *rflow = &voidflow;
6214 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6215
6216 if (cpu >= 0) {
6217 /* Will be handled, remove from list */
6218 skb_list_del_init(skb);
6219 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6220 }
6221 }
6222 }
6223 #endif
6224 __netif_receive_skb_list(head);
6225 rcu_read_unlock();
6226 }
6227
6228 /**
6229 * netif_receive_skb - process receive buffer from network
6230 * @skb: buffer to process
6231 *
6232 * netif_receive_skb() is the main receive data processing function.
6233 * It always succeeds. The buffer may be dropped during processing
6234 * for congestion control or by the protocol layers.
6235 *
6236 * This function may only be called from softirq context and interrupts
6237 * should be enabled.
6238 *
6239 * Return values (usually ignored):
6240 * NET_RX_SUCCESS: no congestion
6241 * NET_RX_DROP: packet was dropped
6242 */
netif_receive_skb(struct sk_buff * skb)6243 int netif_receive_skb(struct sk_buff *skb)
6244 {
6245 int ret;
6246
6247 trace_netif_receive_skb_entry(skb);
6248
6249 ret = netif_receive_skb_internal(skb);
6250 trace_netif_receive_skb_exit(ret);
6251
6252 return ret;
6253 }
6254 EXPORT_SYMBOL(netif_receive_skb);
6255
6256 /**
6257 * netif_receive_skb_list - process many receive buffers from network
6258 * @head: list of skbs to process.
6259 *
6260 * Since return value of netif_receive_skb() is normally ignored, and
6261 * wouldn't be meaningful for a list, this function returns void.
6262 *
6263 * This function may only be called from softirq context and interrupts
6264 * should be enabled.
6265 */
netif_receive_skb_list(struct list_head * head)6266 void netif_receive_skb_list(struct list_head *head)
6267 {
6268 struct sk_buff *skb;
6269
6270 if (list_empty(head))
6271 return;
6272 if (trace_netif_receive_skb_list_entry_enabled()) {
6273 list_for_each_entry(skb, head, list)
6274 trace_netif_receive_skb_list_entry(skb);
6275 }
6276 netif_receive_skb_list_internal(head);
6277 trace_netif_receive_skb_list_exit(0);
6278 }
6279 EXPORT_SYMBOL(netif_receive_skb_list);
6280
6281 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6282 static void flush_backlog(struct work_struct *work)
6283 {
6284 struct sk_buff *skb, *tmp;
6285 struct sk_buff_head list;
6286 struct softnet_data *sd;
6287
6288 __skb_queue_head_init(&list);
6289 local_bh_disable();
6290 sd = this_cpu_ptr(&softnet_data);
6291
6292 backlog_lock_irq_disable(sd);
6293 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6294 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6295 __skb_unlink(skb, &sd->input_pkt_queue);
6296 __skb_queue_tail(&list, skb);
6297 rps_input_queue_head_incr(sd);
6298 }
6299 }
6300 backlog_unlock_irq_enable(sd);
6301
6302 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6303 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6304 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6305 __skb_unlink(skb, &sd->process_queue);
6306 __skb_queue_tail(&list, skb);
6307 rps_input_queue_head_incr(sd);
6308 }
6309 }
6310 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6311 local_bh_enable();
6312
6313 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6314 }
6315
flush_required(int cpu)6316 static bool flush_required(int cpu)
6317 {
6318 #if IS_ENABLED(CONFIG_RPS)
6319 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6320 bool do_flush;
6321
6322 backlog_lock_irq_disable(sd);
6323
6324 /* as insertion into process_queue happens with the rps lock held,
6325 * process_queue access may race only with dequeue
6326 */
6327 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6328 !skb_queue_empty_lockless(&sd->process_queue);
6329 backlog_unlock_irq_enable(sd);
6330
6331 return do_flush;
6332 #endif
6333 /* without RPS we can't safely check input_pkt_queue: during a
6334 * concurrent remote skb_queue_splice() we can detect as empty both
6335 * input_pkt_queue and process_queue even if the latter could end-up
6336 * containing a lot of packets.
6337 */
6338 return true;
6339 }
6340
6341 struct flush_backlogs {
6342 cpumask_t flush_cpus;
6343 struct work_struct w[];
6344 };
6345
flush_backlogs_alloc(void)6346 static struct flush_backlogs *flush_backlogs_alloc(void)
6347 {
6348 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6349 GFP_KERNEL);
6350 }
6351
6352 static struct flush_backlogs *flush_backlogs_fallback;
6353 static DEFINE_MUTEX(flush_backlogs_mutex);
6354
flush_all_backlogs(void)6355 static void flush_all_backlogs(void)
6356 {
6357 struct flush_backlogs *ptr = flush_backlogs_alloc();
6358 unsigned int cpu;
6359
6360 if (!ptr) {
6361 mutex_lock(&flush_backlogs_mutex);
6362 ptr = flush_backlogs_fallback;
6363 }
6364 cpumask_clear(&ptr->flush_cpus);
6365
6366 cpus_read_lock();
6367
6368 for_each_online_cpu(cpu) {
6369 if (flush_required(cpu)) {
6370 INIT_WORK(&ptr->w[cpu], flush_backlog);
6371 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6372 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6373 }
6374 }
6375
6376 /* we can have in flight packet[s] on the cpus we are not flushing,
6377 * synchronize_net() in unregister_netdevice_many() will take care of
6378 * them.
6379 */
6380 for_each_cpu(cpu, &ptr->flush_cpus)
6381 flush_work(&ptr->w[cpu]);
6382
6383 cpus_read_unlock();
6384
6385 if (ptr != flush_backlogs_fallback)
6386 kfree(ptr);
6387 else
6388 mutex_unlock(&flush_backlogs_mutex);
6389 }
6390
net_rps_send_ipi(struct softnet_data * remsd)6391 static void net_rps_send_ipi(struct softnet_data *remsd)
6392 {
6393 #ifdef CONFIG_RPS
6394 while (remsd) {
6395 struct softnet_data *next = remsd->rps_ipi_next;
6396
6397 if (cpu_online(remsd->cpu))
6398 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6399 remsd = next;
6400 }
6401 #endif
6402 }
6403
6404 /*
6405 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6406 * Note: called with local irq disabled, but exits with local irq enabled.
6407 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6408 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6409 {
6410 #ifdef CONFIG_RPS
6411 struct softnet_data *remsd = sd->rps_ipi_list;
6412
6413 if (!use_backlog_threads() && remsd) {
6414 sd->rps_ipi_list = NULL;
6415
6416 local_irq_enable();
6417
6418 /* Send pending IPI's to kick RPS processing on remote cpus. */
6419 net_rps_send_ipi(remsd);
6420 } else
6421 #endif
6422 local_irq_enable();
6423 }
6424
sd_has_rps_ipi_waiting(struct softnet_data * sd)6425 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6426 {
6427 #ifdef CONFIG_RPS
6428 return !use_backlog_threads() && sd->rps_ipi_list;
6429 #else
6430 return false;
6431 #endif
6432 }
6433
process_backlog(struct napi_struct * napi,int quota)6434 static int process_backlog(struct napi_struct *napi, int quota)
6435 {
6436 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6437 bool again = true;
6438 int work = 0;
6439
6440 /* Check if we have pending ipi, its better to send them now,
6441 * not waiting net_rx_action() end.
6442 */
6443 if (sd_has_rps_ipi_waiting(sd)) {
6444 local_irq_disable();
6445 net_rps_action_and_irq_enable(sd);
6446 }
6447
6448 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6449 while (again) {
6450 struct sk_buff *skb;
6451
6452 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6453 while ((skb = __skb_dequeue(&sd->process_queue))) {
6454 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6455 rcu_read_lock();
6456 __netif_receive_skb(skb);
6457 rcu_read_unlock();
6458 if (++work >= quota) {
6459 rps_input_queue_head_add(sd, work);
6460 return work;
6461 }
6462
6463 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6464 }
6465 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6466
6467 backlog_lock_irq_disable(sd);
6468 if (skb_queue_empty(&sd->input_pkt_queue)) {
6469 /*
6470 * Inline a custom version of __napi_complete().
6471 * only current cpu owns and manipulates this napi,
6472 * and NAPI_STATE_SCHED is the only possible flag set
6473 * on backlog.
6474 * We can use a plain write instead of clear_bit(),
6475 * and we dont need an smp_mb() memory barrier.
6476 */
6477 napi->state &= NAPIF_STATE_THREADED;
6478 again = false;
6479 } else {
6480 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6481 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6482 &sd->process_queue);
6483 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6484 }
6485 backlog_unlock_irq_enable(sd);
6486 }
6487
6488 if (work)
6489 rps_input_queue_head_add(sd, work);
6490 return work;
6491 }
6492
6493 /**
6494 * __napi_schedule - schedule for receive
6495 * @n: entry to schedule
6496 *
6497 * The entry's receive function will be scheduled to run.
6498 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6499 */
__napi_schedule(struct napi_struct * n)6500 void __napi_schedule(struct napi_struct *n)
6501 {
6502 unsigned long flags;
6503
6504 local_irq_save(flags);
6505 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6506 local_irq_restore(flags);
6507 }
6508 EXPORT_SYMBOL(__napi_schedule);
6509
6510 /**
6511 * napi_schedule_prep - check if napi can be scheduled
6512 * @n: napi context
6513 *
6514 * Test if NAPI routine is already running, and if not mark
6515 * it as running. This is used as a condition variable to
6516 * insure only one NAPI poll instance runs. We also make
6517 * sure there is no pending NAPI disable.
6518 */
napi_schedule_prep(struct napi_struct * n)6519 bool napi_schedule_prep(struct napi_struct *n)
6520 {
6521 unsigned long new, val = READ_ONCE(n->state);
6522
6523 do {
6524 if (unlikely(val & NAPIF_STATE_DISABLE))
6525 return false;
6526 new = val | NAPIF_STATE_SCHED;
6527
6528 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6529 * This was suggested by Alexander Duyck, as compiler
6530 * emits better code than :
6531 * if (val & NAPIF_STATE_SCHED)
6532 * new |= NAPIF_STATE_MISSED;
6533 */
6534 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6535 NAPIF_STATE_MISSED;
6536 } while (!try_cmpxchg(&n->state, &val, new));
6537
6538 return !(val & NAPIF_STATE_SCHED);
6539 }
6540 EXPORT_SYMBOL(napi_schedule_prep);
6541
6542 /**
6543 * __napi_schedule_irqoff - schedule for receive
6544 * @n: entry to schedule
6545 *
6546 * Variant of __napi_schedule() assuming hard irqs are masked.
6547 *
6548 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6549 * because the interrupt disabled assumption might not be true
6550 * due to force-threaded interrupts and spinlock substitution.
6551 */
__napi_schedule_irqoff(struct napi_struct * n)6552 void __napi_schedule_irqoff(struct napi_struct *n)
6553 {
6554 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6555 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6556 else
6557 __napi_schedule(n);
6558 }
6559 EXPORT_SYMBOL(__napi_schedule_irqoff);
6560
napi_complete_done(struct napi_struct * n,int work_done)6561 bool napi_complete_done(struct napi_struct *n, int work_done)
6562 {
6563 unsigned long flags, val, new, timeout = 0;
6564 bool ret = true;
6565
6566 /*
6567 * 1) Don't let napi dequeue from the cpu poll list
6568 * just in case its running on a different cpu.
6569 * 2) If we are busy polling, do nothing here, we have
6570 * the guarantee we will be called later.
6571 */
6572 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6573 NAPIF_STATE_IN_BUSY_POLL)))
6574 return false;
6575
6576 if (work_done) {
6577 if (n->gro.bitmask)
6578 timeout = napi_get_gro_flush_timeout(n);
6579 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6580 }
6581 if (n->defer_hard_irqs_count > 0) {
6582 n->defer_hard_irqs_count--;
6583 timeout = napi_get_gro_flush_timeout(n);
6584 if (timeout)
6585 ret = false;
6586 }
6587
6588 /*
6589 * When the NAPI instance uses a timeout and keeps postponing
6590 * it, we need to bound somehow the time packets are kept in
6591 * the GRO layer.
6592 */
6593 gro_flush_normal(&n->gro, !!timeout);
6594
6595 if (unlikely(!list_empty(&n->poll_list))) {
6596 /* If n->poll_list is not empty, we need to mask irqs */
6597 local_irq_save(flags);
6598 list_del_init(&n->poll_list);
6599 local_irq_restore(flags);
6600 }
6601 WRITE_ONCE(n->list_owner, -1);
6602
6603 val = READ_ONCE(n->state);
6604 do {
6605 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6606
6607 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6608 NAPIF_STATE_SCHED_THREADED |
6609 NAPIF_STATE_PREFER_BUSY_POLL);
6610
6611 /* If STATE_MISSED was set, leave STATE_SCHED set,
6612 * because we will call napi->poll() one more time.
6613 * This C code was suggested by Alexander Duyck to help gcc.
6614 */
6615 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6616 NAPIF_STATE_SCHED;
6617 } while (!try_cmpxchg(&n->state, &val, new));
6618
6619 if (unlikely(val & NAPIF_STATE_MISSED)) {
6620 __napi_schedule(n);
6621 return false;
6622 }
6623
6624 if (timeout)
6625 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6626 HRTIMER_MODE_REL_PINNED);
6627 return ret;
6628 }
6629 EXPORT_SYMBOL(napi_complete_done);
6630
skb_defer_free_flush(struct softnet_data * sd)6631 static void skb_defer_free_flush(struct softnet_data *sd)
6632 {
6633 struct sk_buff *skb, *next;
6634
6635 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6636 if (!READ_ONCE(sd->defer_list))
6637 return;
6638
6639 spin_lock(&sd->defer_lock);
6640 skb = sd->defer_list;
6641 sd->defer_list = NULL;
6642 sd->defer_count = 0;
6643 spin_unlock(&sd->defer_lock);
6644
6645 while (skb != NULL) {
6646 next = skb->next;
6647 napi_consume_skb(skb, 1);
6648 skb = next;
6649 }
6650 }
6651
6652 #if defined(CONFIG_NET_RX_BUSY_POLL)
6653
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6654 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6655 {
6656 if (!skip_schedule) {
6657 gro_normal_list(&napi->gro);
6658 __napi_schedule(napi);
6659 return;
6660 }
6661
6662 /* Flush too old packets. If HZ < 1000, flush all packets */
6663 gro_flush_normal(&napi->gro, HZ >= 1000);
6664
6665 clear_bit(NAPI_STATE_SCHED, &napi->state);
6666 }
6667
6668 enum {
6669 NAPI_F_PREFER_BUSY_POLL = 1,
6670 NAPI_F_END_ON_RESCHED = 2,
6671 };
6672
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6673 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6674 unsigned flags, u16 budget)
6675 {
6676 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6677 bool skip_schedule = false;
6678 unsigned long timeout;
6679 int rc;
6680
6681 /* Busy polling means there is a high chance device driver hard irq
6682 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6683 * set in napi_schedule_prep().
6684 * Since we are about to call napi->poll() once more, we can safely
6685 * clear NAPI_STATE_MISSED.
6686 *
6687 * Note: x86 could use a single "lock and ..." instruction
6688 * to perform these two clear_bit()
6689 */
6690 clear_bit(NAPI_STATE_MISSED, &napi->state);
6691 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6692
6693 local_bh_disable();
6694 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6695
6696 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6697 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6698 timeout = napi_get_gro_flush_timeout(napi);
6699 if (napi->defer_hard_irqs_count && timeout) {
6700 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6701 skip_schedule = true;
6702 }
6703 }
6704
6705 /* All we really want here is to re-enable device interrupts.
6706 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6707 */
6708 rc = napi->poll(napi, budget);
6709 /* We can't gro_normal_list() here, because napi->poll() might have
6710 * rearmed the napi (napi_complete_done()) in which case it could
6711 * already be running on another CPU.
6712 */
6713 trace_napi_poll(napi, rc, budget);
6714 netpoll_poll_unlock(have_poll_lock);
6715 if (rc == budget)
6716 __busy_poll_stop(napi, skip_schedule);
6717 bpf_net_ctx_clear(bpf_net_ctx);
6718 local_bh_enable();
6719 }
6720
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6721 static void __napi_busy_loop(unsigned int napi_id,
6722 bool (*loop_end)(void *, unsigned long),
6723 void *loop_end_arg, unsigned flags, u16 budget)
6724 {
6725 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6726 int (*napi_poll)(struct napi_struct *napi, int budget);
6727 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6728 void *have_poll_lock = NULL;
6729 struct napi_struct *napi;
6730
6731 WARN_ON_ONCE(!rcu_read_lock_held());
6732
6733 restart:
6734 napi_poll = NULL;
6735
6736 napi = napi_by_id(napi_id);
6737 if (!napi)
6738 return;
6739
6740 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6741 preempt_disable();
6742 for (;;) {
6743 int work = 0;
6744
6745 local_bh_disable();
6746 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6747 if (!napi_poll) {
6748 unsigned long val = READ_ONCE(napi->state);
6749
6750 /* If multiple threads are competing for this napi,
6751 * we avoid dirtying napi->state as much as we can.
6752 */
6753 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6754 NAPIF_STATE_IN_BUSY_POLL)) {
6755 if (flags & NAPI_F_PREFER_BUSY_POLL)
6756 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6757 goto count;
6758 }
6759 if (cmpxchg(&napi->state, val,
6760 val | NAPIF_STATE_IN_BUSY_POLL |
6761 NAPIF_STATE_SCHED) != val) {
6762 if (flags & NAPI_F_PREFER_BUSY_POLL)
6763 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6764 goto count;
6765 }
6766 have_poll_lock = netpoll_poll_lock(napi);
6767 napi_poll = napi->poll;
6768 }
6769 work = napi_poll(napi, budget);
6770 trace_napi_poll(napi, work, budget);
6771 gro_normal_list(&napi->gro);
6772 count:
6773 if (work > 0)
6774 __NET_ADD_STATS(dev_net(napi->dev),
6775 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6776 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6777 bpf_net_ctx_clear(bpf_net_ctx);
6778 local_bh_enable();
6779
6780 if (!loop_end || loop_end(loop_end_arg, start_time))
6781 break;
6782
6783 if (unlikely(need_resched())) {
6784 if (flags & NAPI_F_END_ON_RESCHED)
6785 break;
6786 if (napi_poll)
6787 busy_poll_stop(napi, have_poll_lock, flags, budget);
6788 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6789 preempt_enable();
6790 rcu_read_unlock();
6791 cond_resched();
6792 rcu_read_lock();
6793 if (loop_end(loop_end_arg, start_time))
6794 return;
6795 goto restart;
6796 }
6797 cpu_relax();
6798 }
6799 if (napi_poll)
6800 busy_poll_stop(napi, have_poll_lock, flags, budget);
6801 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6802 preempt_enable();
6803 }
6804
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6805 void napi_busy_loop_rcu(unsigned int napi_id,
6806 bool (*loop_end)(void *, unsigned long),
6807 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6808 {
6809 unsigned flags = NAPI_F_END_ON_RESCHED;
6810
6811 if (prefer_busy_poll)
6812 flags |= NAPI_F_PREFER_BUSY_POLL;
6813
6814 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6815 }
6816
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6817 void napi_busy_loop(unsigned int napi_id,
6818 bool (*loop_end)(void *, unsigned long),
6819 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6820 {
6821 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6822
6823 rcu_read_lock();
6824 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6825 rcu_read_unlock();
6826 }
6827 EXPORT_SYMBOL(napi_busy_loop);
6828
napi_suspend_irqs(unsigned int napi_id)6829 void napi_suspend_irqs(unsigned int napi_id)
6830 {
6831 struct napi_struct *napi;
6832
6833 rcu_read_lock();
6834 napi = napi_by_id(napi_id);
6835 if (napi) {
6836 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6837
6838 if (timeout)
6839 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6840 HRTIMER_MODE_REL_PINNED);
6841 }
6842 rcu_read_unlock();
6843 }
6844
napi_resume_irqs(unsigned int napi_id)6845 void napi_resume_irqs(unsigned int napi_id)
6846 {
6847 struct napi_struct *napi;
6848
6849 rcu_read_lock();
6850 napi = napi_by_id(napi_id);
6851 if (napi) {
6852 /* If irq_suspend_timeout is set to 0 between the call to
6853 * napi_suspend_irqs and now, the original value still
6854 * determines the safety timeout as intended and napi_watchdog
6855 * will resume irq processing.
6856 */
6857 if (napi_get_irq_suspend_timeout(napi)) {
6858 local_bh_disable();
6859 napi_schedule(napi);
6860 local_bh_enable();
6861 }
6862 }
6863 rcu_read_unlock();
6864 }
6865
6866 #endif /* CONFIG_NET_RX_BUSY_POLL */
6867
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6868 static void __napi_hash_add_with_id(struct napi_struct *napi,
6869 unsigned int napi_id)
6870 {
6871 napi->gro.cached_napi_id = napi_id;
6872
6873 WRITE_ONCE(napi->napi_id, napi_id);
6874 hlist_add_head_rcu(&napi->napi_hash_node,
6875 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6876 }
6877
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6878 static void napi_hash_add_with_id(struct napi_struct *napi,
6879 unsigned int napi_id)
6880 {
6881 unsigned long flags;
6882
6883 spin_lock_irqsave(&napi_hash_lock, flags);
6884 WARN_ON_ONCE(napi_by_id(napi_id));
6885 __napi_hash_add_with_id(napi, napi_id);
6886 spin_unlock_irqrestore(&napi_hash_lock, flags);
6887 }
6888
napi_hash_add(struct napi_struct * napi)6889 static void napi_hash_add(struct napi_struct *napi)
6890 {
6891 unsigned long flags;
6892
6893 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6894 return;
6895
6896 spin_lock_irqsave(&napi_hash_lock, flags);
6897
6898 /* 0..NR_CPUS range is reserved for sender_cpu use */
6899 do {
6900 if (unlikely(!napi_id_valid(++napi_gen_id)))
6901 napi_gen_id = MIN_NAPI_ID;
6902 } while (napi_by_id(napi_gen_id));
6903
6904 __napi_hash_add_with_id(napi, napi_gen_id);
6905
6906 spin_unlock_irqrestore(&napi_hash_lock, flags);
6907 }
6908
6909 /* Warning : caller is responsible to make sure rcu grace period
6910 * is respected before freeing memory containing @napi
6911 */
napi_hash_del(struct napi_struct * napi)6912 static void napi_hash_del(struct napi_struct *napi)
6913 {
6914 unsigned long flags;
6915
6916 spin_lock_irqsave(&napi_hash_lock, flags);
6917
6918 hlist_del_init_rcu(&napi->napi_hash_node);
6919
6920 spin_unlock_irqrestore(&napi_hash_lock, flags);
6921 }
6922
napi_watchdog(struct hrtimer * timer)6923 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6924 {
6925 struct napi_struct *napi;
6926
6927 napi = container_of(timer, struct napi_struct, timer);
6928
6929 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6930 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6931 */
6932 if (!napi_disable_pending(napi) &&
6933 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6934 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6935 __napi_schedule_irqoff(napi);
6936 }
6937
6938 return HRTIMER_NORESTART;
6939 }
6940
napi_stop_kthread(struct napi_struct * napi)6941 static void napi_stop_kthread(struct napi_struct *napi)
6942 {
6943 unsigned long val, new;
6944
6945 /* Wait until the napi STATE_THREADED is unset. */
6946 while (true) {
6947 val = READ_ONCE(napi->state);
6948
6949 /* If napi kthread own this napi or the napi is idle,
6950 * STATE_THREADED can be unset here.
6951 */
6952 if ((val & NAPIF_STATE_SCHED_THREADED) ||
6953 !(val & NAPIF_STATE_SCHED)) {
6954 new = val & (~NAPIF_STATE_THREADED);
6955 } else {
6956 msleep(20);
6957 continue;
6958 }
6959
6960 if (try_cmpxchg(&napi->state, &val, new))
6961 break;
6962 }
6963
6964 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
6965 * the kthread.
6966 */
6967 while (true) {
6968 if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state))
6969 break;
6970
6971 msleep(20);
6972 }
6973
6974 kthread_stop(napi->thread);
6975 napi->thread = NULL;
6976 }
6977
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)6978 int napi_set_threaded(struct napi_struct *napi,
6979 enum netdev_napi_threaded threaded)
6980 {
6981 if (threaded) {
6982 if (!napi->thread) {
6983 int err = napi_kthread_create(napi);
6984
6985 if (err)
6986 return err;
6987 }
6988 }
6989
6990 if (napi->config)
6991 napi->config->threaded = threaded;
6992
6993 /* Setting/unsetting threaded mode on a napi might not immediately
6994 * take effect, if the current napi instance is actively being
6995 * polled. In this case, the switch between threaded mode and
6996 * softirq mode will happen in the next round of napi_schedule().
6997 * This should not cause hiccups/stalls to the live traffic.
6998 */
6999 if (!threaded && napi->thread) {
7000 napi_stop_kthread(napi);
7001 } else {
7002 /* Make sure kthread is created before THREADED bit is set. */
7003 smp_mb__before_atomic();
7004 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7005 }
7006
7007 return 0;
7008 }
7009
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)7010 int netif_set_threaded(struct net_device *dev,
7011 enum netdev_napi_threaded threaded)
7012 {
7013 struct napi_struct *napi;
7014 int i, err = 0;
7015
7016 netdev_assert_locked_or_invisible(dev);
7017
7018 if (threaded) {
7019 list_for_each_entry(napi, &dev->napi_list, dev_list) {
7020 if (!napi->thread) {
7021 err = napi_kthread_create(napi);
7022 if (err) {
7023 threaded = NETDEV_NAPI_THREADED_DISABLED;
7024 break;
7025 }
7026 }
7027 }
7028 }
7029
7030 WRITE_ONCE(dev->threaded, threaded);
7031
7032 /* The error should not occur as the kthreads are already created. */
7033 list_for_each_entry(napi, &dev->napi_list, dev_list)
7034 WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7035
7036 /* Override the config for all NAPIs even if currently not listed */
7037 for (i = 0; i < dev->num_napi_configs; i++)
7038 dev->napi_config[i].threaded = threaded;
7039
7040 return err;
7041 }
7042
7043 /**
7044 * netif_threaded_enable() - enable threaded NAPIs
7045 * @dev: net_device instance
7046 *
7047 * Enable threaded mode for the NAPI instances of the device. This may be useful
7048 * for devices where multiple NAPI instances get scheduled by a single
7049 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7050 * than the core where IRQ is mapped.
7051 *
7052 * This function should be called before @dev is registered.
7053 */
netif_threaded_enable(struct net_device * dev)7054 void netif_threaded_enable(struct net_device *dev)
7055 {
7056 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7057 }
7058 EXPORT_SYMBOL(netif_threaded_enable);
7059
7060 /**
7061 * netif_queue_set_napi - Associate queue with the napi
7062 * @dev: device to which NAPI and queue belong
7063 * @queue_index: Index of queue
7064 * @type: queue type as RX or TX
7065 * @napi: NAPI context, pass NULL to clear previously set NAPI
7066 *
7067 * Set queue with its corresponding napi context. This should be done after
7068 * registering the NAPI handler for the queue-vector and the queues have been
7069 * mapped to the corresponding interrupt vector.
7070 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7071 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7072 enum netdev_queue_type type, struct napi_struct *napi)
7073 {
7074 struct netdev_rx_queue *rxq;
7075 struct netdev_queue *txq;
7076
7077 if (WARN_ON_ONCE(napi && !napi->dev))
7078 return;
7079 netdev_ops_assert_locked_or_invisible(dev);
7080
7081 switch (type) {
7082 case NETDEV_QUEUE_TYPE_RX:
7083 rxq = __netif_get_rx_queue(dev, queue_index);
7084 rxq->napi = napi;
7085 return;
7086 case NETDEV_QUEUE_TYPE_TX:
7087 txq = netdev_get_tx_queue(dev, queue_index);
7088 txq->napi = napi;
7089 return;
7090 default:
7091 return;
7092 }
7093 }
7094 EXPORT_SYMBOL(netif_queue_set_napi);
7095
7096 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7097 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7098 const cpumask_t *mask)
7099 {
7100 struct napi_struct *napi =
7101 container_of(notify, struct napi_struct, notify);
7102 #ifdef CONFIG_RFS_ACCEL
7103 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7104 int err;
7105 #endif
7106
7107 if (napi->config && napi->dev->irq_affinity_auto)
7108 cpumask_copy(&napi->config->affinity_mask, mask);
7109
7110 #ifdef CONFIG_RFS_ACCEL
7111 if (napi->dev->rx_cpu_rmap_auto) {
7112 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7113 if (err)
7114 netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7115 err);
7116 }
7117 #endif
7118 }
7119
7120 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7121 static void netif_napi_affinity_release(struct kref *ref)
7122 {
7123 struct napi_struct *napi =
7124 container_of(ref, struct napi_struct, notify.kref);
7125 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7126
7127 netdev_assert_locked(napi->dev);
7128 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7129 &napi->state));
7130
7131 if (!napi->dev->rx_cpu_rmap_auto)
7132 return;
7133 rmap->obj[napi->napi_rmap_idx] = NULL;
7134 napi->napi_rmap_idx = -1;
7135 cpu_rmap_put(rmap);
7136 }
7137
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7138 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7139 {
7140 if (dev->rx_cpu_rmap_auto)
7141 return 0;
7142
7143 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7144 if (!dev->rx_cpu_rmap)
7145 return -ENOMEM;
7146
7147 dev->rx_cpu_rmap_auto = true;
7148 return 0;
7149 }
7150 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7151
netif_del_cpu_rmap(struct net_device * dev)7152 static void netif_del_cpu_rmap(struct net_device *dev)
7153 {
7154 struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7155
7156 if (!dev->rx_cpu_rmap_auto)
7157 return;
7158
7159 /* Free the rmap */
7160 cpu_rmap_put(rmap);
7161 dev->rx_cpu_rmap = NULL;
7162 dev->rx_cpu_rmap_auto = false;
7163 }
7164
7165 #else
netif_napi_affinity_release(struct kref * ref)7166 static void netif_napi_affinity_release(struct kref *ref)
7167 {
7168 }
7169
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7170 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7171 {
7172 return 0;
7173 }
7174 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7175
netif_del_cpu_rmap(struct net_device * dev)7176 static void netif_del_cpu_rmap(struct net_device *dev)
7177 {
7178 }
7179 #endif
7180
netif_set_affinity_auto(struct net_device * dev)7181 void netif_set_affinity_auto(struct net_device *dev)
7182 {
7183 unsigned int i, maxqs, numa;
7184
7185 maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7186 numa = dev_to_node(&dev->dev);
7187
7188 for (i = 0; i < maxqs; i++)
7189 cpumask_set_cpu(cpumask_local_spread(i, numa),
7190 &dev->napi_config[i].affinity_mask);
7191
7192 dev->irq_affinity_auto = true;
7193 }
7194 EXPORT_SYMBOL(netif_set_affinity_auto);
7195
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7196 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7197 {
7198 int rc;
7199
7200 netdev_assert_locked_or_invisible(napi->dev);
7201
7202 if (napi->irq == irq)
7203 return;
7204
7205 /* Remove existing resources */
7206 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7207 irq_set_affinity_notifier(napi->irq, NULL);
7208
7209 napi->irq = irq;
7210 if (irq < 0 ||
7211 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7212 return;
7213
7214 /* Abort for buggy drivers */
7215 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7216 return;
7217
7218 #ifdef CONFIG_RFS_ACCEL
7219 if (napi->dev->rx_cpu_rmap_auto) {
7220 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7221 if (rc < 0)
7222 return;
7223
7224 cpu_rmap_get(napi->dev->rx_cpu_rmap);
7225 napi->napi_rmap_idx = rc;
7226 }
7227 #endif
7228
7229 /* Use core IRQ notifier */
7230 napi->notify.notify = netif_napi_irq_notify;
7231 napi->notify.release = netif_napi_affinity_release;
7232 rc = irq_set_affinity_notifier(irq, &napi->notify);
7233 if (rc) {
7234 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7235 rc);
7236 goto put_rmap;
7237 }
7238
7239 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7240 return;
7241
7242 put_rmap:
7243 #ifdef CONFIG_RFS_ACCEL
7244 if (napi->dev->rx_cpu_rmap_auto) {
7245 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7246 cpu_rmap_put(napi->dev->rx_cpu_rmap);
7247 napi->napi_rmap_idx = -1;
7248 }
7249 #endif
7250 napi->notify.notify = NULL;
7251 napi->notify.release = NULL;
7252 }
7253 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7254
napi_restore_config(struct napi_struct * n)7255 static void napi_restore_config(struct napi_struct *n)
7256 {
7257 n->defer_hard_irqs = n->config->defer_hard_irqs;
7258 n->gro_flush_timeout = n->config->gro_flush_timeout;
7259 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7260
7261 if (n->dev->irq_affinity_auto &&
7262 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7263 irq_set_affinity(n->irq, &n->config->affinity_mask);
7264
7265 /* a NAPI ID might be stored in the config, if so use it. if not, use
7266 * napi_hash_add to generate one for us.
7267 */
7268 if (n->config->napi_id) {
7269 napi_hash_add_with_id(n, n->config->napi_id);
7270 } else {
7271 napi_hash_add(n);
7272 n->config->napi_id = n->napi_id;
7273 }
7274
7275 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7276 }
7277
napi_save_config(struct napi_struct * n)7278 static void napi_save_config(struct napi_struct *n)
7279 {
7280 n->config->defer_hard_irqs = n->defer_hard_irqs;
7281 n->config->gro_flush_timeout = n->gro_flush_timeout;
7282 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7283 napi_hash_del(n);
7284 }
7285
7286 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7287 * inherit an existing ID try to insert it at the right position.
7288 */
7289 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7290 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7291 {
7292 unsigned int new_id, pos_id;
7293 struct list_head *higher;
7294 struct napi_struct *pos;
7295
7296 new_id = UINT_MAX;
7297 if (napi->config && napi->config->napi_id)
7298 new_id = napi->config->napi_id;
7299
7300 higher = &dev->napi_list;
7301 list_for_each_entry(pos, &dev->napi_list, dev_list) {
7302 if (napi_id_valid(pos->napi_id))
7303 pos_id = pos->napi_id;
7304 else if (pos->config)
7305 pos_id = pos->config->napi_id;
7306 else
7307 pos_id = UINT_MAX;
7308
7309 if (pos_id <= new_id)
7310 break;
7311 higher = &pos->dev_list;
7312 }
7313 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7314 }
7315
7316 /* Double check that napi_get_frags() allocates skbs with
7317 * skb->head being backed by slab, not a page fragment.
7318 * This is to make sure bug fixed in 3226b158e67c
7319 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7320 * does not accidentally come back.
7321 */
napi_get_frags_check(struct napi_struct * napi)7322 static void napi_get_frags_check(struct napi_struct *napi)
7323 {
7324 struct sk_buff *skb;
7325
7326 local_bh_disable();
7327 skb = napi_get_frags(napi);
7328 WARN_ON_ONCE(skb && skb->head_frag);
7329 napi_free_frags(napi);
7330 local_bh_enable();
7331 }
7332
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7333 void netif_napi_add_weight_locked(struct net_device *dev,
7334 struct napi_struct *napi,
7335 int (*poll)(struct napi_struct *, int),
7336 int weight)
7337 {
7338 netdev_assert_locked(dev);
7339 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7340 return;
7341
7342 INIT_LIST_HEAD(&napi->poll_list);
7343 INIT_HLIST_NODE(&napi->napi_hash_node);
7344 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7345 gro_init(&napi->gro);
7346 napi->skb = NULL;
7347 napi->poll = poll;
7348 if (weight > NAPI_POLL_WEIGHT)
7349 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7350 weight);
7351 napi->weight = weight;
7352 napi->dev = dev;
7353 #ifdef CONFIG_NETPOLL
7354 napi->poll_owner = -1;
7355 #endif
7356 napi->list_owner = -1;
7357 set_bit(NAPI_STATE_SCHED, &napi->state);
7358 set_bit(NAPI_STATE_NPSVC, &napi->state);
7359 netif_napi_dev_list_add(dev, napi);
7360
7361 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7362 * configuration will be loaded in napi_enable
7363 */
7364 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7365 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7366
7367 napi_get_frags_check(napi);
7368 /* Create kthread for this napi if dev->threaded is set.
7369 * Clear dev->threaded if kthread creation failed so that
7370 * threaded mode will not be enabled in napi_enable().
7371 */
7372 if (napi_get_threaded_config(dev, napi))
7373 if (napi_kthread_create(napi))
7374 dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7375 netif_napi_set_irq_locked(napi, -1);
7376 }
7377 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7378
napi_disable_locked(struct napi_struct * n)7379 void napi_disable_locked(struct napi_struct *n)
7380 {
7381 unsigned long val, new;
7382
7383 might_sleep();
7384 netdev_assert_locked(n->dev);
7385
7386 set_bit(NAPI_STATE_DISABLE, &n->state);
7387
7388 val = READ_ONCE(n->state);
7389 do {
7390 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7391 usleep_range(20, 200);
7392 val = READ_ONCE(n->state);
7393 }
7394
7395 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7396 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7397 } while (!try_cmpxchg(&n->state, &val, new));
7398
7399 hrtimer_cancel(&n->timer);
7400
7401 if (n->config)
7402 napi_save_config(n);
7403 else
7404 napi_hash_del(n);
7405
7406 clear_bit(NAPI_STATE_DISABLE, &n->state);
7407 }
7408 EXPORT_SYMBOL(napi_disable_locked);
7409
7410 /**
7411 * napi_disable() - prevent NAPI from scheduling
7412 * @n: NAPI context
7413 *
7414 * Stop NAPI from being scheduled on this context.
7415 * Waits till any outstanding processing completes.
7416 * Takes netdev_lock() for associated net_device.
7417 */
napi_disable(struct napi_struct * n)7418 void napi_disable(struct napi_struct *n)
7419 {
7420 netdev_lock(n->dev);
7421 napi_disable_locked(n);
7422 netdev_unlock(n->dev);
7423 }
7424 EXPORT_SYMBOL(napi_disable);
7425
napi_enable_locked(struct napi_struct * n)7426 void napi_enable_locked(struct napi_struct *n)
7427 {
7428 unsigned long new, val = READ_ONCE(n->state);
7429
7430 if (n->config)
7431 napi_restore_config(n);
7432 else
7433 napi_hash_add(n);
7434
7435 do {
7436 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7437
7438 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7439 if (n->dev->threaded && n->thread)
7440 new |= NAPIF_STATE_THREADED;
7441 } while (!try_cmpxchg(&n->state, &val, new));
7442 }
7443 EXPORT_SYMBOL(napi_enable_locked);
7444
7445 /**
7446 * napi_enable() - enable NAPI scheduling
7447 * @n: NAPI context
7448 *
7449 * Enable scheduling of a NAPI instance.
7450 * Must be paired with napi_disable().
7451 * Takes netdev_lock() for associated net_device.
7452 */
napi_enable(struct napi_struct * n)7453 void napi_enable(struct napi_struct *n)
7454 {
7455 netdev_lock(n->dev);
7456 napi_enable_locked(n);
7457 netdev_unlock(n->dev);
7458 }
7459 EXPORT_SYMBOL(napi_enable);
7460
7461 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7462 void __netif_napi_del_locked(struct napi_struct *napi)
7463 {
7464 netdev_assert_locked(napi->dev);
7465
7466 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7467 return;
7468
7469 /* Make sure NAPI is disabled (or was never enabled). */
7470 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7471
7472 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7473 irq_set_affinity_notifier(napi->irq, NULL);
7474
7475 if (napi->config) {
7476 napi->index = -1;
7477 napi->config = NULL;
7478 }
7479
7480 list_del_rcu(&napi->dev_list);
7481 napi_free_frags(napi);
7482
7483 gro_cleanup(&napi->gro);
7484
7485 if (napi->thread) {
7486 kthread_stop(napi->thread);
7487 napi->thread = NULL;
7488 }
7489 }
7490 EXPORT_SYMBOL(__netif_napi_del_locked);
7491
__napi_poll(struct napi_struct * n,bool * repoll)7492 static int __napi_poll(struct napi_struct *n, bool *repoll)
7493 {
7494 int work, weight;
7495
7496 weight = n->weight;
7497
7498 /* This NAPI_STATE_SCHED test is for avoiding a race
7499 * with netpoll's poll_napi(). Only the entity which
7500 * obtains the lock and sees NAPI_STATE_SCHED set will
7501 * actually make the ->poll() call. Therefore we avoid
7502 * accidentally calling ->poll() when NAPI is not scheduled.
7503 */
7504 work = 0;
7505 if (napi_is_scheduled(n)) {
7506 work = n->poll(n, weight);
7507 trace_napi_poll(n, work, weight);
7508
7509 xdp_do_check_flushed(n);
7510 }
7511
7512 if (unlikely(work > weight))
7513 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7514 n->poll, work, weight);
7515
7516 if (likely(work < weight))
7517 return work;
7518
7519 /* Drivers must not modify the NAPI state if they
7520 * consume the entire weight. In such cases this code
7521 * still "owns" the NAPI instance and therefore can
7522 * move the instance around on the list at-will.
7523 */
7524 if (unlikely(napi_disable_pending(n))) {
7525 napi_complete(n);
7526 return work;
7527 }
7528
7529 /* The NAPI context has more processing work, but busy-polling
7530 * is preferred. Exit early.
7531 */
7532 if (napi_prefer_busy_poll(n)) {
7533 if (napi_complete_done(n, work)) {
7534 /* If timeout is not set, we need to make sure
7535 * that the NAPI is re-scheduled.
7536 */
7537 napi_schedule(n);
7538 }
7539 return work;
7540 }
7541
7542 /* Flush too old packets. If HZ < 1000, flush all packets */
7543 gro_flush_normal(&n->gro, HZ >= 1000);
7544
7545 /* Some drivers may have called napi_schedule
7546 * prior to exhausting their budget.
7547 */
7548 if (unlikely(!list_empty(&n->poll_list))) {
7549 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7550 n->dev ? n->dev->name : "backlog");
7551 return work;
7552 }
7553
7554 *repoll = true;
7555
7556 return work;
7557 }
7558
napi_poll(struct napi_struct * n,struct list_head * repoll)7559 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7560 {
7561 bool do_repoll = false;
7562 void *have;
7563 int work;
7564
7565 list_del_init(&n->poll_list);
7566
7567 have = netpoll_poll_lock(n);
7568
7569 work = __napi_poll(n, &do_repoll);
7570
7571 if (do_repoll) {
7572 #if defined(CONFIG_DEBUG_NET)
7573 if (unlikely(!napi_is_scheduled(n)))
7574 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7575 n->dev->name, n->poll);
7576 #endif
7577 list_add_tail(&n->poll_list, repoll);
7578 }
7579 netpoll_poll_unlock(have);
7580
7581 return work;
7582 }
7583
napi_thread_wait(struct napi_struct * napi)7584 static int napi_thread_wait(struct napi_struct *napi)
7585 {
7586 set_current_state(TASK_INTERRUPTIBLE);
7587
7588 while (!kthread_should_stop()) {
7589 /* Testing SCHED_THREADED bit here to make sure the current
7590 * kthread owns this napi and could poll on this napi.
7591 * Testing SCHED bit is not enough because SCHED bit might be
7592 * set by some other busy poll thread or by napi_disable().
7593 */
7594 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7595 WARN_ON(!list_empty(&napi->poll_list));
7596 __set_current_state(TASK_RUNNING);
7597 return 0;
7598 }
7599
7600 schedule();
7601 set_current_state(TASK_INTERRUPTIBLE);
7602 }
7603 __set_current_state(TASK_RUNNING);
7604
7605 return -1;
7606 }
7607
napi_threaded_poll_loop(struct napi_struct * napi)7608 static void napi_threaded_poll_loop(struct napi_struct *napi)
7609 {
7610 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7611 struct softnet_data *sd;
7612 unsigned long last_qs = jiffies;
7613
7614 for (;;) {
7615 bool repoll = false;
7616 void *have;
7617
7618 local_bh_disable();
7619 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7620
7621 sd = this_cpu_ptr(&softnet_data);
7622 sd->in_napi_threaded_poll = true;
7623
7624 have = netpoll_poll_lock(napi);
7625 __napi_poll(napi, &repoll);
7626 netpoll_poll_unlock(have);
7627
7628 sd->in_napi_threaded_poll = false;
7629 barrier();
7630
7631 if (sd_has_rps_ipi_waiting(sd)) {
7632 local_irq_disable();
7633 net_rps_action_and_irq_enable(sd);
7634 }
7635 skb_defer_free_flush(sd);
7636 bpf_net_ctx_clear(bpf_net_ctx);
7637 local_bh_enable();
7638
7639 if (!repoll)
7640 break;
7641
7642 rcu_softirq_qs_periodic(last_qs);
7643 cond_resched();
7644 }
7645 }
7646
napi_threaded_poll(void * data)7647 static int napi_threaded_poll(void *data)
7648 {
7649 struct napi_struct *napi = data;
7650
7651 while (!napi_thread_wait(napi))
7652 napi_threaded_poll_loop(napi);
7653
7654 return 0;
7655 }
7656
net_rx_action(void)7657 static __latent_entropy void net_rx_action(void)
7658 {
7659 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7660 unsigned long time_limit = jiffies +
7661 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7662 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7663 int budget = READ_ONCE(net_hotdata.netdev_budget);
7664 LIST_HEAD(list);
7665 LIST_HEAD(repoll);
7666
7667 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7668 start:
7669 sd->in_net_rx_action = true;
7670 local_irq_disable();
7671 list_splice_init(&sd->poll_list, &list);
7672 local_irq_enable();
7673
7674 for (;;) {
7675 struct napi_struct *n;
7676
7677 skb_defer_free_flush(sd);
7678
7679 if (list_empty(&list)) {
7680 if (list_empty(&repoll)) {
7681 sd->in_net_rx_action = false;
7682 barrier();
7683 /* We need to check if ____napi_schedule()
7684 * had refilled poll_list while
7685 * sd->in_net_rx_action was true.
7686 */
7687 if (!list_empty(&sd->poll_list))
7688 goto start;
7689 if (!sd_has_rps_ipi_waiting(sd))
7690 goto end;
7691 }
7692 break;
7693 }
7694
7695 n = list_first_entry(&list, struct napi_struct, poll_list);
7696 budget -= napi_poll(n, &repoll);
7697
7698 /* If softirq window is exhausted then punt.
7699 * Allow this to run for 2 jiffies since which will allow
7700 * an average latency of 1.5/HZ.
7701 */
7702 if (unlikely(budget <= 0 ||
7703 time_after_eq(jiffies, time_limit))) {
7704 /* Pairs with READ_ONCE() in softnet_seq_show() */
7705 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7706 break;
7707 }
7708 }
7709
7710 local_irq_disable();
7711
7712 list_splice_tail_init(&sd->poll_list, &list);
7713 list_splice_tail(&repoll, &list);
7714 list_splice(&list, &sd->poll_list);
7715 if (!list_empty(&sd->poll_list))
7716 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7717 else
7718 sd->in_net_rx_action = false;
7719
7720 net_rps_action_and_irq_enable(sd);
7721 end:
7722 bpf_net_ctx_clear(bpf_net_ctx);
7723 }
7724
7725 struct netdev_adjacent {
7726 struct net_device *dev;
7727 netdevice_tracker dev_tracker;
7728
7729 /* upper master flag, there can only be one master device per list */
7730 bool master;
7731
7732 /* lookup ignore flag */
7733 bool ignore;
7734
7735 /* counter for the number of times this device was added to us */
7736 u16 ref_nr;
7737
7738 /* private field for the users */
7739 void *private;
7740
7741 struct list_head list;
7742 struct rcu_head rcu;
7743 };
7744
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7745 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7746 struct list_head *adj_list)
7747 {
7748 struct netdev_adjacent *adj;
7749
7750 list_for_each_entry(adj, adj_list, list) {
7751 if (adj->dev == adj_dev)
7752 return adj;
7753 }
7754 return NULL;
7755 }
7756
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7757 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7758 struct netdev_nested_priv *priv)
7759 {
7760 struct net_device *dev = (struct net_device *)priv->data;
7761
7762 return upper_dev == dev;
7763 }
7764
7765 /**
7766 * netdev_has_upper_dev - Check if device is linked to an upper device
7767 * @dev: device
7768 * @upper_dev: upper device to check
7769 *
7770 * Find out if a device is linked to specified upper device and return true
7771 * in case it is. Note that this checks only immediate upper device,
7772 * not through a complete stack of devices. The caller must hold the RTNL lock.
7773 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7774 bool netdev_has_upper_dev(struct net_device *dev,
7775 struct net_device *upper_dev)
7776 {
7777 struct netdev_nested_priv priv = {
7778 .data = (void *)upper_dev,
7779 };
7780
7781 ASSERT_RTNL();
7782
7783 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7784 &priv);
7785 }
7786 EXPORT_SYMBOL(netdev_has_upper_dev);
7787
7788 /**
7789 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7790 * @dev: device
7791 * @upper_dev: upper device to check
7792 *
7793 * Find out if a device is linked to specified upper device and return true
7794 * in case it is. Note that this checks the entire upper device chain.
7795 * The caller must hold rcu lock.
7796 */
7797
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7798 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7799 struct net_device *upper_dev)
7800 {
7801 struct netdev_nested_priv priv = {
7802 .data = (void *)upper_dev,
7803 };
7804
7805 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7806 &priv);
7807 }
7808 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7809
7810 /**
7811 * netdev_has_any_upper_dev - Check if device is linked to some device
7812 * @dev: device
7813 *
7814 * Find out if a device is linked to an upper device and return true in case
7815 * it is. The caller must hold the RTNL lock.
7816 */
netdev_has_any_upper_dev(struct net_device * dev)7817 bool netdev_has_any_upper_dev(struct net_device *dev)
7818 {
7819 ASSERT_RTNL();
7820
7821 return !list_empty(&dev->adj_list.upper);
7822 }
7823 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7824
7825 /**
7826 * netdev_master_upper_dev_get - Get master upper device
7827 * @dev: device
7828 *
7829 * Find a master upper device and return pointer to it or NULL in case
7830 * it's not there. The caller must hold the RTNL lock.
7831 */
netdev_master_upper_dev_get(struct net_device * dev)7832 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7833 {
7834 struct netdev_adjacent *upper;
7835
7836 ASSERT_RTNL();
7837
7838 if (list_empty(&dev->adj_list.upper))
7839 return NULL;
7840
7841 upper = list_first_entry(&dev->adj_list.upper,
7842 struct netdev_adjacent, list);
7843 if (likely(upper->master))
7844 return upper->dev;
7845 return NULL;
7846 }
7847 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7848
__netdev_master_upper_dev_get(struct net_device * dev)7849 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7850 {
7851 struct netdev_adjacent *upper;
7852
7853 ASSERT_RTNL();
7854
7855 if (list_empty(&dev->adj_list.upper))
7856 return NULL;
7857
7858 upper = list_first_entry(&dev->adj_list.upper,
7859 struct netdev_adjacent, list);
7860 if (likely(upper->master) && !upper->ignore)
7861 return upper->dev;
7862 return NULL;
7863 }
7864
7865 /**
7866 * netdev_has_any_lower_dev - Check if device is linked to some device
7867 * @dev: device
7868 *
7869 * Find out if a device is linked to a lower device and return true in case
7870 * it is. The caller must hold the RTNL lock.
7871 */
netdev_has_any_lower_dev(struct net_device * dev)7872 static bool netdev_has_any_lower_dev(struct net_device *dev)
7873 {
7874 ASSERT_RTNL();
7875
7876 return !list_empty(&dev->adj_list.lower);
7877 }
7878
netdev_adjacent_get_private(struct list_head * adj_list)7879 void *netdev_adjacent_get_private(struct list_head *adj_list)
7880 {
7881 struct netdev_adjacent *adj;
7882
7883 adj = list_entry(adj_list, struct netdev_adjacent, list);
7884
7885 return adj->private;
7886 }
7887 EXPORT_SYMBOL(netdev_adjacent_get_private);
7888
7889 /**
7890 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7891 * @dev: device
7892 * @iter: list_head ** of the current position
7893 *
7894 * Gets the next device from the dev's upper list, starting from iter
7895 * position. The caller must hold RCU read lock.
7896 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7897 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7898 struct list_head **iter)
7899 {
7900 struct netdev_adjacent *upper;
7901
7902 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7903
7904 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7905
7906 if (&upper->list == &dev->adj_list.upper)
7907 return NULL;
7908
7909 *iter = &upper->list;
7910
7911 return upper->dev;
7912 }
7913 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7914
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7915 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7916 struct list_head **iter,
7917 bool *ignore)
7918 {
7919 struct netdev_adjacent *upper;
7920
7921 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7922
7923 if (&upper->list == &dev->adj_list.upper)
7924 return NULL;
7925
7926 *iter = &upper->list;
7927 *ignore = upper->ignore;
7928
7929 return upper->dev;
7930 }
7931
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7932 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7933 struct list_head **iter)
7934 {
7935 struct netdev_adjacent *upper;
7936
7937 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7938
7939 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7940
7941 if (&upper->list == &dev->adj_list.upper)
7942 return NULL;
7943
7944 *iter = &upper->list;
7945
7946 return upper->dev;
7947 }
7948
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7949 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7950 int (*fn)(struct net_device *dev,
7951 struct netdev_nested_priv *priv),
7952 struct netdev_nested_priv *priv)
7953 {
7954 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7955 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7956 int ret, cur = 0;
7957 bool ignore;
7958
7959 now = dev;
7960 iter = &dev->adj_list.upper;
7961
7962 while (1) {
7963 if (now != dev) {
7964 ret = fn(now, priv);
7965 if (ret)
7966 return ret;
7967 }
7968
7969 next = NULL;
7970 while (1) {
7971 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7972 if (!udev)
7973 break;
7974 if (ignore)
7975 continue;
7976
7977 next = udev;
7978 niter = &udev->adj_list.upper;
7979 dev_stack[cur] = now;
7980 iter_stack[cur++] = iter;
7981 break;
7982 }
7983
7984 if (!next) {
7985 if (!cur)
7986 return 0;
7987 next = dev_stack[--cur];
7988 niter = iter_stack[cur];
7989 }
7990
7991 now = next;
7992 iter = niter;
7993 }
7994
7995 return 0;
7996 }
7997
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7998 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7999 int (*fn)(struct net_device *dev,
8000 struct netdev_nested_priv *priv),
8001 struct netdev_nested_priv *priv)
8002 {
8003 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8004 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8005 int ret, cur = 0;
8006
8007 now = dev;
8008 iter = &dev->adj_list.upper;
8009
8010 while (1) {
8011 if (now != dev) {
8012 ret = fn(now, priv);
8013 if (ret)
8014 return ret;
8015 }
8016
8017 next = NULL;
8018 while (1) {
8019 udev = netdev_next_upper_dev_rcu(now, &iter);
8020 if (!udev)
8021 break;
8022
8023 next = udev;
8024 niter = &udev->adj_list.upper;
8025 dev_stack[cur] = now;
8026 iter_stack[cur++] = iter;
8027 break;
8028 }
8029
8030 if (!next) {
8031 if (!cur)
8032 return 0;
8033 next = dev_stack[--cur];
8034 niter = iter_stack[cur];
8035 }
8036
8037 now = next;
8038 iter = niter;
8039 }
8040
8041 return 0;
8042 }
8043 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8044
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8045 static bool __netdev_has_upper_dev(struct net_device *dev,
8046 struct net_device *upper_dev)
8047 {
8048 struct netdev_nested_priv priv = {
8049 .flags = 0,
8050 .data = (void *)upper_dev,
8051 };
8052
8053 ASSERT_RTNL();
8054
8055 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8056 &priv);
8057 }
8058
8059 /**
8060 * netdev_lower_get_next_private - Get the next ->private from the
8061 * lower neighbour list
8062 * @dev: device
8063 * @iter: list_head ** of the current position
8064 *
8065 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8066 * list, starting from iter position. The caller must hold either hold the
8067 * RTNL lock or its own locking that guarantees that the neighbour lower
8068 * list will remain unchanged.
8069 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8070 void *netdev_lower_get_next_private(struct net_device *dev,
8071 struct list_head **iter)
8072 {
8073 struct netdev_adjacent *lower;
8074
8075 lower = list_entry(*iter, struct netdev_adjacent, list);
8076
8077 if (&lower->list == &dev->adj_list.lower)
8078 return NULL;
8079
8080 *iter = lower->list.next;
8081
8082 return lower->private;
8083 }
8084 EXPORT_SYMBOL(netdev_lower_get_next_private);
8085
8086 /**
8087 * netdev_lower_get_next_private_rcu - Get the next ->private from the
8088 * lower neighbour list, RCU
8089 * variant
8090 * @dev: device
8091 * @iter: list_head ** of the current position
8092 *
8093 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8094 * list, starting from iter position. The caller must hold RCU read lock.
8095 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8096 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8097 struct list_head **iter)
8098 {
8099 struct netdev_adjacent *lower;
8100
8101 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8102
8103 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8104
8105 if (&lower->list == &dev->adj_list.lower)
8106 return NULL;
8107
8108 *iter = &lower->list;
8109
8110 return lower->private;
8111 }
8112 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8113
8114 /**
8115 * netdev_lower_get_next - Get the next device from the lower neighbour
8116 * list
8117 * @dev: device
8118 * @iter: list_head ** of the current position
8119 *
8120 * Gets the next netdev_adjacent from the dev's lower neighbour
8121 * list, starting from iter position. The caller must hold RTNL lock or
8122 * its own locking that guarantees that the neighbour lower
8123 * list will remain unchanged.
8124 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8125 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8126 {
8127 struct netdev_adjacent *lower;
8128
8129 lower = list_entry(*iter, struct netdev_adjacent, list);
8130
8131 if (&lower->list == &dev->adj_list.lower)
8132 return NULL;
8133
8134 *iter = lower->list.next;
8135
8136 return lower->dev;
8137 }
8138 EXPORT_SYMBOL(netdev_lower_get_next);
8139
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8140 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8141 struct list_head **iter)
8142 {
8143 struct netdev_adjacent *lower;
8144
8145 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8146
8147 if (&lower->list == &dev->adj_list.lower)
8148 return NULL;
8149
8150 *iter = &lower->list;
8151
8152 return lower->dev;
8153 }
8154
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8155 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8156 struct list_head **iter,
8157 bool *ignore)
8158 {
8159 struct netdev_adjacent *lower;
8160
8161 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8162
8163 if (&lower->list == &dev->adj_list.lower)
8164 return NULL;
8165
8166 *iter = &lower->list;
8167 *ignore = lower->ignore;
8168
8169 return lower->dev;
8170 }
8171
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8172 int netdev_walk_all_lower_dev(struct net_device *dev,
8173 int (*fn)(struct net_device *dev,
8174 struct netdev_nested_priv *priv),
8175 struct netdev_nested_priv *priv)
8176 {
8177 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8178 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8179 int ret, cur = 0;
8180
8181 now = dev;
8182 iter = &dev->adj_list.lower;
8183
8184 while (1) {
8185 if (now != dev) {
8186 ret = fn(now, priv);
8187 if (ret)
8188 return ret;
8189 }
8190
8191 next = NULL;
8192 while (1) {
8193 ldev = netdev_next_lower_dev(now, &iter);
8194 if (!ldev)
8195 break;
8196
8197 next = ldev;
8198 niter = &ldev->adj_list.lower;
8199 dev_stack[cur] = now;
8200 iter_stack[cur++] = iter;
8201 break;
8202 }
8203
8204 if (!next) {
8205 if (!cur)
8206 return 0;
8207 next = dev_stack[--cur];
8208 niter = iter_stack[cur];
8209 }
8210
8211 now = next;
8212 iter = niter;
8213 }
8214
8215 return 0;
8216 }
8217 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8218
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8219 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8220 int (*fn)(struct net_device *dev,
8221 struct netdev_nested_priv *priv),
8222 struct netdev_nested_priv *priv)
8223 {
8224 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8225 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8226 int ret, cur = 0;
8227 bool ignore;
8228
8229 now = dev;
8230 iter = &dev->adj_list.lower;
8231
8232 while (1) {
8233 if (now != dev) {
8234 ret = fn(now, priv);
8235 if (ret)
8236 return ret;
8237 }
8238
8239 next = NULL;
8240 while (1) {
8241 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8242 if (!ldev)
8243 break;
8244 if (ignore)
8245 continue;
8246
8247 next = ldev;
8248 niter = &ldev->adj_list.lower;
8249 dev_stack[cur] = now;
8250 iter_stack[cur++] = iter;
8251 break;
8252 }
8253
8254 if (!next) {
8255 if (!cur)
8256 return 0;
8257 next = dev_stack[--cur];
8258 niter = iter_stack[cur];
8259 }
8260
8261 now = next;
8262 iter = niter;
8263 }
8264
8265 return 0;
8266 }
8267
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8268 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8269 struct list_head **iter)
8270 {
8271 struct netdev_adjacent *lower;
8272
8273 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8274 if (&lower->list == &dev->adj_list.lower)
8275 return NULL;
8276
8277 *iter = &lower->list;
8278
8279 return lower->dev;
8280 }
8281 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8282
__netdev_upper_depth(struct net_device * dev)8283 static u8 __netdev_upper_depth(struct net_device *dev)
8284 {
8285 struct net_device *udev;
8286 struct list_head *iter;
8287 u8 max_depth = 0;
8288 bool ignore;
8289
8290 for (iter = &dev->adj_list.upper,
8291 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8292 udev;
8293 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8294 if (ignore)
8295 continue;
8296 if (max_depth < udev->upper_level)
8297 max_depth = udev->upper_level;
8298 }
8299
8300 return max_depth;
8301 }
8302
__netdev_lower_depth(struct net_device * dev)8303 static u8 __netdev_lower_depth(struct net_device *dev)
8304 {
8305 struct net_device *ldev;
8306 struct list_head *iter;
8307 u8 max_depth = 0;
8308 bool ignore;
8309
8310 for (iter = &dev->adj_list.lower,
8311 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8312 ldev;
8313 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8314 if (ignore)
8315 continue;
8316 if (max_depth < ldev->lower_level)
8317 max_depth = ldev->lower_level;
8318 }
8319
8320 return max_depth;
8321 }
8322
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8323 static int __netdev_update_upper_level(struct net_device *dev,
8324 struct netdev_nested_priv *__unused)
8325 {
8326 dev->upper_level = __netdev_upper_depth(dev) + 1;
8327 return 0;
8328 }
8329
8330 #ifdef CONFIG_LOCKDEP
8331 static LIST_HEAD(net_unlink_list);
8332
net_unlink_todo(struct net_device * dev)8333 static void net_unlink_todo(struct net_device *dev)
8334 {
8335 if (list_empty(&dev->unlink_list))
8336 list_add_tail(&dev->unlink_list, &net_unlink_list);
8337 }
8338 #endif
8339
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8340 static int __netdev_update_lower_level(struct net_device *dev,
8341 struct netdev_nested_priv *priv)
8342 {
8343 dev->lower_level = __netdev_lower_depth(dev) + 1;
8344
8345 #ifdef CONFIG_LOCKDEP
8346 if (!priv)
8347 return 0;
8348
8349 if (priv->flags & NESTED_SYNC_IMM)
8350 dev->nested_level = dev->lower_level - 1;
8351 if (priv->flags & NESTED_SYNC_TODO)
8352 net_unlink_todo(dev);
8353 #endif
8354 return 0;
8355 }
8356
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8357 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8358 int (*fn)(struct net_device *dev,
8359 struct netdev_nested_priv *priv),
8360 struct netdev_nested_priv *priv)
8361 {
8362 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8363 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8364 int ret, cur = 0;
8365
8366 now = dev;
8367 iter = &dev->adj_list.lower;
8368
8369 while (1) {
8370 if (now != dev) {
8371 ret = fn(now, priv);
8372 if (ret)
8373 return ret;
8374 }
8375
8376 next = NULL;
8377 while (1) {
8378 ldev = netdev_next_lower_dev_rcu(now, &iter);
8379 if (!ldev)
8380 break;
8381
8382 next = ldev;
8383 niter = &ldev->adj_list.lower;
8384 dev_stack[cur] = now;
8385 iter_stack[cur++] = iter;
8386 break;
8387 }
8388
8389 if (!next) {
8390 if (!cur)
8391 return 0;
8392 next = dev_stack[--cur];
8393 niter = iter_stack[cur];
8394 }
8395
8396 now = next;
8397 iter = niter;
8398 }
8399
8400 return 0;
8401 }
8402 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8403
8404 /**
8405 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8406 * lower neighbour list, RCU
8407 * variant
8408 * @dev: device
8409 *
8410 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8411 * list. The caller must hold RCU read lock.
8412 */
netdev_lower_get_first_private_rcu(struct net_device * dev)8413 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8414 {
8415 struct netdev_adjacent *lower;
8416
8417 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8418 struct netdev_adjacent, list);
8419 if (lower)
8420 return lower->private;
8421 return NULL;
8422 }
8423 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8424
8425 /**
8426 * netdev_master_upper_dev_get_rcu - Get master upper device
8427 * @dev: device
8428 *
8429 * Find a master upper device and return pointer to it or NULL in case
8430 * it's not there. The caller must hold the RCU read lock.
8431 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8432 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8433 {
8434 struct netdev_adjacent *upper;
8435
8436 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8437 struct netdev_adjacent, list);
8438 if (upper && likely(upper->master))
8439 return upper->dev;
8440 return NULL;
8441 }
8442 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8443
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8444 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8445 struct net_device *adj_dev,
8446 struct list_head *dev_list)
8447 {
8448 char linkname[IFNAMSIZ+7];
8449
8450 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8451 "upper_%s" : "lower_%s", adj_dev->name);
8452 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8453 linkname);
8454 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8455 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8456 char *name,
8457 struct list_head *dev_list)
8458 {
8459 char linkname[IFNAMSIZ+7];
8460
8461 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8462 "upper_%s" : "lower_%s", name);
8463 sysfs_remove_link(&(dev->dev.kobj), linkname);
8464 }
8465
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8466 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8467 struct net_device *adj_dev,
8468 struct list_head *dev_list)
8469 {
8470 return (dev_list == &dev->adj_list.upper ||
8471 dev_list == &dev->adj_list.lower) &&
8472 net_eq(dev_net(dev), dev_net(adj_dev));
8473 }
8474
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8475 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8476 struct net_device *adj_dev,
8477 struct list_head *dev_list,
8478 void *private, bool master)
8479 {
8480 struct netdev_adjacent *adj;
8481 int ret;
8482
8483 adj = __netdev_find_adj(adj_dev, dev_list);
8484
8485 if (adj) {
8486 adj->ref_nr += 1;
8487 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8488 dev->name, adj_dev->name, adj->ref_nr);
8489
8490 return 0;
8491 }
8492
8493 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8494 if (!adj)
8495 return -ENOMEM;
8496
8497 adj->dev = adj_dev;
8498 adj->master = master;
8499 adj->ref_nr = 1;
8500 adj->private = private;
8501 adj->ignore = false;
8502 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8503
8504 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8505 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8506
8507 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8508 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8509 if (ret)
8510 goto free_adj;
8511 }
8512
8513 /* Ensure that master link is always the first item in list. */
8514 if (master) {
8515 ret = sysfs_create_link(&(dev->dev.kobj),
8516 &(adj_dev->dev.kobj), "master");
8517 if (ret)
8518 goto remove_symlinks;
8519
8520 list_add_rcu(&adj->list, dev_list);
8521 } else {
8522 list_add_tail_rcu(&adj->list, dev_list);
8523 }
8524
8525 return 0;
8526
8527 remove_symlinks:
8528 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8529 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8530 free_adj:
8531 netdev_put(adj_dev, &adj->dev_tracker);
8532 kfree(adj);
8533
8534 return ret;
8535 }
8536
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8537 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8538 struct net_device *adj_dev,
8539 u16 ref_nr,
8540 struct list_head *dev_list)
8541 {
8542 struct netdev_adjacent *adj;
8543
8544 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8545 dev->name, adj_dev->name, ref_nr);
8546
8547 adj = __netdev_find_adj(adj_dev, dev_list);
8548
8549 if (!adj) {
8550 pr_err("Adjacency does not exist for device %s from %s\n",
8551 dev->name, adj_dev->name);
8552 WARN_ON(1);
8553 return;
8554 }
8555
8556 if (adj->ref_nr > ref_nr) {
8557 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8558 dev->name, adj_dev->name, ref_nr,
8559 adj->ref_nr - ref_nr);
8560 adj->ref_nr -= ref_nr;
8561 return;
8562 }
8563
8564 if (adj->master)
8565 sysfs_remove_link(&(dev->dev.kobj), "master");
8566
8567 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8568 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8569
8570 list_del_rcu(&adj->list);
8571 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8572 adj_dev->name, dev->name, adj_dev->name);
8573 netdev_put(adj_dev, &adj->dev_tracker);
8574 kfree_rcu(adj, rcu);
8575 }
8576
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8577 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8578 struct net_device *upper_dev,
8579 struct list_head *up_list,
8580 struct list_head *down_list,
8581 void *private, bool master)
8582 {
8583 int ret;
8584
8585 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8586 private, master);
8587 if (ret)
8588 return ret;
8589
8590 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8591 private, false);
8592 if (ret) {
8593 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8594 return ret;
8595 }
8596
8597 return 0;
8598 }
8599
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8600 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8601 struct net_device *upper_dev,
8602 u16 ref_nr,
8603 struct list_head *up_list,
8604 struct list_head *down_list)
8605 {
8606 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8607 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8608 }
8609
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8610 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8611 struct net_device *upper_dev,
8612 void *private, bool master)
8613 {
8614 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8615 &dev->adj_list.upper,
8616 &upper_dev->adj_list.lower,
8617 private, master);
8618 }
8619
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8620 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8621 struct net_device *upper_dev)
8622 {
8623 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8624 &dev->adj_list.upper,
8625 &upper_dev->adj_list.lower);
8626 }
8627
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8628 static int __netdev_upper_dev_link(struct net_device *dev,
8629 struct net_device *upper_dev, bool master,
8630 void *upper_priv, void *upper_info,
8631 struct netdev_nested_priv *priv,
8632 struct netlink_ext_ack *extack)
8633 {
8634 struct netdev_notifier_changeupper_info changeupper_info = {
8635 .info = {
8636 .dev = dev,
8637 .extack = extack,
8638 },
8639 .upper_dev = upper_dev,
8640 .master = master,
8641 .linking = true,
8642 .upper_info = upper_info,
8643 };
8644 struct net_device *master_dev;
8645 int ret = 0;
8646
8647 ASSERT_RTNL();
8648
8649 if (dev == upper_dev)
8650 return -EBUSY;
8651
8652 /* To prevent loops, check if dev is not upper device to upper_dev. */
8653 if (__netdev_has_upper_dev(upper_dev, dev))
8654 return -EBUSY;
8655
8656 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8657 return -EMLINK;
8658
8659 if (!master) {
8660 if (__netdev_has_upper_dev(dev, upper_dev))
8661 return -EEXIST;
8662 } else {
8663 master_dev = __netdev_master_upper_dev_get(dev);
8664 if (master_dev)
8665 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8666 }
8667
8668 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8669 &changeupper_info.info);
8670 ret = notifier_to_errno(ret);
8671 if (ret)
8672 return ret;
8673
8674 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8675 master);
8676 if (ret)
8677 return ret;
8678
8679 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8680 &changeupper_info.info);
8681 ret = notifier_to_errno(ret);
8682 if (ret)
8683 goto rollback;
8684
8685 __netdev_update_upper_level(dev, NULL);
8686 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8687
8688 __netdev_update_lower_level(upper_dev, priv);
8689 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8690 priv);
8691
8692 return 0;
8693
8694 rollback:
8695 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8696
8697 return ret;
8698 }
8699
8700 /**
8701 * netdev_upper_dev_link - Add a link to the upper device
8702 * @dev: device
8703 * @upper_dev: new upper device
8704 * @extack: netlink extended ack
8705 *
8706 * Adds a link to device which is upper to this one. The caller must hold
8707 * the RTNL lock. On a failure a negative errno code is returned.
8708 * On success the reference counts are adjusted and the function
8709 * returns zero.
8710 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8711 int netdev_upper_dev_link(struct net_device *dev,
8712 struct net_device *upper_dev,
8713 struct netlink_ext_ack *extack)
8714 {
8715 struct netdev_nested_priv priv = {
8716 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8717 .data = NULL,
8718 };
8719
8720 return __netdev_upper_dev_link(dev, upper_dev, false,
8721 NULL, NULL, &priv, extack);
8722 }
8723 EXPORT_SYMBOL(netdev_upper_dev_link);
8724
8725 /**
8726 * netdev_master_upper_dev_link - Add a master link to the upper device
8727 * @dev: device
8728 * @upper_dev: new upper device
8729 * @upper_priv: upper device private
8730 * @upper_info: upper info to be passed down via notifier
8731 * @extack: netlink extended ack
8732 *
8733 * Adds a link to device which is upper to this one. In this case, only
8734 * one master upper device can be linked, although other non-master devices
8735 * might be linked as well. The caller must hold the RTNL lock.
8736 * On a failure a negative errno code is returned. On success the reference
8737 * counts are adjusted and the function returns zero.
8738 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8739 int netdev_master_upper_dev_link(struct net_device *dev,
8740 struct net_device *upper_dev,
8741 void *upper_priv, void *upper_info,
8742 struct netlink_ext_ack *extack)
8743 {
8744 struct netdev_nested_priv priv = {
8745 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8746 .data = NULL,
8747 };
8748
8749 return __netdev_upper_dev_link(dev, upper_dev, true,
8750 upper_priv, upper_info, &priv, extack);
8751 }
8752 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8753
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8754 static void __netdev_upper_dev_unlink(struct net_device *dev,
8755 struct net_device *upper_dev,
8756 struct netdev_nested_priv *priv)
8757 {
8758 struct netdev_notifier_changeupper_info changeupper_info = {
8759 .info = {
8760 .dev = dev,
8761 },
8762 .upper_dev = upper_dev,
8763 .linking = false,
8764 };
8765
8766 ASSERT_RTNL();
8767
8768 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8769
8770 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8771 &changeupper_info.info);
8772
8773 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8774
8775 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8776 &changeupper_info.info);
8777
8778 __netdev_update_upper_level(dev, NULL);
8779 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8780
8781 __netdev_update_lower_level(upper_dev, priv);
8782 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8783 priv);
8784 }
8785
8786 /**
8787 * netdev_upper_dev_unlink - Removes a link to upper device
8788 * @dev: device
8789 * @upper_dev: new upper device
8790 *
8791 * Removes a link to device which is upper to this one. The caller must hold
8792 * the RTNL lock.
8793 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8794 void netdev_upper_dev_unlink(struct net_device *dev,
8795 struct net_device *upper_dev)
8796 {
8797 struct netdev_nested_priv priv = {
8798 .flags = NESTED_SYNC_TODO,
8799 .data = NULL,
8800 };
8801
8802 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8803 }
8804 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8805
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8806 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8807 struct net_device *lower_dev,
8808 bool val)
8809 {
8810 struct netdev_adjacent *adj;
8811
8812 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8813 if (adj)
8814 adj->ignore = val;
8815
8816 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8817 if (adj)
8818 adj->ignore = val;
8819 }
8820
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8821 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8822 struct net_device *lower_dev)
8823 {
8824 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8825 }
8826
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8827 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8828 struct net_device *lower_dev)
8829 {
8830 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8831 }
8832
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8833 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8834 struct net_device *new_dev,
8835 struct net_device *dev,
8836 struct netlink_ext_ack *extack)
8837 {
8838 struct netdev_nested_priv priv = {
8839 .flags = 0,
8840 .data = NULL,
8841 };
8842 int err;
8843
8844 if (!new_dev)
8845 return 0;
8846
8847 if (old_dev && new_dev != old_dev)
8848 netdev_adjacent_dev_disable(dev, old_dev);
8849 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8850 extack);
8851 if (err) {
8852 if (old_dev && new_dev != old_dev)
8853 netdev_adjacent_dev_enable(dev, old_dev);
8854 return err;
8855 }
8856
8857 return 0;
8858 }
8859 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8860
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8861 void netdev_adjacent_change_commit(struct net_device *old_dev,
8862 struct net_device *new_dev,
8863 struct net_device *dev)
8864 {
8865 struct netdev_nested_priv priv = {
8866 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8867 .data = NULL,
8868 };
8869
8870 if (!new_dev || !old_dev)
8871 return;
8872
8873 if (new_dev == old_dev)
8874 return;
8875
8876 netdev_adjacent_dev_enable(dev, old_dev);
8877 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8878 }
8879 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8880
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8881 void netdev_adjacent_change_abort(struct net_device *old_dev,
8882 struct net_device *new_dev,
8883 struct net_device *dev)
8884 {
8885 struct netdev_nested_priv priv = {
8886 .flags = 0,
8887 .data = NULL,
8888 };
8889
8890 if (!new_dev)
8891 return;
8892
8893 if (old_dev && new_dev != old_dev)
8894 netdev_adjacent_dev_enable(dev, old_dev);
8895
8896 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8897 }
8898 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8899
8900 /**
8901 * netdev_bonding_info_change - Dispatch event about slave change
8902 * @dev: device
8903 * @bonding_info: info to dispatch
8904 *
8905 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8906 * The caller must hold the RTNL lock.
8907 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8908 void netdev_bonding_info_change(struct net_device *dev,
8909 struct netdev_bonding_info *bonding_info)
8910 {
8911 struct netdev_notifier_bonding_info info = {
8912 .info.dev = dev,
8913 };
8914
8915 memcpy(&info.bonding_info, bonding_info,
8916 sizeof(struct netdev_bonding_info));
8917 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8918 &info.info);
8919 }
8920 EXPORT_SYMBOL(netdev_bonding_info_change);
8921
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8922 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8923 struct netlink_ext_ack *extack)
8924 {
8925 struct netdev_notifier_offload_xstats_info info = {
8926 .info.dev = dev,
8927 .info.extack = extack,
8928 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8929 };
8930 int err;
8931 int rc;
8932
8933 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8934 GFP_KERNEL);
8935 if (!dev->offload_xstats_l3)
8936 return -ENOMEM;
8937
8938 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8939 NETDEV_OFFLOAD_XSTATS_DISABLE,
8940 &info.info);
8941 err = notifier_to_errno(rc);
8942 if (err)
8943 goto free_stats;
8944
8945 return 0;
8946
8947 free_stats:
8948 kfree(dev->offload_xstats_l3);
8949 dev->offload_xstats_l3 = NULL;
8950 return err;
8951 }
8952
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8953 int netdev_offload_xstats_enable(struct net_device *dev,
8954 enum netdev_offload_xstats_type type,
8955 struct netlink_ext_ack *extack)
8956 {
8957 ASSERT_RTNL();
8958
8959 if (netdev_offload_xstats_enabled(dev, type))
8960 return -EALREADY;
8961
8962 switch (type) {
8963 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8964 return netdev_offload_xstats_enable_l3(dev, extack);
8965 }
8966
8967 WARN_ON(1);
8968 return -EINVAL;
8969 }
8970 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8971
netdev_offload_xstats_disable_l3(struct net_device * dev)8972 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8973 {
8974 struct netdev_notifier_offload_xstats_info info = {
8975 .info.dev = dev,
8976 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8977 };
8978
8979 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8980 &info.info);
8981 kfree(dev->offload_xstats_l3);
8982 dev->offload_xstats_l3 = NULL;
8983 }
8984
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8985 int netdev_offload_xstats_disable(struct net_device *dev,
8986 enum netdev_offload_xstats_type type)
8987 {
8988 ASSERT_RTNL();
8989
8990 if (!netdev_offload_xstats_enabled(dev, type))
8991 return -EALREADY;
8992
8993 switch (type) {
8994 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8995 netdev_offload_xstats_disable_l3(dev);
8996 return 0;
8997 }
8998
8999 WARN_ON(1);
9000 return -EINVAL;
9001 }
9002 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9003
netdev_offload_xstats_disable_all(struct net_device * dev)9004 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9005 {
9006 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9007 }
9008
9009 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9010 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9011 enum netdev_offload_xstats_type type)
9012 {
9013 switch (type) {
9014 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9015 return dev->offload_xstats_l3;
9016 }
9017
9018 WARN_ON(1);
9019 return NULL;
9020 }
9021
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9022 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9023 enum netdev_offload_xstats_type type)
9024 {
9025 ASSERT_RTNL();
9026
9027 return netdev_offload_xstats_get_ptr(dev, type);
9028 }
9029 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9030
9031 struct netdev_notifier_offload_xstats_ru {
9032 bool used;
9033 };
9034
9035 struct netdev_notifier_offload_xstats_rd {
9036 struct rtnl_hw_stats64 stats;
9037 bool used;
9038 };
9039
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9040 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9041 const struct rtnl_hw_stats64 *src)
9042 {
9043 dest->rx_packets += src->rx_packets;
9044 dest->tx_packets += src->tx_packets;
9045 dest->rx_bytes += src->rx_bytes;
9046 dest->tx_bytes += src->tx_bytes;
9047 dest->rx_errors += src->rx_errors;
9048 dest->tx_errors += src->tx_errors;
9049 dest->rx_dropped += src->rx_dropped;
9050 dest->tx_dropped += src->tx_dropped;
9051 dest->multicast += src->multicast;
9052 }
9053
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9054 static int netdev_offload_xstats_get_used(struct net_device *dev,
9055 enum netdev_offload_xstats_type type,
9056 bool *p_used,
9057 struct netlink_ext_ack *extack)
9058 {
9059 struct netdev_notifier_offload_xstats_ru report_used = {};
9060 struct netdev_notifier_offload_xstats_info info = {
9061 .info.dev = dev,
9062 .info.extack = extack,
9063 .type = type,
9064 .report_used = &report_used,
9065 };
9066 int rc;
9067
9068 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9069 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9070 &info.info);
9071 *p_used = report_used.used;
9072 return notifier_to_errno(rc);
9073 }
9074
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9075 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9076 enum netdev_offload_xstats_type type,
9077 struct rtnl_hw_stats64 *p_stats,
9078 bool *p_used,
9079 struct netlink_ext_ack *extack)
9080 {
9081 struct netdev_notifier_offload_xstats_rd report_delta = {};
9082 struct netdev_notifier_offload_xstats_info info = {
9083 .info.dev = dev,
9084 .info.extack = extack,
9085 .type = type,
9086 .report_delta = &report_delta,
9087 };
9088 struct rtnl_hw_stats64 *stats;
9089 int rc;
9090
9091 stats = netdev_offload_xstats_get_ptr(dev, type);
9092 if (WARN_ON(!stats))
9093 return -EINVAL;
9094
9095 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9096 &info.info);
9097
9098 /* Cache whatever we got, even if there was an error, otherwise the
9099 * successful stats retrievals would get lost.
9100 */
9101 netdev_hw_stats64_add(stats, &report_delta.stats);
9102
9103 if (p_stats)
9104 *p_stats = *stats;
9105 *p_used = report_delta.used;
9106
9107 return notifier_to_errno(rc);
9108 }
9109
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9110 int netdev_offload_xstats_get(struct net_device *dev,
9111 enum netdev_offload_xstats_type type,
9112 struct rtnl_hw_stats64 *p_stats, bool *p_used,
9113 struct netlink_ext_ack *extack)
9114 {
9115 ASSERT_RTNL();
9116
9117 if (p_stats)
9118 return netdev_offload_xstats_get_stats(dev, type, p_stats,
9119 p_used, extack);
9120 else
9121 return netdev_offload_xstats_get_used(dev, type, p_used,
9122 extack);
9123 }
9124 EXPORT_SYMBOL(netdev_offload_xstats_get);
9125
9126 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9127 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9128 const struct rtnl_hw_stats64 *stats)
9129 {
9130 report_delta->used = true;
9131 netdev_hw_stats64_add(&report_delta->stats, stats);
9132 }
9133 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9134
9135 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9136 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9137 {
9138 report_used->used = true;
9139 }
9140 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9141
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9142 void netdev_offload_xstats_push_delta(struct net_device *dev,
9143 enum netdev_offload_xstats_type type,
9144 const struct rtnl_hw_stats64 *p_stats)
9145 {
9146 struct rtnl_hw_stats64 *stats;
9147
9148 ASSERT_RTNL();
9149
9150 stats = netdev_offload_xstats_get_ptr(dev, type);
9151 if (WARN_ON(!stats))
9152 return;
9153
9154 netdev_hw_stats64_add(stats, p_stats);
9155 }
9156 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9157
9158 /**
9159 * netdev_get_xmit_slave - Get the xmit slave of master device
9160 * @dev: device
9161 * @skb: The packet
9162 * @all_slaves: assume all the slaves are active
9163 *
9164 * The reference counters are not incremented so the caller must be
9165 * careful with locks. The caller must hold RCU lock.
9166 * %NULL is returned if no slave is found.
9167 */
9168
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9169 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9170 struct sk_buff *skb,
9171 bool all_slaves)
9172 {
9173 const struct net_device_ops *ops = dev->netdev_ops;
9174
9175 if (!ops->ndo_get_xmit_slave)
9176 return NULL;
9177 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9178 }
9179 EXPORT_SYMBOL(netdev_get_xmit_slave);
9180
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9181 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9182 struct sock *sk)
9183 {
9184 const struct net_device_ops *ops = dev->netdev_ops;
9185
9186 if (!ops->ndo_sk_get_lower_dev)
9187 return NULL;
9188 return ops->ndo_sk_get_lower_dev(dev, sk);
9189 }
9190
9191 /**
9192 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9193 * @dev: device
9194 * @sk: the socket
9195 *
9196 * %NULL is returned if no lower device is found.
9197 */
9198
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9199 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9200 struct sock *sk)
9201 {
9202 struct net_device *lower;
9203
9204 lower = netdev_sk_get_lower_dev(dev, sk);
9205 while (lower) {
9206 dev = lower;
9207 lower = netdev_sk_get_lower_dev(dev, sk);
9208 }
9209
9210 return dev;
9211 }
9212 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9213
netdev_adjacent_add_links(struct net_device * dev)9214 static void netdev_adjacent_add_links(struct net_device *dev)
9215 {
9216 struct netdev_adjacent *iter;
9217
9218 struct net *net = dev_net(dev);
9219
9220 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9221 if (!net_eq(net, dev_net(iter->dev)))
9222 continue;
9223 netdev_adjacent_sysfs_add(iter->dev, dev,
9224 &iter->dev->adj_list.lower);
9225 netdev_adjacent_sysfs_add(dev, iter->dev,
9226 &dev->adj_list.upper);
9227 }
9228
9229 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9230 if (!net_eq(net, dev_net(iter->dev)))
9231 continue;
9232 netdev_adjacent_sysfs_add(iter->dev, dev,
9233 &iter->dev->adj_list.upper);
9234 netdev_adjacent_sysfs_add(dev, iter->dev,
9235 &dev->adj_list.lower);
9236 }
9237 }
9238
netdev_adjacent_del_links(struct net_device * dev)9239 static void netdev_adjacent_del_links(struct net_device *dev)
9240 {
9241 struct netdev_adjacent *iter;
9242
9243 struct net *net = dev_net(dev);
9244
9245 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9246 if (!net_eq(net, dev_net(iter->dev)))
9247 continue;
9248 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9249 &iter->dev->adj_list.lower);
9250 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9251 &dev->adj_list.upper);
9252 }
9253
9254 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9255 if (!net_eq(net, dev_net(iter->dev)))
9256 continue;
9257 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9258 &iter->dev->adj_list.upper);
9259 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9260 &dev->adj_list.lower);
9261 }
9262 }
9263
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9264 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9265 {
9266 struct netdev_adjacent *iter;
9267
9268 struct net *net = dev_net(dev);
9269
9270 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9271 if (!net_eq(net, dev_net(iter->dev)))
9272 continue;
9273 netdev_adjacent_sysfs_del(iter->dev, oldname,
9274 &iter->dev->adj_list.lower);
9275 netdev_adjacent_sysfs_add(iter->dev, dev,
9276 &iter->dev->adj_list.lower);
9277 }
9278
9279 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9280 if (!net_eq(net, dev_net(iter->dev)))
9281 continue;
9282 netdev_adjacent_sysfs_del(iter->dev, oldname,
9283 &iter->dev->adj_list.upper);
9284 netdev_adjacent_sysfs_add(iter->dev, dev,
9285 &iter->dev->adj_list.upper);
9286 }
9287 }
9288
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9289 void *netdev_lower_dev_get_private(struct net_device *dev,
9290 struct net_device *lower_dev)
9291 {
9292 struct netdev_adjacent *lower;
9293
9294 if (!lower_dev)
9295 return NULL;
9296 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9297 if (!lower)
9298 return NULL;
9299
9300 return lower->private;
9301 }
9302 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9303
9304
9305 /**
9306 * netdev_lower_state_changed - Dispatch event about lower device state change
9307 * @lower_dev: device
9308 * @lower_state_info: state to dispatch
9309 *
9310 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9311 * The caller must hold the RTNL lock.
9312 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9313 void netdev_lower_state_changed(struct net_device *lower_dev,
9314 void *lower_state_info)
9315 {
9316 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9317 .info.dev = lower_dev,
9318 };
9319
9320 ASSERT_RTNL();
9321 changelowerstate_info.lower_state_info = lower_state_info;
9322 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9323 &changelowerstate_info.info);
9324 }
9325 EXPORT_SYMBOL(netdev_lower_state_changed);
9326
dev_change_rx_flags(struct net_device * dev,int flags)9327 static void dev_change_rx_flags(struct net_device *dev, int flags)
9328 {
9329 const struct net_device_ops *ops = dev->netdev_ops;
9330
9331 if (ops->ndo_change_rx_flags)
9332 ops->ndo_change_rx_flags(dev, flags);
9333 }
9334
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9335 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9336 {
9337 unsigned int old_flags = dev->flags;
9338 unsigned int promiscuity, flags;
9339 kuid_t uid;
9340 kgid_t gid;
9341
9342 ASSERT_RTNL();
9343
9344 promiscuity = dev->promiscuity + inc;
9345 if (promiscuity == 0) {
9346 /*
9347 * Avoid overflow.
9348 * If inc causes overflow, untouch promisc and return error.
9349 */
9350 if (unlikely(inc > 0)) {
9351 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9352 return -EOVERFLOW;
9353 }
9354 flags = old_flags & ~IFF_PROMISC;
9355 } else {
9356 flags = old_flags | IFF_PROMISC;
9357 }
9358 WRITE_ONCE(dev->promiscuity, promiscuity);
9359 if (flags != old_flags) {
9360 WRITE_ONCE(dev->flags, flags);
9361 netdev_info(dev, "%s promiscuous mode\n",
9362 dev->flags & IFF_PROMISC ? "entered" : "left");
9363 if (audit_enabled) {
9364 current_uid_gid(&uid, &gid);
9365 audit_log(audit_context(), GFP_ATOMIC,
9366 AUDIT_ANOM_PROMISCUOUS,
9367 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9368 dev->name, (dev->flags & IFF_PROMISC),
9369 (old_flags & IFF_PROMISC),
9370 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9371 from_kuid(&init_user_ns, uid),
9372 from_kgid(&init_user_ns, gid),
9373 audit_get_sessionid(current));
9374 }
9375
9376 dev_change_rx_flags(dev, IFF_PROMISC);
9377 }
9378 if (notify) {
9379 /* The ops lock is only required to ensure consistent locking
9380 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9381 * called without the lock, even for devices that are ops
9382 * locked, such as in `dev_uc_sync_multiple` when using
9383 * bonding or teaming.
9384 */
9385 netdev_ops_assert_locked(dev);
9386 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9387 }
9388 return 0;
9389 }
9390
netif_set_promiscuity(struct net_device * dev,int inc)9391 int netif_set_promiscuity(struct net_device *dev, int inc)
9392 {
9393 unsigned int old_flags = dev->flags;
9394 int err;
9395
9396 err = __dev_set_promiscuity(dev, inc, true);
9397 if (err < 0)
9398 return err;
9399 if (dev->flags != old_flags)
9400 dev_set_rx_mode(dev);
9401 return err;
9402 }
9403
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9404 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9405 {
9406 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9407 unsigned int allmulti, flags;
9408
9409 ASSERT_RTNL();
9410
9411 allmulti = dev->allmulti + inc;
9412 if (allmulti == 0) {
9413 /*
9414 * Avoid overflow.
9415 * If inc causes overflow, untouch allmulti and return error.
9416 */
9417 if (unlikely(inc > 0)) {
9418 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9419 return -EOVERFLOW;
9420 }
9421 flags = old_flags & ~IFF_ALLMULTI;
9422 } else {
9423 flags = old_flags | IFF_ALLMULTI;
9424 }
9425 WRITE_ONCE(dev->allmulti, allmulti);
9426 if (flags != old_flags) {
9427 WRITE_ONCE(dev->flags, flags);
9428 netdev_info(dev, "%s allmulticast mode\n",
9429 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9430 dev_change_rx_flags(dev, IFF_ALLMULTI);
9431 dev_set_rx_mode(dev);
9432 if (notify)
9433 __dev_notify_flags(dev, old_flags,
9434 dev->gflags ^ old_gflags, 0, NULL);
9435 }
9436 return 0;
9437 }
9438
9439 /*
9440 * Upload unicast and multicast address lists to device and
9441 * configure RX filtering. When the device doesn't support unicast
9442 * filtering it is put in promiscuous mode while unicast addresses
9443 * are present.
9444 */
__dev_set_rx_mode(struct net_device * dev)9445 void __dev_set_rx_mode(struct net_device *dev)
9446 {
9447 const struct net_device_ops *ops = dev->netdev_ops;
9448
9449 /* dev_open will call this function so the list will stay sane. */
9450 if (!(dev->flags&IFF_UP))
9451 return;
9452
9453 if (!netif_device_present(dev))
9454 return;
9455
9456 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9457 /* Unicast addresses changes may only happen under the rtnl,
9458 * therefore calling __dev_set_promiscuity here is safe.
9459 */
9460 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9461 __dev_set_promiscuity(dev, 1, false);
9462 dev->uc_promisc = true;
9463 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9464 __dev_set_promiscuity(dev, -1, false);
9465 dev->uc_promisc = false;
9466 }
9467 }
9468
9469 if (ops->ndo_set_rx_mode)
9470 ops->ndo_set_rx_mode(dev);
9471 }
9472
dev_set_rx_mode(struct net_device * dev)9473 void dev_set_rx_mode(struct net_device *dev)
9474 {
9475 netif_addr_lock_bh(dev);
9476 __dev_set_rx_mode(dev);
9477 netif_addr_unlock_bh(dev);
9478 }
9479
9480 /**
9481 * netif_get_flags() - get flags reported to userspace
9482 * @dev: device
9483 *
9484 * Get the combination of flag bits exported through APIs to userspace.
9485 */
netif_get_flags(const struct net_device * dev)9486 unsigned int netif_get_flags(const struct net_device *dev)
9487 {
9488 unsigned int flags;
9489
9490 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9491 IFF_ALLMULTI |
9492 IFF_RUNNING |
9493 IFF_LOWER_UP |
9494 IFF_DORMANT)) |
9495 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9496 IFF_ALLMULTI));
9497
9498 if (netif_running(dev)) {
9499 if (netif_oper_up(dev))
9500 flags |= IFF_RUNNING;
9501 if (netif_carrier_ok(dev))
9502 flags |= IFF_LOWER_UP;
9503 if (netif_dormant(dev))
9504 flags |= IFF_DORMANT;
9505 }
9506
9507 return flags;
9508 }
9509 EXPORT_SYMBOL(netif_get_flags);
9510
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9511 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9512 struct netlink_ext_ack *extack)
9513 {
9514 unsigned int old_flags = dev->flags;
9515 int ret;
9516
9517 ASSERT_RTNL();
9518
9519 /*
9520 * Set the flags on our device.
9521 */
9522
9523 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9524 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9525 IFF_AUTOMEDIA)) |
9526 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9527 IFF_ALLMULTI));
9528
9529 /*
9530 * Load in the correct multicast list now the flags have changed.
9531 */
9532
9533 if ((old_flags ^ flags) & IFF_MULTICAST)
9534 dev_change_rx_flags(dev, IFF_MULTICAST);
9535
9536 dev_set_rx_mode(dev);
9537
9538 /*
9539 * Have we downed the interface. We handle IFF_UP ourselves
9540 * according to user attempts to set it, rather than blindly
9541 * setting it.
9542 */
9543
9544 ret = 0;
9545 if ((old_flags ^ flags) & IFF_UP) {
9546 if (old_flags & IFF_UP)
9547 __dev_close(dev);
9548 else
9549 ret = __dev_open(dev, extack);
9550 }
9551
9552 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9553 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9554 old_flags = dev->flags;
9555
9556 dev->gflags ^= IFF_PROMISC;
9557
9558 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9559 if (dev->flags != old_flags)
9560 dev_set_rx_mode(dev);
9561 }
9562
9563 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9564 * is important. Some (broken) drivers set IFF_PROMISC, when
9565 * IFF_ALLMULTI is requested not asking us and not reporting.
9566 */
9567 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9568 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9569
9570 dev->gflags ^= IFF_ALLMULTI;
9571 netif_set_allmulti(dev, inc, false);
9572 }
9573
9574 return ret;
9575 }
9576
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9577 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9578 unsigned int gchanges, u32 portid,
9579 const struct nlmsghdr *nlh)
9580 {
9581 unsigned int changes = dev->flags ^ old_flags;
9582
9583 if (gchanges)
9584 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9585
9586 if (changes & IFF_UP) {
9587 if (dev->flags & IFF_UP)
9588 call_netdevice_notifiers(NETDEV_UP, dev);
9589 else
9590 call_netdevice_notifiers(NETDEV_DOWN, dev);
9591 }
9592
9593 if (dev->flags & IFF_UP &&
9594 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9595 struct netdev_notifier_change_info change_info = {
9596 .info = {
9597 .dev = dev,
9598 },
9599 .flags_changed = changes,
9600 };
9601
9602 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9603 }
9604 }
9605
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9606 int netif_change_flags(struct net_device *dev, unsigned int flags,
9607 struct netlink_ext_ack *extack)
9608 {
9609 int ret;
9610 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9611
9612 ret = __dev_change_flags(dev, flags, extack);
9613 if (ret < 0)
9614 return ret;
9615
9616 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9617 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9618 return ret;
9619 }
9620
__netif_set_mtu(struct net_device * dev,int new_mtu)9621 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9622 {
9623 const struct net_device_ops *ops = dev->netdev_ops;
9624
9625 if (ops->ndo_change_mtu)
9626 return ops->ndo_change_mtu(dev, new_mtu);
9627
9628 /* Pairs with all the lockless reads of dev->mtu in the stack */
9629 WRITE_ONCE(dev->mtu, new_mtu);
9630 return 0;
9631 }
9632 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9633
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9634 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9635 struct netlink_ext_ack *extack)
9636 {
9637 /* MTU must be positive, and in range */
9638 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9639 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9640 return -EINVAL;
9641 }
9642
9643 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9644 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9645 return -EINVAL;
9646 }
9647 return 0;
9648 }
9649
9650 /**
9651 * netif_set_mtu_ext() - Change maximum transfer unit
9652 * @dev: device
9653 * @new_mtu: new transfer unit
9654 * @extack: netlink extended ack
9655 *
9656 * Change the maximum transfer size of the network device.
9657 *
9658 * Return: 0 on success, -errno on failure.
9659 */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9660 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9661 struct netlink_ext_ack *extack)
9662 {
9663 int err, orig_mtu;
9664
9665 netdev_ops_assert_locked(dev);
9666
9667 if (new_mtu == dev->mtu)
9668 return 0;
9669
9670 err = dev_validate_mtu(dev, new_mtu, extack);
9671 if (err)
9672 return err;
9673
9674 if (!netif_device_present(dev))
9675 return -ENODEV;
9676
9677 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9678 err = notifier_to_errno(err);
9679 if (err)
9680 return err;
9681
9682 orig_mtu = dev->mtu;
9683 err = __netif_set_mtu(dev, new_mtu);
9684
9685 if (!err) {
9686 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9687 orig_mtu);
9688 err = notifier_to_errno(err);
9689 if (err) {
9690 /* setting mtu back and notifying everyone again,
9691 * so that they have a chance to revert changes.
9692 */
9693 __netif_set_mtu(dev, orig_mtu);
9694 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9695 new_mtu);
9696 }
9697 }
9698 return err;
9699 }
9700
netif_set_mtu(struct net_device * dev,int new_mtu)9701 int netif_set_mtu(struct net_device *dev, int new_mtu)
9702 {
9703 struct netlink_ext_ack extack;
9704 int err;
9705
9706 memset(&extack, 0, sizeof(extack));
9707 err = netif_set_mtu_ext(dev, new_mtu, &extack);
9708 if (err && extack._msg)
9709 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9710 return err;
9711 }
9712 EXPORT_SYMBOL(netif_set_mtu);
9713
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9714 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9715 {
9716 unsigned int orig_len = dev->tx_queue_len;
9717 int res;
9718
9719 if (new_len != (unsigned int)new_len)
9720 return -ERANGE;
9721
9722 if (new_len != orig_len) {
9723 WRITE_ONCE(dev->tx_queue_len, new_len);
9724 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9725 res = notifier_to_errno(res);
9726 if (res)
9727 goto err_rollback;
9728 res = dev_qdisc_change_tx_queue_len(dev);
9729 if (res)
9730 goto err_rollback;
9731 }
9732
9733 return 0;
9734
9735 err_rollback:
9736 netdev_err(dev, "refused to change device tx_queue_len\n");
9737 WRITE_ONCE(dev->tx_queue_len, orig_len);
9738 return res;
9739 }
9740
netif_set_group(struct net_device * dev,int new_group)9741 void netif_set_group(struct net_device *dev, int new_group)
9742 {
9743 dev->group = new_group;
9744 }
9745
9746 /**
9747 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9748 * @dev: device
9749 * @addr: new address
9750 * @extack: netlink extended ack
9751 *
9752 * Return: 0 on success, -errno on failure.
9753 */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9754 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9755 struct netlink_ext_ack *extack)
9756 {
9757 struct netdev_notifier_pre_changeaddr_info info = {
9758 .info.dev = dev,
9759 .info.extack = extack,
9760 .dev_addr = addr,
9761 };
9762 int rc;
9763
9764 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9765 return notifier_to_errno(rc);
9766 }
9767 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9768
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9769 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9770 struct netlink_ext_ack *extack)
9771 {
9772 const struct net_device_ops *ops = dev->netdev_ops;
9773 int err;
9774
9775 if (!ops->ndo_set_mac_address)
9776 return -EOPNOTSUPP;
9777 if (ss->ss_family != dev->type)
9778 return -EINVAL;
9779 if (!netif_device_present(dev))
9780 return -ENODEV;
9781 err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9782 if (err)
9783 return err;
9784 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9785 err = ops->ndo_set_mac_address(dev, ss);
9786 if (err)
9787 return err;
9788 }
9789 dev->addr_assign_type = NET_ADDR_SET;
9790 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9791 add_device_randomness(dev->dev_addr, dev->addr_len);
9792 return 0;
9793 }
9794
9795 DECLARE_RWSEM(dev_addr_sem);
9796
9797 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9798 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9799 {
9800 size_t size = sizeof(sa->sa_data_min);
9801 struct net_device *dev;
9802 int ret = 0;
9803
9804 down_read(&dev_addr_sem);
9805 rcu_read_lock();
9806
9807 dev = dev_get_by_name_rcu(net, dev_name);
9808 if (!dev) {
9809 ret = -ENODEV;
9810 goto unlock;
9811 }
9812 if (!dev->addr_len)
9813 memset(sa->sa_data, 0, size);
9814 else
9815 memcpy(sa->sa_data, dev->dev_addr,
9816 min_t(size_t, size, dev->addr_len));
9817 sa->sa_family = dev->type;
9818
9819 unlock:
9820 rcu_read_unlock();
9821 up_read(&dev_addr_sem);
9822 return ret;
9823 }
9824 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
9825
netif_change_carrier(struct net_device * dev,bool new_carrier)9826 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9827 {
9828 const struct net_device_ops *ops = dev->netdev_ops;
9829
9830 if (!ops->ndo_change_carrier)
9831 return -EOPNOTSUPP;
9832 if (!netif_device_present(dev))
9833 return -ENODEV;
9834 return ops->ndo_change_carrier(dev, new_carrier);
9835 }
9836
9837 /**
9838 * dev_get_phys_port_id - Get device physical port ID
9839 * @dev: device
9840 * @ppid: port ID
9841 *
9842 * Get device physical port ID
9843 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9844 int dev_get_phys_port_id(struct net_device *dev,
9845 struct netdev_phys_item_id *ppid)
9846 {
9847 const struct net_device_ops *ops = dev->netdev_ops;
9848
9849 if (!ops->ndo_get_phys_port_id)
9850 return -EOPNOTSUPP;
9851 return ops->ndo_get_phys_port_id(dev, ppid);
9852 }
9853
9854 /**
9855 * dev_get_phys_port_name - Get device physical port name
9856 * @dev: device
9857 * @name: port name
9858 * @len: limit of bytes to copy to name
9859 *
9860 * Get device physical port name
9861 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9862 int dev_get_phys_port_name(struct net_device *dev,
9863 char *name, size_t len)
9864 {
9865 const struct net_device_ops *ops = dev->netdev_ops;
9866 int err;
9867
9868 if (ops->ndo_get_phys_port_name) {
9869 err = ops->ndo_get_phys_port_name(dev, name, len);
9870 if (err != -EOPNOTSUPP)
9871 return err;
9872 }
9873 return devlink_compat_phys_port_name_get(dev, name, len);
9874 }
9875
9876 /**
9877 * netif_get_port_parent_id() - Get the device's port parent identifier
9878 * @dev: network device
9879 * @ppid: pointer to a storage for the port's parent identifier
9880 * @recurse: allow/disallow recursion to lower devices
9881 *
9882 * Get the devices's port parent identifier.
9883 *
9884 * Return: 0 on success, -errno on failure.
9885 */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9886 int netif_get_port_parent_id(struct net_device *dev,
9887 struct netdev_phys_item_id *ppid, bool recurse)
9888 {
9889 const struct net_device_ops *ops = dev->netdev_ops;
9890 struct netdev_phys_item_id first = { };
9891 struct net_device *lower_dev;
9892 struct list_head *iter;
9893 int err;
9894
9895 if (ops->ndo_get_port_parent_id) {
9896 err = ops->ndo_get_port_parent_id(dev, ppid);
9897 if (err != -EOPNOTSUPP)
9898 return err;
9899 }
9900
9901 err = devlink_compat_switch_id_get(dev, ppid);
9902 if (!recurse || err != -EOPNOTSUPP)
9903 return err;
9904
9905 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9906 err = netif_get_port_parent_id(lower_dev, ppid, true);
9907 if (err)
9908 break;
9909 if (!first.id_len)
9910 first = *ppid;
9911 else if (memcmp(&first, ppid, sizeof(*ppid)))
9912 return -EOPNOTSUPP;
9913 }
9914
9915 return err;
9916 }
9917 EXPORT_SYMBOL(netif_get_port_parent_id);
9918
9919 /**
9920 * netdev_port_same_parent_id - Indicate if two network devices have
9921 * the same port parent identifier
9922 * @a: first network device
9923 * @b: second network device
9924 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9925 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9926 {
9927 struct netdev_phys_item_id a_id = { };
9928 struct netdev_phys_item_id b_id = { };
9929
9930 if (netif_get_port_parent_id(a, &a_id, true) ||
9931 netif_get_port_parent_id(b, &b_id, true))
9932 return false;
9933
9934 return netdev_phys_item_id_same(&a_id, &b_id);
9935 }
9936 EXPORT_SYMBOL(netdev_port_same_parent_id);
9937
netif_change_proto_down(struct net_device * dev,bool proto_down)9938 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9939 {
9940 if (!dev->change_proto_down)
9941 return -EOPNOTSUPP;
9942 if (!netif_device_present(dev))
9943 return -ENODEV;
9944 if (proto_down)
9945 netif_carrier_off(dev);
9946 else
9947 netif_carrier_on(dev);
9948 WRITE_ONCE(dev->proto_down, proto_down);
9949 return 0;
9950 }
9951
9952 /**
9953 * netdev_change_proto_down_reason_locked - proto down reason
9954 *
9955 * @dev: device
9956 * @mask: proto down mask
9957 * @value: proto down value
9958 */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9959 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9960 unsigned long mask, u32 value)
9961 {
9962 u32 proto_down_reason;
9963 int b;
9964
9965 if (!mask) {
9966 proto_down_reason = value;
9967 } else {
9968 proto_down_reason = dev->proto_down_reason;
9969 for_each_set_bit(b, &mask, 32) {
9970 if (value & (1 << b))
9971 proto_down_reason |= BIT(b);
9972 else
9973 proto_down_reason &= ~BIT(b);
9974 }
9975 }
9976 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9977 }
9978
9979 struct bpf_xdp_link {
9980 struct bpf_link link;
9981 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9982 int flags;
9983 };
9984
dev_xdp_mode(struct net_device * dev,u32 flags)9985 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9986 {
9987 if (flags & XDP_FLAGS_HW_MODE)
9988 return XDP_MODE_HW;
9989 if (flags & XDP_FLAGS_DRV_MODE)
9990 return XDP_MODE_DRV;
9991 if (flags & XDP_FLAGS_SKB_MODE)
9992 return XDP_MODE_SKB;
9993 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9994 }
9995
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9996 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9997 {
9998 switch (mode) {
9999 case XDP_MODE_SKB:
10000 return generic_xdp_install;
10001 case XDP_MODE_DRV:
10002 case XDP_MODE_HW:
10003 return dev->netdev_ops->ndo_bpf;
10004 default:
10005 return NULL;
10006 }
10007 }
10008
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10009 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10010 enum bpf_xdp_mode mode)
10011 {
10012 return dev->xdp_state[mode].link;
10013 }
10014
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10015 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10016 enum bpf_xdp_mode mode)
10017 {
10018 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10019
10020 if (link)
10021 return link->link.prog;
10022 return dev->xdp_state[mode].prog;
10023 }
10024
dev_xdp_prog_count(struct net_device * dev)10025 u8 dev_xdp_prog_count(struct net_device *dev)
10026 {
10027 u8 count = 0;
10028 int i;
10029
10030 for (i = 0; i < __MAX_XDP_MODE; i++)
10031 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10032 count++;
10033 return count;
10034 }
10035 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10036
dev_xdp_sb_prog_count(struct net_device * dev)10037 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10038 {
10039 u8 count = 0;
10040 int i;
10041
10042 for (i = 0; i < __MAX_XDP_MODE; i++)
10043 if (dev->xdp_state[i].prog &&
10044 !dev->xdp_state[i].prog->aux->xdp_has_frags)
10045 count++;
10046 return count;
10047 }
10048
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10049 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10050 {
10051 if (!dev->netdev_ops->ndo_bpf)
10052 return -EOPNOTSUPP;
10053
10054 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10055 bpf->command == XDP_SETUP_PROG &&
10056 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10057 NL_SET_ERR_MSG(bpf->extack,
10058 "unable to propagate XDP to device using tcp-data-split");
10059 return -EBUSY;
10060 }
10061
10062 if (dev_get_min_mp_channel_count(dev)) {
10063 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10064 return -EBUSY;
10065 }
10066
10067 return dev->netdev_ops->ndo_bpf(dev, bpf);
10068 }
10069 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10070
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10071 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10072 {
10073 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10074
10075 return prog ? prog->aux->id : 0;
10076 }
10077
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10078 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10079 struct bpf_xdp_link *link)
10080 {
10081 dev->xdp_state[mode].link = link;
10082 dev->xdp_state[mode].prog = NULL;
10083 }
10084
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10085 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10086 struct bpf_prog *prog)
10087 {
10088 dev->xdp_state[mode].link = NULL;
10089 dev->xdp_state[mode].prog = prog;
10090 }
10091
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10092 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10093 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10094 u32 flags, struct bpf_prog *prog)
10095 {
10096 struct netdev_bpf xdp;
10097 int err;
10098
10099 netdev_ops_assert_locked(dev);
10100
10101 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10102 prog && !prog->aux->xdp_has_frags) {
10103 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10104 return -EBUSY;
10105 }
10106
10107 if (dev_get_min_mp_channel_count(dev)) {
10108 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10109 return -EBUSY;
10110 }
10111
10112 memset(&xdp, 0, sizeof(xdp));
10113 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10114 xdp.extack = extack;
10115 xdp.flags = flags;
10116 xdp.prog = prog;
10117
10118 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
10119 * "moved" into driver), so they don't increment it on their own, but
10120 * they do decrement refcnt when program is detached or replaced.
10121 * Given net_device also owns link/prog, we need to bump refcnt here
10122 * to prevent drivers from underflowing it.
10123 */
10124 if (prog)
10125 bpf_prog_inc(prog);
10126 err = bpf_op(dev, &xdp);
10127 if (err) {
10128 if (prog)
10129 bpf_prog_put(prog);
10130 return err;
10131 }
10132
10133 if (mode != XDP_MODE_HW)
10134 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10135
10136 return 0;
10137 }
10138
dev_xdp_uninstall(struct net_device * dev)10139 static void dev_xdp_uninstall(struct net_device *dev)
10140 {
10141 struct bpf_xdp_link *link;
10142 struct bpf_prog *prog;
10143 enum bpf_xdp_mode mode;
10144 bpf_op_t bpf_op;
10145
10146 ASSERT_RTNL();
10147
10148 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10149 prog = dev_xdp_prog(dev, mode);
10150 if (!prog)
10151 continue;
10152
10153 bpf_op = dev_xdp_bpf_op(dev, mode);
10154 if (!bpf_op)
10155 continue;
10156
10157 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10158
10159 /* auto-detach link from net device */
10160 link = dev_xdp_link(dev, mode);
10161 if (link)
10162 link->dev = NULL;
10163 else
10164 bpf_prog_put(prog);
10165
10166 dev_xdp_set_link(dev, mode, NULL);
10167 }
10168 }
10169
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10170 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10171 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10172 struct bpf_prog *old_prog, u32 flags)
10173 {
10174 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10175 struct bpf_prog *cur_prog;
10176 struct net_device *upper;
10177 struct list_head *iter;
10178 enum bpf_xdp_mode mode;
10179 bpf_op_t bpf_op;
10180 int err;
10181
10182 ASSERT_RTNL();
10183
10184 /* either link or prog attachment, never both */
10185 if (link && (new_prog || old_prog))
10186 return -EINVAL;
10187 /* link supports only XDP mode flags */
10188 if (link && (flags & ~XDP_FLAGS_MODES)) {
10189 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10190 return -EINVAL;
10191 }
10192 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10193 if (num_modes > 1) {
10194 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10195 return -EINVAL;
10196 }
10197 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10198 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10199 NL_SET_ERR_MSG(extack,
10200 "More than one program loaded, unset mode is ambiguous");
10201 return -EINVAL;
10202 }
10203 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10204 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10205 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10206 return -EINVAL;
10207 }
10208
10209 mode = dev_xdp_mode(dev, flags);
10210 /* can't replace attached link */
10211 if (dev_xdp_link(dev, mode)) {
10212 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10213 return -EBUSY;
10214 }
10215
10216 /* don't allow if an upper device already has a program */
10217 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10218 if (dev_xdp_prog_count(upper) > 0) {
10219 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10220 return -EEXIST;
10221 }
10222 }
10223
10224 cur_prog = dev_xdp_prog(dev, mode);
10225 /* can't replace attached prog with link */
10226 if (link && cur_prog) {
10227 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10228 return -EBUSY;
10229 }
10230 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10231 NL_SET_ERR_MSG(extack, "Active program does not match expected");
10232 return -EEXIST;
10233 }
10234
10235 /* put effective new program into new_prog */
10236 if (link)
10237 new_prog = link->link.prog;
10238
10239 if (new_prog) {
10240 bool offload = mode == XDP_MODE_HW;
10241 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10242 ? XDP_MODE_DRV : XDP_MODE_SKB;
10243
10244 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10245 NL_SET_ERR_MSG(extack, "XDP program already attached");
10246 return -EBUSY;
10247 }
10248 if (!offload && dev_xdp_prog(dev, other_mode)) {
10249 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10250 return -EEXIST;
10251 }
10252 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10253 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10254 return -EINVAL;
10255 }
10256 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10257 NL_SET_ERR_MSG(extack, "Program bound to different device");
10258 return -EINVAL;
10259 }
10260 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10261 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10262 return -EINVAL;
10263 }
10264 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10265 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10266 return -EINVAL;
10267 }
10268 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10269 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10270 return -EINVAL;
10271 }
10272 }
10273
10274 /* don't call drivers if the effective program didn't change */
10275 if (new_prog != cur_prog) {
10276 bpf_op = dev_xdp_bpf_op(dev, mode);
10277 if (!bpf_op) {
10278 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10279 return -EOPNOTSUPP;
10280 }
10281
10282 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10283 if (err)
10284 return err;
10285 }
10286
10287 if (link)
10288 dev_xdp_set_link(dev, mode, link);
10289 else
10290 dev_xdp_set_prog(dev, mode, new_prog);
10291 if (cur_prog)
10292 bpf_prog_put(cur_prog);
10293
10294 return 0;
10295 }
10296
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10297 static int dev_xdp_attach_link(struct net_device *dev,
10298 struct netlink_ext_ack *extack,
10299 struct bpf_xdp_link *link)
10300 {
10301 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10302 }
10303
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10304 static int dev_xdp_detach_link(struct net_device *dev,
10305 struct netlink_ext_ack *extack,
10306 struct bpf_xdp_link *link)
10307 {
10308 enum bpf_xdp_mode mode;
10309 bpf_op_t bpf_op;
10310
10311 ASSERT_RTNL();
10312
10313 mode = dev_xdp_mode(dev, link->flags);
10314 if (dev_xdp_link(dev, mode) != link)
10315 return -EINVAL;
10316
10317 bpf_op = dev_xdp_bpf_op(dev, mode);
10318 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10319 dev_xdp_set_link(dev, mode, NULL);
10320 return 0;
10321 }
10322
bpf_xdp_link_release(struct bpf_link * link)10323 static void bpf_xdp_link_release(struct bpf_link *link)
10324 {
10325 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10326
10327 rtnl_lock();
10328
10329 /* if racing with net_device's tear down, xdp_link->dev might be
10330 * already NULL, in which case link was already auto-detached
10331 */
10332 if (xdp_link->dev) {
10333 netdev_lock_ops(xdp_link->dev);
10334 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10335 netdev_unlock_ops(xdp_link->dev);
10336 xdp_link->dev = NULL;
10337 }
10338
10339 rtnl_unlock();
10340 }
10341
bpf_xdp_link_detach(struct bpf_link * link)10342 static int bpf_xdp_link_detach(struct bpf_link *link)
10343 {
10344 bpf_xdp_link_release(link);
10345 return 0;
10346 }
10347
bpf_xdp_link_dealloc(struct bpf_link * link)10348 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10349 {
10350 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10351
10352 kfree(xdp_link);
10353 }
10354
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10355 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10356 struct seq_file *seq)
10357 {
10358 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10359 u32 ifindex = 0;
10360
10361 rtnl_lock();
10362 if (xdp_link->dev)
10363 ifindex = xdp_link->dev->ifindex;
10364 rtnl_unlock();
10365
10366 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10367 }
10368
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10369 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10370 struct bpf_link_info *info)
10371 {
10372 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10373 u32 ifindex = 0;
10374
10375 rtnl_lock();
10376 if (xdp_link->dev)
10377 ifindex = xdp_link->dev->ifindex;
10378 rtnl_unlock();
10379
10380 info->xdp.ifindex = ifindex;
10381 return 0;
10382 }
10383
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10384 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10385 struct bpf_prog *old_prog)
10386 {
10387 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10388 enum bpf_xdp_mode mode;
10389 bpf_op_t bpf_op;
10390 int err = 0;
10391
10392 rtnl_lock();
10393
10394 /* link might have been auto-released already, so fail */
10395 if (!xdp_link->dev) {
10396 err = -ENOLINK;
10397 goto out_unlock;
10398 }
10399
10400 if (old_prog && link->prog != old_prog) {
10401 err = -EPERM;
10402 goto out_unlock;
10403 }
10404 old_prog = link->prog;
10405 if (old_prog->type != new_prog->type ||
10406 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10407 err = -EINVAL;
10408 goto out_unlock;
10409 }
10410
10411 if (old_prog == new_prog) {
10412 /* no-op, don't disturb drivers */
10413 bpf_prog_put(new_prog);
10414 goto out_unlock;
10415 }
10416
10417 netdev_lock_ops(xdp_link->dev);
10418 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10419 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10420 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10421 xdp_link->flags, new_prog);
10422 netdev_unlock_ops(xdp_link->dev);
10423 if (err)
10424 goto out_unlock;
10425
10426 old_prog = xchg(&link->prog, new_prog);
10427 bpf_prog_put(old_prog);
10428
10429 out_unlock:
10430 rtnl_unlock();
10431 return err;
10432 }
10433
10434 static const struct bpf_link_ops bpf_xdp_link_lops = {
10435 .release = bpf_xdp_link_release,
10436 .dealloc = bpf_xdp_link_dealloc,
10437 .detach = bpf_xdp_link_detach,
10438 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10439 .fill_link_info = bpf_xdp_link_fill_link_info,
10440 .update_prog = bpf_xdp_link_update,
10441 };
10442
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10443 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10444 {
10445 struct net *net = current->nsproxy->net_ns;
10446 struct bpf_link_primer link_primer;
10447 struct netlink_ext_ack extack = {};
10448 struct bpf_xdp_link *link;
10449 struct net_device *dev;
10450 int err, fd;
10451
10452 rtnl_lock();
10453 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10454 if (!dev) {
10455 rtnl_unlock();
10456 return -EINVAL;
10457 }
10458
10459 link = kzalloc(sizeof(*link), GFP_USER);
10460 if (!link) {
10461 err = -ENOMEM;
10462 goto unlock;
10463 }
10464
10465 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10466 attr->link_create.attach_type);
10467 link->dev = dev;
10468 link->flags = attr->link_create.flags;
10469
10470 err = bpf_link_prime(&link->link, &link_primer);
10471 if (err) {
10472 kfree(link);
10473 goto unlock;
10474 }
10475
10476 netdev_lock_ops(dev);
10477 err = dev_xdp_attach_link(dev, &extack, link);
10478 netdev_unlock_ops(dev);
10479 rtnl_unlock();
10480
10481 if (err) {
10482 link->dev = NULL;
10483 bpf_link_cleanup(&link_primer);
10484 trace_bpf_xdp_link_attach_failed(extack._msg);
10485 goto out_put_dev;
10486 }
10487
10488 fd = bpf_link_settle(&link_primer);
10489 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10490 dev_put(dev);
10491 return fd;
10492
10493 unlock:
10494 rtnl_unlock();
10495
10496 out_put_dev:
10497 dev_put(dev);
10498 return err;
10499 }
10500
10501 /**
10502 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10503 * @dev: device
10504 * @extack: netlink extended ack
10505 * @fd: new program fd or negative value to clear
10506 * @expected_fd: old program fd that userspace expects to replace or clear
10507 * @flags: xdp-related flags
10508 *
10509 * Set or clear a bpf program for a device
10510 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10511 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10512 int fd, int expected_fd, u32 flags)
10513 {
10514 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10515 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10516 int err;
10517
10518 ASSERT_RTNL();
10519
10520 if (fd >= 0) {
10521 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10522 mode != XDP_MODE_SKB);
10523 if (IS_ERR(new_prog))
10524 return PTR_ERR(new_prog);
10525 }
10526
10527 if (expected_fd >= 0) {
10528 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10529 mode != XDP_MODE_SKB);
10530 if (IS_ERR(old_prog)) {
10531 err = PTR_ERR(old_prog);
10532 old_prog = NULL;
10533 goto err_out;
10534 }
10535 }
10536
10537 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10538
10539 err_out:
10540 if (err && new_prog)
10541 bpf_prog_put(new_prog);
10542 if (old_prog)
10543 bpf_prog_put(old_prog);
10544 return err;
10545 }
10546
dev_get_min_mp_channel_count(const struct net_device * dev)10547 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10548 {
10549 int i;
10550
10551 netdev_ops_assert_locked(dev);
10552
10553 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10554 if (dev->_rx[i].mp_params.mp_priv)
10555 /* The channel count is the idx plus 1. */
10556 return i + 1;
10557
10558 return 0;
10559 }
10560
10561 /**
10562 * dev_index_reserve() - allocate an ifindex in a namespace
10563 * @net: the applicable net namespace
10564 * @ifindex: requested ifindex, pass %0 to get one allocated
10565 *
10566 * Allocate a ifindex for a new device. Caller must either use the ifindex
10567 * to store the device (via list_netdevice()) or call dev_index_release()
10568 * to give the index up.
10569 *
10570 * Return: a suitable unique value for a new device interface number or -errno.
10571 */
dev_index_reserve(struct net * net,u32 ifindex)10572 static int dev_index_reserve(struct net *net, u32 ifindex)
10573 {
10574 int err;
10575
10576 if (ifindex > INT_MAX) {
10577 DEBUG_NET_WARN_ON_ONCE(1);
10578 return -EINVAL;
10579 }
10580
10581 if (!ifindex)
10582 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10583 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10584 else
10585 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10586 if (err < 0)
10587 return err;
10588
10589 return ifindex;
10590 }
10591
dev_index_release(struct net * net,int ifindex)10592 static void dev_index_release(struct net *net, int ifindex)
10593 {
10594 /* Expect only unused indexes, unlist_netdevice() removes the used */
10595 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10596 }
10597
from_cleanup_net(void)10598 static bool from_cleanup_net(void)
10599 {
10600 #ifdef CONFIG_NET_NS
10601 return current == READ_ONCE(cleanup_net_task);
10602 #else
10603 return false;
10604 #endif
10605 }
10606
10607 /* Delayed registration/unregisteration */
10608 LIST_HEAD(net_todo_list);
10609 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10610 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10611
net_set_todo(struct net_device * dev)10612 static void net_set_todo(struct net_device *dev)
10613 {
10614 list_add_tail(&dev->todo_list, &net_todo_list);
10615 }
10616
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10617 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10618 struct net_device *upper, netdev_features_t features)
10619 {
10620 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10621 netdev_features_t feature;
10622 int feature_bit;
10623
10624 for_each_netdev_feature(upper_disables, feature_bit) {
10625 feature = __NETIF_F_BIT(feature_bit);
10626 if (!(upper->wanted_features & feature)
10627 && (features & feature)) {
10628 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10629 &feature, upper->name);
10630 features &= ~feature;
10631 }
10632 }
10633
10634 return features;
10635 }
10636
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10637 static void netdev_sync_lower_features(struct net_device *upper,
10638 struct net_device *lower, netdev_features_t features)
10639 {
10640 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10641 netdev_features_t feature;
10642 int feature_bit;
10643
10644 for_each_netdev_feature(upper_disables, feature_bit) {
10645 feature = __NETIF_F_BIT(feature_bit);
10646 if (!(features & feature) && (lower->features & feature)) {
10647 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10648 &feature, lower->name);
10649 netdev_lock_ops(lower);
10650 lower->wanted_features &= ~feature;
10651 __netdev_update_features(lower);
10652
10653 if (unlikely(lower->features & feature))
10654 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10655 &feature, lower->name);
10656 else
10657 netdev_features_change(lower);
10658 netdev_unlock_ops(lower);
10659 }
10660 }
10661 }
10662
netdev_has_ip_or_hw_csum(netdev_features_t features)10663 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10664 {
10665 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10666 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10667 bool hw_csum = features & NETIF_F_HW_CSUM;
10668
10669 return ip_csum || hw_csum;
10670 }
10671
netdev_fix_features(struct net_device * dev,netdev_features_t features)10672 static netdev_features_t netdev_fix_features(struct net_device *dev,
10673 netdev_features_t features)
10674 {
10675 /* Fix illegal checksum combinations */
10676 if ((features & NETIF_F_HW_CSUM) &&
10677 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10678 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10679 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10680 }
10681
10682 /* TSO requires that SG is present as well. */
10683 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10684 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10685 features &= ~NETIF_F_ALL_TSO;
10686 }
10687
10688 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10689 !(features & NETIF_F_IP_CSUM)) {
10690 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10691 features &= ~NETIF_F_TSO;
10692 features &= ~NETIF_F_TSO_ECN;
10693 }
10694
10695 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10696 !(features & NETIF_F_IPV6_CSUM)) {
10697 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10698 features &= ~NETIF_F_TSO6;
10699 }
10700
10701 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10702 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10703 features &= ~NETIF_F_TSO_MANGLEID;
10704
10705 /* TSO ECN requires that TSO is present as well. */
10706 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10707 features &= ~NETIF_F_TSO_ECN;
10708
10709 /* Software GSO depends on SG. */
10710 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10711 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10712 features &= ~NETIF_F_GSO;
10713 }
10714
10715 /* GSO partial features require GSO partial be set */
10716 if ((features & dev->gso_partial_features) &&
10717 !(features & NETIF_F_GSO_PARTIAL)) {
10718 netdev_dbg(dev,
10719 "Dropping partially supported GSO features since no GSO partial.\n");
10720 features &= ~dev->gso_partial_features;
10721 }
10722
10723 if (!(features & NETIF_F_RXCSUM)) {
10724 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10725 * successfully merged by hardware must also have the
10726 * checksum verified by hardware. If the user does not
10727 * want to enable RXCSUM, logically, we should disable GRO_HW.
10728 */
10729 if (features & NETIF_F_GRO_HW) {
10730 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10731 features &= ~NETIF_F_GRO_HW;
10732 }
10733 }
10734
10735 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10736 if (features & NETIF_F_RXFCS) {
10737 if (features & NETIF_F_LRO) {
10738 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10739 features &= ~NETIF_F_LRO;
10740 }
10741
10742 if (features & NETIF_F_GRO_HW) {
10743 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10744 features &= ~NETIF_F_GRO_HW;
10745 }
10746 }
10747
10748 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10749 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10750 features &= ~NETIF_F_LRO;
10751 }
10752
10753 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10754 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10755 features &= ~NETIF_F_HW_TLS_TX;
10756 }
10757
10758 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10759 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10760 features &= ~NETIF_F_HW_TLS_RX;
10761 }
10762
10763 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10764 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10765 features &= ~NETIF_F_GSO_UDP_L4;
10766 }
10767
10768 return features;
10769 }
10770
__netdev_update_features(struct net_device * dev)10771 int __netdev_update_features(struct net_device *dev)
10772 {
10773 struct net_device *upper, *lower;
10774 netdev_features_t features;
10775 struct list_head *iter;
10776 int err = -1;
10777
10778 ASSERT_RTNL();
10779 netdev_ops_assert_locked(dev);
10780
10781 features = netdev_get_wanted_features(dev);
10782
10783 if (dev->netdev_ops->ndo_fix_features)
10784 features = dev->netdev_ops->ndo_fix_features(dev, features);
10785
10786 /* driver might be less strict about feature dependencies */
10787 features = netdev_fix_features(dev, features);
10788
10789 /* some features can't be enabled if they're off on an upper device */
10790 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10791 features = netdev_sync_upper_features(dev, upper, features);
10792
10793 if (dev->features == features)
10794 goto sync_lower;
10795
10796 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10797 &dev->features, &features);
10798
10799 if (dev->netdev_ops->ndo_set_features)
10800 err = dev->netdev_ops->ndo_set_features(dev, features);
10801 else
10802 err = 0;
10803
10804 if (unlikely(err < 0)) {
10805 netdev_err(dev,
10806 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10807 err, &features, &dev->features);
10808 /* return non-0 since some features might have changed and
10809 * it's better to fire a spurious notification than miss it
10810 */
10811 return -1;
10812 }
10813
10814 sync_lower:
10815 /* some features must be disabled on lower devices when disabled
10816 * on an upper device (think: bonding master or bridge)
10817 */
10818 netdev_for_each_lower_dev(dev, lower, iter)
10819 netdev_sync_lower_features(dev, lower, features);
10820
10821 if (!err) {
10822 netdev_features_t diff = features ^ dev->features;
10823
10824 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10825 /* udp_tunnel_{get,drop}_rx_info both need
10826 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10827 * device, or they won't do anything.
10828 * Thus we need to update dev->features
10829 * *before* calling udp_tunnel_get_rx_info,
10830 * but *after* calling udp_tunnel_drop_rx_info.
10831 */
10832 udp_tunnel_nic_lock(dev);
10833 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10834 dev->features = features;
10835 udp_tunnel_get_rx_info(dev);
10836 } else {
10837 udp_tunnel_drop_rx_info(dev);
10838 }
10839 udp_tunnel_nic_unlock(dev);
10840 }
10841
10842 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10843 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10844 dev->features = features;
10845 err |= vlan_get_rx_ctag_filter_info(dev);
10846 } else {
10847 vlan_drop_rx_ctag_filter_info(dev);
10848 }
10849 }
10850
10851 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10852 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10853 dev->features = features;
10854 err |= vlan_get_rx_stag_filter_info(dev);
10855 } else {
10856 vlan_drop_rx_stag_filter_info(dev);
10857 }
10858 }
10859
10860 dev->features = features;
10861 }
10862
10863 return err < 0 ? 0 : 1;
10864 }
10865
10866 /**
10867 * netdev_update_features - recalculate device features
10868 * @dev: the device to check
10869 *
10870 * Recalculate dev->features set and send notifications if it
10871 * has changed. Should be called after driver or hardware dependent
10872 * conditions might have changed that influence the features.
10873 */
netdev_update_features(struct net_device * dev)10874 void netdev_update_features(struct net_device *dev)
10875 {
10876 if (__netdev_update_features(dev))
10877 netdev_features_change(dev);
10878 }
10879 EXPORT_SYMBOL(netdev_update_features);
10880
10881 /**
10882 * netdev_change_features - recalculate device features
10883 * @dev: the device to check
10884 *
10885 * Recalculate dev->features set and send notifications even
10886 * if they have not changed. Should be called instead of
10887 * netdev_update_features() if also dev->vlan_features might
10888 * have changed to allow the changes to be propagated to stacked
10889 * VLAN devices.
10890 */
netdev_change_features(struct net_device * dev)10891 void netdev_change_features(struct net_device *dev)
10892 {
10893 __netdev_update_features(dev);
10894 netdev_features_change(dev);
10895 }
10896 EXPORT_SYMBOL(netdev_change_features);
10897
10898 /**
10899 * netif_stacked_transfer_operstate - transfer operstate
10900 * @rootdev: the root or lower level device to transfer state from
10901 * @dev: the device to transfer operstate to
10902 *
10903 * Transfer operational state from root to device. This is normally
10904 * called when a stacking relationship exists between the root
10905 * device and the device(a leaf device).
10906 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10907 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10908 struct net_device *dev)
10909 {
10910 if (rootdev->operstate == IF_OPER_DORMANT)
10911 netif_dormant_on(dev);
10912 else
10913 netif_dormant_off(dev);
10914
10915 if (rootdev->operstate == IF_OPER_TESTING)
10916 netif_testing_on(dev);
10917 else
10918 netif_testing_off(dev);
10919
10920 if (netif_carrier_ok(rootdev))
10921 netif_carrier_on(dev);
10922 else
10923 netif_carrier_off(dev);
10924 }
10925 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10926
netif_alloc_rx_queues(struct net_device * dev)10927 static int netif_alloc_rx_queues(struct net_device *dev)
10928 {
10929 unsigned int i, count = dev->num_rx_queues;
10930 struct netdev_rx_queue *rx;
10931 size_t sz = count * sizeof(*rx);
10932 int err = 0;
10933
10934 BUG_ON(count < 1);
10935
10936 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10937 if (!rx)
10938 return -ENOMEM;
10939
10940 dev->_rx = rx;
10941
10942 for (i = 0; i < count; i++) {
10943 rx[i].dev = dev;
10944
10945 /* XDP RX-queue setup */
10946 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10947 if (err < 0)
10948 goto err_rxq_info;
10949 }
10950 return 0;
10951
10952 err_rxq_info:
10953 /* Rollback successful reg's and free other resources */
10954 while (i--)
10955 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10956 kvfree(dev->_rx);
10957 dev->_rx = NULL;
10958 return err;
10959 }
10960
netif_free_rx_queues(struct net_device * dev)10961 static void netif_free_rx_queues(struct net_device *dev)
10962 {
10963 unsigned int i, count = dev->num_rx_queues;
10964
10965 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10966 if (!dev->_rx)
10967 return;
10968
10969 for (i = 0; i < count; i++)
10970 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10971
10972 kvfree(dev->_rx);
10973 }
10974
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10975 static void netdev_init_one_queue(struct net_device *dev,
10976 struct netdev_queue *queue, void *_unused)
10977 {
10978 /* Initialize queue lock */
10979 spin_lock_init(&queue->_xmit_lock);
10980 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10981 queue->xmit_lock_owner = -1;
10982 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10983 queue->dev = dev;
10984 #ifdef CONFIG_BQL
10985 dql_init(&queue->dql, HZ);
10986 #endif
10987 }
10988
netif_free_tx_queues(struct net_device * dev)10989 static void netif_free_tx_queues(struct net_device *dev)
10990 {
10991 kvfree(dev->_tx);
10992 }
10993
netif_alloc_netdev_queues(struct net_device * dev)10994 static int netif_alloc_netdev_queues(struct net_device *dev)
10995 {
10996 unsigned int count = dev->num_tx_queues;
10997 struct netdev_queue *tx;
10998 size_t sz = count * sizeof(*tx);
10999
11000 if (count < 1 || count > 0xffff)
11001 return -EINVAL;
11002
11003 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11004 if (!tx)
11005 return -ENOMEM;
11006
11007 dev->_tx = tx;
11008
11009 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11010 spin_lock_init(&dev->tx_global_lock);
11011
11012 return 0;
11013 }
11014
netif_tx_stop_all_queues(struct net_device * dev)11015 void netif_tx_stop_all_queues(struct net_device *dev)
11016 {
11017 unsigned int i;
11018
11019 for (i = 0; i < dev->num_tx_queues; i++) {
11020 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11021
11022 netif_tx_stop_queue(txq);
11023 }
11024 }
11025 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11026
netdev_do_alloc_pcpu_stats(struct net_device * dev)11027 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11028 {
11029 void __percpu *v;
11030
11031 /* Drivers implementing ndo_get_peer_dev must support tstat
11032 * accounting, so that skb_do_redirect() can bump the dev's
11033 * RX stats upon network namespace switch.
11034 */
11035 if (dev->netdev_ops->ndo_get_peer_dev &&
11036 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11037 return -EOPNOTSUPP;
11038
11039 switch (dev->pcpu_stat_type) {
11040 case NETDEV_PCPU_STAT_NONE:
11041 return 0;
11042 case NETDEV_PCPU_STAT_LSTATS:
11043 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11044 break;
11045 case NETDEV_PCPU_STAT_TSTATS:
11046 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11047 break;
11048 case NETDEV_PCPU_STAT_DSTATS:
11049 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11050 break;
11051 default:
11052 return -EINVAL;
11053 }
11054
11055 return v ? 0 : -ENOMEM;
11056 }
11057
netdev_do_free_pcpu_stats(struct net_device * dev)11058 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11059 {
11060 switch (dev->pcpu_stat_type) {
11061 case NETDEV_PCPU_STAT_NONE:
11062 return;
11063 case NETDEV_PCPU_STAT_LSTATS:
11064 free_percpu(dev->lstats);
11065 break;
11066 case NETDEV_PCPU_STAT_TSTATS:
11067 free_percpu(dev->tstats);
11068 break;
11069 case NETDEV_PCPU_STAT_DSTATS:
11070 free_percpu(dev->dstats);
11071 break;
11072 }
11073 }
11074
netdev_free_phy_link_topology(struct net_device * dev)11075 static void netdev_free_phy_link_topology(struct net_device *dev)
11076 {
11077 struct phy_link_topology *topo = dev->link_topo;
11078
11079 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11080 xa_destroy(&topo->phys);
11081 kfree(topo);
11082 dev->link_topo = NULL;
11083 }
11084 }
11085
11086 /**
11087 * register_netdevice() - register a network device
11088 * @dev: device to register
11089 *
11090 * Take a prepared network device structure and make it externally accessible.
11091 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11092 * Callers must hold the rtnl lock - you may want register_netdev()
11093 * instead of this.
11094 */
register_netdevice(struct net_device * dev)11095 int register_netdevice(struct net_device *dev)
11096 {
11097 int ret;
11098 struct net *net = dev_net(dev);
11099
11100 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11101 NETDEV_FEATURE_COUNT);
11102 BUG_ON(dev_boot_phase);
11103 ASSERT_RTNL();
11104
11105 might_sleep();
11106
11107 /* When net_device's are persistent, this will be fatal. */
11108 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11109 BUG_ON(!net);
11110
11111 ret = ethtool_check_ops(dev->ethtool_ops);
11112 if (ret)
11113 return ret;
11114
11115 /* rss ctx ID 0 is reserved for the default context, start from 1 */
11116 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11117 mutex_init(&dev->ethtool->rss_lock);
11118
11119 spin_lock_init(&dev->addr_list_lock);
11120 netdev_set_addr_lockdep_class(dev);
11121
11122 ret = dev_get_valid_name(net, dev, dev->name);
11123 if (ret < 0)
11124 goto out;
11125
11126 ret = -ENOMEM;
11127 dev->name_node = netdev_name_node_head_alloc(dev);
11128 if (!dev->name_node)
11129 goto out;
11130
11131 /* Init, if this function is available */
11132 if (dev->netdev_ops->ndo_init) {
11133 ret = dev->netdev_ops->ndo_init(dev);
11134 if (ret) {
11135 if (ret > 0)
11136 ret = -EIO;
11137 goto err_free_name;
11138 }
11139 }
11140
11141 if (((dev->hw_features | dev->features) &
11142 NETIF_F_HW_VLAN_CTAG_FILTER) &&
11143 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11144 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11145 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11146 ret = -EINVAL;
11147 goto err_uninit;
11148 }
11149
11150 ret = netdev_do_alloc_pcpu_stats(dev);
11151 if (ret)
11152 goto err_uninit;
11153
11154 ret = dev_index_reserve(net, dev->ifindex);
11155 if (ret < 0)
11156 goto err_free_pcpu;
11157 dev->ifindex = ret;
11158
11159 /* Transfer changeable features to wanted_features and enable
11160 * software offloads (GSO and GRO).
11161 */
11162 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11163 dev->features |= NETIF_F_SOFT_FEATURES;
11164
11165 if (dev->udp_tunnel_nic_info) {
11166 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11167 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11168 }
11169
11170 dev->wanted_features = dev->features & dev->hw_features;
11171
11172 if (!(dev->flags & IFF_LOOPBACK))
11173 dev->hw_features |= NETIF_F_NOCACHE_COPY;
11174
11175 /* If IPv4 TCP segmentation offload is supported we should also
11176 * allow the device to enable segmenting the frame with the option
11177 * of ignoring a static IP ID value. This doesn't enable the
11178 * feature itself but allows the user to enable it later.
11179 */
11180 if (dev->hw_features & NETIF_F_TSO)
11181 dev->hw_features |= NETIF_F_TSO_MANGLEID;
11182 if (dev->vlan_features & NETIF_F_TSO)
11183 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11184 if (dev->mpls_features & NETIF_F_TSO)
11185 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11186 if (dev->hw_enc_features & NETIF_F_TSO)
11187 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11188
11189 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11190 */
11191 dev->vlan_features |= NETIF_F_HIGHDMA;
11192
11193 /* Make NETIF_F_SG inheritable to tunnel devices.
11194 */
11195 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11196
11197 /* Make NETIF_F_SG inheritable to MPLS.
11198 */
11199 dev->mpls_features |= NETIF_F_SG;
11200
11201 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11202 ret = notifier_to_errno(ret);
11203 if (ret)
11204 goto err_ifindex_release;
11205
11206 ret = netdev_register_kobject(dev);
11207
11208 netdev_lock(dev);
11209 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11210 netdev_unlock(dev);
11211
11212 if (ret)
11213 goto err_uninit_notify;
11214
11215 netdev_lock_ops(dev);
11216 __netdev_update_features(dev);
11217 netdev_unlock_ops(dev);
11218
11219 /*
11220 * Default initial state at registry is that the
11221 * device is present.
11222 */
11223
11224 set_bit(__LINK_STATE_PRESENT, &dev->state);
11225
11226 linkwatch_init_dev(dev);
11227
11228 dev_init_scheduler(dev);
11229
11230 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11231 list_netdevice(dev);
11232
11233 add_device_randomness(dev->dev_addr, dev->addr_len);
11234
11235 /* If the device has permanent device address, driver should
11236 * set dev_addr and also addr_assign_type should be set to
11237 * NET_ADDR_PERM (default value).
11238 */
11239 if (dev->addr_assign_type == NET_ADDR_PERM)
11240 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11241
11242 /* Notify protocols, that a new device appeared. */
11243 netdev_lock_ops(dev);
11244 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11245 netdev_unlock_ops(dev);
11246 ret = notifier_to_errno(ret);
11247 if (ret) {
11248 /* Expect explicit free_netdev() on failure */
11249 dev->needs_free_netdev = false;
11250 unregister_netdevice_queue(dev, NULL);
11251 goto out;
11252 }
11253 /*
11254 * Prevent userspace races by waiting until the network
11255 * device is fully setup before sending notifications.
11256 */
11257 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11258 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11259
11260 out:
11261 return ret;
11262
11263 err_uninit_notify:
11264 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11265 err_ifindex_release:
11266 dev_index_release(net, dev->ifindex);
11267 err_free_pcpu:
11268 netdev_do_free_pcpu_stats(dev);
11269 err_uninit:
11270 if (dev->netdev_ops->ndo_uninit)
11271 dev->netdev_ops->ndo_uninit(dev);
11272 if (dev->priv_destructor)
11273 dev->priv_destructor(dev);
11274 err_free_name:
11275 netdev_name_node_free(dev->name_node);
11276 goto out;
11277 }
11278 EXPORT_SYMBOL(register_netdevice);
11279
11280 /* Initialize the core of a dummy net device.
11281 * The setup steps dummy netdevs need which normal netdevs get by going
11282 * through register_netdevice().
11283 */
init_dummy_netdev(struct net_device * dev)11284 static void init_dummy_netdev(struct net_device *dev)
11285 {
11286 /* make sure we BUG if trying to hit standard
11287 * register/unregister code path
11288 */
11289 dev->reg_state = NETREG_DUMMY;
11290
11291 /* a dummy interface is started by default */
11292 set_bit(__LINK_STATE_PRESENT, &dev->state);
11293 set_bit(__LINK_STATE_START, &dev->state);
11294
11295 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11296 * because users of this 'device' dont need to change
11297 * its refcount.
11298 */
11299 }
11300
11301 /**
11302 * register_netdev - register a network device
11303 * @dev: device to register
11304 *
11305 * Take a completed network device structure and add it to the kernel
11306 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11307 * chain. 0 is returned on success. A negative errno code is returned
11308 * on a failure to set up the device, or if the name is a duplicate.
11309 *
11310 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11311 * and expands the device name if you passed a format string to
11312 * alloc_netdev.
11313 */
register_netdev(struct net_device * dev)11314 int register_netdev(struct net_device *dev)
11315 {
11316 struct net *net = dev_net(dev);
11317 int err;
11318
11319 if (rtnl_net_lock_killable(net))
11320 return -EINTR;
11321
11322 err = register_netdevice(dev);
11323
11324 rtnl_net_unlock(net);
11325
11326 return err;
11327 }
11328 EXPORT_SYMBOL(register_netdev);
11329
netdev_refcnt_read(const struct net_device * dev)11330 int netdev_refcnt_read(const struct net_device *dev)
11331 {
11332 #ifdef CONFIG_PCPU_DEV_REFCNT
11333 int i, refcnt = 0;
11334
11335 for_each_possible_cpu(i)
11336 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11337 return refcnt;
11338 #else
11339 return refcount_read(&dev->dev_refcnt);
11340 #endif
11341 }
11342 EXPORT_SYMBOL(netdev_refcnt_read);
11343
11344 int netdev_unregister_timeout_secs __read_mostly = 10;
11345
11346 #define WAIT_REFS_MIN_MSECS 1
11347 #define WAIT_REFS_MAX_MSECS 250
11348 /**
11349 * netdev_wait_allrefs_any - wait until all references are gone.
11350 * @list: list of net_devices to wait on
11351 *
11352 * This is called when unregistering network devices.
11353 *
11354 * Any protocol or device that holds a reference should register
11355 * for netdevice notification, and cleanup and put back the
11356 * reference if they receive an UNREGISTER event.
11357 * We can get stuck here if buggy protocols don't correctly
11358 * call dev_put.
11359 */
netdev_wait_allrefs_any(struct list_head * list)11360 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11361 {
11362 unsigned long rebroadcast_time, warning_time;
11363 struct net_device *dev;
11364 int wait = 0;
11365
11366 rebroadcast_time = warning_time = jiffies;
11367
11368 list_for_each_entry(dev, list, todo_list)
11369 if (netdev_refcnt_read(dev) == 1)
11370 return dev;
11371
11372 while (true) {
11373 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11374 rtnl_lock();
11375
11376 /* Rebroadcast unregister notification */
11377 list_for_each_entry(dev, list, todo_list)
11378 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11379
11380 __rtnl_unlock();
11381 rcu_barrier();
11382 rtnl_lock();
11383
11384 list_for_each_entry(dev, list, todo_list)
11385 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11386 &dev->state)) {
11387 /* We must not have linkwatch events
11388 * pending on unregister. If this
11389 * happens, we simply run the queue
11390 * unscheduled, resulting in a noop
11391 * for this device.
11392 */
11393 linkwatch_run_queue();
11394 break;
11395 }
11396
11397 __rtnl_unlock();
11398
11399 rebroadcast_time = jiffies;
11400 }
11401
11402 rcu_barrier();
11403
11404 if (!wait) {
11405 wait = WAIT_REFS_MIN_MSECS;
11406 } else {
11407 msleep(wait);
11408 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11409 }
11410
11411 list_for_each_entry(dev, list, todo_list)
11412 if (netdev_refcnt_read(dev) == 1)
11413 return dev;
11414
11415 if (time_after(jiffies, warning_time +
11416 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11417 list_for_each_entry(dev, list, todo_list) {
11418 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11419 dev->name, netdev_refcnt_read(dev));
11420 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11421 }
11422
11423 warning_time = jiffies;
11424 }
11425 }
11426 }
11427
11428 /* The sequence is:
11429 *
11430 * rtnl_lock();
11431 * ...
11432 * register_netdevice(x1);
11433 * register_netdevice(x2);
11434 * ...
11435 * unregister_netdevice(y1);
11436 * unregister_netdevice(y2);
11437 * ...
11438 * rtnl_unlock();
11439 * free_netdev(y1);
11440 * free_netdev(y2);
11441 *
11442 * We are invoked by rtnl_unlock().
11443 * This allows us to deal with problems:
11444 * 1) We can delete sysfs objects which invoke hotplug
11445 * without deadlocking with linkwatch via keventd.
11446 * 2) Since we run with the RTNL semaphore not held, we can sleep
11447 * safely in order to wait for the netdev refcnt to drop to zero.
11448 *
11449 * We must not return until all unregister events added during
11450 * the interval the lock was held have been completed.
11451 */
netdev_run_todo(void)11452 void netdev_run_todo(void)
11453 {
11454 struct net_device *dev, *tmp;
11455 struct list_head list;
11456 int cnt;
11457 #ifdef CONFIG_LOCKDEP
11458 struct list_head unlink_list;
11459
11460 list_replace_init(&net_unlink_list, &unlink_list);
11461
11462 while (!list_empty(&unlink_list)) {
11463 dev = list_first_entry(&unlink_list, struct net_device,
11464 unlink_list);
11465 list_del_init(&dev->unlink_list);
11466 dev->nested_level = dev->lower_level - 1;
11467 }
11468 #endif
11469
11470 /* Snapshot list, allow later requests */
11471 list_replace_init(&net_todo_list, &list);
11472
11473 __rtnl_unlock();
11474
11475 /* Wait for rcu callbacks to finish before next phase */
11476 if (!list_empty(&list))
11477 rcu_barrier();
11478
11479 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11480 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11481 netdev_WARN(dev, "run_todo but not unregistering\n");
11482 list_del(&dev->todo_list);
11483 continue;
11484 }
11485
11486 netdev_lock(dev);
11487 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11488 netdev_unlock(dev);
11489 linkwatch_sync_dev(dev);
11490 }
11491
11492 cnt = 0;
11493 while (!list_empty(&list)) {
11494 dev = netdev_wait_allrefs_any(&list);
11495 list_del(&dev->todo_list);
11496
11497 /* paranoia */
11498 BUG_ON(netdev_refcnt_read(dev) != 1);
11499 BUG_ON(!list_empty(&dev->ptype_all));
11500 BUG_ON(!list_empty(&dev->ptype_specific));
11501 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11502 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11503
11504 netdev_do_free_pcpu_stats(dev);
11505 if (dev->priv_destructor)
11506 dev->priv_destructor(dev);
11507 if (dev->needs_free_netdev)
11508 free_netdev(dev);
11509
11510 cnt++;
11511
11512 /* Free network device */
11513 kobject_put(&dev->dev.kobj);
11514 }
11515 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11516 wake_up(&netdev_unregistering_wq);
11517 }
11518
11519 /* Collate per-cpu network dstats statistics
11520 *
11521 * Read per-cpu network statistics from dev->dstats and populate the related
11522 * fields in @s.
11523 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11524 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11525 const struct pcpu_dstats __percpu *dstats)
11526 {
11527 int cpu;
11528
11529 for_each_possible_cpu(cpu) {
11530 u64 rx_packets, rx_bytes, rx_drops;
11531 u64 tx_packets, tx_bytes, tx_drops;
11532 const struct pcpu_dstats *stats;
11533 unsigned int start;
11534
11535 stats = per_cpu_ptr(dstats, cpu);
11536 do {
11537 start = u64_stats_fetch_begin(&stats->syncp);
11538 rx_packets = u64_stats_read(&stats->rx_packets);
11539 rx_bytes = u64_stats_read(&stats->rx_bytes);
11540 rx_drops = u64_stats_read(&stats->rx_drops);
11541 tx_packets = u64_stats_read(&stats->tx_packets);
11542 tx_bytes = u64_stats_read(&stats->tx_bytes);
11543 tx_drops = u64_stats_read(&stats->tx_drops);
11544 } while (u64_stats_fetch_retry(&stats->syncp, start));
11545
11546 s->rx_packets += rx_packets;
11547 s->rx_bytes += rx_bytes;
11548 s->rx_dropped += rx_drops;
11549 s->tx_packets += tx_packets;
11550 s->tx_bytes += tx_bytes;
11551 s->tx_dropped += tx_drops;
11552 }
11553 }
11554
11555 /* ndo_get_stats64 implementation for dtstats-based accounting.
11556 *
11557 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11558 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11559 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11560 static void dev_get_dstats64(const struct net_device *dev,
11561 struct rtnl_link_stats64 *s)
11562 {
11563 netdev_stats_to_stats64(s, &dev->stats);
11564 dev_fetch_dstats(s, dev->dstats);
11565 }
11566
11567 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11568 * all the same fields in the same order as net_device_stats, with only
11569 * the type differing, but rtnl_link_stats64 may have additional fields
11570 * at the end for newer counters.
11571 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11572 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11573 const struct net_device_stats *netdev_stats)
11574 {
11575 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11576 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11577 u64 *dst = (u64 *)stats64;
11578
11579 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11580 for (i = 0; i < n; i++)
11581 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11582 /* zero out counters that only exist in rtnl_link_stats64 */
11583 memset((char *)stats64 + n * sizeof(u64), 0,
11584 sizeof(*stats64) - n * sizeof(u64));
11585 }
11586 EXPORT_SYMBOL(netdev_stats_to_stats64);
11587
netdev_core_stats_alloc(struct net_device * dev)11588 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11589 struct net_device *dev)
11590 {
11591 struct net_device_core_stats __percpu *p;
11592
11593 p = alloc_percpu_gfp(struct net_device_core_stats,
11594 GFP_ATOMIC | __GFP_NOWARN);
11595
11596 if (p && cmpxchg(&dev->core_stats, NULL, p))
11597 free_percpu(p);
11598
11599 /* This READ_ONCE() pairs with the cmpxchg() above */
11600 return READ_ONCE(dev->core_stats);
11601 }
11602
netdev_core_stats_inc(struct net_device * dev,u32 offset)11603 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11604 {
11605 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11606 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11607 unsigned long __percpu *field;
11608
11609 if (unlikely(!p)) {
11610 p = netdev_core_stats_alloc(dev);
11611 if (!p)
11612 return;
11613 }
11614
11615 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11616 this_cpu_inc(*field);
11617 }
11618 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11619
11620 /**
11621 * dev_get_stats - get network device statistics
11622 * @dev: device to get statistics from
11623 * @storage: place to store stats
11624 *
11625 * Get network statistics from device. Return @storage.
11626 * The device driver may provide its own method by setting
11627 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11628 * otherwise the internal statistics structure is used.
11629 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11630 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11631 struct rtnl_link_stats64 *storage)
11632 {
11633 const struct net_device_ops *ops = dev->netdev_ops;
11634 const struct net_device_core_stats __percpu *p;
11635
11636 /*
11637 * IPv{4,6} and udp tunnels share common stat helpers and use
11638 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11639 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11640 */
11641 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11642 offsetof(struct pcpu_dstats, rx_bytes));
11643 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11644 offsetof(struct pcpu_dstats, rx_packets));
11645 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11646 offsetof(struct pcpu_dstats, tx_bytes));
11647 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11648 offsetof(struct pcpu_dstats, tx_packets));
11649
11650 if (ops->ndo_get_stats64) {
11651 memset(storage, 0, sizeof(*storage));
11652 ops->ndo_get_stats64(dev, storage);
11653 } else if (ops->ndo_get_stats) {
11654 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11655 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11656 dev_get_tstats64(dev, storage);
11657 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11658 dev_get_dstats64(dev, storage);
11659 } else {
11660 netdev_stats_to_stats64(storage, &dev->stats);
11661 }
11662
11663 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11664 p = READ_ONCE(dev->core_stats);
11665 if (p) {
11666 const struct net_device_core_stats *core_stats;
11667 int i;
11668
11669 for_each_possible_cpu(i) {
11670 core_stats = per_cpu_ptr(p, i);
11671 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11672 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11673 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11674 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11675 }
11676 }
11677 return storage;
11678 }
11679 EXPORT_SYMBOL(dev_get_stats);
11680
11681 /**
11682 * dev_fetch_sw_netstats - get per-cpu network device statistics
11683 * @s: place to store stats
11684 * @netstats: per-cpu network stats to read from
11685 *
11686 * Read per-cpu network statistics and populate the related fields in @s.
11687 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11688 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11689 const struct pcpu_sw_netstats __percpu *netstats)
11690 {
11691 int cpu;
11692
11693 for_each_possible_cpu(cpu) {
11694 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11695 const struct pcpu_sw_netstats *stats;
11696 unsigned int start;
11697
11698 stats = per_cpu_ptr(netstats, cpu);
11699 do {
11700 start = u64_stats_fetch_begin(&stats->syncp);
11701 rx_packets = u64_stats_read(&stats->rx_packets);
11702 rx_bytes = u64_stats_read(&stats->rx_bytes);
11703 tx_packets = u64_stats_read(&stats->tx_packets);
11704 tx_bytes = u64_stats_read(&stats->tx_bytes);
11705 } while (u64_stats_fetch_retry(&stats->syncp, start));
11706
11707 s->rx_packets += rx_packets;
11708 s->rx_bytes += rx_bytes;
11709 s->tx_packets += tx_packets;
11710 s->tx_bytes += tx_bytes;
11711 }
11712 }
11713 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11714
11715 /**
11716 * dev_get_tstats64 - ndo_get_stats64 implementation
11717 * @dev: device to get statistics from
11718 * @s: place to store stats
11719 *
11720 * Populate @s from dev->stats and dev->tstats. Can be used as
11721 * ndo_get_stats64() callback.
11722 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11723 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11724 {
11725 netdev_stats_to_stats64(s, &dev->stats);
11726 dev_fetch_sw_netstats(s, dev->tstats);
11727 }
11728 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11729
dev_ingress_queue_create(struct net_device * dev)11730 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11731 {
11732 struct netdev_queue *queue = dev_ingress_queue(dev);
11733
11734 #ifdef CONFIG_NET_CLS_ACT
11735 if (queue)
11736 return queue;
11737 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11738 if (!queue)
11739 return NULL;
11740 netdev_init_one_queue(dev, queue, NULL);
11741 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11742 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11743 rcu_assign_pointer(dev->ingress_queue, queue);
11744 #endif
11745 return queue;
11746 }
11747
11748 static const struct ethtool_ops default_ethtool_ops;
11749
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11750 void netdev_set_default_ethtool_ops(struct net_device *dev,
11751 const struct ethtool_ops *ops)
11752 {
11753 if (dev->ethtool_ops == &default_ethtool_ops)
11754 dev->ethtool_ops = ops;
11755 }
11756 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11757
11758 /**
11759 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11760 * @dev: netdev to enable the IRQ coalescing on
11761 *
11762 * Sets a conservative default for SW IRQ coalescing. Users can use
11763 * sysfs attributes to override the default values.
11764 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11765 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11766 {
11767 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11768
11769 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11770 netdev_set_gro_flush_timeout(dev, 20000);
11771 netdev_set_defer_hard_irqs(dev, 1);
11772 }
11773 }
11774 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11775
11776 /**
11777 * alloc_netdev_mqs - allocate network device
11778 * @sizeof_priv: size of private data to allocate space for
11779 * @name: device name format string
11780 * @name_assign_type: origin of device name
11781 * @setup: callback to initialize device
11782 * @txqs: the number of TX subqueues to allocate
11783 * @rxqs: the number of RX subqueues to allocate
11784 *
11785 * Allocates a struct net_device with private data area for driver use
11786 * and performs basic initialization. Also allocates subqueue structs
11787 * for each queue on the device.
11788 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11789 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11790 unsigned char name_assign_type,
11791 void (*setup)(struct net_device *),
11792 unsigned int txqs, unsigned int rxqs)
11793 {
11794 struct net_device *dev;
11795 size_t napi_config_sz;
11796 unsigned int maxqs;
11797
11798 BUG_ON(strlen(name) >= sizeof(dev->name));
11799
11800 if (txqs < 1) {
11801 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11802 return NULL;
11803 }
11804
11805 if (rxqs < 1) {
11806 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11807 return NULL;
11808 }
11809
11810 maxqs = max(txqs, rxqs);
11811
11812 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11813 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11814 if (!dev)
11815 return NULL;
11816
11817 dev->priv_len = sizeof_priv;
11818
11819 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11820 #ifdef CONFIG_PCPU_DEV_REFCNT
11821 dev->pcpu_refcnt = alloc_percpu(int);
11822 if (!dev->pcpu_refcnt)
11823 goto free_dev;
11824 __dev_hold(dev);
11825 #else
11826 refcount_set(&dev->dev_refcnt, 1);
11827 #endif
11828
11829 if (dev_addr_init(dev))
11830 goto free_pcpu;
11831
11832 dev_mc_init(dev);
11833 dev_uc_init(dev);
11834
11835 dev_net_set(dev, &init_net);
11836
11837 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11838 dev->xdp_zc_max_segs = 1;
11839 dev->gso_max_segs = GSO_MAX_SEGS;
11840 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11841 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11842 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11843 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11844 dev->tso_max_segs = TSO_MAX_SEGS;
11845 dev->upper_level = 1;
11846 dev->lower_level = 1;
11847 #ifdef CONFIG_LOCKDEP
11848 dev->nested_level = 0;
11849 INIT_LIST_HEAD(&dev->unlink_list);
11850 #endif
11851
11852 INIT_LIST_HEAD(&dev->napi_list);
11853 INIT_LIST_HEAD(&dev->unreg_list);
11854 INIT_LIST_HEAD(&dev->close_list);
11855 INIT_LIST_HEAD(&dev->link_watch_list);
11856 INIT_LIST_HEAD(&dev->adj_list.upper);
11857 INIT_LIST_HEAD(&dev->adj_list.lower);
11858 INIT_LIST_HEAD(&dev->ptype_all);
11859 INIT_LIST_HEAD(&dev->ptype_specific);
11860 INIT_LIST_HEAD(&dev->net_notifier_list);
11861 #ifdef CONFIG_NET_SCHED
11862 hash_init(dev->qdisc_hash);
11863 #endif
11864
11865 mutex_init(&dev->lock);
11866
11867 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11868 setup(dev);
11869
11870 if (!dev->tx_queue_len) {
11871 dev->priv_flags |= IFF_NO_QUEUE;
11872 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11873 }
11874
11875 dev->num_tx_queues = txqs;
11876 dev->real_num_tx_queues = txqs;
11877 if (netif_alloc_netdev_queues(dev))
11878 goto free_all;
11879
11880 dev->num_rx_queues = rxqs;
11881 dev->real_num_rx_queues = rxqs;
11882 if (netif_alloc_rx_queues(dev))
11883 goto free_all;
11884 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11885 if (!dev->ethtool)
11886 goto free_all;
11887
11888 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11889 if (!dev->cfg)
11890 goto free_all;
11891 dev->cfg_pending = dev->cfg;
11892
11893 dev->num_napi_configs = maxqs;
11894 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11895 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11896 if (!dev->napi_config)
11897 goto free_all;
11898
11899 strscpy(dev->name, name);
11900 dev->name_assign_type = name_assign_type;
11901 dev->group = INIT_NETDEV_GROUP;
11902 if (!dev->ethtool_ops)
11903 dev->ethtool_ops = &default_ethtool_ops;
11904
11905 nf_hook_netdev_init(dev);
11906
11907 return dev;
11908
11909 free_all:
11910 free_netdev(dev);
11911 return NULL;
11912
11913 free_pcpu:
11914 #ifdef CONFIG_PCPU_DEV_REFCNT
11915 free_percpu(dev->pcpu_refcnt);
11916 free_dev:
11917 #endif
11918 kvfree(dev);
11919 return NULL;
11920 }
11921 EXPORT_SYMBOL(alloc_netdev_mqs);
11922
netdev_napi_exit(struct net_device * dev)11923 static void netdev_napi_exit(struct net_device *dev)
11924 {
11925 if (!list_empty(&dev->napi_list)) {
11926 struct napi_struct *p, *n;
11927
11928 netdev_lock(dev);
11929 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11930 __netif_napi_del_locked(p);
11931 netdev_unlock(dev);
11932
11933 synchronize_net();
11934 }
11935
11936 kvfree(dev->napi_config);
11937 }
11938
11939 /**
11940 * free_netdev - free network device
11941 * @dev: device
11942 *
11943 * This function does the last stage of destroying an allocated device
11944 * interface. The reference to the device object is released. If this
11945 * is the last reference then it will be freed.Must be called in process
11946 * context.
11947 */
free_netdev(struct net_device * dev)11948 void free_netdev(struct net_device *dev)
11949 {
11950 might_sleep();
11951
11952 /* When called immediately after register_netdevice() failed the unwind
11953 * handling may still be dismantling the device. Handle that case by
11954 * deferring the free.
11955 */
11956 if (dev->reg_state == NETREG_UNREGISTERING) {
11957 ASSERT_RTNL();
11958 dev->needs_free_netdev = true;
11959 return;
11960 }
11961
11962 WARN_ON(dev->cfg != dev->cfg_pending);
11963 kfree(dev->cfg);
11964 kfree(dev->ethtool);
11965 netif_free_tx_queues(dev);
11966 netif_free_rx_queues(dev);
11967
11968 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11969
11970 /* Flush device addresses */
11971 dev_addr_flush(dev);
11972
11973 netdev_napi_exit(dev);
11974
11975 netif_del_cpu_rmap(dev);
11976
11977 ref_tracker_dir_exit(&dev->refcnt_tracker);
11978 #ifdef CONFIG_PCPU_DEV_REFCNT
11979 free_percpu(dev->pcpu_refcnt);
11980 dev->pcpu_refcnt = NULL;
11981 #endif
11982 free_percpu(dev->core_stats);
11983 dev->core_stats = NULL;
11984 free_percpu(dev->xdp_bulkq);
11985 dev->xdp_bulkq = NULL;
11986
11987 netdev_free_phy_link_topology(dev);
11988
11989 mutex_destroy(&dev->lock);
11990
11991 /* Compatibility with error handling in drivers */
11992 if (dev->reg_state == NETREG_UNINITIALIZED ||
11993 dev->reg_state == NETREG_DUMMY) {
11994 kvfree(dev);
11995 return;
11996 }
11997
11998 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11999 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12000
12001 /* will free via device release */
12002 put_device(&dev->dev);
12003 }
12004 EXPORT_SYMBOL(free_netdev);
12005
12006 /**
12007 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12008 * @sizeof_priv: size of private data to allocate space for
12009 *
12010 * Return: the allocated net_device on success, NULL otherwise
12011 */
alloc_netdev_dummy(int sizeof_priv)12012 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12013 {
12014 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12015 init_dummy_netdev);
12016 }
12017 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12018
12019 /**
12020 * synchronize_net - Synchronize with packet receive processing
12021 *
12022 * Wait for packets currently being received to be done.
12023 * Does not block later packets from starting.
12024 */
synchronize_net(void)12025 void synchronize_net(void)
12026 {
12027 might_sleep();
12028 if (from_cleanup_net() || rtnl_is_locked())
12029 synchronize_rcu_expedited();
12030 else
12031 synchronize_rcu();
12032 }
12033 EXPORT_SYMBOL(synchronize_net);
12034
netdev_rss_contexts_free(struct net_device * dev)12035 static void netdev_rss_contexts_free(struct net_device *dev)
12036 {
12037 struct ethtool_rxfh_context *ctx;
12038 unsigned long context;
12039
12040 mutex_lock(&dev->ethtool->rss_lock);
12041 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12042 xa_erase(&dev->ethtool->rss_ctx, context);
12043 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12044 kfree(ctx);
12045 }
12046 xa_destroy(&dev->ethtool->rss_ctx);
12047 mutex_unlock(&dev->ethtool->rss_lock);
12048 }
12049
12050 /**
12051 * unregister_netdevice_queue - remove device from the kernel
12052 * @dev: device
12053 * @head: list
12054 *
12055 * This function shuts down a device interface and removes it
12056 * from the kernel tables.
12057 * If head not NULL, device is queued to be unregistered later.
12058 *
12059 * Callers must hold the rtnl semaphore. You may want
12060 * unregister_netdev() instead of this.
12061 */
12062
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12063 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12064 {
12065 ASSERT_RTNL();
12066
12067 if (head) {
12068 list_move_tail(&dev->unreg_list, head);
12069 } else {
12070 LIST_HEAD(single);
12071
12072 list_add(&dev->unreg_list, &single);
12073 unregister_netdevice_many(&single);
12074 }
12075 }
12076 EXPORT_SYMBOL(unregister_netdevice_queue);
12077
dev_memory_provider_uninstall(struct net_device * dev)12078 static void dev_memory_provider_uninstall(struct net_device *dev)
12079 {
12080 unsigned int i;
12081
12082 for (i = 0; i < dev->real_num_rx_queues; i++) {
12083 struct netdev_rx_queue *rxq = &dev->_rx[i];
12084 struct pp_memory_provider_params *p = &rxq->mp_params;
12085
12086 if (p->mp_ops && p->mp_ops->uninstall)
12087 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12088 }
12089 }
12090
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12091 void unregister_netdevice_many_notify(struct list_head *head,
12092 u32 portid, const struct nlmsghdr *nlh)
12093 {
12094 struct net_device *dev, *tmp;
12095 LIST_HEAD(close_head);
12096 int cnt = 0;
12097
12098 BUG_ON(dev_boot_phase);
12099 ASSERT_RTNL();
12100
12101 if (list_empty(head))
12102 return;
12103
12104 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12105 /* Some devices call without registering
12106 * for initialization unwind. Remove those
12107 * devices and proceed with the remaining.
12108 */
12109 if (dev->reg_state == NETREG_UNINITIALIZED) {
12110 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12111 dev->name, dev);
12112
12113 WARN_ON(1);
12114 list_del(&dev->unreg_list);
12115 continue;
12116 }
12117 dev->dismantle = true;
12118 BUG_ON(dev->reg_state != NETREG_REGISTERED);
12119 }
12120
12121 /* If device is running, close it first. Start with ops locked... */
12122 list_for_each_entry(dev, head, unreg_list) {
12123 if (netdev_need_ops_lock(dev)) {
12124 list_add_tail(&dev->close_list, &close_head);
12125 netdev_lock(dev);
12126 }
12127 }
12128 netif_close_many(&close_head, true);
12129 /* ... now unlock them and go over the rest. */
12130 list_for_each_entry(dev, head, unreg_list) {
12131 if (netdev_need_ops_lock(dev))
12132 netdev_unlock(dev);
12133 else
12134 list_add_tail(&dev->close_list, &close_head);
12135 }
12136 netif_close_many(&close_head, true);
12137
12138 list_for_each_entry(dev, head, unreg_list) {
12139 /* And unlink it from device chain. */
12140 unlist_netdevice(dev);
12141 netdev_lock(dev);
12142 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12143 netdev_unlock(dev);
12144 }
12145 flush_all_backlogs();
12146
12147 synchronize_net();
12148
12149 list_for_each_entry(dev, head, unreg_list) {
12150 struct sk_buff *skb = NULL;
12151
12152 /* Shutdown queueing discipline. */
12153 netdev_lock_ops(dev);
12154 dev_shutdown(dev);
12155 dev_tcx_uninstall(dev);
12156 dev_xdp_uninstall(dev);
12157 dev_memory_provider_uninstall(dev);
12158 netdev_unlock_ops(dev);
12159 bpf_dev_bound_netdev_unregister(dev);
12160
12161 netdev_offload_xstats_disable_all(dev);
12162
12163 /* Notify protocols, that we are about to destroy
12164 * this device. They should clean all the things.
12165 */
12166 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12167
12168 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12169 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12170 GFP_KERNEL, NULL, 0,
12171 portid, nlh);
12172
12173 /*
12174 * Flush the unicast and multicast chains
12175 */
12176 dev_uc_flush(dev);
12177 dev_mc_flush(dev);
12178
12179 netdev_name_node_alt_flush(dev);
12180 netdev_name_node_free(dev->name_node);
12181
12182 netdev_rss_contexts_free(dev);
12183
12184 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12185
12186 if (dev->netdev_ops->ndo_uninit)
12187 dev->netdev_ops->ndo_uninit(dev);
12188
12189 mutex_destroy(&dev->ethtool->rss_lock);
12190
12191 net_shaper_flush_netdev(dev);
12192
12193 if (skb)
12194 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12195
12196 /* Notifier chain MUST detach us all upper devices. */
12197 WARN_ON(netdev_has_any_upper_dev(dev));
12198 WARN_ON(netdev_has_any_lower_dev(dev));
12199
12200 /* Remove entries from kobject tree */
12201 netdev_unregister_kobject(dev);
12202 #ifdef CONFIG_XPS
12203 /* Remove XPS queueing entries */
12204 netif_reset_xps_queues_gt(dev, 0);
12205 #endif
12206 }
12207
12208 synchronize_net();
12209
12210 list_for_each_entry(dev, head, unreg_list) {
12211 netdev_put(dev, &dev->dev_registered_tracker);
12212 net_set_todo(dev);
12213 cnt++;
12214 }
12215 atomic_add(cnt, &dev_unreg_count);
12216
12217 list_del(head);
12218 }
12219
12220 /**
12221 * unregister_netdevice_many - unregister many devices
12222 * @head: list of devices
12223 *
12224 * Note: As most callers use a stack allocated list_head,
12225 * we force a list_del() to make sure stack won't be corrupted later.
12226 */
unregister_netdevice_many(struct list_head * head)12227 void unregister_netdevice_many(struct list_head *head)
12228 {
12229 unregister_netdevice_many_notify(head, 0, NULL);
12230 }
12231 EXPORT_SYMBOL(unregister_netdevice_many);
12232
12233 /**
12234 * unregister_netdev - remove device from the kernel
12235 * @dev: device
12236 *
12237 * This function shuts down a device interface and removes it
12238 * from the kernel tables.
12239 *
12240 * This is just a wrapper for unregister_netdevice that takes
12241 * the rtnl semaphore. In general you want to use this and not
12242 * unregister_netdevice.
12243 */
unregister_netdev(struct net_device * dev)12244 void unregister_netdev(struct net_device *dev)
12245 {
12246 rtnl_net_dev_lock(dev);
12247 unregister_netdevice(dev);
12248 rtnl_net_dev_unlock(dev);
12249 }
12250 EXPORT_SYMBOL(unregister_netdev);
12251
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12252 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12253 const char *pat, int new_ifindex,
12254 struct netlink_ext_ack *extack)
12255 {
12256 struct netdev_name_node *name_node;
12257 struct net *net_old = dev_net(dev);
12258 char new_name[IFNAMSIZ] = {};
12259 int err, new_nsid;
12260
12261 ASSERT_RTNL();
12262
12263 /* Don't allow namespace local devices to be moved. */
12264 err = -EINVAL;
12265 if (dev->netns_immutable) {
12266 NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12267 goto out;
12268 }
12269
12270 /* Ensure the device has been registered */
12271 if (dev->reg_state != NETREG_REGISTERED) {
12272 NL_SET_ERR_MSG(extack, "The interface isn't registered");
12273 goto out;
12274 }
12275
12276 /* Get out if there is nothing todo */
12277 err = 0;
12278 if (net_eq(net_old, net))
12279 goto out;
12280
12281 /* Pick the destination device name, and ensure
12282 * we can use it in the destination network namespace.
12283 */
12284 err = -EEXIST;
12285 if (netdev_name_in_use(net, dev->name)) {
12286 /* We get here if we can't use the current device name */
12287 if (!pat) {
12288 NL_SET_ERR_MSG(extack,
12289 "An interface with the same name exists in the target netns");
12290 goto out;
12291 }
12292 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12293 if (err < 0) {
12294 NL_SET_ERR_MSG_FMT(extack,
12295 "Unable to use '%s' for the new interface name in the target netns",
12296 pat);
12297 goto out;
12298 }
12299 }
12300 /* Check that none of the altnames conflicts. */
12301 err = -EEXIST;
12302 netdev_for_each_altname(dev, name_node) {
12303 if (netdev_name_in_use(net, name_node->name)) {
12304 NL_SET_ERR_MSG_FMT(extack,
12305 "An interface with the altname %s exists in the target netns",
12306 name_node->name);
12307 goto out;
12308 }
12309 }
12310
12311 /* Check that new_ifindex isn't used yet. */
12312 if (new_ifindex) {
12313 err = dev_index_reserve(net, new_ifindex);
12314 if (err < 0) {
12315 NL_SET_ERR_MSG_FMT(extack,
12316 "The ifindex %d is not available in the target netns",
12317 new_ifindex);
12318 goto out;
12319 }
12320 } else {
12321 /* If there is an ifindex conflict assign a new one */
12322 err = dev_index_reserve(net, dev->ifindex);
12323 if (err == -EBUSY)
12324 err = dev_index_reserve(net, 0);
12325 if (err < 0) {
12326 NL_SET_ERR_MSG(extack,
12327 "Unable to allocate a new ifindex in the target netns");
12328 goto out;
12329 }
12330 new_ifindex = err;
12331 }
12332
12333 /*
12334 * And now a mini version of register_netdevice unregister_netdevice.
12335 */
12336
12337 netdev_lock_ops(dev);
12338 /* If device is running close it first. */
12339 netif_close(dev);
12340 /* And unlink it from device chain */
12341 unlist_netdevice(dev);
12342
12343 if (!netdev_need_ops_lock(dev))
12344 netdev_lock(dev);
12345 dev->moving_ns = true;
12346 netdev_unlock(dev);
12347
12348 synchronize_net();
12349
12350 /* Shutdown queueing discipline. */
12351 netdev_lock_ops(dev);
12352 dev_shutdown(dev);
12353 netdev_unlock_ops(dev);
12354
12355 /* Notify protocols, that we are about to destroy
12356 * this device. They should clean all the things.
12357 *
12358 * Note that dev->reg_state stays at NETREG_REGISTERED.
12359 * This is wanted because this way 8021q and macvlan know
12360 * the device is just moving and can keep their slaves up.
12361 */
12362 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12363 rcu_barrier();
12364
12365 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12366
12367 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12368 new_ifindex);
12369
12370 /*
12371 * Flush the unicast and multicast chains
12372 */
12373 dev_uc_flush(dev);
12374 dev_mc_flush(dev);
12375
12376 /* Send a netdev-removed uevent to the old namespace */
12377 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12378 netdev_adjacent_del_links(dev);
12379
12380 /* Move per-net netdevice notifiers that are following the netdevice */
12381 move_netdevice_notifiers_dev_net(dev, net);
12382
12383 /* Actually switch the network namespace */
12384 netdev_lock(dev);
12385 dev_net_set(dev, net);
12386 netdev_unlock(dev);
12387 dev->ifindex = new_ifindex;
12388
12389 if (new_name[0]) {
12390 /* Rename the netdev to prepared name */
12391 write_seqlock_bh(&netdev_rename_lock);
12392 strscpy(dev->name, new_name, IFNAMSIZ);
12393 write_sequnlock_bh(&netdev_rename_lock);
12394 }
12395
12396 /* Fixup kobjects */
12397 dev_set_uevent_suppress(&dev->dev, 1);
12398 err = device_rename(&dev->dev, dev->name);
12399 dev_set_uevent_suppress(&dev->dev, 0);
12400 WARN_ON(err);
12401
12402 /* Send a netdev-add uevent to the new namespace */
12403 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12404 netdev_adjacent_add_links(dev);
12405
12406 /* Adapt owner in case owning user namespace of target network
12407 * namespace is different from the original one.
12408 */
12409 err = netdev_change_owner(dev, net_old, net);
12410 WARN_ON(err);
12411
12412 netdev_lock(dev);
12413 dev->moving_ns = false;
12414 if (!netdev_need_ops_lock(dev))
12415 netdev_unlock(dev);
12416
12417 /* Add the device back in the hashes */
12418 list_netdevice(dev);
12419 /* Notify protocols, that a new device appeared. */
12420 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12421 netdev_unlock_ops(dev);
12422
12423 /*
12424 * Prevent userspace races by waiting until the network
12425 * device is fully setup before sending notifications.
12426 */
12427 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12428
12429 synchronize_net();
12430 err = 0;
12431 out:
12432 return err;
12433 }
12434
dev_cpu_dead(unsigned int oldcpu)12435 static int dev_cpu_dead(unsigned int oldcpu)
12436 {
12437 struct sk_buff **list_skb;
12438 struct sk_buff *skb;
12439 unsigned int cpu;
12440 struct softnet_data *sd, *oldsd, *remsd = NULL;
12441
12442 local_irq_disable();
12443 cpu = smp_processor_id();
12444 sd = &per_cpu(softnet_data, cpu);
12445 oldsd = &per_cpu(softnet_data, oldcpu);
12446
12447 /* Find end of our completion_queue. */
12448 list_skb = &sd->completion_queue;
12449 while (*list_skb)
12450 list_skb = &(*list_skb)->next;
12451 /* Append completion queue from offline CPU. */
12452 *list_skb = oldsd->completion_queue;
12453 oldsd->completion_queue = NULL;
12454
12455 /* Append output queue from offline CPU. */
12456 if (oldsd->output_queue) {
12457 *sd->output_queue_tailp = oldsd->output_queue;
12458 sd->output_queue_tailp = oldsd->output_queue_tailp;
12459 oldsd->output_queue = NULL;
12460 oldsd->output_queue_tailp = &oldsd->output_queue;
12461 }
12462 /* Append NAPI poll list from offline CPU, with one exception :
12463 * process_backlog() must be called by cpu owning percpu backlog.
12464 * We properly handle process_queue & input_pkt_queue later.
12465 */
12466 while (!list_empty(&oldsd->poll_list)) {
12467 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12468 struct napi_struct,
12469 poll_list);
12470
12471 list_del_init(&napi->poll_list);
12472 if (napi->poll == process_backlog)
12473 napi->state &= NAPIF_STATE_THREADED;
12474 else
12475 ____napi_schedule(sd, napi);
12476 }
12477
12478 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12479 local_irq_enable();
12480
12481 if (!use_backlog_threads()) {
12482 #ifdef CONFIG_RPS
12483 remsd = oldsd->rps_ipi_list;
12484 oldsd->rps_ipi_list = NULL;
12485 #endif
12486 /* send out pending IPI's on offline CPU */
12487 net_rps_send_ipi(remsd);
12488 }
12489
12490 /* Process offline CPU's input_pkt_queue */
12491 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12492 netif_rx(skb);
12493 rps_input_queue_head_incr(oldsd);
12494 }
12495 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12496 netif_rx(skb);
12497 rps_input_queue_head_incr(oldsd);
12498 }
12499
12500 return 0;
12501 }
12502
12503 /**
12504 * netdev_increment_features - increment feature set by one
12505 * @all: current feature set
12506 * @one: new feature set
12507 * @mask: mask feature set
12508 *
12509 * Computes a new feature set after adding a device with feature set
12510 * @one to the master device with current feature set @all. Will not
12511 * enable anything that is off in @mask. Returns the new feature set.
12512 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12513 netdev_features_t netdev_increment_features(netdev_features_t all,
12514 netdev_features_t one, netdev_features_t mask)
12515 {
12516 if (mask & NETIF_F_HW_CSUM)
12517 mask |= NETIF_F_CSUM_MASK;
12518 mask |= NETIF_F_VLAN_CHALLENGED;
12519
12520 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12521 all &= one | ~NETIF_F_ALL_FOR_ALL;
12522
12523 /* If one device supports hw checksumming, set for all. */
12524 if (all & NETIF_F_HW_CSUM)
12525 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12526
12527 return all;
12528 }
12529 EXPORT_SYMBOL(netdev_increment_features);
12530
netdev_create_hash(void)12531 static struct hlist_head * __net_init netdev_create_hash(void)
12532 {
12533 int i;
12534 struct hlist_head *hash;
12535
12536 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12537 if (hash != NULL)
12538 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12539 INIT_HLIST_HEAD(&hash[i]);
12540
12541 return hash;
12542 }
12543
12544 /* Initialize per network namespace state */
netdev_init(struct net * net)12545 static int __net_init netdev_init(struct net *net)
12546 {
12547 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12548 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12549
12550 INIT_LIST_HEAD(&net->dev_base_head);
12551
12552 net->dev_name_head = netdev_create_hash();
12553 if (net->dev_name_head == NULL)
12554 goto err_name;
12555
12556 net->dev_index_head = netdev_create_hash();
12557 if (net->dev_index_head == NULL)
12558 goto err_idx;
12559
12560 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12561
12562 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12563
12564 return 0;
12565
12566 err_idx:
12567 kfree(net->dev_name_head);
12568 err_name:
12569 return -ENOMEM;
12570 }
12571
12572 /**
12573 * netdev_drivername - network driver for the device
12574 * @dev: network device
12575 *
12576 * Determine network driver for device.
12577 */
netdev_drivername(const struct net_device * dev)12578 const char *netdev_drivername(const struct net_device *dev)
12579 {
12580 const struct device_driver *driver;
12581 const struct device *parent;
12582 const char *empty = "";
12583
12584 parent = dev->dev.parent;
12585 if (!parent)
12586 return empty;
12587
12588 driver = parent->driver;
12589 if (driver && driver->name)
12590 return driver->name;
12591 return empty;
12592 }
12593
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12594 static void __netdev_printk(const char *level, const struct net_device *dev,
12595 struct va_format *vaf)
12596 {
12597 if (dev && dev->dev.parent) {
12598 dev_printk_emit(level[1] - '0',
12599 dev->dev.parent,
12600 "%s %s %s%s: %pV",
12601 dev_driver_string(dev->dev.parent),
12602 dev_name(dev->dev.parent),
12603 netdev_name(dev), netdev_reg_state(dev),
12604 vaf);
12605 } else if (dev) {
12606 printk("%s%s%s: %pV",
12607 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12608 } else {
12609 printk("%s(NULL net_device): %pV", level, vaf);
12610 }
12611 }
12612
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12613 void netdev_printk(const char *level, const struct net_device *dev,
12614 const char *format, ...)
12615 {
12616 struct va_format vaf;
12617 va_list args;
12618
12619 va_start(args, format);
12620
12621 vaf.fmt = format;
12622 vaf.va = &args;
12623
12624 __netdev_printk(level, dev, &vaf);
12625
12626 va_end(args);
12627 }
12628 EXPORT_SYMBOL(netdev_printk);
12629
12630 #define define_netdev_printk_level(func, level) \
12631 void func(const struct net_device *dev, const char *fmt, ...) \
12632 { \
12633 struct va_format vaf; \
12634 va_list args; \
12635 \
12636 va_start(args, fmt); \
12637 \
12638 vaf.fmt = fmt; \
12639 vaf.va = &args; \
12640 \
12641 __netdev_printk(level, dev, &vaf); \
12642 \
12643 va_end(args); \
12644 } \
12645 EXPORT_SYMBOL(func);
12646
12647 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12648 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12649 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12650 define_netdev_printk_level(netdev_err, KERN_ERR);
12651 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12652 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12653 define_netdev_printk_level(netdev_info, KERN_INFO);
12654
netdev_exit(struct net * net)12655 static void __net_exit netdev_exit(struct net *net)
12656 {
12657 kfree(net->dev_name_head);
12658 kfree(net->dev_index_head);
12659 xa_destroy(&net->dev_by_index);
12660 if (net != &init_net)
12661 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12662 }
12663
12664 static struct pernet_operations __net_initdata netdev_net_ops = {
12665 .init = netdev_init,
12666 .exit = netdev_exit,
12667 };
12668
default_device_exit_net(struct net * net)12669 static void __net_exit default_device_exit_net(struct net *net)
12670 {
12671 struct netdev_name_node *name_node, *tmp;
12672 struct net_device *dev, *aux;
12673 /*
12674 * Push all migratable network devices back to the
12675 * initial network namespace
12676 */
12677 ASSERT_RTNL();
12678 for_each_netdev_safe(net, dev, aux) {
12679 int err;
12680 char fb_name[IFNAMSIZ];
12681
12682 /* Ignore unmoveable devices (i.e. loopback) */
12683 if (dev->netns_immutable)
12684 continue;
12685
12686 /* Leave virtual devices for the generic cleanup */
12687 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12688 continue;
12689
12690 /* Push remaining network devices to init_net */
12691 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12692 if (netdev_name_in_use(&init_net, fb_name))
12693 snprintf(fb_name, IFNAMSIZ, "dev%%d");
12694
12695 netdev_for_each_altname_safe(dev, name_node, tmp)
12696 if (netdev_name_in_use(&init_net, name_node->name))
12697 __netdev_name_node_alt_destroy(name_node);
12698
12699 err = dev_change_net_namespace(dev, &init_net, fb_name);
12700 if (err) {
12701 pr_emerg("%s: failed to move %s to init_net: %d\n",
12702 __func__, dev->name, err);
12703 BUG();
12704 }
12705 }
12706 }
12707
default_device_exit_batch(struct list_head * net_list)12708 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12709 {
12710 /* At exit all network devices most be removed from a network
12711 * namespace. Do this in the reverse order of registration.
12712 * Do this across as many network namespaces as possible to
12713 * improve batching efficiency.
12714 */
12715 struct net_device *dev;
12716 struct net *net;
12717 LIST_HEAD(dev_kill_list);
12718
12719 rtnl_lock();
12720 list_for_each_entry(net, net_list, exit_list) {
12721 default_device_exit_net(net);
12722 cond_resched();
12723 }
12724
12725 list_for_each_entry(net, net_list, exit_list) {
12726 for_each_netdev_reverse(net, dev) {
12727 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12728 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12729 else
12730 unregister_netdevice_queue(dev, &dev_kill_list);
12731 }
12732 }
12733 unregister_netdevice_many(&dev_kill_list);
12734 rtnl_unlock();
12735 }
12736
12737 static struct pernet_operations __net_initdata default_device_ops = {
12738 .exit_batch = default_device_exit_batch,
12739 };
12740
net_dev_struct_check(void)12741 static void __init net_dev_struct_check(void)
12742 {
12743 /* TX read-mostly hotpath */
12744 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12745 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12746 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12747 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12748 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12749 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12750 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12751 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12752 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12753 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12754 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12755 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12756 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12757 #ifdef CONFIG_XPS
12758 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12759 #endif
12760 #ifdef CONFIG_NETFILTER_EGRESS
12761 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12762 #endif
12763 #ifdef CONFIG_NET_XGRESS
12764 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12765 #endif
12766 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12767
12768 /* TXRX read-mostly hotpath */
12769 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12770 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12771 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12772 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12773 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12774 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12775 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12776
12777 /* RX read-mostly hotpath */
12778 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12779 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12780 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12781 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12782 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12783 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12784 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12785 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12786 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12787 #ifdef CONFIG_NETPOLL
12788 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12789 #endif
12790 #ifdef CONFIG_NET_XGRESS
12791 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12792 #endif
12793 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12794 }
12795
12796 /*
12797 * Initialize the DEV module. At boot time this walks the device list and
12798 * unhooks any devices that fail to initialise (normally hardware not
12799 * present) and leaves us with a valid list of present and active devices.
12800 *
12801 */
12802
12803 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12804 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12805
net_page_pool_create(int cpuid)12806 static int net_page_pool_create(int cpuid)
12807 {
12808 #if IS_ENABLED(CONFIG_PAGE_POOL)
12809 struct page_pool_params page_pool_params = {
12810 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12811 .flags = PP_FLAG_SYSTEM_POOL,
12812 .nid = cpu_to_mem(cpuid),
12813 };
12814 struct page_pool *pp_ptr;
12815 int err;
12816
12817 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12818 if (IS_ERR(pp_ptr))
12819 return -ENOMEM;
12820
12821 err = xdp_reg_page_pool(pp_ptr);
12822 if (err) {
12823 page_pool_destroy(pp_ptr);
12824 return err;
12825 }
12826
12827 per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12828 #endif
12829 return 0;
12830 }
12831
backlog_napi_should_run(unsigned int cpu)12832 static int backlog_napi_should_run(unsigned int cpu)
12833 {
12834 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12835 struct napi_struct *napi = &sd->backlog;
12836
12837 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12838 }
12839
run_backlog_napi(unsigned int cpu)12840 static void run_backlog_napi(unsigned int cpu)
12841 {
12842 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12843
12844 napi_threaded_poll_loop(&sd->backlog);
12845 }
12846
backlog_napi_setup(unsigned int cpu)12847 static void backlog_napi_setup(unsigned int cpu)
12848 {
12849 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12850 struct napi_struct *napi = &sd->backlog;
12851
12852 napi->thread = this_cpu_read(backlog_napi);
12853 set_bit(NAPI_STATE_THREADED, &napi->state);
12854 }
12855
12856 static struct smp_hotplug_thread backlog_threads = {
12857 .store = &backlog_napi,
12858 .thread_should_run = backlog_napi_should_run,
12859 .thread_fn = run_backlog_napi,
12860 .thread_comm = "backlog_napi/%u",
12861 .setup = backlog_napi_setup,
12862 };
12863
12864 /*
12865 * This is called single threaded during boot, so no need
12866 * to take the rtnl semaphore.
12867 */
net_dev_init(void)12868 static int __init net_dev_init(void)
12869 {
12870 int i, rc = -ENOMEM;
12871
12872 BUG_ON(!dev_boot_phase);
12873
12874 net_dev_struct_check();
12875
12876 if (dev_proc_init())
12877 goto out;
12878
12879 if (netdev_kobject_init())
12880 goto out;
12881
12882 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12883 INIT_LIST_HEAD(&ptype_base[i]);
12884
12885 if (register_pernet_subsys(&netdev_net_ops))
12886 goto out;
12887
12888 /*
12889 * Initialise the packet receive queues.
12890 */
12891
12892 flush_backlogs_fallback = flush_backlogs_alloc();
12893 if (!flush_backlogs_fallback)
12894 goto out;
12895
12896 for_each_possible_cpu(i) {
12897 struct softnet_data *sd = &per_cpu(softnet_data, i);
12898
12899 skb_queue_head_init(&sd->input_pkt_queue);
12900 skb_queue_head_init(&sd->process_queue);
12901 #ifdef CONFIG_XFRM_OFFLOAD
12902 skb_queue_head_init(&sd->xfrm_backlog);
12903 #endif
12904 INIT_LIST_HEAD(&sd->poll_list);
12905 sd->output_queue_tailp = &sd->output_queue;
12906 #ifdef CONFIG_RPS
12907 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12908 sd->cpu = i;
12909 #endif
12910 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12911 spin_lock_init(&sd->defer_lock);
12912
12913 gro_init(&sd->backlog.gro);
12914 sd->backlog.poll = process_backlog;
12915 sd->backlog.weight = weight_p;
12916 INIT_LIST_HEAD(&sd->backlog.poll_list);
12917
12918 if (net_page_pool_create(i))
12919 goto out;
12920 }
12921 if (use_backlog_threads())
12922 smpboot_register_percpu_thread(&backlog_threads);
12923
12924 dev_boot_phase = 0;
12925
12926 /* The loopback device is special if any other network devices
12927 * is present in a network namespace the loopback device must
12928 * be present. Since we now dynamically allocate and free the
12929 * loopback device ensure this invariant is maintained by
12930 * keeping the loopback device as the first device on the
12931 * list of network devices. Ensuring the loopback devices
12932 * is the first device that appears and the last network device
12933 * that disappears.
12934 */
12935 if (register_pernet_device(&loopback_net_ops))
12936 goto out;
12937
12938 if (register_pernet_device(&default_device_ops))
12939 goto out;
12940
12941 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12942 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12943
12944 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12945 NULL, dev_cpu_dead);
12946 WARN_ON(rc < 0);
12947 rc = 0;
12948
12949 /* avoid static key IPIs to isolated CPUs */
12950 if (housekeeping_enabled(HK_TYPE_MISC))
12951 net_enable_timestamp();
12952 out:
12953 if (rc < 0) {
12954 for_each_possible_cpu(i) {
12955 struct page_pool *pp_ptr;
12956
12957 pp_ptr = per_cpu(system_page_pool.pool, i);
12958 if (!pp_ptr)
12959 continue;
12960
12961 xdp_unreg_page_pool(pp_ptr);
12962 page_pool_destroy(pp_ptr);
12963 per_cpu(system_page_pool.pool, i) = NULL;
12964 }
12965 }
12966
12967 return rc;
12968 }
12969
12970 subsys_initcall(net_dev_init);
12971