1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 8 * Mark Evans, <evansmp@uhura.aston.ac.uk> 9 * 10 * Additional Authors: 11 * Florian la Roche <rzsfl@rz.uni-sb.de> 12 * Alan Cox <gw4pts@gw4pts.ampr.org> 13 * David Hinds <dahinds@users.sourceforge.net> 14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 15 * Adam Sulmicki <adam@cfar.umd.edu> 16 * Pekka Riikonen <priikone@poesidon.pspt.fi> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/isolation.h> 81 #include <linux/sched/mm.h> 82 #include <linux/smpboot.h> 83 #include <linux/mutex.h> 84 #include <linux/rwsem.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/ethtool_netlink.h> 96 #include <linux/skbuff.h> 97 #include <linux/kthread.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dsa.h> 106 #include <net/dst.h> 107 #include <net/dst_metadata.h> 108 #include <net/gro.h> 109 #include <net/netdev_queues.h> 110 #include <net/pkt_sched.h> 111 #include <net/pkt_cls.h> 112 #include <net/checksum.h> 113 #include <net/xfrm.h> 114 #include <net/tcx.h> 115 #include <linux/highmem.h> 116 #include <linux/init.h> 117 #include <linux/module.h> 118 #include <linux/netpoll.h> 119 #include <linux/rcupdate.h> 120 #include <linux/delay.h> 121 #include <net/iw_handler.h> 122 #include <asm/current.h> 123 #include <linux/audit.h> 124 #include <linux/dmaengine.h> 125 #include <linux/err.h> 126 #include <linux/ctype.h> 127 #include <linux/if_arp.h> 128 #include <linux/if_vlan.h> 129 #include <linux/ip.h> 130 #include <net/ip.h> 131 #include <net/mpls.h> 132 #include <linux/ipv6.h> 133 #include <linux/in.h> 134 #include <linux/jhash.h> 135 #include <linux/random.h> 136 #include <trace/events/napi.h> 137 #include <trace/events/net.h> 138 #include <trace/events/skb.h> 139 #include <trace/events/qdisc.h> 140 #include <trace/events/xdp.h> 141 #include <linux/inetdevice.h> 142 #include <linux/cpu_rmap.h> 143 #include <linux/static_key.h> 144 #include <linux/hashtable.h> 145 #include <linux/vmalloc.h> 146 #include <linux/if_macvlan.h> 147 #include <linux/errqueue.h> 148 #include <linux/hrtimer.h> 149 #include <linux/netfilter_netdev.h> 150 #include <linux/crash_dump.h> 151 #include <linux/sctp.h> 152 #include <net/udp_tunnel.h> 153 #include <linux/net_namespace.h> 154 #include <linux/indirect_call_wrapper.h> 155 #include <net/devlink.h> 156 #include <linux/pm_runtime.h> 157 #include <linux/prandom.h> 158 #include <linux/once_lite.h> 159 #include <net/netdev_lock.h> 160 #include <net/netdev_rx_queue.h> 161 #include <net/page_pool/types.h> 162 #include <net/page_pool/helpers.h> 163 #include <net/page_pool/memory_provider.h> 164 #include <net/rps.h> 165 #include <linux/phy_link_topology.h> 166 167 #include "dev.h" 168 #include "devmem.h" 169 #include "net-sysfs.h" 170 171 static DEFINE_SPINLOCK(ptype_lock); 172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 173 174 static int netif_rx_internal(struct sk_buff *skb); 175 static int call_netdevice_notifiers_extack(unsigned long val, 176 struct net_device *dev, 177 struct netlink_ext_ack *extack); 178 179 static DEFINE_MUTEX(ifalias_mutex); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id = NR_CPUS; 185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 186 187 static inline void dev_base_seq_inc(struct net *net) 188 { 189 unsigned int val = net->dev_base_seq + 1; 190 191 WRITE_ONCE(net->dev_base_seq, val ?: 1); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 #ifndef CONFIG_PREEMPT_RT 207 208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key); 209 210 static int __init setup_backlog_napi_threads(char *arg) 211 { 212 static_branch_enable(&use_backlog_threads_key); 213 return 0; 214 } 215 early_param("thread_backlog_napi", setup_backlog_napi_threads); 216 217 static bool use_backlog_threads(void) 218 { 219 return static_branch_unlikely(&use_backlog_threads_key); 220 } 221 222 #else 223 224 static bool use_backlog_threads(void) 225 { 226 return true; 227 } 228 229 #endif 230 231 static inline void backlog_lock_irq_save(struct softnet_data *sd, 232 unsigned long *flags) 233 { 234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 236 else 237 local_irq_save(*flags); 238 } 239 240 static inline void backlog_lock_irq_disable(struct softnet_data *sd) 241 { 242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 243 spin_lock_irq(&sd->input_pkt_queue.lock); 244 else 245 local_irq_disable(); 246 } 247 248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd, 249 unsigned long *flags) 250 { 251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 253 else 254 local_irq_restore(*flags); 255 } 256 257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd) 258 { 259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads()) 260 spin_unlock_irq(&sd->input_pkt_queue.lock); 261 else 262 local_irq_enable(); 263 } 264 265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 266 const char *name) 267 { 268 struct netdev_name_node *name_node; 269 270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 271 if (!name_node) 272 return NULL; 273 INIT_HLIST_NODE(&name_node->hlist); 274 name_node->dev = dev; 275 name_node->name = name; 276 return name_node; 277 } 278 279 static struct netdev_name_node * 280 netdev_name_node_head_alloc(struct net_device *dev) 281 { 282 struct netdev_name_node *name_node; 283 284 name_node = netdev_name_node_alloc(dev, dev->name); 285 if (!name_node) 286 return NULL; 287 INIT_LIST_HEAD(&name_node->list); 288 return name_node; 289 } 290 291 static void netdev_name_node_free(struct netdev_name_node *name_node) 292 { 293 kfree(name_node); 294 } 295 296 static void netdev_name_node_add(struct net *net, 297 struct netdev_name_node *name_node) 298 { 299 hlist_add_head_rcu(&name_node->hlist, 300 dev_name_hash(net, name_node->name)); 301 } 302 303 static void netdev_name_node_del(struct netdev_name_node *name_node) 304 { 305 hlist_del_rcu(&name_node->hlist); 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 321 const char *name) 322 { 323 struct hlist_head *head = dev_name_hash(net, name); 324 struct netdev_name_node *name_node; 325 326 hlist_for_each_entry_rcu(name_node, head, hlist) 327 if (!strcmp(name_node->name, name)) 328 return name_node; 329 return NULL; 330 } 331 332 bool netdev_name_in_use(struct net *net, const char *name) 333 { 334 return netdev_name_node_lookup(net, name); 335 } 336 EXPORT_SYMBOL(netdev_name_in_use); 337 338 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 339 { 340 struct netdev_name_node *name_node; 341 struct net *net = dev_net(dev); 342 343 name_node = netdev_name_node_lookup(net, name); 344 if (name_node) 345 return -EEXIST; 346 name_node = netdev_name_node_alloc(dev, name); 347 if (!name_node) 348 return -ENOMEM; 349 netdev_name_node_add(net, name_node); 350 /* The node that holds dev->name acts as a head of per-device list. */ 351 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 352 353 return 0; 354 } 355 356 static void netdev_name_node_alt_free(struct rcu_head *head) 357 { 358 struct netdev_name_node *name_node = 359 container_of(head, struct netdev_name_node, rcu); 360 361 kfree(name_node->name); 362 netdev_name_node_free(name_node); 363 } 364 365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 366 { 367 netdev_name_node_del(name_node); 368 list_del(&name_node->list); 369 call_rcu(&name_node->rcu, netdev_name_node_alt_free); 370 } 371 372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 373 { 374 struct netdev_name_node *name_node; 375 struct net *net = dev_net(dev); 376 377 name_node = netdev_name_node_lookup(net, name); 378 if (!name_node) 379 return -ENOENT; 380 /* lookup might have found our primary name or a name belonging 381 * to another device. 382 */ 383 if (name_node == dev->name_node || name_node->dev != dev) 384 return -EINVAL; 385 386 __netdev_name_node_alt_destroy(name_node); 387 return 0; 388 } 389 390 static void netdev_name_node_alt_flush(struct net_device *dev) 391 { 392 struct netdev_name_node *name_node, *tmp; 393 394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) { 395 list_del(&name_node->list); 396 netdev_name_node_alt_free(&name_node->rcu); 397 } 398 } 399 400 /* Device list insertion */ 401 static void list_netdevice(struct net_device *dev) 402 { 403 struct netdev_name_node *name_node; 404 struct net *net = dev_net(dev); 405 406 ASSERT_RTNL(); 407 408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 409 netdev_name_node_add(net, dev->name_node); 410 hlist_add_head_rcu(&dev->index_hlist, 411 dev_index_hash(net, dev->ifindex)); 412 413 netdev_for_each_altname(dev, name_node) 414 netdev_name_node_add(net, name_node); 415 416 /* We reserved the ifindex, this can't fail */ 417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 418 419 dev_base_seq_inc(net); 420 } 421 422 /* Device list removal 423 * caller must respect a RCU grace period before freeing/reusing dev 424 */ 425 static void unlist_netdevice(struct net_device *dev) 426 { 427 struct netdev_name_node *name_node; 428 struct net *net = dev_net(dev); 429 430 ASSERT_RTNL(); 431 432 xa_erase(&net->dev_by_index, dev->ifindex); 433 434 netdev_for_each_altname(dev, name_node) 435 netdev_name_node_del(name_node); 436 437 /* Unlink dev from the device chain */ 438 list_del_rcu(&dev->dev_list); 439 netdev_name_node_del(dev->name_node); 440 hlist_del_rcu(&dev->index_hlist); 441 442 dev_base_seq_inc(dev_net(dev)); 443 } 444 445 /* 446 * Our notifier list 447 */ 448 449 static RAW_NOTIFIER_HEAD(netdev_chain); 450 451 /* 452 * Device drivers call our routines to queue packets here. We empty the 453 * queue in the local softnet handler. 454 */ 455 456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = { 457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock), 458 }; 459 EXPORT_PER_CPU_SYMBOL(softnet_data); 460 461 /* Page_pool has a lockless array/stack to alloc/recycle pages. 462 * PP consumers must pay attention to run APIs in the appropriate context 463 * (e.g. NAPI context). 464 */ 465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = { 466 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 467 }; 468 469 #ifdef CONFIG_LOCKDEP 470 /* 471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 472 * according to dev->type 473 */ 474 static const unsigned short netdev_lock_type[] = { 475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 490 491 static const char *const netdev_lock_name[] = { 492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 507 508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 510 511 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 512 { 513 int i; 514 515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 516 if (netdev_lock_type[i] == dev_type) 517 return i; 518 /* the last key is used by default */ 519 return ARRAY_SIZE(netdev_lock_type) - 1; 520 } 521 522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 523 unsigned short dev_type) 524 { 525 int i; 526 527 i = netdev_lock_pos(dev_type); 528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 529 netdev_lock_name[i]); 530 } 531 532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 533 { 534 int i; 535 536 i = netdev_lock_pos(dev->type); 537 lockdep_set_class_and_name(&dev->addr_list_lock, 538 &netdev_addr_lock_key[i], 539 netdev_lock_name[i]); 540 } 541 #else 542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 543 unsigned short dev_type) 544 { 545 } 546 547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 548 { 549 } 550 #endif 551 552 /******************************************************************************* 553 * 554 * Protocol management and registration routines 555 * 556 *******************************************************************************/ 557 558 559 /* 560 * Add a protocol ID to the list. Now that the input handler is 561 * smarter we can dispense with all the messy stuff that used to be 562 * here. 563 * 564 * BEWARE!!! Protocol handlers, mangling input packets, 565 * MUST BE last in hash buckets and checking protocol handlers 566 * MUST start from promiscuous ptype_all chain in net_bh. 567 * It is true now, do not change it. 568 * Explanation follows: if protocol handler, mangling packet, will 569 * be the first on list, it is not able to sense, that packet 570 * is cloned and should be copied-on-write, so that it will 571 * change it and subsequent readers will get broken packet. 572 * --ANK (980803) 573 */ 574 575 static inline struct list_head *ptype_head(const struct packet_type *pt) 576 { 577 if (pt->type == htons(ETH_P_ALL)) { 578 if (!pt->af_packet_net && !pt->dev) 579 return NULL; 580 581 return pt->dev ? &pt->dev->ptype_all : 582 &pt->af_packet_net->ptype_all; 583 } 584 585 if (pt->dev) 586 return &pt->dev->ptype_specific; 587 588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific : 589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 590 } 591 592 /** 593 * dev_add_pack - add packet handler 594 * @pt: packet type declaration 595 * 596 * Add a protocol handler to the networking stack. The passed &packet_type 597 * is linked into kernel lists and may not be freed until it has been 598 * removed from the kernel lists. 599 * 600 * This call does not sleep therefore it can not 601 * guarantee all CPU's that are in middle of receiving packets 602 * will see the new packet type (until the next received packet). 603 */ 604 605 void dev_add_pack(struct packet_type *pt) 606 { 607 struct list_head *head = ptype_head(pt); 608 609 if (WARN_ON_ONCE(!head)) 610 return; 611 612 spin_lock(&ptype_lock); 613 list_add_rcu(&pt->list, head); 614 spin_unlock(&ptype_lock); 615 } 616 EXPORT_SYMBOL(dev_add_pack); 617 618 /** 619 * __dev_remove_pack - remove packet handler 620 * @pt: packet type declaration 621 * 622 * Remove a protocol handler that was previously added to the kernel 623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 624 * from the kernel lists and can be freed or reused once this function 625 * returns. 626 * 627 * The packet type might still be in use by receivers 628 * and must not be freed until after all the CPU's have gone 629 * through a quiescent state. 630 */ 631 void __dev_remove_pack(struct packet_type *pt) 632 { 633 struct list_head *head = ptype_head(pt); 634 struct packet_type *pt1; 635 636 if (!head) 637 return; 638 639 spin_lock(&ptype_lock); 640 641 list_for_each_entry(pt1, head, list) { 642 if (pt == pt1) { 643 list_del_rcu(&pt->list); 644 goto out; 645 } 646 } 647 648 pr_warn("dev_remove_pack: %p not found\n", pt); 649 out: 650 spin_unlock(&ptype_lock); 651 } 652 EXPORT_SYMBOL(__dev_remove_pack); 653 654 /** 655 * dev_remove_pack - remove packet handler 656 * @pt: packet type declaration 657 * 658 * Remove a protocol handler that was previously added to the kernel 659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 660 * from the kernel lists and can be freed or reused once this function 661 * returns. 662 * 663 * This call sleeps to guarantee that no CPU is looking at the packet 664 * type after return. 665 */ 666 void dev_remove_pack(struct packet_type *pt) 667 { 668 __dev_remove_pack(pt); 669 670 synchronize_net(); 671 } 672 EXPORT_SYMBOL(dev_remove_pack); 673 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return READ_ONCE(dev->ifindex); 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 725 { 726 int k = stack->num_paths++; 727 728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 729 return NULL; 730 731 return &stack->path[k]; 732 } 733 734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 735 struct net_device_path_stack *stack) 736 { 737 const struct net_device *last_dev; 738 struct net_device_path_ctx ctx = { 739 .dev = dev, 740 }; 741 struct net_device_path *path; 742 int ret = 0; 743 744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 745 stack->num_paths = 0; 746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 747 last_dev = ctx.dev; 748 path = dev_fwd_path(stack); 749 if (!path) 750 return -1; 751 752 memset(path, 0, sizeof(struct net_device_path)); 753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 754 if (ret < 0) 755 return -1; 756 757 if (WARN_ON_ONCE(last_dev == ctx.dev)) 758 return -1; 759 } 760 761 if (!ctx.dev) 762 return ret; 763 764 path = dev_fwd_path(stack); 765 if (!path) 766 return -1; 767 path->type = DEV_PATH_ETHERNET; 768 path->dev = ctx.dev; 769 770 return ret; 771 } 772 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 773 774 /* must be called under rcu_read_lock(), as we dont take a reference */ 775 static struct napi_struct *napi_by_id(unsigned int napi_id) 776 { 777 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 778 struct napi_struct *napi; 779 780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 781 if (napi->napi_id == napi_id) 782 return napi; 783 784 return NULL; 785 } 786 787 /* must be called under rcu_read_lock(), as we dont take a reference */ 788 static struct napi_struct * 789 netdev_napi_by_id(struct net *net, unsigned int napi_id) 790 { 791 struct napi_struct *napi; 792 793 napi = napi_by_id(napi_id); 794 if (!napi) 795 return NULL; 796 797 if (WARN_ON_ONCE(!napi->dev)) 798 return NULL; 799 if (!net_eq(net, dev_net(napi->dev))) 800 return NULL; 801 802 return napi; 803 } 804 805 /** 806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it 807 * @net: the applicable net namespace 808 * @napi_id: ID of a NAPI of a target device 809 * 810 * Find a NAPI instance with @napi_id. Lock its device. 811 * The device must be in %NETREG_REGISTERED state for lookup to succeed. 812 * netdev_unlock() must be called to release it. 813 * 814 * Return: pointer to NAPI, its device with lock held, NULL if not found. 815 */ 816 struct napi_struct * 817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id) 818 { 819 struct napi_struct *napi; 820 struct net_device *dev; 821 822 rcu_read_lock(); 823 napi = netdev_napi_by_id(net, napi_id); 824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) { 825 rcu_read_unlock(); 826 return NULL; 827 } 828 829 dev = napi->dev; 830 dev_hold(dev); 831 rcu_read_unlock(); 832 833 dev = __netdev_put_lock(dev, net); 834 if (!dev) 835 return NULL; 836 837 rcu_read_lock(); 838 napi = netdev_napi_by_id(net, napi_id); 839 if (napi && napi->dev != dev) 840 napi = NULL; 841 rcu_read_unlock(); 842 843 if (!napi) 844 netdev_unlock(dev); 845 return napi; 846 } 847 848 /** 849 * __dev_get_by_name - find a device by its name 850 * @net: the applicable net namespace 851 * @name: name to find 852 * 853 * Find an interface by name. Must be called under RTNL semaphore. 854 * If the name is found a pointer to the device is returned. 855 * If the name is not found then %NULL is returned. The 856 * reference counters are not incremented so the caller must be 857 * careful with locks. 858 */ 859 860 struct net_device *__dev_get_by_name(struct net *net, const char *name) 861 { 862 struct netdev_name_node *node_name; 863 864 node_name = netdev_name_node_lookup(net, name); 865 return node_name ? node_name->dev : NULL; 866 } 867 EXPORT_SYMBOL(__dev_get_by_name); 868 869 /** 870 * dev_get_by_name_rcu - find a device by its name 871 * @net: the applicable net namespace 872 * @name: name to find 873 * 874 * Find an interface by name. 875 * If the name is found a pointer to the device is returned. 876 * If the name is not found then %NULL is returned. 877 * The reference counters are not incremented so the caller must be 878 * careful with locks. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 882 { 883 struct netdev_name_node *node_name; 884 885 node_name = netdev_name_node_lookup_rcu(net, name); 886 return node_name ? node_name->dev : NULL; 887 } 888 EXPORT_SYMBOL(dev_get_by_name_rcu); 889 890 /* Deprecated for new users, call netdev_get_by_name() instead */ 891 struct net_device *dev_get_by_name(struct net *net, const char *name) 892 { 893 struct net_device *dev; 894 895 rcu_read_lock(); 896 dev = dev_get_by_name_rcu(net, name); 897 dev_hold(dev); 898 rcu_read_unlock(); 899 return dev; 900 } 901 EXPORT_SYMBOL(dev_get_by_name); 902 903 /** 904 * netdev_get_by_name() - find a device by its name 905 * @net: the applicable net namespace 906 * @name: name to find 907 * @tracker: tracking object for the acquired reference 908 * @gfp: allocation flags for the tracker 909 * 910 * Find an interface by name. This can be called from any 911 * context and does its own locking. The returned handle has 912 * the usage count incremented and the caller must use netdev_put() to 913 * release it when it is no longer needed. %NULL is returned if no 914 * matching device is found. 915 */ 916 struct net_device *netdev_get_by_name(struct net *net, const char *name, 917 netdevice_tracker *tracker, gfp_t gfp) 918 { 919 struct net_device *dev; 920 921 dev = dev_get_by_name(net, name); 922 if (dev) 923 netdev_tracker_alloc(dev, tracker, gfp); 924 return dev; 925 } 926 EXPORT_SYMBOL(netdev_get_by_name); 927 928 /** 929 * __dev_get_by_index - find a device by its ifindex 930 * @net: the applicable net namespace 931 * @ifindex: index of device 932 * 933 * Search for an interface by index. Returns %NULL if the device 934 * is not found or a pointer to the device. The device has not 935 * had its reference counter increased so the caller must be careful 936 * about locking. The caller must hold the RTNL semaphore. 937 */ 938 939 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 940 { 941 struct net_device *dev; 942 struct hlist_head *head = dev_index_hash(net, ifindex); 943 944 hlist_for_each_entry(dev, head, index_hlist) 945 if (dev->ifindex == ifindex) 946 return dev; 947 948 return NULL; 949 } 950 EXPORT_SYMBOL(__dev_get_by_index); 951 952 /** 953 * dev_get_by_index_rcu - find a device by its ifindex 954 * @net: the applicable net namespace 955 * @ifindex: index of device 956 * 957 * Search for an interface by index. Returns %NULL if the device 958 * is not found or a pointer to the device. The device has not 959 * had its reference counter increased so the caller must be careful 960 * about locking. The caller must hold RCU lock. 961 */ 962 963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 964 { 965 struct net_device *dev; 966 struct hlist_head *head = dev_index_hash(net, ifindex); 967 968 hlist_for_each_entry_rcu(dev, head, index_hlist) 969 if (dev->ifindex == ifindex) 970 return dev; 971 972 return NULL; 973 } 974 EXPORT_SYMBOL(dev_get_by_index_rcu); 975 976 /* Deprecated for new users, call netdev_get_by_index() instead */ 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 dev_hold(dev); 984 rcu_read_unlock(); 985 return dev; 986 } 987 EXPORT_SYMBOL(dev_get_by_index); 988 989 /** 990 * netdev_get_by_index() - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * @tracker: tracking object for the acquired reference 994 * @gfp: allocation flags for the tracker 995 * 996 * Search for an interface by index. Returns NULL if the device 997 * is not found or a pointer to the device. The device returned has 998 * had a reference added and the pointer is safe until the user calls 999 * netdev_put() to indicate they have finished with it. 1000 */ 1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 1002 netdevice_tracker *tracker, gfp_t gfp) 1003 { 1004 struct net_device *dev; 1005 1006 dev = dev_get_by_index(net, ifindex); 1007 if (dev) 1008 netdev_tracker_alloc(dev, tracker, gfp); 1009 return dev; 1010 } 1011 EXPORT_SYMBOL(netdev_get_by_index); 1012 1013 /** 1014 * dev_get_by_napi_id - find a device by napi_id 1015 * @napi_id: ID of the NAPI struct 1016 * 1017 * Search for an interface by NAPI ID. Returns %NULL if the device 1018 * is not found or a pointer to the device. The device has not had 1019 * its reference counter increased so the caller must be careful 1020 * about locking. The caller must hold RCU lock. 1021 */ 1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1023 { 1024 struct napi_struct *napi; 1025 1026 WARN_ON_ONCE(!rcu_read_lock_held()); 1027 1028 if (!napi_id_valid(napi_id)) 1029 return NULL; 1030 1031 napi = napi_by_id(napi_id); 1032 1033 return napi ? napi->dev : NULL; 1034 } 1035 1036 /* Release the held reference on the net_device, and if the net_device 1037 * is still registered try to lock the instance lock. If device is being 1038 * unregistered NULL will be returned (but the reference has been released, 1039 * either way!) 1040 * 1041 * This helper is intended for locking net_device after it has been looked up 1042 * using a lockless lookup helper. Lock prevents the instance from going away. 1043 */ 1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net) 1045 { 1046 netdev_lock(dev); 1047 if (dev->reg_state > NETREG_REGISTERED || 1048 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1049 netdev_unlock(dev); 1050 dev_put(dev); 1051 return NULL; 1052 } 1053 dev_put(dev); 1054 return dev; 1055 } 1056 1057 static struct net_device * 1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net) 1059 { 1060 netdev_lock_ops_compat(dev); 1061 if (dev->reg_state > NETREG_REGISTERED || 1062 dev->moving_ns || !net_eq(dev_net(dev), net)) { 1063 netdev_unlock_ops_compat(dev); 1064 dev_put(dev); 1065 return NULL; 1066 } 1067 dev_put(dev); 1068 return dev; 1069 } 1070 1071 /** 1072 * netdev_get_by_index_lock() - find a device by its ifindex 1073 * @net: the applicable net namespace 1074 * @ifindex: index of device 1075 * 1076 * Search for an interface by index. If a valid device 1077 * with @ifindex is found it will be returned with netdev->lock held. 1078 * netdev_unlock() must be called to release it. 1079 * 1080 * Return: pointer to a device with lock held, NULL if not found. 1081 */ 1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex) 1083 { 1084 struct net_device *dev; 1085 1086 dev = dev_get_by_index(net, ifindex); 1087 if (!dev) 1088 return NULL; 1089 1090 return __netdev_put_lock(dev, net); 1091 } 1092 1093 struct net_device * 1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex) 1095 { 1096 struct net_device *dev; 1097 1098 dev = dev_get_by_index(net, ifindex); 1099 if (!dev) 1100 return NULL; 1101 1102 return __netdev_put_lock_ops_compat(dev, net); 1103 } 1104 1105 struct net_device * 1106 netdev_xa_find_lock(struct net *net, struct net_device *dev, 1107 unsigned long *index) 1108 { 1109 if (dev) 1110 netdev_unlock(dev); 1111 1112 do { 1113 rcu_read_lock(); 1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1115 if (!dev) { 1116 rcu_read_unlock(); 1117 return NULL; 1118 } 1119 dev_hold(dev); 1120 rcu_read_unlock(); 1121 1122 dev = __netdev_put_lock(dev, net); 1123 if (dev) 1124 return dev; 1125 1126 (*index)++; 1127 } while (true); 1128 } 1129 1130 struct net_device * 1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev, 1132 unsigned long *index) 1133 { 1134 if (dev) 1135 netdev_unlock_ops_compat(dev); 1136 1137 do { 1138 rcu_read_lock(); 1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT); 1140 if (!dev) { 1141 rcu_read_unlock(); 1142 return NULL; 1143 } 1144 dev_hold(dev); 1145 rcu_read_unlock(); 1146 1147 dev = __netdev_put_lock_ops_compat(dev, net); 1148 if (dev) 1149 return dev; 1150 1151 (*index)++; 1152 } while (true); 1153 } 1154 1155 static DEFINE_SEQLOCK(netdev_rename_lock); 1156 1157 void netdev_copy_name(struct net_device *dev, char *name) 1158 { 1159 unsigned int seq; 1160 1161 do { 1162 seq = read_seqbegin(&netdev_rename_lock); 1163 strscpy(name, dev->name, IFNAMSIZ); 1164 } while (read_seqretry(&netdev_rename_lock, seq)); 1165 } 1166 EXPORT_IPV6_MOD_GPL(netdev_copy_name); 1167 1168 /** 1169 * netdev_get_name - get a netdevice name, knowing its ifindex. 1170 * @net: network namespace 1171 * @name: a pointer to the buffer where the name will be stored. 1172 * @ifindex: the ifindex of the interface to get the name from. 1173 */ 1174 int netdev_get_name(struct net *net, char *name, int ifindex) 1175 { 1176 struct net_device *dev; 1177 int ret; 1178 1179 rcu_read_lock(); 1180 1181 dev = dev_get_by_index_rcu(net, ifindex); 1182 if (!dev) { 1183 ret = -ENODEV; 1184 goto out; 1185 } 1186 1187 netdev_copy_name(dev, name); 1188 1189 ret = 0; 1190 out: 1191 rcu_read_unlock(); 1192 return ret; 1193 } 1194 1195 static bool dev_addr_cmp(struct net_device *dev, unsigned short type, 1196 const char *ha) 1197 { 1198 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len); 1199 } 1200 1201 /** 1202 * dev_getbyhwaddr_rcu - find a device by its hardware address 1203 * @net: the applicable net namespace 1204 * @type: media type of device 1205 * @ha: hardware address 1206 * 1207 * Search for an interface by MAC address. Returns NULL if the device 1208 * is not found or a pointer to the device. 1209 * The caller must hold RCU. 1210 * The returned device has not had its ref count increased 1211 * and the caller must therefore be careful about locking 1212 * 1213 */ 1214 1215 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1216 const char *ha) 1217 { 1218 struct net_device *dev; 1219 1220 for_each_netdev_rcu(net, dev) 1221 if (dev_addr_cmp(dev, type, ha)) 1222 return dev; 1223 1224 return NULL; 1225 } 1226 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1227 1228 /** 1229 * dev_getbyhwaddr() - find a device by its hardware address 1230 * @net: the applicable net namespace 1231 * @type: media type of device 1232 * @ha: hardware address 1233 * 1234 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold 1235 * rtnl_lock. 1236 * 1237 * Context: rtnl_lock() must be held. 1238 * Return: pointer to the net_device, or NULL if not found 1239 */ 1240 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, 1241 const char *ha) 1242 { 1243 struct net_device *dev; 1244 1245 ASSERT_RTNL(); 1246 for_each_netdev(net, dev) 1247 if (dev_addr_cmp(dev, type, ha)) 1248 return dev; 1249 1250 return NULL; 1251 } 1252 EXPORT_SYMBOL(dev_getbyhwaddr); 1253 1254 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1255 { 1256 struct net_device *dev, *ret = NULL; 1257 1258 rcu_read_lock(); 1259 for_each_netdev_rcu(net, dev) 1260 if (dev->type == type) { 1261 dev_hold(dev); 1262 ret = dev; 1263 break; 1264 } 1265 rcu_read_unlock(); 1266 return ret; 1267 } 1268 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1269 1270 /** 1271 * netdev_get_by_flags_rcu - find any device with given flags 1272 * @net: the applicable net namespace 1273 * @tracker: tracking object for the acquired reference 1274 * @if_flags: IFF_* values 1275 * @mask: bitmask of bits in if_flags to check 1276 * 1277 * Search for any interface with the given flags. 1278 * 1279 * Context: rcu_read_lock() must be held. 1280 * Returns: NULL if a device is not found or a pointer to the device. 1281 */ 1282 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker, 1283 unsigned short if_flags, unsigned short mask) 1284 { 1285 struct net_device *dev; 1286 1287 for_each_netdev_rcu(net, dev) { 1288 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) { 1289 netdev_hold(dev, tracker, GFP_ATOMIC); 1290 return dev; 1291 } 1292 } 1293 1294 return NULL; 1295 } 1296 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu); 1297 1298 /** 1299 * dev_valid_name - check if name is okay for network device 1300 * @name: name string 1301 * 1302 * Network device names need to be valid file names to 1303 * allow sysfs to work. We also disallow any kind of 1304 * whitespace. 1305 */ 1306 bool dev_valid_name(const char *name) 1307 { 1308 if (*name == '\0') 1309 return false; 1310 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1311 return false; 1312 if (!strcmp(name, ".") || !strcmp(name, "..")) 1313 return false; 1314 1315 while (*name) { 1316 if (*name == '/' || *name == ':' || isspace(*name)) 1317 return false; 1318 name++; 1319 } 1320 return true; 1321 } 1322 EXPORT_SYMBOL(dev_valid_name); 1323 1324 /** 1325 * __dev_alloc_name - allocate a name for a device 1326 * @net: network namespace to allocate the device name in 1327 * @name: name format string 1328 * @res: result name string 1329 * 1330 * Passed a format string - eg "lt%d" it will try and find a suitable 1331 * id. It scans list of devices to build up a free map, then chooses 1332 * the first empty slot. The caller must hold the dev_base or rtnl lock 1333 * while allocating the name and adding the device in order to avoid 1334 * duplicates. 1335 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1336 * Returns the number of the unit assigned or a negative errno code. 1337 */ 1338 1339 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1340 { 1341 int i = 0; 1342 const char *p; 1343 const int max_netdevices = 8*PAGE_SIZE; 1344 unsigned long *inuse; 1345 struct net_device *d; 1346 char buf[IFNAMSIZ]; 1347 1348 /* Verify the string as this thing may have come from the user. 1349 * There must be one "%d" and no other "%" characters. 1350 */ 1351 p = strchr(name, '%'); 1352 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1353 return -EINVAL; 1354 1355 /* Use one page as a bit array of possible slots */ 1356 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1357 if (!inuse) 1358 return -ENOMEM; 1359 1360 for_each_netdev(net, d) { 1361 struct netdev_name_node *name_node; 1362 1363 netdev_for_each_altname(d, name_node) { 1364 if (!sscanf(name_node->name, name, &i)) 1365 continue; 1366 if (i < 0 || i >= max_netdevices) 1367 continue; 1368 1369 /* avoid cases where sscanf is not exact inverse of printf */ 1370 snprintf(buf, IFNAMSIZ, name, i); 1371 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1372 __set_bit(i, inuse); 1373 } 1374 if (!sscanf(d->name, name, &i)) 1375 continue; 1376 if (i < 0 || i >= max_netdevices) 1377 continue; 1378 1379 /* avoid cases where sscanf is not exact inverse of printf */ 1380 snprintf(buf, IFNAMSIZ, name, i); 1381 if (!strncmp(buf, d->name, IFNAMSIZ)) 1382 __set_bit(i, inuse); 1383 } 1384 1385 i = find_first_zero_bit(inuse, max_netdevices); 1386 bitmap_free(inuse); 1387 if (i == max_netdevices) 1388 return -ENFILE; 1389 1390 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1391 strscpy(buf, name, IFNAMSIZ); 1392 snprintf(res, IFNAMSIZ, buf, i); 1393 return i; 1394 } 1395 1396 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1397 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1398 const char *want_name, char *out_name, 1399 int dup_errno) 1400 { 1401 if (!dev_valid_name(want_name)) 1402 return -EINVAL; 1403 1404 if (strchr(want_name, '%')) 1405 return __dev_alloc_name(net, want_name, out_name); 1406 1407 if (netdev_name_in_use(net, want_name)) 1408 return -dup_errno; 1409 if (out_name != want_name) 1410 strscpy(out_name, want_name, IFNAMSIZ); 1411 return 0; 1412 } 1413 1414 /** 1415 * dev_alloc_name - allocate a name for a device 1416 * @dev: device 1417 * @name: name format string 1418 * 1419 * Passed a format string - eg "lt%d" it will try and find a suitable 1420 * id. It scans list of devices to build up a free map, then chooses 1421 * the first empty slot. The caller must hold the dev_base or rtnl lock 1422 * while allocating the name and adding the device in order to avoid 1423 * duplicates. 1424 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1425 * Returns the number of the unit assigned or a negative errno code. 1426 */ 1427 1428 int dev_alloc_name(struct net_device *dev, const char *name) 1429 { 1430 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1431 } 1432 EXPORT_SYMBOL(dev_alloc_name); 1433 1434 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1435 const char *name) 1436 { 1437 int ret; 1438 1439 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1440 return ret < 0 ? ret : 0; 1441 } 1442 1443 int netif_change_name(struct net_device *dev, const char *newname) 1444 { 1445 struct net *net = dev_net(dev); 1446 unsigned char old_assign_type; 1447 char oldname[IFNAMSIZ]; 1448 int err = 0; 1449 int ret; 1450 1451 ASSERT_RTNL_NET(net); 1452 1453 if (!strncmp(newname, dev->name, IFNAMSIZ)) 1454 return 0; 1455 1456 memcpy(oldname, dev->name, IFNAMSIZ); 1457 1458 write_seqlock_bh(&netdev_rename_lock); 1459 err = dev_get_valid_name(net, dev, newname); 1460 write_sequnlock_bh(&netdev_rename_lock); 1461 1462 if (err < 0) 1463 return err; 1464 1465 if (oldname[0] && !strchr(oldname, '%')) 1466 netdev_info(dev, "renamed from %s%s\n", oldname, 1467 dev->flags & IFF_UP ? " (while UP)" : ""); 1468 1469 old_assign_type = dev->name_assign_type; 1470 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED); 1471 1472 rollback: 1473 ret = device_rename(&dev->dev, dev->name); 1474 if (ret) { 1475 write_seqlock_bh(&netdev_rename_lock); 1476 memcpy(dev->name, oldname, IFNAMSIZ); 1477 write_sequnlock_bh(&netdev_rename_lock); 1478 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1479 return ret; 1480 } 1481 1482 netdev_adjacent_rename_links(dev, oldname); 1483 1484 netdev_name_node_del(dev->name_node); 1485 1486 synchronize_net(); 1487 1488 netdev_name_node_add(net, dev->name_node); 1489 1490 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1491 ret = notifier_to_errno(ret); 1492 1493 if (ret) { 1494 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1495 if (err >= 0) { 1496 err = ret; 1497 write_seqlock_bh(&netdev_rename_lock); 1498 memcpy(dev->name, oldname, IFNAMSIZ); 1499 write_sequnlock_bh(&netdev_rename_lock); 1500 memcpy(oldname, newname, IFNAMSIZ); 1501 WRITE_ONCE(dev->name_assign_type, old_assign_type); 1502 old_assign_type = NET_NAME_RENAMED; 1503 goto rollback; 1504 } else { 1505 netdev_err(dev, "name change rollback failed: %d\n", 1506 ret); 1507 } 1508 } 1509 1510 return err; 1511 } 1512 1513 int netif_set_alias(struct net_device *dev, const char *alias, size_t len) 1514 { 1515 struct dev_ifalias *new_alias = NULL; 1516 1517 if (len >= IFALIASZ) 1518 return -EINVAL; 1519 1520 if (len) { 1521 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1522 if (!new_alias) 1523 return -ENOMEM; 1524 1525 memcpy(new_alias->ifalias, alias, len); 1526 new_alias->ifalias[len] = 0; 1527 } 1528 1529 mutex_lock(&ifalias_mutex); 1530 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1531 mutex_is_locked(&ifalias_mutex)); 1532 mutex_unlock(&ifalias_mutex); 1533 1534 if (new_alias) 1535 kfree_rcu(new_alias, rcuhead); 1536 1537 return len; 1538 } 1539 1540 /** 1541 * dev_get_alias - get ifalias of a device 1542 * @dev: device 1543 * @name: buffer to store name of ifalias 1544 * @len: size of buffer 1545 * 1546 * get ifalias for a device. Caller must make sure dev cannot go 1547 * away, e.g. rcu read lock or own a reference count to device. 1548 */ 1549 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1550 { 1551 const struct dev_ifalias *alias; 1552 int ret = 0; 1553 1554 rcu_read_lock(); 1555 alias = rcu_dereference(dev->ifalias); 1556 if (alias) 1557 ret = snprintf(name, len, "%s", alias->ifalias); 1558 rcu_read_unlock(); 1559 1560 return ret; 1561 } 1562 1563 /** 1564 * netdev_features_change - device changes features 1565 * @dev: device to cause notification 1566 * 1567 * Called to indicate a device has changed features. 1568 */ 1569 void netdev_features_change(struct net_device *dev) 1570 { 1571 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1572 } 1573 EXPORT_SYMBOL(netdev_features_change); 1574 1575 void netif_state_change(struct net_device *dev) 1576 { 1577 netdev_ops_assert_locked_or_invisible(dev); 1578 1579 if (dev->flags & IFF_UP) { 1580 struct netdev_notifier_change_info change_info = { 1581 .info.dev = dev, 1582 }; 1583 1584 call_netdevice_notifiers_info(NETDEV_CHANGE, 1585 &change_info.info); 1586 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1587 } 1588 } 1589 1590 /** 1591 * __netdev_notify_peers - notify network peers about existence of @dev, 1592 * to be called when rtnl lock is already held. 1593 * @dev: network device 1594 * 1595 * Generate traffic such that interested network peers are aware of 1596 * @dev, such as by generating a gratuitous ARP. This may be used when 1597 * a device wants to inform the rest of the network about some sort of 1598 * reconfiguration such as a failover event or virtual machine 1599 * migration. 1600 */ 1601 void __netdev_notify_peers(struct net_device *dev) 1602 { 1603 ASSERT_RTNL(); 1604 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1605 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1606 } 1607 EXPORT_SYMBOL(__netdev_notify_peers); 1608 1609 /** 1610 * netdev_notify_peers - notify network peers about existence of @dev 1611 * @dev: network device 1612 * 1613 * Generate traffic such that interested network peers are aware of 1614 * @dev, such as by generating a gratuitous ARP. This may be used when 1615 * a device wants to inform the rest of the network about some sort of 1616 * reconfiguration such as a failover event or virtual machine 1617 * migration. 1618 */ 1619 void netdev_notify_peers(struct net_device *dev) 1620 { 1621 rtnl_lock(); 1622 __netdev_notify_peers(dev); 1623 rtnl_unlock(); 1624 } 1625 EXPORT_SYMBOL(netdev_notify_peers); 1626 1627 static int napi_threaded_poll(void *data); 1628 1629 static int napi_kthread_create(struct napi_struct *n) 1630 { 1631 int err = 0; 1632 1633 /* Create and wake up the kthread once to put it in 1634 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1635 * warning and work with loadavg. 1636 */ 1637 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1638 n->dev->name, n->napi_id); 1639 if (IS_ERR(n->thread)) { 1640 err = PTR_ERR(n->thread); 1641 pr_err("kthread_run failed with err %d\n", err); 1642 n->thread = NULL; 1643 } 1644 1645 return err; 1646 } 1647 1648 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1649 { 1650 const struct net_device_ops *ops = dev->netdev_ops; 1651 int ret; 1652 1653 ASSERT_RTNL(); 1654 dev_addr_check(dev); 1655 1656 if (!netif_device_present(dev)) { 1657 /* may be detached because parent is runtime-suspended */ 1658 if (dev->dev.parent) 1659 pm_runtime_resume(dev->dev.parent); 1660 if (!netif_device_present(dev)) 1661 return -ENODEV; 1662 } 1663 1664 /* Block netpoll from trying to do any rx path servicing. 1665 * If we don't do this there is a chance ndo_poll_controller 1666 * or ndo_poll may be running while we open the device 1667 */ 1668 netpoll_poll_disable(dev); 1669 1670 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1671 ret = notifier_to_errno(ret); 1672 if (ret) 1673 return ret; 1674 1675 set_bit(__LINK_STATE_START, &dev->state); 1676 1677 netdev_ops_assert_locked(dev); 1678 1679 if (ops->ndo_validate_addr) 1680 ret = ops->ndo_validate_addr(dev); 1681 1682 if (!ret && ops->ndo_open) 1683 ret = ops->ndo_open(dev); 1684 1685 netpoll_poll_enable(dev); 1686 1687 if (ret) 1688 clear_bit(__LINK_STATE_START, &dev->state); 1689 else { 1690 netif_set_up(dev, true); 1691 dev_set_rx_mode(dev); 1692 dev_activate(dev); 1693 add_device_randomness(dev->dev_addr, dev->addr_len); 1694 } 1695 1696 return ret; 1697 } 1698 1699 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack) 1700 { 1701 int ret; 1702 1703 if (dev->flags & IFF_UP) 1704 return 0; 1705 1706 ret = __dev_open(dev, extack); 1707 if (ret < 0) 1708 return ret; 1709 1710 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1711 call_netdevice_notifiers(NETDEV_UP, dev); 1712 1713 return ret; 1714 } 1715 1716 static void __dev_close_many(struct list_head *head) 1717 { 1718 struct net_device *dev; 1719 1720 ASSERT_RTNL(); 1721 might_sleep(); 1722 1723 list_for_each_entry(dev, head, close_list) { 1724 /* Temporarily disable netpoll until the interface is down */ 1725 netpoll_poll_disable(dev); 1726 1727 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1728 1729 clear_bit(__LINK_STATE_START, &dev->state); 1730 1731 /* Synchronize to scheduled poll. We cannot touch poll list, it 1732 * can be even on different cpu. So just clear netif_running(). 1733 * 1734 * dev->stop() will invoke napi_disable() on all of it's 1735 * napi_struct instances on this device. 1736 */ 1737 smp_mb__after_atomic(); /* Commit netif_running(). */ 1738 } 1739 1740 dev_deactivate_many(head); 1741 1742 list_for_each_entry(dev, head, close_list) { 1743 const struct net_device_ops *ops = dev->netdev_ops; 1744 1745 /* 1746 * Call the device specific close. This cannot fail. 1747 * Only if device is UP 1748 * 1749 * We allow it to be called even after a DETACH hot-plug 1750 * event. 1751 */ 1752 1753 netdev_ops_assert_locked(dev); 1754 1755 if (ops->ndo_stop) 1756 ops->ndo_stop(dev); 1757 1758 netif_set_up(dev, false); 1759 netpoll_poll_enable(dev); 1760 } 1761 } 1762 1763 static void __dev_close(struct net_device *dev) 1764 { 1765 LIST_HEAD(single); 1766 1767 list_add(&dev->close_list, &single); 1768 __dev_close_many(&single); 1769 list_del(&single); 1770 } 1771 1772 void netif_close_many(struct list_head *head, bool unlink) 1773 { 1774 struct net_device *dev, *tmp; 1775 1776 /* Remove the devices that don't need to be closed */ 1777 list_for_each_entry_safe(dev, tmp, head, close_list) 1778 if (!(dev->flags & IFF_UP)) 1779 list_del_init(&dev->close_list); 1780 1781 __dev_close_many(head); 1782 1783 list_for_each_entry_safe(dev, tmp, head, close_list) { 1784 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1785 call_netdevice_notifiers(NETDEV_DOWN, dev); 1786 if (unlink) 1787 list_del_init(&dev->close_list); 1788 } 1789 } 1790 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL"); 1791 1792 void netif_close(struct net_device *dev) 1793 { 1794 if (dev->flags & IFF_UP) { 1795 LIST_HEAD(single); 1796 1797 list_add(&dev->close_list, &single); 1798 netif_close_many(&single, true); 1799 list_del(&single); 1800 } 1801 } 1802 EXPORT_SYMBOL(netif_close); 1803 1804 void netif_disable_lro(struct net_device *dev) 1805 { 1806 struct net_device *lower_dev; 1807 struct list_head *iter; 1808 1809 dev->wanted_features &= ~NETIF_F_LRO; 1810 netdev_update_features(dev); 1811 1812 if (unlikely(dev->features & NETIF_F_LRO)) 1813 netdev_WARN(dev, "failed to disable LRO!\n"); 1814 1815 netdev_for_each_lower_dev(dev, lower_dev, iter) { 1816 netdev_lock_ops(lower_dev); 1817 netif_disable_lro(lower_dev); 1818 netdev_unlock_ops(lower_dev); 1819 } 1820 } 1821 EXPORT_IPV6_MOD(netif_disable_lro); 1822 1823 /** 1824 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1825 * @dev: device 1826 * 1827 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1828 * called under RTNL. This is needed if Generic XDP is installed on 1829 * the device. 1830 */ 1831 static void dev_disable_gro_hw(struct net_device *dev) 1832 { 1833 dev->wanted_features &= ~NETIF_F_GRO_HW; 1834 netdev_update_features(dev); 1835 1836 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1837 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1838 } 1839 1840 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1841 { 1842 #define N(val) \ 1843 case NETDEV_##val: \ 1844 return "NETDEV_" __stringify(val); 1845 switch (cmd) { 1846 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1847 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1848 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1849 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1850 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1851 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1852 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1853 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1854 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1855 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1856 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1857 N(XDP_FEAT_CHANGE) 1858 } 1859 #undef N 1860 return "UNKNOWN_NETDEV_EVENT"; 1861 } 1862 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1863 1864 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1865 struct net_device *dev) 1866 { 1867 struct netdev_notifier_info info = { 1868 .dev = dev, 1869 }; 1870 1871 return nb->notifier_call(nb, val, &info); 1872 } 1873 1874 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1875 struct net_device *dev) 1876 { 1877 int err; 1878 1879 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1880 err = notifier_to_errno(err); 1881 if (err) 1882 return err; 1883 1884 if (!(dev->flags & IFF_UP)) 1885 return 0; 1886 1887 call_netdevice_notifier(nb, NETDEV_UP, dev); 1888 return 0; 1889 } 1890 1891 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1892 struct net_device *dev) 1893 { 1894 if (dev->flags & IFF_UP) { 1895 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1896 dev); 1897 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1898 } 1899 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1900 } 1901 1902 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1903 struct net *net) 1904 { 1905 struct net_device *dev; 1906 int err; 1907 1908 for_each_netdev(net, dev) { 1909 netdev_lock_ops(dev); 1910 err = call_netdevice_register_notifiers(nb, dev); 1911 netdev_unlock_ops(dev); 1912 if (err) 1913 goto rollback; 1914 } 1915 return 0; 1916 1917 rollback: 1918 for_each_netdev_continue_reverse(net, dev) 1919 call_netdevice_unregister_notifiers(nb, dev); 1920 return err; 1921 } 1922 1923 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1924 struct net *net) 1925 { 1926 struct net_device *dev; 1927 1928 for_each_netdev(net, dev) 1929 call_netdevice_unregister_notifiers(nb, dev); 1930 } 1931 1932 static int dev_boot_phase = 1; 1933 1934 /** 1935 * register_netdevice_notifier - register a network notifier block 1936 * @nb: notifier 1937 * 1938 * Register a notifier to be called when network device events occur. 1939 * The notifier passed is linked into the kernel structures and must 1940 * not be reused until it has been unregistered. A negative errno code 1941 * is returned on a failure. 1942 * 1943 * When registered all registration and up events are replayed 1944 * to the new notifier to allow device to have a race free 1945 * view of the network device list. 1946 */ 1947 1948 int register_netdevice_notifier(struct notifier_block *nb) 1949 { 1950 struct net *net; 1951 int err; 1952 1953 /* Close race with setup_net() and cleanup_net() */ 1954 down_write(&pernet_ops_rwsem); 1955 1956 /* When RTNL is removed, we need protection for netdev_chain. */ 1957 rtnl_lock(); 1958 1959 err = raw_notifier_chain_register(&netdev_chain, nb); 1960 if (err) 1961 goto unlock; 1962 if (dev_boot_phase) 1963 goto unlock; 1964 for_each_net(net) { 1965 __rtnl_net_lock(net); 1966 err = call_netdevice_register_net_notifiers(nb, net); 1967 __rtnl_net_unlock(net); 1968 if (err) 1969 goto rollback; 1970 } 1971 1972 unlock: 1973 rtnl_unlock(); 1974 up_write(&pernet_ops_rwsem); 1975 return err; 1976 1977 rollback: 1978 for_each_net_continue_reverse(net) { 1979 __rtnl_net_lock(net); 1980 call_netdevice_unregister_net_notifiers(nb, net); 1981 __rtnl_net_unlock(net); 1982 } 1983 1984 raw_notifier_chain_unregister(&netdev_chain, nb); 1985 goto unlock; 1986 } 1987 EXPORT_SYMBOL(register_netdevice_notifier); 1988 1989 /** 1990 * unregister_netdevice_notifier - unregister a network notifier block 1991 * @nb: notifier 1992 * 1993 * Unregister a notifier previously registered by 1994 * register_netdevice_notifier(). The notifier is unlinked into the 1995 * kernel structures and may then be reused. A negative errno code 1996 * is returned on a failure. 1997 * 1998 * After unregistering unregister and down device events are synthesized 1999 * for all devices on the device list to the removed notifier to remove 2000 * the need for special case cleanup code. 2001 */ 2002 2003 int unregister_netdevice_notifier(struct notifier_block *nb) 2004 { 2005 struct net *net; 2006 int err; 2007 2008 /* Close race with setup_net() and cleanup_net() */ 2009 down_write(&pernet_ops_rwsem); 2010 rtnl_lock(); 2011 err = raw_notifier_chain_unregister(&netdev_chain, nb); 2012 if (err) 2013 goto unlock; 2014 2015 for_each_net(net) { 2016 __rtnl_net_lock(net); 2017 call_netdevice_unregister_net_notifiers(nb, net); 2018 __rtnl_net_unlock(net); 2019 } 2020 2021 unlock: 2022 rtnl_unlock(); 2023 up_write(&pernet_ops_rwsem); 2024 return err; 2025 } 2026 EXPORT_SYMBOL(unregister_netdevice_notifier); 2027 2028 static int __register_netdevice_notifier_net(struct net *net, 2029 struct notifier_block *nb, 2030 bool ignore_call_fail) 2031 { 2032 int err; 2033 2034 err = raw_notifier_chain_register(&net->netdev_chain, nb); 2035 if (err) 2036 return err; 2037 if (dev_boot_phase) 2038 return 0; 2039 2040 err = call_netdevice_register_net_notifiers(nb, net); 2041 if (err && !ignore_call_fail) 2042 goto chain_unregister; 2043 2044 return 0; 2045 2046 chain_unregister: 2047 raw_notifier_chain_unregister(&net->netdev_chain, nb); 2048 return err; 2049 } 2050 2051 static int __unregister_netdevice_notifier_net(struct net *net, 2052 struct notifier_block *nb) 2053 { 2054 int err; 2055 2056 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 2057 if (err) 2058 return err; 2059 2060 call_netdevice_unregister_net_notifiers(nb, net); 2061 return 0; 2062 } 2063 2064 /** 2065 * register_netdevice_notifier_net - register a per-netns network notifier block 2066 * @net: network namespace 2067 * @nb: notifier 2068 * 2069 * Register a notifier to be called when network device events occur. 2070 * The notifier passed is linked into the kernel structures and must 2071 * not be reused until it has been unregistered. A negative errno code 2072 * is returned on a failure. 2073 * 2074 * When registered all registration and up events are replayed 2075 * to the new notifier to allow device to have a race free 2076 * view of the network device list. 2077 */ 2078 2079 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2080 { 2081 int err; 2082 2083 rtnl_net_lock(net); 2084 err = __register_netdevice_notifier_net(net, nb, false); 2085 rtnl_net_unlock(net); 2086 2087 return err; 2088 } 2089 EXPORT_SYMBOL(register_netdevice_notifier_net); 2090 2091 /** 2092 * unregister_netdevice_notifier_net - unregister a per-netns 2093 * network notifier block 2094 * @net: network namespace 2095 * @nb: notifier 2096 * 2097 * Unregister a notifier previously registered by 2098 * register_netdevice_notifier_net(). The notifier is unlinked from the 2099 * kernel structures and may then be reused. A negative errno code 2100 * is returned on a failure. 2101 * 2102 * After unregistering unregister and down device events are synthesized 2103 * for all devices on the device list to the removed notifier to remove 2104 * the need for special case cleanup code. 2105 */ 2106 2107 int unregister_netdevice_notifier_net(struct net *net, 2108 struct notifier_block *nb) 2109 { 2110 int err; 2111 2112 rtnl_net_lock(net); 2113 err = __unregister_netdevice_notifier_net(net, nb); 2114 rtnl_net_unlock(net); 2115 2116 return err; 2117 } 2118 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2119 2120 static void __move_netdevice_notifier_net(struct net *src_net, 2121 struct net *dst_net, 2122 struct notifier_block *nb) 2123 { 2124 __unregister_netdevice_notifier_net(src_net, nb); 2125 __register_netdevice_notifier_net(dst_net, nb, true); 2126 } 2127 2128 static void rtnl_net_dev_lock(struct net_device *dev) 2129 { 2130 bool again; 2131 2132 do { 2133 struct net *net; 2134 2135 again = false; 2136 2137 /* netns might be being dismantled. */ 2138 rcu_read_lock(); 2139 net = dev_net_rcu(dev); 2140 net_passive_inc(net); 2141 rcu_read_unlock(); 2142 2143 rtnl_net_lock(net); 2144 2145 #ifdef CONFIG_NET_NS 2146 /* dev might have been moved to another netns. */ 2147 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) { 2148 rtnl_net_unlock(net); 2149 net_passive_dec(net); 2150 again = true; 2151 } 2152 #endif 2153 } while (again); 2154 } 2155 2156 static void rtnl_net_dev_unlock(struct net_device *dev) 2157 { 2158 struct net *net = dev_net(dev); 2159 2160 rtnl_net_unlock(net); 2161 net_passive_dec(net); 2162 } 2163 2164 int register_netdevice_notifier_dev_net(struct net_device *dev, 2165 struct notifier_block *nb, 2166 struct netdev_net_notifier *nn) 2167 { 2168 int err; 2169 2170 rtnl_net_dev_lock(dev); 2171 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2172 if (!err) { 2173 nn->nb = nb; 2174 list_add(&nn->list, &dev->net_notifier_list); 2175 } 2176 rtnl_net_dev_unlock(dev); 2177 2178 return err; 2179 } 2180 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2181 2182 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2183 struct notifier_block *nb, 2184 struct netdev_net_notifier *nn) 2185 { 2186 int err; 2187 2188 rtnl_net_dev_lock(dev); 2189 list_del(&nn->list); 2190 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2191 rtnl_net_dev_unlock(dev); 2192 2193 return err; 2194 } 2195 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2196 2197 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2198 struct net *net) 2199 { 2200 struct netdev_net_notifier *nn; 2201 2202 list_for_each_entry(nn, &dev->net_notifier_list, list) 2203 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 2204 } 2205 2206 /** 2207 * call_netdevice_notifiers_info - call all network notifier blocks 2208 * @val: value passed unmodified to notifier function 2209 * @info: notifier information data 2210 * 2211 * Call all network notifier blocks. Parameters and return value 2212 * are as for raw_notifier_call_chain(). 2213 */ 2214 2215 int call_netdevice_notifiers_info(unsigned long val, 2216 struct netdev_notifier_info *info) 2217 { 2218 struct net *net = dev_net(info->dev); 2219 int ret; 2220 2221 ASSERT_RTNL(); 2222 2223 /* Run per-netns notifier block chain first, then run the global one. 2224 * Hopefully, one day, the global one is going to be removed after 2225 * all notifier block registrators get converted to be per-netns. 2226 */ 2227 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2228 if (ret & NOTIFY_STOP_MASK) 2229 return ret; 2230 return raw_notifier_call_chain(&netdev_chain, val, info); 2231 } 2232 2233 /** 2234 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 2235 * for and rollback on error 2236 * @val_up: value passed unmodified to notifier function 2237 * @val_down: value passed unmodified to the notifier function when 2238 * recovering from an error on @val_up 2239 * @info: notifier information data 2240 * 2241 * Call all per-netns network notifier blocks, but not notifier blocks on 2242 * the global notifier chain. Parameters and return value are as for 2243 * raw_notifier_call_chain_robust(). 2244 */ 2245 2246 static int 2247 call_netdevice_notifiers_info_robust(unsigned long val_up, 2248 unsigned long val_down, 2249 struct netdev_notifier_info *info) 2250 { 2251 struct net *net = dev_net(info->dev); 2252 2253 ASSERT_RTNL(); 2254 2255 return raw_notifier_call_chain_robust(&net->netdev_chain, 2256 val_up, val_down, info); 2257 } 2258 2259 static int call_netdevice_notifiers_extack(unsigned long val, 2260 struct net_device *dev, 2261 struct netlink_ext_ack *extack) 2262 { 2263 struct netdev_notifier_info info = { 2264 .dev = dev, 2265 .extack = extack, 2266 }; 2267 2268 return call_netdevice_notifiers_info(val, &info); 2269 } 2270 2271 /** 2272 * call_netdevice_notifiers - call all network notifier blocks 2273 * @val: value passed unmodified to notifier function 2274 * @dev: net_device pointer passed unmodified to notifier function 2275 * 2276 * Call all network notifier blocks. Parameters and return value 2277 * are as for raw_notifier_call_chain(). 2278 */ 2279 2280 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2281 { 2282 return call_netdevice_notifiers_extack(val, dev, NULL); 2283 } 2284 EXPORT_SYMBOL(call_netdevice_notifiers); 2285 2286 /** 2287 * call_netdevice_notifiers_mtu - call all network notifier blocks 2288 * @val: value passed unmodified to notifier function 2289 * @dev: net_device pointer passed unmodified to notifier function 2290 * @arg: additional u32 argument passed to the notifier function 2291 * 2292 * Call all network notifier blocks. Parameters and return value 2293 * are as for raw_notifier_call_chain(). 2294 */ 2295 static int call_netdevice_notifiers_mtu(unsigned long val, 2296 struct net_device *dev, u32 arg) 2297 { 2298 struct netdev_notifier_info_ext info = { 2299 .info.dev = dev, 2300 .ext.mtu = arg, 2301 }; 2302 2303 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2304 2305 return call_netdevice_notifiers_info(val, &info.info); 2306 } 2307 2308 #ifdef CONFIG_NET_INGRESS 2309 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2310 2311 void net_inc_ingress_queue(void) 2312 { 2313 static_branch_inc(&ingress_needed_key); 2314 } 2315 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2316 2317 void net_dec_ingress_queue(void) 2318 { 2319 static_branch_dec(&ingress_needed_key); 2320 } 2321 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2322 #endif 2323 2324 #ifdef CONFIG_NET_EGRESS 2325 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2326 2327 void net_inc_egress_queue(void) 2328 { 2329 static_branch_inc(&egress_needed_key); 2330 } 2331 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2332 2333 void net_dec_egress_queue(void) 2334 { 2335 static_branch_dec(&egress_needed_key); 2336 } 2337 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2338 #endif 2339 2340 #ifdef CONFIG_NET_CLS_ACT 2341 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key); 2342 EXPORT_SYMBOL(tcf_sw_enabled_key); 2343 #endif 2344 2345 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2346 EXPORT_SYMBOL(netstamp_needed_key); 2347 #ifdef CONFIG_JUMP_LABEL 2348 static atomic_t netstamp_needed_deferred; 2349 static atomic_t netstamp_wanted; 2350 static void netstamp_clear(struct work_struct *work) 2351 { 2352 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2353 int wanted; 2354 2355 wanted = atomic_add_return(deferred, &netstamp_wanted); 2356 if (wanted > 0) 2357 static_branch_enable(&netstamp_needed_key); 2358 else 2359 static_branch_disable(&netstamp_needed_key); 2360 } 2361 static DECLARE_WORK(netstamp_work, netstamp_clear); 2362 #endif 2363 2364 void net_enable_timestamp(void) 2365 { 2366 #ifdef CONFIG_JUMP_LABEL 2367 int wanted = atomic_read(&netstamp_wanted); 2368 2369 while (wanted > 0) { 2370 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2371 return; 2372 } 2373 atomic_inc(&netstamp_needed_deferred); 2374 schedule_work(&netstamp_work); 2375 #else 2376 static_branch_inc(&netstamp_needed_key); 2377 #endif 2378 } 2379 EXPORT_SYMBOL(net_enable_timestamp); 2380 2381 void net_disable_timestamp(void) 2382 { 2383 #ifdef CONFIG_JUMP_LABEL 2384 int wanted = atomic_read(&netstamp_wanted); 2385 2386 while (wanted > 1) { 2387 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2388 return; 2389 } 2390 atomic_dec(&netstamp_needed_deferred); 2391 schedule_work(&netstamp_work); 2392 #else 2393 static_branch_dec(&netstamp_needed_key); 2394 #endif 2395 } 2396 EXPORT_SYMBOL(net_disable_timestamp); 2397 2398 static inline void net_timestamp_set(struct sk_buff *skb) 2399 { 2400 skb->tstamp = 0; 2401 skb->tstamp_type = SKB_CLOCK_REALTIME; 2402 if (static_branch_unlikely(&netstamp_needed_key)) 2403 skb->tstamp = ktime_get_real(); 2404 } 2405 2406 #define net_timestamp_check(COND, SKB) \ 2407 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2408 if ((COND) && !(SKB)->tstamp) \ 2409 (SKB)->tstamp = ktime_get_real(); \ 2410 } \ 2411 2412 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2413 { 2414 return __is_skb_forwardable(dev, skb, true); 2415 } 2416 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2417 2418 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2419 bool check_mtu) 2420 { 2421 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2422 2423 if (likely(!ret)) { 2424 skb->protocol = eth_type_trans(skb, dev); 2425 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2426 } 2427 2428 return ret; 2429 } 2430 2431 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2432 { 2433 return __dev_forward_skb2(dev, skb, true); 2434 } 2435 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2436 2437 /** 2438 * dev_forward_skb - loopback an skb to another netif 2439 * 2440 * @dev: destination network device 2441 * @skb: buffer to forward 2442 * 2443 * return values: 2444 * NET_RX_SUCCESS (no congestion) 2445 * NET_RX_DROP (packet was dropped, but freed) 2446 * 2447 * dev_forward_skb can be used for injecting an skb from the 2448 * start_xmit function of one device into the receive queue 2449 * of another device. 2450 * 2451 * The receiving device may be in another namespace, so 2452 * we have to clear all information in the skb that could 2453 * impact namespace isolation. 2454 */ 2455 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2456 { 2457 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2458 } 2459 EXPORT_SYMBOL_GPL(dev_forward_skb); 2460 2461 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2462 { 2463 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2464 } 2465 2466 static int deliver_skb(struct sk_buff *skb, 2467 struct packet_type *pt_prev, 2468 struct net_device *orig_dev) 2469 { 2470 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2471 return -ENOMEM; 2472 refcount_inc(&skb->users); 2473 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2474 } 2475 2476 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2477 struct packet_type **pt, 2478 struct net_device *orig_dev, 2479 __be16 type, 2480 struct list_head *ptype_list) 2481 { 2482 struct packet_type *ptype, *pt_prev = *pt; 2483 2484 list_for_each_entry_rcu(ptype, ptype_list, list) { 2485 if (ptype->type != type) 2486 continue; 2487 if (unlikely(pt_prev)) 2488 deliver_skb(skb, pt_prev, orig_dev); 2489 pt_prev = ptype; 2490 } 2491 *pt = pt_prev; 2492 } 2493 2494 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2495 { 2496 if (!ptype->af_packet_priv || !skb->sk) 2497 return false; 2498 2499 if (ptype->id_match) 2500 return ptype->id_match(ptype, skb->sk); 2501 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2502 return true; 2503 2504 return false; 2505 } 2506 2507 /** 2508 * dev_nit_active_rcu - return true if any network interface taps are in use 2509 * 2510 * The caller must hold the RCU lock 2511 * 2512 * @dev: network device to check for the presence of taps 2513 */ 2514 bool dev_nit_active_rcu(const struct net_device *dev) 2515 { 2516 /* Callers may hold either RCU or RCU BH lock */ 2517 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 2518 2519 return !list_empty(&dev_net(dev)->ptype_all) || 2520 !list_empty(&dev->ptype_all); 2521 } 2522 EXPORT_SYMBOL_GPL(dev_nit_active_rcu); 2523 2524 /* 2525 * Support routine. Sends outgoing frames to any network 2526 * taps currently in use. 2527 */ 2528 2529 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2530 { 2531 struct packet_type *ptype, *pt_prev = NULL; 2532 struct list_head *ptype_list; 2533 struct sk_buff *skb2 = NULL; 2534 2535 rcu_read_lock(); 2536 ptype_list = &dev_net_rcu(dev)->ptype_all; 2537 again: 2538 list_for_each_entry_rcu(ptype, ptype_list, list) { 2539 if (READ_ONCE(ptype->ignore_outgoing)) 2540 continue; 2541 2542 /* Never send packets back to the socket 2543 * they originated from - MvS (miquels@drinkel.ow.org) 2544 */ 2545 if (skb_loop_sk(ptype, skb)) 2546 continue; 2547 2548 if (unlikely(pt_prev)) { 2549 deliver_skb(skb2, pt_prev, skb->dev); 2550 pt_prev = ptype; 2551 continue; 2552 } 2553 2554 /* need to clone skb, done only once */ 2555 skb2 = skb_clone(skb, GFP_ATOMIC); 2556 if (!skb2) 2557 goto out_unlock; 2558 2559 net_timestamp_set(skb2); 2560 2561 /* skb->nh should be correctly 2562 * set by sender, so that the second statement is 2563 * just protection against buggy protocols. 2564 */ 2565 skb_reset_mac_header(skb2); 2566 2567 if (skb_network_header(skb2) < skb2->data || 2568 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2569 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2570 ntohs(skb2->protocol), 2571 dev->name); 2572 skb_reset_network_header(skb2); 2573 } 2574 2575 skb2->transport_header = skb2->network_header; 2576 skb2->pkt_type = PACKET_OUTGOING; 2577 pt_prev = ptype; 2578 } 2579 2580 if (ptype_list != &dev->ptype_all) { 2581 ptype_list = &dev->ptype_all; 2582 goto again; 2583 } 2584 out_unlock: 2585 if (pt_prev) { 2586 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2587 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2588 else 2589 kfree_skb(skb2); 2590 } 2591 rcu_read_unlock(); 2592 } 2593 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2594 2595 /** 2596 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2597 * @dev: Network device 2598 * @txq: number of queues available 2599 * 2600 * If real_num_tx_queues is changed the tc mappings may no longer be 2601 * valid. To resolve this verify the tc mapping remains valid and if 2602 * not NULL the mapping. With no priorities mapping to this 2603 * offset/count pair it will no longer be used. In the worst case TC0 2604 * is invalid nothing can be done so disable priority mappings. If is 2605 * expected that drivers will fix this mapping if they can before 2606 * calling netif_set_real_num_tx_queues. 2607 */ 2608 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2609 { 2610 int i; 2611 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2612 2613 /* If TC0 is invalidated disable TC mapping */ 2614 if (tc->offset + tc->count > txq) { 2615 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2616 dev->num_tc = 0; 2617 return; 2618 } 2619 2620 /* Invalidated prio to tc mappings set to TC0 */ 2621 for (i = 1; i < TC_BITMASK + 1; i++) { 2622 int q = netdev_get_prio_tc_map(dev, i); 2623 2624 tc = &dev->tc_to_txq[q]; 2625 if (tc->offset + tc->count > txq) { 2626 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2627 i, q); 2628 netdev_set_prio_tc_map(dev, i, 0); 2629 } 2630 } 2631 } 2632 2633 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2634 { 2635 if (dev->num_tc) { 2636 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2637 int i; 2638 2639 /* walk through the TCs and see if it falls into any of them */ 2640 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2641 if ((txq - tc->offset) < tc->count) 2642 return i; 2643 } 2644 2645 /* didn't find it, just return -1 to indicate no match */ 2646 return -1; 2647 } 2648 2649 return 0; 2650 } 2651 EXPORT_SYMBOL(netdev_txq_to_tc); 2652 2653 #ifdef CONFIG_XPS 2654 static struct static_key xps_needed __read_mostly; 2655 static struct static_key xps_rxqs_needed __read_mostly; 2656 static DEFINE_MUTEX(xps_map_mutex); 2657 #define xmap_dereference(P) \ 2658 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2659 2660 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2661 struct xps_dev_maps *old_maps, int tci, u16 index) 2662 { 2663 struct xps_map *map = NULL; 2664 int pos; 2665 2666 map = xmap_dereference(dev_maps->attr_map[tci]); 2667 if (!map) 2668 return false; 2669 2670 for (pos = map->len; pos--;) { 2671 if (map->queues[pos] != index) 2672 continue; 2673 2674 if (map->len > 1) { 2675 map->queues[pos] = map->queues[--map->len]; 2676 break; 2677 } 2678 2679 if (old_maps) 2680 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2681 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2682 kfree_rcu(map, rcu); 2683 return false; 2684 } 2685 2686 return true; 2687 } 2688 2689 static bool remove_xps_queue_cpu(struct net_device *dev, 2690 struct xps_dev_maps *dev_maps, 2691 int cpu, u16 offset, u16 count) 2692 { 2693 int num_tc = dev_maps->num_tc; 2694 bool active = false; 2695 int tci; 2696 2697 for (tci = cpu * num_tc; num_tc--; tci++) { 2698 int i, j; 2699 2700 for (i = count, j = offset; i--; j++) { 2701 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2702 break; 2703 } 2704 2705 active |= i < 0; 2706 } 2707 2708 return active; 2709 } 2710 2711 static void reset_xps_maps(struct net_device *dev, 2712 struct xps_dev_maps *dev_maps, 2713 enum xps_map_type type) 2714 { 2715 static_key_slow_dec_cpuslocked(&xps_needed); 2716 if (type == XPS_RXQS) 2717 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2718 2719 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2720 2721 kfree_rcu(dev_maps, rcu); 2722 } 2723 2724 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2725 u16 offset, u16 count) 2726 { 2727 struct xps_dev_maps *dev_maps; 2728 bool active = false; 2729 int i, j; 2730 2731 dev_maps = xmap_dereference(dev->xps_maps[type]); 2732 if (!dev_maps) 2733 return; 2734 2735 for (j = 0; j < dev_maps->nr_ids; j++) 2736 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2737 if (!active) 2738 reset_xps_maps(dev, dev_maps, type); 2739 2740 if (type == XPS_CPUS) { 2741 for (i = offset + (count - 1); count--; i--) 2742 netdev_queue_numa_node_write( 2743 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2744 } 2745 } 2746 2747 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2748 u16 count) 2749 { 2750 if (!static_key_false(&xps_needed)) 2751 return; 2752 2753 cpus_read_lock(); 2754 mutex_lock(&xps_map_mutex); 2755 2756 if (static_key_false(&xps_rxqs_needed)) 2757 clean_xps_maps(dev, XPS_RXQS, offset, count); 2758 2759 clean_xps_maps(dev, XPS_CPUS, offset, count); 2760 2761 mutex_unlock(&xps_map_mutex); 2762 cpus_read_unlock(); 2763 } 2764 2765 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2766 { 2767 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2768 } 2769 2770 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2771 u16 index, bool is_rxqs_map) 2772 { 2773 struct xps_map *new_map; 2774 int alloc_len = XPS_MIN_MAP_ALLOC; 2775 int i, pos; 2776 2777 for (pos = 0; map && pos < map->len; pos++) { 2778 if (map->queues[pos] != index) 2779 continue; 2780 return map; 2781 } 2782 2783 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2784 if (map) { 2785 if (pos < map->alloc_len) 2786 return map; 2787 2788 alloc_len = map->alloc_len * 2; 2789 } 2790 2791 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2792 * map 2793 */ 2794 if (is_rxqs_map) 2795 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2796 else 2797 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2798 cpu_to_node(attr_index)); 2799 if (!new_map) 2800 return NULL; 2801 2802 for (i = 0; i < pos; i++) 2803 new_map->queues[i] = map->queues[i]; 2804 new_map->alloc_len = alloc_len; 2805 new_map->len = pos; 2806 2807 return new_map; 2808 } 2809 2810 /* Copy xps maps at a given index */ 2811 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2812 struct xps_dev_maps *new_dev_maps, int index, 2813 int tc, bool skip_tc) 2814 { 2815 int i, tci = index * dev_maps->num_tc; 2816 struct xps_map *map; 2817 2818 /* copy maps belonging to foreign traffic classes */ 2819 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2820 if (i == tc && skip_tc) 2821 continue; 2822 2823 /* fill in the new device map from the old device map */ 2824 map = xmap_dereference(dev_maps->attr_map[tci]); 2825 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2826 } 2827 } 2828 2829 /* Must be called under cpus_read_lock */ 2830 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2831 u16 index, enum xps_map_type type) 2832 { 2833 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2834 const unsigned long *online_mask = NULL; 2835 bool active = false, copy = false; 2836 int i, j, tci, numa_node_id = -2; 2837 int maps_sz, num_tc = 1, tc = 0; 2838 struct xps_map *map, *new_map; 2839 unsigned int nr_ids; 2840 2841 WARN_ON_ONCE(index >= dev->num_tx_queues); 2842 2843 if (dev->num_tc) { 2844 /* Do not allow XPS on subordinate device directly */ 2845 num_tc = dev->num_tc; 2846 if (num_tc < 0) 2847 return -EINVAL; 2848 2849 /* If queue belongs to subordinate dev use its map */ 2850 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2851 2852 tc = netdev_txq_to_tc(dev, index); 2853 if (tc < 0) 2854 return -EINVAL; 2855 } 2856 2857 mutex_lock(&xps_map_mutex); 2858 2859 dev_maps = xmap_dereference(dev->xps_maps[type]); 2860 if (type == XPS_RXQS) { 2861 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2862 nr_ids = dev->num_rx_queues; 2863 } else { 2864 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2865 if (num_possible_cpus() > 1) 2866 online_mask = cpumask_bits(cpu_online_mask); 2867 nr_ids = nr_cpu_ids; 2868 } 2869 2870 if (maps_sz < L1_CACHE_BYTES) 2871 maps_sz = L1_CACHE_BYTES; 2872 2873 /* The old dev_maps could be larger or smaller than the one we're 2874 * setting up now, as dev->num_tc or nr_ids could have been updated in 2875 * between. We could try to be smart, but let's be safe instead and only 2876 * copy foreign traffic classes if the two map sizes match. 2877 */ 2878 if (dev_maps && 2879 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2880 copy = true; 2881 2882 /* allocate memory for queue storage */ 2883 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2884 j < nr_ids;) { 2885 if (!new_dev_maps) { 2886 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2887 if (!new_dev_maps) { 2888 mutex_unlock(&xps_map_mutex); 2889 return -ENOMEM; 2890 } 2891 2892 new_dev_maps->nr_ids = nr_ids; 2893 new_dev_maps->num_tc = num_tc; 2894 } 2895 2896 tci = j * num_tc + tc; 2897 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2898 2899 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2900 if (!map) 2901 goto error; 2902 2903 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2904 } 2905 2906 if (!new_dev_maps) 2907 goto out_no_new_maps; 2908 2909 if (!dev_maps) { 2910 /* Increment static keys at most once per type */ 2911 static_key_slow_inc_cpuslocked(&xps_needed); 2912 if (type == XPS_RXQS) 2913 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2914 } 2915 2916 for (j = 0; j < nr_ids; j++) { 2917 bool skip_tc = false; 2918 2919 tci = j * num_tc + tc; 2920 if (netif_attr_test_mask(j, mask, nr_ids) && 2921 netif_attr_test_online(j, online_mask, nr_ids)) { 2922 /* add tx-queue to CPU/rx-queue maps */ 2923 int pos = 0; 2924 2925 skip_tc = true; 2926 2927 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2928 while ((pos < map->len) && (map->queues[pos] != index)) 2929 pos++; 2930 2931 if (pos == map->len) 2932 map->queues[map->len++] = index; 2933 #ifdef CONFIG_NUMA 2934 if (type == XPS_CPUS) { 2935 if (numa_node_id == -2) 2936 numa_node_id = cpu_to_node(j); 2937 else if (numa_node_id != cpu_to_node(j)) 2938 numa_node_id = -1; 2939 } 2940 #endif 2941 } 2942 2943 if (copy) 2944 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2945 skip_tc); 2946 } 2947 2948 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2949 2950 /* Cleanup old maps */ 2951 if (!dev_maps) 2952 goto out_no_old_maps; 2953 2954 for (j = 0; j < dev_maps->nr_ids; j++) { 2955 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2956 map = xmap_dereference(dev_maps->attr_map[tci]); 2957 if (!map) 2958 continue; 2959 2960 if (copy) { 2961 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2962 if (map == new_map) 2963 continue; 2964 } 2965 2966 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2967 kfree_rcu(map, rcu); 2968 } 2969 } 2970 2971 old_dev_maps = dev_maps; 2972 2973 out_no_old_maps: 2974 dev_maps = new_dev_maps; 2975 active = true; 2976 2977 out_no_new_maps: 2978 if (type == XPS_CPUS) 2979 /* update Tx queue numa node */ 2980 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2981 (numa_node_id >= 0) ? 2982 numa_node_id : NUMA_NO_NODE); 2983 2984 if (!dev_maps) 2985 goto out_no_maps; 2986 2987 /* removes tx-queue from unused CPUs/rx-queues */ 2988 for (j = 0; j < dev_maps->nr_ids; j++) { 2989 tci = j * dev_maps->num_tc; 2990 2991 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2992 if (i == tc && 2993 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2994 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2995 continue; 2996 2997 active |= remove_xps_queue(dev_maps, 2998 copy ? old_dev_maps : NULL, 2999 tci, index); 3000 } 3001 } 3002 3003 if (old_dev_maps) 3004 kfree_rcu(old_dev_maps, rcu); 3005 3006 /* free map if not active */ 3007 if (!active) 3008 reset_xps_maps(dev, dev_maps, type); 3009 3010 out_no_maps: 3011 mutex_unlock(&xps_map_mutex); 3012 3013 return 0; 3014 error: 3015 /* remove any maps that we added */ 3016 for (j = 0; j < nr_ids; j++) { 3017 for (i = num_tc, tci = j * num_tc; i--; tci++) { 3018 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 3019 map = copy ? 3020 xmap_dereference(dev_maps->attr_map[tci]) : 3021 NULL; 3022 if (new_map && new_map != map) 3023 kfree(new_map); 3024 } 3025 } 3026 3027 mutex_unlock(&xps_map_mutex); 3028 3029 kfree(new_dev_maps); 3030 return -ENOMEM; 3031 } 3032 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 3033 3034 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 3035 u16 index) 3036 { 3037 int ret; 3038 3039 cpus_read_lock(); 3040 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 3041 cpus_read_unlock(); 3042 3043 return ret; 3044 } 3045 EXPORT_SYMBOL(netif_set_xps_queue); 3046 3047 #endif 3048 static void netdev_unbind_all_sb_channels(struct net_device *dev) 3049 { 3050 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3051 3052 /* Unbind any subordinate channels */ 3053 while (txq-- != &dev->_tx[0]) { 3054 if (txq->sb_dev) 3055 netdev_unbind_sb_channel(dev, txq->sb_dev); 3056 } 3057 } 3058 3059 void netdev_reset_tc(struct net_device *dev) 3060 { 3061 #ifdef CONFIG_XPS 3062 netif_reset_xps_queues_gt(dev, 0); 3063 #endif 3064 netdev_unbind_all_sb_channels(dev); 3065 3066 /* Reset TC configuration of device */ 3067 dev->num_tc = 0; 3068 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 3069 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 3070 } 3071 EXPORT_SYMBOL(netdev_reset_tc); 3072 3073 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 3074 { 3075 if (tc >= dev->num_tc) 3076 return -EINVAL; 3077 3078 #ifdef CONFIG_XPS 3079 netif_reset_xps_queues(dev, offset, count); 3080 #endif 3081 dev->tc_to_txq[tc].count = count; 3082 dev->tc_to_txq[tc].offset = offset; 3083 return 0; 3084 } 3085 EXPORT_SYMBOL(netdev_set_tc_queue); 3086 3087 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 3088 { 3089 if (num_tc > TC_MAX_QUEUE) 3090 return -EINVAL; 3091 3092 #ifdef CONFIG_XPS 3093 netif_reset_xps_queues_gt(dev, 0); 3094 #endif 3095 netdev_unbind_all_sb_channels(dev); 3096 3097 dev->num_tc = num_tc; 3098 return 0; 3099 } 3100 EXPORT_SYMBOL(netdev_set_num_tc); 3101 3102 void netdev_unbind_sb_channel(struct net_device *dev, 3103 struct net_device *sb_dev) 3104 { 3105 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 3106 3107 #ifdef CONFIG_XPS 3108 netif_reset_xps_queues_gt(sb_dev, 0); 3109 #endif 3110 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 3111 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 3112 3113 while (txq-- != &dev->_tx[0]) { 3114 if (txq->sb_dev == sb_dev) 3115 txq->sb_dev = NULL; 3116 } 3117 } 3118 EXPORT_SYMBOL(netdev_unbind_sb_channel); 3119 3120 int netdev_bind_sb_channel_queue(struct net_device *dev, 3121 struct net_device *sb_dev, 3122 u8 tc, u16 count, u16 offset) 3123 { 3124 /* Make certain the sb_dev and dev are already configured */ 3125 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 3126 return -EINVAL; 3127 3128 /* We cannot hand out queues we don't have */ 3129 if ((offset + count) > dev->real_num_tx_queues) 3130 return -EINVAL; 3131 3132 /* Record the mapping */ 3133 sb_dev->tc_to_txq[tc].count = count; 3134 sb_dev->tc_to_txq[tc].offset = offset; 3135 3136 /* Provide a way for Tx queue to find the tc_to_txq map or 3137 * XPS map for itself. 3138 */ 3139 while (count--) 3140 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 3141 3142 return 0; 3143 } 3144 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3145 3146 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3147 { 3148 /* Do not use a multiqueue device to represent a subordinate channel */ 3149 if (netif_is_multiqueue(dev)) 3150 return -ENODEV; 3151 3152 /* We allow channels 1 - 32767 to be used for subordinate channels. 3153 * Channel 0 is meant to be "native" mode and used only to represent 3154 * the main root device. We allow writing 0 to reset the device back 3155 * to normal mode after being used as a subordinate channel. 3156 */ 3157 if (channel > S16_MAX) 3158 return -EINVAL; 3159 3160 dev->num_tc = -channel; 3161 3162 return 0; 3163 } 3164 EXPORT_SYMBOL(netdev_set_sb_channel); 3165 3166 /* 3167 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3168 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3169 */ 3170 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3171 { 3172 bool disabling; 3173 int rc; 3174 3175 disabling = txq < dev->real_num_tx_queues; 3176 3177 if (txq < 1 || txq > dev->num_tx_queues) 3178 return -EINVAL; 3179 3180 if (dev->reg_state == NETREG_REGISTERED || 3181 dev->reg_state == NETREG_UNREGISTERING) { 3182 netdev_ops_assert_locked(dev); 3183 3184 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3185 txq); 3186 if (rc) 3187 return rc; 3188 3189 if (dev->num_tc) 3190 netif_setup_tc(dev, txq); 3191 3192 net_shaper_set_real_num_tx_queues(dev, txq); 3193 3194 dev_qdisc_change_real_num_tx(dev, txq); 3195 3196 dev->real_num_tx_queues = txq; 3197 3198 if (disabling) { 3199 synchronize_net(); 3200 qdisc_reset_all_tx_gt(dev, txq); 3201 #ifdef CONFIG_XPS 3202 netif_reset_xps_queues_gt(dev, txq); 3203 #endif 3204 } 3205 } else { 3206 dev->real_num_tx_queues = txq; 3207 } 3208 3209 return 0; 3210 } 3211 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3212 3213 /** 3214 * netif_set_real_num_rx_queues - set actual number of RX queues used 3215 * @dev: Network device 3216 * @rxq: Actual number of RX queues 3217 * 3218 * This must be called either with the rtnl_lock held or before 3219 * registration of the net device. Returns 0 on success, or a 3220 * negative error code. If called before registration, it always 3221 * succeeds. 3222 */ 3223 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3224 { 3225 int rc; 3226 3227 if (rxq < 1 || rxq > dev->num_rx_queues) 3228 return -EINVAL; 3229 3230 if (dev->reg_state == NETREG_REGISTERED) { 3231 netdev_ops_assert_locked(dev); 3232 3233 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3234 rxq); 3235 if (rc) 3236 return rc; 3237 } 3238 3239 dev->real_num_rx_queues = rxq; 3240 return 0; 3241 } 3242 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3243 3244 /** 3245 * netif_set_real_num_queues - set actual number of RX and TX queues used 3246 * @dev: Network device 3247 * @txq: Actual number of TX queues 3248 * @rxq: Actual number of RX queues 3249 * 3250 * Set the real number of both TX and RX queues. 3251 * Does nothing if the number of queues is already correct. 3252 */ 3253 int netif_set_real_num_queues(struct net_device *dev, 3254 unsigned int txq, unsigned int rxq) 3255 { 3256 unsigned int old_rxq = dev->real_num_rx_queues; 3257 int err; 3258 3259 if (txq < 1 || txq > dev->num_tx_queues || 3260 rxq < 1 || rxq > dev->num_rx_queues) 3261 return -EINVAL; 3262 3263 /* Start from increases, so the error path only does decreases - 3264 * decreases can't fail. 3265 */ 3266 if (rxq > dev->real_num_rx_queues) { 3267 err = netif_set_real_num_rx_queues(dev, rxq); 3268 if (err) 3269 return err; 3270 } 3271 if (txq > dev->real_num_tx_queues) { 3272 err = netif_set_real_num_tx_queues(dev, txq); 3273 if (err) 3274 goto undo_rx; 3275 } 3276 if (rxq < dev->real_num_rx_queues) 3277 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3278 if (txq < dev->real_num_tx_queues) 3279 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3280 3281 return 0; 3282 undo_rx: 3283 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3284 return err; 3285 } 3286 EXPORT_SYMBOL(netif_set_real_num_queues); 3287 3288 /** 3289 * netif_set_tso_max_size() - set the max size of TSO frames supported 3290 * @dev: netdev to update 3291 * @size: max skb->len of a TSO frame 3292 * 3293 * Set the limit on the size of TSO super-frames the device can handle. 3294 * Unless explicitly set the stack will assume the value of 3295 * %GSO_LEGACY_MAX_SIZE. 3296 */ 3297 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3298 { 3299 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3300 if (size < READ_ONCE(dev->gso_max_size)) 3301 netif_set_gso_max_size(dev, size); 3302 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3303 netif_set_gso_ipv4_max_size(dev, size); 3304 } 3305 EXPORT_SYMBOL(netif_set_tso_max_size); 3306 3307 /** 3308 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3309 * @dev: netdev to update 3310 * @segs: max number of TCP segments 3311 * 3312 * Set the limit on the number of TCP segments the device can generate from 3313 * a single TSO super-frame. 3314 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3315 */ 3316 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3317 { 3318 dev->tso_max_segs = segs; 3319 if (segs < READ_ONCE(dev->gso_max_segs)) 3320 netif_set_gso_max_segs(dev, segs); 3321 } 3322 EXPORT_SYMBOL(netif_set_tso_max_segs); 3323 3324 /** 3325 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3326 * @to: netdev to update 3327 * @from: netdev from which to copy the limits 3328 */ 3329 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3330 { 3331 netif_set_tso_max_size(to, from->tso_max_size); 3332 netif_set_tso_max_segs(to, from->tso_max_segs); 3333 } 3334 EXPORT_SYMBOL(netif_inherit_tso_max); 3335 3336 /** 3337 * netif_get_num_default_rss_queues - default number of RSS queues 3338 * 3339 * Default value is the number of physical cores if there are only 1 or 2, or 3340 * divided by 2 if there are more. 3341 */ 3342 int netif_get_num_default_rss_queues(void) 3343 { 3344 cpumask_var_t cpus; 3345 int cpu, count = 0; 3346 3347 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3348 return 1; 3349 3350 cpumask_copy(cpus, cpu_online_mask); 3351 for_each_cpu(cpu, cpus) { 3352 ++count; 3353 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3354 } 3355 free_cpumask_var(cpus); 3356 3357 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3358 } 3359 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3360 3361 static void __netif_reschedule(struct Qdisc *q) 3362 { 3363 struct softnet_data *sd; 3364 unsigned long flags; 3365 3366 local_irq_save(flags); 3367 sd = this_cpu_ptr(&softnet_data); 3368 q->next_sched = NULL; 3369 *sd->output_queue_tailp = q; 3370 sd->output_queue_tailp = &q->next_sched; 3371 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3372 local_irq_restore(flags); 3373 } 3374 3375 void __netif_schedule(struct Qdisc *q) 3376 { 3377 /* If q->defer_list is not empty, at least one thread is 3378 * in __dev_xmit_skb() before llist_del_all(&q->defer_list). 3379 * This thread will attempt to run the queue. 3380 */ 3381 if (!llist_empty(&q->defer_list)) 3382 return; 3383 3384 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3385 __netif_reschedule(q); 3386 } 3387 EXPORT_SYMBOL(__netif_schedule); 3388 3389 struct dev_kfree_skb_cb { 3390 enum skb_drop_reason reason; 3391 }; 3392 3393 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3394 { 3395 return (struct dev_kfree_skb_cb *)skb->cb; 3396 } 3397 3398 void netif_schedule_queue(struct netdev_queue *txq) 3399 { 3400 rcu_read_lock(); 3401 if (!netif_xmit_stopped(txq)) { 3402 struct Qdisc *q = rcu_dereference(txq->qdisc); 3403 3404 __netif_schedule(q); 3405 } 3406 rcu_read_unlock(); 3407 } 3408 EXPORT_SYMBOL(netif_schedule_queue); 3409 3410 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3411 { 3412 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3413 struct Qdisc *q; 3414 3415 rcu_read_lock(); 3416 q = rcu_dereference(dev_queue->qdisc); 3417 __netif_schedule(q); 3418 rcu_read_unlock(); 3419 } 3420 } 3421 EXPORT_SYMBOL(netif_tx_wake_queue); 3422 3423 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3424 { 3425 unsigned long flags; 3426 3427 if (unlikely(!skb)) 3428 return; 3429 3430 if (likely(refcount_read(&skb->users) == 1)) { 3431 smp_rmb(); 3432 refcount_set(&skb->users, 0); 3433 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3434 return; 3435 } 3436 get_kfree_skb_cb(skb)->reason = reason; 3437 local_irq_save(flags); 3438 skb->next = __this_cpu_read(softnet_data.completion_queue); 3439 __this_cpu_write(softnet_data.completion_queue, skb); 3440 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3441 local_irq_restore(flags); 3442 } 3443 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3444 3445 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3446 { 3447 if (in_hardirq() || irqs_disabled()) 3448 dev_kfree_skb_irq_reason(skb, reason); 3449 else 3450 kfree_skb_reason(skb, reason); 3451 } 3452 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3453 3454 3455 /** 3456 * netif_device_detach - mark device as removed 3457 * @dev: network device 3458 * 3459 * Mark device as removed from system and therefore no longer available. 3460 */ 3461 void netif_device_detach(struct net_device *dev) 3462 { 3463 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3464 netif_running(dev)) { 3465 netif_tx_stop_all_queues(dev); 3466 } 3467 } 3468 EXPORT_SYMBOL(netif_device_detach); 3469 3470 /** 3471 * netif_device_attach - mark device as attached 3472 * @dev: network device 3473 * 3474 * Mark device as attached from system and restart if needed. 3475 */ 3476 void netif_device_attach(struct net_device *dev) 3477 { 3478 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3479 netif_running(dev)) { 3480 netif_tx_wake_all_queues(dev); 3481 netdev_watchdog_up(dev); 3482 } 3483 } 3484 EXPORT_SYMBOL(netif_device_attach); 3485 3486 /* 3487 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3488 * to be used as a distribution range. 3489 */ 3490 static u16 skb_tx_hash(const struct net_device *dev, 3491 const struct net_device *sb_dev, 3492 struct sk_buff *skb) 3493 { 3494 u32 hash; 3495 u16 qoffset = 0; 3496 u16 qcount = dev->real_num_tx_queues; 3497 3498 if (dev->num_tc) { 3499 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3500 3501 qoffset = sb_dev->tc_to_txq[tc].offset; 3502 qcount = sb_dev->tc_to_txq[tc].count; 3503 if (unlikely(!qcount)) { 3504 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3505 sb_dev->name, qoffset, tc); 3506 qoffset = 0; 3507 qcount = dev->real_num_tx_queues; 3508 } 3509 } 3510 3511 if (skb_rx_queue_recorded(skb)) { 3512 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3513 hash = skb_get_rx_queue(skb); 3514 if (hash >= qoffset) 3515 hash -= qoffset; 3516 while (unlikely(hash >= qcount)) 3517 hash -= qcount; 3518 return hash + qoffset; 3519 } 3520 3521 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3522 } 3523 3524 void skb_warn_bad_offload(const struct sk_buff *skb) 3525 { 3526 static const netdev_features_t null_features; 3527 struct net_device *dev = skb->dev; 3528 const char *name = ""; 3529 3530 if (!net_ratelimit()) 3531 return; 3532 3533 if (dev) { 3534 if (dev->dev.parent) 3535 name = dev_driver_string(dev->dev.parent); 3536 else 3537 name = netdev_name(dev); 3538 } 3539 skb_dump(KERN_WARNING, skb, false); 3540 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3541 name, dev ? &dev->features : &null_features, 3542 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3543 } 3544 3545 /* 3546 * Invalidate hardware checksum when packet is to be mangled, and 3547 * complete checksum manually on outgoing path. 3548 */ 3549 int skb_checksum_help(struct sk_buff *skb) 3550 { 3551 __wsum csum; 3552 int ret = 0, offset; 3553 3554 if (skb->ip_summed == CHECKSUM_COMPLETE) 3555 goto out_set_summed; 3556 3557 if (unlikely(skb_is_gso(skb))) { 3558 skb_warn_bad_offload(skb); 3559 return -EINVAL; 3560 } 3561 3562 if (!skb_frags_readable(skb)) { 3563 return -EFAULT; 3564 } 3565 3566 /* Before computing a checksum, we should make sure no frag could 3567 * be modified by an external entity : checksum could be wrong. 3568 */ 3569 if (skb_has_shared_frag(skb)) { 3570 ret = __skb_linearize(skb); 3571 if (ret) 3572 goto out; 3573 } 3574 3575 offset = skb_checksum_start_offset(skb); 3576 ret = -EINVAL; 3577 if (unlikely(offset >= skb_headlen(skb))) { 3578 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3579 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3580 offset, skb_headlen(skb)); 3581 goto out; 3582 } 3583 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3584 3585 offset += skb->csum_offset; 3586 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3587 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3588 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3589 offset + sizeof(__sum16), skb_headlen(skb)); 3590 goto out; 3591 } 3592 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3593 if (ret) 3594 goto out; 3595 3596 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3597 out_set_summed: 3598 skb->ip_summed = CHECKSUM_NONE; 3599 out: 3600 return ret; 3601 } 3602 EXPORT_SYMBOL(skb_checksum_help); 3603 3604 #ifdef CONFIG_NET_CRC32C 3605 int skb_crc32c_csum_help(struct sk_buff *skb) 3606 { 3607 u32 crc; 3608 int ret = 0, offset, start; 3609 3610 if (skb->ip_summed != CHECKSUM_PARTIAL) 3611 goto out; 3612 3613 if (unlikely(skb_is_gso(skb))) 3614 goto out; 3615 3616 /* Before computing a checksum, we should make sure no frag could 3617 * be modified by an external entity : checksum could be wrong. 3618 */ 3619 if (unlikely(skb_has_shared_frag(skb))) { 3620 ret = __skb_linearize(skb); 3621 if (ret) 3622 goto out; 3623 } 3624 start = skb_checksum_start_offset(skb); 3625 offset = start + offsetof(struct sctphdr, checksum); 3626 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3627 ret = -EINVAL; 3628 goto out; 3629 } 3630 3631 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3632 if (ret) 3633 goto out; 3634 3635 crc = ~skb_crc32c(skb, start, skb->len - start, ~0); 3636 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc); 3637 skb_reset_csum_not_inet(skb); 3638 out: 3639 return ret; 3640 } 3641 EXPORT_SYMBOL(skb_crc32c_csum_help); 3642 #endif /* CONFIG_NET_CRC32C */ 3643 3644 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3645 { 3646 __be16 type = skb->protocol; 3647 3648 /* Tunnel gso handlers can set protocol to ethernet. */ 3649 if (type == htons(ETH_P_TEB)) { 3650 struct ethhdr *eth; 3651 3652 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3653 return 0; 3654 3655 eth = (struct ethhdr *)skb->data; 3656 type = eth->h_proto; 3657 } 3658 3659 return vlan_get_protocol_and_depth(skb, type, depth); 3660 } 3661 3662 3663 /* Take action when hardware reception checksum errors are detected. */ 3664 #ifdef CONFIG_BUG 3665 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3666 { 3667 netdev_err(dev, "hw csum failure\n"); 3668 skb_dump(KERN_ERR, skb, true); 3669 dump_stack(); 3670 } 3671 3672 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3673 { 3674 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3675 } 3676 EXPORT_SYMBOL(netdev_rx_csum_fault); 3677 #endif 3678 3679 /* XXX: check that highmem exists at all on the given machine. */ 3680 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3681 { 3682 #ifdef CONFIG_HIGHMEM 3683 int i; 3684 3685 if (!(dev->features & NETIF_F_HIGHDMA)) { 3686 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3687 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3688 struct page *page = skb_frag_page(frag); 3689 3690 if (page && PageHighMem(page)) 3691 return 1; 3692 } 3693 } 3694 #endif 3695 return 0; 3696 } 3697 3698 /* If MPLS offload request, verify we are testing hardware MPLS features 3699 * instead of standard features for the netdev. 3700 */ 3701 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3702 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3703 netdev_features_t features, 3704 __be16 type) 3705 { 3706 if (eth_p_mpls(type)) 3707 features &= skb->dev->mpls_features; 3708 3709 return features; 3710 } 3711 #else 3712 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3713 netdev_features_t features, 3714 __be16 type) 3715 { 3716 return features; 3717 } 3718 #endif 3719 3720 static netdev_features_t harmonize_features(struct sk_buff *skb, 3721 netdev_features_t features) 3722 { 3723 __be16 type; 3724 3725 type = skb_network_protocol(skb, NULL); 3726 features = net_mpls_features(skb, features, type); 3727 3728 if (skb->ip_summed != CHECKSUM_NONE && 3729 !can_checksum_protocol(features, type)) { 3730 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3731 } 3732 if (illegal_highdma(skb->dev, skb)) 3733 features &= ~NETIF_F_SG; 3734 3735 return features; 3736 } 3737 3738 netdev_features_t passthru_features_check(struct sk_buff *skb, 3739 struct net_device *dev, 3740 netdev_features_t features) 3741 { 3742 return features; 3743 } 3744 EXPORT_SYMBOL(passthru_features_check); 3745 3746 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3747 struct net_device *dev, 3748 netdev_features_t features) 3749 { 3750 return vlan_features_check(skb, features); 3751 } 3752 3753 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3754 struct net_device *dev, 3755 netdev_features_t features) 3756 { 3757 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3758 3759 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3760 return features & ~NETIF_F_GSO_MASK; 3761 3762 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb))) 3763 return features & ~NETIF_F_GSO_MASK; 3764 3765 if (!skb_shinfo(skb)->gso_type) { 3766 skb_warn_bad_offload(skb); 3767 return features & ~NETIF_F_GSO_MASK; 3768 } 3769 3770 /* Support for GSO partial features requires software 3771 * intervention before we can actually process the packets 3772 * so we need to strip support for any partial features now 3773 * and we can pull them back in after we have partially 3774 * segmented the frame. 3775 */ 3776 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3777 features &= ~dev->gso_partial_features; 3778 3779 /* Make sure to clear the IPv4 ID mangling feature if the IPv4 header 3780 * has the potential to be fragmented so that TSO does not generate 3781 * segments with the same ID. For encapsulated packets, the ID mangling 3782 * feature is guaranteed not to use the same ID for the outer IPv4 3783 * headers of the generated segments if the headers have the potential 3784 * to be fragmented, so there is no need to clear the IPv4 ID mangling 3785 * feature (see the section about NETIF_F_TSO_MANGLEID in 3786 * segmentation-offloads.rst). 3787 */ 3788 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3789 struct iphdr *iph = skb->encapsulation ? 3790 inner_ip_hdr(skb) : ip_hdr(skb); 3791 3792 if (!(iph->frag_off & htons(IP_DF))) 3793 features &= ~NETIF_F_TSO_MANGLEID; 3794 } 3795 3796 /* NETIF_F_IPV6_CSUM does not support IPv6 extension headers, 3797 * so neither does TSO that depends on it. 3798 */ 3799 if (features & NETIF_F_IPV6_CSUM && 3800 (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 || 3801 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 && 3802 vlan_get_protocol(skb) == htons(ETH_P_IPV6))) && 3803 skb_transport_header_was_set(skb) && 3804 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3805 !ipv6_has_hopopt_jumbo(skb)) 3806 features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4); 3807 3808 return features; 3809 } 3810 3811 netdev_features_t netif_skb_features(struct sk_buff *skb) 3812 { 3813 struct net_device *dev = skb->dev; 3814 netdev_features_t features = dev->features; 3815 3816 if (skb_is_gso(skb)) 3817 features = gso_features_check(skb, dev, features); 3818 3819 /* If encapsulation offload request, verify we are testing 3820 * hardware encapsulation features instead of standard 3821 * features for the netdev 3822 */ 3823 if (skb->encapsulation) 3824 features &= dev->hw_enc_features; 3825 3826 if (skb_vlan_tagged(skb)) 3827 features = netdev_intersect_features(features, 3828 dev->vlan_features | 3829 NETIF_F_HW_VLAN_CTAG_TX | 3830 NETIF_F_HW_VLAN_STAG_TX); 3831 3832 if (dev->netdev_ops->ndo_features_check) 3833 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3834 features); 3835 else 3836 features &= dflt_features_check(skb, dev, features); 3837 3838 return harmonize_features(skb, features); 3839 } 3840 EXPORT_SYMBOL(netif_skb_features); 3841 3842 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3843 struct netdev_queue *txq, bool more) 3844 { 3845 unsigned int len; 3846 int rc; 3847 3848 if (dev_nit_active_rcu(dev)) 3849 dev_queue_xmit_nit(skb, dev); 3850 3851 len = skb->len; 3852 trace_net_dev_start_xmit(skb, dev); 3853 rc = netdev_start_xmit(skb, dev, txq, more); 3854 trace_net_dev_xmit(skb, rc, dev, len); 3855 3856 return rc; 3857 } 3858 3859 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3860 struct netdev_queue *txq, int *ret) 3861 { 3862 struct sk_buff *skb = first; 3863 int rc = NETDEV_TX_OK; 3864 3865 while (skb) { 3866 struct sk_buff *next = skb->next; 3867 3868 skb_mark_not_on_list(skb); 3869 rc = xmit_one(skb, dev, txq, next != NULL); 3870 if (unlikely(!dev_xmit_complete(rc))) { 3871 skb->next = next; 3872 goto out; 3873 } 3874 3875 skb = next; 3876 if (netif_tx_queue_stopped(txq) && skb) { 3877 rc = NETDEV_TX_BUSY; 3878 break; 3879 } 3880 } 3881 3882 out: 3883 *ret = rc; 3884 return skb; 3885 } 3886 3887 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3888 netdev_features_t features) 3889 { 3890 if (skb_vlan_tag_present(skb) && 3891 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3892 skb = __vlan_hwaccel_push_inside(skb); 3893 return skb; 3894 } 3895 3896 int skb_csum_hwoffload_help(struct sk_buff *skb, 3897 const netdev_features_t features) 3898 { 3899 if (unlikely(skb_csum_is_sctp(skb))) 3900 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3901 skb_crc32c_csum_help(skb); 3902 3903 if (features & NETIF_F_HW_CSUM) 3904 return 0; 3905 3906 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3907 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) && 3908 skb_network_header_len(skb) != sizeof(struct ipv6hdr) && 3909 !ipv6_has_hopopt_jumbo(skb)) 3910 goto sw_checksum; 3911 3912 switch (skb->csum_offset) { 3913 case offsetof(struct tcphdr, check): 3914 case offsetof(struct udphdr, check): 3915 return 0; 3916 } 3917 } 3918 3919 sw_checksum: 3920 return skb_checksum_help(skb); 3921 } 3922 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3923 3924 /* Checks if this SKB belongs to an HW offloaded socket 3925 * and whether any SW fallbacks are required based on dev. 3926 * Check decrypted mark in case skb_orphan() cleared socket. 3927 */ 3928 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb, 3929 struct net_device *dev) 3930 { 3931 #ifdef CONFIG_SOCK_VALIDATE_XMIT 3932 struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev, 3933 struct sk_buff *skb); 3934 struct sock *sk = skb->sk; 3935 3936 sk_validate = NULL; 3937 if (sk) { 3938 if (sk_fullsock(sk)) 3939 sk_validate = sk->sk_validate_xmit_skb; 3940 else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT) 3941 sk_validate = inet_twsk(sk)->tw_validate_xmit_skb; 3942 } 3943 3944 if (sk_validate) { 3945 skb = sk_validate(sk, dev, skb); 3946 } else if (unlikely(skb_is_decrypted(skb))) { 3947 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n"); 3948 kfree_skb(skb); 3949 skb = NULL; 3950 } 3951 #endif 3952 3953 return skb; 3954 } 3955 3956 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb, 3957 struct net_device *dev) 3958 { 3959 struct skb_shared_info *shinfo; 3960 struct net_iov *niov; 3961 3962 if (likely(skb_frags_readable(skb))) 3963 goto out; 3964 3965 if (!dev->netmem_tx) 3966 goto out_free; 3967 3968 shinfo = skb_shinfo(skb); 3969 3970 if (shinfo->nr_frags > 0) { 3971 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0])); 3972 if (net_is_devmem_iov(niov) && 3973 net_devmem_iov_binding(niov)->dev != dev) 3974 goto out_free; 3975 } 3976 3977 out: 3978 return skb; 3979 3980 out_free: 3981 kfree_skb(skb); 3982 return NULL; 3983 } 3984 3985 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3986 { 3987 netdev_features_t features; 3988 3989 skb = validate_xmit_unreadable_skb(skb, dev); 3990 if (unlikely(!skb)) 3991 goto out_null; 3992 3993 features = netif_skb_features(skb); 3994 skb = validate_xmit_vlan(skb, features); 3995 if (unlikely(!skb)) 3996 goto out_null; 3997 3998 skb = sk_validate_xmit_skb(skb, dev); 3999 if (unlikely(!skb)) 4000 goto out_null; 4001 4002 if (netif_needs_gso(skb, features)) { 4003 struct sk_buff *segs; 4004 4005 segs = skb_gso_segment(skb, features); 4006 if (IS_ERR(segs)) { 4007 goto out_kfree_skb; 4008 } else if (segs) { 4009 consume_skb(skb); 4010 skb = segs; 4011 } 4012 } else { 4013 if (skb_needs_linearize(skb, features) && 4014 __skb_linearize(skb)) 4015 goto out_kfree_skb; 4016 4017 /* If packet is not checksummed and device does not 4018 * support checksumming for this protocol, complete 4019 * checksumming here. 4020 */ 4021 if (skb->ip_summed == CHECKSUM_PARTIAL) { 4022 if (skb->encapsulation) 4023 skb_set_inner_transport_header(skb, 4024 skb_checksum_start_offset(skb)); 4025 else 4026 skb_set_transport_header(skb, 4027 skb_checksum_start_offset(skb)); 4028 if (skb_csum_hwoffload_help(skb, features)) 4029 goto out_kfree_skb; 4030 } 4031 } 4032 4033 skb = validate_xmit_xfrm(skb, features, again); 4034 4035 return skb; 4036 4037 out_kfree_skb: 4038 kfree_skb(skb); 4039 out_null: 4040 dev_core_stats_tx_dropped_inc(dev); 4041 return NULL; 4042 } 4043 4044 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 4045 { 4046 struct sk_buff *next, *head = NULL, *tail; 4047 4048 for (; skb != NULL; skb = next) { 4049 next = skb->next; 4050 skb_mark_not_on_list(skb); 4051 4052 /* in case skb won't be segmented, point to itself */ 4053 skb->prev = skb; 4054 4055 skb = validate_xmit_skb(skb, dev, again); 4056 if (!skb) 4057 continue; 4058 4059 if (!head) 4060 head = skb; 4061 else 4062 tail->next = skb; 4063 /* If skb was segmented, skb->prev points to 4064 * the last segment. If not, it still contains skb. 4065 */ 4066 tail = skb->prev; 4067 } 4068 return head; 4069 } 4070 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 4071 4072 static void qdisc_pkt_len_segs_init(struct sk_buff *skb) 4073 { 4074 struct skb_shared_info *shinfo = skb_shinfo(skb); 4075 u16 gso_segs; 4076 4077 qdisc_skb_cb(skb)->pkt_len = skb->len; 4078 if (!shinfo->gso_size) { 4079 qdisc_skb_cb(skb)->pkt_segs = 1; 4080 return; 4081 } 4082 4083 qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs; 4084 4085 /* To get more precise estimation of bytes sent on wire, 4086 * we add to pkt_len the headers size of all segments 4087 */ 4088 if (skb_transport_header_was_set(skb)) { 4089 unsigned int hdr_len; 4090 4091 /* mac layer + network layer */ 4092 if (!skb->encapsulation) 4093 hdr_len = skb_transport_offset(skb); 4094 else 4095 hdr_len = skb_inner_transport_offset(skb); 4096 4097 /* + transport layer */ 4098 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 4099 const struct tcphdr *th; 4100 struct tcphdr _tcphdr; 4101 4102 th = skb_header_pointer(skb, hdr_len, 4103 sizeof(_tcphdr), &_tcphdr); 4104 if (likely(th)) 4105 hdr_len += __tcp_hdrlen(th); 4106 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) { 4107 struct udphdr _udphdr; 4108 4109 if (skb_header_pointer(skb, hdr_len, 4110 sizeof(_udphdr), &_udphdr)) 4111 hdr_len += sizeof(struct udphdr); 4112 } 4113 4114 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) { 4115 int payload = skb->len - hdr_len; 4116 4117 /* Malicious packet. */ 4118 if (payload <= 0) 4119 return; 4120 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size); 4121 shinfo->gso_segs = gso_segs; 4122 qdisc_skb_cb(skb)->pkt_segs = gso_segs; 4123 } 4124 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 4125 } 4126 } 4127 4128 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 4129 struct sk_buff **to_free, 4130 struct netdev_queue *txq) 4131 { 4132 int rc; 4133 4134 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 4135 if (rc == NET_XMIT_SUCCESS) 4136 trace_qdisc_enqueue(q, txq, skb); 4137 return rc; 4138 } 4139 4140 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 4141 struct net_device *dev, 4142 struct netdev_queue *txq) 4143 { 4144 struct sk_buff *next, *to_free = NULL, *to_free2 = NULL; 4145 spinlock_t *root_lock = qdisc_lock(q); 4146 struct llist_node *ll_list, *first_n; 4147 unsigned long defer_count = 0; 4148 int rc; 4149 4150 qdisc_calculate_pkt_len(skb, q); 4151 4152 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4153 4154 if (q->flags & TCQ_F_NOLOCK) { 4155 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 4156 qdisc_run_begin(q)) { 4157 /* Retest nolock_qdisc_is_empty() within the protection 4158 * of q->seqlock to protect from racing with requeuing. 4159 */ 4160 if (unlikely(!nolock_qdisc_is_empty(q))) { 4161 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4162 __qdisc_run(q); 4163 to_free2 = qdisc_run_end(q); 4164 4165 goto free_skbs; 4166 } 4167 4168 qdisc_bstats_cpu_update(q, skb); 4169 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 4170 !nolock_qdisc_is_empty(q)) 4171 __qdisc_run(q); 4172 4173 to_free2 = qdisc_run_end(q); 4174 rc = NET_XMIT_SUCCESS; 4175 goto free_skbs; 4176 } 4177 4178 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4179 to_free2 = qdisc_run(q); 4180 goto free_skbs; 4181 } 4182 4183 /* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit. 4184 * In the try_cmpxchg() loop, we want to increment q->defer_count 4185 * at most once to limit the number of skbs in defer_list. 4186 * We perform the defer_count increment only if the list is not empty, 4187 * because some arches have slow atomic_long_inc_return(). 4188 */ 4189 first_n = READ_ONCE(q->defer_list.first); 4190 do { 4191 if (first_n && !defer_count) { 4192 defer_count = atomic_long_inc_return(&q->defer_count); 4193 if (unlikely(defer_count > READ_ONCE(q->limit))) { 4194 kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_DROP); 4195 return NET_XMIT_DROP; 4196 } 4197 } 4198 skb->ll_node.next = first_n; 4199 } while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node)); 4200 4201 /* If defer_list was not empty, we know the cpu which queued 4202 * the first skb will process the whole list for us. 4203 */ 4204 if (first_n) 4205 return NET_XMIT_SUCCESS; 4206 4207 spin_lock(root_lock); 4208 4209 ll_list = llist_del_all(&q->defer_list); 4210 /* There is a small race because we clear defer_count not atomically 4211 * with the prior llist_del_all(). This means defer_list could grow 4212 * over q->limit. 4213 */ 4214 atomic_long_set(&q->defer_count, 0); 4215 4216 ll_list = llist_reverse_order(ll_list); 4217 4218 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 4219 llist_for_each_entry_safe(skb, next, ll_list, ll_node) 4220 __qdisc_drop(skb, &to_free); 4221 rc = NET_XMIT_DROP; 4222 goto unlock; 4223 } 4224 if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 4225 !llist_next(ll_list) && qdisc_run_begin(q)) { 4226 /* 4227 * This is a work-conserving queue; there are no old skbs 4228 * waiting to be sent out; and the qdisc is not running - 4229 * xmit the skb directly. 4230 */ 4231 4232 DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list, 4233 struct sk_buff, 4234 ll_node)); 4235 qdisc_bstats_update(q, skb); 4236 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) 4237 __qdisc_run(q); 4238 to_free2 = qdisc_run_end(q); 4239 rc = NET_XMIT_SUCCESS; 4240 } else { 4241 int count = 0; 4242 4243 llist_for_each_entry_safe(skb, next, ll_list, ll_node) { 4244 prefetch(next); 4245 prefetch(&next->priority); 4246 skb_mark_not_on_list(skb); 4247 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 4248 count++; 4249 } 4250 to_free2 = qdisc_run(q); 4251 if (count != 1) 4252 rc = NET_XMIT_SUCCESS; 4253 } 4254 unlock: 4255 spin_unlock(root_lock); 4256 4257 free_skbs: 4258 tcf_kfree_skb_list(to_free); 4259 tcf_kfree_skb_list(to_free2); 4260 return rc; 4261 } 4262 4263 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 4264 static void skb_update_prio(struct sk_buff *skb) 4265 { 4266 const struct netprio_map *map; 4267 const struct sock *sk; 4268 unsigned int prioidx; 4269 4270 if (skb->priority) 4271 return; 4272 map = rcu_dereference_bh(skb->dev->priomap); 4273 if (!map) 4274 return; 4275 sk = skb_to_full_sk(skb); 4276 if (!sk) 4277 return; 4278 4279 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 4280 4281 if (prioidx < map->priomap_len) 4282 skb->priority = map->priomap[prioidx]; 4283 } 4284 #else 4285 #define skb_update_prio(skb) 4286 #endif 4287 4288 /** 4289 * dev_loopback_xmit - loop back @skb 4290 * @net: network namespace this loopback is happening in 4291 * @sk: sk needed to be a netfilter okfn 4292 * @skb: buffer to transmit 4293 */ 4294 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 4295 { 4296 skb_reset_mac_header(skb); 4297 __skb_pull(skb, skb_network_offset(skb)); 4298 skb->pkt_type = PACKET_LOOPBACK; 4299 if (skb->ip_summed == CHECKSUM_NONE) 4300 skb->ip_summed = CHECKSUM_UNNECESSARY; 4301 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 4302 skb_dst_force(skb); 4303 netif_rx(skb); 4304 return 0; 4305 } 4306 EXPORT_SYMBOL(dev_loopback_xmit); 4307 4308 #ifdef CONFIG_NET_EGRESS 4309 static struct netdev_queue * 4310 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 4311 { 4312 int qm = skb_get_queue_mapping(skb); 4313 4314 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 4315 } 4316 4317 #ifndef CONFIG_PREEMPT_RT 4318 static bool netdev_xmit_txqueue_skipped(void) 4319 { 4320 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 4321 } 4322 4323 void netdev_xmit_skip_txqueue(bool skip) 4324 { 4325 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 4326 } 4327 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4328 4329 #else 4330 static bool netdev_xmit_txqueue_skipped(void) 4331 { 4332 return current->net_xmit.skip_txqueue; 4333 } 4334 4335 void netdev_xmit_skip_txqueue(bool skip) 4336 { 4337 current->net_xmit.skip_txqueue = skip; 4338 } 4339 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 4340 #endif 4341 #endif /* CONFIG_NET_EGRESS */ 4342 4343 #ifdef CONFIG_NET_XGRESS 4344 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 4345 enum skb_drop_reason *drop_reason) 4346 { 4347 int ret = TC_ACT_UNSPEC; 4348 #ifdef CONFIG_NET_CLS_ACT 4349 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 4350 struct tcf_result res; 4351 4352 if (!miniq) 4353 return ret; 4354 4355 /* Global bypass */ 4356 if (!static_branch_likely(&tcf_sw_enabled_key)) 4357 return ret; 4358 4359 /* Block-wise bypass */ 4360 if (tcf_block_bypass_sw(miniq->block)) 4361 return ret; 4362 4363 tc_skb_cb(skb)->mru = 0; 4364 qdisc_skb_cb(skb)->post_ct = false; 4365 tcf_set_drop_reason(skb, *drop_reason); 4366 4367 mini_qdisc_bstats_cpu_update(miniq, skb); 4368 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 4369 /* Only tcf related quirks below. */ 4370 switch (ret) { 4371 case TC_ACT_SHOT: 4372 *drop_reason = tcf_get_drop_reason(skb); 4373 mini_qdisc_qstats_cpu_drop(miniq); 4374 break; 4375 case TC_ACT_OK: 4376 case TC_ACT_RECLASSIFY: 4377 skb->tc_index = TC_H_MIN(res.classid); 4378 break; 4379 } 4380 #endif /* CONFIG_NET_CLS_ACT */ 4381 return ret; 4382 } 4383 4384 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 4385 4386 void tcx_inc(void) 4387 { 4388 static_branch_inc(&tcx_needed_key); 4389 } 4390 4391 void tcx_dec(void) 4392 { 4393 static_branch_dec(&tcx_needed_key); 4394 } 4395 4396 static __always_inline enum tcx_action_base 4397 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 4398 const bool needs_mac) 4399 { 4400 const struct bpf_mprog_fp *fp; 4401 const struct bpf_prog *prog; 4402 int ret = TCX_NEXT; 4403 4404 if (needs_mac) 4405 __skb_push(skb, skb->mac_len); 4406 bpf_mprog_foreach_prog(entry, fp, prog) { 4407 bpf_compute_data_pointers(skb); 4408 ret = bpf_prog_run(prog, skb); 4409 if (ret != TCX_NEXT) 4410 break; 4411 } 4412 if (needs_mac) 4413 __skb_pull(skb, skb->mac_len); 4414 return tcx_action_code(skb, ret); 4415 } 4416 4417 static __always_inline struct sk_buff * 4418 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4419 struct net_device *orig_dev, bool *another) 4420 { 4421 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 4422 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 4423 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4424 int sch_ret; 4425 4426 if (!entry) 4427 return skb; 4428 4429 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4430 if (unlikely(*pt_prev)) { 4431 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4432 *pt_prev = NULL; 4433 } 4434 4435 qdisc_pkt_len_segs_init(skb); 4436 tcx_set_ingress(skb, true); 4437 4438 if (static_branch_unlikely(&tcx_needed_key)) { 4439 sch_ret = tcx_run(entry, skb, true); 4440 if (sch_ret != TC_ACT_UNSPEC) 4441 goto ingress_verdict; 4442 } 4443 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4444 ingress_verdict: 4445 switch (sch_ret) { 4446 case TC_ACT_REDIRECT: 4447 /* skb_mac_header check was done by BPF, so we can safely 4448 * push the L2 header back before redirecting to another 4449 * netdev. 4450 */ 4451 __skb_push(skb, skb->mac_len); 4452 if (skb_do_redirect(skb) == -EAGAIN) { 4453 __skb_pull(skb, skb->mac_len); 4454 *another = true; 4455 break; 4456 } 4457 *ret = NET_RX_SUCCESS; 4458 bpf_net_ctx_clear(bpf_net_ctx); 4459 return NULL; 4460 case TC_ACT_SHOT: 4461 kfree_skb_reason(skb, drop_reason); 4462 *ret = NET_RX_DROP; 4463 bpf_net_ctx_clear(bpf_net_ctx); 4464 return NULL; 4465 /* used by tc_run */ 4466 case TC_ACT_STOLEN: 4467 case TC_ACT_QUEUED: 4468 case TC_ACT_TRAP: 4469 consume_skb(skb); 4470 fallthrough; 4471 case TC_ACT_CONSUMED: 4472 *ret = NET_RX_SUCCESS; 4473 bpf_net_ctx_clear(bpf_net_ctx); 4474 return NULL; 4475 } 4476 bpf_net_ctx_clear(bpf_net_ctx); 4477 4478 return skb; 4479 } 4480 4481 static __always_inline struct sk_buff * 4482 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4483 { 4484 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4485 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4486 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 4487 int sch_ret; 4488 4489 if (!entry) 4490 return skb; 4491 4492 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 4493 4494 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4495 * already set by the caller. 4496 */ 4497 if (static_branch_unlikely(&tcx_needed_key)) { 4498 sch_ret = tcx_run(entry, skb, false); 4499 if (sch_ret != TC_ACT_UNSPEC) 4500 goto egress_verdict; 4501 } 4502 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4503 egress_verdict: 4504 switch (sch_ret) { 4505 case TC_ACT_REDIRECT: 4506 /* No need to push/pop skb's mac_header here on egress! */ 4507 skb_do_redirect(skb); 4508 *ret = NET_XMIT_SUCCESS; 4509 bpf_net_ctx_clear(bpf_net_ctx); 4510 return NULL; 4511 case TC_ACT_SHOT: 4512 kfree_skb_reason(skb, drop_reason); 4513 *ret = NET_XMIT_DROP; 4514 bpf_net_ctx_clear(bpf_net_ctx); 4515 return NULL; 4516 /* used by tc_run */ 4517 case TC_ACT_STOLEN: 4518 case TC_ACT_QUEUED: 4519 case TC_ACT_TRAP: 4520 consume_skb(skb); 4521 fallthrough; 4522 case TC_ACT_CONSUMED: 4523 *ret = NET_XMIT_SUCCESS; 4524 bpf_net_ctx_clear(bpf_net_ctx); 4525 return NULL; 4526 } 4527 bpf_net_ctx_clear(bpf_net_ctx); 4528 4529 return skb; 4530 } 4531 #else 4532 static __always_inline struct sk_buff * 4533 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4534 struct net_device *orig_dev, bool *another) 4535 { 4536 return skb; 4537 } 4538 4539 static __always_inline struct sk_buff * 4540 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4541 { 4542 return skb; 4543 } 4544 #endif /* CONFIG_NET_XGRESS */ 4545 4546 #ifdef CONFIG_XPS 4547 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4548 struct xps_dev_maps *dev_maps, unsigned int tci) 4549 { 4550 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4551 struct xps_map *map; 4552 int queue_index = -1; 4553 4554 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4555 return queue_index; 4556 4557 tci *= dev_maps->num_tc; 4558 tci += tc; 4559 4560 map = rcu_dereference(dev_maps->attr_map[tci]); 4561 if (map) { 4562 if (map->len == 1) 4563 queue_index = map->queues[0]; 4564 else 4565 queue_index = map->queues[reciprocal_scale( 4566 skb_get_hash(skb), map->len)]; 4567 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4568 queue_index = -1; 4569 } 4570 return queue_index; 4571 } 4572 #endif 4573 4574 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4575 struct sk_buff *skb) 4576 { 4577 #ifdef CONFIG_XPS 4578 struct xps_dev_maps *dev_maps; 4579 struct sock *sk = skb->sk; 4580 int queue_index = -1; 4581 4582 if (!static_key_false(&xps_needed)) 4583 return -1; 4584 4585 rcu_read_lock(); 4586 if (!static_key_false(&xps_rxqs_needed)) 4587 goto get_cpus_map; 4588 4589 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4590 if (dev_maps) { 4591 int tci = sk_rx_queue_get(sk); 4592 4593 if (tci >= 0) 4594 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4595 tci); 4596 } 4597 4598 get_cpus_map: 4599 if (queue_index < 0) { 4600 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4601 if (dev_maps) { 4602 unsigned int tci = skb->sender_cpu - 1; 4603 4604 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4605 tci); 4606 } 4607 } 4608 rcu_read_unlock(); 4609 4610 return queue_index; 4611 #else 4612 return -1; 4613 #endif 4614 } 4615 4616 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4617 struct net_device *sb_dev) 4618 { 4619 return 0; 4620 } 4621 EXPORT_SYMBOL(dev_pick_tx_zero); 4622 4623 int sk_tx_queue_get(const struct sock *sk) 4624 { 4625 int resel, val; 4626 4627 if (!sk) 4628 return -1; 4629 /* Paired with WRITE_ONCE() in sk_tx_queue_clear() 4630 * and sk_tx_queue_set(). 4631 */ 4632 val = READ_ONCE(sk->sk_tx_queue_mapping); 4633 4634 if (val == NO_QUEUE_MAPPING) 4635 return -1; 4636 4637 if (!sk_fullsock(sk)) 4638 return val; 4639 4640 resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection); 4641 if (resel && time_is_before_jiffies( 4642 READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel)) 4643 return -1; 4644 4645 return val; 4646 } 4647 EXPORT_SYMBOL(sk_tx_queue_get); 4648 4649 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4650 struct net_device *sb_dev) 4651 { 4652 struct sock *sk = skb->sk; 4653 int queue_index = sk_tx_queue_get(sk); 4654 4655 sb_dev = sb_dev ? : dev; 4656 4657 if (queue_index < 0 || skb->ooo_okay || 4658 queue_index >= dev->real_num_tx_queues) { 4659 int new_index = get_xps_queue(dev, sb_dev, skb); 4660 4661 if (new_index < 0) 4662 new_index = skb_tx_hash(dev, sb_dev, skb); 4663 4664 if (sk && sk_fullsock(sk) && 4665 rcu_access_pointer(sk->sk_dst_cache)) 4666 sk_tx_queue_set(sk, new_index); 4667 4668 queue_index = new_index; 4669 } 4670 4671 return queue_index; 4672 } 4673 EXPORT_SYMBOL(netdev_pick_tx); 4674 4675 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4676 struct sk_buff *skb, 4677 struct net_device *sb_dev) 4678 { 4679 int queue_index = 0; 4680 4681 #ifdef CONFIG_XPS 4682 u32 sender_cpu = skb->sender_cpu - 1; 4683 4684 if (sender_cpu >= (u32)NR_CPUS) 4685 skb->sender_cpu = raw_smp_processor_id() + 1; 4686 #endif 4687 4688 if (dev->real_num_tx_queues != 1) { 4689 const struct net_device_ops *ops = dev->netdev_ops; 4690 4691 if (ops->ndo_select_queue) 4692 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4693 else 4694 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4695 4696 queue_index = netdev_cap_txqueue(dev, queue_index); 4697 } 4698 4699 skb_set_queue_mapping(skb, queue_index); 4700 return netdev_get_tx_queue(dev, queue_index); 4701 } 4702 4703 /** 4704 * __dev_queue_xmit() - transmit a buffer 4705 * @skb: buffer to transmit 4706 * @sb_dev: suboordinate device used for L2 forwarding offload 4707 * 4708 * Queue a buffer for transmission to a network device. The caller must 4709 * have set the device and priority and built the buffer before calling 4710 * this function. The function can be called from an interrupt. 4711 * 4712 * When calling this method, interrupts MUST be enabled. This is because 4713 * the BH enable code must have IRQs enabled so that it will not deadlock. 4714 * 4715 * Regardless of the return value, the skb is consumed, so it is currently 4716 * difficult to retry a send to this method. (You can bump the ref count 4717 * before sending to hold a reference for retry if you are careful.) 4718 * 4719 * Return: 4720 * * 0 - buffer successfully transmitted 4721 * * positive qdisc return code - NET_XMIT_DROP etc. 4722 * * negative errno - other errors 4723 */ 4724 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4725 { 4726 struct net_device *dev = skb->dev; 4727 struct netdev_queue *txq = NULL; 4728 struct Qdisc *q; 4729 int rc = -ENOMEM; 4730 bool again = false; 4731 4732 skb_reset_mac_header(skb); 4733 skb_assert_len(skb); 4734 4735 if (unlikely(skb_shinfo(skb)->tx_flags & 4736 (SKBTX_SCHED_TSTAMP | SKBTX_BPF))) 4737 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4738 4739 /* Disable soft irqs for various locks below. Also 4740 * stops preemption for RCU. 4741 */ 4742 rcu_read_lock_bh(); 4743 4744 skb_update_prio(skb); 4745 4746 qdisc_pkt_len_segs_init(skb); 4747 tcx_set_ingress(skb, false); 4748 #ifdef CONFIG_NET_EGRESS 4749 if (static_branch_unlikely(&egress_needed_key)) { 4750 if (nf_hook_egress_active()) { 4751 skb = nf_hook_egress(skb, &rc, dev); 4752 if (!skb) 4753 goto out; 4754 } 4755 4756 netdev_xmit_skip_txqueue(false); 4757 4758 nf_skip_egress(skb, true); 4759 skb = sch_handle_egress(skb, &rc, dev); 4760 if (!skb) 4761 goto out; 4762 nf_skip_egress(skb, false); 4763 4764 if (netdev_xmit_txqueue_skipped()) 4765 txq = netdev_tx_queue_mapping(dev, skb); 4766 } 4767 #endif 4768 /* If device/qdisc don't need skb->dst, release it right now while 4769 * its hot in this cpu cache. 4770 */ 4771 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4772 skb_dst_drop(skb); 4773 else 4774 skb_dst_force(skb); 4775 4776 if (!txq) 4777 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4778 4779 q = rcu_dereference_bh(txq->qdisc); 4780 4781 trace_net_dev_queue(skb); 4782 if (q->enqueue) { 4783 rc = __dev_xmit_skb(skb, q, dev, txq); 4784 goto out; 4785 } 4786 4787 /* The device has no queue. Common case for software devices: 4788 * loopback, all the sorts of tunnels... 4789 4790 * Really, it is unlikely that netif_tx_lock protection is necessary 4791 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4792 * counters.) 4793 * However, it is possible, that they rely on protection 4794 * made by us here. 4795 4796 * Check this and shot the lock. It is not prone from deadlocks. 4797 *Either shot noqueue qdisc, it is even simpler 8) 4798 */ 4799 if (dev->flags & IFF_UP) { 4800 int cpu = smp_processor_id(); /* ok because BHs are off */ 4801 4802 /* Other cpus might concurrently change txq->xmit_lock_owner 4803 * to -1 or to their cpu id, but not to our id. 4804 */ 4805 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4806 if (dev_xmit_recursion()) 4807 goto recursion_alert; 4808 4809 skb = validate_xmit_skb(skb, dev, &again); 4810 if (!skb) 4811 goto out; 4812 4813 HARD_TX_LOCK(dev, txq, cpu); 4814 4815 if (!netif_xmit_stopped(txq)) { 4816 dev_xmit_recursion_inc(); 4817 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4818 dev_xmit_recursion_dec(); 4819 if (dev_xmit_complete(rc)) { 4820 HARD_TX_UNLOCK(dev, txq); 4821 goto out; 4822 } 4823 } 4824 HARD_TX_UNLOCK(dev, txq); 4825 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4826 dev->name); 4827 } else { 4828 /* Recursion is detected! It is possible, 4829 * unfortunately 4830 */ 4831 recursion_alert: 4832 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4833 dev->name); 4834 } 4835 } 4836 4837 rc = -ENETDOWN; 4838 rcu_read_unlock_bh(); 4839 4840 dev_core_stats_tx_dropped_inc(dev); 4841 kfree_skb_list(skb); 4842 return rc; 4843 out: 4844 rcu_read_unlock_bh(); 4845 return rc; 4846 } 4847 EXPORT_SYMBOL(__dev_queue_xmit); 4848 4849 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4850 { 4851 struct net_device *dev = skb->dev; 4852 struct sk_buff *orig_skb = skb; 4853 struct netdev_queue *txq; 4854 int ret = NETDEV_TX_BUSY; 4855 bool again = false; 4856 4857 if (unlikely(!netif_running(dev) || 4858 !netif_carrier_ok(dev))) 4859 goto drop; 4860 4861 skb = validate_xmit_skb_list(skb, dev, &again); 4862 if (skb != orig_skb) 4863 goto drop; 4864 4865 skb_set_queue_mapping(skb, queue_id); 4866 txq = skb_get_tx_queue(dev, skb); 4867 4868 local_bh_disable(); 4869 4870 dev_xmit_recursion_inc(); 4871 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4872 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4873 ret = netdev_start_xmit(skb, dev, txq, false); 4874 HARD_TX_UNLOCK(dev, txq); 4875 dev_xmit_recursion_dec(); 4876 4877 local_bh_enable(); 4878 return ret; 4879 drop: 4880 dev_core_stats_tx_dropped_inc(dev); 4881 kfree_skb_list(skb); 4882 return NET_XMIT_DROP; 4883 } 4884 EXPORT_SYMBOL(__dev_direct_xmit); 4885 4886 /************************************************************************* 4887 * Receiver routines 4888 *************************************************************************/ 4889 static DEFINE_PER_CPU(struct task_struct *, backlog_napi); 4890 4891 int weight_p __read_mostly = 64; /* old backlog weight */ 4892 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4893 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4894 4895 /* Called with irq disabled */ 4896 static inline void ____napi_schedule(struct softnet_data *sd, 4897 struct napi_struct *napi) 4898 { 4899 struct task_struct *thread; 4900 4901 lockdep_assert_irqs_disabled(); 4902 4903 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4904 /* Paired with smp_mb__before_atomic() in 4905 * napi_enable()/netif_set_threaded(). 4906 * Use READ_ONCE() to guarantee a complete 4907 * read on napi->thread. Only call 4908 * wake_up_process() when it's not NULL. 4909 */ 4910 thread = READ_ONCE(napi->thread); 4911 if (thread) { 4912 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi)) 4913 goto use_local_napi; 4914 4915 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4916 wake_up_process(thread); 4917 return; 4918 } 4919 } 4920 4921 use_local_napi: 4922 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list)); 4923 list_add_tail(&napi->poll_list, &sd->poll_list); 4924 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4925 /* If not called from net_rx_action() 4926 * we have to raise NET_RX_SOFTIRQ. 4927 */ 4928 if (!sd->in_net_rx_action) 4929 raise_softirq_irqoff(NET_RX_SOFTIRQ); 4930 } 4931 4932 #ifdef CONFIG_RPS 4933 4934 struct static_key_false rps_needed __read_mostly; 4935 EXPORT_SYMBOL(rps_needed); 4936 struct static_key_false rfs_needed __read_mostly; 4937 EXPORT_SYMBOL(rfs_needed); 4938 4939 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table) 4940 { 4941 return hash_32(hash, flow_table->log); 4942 } 4943 4944 #ifdef CONFIG_RFS_ACCEL 4945 /** 4946 * rps_flow_is_active - check whether the flow is recently active. 4947 * @rflow: Specific flow to check activity. 4948 * @flow_table: per-queue flowtable that @rflow belongs to. 4949 * @cpu: CPU saved in @rflow. 4950 * 4951 * If the CPU has processed many packets since the flow's last activity 4952 * (beyond 10 times the table size), the flow is considered stale. 4953 * 4954 * Return: true if flow was recently active. 4955 */ 4956 static bool rps_flow_is_active(struct rps_dev_flow *rflow, 4957 struct rps_dev_flow_table *flow_table, 4958 unsigned int cpu) 4959 { 4960 unsigned int flow_last_active; 4961 unsigned int sd_input_head; 4962 4963 if (cpu >= nr_cpu_ids) 4964 return false; 4965 4966 sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head); 4967 flow_last_active = READ_ONCE(rflow->last_qtail); 4968 4969 return (int)(sd_input_head - flow_last_active) < 4970 (int)(10 << flow_table->log); 4971 } 4972 #endif 4973 4974 static struct rps_dev_flow * 4975 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4976 struct rps_dev_flow *rflow, u16 next_cpu, u32 hash, 4977 u32 flow_id) 4978 { 4979 if (next_cpu < nr_cpu_ids) { 4980 u32 head; 4981 #ifdef CONFIG_RFS_ACCEL 4982 struct netdev_rx_queue *rxqueue; 4983 struct rps_dev_flow_table *flow_table; 4984 struct rps_dev_flow *old_rflow; 4985 struct rps_dev_flow *tmp_rflow; 4986 unsigned int tmp_cpu; 4987 u16 rxq_index; 4988 int rc; 4989 4990 /* Should we steer this flow to a different hardware queue? */ 4991 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4992 !(dev->features & NETIF_F_NTUPLE)) 4993 goto out; 4994 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4995 if (rxq_index == skb_get_rx_queue(skb)) 4996 goto out; 4997 4998 rxqueue = dev->_rx + rxq_index; 4999 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5000 if (!flow_table) 5001 goto out; 5002 5003 tmp_rflow = &flow_table->flows[flow_id]; 5004 tmp_cpu = READ_ONCE(tmp_rflow->cpu); 5005 5006 if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) { 5007 if (rps_flow_is_active(tmp_rflow, flow_table, 5008 tmp_cpu)) { 5009 if (hash != READ_ONCE(tmp_rflow->hash) || 5010 next_cpu == tmp_cpu) 5011 goto out; 5012 } 5013 } 5014 5015 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 5016 rxq_index, flow_id); 5017 if (rc < 0) 5018 goto out; 5019 5020 old_rflow = rflow; 5021 rflow = tmp_rflow; 5022 WRITE_ONCE(rflow->filter, rc); 5023 WRITE_ONCE(rflow->hash, hash); 5024 5025 if (old_rflow->filter == rc) 5026 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER); 5027 out: 5028 #endif 5029 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head); 5030 rps_input_queue_tail_save(&rflow->last_qtail, head); 5031 } 5032 5033 WRITE_ONCE(rflow->cpu, next_cpu); 5034 return rflow; 5035 } 5036 5037 /* 5038 * get_rps_cpu is called from netif_receive_skb and returns the target 5039 * CPU from the RPS map of the receiving queue for a given skb. 5040 * rcu_read_lock must be held on entry. 5041 */ 5042 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 5043 struct rps_dev_flow **rflowp) 5044 { 5045 const struct rps_sock_flow_table *sock_flow_table; 5046 struct netdev_rx_queue *rxqueue = dev->_rx; 5047 struct rps_dev_flow_table *flow_table; 5048 struct rps_map *map; 5049 int cpu = -1; 5050 u32 flow_id; 5051 u32 tcpu; 5052 u32 hash; 5053 5054 if (skb_rx_queue_recorded(skb)) { 5055 u16 index = skb_get_rx_queue(skb); 5056 5057 if (unlikely(index >= dev->real_num_rx_queues)) { 5058 WARN_ONCE(dev->real_num_rx_queues > 1, 5059 "%s received packet on queue %u, but number " 5060 "of RX queues is %u\n", 5061 dev->name, index, dev->real_num_rx_queues); 5062 goto done; 5063 } 5064 rxqueue += index; 5065 } 5066 5067 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 5068 5069 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5070 map = rcu_dereference(rxqueue->rps_map); 5071 if (!flow_table && !map) 5072 goto done; 5073 5074 skb_reset_network_header(skb); 5075 hash = skb_get_hash(skb); 5076 if (!hash) 5077 goto done; 5078 5079 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table); 5080 if (flow_table && sock_flow_table) { 5081 struct rps_dev_flow *rflow; 5082 u32 next_cpu; 5083 u32 ident; 5084 5085 /* First check into global flow table if there is a match. 5086 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 5087 */ 5088 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 5089 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask) 5090 goto try_rps; 5091 5092 next_cpu = ident & net_hotdata.rps_cpu_mask; 5093 5094 /* OK, now we know there is a match, 5095 * we can look at the local (per receive queue) flow table 5096 */ 5097 flow_id = rfs_slot(hash, flow_table); 5098 rflow = &flow_table->flows[flow_id]; 5099 tcpu = rflow->cpu; 5100 5101 /* 5102 * If the desired CPU (where last recvmsg was done) is 5103 * different from current CPU (one in the rx-queue flow 5104 * table entry), switch if one of the following holds: 5105 * - Current CPU is unset (>= nr_cpu_ids). 5106 * - Current CPU is offline. 5107 * - The current CPU's queue tail has advanced beyond the 5108 * last packet that was enqueued using this table entry. 5109 * This guarantees that all previous packets for the flow 5110 * have been dequeued, thus preserving in order delivery. 5111 */ 5112 if (unlikely(tcpu != next_cpu) && 5113 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 5114 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) - 5115 rflow->last_qtail)) >= 0)) { 5116 tcpu = next_cpu; 5117 rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash, 5118 flow_id); 5119 } 5120 5121 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 5122 *rflowp = rflow; 5123 cpu = tcpu; 5124 goto done; 5125 } 5126 } 5127 5128 try_rps: 5129 5130 if (map) { 5131 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 5132 if (cpu_online(tcpu)) { 5133 cpu = tcpu; 5134 goto done; 5135 } 5136 } 5137 5138 done: 5139 return cpu; 5140 } 5141 5142 #ifdef CONFIG_RFS_ACCEL 5143 5144 /** 5145 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 5146 * @dev: Device on which the filter was set 5147 * @rxq_index: RX queue index 5148 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 5149 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 5150 * 5151 * Drivers that implement ndo_rx_flow_steer() should periodically call 5152 * this function for each installed filter and remove the filters for 5153 * which it returns %true. 5154 */ 5155 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 5156 u32 flow_id, u16 filter_id) 5157 { 5158 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 5159 struct rps_dev_flow_table *flow_table; 5160 struct rps_dev_flow *rflow; 5161 bool expire = true; 5162 5163 rcu_read_lock(); 5164 flow_table = rcu_dereference(rxqueue->rps_flow_table); 5165 if (flow_table && flow_id < (1UL << flow_table->log)) { 5166 unsigned int cpu; 5167 5168 rflow = &flow_table->flows[flow_id]; 5169 cpu = READ_ONCE(rflow->cpu); 5170 if (READ_ONCE(rflow->filter) == filter_id && 5171 rps_flow_is_active(rflow, flow_table, cpu)) 5172 expire = false; 5173 } 5174 rcu_read_unlock(); 5175 return expire; 5176 } 5177 EXPORT_SYMBOL(rps_may_expire_flow); 5178 5179 #endif /* CONFIG_RFS_ACCEL */ 5180 5181 /* Called from hardirq (IPI) context */ 5182 static void rps_trigger_softirq(void *data) 5183 { 5184 struct softnet_data *sd = data; 5185 5186 ____napi_schedule(sd, &sd->backlog); 5187 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5188 WRITE_ONCE(sd->received_rps, sd->received_rps + 1); 5189 } 5190 5191 #endif /* CONFIG_RPS */ 5192 5193 /* Called from hardirq (IPI) context */ 5194 static void trigger_rx_softirq(void *data) 5195 { 5196 struct softnet_data *sd = data; 5197 5198 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5199 smp_store_release(&sd->defer_ipi_scheduled, 0); 5200 } 5201 5202 /* 5203 * After we queued a packet into sd->input_pkt_queue, 5204 * we need to make sure this queue is serviced soon. 5205 * 5206 * - If this is another cpu queue, link it to our rps_ipi_list, 5207 * and make sure we will process rps_ipi_list from net_rx_action(). 5208 * 5209 * - If this is our own queue, NAPI schedule our backlog. 5210 * Note that this also raises NET_RX_SOFTIRQ. 5211 */ 5212 static void napi_schedule_rps(struct softnet_data *sd) 5213 { 5214 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 5215 5216 #ifdef CONFIG_RPS 5217 if (sd != mysd) { 5218 if (use_backlog_threads()) { 5219 __napi_schedule_irqoff(&sd->backlog); 5220 return; 5221 } 5222 5223 sd->rps_ipi_next = mysd->rps_ipi_list; 5224 mysd->rps_ipi_list = sd; 5225 5226 /* If not called from net_rx_action() or napi_threaded_poll() 5227 * we have to raise NET_RX_SOFTIRQ. 5228 */ 5229 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 5230 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5231 return; 5232 } 5233 #endif /* CONFIG_RPS */ 5234 __napi_schedule_irqoff(&mysd->backlog); 5235 } 5236 5237 void kick_defer_list_purge(unsigned int cpu) 5238 { 5239 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5240 unsigned long flags; 5241 5242 if (use_backlog_threads()) { 5243 backlog_lock_irq_save(sd, &flags); 5244 5245 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 5246 __napi_schedule_irqoff(&sd->backlog); 5247 5248 backlog_unlock_irq_restore(sd, &flags); 5249 5250 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) { 5251 smp_call_function_single_async(cpu, &sd->defer_csd); 5252 } 5253 } 5254 5255 #ifdef CONFIG_NET_FLOW_LIMIT 5256 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 5257 #endif 5258 5259 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen, 5260 int max_backlog) 5261 { 5262 #ifdef CONFIG_NET_FLOW_LIMIT 5263 unsigned int old_flow, new_flow; 5264 const struct softnet_data *sd; 5265 struct sd_flow_limit *fl; 5266 5267 if (likely(qlen < (max_backlog >> 1))) 5268 return false; 5269 5270 sd = this_cpu_ptr(&softnet_data); 5271 5272 rcu_read_lock(); 5273 fl = rcu_dereference(sd->flow_limit); 5274 if (fl) { 5275 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets); 5276 old_flow = fl->history[fl->history_head]; 5277 fl->history[fl->history_head] = new_flow; 5278 5279 fl->history_head++; 5280 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 5281 5282 if (likely(fl->buckets[old_flow])) 5283 fl->buckets[old_flow]--; 5284 5285 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 5286 /* Pairs with READ_ONCE() in softnet_seq_show() */ 5287 WRITE_ONCE(fl->count, fl->count + 1); 5288 rcu_read_unlock(); 5289 return true; 5290 } 5291 } 5292 rcu_read_unlock(); 5293 #endif 5294 return false; 5295 } 5296 5297 /* 5298 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 5299 * queue (may be a remote CPU queue). 5300 */ 5301 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 5302 unsigned int *qtail) 5303 { 5304 enum skb_drop_reason reason; 5305 struct softnet_data *sd; 5306 unsigned long flags; 5307 unsigned int qlen; 5308 int max_backlog; 5309 u32 tail; 5310 5311 reason = SKB_DROP_REASON_DEV_READY; 5312 if (unlikely(!netif_running(skb->dev))) 5313 goto bad_dev; 5314 5315 sd = &per_cpu(softnet_data, cpu); 5316 5317 qlen = skb_queue_len_lockless(&sd->input_pkt_queue); 5318 max_backlog = READ_ONCE(net_hotdata.max_backlog); 5319 if (unlikely(qlen > max_backlog) || 5320 skb_flow_limit(skb, qlen, max_backlog)) 5321 goto cpu_backlog_drop; 5322 backlog_lock_irq_save(sd, &flags); 5323 qlen = skb_queue_len(&sd->input_pkt_queue); 5324 if (likely(qlen <= max_backlog)) { 5325 if (!qlen) { 5326 /* Schedule NAPI for backlog device. We can use 5327 * non atomic operation as we own the queue lock. 5328 */ 5329 if (!__test_and_set_bit(NAPI_STATE_SCHED, 5330 &sd->backlog.state)) 5331 napi_schedule_rps(sd); 5332 } 5333 __skb_queue_tail(&sd->input_pkt_queue, skb); 5334 tail = rps_input_queue_tail_incr(sd); 5335 backlog_unlock_irq_restore(sd, &flags); 5336 5337 /* save the tail outside of the critical section */ 5338 rps_input_queue_tail_save(qtail, tail); 5339 return NET_RX_SUCCESS; 5340 } 5341 5342 backlog_unlock_irq_restore(sd, &flags); 5343 5344 cpu_backlog_drop: 5345 reason = SKB_DROP_REASON_CPU_BACKLOG; 5346 numa_drop_add(&sd->drop_counters, 1); 5347 bad_dev: 5348 dev_core_stats_rx_dropped_inc(skb->dev); 5349 kfree_skb_reason(skb, reason); 5350 return NET_RX_DROP; 5351 } 5352 5353 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 5354 { 5355 struct net_device *dev = skb->dev; 5356 struct netdev_rx_queue *rxqueue; 5357 5358 rxqueue = dev->_rx; 5359 5360 if (skb_rx_queue_recorded(skb)) { 5361 u16 index = skb_get_rx_queue(skb); 5362 5363 if (unlikely(index >= dev->real_num_rx_queues)) { 5364 WARN_ONCE(dev->real_num_rx_queues > 1, 5365 "%s received packet on queue %u, but number " 5366 "of RX queues is %u\n", 5367 dev->name, index, dev->real_num_rx_queues); 5368 5369 return rxqueue; /* Return first rxqueue */ 5370 } 5371 rxqueue += index; 5372 } 5373 return rxqueue; 5374 } 5375 5376 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 5377 const struct bpf_prog *xdp_prog) 5378 { 5379 void *orig_data, *orig_data_end, *hard_start; 5380 struct netdev_rx_queue *rxqueue; 5381 bool orig_bcast, orig_host; 5382 u32 mac_len, frame_sz; 5383 __be16 orig_eth_type; 5384 struct ethhdr *eth; 5385 u32 metalen, act; 5386 int off; 5387 5388 /* The XDP program wants to see the packet starting at the MAC 5389 * header. 5390 */ 5391 mac_len = skb->data - skb_mac_header(skb); 5392 hard_start = skb->data - skb_headroom(skb); 5393 5394 /* SKB "head" area always have tailroom for skb_shared_info */ 5395 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 5396 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 5397 5398 rxqueue = netif_get_rxqueue(skb); 5399 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 5400 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 5401 skb_headlen(skb) + mac_len, true); 5402 if (skb_is_nonlinear(skb)) { 5403 skb_shinfo(skb)->xdp_frags_size = skb->data_len; 5404 xdp_buff_set_frags_flag(xdp); 5405 } else { 5406 xdp_buff_clear_frags_flag(xdp); 5407 } 5408 5409 orig_data_end = xdp->data_end; 5410 orig_data = xdp->data; 5411 eth = (struct ethhdr *)xdp->data; 5412 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 5413 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 5414 orig_eth_type = eth->h_proto; 5415 5416 act = bpf_prog_run_xdp(xdp_prog, xdp); 5417 5418 /* check if bpf_xdp_adjust_head was used */ 5419 off = xdp->data - orig_data; 5420 if (off) { 5421 if (off > 0) 5422 __skb_pull(skb, off); 5423 else if (off < 0) 5424 __skb_push(skb, -off); 5425 5426 skb->mac_header += off; 5427 skb_reset_network_header(skb); 5428 } 5429 5430 /* check if bpf_xdp_adjust_tail was used */ 5431 off = xdp->data_end - orig_data_end; 5432 if (off != 0) { 5433 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 5434 skb->len += off; /* positive on grow, negative on shrink */ 5435 } 5436 5437 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers 5438 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here. 5439 */ 5440 if (xdp_buff_has_frags(xdp)) 5441 skb->data_len = skb_shinfo(skb)->xdp_frags_size; 5442 else 5443 skb->data_len = 0; 5444 5445 /* check if XDP changed eth hdr such SKB needs update */ 5446 eth = (struct ethhdr *)xdp->data; 5447 if ((orig_eth_type != eth->h_proto) || 5448 (orig_host != ether_addr_equal_64bits(eth->h_dest, 5449 skb->dev->dev_addr)) || 5450 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 5451 __skb_push(skb, ETH_HLEN); 5452 skb->pkt_type = PACKET_HOST; 5453 skb->protocol = eth_type_trans(skb, skb->dev); 5454 } 5455 5456 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 5457 * before calling us again on redirect path. We do not call do_redirect 5458 * as we leave that up to the caller. 5459 * 5460 * Caller is responsible for managing lifetime of skb (i.e. calling 5461 * kfree_skb in response to actions it cannot handle/XDP_DROP). 5462 */ 5463 switch (act) { 5464 case XDP_REDIRECT: 5465 case XDP_TX: 5466 __skb_push(skb, mac_len); 5467 break; 5468 case XDP_PASS: 5469 metalen = xdp->data - xdp->data_meta; 5470 if (metalen) 5471 skb_metadata_set(skb, metalen); 5472 break; 5473 } 5474 5475 return act; 5476 } 5477 5478 static int 5479 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog) 5480 { 5481 struct sk_buff *skb = *pskb; 5482 int err, hroom, troom; 5483 5484 local_lock_nested_bh(&system_page_pool.bh_lock); 5485 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog); 5486 local_unlock_nested_bh(&system_page_pool.bh_lock); 5487 if (!err) 5488 return 0; 5489 5490 /* In case we have to go down the path and also linearize, 5491 * then lets do the pskb_expand_head() work just once here. 5492 */ 5493 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 5494 troom = skb->tail + skb->data_len - skb->end; 5495 err = pskb_expand_head(skb, 5496 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 5497 troom > 0 ? troom + 128 : 0, GFP_ATOMIC); 5498 if (err) 5499 return err; 5500 5501 return skb_linearize(skb); 5502 } 5503 5504 static u32 netif_receive_generic_xdp(struct sk_buff **pskb, 5505 struct xdp_buff *xdp, 5506 const struct bpf_prog *xdp_prog) 5507 { 5508 struct sk_buff *skb = *pskb; 5509 u32 mac_len, act = XDP_DROP; 5510 5511 /* Reinjected packets coming from act_mirred or similar should 5512 * not get XDP generic processing. 5513 */ 5514 if (skb_is_redirected(skb)) 5515 return XDP_PASS; 5516 5517 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM 5518 * bytes. This is the guarantee that also native XDP provides, 5519 * thus we need to do it here as well. 5520 */ 5521 mac_len = skb->data - skb_mac_header(skb); 5522 __skb_push(skb, mac_len); 5523 5524 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 5525 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 5526 if (netif_skb_check_for_xdp(pskb, xdp_prog)) 5527 goto do_drop; 5528 } 5529 5530 __skb_pull(*pskb, mac_len); 5531 5532 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog); 5533 switch (act) { 5534 case XDP_REDIRECT: 5535 case XDP_TX: 5536 case XDP_PASS: 5537 break; 5538 default: 5539 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act); 5540 fallthrough; 5541 case XDP_ABORTED: 5542 trace_xdp_exception((*pskb)->dev, xdp_prog, act); 5543 fallthrough; 5544 case XDP_DROP: 5545 do_drop: 5546 kfree_skb(*pskb); 5547 break; 5548 } 5549 5550 return act; 5551 } 5552 5553 /* When doing generic XDP we have to bypass the qdisc layer and the 5554 * network taps in order to match in-driver-XDP behavior. This also means 5555 * that XDP packets are able to starve other packets going through a qdisc, 5556 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 5557 * queues, so they do not have this starvation issue. 5558 */ 5559 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog) 5560 { 5561 struct net_device *dev = skb->dev; 5562 struct netdev_queue *txq; 5563 bool free_skb = true; 5564 int cpu, rc; 5565 5566 txq = netdev_core_pick_tx(dev, skb, NULL); 5567 cpu = smp_processor_id(); 5568 HARD_TX_LOCK(dev, txq, cpu); 5569 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 5570 rc = netdev_start_xmit(skb, dev, txq, 0); 5571 if (dev_xmit_complete(rc)) 5572 free_skb = false; 5573 } 5574 HARD_TX_UNLOCK(dev, txq); 5575 if (free_skb) { 5576 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5577 dev_core_stats_tx_dropped_inc(dev); 5578 kfree_skb(skb); 5579 } 5580 } 5581 5582 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5583 5584 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb) 5585 { 5586 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 5587 5588 if (xdp_prog) { 5589 struct xdp_buff xdp; 5590 u32 act; 5591 int err; 5592 5593 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 5594 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog); 5595 if (act != XDP_PASS) { 5596 switch (act) { 5597 case XDP_REDIRECT: 5598 err = xdp_do_generic_redirect((*pskb)->dev, *pskb, 5599 &xdp, xdp_prog); 5600 if (err) 5601 goto out_redir; 5602 break; 5603 case XDP_TX: 5604 generic_xdp_tx(*pskb, xdp_prog); 5605 break; 5606 } 5607 bpf_net_ctx_clear(bpf_net_ctx); 5608 return XDP_DROP; 5609 } 5610 bpf_net_ctx_clear(bpf_net_ctx); 5611 } 5612 return XDP_PASS; 5613 out_redir: 5614 bpf_net_ctx_clear(bpf_net_ctx); 5615 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP); 5616 return XDP_DROP; 5617 } 5618 EXPORT_SYMBOL_GPL(do_xdp_generic); 5619 5620 static int netif_rx_internal(struct sk_buff *skb) 5621 { 5622 int ret; 5623 5624 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5625 5626 trace_netif_rx(skb); 5627 5628 #ifdef CONFIG_RPS 5629 if (static_branch_unlikely(&rps_needed)) { 5630 struct rps_dev_flow voidflow, *rflow = &voidflow; 5631 int cpu; 5632 5633 rcu_read_lock(); 5634 5635 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5636 if (cpu < 0) 5637 cpu = smp_processor_id(); 5638 5639 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5640 5641 rcu_read_unlock(); 5642 } else 5643 #endif 5644 { 5645 unsigned int qtail; 5646 5647 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5648 } 5649 return ret; 5650 } 5651 5652 /** 5653 * __netif_rx - Slightly optimized version of netif_rx 5654 * @skb: buffer to post 5655 * 5656 * This behaves as netif_rx except that it does not disable bottom halves. 5657 * As a result this function may only be invoked from the interrupt context 5658 * (either hard or soft interrupt). 5659 */ 5660 int __netif_rx(struct sk_buff *skb) 5661 { 5662 int ret; 5663 5664 lockdep_assert_once(hardirq_count() | softirq_count()); 5665 5666 trace_netif_rx_entry(skb); 5667 ret = netif_rx_internal(skb); 5668 trace_netif_rx_exit(ret); 5669 return ret; 5670 } 5671 EXPORT_SYMBOL(__netif_rx); 5672 5673 /** 5674 * netif_rx - post buffer to the network code 5675 * @skb: buffer to post 5676 * 5677 * This function receives a packet from a device driver and queues it for 5678 * the upper (protocol) levels to process via the backlog NAPI device. It 5679 * always succeeds. The buffer may be dropped during processing for 5680 * congestion control or by the protocol layers. 5681 * The network buffer is passed via the backlog NAPI device. Modern NIC 5682 * driver should use NAPI and GRO. 5683 * This function can used from interrupt and from process context. The 5684 * caller from process context must not disable interrupts before invoking 5685 * this function. 5686 * 5687 * return values: 5688 * NET_RX_SUCCESS (no congestion) 5689 * NET_RX_DROP (packet was dropped) 5690 * 5691 */ 5692 int netif_rx(struct sk_buff *skb) 5693 { 5694 bool need_bh_off = !(hardirq_count() | softirq_count()); 5695 int ret; 5696 5697 if (need_bh_off) 5698 local_bh_disable(); 5699 trace_netif_rx_entry(skb); 5700 ret = netif_rx_internal(skb); 5701 trace_netif_rx_exit(ret); 5702 if (need_bh_off) 5703 local_bh_enable(); 5704 return ret; 5705 } 5706 EXPORT_SYMBOL(netif_rx); 5707 5708 static __latent_entropy void net_tx_action(void) 5709 { 5710 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5711 5712 if (sd->completion_queue) { 5713 struct sk_buff *clist; 5714 5715 local_irq_disable(); 5716 clist = sd->completion_queue; 5717 sd->completion_queue = NULL; 5718 local_irq_enable(); 5719 5720 while (clist) { 5721 struct sk_buff *skb = clist; 5722 5723 clist = clist->next; 5724 5725 WARN_ON(refcount_read(&skb->users)); 5726 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5727 trace_consume_skb(skb, net_tx_action); 5728 else 5729 trace_kfree_skb(skb, net_tx_action, 5730 get_kfree_skb_cb(skb)->reason, NULL); 5731 5732 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5733 __kfree_skb(skb); 5734 else 5735 __napi_kfree_skb(skb, 5736 get_kfree_skb_cb(skb)->reason); 5737 } 5738 } 5739 5740 if (sd->output_queue) { 5741 struct Qdisc *head; 5742 5743 local_irq_disable(); 5744 head = sd->output_queue; 5745 sd->output_queue = NULL; 5746 sd->output_queue_tailp = &sd->output_queue; 5747 local_irq_enable(); 5748 5749 rcu_read_lock(); 5750 5751 while (head) { 5752 spinlock_t *root_lock = NULL; 5753 struct sk_buff *to_free; 5754 struct Qdisc *q = head; 5755 5756 head = head->next_sched; 5757 5758 /* We need to make sure head->next_sched is read 5759 * before clearing __QDISC_STATE_SCHED 5760 */ 5761 smp_mb__before_atomic(); 5762 5763 if (!(q->flags & TCQ_F_NOLOCK)) { 5764 root_lock = qdisc_lock(q); 5765 spin_lock(root_lock); 5766 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5767 &q->state))) { 5768 /* There is a synchronize_net() between 5769 * STATE_DEACTIVATED flag being set and 5770 * qdisc_reset()/some_qdisc_is_busy() in 5771 * dev_deactivate(), so we can safely bail out 5772 * early here to avoid data race between 5773 * qdisc_deactivate() and some_qdisc_is_busy() 5774 * for lockless qdisc. 5775 */ 5776 clear_bit(__QDISC_STATE_SCHED, &q->state); 5777 continue; 5778 } 5779 5780 clear_bit(__QDISC_STATE_SCHED, &q->state); 5781 to_free = qdisc_run(q); 5782 if (root_lock) 5783 spin_unlock(root_lock); 5784 tcf_kfree_skb_list(to_free); 5785 } 5786 5787 rcu_read_unlock(); 5788 } 5789 5790 xfrm_dev_backlog(sd); 5791 } 5792 5793 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5794 /* This hook is defined here for ATM LANE */ 5795 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5796 unsigned char *addr) __read_mostly; 5797 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5798 #endif 5799 5800 /** 5801 * netdev_is_rx_handler_busy - check if receive handler is registered 5802 * @dev: device to check 5803 * 5804 * Check if a receive handler is already registered for a given device. 5805 * Return true if there one. 5806 * 5807 * The caller must hold the rtnl_mutex. 5808 */ 5809 bool netdev_is_rx_handler_busy(struct net_device *dev) 5810 { 5811 ASSERT_RTNL(); 5812 return dev && rtnl_dereference(dev->rx_handler); 5813 } 5814 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5815 5816 /** 5817 * netdev_rx_handler_register - register receive handler 5818 * @dev: device to register a handler for 5819 * @rx_handler: receive handler to register 5820 * @rx_handler_data: data pointer that is used by rx handler 5821 * 5822 * Register a receive handler for a device. This handler will then be 5823 * called from __netif_receive_skb. A negative errno code is returned 5824 * on a failure. 5825 * 5826 * The caller must hold the rtnl_mutex. 5827 * 5828 * For a general description of rx_handler, see enum rx_handler_result. 5829 */ 5830 int netdev_rx_handler_register(struct net_device *dev, 5831 rx_handler_func_t *rx_handler, 5832 void *rx_handler_data) 5833 { 5834 if (netdev_is_rx_handler_busy(dev)) 5835 return -EBUSY; 5836 5837 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5838 return -EINVAL; 5839 5840 /* Note: rx_handler_data must be set before rx_handler */ 5841 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5842 rcu_assign_pointer(dev->rx_handler, rx_handler); 5843 5844 return 0; 5845 } 5846 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5847 5848 /** 5849 * netdev_rx_handler_unregister - unregister receive handler 5850 * @dev: device to unregister a handler from 5851 * 5852 * Unregister a receive handler from a device. 5853 * 5854 * The caller must hold the rtnl_mutex. 5855 */ 5856 void netdev_rx_handler_unregister(struct net_device *dev) 5857 { 5858 5859 ASSERT_RTNL(); 5860 RCU_INIT_POINTER(dev->rx_handler, NULL); 5861 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5862 * section has a guarantee to see a non NULL rx_handler_data 5863 * as well. 5864 */ 5865 synchronize_net(); 5866 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5867 } 5868 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5869 5870 /* 5871 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5872 * the special handling of PFMEMALLOC skbs. 5873 */ 5874 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5875 { 5876 switch (skb->protocol) { 5877 case htons(ETH_P_ARP): 5878 case htons(ETH_P_IP): 5879 case htons(ETH_P_IPV6): 5880 case htons(ETH_P_8021Q): 5881 case htons(ETH_P_8021AD): 5882 return true; 5883 default: 5884 return false; 5885 } 5886 } 5887 5888 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5889 int *ret, struct net_device *orig_dev) 5890 { 5891 if (nf_hook_ingress_active(skb)) { 5892 int ingress_retval; 5893 5894 if (unlikely(*pt_prev)) { 5895 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5896 *pt_prev = NULL; 5897 } 5898 5899 rcu_read_lock(); 5900 ingress_retval = nf_hook_ingress(skb); 5901 rcu_read_unlock(); 5902 return ingress_retval; 5903 } 5904 return 0; 5905 } 5906 5907 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5908 struct packet_type **ppt_prev) 5909 { 5910 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO; 5911 struct packet_type *ptype, *pt_prev; 5912 rx_handler_func_t *rx_handler; 5913 struct sk_buff *skb = *pskb; 5914 struct net_device *orig_dev; 5915 bool deliver_exact = false; 5916 int ret = NET_RX_DROP; 5917 __be16 type; 5918 5919 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb); 5920 5921 trace_netif_receive_skb(skb); 5922 5923 orig_dev = skb->dev; 5924 5925 skb_reset_network_header(skb); 5926 #if !defined(CONFIG_DEBUG_NET) 5927 /* We plan to no longer reset the transport header here. 5928 * Give some time to fuzzers and dev build to catch bugs 5929 * in network stacks. 5930 */ 5931 if (!skb_transport_header_was_set(skb)) 5932 skb_reset_transport_header(skb); 5933 #endif 5934 skb_reset_mac_len(skb); 5935 5936 pt_prev = NULL; 5937 5938 another_round: 5939 skb->skb_iif = skb->dev->ifindex; 5940 5941 __this_cpu_inc(softnet_data.processed); 5942 5943 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5944 int ret2; 5945 5946 migrate_disable(); 5947 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), 5948 &skb); 5949 migrate_enable(); 5950 5951 if (ret2 != XDP_PASS) { 5952 ret = NET_RX_DROP; 5953 goto out; 5954 } 5955 } 5956 5957 if (eth_type_vlan(skb->protocol)) { 5958 skb = skb_vlan_untag(skb); 5959 if (unlikely(!skb)) 5960 goto out; 5961 } 5962 5963 if (skb_skip_tc_classify(skb)) 5964 goto skip_classify; 5965 5966 if (pfmemalloc) 5967 goto skip_taps; 5968 5969 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all, 5970 list) { 5971 if (unlikely(pt_prev)) 5972 ret = deliver_skb(skb, pt_prev, orig_dev); 5973 pt_prev = ptype; 5974 } 5975 5976 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5977 if (unlikely(pt_prev)) 5978 ret = deliver_skb(skb, pt_prev, orig_dev); 5979 pt_prev = ptype; 5980 } 5981 5982 skip_taps: 5983 #ifdef CONFIG_NET_INGRESS 5984 if (static_branch_unlikely(&ingress_needed_key)) { 5985 bool another = false; 5986 5987 nf_skip_egress(skb, true); 5988 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5989 &another); 5990 if (another) 5991 goto another_round; 5992 if (!skb) 5993 goto out; 5994 5995 nf_skip_egress(skb, false); 5996 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5997 goto out; 5998 } 5999 #endif 6000 skb_reset_redirect(skb); 6001 skip_classify: 6002 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) { 6003 drop_reason = SKB_DROP_REASON_PFMEMALLOC; 6004 goto drop; 6005 } 6006 6007 if (skb_vlan_tag_present(skb)) { 6008 if (unlikely(pt_prev)) { 6009 ret = deliver_skb(skb, pt_prev, orig_dev); 6010 pt_prev = NULL; 6011 } 6012 if (vlan_do_receive(&skb)) 6013 goto another_round; 6014 else if (unlikely(!skb)) 6015 goto out; 6016 } 6017 6018 rx_handler = rcu_dereference(skb->dev->rx_handler); 6019 if (rx_handler) { 6020 if (unlikely(pt_prev)) { 6021 ret = deliver_skb(skb, pt_prev, orig_dev); 6022 pt_prev = NULL; 6023 } 6024 switch (rx_handler(&skb)) { 6025 case RX_HANDLER_CONSUMED: 6026 ret = NET_RX_SUCCESS; 6027 goto out; 6028 case RX_HANDLER_ANOTHER: 6029 goto another_round; 6030 case RX_HANDLER_EXACT: 6031 deliver_exact = true; 6032 break; 6033 case RX_HANDLER_PASS: 6034 break; 6035 default: 6036 BUG(); 6037 } 6038 } 6039 6040 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 6041 check_vlan_id: 6042 if (skb_vlan_tag_get_id(skb)) { 6043 /* Vlan id is non 0 and vlan_do_receive() above couldn't 6044 * find vlan device. 6045 */ 6046 skb->pkt_type = PACKET_OTHERHOST; 6047 } else if (eth_type_vlan(skb->protocol)) { 6048 /* Outer header is 802.1P with vlan 0, inner header is 6049 * 802.1Q or 802.1AD and vlan_do_receive() above could 6050 * not find vlan dev for vlan id 0. 6051 */ 6052 __vlan_hwaccel_clear_tag(skb); 6053 skb = skb_vlan_untag(skb); 6054 if (unlikely(!skb)) 6055 goto out; 6056 if (vlan_do_receive(&skb)) 6057 /* After stripping off 802.1P header with vlan 0 6058 * vlan dev is found for inner header. 6059 */ 6060 goto another_round; 6061 else if (unlikely(!skb)) 6062 goto out; 6063 else 6064 /* We have stripped outer 802.1P vlan 0 header. 6065 * But could not find vlan dev. 6066 * check again for vlan id to set OTHERHOST. 6067 */ 6068 goto check_vlan_id; 6069 } 6070 /* Note: we might in the future use prio bits 6071 * and set skb->priority like in vlan_do_receive() 6072 * For the time being, just ignore Priority Code Point 6073 */ 6074 __vlan_hwaccel_clear_tag(skb); 6075 } 6076 6077 type = skb->protocol; 6078 6079 /* deliver only exact match when indicated */ 6080 if (likely(!deliver_exact)) { 6081 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6082 &ptype_base[ntohs(type) & 6083 PTYPE_HASH_MASK]); 6084 6085 /* orig_dev and skb->dev could belong to different netns; 6086 * Even in such case we need to traverse only the list 6087 * coming from skb->dev, as the ptype owner (packet socket) 6088 * will use dev_net(skb->dev) to do namespace filtering. 6089 */ 6090 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6091 &dev_net_rcu(skb->dev)->ptype_specific); 6092 } 6093 6094 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6095 &orig_dev->ptype_specific); 6096 6097 if (unlikely(skb->dev != orig_dev)) { 6098 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 6099 &skb->dev->ptype_specific); 6100 } 6101 6102 if (pt_prev) { 6103 *ppt_prev = pt_prev; 6104 } else { 6105 drop: 6106 if (!deliver_exact) 6107 dev_core_stats_rx_dropped_inc(skb->dev); 6108 else 6109 dev_core_stats_rx_nohandler_inc(skb->dev); 6110 6111 kfree_skb_reason(skb, drop_reason); 6112 /* Jamal, now you will not able to escape explaining 6113 * me how you were going to use this. :-) 6114 */ 6115 ret = NET_RX_DROP; 6116 } 6117 6118 out: 6119 /* The invariant here is that if *ppt_prev is not NULL 6120 * then skb should also be non-NULL. 6121 * 6122 * Apparently *ppt_prev assignment above holds this invariant due to 6123 * skb dereferencing near it. 6124 */ 6125 *pskb = skb; 6126 return ret; 6127 } 6128 6129 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 6130 { 6131 struct net_device *orig_dev = skb->dev; 6132 struct packet_type *pt_prev = NULL; 6133 int ret; 6134 6135 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6136 if (pt_prev) 6137 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 6138 skb->dev, pt_prev, orig_dev); 6139 return ret; 6140 } 6141 6142 /** 6143 * netif_receive_skb_core - special purpose version of netif_receive_skb 6144 * @skb: buffer to process 6145 * 6146 * More direct receive version of netif_receive_skb(). It should 6147 * only be used by callers that have a need to skip RPS and Generic XDP. 6148 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 6149 * 6150 * This function may only be called from softirq context and interrupts 6151 * should be enabled. 6152 * 6153 * Return values (usually ignored): 6154 * NET_RX_SUCCESS: no congestion 6155 * NET_RX_DROP: packet was dropped 6156 */ 6157 int netif_receive_skb_core(struct sk_buff *skb) 6158 { 6159 int ret; 6160 6161 rcu_read_lock(); 6162 ret = __netif_receive_skb_one_core(skb, false); 6163 rcu_read_unlock(); 6164 6165 return ret; 6166 } 6167 EXPORT_SYMBOL(netif_receive_skb_core); 6168 6169 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 6170 struct packet_type *pt_prev, 6171 struct net_device *orig_dev) 6172 { 6173 struct sk_buff *skb, *next; 6174 6175 if (!pt_prev) 6176 return; 6177 if (list_empty(head)) 6178 return; 6179 if (pt_prev->list_func != NULL) 6180 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 6181 ip_list_rcv, head, pt_prev, orig_dev); 6182 else 6183 list_for_each_entry_safe(skb, next, head, list) { 6184 skb_list_del_init(skb); 6185 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 6186 } 6187 } 6188 6189 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 6190 { 6191 /* Fast-path assumptions: 6192 * - There is no RX handler. 6193 * - Only one packet_type matches. 6194 * If either of these fails, we will end up doing some per-packet 6195 * processing in-line, then handling the 'last ptype' for the whole 6196 * sublist. This can't cause out-of-order delivery to any single ptype, 6197 * because the 'last ptype' must be constant across the sublist, and all 6198 * other ptypes are handled per-packet. 6199 */ 6200 /* Current (common) ptype of sublist */ 6201 struct packet_type *pt_curr = NULL; 6202 /* Current (common) orig_dev of sublist */ 6203 struct net_device *od_curr = NULL; 6204 struct sk_buff *skb, *next; 6205 LIST_HEAD(sublist); 6206 6207 list_for_each_entry_safe(skb, next, head, list) { 6208 struct net_device *orig_dev = skb->dev; 6209 struct packet_type *pt_prev = NULL; 6210 6211 skb_list_del_init(skb); 6212 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 6213 if (!pt_prev) 6214 continue; 6215 if (pt_curr != pt_prev || od_curr != orig_dev) { 6216 /* dispatch old sublist */ 6217 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6218 /* start new sublist */ 6219 INIT_LIST_HEAD(&sublist); 6220 pt_curr = pt_prev; 6221 od_curr = orig_dev; 6222 } 6223 list_add_tail(&skb->list, &sublist); 6224 } 6225 6226 /* dispatch final sublist */ 6227 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 6228 } 6229 6230 static int __netif_receive_skb(struct sk_buff *skb) 6231 { 6232 int ret; 6233 6234 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 6235 unsigned int noreclaim_flag; 6236 6237 /* 6238 * PFMEMALLOC skbs are special, they should 6239 * - be delivered to SOCK_MEMALLOC sockets only 6240 * - stay away from userspace 6241 * - have bounded memory usage 6242 * 6243 * Use PF_MEMALLOC as this saves us from propagating the allocation 6244 * context down to all allocation sites. 6245 */ 6246 noreclaim_flag = memalloc_noreclaim_save(); 6247 ret = __netif_receive_skb_one_core(skb, true); 6248 memalloc_noreclaim_restore(noreclaim_flag); 6249 } else 6250 ret = __netif_receive_skb_one_core(skb, false); 6251 6252 return ret; 6253 } 6254 6255 static void __netif_receive_skb_list(struct list_head *head) 6256 { 6257 unsigned long noreclaim_flag = 0; 6258 struct sk_buff *skb, *next; 6259 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 6260 6261 list_for_each_entry_safe(skb, next, head, list) { 6262 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 6263 struct list_head sublist; 6264 6265 /* Handle the previous sublist */ 6266 list_cut_before(&sublist, head, &skb->list); 6267 if (!list_empty(&sublist)) 6268 __netif_receive_skb_list_core(&sublist, pfmemalloc); 6269 pfmemalloc = !pfmemalloc; 6270 /* See comments in __netif_receive_skb */ 6271 if (pfmemalloc) 6272 noreclaim_flag = memalloc_noreclaim_save(); 6273 else 6274 memalloc_noreclaim_restore(noreclaim_flag); 6275 } 6276 } 6277 /* Handle the remaining sublist */ 6278 if (!list_empty(head)) 6279 __netif_receive_skb_list_core(head, pfmemalloc); 6280 /* Restore pflags */ 6281 if (pfmemalloc) 6282 memalloc_noreclaim_restore(noreclaim_flag); 6283 } 6284 6285 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 6286 { 6287 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 6288 struct bpf_prog *new = xdp->prog; 6289 int ret = 0; 6290 6291 switch (xdp->command) { 6292 case XDP_SETUP_PROG: 6293 rcu_assign_pointer(dev->xdp_prog, new); 6294 if (old) 6295 bpf_prog_put(old); 6296 6297 if (old && !new) { 6298 static_branch_dec(&generic_xdp_needed_key); 6299 } else if (new && !old) { 6300 static_branch_inc(&generic_xdp_needed_key); 6301 netif_disable_lro(dev); 6302 dev_disable_gro_hw(dev); 6303 } 6304 break; 6305 6306 default: 6307 ret = -EINVAL; 6308 break; 6309 } 6310 6311 return ret; 6312 } 6313 6314 static int netif_receive_skb_internal(struct sk_buff *skb) 6315 { 6316 int ret; 6317 6318 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb); 6319 6320 if (skb_defer_rx_timestamp(skb)) 6321 return NET_RX_SUCCESS; 6322 6323 rcu_read_lock(); 6324 #ifdef CONFIG_RPS 6325 if (static_branch_unlikely(&rps_needed)) { 6326 struct rps_dev_flow voidflow, *rflow = &voidflow; 6327 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6328 6329 if (cpu >= 0) { 6330 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6331 rcu_read_unlock(); 6332 return ret; 6333 } 6334 } 6335 #endif 6336 ret = __netif_receive_skb(skb); 6337 rcu_read_unlock(); 6338 return ret; 6339 } 6340 6341 void netif_receive_skb_list_internal(struct list_head *head) 6342 { 6343 struct sk_buff *skb, *next; 6344 LIST_HEAD(sublist); 6345 6346 list_for_each_entry_safe(skb, next, head, list) { 6347 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), 6348 skb); 6349 skb_list_del_init(skb); 6350 if (!skb_defer_rx_timestamp(skb)) 6351 list_add_tail(&skb->list, &sublist); 6352 } 6353 list_splice_init(&sublist, head); 6354 6355 rcu_read_lock(); 6356 #ifdef CONFIG_RPS 6357 if (static_branch_unlikely(&rps_needed)) { 6358 list_for_each_entry_safe(skb, next, head, list) { 6359 struct rps_dev_flow voidflow, *rflow = &voidflow; 6360 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 6361 6362 if (cpu >= 0) { 6363 /* Will be handled, remove from list */ 6364 skb_list_del_init(skb); 6365 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 6366 } 6367 } 6368 } 6369 #endif 6370 __netif_receive_skb_list(head); 6371 rcu_read_unlock(); 6372 } 6373 6374 /** 6375 * netif_receive_skb - process receive buffer from network 6376 * @skb: buffer to process 6377 * 6378 * netif_receive_skb() is the main receive data processing function. 6379 * It always succeeds. The buffer may be dropped during processing 6380 * for congestion control or by the protocol layers. 6381 * 6382 * This function may only be called from softirq context and interrupts 6383 * should be enabled. 6384 * 6385 * Return values (usually ignored): 6386 * NET_RX_SUCCESS: no congestion 6387 * NET_RX_DROP: packet was dropped 6388 */ 6389 int netif_receive_skb(struct sk_buff *skb) 6390 { 6391 int ret; 6392 6393 trace_netif_receive_skb_entry(skb); 6394 6395 ret = netif_receive_skb_internal(skb); 6396 trace_netif_receive_skb_exit(ret); 6397 6398 return ret; 6399 } 6400 EXPORT_SYMBOL(netif_receive_skb); 6401 6402 /** 6403 * netif_receive_skb_list - process many receive buffers from network 6404 * @head: list of skbs to process. 6405 * 6406 * Since return value of netif_receive_skb() is normally ignored, and 6407 * wouldn't be meaningful for a list, this function returns void. 6408 * 6409 * This function may only be called from softirq context and interrupts 6410 * should be enabled. 6411 */ 6412 void netif_receive_skb_list(struct list_head *head) 6413 { 6414 struct sk_buff *skb; 6415 6416 if (list_empty(head)) 6417 return; 6418 if (trace_netif_receive_skb_list_entry_enabled()) { 6419 list_for_each_entry(skb, head, list) 6420 trace_netif_receive_skb_list_entry(skb); 6421 } 6422 netif_receive_skb_list_internal(head); 6423 trace_netif_receive_skb_list_exit(0); 6424 } 6425 EXPORT_SYMBOL(netif_receive_skb_list); 6426 6427 /* Network device is going away, flush any packets still pending */ 6428 static void flush_backlog(struct work_struct *work) 6429 { 6430 struct sk_buff *skb, *tmp; 6431 struct sk_buff_head list; 6432 struct softnet_data *sd; 6433 6434 __skb_queue_head_init(&list); 6435 local_bh_disable(); 6436 sd = this_cpu_ptr(&softnet_data); 6437 6438 backlog_lock_irq_disable(sd); 6439 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 6440 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6441 __skb_unlink(skb, &sd->input_pkt_queue); 6442 __skb_queue_tail(&list, skb); 6443 rps_input_queue_head_incr(sd); 6444 } 6445 } 6446 backlog_unlock_irq_enable(sd); 6447 6448 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6449 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 6450 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) { 6451 __skb_unlink(skb, &sd->process_queue); 6452 __skb_queue_tail(&list, skb); 6453 rps_input_queue_head_incr(sd); 6454 } 6455 } 6456 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6457 local_bh_enable(); 6458 6459 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY); 6460 } 6461 6462 static bool flush_required(int cpu) 6463 { 6464 #if IS_ENABLED(CONFIG_RPS) 6465 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 6466 bool do_flush; 6467 6468 backlog_lock_irq_disable(sd); 6469 6470 /* as insertion into process_queue happens with the rps lock held, 6471 * process_queue access may race only with dequeue 6472 */ 6473 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 6474 !skb_queue_empty_lockless(&sd->process_queue); 6475 backlog_unlock_irq_enable(sd); 6476 6477 return do_flush; 6478 #endif 6479 /* without RPS we can't safely check input_pkt_queue: during a 6480 * concurrent remote skb_queue_splice() we can detect as empty both 6481 * input_pkt_queue and process_queue even if the latter could end-up 6482 * containing a lot of packets. 6483 */ 6484 return true; 6485 } 6486 6487 struct flush_backlogs { 6488 cpumask_t flush_cpus; 6489 struct work_struct w[]; 6490 }; 6491 6492 static struct flush_backlogs *flush_backlogs_alloc(void) 6493 { 6494 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids), 6495 GFP_KERNEL); 6496 } 6497 6498 static struct flush_backlogs *flush_backlogs_fallback; 6499 static DEFINE_MUTEX(flush_backlogs_mutex); 6500 6501 static void flush_all_backlogs(void) 6502 { 6503 struct flush_backlogs *ptr = flush_backlogs_alloc(); 6504 unsigned int cpu; 6505 6506 if (!ptr) { 6507 mutex_lock(&flush_backlogs_mutex); 6508 ptr = flush_backlogs_fallback; 6509 } 6510 cpumask_clear(&ptr->flush_cpus); 6511 6512 cpus_read_lock(); 6513 6514 for_each_online_cpu(cpu) { 6515 if (flush_required(cpu)) { 6516 INIT_WORK(&ptr->w[cpu], flush_backlog); 6517 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]); 6518 __cpumask_set_cpu(cpu, &ptr->flush_cpus); 6519 } 6520 } 6521 6522 /* we can have in flight packet[s] on the cpus we are not flushing, 6523 * synchronize_net() in unregister_netdevice_many() will take care of 6524 * them. 6525 */ 6526 for_each_cpu(cpu, &ptr->flush_cpus) 6527 flush_work(&ptr->w[cpu]); 6528 6529 cpus_read_unlock(); 6530 6531 if (ptr != flush_backlogs_fallback) 6532 kfree(ptr); 6533 else 6534 mutex_unlock(&flush_backlogs_mutex); 6535 } 6536 6537 static void net_rps_send_ipi(struct softnet_data *remsd) 6538 { 6539 #ifdef CONFIG_RPS 6540 while (remsd) { 6541 struct softnet_data *next = remsd->rps_ipi_next; 6542 6543 if (cpu_online(remsd->cpu)) 6544 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6545 remsd = next; 6546 } 6547 #endif 6548 } 6549 6550 /* 6551 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6552 * Note: called with local irq disabled, but exits with local irq enabled. 6553 */ 6554 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6555 { 6556 #ifdef CONFIG_RPS 6557 struct softnet_data *remsd = sd->rps_ipi_list; 6558 6559 if (!use_backlog_threads() && remsd) { 6560 sd->rps_ipi_list = NULL; 6561 6562 local_irq_enable(); 6563 6564 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6565 net_rps_send_ipi(remsd); 6566 } else 6567 #endif 6568 local_irq_enable(); 6569 } 6570 6571 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6572 { 6573 #ifdef CONFIG_RPS 6574 return !use_backlog_threads() && sd->rps_ipi_list; 6575 #else 6576 return false; 6577 #endif 6578 } 6579 6580 static int process_backlog(struct napi_struct *napi, int quota) 6581 { 6582 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6583 bool again = true; 6584 int work = 0; 6585 6586 /* Check if we have pending ipi, its better to send them now, 6587 * not waiting net_rx_action() end. 6588 */ 6589 if (sd_has_rps_ipi_waiting(sd)) { 6590 local_irq_disable(); 6591 net_rps_action_and_irq_enable(sd); 6592 } 6593 6594 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight); 6595 while (again) { 6596 struct sk_buff *skb; 6597 6598 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6599 while ((skb = __skb_dequeue(&sd->process_queue))) { 6600 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6601 rcu_read_lock(); 6602 __netif_receive_skb(skb); 6603 rcu_read_unlock(); 6604 if (++work >= quota) { 6605 rps_input_queue_head_add(sd, work); 6606 return work; 6607 } 6608 6609 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6610 } 6611 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6612 6613 backlog_lock_irq_disable(sd); 6614 if (skb_queue_empty(&sd->input_pkt_queue)) { 6615 /* 6616 * Inline a custom version of __napi_complete(). 6617 * only current cpu owns and manipulates this napi, 6618 * and NAPI_STATE_SCHED is the only possible flag set 6619 * on backlog. 6620 * We can use a plain write instead of clear_bit(), 6621 * and we dont need an smp_mb() memory barrier. 6622 */ 6623 napi->state &= NAPIF_STATE_THREADED; 6624 again = false; 6625 } else { 6626 local_lock_nested_bh(&softnet_data.process_queue_bh_lock); 6627 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6628 &sd->process_queue); 6629 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock); 6630 } 6631 backlog_unlock_irq_enable(sd); 6632 } 6633 6634 if (work) 6635 rps_input_queue_head_add(sd, work); 6636 return work; 6637 } 6638 6639 /** 6640 * __napi_schedule - schedule for receive 6641 * @n: entry to schedule 6642 * 6643 * The entry's receive function will be scheduled to run. 6644 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6645 */ 6646 void __napi_schedule(struct napi_struct *n) 6647 { 6648 unsigned long flags; 6649 6650 local_irq_save(flags); 6651 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6652 local_irq_restore(flags); 6653 } 6654 EXPORT_SYMBOL(__napi_schedule); 6655 6656 /** 6657 * napi_schedule_prep - check if napi can be scheduled 6658 * @n: napi context 6659 * 6660 * Test if NAPI routine is already running, and if not mark 6661 * it as running. This is used as a condition variable to 6662 * insure only one NAPI poll instance runs. We also make 6663 * sure there is no pending NAPI disable. 6664 */ 6665 bool napi_schedule_prep(struct napi_struct *n) 6666 { 6667 unsigned long new, val = READ_ONCE(n->state); 6668 6669 do { 6670 if (unlikely(val & NAPIF_STATE_DISABLE)) 6671 return false; 6672 new = val | NAPIF_STATE_SCHED; 6673 6674 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6675 * This was suggested by Alexander Duyck, as compiler 6676 * emits better code than : 6677 * if (val & NAPIF_STATE_SCHED) 6678 * new |= NAPIF_STATE_MISSED; 6679 */ 6680 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6681 NAPIF_STATE_MISSED; 6682 } while (!try_cmpxchg(&n->state, &val, new)); 6683 6684 return !(val & NAPIF_STATE_SCHED); 6685 } 6686 EXPORT_SYMBOL(napi_schedule_prep); 6687 6688 /** 6689 * __napi_schedule_irqoff - schedule for receive 6690 * @n: entry to schedule 6691 * 6692 * Variant of __napi_schedule() assuming hard irqs are masked. 6693 * 6694 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6695 * because the interrupt disabled assumption might not be true 6696 * due to force-threaded interrupts and spinlock substitution. 6697 */ 6698 void __napi_schedule_irqoff(struct napi_struct *n) 6699 { 6700 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6701 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6702 else 6703 __napi_schedule(n); 6704 } 6705 EXPORT_SYMBOL(__napi_schedule_irqoff); 6706 6707 bool napi_complete_done(struct napi_struct *n, int work_done) 6708 { 6709 unsigned long flags, val, new, timeout = 0; 6710 bool ret = true; 6711 6712 /* 6713 * 1) Don't let napi dequeue from the cpu poll list 6714 * just in case its running on a different cpu. 6715 * 2) If we are busy polling, do nothing here, we have 6716 * the guarantee we will be called later. 6717 */ 6718 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6719 NAPIF_STATE_IN_BUSY_POLL))) 6720 return false; 6721 6722 if (work_done) { 6723 if (n->gro.bitmask) 6724 timeout = napi_get_gro_flush_timeout(n); 6725 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n); 6726 } 6727 if (n->defer_hard_irqs_count > 0) { 6728 n->defer_hard_irqs_count--; 6729 timeout = napi_get_gro_flush_timeout(n); 6730 if (timeout) 6731 ret = false; 6732 } 6733 6734 /* 6735 * When the NAPI instance uses a timeout and keeps postponing 6736 * it, we need to bound somehow the time packets are kept in 6737 * the GRO layer. 6738 */ 6739 gro_flush_normal(&n->gro, !!timeout); 6740 6741 if (unlikely(!list_empty(&n->poll_list))) { 6742 /* If n->poll_list is not empty, we need to mask irqs */ 6743 local_irq_save(flags); 6744 list_del_init(&n->poll_list); 6745 local_irq_restore(flags); 6746 } 6747 WRITE_ONCE(n->list_owner, -1); 6748 6749 val = READ_ONCE(n->state); 6750 do { 6751 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6752 6753 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6754 NAPIF_STATE_SCHED_THREADED | 6755 NAPIF_STATE_PREFER_BUSY_POLL); 6756 6757 /* If STATE_MISSED was set, leave STATE_SCHED set, 6758 * because we will call napi->poll() one more time. 6759 * This C code was suggested by Alexander Duyck to help gcc. 6760 */ 6761 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6762 NAPIF_STATE_SCHED; 6763 } while (!try_cmpxchg(&n->state, &val, new)); 6764 6765 if (unlikely(val & NAPIF_STATE_MISSED)) { 6766 __napi_schedule(n); 6767 return false; 6768 } 6769 6770 if (timeout) 6771 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6772 HRTIMER_MODE_REL_PINNED); 6773 return ret; 6774 } 6775 EXPORT_SYMBOL(napi_complete_done); 6776 6777 static void skb_defer_free_flush(void) 6778 { 6779 struct llist_node *free_list; 6780 struct sk_buff *skb, *next; 6781 struct skb_defer_node *sdn; 6782 int node; 6783 6784 for_each_node(node) { 6785 sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node; 6786 6787 if (llist_empty(&sdn->defer_list)) 6788 continue; 6789 atomic_long_set(&sdn->defer_count, 0); 6790 free_list = llist_del_all(&sdn->defer_list); 6791 6792 llist_for_each_entry_safe(skb, next, free_list, ll_node) { 6793 prefetch(next); 6794 napi_consume_skb(skb, 1); 6795 } 6796 } 6797 } 6798 6799 #if defined(CONFIG_NET_RX_BUSY_POLL) 6800 6801 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6802 { 6803 if (!skip_schedule) { 6804 gro_normal_list(&napi->gro); 6805 __napi_schedule(napi); 6806 return; 6807 } 6808 6809 /* Flush too old packets. If HZ < 1000, flush all packets */ 6810 gro_flush_normal(&napi->gro, HZ >= 1000); 6811 6812 clear_bit(NAPI_STATE_SCHED, &napi->state); 6813 } 6814 6815 enum { 6816 NAPI_F_PREFER_BUSY_POLL = 1, 6817 NAPI_F_END_ON_RESCHED = 2, 6818 }; 6819 6820 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6821 unsigned flags, u16 budget) 6822 { 6823 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6824 bool skip_schedule = false; 6825 unsigned long timeout; 6826 int rc; 6827 6828 /* Busy polling means there is a high chance device driver hard irq 6829 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6830 * set in napi_schedule_prep(). 6831 * Since we are about to call napi->poll() once more, we can safely 6832 * clear NAPI_STATE_MISSED. 6833 * 6834 * Note: x86 could use a single "lock and ..." instruction 6835 * to perform these two clear_bit() 6836 */ 6837 clear_bit(NAPI_STATE_MISSED, &napi->state); 6838 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6839 6840 local_bh_disable(); 6841 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6842 6843 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6844 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi); 6845 timeout = napi_get_gro_flush_timeout(napi); 6846 if (napi->defer_hard_irqs_count && timeout) { 6847 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6848 skip_schedule = true; 6849 } 6850 } 6851 6852 /* All we really want here is to re-enable device interrupts. 6853 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6854 */ 6855 rc = napi->poll(napi, budget); 6856 /* We can't gro_normal_list() here, because napi->poll() might have 6857 * rearmed the napi (napi_complete_done()) in which case it could 6858 * already be running on another CPU. 6859 */ 6860 trace_napi_poll(napi, rc, budget); 6861 netpoll_poll_unlock(have_poll_lock); 6862 if (rc == budget) 6863 __busy_poll_stop(napi, skip_schedule); 6864 bpf_net_ctx_clear(bpf_net_ctx); 6865 local_bh_enable(); 6866 } 6867 6868 static void __napi_busy_loop(unsigned int napi_id, 6869 bool (*loop_end)(void *, unsigned long), 6870 void *loop_end_arg, unsigned flags, u16 budget) 6871 { 6872 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6873 int (*napi_poll)(struct napi_struct *napi, int budget); 6874 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 6875 void *have_poll_lock = NULL; 6876 struct napi_struct *napi; 6877 6878 WARN_ON_ONCE(!rcu_read_lock_held()); 6879 6880 restart: 6881 napi_poll = NULL; 6882 6883 napi = napi_by_id(napi_id); 6884 if (!napi) 6885 return; 6886 6887 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6888 preempt_disable(); 6889 for (;;) { 6890 int work = 0; 6891 6892 local_bh_disable(); 6893 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 6894 if (!napi_poll) { 6895 unsigned long val = READ_ONCE(napi->state); 6896 6897 /* If multiple threads are competing for this napi, 6898 * we avoid dirtying napi->state as much as we can. 6899 */ 6900 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6901 NAPIF_STATE_IN_BUSY_POLL)) { 6902 if (flags & NAPI_F_PREFER_BUSY_POLL) 6903 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6904 goto count; 6905 } 6906 if (cmpxchg(&napi->state, val, 6907 val | NAPIF_STATE_IN_BUSY_POLL | 6908 NAPIF_STATE_SCHED) != val) { 6909 if (flags & NAPI_F_PREFER_BUSY_POLL) 6910 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6911 goto count; 6912 } 6913 have_poll_lock = netpoll_poll_lock(napi); 6914 napi_poll = napi->poll; 6915 } 6916 work = napi_poll(napi, budget); 6917 trace_napi_poll(napi, work, budget); 6918 gro_normal_list(&napi->gro); 6919 count: 6920 if (work > 0) 6921 __NET_ADD_STATS(dev_net(napi->dev), 6922 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6923 skb_defer_free_flush(); 6924 bpf_net_ctx_clear(bpf_net_ctx); 6925 local_bh_enable(); 6926 6927 if (!loop_end || loop_end(loop_end_arg, start_time)) 6928 break; 6929 6930 if (unlikely(need_resched())) { 6931 if (flags & NAPI_F_END_ON_RESCHED) 6932 break; 6933 if (napi_poll) 6934 busy_poll_stop(napi, have_poll_lock, flags, budget); 6935 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6936 preempt_enable(); 6937 rcu_read_unlock(); 6938 cond_resched(); 6939 rcu_read_lock(); 6940 if (loop_end(loop_end_arg, start_time)) 6941 return; 6942 goto restart; 6943 } 6944 cpu_relax(); 6945 } 6946 if (napi_poll) 6947 busy_poll_stop(napi, have_poll_lock, flags, budget); 6948 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6949 preempt_enable(); 6950 } 6951 6952 void napi_busy_loop_rcu(unsigned int napi_id, 6953 bool (*loop_end)(void *, unsigned long), 6954 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6955 { 6956 unsigned flags = NAPI_F_END_ON_RESCHED; 6957 6958 if (prefer_busy_poll) 6959 flags |= NAPI_F_PREFER_BUSY_POLL; 6960 6961 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6962 } 6963 6964 void napi_busy_loop(unsigned int napi_id, 6965 bool (*loop_end)(void *, unsigned long), 6966 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6967 { 6968 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6969 6970 rcu_read_lock(); 6971 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6972 rcu_read_unlock(); 6973 } 6974 EXPORT_SYMBOL(napi_busy_loop); 6975 6976 void napi_suspend_irqs(unsigned int napi_id) 6977 { 6978 struct napi_struct *napi; 6979 6980 rcu_read_lock(); 6981 napi = napi_by_id(napi_id); 6982 if (napi) { 6983 unsigned long timeout = napi_get_irq_suspend_timeout(napi); 6984 6985 if (timeout) 6986 hrtimer_start(&napi->timer, ns_to_ktime(timeout), 6987 HRTIMER_MODE_REL_PINNED); 6988 } 6989 rcu_read_unlock(); 6990 } 6991 6992 void napi_resume_irqs(unsigned int napi_id) 6993 { 6994 struct napi_struct *napi; 6995 6996 rcu_read_lock(); 6997 napi = napi_by_id(napi_id); 6998 if (napi) { 6999 /* If irq_suspend_timeout is set to 0 between the call to 7000 * napi_suspend_irqs and now, the original value still 7001 * determines the safety timeout as intended and napi_watchdog 7002 * will resume irq processing. 7003 */ 7004 if (napi_get_irq_suspend_timeout(napi)) { 7005 local_bh_disable(); 7006 napi_schedule(napi); 7007 local_bh_enable(); 7008 } 7009 } 7010 rcu_read_unlock(); 7011 } 7012 7013 #endif /* CONFIG_NET_RX_BUSY_POLL */ 7014 7015 static void __napi_hash_add_with_id(struct napi_struct *napi, 7016 unsigned int napi_id) 7017 { 7018 napi->gro.cached_napi_id = napi_id; 7019 7020 WRITE_ONCE(napi->napi_id, napi_id); 7021 hlist_add_head_rcu(&napi->napi_hash_node, 7022 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 7023 } 7024 7025 static void napi_hash_add_with_id(struct napi_struct *napi, 7026 unsigned int napi_id) 7027 { 7028 unsigned long flags; 7029 7030 spin_lock_irqsave(&napi_hash_lock, flags); 7031 WARN_ON_ONCE(napi_by_id(napi_id)); 7032 __napi_hash_add_with_id(napi, napi_id); 7033 spin_unlock_irqrestore(&napi_hash_lock, flags); 7034 } 7035 7036 static void napi_hash_add(struct napi_struct *napi) 7037 { 7038 unsigned long flags; 7039 7040 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 7041 return; 7042 7043 spin_lock_irqsave(&napi_hash_lock, flags); 7044 7045 /* 0..NR_CPUS range is reserved for sender_cpu use */ 7046 do { 7047 if (unlikely(!napi_id_valid(++napi_gen_id))) 7048 napi_gen_id = MIN_NAPI_ID; 7049 } while (napi_by_id(napi_gen_id)); 7050 7051 __napi_hash_add_with_id(napi, napi_gen_id); 7052 7053 spin_unlock_irqrestore(&napi_hash_lock, flags); 7054 } 7055 7056 /* Warning : caller is responsible to make sure rcu grace period 7057 * is respected before freeing memory containing @napi 7058 */ 7059 static void napi_hash_del(struct napi_struct *napi) 7060 { 7061 unsigned long flags; 7062 7063 spin_lock_irqsave(&napi_hash_lock, flags); 7064 7065 hlist_del_init_rcu(&napi->napi_hash_node); 7066 7067 spin_unlock_irqrestore(&napi_hash_lock, flags); 7068 } 7069 7070 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 7071 { 7072 struct napi_struct *napi; 7073 7074 napi = container_of(timer, struct napi_struct, timer); 7075 7076 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 7077 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 7078 */ 7079 if (!napi_disable_pending(napi) && 7080 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 7081 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 7082 __napi_schedule_irqoff(napi); 7083 } 7084 7085 return HRTIMER_NORESTART; 7086 } 7087 7088 static void napi_stop_kthread(struct napi_struct *napi) 7089 { 7090 unsigned long val, new; 7091 7092 /* Wait until the napi STATE_THREADED is unset. */ 7093 while (true) { 7094 val = READ_ONCE(napi->state); 7095 7096 /* If napi kthread own this napi or the napi is idle, 7097 * STATE_THREADED can be unset here. 7098 */ 7099 if ((val & NAPIF_STATE_SCHED_THREADED) || 7100 !(val & NAPIF_STATE_SCHED)) { 7101 new = val & (~(NAPIF_STATE_THREADED | 7102 NAPIF_STATE_THREADED_BUSY_POLL)); 7103 } else { 7104 msleep(20); 7105 continue; 7106 } 7107 7108 if (try_cmpxchg(&napi->state, &val, new)) 7109 break; 7110 } 7111 7112 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by 7113 * the kthread. 7114 */ 7115 while (true) { 7116 if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) 7117 break; 7118 7119 msleep(20); 7120 } 7121 7122 kthread_stop(napi->thread); 7123 napi->thread = NULL; 7124 } 7125 7126 static void napi_set_threaded_state(struct napi_struct *napi, 7127 enum netdev_napi_threaded threaded_mode) 7128 { 7129 bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED; 7130 bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL; 7131 7132 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 7133 assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll); 7134 } 7135 7136 int napi_set_threaded(struct napi_struct *napi, 7137 enum netdev_napi_threaded threaded) 7138 { 7139 if (threaded) { 7140 if (!napi->thread) { 7141 int err = napi_kthread_create(napi); 7142 7143 if (err) 7144 return err; 7145 } 7146 } 7147 7148 if (napi->config) 7149 napi->config->threaded = threaded; 7150 7151 /* Setting/unsetting threaded mode on a napi might not immediately 7152 * take effect, if the current napi instance is actively being 7153 * polled. In this case, the switch between threaded mode and 7154 * softirq mode will happen in the next round of napi_schedule(). 7155 * This should not cause hiccups/stalls to the live traffic. 7156 */ 7157 if (!threaded && napi->thread) { 7158 napi_stop_kthread(napi); 7159 } else { 7160 /* Make sure kthread is created before THREADED bit is set. */ 7161 smp_mb__before_atomic(); 7162 napi_set_threaded_state(napi, threaded); 7163 } 7164 7165 return 0; 7166 } 7167 7168 int netif_set_threaded(struct net_device *dev, 7169 enum netdev_napi_threaded threaded) 7170 { 7171 struct napi_struct *napi; 7172 int i, err = 0; 7173 7174 netdev_assert_locked_or_invisible(dev); 7175 7176 if (threaded) { 7177 list_for_each_entry(napi, &dev->napi_list, dev_list) { 7178 if (!napi->thread) { 7179 err = napi_kthread_create(napi); 7180 if (err) { 7181 threaded = NETDEV_NAPI_THREADED_DISABLED; 7182 break; 7183 } 7184 } 7185 } 7186 } 7187 7188 WRITE_ONCE(dev->threaded, threaded); 7189 7190 /* The error should not occur as the kthreads are already created. */ 7191 list_for_each_entry(napi, &dev->napi_list, dev_list) 7192 WARN_ON_ONCE(napi_set_threaded(napi, threaded)); 7193 7194 /* Override the config for all NAPIs even if currently not listed */ 7195 for (i = 0; i < dev->num_napi_configs; i++) 7196 dev->napi_config[i].threaded = threaded; 7197 7198 return err; 7199 } 7200 7201 /** 7202 * netif_threaded_enable() - enable threaded NAPIs 7203 * @dev: net_device instance 7204 * 7205 * Enable threaded mode for the NAPI instances of the device. This may be useful 7206 * for devices where multiple NAPI instances get scheduled by a single 7207 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other 7208 * than the core where IRQ is mapped. 7209 * 7210 * This function should be called before @dev is registered. 7211 */ 7212 void netif_threaded_enable(struct net_device *dev) 7213 { 7214 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED)); 7215 } 7216 EXPORT_SYMBOL(netif_threaded_enable); 7217 7218 /** 7219 * netif_queue_set_napi - Associate queue with the napi 7220 * @dev: device to which NAPI and queue belong 7221 * @queue_index: Index of queue 7222 * @type: queue type as RX or TX 7223 * @napi: NAPI context, pass NULL to clear previously set NAPI 7224 * 7225 * Set queue with its corresponding napi context. This should be done after 7226 * registering the NAPI handler for the queue-vector and the queues have been 7227 * mapped to the corresponding interrupt vector. 7228 */ 7229 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 7230 enum netdev_queue_type type, struct napi_struct *napi) 7231 { 7232 struct netdev_rx_queue *rxq; 7233 struct netdev_queue *txq; 7234 7235 if (WARN_ON_ONCE(napi && !napi->dev)) 7236 return; 7237 netdev_ops_assert_locked_or_invisible(dev); 7238 7239 switch (type) { 7240 case NETDEV_QUEUE_TYPE_RX: 7241 rxq = __netif_get_rx_queue(dev, queue_index); 7242 rxq->napi = napi; 7243 return; 7244 case NETDEV_QUEUE_TYPE_TX: 7245 txq = netdev_get_tx_queue(dev, queue_index); 7246 txq->napi = napi; 7247 return; 7248 default: 7249 return; 7250 } 7251 } 7252 EXPORT_SYMBOL(netif_queue_set_napi); 7253 7254 static void 7255 netif_napi_irq_notify(struct irq_affinity_notify *notify, 7256 const cpumask_t *mask) 7257 { 7258 struct napi_struct *napi = 7259 container_of(notify, struct napi_struct, notify); 7260 #ifdef CONFIG_RFS_ACCEL 7261 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7262 int err; 7263 #endif 7264 7265 if (napi->config && napi->dev->irq_affinity_auto) 7266 cpumask_copy(&napi->config->affinity_mask, mask); 7267 7268 #ifdef CONFIG_RFS_ACCEL 7269 if (napi->dev->rx_cpu_rmap_auto) { 7270 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask); 7271 if (err) 7272 netdev_warn(napi->dev, "RMAP update failed (%d)\n", 7273 err); 7274 } 7275 #endif 7276 } 7277 7278 #ifdef CONFIG_RFS_ACCEL 7279 static void netif_napi_affinity_release(struct kref *ref) 7280 { 7281 struct napi_struct *napi = 7282 container_of(ref, struct napi_struct, notify.kref); 7283 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap; 7284 7285 netdev_assert_locked(napi->dev); 7286 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, 7287 &napi->state)); 7288 7289 if (!napi->dev->rx_cpu_rmap_auto) 7290 return; 7291 rmap->obj[napi->napi_rmap_idx] = NULL; 7292 napi->napi_rmap_idx = -1; 7293 cpu_rmap_put(rmap); 7294 } 7295 7296 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7297 { 7298 if (dev->rx_cpu_rmap_auto) 7299 return 0; 7300 7301 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs); 7302 if (!dev->rx_cpu_rmap) 7303 return -ENOMEM; 7304 7305 dev->rx_cpu_rmap_auto = true; 7306 return 0; 7307 } 7308 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7309 7310 static void netif_del_cpu_rmap(struct net_device *dev) 7311 { 7312 struct cpu_rmap *rmap = dev->rx_cpu_rmap; 7313 7314 if (!dev->rx_cpu_rmap_auto) 7315 return; 7316 7317 /* Free the rmap */ 7318 cpu_rmap_put(rmap); 7319 dev->rx_cpu_rmap = NULL; 7320 dev->rx_cpu_rmap_auto = false; 7321 } 7322 7323 #else 7324 static void netif_napi_affinity_release(struct kref *ref) 7325 { 7326 } 7327 7328 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs) 7329 { 7330 return 0; 7331 } 7332 EXPORT_SYMBOL(netif_enable_cpu_rmap); 7333 7334 static void netif_del_cpu_rmap(struct net_device *dev) 7335 { 7336 } 7337 #endif 7338 7339 void netif_set_affinity_auto(struct net_device *dev) 7340 { 7341 unsigned int i, maxqs, numa; 7342 7343 maxqs = max(dev->num_tx_queues, dev->num_rx_queues); 7344 numa = dev_to_node(&dev->dev); 7345 7346 for (i = 0; i < maxqs; i++) 7347 cpumask_set_cpu(cpumask_local_spread(i, numa), 7348 &dev->napi_config[i].affinity_mask); 7349 7350 dev->irq_affinity_auto = true; 7351 } 7352 EXPORT_SYMBOL(netif_set_affinity_auto); 7353 7354 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq) 7355 { 7356 int rc; 7357 7358 netdev_assert_locked_or_invisible(napi->dev); 7359 7360 if (napi->irq == irq) 7361 return; 7362 7363 /* Remove existing resources */ 7364 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7365 irq_set_affinity_notifier(napi->irq, NULL); 7366 7367 napi->irq = irq; 7368 if (irq < 0 || 7369 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto)) 7370 return; 7371 7372 /* Abort for buggy drivers */ 7373 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config)) 7374 return; 7375 7376 #ifdef CONFIG_RFS_ACCEL 7377 if (napi->dev->rx_cpu_rmap_auto) { 7378 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi); 7379 if (rc < 0) 7380 return; 7381 7382 cpu_rmap_get(napi->dev->rx_cpu_rmap); 7383 napi->napi_rmap_idx = rc; 7384 } 7385 #endif 7386 7387 /* Use core IRQ notifier */ 7388 napi->notify.notify = netif_napi_irq_notify; 7389 napi->notify.release = netif_napi_affinity_release; 7390 rc = irq_set_affinity_notifier(irq, &napi->notify); 7391 if (rc) { 7392 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n", 7393 rc); 7394 goto put_rmap; 7395 } 7396 7397 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state); 7398 return; 7399 7400 put_rmap: 7401 #ifdef CONFIG_RFS_ACCEL 7402 if (napi->dev->rx_cpu_rmap_auto) { 7403 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL; 7404 cpu_rmap_put(napi->dev->rx_cpu_rmap); 7405 napi->napi_rmap_idx = -1; 7406 } 7407 #endif 7408 napi->notify.notify = NULL; 7409 napi->notify.release = NULL; 7410 } 7411 EXPORT_SYMBOL(netif_napi_set_irq_locked); 7412 7413 static void napi_restore_config(struct napi_struct *n) 7414 { 7415 n->defer_hard_irqs = n->config->defer_hard_irqs; 7416 n->gro_flush_timeout = n->config->gro_flush_timeout; 7417 n->irq_suspend_timeout = n->config->irq_suspend_timeout; 7418 7419 if (n->dev->irq_affinity_auto && 7420 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state)) 7421 irq_set_affinity(n->irq, &n->config->affinity_mask); 7422 7423 /* a NAPI ID might be stored in the config, if so use it. if not, use 7424 * napi_hash_add to generate one for us. 7425 */ 7426 if (n->config->napi_id) { 7427 napi_hash_add_with_id(n, n->config->napi_id); 7428 } else { 7429 napi_hash_add(n); 7430 n->config->napi_id = n->napi_id; 7431 } 7432 7433 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded)); 7434 } 7435 7436 static void napi_save_config(struct napi_struct *n) 7437 { 7438 n->config->defer_hard_irqs = n->defer_hard_irqs; 7439 n->config->gro_flush_timeout = n->gro_flush_timeout; 7440 n->config->irq_suspend_timeout = n->irq_suspend_timeout; 7441 napi_hash_del(n); 7442 } 7443 7444 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will 7445 * inherit an existing ID try to insert it at the right position. 7446 */ 7447 static void 7448 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi) 7449 { 7450 unsigned int new_id, pos_id; 7451 struct list_head *higher; 7452 struct napi_struct *pos; 7453 7454 new_id = UINT_MAX; 7455 if (napi->config && napi->config->napi_id) 7456 new_id = napi->config->napi_id; 7457 7458 higher = &dev->napi_list; 7459 list_for_each_entry(pos, &dev->napi_list, dev_list) { 7460 if (napi_id_valid(pos->napi_id)) 7461 pos_id = pos->napi_id; 7462 else if (pos->config) 7463 pos_id = pos->config->napi_id; 7464 else 7465 pos_id = UINT_MAX; 7466 7467 if (pos_id <= new_id) 7468 break; 7469 higher = &pos->dev_list; 7470 } 7471 list_add_rcu(&napi->dev_list, higher); /* adds after higher */ 7472 } 7473 7474 /* Double check that napi_get_frags() allocates skbs with 7475 * skb->head being backed by slab, not a page fragment. 7476 * This is to make sure bug fixed in 3226b158e67c 7477 * ("net: avoid 32 x truesize under-estimation for tiny skbs") 7478 * does not accidentally come back. 7479 */ 7480 static void napi_get_frags_check(struct napi_struct *napi) 7481 { 7482 struct sk_buff *skb; 7483 7484 local_bh_disable(); 7485 skb = napi_get_frags(napi); 7486 WARN_ON_ONCE(skb && skb->head_frag); 7487 napi_free_frags(napi); 7488 local_bh_enable(); 7489 } 7490 7491 void netif_napi_add_weight_locked(struct net_device *dev, 7492 struct napi_struct *napi, 7493 int (*poll)(struct napi_struct *, int), 7494 int weight) 7495 { 7496 netdev_assert_locked(dev); 7497 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 7498 return; 7499 7500 INIT_LIST_HEAD(&napi->poll_list); 7501 INIT_HLIST_NODE(&napi->napi_hash_node); 7502 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 7503 gro_init(&napi->gro); 7504 napi->skb = NULL; 7505 napi->poll = poll; 7506 if (weight > NAPI_POLL_WEIGHT) 7507 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 7508 weight); 7509 napi->weight = weight; 7510 napi->dev = dev; 7511 #ifdef CONFIG_NETPOLL 7512 napi->poll_owner = -1; 7513 #endif 7514 napi->list_owner = -1; 7515 set_bit(NAPI_STATE_SCHED, &napi->state); 7516 set_bit(NAPI_STATE_NPSVC, &napi->state); 7517 netif_napi_dev_list_add(dev, napi); 7518 7519 /* default settings from sysfs are applied to all NAPIs. any per-NAPI 7520 * configuration will be loaded in napi_enable 7521 */ 7522 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs)); 7523 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout)); 7524 7525 napi_get_frags_check(napi); 7526 /* Create kthread for this napi if dev->threaded is set. 7527 * Clear dev->threaded if kthread creation failed so that 7528 * threaded mode will not be enabled in napi_enable(). 7529 */ 7530 if (napi_get_threaded_config(dev, napi)) 7531 if (napi_kthread_create(napi)) 7532 dev->threaded = NETDEV_NAPI_THREADED_DISABLED; 7533 netif_napi_set_irq_locked(napi, -1); 7534 } 7535 EXPORT_SYMBOL(netif_napi_add_weight_locked); 7536 7537 void napi_disable_locked(struct napi_struct *n) 7538 { 7539 unsigned long val, new; 7540 7541 might_sleep(); 7542 netdev_assert_locked(n->dev); 7543 7544 set_bit(NAPI_STATE_DISABLE, &n->state); 7545 7546 val = READ_ONCE(n->state); 7547 do { 7548 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 7549 usleep_range(20, 200); 7550 val = READ_ONCE(n->state); 7551 } 7552 7553 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 7554 new &= ~(NAPIF_STATE_THREADED | 7555 NAPIF_STATE_THREADED_BUSY_POLL | 7556 NAPIF_STATE_PREFER_BUSY_POLL); 7557 } while (!try_cmpxchg(&n->state, &val, new)); 7558 7559 hrtimer_cancel(&n->timer); 7560 7561 if (n->config) 7562 napi_save_config(n); 7563 else 7564 napi_hash_del(n); 7565 7566 clear_bit(NAPI_STATE_DISABLE, &n->state); 7567 } 7568 EXPORT_SYMBOL(napi_disable_locked); 7569 7570 /** 7571 * napi_disable() - prevent NAPI from scheduling 7572 * @n: NAPI context 7573 * 7574 * Stop NAPI from being scheduled on this context. 7575 * Waits till any outstanding processing completes. 7576 * Takes netdev_lock() for associated net_device. 7577 */ 7578 void napi_disable(struct napi_struct *n) 7579 { 7580 netdev_lock(n->dev); 7581 napi_disable_locked(n); 7582 netdev_unlock(n->dev); 7583 } 7584 EXPORT_SYMBOL(napi_disable); 7585 7586 void napi_enable_locked(struct napi_struct *n) 7587 { 7588 unsigned long new, val = READ_ONCE(n->state); 7589 7590 if (n->config) 7591 napi_restore_config(n); 7592 else 7593 napi_hash_add(n); 7594 7595 do { 7596 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 7597 7598 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 7599 if (n->dev->threaded && n->thread) 7600 new |= NAPIF_STATE_THREADED; 7601 } while (!try_cmpxchg(&n->state, &val, new)); 7602 } 7603 EXPORT_SYMBOL(napi_enable_locked); 7604 7605 /** 7606 * napi_enable() - enable NAPI scheduling 7607 * @n: NAPI context 7608 * 7609 * Enable scheduling of a NAPI instance. 7610 * Must be paired with napi_disable(). 7611 * Takes netdev_lock() for associated net_device. 7612 */ 7613 void napi_enable(struct napi_struct *n) 7614 { 7615 netdev_lock(n->dev); 7616 napi_enable_locked(n); 7617 netdev_unlock(n->dev); 7618 } 7619 EXPORT_SYMBOL(napi_enable); 7620 7621 /* Must be called in process context */ 7622 void __netif_napi_del_locked(struct napi_struct *napi) 7623 { 7624 netdev_assert_locked(napi->dev); 7625 7626 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 7627 return; 7628 7629 /* Make sure NAPI is disabled (or was never enabled). */ 7630 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state)); 7631 7632 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state)) 7633 irq_set_affinity_notifier(napi->irq, NULL); 7634 7635 if (napi->config) { 7636 napi->index = -1; 7637 napi->config = NULL; 7638 } 7639 7640 list_del_rcu(&napi->dev_list); 7641 napi_free_frags(napi); 7642 7643 gro_cleanup(&napi->gro); 7644 7645 if (napi->thread) { 7646 kthread_stop(napi->thread); 7647 napi->thread = NULL; 7648 } 7649 } 7650 EXPORT_SYMBOL(__netif_napi_del_locked); 7651 7652 static int __napi_poll(struct napi_struct *n, bool *repoll) 7653 { 7654 int work, weight; 7655 7656 weight = n->weight; 7657 7658 /* This NAPI_STATE_SCHED test is for avoiding a race 7659 * with netpoll's poll_napi(). Only the entity which 7660 * obtains the lock and sees NAPI_STATE_SCHED set will 7661 * actually make the ->poll() call. Therefore we avoid 7662 * accidentally calling ->poll() when NAPI is not scheduled. 7663 */ 7664 work = 0; 7665 if (napi_is_scheduled(n)) { 7666 work = n->poll(n, weight); 7667 trace_napi_poll(n, work, weight); 7668 7669 xdp_do_check_flushed(n); 7670 } 7671 7672 if (unlikely(work > weight)) 7673 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7674 n->poll, work, weight); 7675 7676 if (likely(work < weight)) 7677 return work; 7678 7679 /* Drivers must not modify the NAPI state if they 7680 * consume the entire weight. In such cases this code 7681 * still "owns" the NAPI instance and therefore can 7682 * move the instance around on the list at-will. 7683 */ 7684 if (unlikely(napi_disable_pending(n))) { 7685 napi_complete(n); 7686 return work; 7687 } 7688 7689 /* The NAPI context has more processing work, but busy-polling 7690 * is preferred. Exit early. 7691 */ 7692 if (napi_prefer_busy_poll(n)) { 7693 if (napi_complete_done(n, work)) { 7694 /* If timeout is not set, we need to make sure 7695 * that the NAPI is re-scheduled. 7696 */ 7697 napi_schedule(n); 7698 } 7699 return work; 7700 } 7701 7702 /* Flush too old packets. If HZ < 1000, flush all packets */ 7703 gro_flush_normal(&n->gro, HZ >= 1000); 7704 7705 /* Some drivers may have called napi_schedule 7706 * prior to exhausting their budget. 7707 */ 7708 if (unlikely(!list_empty(&n->poll_list))) { 7709 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7710 n->dev ? n->dev->name : "backlog"); 7711 return work; 7712 } 7713 7714 *repoll = true; 7715 7716 return work; 7717 } 7718 7719 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7720 { 7721 bool do_repoll = false; 7722 void *have; 7723 int work; 7724 7725 list_del_init(&n->poll_list); 7726 7727 have = netpoll_poll_lock(n); 7728 7729 work = __napi_poll(n, &do_repoll); 7730 7731 if (do_repoll) { 7732 #if defined(CONFIG_DEBUG_NET) 7733 if (unlikely(!napi_is_scheduled(n))) 7734 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n", 7735 n->dev->name, n->poll); 7736 #endif 7737 list_add_tail(&n->poll_list, repoll); 7738 } 7739 netpoll_poll_unlock(have); 7740 7741 return work; 7742 } 7743 7744 static int napi_thread_wait(struct napi_struct *napi) 7745 { 7746 set_current_state(TASK_INTERRUPTIBLE); 7747 7748 while (!kthread_should_stop()) { 7749 /* Testing SCHED_THREADED bit here to make sure the current 7750 * kthread owns this napi and could poll on this napi. 7751 * Testing SCHED bit is not enough because SCHED bit might be 7752 * set by some other busy poll thread or by napi_disable(). 7753 */ 7754 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) { 7755 WARN_ON(!list_empty(&napi->poll_list)); 7756 __set_current_state(TASK_RUNNING); 7757 return 0; 7758 } 7759 7760 schedule(); 7761 set_current_state(TASK_INTERRUPTIBLE); 7762 } 7763 __set_current_state(TASK_RUNNING); 7764 7765 return -1; 7766 } 7767 7768 static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll) 7769 { 7770 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7771 struct softnet_data *sd; 7772 unsigned long last_qs = jiffies; 7773 7774 for (;;) { 7775 bool repoll = false; 7776 void *have; 7777 7778 local_bh_disable(); 7779 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7780 7781 sd = this_cpu_ptr(&softnet_data); 7782 sd->in_napi_threaded_poll = true; 7783 7784 have = netpoll_poll_lock(napi); 7785 __napi_poll(napi, &repoll); 7786 netpoll_poll_unlock(have); 7787 7788 sd->in_napi_threaded_poll = false; 7789 barrier(); 7790 7791 if (sd_has_rps_ipi_waiting(sd)) { 7792 local_irq_disable(); 7793 net_rps_action_and_irq_enable(sd); 7794 } 7795 skb_defer_free_flush(); 7796 bpf_net_ctx_clear(bpf_net_ctx); 7797 7798 /* When busy poll is enabled, the old packets are not flushed in 7799 * napi_complete_done. So flush them here. 7800 */ 7801 if (busy_poll) 7802 gro_flush_normal(&napi->gro, HZ >= 1000); 7803 local_bh_enable(); 7804 7805 /* Call cond_resched here to avoid watchdog warnings. */ 7806 if (repoll || busy_poll) { 7807 rcu_softirq_qs_periodic(last_qs); 7808 cond_resched(); 7809 } 7810 7811 if (!repoll) 7812 break; 7813 } 7814 } 7815 7816 static int napi_threaded_poll(void *data) 7817 { 7818 struct napi_struct *napi = data; 7819 bool want_busy_poll; 7820 bool in_busy_poll; 7821 unsigned long val; 7822 7823 while (!napi_thread_wait(napi)) { 7824 val = READ_ONCE(napi->state); 7825 7826 want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL; 7827 in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL; 7828 7829 if (unlikely(val & NAPIF_STATE_DISABLE)) 7830 want_busy_poll = false; 7831 7832 if (want_busy_poll != in_busy_poll) 7833 assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state, 7834 want_busy_poll); 7835 7836 napi_threaded_poll_loop(napi, want_busy_poll); 7837 } 7838 7839 return 0; 7840 } 7841 7842 static __latent_entropy void net_rx_action(void) 7843 { 7844 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7845 unsigned long time_limit = jiffies + 7846 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs)); 7847 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx; 7848 int budget = READ_ONCE(net_hotdata.netdev_budget); 7849 LIST_HEAD(list); 7850 LIST_HEAD(repoll); 7851 7852 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx); 7853 start: 7854 sd->in_net_rx_action = true; 7855 local_irq_disable(); 7856 list_splice_init(&sd->poll_list, &list); 7857 local_irq_enable(); 7858 7859 for (;;) { 7860 struct napi_struct *n; 7861 7862 skb_defer_free_flush(); 7863 7864 if (list_empty(&list)) { 7865 if (list_empty(&repoll)) { 7866 sd->in_net_rx_action = false; 7867 barrier(); 7868 /* We need to check if ____napi_schedule() 7869 * had refilled poll_list while 7870 * sd->in_net_rx_action was true. 7871 */ 7872 if (!list_empty(&sd->poll_list)) 7873 goto start; 7874 if (!sd_has_rps_ipi_waiting(sd)) 7875 goto end; 7876 } 7877 break; 7878 } 7879 7880 n = list_first_entry(&list, struct napi_struct, poll_list); 7881 budget -= napi_poll(n, &repoll); 7882 7883 /* If softirq window is exhausted then punt. 7884 * Allow this to run for 2 jiffies since which will allow 7885 * an average latency of 1.5/HZ. 7886 */ 7887 if (unlikely(budget <= 0 || 7888 time_after_eq(jiffies, time_limit))) { 7889 /* Pairs with READ_ONCE() in softnet_seq_show() */ 7890 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1); 7891 break; 7892 } 7893 } 7894 7895 local_irq_disable(); 7896 7897 list_splice_tail_init(&sd->poll_list, &list); 7898 list_splice_tail(&repoll, &list); 7899 list_splice(&list, &sd->poll_list); 7900 if (!list_empty(&sd->poll_list)) 7901 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7902 else 7903 sd->in_net_rx_action = false; 7904 7905 net_rps_action_and_irq_enable(sd); 7906 end: 7907 bpf_net_ctx_clear(bpf_net_ctx); 7908 } 7909 7910 struct netdev_adjacent { 7911 struct net_device *dev; 7912 netdevice_tracker dev_tracker; 7913 7914 /* upper master flag, there can only be one master device per list */ 7915 bool master; 7916 7917 /* lookup ignore flag */ 7918 bool ignore; 7919 7920 /* counter for the number of times this device was added to us */ 7921 u16 ref_nr; 7922 7923 /* private field for the users */ 7924 void *private; 7925 7926 struct list_head list; 7927 struct rcu_head rcu; 7928 }; 7929 7930 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7931 struct list_head *adj_list) 7932 { 7933 struct netdev_adjacent *adj; 7934 7935 list_for_each_entry(adj, adj_list, list) { 7936 if (adj->dev == adj_dev) 7937 return adj; 7938 } 7939 return NULL; 7940 } 7941 7942 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7943 struct netdev_nested_priv *priv) 7944 { 7945 struct net_device *dev = (struct net_device *)priv->data; 7946 7947 return upper_dev == dev; 7948 } 7949 7950 /** 7951 * netdev_has_upper_dev - Check if device is linked to an upper device 7952 * @dev: device 7953 * @upper_dev: upper device to check 7954 * 7955 * Find out if a device is linked to specified upper device and return true 7956 * in case it is. Note that this checks only immediate upper device, 7957 * not through a complete stack of devices. The caller must hold the RTNL lock. 7958 */ 7959 bool netdev_has_upper_dev(struct net_device *dev, 7960 struct net_device *upper_dev) 7961 { 7962 struct netdev_nested_priv priv = { 7963 .data = (void *)upper_dev, 7964 }; 7965 7966 ASSERT_RTNL(); 7967 7968 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7969 &priv); 7970 } 7971 EXPORT_SYMBOL(netdev_has_upper_dev); 7972 7973 /** 7974 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7975 * @dev: device 7976 * @upper_dev: upper device to check 7977 * 7978 * Find out if a device is linked to specified upper device and return true 7979 * in case it is. Note that this checks the entire upper device chain. 7980 * The caller must hold rcu lock. 7981 */ 7982 7983 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7984 struct net_device *upper_dev) 7985 { 7986 struct netdev_nested_priv priv = { 7987 .data = (void *)upper_dev, 7988 }; 7989 7990 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7991 &priv); 7992 } 7993 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7994 7995 /** 7996 * netdev_has_any_upper_dev - Check if device is linked to some device 7997 * @dev: device 7998 * 7999 * Find out if a device is linked to an upper device and return true in case 8000 * it is. The caller must hold the RTNL lock. 8001 */ 8002 bool netdev_has_any_upper_dev(struct net_device *dev) 8003 { 8004 ASSERT_RTNL(); 8005 8006 return !list_empty(&dev->adj_list.upper); 8007 } 8008 EXPORT_SYMBOL(netdev_has_any_upper_dev); 8009 8010 /** 8011 * netdev_master_upper_dev_get - Get master upper device 8012 * @dev: device 8013 * 8014 * Find a master upper device and return pointer to it or NULL in case 8015 * it's not there. The caller must hold the RTNL lock. 8016 */ 8017 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 8018 { 8019 struct netdev_adjacent *upper; 8020 8021 ASSERT_RTNL(); 8022 8023 if (list_empty(&dev->adj_list.upper)) 8024 return NULL; 8025 8026 upper = list_first_entry(&dev->adj_list.upper, 8027 struct netdev_adjacent, list); 8028 if (likely(upper->master)) 8029 return upper->dev; 8030 return NULL; 8031 } 8032 EXPORT_SYMBOL(netdev_master_upper_dev_get); 8033 8034 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 8035 { 8036 struct netdev_adjacent *upper; 8037 8038 ASSERT_RTNL(); 8039 8040 if (list_empty(&dev->adj_list.upper)) 8041 return NULL; 8042 8043 upper = list_first_entry(&dev->adj_list.upper, 8044 struct netdev_adjacent, list); 8045 if (likely(upper->master) && !upper->ignore) 8046 return upper->dev; 8047 return NULL; 8048 } 8049 8050 /** 8051 * netdev_has_any_lower_dev - Check if device is linked to some device 8052 * @dev: device 8053 * 8054 * Find out if a device is linked to a lower device and return true in case 8055 * it is. The caller must hold the RTNL lock. 8056 */ 8057 static bool netdev_has_any_lower_dev(struct net_device *dev) 8058 { 8059 ASSERT_RTNL(); 8060 8061 return !list_empty(&dev->adj_list.lower); 8062 } 8063 8064 void *netdev_adjacent_get_private(struct list_head *adj_list) 8065 { 8066 struct netdev_adjacent *adj; 8067 8068 adj = list_entry(adj_list, struct netdev_adjacent, list); 8069 8070 return adj->private; 8071 } 8072 EXPORT_SYMBOL(netdev_adjacent_get_private); 8073 8074 /** 8075 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 8076 * @dev: device 8077 * @iter: list_head ** of the current position 8078 * 8079 * Gets the next device from the dev's upper list, starting from iter 8080 * position. The caller must hold RCU read lock. 8081 */ 8082 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 8083 struct list_head **iter) 8084 { 8085 struct netdev_adjacent *upper; 8086 8087 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8088 8089 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8090 8091 if (&upper->list == &dev->adj_list.upper) 8092 return NULL; 8093 8094 *iter = &upper->list; 8095 8096 return upper->dev; 8097 } 8098 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 8099 8100 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 8101 struct list_head **iter, 8102 bool *ignore) 8103 { 8104 struct netdev_adjacent *upper; 8105 8106 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 8107 8108 if (&upper->list == &dev->adj_list.upper) 8109 return NULL; 8110 8111 *iter = &upper->list; 8112 *ignore = upper->ignore; 8113 8114 return upper->dev; 8115 } 8116 8117 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 8118 struct list_head **iter) 8119 { 8120 struct netdev_adjacent *upper; 8121 8122 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 8123 8124 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8125 8126 if (&upper->list == &dev->adj_list.upper) 8127 return NULL; 8128 8129 *iter = &upper->list; 8130 8131 return upper->dev; 8132 } 8133 8134 static int __netdev_walk_all_upper_dev(struct net_device *dev, 8135 int (*fn)(struct net_device *dev, 8136 struct netdev_nested_priv *priv), 8137 struct netdev_nested_priv *priv) 8138 { 8139 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8140 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8141 int ret, cur = 0; 8142 bool ignore; 8143 8144 now = dev; 8145 iter = &dev->adj_list.upper; 8146 8147 while (1) { 8148 if (now != dev) { 8149 ret = fn(now, priv); 8150 if (ret) 8151 return ret; 8152 } 8153 8154 next = NULL; 8155 while (1) { 8156 udev = __netdev_next_upper_dev(now, &iter, &ignore); 8157 if (!udev) 8158 break; 8159 if (ignore) 8160 continue; 8161 8162 next = udev; 8163 niter = &udev->adj_list.upper; 8164 dev_stack[cur] = now; 8165 iter_stack[cur++] = iter; 8166 break; 8167 } 8168 8169 if (!next) { 8170 if (!cur) 8171 return 0; 8172 next = dev_stack[--cur]; 8173 niter = iter_stack[cur]; 8174 } 8175 8176 now = next; 8177 iter = niter; 8178 } 8179 8180 return 0; 8181 } 8182 8183 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 8184 int (*fn)(struct net_device *dev, 8185 struct netdev_nested_priv *priv), 8186 struct netdev_nested_priv *priv) 8187 { 8188 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8189 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8190 int ret, cur = 0; 8191 8192 now = dev; 8193 iter = &dev->adj_list.upper; 8194 8195 while (1) { 8196 if (now != dev) { 8197 ret = fn(now, priv); 8198 if (ret) 8199 return ret; 8200 } 8201 8202 next = NULL; 8203 while (1) { 8204 udev = netdev_next_upper_dev_rcu(now, &iter); 8205 if (!udev) 8206 break; 8207 8208 next = udev; 8209 niter = &udev->adj_list.upper; 8210 dev_stack[cur] = now; 8211 iter_stack[cur++] = iter; 8212 break; 8213 } 8214 8215 if (!next) { 8216 if (!cur) 8217 return 0; 8218 next = dev_stack[--cur]; 8219 niter = iter_stack[cur]; 8220 } 8221 8222 now = next; 8223 iter = niter; 8224 } 8225 8226 return 0; 8227 } 8228 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 8229 8230 static bool __netdev_has_upper_dev(struct net_device *dev, 8231 struct net_device *upper_dev) 8232 { 8233 struct netdev_nested_priv priv = { 8234 .flags = 0, 8235 .data = (void *)upper_dev, 8236 }; 8237 8238 ASSERT_RTNL(); 8239 8240 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 8241 &priv); 8242 } 8243 8244 /** 8245 * netdev_lower_get_next_private - Get the next ->private from the 8246 * lower neighbour list 8247 * @dev: device 8248 * @iter: list_head ** of the current position 8249 * 8250 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8251 * list, starting from iter position. The caller must hold either hold the 8252 * RTNL lock or its own locking that guarantees that the neighbour lower 8253 * list will remain unchanged. 8254 */ 8255 void *netdev_lower_get_next_private(struct net_device *dev, 8256 struct list_head **iter) 8257 { 8258 struct netdev_adjacent *lower; 8259 8260 lower = list_entry(*iter, struct netdev_adjacent, list); 8261 8262 if (&lower->list == &dev->adj_list.lower) 8263 return NULL; 8264 8265 *iter = lower->list.next; 8266 8267 return lower->private; 8268 } 8269 EXPORT_SYMBOL(netdev_lower_get_next_private); 8270 8271 /** 8272 * netdev_lower_get_next_private_rcu - Get the next ->private from the 8273 * lower neighbour list, RCU 8274 * variant 8275 * @dev: device 8276 * @iter: list_head ** of the current position 8277 * 8278 * Gets the next netdev_adjacent->private from the dev's lower neighbour 8279 * list, starting from iter position. The caller must hold RCU read lock. 8280 */ 8281 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 8282 struct list_head **iter) 8283 { 8284 struct netdev_adjacent *lower; 8285 8286 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 8287 8288 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8289 8290 if (&lower->list == &dev->adj_list.lower) 8291 return NULL; 8292 8293 *iter = &lower->list; 8294 8295 return lower->private; 8296 } 8297 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 8298 8299 /** 8300 * netdev_lower_get_next - Get the next device from the lower neighbour 8301 * list 8302 * @dev: device 8303 * @iter: list_head ** of the current position 8304 * 8305 * Gets the next netdev_adjacent from the dev's lower neighbour 8306 * list, starting from iter position. The caller must hold RTNL lock or 8307 * its own locking that guarantees that the neighbour lower 8308 * list will remain unchanged. 8309 */ 8310 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 8311 { 8312 struct netdev_adjacent *lower; 8313 8314 lower = list_entry(*iter, struct netdev_adjacent, list); 8315 8316 if (&lower->list == &dev->adj_list.lower) 8317 return NULL; 8318 8319 *iter = lower->list.next; 8320 8321 return lower->dev; 8322 } 8323 EXPORT_SYMBOL(netdev_lower_get_next); 8324 8325 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 8326 struct list_head **iter) 8327 { 8328 struct netdev_adjacent *lower; 8329 8330 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8331 8332 if (&lower->list == &dev->adj_list.lower) 8333 return NULL; 8334 8335 *iter = &lower->list; 8336 8337 return lower->dev; 8338 } 8339 8340 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 8341 struct list_head **iter, 8342 bool *ignore) 8343 { 8344 struct netdev_adjacent *lower; 8345 8346 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 8347 8348 if (&lower->list == &dev->adj_list.lower) 8349 return NULL; 8350 8351 *iter = &lower->list; 8352 *ignore = lower->ignore; 8353 8354 return lower->dev; 8355 } 8356 8357 int netdev_walk_all_lower_dev(struct net_device *dev, 8358 int (*fn)(struct net_device *dev, 8359 struct netdev_nested_priv *priv), 8360 struct netdev_nested_priv *priv) 8361 { 8362 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8363 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8364 int ret, cur = 0; 8365 8366 now = dev; 8367 iter = &dev->adj_list.lower; 8368 8369 while (1) { 8370 if (now != dev) { 8371 ret = fn(now, priv); 8372 if (ret) 8373 return ret; 8374 } 8375 8376 next = NULL; 8377 while (1) { 8378 ldev = netdev_next_lower_dev(now, &iter); 8379 if (!ldev) 8380 break; 8381 8382 next = ldev; 8383 niter = &ldev->adj_list.lower; 8384 dev_stack[cur] = now; 8385 iter_stack[cur++] = iter; 8386 break; 8387 } 8388 8389 if (!next) { 8390 if (!cur) 8391 return 0; 8392 next = dev_stack[--cur]; 8393 niter = iter_stack[cur]; 8394 } 8395 8396 now = next; 8397 iter = niter; 8398 } 8399 8400 return 0; 8401 } 8402 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 8403 8404 static int __netdev_walk_all_lower_dev(struct net_device *dev, 8405 int (*fn)(struct net_device *dev, 8406 struct netdev_nested_priv *priv), 8407 struct netdev_nested_priv *priv) 8408 { 8409 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8410 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8411 int ret, cur = 0; 8412 bool ignore; 8413 8414 now = dev; 8415 iter = &dev->adj_list.lower; 8416 8417 while (1) { 8418 if (now != dev) { 8419 ret = fn(now, priv); 8420 if (ret) 8421 return ret; 8422 } 8423 8424 next = NULL; 8425 while (1) { 8426 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 8427 if (!ldev) 8428 break; 8429 if (ignore) 8430 continue; 8431 8432 next = ldev; 8433 niter = &ldev->adj_list.lower; 8434 dev_stack[cur] = now; 8435 iter_stack[cur++] = iter; 8436 break; 8437 } 8438 8439 if (!next) { 8440 if (!cur) 8441 return 0; 8442 next = dev_stack[--cur]; 8443 niter = iter_stack[cur]; 8444 } 8445 8446 now = next; 8447 iter = niter; 8448 } 8449 8450 return 0; 8451 } 8452 8453 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 8454 struct list_head **iter) 8455 { 8456 struct netdev_adjacent *lower; 8457 8458 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 8459 if (&lower->list == &dev->adj_list.lower) 8460 return NULL; 8461 8462 *iter = &lower->list; 8463 8464 return lower->dev; 8465 } 8466 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 8467 8468 static u8 __netdev_upper_depth(struct net_device *dev) 8469 { 8470 struct net_device *udev; 8471 struct list_head *iter; 8472 u8 max_depth = 0; 8473 bool ignore; 8474 8475 for (iter = &dev->adj_list.upper, 8476 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 8477 udev; 8478 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 8479 if (ignore) 8480 continue; 8481 if (max_depth < udev->upper_level) 8482 max_depth = udev->upper_level; 8483 } 8484 8485 return max_depth; 8486 } 8487 8488 static u8 __netdev_lower_depth(struct net_device *dev) 8489 { 8490 struct net_device *ldev; 8491 struct list_head *iter; 8492 u8 max_depth = 0; 8493 bool ignore; 8494 8495 for (iter = &dev->adj_list.lower, 8496 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 8497 ldev; 8498 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 8499 if (ignore) 8500 continue; 8501 if (max_depth < ldev->lower_level) 8502 max_depth = ldev->lower_level; 8503 } 8504 8505 return max_depth; 8506 } 8507 8508 static int __netdev_update_upper_level(struct net_device *dev, 8509 struct netdev_nested_priv *__unused) 8510 { 8511 dev->upper_level = __netdev_upper_depth(dev) + 1; 8512 return 0; 8513 } 8514 8515 #ifdef CONFIG_LOCKDEP 8516 static LIST_HEAD(net_unlink_list); 8517 8518 static void net_unlink_todo(struct net_device *dev) 8519 { 8520 if (list_empty(&dev->unlink_list)) 8521 list_add_tail(&dev->unlink_list, &net_unlink_list); 8522 } 8523 #endif 8524 8525 static int __netdev_update_lower_level(struct net_device *dev, 8526 struct netdev_nested_priv *priv) 8527 { 8528 dev->lower_level = __netdev_lower_depth(dev) + 1; 8529 8530 #ifdef CONFIG_LOCKDEP 8531 if (!priv) 8532 return 0; 8533 8534 if (priv->flags & NESTED_SYNC_IMM) 8535 dev->nested_level = dev->lower_level - 1; 8536 if (priv->flags & NESTED_SYNC_TODO) 8537 net_unlink_todo(dev); 8538 #endif 8539 return 0; 8540 } 8541 8542 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 8543 int (*fn)(struct net_device *dev, 8544 struct netdev_nested_priv *priv), 8545 struct netdev_nested_priv *priv) 8546 { 8547 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 8548 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 8549 int ret, cur = 0; 8550 8551 now = dev; 8552 iter = &dev->adj_list.lower; 8553 8554 while (1) { 8555 if (now != dev) { 8556 ret = fn(now, priv); 8557 if (ret) 8558 return ret; 8559 } 8560 8561 next = NULL; 8562 while (1) { 8563 ldev = netdev_next_lower_dev_rcu(now, &iter); 8564 if (!ldev) 8565 break; 8566 8567 next = ldev; 8568 niter = &ldev->adj_list.lower; 8569 dev_stack[cur] = now; 8570 iter_stack[cur++] = iter; 8571 break; 8572 } 8573 8574 if (!next) { 8575 if (!cur) 8576 return 0; 8577 next = dev_stack[--cur]; 8578 niter = iter_stack[cur]; 8579 } 8580 8581 now = next; 8582 iter = niter; 8583 } 8584 8585 return 0; 8586 } 8587 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 8588 8589 /** 8590 * netdev_lower_get_first_private_rcu - Get the first ->private from the 8591 * lower neighbour list, RCU 8592 * variant 8593 * @dev: device 8594 * 8595 * Gets the first netdev_adjacent->private from the dev's lower neighbour 8596 * list. The caller must hold RCU read lock. 8597 */ 8598 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 8599 { 8600 struct netdev_adjacent *lower; 8601 8602 lower = list_first_or_null_rcu(&dev->adj_list.lower, 8603 struct netdev_adjacent, list); 8604 if (lower) 8605 return lower->private; 8606 return NULL; 8607 } 8608 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 8609 8610 /** 8611 * netdev_master_upper_dev_get_rcu - Get master upper device 8612 * @dev: device 8613 * 8614 * Find a master upper device and return pointer to it or NULL in case 8615 * it's not there. The caller must hold the RCU read lock. 8616 */ 8617 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 8618 { 8619 struct netdev_adjacent *upper; 8620 8621 upper = list_first_or_null_rcu(&dev->adj_list.upper, 8622 struct netdev_adjacent, list); 8623 if (upper && likely(upper->master)) 8624 return upper->dev; 8625 return NULL; 8626 } 8627 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 8628 8629 static int netdev_adjacent_sysfs_add(struct net_device *dev, 8630 struct net_device *adj_dev, 8631 struct list_head *dev_list) 8632 { 8633 char linkname[IFNAMSIZ+7]; 8634 8635 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8636 "upper_%s" : "lower_%s", adj_dev->name); 8637 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 8638 linkname); 8639 } 8640 static void netdev_adjacent_sysfs_del(struct net_device *dev, 8641 char *name, 8642 struct list_head *dev_list) 8643 { 8644 char linkname[IFNAMSIZ+7]; 8645 8646 sprintf(linkname, dev_list == &dev->adj_list.upper ? 8647 "upper_%s" : "lower_%s", name); 8648 sysfs_remove_link(&(dev->dev.kobj), linkname); 8649 } 8650 8651 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 8652 struct net_device *adj_dev, 8653 struct list_head *dev_list) 8654 { 8655 return (dev_list == &dev->adj_list.upper || 8656 dev_list == &dev->adj_list.lower) && 8657 net_eq(dev_net(dev), dev_net(adj_dev)); 8658 } 8659 8660 static int __netdev_adjacent_dev_insert(struct net_device *dev, 8661 struct net_device *adj_dev, 8662 struct list_head *dev_list, 8663 void *private, bool master) 8664 { 8665 struct netdev_adjacent *adj; 8666 int ret; 8667 8668 adj = __netdev_find_adj(adj_dev, dev_list); 8669 8670 if (adj) { 8671 adj->ref_nr += 1; 8672 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 8673 dev->name, adj_dev->name, adj->ref_nr); 8674 8675 return 0; 8676 } 8677 8678 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 8679 if (!adj) 8680 return -ENOMEM; 8681 8682 adj->dev = adj_dev; 8683 adj->master = master; 8684 adj->ref_nr = 1; 8685 adj->private = private; 8686 adj->ignore = false; 8687 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 8688 8689 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 8690 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 8691 8692 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 8693 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 8694 if (ret) 8695 goto free_adj; 8696 } 8697 8698 /* Ensure that master link is always the first item in list. */ 8699 if (master) { 8700 ret = sysfs_create_link(&(dev->dev.kobj), 8701 &(adj_dev->dev.kobj), "master"); 8702 if (ret) 8703 goto remove_symlinks; 8704 8705 list_add_rcu(&adj->list, dev_list); 8706 } else { 8707 list_add_tail_rcu(&adj->list, dev_list); 8708 } 8709 8710 return 0; 8711 8712 remove_symlinks: 8713 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8714 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8715 free_adj: 8716 netdev_put(adj_dev, &adj->dev_tracker); 8717 kfree(adj); 8718 8719 return ret; 8720 } 8721 8722 static void __netdev_adjacent_dev_remove(struct net_device *dev, 8723 struct net_device *adj_dev, 8724 u16 ref_nr, 8725 struct list_head *dev_list) 8726 { 8727 struct netdev_adjacent *adj; 8728 8729 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8730 dev->name, adj_dev->name, ref_nr); 8731 8732 adj = __netdev_find_adj(adj_dev, dev_list); 8733 8734 if (!adj) { 8735 pr_err("Adjacency does not exist for device %s from %s\n", 8736 dev->name, adj_dev->name); 8737 WARN_ON(1); 8738 return; 8739 } 8740 8741 if (adj->ref_nr > ref_nr) { 8742 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8743 dev->name, adj_dev->name, ref_nr, 8744 adj->ref_nr - ref_nr); 8745 adj->ref_nr -= ref_nr; 8746 return; 8747 } 8748 8749 if (adj->master) 8750 sysfs_remove_link(&(dev->dev.kobj), "master"); 8751 8752 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8753 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8754 8755 list_del_rcu(&adj->list); 8756 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8757 adj_dev->name, dev->name, adj_dev->name); 8758 netdev_put(adj_dev, &adj->dev_tracker); 8759 kfree_rcu(adj, rcu); 8760 } 8761 8762 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8763 struct net_device *upper_dev, 8764 struct list_head *up_list, 8765 struct list_head *down_list, 8766 void *private, bool master) 8767 { 8768 int ret; 8769 8770 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8771 private, master); 8772 if (ret) 8773 return ret; 8774 8775 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8776 private, false); 8777 if (ret) { 8778 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8779 return ret; 8780 } 8781 8782 return 0; 8783 } 8784 8785 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8786 struct net_device *upper_dev, 8787 u16 ref_nr, 8788 struct list_head *up_list, 8789 struct list_head *down_list) 8790 { 8791 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8792 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8793 } 8794 8795 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8796 struct net_device *upper_dev, 8797 void *private, bool master) 8798 { 8799 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8800 &dev->adj_list.upper, 8801 &upper_dev->adj_list.lower, 8802 private, master); 8803 } 8804 8805 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8806 struct net_device *upper_dev) 8807 { 8808 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8809 &dev->adj_list.upper, 8810 &upper_dev->adj_list.lower); 8811 } 8812 8813 static int __netdev_upper_dev_link(struct net_device *dev, 8814 struct net_device *upper_dev, bool master, 8815 void *upper_priv, void *upper_info, 8816 struct netdev_nested_priv *priv, 8817 struct netlink_ext_ack *extack) 8818 { 8819 struct netdev_notifier_changeupper_info changeupper_info = { 8820 .info = { 8821 .dev = dev, 8822 .extack = extack, 8823 }, 8824 .upper_dev = upper_dev, 8825 .master = master, 8826 .linking = true, 8827 .upper_info = upper_info, 8828 }; 8829 struct net_device *master_dev; 8830 int ret = 0; 8831 8832 ASSERT_RTNL(); 8833 8834 if (dev == upper_dev) 8835 return -EBUSY; 8836 8837 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8838 if (__netdev_has_upper_dev(upper_dev, dev)) 8839 return -EBUSY; 8840 8841 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8842 return -EMLINK; 8843 8844 if (!master) { 8845 if (__netdev_has_upper_dev(dev, upper_dev)) 8846 return -EEXIST; 8847 } else { 8848 master_dev = __netdev_master_upper_dev_get(dev); 8849 if (master_dev) 8850 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8851 } 8852 8853 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8854 &changeupper_info.info); 8855 ret = notifier_to_errno(ret); 8856 if (ret) 8857 return ret; 8858 8859 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8860 master); 8861 if (ret) 8862 return ret; 8863 8864 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8865 &changeupper_info.info); 8866 ret = notifier_to_errno(ret); 8867 if (ret) 8868 goto rollback; 8869 8870 __netdev_update_upper_level(dev, NULL); 8871 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8872 8873 __netdev_update_lower_level(upper_dev, priv); 8874 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8875 priv); 8876 8877 return 0; 8878 8879 rollback: 8880 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8881 8882 return ret; 8883 } 8884 8885 /** 8886 * netdev_upper_dev_link - Add a link to the upper device 8887 * @dev: device 8888 * @upper_dev: new upper device 8889 * @extack: netlink extended ack 8890 * 8891 * Adds a link to device which is upper to this one. The caller must hold 8892 * the RTNL lock. On a failure a negative errno code is returned. 8893 * On success the reference counts are adjusted and the function 8894 * returns zero. 8895 */ 8896 int netdev_upper_dev_link(struct net_device *dev, 8897 struct net_device *upper_dev, 8898 struct netlink_ext_ack *extack) 8899 { 8900 struct netdev_nested_priv priv = { 8901 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8902 .data = NULL, 8903 }; 8904 8905 return __netdev_upper_dev_link(dev, upper_dev, false, 8906 NULL, NULL, &priv, extack); 8907 } 8908 EXPORT_SYMBOL(netdev_upper_dev_link); 8909 8910 /** 8911 * netdev_master_upper_dev_link - Add a master link to the upper device 8912 * @dev: device 8913 * @upper_dev: new upper device 8914 * @upper_priv: upper device private 8915 * @upper_info: upper info to be passed down via notifier 8916 * @extack: netlink extended ack 8917 * 8918 * Adds a link to device which is upper to this one. In this case, only 8919 * one master upper device can be linked, although other non-master devices 8920 * might be linked as well. The caller must hold the RTNL lock. 8921 * On a failure a negative errno code is returned. On success the reference 8922 * counts are adjusted and the function returns zero. 8923 */ 8924 int netdev_master_upper_dev_link(struct net_device *dev, 8925 struct net_device *upper_dev, 8926 void *upper_priv, void *upper_info, 8927 struct netlink_ext_ack *extack) 8928 { 8929 struct netdev_nested_priv priv = { 8930 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8931 .data = NULL, 8932 }; 8933 8934 return __netdev_upper_dev_link(dev, upper_dev, true, 8935 upper_priv, upper_info, &priv, extack); 8936 } 8937 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8938 8939 static void __netdev_upper_dev_unlink(struct net_device *dev, 8940 struct net_device *upper_dev, 8941 struct netdev_nested_priv *priv) 8942 { 8943 struct netdev_notifier_changeupper_info changeupper_info = { 8944 .info = { 8945 .dev = dev, 8946 }, 8947 .upper_dev = upper_dev, 8948 .linking = false, 8949 }; 8950 8951 ASSERT_RTNL(); 8952 8953 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8954 8955 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8956 &changeupper_info.info); 8957 8958 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8959 8960 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8961 &changeupper_info.info); 8962 8963 __netdev_update_upper_level(dev, NULL); 8964 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8965 8966 __netdev_update_lower_level(upper_dev, priv); 8967 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8968 priv); 8969 } 8970 8971 /** 8972 * netdev_upper_dev_unlink - Removes a link to upper device 8973 * @dev: device 8974 * @upper_dev: new upper device 8975 * 8976 * Removes a link to device which is upper to this one. The caller must hold 8977 * the RTNL lock. 8978 */ 8979 void netdev_upper_dev_unlink(struct net_device *dev, 8980 struct net_device *upper_dev) 8981 { 8982 struct netdev_nested_priv priv = { 8983 .flags = NESTED_SYNC_TODO, 8984 .data = NULL, 8985 }; 8986 8987 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8988 } 8989 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8990 8991 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8992 struct net_device *lower_dev, 8993 bool val) 8994 { 8995 struct netdev_adjacent *adj; 8996 8997 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8998 if (adj) 8999 adj->ignore = val; 9000 9001 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 9002 if (adj) 9003 adj->ignore = val; 9004 } 9005 9006 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 9007 struct net_device *lower_dev) 9008 { 9009 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 9010 } 9011 9012 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 9013 struct net_device *lower_dev) 9014 { 9015 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 9016 } 9017 9018 int netdev_adjacent_change_prepare(struct net_device *old_dev, 9019 struct net_device *new_dev, 9020 struct net_device *dev, 9021 struct netlink_ext_ack *extack) 9022 { 9023 struct netdev_nested_priv priv = { 9024 .flags = 0, 9025 .data = NULL, 9026 }; 9027 int err; 9028 9029 if (!new_dev) 9030 return 0; 9031 9032 if (old_dev && new_dev != old_dev) 9033 netdev_adjacent_dev_disable(dev, old_dev); 9034 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 9035 extack); 9036 if (err) { 9037 if (old_dev && new_dev != old_dev) 9038 netdev_adjacent_dev_enable(dev, old_dev); 9039 return err; 9040 } 9041 9042 return 0; 9043 } 9044 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 9045 9046 void netdev_adjacent_change_commit(struct net_device *old_dev, 9047 struct net_device *new_dev, 9048 struct net_device *dev) 9049 { 9050 struct netdev_nested_priv priv = { 9051 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 9052 .data = NULL, 9053 }; 9054 9055 if (!new_dev || !old_dev) 9056 return; 9057 9058 if (new_dev == old_dev) 9059 return; 9060 9061 netdev_adjacent_dev_enable(dev, old_dev); 9062 __netdev_upper_dev_unlink(old_dev, dev, &priv); 9063 } 9064 EXPORT_SYMBOL(netdev_adjacent_change_commit); 9065 9066 void netdev_adjacent_change_abort(struct net_device *old_dev, 9067 struct net_device *new_dev, 9068 struct net_device *dev) 9069 { 9070 struct netdev_nested_priv priv = { 9071 .flags = 0, 9072 .data = NULL, 9073 }; 9074 9075 if (!new_dev) 9076 return; 9077 9078 if (old_dev && new_dev != old_dev) 9079 netdev_adjacent_dev_enable(dev, old_dev); 9080 9081 __netdev_upper_dev_unlink(new_dev, dev, &priv); 9082 } 9083 EXPORT_SYMBOL(netdev_adjacent_change_abort); 9084 9085 /** 9086 * netdev_bonding_info_change - Dispatch event about slave change 9087 * @dev: device 9088 * @bonding_info: info to dispatch 9089 * 9090 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 9091 * The caller must hold the RTNL lock. 9092 */ 9093 void netdev_bonding_info_change(struct net_device *dev, 9094 struct netdev_bonding_info *bonding_info) 9095 { 9096 struct netdev_notifier_bonding_info info = { 9097 .info.dev = dev, 9098 }; 9099 9100 memcpy(&info.bonding_info, bonding_info, 9101 sizeof(struct netdev_bonding_info)); 9102 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 9103 &info.info); 9104 } 9105 EXPORT_SYMBOL(netdev_bonding_info_change); 9106 9107 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 9108 struct netlink_ext_ack *extack) 9109 { 9110 struct netdev_notifier_offload_xstats_info info = { 9111 .info.dev = dev, 9112 .info.extack = extack, 9113 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9114 }; 9115 int err; 9116 int rc; 9117 9118 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 9119 GFP_KERNEL); 9120 if (!dev->offload_xstats_l3) 9121 return -ENOMEM; 9122 9123 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 9124 NETDEV_OFFLOAD_XSTATS_DISABLE, 9125 &info.info); 9126 err = notifier_to_errno(rc); 9127 if (err) 9128 goto free_stats; 9129 9130 return 0; 9131 9132 free_stats: 9133 kfree(dev->offload_xstats_l3); 9134 dev->offload_xstats_l3 = NULL; 9135 return err; 9136 } 9137 9138 int netdev_offload_xstats_enable(struct net_device *dev, 9139 enum netdev_offload_xstats_type type, 9140 struct netlink_ext_ack *extack) 9141 { 9142 ASSERT_RTNL(); 9143 9144 if (netdev_offload_xstats_enabled(dev, type)) 9145 return -EALREADY; 9146 9147 switch (type) { 9148 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9149 return netdev_offload_xstats_enable_l3(dev, extack); 9150 } 9151 9152 WARN_ON(1); 9153 return -EINVAL; 9154 } 9155 EXPORT_SYMBOL(netdev_offload_xstats_enable); 9156 9157 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 9158 { 9159 struct netdev_notifier_offload_xstats_info info = { 9160 .info.dev = dev, 9161 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 9162 }; 9163 9164 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 9165 &info.info); 9166 kfree(dev->offload_xstats_l3); 9167 dev->offload_xstats_l3 = NULL; 9168 } 9169 9170 int netdev_offload_xstats_disable(struct net_device *dev, 9171 enum netdev_offload_xstats_type type) 9172 { 9173 ASSERT_RTNL(); 9174 9175 if (!netdev_offload_xstats_enabled(dev, type)) 9176 return -EALREADY; 9177 9178 switch (type) { 9179 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9180 netdev_offload_xstats_disable_l3(dev); 9181 return 0; 9182 } 9183 9184 WARN_ON(1); 9185 return -EINVAL; 9186 } 9187 EXPORT_SYMBOL(netdev_offload_xstats_disable); 9188 9189 static void netdev_offload_xstats_disable_all(struct net_device *dev) 9190 { 9191 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 9192 } 9193 9194 static struct rtnl_hw_stats64 * 9195 netdev_offload_xstats_get_ptr(const struct net_device *dev, 9196 enum netdev_offload_xstats_type type) 9197 { 9198 switch (type) { 9199 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 9200 return dev->offload_xstats_l3; 9201 } 9202 9203 WARN_ON(1); 9204 return NULL; 9205 } 9206 9207 bool netdev_offload_xstats_enabled(const struct net_device *dev, 9208 enum netdev_offload_xstats_type type) 9209 { 9210 ASSERT_RTNL(); 9211 9212 return netdev_offload_xstats_get_ptr(dev, type); 9213 } 9214 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 9215 9216 struct netdev_notifier_offload_xstats_ru { 9217 bool used; 9218 }; 9219 9220 struct netdev_notifier_offload_xstats_rd { 9221 struct rtnl_hw_stats64 stats; 9222 bool used; 9223 }; 9224 9225 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 9226 const struct rtnl_hw_stats64 *src) 9227 { 9228 dest->rx_packets += src->rx_packets; 9229 dest->tx_packets += src->tx_packets; 9230 dest->rx_bytes += src->rx_bytes; 9231 dest->tx_bytes += src->tx_bytes; 9232 dest->rx_errors += src->rx_errors; 9233 dest->tx_errors += src->tx_errors; 9234 dest->rx_dropped += src->rx_dropped; 9235 dest->tx_dropped += src->tx_dropped; 9236 dest->multicast += src->multicast; 9237 } 9238 9239 static int netdev_offload_xstats_get_used(struct net_device *dev, 9240 enum netdev_offload_xstats_type type, 9241 bool *p_used, 9242 struct netlink_ext_ack *extack) 9243 { 9244 struct netdev_notifier_offload_xstats_ru report_used = {}; 9245 struct netdev_notifier_offload_xstats_info info = { 9246 .info.dev = dev, 9247 .info.extack = extack, 9248 .type = type, 9249 .report_used = &report_used, 9250 }; 9251 int rc; 9252 9253 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 9254 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 9255 &info.info); 9256 *p_used = report_used.used; 9257 return notifier_to_errno(rc); 9258 } 9259 9260 static int netdev_offload_xstats_get_stats(struct net_device *dev, 9261 enum netdev_offload_xstats_type type, 9262 struct rtnl_hw_stats64 *p_stats, 9263 bool *p_used, 9264 struct netlink_ext_ack *extack) 9265 { 9266 struct netdev_notifier_offload_xstats_rd report_delta = {}; 9267 struct netdev_notifier_offload_xstats_info info = { 9268 .info.dev = dev, 9269 .info.extack = extack, 9270 .type = type, 9271 .report_delta = &report_delta, 9272 }; 9273 struct rtnl_hw_stats64 *stats; 9274 int rc; 9275 9276 stats = netdev_offload_xstats_get_ptr(dev, type); 9277 if (WARN_ON(!stats)) 9278 return -EINVAL; 9279 9280 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 9281 &info.info); 9282 9283 /* Cache whatever we got, even if there was an error, otherwise the 9284 * successful stats retrievals would get lost. 9285 */ 9286 netdev_hw_stats64_add(stats, &report_delta.stats); 9287 9288 if (p_stats) 9289 *p_stats = *stats; 9290 *p_used = report_delta.used; 9291 9292 return notifier_to_errno(rc); 9293 } 9294 9295 int netdev_offload_xstats_get(struct net_device *dev, 9296 enum netdev_offload_xstats_type type, 9297 struct rtnl_hw_stats64 *p_stats, bool *p_used, 9298 struct netlink_ext_ack *extack) 9299 { 9300 ASSERT_RTNL(); 9301 9302 if (p_stats) 9303 return netdev_offload_xstats_get_stats(dev, type, p_stats, 9304 p_used, extack); 9305 else 9306 return netdev_offload_xstats_get_used(dev, type, p_used, 9307 extack); 9308 } 9309 EXPORT_SYMBOL(netdev_offload_xstats_get); 9310 9311 void 9312 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 9313 const struct rtnl_hw_stats64 *stats) 9314 { 9315 report_delta->used = true; 9316 netdev_hw_stats64_add(&report_delta->stats, stats); 9317 } 9318 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 9319 9320 void 9321 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 9322 { 9323 report_used->used = true; 9324 } 9325 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 9326 9327 void netdev_offload_xstats_push_delta(struct net_device *dev, 9328 enum netdev_offload_xstats_type type, 9329 const struct rtnl_hw_stats64 *p_stats) 9330 { 9331 struct rtnl_hw_stats64 *stats; 9332 9333 ASSERT_RTNL(); 9334 9335 stats = netdev_offload_xstats_get_ptr(dev, type); 9336 if (WARN_ON(!stats)) 9337 return; 9338 9339 netdev_hw_stats64_add(stats, p_stats); 9340 } 9341 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 9342 9343 /** 9344 * netdev_get_xmit_slave - Get the xmit slave of master device 9345 * @dev: device 9346 * @skb: The packet 9347 * @all_slaves: assume all the slaves are active 9348 * 9349 * The reference counters are not incremented so the caller must be 9350 * careful with locks. The caller must hold RCU lock. 9351 * %NULL is returned if no slave is found. 9352 */ 9353 9354 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 9355 struct sk_buff *skb, 9356 bool all_slaves) 9357 { 9358 const struct net_device_ops *ops = dev->netdev_ops; 9359 9360 if (!ops->ndo_get_xmit_slave) 9361 return NULL; 9362 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 9363 } 9364 EXPORT_SYMBOL(netdev_get_xmit_slave); 9365 9366 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 9367 struct sock *sk) 9368 { 9369 const struct net_device_ops *ops = dev->netdev_ops; 9370 9371 if (!ops->ndo_sk_get_lower_dev) 9372 return NULL; 9373 return ops->ndo_sk_get_lower_dev(dev, sk); 9374 } 9375 9376 /** 9377 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 9378 * @dev: device 9379 * @sk: the socket 9380 * 9381 * %NULL is returned if no lower device is found. 9382 */ 9383 9384 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 9385 struct sock *sk) 9386 { 9387 struct net_device *lower; 9388 9389 lower = netdev_sk_get_lower_dev(dev, sk); 9390 while (lower) { 9391 dev = lower; 9392 lower = netdev_sk_get_lower_dev(dev, sk); 9393 } 9394 9395 return dev; 9396 } 9397 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 9398 9399 static void netdev_adjacent_add_links(struct net_device *dev) 9400 { 9401 struct netdev_adjacent *iter; 9402 9403 struct net *net = dev_net(dev); 9404 9405 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9406 if (!net_eq(net, dev_net(iter->dev))) 9407 continue; 9408 netdev_adjacent_sysfs_add(iter->dev, dev, 9409 &iter->dev->adj_list.lower); 9410 netdev_adjacent_sysfs_add(dev, iter->dev, 9411 &dev->adj_list.upper); 9412 } 9413 9414 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9415 if (!net_eq(net, dev_net(iter->dev))) 9416 continue; 9417 netdev_adjacent_sysfs_add(iter->dev, dev, 9418 &iter->dev->adj_list.upper); 9419 netdev_adjacent_sysfs_add(dev, iter->dev, 9420 &dev->adj_list.lower); 9421 } 9422 } 9423 9424 static void netdev_adjacent_del_links(struct net_device *dev) 9425 { 9426 struct netdev_adjacent *iter; 9427 9428 struct net *net = dev_net(dev); 9429 9430 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9431 if (!net_eq(net, dev_net(iter->dev))) 9432 continue; 9433 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9434 &iter->dev->adj_list.lower); 9435 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9436 &dev->adj_list.upper); 9437 } 9438 9439 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9440 if (!net_eq(net, dev_net(iter->dev))) 9441 continue; 9442 netdev_adjacent_sysfs_del(iter->dev, dev->name, 9443 &iter->dev->adj_list.upper); 9444 netdev_adjacent_sysfs_del(dev, iter->dev->name, 9445 &dev->adj_list.lower); 9446 } 9447 } 9448 9449 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 9450 { 9451 struct netdev_adjacent *iter; 9452 9453 struct net *net = dev_net(dev); 9454 9455 list_for_each_entry(iter, &dev->adj_list.upper, list) { 9456 if (!net_eq(net, dev_net(iter->dev))) 9457 continue; 9458 netdev_adjacent_sysfs_del(iter->dev, oldname, 9459 &iter->dev->adj_list.lower); 9460 netdev_adjacent_sysfs_add(iter->dev, dev, 9461 &iter->dev->adj_list.lower); 9462 } 9463 9464 list_for_each_entry(iter, &dev->adj_list.lower, list) { 9465 if (!net_eq(net, dev_net(iter->dev))) 9466 continue; 9467 netdev_adjacent_sysfs_del(iter->dev, oldname, 9468 &iter->dev->adj_list.upper); 9469 netdev_adjacent_sysfs_add(iter->dev, dev, 9470 &iter->dev->adj_list.upper); 9471 } 9472 } 9473 9474 void *netdev_lower_dev_get_private(struct net_device *dev, 9475 struct net_device *lower_dev) 9476 { 9477 struct netdev_adjacent *lower; 9478 9479 if (!lower_dev) 9480 return NULL; 9481 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 9482 if (!lower) 9483 return NULL; 9484 9485 return lower->private; 9486 } 9487 EXPORT_SYMBOL(netdev_lower_dev_get_private); 9488 9489 9490 /** 9491 * netdev_lower_state_changed - Dispatch event about lower device state change 9492 * @lower_dev: device 9493 * @lower_state_info: state to dispatch 9494 * 9495 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 9496 * The caller must hold the RTNL lock. 9497 */ 9498 void netdev_lower_state_changed(struct net_device *lower_dev, 9499 void *lower_state_info) 9500 { 9501 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 9502 .info.dev = lower_dev, 9503 }; 9504 9505 ASSERT_RTNL(); 9506 changelowerstate_info.lower_state_info = lower_state_info; 9507 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 9508 &changelowerstate_info.info); 9509 } 9510 EXPORT_SYMBOL(netdev_lower_state_changed); 9511 9512 static void dev_change_rx_flags(struct net_device *dev, int flags) 9513 { 9514 const struct net_device_ops *ops = dev->netdev_ops; 9515 9516 if (ops->ndo_change_rx_flags) 9517 ops->ndo_change_rx_flags(dev, flags); 9518 } 9519 9520 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 9521 { 9522 unsigned int old_flags = dev->flags; 9523 unsigned int promiscuity, flags; 9524 kuid_t uid; 9525 kgid_t gid; 9526 9527 ASSERT_RTNL(); 9528 9529 promiscuity = dev->promiscuity + inc; 9530 if (promiscuity == 0) { 9531 /* 9532 * Avoid overflow. 9533 * If inc causes overflow, untouch promisc and return error. 9534 */ 9535 if (unlikely(inc > 0)) { 9536 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 9537 return -EOVERFLOW; 9538 } 9539 flags = old_flags & ~IFF_PROMISC; 9540 } else { 9541 flags = old_flags | IFF_PROMISC; 9542 } 9543 WRITE_ONCE(dev->promiscuity, promiscuity); 9544 if (flags != old_flags) { 9545 WRITE_ONCE(dev->flags, flags); 9546 netdev_info(dev, "%s promiscuous mode\n", 9547 dev->flags & IFF_PROMISC ? "entered" : "left"); 9548 if (audit_enabled) { 9549 current_uid_gid(&uid, &gid); 9550 audit_log(audit_context(), GFP_ATOMIC, 9551 AUDIT_ANOM_PROMISCUOUS, 9552 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 9553 dev->name, (dev->flags & IFF_PROMISC), 9554 (old_flags & IFF_PROMISC), 9555 from_kuid(&init_user_ns, audit_get_loginuid(current)), 9556 from_kuid(&init_user_ns, uid), 9557 from_kgid(&init_user_ns, gid), 9558 audit_get_sessionid(current)); 9559 } 9560 9561 dev_change_rx_flags(dev, IFF_PROMISC); 9562 } 9563 if (notify) { 9564 /* The ops lock is only required to ensure consistent locking 9565 * for `NETDEV_CHANGE` notifiers. This function is sometimes 9566 * called without the lock, even for devices that are ops 9567 * locked, such as in `dev_uc_sync_multiple` when using 9568 * bonding or teaming. 9569 */ 9570 netdev_ops_assert_locked(dev); 9571 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 9572 } 9573 return 0; 9574 } 9575 9576 int netif_set_promiscuity(struct net_device *dev, int inc) 9577 { 9578 unsigned int old_flags = dev->flags; 9579 int err; 9580 9581 err = __dev_set_promiscuity(dev, inc, true); 9582 if (err < 0) 9583 return err; 9584 if (dev->flags != old_flags) 9585 dev_set_rx_mode(dev); 9586 return err; 9587 } 9588 9589 int netif_set_allmulti(struct net_device *dev, int inc, bool notify) 9590 { 9591 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 9592 unsigned int allmulti, flags; 9593 9594 ASSERT_RTNL(); 9595 9596 allmulti = dev->allmulti + inc; 9597 if (allmulti == 0) { 9598 /* 9599 * Avoid overflow. 9600 * If inc causes overflow, untouch allmulti and return error. 9601 */ 9602 if (unlikely(inc > 0)) { 9603 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 9604 return -EOVERFLOW; 9605 } 9606 flags = old_flags & ~IFF_ALLMULTI; 9607 } else { 9608 flags = old_flags | IFF_ALLMULTI; 9609 } 9610 WRITE_ONCE(dev->allmulti, allmulti); 9611 if (flags != old_flags) { 9612 WRITE_ONCE(dev->flags, flags); 9613 netdev_info(dev, "%s allmulticast mode\n", 9614 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 9615 dev_change_rx_flags(dev, IFF_ALLMULTI); 9616 dev_set_rx_mode(dev); 9617 if (notify) 9618 __dev_notify_flags(dev, old_flags, 9619 dev->gflags ^ old_gflags, 0, NULL); 9620 } 9621 return 0; 9622 } 9623 9624 /* 9625 * Upload unicast and multicast address lists to device and 9626 * configure RX filtering. When the device doesn't support unicast 9627 * filtering it is put in promiscuous mode while unicast addresses 9628 * are present. 9629 */ 9630 void __dev_set_rx_mode(struct net_device *dev) 9631 { 9632 const struct net_device_ops *ops = dev->netdev_ops; 9633 9634 /* dev_open will call this function so the list will stay sane. */ 9635 if (!(dev->flags&IFF_UP)) 9636 return; 9637 9638 if (!netif_device_present(dev)) 9639 return; 9640 9641 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 9642 /* Unicast addresses changes may only happen under the rtnl, 9643 * therefore calling __dev_set_promiscuity here is safe. 9644 */ 9645 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 9646 __dev_set_promiscuity(dev, 1, false); 9647 dev->uc_promisc = true; 9648 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 9649 __dev_set_promiscuity(dev, -1, false); 9650 dev->uc_promisc = false; 9651 } 9652 } 9653 9654 if (ops->ndo_set_rx_mode) 9655 ops->ndo_set_rx_mode(dev); 9656 } 9657 9658 void dev_set_rx_mode(struct net_device *dev) 9659 { 9660 netif_addr_lock_bh(dev); 9661 __dev_set_rx_mode(dev); 9662 netif_addr_unlock_bh(dev); 9663 } 9664 9665 /** 9666 * netif_get_flags() - get flags reported to userspace 9667 * @dev: device 9668 * 9669 * Get the combination of flag bits exported through APIs to userspace. 9670 */ 9671 unsigned int netif_get_flags(const struct net_device *dev) 9672 { 9673 unsigned int flags; 9674 9675 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC | 9676 IFF_ALLMULTI | 9677 IFF_RUNNING | 9678 IFF_LOWER_UP | 9679 IFF_DORMANT)) | 9680 (READ_ONCE(dev->gflags) & (IFF_PROMISC | 9681 IFF_ALLMULTI)); 9682 9683 if (netif_running(dev)) { 9684 if (netif_oper_up(dev)) 9685 flags |= IFF_RUNNING; 9686 if (netif_carrier_ok(dev)) 9687 flags |= IFF_LOWER_UP; 9688 if (netif_dormant(dev)) 9689 flags |= IFF_DORMANT; 9690 } 9691 9692 return flags; 9693 } 9694 EXPORT_SYMBOL(netif_get_flags); 9695 9696 int __dev_change_flags(struct net_device *dev, unsigned int flags, 9697 struct netlink_ext_ack *extack) 9698 { 9699 unsigned int old_flags = dev->flags; 9700 int ret; 9701 9702 ASSERT_RTNL(); 9703 9704 /* 9705 * Set the flags on our device. 9706 */ 9707 9708 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 9709 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 9710 IFF_AUTOMEDIA)) | 9711 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 9712 IFF_ALLMULTI)); 9713 9714 /* 9715 * Load in the correct multicast list now the flags have changed. 9716 */ 9717 9718 if ((old_flags ^ flags) & IFF_MULTICAST) 9719 dev_change_rx_flags(dev, IFF_MULTICAST); 9720 9721 dev_set_rx_mode(dev); 9722 9723 /* 9724 * Have we downed the interface. We handle IFF_UP ourselves 9725 * according to user attempts to set it, rather than blindly 9726 * setting it. 9727 */ 9728 9729 ret = 0; 9730 if ((old_flags ^ flags) & IFF_UP) { 9731 if (old_flags & IFF_UP) 9732 __dev_close(dev); 9733 else 9734 ret = __dev_open(dev, extack); 9735 } 9736 9737 if ((flags ^ dev->gflags) & IFF_PROMISC) { 9738 int inc = (flags & IFF_PROMISC) ? 1 : -1; 9739 old_flags = dev->flags; 9740 9741 dev->gflags ^= IFF_PROMISC; 9742 9743 if (__dev_set_promiscuity(dev, inc, false) >= 0) 9744 if (dev->flags != old_flags) 9745 dev_set_rx_mode(dev); 9746 } 9747 9748 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 9749 * is important. Some (broken) drivers set IFF_PROMISC, when 9750 * IFF_ALLMULTI is requested not asking us and not reporting. 9751 */ 9752 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 9753 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 9754 9755 dev->gflags ^= IFF_ALLMULTI; 9756 netif_set_allmulti(dev, inc, false); 9757 } 9758 9759 return ret; 9760 } 9761 9762 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 9763 unsigned int gchanges, u32 portid, 9764 const struct nlmsghdr *nlh) 9765 { 9766 unsigned int changes = dev->flags ^ old_flags; 9767 9768 if (gchanges) 9769 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 9770 9771 if (changes & IFF_UP) { 9772 if (dev->flags & IFF_UP) 9773 call_netdevice_notifiers(NETDEV_UP, dev); 9774 else 9775 call_netdevice_notifiers(NETDEV_DOWN, dev); 9776 } 9777 9778 if (dev->flags & IFF_UP && 9779 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 9780 struct netdev_notifier_change_info change_info = { 9781 .info = { 9782 .dev = dev, 9783 }, 9784 .flags_changed = changes, 9785 }; 9786 9787 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 9788 } 9789 } 9790 9791 int netif_change_flags(struct net_device *dev, unsigned int flags, 9792 struct netlink_ext_ack *extack) 9793 { 9794 int ret; 9795 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 9796 9797 ret = __dev_change_flags(dev, flags, extack); 9798 if (ret < 0) 9799 return ret; 9800 9801 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 9802 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 9803 return ret; 9804 } 9805 9806 int __netif_set_mtu(struct net_device *dev, int new_mtu) 9807 { 9808 const struct net_device_ops *ops = dev->netdev_ops; 9809 9810 if (ops->ndo_change_mtu) 9811 return ops->ndo_change_mtu(dev, new_mtu); 9812 9813 /* Pairs with all the lockless reads of dev->mtu in the stack */ 9814 WRITE_ONCE(dev->mtu, new_mtu); 9815 return 0; 9816 } 9817 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL"); 9818 9819 int dev_validate_mtu(struct net_device *dev, int new_mtu, 9820 struct netlink_ext_ack *extack) 9821 { 9822 /* MTU must be positive, and in range */ 9823 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 9824 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 9825 return -EINVAL; 9826 } 9827 9828 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 9829 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 9830 return -EINVAL; 9831 } 9832 return 0; 9833 } 9834 9835 /** 9836 * netif_set_mtu_ext() - Change maximum transfer unit 9837 * @dev: device 9838 * @new_mtu: new transfer unit 9839 * @extack: netlink extended ack 9840 * 9841 * Change the maximum transfer size of the network device. 9842 * 9843 * Return: 0 on success, -errno on failure. 9844 */ 9845 int netif_set_mtu_ext(struct net_device *dev, int new_mtu, 9846 struct netlink_ext_ack *extack) 9847 { 9848 int err, orig_mtu; 9849 9850 netdev_ops_assert_locked(dev); 9851 9852 if (new_mtu == dev->mtu) 9853 return 0; 9854 9855 err = dev_validate_mtu(dev, new_mtu, extack); 9856 if (err) 9857 return err; 9858 9859 if (!netif_device_present(dev)) 9860 return -ENODEV; 9861 9862 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 9863 err = notifier_to_errno(err); 9864 if (err) 9865 return err; 9866 9867 orig_mtu = dev->mtu; 9868 err = __netif_set_mtu(dev, new_mtu); 9869 9870 if (!err) { 9871 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9872 orig_mtu); 9873 err = notifier_to_errno(err); 9874 if (err) { 9875 /* setting mtu back and notifying everyone again, 9876 * so that they have a chance to revert changes. 9877 */ 9878 __netif_set_mtu(dev, orig_mtu); 9879 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 9880 new_mtu); 9881 } 9882 } 9883 return err; 9884 } 9885 9886 int netif_set_mtu(struct net_device *dev, int new_mtu) 9887 { 9888 struct netlink_ext_ack extack; 9889 int err; 9890 9891 memset(&extack, 0, sizeof(extack)); 9892 err = netif_set_mtu_ext(dev, new_mtu, &extack); 9893 if (err && extack._msg) 9894 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 9895 return err; 9896 } 9897 EXPORT_SYMBOL(netif_set_mtu); 9898 9899 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 9900 { 9901 unsigned int orig_len = dev->tx_queue_len; 9902 int res; 9903 9904 if (new_len != (unsigned int)new_len) 9905 return -ERANGE; 9906 9907 if (new_len != orig_len) { 9908 WRITE_ONCE(dev->tx_queue_len, new_len); 9909 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 9910 res = notifier_to_errno(res); 9911 if (res) 9912 goto err_rollback; 9913 res = dev_qdisc_change_tx_queue_len(dev); 9914 if (res) 9915 goto err_rollback; 9916 } 9917 9918 return 0; 9919 9920 err_rollback: 9921 netdev_err(dev, "refused to change device tx_queue_len\n"); 9922 WRITE_ONCE(dev->tx_queue_len, orig_len); 9923 return res; 9924 } 9925 9926 void netif_set_group(struct net_device *dev, int new_group) 9927 { 9928 dev->group = new_group; 9929 } 9930 9931 /** 9932 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR. 9933 * @dev: device 9934 * @addr: new address 9935 * @extack: netlink extended ack 9936 * 9937 * Return: 0 on success, -errno on failure. 9938 */ 9939 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9940 struct netlink_ext_ack *extack) 9941 { 9942 struct netdev_notifier_pre_changeaddr_info info = { 9943 .info.dev = dev, 9944 .info.extack = extack, 9945 .dev_addr = addr, 9946 }; 9947 int rc; 9948 9949 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9950 return notifier_to_errno(rc); 9951 } 9952 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL"); 9953 9954 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss, 9955 struct netlink_ext_ack *extack) 9956 { 9957 const struct net_device_ops *ops = dev->netdev_ops; 9958 int err; 9959 9960 if (!ops->ndo_set_mac_address) 9961 return -EOPNOTSUPP; 9962 if (ss->ss_family != dev->type) 9963 return -EINVAL; 9964 if (!netif_device_present(dev)) 9965 return -ENODEV; 9966 err = netif_pre_changeaddr_notify(dev, ss->__data, extack); 9967 if (err) 9968 return err; 9969 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) { 9970 err = ops->ndo_set_mac_address(dev, ss); 9971 if (err) 9972 return err; 9973 } 9974 dev->addr_assign_type = NET_ADDR_SET; 9975 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9976 add_device_randomness(dev->dev_addr, dev->addr_len); 9977 return 0; 9978 } 9979 9980 DECLARE_RWSEM(dev_addr_sem); 9981 9982 /* "sa" is a true struct sockaddr with limited "sa_data" member. */ 9983 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9984 { 9985 size_t size = sizeof(sa->sa_data); 9986 struct net_device *dev; 9987 int ret = 0; 9988 9989 down_read(&dev_addr_sem); 9990 rcu_read_lock(); 9991 9992 dev = dev_get_by_name_rcu(net, dev_name); 9993 if (!dev) { 9994 ret = -ENODEV; 9995 goto unlock; 9996 } 9997 if (!dev->addr_len) 9998 memset(sa->sa_data, 0, size); 9999 else 10000 memcpy(sa->sa_data, dev->dev_addr, 10001 min_t(size_t, size, dev->addr_len)); 10002 sa->sa_family = dev->type; 10003 10004 unlock: 10005 rcu_read_unlock(); 10006 up_read(&dev_addr_sem); 10007 return ret; 10008 } 10009 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL"); 10010 10011 int netif_change_carrier(struct net_device *dev, bool new_carrier) 10012 { 10013 const struct net_device_ops *ops = dev->netdev_ops; 10014 10015 if (!ops->ndo_change_carrier) 10016 return -EOPNOTSUPP; 10017 if (!netif_device_present(dev)) 10018 return -ENODEV; 10019 return ops->ndo_change_carrier(dev, new_carrier); 10020 } 10021 10022 /** 10023 * dev_get_phys_port_id - Get device physical port ID 10024 * @dev: device 10025 * @ppid: port ID 10026 * 10027 * Get device physical port ID 10028 */ 10029 int dev_get_phys_port_id(struct net_device *dev, 10030 struct netdev_phys_item_id *ppid) 10031 { 10032 const struct net_device_ops *ops = dev->netdev_ops; 10033 10034 if (!ops->ndo_get_phys_port_id) 10035 return -EOPNOTSUPP; 10036 return ops->ndo_get_phys_port_id(dev, ppid); 10037 } 10038 10039 /** 10040 * dev_get_phys_port_name - Get device physical port name 10041 * @dev: device 10042 * @name: port name 10043 * @len: limit of bytes to copy to name 10044 * 10045 * Get device physical port name 10046 */ 10047 int dev_get_phys_port_name(struct net_device *dev, 10048 char *name, size_t len) 10049 { 10050 const struct net_device_ops *ops = dev->netdev_ops; 10051 int err; 10052 10053 if (ops->ndo_get_phys_port_name) { 10054 err = ops->ndo_get_phys_port_name(dev, name, len); 10055 if (err != -EOPNOTSUPP) 10056 return err; 10057 } 10058 return devlink_compat_phys_port_name_get(dev, name, len); 10059 } 10060 10061 /** 10062 * netif_get_port_parent_id() - Get the device's port parent identifier 10063 * @dev: network device 10064 * @ppid: pointer to a storage for the port's parent identifier 10065 * @recurse: allow/disallow recursion to lower devices 10066 * 10067 * Get the devices's port parent identifier. 10068 * 10069 * Return: 0 on success, -errno on failure. 10070 */ 10071 int netif_get_port_parent_id(struct net_device *dev, 10072 struct netdev_phys_item_id *ppid, bool recurse) 10073 { 10074 const struct net_device_ops *ops = dev->netdev_ops; 10075 struct netdev_phys_item_id first = { }; 10076 struct net_device *lower_dev; 10077 struct list_head *iter; 10078 int err; 10079 10080 if (ops->ndo_get_port_parent_id) { 10081 err = ops->ndo_get_port_parent_id(dev, ppid); 10082 if (err != -EOPNOTSUPP) 10083 return err; 10084 } 10085 10086 err = devlink_compat_switch_id_get(dev, ppid); 10087 if (!recurse || err != -EOPNOTSUPP) 10088 return err; 10089 10090 netdev_for_each_lower_dev(dev, lower_dev, iter) { 10091 err = netif_get_port_parent_id(lower_dev, ppid, true); 10092 if (err) 10093 break; 10094 if (!first.id_len) 10095 first = *ppid; 10096 else if (memcmp(&first, ppid, sizeof(*ppid))) 10097 return -EOPNOTSUPP; 10098 } 10099 10100 return err; 10101 } 10102 EXPORT_SYMBOL(netif_get_port_parent_id); 10103 10104 /** 10105 * netdev_port_same_parent_id - Indicate if two network devices have 10106 * the same port parent identifier 10107 * @a: first network device 10108 * @b: second network device 10109 */ 10110 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 10111 { 10112 struct netdev_phys_item_id a_id = { }; 10113 struct netdev_phys_item_id b_id = { }; 10114 10115 if (netif_get_port_parent_id(a, &a_id, true) || 10116 netif_get_port_parent_id(b, &b_id, true)) 10117 return false; 10118 10119 return netdev_phys_item_id_same(&a_id, &b_id); 10120 } 10121 EXPORT_SYMBOL(netdev_port_same_parent_id); 10122 10123 int netif_change_proto_down(struct net_device *dev, bool proto_down) 10124 { 10125 if (!dev->change_proto_down) 10126 return -EOPNOTSUPP; 10127 if (!netif_device_present(dev)) 10128 return -ENODEV; 10129 if (proto_down) 10130 netif_carrier_off(dev); 10131 else 10132 netif_carrier_on(dev); 10133 WRITE_ONCE(dev->proto_down, proto_down); 10134 return 0; 10135 } 10136 10137 /** 10138 * netdev_change_proto_down_reason_locked - proto down reason 10139 * 10140 * @dev: device 10141 * @mask: proto down mask 10142 * @value: proto down value 10143 */ 10144 void netdev_change_proto_down_reason_locked(struct net_device *dev, 10145 unsigned long mask, u32 value) 10146 { 10147 u32 proto_down_reason; 10148 int b; 10149 10150 if (!mask) { 10151 proto_down_reason = value; 10152 } else { 10153 proto_down_reason = dev->proto_down_reason; 10154 for_each_set_bit(b, &mask, 32) { 10155 if (value & (1 << b)) 10156 proto_down_reason |= BIT(b); 10157 else 10158 proto_down_reason &= ~BIT(b); 10159 } 10160 } 10161 WRITE_ONCE(dev->proto_down_reason, proto_down_reason); 10162 } 10163 10164 struct bpf_xdp_link { 10165 struct bpf_link link; 10166 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 10167 int flags; 10168 }; 10169 10170 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 10171 { 10172 if (flags & XDP_FLAGS_HW_MODE) 10173 return XDP_MODE_HW; 10174 if (flags & XDP_FLAGS_DRV_MODE) 10175 return XDP_MODE_DRV; 10176 if (flags & XDP_FLAGS_SKB_MODE) 10177 return XDP_MODE_SKB; 10178 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 10179 } 10180 10181 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 10182 { 10183 switch (mode) { 10184 case XDP_MODE_SKB: 10185 return generic_xdp_install; 10186 case XDP_MODE_DRV: 10187 case XDP_MODE_HW: 10188 return dev->netdev_ops->ndo_bpf; 10189 default: 10190 return NULL; 10191 } 10192 } 10193 10194 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 10195 enum bpf_xdp_mode mode) 10196 { 10197 return dev->xdp_state[mode].link; 10198 } 10199 10200 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 10201 enum bpf_xdp_mode mode) 10202 { 10203 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 10204 10205 if (link) 10206 return link->link.prog; 10207 return dev->xdp_state[mode].prog; 10208 } 10209 10210 u8 dev_xdp_prog_count(struct net_device *dev) 10211 { 10212 u8 count = 0; 10213 int i; 10214 10215 for (i = 0; i < __MAX_XDP_MODE; i++) 10216 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 10217 count++; 10218 return count; 10219 } 10220 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 10221 10222 u8 dev_xdp_sb_prog_count(struct net_device *dev) 10223 { 10224 u8 count = 0; 10225 int i; 10226 10227 for (i = 0; i < __MAX_XDP_MODE; i++) 10228 if (dev->xdp_state[i].prog && 10229 !dev->xdp_state[i].prog->aux->xdp_has_frags) 10230 count++; 10231 return count; 10232 } 10233 10234 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf) 10235 { 10236 if (!dev->netdev_ops->ndo_bpf) 10237 return -EOPNOTSUPP; 10238 10239 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10240 bpf->command == XDP_SETUP_PROG && 10241 bpf->prog && !bpf->prog->aux->xdp_has_frags) { 10242 NL_SET_ERR_MSG(bpf->extack, 10243 "unable to propagate XDP to device using tcp-data-split"); 10244 return -EBUSY; 10245 } 10246 10247 if (dev_get_min_mp_channel_count(dev)) { 10248 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider"); 10249 return -EBUSY; 10250 } 10251 10252 return dev->netdev_ops->ndo_bpf(dev, bpf); 10253 } 10254 EXPORT_SYMBOL_GPL(netif_xdp_propagate); 10255 10256 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 10257 { 10258 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 10259 10260 return prog ? prog->aux->id : 0; 10261 } 10262 10263 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 10264 struct bpf_xdp_link *link) 10265 { 10266 dev->xdp_state[mode].link = link; 10267 dev->xdp_state[mode].prog = NULL; 10268 } 10269 10270 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 10271 struct bpf_prog *prog) 10272 { 10273 dev->xdp_state[mode].link = NULL; 10274 dev->xdp_state[mode].prog = prog; 10275 } 10276 10277 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 10278 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 10279 u32 flags, struct bpf_prog *prog) 10280 { 10281 struct netdev_bpf xdp; 10282 int err; 10283 10284 netdev_ops_assert_locked(dev); 10285 10286 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED && 10287 prog && !prog->aux->xdp_has_frags) { 10288 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split"); 10289 return -EBUSY; 10290 } 10291 10292 if (dev_get_min_mp_channel_count(dev)) { 10293 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider"); 10294 return -EBUSY; 10295 } 10296 10297 memset(&xdp, 0, sizeof(xdp)); 10298 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 10299 xdp.extack = extack; 10300 xdp.flags = flags; 10301 xdp.prog = prog; 10302 10303 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 10304 * "moved" into driver), so they don't increment it on their own, but 10305 * they do decrement refcnt when program is detached or replaced. 10306 * Given net_device also owns link/prog, we need to bump refcnt here 10307 * to prevent drivers from underflowing it. 10308 */ 10309 if (prog) 10310 bpf_prog_inc(prog); 10311 err = bpf_op(dev, &xdp); 10312 if (err) { 10313 if (prog) 10314 bpf_prog_put(prog); 10315 return err; 10316 } 10317 10318 if (mode != XDP_MODE_HW) 10319 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 10320 10321 return 0; 10322 } 10323 10324 static void dev_xdp_uninstall(struct net_device *dev) 10325 { 10326 struct bpf_xdp_link *link; 10327 struct bpf_prog *prog; 10328 enum bpf_xdp_mode mode; 10329 bpf_op_t bpf_op; 10330 10331 ASSERT_RTNL(); 10332 10333 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 10334 prog = dev_xdp_prog(dev, mode); 10335 if (!prog) 10336 continue; 10337 10338 bpf_op = dev_xdp_bpf_op(dev, mode); 10339 if (!bpf_op) 10340 continue; 10341 10342 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10343 10344 /* auto-detach link from net device */ 10345 link = dev_xdp_link(dev, mode); 10346 if (link) 10347 link->dev = NULL; 10348 else 10349 bpf_prog_put(prog); 10350 10351 dev_xdp_set_link(dev, mode, NULL); 10352 } 10353 } 10354 10355 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 10356 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 10357 struct bpf_prog *old_prog, u32 flags) 10358 { 10359 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 10360 struct bpf_prog *cur_prog; 10361 struct net_device *upper; 10362 struct list_head *iter; 10363 enum bpf_xdp_mode mode; 10364 bpf_op_t bpf_op; 10365 int err; 10366 10367 ASSERT_RTNL(); 10368 10369 /* either link or prog attachment, never both */ 10370 if (link && (new_prog || old_prog)) 10371 return -EINVAL; 10372 /* link supports only XDP mode flags */ 10373 if (link && (flags & ~XDP_FLAGS_MODES)) { 10374 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 10375 return -EINVAL; 10376 } 10377 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 10378 if (num_modes > 1) { 10379 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 10380 return -EINVAL; 10381 } 10382 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 10383 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 10384 NL_SET_ERR_MSG(extack, 10385 "More than one program loaded, unset mode is ambiguous"); 10386 return -EINVAL; 10387 } 10388 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 10389 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 10390 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 10391 return -EINVAL; 10392 } 10393 10394 mode = dev_xdp_mode(dev, flags); 10395 /* can't replace attached link */ 10396 if (dev_xdp_link(dev, mode)) { 10397 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 10398 return -EBUSY; 10399 } 10400 10401 /* don't allow if an upper device already has a program */ 10402 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 10403 if (dev_xdp_prog_count(upper) > 0) { 10404 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 10405 return -EEXIST; 10406 } 10407 } 10408 10409 cur_prog = dev_xdp_prog(dev, mode); 10410 /* can't replace attached prog with link */ 10411 if (link && cur_prog) { 10412 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 10413 return -EBUSY; 10414 } 10415 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 10416 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 10417 return -EEXIST; 10418 } 10419 10420 /* put effective new program into new_prog */ 10421 if (link) 10422 new_prog = link->link.prog; 10423 10424 if (new_prog) { 10425 bool offload = mode == XDP_MODE_HW; 10426 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 10427 ? XDP_MODE_DRV : XDP_MODE_SKB; 10428 10429 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 10430 NL_SET_ERR_MSG(extack, "XDP program already attached"); 10431 return -EBUSY; 10432 } 10433 if (!offload && dev_xdp_prog(dev, other_mode)) { 10434 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 10435 return -EEXIST; 10436 } 10437 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 10438 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 10439 return -EINVAL; 10440 } 10441 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 10442 NL_SET_ERR_MSG(extack, "Program bound to different device"); 10443 return -EINVAL; 10444 } 10445 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) { 10446 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode"); 10447 return -EINVAL; 10448 } 10449 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 10450 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 10451 return -EINVAL; 10452 } 10453 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 10454 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 10455 return -EINVAL; 10456 } 10457 } 10458 10459 /* don't call drivers if the effective program didn't change */ 10460 if (new_prog != cur_prog) { 10461 bpf_op = dev_xdp_bpf_op(dev, mode); 10462 if (!bpf_op) { 10463 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 10464 return -EOPNOTSUPP; 10465 } 10466 10467 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 10468 if (err) 10469 return err; 10470 } 10471 10472 if (link) 10473 dev_xdp_set_link(dev, mode, link); 10474 else 10475 dev_xdp_set_prog(dev, mode, new_prog); 10476 if (cur_prog) 10477 bpf_prog_put(cur_prog); 10478 10479 return 0; 10480 } 10481 10482 static int dev_xdp_attach_link(struct net_device *dev, 10483 struct netlink_ext_ack *extack, 10484 struct bpf_xdp_link *link) 10485 { 10486 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 10487 } 10488 10489 static int dev_xdp_detach_link(struct net_device *dev, 10490 struct netlink_ext_ack *extack, 10491 struct bpf_xdp_link *link) 10492 { 10493 enum bpf_xdp_mode mode; 10494 bpf_op_t bpf_op; 10495 10496 ASSERT_RTNL(); 10497 10498 mode = dev_xdp_mode(dev, link->flags); 10499 if (dev_xdp_link(dev, mode) != link) 10500 return -EINVAL; 10501 10502 bpf_op = dev_xdp_bpf_op(dev, mode); 10503 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 10504 dev_xdp_set_link(dev, mode, NULL); 10505 return 0; 10506 } 10507 10508 static void bpf_xdp_link_release(struct bpf_link *link) 10509 { 10510 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10511 10512 rtnl_lock(); 10513 10514 /* if racing with net_device's tear down, xdp_link->dev might be 10515 * already NULL, in which case link was already auto-detached 10516 */ 10517 if (xdp_link->dev) { 10518 netdev_lock_ops(xdp_link->dev); 10519 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 10520 netdev_unlock_ops(xdp_link->dev); 10521 xdp_link->dev = NULL; 10522 } 10523 10524 rtnl_unlock(); 10525 } 10526 10527 static int bpf_xdp_link_detach(struct bpf_link *link) 10528 { 10529 bpf_xdp_link_release(link); 10530 return 0; 10531 } 10532 10533 static void bpf_xdp_link_dealloc(struct bpf_link *link) 10534 { 10535 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10536 10537 kfree(xdp_link); 10538 } 10539 10540 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 10541 struct seq_file *seq) 10542 { 10543 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10544 u32 ifindex = 0; 10545 10546 rtnl_lock(); 10547 if (xdp_link->dev) 10548 ifindex = xdp_link->dev->ifindex; 10549 rtnl_unlock(); 10550 10551 seq_printf(seq, "ifindex:\t%u\n", ifindex); 10552 } 10553 10554 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 10555 struct bpf_link_info *info) 10556 { 10557 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10558 u32 ifindex = 0; 10559 10560 rtnl_lock(); 10561 if (xdp_link->dev) 10562 ifindex = xdp_link->dev->ifindex; 10563 rtnl_unlock(); 10564 10565 info->xdp.ifindex = ifindex; 10566 return 0; 10567 } 10568 10569 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 10570 struct bpf_prog *old_prog) 10571 { 10572 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 10573 enum bpf_xdp_mode mode; 10574 bpf_op_t bpf_op; 10575 int err = 0; 10576 10577 rtnl_lock(); 10578 10579 /* link might have been auto-released already, so fail */ 10580 if (!xdp_link->dev) { 10581 err = -ENOLINK; 10582 goto out_unlock; 10583 } 10584 10585 if (old_prog && link->prog != old_prog) { 10586 err = -EPERM; 10587 goto out_unlock; 10588 } 10589 old_prog = link->prog; 10590 if (old_prog->type != new_prog->type || 10591 old_prog->expected_attach_type != new_prog->expected_attach_type) { 10592 err = -EINVAL; 10593 goto out_unlock; 10594 } 10595 10596 if (old_prog == new_prog) { 10597 /* no-op, don't disturb drivers */ 10598 bpf_prog_put(new_prog); 10599 goto out_unlock; 10600 } 10601 10602 netdev_lock_ops(xdp_link->dev); 10603 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 10604 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 10605 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 10606 xdp_link->flags, new_prog); 10607 netdev_unlock_ops(xdp_link->dev); 10608 if (err) 10609 goto out_unlock; 10610 10611 old_prog = xchg(&link->prog, new_prog); 10612 bpf_prog_put(old_prog); 10613 10614 out_unlock: 10615 rtnl_unlock(); 10616 return err; 10617 } 10618 10619 static const struct bpf_link_ops bpf_xdp_link_lops = { 10620 .release = bpf_xdp_link_release, 10621 .dealloc = bpf_xdp_link_dealloc, 10622 .detach = bpf_xdp_link_detach, 10623 .show_fdinfo = bpf_xdp_link_show_fdinfo, 10624 .fill_link_info = bpf_xdp_link_fill_link_info, 10625 .update_prog = bpf_xdp_link_update, 10626 }; 10627 10628 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 10629 { 10630 struct net *net = current->nsproxy->net_ns; 10631 struct bpf_link_primer link_primer; 10632 struct netlink_ext_ack extack = {}; 10633 struct bpf_xdp_link *link; 10634 struct net_device *dev; 10635 int err, fd; 10636 10637 rtnl_lock(); 10638 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 10639 if (!dev) { 10640 rtnl_unlock(); 10641 return -EINVAL; 10642 } 10643 10644 link = kzalloc(sizeof(*link), GFP_USER); 10645 if (!link) { 10646 err = -ENOMEM; 10647 goto unlock; 10648 } 10649 10650 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog, 10651 attr->link_create.attach_type); 10652 link->dev = dev; 10653 link->flags = attr->link_create.flags; 10654 10655 err = bpf_link_prime(&link->link, &link_primer); 10656 if (err) { 10657 kfree(link); 10658 goto unlock; 10659 } 10660 10661 netdev_lock_ops(dev); 10662 err = dev_xdp_attach_link(dev, &extack, link); 10663 netdev_unlock_ops(dev); 10664 rtnl_unlock(); 10665 10666 if (err) { 10667 link->dev = NULL; 10668 bpf_link_cleanup(&link_primer); 10669 trace_bpf_xdp_link_attach_failed(extack._msg); 10670 goto out_put_dev; 10671 } 10672 10673 fd = bpf_link_settle(&link_primer); 10674 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 10675 dev_put(dev); 10676 return fd; 10677 10678 unlock: 10679 rtnl_unlock(); 10680 10681 out_put_dev: 10682 dev_put(dev); 10683 return err; 10684 } 10685 10686 /** 10687 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 10688 * @dev: device 10689 * @extack: netlink extended ack 10690 * @fd: new program fd or negative value to clear 10691 * @expected_fd: old program fd that userspace expects to replace or clear 10692 * @flags: xdp-related flags 10693 * 10694 * Set or clear a bpf program for a device 10695 */ 10696 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 10697 int fd, int expected_fd, u32 flags) 10698 { 10699 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 10700 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 10701 int err; 10702 10703 ASSERT_RTNL(); 10704 10705 if (fd >= 0) { 10706 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 10707 mode != XDP_MODE_SKB); 10708 if (IS_ERR(new_prog)) 10709 return PTR_ERR(new_prog); 10710 } 10711 10712 if (expected_fd >= 0) { 10713 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 10714 mode != XDP_MODE_SKB); 10715 if (IS_ERR(old_prog)) { 10716 err = PTR_ERR(old_prog); 10717 old_prog = NULL; 10718 goto err_out; 10719 } 10720 } 10721 10722 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 10723 10724 err_out: 10725 if (err && new_prog) 10726 bpf_prog_put(new_prog); 10727 if (old_prog) 10728 bpf_prog_put(old_prog); 10729 return err; 10730 } 10731 10732 u32 dev_get_min_mp_channel_count(const struct net_device *dev) 10733 { 10734 int i; 10735 10736 netdev_ops_assert_locked(dev); 10737 10738 for (i = dev->real_num_rx_queues - 1; i >= 0; i--) 10739 if (dev->_rx[i].mp_params.mp_priv) 10740 /* The channel count is the idx plus 1. */ 10741 return i + 1; 10742 10743 return 0; 10744 } 10745 10746 /** 10747 * dev_index_reserve() - allocate an ifindex in a namespace 10748 * @net: the applicable net namespace 10749 * @ifindex: requested ifindex, pass %0 to get one allocated 10750 * 10751 * Allocate a ifindex for a new device. Caller must either use the ifindex 10752 * to store the device (via list_netdevice()) or call dev_index_release() 10753 * to give the index up. 10754 * 10755 * Return: a suitable unique value for a new device interface number or -errno. 10756 */ 10757 static int dev_index_reserve(struct net *net, u32 ifindex) 10758 { 10759 int err; 10760 10761 if (ifindex > INT_MAX) { 10762 DEBUG_NET_WARN_ON_ONCE(1); 10763 return -EINVAL; 10764 } 10765 10766 if (!ifindex) 10767 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 10768 xa_limit_31b, &net->ifindex, GFP_KERNEL); 10769 else 10770 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 10771 if (err < 0) 10772 return err; 10773 10774 return ifindex; 10775 } 10776 10777 static void dev_index_release(struct net *net, int ifindex) 10778 { 10779 /* Expect only unused indexes, unlist_netdevice() removes the used */ 10780 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 10781 } 10782 10783 static bool from_cleanup_net(void) 10784 { 10785 #ifdef CONFIG_NET_NS 10786 return current == READ_ONCE(cleanup_net_task); 10787 #else 10788 return false; 10789 #endif 10790 } 10791 10792 /* Delayed registration/unregisteration */ 10793 LIST_HEAD(net_todo_list); 10794 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 10795 atomic_t dev_unreg_count = ATOMIC_INIT(0); 10796 10797 static void net_set_todo(struct net_device *dev) 10798 { 10799 list_add_tail(&dev->todo_list, &net_todo_list); 10800 } 10801 10802 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 10803 struct net_device *upper, netdev_features_t features) 10804 { 10805 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10806 netdev_features_t feature; 10807 int feature_bit; 10808 10809 for_each_netdev_feature(upper_disables, feature_bit) { 10810 feature = __NETIF_F_BIT(feature_bit); 10811 if (!(upper->wanted_features & feature) 10812 && (features & feature)) { 10813 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 10814 &feature, upper->name); 10815 features &= ~feature; 10816 } 10817 } 10818 10819 return features; 10820 } 10821 10822 static void netdev_sync_lower_features(struct net_device *upper, 10823 struct net_device *lower, netdev_features_t features) 10824 { 10825 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 10826 netdev_features_t feature; 10827 int feature_bit; 10828 10829 for_each_netdev_feature(upper_disables, feature_bit) { 10830 feature = __NETIF_F_BIT(feature_bit); 10831 if (!(features & feature) && (lower->features & feature)) { 10832 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 10833 &feature, lower->name); 10834 netdev_lock_ops(lower); 10835 lower->wanted_features &= ~feature; 10836 __netdev_update_features(lower); 10837 10838 if (unlikely(lower->features & feature)) 10839 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 10840 &feature, lower->name); 10841 else 10842 netdev_features_change(lower); 10843 netdev_unlock_ops(lower); 10844 } 10845 } 10846 } 10847 10848 static bool netdev_has_ip_or_hw_csum(netdev_features_t features) 10849 { 10850 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 10851 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask; 10852 bool hw_csum = features & NETIF_F_HW_CSUM; 10853 10854 return ip_csum || hw_csum; 10855 } 10856 10857 static netdev_features_t netdev_fix_features(struct net_device *dev, 10858 netdev_features_t features) 10859 { 10860 /* Fix illegal checksum combinations */ 10861 if ((features & NETIF_F_HW_CSUM) && 10862 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 10863 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 10864 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 10865 } 10866 10867 /* TSO requires that SG is present as well. */ 10868 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 10869 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 10870 features &= ~NETIF_F_ALL_TSO; 10871 } 10872 10873 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 10874 !(features & NETIF_F_IP_CSUM)) { 10875 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 10876 features &= ~NETIF_F_TSO; 10877 features &= ~NETIF_F_TSO_ECN; 10878 } 10879 10880 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 10881 !(features & NETIF_F_IPV6_CSUM)) { 10882 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 10883 features &= ~NETIF_F_TSO6; 10884 } 10885 10886 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 10887 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 10888 features &= ~NETIF_F_TSO_MANGLEID; 10889 10890 /* TSO ECN requires that TSO is present as well. */ 10891 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 10892 features &= ~NETIF_F_TSO_ECN; 10893 10894 /* Software GSO depends on SG. */ 10895 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 10896 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 10897 features &= ~NETIF_F_GSO; 10898 } 10899 10900 /* GSO partial features require GSO partial be set */ 10901 if ((features & dev->gso_partial_features) && 10902 !(features & NETIF_F_GSO_PARTIAL)) { 10903 netdev_dbg(dev, 10904 "Dropping partially supported GSO features since no GSO partial.\n"); 10905 features &= ~dev->gso_partial_features; 10906 } 10907 10908 if (!(features & NETIF_F_RXCSUM)) { 10909 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 10910 * successfully merged by hardware must also have the 10911 * checksum verified by hardware. If the user does not 10912 * want to enable RXCSUM, logically, we should disable GRO_HW. 10913 */ 10914 if (features & NETIF_F_GRO_HW) { 10915 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 10916 features &= ~NETIF_F_GRO_HW; 10917 } 10918 } 10919 10920 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 10921 if (features & NETIF_F_RXFCS) { 10922 if (features & NETIF_F_LRO) { 10923 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 10924 features &= ~NETIF_F_LRO; 10925 } 10926 10927 if (features & NETIF_F_GRO_HW) { 10928 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 10929 features &= ~NETIF_F_GRO_HW; 10930 } 10931 } 10932 10933 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 10934 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 10935 features &= ~NETIF_F_LRO; 10936 } 10937 10938 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) { 10939 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 10940 features &= ~NETIF_F_HW_TLS_TX; 10941 } 10942 10943 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 10944 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 10945 features &= ~NETIF_F_HW_TLS_RX; 10946 } 10947 10948 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) { 10949 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n"); 10950 features &= ~NETIF_F_GSO_UDP_L4; 10951 } 10952 10953 return features; 10954 } 10955 10956 int __netdev_update_features(struct net_device *dev) 10957 { 10958 struct net_device *upper, *lower; 10959 netdev_features_t features; 10960 struct list_head *iter; 10961 int err = -1; 10962 10963 ASSERT_RTNL(); 10964 netdev_ops_assert_locked(dev); 10965 10966 features = netdev_get_wanted_features(dev); 10967 10968 if (dev->netdev_ops->ndo_fix_features) 10969 features = dev->netdev_ops->ndo_fix_features(dev, features); 10970 10971 /* driver might be less strict about feature dependencies */ 10972 features = netdev_fix_features(dev, features); 10973 10974 /* some features can't be enabled if they're off on an upper device */ 10975 netdev_for_each_upper_dev_rcu(dev, upper, iter) 10976 features = netdev_sync_upper_features(dev, upper, features); 10977 10978 if (dev->features == features) 10979 goto sync_lower; 10980 10981 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 10982 &dev->features, &features); 10983 10984 if (dev->netdev_ops->ndo_set_features) 10985 err = dev->netdev_ops->ndo_set_features(dev, features); 10986 else 10987 err = 0; 10988 10989 if (unlikely(err < 0)) { 10990 netdev_err(dev, 10991 "set_features() failed (%d); wanted %pNF, left %pNF\n", 10992 err, &features, &dev->features); 10993 /* return non-0 since some features might have changed and 10994 * it's better to fire a spurious notification than miss it 10995 */ 10996 return -1; 10997 } 10998 10999 sync_lower: 11000 /* some features must be disabled on lower devices when disabled 11001 * on an upper device (think: bonding master or bridge) 11002 */ 11003 netdev_for_each_lower_dev(dev, lower, iter) 11004 netdev_sync_lower_features(dev, lower, features); 11005 11006 if (!err) { 11007 netdev_features_t diff = features ^ dev->features; 11008 11009 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 11010 /* udp_tunnel_{get,drop}_rx_info both need 11011 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 11012 * device, or they won't do anything. 11013 * Thus we need to update dev->features 11014 * *before* calling udp_tunnel_get_rx_info, 11015 * but *after* calling udp_tunnel_drop_rx_info. 11016 */ 11017 udp_tunnel_nic_lock(dev); 11018 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 11019 dev->features = features; 11020 udp_tunnel_get_rx_info(dev); 11021 } else { 11022 udp_tunnel_drop_rx_info(dev); 11023 } 11024 udp_tunnel_nic_unlock(dev); 11025 } 11026 11027 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 11028 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 11029 dev->features = features; 11030 err |= vlan_get_rx_ctag_filter_info(dev); 11031 } else { 11032 vlan_drop_rx_ctag_filter_info(dev); 11033 } 11034 } 11035 11036 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 11037 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 11038 dev->features = features; 11039 err |= vlan_get_rx_stag_filter_info(dev); 11040 } else { 11041 vlan_drop_rx_stag_filter_info(dev); 11042 } 11043 } 11044 11045 dev->features = features; 11046 } 11047 11048 return err < 0 ? 0 : 1; 11049 } 11050 11051 /** 11052 * netdev_update_features - recalculate device features 11053 * @dev: the device to check 11054 * 11055 * Recalculate dev->features set and send notifications if it 11056 * has changed. Should be called after driver or hardware dependent 11057 * conditions might have changed that influence the features. 11058 */ 11059 void netdev_update_features(struct net_device *dev) 11060 { 11061 if (__netdev_update_features(dev)) 11062 netdev_features_change(dev); 11063 } 11064 EXPORT_SYMBOL(netdev_update_features); 11065 11066 /** 11067 * netdev_change_features - recalculate device features 11068 * @dev: the device to check 11069 * 11070 * Recalculate dev->features set and send notifications even 11071 * if they have not changed. Should be called instead of 11072 * netdev_update_features() if also dev->vlan_features might 11073 * have changed to allow the changes to be propagated to stacked 11074 * VLAN devices. 11075 */ 11076 void netdev_change_features(struct net_device *dev) 11077 { 11078 __netdev_update_features(dev); 11079 netdev_features_change(dev); 11080 } 11081 EXPORT_SYMBOL(netdev_change_features); 11082 11083 /** 11084 * netif_stacked_transfer_operstate - transfer operstate 11085 * @rootdev: the root or lower level device to transfer state from 11086 * @dev: the device to transfer operstate to 11087 * 11088 * Transfer operational state from root to device. This is normally 11089 * called when a stacking relationship exists between the root 11090 * device and the device(a leaf device). 11091 */ 11092 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 11093 struct net_device *dev) 11094 { 11095 if (rootdev->operstate == IF_OPER_DORMANT) 11096 netif_dormant_on(dev); 11097 else 11098 netif_dormant_off(dev); 11099 11100 if (rootdev->operstate == IF_OPER_TESTING) 11101 netif_testing_on(dev); 11102 else 11103 netif_testing_off(dev); 11104 11105 if (netif_carrier_ok(rootdev)) 11106 netif_carrier_on(dev); 11107 else 11108 netif_carrier_off(dev); 11109 } 11110 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 11111 11112 static int netif_alloc_rx_queues(struct net_device *dev) 11113 { 11114 unsigned int i, count = dev->num_rx_queues; 11115 struct netdev_rx_queue *rx; 11116 size_t sz = count * sizeof(*rx); 11117 int err = 0; 11118 11119 BUG_ON(count < 1); 11120 11121 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11122 if (!rx) 11123 return -ENOMEM; 11124 11125 dev->_rx = rx; 11126 11127 for (i = 0; i < count; i++) { 11128 rx[i].dev = dev; 11129 11130 /* XDP RX-queue setup */ 11131 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 11132 if (err < 0) 11133 goto err_rxq_info; 11134 } 11135 return 0; 11136 11137 err_rxq_info: 11138 /* Rollback successful reg's and free other resources */ 11139 while (i--) 11140 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 11141 kvfree(dev->_rx); 11142 dev->_rx = NULL; 11143 return err; 11144 } 11145 11146 static void netif_free_rx_queues(struct net_device *dev) 11147 { 11148 unsigned int i, count = dev->num_rx_queues; 11149 11150 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 11151 if (!dev->_rx) 11152 return; 11153 11154 for (i = 0; i < count; i++) 11155 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 11156 11157 kvfree(dev->_rx); 11158 } 11159 11160 static void netdev_init_one_queue(struct net_device *dev, 11161 struct netdev_queue *queue, void *_unused) 11162 { 11163 /* Initialize queue lock */ 11164 spin_lock_init(&queue->_xmit_lock); 11165 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 11166 queue->xmit_lock_owner = -1; 11167 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 11168 queue->dev = dev; 11169 #ifdef CONFIG_BQL 11170 dql_init(&queue->dql, HZ); 11171 #endif 11172 } 11173 11174 static void netif_free_tx_queues(struct net_device *dev) 11175 { 11176 kvfree(dev->_tx); 11177 } 11178 11179 static int netif_alloc_netdev_queues(struct net_device *dev) 11180 { 11181 unsigned int count = dev->num_tx_queues; 11182 struct netdev_queue *tx; 11183 size_t sz = count * sizeof(*tx); 11184 11185 if (count < 1 || count > 0xffff) 11186 return -EINVAL; 11187 11188 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11189 if (!tx) 11190 return -ENOMEM; 11191 11192 dev->_tx = tx; 11193 11194 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 11195 spin_lock_init(&dev->tx_global_lock); 11196 11197 return 0; 11198 } 11199 11200 void netif_tx_stop_all_queues(struct net_device *dev) 11201 { 11202 unsigned int i; 11203 11204 for (i = 0; i < dev->num_tx_queues; i++) { 11205 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 11206 11207 netif_tx_stop_queue(txq); 11208 } 11209 } 11210 EXPORT_SYMBOL(netif_tx_stop_all_queues); 11211 11212 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 11213 { 11214 void __percpu *v; 11215 11216 /* Drivers implementing ndo_get_peer_dev must support tstat 11217 * accounting, so that skb_do_redirect() can bump the dev's 11218 * RX stats upon network namespace switch. 11219 */ 11220 if (dev->netdev_ops->ndo_get_peer_dev && 11221 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 11222 return -EOPNOTSUPP; 11223 11224 switch (dev->pcpu_stat_type) { 11225 case NETDEV_PCPU_STAT_NONE: 11226 return 0; 11227 case NETDEV_PCPU_STAT_LSTATS: 11228 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 11229 break; 11230 case NETDEV_PCPU_STAT_TSTATS: 11231 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 11232 break; 11233 case NETDEV_PCPU_STAT_DSTATS: 11234 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 11235 break; 11236 default: 11237 return -EINVAL; 11238 } 11239 11240 return v ? 0 : -ENOMEM; 11241 } 11242 11243 static void netdev_do_free_pcpu_stats(struct net_device *dev) 11244 { 11245 switch (dev->pcpu_stat_type) { 11246 case NETDEV_PCPU_STAT_NONE: 11247 return; 11248 case NETDEV_PCPU_STAT_LSTATS: 11249 free_percpu(dev->lstats); 11250 break; 11251 case NETDEV_PCPU_STAT_TSTATS: 11252 free_percpu(dev->tstats); 11253 break; 11254 case NETDEV_PCPU_STAT_DSTATS: 11255 free_percpu(dev->dstats); 11256 break; 11257 } 11258 } 11259 11260 static void netdev_free_phy_link_topology(struct net_device *dev) 11261 { 11262 struct phy_link_topology *topo = dev->link_topo; 11263 11264 if (IS_ENABLED(CONFIG_PHYLIB) && topo) { 11265 xa_destroy(&topo->phys); 11266 kfree(topo); 11267 dev->link_topo = NULL; 11268 } 11269 } 11270 11271 /** 11272 * register_netdevice() - register a network device 11273 * @dev: device to register 11274 * 11275 * Take a prepared network device structure and make it externally accessible. 11276 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 11277 * Callers must hold the rtnl lock - you may want register_netdev() 11278 * instead of this. 11279 */ 11280 int register_netdevice(struct net_device *dev) 11281 { 11282 int ret; 11283 struct net *net = dev_net(dev); 11284 11285 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 11286 NETDEV_FEATURE_COUNT); 11287 BUG_ON(dev_boot_phase); 11288 ASSERT_RTNL(); 11289 11290 might_sleep(); 11291 11292 /* When net_device's are persistent, this will be fatal. */ 11293 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 11294 BUG_ON(!net); 11295 11296 ret = ethtool_check_ops(dev->ethtool_ops); 11297 if (ret) 11298 return ret; 11299 11300 /* rss ctx ID 0 is reserved for the default context, start from 1 */ 11301 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1); 11302 mutex_init(&dev->ethtool->rss_lock); 11303 11304 spin_lock_init(&dev->addr_list_lock); 11305 netdev_set_addr_lockdep_class(dev); 11306 11307 ret = dev_get_valid_name(net, dev, dev->name); 11308 if (ret < 0) 11309 goto out; 11310 11311 ret = -ENOMEM; 11312 dev->name_node = netdev_name_node_head_alloc(dev); 11313 if (!dev->name_node) 11314 goto out; 11315 11316 /* Init, if this function is available */ 11317 if (dev->netdev_ops->ndo_init) { 11318 ret = dev->netdev_ops->ndo_init(dev); 11319 if (ret) { 11320 if (ret > 0) 11321 ret = -EIO; 11322 goto err_free_name; 11323 } 11324 } 11325 11326 if (((dev->hw_features | dev->features) & 11327 NETIF_F_HW_VLAN_CTAG_FILTER) && 11328 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 11329 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 11330 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 11331 ret = -EINVAL; 11332 goto err_uninit; 11333 } 11334 11335 ret = netdev_do_alloc_pcpu_stats(dev); 11336 if (ret) 11337 goto err_uninit; 11338 11339 ret = dev_index_reserve(net, dev->ifindex); 11340 if (ret < 0) 11341 goto err_free_pcpu; 11342 dev->ifindex = ret; 11343 11344 /* Transfer changeable features to wanted_features and enable 11345 * software offloads (GSO and GRO). 11346 */ 11347 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 11348 dev->features |= NETIF_F_SOFT_FEATURES; 11349 11350 if (dev->udp_tunnel_nic_info) { 11351 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11352 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 11353 } 11354 11355 dev->wanted_features = dev->features & dev->hw_features; 11356 11357 if (!(dev->flags & IFF_LOOPBACK)) 11358 dev->hw_features |= NETIF_F_NOCACHE_COPY; 11359 11360 /* If IPv4 TCP segmentation offload is supported we should also 11361 * allow the device to enable segmenting the frame with the option 11362 * of ignoring a static IP ID value. This doesn't enable the 11363 * feature itself but allows the user to enable it later. 11364 */ 11365 if (dev->hw_features & NETIF_F_TSO) 11366 dev->hw_features |= NETIF_F_TSO_MANGLEID; 11367 if (dev->vlan_features & NETIF_F_TSO) 11368 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 11369 if (dev->mpls_features & NETIF_F_TSO) 11370 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 11371 if (dev->hw_enc_features & NETIF_F_TSO) 11372 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 11373 11374 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 11375 */ 11376 dev->vlan_features |= NETIF_F_HIGHDMA; 11377 11378 /* Make NETIF_F_SG inheritable to tunnel devices. 11379 */ 11380 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 11381 11382 /* Make NETIF_F_SG inheritable to MPLS. 11383 */ 11384 dev->mpls_features |= NETIF_F_SG; 11385 11386 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 11387 ret = notifier_to_errno(ret); 11388 if (ret) 11389 goto err_ifindex_release; 11390 11391 ret = netdev_register_kobject(dev); 11392 11393 netdev_lock(dev); 11394 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED); 11395 netdev_unlock(dev); 11396 11397 if (ret) 11398 goto err_uninit_notify; 11399 11400 netdev_lock_ops(dev); 11401 __netdev_update_features(dev); 11402 netdev_unlock_ops(dev); 11403 11404 /* 11405 * Default initial state at registry is that the 11406 * device is present. 11407 */ 11408 11409 set_bit(__LINK_STATE_PRESENT, &dev->state); 11410 11411 linkwatch_init_dev(dev); 11412 11413 dev_init_scheduler(dev); 11414 11415 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 11416 list_netdevice(dev); 11417 11418 add_device_randomness(dev->dev_addr, dev->addr_len); 11419 11420 /* If the device has permanent device address, driver should 11421 * set dev_addr and also addr_assign_type should be set to 11422 * NET_ADDR_PERM (default value). 11423 */ 11424 if (dev->addr_assign_type == NET_ADDR_PERM) 11425 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 11426 11427 /* Notify protocols, that a new device appeared. */ 11428 netdev_lock_ops(dev); 11429 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 11430 netdev_unlock_ops(dev); 11431 ret = notifier_to_errno(ret); 11432 if (ret) { 11433 /* Expect explicit free_netdev() on failure */ 11434 dev->needs_free_netdev = false; 11435 unregister_netdevice_queue(dev, NULL); 11436 goto out; 11437 } 11438 /* 11439 * Prevent userspace races by waiting until the network 11440 * device is fully setup before sending notifications. 11441 */ 11442 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 11443 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11444 11445 out: 11446 return ret; 11447 11448 err_uninit_notify: 11449 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11450 err_ifindex_release: 11451 dev_index_release(net, dev->ifindex); 11452 err_free_pcpu: 11453 netdev_do_free_pcpu_stats(dev); 11454 err_uninit: 11455 if (dev->netdev_ops->ndo_uninit) 11456 dev->netdev_ops->ndo_uninit(dev); 11457 if (dev->priv_destructor) 11458 dev->priv_destructor(dev); 11459 err_free_name: 11460 netdev_name_node_free(dev->name_node); 11461 goto out; 11462 } 11463 EXPORT_SYMBOL(register_netdevice); 11464 11465 /* Initialize the core of a dummy net device. 11466 * The setup steps dummy netdevs need which normal netdevs get by going 11467 * through register_netdevice(). 11468 */ 11469 static void init_dummy_netdev(struct net_device *dev) 11470 { 11471 /* make sure we BUG if trying to hit standard 11472 * register/unregister code path 11473 */ 11474 dev->reg_state = NETREG_DUMMY; 11475 11476 /* a dummy interface is started by default */ 11477 set_bit(__LINK_STATE_PRESENT, &dev->state); 11478 set_bit(__LINK_STATE_START, &dev->state); 11479 11480 /* Note : We dont allocate pcpu_refcnt for dummy devices, 11481 * because users of this 'device' dont need to change 11482 * its refcount. 11483 */ 11484 } 11485 11486 /** 11487 * register_netdev - register a network device 11488 * @dev: device to register 11489 * 11490 * Take a completed network device structure and add it to the kernel 11491 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 11492 * chain. 0 is returned on success. A negative errno code is returned 11493 * on a failure to set up the device, or if the name is a duplicate. 11494 * 11495 * This is a wrapper around register_netdevice that takes the rtnl semaphore 11496 * and expands the device name if you passed a format string to 11497 * alloc_netdev. 11498 */ 11499 int register_netdev(struct net_device *dev) 11500 { 11501 struct net *net = dev_net(dev); 11502 int err; 11503 11504 if (rtnl_net_lock_killable(net)) 11505 return -EINTR; 11506 11507 err = register_netdevice(dev); 11508 11509 rtnl_net_unlock(net); 11510 11511 return err; 11512 } 11513 EXPORT_SYMBOL(register_netdev); 11514 11515 int netdev_refcnt_read(const struct net_device *dev) 11516 { 11517 #ifdef CONFIG_PCPU_DEV_REFCNT 11518 int i, refcnt = 0; 11519 11520 for_each_possible_cpu(i) 11521 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 11522 return refcnt; 11523 #else 11524 return refcount_read(&dev->dev_refcnt); 11525 #endif 11526 } 11527 EXPORT_SYMBOL(netdev_refcnt_read); 11528 11529 int netdev_unregister_timeout_secs __read_mostly = 10; 11530 11531 #define WAIT_REFS_MIN_MSECS 1 11532 #define WAIT_REFS_MAX_MSECS 250 11533 /** 11534 * netdev_wait_allrefs_any - wait until all references are gone. 11535 * @list: list of net_devices to wait on 11536 * 11537 * This is called when unregistering network devices. 11538 * 11539 * Any protocol or device that holds a reference should register 11540 * for netdevice notification, and cleanup and put back the 11541 * reference if they receive an UNREGISTER event. 11542 * We can get stuck here if buggy protocols don't correctly 11543 * call dev_put. 11544 */ 11545 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 11546 { 11547 unsigned long rebroadcast_time, warning_time; 11548 struct net_device *dev; 11549 int wait = 0; 11550 11551 rebroadcast_time = warning_time = jiffies; 11552 11553 list_for_each_entry(dev, list, todo_list) 11554 if (netdev_refcnt_read(dev) == 1) 11555 return dev; 11556 11557 while (true) { 11558 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 11559 rtnl_lock(); 11560 11561 /* Rebroadcast unregister notification */ 11562 list_for_each_entry(dev, list, todo_list) 11563 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11564 11565 __rtnl_unlock(); 11566 rcu_barrier(); 11567 rtnl_lock(); 11568 11569 list_for_each_entry(dev, list, todo_list) 11570 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 11571 &dev->state)) { 11572 /* We must not have linkwatch events 11573 * pending on unregister. If this 11574 * happens, we simply run the queue 11575 * unscheduled, resulting in a noop 11576 * for this device. 11577 */ 11578 linkwatch_run_queue(); 11579 break; 11580 } 11581 11582 __rtnl_unlock(); 11583 11584 rebroadcast_time = jiffies; 11585 } 11586 11587 rcu_barrier(); 11588 11589 if (!wait) { 11590 wait = WAIT_REFS_MIN_MSECS; 11591 } else { 11592 msleep(wait); 11593 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 11594 } 11595 11596 list_for_each_entry(dev, list, todo_list) 11597 if (netdev_refcnt_read(dev) == 1) 11598 return dev; 11599 11600 if (time_after(jiffies, warning_time + 11601 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 11602 list_for_each_entry(dev, list, todo_list) { 11603 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 11604 dev->name, netdev_refcnt_read(dev)); 11605 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 11606 } 11607 11608 warning_time = jiffies; 11609 } 11610 } 11611 } 11612 11613 /* The sequence is: 11614 * 11615 * rtnl_lock(); 11616 * ... 11617 * register_netdevice(x1); 11618 * register_netdevice(x2); 11619 * ... 11620 * unregister_netdevice(y1); 11621 * unregister_netdevice(y2); 11622 * ... 11623 * rtnl_unlock(); 11624 * free_netdev(y1); 11625 * free_netdev(y2); 11626 * 11627 * We are invoked by rtnl_unlock(). 11628 * This allows us to deal with problems: 11629 * 1) We can delete sysfs objects which invoke hotplug 11630 * without deadlocking with linkwatch via keventd. 11631 * 2) Since we run with the RTNL semaphore not held, we can sleep 11632 * safely in order to wait for the netdev refcnt to drop to zero. 11633 * 11634 * We must not return until all unregister events added during 11635 * the interval the lock was held have been completed. 11636 */ 11637 void netdev_run_todo(void) 11638 { 11639 struct net_device *dev, *tmp; 11640 struct list_head list; 11641 int cnt; 11642 #ifdef CONFIG_LOCKDEP 11643 struct list_head unlink_list; 11644 11645 list_replace_init(&net_unlink_list, &unlink_list); 11646 11647 while (!list_empty(&unlink_list)) { 11648 dev = list_first_entry(&unlink_list, struct net_device, 11649 unlink_list); 11650 list_del_init(&dev->unlink_list); 11651 dev->nested_level = dev->lower_level - 1; 11652 } 11653 #endif 11654 11655 /* Snapshot list, allow later requests */ 11656 list_replace_init(&net_todo_list, &list); 11657 11658 __rtnl_unlock(); 11659 11660 /* Wait for rcu callbacks to finish before next phase */ 11661 if (!list_empty(&list)) 11662 rcu_barrier(); 11663 11664 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 11665 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 11666 netdev_WARN(dev, "run_todo but not unregistering\n"); 11667 list_del(&dev->todo_list); 11668 continue; 11669 } 11670 11671 netdev_lock(dev); 11672 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED); 11673 netdev_unlock(dev); 11674 linkwatch_sync_dev(dev); 11675 } 11676 11677 cnt = 0; 11678 while (!list_empty(&list)) { 11679 dev = netdev_wait_allrefs_any(&list); 11680 list_del(&dev->todo_list); 11681 11682 /* paranoia */ 11683 BUG_ON(netdev_refcnt_read(dev) != 1); 11684 BUG_ON(!list_empty(&dev->ptype_all)); 11685 BUG_ON(!list_empty(&dev->ptype_specific)); 11686 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 11687 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 11688 11689 netdev_do_free_pcpu_stats(dev); 11690 if (dev->priv_destructor) 11691 dev->priv_destructor(dev); 11692 if (dev->needs_free_netdev) 11693 free_netdev(dev); 11694 11695 cnt++; 11696 11697 /* Free network device */ 11698 kobject_put(&dev->dev.kobj); 11699 } 11700 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count)) 11701 wake_up(&netdev_unregistering_wq); 11702 } 11703 11704 /* Collate per-cpu network dstats statistics 11705 * 11706 * Read per-cpu network statistics from dev->dstats and populate the related 11707 * fields in @s. 11708 */ 11709 static void dev_fetch_dstats(struct rtnl_link_stats64 *s, 11710 const struct pcpu_dstats __percpu *dstats) 11711 { 11712 int cpu; 11713 11714 for_each_possible_cpu(cpu) { 11715 u64 rx_packets, rx_bytes, rx_drops; 11716 u64 tx_packets, tx_bytes, tx_drops; 11717 const struct pcpu_dstats *stats; 11718 unsigned int start; 11719 11720 stats = per_cpu_ptr(dstats, cpu); 11721 do { 11722 start = u64_stats_fetch_begin(&stats->syncp); 11723 rx_packets = u64_stats_read(&stats->rx_packets); 11724 rx_bytes = u64_stats_read(&stats->rx_bytes); 11725 rx_drops = u64_stats_read(&stats->rx_drops); 11726 tx_packets = u64_stats_read(&stats->tx_packets); 11727 tx_bytes = u64_stats_read(&stats->tx_bytes); 11728 tx_drops = u64_stats_read(&stats->tx_drops); 11729 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11730 11731 s->rx_packets += rx_packets; 11732 s->rx_bytes += rx_bytes; 11733 s->rx_dropped += rx_drops; 11734 s->tx_packets += tx_packets; 11735 s->tx_bytes += tx_bytes; 11736 s->tx_dropped += tx_drops; 11737 } 11738 } 11739 11740 /* ndo_get_stats64 implementation for dtstats-based accounting. 11741 * 11742 * Populate @s from dev->stats and dev->dstats. This is used internally by the 11743 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection. 11744 */ 11745 static void dev_get_dstats64(const struct net_device *dev, 11746 struct rtnl_link_stats64 *s) 11747 { 11748 netdev_stats_to_stats64(s, &dev->stats); 11749 dev_fetch_dstats(s, dev->dstats); 11750 } 11751 11752 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 11753 * all the same fields in the same order as net_device_stats, with only 11754 * the type differing, but rtnl_link_stats64 may have additional fields 11755 * at the end for newer counters. 11756 */ 11757 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 11758 const struct net_device_stats *netdev_stats) 11759 { 11760 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 11761 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 11762 u64 *dst = (u64 *)stats64; 11763 11764 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 11765 for (i = 0; i < n; i++) 11766 dst[i] = (unsigned long)atomic_long_read(&src[i]); 11767 /* zero out counters that only exist in rtnl_link_stats64 */ 11768 memset((char *)stats64 + n * sizeof(u64), 0, 11769 sizeof(*stats64) - n * sizeof(u64)); 11770 } 11771 EXPORT_SYMBOL(netdev_stats_to_stats64); 11772 11773 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 11774 struct net_device *dev) 11775 { 11776 struct net_device_core_stats __percpu *p; 11777 11778 p = alloc_percpu_gfp(struct net_device_core_stats, 11779 GFP_ATOMIC | __GFP_NOWARN); 11780 11781 if (p && cmpxchg(&dev->core_stats, NULL, p)) 11782 free_percpu(p); 11783 11784 /* This READ_ONCE() pairs with the cmpxchg() above */ 11785 return READ_ONCE(dev->core_stats); 11786 } 11787 11788 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 11789 { 11790 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11791 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 11792 unsigned long __percpu *field; 11793 11794 if (unlikely(!p)) { 11795 p = netdev_core_stats_alloc(dev); 11796 if (!p) 11797 return; 11798 } 11799 11800 field = (unsigned long __percpu *)((void __percpu *)p + offset); 11801 this_cpu_inc(*field); 11802 } 11803 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 11804 11805 /** 11806 * dev_get_stats - get network device statistics 11807 * @dev: device to get statistics from 11808 * @storage: place to store stats 11809 * 11810 * Get network statistics from device. Return @storage. 11811 * The device driver may provide its own method by setting 11812 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 11813 * otherwise the internal statistics structure is used. 11814 */ 11815 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 11816 struct rtnl_link_stats64 *storage) 11817 { 11818 const struct net_device_ops *ops = dev->netdev_ops; 11819 const struct net_device_core_stats __percpu *p; 11820 11821 /* 11822 * IPv{4,6} and udp tunnels share common stat helpers and use 11823 * different stat type (NETDEV_PCPU_STAT_TSTATS vs 11824 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent. 11825 */ 11826 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) != 11827 offsetof(struct pcpu_dstats, rx_bytes)); 11828 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) != 11829 offsetof(struct pcpu_dstats, rx_packets)); 11830 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) != 11831 offsetof(struct pcpu_dstats, tx_bytes)); 11832 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) != 11833 offsetof(struct pcpu_dstats, tx_packets)); 11834 11835 if (ops->ndo_get_stats64) { 11836 memset(storage, 0, sizeof(*storage)); 11837 ops->ndo_get_stats64(dev, storage); 11838 } else if (ops->ndo_get_stats) { 11839 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 11840 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) { 11841 dev_get_tstats64(dev, storage); 11842 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) { 11843 dev_get_dstats64(dev, storage); 11844 } else { 11845 netdev_stats_to_stats64(storage, &dev->stats); 11846 } 11847 11848 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 11849 p = READ_ONCE(dev->core_stats); 11850 if (p) { 11851 const struct net_device_core_stats *core_stats; 11852 int i; 11853 11854 for_each_possible_cpu(i) { 11855 core_stats = per_cpu_ptr(p, i); 11856 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 11857 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 11858 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 11859 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 11860 } 11861 } 11862 return storage; 11863 } 11864 EXPORT_SYMBOL(dev_get_stats); 11865 11866 /** 11867 * dev_fetch_sw_netstats - get per-cpu network device statistics 11868 * @s: place to store stats 11869 * @netstats: per-cpu network stats to read from 11870 * 11871 * Read per-cpu network statistics and populate the related fields in @s. 11872 */ 11873 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 11874 const struct pcpu_sw_netstats __percpu *netstats) 11875 { 11876 int cpu; 11877 11878 for_each_possible_cpu(cpu) { 11879 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 11880 const struct pcpu_sw_netstats *stats; 11881 unsigned int start; 11882 11883 stats = per_cpu_ptr(netstats, cpu); 11884 do { 11885 start = u64_stats_fetch_begin(&stats->syncp); 11886 rx_packets = u64_stats_read(&stats->rx_packets); 11887 rx_bytes = u64_stats_read(&stats->rx_bytes); 11888 tx_packets = u64_stats_read(&stats->tx_packets); 11889 tx_bytes = u64_stats_read(&stats->tx_bytes); 11890 } while (u64_stats_fetch_retry(&stats->syncp, start)); 11891 11892 s->rx_packets += rx_packets; 11893 s->rx_bytes += rx_bytes; 11894 s->tx_packets += tx_packets; 11895 s->tx_bytes += tx_bytes; 11896 } 11897 } 11898 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 11899 11900 /** 11901 * dev_get_tstats64 - ndo_get_stats64 implementation 11902 * @dev: device to get statistics from 11903 * @s: place to store stats 11904 * 11905 * Populate @s from dev->stats and dev->tstats. Can be used as 11906 * ndo_get_stats64() callback. 11907 */ 11908 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 11909 { 11910 netdev_stats_to_stats64(s, &dev->stats); 11911 dev_fetch_sw_netstats(s, dev->tstats); 11912 } 11913 EXPORT_SYMBOL_GPL(dev_get_tstats64); 11914 11915 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 11916 { 11917 struct netdev_queue *queue = dev_ingress_queue(dev); 11918 11919 #ifdef CONFIG_NET_CLS_ACT 11920 if (queue) 11921 return queue; 11922 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 11923 if (!queue) 11924 return NULL; 11925 netdev_init_one_queue(dev, queue, NULL); 11926 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 11927 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 11928 rcu_assign_pointer(dev->ingress_queue, queue); 11929 #endif 11930 return queue; 11931 } 11932 11933 static const struct ethtool_ops default_ethtool_ops; 11934 11935 void netdev_set_default_ethtool_ops(struct net_device *dev, 11936 const struct ethtool_ops *ops) 11937 { 11938 if (dev->ethtool_ops == &default_ethtool_ops) 11939 dev->ethtool_ops = ops; 11940 } 11941 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 11942 11943 /** 11944 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 11945 * @dev: netdev to enable the IRQ coalescing on 11946 * 11947 * Sets a conservative default for SW IRQ coalescing. Users can use 11948 * sysfs attributes to override the default values. 11949 */ 11950 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 11951 { 11952 WARN_ON(dev->reg_state == NETREG_REGISTERED); 11953 11954 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 11955 netdev_set_gro_flush_timeout(dev, 20000); 11956 netdev_set_defer_hard_irqs(dev, 1); 11957 } 11958 } 11959 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 11960 11961 /** 11962 * alloc_netdev_mqs - allocate network device 11963 * @sizeof_priv: size of private data to allocate space for 11964 * @name: device name format string 11965 * @name_assign_type: origin of device name 11966 * @setup: callback to initialize device 11967 * @txqs: the number of TX subqueues to allocate 11968 * @rxqs: the number of RX subqueues to allocate 11969 * 11970 * Allocates a struct net_device with private data area for driver use 11971 * and performs basic initialization. Also allocates subqueue structs 11972 * for each queue on the device. 11973 */ 11974 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 11975 unsigned char name_assign_type, 11976 void (*setup)(struct net_device *), 11977 unsigned int txqs, unsigned int rxqs) 11978 { 11979 struct net_device *dev; 11980 size_t napi_config_sz; 11981 unsigned int maxqs; 11982 11983 BUG_ON(strlen(name) >= sizeof(dev->name)); 11984 11985 if (txqs < 1) { 11986 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 11987 return NULL; 11988 } 11989 11990 if (rxqs < 1) { 11991 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 11992 return NULL; 11993 } 11994 11995 maxqs = max(txqs, rxqs); 11996 11997 dev = kvzalloc(struct_size(dev, priv, sizeof_priv), 11998 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 11999 if (!dev) 12000 return NULL; 12001 12002 dev->priv_len = sizeof_priv; 12003 12004 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev"); 12005 #ifdef CONFIG_PCPU_DEV_REFCNT 12006 dev->pcpu_refcnt = alloc_percpu(int); 12007 if (!dev->pcpu_refcnt) 12008 goto free_dev; 12009 __dev_hold(dev); 12010 #else 12011 refcount_set(&dev->dev_refcnt, 1); 12012 #endif 12013 12014 if (dev_addr_init(dev)) 12015 goto free_pcpu; 12016 12017 dev_mc_init(dev); 12018 dev_uc_init(dev); 12019 12020 dev_net_set(dev, &init_net); 12021 12022 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 12023 dev->xdp_zc_max_segs = 1; 12024 dev->gso_max_segs = GSO_MAX_SEGS; 12025 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 12026 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 12027 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 12028 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 12029 dev->tso_max_segs = TSO_MAX_SEGS; 12030 dev->upper_level = 1; 12031 dev->lower_level = 1; 12032 #ifdef CONFIG_LOCKDEP 12033 dev->nested_level = 0; 12034 INIT_LIST_HEAD(&dev->unlink_list); 12035 #endif 12036 12037 INIT_LIST_HEAD(&dev->napi_list); 12038 INIT_LIST_HEAD(&dev->unreg_list); 12039 INIT_LIST_HEAD(&dev->close_list); 12040 INIT_LIST_HEAD(&dev->link_watch_list); 12041 INIT_LIST_HEAD(&dev->adj_list.upper); 12042 INIT_LIST_HEAD(&dev->adj_list.lower); 12043 INIT_LIST_HEAD(&dev->ptype_all); 12044 INIT_LIST_HEAD(&dev->ptype_specific); 12045 INIT_LIST_HEAD(&dev->net_notifier_list); 12046 #ifdef CONFIG_NET_SCHED 12047 hash_init(dev->qdisc_hash); 12048 #endif 12049 12050 mutex_init(&dev->lock); 12051 12052 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 12053 setup(dev); 12054 12055 if (!dev->tx_queue_len) { 12056 dev->priv_flags |= IFF_NO_QUEUE; 12057 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 12058 } 12059 12060 dev->num_tx_queues = txqs; 12061 dev->real_num_tx_queues = txqs; 12062 if (netif_alloc_netdev_queues(dev)) 12063 goto free_all; 12064 12065 dev->num_rx_queues = rxqs; 12066 dev->real_num_rx_queues = rxqs; 12067 if (netif_alloc_rx_queues(dev)) 12068 goto free_all; 12069 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT); 12070 if (!dev->ethtool) 12071 goto free_all; 12072 12073 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT); 12074 if (!dev->cfg) 12075 goto free_all; 12076 dev->cfg_pending = dev->cfg; 12077 12078 dev->num_napi_configs = maxqs; 12079 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config)); 12080 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT); 12081 if (!dev->napi_config) 12082 goto free_all; 12083 12084 strscpy(dev->name, name); 12085 dev->name_assign_type = name_assign_type; 12086 dev->group = INIT_NETDEV_GROUP; 12087 if (!dev->ethtool_ops) 12088 dev->ethtool_ops = &default_ethtool_ops; 12089 12090 nf_hook_netdev_init(dev); 12091 12092 return dev; 12093 12094 free_all: 12095 free_netdev(dev); 12096 return NULL; 12097 12098 free_pcpu: 12099 #ifdef CONFIG_PCPU_DEV_REFCNT 12100 free_percpu(dev->pcpu_refcnt); 12101 free_dev: 12102 #endif 12103 kvfree(dev); 12104 return NULL; 12105 } 12106 EXPORT_SYMBOL(alloc_netdev_mqs); 12107 12108 static void netdev_napi_exit(struct net_device *dev) 12109 { 12110 if (!list_empty(&dev->napi_list)) { 12111 struct napi_struct *p, *n; 12112 12113 netdev_lock(dev); 12114 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 12115 __netif_napi_del_locked(p); 12116 netdev_unlock(dev); 12117 12118 synchronize_net(); 12119 } 12120 12121 kvfree(dev->napi_config); 12122 } 12123 12124 /** 12125 * free_netdev - free network device 12126 * @dev: device 12127 * 12128 * This function does the last stage of destroying an allocated device 12129 * interface. The reference to the device object is released. If this 12130 * is the last reference then it will be freed.Must be called in process 12131 * context. 12132 */ 12133 void free_netdev(struct net_device *dev) 12134 { 12135 might_sleep(); 12136 12137 /* When called immediately after register_netdevice() failed the unwind 12138 * handling may still be dismantling the device. Handle that case by 12139 * deferring the free. 12140 */ 12141 if (dev->reg_state == NETREG_UNREGISTERING) { 12142 ASSERT_RTNL(); 12143 dev->needs_free_netdev = true; 12144 return; 12145 } 12146 12147 WARN_ON(dev->cfg != dev->cfg_pending); 12148 kfree(dev->cfg); 12149 kfree(dev->ethtool); 12150 netif_free_tx_queues(dev); 12151 netif_free_rx_queues(dev); 12152 12153 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 12154 12155 /* Flush device addresses */ 12156 dev_addr_flush(dev); 12157 12158 netdev_napi_exit(dev); 12159 12160 netif_del_cpu_rmap(dev); 12161 12162 ref_tracker_dir_exit(&dev->refcnt_tracker); 12163 #ifdef CONFIG_PCPU_DEV_REFCNT 12164 free_percpu(dev->pcpu_refcnt); 12165 dev->pcpu_refcnt = NULL; 12166 #endif 12167 free_percpu(dev->core_stats); 12168 dev->core_stats = NULL; 12169 free_percpu(dev->xdp_bulkq); 12170 dev->xdp_bulkq = NULL; 12171 12172 netdev_free_phy_link_topology(dev); 12173 12174 mutex_destroy(&dev->lock); 12175 12176 /* Compatibility with error handling in drivers */ 12177 if (dev->reg_state == NETREG_UNINITIALIZED || 12178 dev->reg_state == NETREG_DUMMY) { 12179 kvfree(dev); 12180 return; 12181 } 12182 12183 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 12184 WRITE_ONCE(dev->reg_state, NETREG_RELEASED); 12185 12186 /* will free via device release */ 12187 put_device(&dev->dev); 12188 } 12189 EXPORT_SYMBOL(free_netdev); 12190 12191 /** 12192 * alloc_netdev_dummy - Allocate and initialize a dummy net device. 12193 * @sizeof_priv: size of private data to allocate space for 12194 * 12195 * Return: the allocated net_device on success, NULL otherwise 12196 */ 12197 struct net_device *alloc_netdev_dummy(int sizeof_priv) 12198 { 12199 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN, 12200 init_dummy_netdev); 12201 } 12202 EXPORT_SYMBOL_GPL(alloc_netdev_dummy); 12203 12204 /** 12205 * synchronize_net - Synchronize with packet receive processing 12206 * 12207 * Wait for packets currently being received to be done. 12208 * Does not block later packets from starting. 12209 */ 12210 void synchronize_net(void) 12211 { 12212 might_sleep(); 12213 if (from_cleanup_net() || rtnl_is_locked()) 12214 synchronize_rcu_expedited(); 12215 else 12216 synchronize_rcu(); 12217 } 12218 EXPORT_SYMBOL(synchronize_net); 12219 12220 static void netdev_rss_contexts_free(struct net_device *dev) 12221 { 12222 struct ethtool_rxfh_context *ctx; 12223 unsigned long context; 12224 12225 mutex_lock(&dev->ethtool->rss_lock); 12226 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) { 12227 xa_erase(&dev->ethtool->rss_ctx, context); 12228 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL); 12229 kfree(ctx); 12230 } 12231 xa_destroy(&dev->ethtool->rss_ctx); 12232 mutex_unlock(&dev->ethtool->rss_lock); 12233 } 12234 12235 /** 12236 * unregister_netdevice_queue - remove device from the kernel 12237 * @dev: device 12238 * @head: list 12239 * 12240 * This function shuts down a device interface and removes it 12241 * from the kernel tables. 12242 * If head not NULL, device is queued to be unregistered later. 12243 * 12244 * Callers must hold the rtnl semaphore. You may want 12245 * unregister_netdev() instead of this. 12246 */ 12247 12248 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 12249 { 12250 ASSERT_RTNL(); 12251 12252 if (head) { 12253 list_move_tail(&dev->unreg_list, head); 12254 } else { 12255 LIST_HEAD(single); 12256 12257 list_add(&dev->unreg_list, &single); 12258 unregister_netdevice_many(&single); 12259 } 12260 } 12261 EXPORT_SYMBOL(unregister_netdevice_queue); 12262 12263 static void dev_memory_provider_uninstall(struct net_device *dev) 12264 { 12265 unsigned int i; 12266 12267 for (i = 0; i < dev->real_num_rx_queues; i++) { 12268 struct netdev_rx_queue *rxq = &dev->_rx[i]; 12269 struct pp_memory_provider_params *p = &rxq->mp_params; 12270 12271 if (p->mp_ops && p->mp_ops->uninstall) 12272 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq); 12273 } 12274 } 12275 12276 /* devices must be UP and netdev_lock()'d */ 12277 static void netif_close_many_and_unlock(struct list_head *close_head) 12278 { 12279 struct net_device *dev, *tmp; 12280 12281 netif_close_many(close_head, false); 12282 12283 /* ... now unlock them */ 12284 list_for_each_entry_safe(dev, tmp, close_head, close_list) { 12285 netdev_unlock(dev); 12286 list_del_init(&dev->close_list); 12287 } 12288 } 12289 12290 static void netif_close_many_and_unlock_cond(struct list_head *close_head) 12291 { 12292 #ifdef CONFIG_LOCKDEP 12293 /* We can only track up to MAX_LOCK_DEPTH locks per task. 12294 * 12295 * Reserve half the available slots for additional locks possibly 12296 * taken by notifiers and (soft)irqs. 12297 */ 12298 unsigned int limit = MAX_LOCK_DEPTH / 2; 12299 12300 if (lockdep_depth(current) > limit) 12301 netif_close_many_and_unlock(close_head); 12302 #endif 12303 } 12304 12305 void unregister_netdevice_many_notify(struct list_head *head, 12306 u32 portid, const struct nlmsghdr *nlh) 12307 { 12308 struct net_device *dev, *tmp; 12309 LIST_HEAD(close_head); 12310 int cnt = 0; 12311 12312 BUG_ON(dev_boot_phase); 12313 ASSERT_RTNL(); 12314 12315 if (list_empty(head)) 12316 return; 12317 12318 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 12319 /* Some devices call without registering 12320 * for initialization unwind. Remove those 12321 * devices and proceed with the remaining. 12322 */ 12323 if (dev->reg_state == NETREG_UNINITIALIZED) { 12324 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 12325 dev->name, dev); 12326 12327 WARN_ON(1); 12328 list_del(&dev->unreg_list); 12329 continue; 12330 } 12331 dev->dismantle = true; 12332 BUG_ON(dev->reg_state != NETREG_REGISTERED); 12333 } 12334 12335 /* If device is running, close it first. Start with ops locked... */ 12336 list_for_each_entry(dev, head, unreg_list) { 12337 if (!(dev->flags & IFF_UP)) 12338 continue; 12339 if (netdev_need_ops_lock(dev)) { 12340 list_add_tail(&dev->close_list, &close_head); 12341 netdev_lock(dev); 12342 } 12343 netif_close_many_and_unlock_cond(&close_head); 12344 } 12345 netif_close_many_and_unlock(&close_head); 12346 /* ... now go over the rest. */ 12347 list_for_each_entry(dev, head, unreg_list) { 12348 if (!netdev_need_ops_lock(dev)) 12349 list_add_tail(&dev->close_list, &close_head); 12350 } 12351 netif_close_many(&close_head, true); 12352 12353 list_for_each_entry(dev, head, unreg_list) { 12354 /* And unlink it from device chain. */ 12355 unlist_netdevice(dev); 12356 netdev_lock(dev); 12357 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING); 12358 netdev_unlock(dev); 12359 } 12360 flush_all_backlogs(); 12361 12362 synchronize_net(); 12363 12364 list_for_each_entry(dev, head, unreg_list) { 12365 struct sk_buff *skb = NULL; 12366 12367 /* Shutdown queueing discipline. */ 12368 netdev_lock_ops(dev); 12369 dev_shutdown(dev); 12370 dev_tcx_uninstall(dev); 12371 dev_xdp_uninstall(dev); 12372 dev_memory_provider_uninstall(dev); 12373 netdev_unlock_ops(dev); 12374 bpf_dev_bound_netdev_unregister(dev); 12375 12376 netdev_offload_xstats_disable_all(dev); 12377 12378 /* Notify protocols, that we are about to destroy 12379 * this device. They should clean all the things. 12380 */ 12381 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12382 12383 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing)) 12384 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 12385 GFP_KERNEL, NULL, 0, 12386 portid, nlh); 12387 12388 /* 12389 * Flush the unicast and multicast chains 12390 */ 12391 dev_uc_flush(dev); 12392 dev_mc_flush(dev); 12393 12394 netdev_name_node_alt_flush(dev); 12395 netdev_name_node_free(dev->name_node); 12396 12397 netdev_rss_contexts_free(dev); 12398 12399 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 12400 12401 if (dev->netdev_ops->ndo_uninit) 12402 dev->netdev_ops->ndo_uninit(dev); 12403 12404 mutex_destroy(&dev->ethtool->rss_lock); 12405 12406 net_shaper_flush_netdev(dev); 12407 12408 if (skb) 12409 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 12410 12411 /* Notifier chain MUST detach us all upper devices. */ 12412 WARN_ON(netdev_has_any_upper_dev(dev)); 12413 WARN_ON(netdev_has_any_lower_dev(dev)); 12414 12415 /* Remove entries from kobject tree */ 12416 netdev_unregister_kobject(dev); 12417 #ifdef CONFIG_XPS 12418 /* Remove XPS queueing entries */ 12419 netif_reset_xps_queues_gt(dev, 0); 12420 #endif 12421 } 12422 12423 synchronize_net(); 12424 12425 list_for_each_entry(dev, head, unreg_list) { 12426 netdev_put(dev, &dev->dev_registered_tracker); 12427 net_set_todo(dev); 12428 cnt++; 12429 } 12430 atomic_add(cnt, &dev_unreg_count); 12431 12432 list_del(head); 12433 } 12434 12435 /** 12436 * unregister_netdevice_many - unregister many devices 12437 * @head: list of devices 12438 * 12439 * Note: As most callers use a stack allocated list_head, 12440 * we force a list_del() to make sure stack won't be corrupted later. 12441 */ 12442 void unregister_netdevice_many(struct list_head *head) 12443 { 12444 unregister_netdevice_many_notify(head, 0, NULL); 12445 } 12446 EXPORT_SYMBOL(unregister_netdevice_many); 12447 12448 /** 12449 * unregister_netdev - remove device from the kernel 12450 * @dev: device 12451 * 12452 * This function shuts down a device interface and removes it 12453 * from the kernel tables. 12454 * 12455 * This is just a wrapper for unregister_netdevice that takes 12456 * the rtnl semaphore. In general you want to use this and not 12457 * unregister_netdevice. 12458 */ 12459 void unregister_netdev(struct net_device *dev) 12460 { 12461 rtnl_net_dev_lock(dev); 12462 unregister_netdevice(dev); 12463 rtnl_net_dev_unlock(dev); 12464 } 12465 EXPORT_SYMBOL(unregister_netdev); 12466 12467 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 12468 const char *pat, int new_ifindex, 12469 struct netlink_ext_ack *extack) 12470 { 12471 struct netdev_name_node *name_node; 12472 struct net *net_old = dev_net(dev); 12473 char new_name[IFNAMSIZ] = {}; 12474 int err, new_nsid; 12475 12476 ASSERT_RTNL(); 12477 12478 /* Don't allow namespace local devices to be moved. */ 12479 err = -EINVAL; 12480 if (dev->netns_immutable) { 12481 NL_SET_ERR_MSG(extack, "The interface netns is immutable"); 12482 goto out; 12483 } 12484 12485 /* Ensure the device has been registered */ 12486 if (dev->reg_state != NETREG_REGISTERED) { 12487 NL_SET_ERR_MSG(extack, "The interface isn't registered"); 12488 goto out; 12489 } 12490 12491 /* Get out if there is nothing todo */ 12492 err = 0; 12493 if (net_eq(net_old, net)) 12494 goto out; 12495 12496 /* Pick the destination device name, and ensure 12497 * we can use it in the destination network namespace. 12498 */ 12499 err = -EEXIST; 12500 if (netdev_name_in_use(net, dev->name)) { 12501 /* We get here if we can't use the current device name */ 12502 if (!pat) { 12503 NL_SET_ERR_MSG(extack, 12504 "An interface with the same name exists in the target netns"); 12505 goto out; 12506 } 12507 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 12508 if (err < 0) { 12509 NL_SET_ERR_MSG_FMT(extack, 12510 "Unable to use '%s' for the new interface name in the target netns", 12511 pat); 12512 goto out; 12513 } 12514 } 12515 /* Check that none of the altnames conflicts. */ 12516 err = -EEXIST; 12517 netdev_for_each_altname(dev, name_node) { 12518 if (netdev_name_in_use(net, name_node->name)) { 12519 NL_SET_ERR_MSG_FMT(extack, 12520 "An interface with the altname %s exists in the target netns", 12521 name_node->name); 12522 goto out; 12523 } 12524 } 12525 12526 /* Check that new_ifindex isn't used yet. */ 12527 if (new_ifindex) { 12528 err = dev_index_reserve(net, new_ifindex); 12529 if (err < 0) { 12530 NL_SET_ERR_MSG_FMT(extack, 12531 "The ifindex %d is not available in the target netns", 12532 new_ifindex); 12533 goto out; 12534 } 12535 } else { 12536 /* If there is an ifindex conflict assign a new one */ 12537 err = dev_index_reserve(net, dev->ifindex); 12538 if (err == -EBUSY) 12539 err = dev_index_reserve(net, 0); 12540 if (err < 0) { 12541 NL_SET_ERR_MSG(extack, 12542 "Unable to allocate a new ifindex in the target netns"); 12543 goto out; 12544 } 12545 new_ifindex = err; 12546 } 12547 12548 /* 12549 * And now a mini version of register_netdevice unregister_netdevice. 12550 */ 12551 12552 netdev_lock_ops(dev); 12553 /* If device is running close it first. */ 12554 netif_close(dev); 12555 /* And unlink it from device chain */ 12556 unlist_netdevice(dev); 12557 12558 if (!netdev_need_ops_lock(dev)) 12559 netdev_lock(dev); 12560 dev->moving_ns = true; 12561 netdev_unlock(dev); 12562 12563 synchronize_net(); 12564 12565 /* Shutdown queueing discipline. */ 12566 netdev_lock_ops(dev); 12567 dev_shutdown(dev); 12568 netdev_unlock_ops(dev); 12569 12570 /* Notify protocols, that we are about to destroy 12571 * this device. They should clean all the things. 12572 * 12573 * Note that dev->reg_state stays at NETREG_REGISTERED. 12574 * This is wanted because this way 8021q and macvlan know 12575 * the device is just moving and can keep their slaves up. 12576 */ 12577 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 12578 rcu_barrier(); 12579 12580 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 12581 12582 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 12583 new_ifindex); 12584 12585 /* 12586 * Flush the unicast and multicast chains 12587 */ 12588 dev_uc_flush(dev); 12589 dev_mc_flush(dev); 12590 12591 /* Send a netdev-removed uevent to the old namespace */ 12592 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 12593 netdev_adjacent_del_links(dev); 12594 12595 /* Move per-net netdevice notifiers that are following the netdevice */ 12596 move_netdevice_notifiers_dev_net(dev, net); 12597 12598 /* Actually switch the network namespace */ 12599 netdev_lock(dev); 12600 dev_net_set(dev, net); 12601 netdev_unlock(dev); 12602 dev->ifindex = new_ifindex; 12603 12604 if (new_name[0]) { 12605 /* Rename the netdev to prepared name */ 12606 write_seqlock_bh(&netdev_rename_lock); 12607 strscpy(dev->name, new_name, IFNAMSIZ); 12608 write_sequnlock_bh(&netdev_rename_lock); 12609 } 12610 12611 /* Fixup kobjects */ 12612 dev_set_uevent_suppress(&dev->dev, 1); 12613 err = device_rename(&dev->dev, dev->name); 12614 dev_set_uevent_suppress(&dev->dev, 0); 12615 WARN_ON(err); 12616 12617 /* Send a netdev-add uevent to the new namespace */ 12618 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 12619 netdev_adjacent_add_links(dev); 12620 12621 /* Adapt owner in case owning user namespace of target network 12622 * namespace is different from the original one. 12623 */ 12624 err = netdev_change_owner(dev, net_old, net); 12625 WARN_ON(err); 12626 12627 netdev_lock(dev); 12628 dev->moving_ns = false; 12629 if (!netdev_need_ops_lock(dev)) 12630 netdev_unlock(dev); 12631 12632 /* Add the device back in the hashes */ 12633 list_netdevice(dev); 12634 /* Notify protocols, that a new device appeared. */ 12635 call_netdevice_notifiers(NETDEV_REGISTER, dev); 12636 netdev_unlock_ops(dev); 12637 12638 /* 12639 * Prevent userspace races by waiting until the network 12640 * device is fully setup before sending notifications. 12641 */ 12642 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 12643 12644 synchronize_net(); 12645 err = 0; 12646 out: 12647 return err; 12648 } 12649 12650 static int dev_cpu_dead(unsigned int oldcpu) 12651 { 12652 struct sk_buff **list_skb; 12653 struct sk_buff *skb; 12654 unsigned int cpu; 12655 struct softnet_data *sd, *oldsd, *remsd = NULL; 12656 12657 local_irq_disable(); 12658 cpu = smp_processor_id(); 12659 sd = &per_cpu(softnet_data, cpu); 12660 oldsd = &per_cpu(softnet_data, oldcpu); 12661 12662 /* Find end of our completion_queue. */ 12663 list_skb = &sd->completion_queue; 12664 while (*list_skb) 12665 list_skb = &(*list_skb)->next; 12666 /* Append completion queue from offline CPU. */ 12667 *list_skb = oldsd->completion_queue; 12668 oldsd->completion_queue = NULL; 12669 12670 /* Append output queue from offline CPU. */ 12671 if (oldsd->output_queue) { 12672 *sd->output_queue_tailp = oldsd->output_queue; 12673 sd->output_queue_tailp = oldsd->output_queue_tailp; 12674 oldsd->output_queue = NULL; 12675 oldsd->output_queue_tailp = &oldsd->output_queue; 12676 } 12677 /* Append NAPI poll list from offline CPU, with one exception : 12678 * process_backlog() must be called by cpu owning percpu backlog. 12679 * We properly handle process_queue & input_pkt_queue later. 12680 */ 12681 while (!list_empty(&oldsd->poll_list)) { 12682 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 12683 struct napi_struct, 12684 poll_list); 12685 12686 list_del_init(&napi->poll_list); 12687 if (napi->poll == process_backlog) 12688 napi->state &= NAPIF_STATE_THREADED; 12689 else 12690 ____napi_schedule(sd, napi); 12691 } 12692 12693 raise_softirq_irqoff(NET_TX_SOFTIRQ); 12694 local_irq_enable(); 12695 12696 if (!use_backlog_threads()) { 12697 #ifdef CONFIG_RPS 12698 remsd = oldsd->rps_ipi_list; 12699 oldsd->rps_ipi_list = NULL; 12700 #endif 12701 /* send out pending IPI's on offline CPU */ 12702 net_rps_send_ipi(remsd); 12703 } 12704 12705 /* Process offline CPU's input_pkt_queue */ 12706 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 12707 netif_rx(skb); 12708 rps_input_queue_head_incr(oldsd); 12709 } 12710 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 12711 netif_rx(skb); 12712 rps_input_queue_head_incr(oldsd); 12713 } 12714 12715 return 0; 12716 } 12717 12718 /** 12719 * netdev_increment_features - increment feature set by one 12720 * @all: current feature set 12721 * @one: new feature set 12722 * @mask: mask feature set 12723 * 12724 * Computes a new feature set after adding a device with feature set 12725 * @one to the master device with current feature set @all. Will not 12726 * enable anything that is off in @mask. Returns the new feature set. 12727 */ 12728 netdev_features_t netdev_increment_features(netdev_features_t all, 12729 netdev_features_t one, netdev_features_t mask) 12730 { 12731 if (mask & NETIF_F_HW_CSUM) 12732 mask |= NETIF_F_CSUM_MASK; 12733 mask |= NETIF_F_VLAN_CHALLENGED; 12734 12735 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 12736 all &= one | ~NETIF_F_ALL_FOR_ALL; 12737 12738 /* If one device supports hw checksumming, set for all. */ 12739 if (all & NETIF_F_HW_CSUM) 12740 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 12741 12742 return all; 12743 } 12744 EXPORT_SYMBOL(netdev_increment_features); 12745 12746 /** 12747 * netdev_compute_master_upper_features - compute feature from lowers 12748 * @dev: the upper device 12749 * @update_header: whether to update upper device's header_len/headroom/tailroom 12750 * 12751 * Recompute the upper device's feature based on all lower devices. 12752 */ 12753 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header) 12754 { 12755 unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 12756 netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES; 12757 netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES; 12758 netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES; 12759 netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES; 12760 netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES; 12761 unsigned short max_header_len = ETH_HLEN; 12762 unsigned int tso_max_size = TSO_MAX_SIZE; 12763 unsigned short max_headroom = 0; 12764 unsigned short max_tailroom = 0; 12765 u16 tso_max_segs = TSO_MAX_SEGS; 12766 struct net_device *lower_dev; 12767 struct list_head *iter; 12768 12769 mpls_features = netdev_base_features(mpls_features); 12770 vlan_features = netdev_base_features(vlan_features); 12771 enc_features = netdev_base_features(enc_features); 12772 12773 netdev_for_each_lower_dev(dev, lower_dev, iter) { 12774 gso_partial_features = netdev_increment_features(gso_partial_features, 12775 lower_dev->gso_partial_features, 12776 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES); 12777 12778 vlan_features = netdev_increment_features(vlan_features, 12779 lower_dev->vlan_features, 12780 MASTER_UPPER_DEV_VLAN_FEATURES); 12781 12782 enc_features = netdev_increment_features(enc_features, 12783 lower_dev->hw_enc_features, 12784 MASTER_UPPER_DEV_ENC_FEATURES); 12785 12786 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD)) 12787 xfrm_features = netdev_increment_features(xfrm_features, 12788 lower_dev->hw_enc_features, 12789 MASTER_UPPER_DEV_XFRM_FEATURES); 12790 12791 mpls_features = netdev_increment_features(mpls_features, 12792 lower_dev->mpls_features, 12793 MASTER_UPPER_DEV_MPLS_FEATURES); 12794 12795 dst_release_flag &= lower_dev->priv_flags; 12796 12797 if (update_header) { 12798 max_header_len = max(max_header_len, lower_dev->hard_header_len); 12799 max_headroom = max(max_headroom, lower_dev->needed_headroom); 12800 max_tailroom = max(max_tailroom, lower_dev->needed_tailroom); 12801 } 12802 12803 tso_max_size = min(tso_max_size, lower_dev->tso_max_size); 12804 tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs); 12805 } 12806 12807 dev->gso_partial_features = gso_partial_features; 12808 dev->vlan_features = vlan_features; 12809 dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL | 12810 NETIF_F_HW_VLAN_CTAG_TX | 12811 NETIF_F_HW_VLAN_STAG_TX; 12812 if (IS_ENABLED(CONFIG_XFRM_OFFLOAD)) 12813 dev->hw_enc_features |= xfrm_features; 12814 dev->mpls_features = mpls_features; 12815 12816 dev->priv_flags &= ~IFF_XMIT_DST_RELEASE; 12817 if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) && 12818 dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM)) 12819 dev->priv_flags |= IFF_XMIT_DST_RELEASE; 12820 12821 if (update_header) { 12822 dev->hard_header_len = max_header_len; 12823 dev->needed_headroom = max_headroom; 12824 dev->needed_tailroom = max_tailroom; 12825 } 12826 12827 netif_set_tso_max_segs(dev, tso_max_segs); 12828 netif_set_tso_max_size(dev, tso_max_size); 12829 12830 netdev_change_features(dev); 12831 } 12832 EXPORT_SYMBOL(netdev_compute_master_upper_features); 12833 12834 static struct hlist_head * __net_init netdev_create_hash(void) 12835 { 12836 int i; 12837 struct hlist_head *hash; 12838 12839 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 12840 if (hash != NULL) 12841 for (i = 0; i < NETDEV_HASHENTRIES; i++) 12842 INIT_HLIST_HEAD(&hash[i]); 12843 12844 return hash; 12845 } 12846 12847 /* Initialize per network namespace state */ 12848 static int __net_init netdev_init(struct net *net) 12849 { 12850 BUILD_BUG_ON(GRO_HASH_BUCKETS > 12851 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask)); 12852 12853 INIT_LIST_HEAD(&net->dev_base_head); 12854 12855 net->dev_name_head = netdev_create_hash(); 12856 if (net->dev_name_head == NULL) 12857 goto err_name; 12858 12859 net->dev_index_head = netdev_create_hash(); 12860 if (net->dev_index_head == NULL) 12861 goto err_idx; 12862 12863 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 12864 12865 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 12866 12867 return 0; 12868 12869 err_idx: 12870 kfree(net->dev_name_head); 12871 err_name: 12872 return -ENOMEM; 12873 } 12874 12875 /** 12876 * netdev_drivername - network driver for the device 12877 * @dev: network device 12878 * 12879 * Determine network driver for device. 12880 */ 12881 const char *netdev_drivername(const struct net_device *dev) 12882 { 12883 const struct device_driver *driver; 12884 const struct device *parent; 12885 const char *empty = ""; 12886 12887 parent = dev->dev.parent; 12888 if (!parent) 12889 return empty; 12890 12891 driver = parent->driver; 12892 if (driver && driver->name) 12893 return driver->name; 12894 return empty; 12895 } 12896 12897 static void __netdev_printk(const char *level, const struct net_device *dev, 12898 struct va_format *vaf) 12899 { 12900 if (dev && dev->dev.parent) { 12901 dev_printk_emit(level[1] - '0', 12902 dev->dev.parent, 12903 "%s %s %s%s: %pV", 12904 dev_driver_string(dev->dev.parent), 12905 dev_name(dev->dev.parent), 12906 netdev_name(dev), netdev_reg_state(dev), 12907 vaf); 12908 } else if (dev) { 12909 printk("%s%s%s: %pV", 12910 level, netdev_name(dev), netdev_reg_state(dev), vaf); 12911 } else { 12912 printk("%s(NULL net_device): %pV", level, vaf); 12913 } 12914 } 12915 12916 void netdev_printk(const char *level, const struct net_device *dev, 12917 const char *format, ...) 12918 { 12919 struct va_format vaf; 12920 va_list args; 12921 12922 va_start(args, format); 12923 12924 vaf.fmt = format; 12925 vaf.va = &args; 12926 12927 __netdev_printk(level, dev, &vaf); 12928 12929 va_end(args); 12930 } 12931 EXPORT_SYMBOL(netdev_printk); 12932 12933 #define define_netdev_printk_level(func, level) \ 12934 void func(const struct net_device *dev, const char *fmt, ...) \ 12935 { \ 12936 struct va_format vaf; \ 12937 va_list args; \ 12938 \ 12939 va_start(args, fmt); \ 12940 \ 12941 vaf.fmt = fmt; \ 12942 vaf.va = &args; \ 12943 \ 12944 __netdev_printk(level, dev, &vaf); \ 12945 \ 12946 va_end(args); \ 12947 } \ 12948 EXPORT_SYMBOL(func); 12949 12950 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 12951 define_netdev_printk_level(netdev_alert, KERN_ALERT); 12952 define_netdev_printk_level(netdev_crit, KERN_CRIT); 12953 define_netdev_printk_level(netdev_err, KERN_ERR); 12954 define_netdev_printk_level(netdev_warn, KERN_WARNING); 12955 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 12956 define_netdev_printk_level(netdev_info, KERN_INFO); 12957 12958 static void __net_exit netdev_exit(struct net *net) 12959 { 12960 kfree(net->dev_name_head); 12961 kfree(net->dev_index_head); 12962 xa_destroy(&net->dev_by_index); 12963 if (net != &init_net) 12964 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 12965 } 12966 12967 static struct pernet_operations __net_initdata netdev_net_ops = { 12968 .init = netdev_init, 12969 .exit = netdev_exit, 12970 }; 12971 12972 static void __net_exit default_device_exit_net(struct net *net) 12973 { 12974 struct netdev_name_node *name_node, *tmp; 12975 struct net_device *dev, *aux; 12976 /* 12977 * Push all migratable network devices back to the 12978 * initial network namespace 12979 */ 12980 ASSERT_RTNL(); 12981 for_each_netdev_safe(net, dev, aux) { 12982 int err; 12983 char fb_name[IFNAMSIZ]; 12984 12985 /* Ignore unmoveable devices (i.e. loopback) */ 12986 if (dev->netns_immutable) 12987 continue; 12988 12989 /* Leave virtual devices for the generic cleanup */ 12990 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 12991 continue; 12992 12993 /* Push remaining network devices to init_net */ 12994 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 12995 if (netdev_name_in_use(&init_net, fb_name)) 12996 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 12997 12998 netdev_for_each_altname_safe(dev, name_node, tmp) 12999 if (netdev_name_in_use(&init_net, name_node->name)) 13000 __netdev_name_node_alt_destroy(name_node); 13001 13002 err = dev_change_net_namespace(dev, &init_net, fb_name); 13003 if (err) { 13004 pr_emerg("%s: failed to move %s to init_net: %d\n", 13005 __func__, dev->name, err); 13006 BUG(); 13007 } 13008 } 13009 } 13010 13011 static void __net_exit default_device_exit_batch(struct list_head *net_list) 13012 { 13013 /* At exit all network devices most be removed from a network 13014 * namespace. Do this in the reverse order of registration. 13015 * Do this across as many network namespaces as possible to 13016 * improve batching efficiency. 13017 */ 13018 struct net_device *dev; 13019 struct net *net; 13020 LIST_HEAD(dev_kill_list); 13021 13022 rtnl_lock(); 13023 list_for_each_entry(net, net_list, exit_list) { 13024 default_device_exit_net(net); 13025 cond_resched(); 13026 } 13027 13028 list_for_each_entry(net, net_list, exit_list) { 13029 for_each_netdev_reverse(net, dev) { 13030 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 13031 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 13032 else 13033 unregister_netdevice_queue(dev, &dev_kill_list); 13034 } 13035 } 13036 unregister_netdevice_many(&dev_kill_list); 13037 rtnl_unlock(); 13038 } 13039 13040 static struct pernet_operations __net_initdata default_device_ops = { 13041 .exit_batch = default_device_exit_batch, 13042 }; 13043 13044 static void __init net_dev_struct_check(void) 13045 { 13046 /* TX read-mostly hotpath */ 13047 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast); 13048 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 13049 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 13050 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 13051 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 13052 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 13053 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 13054 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 13055 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 13056 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 13057 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 13058 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 13059 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 13060 #ifdef CONFIG_XPS 13061 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 13062 #endif 13063 #ifdef CONFIG_NETFILTER_EGRESS 13064 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 13065 #endif 13066 #ifdef CONFIG_NET_XGRESS 13067 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 13068 #endif 13069 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 13070 13071 /* TXRX read-mostly hotpath */ 13072 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 13073 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state); 13074 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 13075 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 13076 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 13077 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 13078 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46); 13079 13080 /* RX read-mostly hotpath */ 13081 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 13082 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 13083 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 13084 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 13085 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 13086 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 13087 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 13088 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 13089 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 13090 #ifdef CONFIG_NETPOLL 13091 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 13092 #endif 13093 #ifdef CONFIG_NET_XGRESS 13094 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 13095 #endif 13096 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92); 13097 } 13098 13099 /* 13100 * Initialize the DEV module. At boot time this walks the device list and 13101 * unhooks any devices that fail to initialise (normally hardware not 13102 * present) and leaves us with a valid list of present and active devices. 13103 * 13104 */ 13105 13106 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */ 13107 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE) 13108 13109 static int net_page_pool_create(int cpuid) 13110 { 13111 #if IS_ENABLED(CONFIG_PAGE_POOL) 13112 struct page_pool_params page_pool_params = { 13113 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE, 13114 .flags = PP_FLAG_SYSTEM_POOL, 13115 .nid = cpu_to_mem(cpuid), 13116 }; 13117 struct page_pool *pp_ptr; 13118 int err; 13119 13120 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid); 13121 if (IS_ERR(pp_ptr)) 13122 return -ENOMEM; 13123 13124 err = xdp_reg_page_pool(pp_ptr); 13125 if (err) { 13126 page_pool_destroy(pp_ptr); 13127 return err; 13128 } 13129 13130 per_cpu(system_page_pool.pool, cpuid) = pp_ptr; 13131 #endif 13132 return 0; 13133 } 13134 13135 static int backlog_napi_should_run(unsigned int cpu) 13136 { 13137 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13138 struct napi_struct *napi = &sd->backlog; 13139 13140 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 13141 } 13142 13143 static void run_backlog_napi(unsigned int cpu) 13144 { 13145 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13146 13147 napi_threaded_poll_loop(&sd->backlog, false); 13148 } 13149 13150 static void backlog_napi_setup(unsigned int cpu) 13151 { 13152 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu); 13153 struct napi_struct *napi = &sd->backlog; 13154 13155 napi->thread = this_cpu_read(backlog_napi); 13156 set_bit(NAPI_STATE_THREADED, &napi->state); 13157 } 13158 13159 static struct smp_hotplug_thread backlog_threads = { 13160 .store = &backlog_napi, 13161 .thread_should_run = backlog_napi_should_run, 13162 .thread_fn = run_backlog_napi, 13163 .thread_comm = "backlog_napi/%u", 13164 .setup = backlog_napi_setup, 13165 }; 13166 13167 /* 13168 * This is called single threaded during boot, so no need 13169 * to take the rtnl semaphore. 13170 */ 13171 static int __init net_dev_init(void) 13172 { 13173 int i, rc = -ENOMEM; 13174 13175 BUG_ON(!dev_boot_phase); 13176 13177 net_dev_struct_check(); 13178 13179 if (dev_proc_init()) 13180 goto out; 13181 13182 if (netdev_kobject_init()) 13183 goto out; 13184 13185 for (i = 0; i < PTYPE_HASH_SIZE; i++) 13186 INIT_LIST_HEAD(&ptype_base[i]); 13187 13188 if (register_pernet_subsys(&netdev_net_ops)) 13189 goto out; 13190 13191 /* 13192 * Initialise the packet receive queues. 13193 */ 13194 13195 flush_backlogs_fallback = flush_backlogs_alloc(); 13196 if (!flush_backlogs_fallback) 13197 goto out; 13198 13199 for_each_possible_cpu(i) { 13200 struct softnet_data *sd = &per_cpu(softnet_data, i); 13201 13202 skb_queue_head_init(&sd->input_pkt_queue); 13203 skb_queue_head_init(&sd->process_queue); 13204 #ifdef CONFIG_XFRM_OFFLOAD 13205 skb_queue_head_init(&sd->xfrm_backlog); 13206 #endif 13207 INIT_LIST_HEAD(&sd->poll_list); 13208 sd->output_queue_tailp = &sd->output_queue; 13209 #ifdef CONFIG_RPS 13210 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 13211 sd->cpu = i; 13212 #endif 13213 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 13214 13215 gro_init(&sd->backlog.gro); 13216 sd->backlog.poll = process_backlog; 13217 sd->backlog.weight = weight_p; 13218 INIT_LIST_HEAD(&sd->backlog.poll_list); 13219 13220 if (net_page_pool_create(i)) 13221 goto out; 13222 } 13223 net_hotdata.skb_defer_nodes = 13224 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids, 13225 __alignof__(struct skb_defer_node)); 13226 if (!net_hotdata.skb_defer_nodes) 13227 goto out; 13228 if (use_backlog_threads()) 13229 smpboot_register_percpu_thread(&backlog_threads); 13230 13231 dev_boot_phase = 0; 13232 13233 /* The loopback device is special if any other network devices 13234 * is present in a network namespace the loopback device must 13235 * be present. Since we now dynamically allocate and free the 13236 * loopback device ensure this invariant is maintained by 13237 * keeping the loopback device as the first device on the 13238 * list of network devices. Ensuring the loopback devices 13239 * is the first device that appears and the last network device 13240 * that disappears. 13241 */ 13242 if (register_pernet_device(&loopback_net_ops)) 13243 goto out; 13244 13245 if (register_pernet_device(&default_device_ops)) 13246 goto out; 13247 13248 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 13249 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 13250 13251 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 13252 NULL, dev_cpu_dead); 13253 WARN_ON(rc < 0); 13254 rc = 0; 13255 13256 /* avoid static key IPIs to isolated CPUs */ 13257 if (housekeeping_enabled(HK_TYPE_MISC)) 13258 net_enable_timestamp(); 13259 out: 13260 if (rc < 0) { 13261 for_each_possible_cpu(i) { 13262 struct page_pool *pp_ptr; 13263 13264 pp_ptr = per_cpu(system_page_pool.pool, i); 13265 if (!pp_ptr) 13266 continue; 13267 13268 xdp_unreg_page_pool(pp_ptr); 13269 page_pool_destroy(pp_ptr); 13270 per_cpu(system_page_pool.pool, i) = NULL; 13271 } 13272 } 13273 13274 return rc; 13275 } 13276 13277 subsys_initcall(net_dev_init); 13278