xref: /linux/net/core/dev.c (revision 6439a0e64c355d2e375bd094f365d56ce81faba3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468 
469 #ifdef CONFIG_LOCKDEP
470 /*
471  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472  * according to dev->type
473  */
474 static const unsigned short netdev_lock_type[] = {
475 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490 
491 static const char *const netdev_lock_name[] = {
492 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507 
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510 
netdev_lock_pos(unsigned short dev_type)511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 	int i;
514 
515 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 		if (netdev_lock_type[i] == dev_type)
517 			return i;
518 	/* the last key is used by default */
519 	return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 						 unsigned short dev_type)
524 {
525 	int i;
526 
527 	i = netdev_lock_pos(dev_type);
528 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 				   netdev_lock_name[i]);
530 }
531 
netdev_set_addr_lockdep_class(struct net_device * dev)532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 	int i;
535 
536 	i = netdev_lock_pos(dev->type);
537 	lockdep_set_class_and_name(&dev->addr_list_lock,
538 				   &netdev_addr_lock_key[i],
539 				   netdev_lock_name[i]);
540 }
541 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 						 unsigned short dev_type)
544 {
545 }
546 
netdev_set_addr_lockdep_class(struct net_device * dev)547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551 
552 /*******************************************************************************
553  *
554  *		Protocol management and registration routines
555  *
556  *******************************************************************************/
557 
558 
559 /*
560  *	Add a protocol ID to the list. Now that the input handler is
561  *	smarter we can dispense with all the messy stuff that used to be
562  *	here.
563  *
564  *	BEWARE!!! Protocol handlers, mangling input packets,
565  *	MUST BE last in hash buckets and checking protocol handlers
566  *	MUST start from promiscuous ptype_all chain in net_bh.
567  *	It is true now, do not change it.
568  *	Explanation follows: if protocol handler, mangling packet, will
569  *	be the first on list, it is not able to sense, that packet
570  *	is cloned and should be copied-on-write, so that it will
571  *	change it and subsequent readers will get broken packet.
572  *							--ANK (980803)
573  */
574 
ptype_head(const struct packet_type * pt)575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 	if (pt->type == htons(ETH_P_ALL)) {
578 		if (!pt->af_packet_net && !pt->dev)
579 			return NULL;
580 
581 		return pt->dev ? &pt->dev->ptype_all :
582 				 &pt->af_packet_net->ptype_all;
583 	}
584 
585 	if (pt->dev)
586 		return &pt->dev->ptype_specific;
587 
588 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591 
592 /**
593  *	dev_add_pack - add packet handler
594  *	@pt: packet type declaration
595  *
596  *	Add a protocol handler to the networking stack. The passed &packet_type
597  *	is linked into kernel lists and may not be freed until it has been
598  *	removed from the kernel lists.
599  *
600  *	This call does not sleep therefore it can not
601  *	guarantee all CPU's that are in middle of receiving packets
602  *	will see the new packet type (until the next received packet).
603  */
604 
dev_add_pack(struct packet_type * pt)605 void dev_add_pack(struct packet_type *pt)
606 {
607 	struct list_head *head = ptype_head(pt);
608 
609 	if (WARN_ON_ONCE(!head))
610 		return;
611 
612 	spin_lock(&ptype_lock);
613 	list_add_rcu(&pt->list, head);
614 	spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617 
618 /**
619  *	__dev_remove_pack	 - remove packet handler
620  *	@pt: packet type declaration
621  *
622  *	Remove a protocol handler that was previously added to the kernel
623  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
624  *	from the kernel lists and can be freed or reused once this function
625  *	returns.
626  *
627  *      The packet type might still be in use by receivers
628  *	and must not be freed until after all the CPU's have gone
629  *	through a quiescent state.
630  */
__dev_remove_pack(struct packet_type * pt)631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 	struct list_head *head = ptype_head(pt);
634 	struct packet_type *pt1;
635 
636 	if (!head)
637 		return;
638 
639 	spin_lock(&ptype_lock);
640 
641 	list_for_each_entry(pt1, head, list) {
642 		if (pt == pt1) {
643 			list_del_rcu(&pt->list);
644 			goto out;
645 		}
646 	}
647 
648 	pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 	spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653 
654 /**
655  *	dev_remove_pack	 - remove packet handler
656  *	@pt: packet type declaration
657  *
658  *	Remove a protocol handler that was previously added to the kernel
659  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
660  *	from the kernel lists and can be freed or reused once this function
661  *	returns.
662  *
663  *	This call sleeps to guarantee that no CPU is looking at the packet
664  *	type after return.
665  */
dev_remove_pack(struct packet_type * pt)666 void dev_remove_pack(struct packet_type *pt)
667 {
668 	__dev_remove_pack(pt);
669 
670 	synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673 
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
dev_get_iflink(const struct net_device * dev)689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
dev_fwd_path(struct net_device_path_stack * stack)724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 	int k = stack->num_paths++;
727 
728 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 		return NULL;
730 
731 	return &stack->path[k];
732 }
733 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 			  struct net_device_path_stack *stack)
736 {
737 	const struct net_device *last_dev;
738 	struct net_device_path_ctx ctx = {
739 		.dev	= dev,
740 	};
741 	struct net_device_path *path;
742 	int ret = 0;
743 
744 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 	stack->num_paths = 0;
746 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 		last_dev = ctx.dev;
748 		path = dev_fwd_path(stack);
749 		if (!path)
750 			return -1;
751 
752 		memset(path, 0, sizeof(struct net_device_path));
753 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 		if (ret < 0)
755 			return -1;
756 
757 		if (WARN_ON_ONCE(last_dev == ctx.dev))
758 			return -1;
759 	}
760 
761 	if (!ctx.dev)
762 		return ret;
763 
764 	path = dev_fwd_path(stack);
765 	if (!path)
766 		return -1;
767 	path->type = DEV_PATH_ETHERNET;
768 	path->dev = ctx.dev;
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773 
774 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 	struct napi_struct *napi;
779 
780 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 		if (napi->napi_id == napi_id)
782 			return napi;
783 
784 	return NULL;
785 }
786 
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 	struct napi_struct *napi;
792 
793 	napi = napi_by_id(napi_id);
794 	if (!napi)
795 		return NULL;
796 
797 	if (WARN_ON_ONCE(!napi->dev))
798 		return NULL;
799 	if (!net_eq(net, dev_net(napi->dev)))
800 		return NULL;
801 
802 	return napi;
803 }
804 
805 /**
806  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807  *	@net: the applicable net namespace
808  *	@napi_id: ID of a NAPI of a target device
809  *
810  *	Find a NAPI instance with @napi_id. Lock its device.
811  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
812  *	netdev_unlock() must be called to release it.
813  *
814  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
815  */
816 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 	struct napi_struct *napi;
820 	struct net_device *dev;
821 
822 	rcu_read_lock();
823 	napi = netdev_napi_by_id(net, napi_id);
824 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 		rcu_read_unlock();
826 		return NULL;
827 	}
828 
829 	dev = napi->dev;
830 	dev_hold(dev);
831 	rcu_read_unlock();
832 
833 	dev = __netdev_put_lock(dev, net);
834 	if (!dev)
835 		return NULL;
836 
837 	rcu_read_lock();
838 	napi = netdev_napi_by_id(net, napi_id);
839 	if (napi && napi->dev != dev)
840 		napi = NULL;
841 	rcu_read_unlock();
842 
843 	if (!napi)
844 		netdev_unlock(dev);
845 	return napi;
846 }
847 
848 /**
849  *	__dev_get_by_name	- find a device by its name
850  *	@net: the applicable net namespace
851  *	@name: name to find
852  *
853  *	Find an interface by name. Must be called under RTNL semaphore.
854  *	If the name is found a pointer to the device is returned.
855  *	If the name is not found then %NULL is returned. The
856  *	reference counters are not incremented so the caller must be
857  *	careful with locks.
858  */
859 
__dev_get_by_name(struct net * net,const char * name)860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 	struct netdev_name_node *node_name;
863 
864 	node_name = netdev_name_node_lookup(net, name);
865 	return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868 
869 /**
870  * dev_get_by_name_rcu	- find a device by its name
871  * @net: the applicable net namespace
872  * @name: name to find
873  *
874  * Find an interface by name.
875  * If the name is found a pointer to the device is returned.
876  * If the name is not found then %NULL is returned.
877  * The reference counters are not incremented so the caller must be
878  * careful with locks. The caller must hold RCU lock.
879  */
880 
dev_get_by_name_rcu(struct net * net,const char * name)881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 	struct netdev_name_node *node_name;
884 
885 	node_name = netdev_name_node_lookup_rcu(net, name);
886 	return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889 
890 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 	struct net_device *dev;
894 
895 	rcu_read_lock();
896 	dev = dev_get_by_name_rcu(net, name);
897 	dev_hold(dev);
898 	rcu_read_unlock();
899 	return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902 
903 /**
904  *	netdev_get_by_name() - find a device by its name
905  *	@net: the applicable net namespace
906  *	@name: name to find
907  *	@tracker: tracking object for the acquired reference
908  *	@gfp: allocation flags for the tracker
909  *
910  *	Find an interface by name. This can be called from any
911  *	context and does its own locking. The returned handle has
912  *	the usage count incremented and the caller must use netdev_put() to
913  *	release it when it is no longer needed. %NULL is returned if no
914  *	matching device is found.
915  */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 				      netdevice_tracker *tracker, gfp_t gfp)
918 {
919 	struct net_device *dev;
920 
921 	dev = dev_get_by_name(net, name);
922 	if (dev)
923 		netdev_tracker_alloc(dev, tracker, gfp);
924 	return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927 
928 /**
929  *	__dev_get_by_index - find a device by its ifindex
930  *	@net: the applicable net namespace
931  *	@ifindex: index of device
932  *
933  *	Search for an interface by index. Returns %NULL if the device
934  *	is not found or a pointer to the device. The device has not
935  *	had its reference counter increased so the caller must be careful
936  *	about locking. The caller must hold the RTNL semaphore.
937  */
938 
__dev_get_by_index(struct net * net,int ifindex)939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 	struct net_device *dev;
942 	struct hlist_head *head = dev_index_hash(net, ifindex);
943 
944 	hlist_for_each_entry(dev, head, index_hlist)
945 		if (dev->ifindex == ifindex)
946 			return dev;
947 
948 	return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951 
952 /**
953  *	dev_get_by_index_rcu - find a device by its ifindex
954  *	@net: the applicable net namespace
955  *	@ifindex: index of device
956  *
957  *	Search for an interface by index. Returns %NULL if the device
958  *	is not found or a pointer to the device. The device has not
959  *	had its reference counter increased so the caller must be careful
960  *	about locking. The caller must hold RCU lock.
961  */
962 
dev_get_by_index_rcu(struct net * net,int ifindex)963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 	struct net_device *dev;
966 	struct hlist_head *head = dev_index_hash(net, ifindex);
967 
968 	hlist_for_each_entry_rcu(dev, head, index_hlist)
969 		if (dev->ifindex == ifindex)
970 			return dev;
971 
972 	return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975 
976 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 	struct net_device *dev;
980 
981 	rcu_read_lock();
982 	dev = dev_get_by_index_rcu(net, ifindex);
983 	dev_hold(dev);
984 	rcu_read_unlock();
985 	return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988 
989 /**
990  *	netdev_get_by_index() - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *	@tracker: tracking object for the acquired reference
994  *	@gfp: allocation flags for the tracker
995  *
996  *	Search for an interface by index. Returns NULL if the device
997  *	is not found or a pointer to the device. The device returned has
998  *	had a reference added and the pointer is safe until the user calls
999  *	netdev_put() to indicate they have finished with it.
1000  */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 				       netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 	struct net_device *dev;
1005 
1006 	dev = dev_get_by_index(net, ifindex);
1007 	if (dev)
1008 		netdev_tracker_alloc(dev, tracker, gfp);
1009 	return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012 
1013 /**
1014  *	dev_get_by_napi_id - find a device by napi_id
1015  *	@napi_id: ID of the NAPI struct
1016  *
1017  *	Search for an interface by NAPI ID. Returns %NULL if the device
1018  *	is not found or a pointer to the device. The device has not had
1019  *	its reference counter increased so the caller must be careful
1020  *	about locking. The caller must hold RCU lock.
1021  */
dev_get_by_napi_id(unsigned int napi_id)1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 	struct napi_struct *napi;
1025 
1026 	WARN_ON_ONCE(!rcu_read_lock_held());
1027 
1028 	if (!napi_id_valid(napi_id))
1029 		return NULL;
1030 
1031 	napi = napi_by_id(napi_id);
1032 
1033 	return napi ? napi->dev : NULL;
1034 }
1035 
1036 /* Release the held reference on the net_device, and if the net_device
1037  * is still registered try to lock the instance lock. If device is being
1038  * unregistered NULL will be returned (but the reference has been released,
1039  * either way!)
1040  *
1041  * This helper is intended for locking net_device after it has been looked up
1042  * using a lockless lookup helper. Lock prevents the instance from going away.
1043  */
__netdev_put_lock(struct net_device * dev,struct net * net)1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 	netdev_lock(dev);
1047 	if (dev->reg_state > NETREG_REGISTERED ||
1048 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 		netdev_unlock(dev);
1050 		dev_put(dev);
1051 		return NULL;
1052 	}
1053 	dev_put(dev);
1054 	return dev;
1055 }
1056 
1057 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 	netdev_lock_ops_compat(dev);
1061 	if (dev->reg_state > NETREG_REGISTERED ||
1062 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 		netdev_unlock_ops_compat(dev);
1064 		dev_put(dev);
1065 		return NULL;
1066 	}
1067 	dev_put(dev);
1068 	return dev;
1069 }
1070 
1071 /**
1072  *	netdev_get_by_index_lock() - find a device by its ifindex
1073  *	@net: the applicable net namespace
1074  *	@ifindex: index of device
1075  *
1076  *	Search for an interface by index. If a valid device
1077  *	with @ifindex is found it will be returned with netdev->lock held.
1078  *	netdev_unlock() must be called to release it.
1079  *
1080  *	Return: pointer to a device with lock held, NULL if not found.
1081  */
netdev_get_by_index_lock(struct net * net,int ifindex)1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 	struct net_device *dev;
1085 
1086 	dev = dev_get_by_index(net, ifindex);
1087 	if (!dev)
1088 		return NULL;
1089 
1090 	return __netdev_put_lock(dev, net);
1091 }
1092 
1093 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 	struct net_device *dev;
1097 
1098 	dev = dev_get_by_index(net, ifindex);
1099 	if (!dev)
1100 		return NULL;
1101 
1102 	return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104 
1105 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 		    unsigned long *index)
1108 {
1109 	if (dev)
1110 		netdev_unlock(dev);
1111 
1112 	do {
1113 		rcu_read_lock();
1114 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 		if (!dev) {
1116 			rcu_read_unlock();
1117 			return NULL;
1118 		}
1119 		dev_hold(dev);
1120 		rcu_read_unlock();
1121 
1122 		dev = __netdev_put_lock(dev, net);
1123 		if (dev)
1124 			return dev;
1125 
1126 		(*index)++;
1127 	} while (true);
1128 }
1129 
1130 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 			       unsigned long *index)
1133 {
1134 	if (dev)
1135 		netdev_unlock_ops_compat(dev);
1136 
1137 	do {
1138 		rcu_read_lock();
1139 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 		if (!dev) {
1141 			rcu_read_unlock();
1142 			return NULL;
1143 		}
1144 		dev_hold(dev);
1145 		rcu_read_unlock();
1146 
1147 		dev = __netdev_put_lock_ops_compat(dev, net);
1148 		if (dev)
1149 			return dev;
1150 
1151 		(*index)++;
1152 	} while (true);
1153 }
1154 
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156 
netdev_copy_name(struct net_device * dev,char * name)1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 	unsigned int seq;
1160 
1161 	do {
1162 		seq = read_seqbegin(&netdev_rename_lock);
1163 		strscpy(name, dev->name, IFNAMSIZ);
1164 	} while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166 
1167 /**
1168  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1169  *	@net: network namespace
1170  *	@name: a pointer to the buffer where the name will be stored.
1171  *	@ifindex: the ifindex of the interface to get the name from.
1172  */
netdev_get_name(struct net * net,char * name,int ifindex)1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 	struct net_device *dev;
1176 	int ret;
1177 
1178 	rcu_read_lock();
1179 
1180 	dev = dev_get_by_index_rcu(net, ifindex);
1181 	if (!dev) {
1182 		ret = -ENODEV;
1183 		goto out;
1184 	}
1185 
1186 	netdev_copy_name(dev, name);
1187 
1188 	ret = 0;
1189 out:
1190 	rcu_read_unlock();
1191 	return ret;
1192 }
1193 
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 			 const char *ha)
1196 {
1197 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199 
1200 /**
1201  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1202  *	@net: the applicable net namespace
1203  *	@type: media type of device
1204  *	@ha: hardware address
1205  *
1206  *	Search for an interface by MAC address. Returns NULL if the device
1207  *	is not found or a pointer to the device.
1208  *	The caller must hold RCU.
1209  *	The returned device has not had its ref count increased
1210  *	and the caller must therefore be careful about locking
1211  *
1212  */
1213 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 				       const char *ha)
1216 {
1217 	struct net_device *dev;
1218 
1219 	for_each_netdev_rcu(net, dev)
1220 		if (dev_addr_cmp(dev, type, ha))
1221 			return dev;
1222 
1223 	return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226 
1227 /**
1228  * dev_getbyhwaddr() - find a device by its hardware address
1229  * @net: the applicable net namespace
1230  * @type: media type of device
1231  * @ha: hardware address
1232  *
1233  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234  * rtnl_lock.
1235  *
1236  * Context: rtnl_lock() must be held.
1237  * Return: pointer to the net_device, or NULL if not found
1238  */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 				   const char *ha)
1241 {
1242 	struct net_device *dev;
1243 
1244 	ASSERT_RTNL();
1245 	for_each_netdev(net, dev)
1246 		if (dev_addr_cmp(dev, type, ha))
1247 			return dev;
1248 
1249 	return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 	struct net_device *dev, *ret = NULL;
1256 
1257 	rcu_read_lock();
1258 	for_each_netdev_rcu(net, dev)
1259 		if (dev->type == type) {
1260 			dev_hold(dev);
1261 			ret = dev;
1262 			break;
1263 		}
1264 	rcu_read_unlock();
1265 	return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268 
1269 /**
1270  * netdev_get_by_flags_rcu - find any device with given flags
1271  * @net: the applicable net namespace
1272  * @tracker: tracking object for the acquired reference
1273  * @if_flags: IFF_* values
1274  * @mask: bitmask of bits in if_flags to check
1275  *
1276  * Search for any interface with the given flags.
1277  *
1278  * Context: rcu_read_lock() must be held.
1279  * Returns: NULL if a device is not found or a pointer to the device.
1280  */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282 					   unsigned short if_flags, unsigned short mask)
1283 {
1284 	struct net_device *dev;
1285 
1286 	for_each_netdev_rcu(net, dev) {
1287 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288 			netdev_hold(dev, tracker, GFP_ATOMIC);
1289 			return dev;
1290 		}
1291 	}
1292 
1293 	return NULL;
1294 }
1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296 
1297 /**
1298  *	dev_valid_name - check if name is okay for network device
1299  *	@name: name string
1300  *
1301  *	Network device names need to be valid file names to
1302  *	allow sysfs to work.  We also disallow any kind of
1303  *	whitespace.
1304  */
dev_valid_name(const char * name)1305 bool dev_valid_name(const char *name)
1306 {
1307 	if (*name == '\0')
1308 		return false;
1309 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310 		return false;
1311 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1312 		return false;
1313 
1314 	while (*name) {
1315 		if (*name == '/' || *name == ':' || isspace(*name))
1316 			return false;
1317 		name++;
1318 	}
1319 	return true;
1320 }
1321 EXPORT_SYMBOL(dev_valid_name);
1322 
1323 /**
1324  *	__dev_alloc_name - allocate a name for a device
1325  *	@net: network namespace to allocate the device name in
1326  *	@name: name format string
1327  *	@res: result name string
1328  *
1329  *	Passed a format string - eg "lt%d" it will try and find a suitable
1330  *	id. It scans list of devices to build up a free map, then chooses
1331  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1332  *	while allocating the name and adding the device in order to avoid
1333  *	duplicates.
1334  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335  *	Returns the number of the unit assigned or a negative errno code.
1336  */
1337 
__dev_alloc_name(struct net * net,const char * name,char * res)1338 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339 {
1340 	int i = 0;
1341 	const char *p;
1342 	const int max_netdevices = 8*PAGE_SIZE;
1343 	unsigned long *inuse;
1344 	struct net_device *d;
1345 	char buf[IFNAMSIZ];
1346 
1347 	/* Verify the string as this thing may have come from the user.
1348 	 * There must be one "%d" and no other "%" characters.
1349 	 */
1350 	p = strchr(name, '%');
1351 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352 		return -EINVAL;
1353 
1354 	/* Use one page as a bit array of possible slots */
1355 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356 	if (!inuse)
1357 		return -ENOMEM;
1358 
1359 	for_each_netdev(net, d) {
1360 		struct netdev_name_node *name_node;
1361 
1362 		netdev_for_each_altname(d, name_node) {
1363 			if (!sscanf(name_node->name, name, &i))
1364 				continue;
1365 			if (i < 0 || i >= max_netdevices)
1366 				continue;
1367 
1368 			/* avoid cases where sscanf is not exact inverse of printf */
1369 			snprintf(buf, IFNAMSIZ, name, i);
1370 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371 				__set_bit(i, inuse);
1372 		}
1373 		if (!sscanf(d->name, name, &i))
1374 			continue;
1375 		if (i < 0 || i >= max_netdevices)
1376 			continue;
1377 
1378 		/* avoid cases where sscanf is not exact inverse of printf */
1379 		snprintf(buf, IFNAMSIZ, name, i);
1380 		if (!strncmp(buf, d->name, IFNAMSIZ))
1381 			__set_bit(i, inuse);
1382 	}
1383 
1384 	i = find_first_zero_bit(inuse, max_netdevices);
1385 	bitmap_free(inuse);
1386 	if (i == max_netdevices)
1387 		return -ENFILE;
1388 
1389 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390 	strscpy(buf, name, IFNAMSIZ);
1391 	snprintf(res, IFNAMSIZ, buf, i);
1392 	return i;
1393 }
1394 
1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397 			       const char *want_name, char *out_name,
1398 			       int dup_errno)
1399 {
1400 	if (!dev_valid_name(want_name))
1401 		return -EINVAL;
1402 
1403 	if (strchr(want_name, '%'))
1404 		return __dev_alloc_name(net, want_name, out_name);
1405 
1406 	if (netdev_name_in_use(net, want_name))
1407 		return -dup_errno;
1408 	if (out_name != want_name)
1409 		strscpy(out_name, want_name, IFNAMSIZ);
1410 	return 0;
1411 }
1412 
1413 /**
1414  *	dev_alloc_name - allocate a name for a device
1415  *	@dev: device
1416  *	@name: name format string
1417  *
1418  *	Passed a format string - eg "lt%d" it will try and find a suitable
1419  *	id. It scans list of devices to build up a free map, then chooses
1420  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1421  *	while allocating the name and adding the device in order to avoid
1422  *	duplicates.
1423  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424  *	Returns the number of the unit assigned or a negative errno code.
1425  */
1426 
dev_alloc_name(struct net_device * dev,const char * name)1427 int dev_alloc_name(struct net_device *dev, const char *name)
1428 {
1429 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430 }
1431 EXPORT_SYMBOL(dev_alloc_name);
1432 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1433 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434 			      const char *name)
1435 {
1436 	int ret;
1437 
1438 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439 	return ret < 0 ? ret : 0;
1440 }
1441 
netif_change_name(struct net_device * dev,const char * newname)1442 int netif_change_name(struct net_device *dev, const char *newname)
1443 {
1444 	struct net *net = dev_net(dev);
1445 	unsigned char old_assign_type;
1446 	char oldname[IFNAMSIZ];
1447 	int err = 0;
1448 	int ret;
1449 
1450 	ASSERT_RTNL_NET(net);
1451 
1452 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1453 		return 0;
1454 
1455 	memcpy(oldname, dev->name, IFNAMSIZ);
1456 
1457 	write_seqlock_bh(&netdev_rename_lock);
1458 	err = dev_get_valid_name(net, dev, newname);
1459 	write_sequnlock_bh(&netdev_rename_lock);
1460 
1461 	if (err < 0)
1462 		return err;
1463 
1464 	if (oldname[0] && !strchr(oldname, '%'))
1465 		netdev_info(dev, "renamed from %s%s\n", oldname,
1466 			    dev->flags & IFF_UP ? " (while UP)" : "");
1467 
1468 	old_assign_type = dev->name_assign_type;
1469 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470 
1471 rollback:
1472 	ret = device_rename(&dev->dev, dev->name);
1473 	if (ret) {
1474 		write_seqlock_bh(&netdev_rename_lock);
1475 		memcpy(dev->name, oldname, IFNAMSIZ);
1476 		write_sequnlock_bh(&netdev_rename_lock);
1477 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478 		return ret;
1479 	}
1480 
1481 	netdev_adjacent_rename_links(dev, oldname);
1482 
1483 	netdev_name_node_del(dev->name_node);
1484 
1485 	synchronize_net();
1486 
1487 	netdev_name_node_add(net, dev->name_node);
1488 
1489 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490 	ret = notifier_to_errno(ret);
1491 
1492 	if (ret) {
1493 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1494 		if (err >= 0) {
1495 			err = ret;
1496 			write_seqlock_bh(&netdev_rename_lock);
1497 			memcpy(dev->name, oldname, IFNAMSIZ);
1498 			write_sequnlock_bh(&netdev_rename_lock);
1499 			memcpy(oldname, newname, IFNAMSIZ);
1500 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501 			old_assign_type = NET_NAME_RENAMED;
1502 			goto rollback;
1503 		} else {
1504 			netdev_err(dev, "name change rollback failed: %d\n",
1505 				   ret);
1506 		}
1507 	}
1508 
1509 	return err;
1510 }
1511 
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513 {
1514 	struct dev_ifalias *new_alias = NULL;
1515 
1516 	if (len >= IFALIASZ)
1517 		return -EINVAL;
1518 
1519 	if (len) {
1520 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521 		if (!new_alias)
1522 			return -ENOMEM;
1523 
1524 		memcpy(new_alias->ifalias, alias, len);
1525 		new_alias->ifalias[len] = 0;
1526 	}
1527 
1528 	mutex_lock(&ifalias_mutex);
1529 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530 					mutex_is_locked(&ifalias_mutex));
1531 	mutex_unlock(&ifalias_mutex);
1532 
1533 	if (new_alias)
1534 		kfree_rcu(new_alias, rcuhead);
1535 
1536 	return len;
1537 }
1538 
1539 /**
1540  *	dev_get_alias - get ifalias of a device
1541  *	@dev: device
1542  *	@name: buffer to store name of ifalias
1543  *	@len: size of buffer
1544  *
1545  *	get ifalias for a device.  Caller must make sure dev cannot go
1546  *	away,  e.g. rcu read lock or own a reference count to device.
1547  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549 {
1550 	const struct dev_ifalias *alias;
1551 	int ret = 0;
1552 
1553 	rcu_read_lock();
1554 	alias = rcu_dereference(dev->ifalias);
1555 	if (alias)
1556 		ret = snprintf(name, len, "%s", alias->ifalias);
1557 	rcu_read_unlock();
1558 
1559 	return ret;
1560 }
1561 
1562 /**
1563  *	netdev_features_change - device changes features
1564  *	@dev: device to cause notification
1565  *
1566  *	Called to indicate a device has changed features.
1567  */
netdev_features_change(struct net_device * dev)1568 void netdev_features_change(struct net_device *dev)
1569 {
1570 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571 }
1572 EXPORT_SYMBOL(netdev_features_change);
1573 
netif_state_change(struct net_device * dev)1574 void netif_state_change(struct net_device *dev)
1575 {
1576 	netdev_ops_assert_locked_or_invisible(dev);
1577 
1578 	if (dev->flags & IFF_UP) {
1579 		struct netdev_notifier_change_info change_info = {
1580 			.info.dev = dev,
1581 		};
1582 
1583 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1584 					      &change_info.info);
1585 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586 	}
1587 }
1588 
1589 /**
1590  * __netdev_notify_peers - notify network peers about existence of @dev,
1591  * to be called when rtnl lock is already held.
1592  * @dev: network device
1593  *
1594  * Generate traffic such that interested network peers are aware of
1595  * @dev, such as by generating a gratuitous ARP. This may be used when
1596  * a device wants to inform the rest of the network about some sort of
1597  * reconfiguration such as a failover event or virtual machine
1598  * migration.
1599  */
__netdev_notify_peers(struct net_device * dev)1600 void __netdev_notify_peers(struct net_device *dev)
1601 {
1602 	ASSERT_RTNL();
1603 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605 }
1606 EXPORT_SYMBOL(__netdev_notify_peers);
1607 
1608 /**
1609  * netdev_notify_peers - notify network peers about existence of @dev
1610  * @dev: network device
1611  *
1612  * Generate traffic such that interested network peers are aware of
1613  * @dev, such as by generating a gratuitous ARP. This may be used when
1614  * a device wants to inform the rest of the network about some sort of
1615  * reconfiguration such as a failover event or virtual machine
1616  * migration.
1617  */
netdev_notify_peers(struct net_device * dev)1618 void netdev_notify_peers(struct net_device *dev)
1619 {
1620 	rtnl_lock();
1621 	__netdev_notify_peers(dev);
1622 	rtnl_unlock();
1623 }
1624 EXPORT_SYMBOL(netdev_notify_peers);
1625 
1626 static int napi_threaded_poll(void *data);
1627 
napi_kthread_create(struct napi_struct * n)1628 static int napi_kthread_create(struct napi_struct *n)
1629 {
1630 	int err = 0;
1631 
1632 	/* Create and wake up the kthread once to put it in
1633 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1634 	 * warning and work with loadavg.
1635 	 */
1636 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637 				n->dev->name, n->napi_id);
1638 	if (IS_ERR(n->thread)) {
1639 		err = PTR_ERR(n->thread);
1640 		pr_err("kthread_run failed with err %d\n", err);
1641 		n->thread = NULL;
1642 	}
1643 
1644 	return err;
1645 }
1646 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648 {
1649 	const struct net_device_ops *ops = dev->netdev_ops;
1650 	int ret;
1651 
1652 	ASSERT_RTNL();
1653 	dev_addr_check(dev);
1654 
1655 	if (!netif_device_present(dev)) {
1656 		/* may be detached because parent is runtime-suspended */
1657 		if (dev->dev.parent)
1658 			pm_runtime_resume(dev->dev.parent);
1659 		if (!netif_device_present(dev))
1660 			return -ENODEV;
1661 	}
1662 
1663 	/* Block netpoll from trying to do any rx path servicing.
1664 	 * If we don't do this there is a chance ndo_poll_controller
1665 	 * or ndo_poll may be running while we open the device
1666 	 */
1667 	netpoll_poll_disable(dev);
1668 
1669 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670 	ret = notifier_to_errno(ret);
1671 	if (ret)
1672 		return ret;
1673 
1674 	set_bit(__LINK_STATE_START, &dev->state);
1675 
1676 	netdev_ops_assert_locked(dev);
1677 
1678 	if (ops->ndo_validate_addr)
1679 		ret = ops->ndo_validate_addr(dev);
1680 
1681 	if (!ret && ops->ndo_open)
1682 		ret = ops->ndo_open(dev);
1683 
1684 	netpoll_poll_enable(dev);
1685 
1686 	if (ret)
1687 		clear_bit(__LINK_STATE_START, &dev->state);
1688 	else {
1689 		netif_set_up(dev, true);
1690 		dev_set_rx_mode(dev);
1691 		dev_activate(dev);
1692 		add_device_randomness(dev->dev_addr, dev->addr_len);
1693 	}
1694 
1695 	return ret;
1696 }
1697 
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699 {
1700 	int ret;
1701 
1702 	if (dev->flags & IFF_UP)
1703 		return 0;
1704 
1705 	ret = __dev_open(dev, extack);
1706 	if (ret < 0)
1707 		return ret;
1708 
1709 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710 	call_netdevice_notifiers(NETDEV_UP, dev);
1711 
1712 	return ret;
1713 }
1714 
__dev_close_many(struct list_head * head)1715 static void __dev_close_many(struct list_head *head)
1716 {
1717 	struct net_device *dev;
1718 
1719 	ASSERT_RTNL();
1720 	might_sleep();
1721 
1722 	list_for_each_entry(dev, head, close_list) {
1723 		/* Temporarily disable netpoll until the interface is down */
1724 		netpoll_poll_disable(dev);
1725 
1726 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727 
1728 		clear_bit(__LINK_STATE_START, &dev->state);
1729 
1730 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1731 		 * can be even on different cpu. So just clear netif_running().
1732 		 *
1733 		 * dev->stop() will invoke napi_disable() on all of it's
1734 		 * napi_struct instances on this device.
1735 		 */
1736 		smp_mb__after_atomic(); /* Commit netif_running(). */
1737 	}
1738 
1739 	dev_deactivate_many(head);
1740 
1741 	list_for_each_entry(dev, head, close_list) {
1742 		const struct net_device_ops *ops = dev->netdev_ops;
1743 
1744 		/*
1745 		 *	Call the device specific close. This cannot fail.
1746 		 *	Only if device is UP
1747 		 *
1748 		 *	We allow it to be called even after a DETACH hot-plug
1749 		 *	event.
1750 		 */
1751 
1752 		netdev_ops_assert_locked(dev);
1753 
1754 		if (ops->ndo_stop)
1755 			ops->ndo_stop(dev);
1756 
1757 		netif_set_up(dev, false);
1758 		netpoll_poll_enable(dev);
1759 	}
1760 }
1761 
__dev_close(struct net_device * dev)1762 static void __dev_close(struct net_device *dev)
1763 {
1764 	LIST_HEAD(single);
1765 
1766 	list_add(&dev->close_list, &single);
1767 	__dev_close_many(&single);
1768 	list_del(&single);
1769 }
1770 
netif_close_many(struct list_head * head,bool unlink)1771 void netif_close_many(struct list_head *head, bool unlink)
1772 {
1773 	struct net_device *dev, *tmp;
1774 
1775 	/* Remove the devices that don't need to be closed */
1776 	list_for_each_entry_safe(dev, tmp, head, close_list)
1777 		if (!(dev->flags & IFF_UP))
1778 			list_del_init(&dev->close_list);
1779 
1780 	__dev_close_many(head);
1781 
1782 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1783 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1785 		if (unlink)
1786 			list_del_init(&dev->close_list);
1787 	}
1788 }
1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1790 
netif_close(struct net_device * dev)1791 void netif_close(struct net_device *dev)
1792 {
1793 	if (dev->flags & IFF_UP) {
1794 		LIST_HEAD(single);
1795 
1796 		list_add(&dev->close_list, &single);
1797 		netif_close_many(&single, true);
1798 		list_del(&single);
1799 	}
1800 }
1801 EXPORT_SYMBOL(netif_close);
1802 
netif_disable_lro(struct net_device * dev)1803 void netif_disable_lro(struct net_device *dev)
1804 {
1805 	struct net_device *lower_dev;
1806 	struct list_head *iter;
1807 
1808 	dev->wanted_features &= ~NETIF_F_LRO;
1809 	netdev_update_features(dev);
1810 
1811 	if (unlikely(dev->features & NETIF_F_LRO))
1812 		netdev_WARN(dev, "failed to disable LRO!\n");
1813 
1814 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815 		netdev_lock_ops(lower_dev);
1816 		netif_disable_lro(lower_dev);
1817 		netdev_unlock_ops(lower_dev);
1818 	}
1819 }
1820 EXPORT_IPV6_MOD(netif_disable_lro);
1821 
1822 /**
1823  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824  *	@dev: device
1825  *
1826  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1827  *	called under RTNL.  This is needed if Generic XDP is installed on
1828  *	the device.
1829  */
dev_disable_gro_hw(struct net_device * dev)1830 static void dev_disable_gro_hw(struct net_device *dev)
1831 {
1832 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1833 	netdev_update_features(dev);
1834 
1835 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1836 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837 }
1838 
netdev_cmd_to_name(enum netdev_cmd cmd)1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840 {
1841 #define N(val) 						\
1842 	case NETDEV_##val:				\
1843 		return "NETDEV_" __stringify(val);
1844 	switch (cmd) {
1845 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856 	N(XDP_FEAT_CHANGE)
1857 	}
1858 #undef N
1859 	return "UNKNOWN_NETDEV_EVENT";
1860 }
1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864 				   struct net_device *dev)
1865 {
1866 	struct netdev_notifier_info info = {
1867 		.dev = dev,
1868 	};
1869 
1870 	return nb->notifier_call(nb, val, &info);
1871 }
1872 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1873 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874 					     struct net_device *dev)
1875 {
1876 	int err;
1877 
1878 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879 	err = notifier_to_errno(err);
1880 	if (err)
1881 		return err;
1882 
1883 	if (!(dev->flags & IFF_UP))
1884 		return 0;
1885 
1886 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1887 	return 0;
1888 }
1889 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891 						struct net_device *dev)
1892 {
1893 	if (dev->flags & IFF_UP) {
1894 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895 					dev);
1896 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897 	}
1898 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899 }
1900 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902 						 struct net *net)
1903 {
1904 	struct net_device *dev;
1905 	int err;
1906 
1907 	for_each_netdev(net, dev) {
1908 		netdev_lock_ops(dev);
1909 		err = call_netdevice_register_notifiers(nb, dev);
1910 		netdev_unlock_ops(dev);
1911 		if (err)
1912 			goto rollback;
1913 	}
1914 	return 0;
1915 
1916 rollback:
1917 	for_each_netdev_continue_reverse(net, dev)
1918 		call_netdevice_unregister_notifiers(nb, dev);
1919 	return err;
1920 }
1921 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923 						    struct net *net)
1924 {
1925 	struct net_device *dev;
1926 
1927 	for_each_netdev(net, dev)
1928 		call_netdevice_unregister_notifiers(nb, dev);
1929 }
1930 
1931 static int dev_boot_phase = 1;
1932 
1933 /**
1934  * register_netdevice_notifier - register a network notifier block
1935  * @nb: notifier
1936  *
1937  * Register a notifier to be called when network device events occur.
1938  * The notifier passed is linked into the kernel structures and must
1939  * not be reused until it has been unregistered. A negative errno code
1940  * is returned on a failure.
1941  *
1942  * When registered all registration and up events are replayed
1943  * to the new notifier to allow device to have a race free
1944  * view of the network device list.
1945  */
1946 
register_netdevice_notifier(struct notifier_block * nb)1947 int register_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 	struct net *net;
1950 	int err;
1951 
1952 	/* Close race with setup_net() and cleanup_net() */
1953 	down_write(&pernet_ops_rwsem);
1954 
1955 	/* When RTNL is removed, we need protection for netdev_chain. */
1956 	rtnl_lock();
1957 
1958 	err = raw_notifier_chain_register(&netdev_chain, nb);
1959 	if (err)
1960 		goto unlock;
1961 	if (dev_boot_phase)
1962 		goto unlock;
1963 	for_each_net(net) {
1964 		__rtnl_net_lock(net);
1965 		err = call_netdevice_register_net_notifiers(nb, net);
1966 		__rtnl_net_unlock(net);
1967 		if (err)
1968 			goto rollback;
1969 	}
1970 
1971 unlock:
1972 	rtnl_unlock();
1973 	up_write(&pernet_ops_rwsem);
1974 	return err;
1975 
1976 rollback:
1977 	for_each_net_continue_reverse(net) {
1978 		__rtnl_net_lock(net);
1979 		call_netdevice_unregister_net_notifiers(nb, net);
1980 		__rtnl_net_unlock(net);
1981 	}
1982 
1983 	raw_notifier_chain_unregister(&netdev_chain, nb);
1984 	goto unlock;
1985 }
1986 EXPORT_SYMBOL(register_netdevice_notifier);
1987 
1988 /**
1989  * unregister_netdevice_notifier - unregister a network notifier block
1990  * @nb: notifier
1991  *
1992  * Unregister a notifier previously registered by
1993  * register_netdevice_notifier(). The notifier is unlinked into the
1994  * kernel structures and may then be reused. A negative errno code
1995  * is returned on a failure.
1996  *
1997  * After unregistering unregister and down device events are synthesized
1998  * for all devices on the device list to the removed notifier to remove
1999  * the need for special case cleanup code.
2000  */
2001 
unregister_netdevice_notifier(struct notifier_block * nb)2002 int unregister_netdevice_notifier(struct notifier_block *nb)
2003 {
2004 	struct net *net;
2005 	int err;
2006 
2007 	/* Close race with setup_net() and cleanup_net() */
2008 	down_write(&pernet_ops_rwsem);
2009 	rtnl_lock();
2010 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011 	if (err)
2012 		goto unlock;
2013 
2014 	for_each_net(net) {
2015 		__rtnl_net_lock(net);
2016 		call_netdevice_unregister_net_notifiers(nb, net);
2017 		__rtnl_net_unlock(net);
2018 	}
2019 
2020 unlock:
2021 	rtnl_unlock();
2022 	up_write(&pernet_ops_rwsem);
2023 	return err;
2024 }
2025 EXPORT_SYMBOL(unregister_netdevice_notifier);
2026 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2027 static int __register_netdevice_notifier_net(struct net *net,
2028 					     struct notifier_block *nb,
2029 					     bool ignore_call_fail)
2030 {
2031 	int err;
2032 
2033 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034 	if (err)
2035 		return err;
2036 	if (dev_boot_phase)
2037 		return 0;
2038 
2039 	err = call_netdevice_register_net_notifiers(nb, net);
2040 	if (err && !ignore_call_fail)
2041 		goto chain_unregister;
2042 
2043 	return 0;
2044 
2045 chain_unregister:
2046 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047 	return err;
2048 }
2049 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2050 static int __unregister_netdevice_notifier_net(struct net *net,
2051 					       struct notifier_block *nb)
2052 {
2053 	int err;
2054 
2055 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056 	if (err)
2057 		return err;
2058 
2059 	call_netdevice_unregister_net_notifiers(nb, net);
2060 	return 0;
2061 }
2062 
2063 /**
2064  * register_netdevice_notifier_net - register a per-netns network notifier block
2065  * @net: network namespace
2066  * @nb: notifier
2067  *
2068  * Register a notifier to be called when network device events occur.
2069  * The notifier passed is linked into the kernel structures and must
2070  * not be reused until it has been unregistered. A negative errno code
2071  * is returned on a failure.
2072  *
2073  * When registered all registration and up events are replayed
2074  * to the new notifier to allow device to have a race free
2075  * view of the network device list.
2076  */
2077 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079 {
2080 	int err;
2081 
2082 	rtnl_net_lock(net);
2083 	err = __register_netdevice_notifier_net(net, nb, false);
2084 	rtnl_net_unlock(net);
2085 
2086 	return err;
2087 }
2088 EXPORT_SYMBOL(register_netdevice_notifier_net);
2089 
2090 /**
2091  * unregister_netdevice_notifier_net - unregister a per-netns
2092  *                                     network notifier block
2093  * @net: network namespace
2094  * @nb: notifier
2095  *
2096  * Unregister a notifier previously registered by
2097  * register_netdevice_notifier_net(). The notifier is unlinked from the
2098  * kernel structures and may then be reused. A negative errno code
2099  * is returned on a failure.
2100  *
2101  * After unregistering unregister and down device events are synthesized
2102  * for all devices on the device list to the removed notifier to remove
2103  * the need for special case cleanup code.
2104  */
2105 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2106 int unregister_netdevice_notifier_net(struct net *net,
2107 				      struct notifier_block *nb)
2108 {
2109 	int err;
2110 
2111 	rtnl_net_lock(net);
2112 	err = __unregister_netdevice_notifier_net(net, nb);
2113 	rtnl_net_unlock(net);
2114 
2115 	return err;
2116 }
2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118 
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2119 static void __move_netdevice_notifier_net(struct net *src_net,
2120 					  struct net *dst_net,
2121 					  struct notifier_block *nb)
2122 {
2123 	__unregister_netdevice_notifier_net(src_net, nb);
2124 	__register_netdevice_notifier_net(dst_net, nb, true);
2125 }
2126 
rtnl_net_dev_lock(struct net_device * dev)2127 static void rtnl_net_dev_lock(struct net_device *dev)
2128 {
2129 	bool again;
2130 
2131 	do {
2132 		struct net *net;
2133 
2134 		again = false;
2135 
2136 		/* netns might be being dismantled. */
2137 		rcu_read_lock();
2138 		net = dev_net_rcu(dev);
2139 		net_passive_inc(net);
2140 		rcu_read_unlock();
2141 
2142 		rtnl_net_lock(net);
2143 
2144 #ifdef CONFIG_NET_NS
2145 		/* dev might have been moved to another netns. */
2146 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147 			rtnl_net_unlock(net);
2148 			net_passive_dec(net);
2149 			again = true;
2150 		}
2151 #endif
2152 	} while (again);
2153 }
2154 
rtnl_net_dev_unlock(struct net_device * dev)2155 static void rtnl_net_dev_unlock(struct net_device *dev)
2156 {
2157 	struct net *net = dev_net(dev);
2158 
2159 	rtnl_net_unlock(net);
2160 	net_passive_dec(net);
2161 }
2162 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2163 int register_netdevice_notifier_dev_net(struct net_device *dev,
2164 					struct notifier_block *nb,
2165 					struct netdev_net_notifier *nn)
2166 {
2167 	int err;
2168 
2169 	rtnl_net_dev_lock(dev);
2170 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171 	if (!err) {
2172 		nn->nb = nb;
2173 		list_add(&nn->list, &dev->net_notifier_list);
2174 	}
2175 	rtnl_net_dev_unlock(dev);
2176 
2177 	return err;
2178 }
2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182 					  struct notifier_block *nb,
2183 					  struct netdev_net_notifier *nn)
2184 {
2185 	int err;
2186 
2187 	rtnl_net_dev_lock(dev);
2188 	list_del(&nn->list);
2189 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190 	rtnl_net_dev_unlock(dev);
2191 
2192 	return err;
2193 }
2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197 					     struct net *net)
2198 {
2199 	struct netdev_net_notifier *nn;
2200 
2201 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2202 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203 }
2204 
2205 /**
2206  *	call_netdevice_notifiers_info - call all network notifier blocks
2207  *	@val: value passed unmodified to notifier function
2208  *	@info: notifier information data
2209  *
2210  *	Call all network notifier blocks.  Parameters and return value
2211  *	are as for raw_notifier_call_chain().
2212  */
2213 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2214 int call_netdevice_notifiers_info(unsigned long val,
2215 				  struct netdev_notifier_info *info)
2216 {
2217 	struct net *net = dev_net(info->dev);
2218 	int ret;
2219 
2220 	ASSERT_RTNL();
2221 
2222 	/* Run per-netns notifier block chain first, then run the global one.
2223 	 * Hopefully, one day, the global one is going to be removed after
2224 	 * all notifier block registrators get converted to be per-netns.
2225 	 */
2226 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227 	if (ret & NOTIFY_STOP_MASK)
2228 		return ret;
2229 	return raw_notifier_call_chain(&netdev_chain, val, info);
2230 }
2231 
2232 /**
2233  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234  *	                                       for and rollback on error
2235  *	@val_up: value passed unmodified to notifier function
2236  *	@val_down: value passed unmodified to the notifier function when
2237  *	           recovering from an error on @val_up
2238  *	@info: notifier information data
2239  *
2240  *	Call all per-netns network notifier blocks, but not notifier blocks on
2241  *	the global notifier chain. Parameters and return value are as for
2242  *	raw_notifier_call_chain_robust().
2243  */
2244 
2245 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2246 call_netdevice_notifiers_info_robust(unsigned long val_up,
2247 				     unsigned long val_down,
2248 				     struct netdev_notifier_info *info)
2249 {
2250 	struct net *net = dev_net(info->dev);
2251 
2252 	ASSERT_RTNL();
2253 
2254 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2255 					      val_up, val_down, info);
2256 }
2257 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2258 static int call_netdevice_notifiers_extack(unsigned long val,
2259 					   struct net_device *dev,
2260 					   struct netlink_ext_ack *extack)
2261 {
2262 	struct netdev_notifier_info info = {
2263 		.dev = dev,
2264 		.extack = extack,
2265 	};
2266 
2267 	return call_netdevice_notifiers_info(val, &info);
2268 }
2269 
2270 /**
2271  *	call_netdevice_notifiers - call all network notifier blocks
2272  *      @val: value passed unmodified to notifier function
2273  *      @dev: net_device pointer passed unmodified to notifier function
2274  *
2275  *	Call all network notifier blocks.  Parameters and return value
2276  *	are as for raw_notifier_call_chain().
2277  */
2278 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280 {
2281 	return call_netdevice_notifiers_extack(val, dev, NULL);
2282 }
2283 EXPORT_SYMBOL(call_netdevice_notifiers);
2284 
2285 /**
2286  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2287  *	@val: value passed unmodified to notifier function
2288  *	@dev: net_device pointer passed unmodified to notifier function
2289  *	@arg: additional u32 argument passed to the notifier function
2290  *
2291  *	Call all network notifier blocks.  Parameters and return value
2292  *	are as for raw_notifier_call_chain().
2293  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2294 static int call_netdevice_notifiers_mtu(unsigned long val,
2295 					struct net_device *dev, u32 arg)
2296 {
2297 	struct netdev_notifier_info_ext info = {
2298 		.info.dev = dev,
2299 		.ext.mtu = arg,
2300 	};
2301 
2302 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303 
2304 	return call_netdevice_notifiers_info(val, &info.info);
2305 }
2306 
2307 #ifdef CONFIG_NET_INGRESS
2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309 
net_inc_ingress_queue(void)2310 void net_inc_ingress_queue(void)
2311 {
2312 	static_branch_inc(&ingress_needed_key);
2313 }
2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315 
net_dec_ingress_queue(void)2316 void net_dec_ingress_queue(void)
2317 {
2318 	static_branch_dec(&ingress_needed_key);
2319 }
2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321 #endif
2322 
2323 #ifdef CONFIG_NET_EGRESS
2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325 
net_inc_egress_queue(void)2326 void net_inc_egress_queue(void)
2327 {
2328 	static_branch_inc(&egress_needed_key);
2329 }
2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331 
net_dec_egress_queue(void)2332 void net_dec_egress_queue(void)
2333 {
2334 	static_branch_dec(&egress_needed_key);
2335 }
2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337 #endif
2338 
2339 #ifdef CONFIG_NET_CLS_ACT
2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341 EXPORT_SYMBOL(tcf_sw_enabled_key);
2342 #endif
2343 
2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345 EXPORT_SYMBOL(netstamp_needed_key);
2346 #ifdef CONFIG_JUMP_LABEL
2347 static atomic_t netstamp_needed_deferred;
2348 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2349 static void netstamp_clear(struct work_struct *work)
2350 {
2351 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352 	int wanted;
2353 
2354 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2355 	if (wanted > 0)
2356 		static_branch_enable(&netstamp_needed_key);
2357 	else
2358 		static_branch_disable(&netstamp_needed_key);
2359 }
2360 static DECLARE_WORK(netstamp_work, netstamp_clear);
2361 #endif
2362 
net_enable_timestamp(void)2363 void net_enable_timestamp(void)
2364 {
2365 #ifdef CONFIG_JUMP_LABEL
2366 	int wanted = atomic_read(&netstamp_wanted);
2367 
2368 	while (wanted > 0) {
2369 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370 			return;
2371 	}
2372 	atomic_inc(&netstamp_needed_deferred);
2373 	schedule_work(&netstamp_work);
2374 #else
2375 	static_branch_inc(&netstamp_needed_key);
2376 #endif
2377 }
2378 EXPORT_SYMBOL(net_enable_timestamp);
2379 
net_disable_timestamp(void)2380 void net_disable_timestamp(void)
2381 {
2382 #ifdef CONFIG_JUMP_LABEL
2383 	int wanted = atomic_read(&netstamp_wanted);
2384 
2385 	while (wanted > 1) {
2386 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387 			return;
2388 	}
2389 	atomic_dec(&netstamp_needed_deferred);
2390 	schedule_work(&netstamp_work);
2391 #else
2392 	static_branch_dec(&netstamp_needed_key);
2393 #endif
2394 }
2395 EXPORT_SYMBOL(net_disable_timestamp);
2396 
net_timestamp_set(struct sk_buff * skb)2397 static inline void net_timestamp_set(struct sk_buff *skb)
2398 {
2399 	skb->tstamp = 0;
2400 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2401 	if (static_branch_unlikely(&netstamp_needed_key))
2402 		skb->tstamp = ktime_get_real();
2403 }
2404 
2405 #define net_timestamp_check(COND, SKB)				\
2406 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2407 		if ((COND) && !(SKB)->tstamp)			\
2408 			(SKB)->tstamp = ktime_get_real();	\
2409 	}							\
2410 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412 {
2413 	return __is_skb_forwardable(dev, skb, true);
2414 }
2415 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418 			      bool check_mtu)
2419 {
2420 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421 
2422 	if (likely(!ret)) {
2423 		skb->protocol = eth_type_trans(skb, dev);
2424 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425 	}
2426 
2427 	return ret;
2428 }
2429 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431 {
2432 	return __dev_forward_skb2(dev, skb, true);
2433 }
2434 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435 
2436 /**
2437  * dev_forward_skb - loopback an skb to another netif
2438  *
2439  * @dev: destination network device
2440  * @skb: buffer to forward
2441  *
2442  * return values:
2443  *	NET_RX_SUCCESS	(no congestion)
2444  *	NET_RX_DROP     (packet was dropped, but freed)
2445  *
2446  * dev_forward_skb can be used for injecting an skb from the
2447  * start_xmit function of one device into the receive queue
2448  * of another device.
2449  *
2450  * The receiving device may be in another namespace, so
2451  * we have to clear all information in the skb that could
2452  * impact namespace isolation.
2453  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455 {
2456 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457 }
2458 EXPORT_SYMBOL_GPL(dev_forward_skb);
2459 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463 }
2464 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2465 static inline int deliver_skb(struct sk_buff *skb,
2466 			      struct packet_type *pt_prev,
2467 			      struct net_device *orig_dev)
2468 {
2469 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470 		return -ENOMEM;
2471 	refcount_inc(&skb->users);
2472 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473 }
2474 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476 					  struct packet_type **pt,
2477 					  struct net_device *orig_dev,
2478 					  __be16 type,
2479 					  struct list_head *ptype_list)
2480 {
2481 	struct packet_type *ptype, *pt_prev = *pt;
2482 
2483 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2484 		if (ptype->type != type)
2485 			continue;
2486 		if (pt_prev)
2487 			deliver_skb(skb, pt_prev, orig_dev);
2488 		pt_prev = ptype;
2489 	}
2490 	*pt = pt_prev;
2491 }
2492 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494 {
2495 	if (!ptype->af_packet_priv || !skb->sk)
2496 		return false;
2497 
2498 	if (ptype->id_match)
2499 		return ptype->id_match(ptype, skb->sk);
2500 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501 		return true;
2502 
2503 	return false;
2504 }
2505 
2506 /**
2507  * dev_nit_active_rcu - return true if any network interface taps are in use
2508  *
2509  * The caller must hold the RCU lock
2510  *
2511  * @dev: network device to check for the presence of taps
2512  */
dev_nit_active_rcu(const struct net_device * dev)2513 bool dev_nit_active_rcu(const struct net_device *dev)
2514 {
2515 	/* Callers may hold either RCU or RCU BH lock */
2516 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517 
2518 	return !list_empty(&dev_net(dev)->ptype_all) ||
2519 	       !list_empty(&dev->ptype_all);
2520 }
2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522 
2523 /*
2524  *	Support routine. Sends outgoing frames to any network
2525  *	taps currently in use.
2526  */
2527 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529 {
2530 	struct packet_type *ptype, *pt_prev = NULL;
2531 	struct list_head *ptype_list;
2532 	struct sk_buff *skb2 = NULL;
2533 
2534 	rcu_read_lock();
2535 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2536 again:
2537 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2538 		if (READ_ONCE(ptype->ignore_outgoing))
2539 			continue;
2540 
2541 		/* Never send packets back to the socket
2542 		 * they originated from - MvS (miquels@drinkel.ow.org)
2543 		 */
2544 		if (skb_loop_sk(ptype, skb))
2545 			continue;
2546 
2547 		if (pt_prev) {
2548 			deliver_skb(skb2, pt_prev, skb->dev);
2549 			pt_prev = ptype;
2550 			continue;
2551 		}
2552 
2553 		/* need to clone skb, done only once */
2554 		skb2 = skb_clone(skb, GFP_ATOMIC);
2555 		if (!skb2)
2556 			goto out_unlock;
2557 
2558 		net_timestamp_set(skb2);
2559 
2560 		/* skb->nh should be correctly
2561 		 * set by sender, so that the second statement is
2562 		 * just protection against buggy protocols.
2563 		 */
2564 		skb_reset_mac_header(skb2);
2565 
2566 		if (skb_network_header(skb2) < skb2->data ||
2567 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569 					     ntohs(skb2->protocol),
2570 					     dev->name);
2571 			skb_reset_network_header(skb2);
2572 		}
2573 
2574 		skb2->transport_header = skb2->network_header;
2575 		skb2->pkt_type = PACKET_OUTGOING;
2576 		pt_prev = ptype;
2577 	}
2578 
2579 	if (ptype_list != &dev->ptype_all) {
2580 		ptype_list = &dev->ptype_all;
2581 		goto again;
2582 	}
2583 out_unlock:
2584 	if (pt_prev) {
2585 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587 		else
2588 			kfree_skb(skb2);
2589 	}
2590 	rcu_read_unlock();
2591 }
2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593 
2594 /**
2595  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596  * @dev: Network device
2597  * @txq: number of queues available
2598  *
2599  * If real_num_tx_queues is changed the tc mappings may no longer be
2600  * valid. To resolve this verify the tc mapping remains valid and if
2601  * not NULL the mapping. With no priorities mapping to this
2602  * offset/count pair it will no longer be used. In the worst case TC0
2603  * is invalid nothing can be done so disable priority mappings. If is
2604  * expected that drivers will fix this mapping if they can before
2605  * calling netif_set_real_num_tx_queues.
2606  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608 {
2609 	int i;
2610 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611 
2612 	/* If TC0 is invalidated disable TC mapping */
2613 	if (tc->offset + tc->count > txq) {
2614 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615 		dev->num_tc = 0;
2616 		return;
2617 	}
2618 
2619 	/* Invalidated prio to tc mappings set to TC0 */
2620 	for (i = 1; i < TC_BITMASK + 1; i++) {
2621 		int q = netdev_get_prio_tc_map(dev, i);
2622 
2623 		tc = &dev->tc_to_txq[q];
2624 		if (tc->offset + tc->count > txq) {
2625 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626 				    i, q);
2627 			netdev_set_prio_tc_map(dev, i, 0);
2628 		}
2629 	}
2630 }
2631 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633 {
2634 	if (dev->num_tc) {
2635 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636 		int i;
2637 
2638 		/* walk through the TCs and see if it falls into any of them */
2639 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640 			if ((txq - tc->offset) < tc->count)
2641 				return i;
2642 		}
2643 
2644 		/* didn't find it, just return -1 to indicate no match */
2645 		return -1;
2646 	}
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_txq_to_tc);
2651 
2652 #ifdef CONFIG_XPS
2653 static struct static_key xps_needed __read_mostly;
2654 static struct static_key xps_rxqs_needed __read_mostly;
2655 static DEFINE_MUTEX(xps_map_mutex);
2656 #define xmap_dereference(P)		\
2657 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2661 {
2662 	struct xps_map *map = NULL;
2663 	int pos;
2664 
2665 	map = xmap_dereference(dev_maps->attr_map[tci]);
2666 	if (!map)
2667 		return false;
2668 
2669 	for (pos = map->len; pos--;) {
2670 		if (map->queues[pos] != index)
2671 			continue;
2672 
2673 		if (map->len > 1) {
2674 			map->queues[pos] = map->queues[--map->len];
2675 			break;
2676 		}
2677 
2678 		if (old_maps)
2679 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681 		kfree_rcu(map, rcu);
2682 		return false;
2683 	}
2684 
2685 	return true;
2686 }
2687 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2688 static bool remove_xps_queue_cpu(struct net_device *dev,
2689 				 struct xps_dev_maps *dev_maps,
2690 				 int cpu, u16 offset, u16 count)
2691 {
2692 	int num_tc = dev_maps->num_tc;
2693 	bool active = false;
2694 	int tci;
2695 
2696 	for (tci = cpu * num_tc; num_tc--; tci++) {
2697 		int i, j;
2698 
2699 		for (i = count, j = offset; i--; j++) {
2700 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701 				break;
2702 		}
2703 
2704 		active |= i < 0;
2705 	}
2706 
2707 	return active;
2708 }
2709 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2710 static void reset_xps_maps(struct net_device *dev,
2711 			   struct xps_dev_maps *dev_maps,
2712 			   enum xps_map_type type)
2713 {
2714 	static_key_slow_dec_cpuslocked(&xps_needed);
2715 	if (type == XPS_RXQS)
2716 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717 
2718 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719 
2720 	kfree_rcu(dev_maps, rcu);
2721 }
2722 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724 			   u16 offset, u16 count)
2725 {
2726 	struct xps_dev_maps *dev_maps;
2727 	bool active = false;
2728 	int i, j;
2729 
2730 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2731 	if (!dev_maps)
2732 		return;
2733 
2734 	for (j = 0; j < dev_maps->nr_ids; j++)
2735 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736 	if (!active)
2737 		reset_xps_maps(dev, dev_maps, type);
2738 
2739 	if (type == XPS_CPUS) {
2740 		for (i = offset + (count - 1); count--; i--)
2741 			netdev_queue_numa_node_write(
2742 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743 	}
2744 }
2745 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747 				   u16 count)
2748 {
2749 	if (!static_key_false(&xps_needed))
2750 		return;
2751 
2752 	cpus_read_lock();
2753 	mutex_lock(&xps_map_mutex);
2754 
2755 	if (static_key_false(&xps_rxqs_needed))
2756 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2757 
2758 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2759 
2760 	mutex_unlock(&xps_map_mutex);
2761 	cpus_read_unlock();
2762 }
2763 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765 {
2766 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767 }
2768 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770 				      u16 index, bool is_rxqs_map)
2771 {
2772 	struct xps_map *new_map;
2773 	int alloc_len = XPS_MIN_MAP_ALLOC;
2774 	int i, pos;
2775 
2776 	for (pos = 0; map && pos < map->len; pos++) {
2777 		if (map->queues[pos] != index)
2778 			continue;
2779 		return map;
2780 	}
2781 
2782 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783 	if (map) {
2784 		if (pos < map->alloc_len)
2785 			return map;
2786 
2787 		alloc_len = map->alloc_len * 2;
2788 	}
2789 
2790 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791 	 *  map
2792 	 */
2793 	if (is_rxqs_map)
2794 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795 	else
2796 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797 				       cpu_to_node(attr_index));
2798 	if (!new_map)
2799 		return NULL;
2800 
2801 	for (i = 0; i < pos; i++)
2802 		new_map->queues[i] = map->queues[i];
2803 	new_map->alloc_len = alloc_len;
2804 	new_map->len = pos;
2805 
2806 	return new_map;
2807 }
2808 
2809 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811 			      struct xps_dev_maps *new_dev_maps, int index,
2812 			      int tc, bool skip_tc)
2813 {
2814 	int i, tci = index * dev_maps->num_tc;
2815 	struct xps_map *map;
2816 
2817 	/* copy maps belonging to foreign traffic classes */
2818 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819 		if (i == tc && skip_tc)
2820 			continue;
2821 
2822 		/* fill in the new device map from the old device map */
2823 		map = xmap_dereference(dev_maps->attr_map[tci]);
2824 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825 	}
2826 }
2827 
2828 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830 			  u16 index, enum xps_map_type type)
2831 {
2832 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833 	const unsigned long *online_mask = NULL;
2834 	bool active = false, copy = false;
2835 	int i, j, tci, numa_node_id = -2;
2836 	int maps_sz, num_tc = 1, tc = 0;
2837 	struct xps_map *map, *new_map;
2838 	unsigned int nr_ids;
2839 
2840 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2841 
2842 	if (dev->num_tc) {
2843 		/* Do not allow XPS on subordinate device directly */
2844 		num_tc = dev->num_tc;
2845 		if (num_tc < 0)
2846 			return -EINVAL;
2847 
2848 		/* If queue belongs to subordinate dev use its map */
2849 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850 
2851 		tc = netdev_txq_to_tc(dev, index);
2852 		if (tc < 0)
2853 			return -EINVAL;
2854 	}
2855 
2856 	mutex_lock(&xps_map_mutex);
2857 
2858 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2859 	if (type == XPS_RXQS) {
2860 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861 		nr_ids = dev->num_rx_queues;
2862 	} else {
2863 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864 		if (num_possible_cpus() > 1)
2865 			online_mask = cpumask_bits(cpu_online_mask);
2866 		nr_ids = nr_cpu_ids;
2867 	}
2868 
2869 	if (maps_sz < L1_CACHE_BYTES)
2870 		maps_sz = L1_CACHE_BYTES;
2871 
2872 	/* The old dev_maps could be larger or smaller than the one we're
2873 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2874 	 * between. We could try to be smart, but let's be safe instead and only
2875 	 * copy foreign traffic classes if the two map sizes match.
2876 	 */
2877 	if (dev_maps &&
2878 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879 		copy = true;
2880 
2881 	/* allocate memory for queue storage */
2882 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883 	     j < nr_ids;) {
2884 		if (!new_dev_maps) {
2885 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886 			if (!new_dev_maps) {
2887 				mutex_unlock(&xps_map_mutex);
2888 				return -ENOMEM;
2889 			}
2890 
2891 			new_dev_maps->nr_ids = nr_ids;
2892 			new_dev_maps->num_tc = num_tc;
2893 		}
2894 
2895 		tci = j * num_tc + tc;
2896 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897 
2898 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899 		if (!map)
2900 			goto error;
2901 
2902 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903 	}
2904 
2905 	if (!new_dev_maps)
2906 		goto out_no_new_maps;
2907 
2908 	if (!dev_maps) {
2909 		/* Increment static keys at most once per type */
2910 		static_key_slow_inc_cpuslocked(&xps_needed);
2911 		if (type == XPS_RXQS)
2912 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913 	}
2914 
2915 	for (j = 0; j < nr_ids; j++) {
2916 		bool skip_tc = false;
2917 
2918 		tci = j * num_tc + tc;
2919 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2920 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2921 			/* add tx-queue to CPU/rx-queue maps */
2922 			int pos = 0;
2923 
2924 			skip_tc = true;
2925 
2926 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927 			while ((pos < map->len) && (map->queues[pos] != index))
2928 				pos++;
2929 
2930 			if (pos == map->len)
2931 				map->queues[map->len++] = index;
2932 #ifdef CONFIG_NUMA
2933 			if (type == XPS_CPUS) {
2934 				if (numa_node_id == -2)
2935 					numa_node_id = cpu_to_node(j);
2936 				else if (numa_node_id != cpu_to_node(j))
2937 					numa_node_id = -1;
2938 			}
2939 #endif
2940 		}
2941 
2942 		if (copy)
2943 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944 					  skip_tc);
2945 	}
2946 
2947 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948 
2949 	/* Cleanup old maps */
2950 	if (!dev_maps)
2951 		goto out_no_old_maps;
2952 
2953 	for (j = 0; j < dev_maps->nr_ids; j++) {
2954 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955 			map = xmap_dereference(dev_maps->attr_map[tci]);
2956 			if (!map)
2957 				continue;
2958 
2959 			if (copy) {
2960 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961 				if (map == new_map)
2962 					continue;
2963 			}
2964 
2965 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966 			kfree_rcu(map, rcu);
2967 		}
2968 	}
2969 
2970 	old_dev_maps = dev_maps;
2971 
2972 out_no_old_maps:
2973 	dev_maps = new_dev_maps;
2974 	active = true;
2975 
2976 out_no_new_maps:
2977 	if (type == XPS_CPUS)
2978 		/* update Tx queue numa node */
2979 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980 					     (numa_node_id >= 0) ?
2981 					     numa_node_id : NUMA_NO_NODE);
2982 
2983 	if (!dev_maps)
2984 		goto out_no_maps;
2985 
2986 	/* removes tx-queue from unused CPUs/rx-queues */
2987 	for (j = 0; j < dev_maps->nr_ids; j++) {
2988 		tci = j * dev_maps->num_tc;
2989 
2990 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991 			if (i == tc &&
2992 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994 				continue;
2995 
2996 			active |= remove_xps_queue(dev_maps,
2997 						   copy ? old_dev_maps : NULL,
2998 						   tci, index);
2999 		}
3000 	}
3001 
3002 	if (old_dev_maps)
3003 		kfree_rcu(old_dev_maps, rcu);
3004 
3005 	/* free map if not active */
3006 	if (!active)
3007 		reset_xps_maps(dev, dev_maps, type);
3008 
3009 out_no_maps:
3010 	mutex_unlock(&xps_map_mutex);
3011 
3012 	return 0;
3013 error:
3014 	/* remove any maps that we added */
3015 	for (j = 0; j < nr_ids; j++) {
3016 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018 			map = copy ?
3019 			      xmap_dereference(dev_maps->attr_map[tci]) :
3020 			      NULL;
3021 			if (new_map && new_map != map)
3022 				kfree(new_map);
3023 		}
3024 	}
3025 
3026 	mutex_unlock(&xps_map_mutex);
3027 
3028 	kfree(new_dev_maps);
3029 	return -ENOMEM;
3030 }
3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034 			u16 index)
3035 {
3036 	int ret;
3037 
3038 	cpus_read_lock();
3039 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040 	cpus_read_unlock();
3041 
3042 	return ret;
3043 }
3044 EXPORT_SYMBOL(netif_set_xps_queue);
3045 
3046 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3047 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048 {
3049 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050 
3051 	/* Unbind any subordinate channels */
3052 	while (txq-- != &dev->_tx[0]) {
3053 		if (txq->sb_dev)
3054 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3055 	}
3056 }
3057 
netdev_reset_tc(struct net_device * dev)3058 void netdev_reset_tc(struct net_device *dev)
3059 {
3060 #ifdef CONFIG_XPS
3061 	netif_reset_xps_queues_gt(dev, 0);
3062 #endif
3063 	netdev_unbind_all_sb_channels(dev);
3064 
3065 	/* Reset TC configuration of device */
3066 	dev->num_tc = 0;
3067 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069 }
3070 EXPORT_SYMBOL(netdev_reset_tc);
3071 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073 {
3074 	if (tc >= dev->num_tc)
3075 		return -EINVAL;
3076 
3077 #ifdef CONFIG_XPS
3078 	netif_reset_xps_queues(dev, offset, count);
3079 #endif
3080 	dev->tc_to_txq[tc].count = count;
3081 	dev->tc_to_txq[tc].offset = offset;
3082 	return 0;
3083 }
3084 EXPORT_SYMBOL(netdev_set_tc_queue);
3085 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087 {
3088 	if (num_tc > TC_MAX_QUEUE)
3089 		return -EINVAL;
3090 
3091 #ifdef CONFIG_XPS
3092 	netif_reset_xps_queues_gt(dev, 0);
3093 #endif
3094 	netdev_unbind_all_sb_channels(dev);
3095 
3096 	dev->num_tc = num_tc;
3097 	return 0;
3098 }
3099 EXPORT_SYMBOL(netdev_set_num_tc);
3100 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3101 void netdev_unbind_sb_channel(struct net_device *dev,
3102 			      struct net_device *sb_dev)
3103 {
3104 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105 
3106 #ifdef CONFIG_XPS
3107 	netif_reset_xps_queues_gt(sb_dev, 0);
3108 #endif
3109 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111 
3112 	while (txq-- != &dev->_tx[0]) {
3113 		if (txq->sb_dev == sb_dev)
3114 			txq->sb_dev = NULL;
3115 	}
3116 }
3117 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3119 int netdev_bind_sb_channel_queue(struct net_device *dev,
3120 				 struct net_device *sb_dev,
3121 				 u8 tc, u16 count, u16 offset)
3122 {
3123 	/* Make certain the sb_dev and dev are already configured */
3124 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125 		return -EINVAL;
3126 
3127 	/* We cannot hand out queues we don't have */
3128 	if ((offset + count) > dev->real_num_tx_queues)
3129 		return -EINVAL;
3130 
3131 	/* Record the mapping */
3132 	sb_dev->tc_to_txq[tc].count = count;
3133 	sb_dev->tc_to_txq[tc].offset = offset;
3134 
3135 	/* Provide a way for Tx queue to find the tc_to_txq map or
3136 	 * XPS map for itself.
3137 	 */
3138 	while (count--)
3139 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140 
3141 	return 0;
3142 }
3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144 
netdev_set_sb_channel(struct net_device * dev,u16 channel)3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146 {
3147 	/* Do not use a multiqueue device to represent a subordinate channel */
3148 	if (netif_is_multiqueue(dev))
3149 		return -ENODEV;
3150 
3151 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3152 	 * Channel 0 is meant to be "native" mode and used only to represent
3153 	 * the main root device. We allow writing 0 to reset the device back
3154 	 * to normal mode after being used as a subordinate channel.
3155 	 */
3156 	if (channel > S16_MAX)
3157 		return -EINVAL;
3158 
3159 	dev->num_tc = -channel;
3160 
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_set_sb_channel);
3164 
3165 /*
3166  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170 {
3171 	bool disabling;
3172 	int rc;
3173 
3174 	disabling = txq < dev->real_num_tx_queues;
3175 
3176 	if (txq < 1 || txq > dev->num_tx_queues)
3177 		return -EINVAL;
3178 
3179 	if (dev->reg_state == NETREG_REGISTERED ||
3180 	    dev->reg_state == NETREG_UNREGISTERING) {
3181 		netdev_ops_assert_locked(dev);
3182 
3183 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184 						  txq);
3185 		if (rc)
3186 			return rc;
3187 
3188 		if (dev->num_tc)
3189 			netif_setup_tc(dev, txq);
3190 
3191 		net_shaper_set_real_num_tx_queues(dev, txq);
3192 
3193 		dev_qdisc_change_real_num_tx(dev, txq);
3194 
3195 		dev->real_num_tx_queues = txq;
3196 
3197 		if (disabling) {
3198 			synchronize_net();
3199 			qdisc_reset_all_tx_gt(dev, txq);
3200 #ifdef CONFIG_XPS
3201 			netif_reset_xps_queues_gt(dev, txq);
3202 #endif
3203 		}
3204 	} else {
3205 		dev->real_num_tx_queues = txq;
3206 	}
3207 
3208 	return 0;
3209 }
3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211 
3212 /**
3213  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3214  *	@dev: Network device
3215  *	@rxq: Actual number of RX queues
3216  *
3217  *	This must be called either with the rtnl_lock held or before
3218  *	registration of the net device.  Returns 0 on success, or a
3219  *	negative error code.  If called before registration, it always
3220  *	succeeds.
3221  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223 {
3224 	int rc;
3225 
3226 	if (rxq < 1 || rxq > dev->num_rx_queues)
3227 		return -EINVAL;
3228 
3229 	if (dev->reg_state == NETREG_REGISTERED) {
3230 		netdev_ops_assert_locked(dev);
3231 
3232 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233 						  rxq);
3234 		if (rc)
3235 			return rc;
3236 	}
3237 
3238 	dev->real_num_rx_queues = rxq;
3239 	return 0;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242 
3243 /**
3244  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3245  *	@dev: Network device
3246  *	@txq: Actual number of TX queues
3247  *	@rxq: Actual number of RX queues
3248  *
3249  *	Set the real number of both TX and RX queues.
3250  *	Does nothing if the number of queues is already correct.
3251  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3252 int netif_set_real_num_queues(struct net_device *dev,
3253 			      unsigned int txq, unsigned int rxq)
3254 {
3255 	unsigned int old_rxq = dev->real_num_rx_queues;
3256 	int err;
3257 
3258 	if (txq < 1 || txq > dev->num_tx_queues ||
3259 	    rxq < 1 || rxq > dev->num_rx_queues)
3260 		return -EINVAL;
3261 
3262 	/* Start from increases, so the error path only does decreases -
3263 	 * decreases can't fail.
3264 	 */
3265 	if (rxq > dev->real_num_rx_queues) {
3266 		err = netif_set_real_num_rx_queues(dev, rxq);
3267 		if (err)
3268 			return err;
3269 	}
3270 	if (txq > dev->real_num_tx_queues) {
3271 		err = netif_set_real_num_tx_queues(dev, txq);
3272 		if (err)
3273 			goto undo_rx;
3274 	}
3275 	if (rxq < dev->real_num_rx_queues)
3276 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277 	if (txq < dev->real_num_tx_queues)
3278 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279 
3280 	return 0;
3281 undo_rx:
3282 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283 	return err;
3284 }
3285 EXPORT_SYMBOL(netif_set_real_num_queues);
3286 
3287 /**
3288  * netif_set_tso_max_size() - set the max size of TSO frames supported
3289  * @dev:	netdev to update
3290  * @size:	max skb->len of a TSO frame
3291  *
3292  * Set the limit on the size of TSO super-frames the device can handle.
3293  * Unless explicitly set the stack will assume the value of
3294  * %GSO_LEGACY_MAX_SIZE.
3295  */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297 {
3298 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299 	if (size < READ_ONCE(dev->gso_max_size))
3300 		netif_set_gso_max_size(dev, size);
3301 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302 		netif_set_gso_ipv4_max_size(dev, size);
3303 }
3304 EXPORT_SYMBOL(netif_set_tso_max_size);
3305 
3306 /**
3307  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308  * @dev:	netdev to update
3309  * @segs:	max number of TCP segments
3310  *
3311  * Set the limit on the number of TCP segments the device can generate from
3312  * a single TSO super-frame.
3313  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314  */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316 {
3317 	dev->tso_max_segs = segs;
3318 	if (segs < READ_ONCE(dev->gso_max_segs))
3319 		netif_set_gso_max_segs(dev, segs);
3320 }
3321 EXPORT_SYMBOL(netif_set_tso_max_segs);
3322 
3323 /**
3324  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325  * @to:		netdev to update
3326  * @from:	netdev from which to copy the limits
3327  */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329 {
3330 	netif_set_tso_max_size(to, from->tso_max_size);
3331 	netif_set_tso_max_segs(to, from->tso_max_segs);
3332 }
3333 EXPORT_SYMBOL(netif_inherit_tso_max);
3334 
3335 /**
3336  * netif_get_num_default_rss_queues - default number of RSS queues
3337  *
3338  * Default value is the number of physical cores if there are only 1 or 2, or
3339  * divided by 2 if there are more.
3340  */
netif_get_num_default_rss_queues(void)3341 int netif_get_num_default_rss_queues(void)
3342 {
3343 	cpumask_var_t cpus;
3344 	int cpu, count = 0;
3345 
3346 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347 		return 1;
3348 
3349 	cpumask_copy(cpus, cpu_online_mask);
3350 	for_each_cpu(cpu, cpus) {
3351 		++count;
3352 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353 	}
3354 	free_cpumask_var(cpus);
3355 
3356 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357 }
3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359 
__netif_reschedule(struct Qdisc * q)3360 static void __netif_reschedule(struct Qdisc *q)
3361 {
3362 	struct softnet_data *sd;
3363 	unsigned long flags;
3364 
3365 	local_irq_save(flags);
3366 	sd = this_cpu_ptr(&softnet_data);
3367 	q->next_sched = NULL;
3368 	*sd->output_queue_tailp = q;
3369 	sd->output_queue_tailp = &q->next_sched;
3370 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371 	local_irq_restore(flags);
3372 }
3373 
__netif_schedule(struct Qdisc * q)3374 void __netif_schedule(struct Qdisc *q)
3375 {
3376 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377 		__netif_reschedule(q);
3378 }
3379 EXPORT_SYMBOL(__netif_schedule);
3380 
3381 struct dev_kfree_skb_cb {
3382 	enum skb_drop_reason reason;
3383 };
3384 
get_kfree_skb_cb(const struct sk_buff * skb)3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386 {
3387 	return (struct dev_kfree_skb_cb *)skb->cb;
3388 }
3389 
netif_schedule_queue(struct netdev_queue * txq)3390 void netif_schedule_queue(struct netdev_queue *txq)
3391 {
3392 	rcu_read_lock();
3393 	if (!netif_xmit_stopped(txq)) {
3394 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3395 
3396 		__netif_schedule(q);
3397 	}
3398 	rcu_read_unlock();
3399 }
3400 EXPORT_SYMBOL(netif_schedule_queue);
3401 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403 {
3404 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405 		struct Qdisc *q;
3406 
3407 		rcu_read_lock();
3408 		q = rcu_dereference(dev_queue->qdisc);
3409 		__netif_schedule(q);
3410 		rcu_read_unlock();
3411 	}
3412 }
3413 EXPORT_SYMBOL(netif_tx_wake_queue);
3414 
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416 {
3417 	unsigned long flags;
3418 
3419 	if (unlikely(!skb))
3420 		return;
3421 
3422 	if (likely(refcount_read(&skb->users) == 1)) {
3423 		smp_rmb();
3424 		refcount_set(&skb->users, 0);
3425 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3426 		return;
3427 	}
3428 	get_kfree_skb_cb(skb)->reason = reason;
3429 	local_irq_save(flags);
3430 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3431 	__this_cpu_write(softnet_data.completion_queue, skb);
3432 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433 	local_irq_restore(flags);
3434 }
3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436 
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438 {
3439 	if (in_hardirq() || irqs_disabled())
3440 		dev_kfree_skb_irq_reason(skb, reason);
3441 	else
3442 		kfree_skb_reason(skb, reason);
3443 }
3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445 
3446 
3447 /**
3448  * netif_device_detach - mark device as removed
3449  * @dev: network device
3450  *
3451  * Mark device as removed from system and therefore no longer available.
3452  */
netif_device_detach(struct net_device * dev)3453 void netif_device_detach(struct net_device *dev)
3454 {
3455 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456 	    netif_running(dev)) {
3457 		netif_tx_stop_all_queues(dev);
3458 	}
3459 }
3460 EXPORT_SYMBOL(netif_device_detach);
3461 
3462 /**
3463  * netif_device_attach - mark device as attached
3464  * @dev: network device
3465  *
3466  * Mark device as attached from system and restart if needed.
3467  */
netif_device_attach(struct net_device * dev)3468 void netif_device_attach(struct net_device *dev)
3469 {
3470 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471 	    netif_running(dev)) {
3472 		netif_tx_wake_all_queues(dev);
3473 		netdev_watchdog_up(dev);
3474 	}
3475 }
3476 EXPORT_SYMBOL(netif_device_attach);
3477 
3478 /*
3479  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480  * to be used as a distribution range.
3481  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3482 static u16 skb_tx_hash(const struct net_device *dev,
3483 		       const struct net_device *sb_dev,
3484 		       struct sk_buff *skb)
3485 {
3486 	u32 hash;
3487 	u16 qoffset = 0;
3488 	u16 qcount = dev->real_num_tx_queues;
3489 
3490 	if (dev->num_tc) {
3491 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492 
3493 		qoffset = sb_dev->tc_to_txq[tc].offset;
3494 		qcount = sb_dev->tc_to_txq[tc].count;
3495 		if (unlikely(!qcount)) {
3496 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497 					     sb_dev->name, qoffset, tc);
3498 			qoffset = 0;
3499 			qcount = dev->real_num_tx_queues;
3500 		}
3501 	}
3502 
3503 	if (skb_rx_queue_recorded(skb)) {
3504 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505 		hash = skb_get_rx_queue(skb);
3506 		if (hash >= qoffset)
3507 			hash -= qoffset;
3508 		while (unlikely(hash >= qcount))
3509 			hash -= qcount;
3510 		return hash + qoffset;
3511 	}
3512 
3513 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514 }
3515 
skb_warn_bad_offload(const struct sk_buff * skb)3516 void skb_warn_bad_offload(const struct sk_buff *skb)
3517 {
3518 	static const netdev_features_t null_features;
3519 	struct net_device *dev = skb->dev;
3520 	const char *name = "";
3521 
3522 	if (!net_ratelimit())
3523 		return;
3524 
3525 	if (dev) {
3526 		if (dev->dev.parent)
3527 			name = dev_driver_string(dev->dev.parent);
3528 		else
3529 			name = netdev_name(dev);
3530 	}
3531 	skb_dump(KERN_WARNING, skb, false);
3532 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533 	     name, dev ? &dev->features : &null_features,
3534 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535 }
3536 
3537 /*
3538  * Invalidate hardware checksum when packet is to be mangled, and
3539  * complete checksum manually on outgoing path.
3540  */
skb_checksum_help(struct sk_buff * skb)3541 int skb_checksum_help(struct sk_buff *skb)
3542 {
3543 	__wsum csum;
3544 	int ret = 0, offset;
3545 
3546 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3547 		goto out_set_summed;
3548 
3549 	if (unlikely(skb_is_gso(skb))) {
3550 		skb_warn_bad_offload(skb);
3551 		return -EINVAL;
3552 	}
3553 
3554 	if (!skb_frags_readable(skb)) {
3555 		return -EFAULT;
3556 	}
3557 
3558 	/* Before computing a checksum, we should make sure no frag could
3559 	 * be modified by an external entity : checksum could be wrong.
3560 	 */
3561 	if (skb_has_shared_frag(skb)) {
3562 		ret = __skb_linearize(skb);
3563 		if (ret)
3564 			goto out;
3565 	}
3566 
3567 	offset = skb_checksum_start_offset(skb);
3568 	ret = -EINVAL;
3569 	if (unlikely(offset >= skb_headlen(skb))) {
3570 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572 			  offset, skb_headlen(skb));
3573 		goto out;
3574 	}
3575 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576 
3577 	offset += skb->csum_offset;
3578 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581 			  offset + sizeof(__sum16), skb_headlen(skb));
3582 		goto out;
3583 	}
3584 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585 	if (ret)
3586 		goto out;
3587 
3588 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589 out_set_summed:
3590 	skb->ip_summed = CHECKSUM_NONE;
3591 out:
3592 	return ret;
3593 }
3594 EXPORT_SYMBOL(skb_checksum_help);
3595 
3596 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3597 int skb_crc32c_csum_help(struct sk_buff *skb)
3598 {
3599 	u32 crc;
3600 	int ret = 0, offset, start;
3601 
3602 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3603 		goto out;
3604 
3605 	if (unlikely(skb_is_gso(skb)))
3606 		goto out;
3607 
3608 	/* Before computing a checksum, we should make sure no frag could
3609 	 * be modified by an external entity : checksum could be wrong.
3610 	 */
3611 	if (unlikely(skb_has_shared_frag(skb))) {
3612 		ret = __skb_linearize(skb);
3613 		if (ret)
3614 			goto out;
3615 	}
3616 	start = skb_checksum_start_offset(skb);
3617 	offset = start + offsetof(struct sctphdr, checksum);
3618 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619 		ret = -EINVAL;
3620 		goto out;
3621 	}
3622 
3623 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624 	if (ret)
3625 		goto out;
3626 
3627 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629 	skb_reset_csum_not_inet(skb);
3630 out:
3631 	return ret;
3632 }
3633 EXPORT_SYMBOL(skb_crc32c_csum_help);
3634 #endif /* CONFIG_NET_CRC32C */
3635 
skb_network_protocol(struct sk_buff * skb,int * depth)3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637 {
3638 	__be16 type = skb->protocol;
3639 
3640 	/* Tunnel gso handlers can set protocol to ethernet. */
3641 	if (type == htons(ETH_P_TEB)) {
3642 		struct ethhdr *eth;
3643 
3644 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645 			return 0;
3646 
3647 		eth = (struct ethhdr *)skb->data;
3648 		type = eth->h_proto;
3649 	}
3650 
3651 	return vlan_get_protocol_and_depth(skb, type, depth);
3652 }
3653 
3654 
3655 /* Take action when hardware reception checksum errors are detected. */
3656 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658 {
3659 	netdev_err(dev, "hw csum failure\n");
3660 	skb_dump(KERN_ERR, skb, true);
3661 	dump_stack();
3662 }
3663 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665 {
3666 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667 }
3668 EXPORT_SYMBOL(netdev_rx_csum_fault);
3669 #endif
3670 
3671 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 #ifdef CONFIG_HIGHMEM
3675 	int i;
3676 
3677 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3678 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680 			struct page *page = skb_frag_page(frag);
3681 
3682 			if (page && PageHighMem(page))
3683 				return 1;
3684 		}
3685 	}
3686 #endif
3687 	return 0;
3688 }
3689 
3690 /* If MPLS offload request, verify we are testing hardware MPLS features
3691  * instead of standard features for the netdev.
3692  */
3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3694 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695 					   netdev_features_t features,
3696 					   __be16 type)
3697 {
3698 	if (eth_p_mpls(type))
3699 		features &= skb->dev->mpls_features;
3700 
3701 	return features;
3702 }
3703 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3704 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705 					   netdev_features_t features,
3706 					   __be16 type)
3707 {
3708 	return features;
3709 }
3710 #endif
3711 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3712 static netdev_features_t harmonize_features(struct sk_buff *skb,
3713 	netdev_features_t features)
3714 {
3715 	__be16 type;
3716 
3717 	type = skb_network_protocol(skb, NULL);
3718 	features = net_mpls_features(skb, features, type);
3719 
3720 	if (skb->ip_summed != CHECKSUM_NONE &&
3721 	    !can_checksum_protocol(features, type)) {
3722 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723 	}
3724 	if (illegal_highdma(skb->dev, skb))
3725 		features &= ~NETIF_F_SG;
3726 
3727 	return features;
3728 }
3729 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3730 netdev_features_t passthru_features_check(struct sk_buff *skb,
3731 					  struct net_device *dev,
3732 					  netdev_features_t features)
3733 {
3734 	return features;
3735 }
3736 EXPORT_SYMBOL(passthru_features_check);
3737 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3738 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739 					     struct net_device *dev,
3740 					     netdev_features_t features)
3741 {
3742 	return vlan_features_check(skb, features);
3743 }
3744 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3745 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746 					    struct net_device *dev,
3747 					    netdev_features_t features)
3748 {
3749 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750 
3751 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752 		return features & ~NETIF_F_GSO_MASK;
3753 
3754 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755 		return features & ~NETIF_F_GSO_MASK;
3756 
3757 	if (!skb_shinfo(skb)->gso_type) {
3758 		skb_warn_bad_offload(skb);
3759 		return features & ~NETIF_F_GSO_MASK;
3760 	}
3761 
3762 	/* Support for GSO partial features requires software
3763 	 * intervention before we can actually process the packets
3764 	 * so we need to strip support for any partial features now
3765 	 * and we can pull them back in after we have partially
3766 	 * segmented the frame.
3767 	 */
3768 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769 		features &= ~dev->gso_partial_features;
3770 
3771 	/* Make sure to clear the IPv4 ID mangling feature if the
3772 	 * IPv4 header has the potential to be fragmented.
3773 	 */
3774 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3775 		struct iphdr *iph = skb->encapsulation ?
3776 				    inner_ip_hdr(skb) : ip_hdr(skb);
3777 
3778 		if (!(iph->frag_off & htons(IP_DF)))
3779 			features &= ~NETIF_F_TSO_MANGLEID;
3780 	}
3781 
3782 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3783 	 * so neither does TSO that depends on it.
3784 	 */
3785 	if (features & NETIF_F_IPV6_CSUM &&
3786 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3787 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3788 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3789 	    skb_transport_header_was_set(skb) &&
3790 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3791 	    !ipv6_has_hopopt_jumbo(skb))
3792 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3793 
3794 	return features;
3795 }
3796 
netif_skb_features(struct sk_buff * skb)3797 netdev_features_t netif_skb_features(struct sk_buff *skb)
3798 {
3799 	struct net_device *dev = skb->dev;
3800 	netdev_features_t features = dev->features;
3801 
3802 	if (skb_is_gso(skb))
3803 		features = gso_features_check(skb, dev, features);
3804 
3805 	/* If encapsulation offload request, verify we are testing
3806 	 * hardware encapsulation features instead of standard
3807 	 * features for the netdev
3808 	 */
3809 	if (skb->encapsulation)
3810 		features &= dev->hw_enc_features;
3811 
3812 	if (skb_vlan_tagged(skb))
3813 		features = netdev_intersect_features(features,
3814 						     dev->vlan_features |
3815 						     NETIF_F_HW_VLAN_CTAG_TX |
3816 						     NETIF_F_HW_VLAN_STAG_TX);
3817 
3818 	if (dev->netdev_ops->ndo_features_check)
3819 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3820 								features);
3821 	else
3822 		features &= dflt_features_check(skb, dev, features);
3823 
3824 	return harmonize_features(skb, features);
3825 }
3826 EXPORT_SYMBOL(netif_skb_features);
3827 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3828 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3829 		    struct netdev_queue *txq, bool more)
3830 {
3831 	unsigned int len;
3832 	int rc;
3833 
3834 	if (dev_nit_active_rcu(dev))
3835 		dev_queue_xmit_nit(skb, dev);
3836 
3837 	len = skb->len;
3838 	trace_net_dev_start_xmit(skb, dev);
3839 	rc = netdev_start_xmit(skb, dev, txq, more);
3840 	trace_net_dev_xmit(skb, rc, dev, len);
3841 
3842 	return rc;
3843 }
3844 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3845 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3846 				    struct netdev_queue *txq, int *ret)
3847 {
3848 	struct sk_buff *skb = first;
3849 	int rc = NETDEV_TX_OK;
3850 
3851 	while (skb) {
3852 		struct sk_buff *next = skb->next;
3853 
3854 		skb_mark_not_on_list(skb);
3855 		rc = xmit_one(skb, dev, txq, next != NULL);
3856 		if (unlikely(!dev_xmit_complete(rc))) {
3857 			skb->next = next;
3858 			goto out;
3859 		}
3860 
3861 		skb = next;
3862 		if (netif_tx_queue_stopped(txq) && skb) {
3863 			rc = NETDEV_TX_BUSY;
3864 			break;
3865 		}
3866 	}
3867 
3868 out:
3869 	*ret = rc;
3870 	return skb;
3871 }
3872 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3873 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3874 					  netdev_features_t features)
3875 {
3876 	if (skb_vlan_tag_present(skb) &&
3877 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3878 		skb = __vlan_hwaccel_push_inside(skb);
3879 	return skb;
3880 }
3881 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3882 int skb_csum_hwoffload_help(struct sk_buff *skb,
3883 			    const netdev_features_t features)
3884 {
3885 	if (unlikely(skb_csum_is_sctp(skb)))
3886 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3887 			skb_crc32c_csum_help(skb);
3888 
3889 	if (features & NETIF_F_HW_CSUM)
3890 		return 0;
3891 
3892 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3893 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3894 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3895 		    !ipv6_has_hopopt_jumbo(skb))
3896 			goto sw_checksum;
3897 
3898 		switch (skb->csum_offset) {
3899 		case offsetof(struct tcphdr, check):
3900 		case offsetof(struct udphdr, check):
3901 			return 0;
3902 		}
3903 	}
3904 
3905 sw_checksum:
3906 	return skb_checksum_help(skb);
3907 }
3908 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3909 
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3910 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3911 						    struct net_device *dev)
3912 {
3913 	struct skb_shared_info *shinfo;
3914 	struct net_iov *niov;
3915 
3916 	if (likely(skb_frags_readable(skb)))
3917 		goto out;
3918 
3919 	if (!dev->netmem_tx)
3920 		goto out_free;
3921 
3922 	shinfo = skb_shinfo(skb);
3923 
3924 	if (shinfo->nr_frags > 0) {
3925 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3926 		if (net_is_devmem_iov(niov) &&
3927 		    net_devmem_iov_binding(niov)->dev != dev)
3928 			goto out_free;
3929 	}
3930 
3931 out:
3932 	return skb;
3933 
3934 out_free:
3935 	kfree_skb(skb);
3936 	return NULL;
3937 }
3938 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3939 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3940 {
3941 	netdev_features_t features;
3942 
3943 	skb = validate_xmit_unreadable_skb(skb, dev);
3944 	if (unlikely(!skb))
3945 		goto out_null;
3946 
3947 	features = netif_skb_features(skb);
3948 	skb = validate_xmit_vlan(skb, features);
3949 	if (unlikely(!skb))
3950 		goto out_null;
3951 
3952 	skb = sk_validate_xmit_skb(skb, dev);
3953 	if (unlikely(!skb))
3954 		goto out_null;
3955 
3956 	if (netif_needs_gso(skb, features)) {
3957 		struct sk_buff *segs;
3958 
3959 		segs = skb_gso_segment(skb, features);
3960 		if (IS_ERR(segs)) {
3961 			goto out_kfree_skb;
3962 		} else if (segs) {
3963 			consume_skb(skb);
3964 			skb = segs;
3965 		}
3966 	} else {
3967 		if (skb_needs_linearize(skb, features) &&
3968 		    __skb_linearize(skb))
3969 			goto out_kfree_skb;
3970 
3971 		/* If packet is not checksummed and device does not
3972 		 * support checksumming for this protocol, complete
3973 		 * checksumming here.
3974 		 */
3975 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3976 			if (skb->encapsulation)
3977 				skb_set_inner_transport_header(skb,
3978 							       skb_checksum_start_offset(skb));
3979 			else
3980 				skb_set_transport_header(skb,
3981 							 skb_checksum_start_offset(skb));
3982 			if (skb_csum_hwoffload_help(skb, features))
3983 				goto out_kfree_skb;
3984 		}
3985 	}
3986 
3987 	skb = validate_xmit_xfrm(skb, features, again);
3988 
3989 	return skb;
3990 
3991 out_kfree_skb:
3992 	kfree_skb(skb);
3993 out_null:
3994 	dev_core_stats_tx_dropped_inc(dev);
3995 	return NULL;
3996 }
3997 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3998 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3999 {
4000 	struct sk_buff *next, *head = NULL, *tail;
4001 
4002 	for (; skb != NULL; skb = next) {
4003 		next = skb->next;
4004 		skb_mark_not_on_list(skb);
4005 
4006 		/* in case skb won't be segmented, point to itself */
4007 		skb->prev = skb;
4008 
4009 		skb = validate_xmit_skb(skb, dev, again);
4010 		if (!skb)
4011 			continue;
4012 
4013 		if (!head)
4014 			head = skb;
4015 		else
4016 			tail->next = skb;
4017 		/* If skb was segmented, skb->prev points to
4018 		 * the last segment. If not, it still contains skb.
4019 		 */
4020 		tail = skb->prev;
4021 	}
4022 	return head;
4023 }
4024 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4025 
qdisc_pkt_len_init(struct sk_buff * skb)4026 static void qdisc_pkt_len_init(struct sk_buff *skb)
4027 {
4028 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4029 
4030 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4031 
4032 	/* To get more precise estimation of bytes sent on wire,
4033 	 * we add to pkt_len the headers size of all segments
4034 	 */
4035 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4036 		u16 gso_segs = shinfo->gso_segs;
4037 		unsigned int hdr_len;
4038 
4039 		/* mac layer + network layer */
4040 		if (!skb->encapsulation)
4041 			hdr_len = skb_transport_offset(skb);
4042 		else
4043 			hdr_len = skb_inner_transport_offset(skb);
4044 
4045 		/* + transport layer */
4046 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4047 			const struct tcphdr *th;
4048 			struct tcphdr _tcphdr;
4049 
4050 			th = skb_header_pointer(skb, hdr_len,
4051 						sizeof(_tcphdr), &_tcphdr);
4052 			if (likely(th))
4053 				hdr_len += __tcp_hdrlen(th);
4054 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4055 			struct udphdr _udphdr;
4056 
4057 			if (skb_header_pointer(skb, hdr_len,
4058 					       sizeof(_udphdr), &_udphdr))
4059 				hdr_len += sizeof(struct udphdr);
4060 		}
4061 
4062 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4063 			int payload = skb->len - hdr_len;
4064 
4065 			/* Malicious packet. */
4066 			if (payload <= 0)
4067 				return;
4068 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4069 		}
4070 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4071 	}
4072 }
4073 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4074 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4075 			     struct sk_buff **to_free,
4076 			     struct netdev_queue *txq)
4077 {
4078 	int rc;
4079 
4080 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4081 	if (rc == NET_XMIT_SUCCESS)
4082 		trace_qdisc_enqueue(q, txq, skb);
4083 	return rc;
4084 }
4085 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4086 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4087 				 struct net_device *dev,
4088 				 struct netdev_queue *txq)
4089 {
4090 	spinlock_t *root_lock = qdisc_lock(q);
4091 	struct sk_buff *to_free = NULL;
4092 	bool contended;
4093 	int rc;
4094 
4095 	qdisc_calculate_pkt_len(skb, q);
4096 
4097 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4098 
4099 	if (q->flags & TCQ_F_NOLOCK) {
4100 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4101 		    qdisc_run_begin(q)) {
4102 			/* Retest nolock_qdisc_is_empty() within the protection
4103 			 * of q->seqlock to protect from racing with requeuing.
4104 			 */
4105 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4106 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4107 				__qdisc_run(q);
4108 				qdisc_run_end(q);
4109 
4110 				goto no_lock_out;
4111 			}
4112 
4113 			qdisc_bstats_cpu_update(q, skb);
4114 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4115 			    !nolock_qdisc_is_empty(q))
4116 				__qdisc_run(q);
4117 
4118 			qdisc_run_end(q);
4119 			return NET_XMIT_SUCCESS;
4120 		}
4121 
4122 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4123 		qdisc_run(q);
4124 
4125 no_lock_out:
4126 		if (unlikely(to_free))
4127 			kfree_skb_list_reason(to_free,
4128 					      tcf_get_drop_reason(to_free));
4129 		return rc;
4130 	}
4131 
4132 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4133 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4134 		return NET_XMIT_DROP;
4135 	}
4136 	/*
4137 	 * Heuristic to force contended enqueues to serialize on a
4138 	 * separate lock before trying to get qdisc main lock.
4139 	 * This permits qdisc->running owner to get the lock more
4140 	 * often and dequeue packets faster.
4141 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4142 	 * and then other tasks will only enqueue packets. The packets will be
4143 	 * sent after the qdisc owner is scheduled again. To prevent this
4144 	 * scenario the task always serialize on the lock.
4145 	 */
4146 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4147 	if (unlikely(contended))
4148 		spin_lock(&q->busylock);
4149 
4150 	spin_lock(root_lock);
4151 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4152 		__qdisc_drop(skb, &to_free);
4153 		rc = NET_XMIT_DROP;
4154 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4155 		   qdisc_run_begin(q)) {
4156 		/*
4157 		 * This is a work-conserving queue; there are no old skbs
4158 		 * waiting to be sent out; and the qdisc is not running -
4159 		 * xmit the skb directly.
4160 		 */
4161 
4162 		qdisc_bstats_update(q, skb);
4163 
4164 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4165 			if (unlikely(contended)) {
4166 				spin_unlock(&q->busylock);
4167 				contended = false;
4168 			}
4169 			__qdisc_run(q);
4170 		}
4171 
4172 		qdisc_run_end(q);
4173 		rc = NET_XMIT_SUCCESS;
4174 	} else {
4175 		WRITE_ONCE(q->owner, smp_processor_id());
4176 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4177 		WRITE_ONCE(q->owner, -1);
4178 		if (qdisc_run_begin(q)) {
4179 			if (unlikely(contended)) {
4180 				spin_unlock(&q->busylock);
4181 				contended = false;
4182 			}
4183 			__qdisc_run(q);
4184 			qdisc_run_end(q);
4185 		}
4186 	}
4187 	spin_unlock(root_lock);
4188 	if (unlikely(to_free))
4189 		kfree_skb_list_reason(to_free,
4190 				      tcf_get_drop_reason(to_free));
4191 	if (unlikely(contended))
4192 		spin_unlock(&q->busylock);
4193 	return rc;
4194 }
4195 
4196 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4197 static void skb_update_prio(struct sk_buff *skb)
4198 {
4199 	const struct netprio_map *map;
4200 	const struct sock *sk;
4201 	unsigned int prioidx;
4202 
4203 	if (skb->priority)
4204 		return;
4205 	map = rcu_dereference_bh(skb->dev->priomap);
4206 	if (!map)
4207 		return;
4208 	sk = skb_to_full_sk(skb);
4209 	if (!sk)
4210 		return;
4211 
4212 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4213 
4214 	if (prioidx < map->priomap_len)
4215 		skb->priority = map->priomap[prioidx];
4216 }
4217 #else
4218 #define skb_update_prio(skb)
4219 #endif
4220 
4221 /**
4222  *	dev_loopback_xmit - loop back @skb
4223  *	@net: network namespace this loopback is happening in
4224  *	@sk:  sk needed to be a netfilter okfn
4225  *	@skb: buffer to transmit
4226  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4227 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4228 {
4229 	skb_reset_mac_header(skb);
4230 	__skb_pull(skb, skb_network_offset(skb));
4231 	skb->pkt_type = PACKET_LOOPBACK;
4232 	if (skb->ip_summed == CHECKSUM_NONE)
4233 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4234 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4235 	skb_dst_force(skb);
4236 	netif_rx(skb);
4237 	return 0;
4238 }
4239 EXPORT_SYMBOL(dev_loopback_xmit);
4240 
4241 #ifdef CONFIG_NET_EGRESS
4242 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4243 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4244 {
4245 	int qm = skb_get_queue_mapping(skb);
4246 
4247 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4248 }
4249 
4250 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4251 static bool netdev_xmit_txqueue_skipped(void)
4252 {
4253 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4254 }
4255 
netdev_xmit_skip_txqueue(bool skip)4256 void netdev_xmit_skip_txqueue(bool skip)
4257 {
4258 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4259 }
4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4261 
4262 #else
netdev_xmit_txqueue_skipped(void)4263 static bool netdev_xmit_txqueue_skipped(void)
4264 {
4265 	return current->net_xmit.skip_txqueue;
4266 }
4267 
netdev_xmit_skip_txqueue(bool skip)4268 void netdev_xmit_skip_txqueue(bool skip)
4269 {
4270 	current->net_xmit.skip_txqueue = skip;
4271 }
4272 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4273 #endif
4274 #endif /* CONFIG_NET_EGRESS */
4275 
4276 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4277 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4278 		  enum skb_drop_reason *drop_reason)
4279 {
4280 	int ret = TC_ACT_UNSPEC;
4281 #ifdef CONFIG_NET_CLS_ACT
4282 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4283 	struct tcf_result res;
4284 
4285 	if (!miniq)
4286 		return ret;
4287 
4288 	/* Global bypass */
4289 	if (!static_branch_likely(&tcf_sw_enabled_key))
4290 		return ret;
4291 
4292 	/* Block-wise bypass */
4293 	if (tcf_block_bypass_sw(miniq->block))
4294 		return ret;
4295 
4296 	tc_skb_cb(skb)->mru = 0;
4297 	tc_skb_cb(skb)->post_ct = false;
4298 	tcf_set_drop_reason(skb, *drop_reason);
4299 
4300 	mini_qdisc_bstats_cpu_update(miniq, skb);
4301 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4302 	/* Only tcf related quirks below. */
4303 	switch (ret) {
4304 	case TC_ACT_SHOT:
4305 		*drop_reason = tcf_get_drop_reason(skb);
4306 		mini_qdisc_qstats_cpu_drop(miniq);
4307 		break;
4308 	case TC_ACT_OK:
4309 	case TC_ACT_RECLASSIFY:
4310 		skb->tc_index = TC_H_MIN(res.classid);
4311 		break;
4312 	}
4313 #endif /* CONFIG_NET_CLS_ACT */
4314 	return ret;
4315 }
4316 
4317 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4318 
tcx_inc(void)4319 void tcx_inc(void)
4320 {
4321 	static_branch_inc(&tcx_needed_key);
4322 }
4323 
tcx_dec(void)4324 void tcx_dec(void)
4325 {
4326 	static_branch_dec(&tcx_needed_key);
4327 }
4328 
4329 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4330 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4331 	const bool needs_mac)
4332 {
4333 	const struct bpf_mprog_fp *fp;
4334 	const struct bpf_prog *prog;
4335 	int ret = TCX_NEXT;
4336 
4337 	if (needs_mac)
4338 		__skb_push(skb, skb->mac_len);
4339 	bpf_mprog_foreach_prog(entry, fp, prog) {
4340 		bpf_compute_data_pointers(skb);
4341 		ret = bpf_prog_run(prog, skb);
4342 		if (ret != TCX_NEXT)
4343 			break;
4344 	}
4345 	if (needs_mac)
4346 		__skb_pull(skb, skb->mac_len);
4347 	return tcx_action_code(skb, ret);
4348 }
4349 
4350 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4351 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4352 		   struct net_device *orig_dev, bool *another)
4353 {
4354 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4355 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4356 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4357 	int sch_ret;
4358 
4359 	if (!entry)
4360 		return skb;
4361 
4362 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4363 	if (*pt_prev) {
4364 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4365 		*pt_prev = NULL;
4366 	}
4367 
4368 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4369 	tcx_set_ingress(skb, true);
4370 
4371 	if (static_branch_unlikely(&tcx_needed_key)) {
4372 		sch_ret = tcx_run(entry, skb, true);
4373 		if (sch_ret != TC_ACT_UNSPEC)
4374 			goto ingress_verdict;
4375 	}
4376 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4377 ingress_verdict:
4378 	switch (sch_ret) {
4379 	case TC_ACT_REDIRECT:
4380 		/* skb_mac_header check was done by BPF, so we can safely
4381 		 * push the L2 header back before redirecting to another
4382 		 * netdev.
4383 		 */
4384 		__skb_push(skb, skb->mac_len);
4385 		if (skb_do_redirect(skb) == -EAGAIN) {
4386 			__skb_pull(skb, skb->mac_len);
4387 			*another = true;
4388 			break;
4389 		}
4390 		*ret = NET_RX_SUCCESS;
4391 		bpf_net_ctx_clear(bpf_net_ctx);
4392 		return NULL;
4393 	case TC_ACT_SHOT:
4394 		kfree_skb_reason(skb, drop_reason);
4395 		*ret = NET_RX_DROP;
4396 		bpf_net_ctx_clear(bpf_net_ctx);
4397 		return NULL;
4398 	/* used by tc_run */
4399 	case TC_ACT_STOLEN:
4400 	case TC_ACT_QUEUED:
4401 	case TC_ACT_TRAP:
4402 		consume_skb(skb);
4403 		fallthrough;
4404 	case TC_ACT_CONSUMED:
4405 		*ret = NET_RX_SUCCESS;
4406 		bpf_net_ctx_clear(bpf_net_ctx);
4407 		return NULL;
4408 	}
4409 	bpf_net_ctx_clear(bpf_net_ctx);
4410 
4411 	return skb;
4412 }
4413 
4414 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4415 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4416 {
4417 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4418 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4419 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4420 	int sch_ret;
4421 
4422 	if (!entry)
4423 		return skb;
4424 
4425 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4426 
4427 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4428 	 * already set by the caller.
4429 	 */
4430 	if (static_branch_unlikely(&tcx_needed_key)) {
4431 		sch_ret = tcx_run(entry, skb, false);
4432 		if (sch_ret != TC_ACT_UNSPEC)
4433 			goto egress_verdict;
4434 	}
4435 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4436 egress_verdict:
4437 	switch (sch_ret) {
4438 	case TC_ACT_REDIRECT:
4439 		/* No need to push/pop skb's mac_header here on egress! */
4440 		skb_do_redirect(skb);
4441 		*ret = NET_XMIT_SUCCESS;
4442 		bpf_net_ctx_clear(bpf_net_ctx);
4443 		return NULL;
4444 	case TC_ACT_SHOT:
4445 		kfree_skb_reason(skb, drop_reason);
4446 		*ret = NET_XMIT_DROP;
4447 		bpf_net_ctx_clear(bpf_net_ctx);
4448 		return NULL;
4449 	/* used by tc_run */
4450 	case TC_ACT_STOLEN:
4451 	case TC_ACT_QUEUED:
4452 	case TC_ACT_TRAP:
4453 		consume_skb(skb);
4454 		fallthrough;
4455 	case TC_ACT_CONSUMED:
4456 		*ret = NET_XMIT_SUCCESS;
4457 		bpf_net_ctx_clear(bpf_net_ctx);
4458 		return NULL;
4459 	}
4460 	bpf_net_ctx_clear(bpf_net_ctx);
4461 
4462 	return skb;
4463 }
4464 #else
4465 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4466 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4467 		   struct net_device *orig_dev, bool *another)
4468 {
4469 	return skb;
4470 }
4471 
4472 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4473 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4474 {
4475 	return skb;
4476 }
4477 #endif /* CONFIG_NET_XGRESS */
4478 
4479 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4480 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4481 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4482 {
4483 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4484 	struct xps_map *map;
4485 	int queue_index = -1;
4486 
4487 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4488 		return queue_index;
4489 
4490 	tci *= dev_maps->num_tc;
4491 	tci += tc;
4492 
4493 	map = rcu_dereference(dev_maps->attr_map[tci]);
4494 	if (map) {
4495 		if (map->len == 1)
4496 			queue_index = map->queues[0];
4497 		else
4498 			queue_index = map->queues[reciprocal_scale(
4499 						skb_get_hash(skb), map->len)];
4500 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4501 			queue_index = -1;
4502 	}
4503 	return queue_index;
4504 }
4505 #endif
4506 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4507 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4508 			 struct sk_buff *skb)
4509 {
4510 #ifdef CONFIG_XPS
4511 	struct xps_dev_maps *dev_maps;
4512 	struct sock *sk = skb->sk;
4513 	int queue_index = -1;
4514 
4515 	if (!static_key_false(&xps_needed))
4516 		return -1;
4517 
4518 	rcu_read_lock();
4519 	if (!static_key_false(&xps_rxqs_needed))
4520 		goto get_cpus_map;
4521 
4522 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4523 	if (dev_maps) {
4524 		int tci = sk_rx_queue_get(sk);
4525 
4526 		if (tci >= 0)
4527 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4528 							  tci);
4529 	}
4530 
4531 get_cpus_map:
4532 	if (queue_index < 0) {
4533 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4534 		if (dev_maps) {
4535 			unsigned int tci = skb->sender_cpu - 1;
4536 
4537 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4538 							  tci);
4539 		}
4540 	}
4541 	rcu_read_unlock();
4542 
4543 	return queue_index;
4544 #else
4545 	return -1;
4546 #endif
4547 }
4548 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4549 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4550 		     struct net_device *sb_dev)
4551 {
4552 	return 0;
4553 }
4554 EXPORT_SYMBOL(dev_pick_tx_zero);
4555 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4556 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4557 		     struct net_device *sb_dev)
4558 {
4559 	struct sock *sk = skb->sk;
4560 	int queue_index = sk_tx_queue_get(sk);
4561 
4562 	sb_dev = sb_dev ? : dev;
4563 
4564 	if (queue_index < 0 || skb->ooo_okay ||
4565 	    queue_index >= dev->real_num_tx_queues) {
4566 		int new_index = get_xps_queue(dev, sb_dev, skb);
4567 
4568 		if (new_index < 0)
4569 			new_index = skb_tx_hash(dev, sb_dev, skb);
4570 
4571 		if (queue_index != new_index && sk &&
4572 		    sk_fullsock(sk) &&
4573 		    rcu_access_pointer(sk->sk_dst_cache))
4574 			sk_tx_queue_set(sk, new_index);
4575 
4576 		queue_index = new_index;
4577 	}
4578 
4579 	return queue_index;
4580 }
4581 EXPORT_SYMBOL(netdev_pick_tx);
4582 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4583 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4584 					 struct sk_buff *skb,
4585 					 struct net_device *sb_dev)
4586 {
4587 	int queue_index = 0;
4588 
4589 #ifdef CONFIG_XPS
4590 	u32 sender_cpu = skb->sender_cpu - 1;
4591 
4592 	if (sender_cpu >= (u32)NR_CPUS)
4593 		skb->sender_cpu = raw_smp_processor_id() + 1;
4594 #endif
4595 
4596 	if (dev->real_num_tx_queues != 1) {
4597 		const struct net_device_ops *ops = dev->netdev_ops;
4598 
4599 		if (ops->ndo_select_queue)
4600 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4601 		else
4602 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4603 
4604 		queue_index = netdev_cap_txqueue(dev, queue_index);
4605 	}
4606 
4607 	skb_set_queue_mapping(skb, queue_index);
4608 	return netdev_get_tx_queue(dev, queue_index);
4609 }
4610 
4611 /**
4612  * __dev_queue_xmit() - transmit a buffer
4613  * @skb:	buffer to transmit
4614  * @sb_dev:	suboordinate device used for L2 forwarding offload
4615  *
4616  * Queue a buffer for transmission to a network device. The caller must
4617  * have set the device and priority and built the buffer before calling
4618  * this function. The function can be called from an interrupt.
4619  *
4620  * When calling this method, interrupts MUST be enabled. This is because
4621  * the BH enable code must have IRQs enabled so that it will not deadlock.
4622  *
4623  * Regardless of the return value, the skb is consumed, so it is currently
4624  * difficult to retry a send to this method. (You can bump the ref count
4625  * before sending to hold a reference for retry if you are careful.)
4626  *
4627  * Return:
4628  * * 0				- buffer successfully transmitted
4629  * * positive qdisc return code	- NET_XMIT_DROP etc.
4630  * * negative errno		- other errors
4631  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4632 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4633 {
4634 	struct net_device *dev = skb->dev;
4635 	struct netdev_queue *txq = NULL;
4636 	struct Qdisc *q;
4637 	int rc = -ENOMEM;
4638 	bool again = false;
4639 
4640 	skb_reset_mac_header(skb);
4641 	skb_assert_len(skb);
4642 
4643 	if (unlikely(skb_shinfo(skb)->tx_flags &
4644 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4645 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4646 
4647 	/* Disable soft irqs for various locks below. Also
4648 	 * stops preemption for RCU.
4649 	 */
4650 	rcu_read_lock_bh();
4651 
4652 	skb_update_prio(skb);
4653 
4654 	qdisc_pkt_len_init(skb);
4655 	tcx_set_ingress(skb, false);
4656 #ifdef CONFIG_NET_EGRESS
4657 	if (static_branch_unlikely(&egress_needed_key)) {
4658 		if (nf_hook_egress_active()) {
4659 			skb = nf_hook_egress(skb, &rc, dev);
4660 			if (!skb)
4661 				goto out;
4662 		}
4663 
4664 		netdev_xmit_skip_txqueue(false);
4665 
4666 		nf_skip_egress(skb, true);
4667 		skb = sch_handle_egress(skb, &rc, dev);
4668 		if (!skb)
4669 			goto out;
4670 		nf_skip_egress(skb, false);
4671 
4672 		if (netdev_xmit_txqueue_skipped())
4673 			txq = netdev_tx_queue_mapping(dev, skb);
4674 	}
4675 #endif
4676 	/* If device/qdisc don't need skb->dst, release it right now while
4677 	 * its hot in this cpu cache.
4678 	 */
4679 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4680 		skb_dst_drop(skb);
4681 	else
4682 		skb_dst_force(skb);
4683 
4684 	if (!txq)
4685 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4686 
4687 	q = rcu_dereference_bh(txq->qdisc);
4688 
4689 	trace_net_dev_queue(skb);
4690 	if (q->enqueue) {
4691 		rc = __dev_xmit_skb(skb, q, dev, txq);
4692 		goto out;
4693 	}
4694 
4695 	/* The device has no queue. Common case for software devices:
4696 	 * loopback, all the sorts of tunnels...
4697 
4698 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4699 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4700 	 * counters.)
4701 	 * However, it is possible, that they rely on protection
4702 	 * made by us here.
4703 
4704 	 * Check this and shot the lock. It is not prone from deadlocks.
4705 	 *Either shot noqueue qdisc, it is even simpler 8)
4706 	 */
4707 	if (dev->flags & IFF_UP) {
4708 		int cpu = smp_processor_id(); /* ok because BHs are off */
4709 
4710 		/* Other cpus might concurrently change txq->xmit_lock_owner
4711 		 * to -1 or to their cpu id, but not to our id.
4712 		 */
4713 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4714 			if (dev_xmit_recursion())
4715 				goto recursion_alert;
4716 
4717 			skb = validate_xmit_skb(skb, dev, &again);
4718 			if (!skb)
4719 				goto out;
4720 
4721 			HARD_TX_LOCK(dev, txq, cpu);
4722 
4723 			if (!netif_xmit_stopped(txq)) {
4724 				dev_xmit_recursion_inc();
4725 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4726 				dev_xmit_recursion_dec();
4727 				if (dev_xmit_complete(rc)) {
4728 					HARD_TX_UNLOCK(dev, txq);
4729 					goto out;
4730 				}
4731 			}
4732 			HARD_TX_UNLOCK(dev, txq);
4733 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4734 					     dev->name);
4735 		} else {
4736 			/* Recursion is detected! It is possible,
4737 			 * unfortunately
4738 			 */
4739 recursion_alert:
4740 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4741 					     dev->name);
4742 		}
4743 	}
4744 
4745 	rc = -ENETDOWN;
4746 	rcu_read_unlock_bh();
4747 
4748 	dev_core_stats_tx_dropped_inc(dev);
4749 	kfree_skb_list(skb);
4750 	return rc;
4751 out:
4752 	rcu_read_unlock_bh();
4753 	return rc;
4754 }
4755 EXPORT_SYMBOL(__dev_queue_xmit);
4756 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4757 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4758 {
4759 	struct net_device *dev = skb->dev;
4760 	struct sk_buff *orig_skb = skb;
4761 	struct netdev_queue *txq;
4762 	int ret = NETDEV_TX_BUSY;
4763 	bool again = false;
4764 
4765 	if (unlikely(!netif_running(dev) ||
4766 		     !netif_carrier_ok(dev)))
4767 		goto drop;
4768 
4769 	skb = validate_xmit_skb_list(skb, dev, &again);
4770 	if (skb != orig_skb)
4771 		goto drop;
4772 
4773 	skb_set_queue_mapping(skb, queue_id);
4774 	txq = skb_get_tx_queue(dev, skb);
4775 
4776 	local_bh_disable();
4777 
4778 	dev_xmit_recursion_inc();
4779 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4780 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4781 		ret = netdev_start_xmit(skb, dev, txq, false);
4782 	HARD_TX_UNLOCK(dev, txq);
4783 	dev_xmit_recursion_dec();
4784 
4785 	local_bh_enable();
4786 	return ret;
4787 drop:
4788 	dev_core_stats_tx_dropped_inc(dev);
4789 	kfree_skb_list(skb);
4790 	return NET_XMIT_DROP;
4791 }
4792 EXPORT_SYMBOL(__dev_direct_xmit);
4793 
4794 /*************************************************************************
4795  *			Receiver routines
4796  *************************************************************************/
4797 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4798 
4799 int weight_p __read_mostly = 64;           /* old backlog weight */
4800 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4801 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4802 
4803 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4804 static inline void ____napi_schedule(struct softnet_data *sd,
4805 				     struct napi_struct *napi)
4806 {
4807 	struct task_struct *thread;
4808 
4809 	lockdep_assert_irqs_disabled();
4810 
4811 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4812 		/* Paired with smp_mb__before_atomic() in
4813 		 * napi_enable()/netif_set_threaded().
4814 		 * Use READ_ONCE() to guarantee a complete
4815 		 * read on napi->thread. Only call
4816 		 * wake_up_process() when it's not NULL.
4817 		 */
4818 		thread = READ_ONCE(napi->thread);
4819 		if (thread) {
4820 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4821 				goto use_local_napi;
4822 
4823 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4824 			wake_up_process(thread);
4825 			return;
4826 		}
4827 	}
4828 
4829 use_local_napi:
4830 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4831 	list_add_tail(&napi->poll_list, &sd->poll_list);
4832 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4833 	/* If not called from net_rx_action()
4834 	 * we have to raise NET_RX_SOFTIRQ.
4835 	 */
4836 	if (!sd->in_net_rx_action)
4837 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4838 }
4839 
4840 #ifdef CONFIG_RPS
4841 
4842 struct static_key_false rps_needed __read_mostly;
4843 EXPORT_SYMBOL(rps_needed);
4844 struct static_key_false rfs_needed __read_mostly;
4845 EXPORT_SYMBOL(rfs_needed);
4846 
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4847 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4848 {
4849 	return hash_32(hash, flow_table->log);
4850 }
4851 
4852 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4853 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4854 	    struct rps_dev_flow *rflow, u16 next_cpu)
4855 {
4856 	if (next_cpu < nr_cpu_ids) {
4857 		u32 head;
4858 #ifdef CONFIG_RFS_ACCEL
4859 		struct netdev_rx_queue *rxqueue;
4860 		struct rps_dev_flow_table *flow_table;
4861 		struct rps_dev_flow *old_rflow;
4862 		u16 rxq_index;
4863 		u32 flow_id;
4864 		int rc;
4865 
4866 		/* Should we steer this flow to a different hardware queue? */
4867 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4868 		    !(dev->features & NETIF_F_NTUPLE))
4869 			goto out;
4870 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4871 		if (rxq_index == skb_get_rx_queue(skb))
4872 			goto out;
4873 
4874 		rxqueue = dev->_rx + rxq_index;
4875 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4876 		if (!flow_table)
4877 			goto out;
4878 		flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4879 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4880 							rxq_index, flow_id);
4881 		if (rc < 0)
4882 			goto out;
4883 		old_rflow = rflow;
4884 		rflow = &flow_table->flows[flow_id];
4885 		WRITE_ONCE(rflow->filter, rc);
4886 		if (old_rflow->filter == rc)
4887 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4888 	out:
4889 #endif
4890 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4891 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4892 	}
4893 
4894 	WRITE_ONCE(rflow->cpu, next_cpu);
4895 	return rflow;
4896 }
4897 
4898 /*
4899  * get_rps_cpu is called from netif_receive_skb and returns the target
4900  * CPU from the RPS map of the receiving queue for a given skb.
4901  * rcu_read_lock must be held on entry.
4902  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4903 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4904 		       struct rps_dev_flow **rflowp)
4905 {
4906 	const struct rps_sock_flow_table *sock_flow_table;
4907 	struct netdev_rx_queue *rxqueue = dev->_rx;
4908 	struct rps_dev_flow_table *flow_table;
4909 	struct rps_map *map;
4910 	int cpu = -1;
4911 	u32 tcpu;
4912 	u32 hash;
4913 
4914 	if (skb_rx_queue_recorded(skb)) {
4915 		u16 index = skb_get_rx_queue(skb);
4916 
4917 		if (unlikely(index >= dev->real_num_rx_queues)) {
4918 			WARN_ONCE(dev->real_num_rx_queues > 1,
4919 				  "%s received packet on queue %u, but number "
4920 				  "of RX queues is %u\n",
4921 				  dev->name, index, dev->real_num_rx_queues);
4922 			goto done;
4923 		}
4924 		rxqueue += index;
4925 	}
4926 
4927 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4928 
4929 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4930 	map = rcu_dereference(rxqueue->rps_map);
4931 	if (!flow_table && !map)
4932 		goto done;
4933 
4934 	skb_reset_network_header(skb);
4935 	hash = skb_get_hash(skb);
4936 	if (!hash)
4937 		goto done;
4938 
4939 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4940 	if (flow_table && sock_flow_table) {
4941 		struct rps_dev_flow *rflow;
4942 		u32 next_cpu;
4943 		u32 ident;
4944 
4945 		/* First check into global flow table if there is a match.
4946 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4947 		 */
4948 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4949 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4950 			goto try_rps;
4951 
4952 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4953 
4954 		/* OK, now we know there is a match,
4955 		 * we can look at the local (per receive queue) flow table
4956 		 */
4957 		rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4958 		tcpu = rflow->cpu;
4959 
4960 		/*
4961 		 * If the desired CPU (where last recvmsg was done) is
4962 		 * different from current CPU (one in the rx-queue flow
4963 		 * table entry), switch if one of the following holds:
4964 		 *   - Current CPU is unset (>= nr_cpu_ids).
4965 		 *   - Current CPU is offline.
4966 		 *   - The current CPU's queue tail has advanced beyond the
4967 		 *     last packet that was enqueued using this table entry.
4968 		 *     This guarantees that all previous packets for the flow
4969 		 *     have been dequeued, thus preserving in order delivery.
4970 		 */
4971 		if (unlikely(tcpu != next_cpu) &&
4972 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4973 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4974 		      rflow->last_qtail)) >= 0)) {
4975 			tcpu = next_cpu;
4976 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4977 		}
4978 
4979 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4980 			*rflowp = rflow;
4981 			cpu = tcpu;
4982 			goto done;
4983 		}
4984 	}
4985 
4986 try_rps:
4987 
4988 	if (map) {
4989 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4990 		if (cpu_online(tcpu)) {
4991 			cpu = tcpu;
4992 			goto done;
4993 		}
4994 	}
4995 
4996 done:
4997 	return cpu;
4998 }
4999 
5000 #ifdef CONFIG_RFS_ACCEL
5001 
5002 /**
5003  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5004  * @dev: Device on which the filter was set
5005  * @rxq_index: RX queue index
5006  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5007  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5008  *
5009  * Drivers that implement ndo_rx_flow_steer() should periodically call
5010  * this function for each installed filter and remove the filters for
5011  * which it returns %true.
5012  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5013 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5014 			 u32 flow_id, u16 filter_id)
5015 {
5016 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5017 	struct rps_dev_flow_table *flow_table;
5018 	struct rps_dev_flow *rflow;
5019 	bool expire = true;
5020 	unsigned int cpu;
5021 
5022 	rcu_read_lock();
5023 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5024 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5025 		rflow = &flow_table->flows[flow_id];
5026 		cpu = READ_ONCE(rflow->cpu);
5027 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
5028 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
5029 			   READ_ONCE(rflow->last_qtail)) <
5030 		     (int)(10 << flow_table->log)))
5031 			expire = false;
5032 	}
5033 	rcu_read_unlock();
5034 	return expire;
5035 }
5036 EXPORT_SYMBOL(rps_may_expire_flow);
5037 
5038 #endif /* CONFIG_RFS_ACCEL */
5039 
5040 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5041 static void rps_trigger_softirq(void *data)
5042 {
5043 	struct softnet_data *sd = data;
5044 
5045 	____napi_schedule(sd, &sd->backlog);
5046 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5047 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5048 }
5049 
5050 #endif /* CONFIG_RPS */
5051 
5052 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5053 static void trigger_rx_softirq(void *data)
5054 {
5055 	struct softnet_data *sd = data;
5056 
5057 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5058 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5059 }
5060 
5061 /*
5062  * After we queued a packet into sd->input_pkt_queue,
5063  * we need to make sure this queue is serviced soon.
5064  *
5065  * - If this is another cpu queue, link it to our rps_ipi_list,
5066  *   and make sure we will process rps_ipi_list from net_rx_action().
5067  *
5068  * - If this is our own queue, NAPI schedule our backlog.
5069  *   Note that this also raises NET_RX_SOFTIRQ.
5070  */
napi_schedule_rps(struct softnet_data * sd)5071 static void napi_schedule_rps(struct softnet_data *sd)
5072 {
5073 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5074 
5075 #ifdef CONFIG_RPS
5076 	if (sd != mysd) {
5077 		if (use_backlog_threads()) {
5078 			__napi_schedule_irqoff(&sd->backlog);
5079 			return;
5080 		}
5081 
5082 		sd->rps_ipi_next = mysd->rps_ipi_list;
5083 		mysd->rps_ipi_list = sd;
5084 
5085 		/* If not called from net_rx_action() or napi_threaded_poll()
5086 		 * we have to raise NET_RX_SOFTIRQ.
5087 		 */
5088 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5089 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5090 		return;
5091 	}
5092 #endif /* CONFIG_RPS */
5093 	__napi_schedule_irqoff(&mysd->backlog);
5094 }
5095 
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)5096 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5097 {
5098 	unsigned long flags;
5099 
5100 	if (use_backlog_threads()) {
5101 		backlog_lock_irq_save(sd, &flags);
5102 
5103 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5104 			__napi_schedule_irqoff(&sd->backlog);
5105 
5106 		backlog_unlock_irq_restore(sd, &flags);
5107 
5108 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5109 		smp_call_function_single_async(cpu, &sd->defer_csd);
5110 	}
5111 }
5112 
5113 #ifdef CONFIG_NET_FLOW_LIMIT
5114 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5115 #endif
5116 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5117 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5118 {
5119 #ifdef CONFIG_NET_FLOW_LIMIT
5120 	struct sd_flow_limit *fl;
5121 	struct softnet_data *sd;
5122 	unsigned int old_flow, new_flow;
5123 
5124 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5125 		return false;
5126 
5127 	sd = this_cpu_ptr(&softnet_data);
5128 
5129 	rcu_read_lock();
5130 	fl = rcu_dereference(sd->flow_limit);
5131 	if (fl) {
5132 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5133 		old_flow = fl->history[fl->history_head];
5134 		fl->history[fl->history_head] = new_flow;
5135 
5136 		fl->history_head++;
5137 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5138 
5139 		if (likely(fl->buckets[old_flow]))
5140 			fl->buckets[old_flow]--;
5141 
5142 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5143 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5144 			WRITE_ONCE(fl->count, fl->count + 1);
5145 			rcu_read_unlock();
5146 			return true;
5147 		}
5148 	}
5149 	rcu_read_unlock();
5150 #endif
5151 	return false;
5152 }
5153 
5154 /*
5155  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5156  * queue (may be a remote CPU queue).
5157  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5158 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5159 			      unsigned int *qtail)
5160 {
5161 	enum skb_drop_reason reason;
5162 	struct softnet_data *sd;
5163 	unsigned long flags;
5164 	unsigned int qlen;
5165 	int max_backlog;
5166 	u32 tail;
5167 
5168 	reason = SKB_DROP_REASON_DEV_READY;
5169 	if (!netif_running(skb->dev))
5170 		goto bad_dev;
5171 
5172 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5173 	sd = &per_cpu(softnet_data, cpu);
5174 
5175 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5176 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5177 	if (unlikely(qlen > max_backlog))
5178 		goto cpu_backlog_drop;
5179 	backlog_lock_irq_save(sd, &flags);
5180 	qlen = skb_queue_len(&sd->input_pkt_queue);
5181 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5182 		if (!qlen) {
5183 			/* Schedule NAPI for backlog device. We can use
5184 			 * non atomic operation as we own the queue lock.
5185 			 */
5186 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5187 						&sd->backlog.state))
5188 				napi_schedule_rps(sd);
5189 		}
5190 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5191 		tail = rps_input_queue_tail_incr(sd);
5192 		backlog_unlock_irq_restore(sd, &flags);
5193 
5194 		/* save the tail outside of the critical section */
5195 		rps_input_queue_tail_save(qtail, tail);
5196 		return NET_RX_SUCCESS;
5197 	}
5198 
5199 	backlog_unlock_irq_restore(sd, &flags);
5200 
5201 cpu_backlog_drop:
5202 	atomic_inc(&sd->dropped);
5203 bad_dev:
5204 	dev_core_stats_rx_dropped_inc(skb->dev);
5205 	kfree_skb_reason(skb, reason);
5206 	return NET_RX_DROP;
5207 }
5208 
netif_get_rxqueue(struct sk_buff * skb)5209 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5210 {
5211 	struct net_device *dev = skb->dev;
5212 	struct netdev_rx_queue *rxqueue;
5213 
5214 	rxqueue = dev->_rx;
5215 
5216 	if (skb_rx_queue_recorded(skb)) {
5217 		u16 index = skb_get_rx_queue(skb);
5218 
5219 		if (unlikely(index >= dev->real_num_rx_queues)) {
5220 			WARN_ONCE(dev->real_num_rx_queues > 1,
5221 				  "%s received packet on queue %u, but number "
5222 				  "of RX queues is %u\n",
5223 				  dev->name, index, dev->real_num_rx_queues);
5224 
5225 			return rxqueue; /* Return first rxqueue */
5226 		}
5227 		rxqueue += index;
5228 	}
5229 	return rxqueue;
5230 }
5231 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5232 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5233 			     const struct bpf_prog *xdp_prog)
5234 {
5235 	void *orig_data, *orig_data_end, *hard_start;
5236 	struct netdev_rx_queue *rxqueue;
5237 	bool orig_bcast, orig_host;
5238 	u32 mac_len, frame_sz;
5239 	__be16 orig_eth_type;
5240 	struct ethhdr *eth;
5241 	u32 metalen, act;
5242 	int off;
5243 
5244 	/* The XDP program wants to see the packet starting at the MAC
5245 	 * header.
5246 	 */
5247 	mac_len = skb->data - skb_mac_header(skb);
5248 	hard_start = skb->data - skb_headroom(skb);
5249 
5250 	/* SKB "head" area always have tailroom for skb_shared_info */
5251 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5252 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5253 
5254 	rxqueue = netif_get_rxqueue(skb);
5255 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5256 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5257 			 skb_headlen(skb) + mac_len, true);
5258 	if (skb_is_nonlinear(skb)) {
5259 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5260 		xdp_buff_set_frags_flag(xdp);
5261 	} else {
5262 		xdp_buff_clear_frags_flag(xdp);
5263 	}
5264 
5265 	orig_data_end = xdp->data_end;
5266 	orig_data = xdp->data;
5267 	eth = (struct ethhdr *)xdp->data;
5268 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5269 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5270 	orig_eth_type = eth->h_proto;
5271 
5272 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5273 
5274 	/* check if bpf_xdp_adjust_head was used */
5275 	off = xdp->data - orig_data;
5276 	if (off) {
5277 		if (off > 0)
5278 			__skb_pull(skb, off);
5279 		else if (off < 0)
5280 			__skb_push(skb, -off);
5281 
5282 		skb->mac_header += off;
5283 		skb_reset_network_header(skb);
5284 	}
5285 
5286 	/* check if bpf_xdp_adjust_tail was used */
5287 	off = xdp->data_end - orig_data_end;
5288 	if (off != 0) {
5289 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5290 		skb->len += off; /* positive on grow, negative on shrink */
5291 	}
5292 
5293 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5294 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5295 	 */
5296 	if (xdp_buff_has_frags(xdp))
5297 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5298 	else
5299 		skb->data_len = 0;
5300 
5301 	/* check if XDP changed eth hdr such SKB needs update */
5302 	eth = (struct ethhdr *)xdp->data;
5303 	if ((orig_eth_type != eth->h_proto) ||
5304 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5305 						  skb->dev->dev_addr)) ||
5306 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5307 		__skb_push(skb, ETH_HLEN);
5308 		skb->pkt_type = PACKET_HOST;
5309 		skb->protocol = eth_type_trans(skb, skb->dev);
5310 	}
5311 
5312 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5313 	 * before calling us again on redirect path. We do not call do_redirect
5314 	 * as we leave that up to the caller.
5315 	 *
5316 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5317 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5318 	 */
5319 	switch (act) {
5320 	case XDP_REDIRECT:
5321 	case XDP_TX:
5322 		__skb_push(skb, mac_len);
5323 		break;
5324 	case XDP_PASS:
5325 		metalen = xdp->data - xdp->data_meta;
5326 		if (metalen)
5327 			skb_metadata_set(skb, metalen);
5328 		break;
5329 	}
5330 
5331 	return act;
5332 }
5333 
5334 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5335 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5336 {
5337 	struct sk_buff *skb = *pskb;
5338 	int err, hroom, troom;
5339 
5340 	local_lock_nested_bh(&system_page_pool.bh_lock);
5341 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5342 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5343 	if (!err)
5344 		return 0;
5345 
5346 	/* In case we have to go down the path and also linearize,
5347 	 * then lets do the pskb_expand_head() work just once here.
5348 	 */
5349 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5350 	troom = skb->tail + skb->data_len - skb->end;
5351 	err = pskb_expand_head(skb,
5352 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5353 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5354 	if (err)
5355 		return err;
5356 
5357 	return skb_linearize(skb);
5358 }
5359 
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5360 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5361 				     struct xdp_buff *xdp,
5362 				     const struct bpf_prog *xdp_prog)
5363 {
5364 	struct sk_buff *skb = *pskb;
5365 	u32 mac_len, act = XDP_DROP;
5366 
5367 	/* Reinjected packets coming from act_mirred or similar should
5368 	 * not get XDP generic processing.
5369 	 */
5370 	if (skb_is_redirected(skb))
5371 		return XDP_PASS;
5372 
5373 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5374 	 * bytes. This is the guarantee that also native XDP provides,
5375 	 * thus we need to do it here as well.
5376 	 */
5377 	mac_len = skb->data - skb_mac_header(skb);
5378 	__skb_push(skb, mac_len);
5379 
5380 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5381 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5382 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5383 			goto do_drop;
5384 	}
5385 
5386 	__skb_pull(*pskb, mac_len);
5387 
5388 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5389 	switch (act) {
5390 	case XDP_REDIRECT:
5391 	case XDP_TX:
5392 	case XDP_PASS:
5393 		break;
5394 	default:
5395 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5396 		fallthrough;
5397 	case XDP_ABORTED:
5398 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5399 		fallthrough;
5400 	case XDP_DROP:
5401 	do_drop:
5402 		kfree_skb(*pskb);
5403 		break;
5404 	}
5405 
5406 	return act;
5407 }
5408 
5409 /* When doing generic XDP we have to bypass the qdisc layer and the
5410  * network taps in order to match in-driver-XDP behavior. This also means
5411  * that XDP packets are able to starve other packets going through a qdisc,
5412  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5413  * queues, so they do not have this starvation issue.
5414  */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5415 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5416 {
5417 	struct net_device *dev = skb->dev;
5418 	struct netdev_queue *txq;
5419 	bool free_skb = true;
5420 	int cpu, rc;
5421 
5422 	txq = netdev_core_pick_tx(dev, skb, NULL);
5423 	cpu = smp_processor_id();
5424 	HARD_TX_LOCK(dev, txq, cpu);
5425 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5426 		rc = netdev_start_xmit(skb, dev, txq, 0);
5427 		if (dev_xmit_complete(rc))
5428 			free_skb = false;
5429 	}
5430 	HARD_TX_UNLOCK(dev, txq);
5431 	if (free_skb) {
5432 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5433 		dev_core_stats_tx_dropped_inc(dev);
5434 		kfree_skb(skb);
5435 	}
5436 }
5437 
5438 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5439 
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5440 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5441 {
5442 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5443 
5444 	if (xdp_prog) {
5445 		struct xdp_buff xdp;
5446 		u32 act;
5447 		int err;
5448 
5449 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5450 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5451 		if (act != XDP_PASS) {
5452 			switch (act) {
5453 			case XDP_REDIRECT:
5454 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5455 							      &xdp, xdp_prog);
5456 				if (err)
5457 					goto out_redir;
5458 				break;
5459 			case XDP_TX:
5460 				generic_xdp_tx(*pskb, xdp_prog);
5461 				break;
5462 			}
5463 			bpf_net_ctx_clear(bpf_net_ctx);
5464 			return XDP_DROP;
5465 		}
5466 		bpf_net_ctx_clear(bpf_net_ctx);
5467 	}
5468 	return XDP_PASS;
5469 out_redir:
5470 	bpf_net_ctx_clear(bpf_net_ctx);
5471 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5472 	return XDP_DROP;
5473 }
5474 EXPORT_SYMBOL_GPL(do_xdp_generic);
5475 
netif_rx_internal(struct sk_buff * skb)5476 static int netif_rx_internal(struct sk_buff *skb)
5477 {
5478 	int ret;
5479 
5480 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5481 
5482 	trace_netif_rx(skb);
5483 
5484 #ifdef CONFIG_RPS
5485 	if (static_branch_unlikely(&rps_needed)) {
5486 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5487 		int cpu;
5488 
5489 		rcu_read_lock();
5490 
5491 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5492 		if (cpu < 0)
5493 			cpu = smp_processor_id();
5494 
5495 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5496 
5497 		rcu_read_unlock();
5498 	} else
5499 #endif
5500 	{
5501 		unsigned int qtail;
5502 
5503 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5504 	}
5505 	return ret;
5506 }
5507 
5508 /**
5509  *	__netif_rx	-	Slightly optimized version of netif_rx
5510  *	@skb: buffer to post
5511  *
5512  *	This behaves as netif_rx except that it does not disable bottom halves.
5513  *	As a result this function may only be invoked from the interrupt context
5514  *	(either hard or soft interrupt).
5515  */
__netif_rx(struct sk_buff * skb)5516 int __netif_rx(struct sk_buff *skb)
5517 {
5518 	int ret;
5519 
5520 	lockdep_assert_once(hardirq_count() | softirq_count());
5521 
5522 	trace_netif_rx_entry(skb);
5523 	ret = netif_rx_internal(skb);
5524 	trace_netif_rx_exit(ret);
5525 	return ret;
5526 }
5527 EXPORT_SYMBOL(__netif_rx);
5528 
5529 /**
5530  *	netif_rx	-	post buffer to the network code
5531  *	@skb: buffer to post
5532  *
5533  *	This function receives a packet from a device driver and queues it for
5534  *	the upper (protocol) levels to process via the backlog NAPI device. It
5535  *	always succeeds. The buffer may be dropped during processing for
5536  *	congestion control or by the protocol layers.
5537  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5538  *	driver should use NAPI and GRO.
5539  *	This function can used from interrupt and from process context. The
5540  *	caller from process context must not disable interrupts before invoking
5541  *	this function.
5542  *
5543  *	return values:
5544  *	NET_RX_SUCCESS	(no congestion)
5545  *	NET_RX_DROP     (packet was dropped)
5546  *
5547  */
netif_rx(struct sk_buff * skb)5548 int netif_rx(struct sk_buff *skb)
5549 {
5550 	bool need_bh_off = !(hardirq_count() | softirq_count());
5551 	int ret;
5552 
5553 	if (need_bh_off)
5554 		local_bh_disable();
5555 	trace_netif_rx_entry(skb);
5556 	ret = netif_rx_internal(skb);
5557 	trace_netif_rx_exit(ret);
5558 	if (need_bh_off)
5559 		local_bh_enable();
5560 	return ret;
5561 }
5562 EXPORT_SYMBOL(netif_rx);
5563 
net_tx_action(void)5564 static __latent_entropy void net_tx_action(void)
5565 {
5566 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5567 
5568 	if (sd->completion_queue) {
5569 		struct sk_buff *clist;
5570 
5571 		local_irq_disable();
5572 		clist = sd->completion_queue;
5573 		sd->completion_queue = NULL;
5574 		local_irq_enable();
5575 
5576 		while (clist) {
5577 			struct sk_buff *skb = clist;
5578 
5579 			clist = clist->next;
5580 
5581 			WARN_ON(refcount_read(&skb->users));
5582 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5583 				trace_consume_skb(skb, net_tx_action);
5584 			else
5585 				trace_kfree_skb(skb, net_tx_action,
5586 						get_kfree_skb_cb(skb)->reason, NULL);
5587 
5588 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5589 				__kfree_skb(skb);
5590 			else
5591 				__napi_kfree_skb(skb,
5592 						 get_kfree_skb_cb(skb)->reason);
5593 		}
5594 	}
5595 
5596 	if (sd->output_queue) {
5597 		struct Qdisc *head;
5598 
5599 		local_irq_disable();
5600 		head = sd->output_queue;
5601 		sd->output_queue = NULL;
5602 		sd->output_queue_tailp = &sd->output_queue;
5603 		local_irq_enable();
5604 
5605 		rcu_read_lock();
5606 
5607 		while (head) {
5608 			struct Qdisc *q = head;
5609 			spinlock_t *root_lock = NULL;
5610 
5611 			head = head->next_sched;
5612 
5613 			/* We need to make sure head->next_sched is read
5614 			 * before clearing __QDISC_STATE_SCHED
5615 			 */
5616 			smp_mb__before_atomic();
5617 
5618 			if (!(q->flags & TCQ_F_NOLOCK)) {
5619 				root_lock = qdisc_lock(q);
5620 				spin_lock(root_lock);
5621 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5622 						     &q->state))) {
5623 				/* There is a synchronize_net() between
5624 				 * STATE_DEACTIVATED flag being set and
5625 				 * qdisc_reset()/some_qdisc_is_busy() in
5626 				 * dev_deactivate(), so we can safely bail out
5627 				 * early here to avoid data race between
5628 				 * qdisc_deactivate() and some_qdisc_is_busy()
5629 				 * for lockless qdisc.
5630 				 */
5631 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5632 				continue;
5633 			}
5634 
5635 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5636 			qdisc_run(q);
5637 			if (root_lock)
5638 				spin_unlock(root_lock);
5639 		}
5640 
5641 		rcu_read_unlock();
5642 	}
5643 
5644 	xfrm_dev_backlog(sd);
5645 }
5646 
5647 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5648 /* This hook is defined here for ATM LANE */
5649 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5650 			     unsigned char *addr) __read_mostly;
5651 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5652 #endif
5653 
5654 /**
5655  *	netdev_is_rx_handler_busy - check if receive handler is registered
5656  *	@dev: device to check
5657  *
5658  *	Check if a receive handler is already registered for a given device.
5659  *	Return true if there one.
5660  *
5661  *	The caller must hold the rtnl_mutex.
5662  */
netdev_is_rx_handler_busy(struct net_device * dev)5663 bool netdev_is_rx_handler_busy(struct net_device *dev)
5664 {
5665 	ASSERT_RTNL();
5666 	return dev && rtnl_dereference(dev->rx_handler);
5667 }
5668 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5669 
5670 /**
5671  *	netdev_rx_handler_register - register receive handler
5672  *	@dev: device to register a handler for
5673  *	@rx_handler: receive handler to register
5674  *	@rx_handler_data: data pointer that is used by rx handler
5675  *
5676  *	Register a receive handler for a device. This handler will then be
5677  *	called from __netif_receive_skb. A negative errno code is returned
5678  *	on a failure.
5679  *
5680  *	The caller must hold the rtnl_mutex.
5681  *
5682  *	For a general description of rx_handler, see enum rx_handler_result.
5683  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5684 int netdev_rx_handler_register(struct net_device *dev,
5685 			       rx_handler_func_t *rx_handler,
5686 			       void *rx_handler_data)
5687 {
5688 	if (netdev_is_rx_handler_busy(dev))
5689 		return -EBUSY;
5690 
5691 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5692 		return -EINVAL;
5693 
5694 	/* Note: rx_handler_data must be set before rx_handler */
5695 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5696 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5697 
5698 	return 0;
5699 }
5700 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5701 
5702 /**
5703  *	netdev_rx_handler_unregister - unregister receive handler
5704  *	@dev: device to unregister a handler from
5705  *
5706  *	Unregister a receive handler from a device.
5707  *
5708  *	The caller must hold the rtnl_mutex.
5709  */
netdev_rx_handler_unregister(struct net_device * dev)5710 void netdev_rx_handler_unregister(struct net_device *dev)
5711 {
5712 
5713 	ASSERT_RTNL();
5714 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5715 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5716 	 * section has a guarantee to see a non NULL rx_handler_data
5717 	 * as well.
5718 	 */
5719 	synchronize_net();
5720 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5721 }
5722 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5723 
5724 /*
5725  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5726  * the special handling of PFMEMALLOC skbs.
5727  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5728 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5729 {
5730 	switch (skb->protocol) {
5731 	case htons(ETH_P_ARP):
5732 	case htons(ETH_P_IP):
5733 	case htons(ETH_P_IPV6):
5734 	case htons(ETH_P_8021Q):
5735 	case htons(ETH_P_8021AD):
5736 		return true;
5737 	default:
5738 		return false;
5739 	}
5740 }
5741 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5742 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5743 			     int *ret, struct net_device *orig_dev)
5744 {
5745 	if (nf_hook_ingress_active(skb)) {
5746 		int ingress_retval;
5747 
5748 		if (*pt_prev) {
5749 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5750 			*pt_prev = NULL;
5751 		}
5752 
5753 		rcu_read_lock();
5754 		ingress_retval = nf_hook_ingress(skb);
5755 		rcu_read_unlock();
5756 		return ingress_retval;
5757 	}
5758 	return 0;
5759 }
5760 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5761 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5762 				    struct packet_type **ppt_prev)
5763 {
5764 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5765 	struct packet_type *ptype, *pt_prev;
5766 	rx_handler_func_t *rx_handler;
5767 	struct sk_buff *skb = *pskb;
5768 	struct net_device *orig_dev;
5769 	bool deliver_exact = false;
5770 	int ret = NET_RX_DROP;
5771 	__be16 type;
5772 
5773 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5774 
5775 	trace_netif_receive_skb(skb);
5776 
5777 	orig_dev = skb->dev;
5778 
5779 	skb_reset_network_header(skb);
5780 #if !defined(CONFIG_DEBUG_NET)
5781 	/* We plan to no longer reset the transport header here.
5782 	 * Give some time to fuzzers and dev build to catch bugs
5783 	 * in network stacks.
5784 	 */
5785 	if (!skb_transport_header_was_set(skb))
5786 		skb_reset_transport_header(skb);
5787 #endif
5788 	skb_reset_mac_len(skb);
5789 
5790 	pt_prev = NULL;
5791 
5792 another_round:
5793 	skb->skb_iif = skb->dev->ifindex;
5794 
5795 	__this_cpu_inc(softnet_data.processed);
5796 
5797 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5798 		int ret2;
5799 
5800 		migrate_disable();
5801 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5802 				      &skb);
5803 		migrate_enable();
5804 
5805 		if (ret2 != XDP_PASS) {
5806 			ret = NET_RX_DROP;
5807 			goto out;
5808 		}
5809 	}
5810 
5811 	if (eth_type_vlan(skb->protocol)) {
5812 		skb = skb_vlan_untag(skb);
5813 		if (unlikely(!skb))
5814 			goto out;
5815 	}
5816 
5817 	if (skb_skip_tc_classify(skb))
5818 		goto skip_classify;
5819 
5820 	if (pfmemalloc)
5821 		goto skip_taps;
5822 
5823 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5824 				list) {
5825 		if (pt_prev)
5826 			ret = deliver_skb(skb, pt_prev, orig_dev);
5827 		pt_prev = ptype;
5828 	}
5829 
5830 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5831 		if (pt_prev)
5832 			ret = deliver_skb(skb, pt_prev, orig_dev);
5833 		pt_prev = ptype;
5834 	}
5835 
5836 skip_taps:
5837 #ifdef CONFIG_NET_INGRESS
5838 	if (static_branch_unlikely(&ingress_needed_key)) {
5839 		bool another = false;
5840 
5841 		nf_skip_egress(skb, true);
5842 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5843 					 &another);
5844 		if (another)
5845 			goto another_round;
5846 		if (!skb)
5847 			goto out;
5848 
5849 		nf_skip_egress(skb, false);
5850 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5851 			goto out;
5852 	}
5853 #endif
5854 	skb_reset_redirect(skb);
5855 skip_classify:
5856 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5857 		drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5858 		goto drop;
5859 	}
5860 
5861 	if (skb_vlan_tag_present(skb)) {
5862 		if (pt_prev) {
5863 			ret = deliver_skb(skb, pt_prev, orig_dev);
5864 			pt_prev = NULL;
5865 		}
5866 		if (vlan_do_receive(&skb))
5867 			goto another_round;
5868 		else if (unlikely(!skb))
5869 			goto out;
5870 	}
5871 
5872 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5873 	if (rx_handler) {
5874 		if (pt_prev) {
5875 			ret = deliver_skb(skb, pt_prev, orig_dev);
5876 			pt_prev = NULL;
5877 		}
5878 		switch (rx_handler(&skb)) {
5879 		case RX_HANDLER_CONSUMED:
5880 			ret = NET_RX_SUCCESS;
5881 			goto out;
5882 		case RX_HANDLER_ANOTHER:
5883 			goto another_round;
5884 		case RX_HANDLER_EXACT:
5885 			deliver_exact = true;
5886 			break;
5887 		case RX_HANDLER_PASS:
5888 			break;
5889 		default:
5890 			BUG();
5891 		}
5892 	}
5893 
5894 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5895 check_vlan_id:
5896 		if (skb_vlan_tag_get_id(skb)) {
5897 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5898 			 * find vlan device.
5899 			 */
5900 			skb->pkt_type = PACKET_OTHERHOST;
5901 		} else if (eth_type_vlan(skb->protocol)) {
5902 			/* Outer header is 802.1P with vlan 0, inner header is
5903 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5904 			 * not find vlan dev for vlan id 0.
5905 			 */
5906 			__vlan_hwaccel_clear_tag(skb);
5907 			skb = skb_vlan_untag(skb);
5908 			if (unlikely(!skb))
5909 				goto out;
5910 			if (vlan_do_receive(&skb))
5911 				/* After stripping off 802.1P header with vlan 0
5912 				 * vlan dev is found for inner header.
5913 				 */
5914 				goto another_round;
5915 			else if (unlikely(!skb))
5916 				goto out;
5917 			else
5918 				/* We have stripped outer 802.1P vlan 0 header.
5919 				 * But could not find vlan dev.
5920 				 * check again for vlan id to set OTHERHOST.
5921 				 */
5922 				goto check_vlan_id;
5923 		}
5924 		/* Note: we might in the future use prio bits
5925 		 * and set skb->priority like in vlan_do_receive()
5926 		 * For the time being, just ignore Priority Code Point
5927 		 */
5928 		__vlan_hwaccel_clear_tag(skb);
5929 	}
5930 
5931 	type = skb->protocol;
5932 
5933 	/* deliver only exact match when indicated */
5934 	if (likely(!deliver_exact)) {
5935 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5936 				       &ptype_base[ntohs(type) &
5937 						   PTYPE_HASH_MASK]);
5938 
5939 		/* orig_dev and skb->dev could belong to different netns;
5940 		 * Even in such case we need to traverse only the list
5941 		 * coming from skb->dev, as the ptype owner (packet socket)
5942 		 * will use dev_net(skb->dev) to do namespace filtering.
5943 		 */
5944 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5945 				       &dev_net_rcu(skb->dev)->ptype_specific);
5946 	}
5947 
5948 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5949 			       &orig_dev->ptype_specific);
5950 
5951 	if (unlikely(skb->dev != orig_dev)) {
5952 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5953 				       &skb->dev->ptype_specific);
5954 	}
5955 
5956 	if (pt_prev) {
5957 		*ppt_prev = pt_prev;
5958 	} else {
5959 drop:
5960 		if (!deliver_exact)
5961 			dev_core_stats_rx_dropped_inc(skb->dev);
5962 		else
5963 			dev_core_stats_rx_nohandler_inc(skb->dev);
5964 
5965 		kfree_skb_reason(skb, drop_reason);
5966 		/* Jamal, now you will not able to escape explaining
5967 		 * me how you were going to use this. :-)
5968 		 */
5969 		ret = NET_RX_DROP;
5970 	}
5971 
5972 out:
5973 	/* The invariant here is that if *ppt_prev is not NULL
5974 	 * then skb should also be non-NULL.
5975 	 *
5976 	 * Apparently *ppt_prev assignment above holds this invariant due to
5977 	 * skb dereferencing near it.
5978 	 */
5979 	*pskb = skb;
5980 	return ret;
5981 }
5982 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5983 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5984 {
5985 	struct net_device *orig_dev = skb->dev;
5986 	struct packet_type *pt_prev = NULL;
5987 	int ret;
5988 
5989 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5990 	if (pt_prev)
5991 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5992 					 skb->dev, pt_prev, orig_dev);
5993 	return ret;
5994 }
5995 
5996 /**
5997  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5998  *	@skb: buffer to process
5999  *
6000  *	More direct receive version of netif_receive_skb().  It should
6001  *	only be used by callers that have a need to skip RPS and Generic XDP.
6002  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6003  *
6004  *	This function may only be called from softirq context and interrupts
6005  *	should be enabled.
6006  *
6007  *	Return values (usually ignored):
6008  *	NET_RX_SUCCESS: no congestion
6009  *	NET_RX_DROP: packet was dropped
6010  */
netif_receive_skb_core(struct sk_buff * skb)6011 int netif_receive_skb_core(struct sk_buff *skb)
6012 {
6013 	int ret;
6014 
6015 	rcu_read_lock();
6016 	ret = __netif_receive_skb_one_core(skb, false);
6017 	rcu_read_unlock();
6018 
6019 	return ret;
6020 }
6021 EXPORT_SYMBOL(netif_receive_skb_core);
6022 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6023 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6024 						  struct packet_type *pt_prev,
6025 						  struct net_device *orig_dev)
6026 {
6027 	struct sk_buff *skb, *next;
6028 
6029 	if (!pt_prev)
6030 		return;
6031 	if (list_empty(head))
6032 		return;
6033 	if (pt_prev->list_func != NULL)
6034 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6035 				   ip_list_rcv, head, pt_prev, orig_dev);
6036 	else
6037 		list_for_each_entry_safe(skb, next, head, list) {
6038 			skb_list_del_init(skb);
6039 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6040 		}
6041 }
6042 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6043 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6044 {
6045 	/* Fast-path assumptions:
6046 	 * - There is no RX handler.
6047 	 * - Only one packet_type matches.
6048 	 * If either of these fails, we will end up doing some per-packet
6049 	 * processing in-line, then handling the 'last ptype' for the whole
6050 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6051 	 * because the 'last ptype' must be constant across the sublist, and all
6052 	 * other ptypes are handled per-packet.
6053 	 */
6054 	/* Current (common) ptype of sublist */
6055 	struct packet_type *pt_curr = NULL;
6056 	/* Current (common) orig_dev of sublist */
6057 	struct net_device *od_curr = NULL;
6058 	struct sk_buff *skb, *next;
6059 	LIST_HEAD(sublist);
6060 
6061 	list_for_each_entry_safe(skb, next, head, list) {
6062 		struct net_device *orig_dev = skb->dev;
6063 		struct packet_type *pt_prev = NULL;
6064 
6065 		skb_list_del_init(skb);
6066 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6067 		if (!pt_prev)
6068 			continue;
6069 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6070 			/* dispatch old sublist */
6071 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6072 			/* start new sublist */
6073 			INIT_LIST_HEAD(&sublist);
6074 			pt_curr = pt_prev;
6075 			od_curr = orig_dev;
6076 		}
6077 		list_add_tail(&skb->list, &sublist);
6078 	}
6079 
6080 	/* dispatch final sublist */
6081 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6082 }
6083 
__netif_receive_skb(struct sk_buff * skb)6084 static int __netif_receive_skb(struct sk_buff *skb)
6085 {
6086 	int ret;
6087 
6088 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6089 		unsigned int noreclaim_flag;
6090 
6091 		/*
6092 		 * PFMEMALLOC skbs are special, they should
6093 		 * - be delivered to SOCK_MEMALLOC sockets only
6094 		 * - stay away from userspace
6095 		 * - have bounded memory usage
6096 		 *
6097 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6098 		 * context down to all allocation sites.
6099 		 */
6100 		noreclaim_flag = memalloc_noreclaim_save();
6101 		ret = __netif_receive_skb_one_core(skb, true);
6102 		memalloc_noreclaim_restore(noreclaim_flag);
6103 	} else
6104 		ret = __netif_receive_skb_one_core(skb, false);
6105 
6106 	return ret;
6107 }
6108 
__netif_receive_skb_list(struct list_head * head)6109 static void __netif_receive_skb_list(struct list_head *head)
6110 {
6111 	unsigned long noreclaim_flag = 0;
6112 	struct sk_buff *skb, *next;
6113 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6114 
6115 	list_for_each_entry_safe(skb, next, head, list) {
6116 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6117 			struct list_head sublist;
6118 
6119 			/* Handle the previous sublist */
6120 			list_cut_before(&sublist, head, &skb->list);
6121 			if (!list_empty(&sublist))
6122 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6123 			pfmemalloc = !pfmemalloc;
6124 			/* See comments in __netif_receive_skb */
6125 			if (pfmemalloc)
6126 				noreclaim_flag = memalloc_noreclaim_save();
6127 			else
6128 				memalloc_noreclaim_restore(noreclaim_flag);
6129 		}
6130 	}
6131 	/* Handle the remaining sublist */
6132 	if (!list_empty(head))
6133 		__netif_receive_skb_list_core(head, pfmemalloc);
6134 	/* Restore pflags */
6135 	if (pfmemalloc)
6136 		memalloc_noreclaim_restore(noreclaim_flag);
6137 }
6138 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6139 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6140 {
6141 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6142 	struct bpf_prog *new = xdp->prog;
6143 	int ret = 0;
6144 
6145 	switch (xdp->command) {
6146 	case XDP_SETUP_PROG:
6147 		rcu_assign_pointer(dev->xdp_prog, new);
6148 		if (old)
6149 			bpf_prog_put(old);
6150 
6151 		if (old && !new) {
6152 			static_branch_dec(&generic_xdp_needed_key);
6153 		} else if (new && !old) {
6154 			static_branch_inc(&generic_xdp_needed_key);
6155 			netif_disable_lro(dev);
6156 			dev_disable_gro_hw(dev);
6157 		}
6158 		break;
6159 
6160 	default:
6161 		ret = -EINVAL;
6162 		break;
6163 	}
6164 
6165 	return ret;
6166 }
6167 
netif_receive_skb_internal(struct sk_buff * skb)6168 static int netif_receive_skb_internal(struct sk_buff *skb)
6169 {
6170 	int ret;
6171 
6172 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6173 
6174 	if (skb_defer_rx_timestamp(skb))
6175 		return NET_RX_SUCCESS;
6176 
6177 	rcu_read_lock();
6178 #ifdef CONFIG_RPS
6179 	if (static_branch_unlikely(&rps_needed)) {
6180 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6181 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6182 
6183 		if (cpu >= 0) {
6184 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6185 			rcu_read_unlock();
6186 			return ret;
6187 		}
6188 	}
6189 #endif
6190 	ret = __netif_receive_skb(skb);
6191 	rcu_read_unlock();
6192 	return ret;
6193 }
6194 
netif_receive_skb_list_internal(struct list_head * head)6195 void netif_receive_skb_list_internal(struct list_head *head)
6196 {
6197 	struct sk_buff *skb, *next;
6198 	LIST_HEAD(sublist);
6199 
6200 	list_for_each_entry_safe(skb, next, head, list) {
6201 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6202 				    skb);
6203 		skb_list_del_init(skb);
6204 		if (!skb_defer_rx_timestamp(skb))
6205 			list_add_tail(&skb->list, &sublist);
6206 	}
6207 	list_splice_init(&sublist, head);
6208 
6209 	rcu_read_lock();
6210 #ifdef CONFIG_RPS
6211 	if (static_branch_unlikely(&rps_needed)) {
6212 		list_for_each_entry_safe(skb, next, head, list) {
6213 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6214 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6215 
6216 			if (cpu >= 0) {
6217 				/* Will be handled, remove from list */
6218 				skb_list_del_init(skb);
6219 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6220 			}
6221 		}
6222 	}
6223 #endif
6224 	__netif_receive_skb_list(head);
6225 	rcu_read_unlock();
6226 }
6227 
6228 /**
6229  *	netif_receive_skb - process receive buffer from network
6230  *	@skb: buffer to process
6231  *
6232  *	netif_receive_skb() is the main receive data processing function.
6233  *	It always succeeds. The buffer may be dropped during processing
6234  *	for congestion control or by the protocol layers.
6235  *
6236  *	This function may only be called from softirq context and interrupts
6237  *	should be enabled.
6238  *
6239  *	Return values (usually ignored):
6240  *	NET_RX_SUCCESS: no congestion
6241  *	NET_RX_DROP: packet was dropped
6242  */
netif_receive_skb(struct sk_buff * skb)6243 int netif_receive_skb(struct sk_buff *skb)
6244 {
6245 	int ret;
6246 
6247 	trace_netif_receive_skb_entry(skb);
6248 
6249 	ret = netif_receive_skb_internal(skb);
6250 	trace_netif_receive_skb_exit(ret);
6251 
6252 	return ret;
6253 }
6254 EXPORT_SYMBOL(netif_receive_skb);
6255 
6256 /**
6257  *	netif_receive_skb_list - process many receive buffers from network
6258  *	@head: list of skbs to process.
6259  *
6260  *	Since return value of netif_receive_skb() is normally ignored, and
6261  *	wouldn't be meaningful for a list, this function returns void.
6262  *
6263  *	This function may only be called from softirq context and interrupts
6264  *	should be enabled.
6265  */
netif_receive_skb_list(struct list_head * head)6266 void netif_receive_skb_list(struct list_head *head)
6267 {
6268 	struct sk_buff *skb;
6269 
6270 	if (list_empty(head))
6271 		return;
6272 	if (trace_netif_receive_skb_list_entry_enabled()) {
6273 		list_for_each_entry(skb, head, list)
6274 			trace_netif_receive_skb_list_entry(skb);
6275 	}
6276 	netif_receive_skb_list_internal(head);
6277 	trace_netif_receive_skb_list_exit(0);
6278 }
6279 EXPORT_SYMBOL(netif_receive_skb_list);
6280 
6281 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6282 static void flush_backlog(struct work_struct *work)
6283 {
6284 	struct sk_buff *skb, *tmp;
6285 	struct sk_buff_head list;
6286 	struct softnet_data *sd;
6287 
6288 	__skb_queue_head_init(&list);
6289 	local_bh_disable();
6290 	sd = this_cpu_ptr(&softnet_data);
6291 
6292 	backlog_lock_irq_disable(sd);
6293 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6294 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6295 			__skb_unlink(skb, &sd->input_pkt_queue);
6296 			__skb_queue_tail(&list, skb);
6297 			rps_input_queue_head_incr(sd);
6298 		}
6299 	}
6300 	backlog_unlock_irq_enable(sd);
6301 
6302 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6303 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6304 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6305 			__skb_unlink(skb, &sd->process_queue);
6306 			__skb_queue_tail(&list, skb);
6307 			rps_input_queue_head_incr(sd);
6308 		}
6309 	}
6310 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6311 	local_bh_enable();
6312 
6313 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6314 }
6315 
flush_required(int cpu)6316 static bool flush_required(int cpu)
6317 {
6318 #if IS_ENABLED(CONFIG_RPS)
6319 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6320 	bool do_flush;
6321 
6322 	backlog_lock_irq_disable(sd);
6323 
6324 	/* as insertion into process_queue happens with the rps lock held,
6325 	 * process_queue access may race only with dequeue
6326 	 */
6327 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6328 		   !skb_queue_empty_lockless(&sd->process_queue);
6329 	backlog_unlock_irq_enable(sd);
6330 
6331 	return do_flush;
6332 #endif
6333 	/* without RPS we can't safely check input_pkt_queue: during a
6334 	 * concurrent remote skb_queue_splice() we can detect as empty both
6335 	 * input_pkt_queue and process_queue even if the latter could end-up
6336 	 * containing a lot of packets.
6337 	 */
6338 	return true;
6339 }
6340 
6341 struct flush_backlogs {
6342 	cpumask_t		flush_cpus;
6343 	struct work_struct	w[];
6344 };
6345 
flush_backlogs_alloc(void)6346 static struct flush_backlogs *flush_backlogs_alloc(void)
6347 {
6348 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6349 		       GFP_KERNEL);
6350 }
6351 
6352 static struct flush_backlogs *flush_backlogs_fallback;
6353 static DEFINE_MUTEX(flush_backlogs_mutex);
6354 
flush_all_backlogs(void)6355 static void flush_all_backlogs(void)
6356 {
6357 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6358 	unsigned int cpu;
6359 
6360 	if (!ptr) {
6361 		mutex_lock(&flush_backlogs_mutex);
6362 		ptr = flush_backlogs_fallback;
6363 	}
6364 	cpumask_clear(&ptr->flush_cpus);
6365 
6366 	cpus_read_lock();
6367 
6368 	for_each_online_cpu(cpu) {
6369 		if (flush_required(cpu)) {
6370 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6371 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6372 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6373 		}
6374 	}
6375 
6376 	/* we can have in flight packet[s] on the cpus we are not flushing,
6377 	 * synchronize_net() in unregister_netdevice_many() will take care of
6378 	 * them.
6379 	 */
6380 	for_each_cpu(cpu, &ptr->flush_cpus)
6381 		flush_work(&ptr->w[cpu]);
6382 
6383 	cpus_read_unlock();
6384 
6385 	if (ptr != flush_backlogs_fallback)
6386 		kfree(ptr);
6387 	else
6388 		mutex_unlock(&flush_backlogs_mutex);
6389 }
6390 
net_rps_send_ipi(struct softnet_data * remsd)6391 static void net_rps_send_ipi(struct softnet_data *remsd)
6392 {
6393 #ifdef CONFIG_RPS
6394 	while (remsd) {
6395 		struct softnet_data *next = remsd->rps_ipi_next;
6396 
6397 		if (cpu_online(remsd->cpu))
6398 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6399 		remsd = next;
6400 	}
6401 #endif
6402 }
6403 
6404 /*
6405  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6406  * Note: called with local irq disabled, but exits with local irq enabled.
6407  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6408 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6409 {
6410 #ifdef CONFIG_RPS
6411 	struct softnet_data *remsd = sd->rps_ipi_list;
6412 
6413 	if (!use_backlog_threads() && remsd) {
6414 		sd->rps_ipi_list = NULL;
6415 
6416 		local_irq_enable();
6417 
6418 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6419 		net_rps_send_ipi(remsd);
6420 	} else
6421 #endif
6422 		local_irq_enable();
6423 }
6424 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6425 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6426 {
6427 #ifdef CONFIG_RPS
6428 	return !use_backlog_threads() && sd->rps_ipi_list;
6429 #else
6430 	return false;
6431 #endif
6432 }
6433 
process_backlog(struct napi_struct * napi,int quota)6434 static int process_backlog(struct napi_struct *napi, int quota)
6435 {
6436 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6437 	bool again = true;
6438 	int work = 0;
6439 
6440 	/* Check if we have pending ipi, its better to send them now,
6441 	 * not waiting net_rx_action() end.
6442 	 */
6443 	if (sd_has_rps_ipi_waiting(sd)) {
6444 		local_irq_disable();
6445 		net_rps_action_and_irq_enable(sd);
6446 	}
6447 
6448 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6449 	while (again) {
6450 		struct sk_buff *skb;
6451 
6452 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6453 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6454 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6455 			rcu_read_lock();
6456 			__netif_receive_skb(skb);
6457 			rcu_read_unlock();
6458 			if (++work >= quota) {
6459 				rps_input_queue_head_add(sd, work);
6460 				return work;
6461 			}
6462 
6463 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6464 		}
6465 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6466 
6467 		backlog_lock_irq_disable(sd);
6468 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6469 			/*
6470 			 * Inline a custom version of __napi_complete().
6471 			 * only current cpu owns and manipulates this napi,
6472 			 * and NAPI_STATE_SCHED is the only possible flag set
6473 			 * on backlog.
6474 			 * We can use a plain write instead of clear_bit(),
6475 			 * and we dont need an smp_mb() memory barrier.
6476 			 */
6477 			napi->state &= NAPIF_STATE_THREADED;
6478 			again = false;
6479 		} else {
6480 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6481 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6482 						   &sd->process_queue);
6483 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6484 		}
6485 		backlog_unlock_irq_enable(sd);
6486 	}
6487 
6488 	if (work)
6489 		rps_input_queue_head_add(sd, work);
6490 	return work;
6491 }
6492 
6493 /**
6494  * __napi_schedule - schedule for receive
6495  * @n: entry to schedule
6496  *
6497  * The entry's receive function will be scheduled to run.
6498  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6499  */
__napi_schedule(struct napi_struct * n)6500 void __napi_schedule(struct napi_struct *n)
6501 {
6502 	unsigned long flags;
6503 
6504 	local_irq_save(flags);
6505 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6506 	local_irq_restore(flags);
6507 }
6508 EXPORT_SYMBOL(__napi_schedule);
6509 
6510 /**
6511  *	napi_schedule_prep - check if napi can be scheduled
6512  *	@n: napi context
6513  *
6514  * Test if NAPI routine is already running, and if not mark
6515  * it as running.  This is used as a condition variable to
6516  * insure only one NAPI poll instance runs.  We also make
6517  * sure there is no pending NAPI disable.
6518  */
napi_schedule_prep(struct napi_struct * n)6519 bool napi_schedule_prep(struct napi_struct *n)
6520 {
6521 	unsigned long new, val = READ_ONCE(n->state);
6522 
6523 	do {
6524 		if (unlikely(val & NAPIF_STATE_DISABLE))
6525 			return false;
6526 		new = val | NAPIF_STATE_SCHED;
6527 
6528 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6529 		 * This was suggested by Alexander Duyck, as compiler
6530 		 * emits better code than :
6531 		 * if (val & NAPIF_STATE_SCHED)
6532 		 *     new |= NAPIF_STATE_MISSED;
6533 		 */
6534 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6535 						   NAPIF_STATE_MISSED;
6536 	} while (!try_cmpxchg(&n->state, &val, new));
6537 
6538 	return !(val & NAPIF_STATE_SCHED);
6539 }
6540 EXPORT_SYMBOL(napi_schedule_prep);
6541 
6542 /**
6543  * __napi_schedule_irqoff - schedule for receive
6544  * @n: entry to schedule
6545  *
6546  * Variant of __napi_schedule() assuming hard irqs are masked.
6547  *
6548  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6549  * because the interrupt disabled assumption might not be true
6550  * due to force-threaded interrupts and spinlock substitution.
6551  */
__napi_schedule_irqoff(struct napi_struct * n)6552 void __napi_schedule_irqoff(struct napi_struct *n)
6553 {
6554 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6555 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6556 	else
6557 		__napi_schedule(n);
6558 }
6559 EXPORT_SYMBOL(__napi_schedule_irqoff);
6560 
napi_complete_done(struct napi_struct * n,int work_done)6561 bool napi_complete_done(struct napi_struct *n, int work_done)
6562 {
6563 	unsigned long flags, val, new, timeout = 0;
6564 	bool ret = true;
6565 
6566 	/*
6567 	 * 1) Don't let napi dequeue from the cpu poll list
6568 	 *    just in case its running on a different cpu.
6569 	 * 2) If we are busy polling, do nothing here, we have
6570 	 *    the guarantee we will be called later.
6571 	 */
6572 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6573 				 NAPIF_STATE_IN_BUSY_POLL)))
6574 		return false;
6575 
6576 	if (work_done) {
6577 		if (n->gro.bitmask)
6578 			timeout = napi_get_gro_flush_timeout(n);
6579 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6580 	}
6581 	if (n->defer_hard_irqs_count > 0) {
6582 		n->defer_hard_irqs_count--;
6583 		timeout = napi_get_gro_flush_timeout(n);
6584 		if (timeout)
6585 			ret = false;
6586 	}
6587 
6588 	/*
6589 	 * When the NAPI instance uses a timeout and keeps postponing
6590 	 * it, we need to bound somehow the time packets are kept in
6591 	 * the GRO layer.
6592 	 */
6593 	gro_flush_normal(&n->gro, !!timeout);
6594 
6595 	if (unlikely(!list_empty(&n->poll_list))) {
6596 		/* If n->poll_list is not empty, we need to mask irqs */
6597 		local_irq_save(flags);
6598 		list_del_init(&n->poll_list);
6599 		local_irq_restore(flags);
6600 	}
6601 	WRITE_ONCE(n->list_owner, -1);
6602 
6603 	val = READ_ONCE(n->state);
6604 	do {
6605 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6606 
6607 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6608 			      NAPIF_STATE_SCHED_THREADED |
6609 			      NAPIF_STATE_PREFER_BUSY_POLL);
6610 
6611 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6612 		 * because we will call napi->poll() one more time.
6613 		 * This C code was suggested by Alexander Duyck to help gcc.
6614 		 */
6615 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6616 						    NAPIF_STATE_SCHED;
6617 	} while (!try_cmpxchg(&n->state, &val, new));
6618 
6619 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6620 		__napi_schedule(n);
6621 		return false;
6622 	}
6623 
6624 	if (timeout)
6625 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6626 			      HRTIMER_MODE_REL_PINNED);
6627 	return ret;
6628 }
6629 EXPORT_SYMBOL(napi_complete_done);
6630 
skb_defer_free_flush(struct softnet_data * sd)6631 static void skb_defer_free_flush(struct softnet_data *sd)
6632 {
6633 	struct sk_buff *skb, *next;
6634 
6635 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6636 	if (!READ_ONCE(sd->defer_list))
6637 		return;
6638 
6639 	spin_lock(&sd->defer_lock);
6640 	skb = sd->defer_list;
6641 	sd->defer_list = NULL;
6642 	sd->defer_count = 0;
6643 	spin_unlock(&sd->defer_lock);
6644 
6645 	while (skb != NULL) {
6646 		next = skb->next;
6647 		napi_consume_skb(skb, 1);
6648 		skb = next;
6649 	}
6650 }
6651 
6652 #if defined(CONFIG_NET_RX_BUSY_POLL)
6653 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6654 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6655 {
6656 	if (!skip_schedule) {
6657 		gro_normal_list(&napi->gro);
6658 		__napi_schedule(napi);
6659 		return;
6660 	}
6661 
6662 	/* Flush too old packets. If HZ < 1000, flush all packets */
6663 	gro_flush_normal(&napi->gro, HZ >= 1000);
6664 
6665 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6666 }
6667 
6668 enum {
6669 	NAPI_F_PREFER_BUSY_POLL	= 1,
6670 	NAPI_F_END_ON_RESCHED	= 2,
6671 };
6672 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6673 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6674 			   unsigned flags, u16 budget)
6675 {
6676 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6677 	bool skip_schedule = false;
6678 	unsigned long timeout;
6679 	int rc;
6680 
6681 	/* Busy polling means there is a high chance device driver hard irq
6682 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6683 	 * set in napi_schedule_prep().
6684 	 * Since we are about to call napi->poll() once more, we can safely
6685 	 * clear NAPI_STATE_MISSED.
6686 	 *
6687 	 * Note: x86 could use a single "lock and ..." instruction
6688 	 * to perform these two clear_bit()
6689 	 */
6690 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6691 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6692 
6693 	local_bh_disable();
6694 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6695 
6696 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6697 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6698 		timeout = napi_get_gro_flush_timeout(napi);
6699 		if (napi->defer_hard_irqs_count && timeout) {
6700 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6701 			skip_schedule = true;
6702 		}
6703 	}
6704 
6705 	/* All we really want here is to re-enable device interrupts.
6706 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6707 	 */
6708 	rc = napi->poll(napi, budget);
6709 	/* We can't gro_normal_list() here, because napi->poll() might have
6710 	 * rearmed the napi (napi_complete_done()) in which case it could
6711 	 * already be running on another CPU.
6712 	 */
6713 	trace_napi_poll(napi, rc, budget);
6714 	netpoll_poll_unlock(have_poll_lock);
6715 	if (rc == budget)
6716 		__busy_poll_stop(napi, skip_schedule);
6717 	bpf_net_ctx_clear(bpf_net_ctx);
6718 	local_bh_enable();
6719 }
6720 
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6721 static void __napi_busy_loop(unsigned int napi_id,
6722 		      bool (*loop_end)(void *, unsigned long),
6723 		      void *loop_end_arg, unsigned flags, u16 budget)
6724 {
6725 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6726 	int (*napi_poll)(struct napi_struct *napi, int budget);
6727 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6728 	void *have_poll_lock = NULL;
6729 	struct napi_struct *napi;
6730 
6731 	WARN_ON_ONCE(!rcu_read_lock_held());
6732 
6733 restart:
6734 	napi_poll = NULL;
6735 
6736 	napi = napi_by_id(napi_id);
6737 	if (!napi)
6738 		return;
6739 
6740 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6741 		preempt_disable();
6742 	for (;;) {
6743 		int work = 0;
6744 
6745 		local_bh_disable();
6746 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6747 		if (!napi_poll) {
6748 			unsigned long val = READ_ONCE(napi->state);
6749 
6750 			/* If multiple threads are competing for this napi,
6751 			 * we avoid dirtying napi->state as much as we can.
6752 			 */
6753 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6754 				   NAPIF_STATE_IN_BUSY_POLL)) {
6755 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6756 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6757 				goto count;
6758 			}
6759 			if (cmpxchg(&napi->state, val,
6760 				    val | NAPIF_STATE_IN_BUSY_POLL |
6761 					  NAPIF_STATE_SCHED) != val) {
6762 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6763 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6764 				goto count;
6765 			}
6766 			have_poll_lock = netpoll_poll_lock(napi);
6767 			napi_poll = napi->poll;
6768 		}
6769 		work = napi_poll(napi, budget);
6770 		trace_napi_poll(napi, work, budget);
6771 		gro_normal_list(&napi->gro);
6772 count:
6773 		if (work > 0)
6774 			__NET_ADD_STATS(dev_net(napi->dev),
6775 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6776 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6777 		bpf_net_ctx_clear(bpf_net_ctx);
6778 		local_bh_enable();
6779 
6780 		if (!loop_end || loop_end(loop_end_arg, start_time))
6781 			break;
6782 
6783 		if (unlikely(need_resched())) {
6784 			if (flags & NAPI_F_END_ON_RESCHED)
6785 				break;
6786 			if (napi_poll)
6787 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6788 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6789 				preempt_enable();
6790 			rcu_read_unlock();
6791 			cond_resched();
6792 			rcu_read_lock();
6793 			if (loop_end(loop_end_arg, start_time))
6794 				return;
6795 			goto restart;
6796 		}
6797 		cpu_relax();
6798 	}
6799 	if (napi_poll)
6800 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6801 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6802 		preempt_enable();
6803 }
6804 
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6805 void napi_busy_loop_rcu(unsigned int napi_id,
6806 			bool (*loop_end)(void *, unsigned long),
6807 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6808 {
6809 	unsigned flags = NAPI_F_END_ON_RESCHED;
6810 
6811 	if (prefer_busy_poll)
6812 		flags |= NAPI_F_PREFER_BUSY_POLL;
6813 
6814 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6815 }
6816 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6817 void napi_busy_loop(unsigned int napi_id,
6818 		    bool (*loop_end)(void *, unsigned long),
6819 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6820 {
6821 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6822 
6823 	rcu_read_lock();
6824 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6825 	rcu_read_unlock();
6826 }
6827 EXPORT_SYMBOL(napi_busy_loop);
6828 
napi_suspend_irqs(unsigned int napi_id)6829 void napi_suspend_irqs(unsigned int napi_id)
6830 {
6831 	struct napi_struct *napi;
6832 
6833 	rcu_read_lock();
6834 	napi = napi_by_id(napi_id);
6835 	if (napi) {
6836 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6837 
6838 		if (timeout)
6839 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6840 				      HRTIMER_MODE_REL_PINNED);
6841 	}
6842 	rcu_read_unlock();
6843 }
6844 
napi_resume_irqs(unsigned int napi_id)6845 void napi_resume_irqs(unsigned int napi_id)
6846 {
6847 	struct napi_struct *napi;
6848 
6849 	rcu_read_lock();
6850 	napi = napi_by_id(napi_id);
6851 	if (napi) {
6852 		/* If irq_suspend_timeout is set to 0 between the call to
6853 		 * napi_suspend_irqs and now, the original value still
6854 		 * determines the safety timeout as intended and napi_watchdog
6855 		 * will resume irq processing.
6856 		 */
6857 		if (napi_get_irq_suspend_timeout(napi)) {
6858 			local_bh_disable();
6859 			napi_schedule(napi);
6860 			local_bh_enable();
6861 		}
6862 	}
6863 	rcu_read_unlock();
6864 }
6865 
6866 #endif /* CONFIG_NET_RX_BUSY_POLL */
6867 
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6868 static void __napi_hash_add_with_id(struct napi_struct *napi,
6869 				    unsigned int napi_id)
6870 {
6871 	napi->gro.cached_napi_id = napi_id;
6872 
6873 	WRITE_ONCE(napi->napi_id, napi_id);
6874 	hlist_add_head_rcu(&napi->napi_hash_node,
6875 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6876 }
6877 
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6878 static void napi_hash_add_with_id(struct napi_struct *napi,
6879 				  unsigned int napi_id)
6880 {
6881 	unsigned long flags;
6882 
6883 	spin_lock_irqsave(&napi_hash_lock, flags);
6884 	WARN_ON_ONCE(napi_by_id(napi_id));
6885 	__napi_hash_add_with_id(napi, napi_id);
6886 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6887 }
6888 
napi_hash_add(struct napi_struct * napi)6889 static void napi_hash_add(struct napi_struct *napi)
6890 {
6891 	unsigned long flags;
6892 
6893 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6894 		return;
6895 
6896 	spin_lock_irqsave(&napi_hash_lock, flags);
6897 
6898 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6899 	do {
6900 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6901 			napi_gen_id = MIN_NAPI_ID;
6902 	} while (napi_by_id(napi_gen_id));
6903 
6904 	__napi_hash_add_with_id(napi, napi_gen_id);
6905 
6906 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6907 }
6908 
6909 /* Warning : caller is responsible to make sure rcu grace period
6910  * is respected before freeing memory containing @napi
6911  */
napi_hash_del(struct napi_struct * napi)6912 static void napi_hash_del(struct napi_struct *napi)
6913 {
6914 	unsigned long flags;
6915 
6916 	spin_lock_irqsave(&napi_hash_lock, flags);
6917 
6918 	hlist_del_init_rcu(&napi->napi_hash_node);
6919 
6920 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6921 }
6922 
napi_watchdog(struct hrtimer * timer)6923 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6924 {
6925 	struct napi_struct *napi;
6926 
6927 	napi = container_of(timer, struct napi_struct, timer);
6928 
6929 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6930 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6931 	 */
6932 	if (!napi_disable_pending(napi) &&
6933 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6934 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6935 		__napi_schedule_irqoff(napi);
6936 	}
6937 
6938 	return HRTIMER_NORESTART;
6939 }
6940 
napi_stop_kthread(struct napi_struct * napi)6941 static void napi_stop_kthread(struct napi_struct *napi)
6942 {
6943 	unsigned long val, new;
6944 
6945 	/* Wait until the napi STATE_THREADED is unset. */
6946 	while (true) {
6947 		val = READ_ONCE(napi->state);
6948 
6949 		/* If napi kthread own this napi or the napi is idle,
6950 		 * STATE_THREADED can be unset here.
6951 		 */
6952 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
6953 		    !(val & NAPIF_STATE_SCHED)) {
6954 			new = val & (~NAPIF_STATE_THREADED);
6955 		} else {
6956 			msleep(20);
6957 			continue;
6958 		}
6959 
6960 		if (try_cmpxchg(&napi->state, &val, new))
6961 			break;
6962 	}
6963 
6964 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
6965 	 * the kthread.
6966 	 */
6967 	while (true) {
6968 		if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state))
6969 			break;
6970 
6971 		msleep(20);
6972 	}
6973 
6974 	kthread_stop(napi->thread);
6975 	napi->thread = NULL;
6976 }
6977 
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)6978 int napi_set_threaded(struct napi_struct *napi,
6979 		      enum netdev_napi_threaded threaded)
6980 {
6981 	if (threaded) {
6982 		if (!napi->thread) {
6983 			int err = napi_kthread_create(napi);
6984 
6985 			if (err)
6986 				return err;
6987 		}
6988 	}
6989 
6990 	if (napi->config)
6991 		napi->config->threaded = threaded;
6992 
6993 	/* Setting/unsetting threaded mode on a napi might not immediately
6994 	 * take effect, if the current napi instance is actively being
6995 	 * polled. In this case, the switch between threaded mode and
6996 	 * softirq mode will happen in the next round of napi_schedule().
6997 	 * This should not cause hiccups/stalls to the live traffic.
6998 	 */
6999 	if (!threaded && napi->thread) {
7000 		napi_stop_kthread(napi);
7001 	} else {
7002 		/* Make sure kthread is created before THREADED bit is set. */
7003 		smp_mb__before_atomic();
7004 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7005 	}
7006 
7007 	return 0;
7008 }
7009 
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)7010 int netif_set_threaded(struct net_device *dev,
7011 		       enum netdev_napi_threaded threaded)
7012 {
7013 	struct napi_struct *napi;
7014 	int i, err = 0;
7015 
7016 	netdev_assert_locked_or_invisible(dev);
7017 
7018 	if (threaded) {
7019 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
7020 			if (!napi->thread) {
7021 				err = napi_kthread_create(napi);
7022 				if (err) {
7023 					threaded = NETDEV_NAPI_THREADED_DISABLED;
7024 					break;
7025 				}
7026 			}
7027 		}
7028 	}
7029 
7030 	WRITE_ONCE(dev->threaded, threaded);
7031 
7032 	/* The error should not occur as the kthreads are already created. */
7033 	list_for_each_entry(napi, &dev->napi_list, dev_list)
7034 		WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7035 
7036 	/* Override the config for all NAPIs even if currently not listed */
7037 	for (i = 0; i < dev->num_napi_configs; i++)
7038 		dev->napi_config[i].threaded = threaded;
7039 
7040 	return err;
7041 }
7042 
7043 /**
7044  * netif_threaded_enable() - enable threaded NAPIs
7045  * @dev: net_device instance
7046  *
7047  * Enable threaded mode for the NAPI instances of the device. This may be useful
7048  * for devices where multiple NAPI instances get scheduled by a single
7049  * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7050  * than the core where IRQ is mapped.
7051  *
7052  * This function should be called before @dev is registered.
7053  */
netif_threaded_enable(struct net_device * dev)7054 void netif_threaded_enable(struct net_device *dev)
7055 {
7056 	WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7057 }
7058 EXPORT_SYMBOL(netif_threaded_enable);
7059 
7060 /**
7061  * netif_queue_set_napi - Associate queue with the napi
7062  * @dev: device to which NAPI and queue belong
7063  * @queue_index: Index of queue
7064  * @type: queue type as RX or TX
7065  * @napi: NAPI context, pass NULL to clear previously set NAPI
7066  *
7067  * Set queue with its corresponding napi context. This should be done after
7068  * registering the NAPI handler for the queue-vector and the queues have been
7069  * mapped to the corresponding interrupt vector.
7070  */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7071 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7072 			  enum netdev_queue_type type, struct napi_struct *napi)
7073 {
7074 	struct netdev_rx_queue *rxq;
7075 	struct netdev_queue *txq;
7076 
7077 	if (WARN_ON_ONCE(napi && !napi->dev))
7078 		return;
7079 	netdev_ops_assert_locked_or_invisible(dev);
7080 
7081 	switch (type) {
7082 	case NETDEV_QUEUE_TYPE_RX:
7083 		rxq = __netif_get_rx_queue(dev, queue_index);
7084 		rxq->napi = napi;
7085 		return;
7086 	case NETDEV_QUEUE_TYPE_TX:
7087 		txq = netdev_get_tx_queue(dev, queue_index);
7088 		txq->napi = napi;
7089 		return;
7090 	default:
7091 		return;
7092 	}
7093 }
7094 EXPORT_SYMBOL(netif_queue_set_napi);
7095 
7096 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7097 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7098 		      const cpumask_t *mask)
7099 {
7100 	struct napi_struct *napi =
7101 		container_of(notify, struct napi_struct, notify);
7102 #ifdef CONFIG_RFS_ACCEL
7103 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7104 	int err;
7105 #endif
7106 
7107 	if (napi->config && napi->dev->irq_affinity_auto)
7108 		cpumask_copy(&napi->config->affinity_mask, mask);
7109 
7110 #ifdef CONFIG_RFS_ACCEL
7111 	if (napi->dev->rx_cpu_rmap_auto) {
7112 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7113 		if (err)
7114 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7115 				    err);
7116 	}
7117 #endif
7118 }
7119 
7120 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7121 static void netif_napi_affinity_release(struct kref *ref)
7122 {
7123 	struct napi_struct *napi =
7124 		container_of(ref, struct napi_struct, notify.kref);
7125 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7126 
7127 	netdev_assert_locked(napi->dev);
7128 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7129 				   &napi->state));
7130 
7131 	if (!napi->dev->rx_cpu_rmap_auto)
7132 		return;
7133 	rmap->obj[napi->napi_rmap_idx] = NULL;
7134 	napi->napi_rmap_idx = -1;
7135 	cpu_rmap_put(rmap);
7136 }
7137 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7138 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7139 {
7140 	if (dev->rx_cpu_rmap_auto)
7141 		return 0;
7142 
7143 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7144 	if (!dev->rx_cpu_rmap)
7145 		return -ENOMEM;
7146 
7147 	dev->rx_cpu_rmap_auto = true;
7148 	return 0;
7149 }
7150 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7151 
netif_del_cpu_rmap(struct net_device * dev)7152 static void netif_del_cpu_rmap(struct net_device *dev)
7153 {
7154 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7155 
7156 	if (!dev->rx_cpu_rmap_auto)
7157 		return;
7158 
7159 	/* Free the rmap */
7160 	cpu_rmap_put(rmap);
7161 	dev->rx_cpu_rmap = NULL;
7162 	dev->rx_cpu_rmap_auto = false;
7163 }
7164 
7165 #else
netif_napi_affinity_release(struct kref * ref)7166 static void netif_napi_affinity_release(struct kref *ref)
7167 {
7168 }
7169 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7170 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7171 {
7172 	return 0;
7173 }
7174 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7175 
netif_del_cpu_rmap(struct net_device * dev)7176 static void netif_del_cpu_rmap(struct net_device *dev)
7177 {
7178 }
7179 #endif
7180 
netif_set_affinity_auto(struct net_device * dev)7181 void netif_set_affinity_auto(struct net_device *dev)
7182 {
7183 	unsigned int i, maxqs, numa;
7184 
7185 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7186 	numa = dev_to_node(&dev->dev);
7187 
7188 	for (i = 0; i < maxqs; i++)
7189 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7190 				&dev->napi_config[i].affinity_mask);
7191 
7192 	dev->irq_affinity_auto = true;
7193 }
7194 EXPORT_SYMBOL(netif_set_affinity_auto);
7195 
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7196 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7197 {
7198 	int rc;
7199 
7200 	netdev_assert_locked_or_invisible(napi->dev);
7201 
7202 	if (napi->irq == irq)
7203 		return;
7204 
7205 	/* Remove existing resources */
7206 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7207 		irq_set_affinity_notifier(napi->irq, NULL);
7208 
7209 	napi->irq = irq;
7210 	if (irq < 0 ||
7211 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7212 		return;
7213 
7214 	/* Abort for buggy drivers */
7215 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7216 		return;
7217 
7218 #ifdef CONFIG_RFS_ACCEL
7219 	if (napi->dev->rx_cpu_rmap_auto) {
7220 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7221 		if (rc < 0)
7222 			return;
7223 
7224 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7225 		napi->napi_rmap_idx = rc;
7226 	}
7227 #endif
7228 
7229 	/* Use core IRQ notifier */
7230 	napi->notify.notify = netif_napi_irq_notify;
7231 	napi->notify.release = netif_napi_affinity_release;
7232 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7233 	if (rc) {
7234 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7235 			    rc);
7236 		goto put_rmap;
7237 	}
7238 
7239 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7240 	return;
7241 
7242 put_rmap:
7243 #ifdef CONFIG_RFS_ACCEL
7244 	if (napi->dev->rx_cpu_rmap_auto) {
7245 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7246 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7247 		napi->napi_rmap_idx = -1;
7248 	}
7249 #endif
7250 	napi->notify.notify = NULL;
7251 	napi->notify.release = NULL;
7252 }
7253 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7254 
napi_restore_config(struct napi_struct * n)7255 static void napi_restore_config(struct napi_struct *n)
7256 {
7257 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7258 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7259 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7260 
7261 	if (n->dev->irq_affinity_auto &&
7262 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7263 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7264 
7265 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7266 	 * napi_hash_add to generate one for us.
7267 	 */
7268 	if (n->config->napi_id) {
7269 		napi_hash_add_with_id(n, n->config->napi_id);
7270 	} else {
7271 		napi_hash_add(n);
7272 		n->config->napi_id = n->napi_id;
7273 	}
7274 
7275 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7276 }
7277 
napi_save_config(struct napi_struct * n)7278 static void napi_save_config(struct napi_struct *n)
7279 {
7280 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7281 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7282 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7283 	napi_hash_del(n);
7284 }
7285 
7286 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7287  * inherit an existing ID try to insert it at the right position.
7288  */
7289 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7290 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7291 {
7292 	unsigned int new_id, pos_id;
7293 	struct list_head *higher;
7294 	struct napi_struct *pos;
7295 
7296 	new_id = UINT_MAX;
7297 	if (napi->config && napi->config->napi_id)
7298 		new_id = napi->config->napi_id;
7299 
7300 	higher = &dev->napi_list;
7301 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7302 		if (napi_id_valid(pos->napi_id))
7303 			pos_id = pos->napi_id;
7304 		else if (pos->config)
7305 			pos_id = pos->config->napi_id;
7306 		else
7307 			pos_id = UINT_MAX;
7308 
7309 		if (pos_id <= new_id)
7310 			break;
7311 		higher = &pos->dev_list;
7312 	}
7313 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7314 }
7315 
7316 /* Double check that napi_get_frags() allocates skbs with
7317  * skb->head being backed by slab, not a page fragment.
7318  * This is to make sure bug fixed in 3226b158e67c
7319  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7320  * does not accidentally come back.
7321  */
napi_get_frags_check(struct napi_struct * napi)7322 static void napi_get_frags_check(struct napi_struct *napi)
7323 {
7324 	struct sk_buff *skb;
7325 
7326 	local_bh_disable();
7327 	skb = napi_get_frags(napi);
7328 	WARN_ON_ONCE(skb && skb->head_frag);
7329 	napi_free_frags(napi);
7330 	local_bh_enable();
7331 }
7332 
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7333 void netif_napi_add_weight_locked(struct net_device *dev,
7334 				  struct napi_struct *napi,
7335 				  int (*poll)(struct napi_struct *, int),
7336 				  int weight)
7337 {
7338 	netdev_assert_locked(dev);
7339 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7340 		return;
7341 
7342 	INIT_LIST_HEAD(&napi->poll_list);
7343 	INIT_HLIST_NODE(&napi->napi_hash_node);
7344 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7345 	gro_init(&napi->gro);
7346 	napi->skb = NULL;
7347 	napi->poll = poll;
7348 	if (weight > NAPI_POLL_WEIGHT)
7349 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7350 				weight);
7351 	napi->weight = weight;
7352 	napi->dev = dev;
7353 #ifdef CONFIG_NETPOLL
7354 	napi->poll_owner = -1;
7355 #endif
7356 	napi->list_owner = -1;
7357 	set_bit(NAPI_STATE_SCHED, &napi->state);
7358 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7359 	netif_napi_dev_list_add(dev, napi);
7360 
7361 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7362 	 * configuration will be loaded in napi_enable
7363 	 */
7364 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7365 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7366 
7367 	napi_get_frags_check(napi);
7368 	/* Create kthread for this napi if dev->threaded is set.
7369 	 * Clear dev->threaded if kthread creation failed so that
7370 	 * threaded mode will not be enabled in napi_enable().
7371 	 */
7372 	if (napi_get_threaded_config(dev, napi))
7373 		if (napi_kthread_create(napi))
7374 			dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7375 	netif_napi_set_irq_locked(napi, -1);
7376 }
7377 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7378 
napi_disable_locked(struct napi_struct * n)7379 void napi_disable_locked(struct napi_struct *n)
7380 {
7381 	unsigned long val, new;
7382 
7383 	might_sleep();
7384 	netdev_assert_locked(n->dev);
7385 
7386 	set_bit(NAPI_STATE_DISABLE, &n->state);
7387 
7388 	val = READ_ONCE(n->state);
7389 	do {
7390 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7391 			usleep_range(20, 200);
7392 			val = READ_ONCE(n->state);
7393 		}
7394 
7395 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7396 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7397 	} while (!try_cmpxchg(&n->state, &val, new));
7398 
7399 	hrtimer_cancel(&n->timer);
7400 
7401 	if (n->config)
7402 		napi_save_config(n);
7403 	else
7404 		napi_hash_del(n);
7405 
7406 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7407 }
7408 EXPORT_SYMBOL(napi_disable_locked);
7409 
7410 /**
7411  * napi_disable() - prevent NAPI from scheduling
7412  * @n: NAPI context
7413  *
7414  * Stop NAPI from being scheduled on this context.
7415  * Waits till any outstanding processing completes.
7416  * Takes netdev_lock() for associated net_device.
7417  */
napi_disable(struct napi_struct * n)7418 void napi_disable(struct napi_struct *n)
7419 {
7420 	netdev_lock(n->dev);
7421 	napi_disable_locked(n);
7422 	netdev_unlock(n->dev);
7423 }
7424 EXPORT_SYMBOL(napi_disable);
7425 
napi_enable_locked(struct napi_struct * n)7426 void napi_enable_locked(struct napi_struct *n)
7427 {
7428 	unsigned long new, val = READ_ONCE(n->state);
7429 
7430 	if (n->config)
7431 		napi_restore_config(n);
7432 	else
7433 		napi_hash_add(n);
7434 
7435 	do {
7436 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7437 
7438 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7439 		if (n->dev->threaded && n->thread)
7440 			new |= NAPIF_STATE_THREADED;
7441 	} while (!try_cmpxchg(&n->state, &val, new));
7442 }
7443 EXPORT_SYMBOL(napi_enable_locked);
7444 
7445 /**
7446  * napi_enable() - enable NAPI scheduling
7447  * @n: NAPI context
7448  *
7449  * Enable scheduling of a NAPI instance.
7450  * Must be paired with napi_disable().
7451  * Takes netdev_lock() for associated net_device.
7452  */
napi_enable(struct napi_struct * n)7453 void napi_enable(struct napi_struct *n)
7454 {
7455 	netdev_lock(n->dev);
7456 	napi_enable_locked(n);
7457 	netdev_unlock(n->dev);
7458 }
7459 EXPORT_SYMBOL(napi_enable);
7460 
7461 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7462 void __netif_napi_del_locked(struct napi_struct *napi)
7463 {
7464 	netdev_assert_locked(napi->dev);
7465 
7466 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7467 		return;
7468 
7469 	/* Make sure NAPI is disabled (or was never enabled). */
7470 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7471 
7472 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7473 		irq_set_affinity_notifier(napi->irq, NULL);
7474 
7475 	if (napi->config) {
7476 		napi->index = -1;
7477 		napi->config = NULL;
7478 	}
7479 
7480 	list_del_rcu(&napi->dev_list);
7481 	napi_free_frags(napi);
7482 
7483 	gro_cleanup(&napi->gro);
7484 
7485 	if (napi->thread) {
7486 		kthread_stop(napi->thread);
7487 		napi->thread = NULL;
7488 	}
7489 }
7490 EXPORT_SYMBOL(__netif_napi_del_locked);
7491 
__napi_poll(struct napi_struct * n,bool * repoll)7492 static int __napi_poll(struct napi_struct *n, bool *repoll)
7493 {
7494 	int work, weight;
7495 
7496 	weight = n->weight;
7497 
7498 	/* This NAPI_STATE_SCHED test is for avoiding a race
7499 	 * with netpoll's poll_napi().  Only the entity which
7500 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7501 	 * actually make the ->poll() call.  Therefore we avoid
7502 	 * accidentally calling ->poll() when NAPI is not scheduled.
7503 	 */
7504 	work = 0;
7505 	if (napi_is_scheduled(n)) {
7506 		work = n->poll(n, weight);
7507 		trace_napi_poll(n, work, weight);
7508 
7509 		xdp_do_check_flushed(n);
7510 	}
7511 
7512 	if (unlikely(work > weight))
7513 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7514 				n->poll, work, weight);
7515 
7516 	if (likely(work < weight))
7517 		return work;
7518 
7519 	/* Drivers must not modify the NAPI state if they
7520 	 * consume the entire weight.  In such cases this code
7521 	 * still "owns" the NAPI instance and therefore can
7522 	 * move the instance around on the list at-will.
7523 	 */
7524 	if (unlikely(napi_disable_pending(n))) {
7525 		napi_complete(n);
7526 		return work;
7527 	}
7528 
7529 	/* The NAPI context has more processing work, but busy-polling
7530 	 * is preferred. Exit early.
7531 	 */
7532 	if (napi_prefer_busy_poll(n)) {
7533 		if (napi_complete_done(n, work)) {
7534 			/* If timeout is not set, we need to make sure
7535 			 * that the NAPI is re-scheduled.
7536 			 */
7537 			napi_schedule(n);
7538 		}
7539 		return work;
7540 	}
7541 
7542 	/* Flush too old packets. If HZ < 1000, flush all packets */
7543 	gro_flush_normal(&n->gro, HZ >= 1000);
7544 
7545 	/* Some drivers may have called napi_schedule
7546 	 * prior to exhausting their budget.
7547 	 */
7548 	if (unlikely(!list_empty(&n->poll_list))) {
7549 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7550 			     n->dev ? n->dev->name : "backlog");
7551 		return work;
7552 	}
7553 
7554 	*repoll = true;
7555 
7556 	return work;
7557 }
7558 
napi_poll(struct napi_struct * n,struct list_head * repoll)7559 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7560 {
7561 	bool do_repoll = false;
7562 	void *have;
7563 	int work;
7564 
7565 	list_del_init(&n->poll_list);
7566 
7567 	have = netpoll_poll_lock(n);
7568 
7569 	work = __napi_poll(n, &do_repoll);
7570 
7571 	if (do_repoll) {
7572 #if defined(CONFIG_DEBUG_NET)
7573 		if (unlikely(!napi_is_scheduled(n)))
7574 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7575 				n->dev->name, n->poll);
7576 #endif
7577 		list_add_tail(&n->poll_list, repoll);
7578 	}
7579 	netpoll_poll_unlock(have);
7580 
7581 	return work;
7582 }
7583 
napi_thread_wait(struct napi_struct * napi)7584 static int napi_thread_wait(struct napi_struct *napi)
7585 {
7586 	set_current_state(TASK_INTERRUPTIBLE);
7587 
7588 	while (!kthread_should_stop()) {
7589 		/* Testing SCHED_THREADED bit here to make sure the current
7590 		 * kthread owns this napi and could poll on this napi.
7591 		 * Testing SCHED bit is not enough because SCHED bit might be
7592 		 * set by some other busy poll thread or by napi_disable().
7593 		 */
7594 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7595 			WARN_ON(!list_empty(&napi->poll_list));
7596 			__set_current_state(TASK_RUNNING);
7597 			return 0;
7598 		}
7599 
7600 		schedule();
7601 		set_current_state(TASK_INTERRUPTIBLE);
7602 	}
7603 	__set_current_state(TASK_RUNNING);
7604 
7605 	return -1;
7606 }
7607 
napi_threaded_poll_loop(struct napi_struct * napi)7608 static void napi_threaded_poll_loop(struct napi_struct *napi)
7609 {
7610 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7611 	struct softnet_data *sd;
7612 	unsigned long last_qs = jiffies;
7613 
7614 	for (;;) {
7615 		bool repoll = false;
7616 		void *have;
7617 
7618 		local_bh_disable();
7619 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7620 
7621 		sd = this_cpu_ptr(&softnet_data);
7622 		sd->in_napi_threaded_poll = true;
7623 
7624 		have = netpoll_poll_lock(napi);
7625 		__napi_poll(napi, &repoll);
7626 		netpoll_poll_unlock(have);
7627 
7628 		sd->in_napi_threaded_poll = false;
7629 		barrier();
7630 
7631 		if (sd_has_rps_ipi_waiting(sd)) {
7632 			local_irq_disable();
7633 			net_rps_action_and_irq_enable(sd);
7634 		}
7635 		skb_defer_free_flush(sd);
7636 		bpf_net_ctx_clear(bpf_net_ctx);
7637 		local_bh_enable();
7638 
7639 		if (!repoll)
7640 			break;
7641 
7642 		rcu_softirq_qs_periodic(last_qs);
7643 		cond_resched();
7644 	}
7645 }
7646 
napi_threaded_poll(void * data)7647 static int napi_threaded_poll(void *data)
7648 {
7649 	struct napi_struct *napi = data;
7650 
7651 	while (!napi_thread_wait(napi))
7652 		napi_threaded_poll_loop(napi);
7653 
7654 	return 0;
7655 }
7656 
net_rx_action(void)7657 static __latent_entropy void net_rx_action(void)
7658 {
7659 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7660 	unsigned long time_limit = jiffies +
7661 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7662 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7663 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7664 	LIST_HEAD(list);
7665 	LIST_HEAD(repoll);
7666 
7667 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7668 start:
7669 	sd->in_net_rx_action = true;
7670 	local_irq_disable();
7671 	list_splice_init(&sd->poll_list, &list);
7672 	local_irq_enable();
7673 
7674 	for (;;) {
7675 		struct napi_struct *n;
7676 
7677 		skb_defer_free_flush(sd);
7678 
7679 		if (list_empty(&list)) {
7680 			if (list_empty(&repoll)) {
7681 				sd->in_net_rx_action = false;
7682 				barrier();
7683 				/* We need to check if ____napi_schedule()
7684 				 * had refilled poll_list while
7685 				 * sd->in_net_rx_action was true.
7686 				 */
7687 				if (!list_empty(&sd->poll_list))
7688 					goto start;
7689 				if (!sd_has_rps_ipi_waiting(sd))
7690 					goto end;
7691 			}
7692 			break;
7693 		}
7694 
7695 		n = list_first_entry(&list, struct napi_struct, poll_list);
7696 		budget -= napi_poll(n, &repoll);
7697 
7698 		/* If softirq window is exhausted then punt.
7699 		 * Allow this to run for 2 jiffies since which will allow
7700 		 * an average latency of 1.5/HZ.
7701 		 */
7702 		if (unlikely(budget <= 0 ||
7703 			     time_after_eq(jiffies, time_limit))) {
7704 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7705 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7706 			break;
7707 		}
7708 	}
7709 
7710 	local_irq_disable();
7711 
7712 	list_splice_tail_init(&sd->poll_list, &list);
7713 	list_splice_tail(&repoll, &list);
7714 	list_splice(&list, &sd->poll_list);
7715 	if (!list_empty(&sd->poll_list))
7716 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7717 	else
7718 		sd->in_net_rx_action = false;
7719 
7720 	net_rps_action_and_irq_enable(sd);
7721 end:
7722 	bpf_net_ctx_clear(bpf_net_ctx);
7723 }
7724 
7725 struct netdev_adjacent {
7726 	struct net_device *dev;
7727 	netdevice_tracker dev_tracker;
7728 
7729 	/* upper master flag, there can only be one master device per list */
7730 	bool master;
7731 
7732 	/* lookup ignore flag */
7733 	bool ignore;
7734 
7735 	/* counter for the number of times this device was added to us */
7736 	u16 ref_nr;
7737 
7738 	/* private field for the users */
7739 	void *private;
7740 
7741 	struct list_head list;
7742 	struct rcu_head rcu;
7743 };
7744 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7745 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7746 						 struct list_head *adj_list)
7747 {
7748 	struct netdev_adjacent *adj;
7749 
7750 	list_for_each_entry(adj, adj_list, list) {
7751 		if (adj->dev == adj_dev)
7752 			return adj;
7753 	}
7754 	return NULL;
7755 }
7756 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7757 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7758 				    struct netdev_nested_priv *priv)
7759 {
7760 	struct net_device *dev = (struct net_device *)priv->data;
7761 
7762 	return upper_dev == dev;
7763 }
7764 
7765 /**
7766  * netdev_has_upper_dev - Check if device is linked to an upper device
7767  * @dev: device
7768  * @upper_dev: upper device to check
7769  *
7770  * Find out if a device is linked to specified upper device and return true
7771  * in case it is. Note that this checks only immediate upper device,
7772  * not through a complete stack of devices. The caller must hold the RTNL lock.
7773  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7774 bool netdev_has_upper_dev(struct net_device *dev,
7775 			  struct net_device *upper_dev)
7776 {
7777 	struct netdev_nested_priv priv = {
7778 		.data = (void *)upper_dev,
7779 	};
7780 
7781 	ASSERT_RTNL();
7782 
7783 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7784 					     &priv);
7785 }
7786 EXPORT_SYMBOL(netdev_has_upper_dev);
7787 
7788 /**
7789  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7790  * @dev: device
7791  * @upper_dev: upper device to check
7792  *
7793  * Find out if a device is linked to specified upper device and return true
7794  * in case it is. Note that this checks the entire upper device chain.
7795  * The caller must hold rcu lock.
7796  */
7797 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7798 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7799 				  struct net_device *upper_dev)
7800 {
7801 	struct netdev_nested_priv priv = {
7802 		.data = (void *)upper_dev,
7803 	};
7804 
7805 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7806 					       &priv);
7807 }
7808 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7809 
7810 /**
7811  * netdev_has_any_upper_dev - Check if device is linked to some device
7812  * @dev: device
7813  *
7814  * Find out if a device is linked to an upper device and return true in case
7815  * it is. The caller must hold the RTNL lock.
7816  */
netdev_has_any_upper_dev(struct net_device * dev)7817 bool netdev_has_any_upper_dev(struct net_device *dev)
7818 {
7819 	ASSERT_RTNL();
7820 
7821 	return !list_empty(&dev->adj_list.upper);
7822 }
7823 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7824 
7825 /**
7826  * netdev_master_upper_dev_get - Get master upper device
7827  * @dev: device
7828  *
7829  * Find a master upper device and return pointer to it or NULL in case
7830  * it's not there. The caller must hold the RTNL lock.
7831  */
netdev_master_upper_dev_get(struct net_device * dev)7832 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7833 {
7834 	struct netdev_adjacent *upper;
7835 
7836 	ASSERT_RTNL();
7837 
7838 	if (list_empty(&dev->adj_list.upper))
7839 		return NULL;
7840 
7841 	upper = list_first_entry(&dev->adj_list.upper,
7842 				 struct netdev_adjacent, list);
7843 	if (likely(upper->master))
7844 		return upper->dev;
7845 	return NULL;
7846 }
7847 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7848 
__netdev_master_upper_dev_get(struct net_device * dev)7849 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7850 {
7851 	struct netdev_adjacent *upper;
7852 
7853 	ASSERT_RTNL();
7854 
7855 	if (list_empty(&dev->adj_list.upper))
7856 		return NULL;
7857 
7858 	upper = list_first_entry(&dev->adj_list.upper,
7859 				 struct netdev_adjacent, list);
7860 	if (likely(upper->master) && !upper->ignore)
7861 		return upper->dev;
7862 	return NULL;
7863 }
7864 
7865 /**
7866  * netdev_has_any_lower_dev - Check if device is linked to some device
7867  * @dev: device
7868  *
7869  * Find out if a device is linked to a lower device and return true in case
7870  * it is. The caller must hold the RTNL lock.
7871  */
netdev_has_any_lower_dev(struct net_device * dev)7872 static bool netdev_has_any_lower_dev(struct net_device *dev)
7873 {
7874 	ASSERT_RTNL();
7875 
7876 	return !list_empty(&dev->adj_list.lower);
7877 }
7878 
netdev_adjacent_get_private(struct list_head * adj_list)7879 void *netdev_adjacent_get_private(struct list_head *adj_list)
7880 {
7881 	struct netdev_adjacent *adj;
7882 
7883 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7884 
7885 	return adj->private;
7886 }
7887 EXPORT_SYMBOL(netdev_adjacent_get_private);
7888 
7889 /**
7890  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7891  * @dev: device
7892  * @iter: list_head ** of the current position
7893  *
7894  * Gets the next device from the dev's upper list, starting from iter
7895  * position. The caller must hold RCU read lock.
7896  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7897 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7898 						 struct list_head **iter)
7899 {
7900 	struct netdev_adjacent *upper;
7901 
7902 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7903 
7904 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7905 
7906 	if (&upper->list == &dev->adj_list.upper)
7907 		return NULL;
7908 
7909 	*iter = &upper->list;
7910 
7911 	return upper->dev;
7912 }
7913 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7914 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7915 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7916 						  struct list_head **iter,
7917 						  bool *ignore)
7918 {
7919 	struct netdev_adjacent *upper;
7920 
7921 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7922 
7923 	if (&upper->list == &dev->adj_list.upper)
7924 		return NULL;
7925 
7926 	*iter = &upper->list;
7927 	*ignore = upper->ignore;
7928 
7929 	return upper->dev;
7930 }
7931 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7932 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7933 						    struct list_head **iter)
7934 {
7935 	struct netdev_adjacent *upper;
7936 
7937 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7938 
7939 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7940 
7941 	if (&upper->list == &dev->adj_list.upper)
7942 		return NULL;
7943 
7944 	*iter = &upper->list;
7945 
7946 	return upper->dev;
7947 }
7948 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7949 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7950 				       int (*fn)(struct net_device *dev,
7951 					 struct netdev_nested_priv *priv),
7952 				       struct netdev_nested_priv *priv)
7953 {
7954 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7955 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7956 	int ret, cur = 0;
7957 	bool ignore;
7958 
7959 	now = dev;
7960 	iter = &dev->adj_list.upper;
7961 
7962 	while (1) {
7963 		if (now != dev) {
7964 			ret = fn(now, priv);
7965 			if (ret)
7966 				return ret;
7967 		}
7968 
7969 		next = NULL;
7970 		while (1) {
7971 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7972 			if (!udev)
7973 				break;
7974 			if (ignore)
7975 				continue;
7976 
7977 			next = udev;
7978 			niter = &udev->adj_list.upper;
7979 			dev_stack[cur] = now;
7980 			iter_stack[cur++] = iter;
7981 			break;
7982 		}
7983 
7984 		if (!next) {
7985 			if (!cur)
7986 				return 0;
7987 			next = dev_stack[--cur];
7988 			niter = iter_stack[cur];
7989 		}
7990 
7991 		now = next;
7992 		iter = niter;
7993 	}
7994 
7995 	return 0;
7996 }
7997 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7998 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7999 				  int (*fn)(struct net_device *dev,
8000 					    struct netdev_nested_priv *priv),
8001 				  struct netdev_nested_priv *priv)
8002 {
8003 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8004 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8005 	int ret, cur = 0;
8006 
8007 	now = dev;
8008 	iter = &dev->adj_list.upper;
8009 
8010 	while (1) {
8011 		if (now != dev) {
8012 			ret = fn(now, priv);
8013 			if (ret)
8014 				return ret;
8015 		}
8016 
8017 		next = NULL;
8018 		while (1) {
8019 			udev = netdev_next_upper_dev_rcu(now, &iter);
8020 			if (!udev)
8021 				break;
8022 
8023 			next = udev;
8024 			niter = &udev->adj_list.upper;
8025 			dev_stack[cur] = now;
8026 			iter_stack[cur++] = iter;
8027 			break;
8028 		}
8029 
8030 		if (!next) {
8031 			if (!cur)
8032 				return 0;
8033 			next = dev_stack[--cur];
8034 			niter = iter_stack[cur];
8035 		}
8036 
8037 		now = next;
8038 		iter = niter;
8039 	}
8040 
8041 	return 0;
8042 }
8043 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8044 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8045 static bool __netdev_has_upper_dev(struct net_device *dev,
8046 				   struct net_device *upper_dev)
8047 {
8048 	struct netdev_nested_priv priv = {
8049 		.flags = 0,
8050 		.data = (void *)upper_dev,
8051 	};
8052 
8053 	ASSERT_RTNL();
8054 
8055 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8056 					   &priv);
8057 }
8058 
8059 /**
8060  * netdev_lower_get_next_private - Get the next ->private from the
8061  *				   lower neighbour list
8062  * @dev: device
8063  * @iter: list_head ** of the current position
8064  *
8065  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8066  * list, starting from iter position. The caller must hold either hold the
8067  * RTNL lock or its own locking that guarantees that the neighbour lower
8068  * list will remain unchanged.
8069  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8070 void *netdev_lower_get_next_private(struct net_device *dev,
8071 				    struct list_head **iter)
8072 {
8073 	struct netdev_adjacent *lower;
8074 
8075 	lower = list_entry(*iter, struct netdev_adjacent, list);
8076 
8077 	if (&lower->list == &dev->adj_list.lower)
8078 		return NULL;
8079 
8080 	*iter = lower->list.next;
8081 
8082 	return lower->private;
8083 }
8084 EXPORT_SYMBOL(netdev_lower_get_next_private);
8085 
8086 /**
8087  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8088  *				       lower neighbour list, RCU
8089  *				       variant
8090  * @dev: device
8091  * @iter: list_head ** of the current position
8092  *
8093  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8094  * list, starting from iter position. The caller must hold RCU read lock.
8095  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8096 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8097 					struct list_head **iter)
8098 {
8099 	struct netdev_adjacent *lower;
8100 
8101 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8102 
8103 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8104 
8105 	if (&lower->list == &dev->adj_list.lower)
8106 		return NULL;
8107 
8108 	*iter = &lower->list;
8109 
8110 	return lower->private;
8111 }
8112 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8113 
8114 /**
8115  * netdev_lower_get_next - Get the next device from the lower neighbour
8116  *                         list
8117  * @dev: device
8118  * @iter: list_head ** of the current position
8119  *
8120  * Gets the next netdev_adjacent from the dev's lower neighbour
8121  * list, starting from iter position. The caller must hold RTNL lock or
8122  * its own locking that guarantees that the neighbour lower
8123  * list will remain unchanged.
8124  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8125 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8126 {
8127 	struct netdev_adjacent *lower;
8128 
8129 	lower = list_entry(*iter, struct netdev_adjacent, list);
8130 
8131 	if (&lower->list == &dev->adj_list.lower)
8132 		return NULL;
8133 
8134 	*iter = lower->list.next;
8135 
8136 	return lower->dev;
8137 }
8138 EXPORT_SYMBOL(netdev_lower_get_next);
8139 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8140 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8141 						struct list_head **iter)
8142 {
8143 	struct netdev_adjacent *lower;
8144 
8145 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8146 
8147 	if (&lower->list == &dev->adj_list.lower)
8148 		return NULL;
8149 
8150 	*iter = &lower->list;
8151 
8152 	return lower->dev;
8153 }
8154 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8155 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8156 						  struct list_head **iter,
8157 						  bool *ignore)
8158 {
8159 	struct netdev_adjacent *lower;
8160 
8161 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8162 
8163 	if (&lower->list == &dev->adj_list.lower)
8164 		return NULL;
8165 
8166 	*iter = &lower->list;
8167 	*ignore = lower->ignore;
8168 
8169 	return lower->dev;
8170 }
8171 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8172 int netdev_walk_all_lower_dev(struct net_device *dev,
8173 			      int (*fn)(struct net_device *dev,
8174 					struct netdev_nested_priv *priv),
8175 			      struct netdev_nested_priv *priv)
8176 {
8177 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8178 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8179 	int ret, cur = 0;
8180 
8181 	now = dev;
8182 	iter = &dev->adj_list.lower;
8183 
8184 	while (1) {
8185 		if (now != dev) {
8186 			ret = fn(now, priv);
8187 			if (ret)
8188 				return ret;
8189 		}
8190 
8191 		next = NULL;
8192 		while (1) {
8193 			ldev = netdev_next_lower_dev(now, &iter);
8194 			if (!ldev)
8195 				break;
8196 
8197 			next = ldev;
8198 			niter = &ldev->adj_list.lower;
8199 			dev_stack[cur] = now;
8200 			iter_stack[cur++] = iter;
8201 			break;
8202 		}
8203 
8204 		if (!next) {
8205 			if (!cur)
8206 				return 0;
8207 			next = dev_stack[--cur];
8208 			niter = iter_stack[cur];
8209 		}
8210 
8211 		now = next;
8212 		iter = niter;
8213 	}
8214 
8215 	return 0;
8216 }
8217 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8218 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8219 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8220 				       int (*fn)(struct net_device *dev,
8221 					 struct netdev_nested_priv *priv),
8222 				       struct netdev_nested_priv *priv)
8223 {
8224 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8225 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8226 	int ret, cur = 0;
8227 	bool ignore;
8228 
8229 	now = dev;
8230 	iter = &dev->adj_list.lower;
8231 
8232 	while (1) {
8233 		if (now != dev) {
8234 			ret = fn(now, priv);
8235 			if (ret)
8236 				return ret;
8237 		}
8238 
8239 		next = NULL;
8240 		while (1) {
8241 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8242 			if (!ldev)
8243 				break;
8244 			if (ignore)
8245 				continue;
8246 
8247 			next = ldev;
8248 			niter = &ldev->adj_list.lower;
8249 			dev_stack[cur] = now;
8250 			iter_stack[cur++] = iter;
8251 			break;
8252 		}
8253 
8254 		if (!next) {
8255 			if (!cur)
8256 				return 0;
8257 			next = dev_stack[--cur];
8258 			niter = iter_stack[cur];
8259 		}
8260 
8261 		now = next;
8262 		iter = niter;
8263 	}
8264 
8265 	return 0;
8266 }
8267 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8268 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8269 					     struct list_head **iter)
8270 {
8271 	struct netdev_adjacent *lower;
8272 
8273 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8274 	if (&lower->list == &dev->adj_list.lower)
8275 		return NULL;
8276 
8277 	*iter = &lower->list;
8278 
8279 	return lower->dev;
8280 }
8281 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8282 
__netdev_upper_depth(struct net_device * dev)8283 static u8 __netdev_upper_depth(struct net_device *dev)
8284 {
8285 	struct net_device *udev;
8286 	struct list_head *iter;
8287 	u8 max_depth = 0;
8288 	bool ignore;
8289 
8290 	for (iter = &dev->adj_list.upper,
8291 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8292 	     udev;
8293 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8294 		if (ignore)
8295 			continue;
8296 		if (max_depth < udev->upper_level)
8297 			max_depth = udev->upper_level;
8298 	}
8299 
8300 	return max_depth;
8301 }
8302 
__netdev_lower_depth(struct net_device * dev)8303 static u8 __netdev_lower_depth(struct net_device *dev)
8304 {
8305 	struct net_device *ldev;
8306 	struct list_head *iter;
8307 	u8 max_depth = 0;
8308 	bool ignore;
8309 
8310 	for (iter = &dev->adj_list.lower,
8311 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8312 	     ldev;
8313 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8314 		if (ignore)
8315 			continue;
8316 		if (max_depth < ldev->lower_level)
8317 			max_depth = ldev->lower_level;
8318 	}
8319 
8320 	return max_depth;
8321 }
8322 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8323 static int __netdev_update_upper_level(struct net_device *dev,
8324 				       struct netdev_nested_priv *__unused)
8325 {
8326 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8327 	return 0;
8328 }
8329 
8330 #ifdef CONFIG_LOCKDEP
8331 static LIST_HEAD(net_unlink_list);
8332 
net_unlink_todo(struct net_device * dev)8333 static void net_unlink_todo(struct net_device *dev)
8334 {
8335 	if (list_empty(&dev->unlink_list))
8336 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8337 }
8338 #endif
8339 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8340 static int __netdev_update_lower_level(struct net_device *dev,
8341 				       struct netdev_nested_priv *priv)
8342 {
8343 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8344 
8345 #ifdef CONFIG_LOCKDEP
8346 	if (!priv)
8347 		return 0;
8348 
8349 	if (priv->flags & NESTED_SYNC_IMM)
8350 		dev->nested_level = dev->lower_level - 1;
8351 	if (priv->flags & NESTED_SYNC_TODO)
8352 		net_unlink_todo(dev);
8353 #endif
8354 	return 0;
8355 }
8356 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8357 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8358 				  int (*fn)(struct net_device *dev,
8359 					    struct netdev_nested_priv *priv),
8360 				  struct netdev_nested_priv *priv)
8361 {
8362 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8363 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8364 	int ret, cur = 0;
8365 
8366 	now = dev;
8367 	iter = &dev->adj_list.lower;
8368 
8369 	while (1) {
8370 		if (now != dev) {
8371 			ret = fn(now, priv);
8372 			if (ret)
8373 				return ret;
8374 		}
8375 
8376 		next = NULL;
8377 		while (1) {
8378 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8379 			if (!ldev)
8380 				break;
8381 
8382 			next = ldev;
8383 			niter = &ldev->adj_list.lower;
8384 			dev_stack[cur] = now;
8385 			iter_stack[cur++] = iter;
8386 			break;
8387 		}
8388 
8389 		if (!next) {
8390 			if (!cur)
8391 				return 0;
8392 			next = dev_stack[--cur];
8393 			niter = iter_stack[cur];
8394 		}
8395 
8396 		now = next;
8397 		iter = niter;
8398 	}
8399 
8400 	return 0;
8401 }
8402 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8403 
8404 /**
8405  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8406  *				       lower neighbour list, RCU
8407  *				       variant
8408  * @dev: device
8409  *
8410  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8411  * list. The caller must hold RCU read lock.
8412  */
netdev_lower_get_first_private_rcu(struct net_device * dev)8413 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8414 {
8415 	struct netdev_adjacent *lower;
8416 
8417 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8418 			struct netdev_adjacent, list);
8419 	if (lower)
8420 		return lower->private;
8421 	return NULL;
8422 }
8423 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8424 
8425 /**
8426  * netdev_master_upper_dev_get_rcu - Get master upper device
8427  * @dev: device
8428  *
8429  * Find a master upper device and return pointer to it or NULL in case
8430  * it's not there. The caller must hold the RCU read lock.
8431  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8432 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8433 {
8434 	struct netdev_adjacent *upper;
8435 
8436 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8437 				       struct netdev_adjacent, list);
8438 	if (upper && likely(upper->master))
8439 		return upper->dev;
8440 	return NULL;
8441 }
8442 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8443 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8444 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8445 			      struct net_device *adj_dev,
8446 			      struct list_head *dev_list)
8447 {
8448 	char linkname[IFNAMSIZ+7];
8449 
8450 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8451 		"upper_%s" : "lower_%s", adj_dev->name);
8452 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8453 				 linkname);
8454 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8455 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8456 			       char *name,
8457 			       struct list_head *dev_list)
8458 {
8459 	char linkname[IFNAMSIZ+7];
8460 
8461 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8462 		"upper_%s" : "lower_%s", name);
8463 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8464 }
8465 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8466 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8467 						 struct net_device *adj_dev,
8468 						 struct list_head *dev_list)
8469 {
8470 	return (dev_list == &dev->adj_list.upper ||
8471 		dev_list == &dev->adj_list.lower) &&
8472 		net_eq(dev_net(dev), dev_net(adj_dev));
8473 }
8474 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8475 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8476 					struct net_device *adj_dev,
8477 					struct list_head *dev_list,
8478 					void *private, bool master)
8479 {
8480 	struct netdev_adjacent *adj;
8481 	int ret;
8482 
8483 	adj = __netdev_find_adj(adj_dev, dev_list);
8484 
8485 	if (adj) {
8486 		adj->ref_nr += 1;
8487 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8488 			 dev->name, adj_dev->name, adj->ref_nr);
8489 
8490 		return 0;
8491 	}
8492 
8493 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8494 	if (!adj)
8495 		return -ENOMEM;
8496 
8497 	adj->dev = adj_dev;
8498 	adj->master = master;
8499 	adj->ref_nr = 1;
8500 	adj->private = private;
8501 	adj->ignore = false;
8502 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8503 
8504 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8505 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8506 
8507 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8508 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8509 		if (ret)
8510 			goto free_adj;
8511 	}
8512 
8513 	/* Ensure that master link is always the first item in list. */
8514 	if (master) {
8515 		ret = sysfs_create_link(&(dev->dev.kobj),
8516 					&(adj_dev->dev.kobj), "master");
8517 		if (ret)
8518 			goto remove_symlinks;
8519 
8520 		list_add_rcu(&adj->list, dev_list);
8521 	} else {
8522 		list_add_tail_rcu(&adj->list, dev_list);
8523 	}
8524 
8525 	return 0;
8526 
8527 remove_symlinks:
8528 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8529 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8530 free_adj:
8531 	netdev_put(adj_dev, &adj->dev_tracker);
8532 	kfree(adj);
8533 
8534 	return ret;
8535 }
8536 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8537 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8538 					 struct net_device *adj_dev,
8539 					 u16 ref_nr,
8540 					 struct list_head *dev_list)
8541 {
8542 	struct netdev_adjacent *adj;
8543 
8544 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8545 		 dev->name, adj_dev->name, ref_nr);
8546 
8547 	adj = __netdev_find_adj(adj_dev, dev_list);
8548 
8549 	if (!adj) {
8550 		pr_err("Adjacency does not exist for device %s from %s\n",
8551 		       dev->name, adj_dev->name);
8552 		WARN_ON(1);
8553 		return;
8554 	}
8555 
8556 	if (adj->ref_nr > ref_nr) {
8557 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8558 			 dev->name, adj_dev->name, ref_nr,
8559 			 adj->ref_nr - ref_nr);
8560 		adj->ref_nr -= ref_nr;
8561 		return;
8562 	}
8563 
8564 	if (adj->master)
8565 		sysfs_remove_link(&(dev->dev.kobj), "master");
8566 
8567 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8568 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8569 
8570 	list_del_rcu(&adj->list);
8571 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8572 		 adj_dev->name, dev->name, adj_dev->name);
8573 	netdev_put(adj_dev, &adj->dev_tracker);
8574 	kfree_rcu(adj, rcu);
8575 }
8576 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8577 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8578 					    struct net_device *upper_dev,
8579 					    struct list_head *up_list,
8580 					    struct list_head *down_list,
8581 					    void *private, bool master)
8582 {
8583 	int ret;
8584 
8585 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8586 					   private, master);
8587 	if (ret)
8588 		return ret;
8589 
8590 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8591 					   private, false);
8592 	if (ret) {
8593 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8594 		return ret;
8595 	}
8596 
8597 	return 0;
8598 }
8599 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8600 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8601 					       struct net_device *upper_dev,
8602 					       u16 ref_nr,
8603 					       struct list_head *up_list,
8604 					       struct list_head *down_list)
8605 {
8606 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8607 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8608 }
8609 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8610 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8611 						struct net_device *upper_dev,
8612 						void *private, bool master)
8613 {
8614 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8615 						&dev->adj_list.upper,
8616 						&upper_dev->adj_list.lower,
8617 						private, master);
8618 }
8619 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8620 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8621 						   struct net_device *upper_dev)
8622 {
8623 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8624 					   &dev->adj_list.upper,
8625 					   &upper_dev->adj_list.lower);
8626 }
8627 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8628 static int __netdev_upper_dev_link(struct net_device *dev,
8629 				   struct net_device *upper_dev, bool master,
8630 				   void *upper_priv, void *upper_info,
8631 				   struct netdev_nested_priv *priv,
8632 				   struct netlink_ext_ack *extack)
8633 {
8634 	struct netdev_notifier_changeupper_info changeupper_info = {
8635 		.info = {
8636 			.dev = dev,
8637 			.extack = extack,
8638 		},
8639 		.upper_dev = upper_dev,
8640 		.master = master,
8641 		.linking = true,
8642 		.upper_info = upper_info,
8643 	};
8644 	struct net_device *master_dev;
8645 	int ret = 0;
8646 
8647 	ASSERT_RTNL();
8648 
8649 	if (dev == upper_dev)
8650 		return -EBUSY;
8651 
8652 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8653 	if (__netdev_has_upper_dev(upper_dev, dev))
8654 		return -EBUSY;
8655 
8656 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8657 		return -EMLINK;
8658 
8659 	if (!master) {
8660 		if (__netdev_has_upper_dev(dev, upper_dev))
8661 			return -EEXIST;
8662 	} else {
8663 		master_dev = __netdev_master_upper_dev_get(dev);
8664 		if (master_dev)
8665 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8666 	}
8667 
8668 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8669 					    &changeupper_info.info);
8670 	ret = notifier_to_errno(ret);
8671 	if (ret)
8672 		return ret;
8673 
8674 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8675 						   master);
8676 	if (ret)
8677 		return ret;
8678 
8679 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8680 					    &changeupper_info.info);
8681 	ret = notifier_to_errno(ret);
8682 	if (ret)
8683 		goto rollback;
8684 
8685 	__netdev_update_upper_level(dev, NULL);
8686 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8687 
8688 	__netdev_update_lower_level(upper_dev, priv);
8689 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8690 				    priv);
8691 
8692 	return 0;
8693 
8694 rollback:
8695 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8696 
8697 	return ret;
8698 }
8699 
8700 /**
8701  * netdev_upper_dev_link - Add a link to the upper device
8702  * @dev: device
8703  * @upper_dev: new upper device
8704  * @extack: netlink extended ack
8705  *
8706  * Adds a link to device which is upper to this one. The caller must hold
8707  * the RTNL lock. On a failure a negative errno code is returned.
8708  * On success the reference counts are adjusted and the function
8709  * returns zero.
8710  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8711 int netdev_upper_dev_link(struct net_device *dev,
8712 			  struct net_device *upper_dev,
8713 			  struct netlink_ext_ack *extack)
8714 {
8715 	struct netdev_nested_priv priv = {
8716 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8717 		.data = NULL,
8718 	};
8719 
8720 	return __netdev_upper_dev_link(dev, upper_dev, false,
8721 				       NULL, NULL, &priv, extack);
8722 }
8723 EXPORT_SYMBOL(netdev_upper_dev_link);
8724 
8725 /**
8726  * netdev_master_upper_dev_link - Add a master link to the upper device
8727  * @dev: device
8728  * @upper_dev: new upper device
8729  * @upper_priv: upper device private
8730  * @upper_info: upper info to be passed down via notifier
8731  * @extack: netlink extended ack
8732  *
8733  * Adds a link to device which is upper to this one. In this case, only
8734  * one master upper device can be linked, although other non-master devices
8735  * might be linked as well. The caller must hold the RTNL lock.
8736  * On a failure a negative errno code is returned. On success the reference
8737  * counts are adjusted and the function returns zero.
8738  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8739 int netdev_master_upper_dev_link(struct net_device *dev,
8740 				 struct net_device *upper_dev,
8741 				 void *upper_priv, void *upper_info,
8742 				 struct netlink_ext_ack *extack)
8743 {
8744 	struct netdev_nested_priv priv = {
8745 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8746 		.data = NULL,
8747 	};
8748 
8749 	return __netdev_upper_dev_link(dev, upper_dev, true,
8750 				       upper_priv, upper_info, &priv, extack);
8751 }
8752 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8753 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8754 static void __netdev_upper_dev_unlink(struct net_device *dev,
8755 				      struct net_device *upper_dev,
8756 				      struct netdev_nested_priv *priv)
8757 {
8758 	struct netdev_notifier_changeupper_info changeupper_info = {
8759 		.info = {
8760 			.dev = dev,
8761 		},
8762 		.upper_dev = upper_dev,
8763 		.linking = false,
8764 	};
8765 
8766 	ASSERT_RTNL();
8767 
8768 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8769 
8770 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8771 				      &changeupper_info.info);
8772 
8773 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8774 
8775 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8776 				      &changeupper_info.info);
8777 
8778 	__netdev_update_upper_level(dev, NULL);
8779 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8780 
8781 	__netdev_update_lower_level(upper_dev, priv);
8782 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8783 				    priv);
8784 }
8785 
8786 /**
8787  * netdev_upper_dev_unlink - Removes a link to upper device
8788  * @dev: device
8789  * @upper_dev: new upper device
8790  *
8791  * Removes a link to device which is upper to this one. The caller must hold
8792  * the RTNL lock.
8793  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8794 void netdev_upper_dev_unlink(struct net_device *dev,
8795 			     struct net_device *upper_dev)
8796 {
8797 	struct netdev_nested_priv priv = {
8798 		.flags = NESTED_SYNC_TODO,
8799 		.data = NULL,
8800 	};
8801 
8802 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8803 }
8804 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8805 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8806 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8807 				      struct net_device *lower_dev,
8808 				      bool val)
8809 {
8810 	struct netdev_adjacent *adj;
8811 
8812 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8813 	if (adj)
8814 		adj->ignore = val;
8815 
8816 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8817 	if (adj)
8818 		adj->ignore = val;
8819 }
8820 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8821 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8822 					struct net_device *lower_dev)
8823 {
8824 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8825 }
8826 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8827 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8828 				       struct net_device *lower_dev)
8829 {
8830 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8831 }
8832 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8833 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8834 				   struct net_device *new_dev,
8835 				   struct net_device *dev,
8836 				   struct netlink_ext_ack *extack)
8837 {
8838 	struct netdev_nested_priv priv = {
8839 		.flags = 0,
8840 		.data = NULL,
8841 	};
8842 	int err;
8843 
8844 	if (!new_dev)
8845 		return 0;
8846 
8847 	if (old_dev && new_dev != old_dev)
8848 		netdev_adjacent_dev_disable(dev, old_dev);
8849 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8850 				      extack);
8851 	if (err) {
8852 		if (old_dev && new_dev != old_dev)
8853 			netdev_adjacent_dev_enable(dev, old_dev);
8854 		return err;
8855 	}
8856 
8857 	return 0;
8858 }
8859 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8860 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8861 void netdev_adjacent_change_commit(struct net_device *old_dev,
8862 				   struct net_device *new_dev,
8863 				   struct net_device *dev)
8864 {
8865 	struct netdev_nested_priv priv = {
8866 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8867 		.data = NULL,
8868 	};
8869 
8870 	if (!new_dev || !old_dev)
8871 		return;
8872 
8873 	if (new_dev == old_dev)
8874 		return;
8875 
8876 	netdev_adjacent_dev_enable(dev, old_dev);
8877 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8878 }
8879 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8880 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8881 void netdev_adjacent_change_abort(struct net_device *old_dev,
8882 				  struct net_device *new_dev,
8883 				  struct net_device *dev)
8884 {
8885 	struct netdev_nested_priv priv = {
8886 		.flags = 0,
8887 		.data = NULL,
8888 	};
8889 
8890 	if (!new_dev)
8891 		return;
8892 
8893 	if (old_dev && new_dev != old_dev)
8894 		netdev_adjacent_dev_enable(dev, old_dev);
8895 
8896 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8897 }
8898 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8899 
8900 /**
8901  * netdev_bonding_info_change - Dispatch event about slave change
8902  * @dev: device
8903  * @bonding_info: info to dispatch
8904  *
8905  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8906  * The caller must hold the RTNL lock.
8907  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8908 void netdev_bonding_info_change(struct net_device *dev,
8909 				struct netdev_bonding_info *bonding_info)
8910 {
8911 	struct netdev_notifier_bonding_info info = {
8912 		.info.dev = dev,
8913 	};
8914 
8915 	memcpy(&info.bonding_info, bonding_info,
8916 	       sizeof(struct netdev_bonding_info));
8917 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8918 				      &info.info);
8919 }
8920 EXPORT_SYMBOL(netdev_bonding_info_change);
8921 
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8922 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8923 					   struct netlink_ext_ack *extack)
8924 {
8925 	struct netdev_notifier_offload_xstats_info info = {
8926 		.info.dev = dev,
8927 		.info.extack = extack,
8928 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8929 	};
8930 	int err;
8931 	int rc;
8932 
8933 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8934 					 GFP_KERNEL);
8935 	if (!dev->offload_xstats_l3)
8936 		return -ENOMEM;
8937 
8938 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8939 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8940 						  &info.info);
8941 	err = notifier_to_errno(rc);
8942 	if (err)
8943 		goto free_stats;
8944 
8945 	return 0;
8946 
8947 free_stats:
8948 	kfree(dev->offload_xstats_l3);
8949 	dev->offload_xstats_l3 = NULL;
8950 	return err;
8951 }
8952 
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8953 int netdev_offload_xstats_enable(struct net_device *dev,
8954 				 enum netdev_offload_xstats_type type,
8955 				 struct netlink_ext_ack *extack)
8956 {
8957 	ASSERT_RTNL();
8958 
8959 	if (netdev_offload_xstats_enabled(dev, type))
8960 		return -EALREADY;
8961 
8962 	switch (type) {
8963 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8964 		return netdev_offload_xstats_enable_l3(dev, extack);
8965 	}
8966 
8967 	WARN_ON(1);
8968 	return -EINVAL;
8969 }
8970 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8971 
netdev_offload_xstats_disable_l3(struct net_device * dev)8972 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8973 {
8974 	struct netdev_notifier_offload_xstats_info info = {
8975 		.info.dev = dev,
8976 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8977 	};
8978 
8979 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8980 				      &info.info);
8981 	kfree(dev->offload_xstats_l3);
8982 	dev->offload_xstats_l3 = NULL;
8983 }
8984 
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8985 int netdev_offload_xstats_disable(struct net_device *dev,
8986 				  enum netdev_offload_xstats_type type)
8987 {
8988 	ASSERT_RTNL();
8989 
8990 	if (!netdev_offload_xstats_enabled(dev, type))
8991 		return -EALREADY;
8992 
8993 	switch (type) {
8994 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8995 		netdev_offload_xstats_disable_l3(dev);
8996 		return 0;
8997 	}
8998 
8999 	WARN_ON(1);
9000 	return -EINVAL;
9001 }
9002 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9003 
netdev_offload_xstats_disable_all(struct net_device * dev)9004 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9005 {
9006 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9007 }
9008 
9009 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9010 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9011 			      enum netdev_offload_xstats_type type)
9012 {
9013 	switch (type) {
9014 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9015 		return dev->offload_xstats_l3;
9016 	}
9017 
9018 	WARN_ON(1);
9019 	return NULL;
9020 }
9021 
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9022 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9023 				   enum netdev_offload_xstats_type type)
9024 {
9025 	ASSERT_RTNL();
9026 
9027 	return netdev_offload_xstats_get_ptr(dev, type);
9028 }
9029 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9030 
9031 struct netdev_notifier_offload_xstats_ru {
9032 	bool used;
9033 };
9034 
9035 struct netdev_notifier_offload_xstats_rd {
9036 	struct rtnl_hw_stats64 stats;
9037 	bool used;
9038 };
9039 
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9040 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9041 				  const struct rtnl_hw_stats64 *src)
9042 {
9043 	dest->rx_packets	  += src->rx_packets;
9044 	dest->tx_packets	  += src->tx_packets;
9045 	dest->rx_bytes		  += src->rx_bytes;
9046 	dest->tx_bytes		  += src->tx_bytes;
9047 	dest->rx_errors		  += src->rx_errors;
9048 	dest->tx_errors		  += src->tx_errors;
9049 	dest->rx_dropped	  += src->rx_dropped;
9050 	dest->tx_dropped	  += src->tx_dropped;
9051 	dest->multicast		  += src->multicast;
9052 }
9053 
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9054 static int netdev_offload_xstats_get_used(struct net_device *dev,
9055 					  enum netdev_offload_xstats_type type,
9056 					  bool *p_used,
9057 					  struct netlink_ext_ack *extack)
9058 {
9059 	struct netdev_notifier_offload_xstats_ru report_used = {};
9060 	struct netdev_notifier_offload_xstats_info info = {
9061 		.info.dev = dev,
9062 		.info.extack = extack,
9063 		.type = type,
9064 		.report_used = &report_used,
9065 	};
9066 	int rc;
9067 
9068 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9069 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9070 					   &info.info);
9071 	*p_used = report_used.used;
9072 	return notifier_to_errno(rc);
9073 }
9074 
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9075 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9076 					   enum netdev_offload_xstats_type type,
9077 					   struct rtnl_hw_stats64 *p_stats,
9078 					   bool *p_used,
9079 					   struct netlink_ext_ack *extack)
9080 {
9081 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9082 	struct netdev_notifier_offload_xstats_info info = {
9083 		.info.dev = dev,
9084 		.info.extack = extack,
9085 		.type = type,
9086 		.report_delta = &report_delta,
9087 	};
9088 	struct rtnl_hw_stats64 *stats;
9089 	int rc;
9090 
9091 	stats = netdev_offload_xstats_get_ptr(dev, type);
9092 	if (WARN_ON(!stats))
9093 		return -EINVAL;
9094 
9095 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9096 					   &info.info);
9097 
9098 	/* Cache whatever we got, even if there was an error, otherwise the
9099 	 * successful stats retrievals would get lost.
9100 	 */
9101 	netdev_hw_stats64_add(stats, &report_delta.stats);
9102 
9103 	if (p_stats)
9104 		*p_stats = *stats;
9105 	*p_used = report_delta.used;
9106 
9107 	return notifier_to_errno(rc);
9108 }
9109 
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9110 int netdev_offload_xstats_get(struct net_device *dev,
9111 			      enum netdev_offload_xstats_type type,
9112 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9113 			      struct netlink_ext_ack *extack)
9114 {
9115 	ASSERT_RTNL();
9116 
9117 	if (p_stats)
9118 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9119 						       p_used, extack);
9120 	else
9121 		return netdev_offload_xstats_get_used(dev, type, p_used,
9122 						      extack);
9123 }
9124 EXPORT_SYMBOL(netdev_offload_xstats_get);
9125 
9126 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9127 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9128 				   const struct rtnl_hw_stats64 *stats)
9129 {
9130 	report_delta->used = true;
9131 	netdev_hw_stats64_add(&report_delta->stats, stats);
9132 }
9133 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9134 
9135 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9136 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9137 {
9138 	report_used->used = true;
9139 }
9140 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9141 
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9142 void netdev_offload_xstats_push_delta(struct net_device *dev,
9143 				      enum netdev_offload_xstats_type type,
9144 				      const struct rtnl_hw_stats64 *p_stats)
9145 {
9146 	struct rtnl_hw_stats64 *stats;
9147 
9148 	ASSERT_RTNL();
9149 
9150 	stats = netdev_offload_xstats_get_ptr(dev, type);
9151 	if (WARN_ON(!stats))
9152 		return;
9153 
9154 	netdev_hw_stats64_add(stats, p_stats);
9155 }
9156 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9157 
9158 /**
9159  * netdev_get_xmit_slave - Get the xmit slave of master device
9160  * @dev: device
9161  * @skb: The packet
9162  * @all_slaves: assume all the slaves are active
9163  *
9164  * The reference counters are not incremented so the caller must be
9165  * careful with locks. The caller must hold RCU lock.
9166  * %NULL is returned if no slave is found.
9167  */
9168 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9169 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9170 					 struct sk_buff *skb,
9171 					 bool all_slaves)
9172 {
9173 	const struct net_device_ops *ops = dev->netdev_ops;
9174 
9175 	if (!ops->ndo_get_xmit_slave)
9176 		return NULL;
9177 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9178 }
9179 EXPORT_SYMBOL(netdev_get_xmit_slave);
9180 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9181 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9182 						  struct sock *sk)
9183 {
9184 	const struct net_device_ops *ops = dev->netdev_ops;
9185 
9186 	if (!ops->ndo_sk_get_lower_dev)
9187 		return NULL;
9188 	return ops->ndo_sk_get_lower_dev(dev, sk);
9189 }
9190 
9191 /**
9192  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9193  * @dev: device
9194  * @sk: the socket
9195  *
9196  * %NULL is returned if no lower device is found.
9197  */
9198 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9199 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9200 					    struct sock *sk)
9201 {
9202 	struct net_device *lower;
9203 
9204 	lower = netdev_sk_get_lower_dev(dev, sk);
9205 	while (lower) {
9206 		dev = lower;
9207 		lower = netdev_sk_get_lower_dev(dev, sk);
9208 	}
9209 
9210 	return dev;
9211 }
9212 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9213 
netdev_adjacent_add_links(struct net_device * dev)9214 static void netdev_adjacent_add_links(struct net_device *dev)
9215 {
9216 	struct netdev_adjacent *iter;
9217 
9218 	struct net *net = dev_net(dev);
9219 
9220 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9221 		if (!net_eq(net, dev_net(iter->dev)))
9222 			continue;
9223 		netdev_adjacent_sysfs_add(iter->dev, dev,
9224 					  &iter->dev->adj_list.lower);
9225 		netdev_adjacent_sysfs_add(dev, iter->dev,
9226 					  &dev->adj_list.upper);
9227 	}
9228 
9229 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9230 		if (!net_eq(net, dev_net(iter->dev)))
9231 			continue;
9232 		netdev_adjacent_sysfs_add(iter->dev, dev,
9233 					  &iter->dev->adj_list.upper);
9234 		netdev_adjacent_sysfs_add(dev, iter->dev,
9235 					  &dev->adj_list.lower);
9236 	}
9237 }
9238 
netdev_adjacent_del_links(struct net_device * dev)9239 static void netdev_adjacent_del_links(struct net_device *dev)
9240 {
9241 	struct netdev_adjacent *iter;
9242 
9243 	struct net *net = dev_net(dev);
9244 
9245 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9246 		if (!net_eq(net, dev_net(iter->dev)))
9247 			continue;
9248 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9249 					  &iter->dev->adj_list.lower);
9250 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9251 					  &dev->adj_list.upper);
9252 	}
9253 
9254 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9255 		if (!net_eq(net, dev_net(iter->dev)))
9256 			continue;
9257 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9258 					  &iter->dev->adj_list.upper);
9259 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9260 					  &dev->adj_list.lower);
9261 	}
9262 }
9263 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9264 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9265 {
9266 	struct netdev_adjacent *iter;
9267 
9268 	struct net *net = dev_net(dev);
9269 
9270 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9271 		if (!net_eq(net, dev_net(iter->dev)))
9272 			continue;
9273 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9274 					  &iter->dev->adj_list.lower);
9275 		netdev_adjacent_sysfs_add(iter->dev, dev,
9276 					  &iter->dev->adj_list.lower);
9277 	}
9278 
9279 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9280 		if (!net_eq(net, dev_net(iter->dev)))
9281 			continue;
9282 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9283 					  &iter->dev->adj_list.upper);
9284 		netdev_adjacent_sysfs_add(iter->dev, dev,
9285 					  &iter->dev->adj_list.upper);
9286 	}
9287 }
9288 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9289 void *netdev_lower_dev_get_private(struct net_device *dev,
9290 				   struct net_device *lower_dev)
9291 {
9292 	struct netdev_adjacent *lower;
9293 
9294 	if (!lower_dev)
9295 		return NULL;
9296 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9297 	if (!lower)
9298 		return NULL;
9299 
9300 	return lower->private;
9301 }
9302 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9303 
9304 
9305 /**
9306  * netdev_lower_state_changed - Dispatch event about lower device state change
9307  * @lower_dev: device
9308  * @lower_state_info: state to dispatch
9309  *
9310  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9311  * The caller must hold the RTNL lock.
9312  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9313 void netdev_lower_state_changed(struct net_device *lower_dev,
9314 				void *lower_state_info)
9315 {
9316 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9317 		.info.dev = lower_dev,
9318 	};
9319 
9320 	ASSERT_RTNL();
9321 	changelowerstate_info.lower_state_info = lower_state_info;
9322 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9323 				      &changelowerstate_info.info);
9324 }
9325 EXPORT_SYMBOL(netdev_lower_state_changed);
9326 
dev_change_rx_flags(struct net_device * dev,int flags)9327 static void dev_change_rx_flags(struct net_device *dev, int flags)
9328 {
9329 	const struct net_device_ops *ops = dev->netdev_ops;
9330 
9331 	if (ops->ndo_change_rx_flags)
9332 		ops->ndo_change_rx_flags(dev, flags);
9333 }
9334 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9335 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9336 {
9337 	unsigned int old_flags = dev->flags;
9338 	unsigned int promiscuity, flags;
9339 	kuid_t uid;
9340 	kgid_t gid;
9341 
9342 	ASSERT_RTNL();
9343 
9344 	promiscuity = dev->promiscuity + inc;
9345 	if (promiscuity == 0) {
9346 		/*
9347 		 * Avoid overflow.
9348 		 * If inc causes overflow, untouch promisc and return error.
9349 		 */
9350 		if (unlikely(inc > 0)) {
9351 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9352 			return -EOVERFLOW;
9353 		}
9354 		flags = old_flags & ~IFF_PROMISC;
9355 	} else {
9356 		flags = old_flags | IFF_PROMISC;
9357 	}
9358 	WRITE_ONCE(dev->promiscuity, promiscuity);
9359 	if (flags != old_flags) {
9360 		WRITE_ONCE(dev->flags, flags);
9361 		netdev_info(dev, "%s promiscuous mode\n",
9362 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9363 		if (audit_enabled) {
9364 			current_uid_gid(&uid, &gid);
9365 			audit_log(audit_context(), GFP_ATOMIC,
9366 				  AUDIT_ANOM_PROMISCUOUS,
9367 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9368 				  dev->name, (dev->flags & IFF_PROMISC),
9369 				  (old_flags & IFF_PROMISC),
9370 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9371 				  from_kuid(&init_user_ns, uid),
9372 				  from_kgid(&init_user_ns, gid),
9373 				  audit_get_sessionid(current));
9374 		}
9375 
9376 		dev_change_rx_flags(dev, IFF_PROMISC);
9377 	}
9378 	if (notify) {
9379 		/* The ops lock is only required to ensure consistent locking
9380 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9381 		 * called without the lock, even for devices that are ops
9382 		 * locked, such as in `dev_uc_sync_multiple` when using
9383 		 * bonding or teaming.
9384 		 */
9385 		netdev_ops_assert_locked(dev);
9386 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9387 	}
9388 	return 0;
9389 }
9390 
netif_set_promiscuity(struct net_device * dev,int inc)9391 int netif_set_promiscuity(struct net_device *dev, int inc)
9392 {
9393 	unsigned int old_flags = dev->flags;
9394 	int err;
9395 
9396 	err = __dev_set_promiscuity(dev, inc, true);
9397 	if (err < 0)
9398 		return err;
9399 	if (dev->flags != old_flags)
9400 		dev_set_rx_mode(dev);
9401 	return err;
9402 }
9403 
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9404 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9405 {
9406 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9407 	unsigned int allmulti, flags;
9408 
9409 	ASSERT_RTNL();
9410 
9411 	allmulti = dev->allmulti + inc;
9412 	if (allmulti == 0) {
9413 		/*
9414 		 * Avoid overflow.
9415 		 * If inc causes overflow, untouch allmulti and return error.
9416 		 */
9417 		if (unlikely(inc > 0)) {
9418 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9419 			return -EOVERFLOW;
9420 		}
9421 		flags = old_flags & ~IFF_ALLMULTI;
9422 	} else {
9423 		flags = old_flags | IFF_ALLMULTI;
9424 	}
9425 	WRITE_ONCE(dev->allmulti, allmulti);
9426 	if (flags != old_flags) {
9427 		WRITE_ONCE(dev->flags, flags);
9428 		netdev_info(dev, "%s allmulticast mode\n",
9429 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9430 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9431 		dev_set_rx_mode(dev);
9432 		if (notify)
9433 			__dev_notify_flags(dev, old_flags,
9434 					   dev->gflags ^ old_gflags, 0, NULL);
9435 	}
9436 	return 0;
9437 }
9438 
9439 /*
9440  *	Upload unicast and multicast address lists to device and
9441  *	configure RX filtering. When the device doesn't support unicast
9442  *	filtering it is put in promiscuous mode while unicast addresses
9443  *	are present.
9444  */
__dev_set_rx_mode(struct net_device * dev)9445 void __dev_set_rx_mode(struct net_device *dev)
9446 {
9447 	const struct net_device_ops *ops = dev->netdev_ops;
9448 
9449 	/* dev_open will call this function so the list will stay sane. */
9450 	if (!(dev->flags&IFF_UP))
9451 		return;
9452 
9453 	if (!netif_device_present(dev))
9454 		return;
9455 
9456 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9457 		/* Unicast addresses changes may only happen under the rtnl,
9458 		 * therefore calling __dev_set_promiscuity here is safe.
9459 		 */
9460 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9461 			__dev_set_promiscuity(dev, 1, false);
9462 			dev->uc_promisc = true;
9463 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9464 			__dev_set_promiscuity(dev, -1, false);
9465 			dev->uc_promisc = false;
9466 		}
9467 	}
9468 
9469 	if (ops->ndo_set_rx_mode)
9470 		ops->ndo_set_rx_mode(dev);
9471 }
9472 
dev_set_rx_mode(struct net_device * dev)9473 void dev_set_rx_mode(struct net_device *dev)
9474 {
9475 	netif_addr_lock_bh(dev);
9476 	__dev_set_rx_mode(dev);
9477 	netif_addr_unlock_bh(dev);
9478 }
9479 
9480 /**
9481  * netif_get_flags() - get flags reported to userspace
9482  * @dev: device
9483  *
9484  * Get the combination of flag bits exported through APIs to userspace.
9485  */
netif_get_flags(const struct net_device * dev)9486 unsigned int netif_get_flags(const struct net_device *dev)
9487 {
9488 	unsigned int flags;
9489 
9490 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9491 				IFF_ALLMULTI |
9492 				IFF_RUNNING |
9493 				IFF_LOWER_UP |
9494 				IFF_DORMANT)) |
9495 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9496 				IFF_ALLMULTI));
9497 
9498 	if (netif_running(dev)) {
9499 		if (netif_oper_up(dev))
9500 			flags |= IFF_RUNNING;
9501 		if (netif_carrier_ok(dev))
9502 			flags |= IFF_LOWER_UP;
9503 		if (netif_dormant(dev))
9504 			flags |= IFF_DORMANT;
9505 	}
9506 
9507 	return flags;
9508 }
9509 EXPORT_SYMBOL(netif_get_flags);
9510 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9511 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9512 		       struct netlink_ext_ack *extack)
9513 {
9514 	unsigned int old_flags = dev->flags;
9515 	int ret;
9516 
9517 	ASSERT_RTNL();
9518 
9519 	/*
9520 	 *	Set the flags on our device.
9521 	 */
9522 
9523 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9524 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9525 			       IFF_AUTOMEDIA)) |
9526 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9527 				    IFF_ALLMULTI));
9528 
9529 	/*
9530 	 *	Load in the correct multicast list now the flags have changed.
9531 	 */
9532 
9533 	if ((old_flags ^ flags) & IFF_MULTICAST)
9534 		dev_change_rx_flags(dev, IFF_MULTICAST);
9535 
9536 	dev_set_rx_mode(dev);
9537 
9538 	/*
9539 	 *	Have we downed the interface. We handle IFF_UP ourselves
9540 	 *	according to user attempts to set it, rather than blindly
9541 	 *	setting it.
9542 	 */
9543 
9544 	ret = 0;
9545 	if ((old_flags ^ flags) & IFF_UP) {
9546 		if (old_flags & IFF_UP)
9547 			__dev_close(dev);
9548 		else
9549 			ret = __dev_open(dev, extack);
9550 	}
9551 
9552 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9553 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9554 		old_flags = dev->flags;
9555 
9556 		dev->gflags ^= IFF_PROMISC;
9557 
9558 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9559 			if (dev->flags != old_flags)
9560 				dev_set_rx_mode(dev);
9561 	}
9562 
9563 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9564 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9565 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9566 	 */
9567 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9568 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9569 
9570 		dev->gflags ^= IFF_ALLMULTI;
9571 		netif_set_allmulti(dev, inc, false);
9572 	}
9573 
9574 	return ret;
9575 }
9576 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9577 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9578 			unsigned int gchanges, u32 portid,
9579 			const struct nlmsghdr *nlh)
9580 {
9581 	unsigned int changes = dev->flags ^ old_flags;
9582 
9583 	if (gchanges)
9584 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9585 
9586 	if (changes & IFF_UP) {
9587 		if (dev->flags & IFF_UP)
9588 			call_netdevice_notifiers(NETDEV_UP, dev);
9589 		else
9590 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9591 	}
9592 
9593 	if (dev->flags & IFF_UP &&
9594 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9595 		struct netdev_notifier_change_info change_info = {
9596 			.info = {
9597 				.dev = dev,
9598 			},
9599 			.flags_changed = changes,
9600 		};
9601 
9602 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9603 	}
9604 }
9605 
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9606 int netif_change_flags(struct net_device *dev, unsigned int flags,
9607 		       struct netlink_ext_ack *extack)
9608 {
9609 	int ret;
9610 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9611 
9612 	ret = __dev_change_flags(dev, flags, extack);
9613 	if (ret < 0)
9614 		return ret;
9615 
9616 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9617 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9618 	return ret;
9619 }
9620 
__netif_set_mtu(struct net_device * dev,int new_mtu)9621 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9622 {
9623 	const struct net_device_ops *ops = dev->netdev_ops;
9624 
9625 	if (ops->ndo_change_mtu)
9626 		return ops->ndo_change_mtu(dev, new_mtu);
9627 
9628 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9629 	WRITE_ONCE(dev->mtu, new_mtu);
9630 	return 0;
9631 }
9632 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9633 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9634 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9635 		     struct netlink_ext_ack *extack)
9636 {
9637 	/* MTU must be positive, and in range */
9638 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9639 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9640 		return -EINVAL;
9641 	}
9642 
9643 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9644 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9645 		return -EINVAL;
9646 	}
9647 	return 0;
9648 }
9649 
9650 /**
9651  * netif_set_mtu_ext() - Change maximum transfer unit
9652  * @dev: device
9653  * @new_mtu: new transfer unit
9654  * @extack: netlink extended ack
9655  *
9656  * Change the maximum transfer size of the network device.
9657  *
9658  * Return: 0 on success, -errno on failure.
9659  */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9660 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9661 		      struct netlink_ext_ack *extack)
9662 {
9663 	int err, orig_mtu;
9664 
9665 	netdev_ops_assert_locked(dev);
9666 
9667 	if (new_mtu == dev->mtu)
9668 		return 0;
9669 
9670 	err = dev_validate_mtu(dev, new_mtu, extack);
9671 	if (err)
9672 		return err;
9673 
9674 	if (!netif_device_present(dev))
9675 		return -ENODEV;
9676 
9677 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9678 	err = notifier_to_errno(err);
9679 	if (err)
9680 		return err;
9681 
9682 	orig_mtu = dev->mtu;
9683 	err = __netif_set_mtu(dev, new_mtu);
9684 
9685 	if (!err) {
9686 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9687 						   orig_mtu);
9688 		err = notifier_to_errno(err);
9689 		if (err) {
9690 			/* setting mtu back and notifying everyone again,
9691 			 * so that they have a chance to revert changes.
9692 			 */
9693 			__netif_set_mtu(dev, orig_mtu);
9694 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9695 						     new_mtu);
9696 		}
9697 	}
9698 	return err;
9699 }
9700 
netif_set_mtu(struct net_device * dev,int new_mtu)9701 int netif_set_mtu(struct net_device *dev, int new_mtu)
9702 {
9703 	struct netlink_ext_ack extack;
9704 	int err;
9705 
9706 	memset(&extack, 0, sizeof(extack));
9707 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9708 	if (err && extack._msg)
9709 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9710 	return err;
9711 }
9712 EXPORT_SYMBOL(netif_set_mtu);
9713 
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9714 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9715 {
9716 	unsigned int orig_len = dev->tx_queue_len;
9717 	int res;
9718 
9719 	if (new_len != (unsigned int)new_len)
9720 		return -ERANGE;
9721 
9722 	if (new_len != orig_len) {
9723 		WRITE_ONCE(dev->tx_queue_len, new_len);
9724 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9725 		res = notifier_to_errno(res);
9726 		if (res)
9727 			goto err_rollback;
9728 		res = dev_qdisc_change_tx_queue_len(dev);
9729 		if (res)
9730 			goto err_rollback;
9731 	}
9732 
9733 	return 0;
9734 
9735 err_rollback:
9736 	netdev_err(dev, "refused to change device tx_queue_len\n");
9737 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9738 	return res;
9739 }
9740 
netif_set_group(struct net_device * dev,int new_group)9741 void netif_set_group(struct net_device *dev, int new_group)
9742 {
9743 	dev->group = new_group;
9744 }
9745 
9746 /**
9747  * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9748  * @dev: device
9749  * @addr: new address
9750  * @extack: netlink extended ack
9751  *
9752  * Return: 0 on success, -errno on failure.
9753  */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9754 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9755 				struct netlink_ext_ack *extack)
9756 {
9757 	struct netdev_notifier_pre_changeaddr_info info = {
9758 		.info.dev = dev,
9759 		.info.extack = extack,
9760 		.dev_addr = addr,
9761 	};
9762 	int rc;
9763 
9764 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9765 	return notifier_to_errno(rc);
9766 }
9767 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9768 
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9769 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9770 			  struct netlink_ext_ack *extack)
9771 {
9772 	const struct net_device_ops *ops = dev->netdev_ops;
9773 	int err;
9774 
9775 	if (!ops->ndo_set_mac_address)
9776 		return -EOPNOTSUPP;
9777 	if (ss->ss_family != dev->type)
9778 		return -EINVAL;
9779 	if (!netif_device_present(dev))
9780 		return -ENODEV;
9781 	err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9782 	if (err)
9783 		return err;
9784 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9785 		err = ops->ndo_set_mac_address(dev, ss);
9786 		if (err)
9787 			return err;
9788 	}
9789 	dev->addr_assign_type = NET_ADDR_SET;
9790 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9791 	add_device_randomness(dev->dev_addr, dev->addr_len);
9792 	return 0;
9793 }
9794 
9795 DECLARE_RWSEM(dev_addr_sem);
9796 
9797 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9798 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9799 {
9800 	size_t size = sizeof(sa->sa_data_min);
9801 	struct net_device *dev;
9802 	int ret = 0;
9803 
9804 	down_read(&dev_addr_sem);
9805 	rcu_read_lock();
9806 
9807 	dev = dev_get_by_name_rcu(net, dev_name);
9808 	if (!dev) {
9809 		ret = -ENODEV;
9810 		goto unlock;
9811 	}
9812 	if (!dev->addr_len)
9813 		memset(sa->sa_data, 0, size);
9814 	else
9815 		memcpy(sa->sa_data, dev->dev_addr,
9816 		       min_t(size_t, size, dev->addr_len));
9817 	sa->sa_family = dev->type;
9818 
9819 unlock:
9820 	rcu_read_unlock();
9821 	up_read(&dev_addr_sem);
9822 	return ret;
9823 }
9824 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
9825 
netif_change_carrier(struct net_device * dev,bool new_carrier)9826 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9827 {
9828 	const struct net_device_ops *ops = dev->netdev_ops;
9829 
9830 	if (!ops->ndo_change_carrier)
9831 		return -EOPNOTSUPP;
9832 	if (!netif_device_present(dev))
9833 		return -ENODEV;
9834 	return ops->ndo_change_carrier(dev, new_carrier);
9835 }
9836 
9837 /**
9838  *	dev_get_phys_port_id - Get device physical port ID
9839  *	@dev: device
9840  *	@ppid: port ID
9841  *
9842  *	Get device physical port ID
9843  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9844 int dev_get_phys_port_id(struct net_device *dev,
9845 			 struct netdev_phys_item_id *ppid)
9846 {
9847 	const struct net_device_ops *ops = dev->netdev_ops;
9848 
9849 	if (!ops->ndo_get_phys_port_id)
9850 		return -EOPNOTSUPP;
9851 	return ops->ndo_get_phys_port_id(dev, ppid);
9852 }
9853 
9854 /**
9855  *	dev_get_phys_port_name - Get device physical port name
9856  *	@dev: device
9857  *	@name: port name
9858  *	@len: limit of bytes to copy to name
9859  *
9860  *	Get device physical port name
9861  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9862 int dev_get_phys_port_name(struct net_device *dev,
9863 			   char *name, size_t len)
9864 {
9865 	const struct net_device_ops *ops = dev->netdev_ops;
9866 	int err;
9867 
9868 	if (ops->ndo_get_phys_port_name) {
9869 		err = ops->ndo_get_phys_port_name(dev, name, len);
9870 		if (err != -EOPNOTSUPP)
9871 			return err;
9872 	}
9873 	return devlink_compat_phys_port_name_get(dev, name, len);
9874 }
9875 
9876 /**
9877  * netif_get_port_parent_id() - Get the device's port parent identifier
9878  * @dev: network device
9879  * @ppid: pointer to a storage for the port's parent identifier
9880  * @recurse: allow/disallow recursion to lower devices
9881  *
9882  * Get the devices's port parent identifier.
9883  *
9884  * Return: 0 on success, -errno on failure.
9885  */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9886 int netif_get_port_parent_id(struct net_device *dev,
9887 			     struct netdev_phys_item_id *ppid, bool recurse)
9888 {
9889 	const struct net_device_ops *ops = dev->netdev_ops;
9890 	struct netdev_phys_item_id first = { };
9891 	struct net_device *lower_dev;
9892 	struct list_head *iter;
9893 	int err;
9894 
9895 	if (ops->ndo_get_port_parent_id) {
9896 		err = ops->ndo_get_port_parent_id(dev, ppid);
9897 		if (err != -EOPNOTSUPP)
9898 			return err;
9899 	}
9900 
9901 	err = devlink_compat_switch_id_get(dev, ppid);
9902 	if (!recurse || err != -EOPNOTSUPP)
9903 		return err;
9904 
9905 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9906 		err = netif_get_port_parent_id(lower_dev, ppid, true);
9907 		if (err)
9908 			break;
9909 		if (!first.id_len)
9910 			first = *ppid;
9911 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9912 			return -EOPNOTSUPP;
9913 	}
9914 
9915 	return err;
9916 }
9917 EXPORT_SYMBOL(netif_get_port_parent_id);
9918 
9919 /**
9920  *	netdev_port_same_parent_id - Indicate if two network devices have
9921  *	the same port parent identifier
9922  *	@a: first network device
9923  *	@b: second network device
9924  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9925 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9926 {
9927 	struct netdev_phys_item_id a_id = { };
9928 	struct netdev_phys_item_id b_id = { };
9929 
9930 	if (netif_get_port_parent_id(a, &a_id, true) ||
9931 	    netif_get_port_parent_id(b, &b_id, true))
9932 		return false;
9933 
9934 	return netdev_phys_item_id_same(&a_id, &b_id);
9935 }
9936 EXPORT_SYMBOL(netdev_port_same_parent_id);
9937 
netif_change_proto_down(struct net_device * dev,bool proto_down)9938 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9939 {
9940 	if (!dev->change_proto_down)
9941 		return -EOPNOTSUPP;
9942 	if (!netif_device_present(dev))
9943 		return -ENODEV;
9944 	if (proto_down)
9945 		netif_carrier_off(dev);
9946 	else
9947 		netif_carrier_on(dev);
9948 	WRITE_ONCE(dev->proto_down, proto_down);
9949 	return 0;
9950 }
9951 
9952 /**
9953  *	netdev_change_proto_down_reason_locked - proto down reason
9954  *
9955  *	@dev: device
9956  *	@mask: proto down mask
9957  *	@value: proto down value
9958  */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9959 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9960 					    unsigned long mask, u32 value)
9961 {
9962 	u32 proto_down_reason;
9963 	int b;
9964 
9965 	if (!mask) {
9966 		proto_down_reason = value;
9967 	} else {
9968 		proto_down_reason = dev->proto_down_reason;
9969 		for_each_set_bit(b, &mask, 32) {
9970 			if (value & (1 << b))
9971 				proto_down_reason |= BIT(b);
9972 			else
9973 				proto_down_reason &= ~BIT(b);
9974 		}
9975 	}
9976 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9977 }
9978 
9979 struct bpf_xdp_link {
9980 	struct bpf_link link;
9981 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9982 	int flags;
9983 };
9984 
dev_xdp_mode(struct net_device * dev,u32 flags)9985 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9986 {
9987 	if (flags & XDP_FLAGS_HW_MODE)
9988 		return XDP_MODE_HW;
9989 	if (flags & XDP_FLAGS_DRV_MODE)
9990 		return XDP_MODE_DRV;
9991 	if (flags & XDP_FLAGS_SKB_MODE)
9992 		return XDP_MODE_SKB;
9993 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9994 }
9995 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9996 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9997 {
9998 	switch (mode) {
9999 	case XDP_MODE_SKB:
10000 		return generic_xdp_install;
10001 	case XDP_MODE_DRV:
10002 	case XDP_MODE_HW:
10003 		return dev->netdev_ops->ndo_bpf;
10004 	default:
10005 		return NULL;
10006 	}
10007 }
10008 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10009 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10010 					 enum bpf_xdp_mode mode)
10011 {
10012 	return dev->xdp_state[mode].link;
10013 }
10014 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10015 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10016 				     enum bpf_xdp_mode mode)
10017 {
10018 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10019 
10020 	if (link)
10021 		return link->link.prog;
10022 	return dev->xdp_state[mode].prog;
10023 }
10024 
dev_xdp_prog_count(struct net_device * dev)10025 u8 dev_xdp_prog_count(struct net_device *dev)
10026 {
10027 	u8 count = 0;
10028 	int i;
10029 
10030 	for (i = 0; i < __MAX_XDP_MODE; i++)
10031 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10032 			count++;
10033 	return count;
10034 }
10035 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10036 
dev_xdp_sb_prog_count(struct net_device * dev)10037 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10038 {
10039 	u8 count = 0;
10040 	int i;
10041 
10042 	for (i = 0; i < __MAX_XDP_MODE; i++)
10043 		if (dev->xdp_state[i].prog &&
10044 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10045 			count++;
10046 	return count;
10047 }
10048 
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10049 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10050 {
10051 	if (!dev->netdev_ops->ndo_bpf)
10052 		return -EOPNOTSUPP;
10053 
10054 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10055 	    bpf->command == XDP_SETUP_PROG &&
10056 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10057 		NL_SET_ERR_MSG(bpf->extack,
10058 			       "unable to propagate XDP to device using tcp-data-split");
10059 		return -EBUSY;
10060 	}
10061 
10062 	if (dev_get_min_mp_channel_count(dev)) {
10063 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10064 		return -EBUSY;
10065 	}
10066 
10067 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10068 }
10069 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10070 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10071 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10072 {
10073 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10074 
10075 	return prog ? prog->aux->id : 0;
10076 }
10077 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10078 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10079 			     struct bpf_xdp_link *link)
10080 {
10081 	dev->xdp_state[mode].link = link;
10082 	dev->xdp_state[mode].prog = NULL;
10083 }
10084 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10085 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10086 			     struct bpf_prog *prog)
10087 {
10088 	dev->xdp_state[mode].link = NULL;
10089 	dev->xdp_state[mode].prog = prog;
10090 }
10091 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10092 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10093 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10094 			   u32 flags, struct bpf_prog *prog)
10095 {
10096 	struct netdev_bpf xdp;
10097 	int err;
10098 
10099 	netdev_ops_assert_locked(dev);
10100 
10101 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10102 	    prog && !prog->aux->xdp_has_frags) {
10103 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10104 		return -EBUSY;
10105 	}
10106 
10107 	if (dev_get_min_mp_channel_count(dev)) {
10108 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10109 		return -EBUSY;
10110 	}
10111 
10112 	memset(&xdp, 0, sizeof(xdp));
10113 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10114 	xdp.extack = extack;
10115 	xdp.flags = flags;
10116 	xdp.prog = prog;
10117 
10118 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10119 	 * "moved" into driver), so they don't increment it on their own, but
10120 	 * they do decrement refcnt when program is detached or replaced.
10121 	 * Given net_device also owns link/prog, we need to bump refcnt here
10122 	 * to prevent drivers from underflowing it.
10123 	 */
10124 	if (prog)
10125 		bpf_prog_inc(prog);
10126 	err = bpf_op(dev, &xdp);
10127 	if (err) {
10128 		if (prog)
10129 			bpf_prog_put(prog);
10130 		return err;
10131 	}
10132 
10133 	if (mode != XDP_MODE_HW)
10134 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10135 
10136 	return 0;
10137 }
10138 
dev_xdp_uninstall(struct net_device * dev)10139 static void dev_xdp_uninstall(struct net_device *dev)
10140 {
10141 	struct bpf_xdp_link *link;
10142 	struct bpf_prog *prog;
10143 	enum bpf_xdp_mode mode;
10144 	bpf_op_t bpf_op;
10145 
10146 	ASSERT_RTNL();
10147 
10148 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10149 		prog = dev_xdp_prog(dev, mode);
10150 		if (!prog)
10151 			continue;
10152 
10153 		bpf_op = dev_xdp_bpf_op(dev, mode);
10154 		if (!bpf_op)
10155 			continue;
10156 
10157 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10158 
10159 		/* auto-detach link from net device */
10160 		link = dev_xdp_link(dev, mode);
10161 		if (link)
10162 			link->dev = NULL;
10163 		else
10164 			bpf_prog_put(prog);
10165 
10166 		dev_xdp_set_link(dev, mode, NULL);
10167 	}
10168 }
10169 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10170 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10171 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10172 			  struct bpf_prog *old_prog, u32 flags)
10173 {
10174 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10175 	struct bpf_prog *cur_prog;
10176 	struct net_device *upper;
10177 	struct list_head *iter;
10178 	enum bpf_xdp_mode mode;
10179 	bpf_op_t bpf_op;
10180 	int err;
10181 
10182 	ASSERT_RTNL();
10183 
10184 	/* either link or prog attachment, never both */
10185 	if (link && (new_prog || old_prog))
10186 		return -EINVAL;
10187 	/* link supports only XDP mode flags */
10188 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10189 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10190 		return -EINVAL;
10191 	}
10192 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10193 	if (num_modes > 1) {
10194 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10195 		return -EINVAL;
10196 	}
10197 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10198 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10199 		NL_SET_ERR_MSG(extack,
10200 			       "More than one program loaded, unset mode is ambiguous");
10201 		return -EINVAL;
10202 	}
10203 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10204 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10205 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10206 		return -EINVAL;
10207 	}
10208 
10209 	mode = dev_xdp_mode(dev, flags);
10210 	/* can't replace attached link */
10211 	if (dev_xdp_link(dev, mode)) {
10212 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10213 		return -EBUSY;
10214 	}
10215 
10216 	/* don't allow if an upper device already has a program */
10217 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10218 		if (dev_xdp_prog_count(upper) > 0) {
10219 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10220 			return -EEXIST;
10221 		}
10222 	}
10223 
10224 	cur_prog = dev_xdp_prog(dev, mode);
10225 	/* can't replace attached prog with link */
10226 	if (link && cur_prog) {
10227 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10228 		return -EBUSY;
10229 	}
10230 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10231 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10232 		return -EEXIST;
10233 	}
10234 
10235 	/* put effective new program into new_prog */
10236 	if (link)
10237 		new_prog = link->link.prog;
10238 
10239 	if (new_prog) {
10240 		bool offload = mode == XDP_MODE_HW;
10241 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10242 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10243 
10244 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10245 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10246 			return -EBUSY;
10247 		}
10248 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10249 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10250 			return -EEXIST;
10251 		}
10252 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10253 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10254 			return -EINVAL;
10255 		}
10256 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10257 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10258 			return -EINVAL;
10259 		}
10260 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10261 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10262 			return -EINVAL;
10263 		}
10264 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10265 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10266 			return -EINVAL;
10267 		}
10268 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10269 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10270 			return -EINVAL;
10271 		}
10272 	}
10273 
10274 	/* don't call drivers if the effective program didn't change */
10275 	if (new_prog != cur_prog) {
10276 		bpf_op = dev_xdp_bpf_op(dev, mode);
10277 		if (!bpf_op) {
10278 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10279 			return -EOPNOTSUPP;
10280 		}
10281 
10282 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10283 		if (err)
10284 			return err;
10285 	}
10286 
10287 	if (link)
10288 		dev_xdp_set_link(dev, mode, link);
10289 	else
10290 		dev_xdp_set_prog(dev, mode, new_prog);
10291 	if (cur_prog)
10292 		bpf_prog_put(cur_prog);
10293 
10294 	return 0;
10295 }
10296 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10297 static int dev_xdp_attach_link(struct net_device *dev,
10298 			       struct netlink_ext_ack *extack,
10299 			       struct bpf_xdp_link *link)
10300 {
10301 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10302 }
10303 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10304 static int dev_xdp_detach_link(struct net_device *dev,
10305 			       struct netlink_ext_ack *extack,
10306 			       struct bpf_xdp_link *link)
10307 {
10308 	enum bpf_xdp_mode mode;
10309 	bpf_op_t bpf_op;
10310 
10311 	ASSERT_RTNL();
10312 
10313 	mode = dev_xdp_mode(dev, link->flags);
10314 	if (dev_xdp_link(dev, mode) != link)
10315 		return -EINVAL;
10316 
10317 	bpf_op = dev_xdp_bpf_op(dev, mode);
10318 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10319 	dev_xdp_set_link(dev, mode, NULL);
10320 	return 0;
10321 }
10322 
bpf_xdp_link_release(struct bpf_link * link)10323 static void bpf_xdp_link_release(struct bpf_link *link)
10324 {
10325 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10326 
10327 	rtnl_lock();
10328 
10329 	/* if racing with net_device's tear down, xdp_link->dev might be
10330 	 * already NULL, in which case link was already auto-detached
10331 	 */
10332 	if (xdp_link->dev) {
10333 		netdev_lock_ops(xdp_link->dev);
10334 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10335 		netdev_unlock_ops(xdp_link->dev);
10336 		xdp_link->dev = NULL;
10337 	}
10338 
10339 	rtnl_unlock();
10340 }
10341 
bpf_xdp_link_detach(struct bpf_link * link)10342 static int bpf_xdp_link_detach(struct bpf_link *link)
10343 {
10344 	bpf_xdp_link_release(link);
10345 	return 0;
10346 }
10347 
bpf_xdp_link_dealloc(struct bpf_link * link)10348 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10349 {
10350 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10351 
10352 	kfree(xdp_link);
10353 }
10354 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10355 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10356 				     struct seq_file *seq)
10357 {
10358 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10359 	u32 ifindex = 0;
10360 
10361 	rtnl_lock();
10362 	if (xdp_link->dev)
10363 		ifindex = xdp_link->dev->ifindex;
10364 	rtnl_unlock();
10365 
10366 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10367 }
10368 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10369 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10370 				       struct bpf_link_info *info)
10371 {
10372 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10373 	u32 ifindex = 0;
10374 
10375 	rtnl_lock();
10376 	if (xdp_link->dev)
10377 		ifindex = xdp_link->dev->ifindex;
10378 	rtnl_unlock();
10379 
10380 	info->xdp.ifindex = ifindex;
10381 	return 0;
10382 }
10383 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10384 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10385 			       struct bpf_prog *old_prog)
10386 {
10387 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10388 	enum bpf_xdp_mode mode;
10389 	bpf_op_t bpf_op;
10390 	int err = 0;
10391 
10392 	rtnl_lock();
10393 
10394 	/* link might have been auto-released already, so fail */
10395 	if (!xdp_link->dev) {
10396 		err = -ENOLINK;
10397 		goto out_unlock;
10398 	}
10399 
10400 	if (old_prog && link->prog != old_prog) {
10401 		err = -EPERM;
10402 		goto out_unlock;
10403 	}
10404 	old_prog = link->prog;
10405 	if (old_prog->type != new_prog->type ||
10406 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10407 		err = -EINVAL;
10408 		goto out_unlock;
10409 	}
10410 
10411 	if (old_prog == new_prog) {
10412 		/* no-op, don't disturb drivers */
10413 		bpf_prog_put(new_prog);
10414 		goto out_unlock;
10415 	}
10416 
10417 	netdev_lock_ops(xdp_link->dev);
10418 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10419 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10420 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10421 			      xdp_link->flags, new_prog);
10422 	netdev_unlock_ops(xdp_link->dev);
10423 	if (err)
10424 		goto out_unlock;
10425 
10426 	old_prog = xchg(&link->prog, new_prog);
10427 	bpf_prog_put(old_prog);
10428 
10429 out_unlock:
10430 	rtnl_unlock();
10431 	return err;
10432 }
10433 
10434 static const struct bpf_link_ops bpf_xdp_link_lops = {
10435 	.release = bpf_xdp_link_release,
10436 	.dealloc = bpf_xdp_link_dealloc,
10437 	.detach = bpf_xdp_link_detach,
10438 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10439 	.fill_link_info = bpf_xdp_link_fill_link_info,
10440 	.update_prog = bpf_xdp_link_update,
10441 };
10442 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10443 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10444 {
10445 	struct net *net = current->nsproxy->net_ns;
10446 	struct bpf_link_primer link_primer;
10447 	struct netlink_ext_ack extack = {};
10448 	struct bpf_xdp_link *link;
10449 	struct net_device *dev;
10450 	int err, fd;
10451 
10452 	rtnl_lock();
10453 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10454 	if (!dev) {
10455 		rtnl_unlock();
10456 		return -EINVAL;
10457 	}
10458 
10459 	link = kzalloc(sizeof(*link), GFP_USER);
10460 	if (!link) {
10461 		err = -ENOMEM;
10462 		goto unlock;
10463 	}
10464 
10465 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10466 		      attr->link_create.attach_type);
10467 	link->dev = dev;
10468 	link->flags = attr->link_create.flags;
10469 
10470 	err = bpf_link_prime(&link->link, &link_primer);
10471 	if (err) {
10472 		kfree(link);
10473 		goto unlock;
10474 	}
10475 
10476 	netdev_lock_ops(dev);
10477 	err = dev_xdp_attach_link(dev, &extack, link);
10478 	netdev_unlock_ops(dev);
10479 	rtnl_unlock();
10480 
10481 	if (err) {
10482 		link->dev = NULL;
10483 		bpf_link_cleanup(&link_primer);
10484 		trace_bpf_xdp_link_attach_failed(extack._msg);
10485 		goto out_put_dev;
10486 	}
10487 
10488 	fd = bpf_link_settle(&link_primer);
10489 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10490 	dev_put(dev);
10491 	return fd;
10492 
10493 unlock:
10494 	rtnl_unlock();
10495 
10496 out_put_dev:
10497 	dev_put(dev);
10498 	return err;
10499 }
10500 
10501 /**
10502  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10503  *	@dev: device
10504  *	@extack: netlink extended ack
10505  *	@fd: new program fd or negative value to clear
10506  *	@expected_fd: old program fd that userspace expects to replace or clear
10507  *	@flags: xdp-related flags
10508  *
10509  *	Set or clear a bpf program for a device
10510  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10511 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10512 		      int fd, int expected_fd, u32 flags)
10513 {
10514 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10515 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10516 	int err;
10517 
10518 	ASSERT_RTNL();
10519 
10520 	if (fd >= 0) {
10521 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10522 						 mode != XDP_MODE_SKB);
10523 		if (IS_ERR(new_prog))
10524 			return PTR_ERR(new_prog);
10525 	}
10526 
10527 	if (expected_fd >= 0) {
10528 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10529 						 mode != XDP_MODE_SKB);
10530 		if (IS_ERR(old_prog)) {
10531 			err = PTR_ERR(old_prog);
10532 			old_prog = NULL;
10533 			goto err_out;
10534 		}
10535 	}
10536 
10537 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10538 
10539 err_out:
10540 	if (err && new_prog)
10541 		bpf_prog_put(new_prog);
10542 	if (old_prog)
10543 		bpf_prog_put(old_prog);
10544 	return err;
10545 }
10546 
dev_get_min_mp_channel_count(const struct net_device * dev)10547 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10548 {
10549 	int i;
10550 
10551 	netdev_ops_assert_locked(dev);
10552 
10553 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10554 		if (dev->_rx[i].mp_params.mp_priv)
10555 			/* The channel count is the idx plus 1. */
10556 			return i + 1;
10557 
10558 	return 0;
10559 }
10560 
10561 /**
10562  * dev_index_reserve() - allocate an ifindex in a namespace
10563  * @net: the applicable net namespace
10564  * @ifindex: requested ifindex, pass %0 to get one allocated
10565  *
10566  * Allocate a ifindex for a new device. Caller must either use the ifindex
10567  * to store the device (via list_netdevice()) or call dev_index_release()
10568  * to give the index up.
10569  *
10570  * Return: a suitable unique value for a new device interface number or -errno.
10571  */
dev_index_reserve(struct net * net,u32 ifindex)10572 static int dev_index_reserve(struct net *net, u32 ifindex)
10573 {
10574 	int err;
10575 
10576 	if (ifindex > INT_MAX) {
10577 		DEBUG_NET_WARN_ON_ONCE(1);
10578 		return -EINVAL;
10579 	}
10580 
10581 	if (!ifindex)
10582 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10583 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10584 	else
10585 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10586 	if (err < 0)
10587 		return err;
10588 
10589 	return ifindex;
10590 }
10591 
dev_index_release(struct net * net,int ifindex)10592 static void dev_index_release(struct net *net, int ifindex)
10593 {
10594 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10595 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10596 }
10597 
from_cleanup_net(void)10598 static bool from_cleanup_net(void)
10599 {
10600 #ifdef CONFIG_NET_NS
10601 	return current == READ_ONCE(cleanup_net_task);
10602 #else
10603 	return false;
10604 #endif
10605 }
10606 
10607 /* Delayed registration/unregisteration */
10608 LIST_HEAD(net_todo_list);
10609 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10610 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10611 
net_set_todo(struct net_device * dev)10612 static void net_set_todo(struct net_device *dev)
10613 {
10614 	list_add_tail(&dev->todo_list, &net_todo_list);
10615 }
10616 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10617 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10618 	struct net_device *upper, netdev_features_t features)
10619 {
10620 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10621 	netdev_features_t feature;
10622 	int feature_bit;
10623 
10624 	for_each_netdev_feature(upper_disables, feature_bit) {
10625 		feature = __NETIF_F_BIT(feature_bit);
10626 		if (!(upper->wanted_features & feature)
10627 		    && (features & feature)) {
10628 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10629 				   &feature, upper->name);
10630 			features &= ~feature;
10631 		}
10632 	}
10633 
10634 	return features;
10635 }
10636 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10637 static void netdev_sync_lower_features(struct net_device *upper,
10638 	struct net_device *lower, netdev_features_t features)
10639 {
10640 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10641 	netdev_features_t feature;
10642 	int feature_bit;
10643 
10644 	for_each_netdev_feature(upper_disables, feature_bit) {
10645 		feature = __NETIF_F_BIT(feature_bit);
10646 		if (!(features & feature) && (lower->features & feature)) {
10647 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10648 				   &feature, lower->name);
10649 			netdev_lock_ops(lower);
10650 			lower->wanted_features &= ~feature;
10651 			__netdev_update_features(lower);
10652 
10653 			if (unlikely(lower->features & feature))
10654 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10655 					    &feature, lower->name);
10656 			else
10657 				netdev_features_change(lower);
10658 			netdev_unlock_ops(lower);
10659 		}
10660 	}
10661 }
10662 
netdev_has_ip_or_hw_csum(netdev_features_t features)10663 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10664 {
10665 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10666 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10667 	bool hw_csum = features & NETIF_F_HW_CSUM;
10668 
10669 	return ip_csum || hw_csum;
10670 }
10671 
netdev_fix_features(struct net_device * dev,netdev_features_t features)10672 static netdev_features_t netdev_fix_features(struct net_device *dev,
10673 	netdev_features_t features)
10674 {
10675 	/* Fix illegal checksum combinations */
10676 	if ((features & NETIF_F_HW_CSUM) &&
10677 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10678 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10679 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10680 	}
10681 
10682 	/* TSO requires that SG is present as well. */
10683 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10684 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10685 		features &= ~NETIF_F_ALL_TSO;
10686 	}
10687 
10688 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10689 					!(features & NETIF_F_IP_CSUM)) {
10690 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10691 		features &= ~NETIF_F_TSO;
10692 		features &= ~NETIF_F_TSO_ECN;
10693 	}
10694 
10695 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10696 					 !(features & NETIF_F_IPV6_CSUM)) {
10697 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10698 		features &= ~NETIF_F_TSO6;
10699 	}
10700 
10701 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10702 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10703 		features &= ~NETIF_F_TSO_MANGLEID;
10704 
10705 	/* TSO ECN requires that TSO is present as well. */
10706 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10707 		features &= ~NETIF_F_TSO_ECN;
10708 
10709 	/* Software GSO depends on SG. */
10710 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10711 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10712 		features &= ~NETIF_F_GSO;
10713 	}
10714 
10715 	/* GSO partial features require GSO partial be set */
10716 	if ((features & dev->gso_partial_features) &&
10717 	    !(features & NETIF_F_GSO_PARTIAL)) {
10718 		netdev_dbg(dev,
10719 			   "Dropping partially supported GSO features since no GSO partial.\n");
10720 		features &= ~dev->gso_partial_features;
10721 	}
10722 
10723 	if (!(features & NETIF_F_RXCSUM)) {
10724 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10725 		 * successfully merged by hardware must also have the
10726 		 * checksum verified by hardware.  If the user does not
10727 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10728 		 */
10729 		if (features & NETIF_F_GRO_HW) {
10730 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10731 			features &= ~NETIF_F_GRO_HW;
10732 		}
10733 	}
10734 
10735 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10736 	if (features & NETIF_F_RXFCS) {
10737 		if (features & NETIF_F_LRO) {
10738 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10739 			features &= ~NETIF_F_LRO;
10740 		}
10741 
10742 		if (features & NETIF_F_GRO_HW) {
10743 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10744 			features &= ~NETIF_F_GRO_HW;
10745 		}
10746 	}
10747 
10748 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10749 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10750 		features &= ~NETIF_F_LRO;
10751 	}
10752 
10753 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10754 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10755 		features &= ~NETIF_F_HW_TLS_TX;
10756 	}
10757 
10758 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10759 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10760 		features &= ~NETIF_F_HW_TLS_RX;
10761 	}
10762 
10763 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10764 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10765 		features &= ~NETIF_F_GSO_UDP_L4;
10766 	}
10767 
10768 	return features;
10769 }
10770 
__netdev_update_features(struct net_device * dev)10771 int __netdev_update_features(struct net_device *dev)
10772 {
10773 	struct net_device *upper, *lower;
10774 	netdev_features_t features;
10775 	struct list_head *iter;
10776 	int err = -1;
10777 
10778 	ASSERT_RTNL();
10779 	netdev_ops_assert_locked(dev);
10780 
10781 	features = netdev_get_wanted_features(dev);
10782 
10783 	if (dev->netdev_ops->ndo_fix_features)
10784 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10785 
10786 	/* driver might be less strict about feature dependencies */
10787 	features = netdev_fix_features(dev, features);
10788 
10789 	/* some features can't be enabled if they're off on an upper device */
10790 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10791 		features = netdev_sync_upper_features(dev, upper, features);
10792 
10793 	if (dev->features == features)
10794 		goto sync_lower;
10795 
10796 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10797 		&dev->features, &features);
10798 
10799 	if (dev->netdev_ops->ndo_set_features)
10800 		err = dev->netdev_ops->ndo_set_features(dev, features);
10801 	else
10802 		err = 0;
10803 
10804 	if (unlikely(err < 0)) {
10805 		netdev_err(dev,
10806 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10807 			err, &features, &dev->features);
10808 		/* return non-0 since some features might have changed and
10809 		 * it's better to fire a spurious notification than miss it
10810 		 */
10811 		return -1;
10812 	}
10813 
10814 sync_lower:
10815 	/* some features must be disabled on lower devices when disabled
10816 	 * on an upper device (think: bonding master or bridge)
10817 	 */
10818 	netdev_for_each_lower_dev(dev, lower, iter)
10819 		netdev_sync_lower_features(dev, lower, features);
10820 
10821 	if (!err) {
10822 		netdev_features_t diff = features ^ dev->features;
10823 
10824 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10825 			/* udp_tunnel_{get,drop}_rx_info both need
10826 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10827 			 * device, or they won't do anything.
10828 			 * Thus we need to update dev->features
10829 			 * *before* calling udp_tunnel_get_rx_info,
10830 			 * but *after* calling udp_tunnel_drop_rx_info.
10831 			 */
10832 			udp_tunnel_nic_lock(dev);
10833 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10834 				dev->features = features;
10835 				udp_tunnel_get_rx_info(dev);
10836 			} else {
10837 				udp_tunnel_drop_rx_info(dev);
10838 			}
10839 			udp_tunnel_nic_unlock(dev);
10840 		}
10841 
10842 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10843 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10844 				dev->features = features;
10845 				err |= vlan_get_rx_ctag_filter_info(dev);
10846 			} else {
10847 				vlan_drop_rx_ctag_filter_info(dev);
10848 			}
10849 		}
10850 
10851 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10852 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10853 				dev->features = features;
10854 				err |= vlan_get_rx_stag_filter_info(dev);
10855 			} else {
10856 				vlan_drop_rx_stag_filter_info(dev);
10857 			}
10858 		}
10859 
10860 		dev->features = features;
10861 	}
10862 
10863 	return err < 0 ? 0 : 1;
10864 }
10865 
10866 /**
10867  *	netdev_update_features - recalculate device features
10868  *	@dev: the device to check
10869  *
10870  *	Recalculate dev->features set and send notifications if it
10871  *	has changed. Should be called after driver or hardware dependent
10872  *	conditions might have changed that influence the features.
10873  */
netdev_update_features(struct net_device * dev)10874 void netdev_update_features(struct net_device *dev)
10875 {
10876 	if (__netdev_update_features(dev))
10877 		netdev_features_change(dev);
10878 }
10879 EXPORT_SYMBOL(netdev_update_features);
10880 
10881 /**
10882  *	netdev_change_features - recalculate device features
10883  *	@dev: the device to check
10884  *
10885  *	Recalculate dev->features set and send notifications even
10886  *	if they have not changed. Should be called instead of
10887  *	netdev_update_features() if also dev->vlan_features might
10888  *	have changed to allow the changes to be propagated to stacked
10889  *	VLAN devices.
10890  */
netdev_change_features(struct net_device * dev)10891 void netdev_change_features(struct net_device *dev)
10892 {
10893 	__netdev_update_features(dev);
10894 	netdev_features_change(dev);
10895 }
10896 EXPORT_SYMBOL(netdev_change_features);
10897 
10898 /**
10899  *	netif_stacked_transfer_operstate -	transfer operstate
10900  *	@rootdev: the root or lower level device to transfer state from
10901  *	@dev: the device to transfer operstate to
10902  *
10903  *	Transfer operational state from root to device. This is normally
10904  *	called when a stacking relationship exists between the root
10905  *	device and the device(a leaf device).
10906  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10907 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10908 					struct net_device *dev)
10909 {
10910 	if (rootdev->operstate == IF_OPER_DORMANT)
10911 		netif_dormant_on(dev);
10912 	else
10913 		netif_dormant_off(dev);
10914 
10915 	if (rootdev->operstate == IF_OPER_TESTING)
10916 		netif_testing_on(dev);
10917 	else
10918 		netif_testing_off(dev);
10919 
10920 	if (netif_carrier_ok(rootdev))
10921 		netif_carrier_on(dev);
10922 	else
10923 		netif_carrier_off(dev);
10924 }
10925 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10926 
netif_alloc_rx_queues(struct net_device * dev)10927 static int netif_alloc_rx_queues(struct net_device *dev)
10928 {
10929 	unsigned int i, count = dev->num_rx_queues;
10930 	struct netdev_rx_queue *rx;
10931 	size_t sz = count * sizeof(*rx);
10932 	int err = 0;
10933 
10934 	BUG_ON(count < 1);
10935 
10936 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10937 	if (!rx)
10938 		return -ENOMEM;
10939 
10940 	dev->_rx = rx;
10941 
10942 	for (i = 0; i < count; i++) {
10943 		rx[i].dev = dev;
10944 
10945 		/* XDP RX-queue setup */
10946 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10947 		if (err < 0)
10948 			goto err_rxq_info;
10949 	}
10950 	return 0;
10951 
10952 err_rxq_info:
10953 	/* Rollback successful reg's and free other resources */
10954 	while (i--)
10955 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10956 	kvfree(dev->_rx);
10957 	dev->_rx = NULL;
10958 	return err;
10959 }
10960 
netif_free_rx_queues(struct net_device * dev)10961 static void netif_free_rx_queues(struct net_device *dev)
10962 {
10963 	unsigned int i, count = dev->num_rx_queues;
10964 
10965 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10966 	if (!dev->_rx)
10967 		return;
10968 
10969 	for (i = 0; i < count; i++)
10970 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10971 
10972 	kvfree(dev->_rx);
10973 }
10974 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10975 static void netdev_init_one_queue(struct net_device *dev,
10976 				  struct netdev_queue *queue, void *_unused)
10977 {
10978 	/* Initialize queue lock */
10979 	spin_lock_init(&queue->_xmit_lock);
10980 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10981 	queue->xmit_lock_owner = -1;
10982 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10983 	queue->dev = dev;
10984 #ifdef CONFIG_BQL
10985 	dql_init(&queue->dql, HZ);
10986 #endif
10987 }
10988 
netif_free_tx_queues(struct net_device * dev)10989 static void netif_free_tx_queues(struct net_device *dev)
10990 {
10991 	kvfree(dev->_tx);
10992 }
10993 
netif_alloc_netdev_queues(struct net_device * dev)10994 static int netif_alloc_netdev_queues(struct net_device *dev)
10995 {
10996 	unsigned int count = dev->num_tx_queues;
10997 	struct netdev_queue *tx;
10998 	size_t sz = count * sizeof(*tx);
10999 
11000 	if (count < 1 || count > 0xffff)
11001 		return -EINVAL;
11002 
11003 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11004 	if (!tx)
11005 		return -ENOMEM;
11006 
11007 	dev->_tx = tx;
11008 
11009 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11010 	spin_lock_init(&dev->tx_global_lock);
11011 
11012 	return 0;
11013 }
11014 
netif_tx_stop_all_queues(struct net_device * dev)11015 void netif_tx_stop_all_queues(struct net_device *dev)
11016 {
11017 	unsigned int i;
11018 
11019 	for (i = 0; i < dev->num_tx_queues; i++) {
11020 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11021 
11022 		netif_tx_stop_queue(txq);
11023 	}
11024 }
11025 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11026 
netdev_do_alloc_pcpu_stats(struct net_device * dev)11027 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11028 {
11029 	void __percpu *v;
11030 
11031 	/* Drivers implementing ndo_get_peer_dev must support tstat
11032 	 * accounting, so that skb_do_redirect() can bump the dev's
11033 	 * RX stats upon network namespace switch.
11034 	 */
11035 	if (dev->netdev_ops->ndo_get_peer_dev &&
11036 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11037 		return -EOPNOTSUPP;
11038 
11039 	switch (dev->pcpu_stat_type) {
11040 	case NETDEV_PCPU_STAT_NONE:
11041 		return 0;
11042 	case NETDEV_PCPU_STAT_LSTATS:
11043 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11044 		break;
11045 	case NETDEV_PCPU_STAT_TSTATS:
11046 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11047 		break;
11048 	case NETDEV_PCPU_STAT_DSTATS:
11049 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11050 		break;
11051 	default:
11052 		return -EINVAL;
11053 	}
11054 
11055 	return v ? 0 : -ENOMEM;
11056 }
11057 
netdev_do_free_pcpu_stats(struct net_device * dev)11058 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11059 {
11060 	switch (dev->pcpu_stat_type) {
11061 	case NETDEV_PCPU_STAT_NONE:
11062 		return;
11063 	case NETDEV_PCPU_STAT_LSTATS:
11064 		free_percpu(dev->lstats);
11065 		break;
11066 	case NETDEV_PCPU_STAT_TSTATS:
11067 		free_percpu(dev->tstats);
11068 		break;
11069 	case NETDEV_PCPU_STAT_DSTATS:
11070 		free_percpu(dev->dstats);
11071 		break;
11072 	}
11073 }
11074 
netdev_free_phy_link_topology(struct net_device * dev)11075 static void netdev_free_phy_link_topology(struct net_device *dev)
11076 {
11077 	struct phy_link_topology *topo = dev->link_topo;
11078 
11079 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11080 		xa_destroy(&topo->phys);
11081 		kfree(topo);
11082 		dev->link_topo = NULL;
11083 	}
11084 }
11085 
11086 /**
11087  * register_netdevice() - register a network device
11088  * @dev: device to register
11089  *
11090  * Take a prepared network device structure and make it externally accessible.
11091  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11092  * Callers must hold the rtnl lock - you may want register_netdev()
11093  * instead of this.
11094  */
register_netdevice(struct net_device * dev)11095 int register_netdevice(struct net_device *dev)
11096 {
11097 	int ret;
11098 	struct net *net = dev_net(dev);
11099 
11100 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11101 		     NETDEV_FEATURE_COUNT);
11102 	BUG_ON(dev_boot_phase);
11103 	ASSERT_RTNL();
11104 
11105 	might_sleep();
11106 
11107 	/* When net_device's are persistent, this will be fatal. */
11108 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11109 	BUG_ON(!net);
11110 
11111 	ret = ethtool_check_ops(dev->ethtool_ops);
11112 	if (ret)
11113 		return ret;
11114 
11115 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11116 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11117 	mutex_init(&dev->ethtool->rss_lock);
11118 
11119 	spin_lock_init(&dev->addr_list_lock);
11120 	netdev_set_addr_lockdep_class(dev);
11121 
11122 	ret = dev_get_valid_name(net, dev, dev->name);
11123 	if (ret < 0)
11124 		goto out;
11125 
11126 	ret = -ENOMEM;
11127 	dev->name_node = netdev_name_node_head_alloc(dev);
11128 	if (!dev->name_node)
11129 		goto out;
11130 
11131 	/* Init, if this function is available */
11132 	if (dev->netdev_ops->ndo_init) {
11133 		ret = dev->netdev_ops->ndo_init(dev);
11134 		if (ret) {
11135 			if (ret > 0)
11136 				ret = -EIO;
11137 			goto err_free_name;
11138 		}
11139 	}
11140 
11141 	if (((dev->hw_features | dev->features) &
11142 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11143 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11144 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11145 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11146 		ret = -EINVAL;
11147 		goto err_uninit;
11148 	}
11149 
11150 	ret = netdev_do_alloc_pcpu_stats(dev);
11151 	if (ret)
11152 		goto err_uninit;
11153 
11154 	ret = dev_index_reserve(net, dev->ifindex);
11155 	if (ret < 0)
11156 		goto err_free_pcpu;
11157 	dev->ifindex = ret;
11158 
11159 	/* Transfer changeable features to wanted_features and enable
11160 	 * software offloads (GSO and GRO).
11161 	 */
11162 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11163 	dev->features |= NETIF_F_SOFT_FEATURES;
11164 
11165 	if (dev->udp_tunnel_nic_info) {
11166 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11167 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11168 	}
11169 
11170 	dev->wanted_features = dev->features & dev->hw_features;
11171 
11172 	if (!(dev->flags & IFF_LOOPBACK))
11173 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11174 
11175 	/* If IPv4 TCP segmentation offload is supported we should also
11176 	 * allow the device to enable segmenting the frame with the option
11177 	 * of ignoring a static IP ID value.  This doesn't enable the
11178 	 * feature itself but allows the user to enable it later.
11179 	 */
11180 	if (dev->hw_features & NETIF_F_TSO)
11181 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11182 	if (dev->vlan_features & NETIF_F_TSO)
11183 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11184 	if (dev->mpls_features & NETIF_F_TSO)
11185 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11186 	if (dev->hw_enc_features & NETIF_F_TSO)
11187 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11188 
11189 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11190 	 */
11191 	dev->vlan_features |= NETIF_F_HIGHDMA;
11192 
11193 	/* Make NETIF_F_SG inheritable to tunnel devices.
11194 	 */
11195 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11196 
11197 	/* Make NETIF_F_SG inheritable to MPLS.
11198 	 */
11199 	dev->mpls_features |= NETIF_F_SG;
11200 
11201 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11202 	ret = notifier_to_errno(ret);
11203 	if (ret)
11204 		goto err_ifindex_release;
11205 
11206 	ret = netdev_register_kobject(dev);
11207 
11208 	netdev_lock(dev);
11209 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11210 	netdev_unlock(dev);
11211 
11212 	if (ret)
11213 		goto err_uninit_notify;
11214 
11215 	netdev_lock_ops(dev);
11216 	__netdev_update_features(dev);
11217 	netdev_unlock_ops(dev);
11218 
11219 	/*
11220 	 *	Default initial state at registry is that the
11221 	 *	device is present.
11222 	 */
11223 
11224 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11225 
11226 	linkwatch_init_dev(dev);
11227 
11228 	dev_init_scheduler(dev);
11229 
11230 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11231 	list_netdevice(dev);
11232 
11233 	add_device_randomness(dev->dev_addr, dev->addr_len);
11234 
11235 	/* If the device has permanent device address, driver should
11236 	 * set dev_addr and also addr_assign_type should be set to
11237 	 * NET_ADDR_PERM (default value).
11238 	 */
11239 	if (dev->addr_assign_type == NET_ADDR_PERM)
11240 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11241 
11242 	/* Notify protocols, that a new device appeared. */
11243 	netdev_lock_ops(dev);
11244 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11245 	netdev_unlock_ops(dev);
11246 	ret = notifier_to_errno(ret);
11247 	if (ret) {
11248 		/* Expect explicit free_netdev() on failure */
11249 		dev->needs_free_netdev = false;
11250 		unregister_netdevice_queue(dev, NULL);
11251 		goto out;
11252 	}
11253 	/*
11254 	 *	Prevent userspace races by waiting until the network
11255 	 *	device is fully setup before sending notifications.
11256 	 */
11257 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11258 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11259 
11260 out:
11261 	return ret;
11262 
11263 err_uninit_notify:
11264 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11265 err_ifindex_release:
11266 	dev_index_release(net, dev->ifindex);
11267 err_free_pcpu:
11268 	netdev_do_free_pcpu_stats(dev);
11269 err_uninit:
11270 	if (dev->netdev_ops->ndo_uninit)
11271 		dev->netdev_ops->ndo_uninit(dev);
11272 	if (dev->priv_destructor)
11273 		dev->priv_destructor(dev);
11274 err_free_name:
11275 	netdev_name_node_free(dev->name_node);
11276 	goto out;
11277 }
11278 EXPORT_SYMBOL(register_netdevice);
11279 
11280 /* Initialize the core of a dummy net device.
11281  * The setup steps dummy netdevs need which normal netdevs get by going
11282  * through register_netdevice().
11283  */
init_dummy_netdev(struct net_device * dev)11284 static void init_dummy_netdev(struct net_device *dev)
11285 {
11286 	/* make sure we BUG if trying to hit standard
11287 	 * register/unregister code path
11288 	 */
11289 	dev->reg_state = NETREG_DUMMY;
11290 
11291 	/* a dummy interface is started by default */
11292 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11293 	set_bit(__LINK_STATE_START, &dev->state);
11294 
11295 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11296 	 * because users of this 'device' dont need to change
11297 	 * its refcount.
11298 	 */
11299 }
11300 
11301 /**
11302  *	register_netdev	- register a network device
11303  *	@dev: device to register
11304  *
11305  *	Take a completed network device structure and add it to the kernel
11306  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11307  *	chain. 0 is returned on success. A negative errno code is returned
11308  *	on a failure to set up the device, or if the name is a duplicate.
11309  *
11310  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11311  *	and expands the device name if you passed a format string to
11312  *	alloc_netdev.
11313  */
register_netdev(struct net_device * dev)11314 int register_netdev(struct net_device *dev)
11315 {
11316 	struct net *net = dev_net(dev);
11317 	int err;
11318 
11319 	if (rtnl_net_lock_killable(net))
11320 		return -EINTR;
11321 
11322 	err = register_netdevice(dev);
11323 
11324 	rtnl_net_unlock(net);
11325 
11326 	return err;
11327 }
11328 EXPORT_SYMBOL(register_netdev);
11329 
netdev_refcnt_read(const struct net_device * dev)11330 int netdev_refcnt_read(const struct net_device *dev)
11331 {
11332 #ifdef CONFIG_PCPU_DEV_REFCNT
11333 	int i, refcnt = 0;
11334 
11335 	for_each_possible_cpu(i)
11336 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11337 	return refcnt;
11338 #else
11339 	return refcount_read(&dev->dev_refcnt);
11340 #endif
11341 }
11342 EXPORT_SYMBOL(netdev_refcnt_read);
11343 
11344 int netdev_unregister_timeout_secs __read_mostly = 10;
11345 
11346 #define WAIT_REFS_MIN_MSECS 1
11347 #define WAIT_REFS_MAX_MSECS 250
11348 /**
11349  * netdev_wait_allrefs_any - wait until all references are gone.
11350  * @list: list of net_devices to wait on
11351  *
11352  * This is called when unregistering network devices.
11353  *
11354  * Any protocol or device that holds a reference should register
11355  * for netdevice notification, and cleanup and put back the
11356  * reference if they receive an UNREGISTER event.
11357  * We can get stuck here if buggy protocols don't correctly
11358  * call dev_put.
11359  */
netdev_wait_allrefs_any(struct list_head * list)11360 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11361 {
11362 	unsigned long rebroadcast_time, warning_time;
11363 	struct net_device *dev;
11364 	int wait = 0;
11365 
11366 	rebroadcast_time = warning_time = jiffies;
11367 
11368 	list_for_each_entry(dev, list, todo_list)
11369 		if (netdev_refcnt_read(dev) == 1)
11370 			return dev;
11371 
11372 	while (true) {
11373 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11374 			rtnl_lock();
11375 
11376 			/* Rebroadcast unregister notification */
11377 			list_for_each_entry(dev, list, todo_list)
11378 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11379 
11380 			__rtnl_unlock();
11381 			rcu_barrier();
11382 			rtnl_lock();
11383 
11384 			list_for_each_entry(dev, list, todo_list)
11385 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11386 					     &dev->state)) {
11387 					/* We must not have linkwatch events
11388 					 * pending on unregister. If this
11389 					 * happens, we simply run the queue
11390 					 * unscheduled, resulting in a noop
11391 					 * for this device.
11392 					 */
11393 					linkwatch_run_queue();
11394 					break;
11395 				}
11396 
11397 			__rtnl_unlock();
11398 
11399 			rebroadcast_time = jiffies;
11400 		}
11401 
11402 		rcu_barrier();
11403 
11404 		if (!wait) {
11405 			wait = WAIT_REFS_MIN_MSECS;
11406 		} else {
11407 			msleep(wait);
11408 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11409 		}
11410 
11411 		list_for_each_entry(dev, list, todo_list)
11412 			if (netdev_refcnt_read(dev) == 1)
11413 				return dev;
11414 
11415 		if (time_after(jiffies, warning_time +
11416 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11417 			list_for_each_entry(dev, list, todo_list) {
11418 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11419 					 dev->name, netdev_refcnt_read(dev));
11420 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11421 			}
11422 
11423 			warning_time = jiffies;
11424 		}
11425 	}
11426 }
11427 
11428 /* The sequence is:
11429  *
11430  *	rtnl_lock();
11431  *	...
11432  *	register_netdevice(x1);
11433  *	register_netdevice(x2);
11434  *	...
11435  *	unregister_netdevice(y1);
11436  *	unregister_netdevice(y2);
11437  *      ...
11438  *	rtnl_unlock();
11439  *	free_netdev(y1);
11440  *	free_netdev(y2);
11441  *
11442  * We are invoked by rtnl_unlock().
11443  * This allows us to deal with problems:
11444  * 1) We can delete sysfs objects which invoke hotplug
11445  *    without deadlocking with linkwatch via keventd.
11446  * 2) Since we run with the RTNL semaphore not held, we can sleep
11447  *    safely in order to wait for the netdev refcnt to drop to zero.
11448  *
11449  * We must not return until all unregister events added during
11450  * the interval the lock was held have been completed.
11451  */
netdev_run_todo(void)11452 void netdev_run_todo(void)
11453 {
11454 	struct net_device *dev, *tmp;
11455 	struct list_head list;
11456 	int cnt;
11457 #ifdef CONFIG_LOCKDEP
11458 	struct list_head unlink_list;
11459 
11460 	list_replace_init(&net_unlink_list, &unlink_list);
11461 
11462 	while (!list_empty(&unlink_list)) {
11463 		dev = list_first_entry(&unlink_list, struct net_device,
11464 				       unlink_list);
11465 		list_del_init(&dev->unlink_list);
11466 		dev->nested_level = dev->lower_level - 1;
11467 	}
11468 #endif
11469 
11470 	/* Snapshot list, allow later requests */
11471 	list_replace_init(&net_todo_list, &list);
11472 
11473 	__rtnl_unlock();
11474 
11475 	/* Wait for rcu callbacks to finish before next phase */
11476 	if (!list_empty(&list))
11477 		rcu_barrier();
11478 
11479 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11480 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11481 			netdev_WARN(dev, "run_todo but not unregistering\n");
11482 			list_del(&dev->todo_list);
11483 			continue;
11484 		}
11485 
11486 		netdev_lock(dev);
11487 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11488 		netdev_unlock(dev);
11489 		linkwatch_sync_dev(dev);
11490 	}
11491 
11492 	cnt = 0;
11493 	while (!list_empty(&list)) {
11494 		dev = netdev_wait_allrefs_any(&list);
11495 		list_del(&dev->todo_list);
11496 
11497 		/* paranoia */
11498 		BUG_ON(netdev_refcnt_read(dev) != 1);
11499 		BUG_ON(!list_empty(&dev->ptype_all));
11500 		BUG_ON(!list_empty(&dev->ptype_specific));
11501 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11502 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11503 
11504 		netdev_do_free_pcpu_stats(dev);
11505 		if (dev->priv_destructor)
11506 			dev->priv_destructor(dev);
11507 		if (dev->needs_free_netdev)
11508 			free_netdev(dev);
11509 
11510 		cnt++;
11511 
11512 		/* Free network device */
11513 		kobject_put(&dev->dev.kobj);
11514 	}
11515 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11516 		wake_up(&netdev_unregistering_wq);
11517 }
11518 
11519 /* Collate per-cpu network dstats statistics
11520  *
11521  * Read per-cpu network statistics from dev->dstats and populate the related
11522  * fields in @s.
11523  */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11524 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11525 			     const struct pcpu_dstats __percpu *dstats)
11526 {
11527 	int cpu;
11528 
11529 	for_each_possible_cpu(cpu) {
11530 		u64 rx_packets, rx_bytes, rx_drops;
11531 		u64 tx_packets, tx_bytes, tx_drops;
11532 		const struct pcpu_dstats *stats;
11533 		unsigned int start;
11534 
11535 		stats = per_cpu_ptr(dstats, cpu);
11536 		do {
11537 			start = u64_stats_fetch_begin(&stats->syncp);
11538 			rx_packets = u64_stats_read(&stats->rx_packets);
11539 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11540 			rx_drops   = u64_stats_read(&stats->rx_drops);
11541 			tx_packets = u64_stats_read(&stats->tx_packets);
11542 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11543 			tx_drops   = u64_stats_read(&stats->tx_drops);
11544 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11545 
11546 		s->rx_packets += rx_packets;
11547 		s->rx_bytes   += rx_bytes;
11548 		s->rx_dropped += rx_drops;
11549 		s->tx_packets += tx_packets;
11550 		s->tx_bytes   += tx_bytes;
11551 		s->tx_dropped += tx_drops;
11552 	}
11553 }
11554 
11555 /* ndo_get_stats64 implementation for dtstats-based accounting.
11556  *
11557  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11558  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11559  */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11560 static void dev_get_dstats64(const struct net_device *dev,
11561 			     struct rtnl_link_stats64 *s)
11562 {
11563 	netdev_stats_to_stats64(s, &dev->stats);
11564 	dev_fetch_dstats(s, dev->dstats);
11565 }
11566 
11567 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11568  * all the same fields in the same order as net_device_stats, with only
11569  * the type differing, but rtnl_link_stats64 may have additional fields
11570  * at the end for newer counters.
11571  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11572 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11573 			     const struct net_device_stats *netdev_stats)
11574 {
11575 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11576 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11577 	u64 *dst = (u64 *)stats64;
11578 
11579 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11580 	for (i = 0; i < n; i++)
11581 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11582 	/* zero out counters that only exist in rtnl_link_stats64 */
11583 	memset((char *)stats64 + n * sizeof(u64), 0,
11584 	       sizeof(*stats64) - n * sizeof(u64));
11585 }
11586 EXPORT_SYMBOL(netdev_stats_to_stats64);
11587 
netdev_core_stats_alloc(struct net_device * dev)11588 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11589 		struct net_device *dev)
11590 {
11591 	struct net_device_core_stats __percpu *p;
11592 
11593 	p = alloc_percpu_gfp(struct net_device_core_stats,
11594 			     GFP_ATOMIC | __GFP_NOWARN);
11595 
11596 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11597 		free_percpu(p);
11598 
11599 	/* This READ_ONCE() pairs with the cmpxchg() above */
11600 	return READ_ONCE(dev->core_stats);
11601 }
11602 
netdev_core_stats_inc(struct net_device * dev,u32 offset)11603 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11604 {
11605 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11606 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11607 	unsigned long __percpu *field;
11608 
11609 	if (unlikely(!p)) {
11610 		p = netdev_core_stats_alloc(dev);
11611 		if (!p)
11612 			return;
11613 	}
11614 
11615 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11616 	this_cpu_inc(*field);
11617 }
11618 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11619 
11620 /**
11621  *	dev_get_stats	- get network device statistics
11622  *	@dev: device to get statistics from
11623  *	@storage: place to store stats
11624  *
11625  *	Get network statistics from device. Return @storage.
11626  *	The device driver may provide its own method by setting
11627  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11628  *	otherwise the internal statistics structure is used.
11629  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11630 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11631 					struct rtnl_link_stats64 *storage)
11632 {
11633 	const struct net_device_ops *ops = dev->netdev_ops;
11634 	const struct net_device_core_stats __percpu *p;
11635 
11636 	/*
11637 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11638 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11639 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11640 	 */
11641 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11642 		     offsetof(struct pcpu_dstats, rx_bytes));
11643 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11644 		     offsetof(struct pcpu_dstats, rx_packets));
11645 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11646 		     offsetof(struct pcpu_dstats, tx_bytes));
11647 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11648 		     offsetof(struct pcpu_dstats, tx_packets));
11649 
11650 	if (ops->ndo_get_stats64) {
11651 		memset(storage, 0, sizeof(*storage));
11652 		ops->ndo_get_stats64(dev, storage);
11653 	} else if (ops->ndo_get_stats) {
11654 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11655 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11656 		dev_get_tstats64(dev, storage);
11657 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11658 		dev_get_dstats64(dev, storage);
11659 	} else {
11660 		netdev_stats_to_stats64(storage, &dev->stats);
11661 	}
11662 
11663 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11664 	p = READ_ONCE(dev->core_stats);
11665 	if (p) {
11666 		const struct net_device_core_stats *core_stats;
11667 		int i;
11668 
11669 		for_each_possible_cpu(i) {
11670 			core_stats = per_cpu_ptr(p, i);
11671 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11672 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11673 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11674 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11675 		}
11676 	}
11677 	return storage;
11678 }
11679 EXPORT_SYMBOL(dev_get_stats);
11680 
11681 /**
11682  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11683  *	@s: place to store stats
11684  *	@netstats: per-cpu network stats to read from
11685  *
11686  *	Read per-cpu network statistics and populate the related fields in @s.
11687  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11688 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11689 			   const struct pcpu_sw_netstats __percpu *netstats)
11690 {
11691 	int cpu;
11692 
11693 	for_each_possible_cpu(cpu) {
11694 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11695 		const struct pcpu_sw_netstats *stats;
11696 		unsigned int start;
11697 
11698 		stats = per_cpu_ptr(netstats, cpu);
11699 		do {
11700 			start = u64_stats_fetch_begin(&stats->syncp);
11701 			rx_packets = u64_stats_read(&stats->rx_packets);
11702 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11703 			tx_packets = u64_stats_read(&stats->tx_packets);
11704 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11705 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11706 
11707 		s->rx_packets += rx_packets;
11708 		s->rx_bytes   += rx_bytes;
11709 		s->tx_packets += tx_packets;
11710 		s->tx_bytes   += tx_bytes;
11711 	}
11712 }
11713 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11714 
11715 /**
11716  *	dev_get_tstats64 - ndo_get_stats64 implementation
11717  *	@dev: device to get statistics from
11718  *	@s: place to store stats
11719  *
11720  *	Populate @s from dev->stats and dev->tstats. Can be used as
11721  *	ndo_get_stats64() callback.
11722  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11723 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11724 {
11725 	netdev_stats_to_stats64(s, &dev->stats);
11726 	dev_fetch_sw_netstats(s, dev->tstats);
11727 }
11728 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11729 
dev_ingress_queue_create(struct net_device * dev)11730 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11731 {
11732 	struct netdev_queue *queue = dev_ingress_queue(dev);
11733 
11734 #ifdef CONFIG_NET_CLS_ACT
11735 	if (queue)
11736 		return queue;
11737 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11738 	if (!queue)
11739 		return NULL;
11740 	netdev_init_one_queue(dev, queue, NULL);
11741 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11742 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11743 	rcu_assign_pointer(dev->ingress_queue, queue);
11744 #endif
11745 	return queue;
11746 }
11747 
11748 static const struct ethtool_ops default_ethtool_ops;
11749 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11750 void netdev_set_default_ethtool_ops(struct net_device *dev,
11751 				    const struct ethtool_ops *ops)
11752 {
11753 	if (dev->ethtool_ops == &default_ethtool_ops)
11754 		dev->ethtool_ops = ops;
11755 }
11756 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11757 
11758 /**
11759  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11760  * @dev: netdev to enable the IRQ coalescing on
11761  *
11762  * Sets a conservative default for SW IRQ coalescing. Users can use
11763  * sysfs attributes to override the default values.
11764  */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11765 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11766 {
11767 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11768 
11769 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11770 		netdev_set_gro_flush_timeout(dev, 20000);
11771 		netdev_set_defer_hard_irqs(dev, 1);
11772 	}
11773 }
11774 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11775 
11776 /**
11777  * alloc_netdev_mqs - allocate network device
11778  * @sizeof_priv: size of private data to allocate space for
11779  * @name: device name format string
11780  * @name_assign_type: origin of device name
11781  * @setup: callback to initialize device
11782  * @txqs: the number of TX subqueues to allocate
11783  * @rxqs: the number of RX subqueues to allocate
11784  *
11785  * Allocates a struct net_device with private data area for driver use
11786  * and performs basic initialization.  Also allocates subqueue structs
11787  * for each queue on the device.
11788  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11789 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11790 		unsigned char name_assign_type,
11791 		void (*setup)(struct net_device *),
11792 		unsigned int txqs, unsigned int rxqs)
11793 {
11794 	struct net_device *dev;
11795 	size_t napi_config_sz;
11796 	unsigned int maxqs;
11797 
11798 	BUG_ON(strlen(name) >= sizeof(dev->name));
11799 
11800 	if (txqs < 1) {
11801 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11802 		return NULL;
11803 	}
11804 
11805 	if (rxqs < 1) {
11806 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11807 		return NULL;
11808 	}
11809 
11810 	maxqs = max(txqs, rxqs);
11811 
11812 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11813 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11814 	if (!dev)
11815 		return NULL;
11816 
11817 	dev->priv_len = sizeof_priv;
11818 
11819 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11820 #ifdef CONFIG_PCPU_DEV_REFCNT
11821 	dev->pcpu_refcnt = alloc_percpu(int);
11822 	if (!dev->pcpu_refcnt)
11823 		goto free_dev;
11824 	__dev_hold(dev);
11825 #else
11826 	refcount_set(&dev->dev_refcnt, 1);
11827 #endif
11828 
11829 	if (dev_addr_init(dev))
11830 		goto free_pcpu;
11831 
11832 	dev_mc_init(dev);
11833 	dev_uc_init(dev);
11834 
11835 	dev_net_set(dev, &init_net);
11836 
11837 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11838 	dev->xdp_zc_max_segs = 1;
11839 	dev->gso_max_segs = GSO_MAX_SEGS;
11840 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11841 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11842 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11843 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11844 	dev->tso_max_segs = TSO_MAX_SEGS;
11845 	dev->upper_level = 1;
11846 	dev->lower_level = 1;
11847 #ifdef CONFIG_LOCKDEP
11848 	dev->nested_level = 0;
11849 	INIT_LIST_HEAD(&dev->unlink_list);
11850 #endif
11851 
11852 	INIT_LIST_HEAD(&dev->napi_list);
11853 	INIT_LIST_HEAD(&dev->unreg_list);
11854 	INIT_LIST_HEAD(&dev->close_list);
11855 	INIT_LIST_HEAD(&dev->link_watch_list);
11856 	INIT_LIST_HEAD(&dev->adj_list.upper);
11857 	INIT_LIST_HEAD(&dev->adj_list.lower);
11858 	INIT_LIST_HEAD(&dev->ptype_all);
11859 	INIT_LIST_HEAD(&dev->ptype_specific);
11860 	INIT_LIST_HEAD(&dev->net_notifier_list);
11861 #ifdef CONFIG_NET_SCHED
11862 	hash_init(dev->qdisc_hash);
11863 #endif
11864 
11865 	mutex_init(&dev->lock);
11866 
11867 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11868 	setup(dev);
11869 
11870 	if (!dev->tx_queue_len) {
11871 		dev->priv_flags |= IFF_NO_QUEUE;
11872 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11873 	}
11874 
11875 	dev->num_tx_queues = txqs;
11876 	dev->real_num_tx_queues = txqs;
11877 	if (netif_alloc_netdev_queues(dev))
11878 		goto free_all;
11879 
11880 	dev->num_rx_queues = rxqs;
11881 	dev->real_num_rx_queues = rxqs;
11882 	if (netif_alloc_rx_queues(dev))
11883 		goto free_all;
11884 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11885 	if (!dev->ethtool)
11886 		goto free_all;
11887 
11888 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11889 	if (!dev->cfg)
11890 		goto free_all;
11891 	dev->cfg_pending = dev->cfg;
11892 
11893 	dev->num_napi_configs = maxqs;
11894 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11895 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11896 	if (!dev->napi_config)
11897 		goto free_all;
11898 
11899 	strscpy(dev->name, name);
11900 	dev->name_assign_type = name_assign_type;
11901 	dev->group = INIT_NETDEV_GROUP;
11902 	if (!dev->ethtool_ops)
11903 		dev->ethtool_ops = &default_ethtool_ops;
11904 
11905 	nf_hook_netdev_init(dev);
11906 
11907 	return dev;
11908 
11909 free_all:
11910 	free_netdev(dev);
11911 	return NULL;
11912 
11913 free_pcpu:
11914 #ifdef CONFIG_PCPU_DEV_REFCNT
11915 	free_percpu(dev->pcpu_refcnt);
11916 free_dev:
11917 #endif
11918 	kvfree(dev);
11919 	return NULL;
11920 }
11921 EXPORT_SYMBOL(alloc_netdev_mqs);
11922 
netdev_napi_exit(struct net_device * dev)11923 static void netdev_napi_exit(struct net_device *dev)
11924 {
11925 	if (!list_empty(&dev->napi_list)) {
11926 		struct napi_struct *p, *n;
11927 
11928 		netdev_lock(dev);
11929 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11930 			__netif_napi_del_locked(p);
11931 		netdev_unlock(dev);
11932 
11933 		synchronize_net();
11934 	}
11935 
11936 	kvfree(dev->napi_config);
11937 }
11938 
11939 /**
11940  * free_netdev - free network device
11941  * @dev: device
11942  *
11943  * This function does the last stage of destroying an allocated device
11944  * interface. The reference to the device object is released. If this
11945  * is the last reference then it will be freed.Must be called in process
11946  * context.
11947  */
free_netdev(struct net_device * dev)11948 void free_netdev(struct net_device *dev)
11949 {
11950 	might_sleep();
11951 
11952 	/* When called immediately after register_netdevice() failed the unwind
11953 	 * handling may still be dismantling the device. Handle that case by
11954 	 * deferring the free.
11955 	 */
11956 	if (dev->reg_state == NETREG_UNREGISTERING) {
11957 		ASSERT_RTNL();
11958 		dev->needs_free_netdev = true;
11959 		return;
11960 	}
11961 
11962 	WARN_ON(dev->cfg != dev->cfg_pending);
11963 	kfree(dev->cfg);
11964 	kfree(dev->ethtool);
11965 	netif_free_tx_queues(dev);
11966 	netif_free_rx_queues(dev);
11967 
11968 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11969 
11970 	/* Flush device addresses */
11971 	dev_addr_flush(dev);
11972 
11973 	netdev_napi_exit(dev);
11974 
11975 	netif_del_cpu_rmap(dev);
11976 
11977 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11978 #ifdef CONFIG_PCPU_DEV_REFCNT
11979 	free_percpu(dev->pcpu_refcnt);
11980 	dev->pcpu_refcnt = NULL;
11981 #endif
11982 	free_percpu(dev->core_stats);
11983 	dev->core_stats = NULL;
11984 	free_percpu(dev->xdp_bulkq);
11985 	dev->xdp_bulkq = NULL;
11986 
11987 	netdev_free_phy_link_topology(dev);
11988 
11989 	mutex_destroy(&dev->lock);
11990 
11991 	/*  Compatibility with error handling in drivers */
11992 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11993 	    dev->reg_state == NETREG_DUMMY) {
11994 		kvfree(dev);
11995 		return;
11996 	}
11997 
11998 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11999 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12000 
12001 	/* will free via device release */
12002 	put_device(&dev->dev);
12003 }
12004 EXPORT_SYMBOL(free_netdev);
12005 
12006 /**
12007  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12008  * @sizeof_priv: size of private data to allocate space for
12009  *
12010  * Return: the allocated net_device on success, NULL otherwise
12011  */
alloc_netdev_dummy(int sizeof_priv)12012 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12013 {
12014 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12015 			    init_dummy_netdev);
12016 }
12017 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12018 
12019 /**
12020  *	synchronize_net -  Synchronize with packet receive processing
12021  *
12022  *	Wait for packets currently being received to be done.
12023  *	Does not block later packets from starting.
12024  */
synchronize_net(void)12025 void synchronize_net(void)
12026 {
12027 	might_sleep();
12028 	if (from_cleanup_net() || rtnl_is_locked())
12029 		synchronize_rcu_expedited();
12030 	else
12031 		synchronize_rcu();
12032 }
12033 EXPORT_SYMBOL(synchronize_net);
12034 
netdev_rss_contexts_free(struct net_device * dev)12035 static void netdev_rss_contexts_free(struct net_device *dev)
12036 {
12037 	struct ethtool_rxfh_context *ctx;
12038 	unsigned long context;
12039 
12040 	mutex_lock(&dev->ethtool->rss_lock);
12041 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12042 		xa_erase(&dev->ethtool->rss_ctx, context);
12043 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12044 		kfree(ctx);
12045 	}
12046 	xa_destroy(&dev->ethtool->rss_ctx);
12047 	mutex_unlock(&dev->ethtool->rss_lock);
12048 }
12049 
12050 /**
12051  *	unregister_netdevice_queue - remove device from the kernel
12052  *	@dev: device
12053  *	@head: list
12054  *
12055  *	This function shuts down a device interface and removes it
12056  *	from the kernel tables.
12057  *	If head not NULL, device is queued to be unregistered later.
12058  *
12059  *	Callers must hold the rtnl semaphore.  You may want
12060  *	unregister_netdev() instead of this.
12061  */
12062 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12063 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12064 {
12065 	ASSERT_RTNL();
12066 
12067 	if (head) {
12068 		list_move_tail(&dev->unreg_list, head);
12069 	} else {
12070 		LIST_HEAD(single);
12071 
12072 		list_add(&dev->unreg_list, &single);
12073 		unregister_netdevice_many(&single);
12074 	}
12075 }
12076 EXPORT_SYMBOL(unregister_netdevice_queue);
12077 
dev_memory_provider_uninstall(struct net_device * dev)12078 static void dev_memory_provider_uninstall(struct net_device *dev)
12079 {
12080 	unsigned int i;
12081 
12082 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12083 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12084 		struct pp_memory_provider_params *p = &rxq->mp_params;
12085 
12086 		if (p->mp_ops && p->mp_ops->uninstall)
12087 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12088 	}
12089 }
12090 
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12091 void unregister_netdevice_many_notify(struct list_head *head,
12092 				      u32 portid, const struct nlmsghdr *nlh)
12093 {
12094 	struct net_device *dev, *tmp;
12095 	LIST_HEAD(close_head);
12096 	int cnt = 0;
12097 
12098 	BUG_ON(dev_boot_phase);
12099 	ASSERT_RTNL();
12100 
12101 	if (list_empty(head))
12102 		return;
12103 
12104 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12105 		/* Some devices call without registering
12106 		 * for initialization unwind. Remove those
12107 		 * devices and proceed with the remaining.
12108 		 */
12109 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12110 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12111 				 dev->name, dev);
12112 
12113 			WARN_ON(1);
12114 			list_del(&dev->unreg_list);
12115 			continue;
12116 		}
12117 		dev->dismantle = true;
12118 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12119 	}
12120 
12121 	/* If device is running, close it first. Start with ops locked... */
12122 	list_for_each_entry(dev, head, unreg_list) {
12123 		if (netdev_need_ops_lock(dev)) {
12124 			list_add_tail(&dev->close_list, &close_head);
12125 			netdev_lock(dev);
12126 		}
12127 	}
12128 	netif_close_many(&close_head, true);
12129 	/* ... now unlock them and go over the rest. */
12130 	list_for_each_entry(dev, head, unreg_list) {
12131 		if (netdev_need_ops_lock(dev))
12132 			netdev_unlock(dev);
12133 		else
12134 			list_add_tail(&dev->close_list, &close_head);
12135 	}
12136 	netif_close_many(&close_head, true);
12137 
12138 	list_for_each_entry(dev, head, unreg_list) {
12139 		/* And unlink it from device chain. */
12140 		unlist_netdevice(dev);
12141 		netdev_lock(dev);
12142 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12143 		netdev_unlock(dev);
12144 	}
12145 	flush_all_backlogs();
12146 
12147 	synchronize_net();
12148 
12149 	list_for_each_entry(dev, head, unreg_list) {
12150 		struct sk_buff *skb = NULL;
12151 
12152 		/* Shutdown queueing discipline. */
12153 		netdev_lock_ops(dev);
12154 		dev_shutdown(dev);
12155 		dev_tcx_uninstall(dev);
12156 		dev_xdp_uninstall(dev);
12157 		dev_memory_provider_uninstall(dev);
12158 		netdev_unlock_ops(dev);
12159 		bpf_dev_bound_netdev_unregister(dev);
12160 
12161 		netdev_offload_xstats_disable_all(dev);
12162 
12163 		/* Notify protocols, that we are about to destroy
12164 		 * this device. They should clean all the things.
12165 		 */
12166 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12167 
12168 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12169 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12170 						     GFP_KERNEL, NULL, 0,
12171 						     portid, nlh);
12172 
12173 		/*
12174 		 *	Flush the unicast and multicast chains
12175 		 */
12176 		dev_uc_flush(dev);
12177 		dev_mc_flush(dev);
12178 
12179 		netdev_name_node_alt_flush(dev);
12180 		netdev_name_node_free(dev->name_node);
12181 
12182 		netdev_rss_contexts_free(dev);
12183 
12184 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12185 
12186 		if (dev->netdev_ops->ndo_uninit)
12187 			dev->netdev_ops->ndo_uninit(dev);
12188 
12189 		mutex_destroy(&dev->ethtool->rss_lock);
12190 
12191 		net_shaper_flush_netdev(dev);
12192 
12193 		if (skb)
12194 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12195 
12196 		/* Notifier chain MUST detach us all upper devices. */
12197 		WARN_ON(netdev_has_any_upper_dev(dev));
12198 		WARN_ON(netdev_has_any_lower_dev(dev));
12199 
12200 		/* Remove entries from kobject tree */
12201 		netdev_unregister_kobject(dev);
12202 #ifdef CONFIG_XPS
12203 		/* Remove XPS queueing entries */
12204 		netif_reset_xps_queues_gt(dev, 0);
12205 #endif
12206 	}
12207 
12208 	synchronize_net();
12209 
12210 	list_for_each_entry(dev, head, unreg_list) {
12211 		netdev_put(dev, &dev->dev_registered_tracker);
12212 		net_set_todo(dev);
12213 		cnt++;
12214 	}
12215 	atomic_add(cnt, &dev_unreg_count);
12216 
12217 	list_del(head);
12218 }
12219 
12220 /**
12221  *	unregister_netdevice_many - unregister many devices
12222  *	@head: list of devices
12223  *
12224  *  Note: As most callers use a stack allocated list_head,
12225  *  we force a list_del() to make sure stack won't be corrupted later.
12226  */
unregister_netdevice_many(struct list_head * head)12227 void unregister_netdevice_many(struct list_head *head)
12228 {
12229 	unregister_netdevice_many_notify(head, 0, NULL);
12230 }
12231 EXPORT_SYMBOL(unregister_netdevice_many);
12232 
12233 /**
12234  *	unregister_netdev - remove device from the kernel
12235  *	@dev: device
12236  *
12237  *	This function shuts down a device interface and removes it
12238  *	from the kernel tables.
12239  *
12240  *	This is just a wrapper for unregister_netdevice that takes
12241  *	the rtnl semaphore.  In general you want to use this and not
12242  *	unregister_netdevice.
12243  */
unregister_netdev(struct net_device * dev)12244 void unregister_netdev(struct net_device *dev)
12245 {
12246 	rtnl_net_dev_lock(dev);
12247 	unregister_netdevice(dev);
12248 	rtnl_net_dev_unlock(dev);
12249 }
12250 EXPORT_SYMBOL(unregister_netdev);
12251 
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12252 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12253 			       const char *pat, int new_ifindex,
12254 			       struct netlink_ext_ack *extack)
12255 {
12256 	struct netdev_name_node *name_node;
12257 	struct net *net_old = dev_net(dev);
12258 	char new_name[IFNAMSIZ] = {};
12259 	int err, new_nsid;
12260 
12261 	ASSERT_RTNL();
12262 
12263 	/* Don't allow namespace local devices to be moved. */
12264 	err = -EINVAL;
12265 	if (dev->netns_immutable) {
12266 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12267 		goto out;
12268 	}
12269 
12270 	/* Ensure the device has been registered */
12271 	if (dev->reg_state != NETREG_REGISTERED) {
12272 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12273 		goto out;
12274 	}
12275 
12276 	/* Get out if there is nothing todo */
12277 	err = 0;
12278 	if (net_eq(net_old, net))
12279 		goto out;
12280 
12281 	/* Pick the destination device name, and ensure
12282 	 * we can use it in the destination network namespace.
12283 	 */
12284 	err = -EEXIST;
12285 	if (netdev_name_in_use(net, dev->name)) {
12286 		/* We get here if we can't use the current device name */
12287 		if (!pat) {
12288 			NL_SET_ERR_MSG(extack,
12289 				       "An interface with the same name exists in the target netns");
12290 			goto out;
12291 		}
12292 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12293 		if (err < 0) {
12294 			NL_SET_ERR_MSG_FMT(extack,
12295 					   "Unable to use '%s' for the new interface name in the target netns",
12296 					   pat);
12297 			goto out;
12298 		}
12299 	}
12300 	/* Check that none of the altnames conflicts. */
12301 	err = -EEXIST;
12302 	netdev_for_each_altname(dev, name_node) {
12303 		if (netdev_name_in_use(net, name_node->name)) {
12304 			NL_SET_ERR_MSG_FMT(extack,
12305 					   "An interface with the altname %s exists in the target netns",
12306 					   name_node->name);
12307 			goto out;
12308 		}
12309 	}
12310 
12311 	/* Check that new_ifindex isn't used yet. */
12312 	if (new_ifindex) {
12313 		err = dev_index_reserve(net, new_ifindex);
12314 		if (err < 0) {
12315 			NL_SET_ERR_MSG_FMT(extack,
12316 					   "The ifindex %d is not available in the target netns",
12317 					   new_ifindex);
12318 			goto out;
12319 		}
12320 	} else {
12321 		/* If there is an ifindex conflict assign a new one */
12322 		err = dev_index_reserve(net, dev->ifindex);
12323 		if (err == -EBUSY)
12324 			err = dev_index_reserve(net, 0);
12325 		if (err < 0) {
12326 			NL_SET_ERR_MSG(extack,
12327 				       "Unable to allocate a new ifindex in the target netns");
12328 			goto out;
12329 		}
12330 		new_ifindex = err;
12331 	}
12332 
12333 	/*
12334 	 * And now a mini version of register_netdevice unregister_netdevice.
12335 	 */
12336 
12337 	netdev_lock_ops(dev);
12338 	/* If device is running close it first. */
12339 	netif_close(dev);
12340 	/* And unlink it from device chain */
12341 	unlist_netdevice(dev);
12342 
12343 	if (!netdev_need_ops_lock(dev))
12344 		netdev_lock(dev);
12345 	dev->moving_ns = true;
12346 	netdev_unlock(dev);
12347 
12348 	synchronize_net();
12349 
12350 	/* Shutdown queueing discipline. */
12351 	netdev_lock_ops(dev);
12352 	dev_shutdown(dev);
12353 	netdev_unlock_ops(dev);
12354 
12355 	/* Notify protocols, that we are about to destroy
12356 	 * this device. They should clean all the things.
12357 	 *
12358 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12359 	 * This is wanted because this way 8021q and macvlan know
12360 	 * the device is just moving and can keep their slaves up.
12361 	 */
12362 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12363 	rcu_barrier();
12364 
12365 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12366 
12367 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12368 			    new_ifindex);
12369 
12370 	/*
12371 	 *	Flush the unicast and multicast chains
12372 	 */
12373 	dev_uc_flush(dev);
12374 	dev_mc_flush(dev);
12375 
12376 	/* Send a netdev-removed uevent to the old namespace */
12377 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12378 	netdev_adjacent_del_links(dev);
12379 
12380 	/* Move per-net netdevice notifiers that are following the netdevice */
12381 	move_netdevice_notifiers_dev_net(dev, net);
12382 
12383 	/* Actually switch the network namespace */
12384 	netdev_lock(dev);
12385 	dev_net_set(dev, net);
12386 	netdev_unlock(dev);
12387 	dev->ifindex = new_ifindex;
12388 
12389 	if (new_name[0]) {
12390 		/* Rename the netdev to prepared name */
12391 		write_seqlock_bh(&netdev_rename_lock);
12392 		strscpy(dev->name, new_name, IFNAMSIZ);
12393 		write_sequnlock_bh(&netdev_rename_lock);
12394 	}
12395 
12396 	/* Fixup kobjects */
12397 	dev_set_uevent_suppress(&dev->dev, 1);
12398 	err = device_rename(&dev->dev, dev->name);
12399 	dev_set_uevent_suppress(&dev->dev, 0);
12400 	WARN_ON(err);
12401 
12402 	/* Send a netdev-add uevent to the new namespace */
12403 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12404 	netdev_adjacent_add_links(dev);
12405 
12406 	/* Adapt owner in case owning user namespace of target network
12407 	 * namespace is different from the original one.
12408 	 */
12409 	err = netdev_change_owner(dev, net_old, net);
12410 	WARN_ON(err);
12411 
12412 	netdev_lock(dev);
12413 	dev->moving_ns = false;
12414 	if (!netdev_need_ops_lock(dev))
12415 		netdev_unlock(dev);
12416 
12417 	/* Add the device back in the hashes */
12418 	list_netdevice(dev);
12419 	/* Notify protocols, that a new device appeared. */
12420 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12421 	netdev_unlock_ops(dev);
12422 
12423 	/*
12424 	 *	Prevent userspace races by waiting until the network
12425 	 *	device is fully setup before sending notifications.
12426 	 */
12427 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12428 
12429 	synchronize_net();
12430 	err = 0;
12431 out:
12432 	return err;
12433 }
12434 
dev_cpu_dead(unsigned int oldcpu)12435 static int dev_cpu_dead(unsigned int oldcpu)
12436 {
12437 	struct sk_buff **list_skb;
12438 	struct sk_buff *skb;
12439 	unsigned int cpu;
12440 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12441 
12442 	local_irq_disable();
12443 	cpu = smp_processor_id();
12444 	sd = &per_cpu(softnet_data, cpu);
12445 	oldsd = &per_cpu(softnet_data, oldcpu);
12446 
12447 	/* Find end of our completion_queue. */
12448 	list_skb = &sd->completion_queue;
12449 	while (*list_skb)
12450 		list_skb = &(*list_skb)->next;
12451 	/* Append completion queue from offline CPU. */
12452 	*list_skb = oldsd->completion_queue;
12453 	oldsd->completion_queue = NULL;
12454 
12455 	/* Append output queue from offline CPU. */
12456 	if (oldsd->output_queue) {
12457 		*sd->output_queue_tailp = oldsd->output_queue;
12458 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12459 		oldsd->output_queue = NULL;
12460 		oldsd->output_queue_tailp = &oldsd->output_queue;
12461 	}
12462 	/* Append NAPI poll list from offline CPU, with one exception :
12463 	 * process_backlog() must be called by cpu owning percpu backlog.
12464 	 * We properly handle process_queue & input_pkt_queue later.
12465 	 */
12466 	while (!list_empty(&oldsd->poll_list)) {
12467 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12468 							    struct napi_struct,
12469 							    poll_list);
12470 
12471 		list_del_init(&napi->poll_list);
12472 		if (napi->poll == process_backlog)
12473 			napi->state &= NAPIF_STATE_THREADED;
12474 		else
12475 			____napi_schedule(sd, napi);
12476 	}
12477 
12478 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12479 	local_irq_enable();
12480 
12481 	if (!use_backlog_threads()) {
12482 #ifdef CONFIG_RPS
12483 		remsd = oldsd->rps_ipi_list;
12484 		oldsd->rps_ipi_list = NULL;
12485 #endif
12486 		/* send out pending IPI's on offline CPU */
12487 		net_rps_send_ipi(remsd);
12488 	}
12489 
12490 	/* Process offline CPU's input_pkt_queue */
12491 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12492 		netif_rx(skb);
12493 		rps_input_queue_head_incr(oldsd);
12494 	}
12495 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12496 		netif_rx(skb);
12497 		rps_input_queue_head_incr(oldsd);
12498 	}
12499 
12500 	return 0;
12501 }
12502 
12503 /**
12504  *	netdev_increment_features - increment feature set by one
12505  *	@all: current feature set
12506  *	@one: new feature set
12507  *	@mask: mask feature set
12508  *
12509  *	Computes a new feature set after adding a device with feature set
12510  *	@one to the master device with current feature set @all.  Will not
12511  *	enable anything that is off in @mask. Returns the new feature set.
12512  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12513 netdev_features_t netdev_increment_features(netdev_features_t all,
12514 	netdev_features_t one, netdev_features_t mask)
12515 {
12516 	if (mask & NETIF_F_HW_CSUM)
12517 		mask |= NETIF_F_CSUM_MASK;
12518 	mask |= NETIF_F_VLAN_CHALLENGED;
12519 
12520 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12521 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12522 
12523 	/* If one device supports hw checksumming, set for all. */
12524 	if (all & NETIF_F_HW_CSUM)
12525 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12526 
12527 	return all;
12528 }
12529 EXPORT_SYMBOL(netdev_increment_features);
12530 
netdev_create_hash(void)12531 static struct hlist_head * __net_init netdev_create_hash(void)
12532 {
12533 	int i;
12534 	struct hlist_head *hash;
12535 
12536 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12537 	if (hash != NULL)
12538 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12539 			INIT_HLIST_HEAD(&hash[i]);
12540 
12541 	return hash;
12542 }
12543 
12544 /* Initialize per network namespace state */
netdev_init(struct net * net)12545 static int __net_init netdev_init(struct net *net)
12546 {
12547 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12548 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12549 
12550 	INIT_LIST_HEAD(&net->dev_base_head);
12551 
12552 	net->dev_name_head = netdev_create_hash();
12553 	if (net->dev_name_head == NULL)
12554 		goto err_name;
12555 
12556 	net->dev_index_head = netdev_create_hash();
12557 	if (net->dev_index_head == NULL)
12558 		goto err_idx;
12559 
12560 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12561 
12562 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12563 
12564 	return 0;
12565 
12566 err_idx:
12567 	kfree(net->dev_name_head);
12568 err_name:
12569 	return -ENOMEM;
12570 }
12571 
12572 /**
12573  *	netdev_drivername - network driver for the device
12574  *	@dev: network device
12575  *
12576  *	Determine network driver for device.
12577  */
netdev_drivername(const struct net_device * dev)12578 const char *netdev_drivername(const struct net_device *dev)
12579 {
12580 	const struct device_driver *driver;
12581 	const struct device *parent;
12582 	const char *empty = "";
12583 
12584 	parent = dev->dev.parent;
12585 	if (!parent)
12586 		return empty;
12587 
12588 	driver = parent->driver;
12589 	if (driver && driver->name)
12590 		return driver->name;
12591 	return empty;
12592 }
12593 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12594 static void __netdev_printk(const char *level, const struct net_device *dev,
12595 			    struct va_format *vaf)
12596 {
12597 	if (dev && dev->dev.parent) {
12598 		dev_printk_emit(level[1] - '0',
12599 				dev->dev.parent,
12600 				"%s %s %s%s: %pV",
12601 				dev_driver_string(dev->dev.parent),
12602 				dev_name(dev->dev.parent),
12603 				netdev_name(dev), netdev_reg_state(dev),
12604 				vaf);
12605 	} else if (dev) {
12606 		printk("%s%s%s: %pV",
12607 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12608 	} else {
12609 		printk("%s(NULL net_device): %pV", level, vaf);
12610 	}
12611 }
12612 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12613 void netdev_printk(const char *level, const struct net_device *dev,
12614 		   const char *format, ...)
12615 {
12616 	struct va_format vaf;
12617 	va_list args;
12618 
12619 	va_start(args, format);
12620 
12621 	vaf.fmt = format;
12622 	vaf.va = &args;
12623 
12624 	__netdev_printk(level, dev, &vaf);
12625 
12626 	va_end(args);
12627 }
12628 EXPORT_SYMBOL(netdev_printk);
12629 
12630 #define define_netdev_printk_level(func, level)			\
12631 void func(const struct net_device *dev, const char *fmt, ...)	\
12632 {								\
12633 	struct va_format vaf;					\
12634 	va_list args;						\
12635 								\
12636 	va_start(args, fmt);					\
12637 								\
12638 	vaf.fmt = fmt;						\
12639 	vaf.va = &args;						\
12640 								\
12641 	__netdev_printk(level, dev, &vaf);			\
12642 								\
12643 	va_end(args);						\
12644 }								\
12645 EXPORT_SYMBOL(func);
12646 
12647 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12648 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12649 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12650 define_netdev_printk_level(netdev_err, KERN_ERR);
12651 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12652 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12653 define_netdev_printk_level(netdev_info, KERN_INFO);
12654 
netdev_exit(struct net * net)12655 static void __net_exit netdev_exit(struct net *net)
12656 {
12657 	kfree(net->dev_name_head);
12658 	kfree(net->dev_index_head);
12659 	xa_destroy(&net->dev_by_index);
12660 	if (net != &init_net)
12661 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12662 }
12663 
12664 static struct pernet_operations __net_initdata netdev_net_ops = {
12665 	.init = netdev_init,
12666 	.exit = netdev_exit,
12667 };
12668 
default_device_exit_net(struct net * net)12669 static void __net_exit default_device_exit_net(struct net *net)
12670 {
12671 	struct netdev_name_node *name_node, *tmp;
12672 	struct net_device *dev, *aux;
12673 	/*
12674 	 * Push all migratable network devices back to the
12675 	 * initial network namespace
12676 	 */
12677 	ASSERT_RTNL();
12678 	for_each_netdev_safe(net, dev, aux) {
12679 		int err;
12680 		char fb_name[IFNAMSIZ];
12681 
12682 		/* Ignore unmoveable devices (i.e. loopback) */
12683 		if (dev->netns_immutable)
12684 			continue;
12685 
12686 		/* Leave virtual devices for the generic cleanup */
12687 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12688 			continue;
12689 
12690 		/* Push remaining network devices to init_net */
12691 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12692 		if (netdev_name_in_use(&init_net, fb_name))
12693 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12694 
12695 		netdev_for_each_altname_safe(dev, name_node, tmp)
12696 			if (netdev_name_in_use(&init_net, name_node->name))
12697 				__netdev_name_node_alt_destroy(name_node);
12698 
12699 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12700 		if (err) {
12701 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12702 				 __func__, dev->name, err);
12703 			BUG();
12704 		}
12705 	}
12706 }
12707 
default_device_exit_batch(struct list_head * net_list)12708 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12709 {
12710 	/* At exit all network devices most be removed from a network
12711 	 * namespace.  Do this in the reverse order of registration.
12712 	 * Do this across as many network namespaces as possible to
12713 	 * improve batching efficiency.
12714 	 */
12715 	struct net_device *dev;
12716 	struct net *net;
12717 	LIST_HEAD(dev_kill_list);
12718 
12719 	rtnl_lock();
12720 	list_for_each_entry(net, net_list, exit_list) {
12721 		default_device_exit_net(net);
12722 		cond_resched();
12723 	}
12724 
12725 	list_for_each_entry(net, net_list, exit_list) {
12726 		for_each_netdev_reverse(net, dev) {
12727 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12728 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12729 			else
12730 				unregister_netdevice_queue(dev, &dev_kill_list);
12731 		}
12732 	}
12733 	unregister_netdevice_many(&dev_kill_list);
12734 	rtnl_unlock();
12735 }
12736 
12737 static struct pernet_operations __net_initdata default_device_ops = {
12738 	.exit_batch = default_device_exit_batch,
12739 };
12740 
net_dev_struct_check(void)12741 static void __init net_dev_struct_check(void)
12742 {
12743 	/* TX read-mostly hotpath */
12744 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12745 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12746 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12747 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12748 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12749 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12750 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12751 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12752 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12753 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12754 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12755 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12756 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12757 #ifdef CONFIG_XPS
12758 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12759 #endif
12760 #ifdef CONFIG_NETFILTER_EGRESS
12761 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12762 #endif
12763 #ifdef CONFIG_NET_XGRESS
12764 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12765 #endif
12766 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12767 
12768 	/* TXRX read-mostly hotpath */
12769 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12770 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12771 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12772 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12773 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12774 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12775 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12776 
12777 	/* RX read-mostly hotpath */
12778 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12779 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12780 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12781 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12782 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12783 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12784 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12785 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12786 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12787 #ifdef CONFIG_NETPOLL
12788 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12789 #endif
12790 #ifdef CONFIG_NET_XGRESS
12791 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12792 #endif
12793 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12794 }
12795 
12796 /*
12797  *	Initialize the DEV module. At boot time this walks the device list and
12798  *	unhooks any devices that fail to initialise (normally hardware not
12799  *	present) and leaves us with a valid list of present and active devices.
12800  *
12801  */
12802 
12803 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12804 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12805 
net_page_pool_create(int cpuid)12806 static int net_page_pool_create(int cpuid)
12807 {
12808 #if IS_ENABLED(CONFIG_PAGE_POOL)
12809 	struct page_pool_params page_pool_params = {
12810 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12811 		.flags = PP_FLAG_SYSTEM_POOL,
12812 		.nid = cpu_to_mem(cpuid),
12813 	};
12814 	struct page_pool *pp_ptr;
12815 	int err;
12816 
12817 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12818 	if (IS_ERR(pp_ptr))
12819 		return -ENOMEM;
12820 
12821 	err = xdp_reg_page_pool(pp_ptr);
12822 	if (err) {
12823 		page_pool_destroy(pp_ptr);
12824 		return err;
12825 	}
12826 
12827 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12828 #endif
12829 	return 0;
12830 }
12831 
backlog_napi_should_run(unsigned int cpu)12832 static int backlog_napi_should_run(unsigned int cpu)
12833 {
12834 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12835 	struct napi_struct *napi = &sd->backlog;
12836 
12837 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12838 }
12839 
run_backlog_napi(unsigned int cpu)12840 static void run_backlog_napi(unsigned int cpu)
12841 {
12842 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12843 
12844 	napi_threaded_poll_loop(&sd->backlog);
12845 }
12846 
backlog_napi_setup(unsigned int cpu)12847 static void backlog_napi_setup(unsigned int cpu)
12848 {
12849 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12850 	struct napi_struct *napi = &sd->backlog;
12851 
12852 	napi->thread = this_cpu_read(backlog_napi);
12853 	set_bit(NAPI_STATE_THREADED, &napi->state);
12854 }
12855 
12856 static struct smp_hotplug_thread backlog_threads = {
12857 	.store			= &backlog_napi,
12858 	.thread_should_run	= backlog_napi_should_run,
12859 	.thread_fn		= run_backlog_napi,
12860 	.thread_comm		= "backlog_napi/%u",
12861 	.setup			= backlog_napi_setup,
12862 };
12863 
12864 /*
12865  *       This is called single threaded during boot, so no need
12866  *       to take the rtnl semaphore.
12867  */
net_dev_init(void)12868 static int __init net_dev_init(void)
12869 {
12870 	int i, rc = -ENOMEM;
12871 
12872 	BUG_ON(!dev_boot_phase);
12873 
12874 	net_dev_struct_check();
12875 
12876 	if (dev_proc_init())
12877 		goto out;
12878 
12879 	if (netdev_kobject_init())
12880 		goto out;
12881 
12882 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12883 		INIT_LIST_HEAD(&ptype_base[i]);
12884 
12885 	if (register_pernet_subsys(&netdev_net_ops))
12886 		goto out;
12887 
12888 	/*
12889 	 *	Initialise the packet receive queues.
12890 	 */
12891 
12892 	flush_backlogs_fallback = flush_backlogs_alloc();
12893 	if (!flush_backlogs_fallback)
12894 		goto out;
12895 
12896 	for_each_possible_cpu(i) {
12897 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12898 
12899 		skb_queue_head_init(&sd->input_pkt_queue);
12900 		skb_queue_head_init(&sd->process_queue);
12901 #ifdef CONFIG_XFRM_OFFLOAD
12902 		skb_queue_head_init(&sd->xfrm_backlog);
12903 #endif
12904 		INIT_LIST_HEAD(&sd->poll_list);
12905 		sd->output_queue_tailp = &sd->output_queue;
12906 #ifdef CONFIG_RPS
12907 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12908 		sd->cpu = i;
12909 #endif
12910 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12911 		spin_lock_init(&sd->defer_lock);
12912 
12913 		gro_init(&sd->backlog.gro);
12914 		sd->backlog.poll = process_backlog;
12915 		sd->backlog.weight = weight_p;
12916 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12917 
12918 		if (net_page_pool_create(i))
12919 			goto out;
12920 	}
12921 	if (use_backlog_threads())
12922 		smpboot_register_percpu_thread(&backlog_threads);
12923 
12924 	dev_boot_phase = 0;
12925 
12926 	/* The loopback device is special if any other network devices
12927 	 * is present in a network namespace the loopback device must
12928 	 * be present. Since we now dynamically allocate and free the
12929 	 * loopback device ensure this invariant is maintained by
12930 	 * keeping the loopback device as the first device on the
12931 	 * list of network devices.  Ensuring the loopback devices
12932 	 * is the first device that appears and the last network device
12933 	 * that disappears.
12934 	 */
12935 	if (register_pernet_device(&loopback_net_ops))
12936 		goto out;
12937 
12938 	if (register_pernet_device(&default_device_ops))
12939 		goto out;
12940 
12941 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12942 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12943 
12944 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12945 				       NULL, dev_cpu_dead);
12946 	WARN_ON(rc < 0);
12947 	rc = 0;
12948 
12949 	/* avoid static key IPIs to isolated CPUs */
12950 	if (housekeeping_enabled(HK_TYPE_MISC))
12951 		net_enable_timestamp();
12952 out:
12953 	if (rc < 0) {
12954 		for_each_possible_cpu(i) {
12955 			struct page_pool *pp_ptr;
12956 
12957 			pp_ptr = per_cpu(system_page_pool.pool, i);
12958 			if (!pp_ptr)
12959 				continue;
12960 
12961 			xdp_unreg_page_pool(pp_ptr);
12962 			page_pool_destroy(pp_ptr);
12963 			per_cpu(system_page_pool.pool, i) = NULL;
12964 		}
12965 	}
12966 
12967 	return rc;
12968 }
12969 
12970 subsys_initcall(net_dev_init);
12971