xref: /linux/net/core/dev.c (revision 8934827db5403eae57d4537114a9ff88b0a8460f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	} else {
237 		local_irq_save(*flags);
238 		if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
239 			spin_lock(&sd->input_pkt_queue.lock);
240 	}
241 }
242 
backlog_lock_irq_disable(struct softnet_data * sd)243 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
244 {
245 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
246 		spin_lock_irq(&sd->input_pkt_queue.lock);
247 	else
248 		local_irq_disable();
249 }
250 
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long flags)251 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
252 					      unsigned long flags)
253 {
254 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
255 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, flags);
256 	} else {
257 		if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 			spin_unlock(&sd->input_pkt_queue.lock);
259 		local_irq_restore(flags);
260 	}
261 }
262 
backlog_unlock_irq_enable(struct softnet_data * sd)263 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
264 {
265 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
266 		spin_unlock_irq(&sd->input_pkt_queue.lock);
267 	else
268 		local_irq_enable();
269 }
270 
netdev_name_node_alloc(struct net_device * dev,const char * name)271 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
272 						       const char *name)
273 {
274 	struct netdev_name_node *name_node;
275 
276 	name_node = kmalloc_obj(*name_node, GFP_KERNEL);
277 	if (!name_node)
278 		return NULL;
279 	INIT_HLIST_NODE(&name_node->hlist);
280 	name_node->dev = dev;
281 	name_node->name = name;
282 	return name_node;
283 }
284 
285 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)286 netdev_name_node_head_alloc(struct net_device *dev)
287 {
288 	struct netdev_name_node *name_node;
289 
290 	name_node = netdev_name_node_alloc(dev, dev->name);
291 	if (!name_node)
292 		return NULL;
293 	INIT_LIST_HEAD(&name_node->list);
294 	return name_node;
295 }
296 
netdev_name_node_free(struct netdev_name_node * name_node)297 static void netdev_name_node_free(struct netdev_name_node *name_node)
298 {
299 	kfree(name_node);
300 }
301 
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)302 static void netdev_name_node_add(struct net *net,
303 				 struct netdev_name_node *name_node)
304 {
305 	hlist_add_head_rcu(&name_node->hlist,
306 			   dev_name_hash(net, name_node->name));
307 }
308 
netdev_name_node_del(struct netdev_name_node * name_node)309 static void netdev_name_node_del(struct netdev_name_node *name_node)
310 {
311 	hlist_del_rcu(&name_node->hlist);
312 }
313 
netdev_name_node_lookup(struct net * net,const char * name)314 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
315 							const char *name)
316 {
317 	struct hlist_head *head = dev_name_hash(net, name);
318 	struct netdev_name_node *name_node;
319 
320 	hlist_for_each_entry(name_node, head, hlist)
321 		if (!strcmp(name_node->name, name))
322 			return name_node;
323 	return NULL;
324 }
325 
netdev_name_node_lookup_rcu(struct net * net,const char * name)326 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
327 							    const char *name)
328 {
329 	struct hlist_head *head = dev_name_hash(net, name);
330 	struct netdev_name_node *name_node;
331 
332 	hlist_for_each_entry_rcu(name_node, head, hlist)
333 		if (!strcmp(name_node->name, name))
334 			return name_node;
335 	return NULL;
336 }
337 
netdev_name_in_use(struct net * net,const char * name)338 bool netdev_name_in_use(struct net *net, const char *name)
339 {
340 	return netdev_name_node_lookup(net, name);
341 }
342 EXPORT_SYMBOL(netdev_name_in_use);
343 
netdev_name_node_alt_create(struct net_device * dev,const char * name)344 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
345 {
346 	struct netdev_name_node *name_node;
347 	struct net *net = dev_net(dev);
348 
349 	name_node = netdev_name_node_lookup(net, name);
350 	if (name_node)
351 		return -EEXIST;
352 	name_node = netdev_name_node_alloc(dev, name);
353 	if (!name_node)
354 		return -ENOMEM;
355 	netdev_name_node_add(net, name_node);
356 	/* The node that holds dev->name acts as a head of per-device list. */
357 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
358 
359 	return 0;
360 }
361 
netdev_name_node_alt_free(struct rcu_head * head)362 static void netdev_name_node_alt_free(struct rcu_head *head)
363 {
364 	struct netdev_name_node *name_node =
365 		container_of(head, struct netdev_name_node, rcu);
366 
367 	kfree(name_node->name);
368 	netdev_name_node_free(name_node);
369 }
370 
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)371 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
372 {
373 	netdev_name_node_del(name_node);
374 	list_del(&name_node->list);
375 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
376 }
377 
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)378 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
379 {
380 	struct netdev_name_node *name_node;
381 	struct net *net = dev_net(dev);
382 
383 	name_node = netdev_name_node_lookup(net, name);
384 	if (!name_node)
385 		return -ENOENT;
386 	/* lookup might have found our primary name or a name belonging
387 	 * to another device.
388 	 */
389 	if (name_node == dev->name_node || name_node->dev != dev)
390 		return -EINVAL;
391 
392 	__netdev_name_node_alt_destroy(name_node);
393 	return 0;
394 }
395 
netdev_name_node_alt_flush(struct net_device * dev)396 static void netdev_name_node_alt_flush(struct net_device *dev)
397 {
398 	struct netdev_name_node *name_node, *tmp;
399 
400 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
401 		list_del(&name_node->list);
402 		netdev_name_node_alt_free(&name_node->rcu);
403 	}
404 }
405 
406 /* Device list insertion */
list_netdevice(struct net_device * dev)407 static void list_netdevice(struct net_device *dev)
408 {
409 	struct netdev_name_node *name_node;
410 	struct net *net = dev_net(dev);
411 
412 	ASSERT_RTNL();
413 
414 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
415 	netdev_name_node_add(net, dev->name_node);
416 	hlist_add_head_rcu(&dev->index_hlist,
417 			   dev_index_hash(net, dev->ifindex));
418 
419 	netdev_for_each_altname(dev, name_node)
420 		netdev_name_node_add(net, name_node);
421 
422 	/* We reserved the ifindex, this can't fail */
423 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
424 
425 	dev_base_seq_inc(net);
426 }
427 
428 /* Device list removal
429  * caller must respect a RCU grace period before freeing/reusing dev
430  */
unlist_netdevice(struct net_device * dev)431 static void unlist_netdevice(struct net_device *dev)
432 {
433 	struct netdev_name_node *name_node;
434 	struct net *net = dev_net(dev);
435 
436 	ASSERT_RTNL();
437 
438 	xa_erase(&net->dev_by_index, dev->ifindex);
439 
440 	netdev_for_each_altname(dev, name_node)
441 		netdev_name_node_del(name_node);
442 
443 	/* Unlink dev from the device chain */
444 	list_del_rcu(&dev->dev_list);
445 	netdev_name_node_del(dev->name_node);
446 	hlist_del_rcu(&dev->index_hlist);
447 
448 	dev_base_seq_inc(dev_net(dev));
449 }
450 
451 /*
452  *	Our notifier list
453  */
454 
455 static RAW_NOTIFIER_HEAD(netdev_chain);
456 
457 /*
458  *	Device drivers call our routines to queue packets here. We empty the
459  *	queue in the local softnet handler.
460  */
461 
462 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
463 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
464 };
465 EXPORT_PER_CPU_SYMBOL(softnet_data);
466 
467 /* Page_pool has a lockless array/stack to alloc/recycle pages.
468  * PP consumers must pay attention to run APIs in the appropriate context
469  * (e.g. NAPI context).
470  */
471 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
472 	.bh_lock = INIT_LOCAL_LOCK(bh_lock),
473 };
474 
475 #ifdef CONFIG_LOCKDEP
476 /*
477  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
478  * according to dev->type
479  */
480 static const unsigned short netdev_lock_type[] = {
481 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
482 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
483 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
484 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
485 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
486 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
487 	 ARPHRD_CAN, ARPHRD_MCTP,
488 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
489 	 ARPHRD_RAWHDLC, ARPHRD_RAWIP,
490 	 ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
491 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
492 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
493 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
494 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
495 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
496 	 ARPHRD_IEEE80211_RADIOTAP,
497 	 ARPHRD_IEEE802154, ARPHRD_IEEE802154_MONITOR,
498 	 ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
499 	 ARPHRD_CAIF, ARPHRD_IP6GRE, ARPHRD_NETLINK, ARPHRD_6LOWPAN,
500 	 ARPHRD_VSOCKMON,
501 	 ARPHRD_VOID, ARPHRD_NONE};
502 
503 static const char *const netdev_lock_name[] = {
504 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
505 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
506 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
507 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
508 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
509 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
510 	"_xmit_CAN", "_xmit_MCTP",
511 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
512 	"_xmit_RAWHDLC", "_xmit_RAWIP",
513 	"_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
514 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
515 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
516 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
517 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
518 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
519 	"_xmit_IEEE80211_RADIOTAP",
520 	"_xmit_IEEE802154", "_xmit_IEEE802154_MONITOR",
521 	"_xmit_PHONET", "_xmit_PHONET_PIPE",
522 	"_xmit_CAIF", "_xmit_IP6GRE", "_xmit_NETLINK", "_xmit_6LOWPAN",
523 	"_xmit_VSOCKMON",
524 	"_xmit_VOID", "_xmit_NONE"};
525 
526 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
527 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
528 
netdev_lock_pos(unsigned short dev_type)529 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
530 {
531 	int i;
532 
533 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
534 		if (netdev_lock_type[i] == dev_type)
535 			return i;
536 	/* the last key is used by default */
537 	WARN_ONCE(1, "netdev_lock_pos() could not find dev_type=%u\n", dev_type);
538 	return ARRAY_SIZE(netdev_lock_type) - 1;
539 }
540 
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)541 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
542 						 unsigned short dev_type)
543 {
544 	int i;
545 
546 	i = netdev_lock_pos(dev_type);
547 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
548 				   netdev_lock_name[i]);
549 }
550 
netdev_set_addr_lockdep_class(struct net_device * dev)551 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
552 {
553 	int i;
554 
555 	i = netdev_lock_pos(dev->type);
556 	lockdep_set_class_and_name(&dev->addr_list_lock,
557 				   &netdev_addr_lock_key[i],
558 				   netdev_lock_name[i]);
559 }
560 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)561 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
562 						 unsigned short dev_type)
563 {
564 }
565 
netdev_set_addr_lockdep_class(struct net_device * dev)566 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
567 {
568 }
569 #endif
570 
571 /*******************************************************************************
572  *
573  *		Protocol management and registration routines
574  *
575  *******************************************************************************/
576 
577 
578 /*
579  *	Add a protocol ID to the list. Now that the input handler is
580  *	smarter we can dispense with all the messy stuff that used to be
581  *	here.
582  *
583  *	BEWARE!!! Protocol handlers, mangling input packets,
584  *	MUST BE last in hash buckets and checking protocol handlers
585  *	MUST start from promiscuous ptype_all chain in net_bh.
586  *	It is true now, do not change it.
587  *	Explanation follows: if protocol handler, mangling packet, will
588  *	be the first on list, it is not able to sense, that packet
589  *	is cloned and should be copied-on-write, so that it will
590  *	change it and subsequent readers will get broken packet.
591  *							--ANK (980803)
592  */
593 
ptype_head(const struct packet_type * pt)594 static inline struct list_head *ptype_head(const struct packet_type *pt)
595 {
596 	if (pt->type == htons(ETH_P_ALL)) {
597 		if (!pt->af_packet_net && !pt->dev)
598 			return NULL;
599 
600 		return pt->dev ? &pt->dev->ptype_all :
601 				 &pt->af_packet_net->ptype_all;
602 	}
603 
604 	if (pt->dev)
605 		return &pt->dev->ptype_specific;
606 
607 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
608 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
609 }
610 
611 /**
612  *	dev_add_pack - add packet handler
613  *	@pt: packet type declaration
614  *
615  *	Add a protocol handler to the networking stack. The passed &packet_type
616  *	is linked into kernel lists and may not be freed until it has been
617  *	removed from the kernel lists.
618  *
619  *	This call does not sleep therefore it can not
620  *	guarantee all CPU's that are in middle of receiving packets
621  *	will see the new packet type (until the next received packet).
622  */
623 
dev_add_pack(struct packet_type * pt)624 void dev_add_pack(struct packet_type *pt)
625 {
626 	struct list_head *head = ptype_head(pt);
627 
628 	if (WARN_ON_ONCE(!head))
629 		return;
630 
631 	spin_lock(&ptype_lock);
632 	list_add_rcu(&pt->list, head);
633 	spin_unlock(&ptype_lock);
634 }
635 EXPORT_SYMBOL(dev_add_pack);
636 
637 /**
638  *	__dev_remove_pack	 - remove packet handler
639  *	@pt: packet type declaration
640  *
641  *	Remove a protocol handler that was previously added to the kernel
642  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
643  *	from the kernel lists and can be freed or reused once this function
644  *	returns.
645  *
646  *      The packet type might still be in use by receivers
647  *	and must not be freed until after all the CPU's have gone
648  *	through a quiescent state.
649  */
__dev_remove_pack(struct packet_type * pt)650 void __dev_remove_pack(struct packet_type *pt)
651 {
652 	struct list_head *head = ptype_head(pt);
653 	struct packet_type *pt1;
654 
655 	if (!head)
656 		return;
657 
658 	spin_lock(&ptype_lock);
659 
660 	list_for_each_entry(pt1, head, list) {
661 		if (pt == pt1) {
662 			list_del_rcu(&pt->list);
663 			goto out;
664 		}
665 	}
666 
667 	pr_warn("dev_remove_pack: %p not found\n", pt);
668 out:
669 	spin_unlock(&ptype_lock);
670 }
671 EXPORT_SYMBOL(__dev_remove_pack);
672 
673 /**
674  *	dev_remove_pack	 - remove packet handler
675  *	@pt: packet type declaration
676  *
677  *	Remove a protocol handler that was previously added to the kernel
678  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
679  *	from the kernel lists and can be freed or reused once this function
680  *	returns.
681  *
682  *	This call sleeps to guarantee that no CPU is looking at the packet
683  *	type after return.
684  */
dev_remove_pack(struct packet_type * pt)685 void dev_remove_pack(struct packet_type *pt)
686 {
687 	__dev_remove_pack(pt);
688 
689 	synchronize_net();
690 }
691 EXPORT_SYMBOL(dev_remove_pack);
692 
693 
694 /*******************************************************************************
695  *
696  *			    Device Interface Subroutines
697  *
698  *******************************************************************************/
699 
700 /**
701  *	dev_get_iflink	- get 'iflink' value of a interface
702  *	@dev: targeted interface
703  *
704  *	Indicates the ifindex the interface is linked to.
705  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
706  */
707 
dev_get_iflink(const struct net_device * dev)708 int dev_get_iflink(const struct net_device *dev)
709 {
710 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
711 		return dev->netdev_ops->ndo_get_iflink(dev);
712 
713 	return READ_ONCE(dev->ifindex);
714 }
715 EXPORT_SYMBOL(dev_get_iflink);
716 
717 /**
718  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
719  *	@dev: targeted interface
720  *	@skb: The packet.
721  *
722  *	For better visibility of tunnel traffic OVS needs to retrieve
723  *	egress tunnel information for a packet. Following API allows
724  *	user to get this info.
725  */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)726 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
727 {
728 	struct ip_tunnel_info *info;
729 
730 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
731 		return -EINVAL;
732 
733 	info = skb_tunnel_info_unclone(skb);
734 	if (!info)
735 		return -ENOMEM;
736 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
737 		return -EINVAL;
738 
739 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
740 }
741 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
742 
dev_fwd_path(struct net_device_path_stack * stack)743 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
744 {
745 	int k = stack->num_paths++;
746 
747 	if (k >= NET_DEVICE_PATH_STACK_MAX)
748 		return NULL;
749 
750 	return &stack->path[k];
751 }
752 
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)753 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
754 			  struct net_device_path_stack *stack)
755 {
756 	const struct net_device *last_dev;
757 	struct net_device_path_ctx ctx = {
758 		.dev	= dev,
759 	};
760 	struct net_device_path *path;
761 	int ret = 0;
762 
763 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
764 	stack->num_paths = 0;
765 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
766 		last_dev = ctx.dev;
767 		path = dev_fwd_path(stack);
768 		if (!path)
769 			return -1;
770 
771 		memset(path, 0, sizeof(struct net_device_path));
772 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
773 		if (ret < 0)
774 			return -1;
775 
776 		if (WARN_ON_ONCE(last_dev == ctx.dev))
777 			return -1;
778 	}
779 
780 	if (!ctx.dev)
781 		return ret;
782 
783 	path = dev_fwd_path(stack);
784 	if (!path)
785 		return -1;
786 	path->type = DEV_PATH_ETHERNET;
787 	path->dev = ctx.dev;
788 
789 	return ret;
790 }
791 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
792 
793 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)794 static struct napi_struct *napi_by_id(unsigned int napi_id)
795 {
796 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
797 	struct napi_struct *napi;
798 
799 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
800 		if (napi->napi_id == napi_id)
801 			return napi;
802 
803 	return NULL;
804 }
805 
806 /* must be called under rcu_read_lock(), as we dont take a reference */
807 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)808 netdev_napi_by_id(struct net *net, unsigned int napi_id)
809 {
810 	struct napi_struct *napi;
811 
812 	napi = napi_by_id(napi_id);
813 	if (!napi)
814 		return NULL;
815 
816 	if (WARN_ON_ONCE(!napi->dev))
817 		return NULL;
818 	if (!net_eq(net, dev_net(napi->dev)))
819 		return NULL;
820 
821 	return napi;
822 }
823 
824 /**
825  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
826  *	@net: the applicable net namespace
827  *	@napi_id: ID of a NAPI of a target device
828  *
829  *	Find a NAPI instance with @napi_id. Lock its device.
830  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
831  *	netdev_unlock() must be called to release it.
832  *
833  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
834  */
835 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)836 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
837 {
838 	struct napi_struct *napi;
839 	struct net_device *dev;
840 
841 	rcu_read_lock();
842 	napi = netdev_napi_by_id(net, napi_id);
843 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
844 		rcu_read_unlock();
845 		return NULL;
846 	}
847 
848 	dev = napi->dev;
849 	dev_hold(dev);
850 	rcu_read_unlock();
851 
852 	dev = __netdev_put_lock(dev, net);
853 	if (!dev)
854 		return NULL;
855 
856 	rcu_read_lock();
857 	napi = netdev_napi_by_id(net, napi_id);
858 	if (napi && napi->dev != dev)
859 		napi = NULL;
860 	rcu_read_unlock();
861 
862 	if (!napi)
863 		netdev_unlock(dev);
864 	return napi;
865 }
866 
867 /**
868  *	__dev_get_by_name	- find a device by its name
869  *	@net: the applicable net namespace
870  *	@name: name to find
871  *
872  *	Find an interface by name. Must be called under RTNL semaphore.
873  *	If the name is found a pointer to the device is returned.
874  *	If the name is not found then %NULL is returned. The
875  *	reference counters are not incremented so the caller must be
876  *	careful with locks.
877  */
878 
__dev_get_by_name(struct net * net,const char * name)879 struct net_device *__dev_get_by_name(struct net *net, const char *name)
880 {
881 	struct netdev_name_node *node_name;
882 
883 	node_name = netdev_name_node_lookup(net, name);
884 	return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(__dev_get_by_name);
887 
888 /**
889  * dev_get_by_name_rcu	- find a device by its name
890  * @net: the applicable net namespace
891  * @name: name to find
892  *
893  * Find an interface by name.
894  * If the name is found a pointer to the device is returned.
895  * If the name is not found then %NULL is returned.
896  * The reference counters are not incremented so the caller must be
897  * careful with locks. The caller must hold RCU lock.
898  */
899 
dev_get_by_name_rcu(struct net * net,const char * name)900 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
901 {
902 	struct netdev_name_node *node_name;
903 
904 	node_name = netdev_name_node_lookup_rcu(net, name);
905 	return node_name ? node_name->dev : NULL;
906 }
907 EXPORT_SYMBOL(dev_get_by_name_rcu);
908 
909 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)910 struct net_device *dev_get_by_name(struct net *net, const char *name)
911 {
912 	struct net_device *dev;
913 
914 	rcu_read_lock();
915 	dev = dev_get_by_name_rcu(net, name);
916 	dev_hold(dev);
917 	rcu_read_unlock();
918 	return dev;
919 }
920 EXPORT_SYMBOL(dev_get_by_name);
921 
922 /**
923  *	netdev_get_by_name() - find a device by its name
924  *	@net: the applicable net namespace
925  *	@name: name to find
926  *	@tracker: tracking object for the acquired reference
927  *	@gfp: allocation flags for the tracker
928  *
929  *	Find an interface by name. This can be called from any
930  *	context and does its own locking. The returned handle has
931  *	the usage count incremented and the caller must use netdev_put() to
932  *	release it when it is no longer needed. %NULL is returned if no
933  *	matching device is found.
934  */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)935 struct net_device *netdev_get_by_name(struct net *net, const char *name,
936 				      netdevice_tracker *tracker, gfp_t gfp)
937 {
938 	struct net_device *dev;
939 
940 	dev = dev_get_by_name(net, name);
941 	if (dev)
942 		netdev_tracker_alloc(dev, tracker, gfp);
943 	return dev;
944 }
945 EXPORT_SYMBOL(netdev_get_by_name);
946 
947 /**
948  *	__dev_get_by_index - find a device by its ifindex
949  *	@net: the applicable net namespace
950  *	@ifindex: index of device
951  *
952  *	Search for an interface by index. Returns %NULL if the device
953  *	is not found or a pointer to the device. The device has not
954  *	had its reference counter increased so the caller must be careful
955  *	about locking. The caller must hold the RTNL semaphore.
956  */
957 
__dev_get_by_index(struct net * net,int ifindex)958 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
959 {
960 	struct net_device *dev;
961 	struct hlist_head *head = dev_index_hash(net, ifindex);
962 
963 	hlist_for_each_entry(dev, head, index_hlist)
964 		if (dev->ifindex == ifindex)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_get_by_index);
970 
971 /**
972  *	dev_get_by_index_rcu - find a device by its ifindex
973  *	@net: the applicable net namespace
974  *	@ifindex: index of device
975  *
976  *	Search for an interface by index. Returns %NULL if the device
977  *	is not found or a pointer to the device. The device has not
978  *	had its reference counter increased so the caller must be careful
979  *	about locking. The caller must hold RCU lock.
980  */
981 
dev_get_by_index_rcu(struct net * net,int ifindex)982 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
983 {
984 	struct net_device *dev;
985 	struct hlist_head *head = dev_index_hash(net, ifindex);
986 
987 	hlist_for_each_entry_rcu(dev, head, index_hlist)
988 		if (dev->ifindex == ifindex)
989 			return dev;
990 
991 	return NULL;
992 }
993 EXPORT_SYMBOL(dev_get_by_index_rcu);
994 
995 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)996 struct net_device *dev_get_by_index(struct net *net, int ifindex)
997 {
998 	struct net_device *dev;
999 
1000 	rcu_read_lock();
1001 	dev = dev_get_by_index_rcu(net, ifindex);
1002 	dev_hold(dev);
1003 	rcu_read_unlock();
1004 	return dev;
1005 }
1006 EXPORT_SYMBOL(dev_get_by_index);
1007 
1008 /**
1009  *	netdev_get_by_index() - find a device by its ifindex
1010  *	@net: the applicable net namespace
1011  *	@ifindex: index of device
1012  *	@tracker: tracking object for the acquired reference
1013  *	@gfp: allocation flags for the tracker
1014  *
1015  *	Search for an interface by index. Returns NULL if the device
1016  *	is not found or a pointer to the device. The device returned has
1017  *	had a reference added and the pointer is safe until the user calls
1018  *	netdev_put() to indicate they have finished with it.
1019  */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1020 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1021 				       netdevice_tracker *tracker, gfp_t gfp)
1022 {
1023 	struct net_device *dev;
1024 
1025 	dev = dev_get_by_index(net, ifindex);
1026 	if (dev)
1027 		netdev_tracker_alloc(dev, tracker, gfp);
1028 	return dev;
1029 }
1030 EXPORT_SYMBOL(netdev_get_by_index);
1031 
1032 /**
1033  *	dev_get_by_napi_id - find a device by napi_id
1034  *	@napi_id: ID of the NAPI struct
1035  *
1036  *	Search for an interface by NAPI ID. Returns %NULL if the device
1037  *	is not found or a pointer to the device. The device has not had
1038  *	its reference counter increased so the caller must be careful
1039  *	about locking. The caller must hold RCU lock.
1040  */
dev_get_by_napi_id(unsigned int napi_id)1041 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1042 {
1043 	struct napi_struct *napi;
1044 
1045 	WARN_ON_ONCE(!rcu_read_lock_held());
1046 
1047 	if (!napi_id_valid(napi_id))
1048 		return NULL;
1049 
1050 	napi = napi_by_id(napi_id);
1051 
1052 	return napi ? napi->dev : NULL;
1053 }
1054 
1055 /* Release the held reference on the net_device, and if the net_device
1056  * is still registered try to lock the instance lock. If device is being
1057  * unregistered NULL will be returned (but the reference has been released,
1058  * either way!)
1059  *
1060  * This helper is intended for locking net_device after it has been looked up
1061  * using a lockless lookup helper. Lock prevents the instance from going away.
1062  */
__netdev_put_lock(struct net_device * dev,struct net * net)1063 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1064 {
1065 	netdev_lock(dev);
1066 	if (dev->reg_state > NETREG_REGISTERED ||
1067 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1068 		netdev_unlock(dev);
1069 		dev_put(dev);
1070 		return NULL;
1071 	}
1072 	dev_put(dev);
1073 	return dev;
1074 }
1075 
1076 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1077 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1078 {
1079 	netdev_lock_ops_compat(dev);
1080 	if (dev->reg_state > NETREG_REGISTERED ||
1081 	    dev->moving_ns || !net_eq(dev_net(dev), net)) {
1082 		netdev_unlock_ops_compat(dev);
1083 		dev_put(dev);
1084 		return NULL;
1085 	}
1086 	dev_put(dev);
1087 	return dev;
1088 }
1089 
1090 /**
1091  *	netdev_get_by_index_lock() - find a device by its ifindex
1092  *	@net: the applicable net namespace
1093  *	@ifindex: index of device
1094  *
1095  *	Search for an interface by index. If a valid device
1096  *	with @ifindex is found it will be returned with netdev->lock held.
1097  *	netdev_unlock() must be called to release it.
1098  *
1099  *	Return: pointer to a device with lock held, NULL if not found.
1100  */
netdev_get_by_index_lock(struct net * net,int ifindex)1101 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1102 {
1103 	struct net_device *dev;
1104 
1105 	dev = dev_get_by_index(net, ifindex);
1106 	if (!dev)
1107 		return NULL;
1108 
1109 	return __netdev_put_lock(dev, net);
1110 }
1111 
1112 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1113 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1114 {
1115 	struct net_device *dev;
1116 
1117 	dev = dev_get_by_index(net, ifindex);
1118 	if (!dev)
1119 		return NULL;
1120 
1121 	return __netdev_put_lock_ops_compat(dev, net);
1122 }
1123 
1124 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1125 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1126 		    unsigned long *index)
1127 {
1128 	if (dev)
1129 		netdev_unlock(dev);
1130 
1131 	do {
1132 		rcu_read_lock();
1133 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1134 		if (!dev) {
1135 			rcu_read_unlock();
1136 			return NULL;
1137 		}
1138 		dev_hold(dev);
1139 		rcu_read_unlock();
1140 
1141 		dev = __netdev_put_lock(dev, net);
1142 		if (dev)
1143 			return dev;
1144 
1145 		(*index)++;
1146 	} while (true);
1147 }
1148 
1149 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1150 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1151 			       unsigned long *index)
1152 {
1153 	if (dev)
1154 		netdev_unlock_ops_compat(dev);
1155 
1156 	do {
1157 		rcu_read_lock();
1158 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1159 		if (!dev) {
1160 			rcu_read_unlock();
1161 			return NULL;
1162 		}
1163 		dev_hold(dev);
1164 		rcu_read_unlock();
1165 
1166 		dev = __netdev_put_lock_ops_compat(dev, net);
1167 		if (dev)
1168 			return dev;
1169 
1170 		(*index)++;
1171 	} while (true);
1172 }
1173 
1174 static DEFINE_SEQLOCK(netdev_rename_lock);
1175 
netdev_copy_name(struct net_device * dev,char * name)1176 void netdev_copy_name(struct net_device *dev, char *name)
1177 {
1178 	unsigned int seq;
1179 
1180 	do {
1181 		seq = read_seqbegin(&netdev_rename_lock);
1182 		strscpy(name, dev->name, IFNAMSIZ);
1183 	} while (read_seqretry(&netdev_rename_lock, seq));
1184 }
1185 EXPORT_IPV6_MOD_GPL(netdev_copy_name);
1186 
1187 /**
1188  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1189  *	@net: network namespace
1190  *	@name: a pointer to the buffer where the name will be stored.
1191  *	@ifindex: the ifindex of the interface to get the name from.
1192  */
netdev_get_name(struct net * net,char * name,int ifindex)1193 int netdev_get_name(struct net *net, char *name, int ifindex)
1194 {
1195 	struct net_device *dev;
1196 	int ret;
1197 
1198 	rcu_read_lock();
1199 
1200 	dev = dev_get_by_index_rcu(net, ifindex);
1201 	if (!dev) {
1202 		ret = -ENODEV;
1203 		goto out;
1204 	}
1205 
1206 	netdev_copy_name(dev, name);
1207 
1208 	ret = 0;
1209 out:
1210 	rcu_read_unlock();
1211 	return ret;
1212 }
1213 
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1214 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1215 			 const char *ha)
1216 {
1217 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1218 }
1219 
1220 /**
1221  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1222  *	@net: the applicable net namespace
1223  *	@type: media type of device
1224  *	@ha: hardware address
1225  *
1226  *	Search for an interface by MAC address. Returns NULL if the device
1227  *	is not found or a pointer to the device.
1228  *	The caller must hold RCU.
1229  *	The returned device has not had its ref count increased
1230  *	and the caller must therefore be careful about locking
1231  *
1232  */
1233 
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1234 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1235 				       const char *ha)
1236 {
1237 	struct net_device *dev;
1238 
1239 	for_each_netdev_rcu(net, dev)
1240 		if (dev_addr_cmp(dev, type, ha))
1241 			return dev;
1242 
1243 	return NULL;
1244 }
1245 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1246 
1247 /**
1248  * dev_getbyhwaddr() - find a device by its hardware address
1249  * @net: the applicable net namespace
1250  * @type: media type of device
1251  * @ha: hardware address
1252  *
1253  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1254  * rtnl_lock.
1255  *
1256  * Context: rtnl_lock() must be held.
1257  * Return: pointer to the net_device, or NULL if not found
1258  */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1259 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1260 				   const char *ha)
1261 {
1262 	struct net_device *dev;
1263 
1264 	ASSERT_RTNL();
1265 	for_each_netdev(net, dev)
1266 		if (dev_addr_cmp(dev, type, ha))
1267 			return dev;
1268 
1269 	return NULL;
1270 }
1271 EXPORT_SYMBOL(dev_getbyhwaddr);
1272 
dev_getfirstbyhwtype(struct net * net,unsigned short type)1273 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1274 {
1275 	struct net_device *dev, *ret = NULL;
1276 
1277 	rcu_read_lock();
1278 	for_each_netdev_rcu(net, dev)
1279 		if (dev->type == type) {
1280 			dev_hold(dev);
1281 			ret = dev;
1282 			break;
1283 		}
1284 	rcu_read_unlock();
1285 	return ret;
1286 }
1287 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1288 
1289 /**
1290  * netdev_get_by_flags_rcu - find any device with given flags
1291  * @net: the applicable net namespace
1292  * @tracker: tracking object for the acquired reference
1293  * @if_flags: IFF_* values
1294  * @mask: bitmask of bits in if_flags to check
1295  *
1296  * Search for any interface with the given flags.
1297  *
1298  * Context: rcu_read_lock() must be held.
1299  * Returns: NULL if a device is not found or a pointer to the device.
1300  */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1301 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1302 					   unsigned short if_flags, unsigned short mask)
1303 {
1304 	struct net_device *dev;
1305 
1306 	for_each_netdev_rcu(net, dev) {
1307 		if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1308 			netdev_hold(dev, tracker, GFP_ATOMIC);
1309 			return dev;
1310 		}
1311 	}
1312 
1313 	return NULL;
1314 }
1315 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1316 
1317 /**
1318  *	dev_valid_name - check if name is okay for network device
1319  *	@name: name string
1320  *
1321  *	Network device names need to be valid file names to
1322  *	allow sysfs to work.  We also disallow any kind of
1323  *	whitespace.
1324  */
dev_valid_name(const char * name)1325 bool dev_valid_name(const char *name)
1326 {
1327 	if (*name == '\0')
1328 		return false;
1329 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1330 		return false;
1331 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1332 		return false;
1333 
1334 	while (*name) {
1335 		if (*name == '/' || *name == ':' || isspace(*name))
1336 			return false;
1337 		name++;
1338 	}
1339 	return true;
1340 }
1341 EXPORT_SYMBOL(dev_valid_name);
1342 
1343 /**
1344  *	__dev_alloc_name - allocate a name for a device
1345  *	@net: network namespace to allocate the device name in
1346  *	@name: name format string
1347  *	@res: result name string
1348  *
1349  *	Passed a format string - eg "lt%d" it will try and find a suitable
1350  *	id. It scans list of devices to build up a free map, then chooses
1351  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1352  *	while allocating the name and adding the device in order to avoid
1353  *	duplicates.
1354  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1355  *	Returns the number of the unit assigned or a negative errno code.
1356  */
1357 
__dev_alloc_name(struct net * net,const char * name,char * res)1358 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1359 {
1360 	int i = 0;
1361 	const char *p;
1362 	const int max_netdevices = 8*PAGE_SIZE;
1363 	unsigned long *inuse;
1364 	struct net_device *d;
1365 	char buf[IFNAMSIZ];
1366 
1367 	/* Verify the string as this thing may have come from the user.
1368 	 * There must be one "%d" and no other "%" characters.
1369 	 */
1370 	p = strchr(name, '%');
1371 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1372 		return -EINVAL;
1373 
1374 	/* Use one page as a bit array of possible slots */
1375 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1376 	if (!inuse)
1377 		return -ENOMEM;
1378 
1379 	for_each_netdev(net, d) {
1380 		struct netdev_name_node *name_node;
1381 
1382 		netdev_for_each_altname(d, name_node) {
1383 			if (!sscanf(name_node->name, name, &i))
1384 				continue;
1385 			if (i < 0 || i >= max_netdevices)
1386 				continue;
1387 
1388 			/* avoid cases where sscanf is not exact inverse of printf */
1389 			snprintf(buf, IFNAMSIZ, name, i);
1390 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1391 				__set_bit(i, inuse);
1392 		}
1393 		if (!sscanf(d->name, name, &i))
1394 			continue;
1395 		if (i < 0 || i >= max_netdevices)
1396 			continue;
1397 
1398 		/* avoid cases where sscanf is not exact inverse of printf */
1399 		snprintf(buf, IFNAMSIZ, name, i);
1400 		if (!strncmp(buf, d->name, IFNAMSIZ))
1401 			__set_bit(i, inuse);
1402 	}
1403 
1404 	i = find_first_zero_bit(inuse, max_netdevices);
1405 	bitmap_free(inuse);
1406 	if (i == max_netdevices)
1407 		return -ENFILE;
1408 
1409 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1410 	strscpy(buf, name, IFNAMSIZ);
1411 	snprintf(res, IFNAMSIZ, buf, i);
1412 	return i;
1413 }
1414 
1415 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1416 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1417 			       const char *want_name, char *out_name,
1418 			       int dup_errno)
1419 {
1420 	if (!dev_valid_name(want_name))
1421 		return -EINVAL;
1422 
1423 	if (strchr(want_name, '%'))
1424 		return __dev_alloc_name(net, want_name, out_name);
1425 
1426 	if (netdev_name_in_use(net, want_name))
1427 		return -dup_errno;
1428 	if (out_name != want_name)
1429 		strscpy(out_name, want_name, IFNAMSIZ);
1430 	return 0;
1431 }
1432 
1433 /**
1434  *	dev_alloc_name - allocate a name for a device
1435  *	@dev: device
1436  *	@name: name format string
1437  *
1438  *	Passed a format string - eg "lt%d" it will try and find a suitable
1439  *	id. It scans list of devices to build up a free map, then chooses
1440  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1441  *	while allocating the name and adding the device in order to avoid
1442  *	duplicates.
1443  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1444  *	Returns the number of the unit assigned or a negative errno code.
1445  */
1446 
dev_alloc_name(struct net_device * dev,const char * name)1447 int dev_alloc_name(struct net_device *dev, const char *name)
1448 {
1449 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1450 }
1451 EXPORT_SYMBOL(dev_alloc_name);
1452 
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1453 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1454 			      const char *name)
1455 {
1456 	int ret;
1457 
1458 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1459 	return ret < 0 ? ret : 0;
1460 }
1461 
netif_change_name(struct net_device * dev,const char * newname)1462 int netif_change_name(struct net_device *dev, const char *newname)
1463 {
1464 	struct net *net = dev_net(dev);
1465 	unsigned char old_assign_type;
1466 	char oldname[IFNAMSIZ];
1467 	int err = 0;
1468 	int ret;
1469 
1470 	ASSERT_RTNL_NET(net);
1471 
1472 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1473 		return 0;
1474 
1475 	memcpy(oldname, dev->name, IFNAMSIZ);
1476 
1477 	write_seqlock_bh(&netdev_rename_lock);
1478 	err = dev_get_valid_name(net, dev, newname);
1479 	write_sequnlock_bh(&netdev_rename_lock);
1480 
1481 	if (err < 0)
1482 		return err;
1483 
1484 	if (oldname[0] && !strchr(oldname, '%'))
1485 		netdev_info(dev, "renamed from %s%s\n", oldname,
1486 			    dev->flags & IFF_UP ? " (while UP)" : "");
1487 
1488 	old_assign_type = dev->name_assign_type;
1489 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1490 
1491 rollback:
1492 	ret = device_rename(&dev->dev, dev->name);
1493 	if (ret) {
1494 		write_seqlock_bh(&netdev_rename_lock);
1495 		memcpy(dev->name, oldname, IFNAMSIZ);
1496 		write_sequnlock_bh(&netdev_rename_lock);
1497 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1498 		return ret;
1499 	}
1500 
1501 	netdev_adjacent_rename_links(dev, oldname);
1502 
1503 	netdev_name_node_del(dev->name_node);
1504 
1505 	synchronize_net();
1506 
1507 	netdev_name_node_add(net, dev->name_node);
1508 
1509 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1510 	ret = notifier_to_errno(ret);
1511 
1512 	if (ret) {
1513 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1514 		if (err >= 0) {
1515 			err = ret;
1516 			write_seqlock_bh(&netdev_rename_lock);
1517 			memcpy(dev->name, oldname, IFNAMSIZ);
1518 			write_sequnlock_bh(&netdev_rename_lock);
1519 			memcpy(oldname, newname, IFNAMSIZ);
1520 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1521 			old_assign_type = NET_NAME_RENAMED;
1522 			goto rollback;
1523 		} else {
1524 			netdev_err(dev, "name change rollback failed: %d\n",
1525 				   ret);
1526 		}
1527 	}
1528 
1529 	return err;
1530 }
1531 
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1532 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1533 {
1534 	struct dev_ifalias *new_alias = NULL;
1535 
1536 	if (len >= IFALIASZ)
1537 		return -EINVAL;
1538 
1539 	if (len) {
1540 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1541 		if (!new_alias)
1542 			return -ENOMEM;
1543 
1544 		memcpy(new_alias->ifalias, alias, len);
1545 		new_alias->ifalias[len] = 0;
1546 	}
1547 
1548 	mutex_lock(&ifalias_mutex);
1549 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1550 					mutex_is_locked(&ifalias_mutex));
1551 	mutex_unlock(&ifalias_mutex);
1552 
1553 	if (new_alias)
1554 		kfree_rcu(new_alias, rcuhead);
1555 
1556 	return len;
1557 }
1558 
1559 /**
1560  *	dev_get_alias - get ifalias of a device
1561  *	@dev: device
1562  *	@name: buffer to store name of ifalias
1563  *	@len: size of buffer
1564  *
1565  *	get ifalias for a device.  Caller must make sure dev cannot go
1566  *	away,  e.g. rcu read lock or own a reference count to device.
1567  */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1568 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1569 {
1570 	const struct dev_ifalias *alias;
1571 	int ret = 0;
1572 
1573 	rcu_read_lock();
1574 	alias = rcu_dereference(dev->ifalias);
1575 	if (alias)
1576 		ret = snprintf(name, len, "%s", alias->ifalias);
1577 	rcu_read_unlock();
1578 
1579 	return ret;
1580 }
1581 
1582 /**
1583  *	netdev_features_change - device changes features
1584  *	@dev: device to cause notification
1585  *
1586  *	Called to indicate a device has changed features.
1587  */
netdev_features_change(struct net_device * dev)1588 void netdev_features_change(struct net_device *dev)
1589 {
1590 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1591 }
1592 EXPORT_SYMBOL(netdev_features_change);
1593 
netif_state_change(struct net_device * dev)1594 void netif_state_change(struct net_device *dev)
1595 {
1596 	netdev_ops_assert_locked_or_invisible(dev);
1597 
1598 	if (dev->flags & IFF_UP) {
1599 		struct netdev_notifier_change_info change_info = {
1600 			.info.dev = dev,
1601 		};
1602 
1603 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1604 					      &change_info.info);
1605 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1606 	}
1607 }
1608 
1609 /**
1610  * __netdev_notify_peers - notify network peers about existence of @dev,
1611  * to be called when rtnl lock is already held.
1612  * @dev: network device
1613  *
1614  * Generate traffic such that interested network peers are aware of
1615  * @dev, such as by generating a gratuitous ARP. This may be used when
1616  * a device wants to inform the rest of the network about some sort of
1617  * reconfiguration such as a failover event or virtual machine
1618  * migration.
1619  */
__netdev_notify_peers(struct net_device * dev)1620 void __netdev_notify_peers(struct net_device *dev)
1621 {
1622 	ASSERT_RTNL();
1623 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1624 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1625 }
1626 EXPORT_SYMBOL(__netdev_notify_peers);
1627 
1628 /**
1629  * netdev_notify_peers - notify network peers about existence of @dev
1630  * @dev: network device
1631  *
1632  * Generate traffic such that interested network peers are aware of
1633  * @dev, such as by generating a gratuitous ARP. This may be used when
1634  * a device wants to inform the rest of the network about some sort of
1635  * reconfiguration such as a failover event or virtual machine
1636  * migration.
1637  */
netdev_notify_peers(struct net_device * dev)1638 void netdev_notify_peers(struct net_device *dev)
1639 {
1640 	rtnl_lock();
1641 	__netdev_notify_peers(dev);
1642 	rtnl_unlock();
1643 }
1644 EXPORT_SYMBOL(netdev_notify_peers);
1645 
1646 static int napi_threaded_poll(void *data);
1647 
napi_kthread_create(struct napi_struct * n)1648 static int napi_kthread_create(struct napi_struct *n)
1649 {
1650 	int err = 0;
1651 
1652 	/* Create and wake up the kthread once to put it in
1653 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1654 	 * warning and work with loadavg.
1655 	 */
1656 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1657 				n->dev->name, n->napi_id);
1658 	if (IS_ERR(n->thread)) {
1659 		err = PTR_ERR(n->thread);
1660 		pr_err("kthread_run failed with err %d\n", err);
1661 		n->thread = NULL;
1662 	}
1663 
1664 	return err;
1665 }
1666 
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1667 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1668 {
1669 	const struct net_device_ops *ops = dev->netdev_ops;
1670 	int ret;
1671 
1672 	ASSERT_RTNL();
1673 	dev_addr_check(dev);
1674 
1675 	if (!netif_device_present(dev)) {
1676 		/* may be detached because parent is runtime-suspended */
1677 		if (dev->dev.parent)
1678 			pm_runtime_resume(dev->dev.parent);
1679 		if (!netif_device_present(dev))
1680 			return -ENODEV;
1681 	}
1682 
1683 	/* Block netpoll from trying to do any rx path servicing.
1684 	 * If we don't do this there is a chance ndo_poll_controller
1685 	 * or ndo_poll may be running while we open the device
1686 	 */
1687 	netpoll_poll_disable(dev);
1688 
1689 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1690 	ret = notifier_to_errno(ret);
1691 	if (ret)
1692 		return ret;
1693 
1694 	set_bit(__LINK_STATE_START, &dev->state);
1695 
1696 	netdev_ops_assert_locked(dev);
1697 
1698 	if (ops->ndo_validate_addr)
1699 		ret = ops->ndo_validate_addr(dev);
1700 
1701 	if (!ret && ops->ndo_open)
1702 		ret = ops->ndo_open(dev);
1703 
1704 	netpoll_poll_enable(dev);
1705 
1706 	if (ret)
1707 		clear_bit(__LINK_STATE_START, &dev->state);
1708 	else {
1709 		netif_set_up(dev, true);
1710 		dev_set_rx_mode(dev);
1711 		dev_activate(dev);
1712 		add_device_randomness(dev->dev_addr, dev->addr_len);
1713 	}
1714 
1715 	return ret;
1716 }
1717 
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1718 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1719 {
1720 	int ret;
1721 
1722 	if (dev->flags & IFF_UP)
1723 		return 0;
1724 
1725 	ret = __dev_open(dev, extack);
1726 	if (ret < 0)
1727 		return ret;
1728 
1729 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1730 	call_netdevice_notifiers(NETDEV_UP, dev);
1731 
1732 	return ret;
1733 }
1734 
__dev_close_many(struct list_head * head)1735 static void __dev_close_many(struct list_head *head)
1736 {
1737 	struct net_device *dev;
1738 
1739 	ASSERT_RTNL();
1740 	might_sleep();
1741 
1742 	list_for_each_entry(dev, head, close_list) {
1743 		/* Temporarily disable netpoll until the interface is down */
1744 		netpoll_poll_disable(dev);
1745 
1746 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1747 
1748 		clear_bit(__LINK_STATE_START, &dev->state);
1749 
1750 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1751 		 * can be even on different cpu. So just clear netif_running().
1752 		 *
1753 		 * dev->stop() will invoke napi_disable() on all of it's
1754 		 * napi_struct instances on this device.
1755 		 */
1756 		smp_mb__after_atomic(); /* Commit netif_running(). */
1757 	}
1758 
1759 	dev_deactivate_many(head);
1760 
1761 	list_for_each_entry(dev, head, close_list) {
1762 		const struct net_device_ops *ops = dev->netdev_ops;
1763 
1764 		/*
1765 		 *	Call the device specific close. This cannot fail.
1766 		 *	Only if device is UP
1767 		 *
1768 		 *	We allow it to be called even after a DETACH hot-plug
1769 		 *	event.
1770 		 */
1771 
1772 		netdev_ops_assert_locked(dev);
1773 
1774 		if (ops->ndo_stop)
1775 			ops->ndo_stop(dev);
1776 
1777 		netif_set_up(dev, false);
1778 		netpoll_poll_enable(dev);
1779 	}
1780 }
1781 
__dev_close(struct net_device * dev)1782 static void __dev_close(struct net_device *dev)
1783 {
1784 	LIST_HEAD(single);
1785 
1786 	list_add(&dev->close_list, &single);
1787 	__dev_close_many(&single);
1788 	list_del(&single);
1789 }
1790 
netif_close_many(struct list_head * head,bool unlink)1791 void netif_close_many(struct list_head *head, bool unlink)
1792 {
1793 	struct net_device *dev, *tmp;
1794 
1795 	/* Remove the devices that don't need to be closed */
1796 	list_for_each_entry_safe(dev, tmp, head, close_list)
1797 		if (!(dev->flags & IFF_UP))
1798 			list_del_init(&dev->close_list);
1799 
1800 	__dev_close_many(head);
1801 
1802 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1803 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1804 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1805 		if (unlink)
1806 			list_del_init(&dev->close_list);
1807 	}
1808 }
1809 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1810 
netif_close(struct net_device * dev)1811 void netif_close(struct net_device *dev)
1812 {
1813 	if (dev->flags & IFF_UP) {
1814 		LIST_HEAD(single);
1815 
1816 		list_add(&dev->close_list, &single);
1817 		netif_close_many(&single, true);
1818 		list_del(&single);
1819 	}
1820 }
1821 EXPORT_SYMBOL(netif_close);
1822 
netif_disable_lro(struct net_device * dev)1823 void netif_disable_lro(struct net_device *dev)
1824 {
1825 	struct net_device *lower_dev;
1826 	struct list_head *iter;
1827 
1828 	dev->wanted_features &= ~NETIF_F_LRO;
1829 	netdev_update_features(dev);
1830 
1831 	if (unlikely(dev->features & NETIF_F_LRO))
1832 		netdev_WARN(dev, "failed to disable LRO!\n");
1833 
1834 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1835 		netdev_lock_ops(lower_dev);
1836 		netif_disable_lro(lower_dev);
1837 		netdev_unlock_ops(lower_dev);
1838 	}
1839 }
1840 EXPORT_IPV6_MOD(netif_disable_lro);
1841 
1842 /**
1843  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1844  *	@dev: device
1845  *
1846  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1847  *	called under RTNL.  This is needed if Generic XDP is installed on
1848  *	the device.
1849  */
dev_disable_gro_hw(struct net_device * dev)1850 static void dev_disable_gro_hw(struct net_device *dev)
1851 {
1852 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1853 	netdev_update_features(dev);
1854 
1855 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1856 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1857 }
1858 
netdev_cmd_to_name(enum netdev_cmd cmd)1859 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1860 {
1861 #define N(val) 						\
1862 	case NETDEV_##val:				\
1863 		return "NETDEV_" __stringify(val);
1864 	switch (cmd) {
1865 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1866 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1867 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1868 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1869 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1870 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1871 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1872 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1873 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1874 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1875 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1876 	N(XDP_FEAT_CHANGE)
1877 	}
1878 #undef N
1879 	return "UNKNOWN_NETDEV_EVENT";
1880 }
1881 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1882 
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1883 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1884 				   struct net_device *dev)
1885 {
1886 	struct netdev_notifier_info info = {
1887 		.dev = dev,
1888 	};
1889 
1890 	return nb->notifier_call(nb, val, &info);
1891 }
1892 
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1893 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1894 					     struct net_device *dev)
1895 {
1896 	int err;
1897 
1898 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1899 	err = notifier_to_errno(err);
1900 	if (err)
1901 		return err;
1902 
1903 	if (!(dev->flags & IFF_UP))
1904 		return 0;
1905 
1906 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1907 	return 0;
1908 }
1909 
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1910 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1911 						struct net_device *dev)
1912 {
1913 	if (dev->flags & IFF_UP) {
1914 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1915 					dev);
1916 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1917 	}
1918 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1919 }
1920 
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1921 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1922 						 struct net *net)
1923 {
1924 	struct net_device *dev;
1925 	int err;
1926 
1927 	for_each_netdev(net, dev) {
1928 		netdev_lock_ops(dev);
1929 		err = call_netdevice_register_notifiers(nb, dev);
1930 		netdev_unlock_ops(dev);
1931 		if (err)
1932 			goto rollback;
1933 	}
1934 	return 0;
1935 
1936 rollback:
1937 	for_each_netdev_continue_reverse(net, dev)
1938 		call_netdevice_unregister_notifiers(nb, dev);
1939 	return err;
1940 }
1941 
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1942 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1943 						    struct net *net)
1944 {
1945 	struct net_device *dev;
1946 
1947 	for_each_netdev(net, dev)
1948 		call_netdevice_unregister_notifiers(nb, dev);
1949 }
1950 
1951 static int dev_boot_phase = 1;
1952 
1953 /**
1954  * register_netdevice_notifier - register a network notifier block
1955  * @nb: notifier
1956  *
1957  * Register a notifier to be called when network device events occur.
1958  * The notifier passed is linked into the kernel structures and must
1959  * not be reused until it has been unregistered. A negative errno code
1960  * is returned on a failure.
1961  *
1962  * When registered all registration and up events are replayed
1963  * to the new notifier to allow device to have a race free
1964  * view of the network device list.
1965  */
1966 
register_netdevice_notifier(struct notifier_block * nb)1967 int register_netdevice_notifier(struct notifier_block *nb)
1968 {
1969 	struct net *net;
1970 	int err;
1971 
1972 	/* Close race with setup_net() and cleanup_net() */
1973 	down_write(&pernet_ops_rwsem);
1974 
1975 	/* When RTNL is removed, we need protection for netdev_chain. */
1976 	rtnl_lock();
1977 
1978 	err = raw_notifier_chain_register(&netdev_chain, nb);
1979 	if (err)
1980 		goto unlock;
1981 	if (dev_boot_phase)
1982 		goto unlock;
1983 	for_each_net(net) {
1984 		__rtnl_net_lock(net);
1985 		err = call_netdevice_register_net_notifiers(nb, net);
1986 		__rtnl_net_unlock(net);
1987 		if (err)
1988 			goto rollback;
1989 	}
1990 
1991 unlock:
1992 	rtnl_unlock();
1993 	up_write(&pernet_ops_rwsem);
1994 	return err;
1995 
1996 rollback:
1997 	for_each_net_continue_reverse(net) {
1998 		__rtnl_net_lock(net);
1999 		call_netdevice_unregister_net_notifiers(nb, net);
2000 		__rtnl_net_unlock(net);
2001 	}
2002 
2003 	raw_notifier_chain_unregister(&netdev_chain, nb);
2004 	goto unlock;
2005 }
2006 EXPORT_SYMBOL(register_netdevice_notifier);
2007 
2008 /**
2009  * unregister_netdevice_notifier - unregister a network notifier block
2010  * @nb: notifier
2011  *
2012  * Unregister a notifier previously registered by
2013  * register_netdevice_notifier(). The notifier is unlinked into the
2014  * kernel structures and may then be reused. A negative errno code
2015  * is returned on a failure.
2016  *
2017  * After unregistering unregister and down device events are synthesized
2018  * for all devices on the device list to the removed notifier to remove
2019  * the need for special case cleanup code.
2020  */
2021 
unregister_netdevice_notifier(struct notifier_block * nb)2022 int unregister_netdevice_notifier(struct notifier_block *nb)
2023 {
2024 	struct net *net;
2025 	int err;
2026 
2027 	/* Close race with setup_net() and cleanup_net() */
2028 	down_write(&pernet_ops_rwsem);
2029 	rtnl_lock();
2030 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
2031 	if (err)
2032 		goto unlock;
2033 
2034 	for_each_net(net) {
2035 		__rtnl_net_lock(net);
2036 		call_netdevice_unregister_net_notifiers(nb, net);
2037 		__rtnl_net_unlock(net);
2038 	}
2039 
2040 unlock:
2041 	rtnl_unlock();
2042 	up_write(&pernet_ops_rwsem);
2043 	return err;
2044 }
2045 EXPORT_SYMBOL(unregister_netdevice_notifier);
2046 
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2047 static int __register_netdevice_notifier_net(struct net *net,
2048 					     struct notifier_block *nb,
2049 					     bool ignore_call_fail)
2050 {
2051 	int err;
2052 
2053 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2054 	if (err)
2055 		return err;
2056 	if (dev_boot_phase)
2057 		return 0;
2058 
2059 	err = call_netdevice_register_net_notifiers(nb, net);
2060 	if (err && !ignore_call_fail)
2061 		goto chain_unregister;
2062 
2063 	return 0;
2064 
2065 chain_unregister:
2066 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2067 	return err;
2068 }
2069 
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2070 static int __unregister_netdevice_notifier_net(struct net *net,
2071 					       struct notifier_block *nb)
2072 {
2073 	int err;
2074 
2075 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2076 	if (err)
2077 		return err;
2078 
2079 	call_netdevice_unregister_net_notifiers(nb, net);
2080 	return 0;
2081 }
2082 
2083 /**
2084  * register_netdevice_notifier_net - register a per-netns network notifier block
2085  * @net: network namespace
2086  * @nb: notifier
2087  *
2088  * Register a notifier to be called when network device events occur.
2089  * The notifier passed is linked into the kernel structures and must
2090  * not be reused until it has been unregistered. A negative errno code
2091  * is returned on a failure.
2092  *
2093  * When registered all registration and up events are replayed
2094  * to the new notifier to allow device to have a race free
2095  * view of the network device list.
2096  */
2097 
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2098 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2099 {
2100 	int err;
2101 
2102 	rtnl_net_lock(net);
2103 	err = __register_netdevice_notifier_net(net, nb, false);
2104 	rtnl_net_unlock(net);
2105 
2106 	return err;
2107 }
2108 EXPORT_SYMBOL(register_netdevice_notifier_net);
2109 
2110 /**
2111  * unregister_netdevice_notifier_net - unregister a per-netns
2112  *                                     network notifier block
2113  * @net: network namespace
2114  * @nb: notifier
2115  *
2116  * Unregister a notifier previously registered by
2117  * register_netdevice_notifier_net(). The notifier is unlinked from the
2118  * kernel structures and may then be reused. A negative errno code
2119  * is returned on a failure.
2120  *
2121  * After unregistering unregister and down device events are synthesized
2122  * for all devices on the device list to the removed notifier to remove
2123  * the need for special case cleanup code.
2124  */
2125 
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2126 int unregister_netdevice_notifier_net(struct net *net,
2127 				      struct notifier_block *nb)
2128 {
2129 	int err;
2130 
2131 	rtnl_net_lock(net);
2132 	err = __unregister_netdevice_notifier_net(net, nb);
2133 	rtnl_net_unlock(net);
2134 
2135 	return err;
2136 }
2137 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2138 
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2139 static void __move_netdevice_notifier_net(struct net *src_net,
2140 					  struct net *dst_net,
2141 					  struct notifier_block *nb)
2142 {
2143 	__unregister_netdevice_notifier_net(src_net, nb);
2144 	__register_netdevice_notifier_net(dst_net, nb, true);
2145 }
2146 
rtnl_net_dev_lock(struct net_device * dev)2147 static void rtnl_net_dev_lock(struct net_device *dev)
2148 {
2149 	bool again;
2150 
2151 	do {
2152 		struct net *net;
2153 
2154 		again = false;
2155 
2156 		/* netns might be being dismantled. */
2157 		rcu_read_lock();
2158 		net = dev_net_rcu(dev);
2159 		net_passive_inc(net);
2160 		rcu_read_unlock();
2161 
2162 		rtnl_net_lock(net);
2163 
2164 #ifdef CONFIG_NET_NS
2165 		/* dev might have been moved to another netns. */
2166 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2167 			rtnl_net_unlock(net);
2168 			net_passive_dec(net);
2169 			again = true;
2170 		}
2171 #endif
2172 	} while (again);
2173 }
2174 
rtnl_net_dev_unlock(struct net_device * dev)2175 static void rtnl_net_dev_unlock(struct net_device *dev)
2176 {
2177 	struct net *net = dev_net(dev);
2178 
2179 	rtnl_net_unlock(net);
2180 	net_passive_dec(net);
2181 }
2182 
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2183 int register_netdevice_notifier_dev_net(struct net_device *dev,
2184 					struct notifier_block *nb,
2185 					struct netdev_net_notifier *nn)
2186 {
2187 	int err;
2188 
2189 	rtnl_net_dev_lock(dev);
2190 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2191 	if (!err) {
2192 		nn->nb = nb;
2193 		list_add(&nn->list, &dev->net_notifier_list);
2194 	}
2195 	rtnl_net_dev_unlock(dev);
2196 
2197 	return err;
2198 }
2199 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2200 
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2201 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2202 					  struct notifier_block *nb,
2203 					  struct netdev_net_notifier *nn)
2204 {
2205 	int err;
2206 
2207 	rtnl_net_dev_lock(dev);
2208 	list_del(&nn->list);
2209 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2210 	rtnl_net_dev_unlock(dev);
2211 
2212 	return err;
2213 }
2214 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2215 
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2216 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2217 					     struct net *net)
2218 {
2219 	struct netdev_net_notifier *nn;
2220 
2221 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2222 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2223 }
2224 
2225 /**
2226  *	call_netdevice_notifiers_info - call all network notifier blocks
2227  *	@val: value passed unmodified to notifier function
2228  *	@info: notifier information data
2229  *
2230  *	Call all network notifier blocks.  Parameters and return value
2231  *	are as for raw_notifier_call_chain().
2232  */
2233 
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2234 int call_netdevice_notifiers_info(unsigned long val,
2235 				  struct netdev_notifier_info *info)
2236 {
2237 	struct net *net = dev_net(info->dev);
2238 	int ret;
2239 
2240 	ASSERT_RTNL();
2241 
2242 	/* Run per-netns notifier block chain first, then run the global one.
2243 	 * Hopefully, one day, the global one is going to be removed after
2244 	 * all notifier block registrators get converted to be per-netns.
2245 	 */
2246 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2247 	if (ret & NOTIFY_STOP_MASK)
2248 		return ret;
2249 	return raw_notifier_call_chain(&netdev_chain, val, info);
2250 }
2251 
2252 /**
2253  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2254  *	                                       for and rollback on error
2255  *	@val_up: value passed unmodified to notifier function
2256  *	@val_down: value passed unmodified to the notifier function when
2257  *	           recovering from an error on @val_up
2258  *	@info: notifier information data
2259  *
2260  *	Call all per-netns network notifier blocks, but not notifier blocks on
2261  *	the global notifier chain. Parameters and return value are as for
2262  *	raw_notifier_call_chain_robust().
2263  */
2264 
2265 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2266 call_netdevice_notifiers_info_robust(unsigned long val_up,
2267 				     unsigned long val_down,
2268 				     struct netdev_notifier_info *info)
2269 {
2270 	struct net *net = dev_net(info->dev);
2271 
2272 	ASSERT_RTNL();
2273 
2274 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2275 					      val_up, val_down, info);
2276 }
2277 
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2278 static int call_netdevice_notifiers_extack(unsigned long val,
2279 					   struct net_device *dev,
2280 					   struct netlink_ext_ack *extack)
2281 {
2282 	struct netdev_notifier_info info = {
2283 		.dev = dev,
2284 		.extack = extack,
2285 	};
2286 
2287 	return call_netdevice_notifiers_info(val, &info);
2288 }
2289 
2290 /**
2291  *	call_netdevice_notifiers - call all network notifier blocks
2292  *      @val: value passed unmodified to notifier function
2293  *      @dev: net_device pointer passed unmodified to notifier function
2294  *
2295  *	Call all network notifier blocks.  Parameters and return value
2296  *	are as for raw_notifier_call_chain().
2297  */
2298 
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2299 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2300 {
2301 	return call_netdevice_notifiers_extack(val, dev, NULL);
2302 }
2303 EXPORT_SYMBOL(call_netdevice_notifiers);
2304 
2305 /**
2306  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2307  *	@val: value passed unmodified to notifier function
2308  *	@dev: net_device pointer passed unmodified to notifier function
2309  *	@arg: additional u32 argument passed to the notifier function
2310  *
2311  *	Call all network notifier blocks.  Parameters and return value
2312  *	are as for raw_notifier_call_chain().
2313  */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2314 static int call_netdevice_notifiers_mtu(unsigned long val,
2315 					struct net_device *dev, u32 arg)
2316 {
2317 	struct netdev_notifier_info_ext info = {
2318 		.info.dev = dev,
2319 		.ext.mtu = arg,
2320 	};
2321 
2322 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2323 
2324 	return call_netdevice_notifiers_info(val, &info.info);
2325 }
2326 
2327 #ifdef CONFIG_NET_INGRESS
2328 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2329 
net_inc_ingress_queue(void)2330 void net_inc_ingress_queue(void)
2331 {
2332 	static_branch_inc(&ingress_needed_key);
2333 }
2334 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2335 
net_dec_ingress_queue(void)2336 void net_dec_ingress_queue(void)
2337 {
2338 	static_branch_dec(&ingress_needed_key);
2339 }
2340 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2341 #endif
2342 
2343 #ifdef CONFIG_NET_EGRESS
2344 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2345 
net_inc_egress_queue(void)2346 void net_inc_egress_queue(void)
2347 {
2348 	static_branch_inc(&egress_needed_key);
2349 }
2350 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2351 
net_dec_egress_queue(void)2352 void net_dec_egress_queue(void)
2353 {
2354 	static_branch_dec(&egress_needed_key);
2355 }
2356 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2357 #endif
2358 
2359 #ifdef CONFIG_NET_CLS_ACT
2360 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2361 EXPORT_SYMBOL(tcf_sw_enabled_key);
2362 #endif
2363 
2364 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2365 EXPORT_SYMBOL(netstamp_needed_key);
2366 #ifdef CONFIG_JUMP_LABEL
2367 static atomic_t netstamp_needed_deferred;
2368 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2369 static void netstamp_clear(struct work_struct *work)
2370 {
2371 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2372 	int wanted;
2373 
2374 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2375 	if (wanted > 0)
2376 		static_branch_enable(&netstamp_needed_key);
2377 	else
2378 		static_branch_disable(&netstamp_needed_key);
2379 }
2380 static DECLARE_WORK(netstamp_work, netstamp_clear);
2381 #endif
2382 
net_enable_timestamp(void)2383 void net_enable_timestamp(void)
2384 {
2385 #ifdef CONFIG_JUMP_LABEL
2386 	int wanted = atomic_read(&netstamp_wanted);
2387 
2388 	while (wanted > 0) {
2389 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2390 			return;
2391 	}
2392 	atomic_inc(&netstamp_needed_deferred);
2393 	schedule_work(&netstamp_work);
2394 #else
2395 	static_branch_inc(&netstamp_needed_key);
2396 #endif
2397 }
2398 EXPORT_SYMBOL(net_enable_timestamp);
2399 
net_disable_timestamp(void)2400 void net_disable_timestamp(void)
2401 {
2402 #ifdef CONFIG_JUMP_LABEL
2403 	int wanted = atomic_read(&netstamp_wanted);
2404 
2405 	while (wanted > 1) {
2406 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2407 			return;
2408 	}
2409 	atomic_dec(&netstamp_needed_deferred);
2410 	schedule_work(&netstamp_work);
2411 #else
2412 	static_branch_dec(&netstamp_needed_key);
2413 #endif
2414 }
2415 EXPORT_SYMBOL(net_disable_timestamp);
2416 
net_timestamp_set(struct sk_buff * skb)2417 static inline void net_timestamp_set(struct sk_buff *skb)
2418 {
2419 	skb->tstamp = 0;
2420 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2421 	if (static_branch_unlikely(&netstamp_needed_key))
2422 		skb->tstamp = ktime_get_real();
2423 }
2424 
2425 #define net_timestamp_check(COND, SKB)				\
2426 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2427 		if ((COND) && !(SKB)->tstamp)			\
2428 			(SKB)->tstamp = ktime_get_real();	\
2429 	}							\
2430 
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2431 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2432 {
2433 	return __is_skb_forwardable(dev, skb, true);
2434 }
2435 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2436 
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2437 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2438 			      bool check_mtu)
2439 {
2440 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2441 
2442 	if (likely(!ret)) {
2443 		skb->protocol = eth_type_trans(skb, dev);
2444 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2445 	}
2446 
2447 	return ret;
2448 }
2449 
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2450 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2451 {
2452 	return __dev_forward_skb2(dev, skb, true);
2453 }
2454 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2455 
2456 /**
2457  * dev_forward_skb - loopback an skb to another netif
2458  *
2459  * @dev: destination network device
2460  * @skb: buffer to forward
2461  *
2462  * return values:
2463  *	NET_RX_SUCCESS	(no congestion)
2464  *	NET_RX_DROP     (packet was dropped, but freed)
2465  *
2466  * dev_forward_skb can be used for injecting an skb from the
2467  * start_xmit function of one device into the receive queue
2468  * of another device.
2469  *
2470  * The receiving device may be in another namespace, so
2471  * we have to clear all information in the skb that could
2472  * impact namespace isolation.
2473  */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2474 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2475 {
2476 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2477 }
2478 EXPORT_SYMBOL_GPL(dev_forward_skb);
2479 
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2480 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2481 {
2482 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2483 }
2484 
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2485 static int deliver_skb(struct sk_buff *skb,
2486 		       struct packet_type *pt_prev,
2487 		       struct net_device *orig_dev)
2488 {
2489 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2490 		return -ENOMEM;
2491 	refcount_inc(&skb->users);
2492 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2493 }
2494 
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2495 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2496 					  struct packet_type **pt,
2497 					  struct net_device *orig_dev,
2498 					  __be16 type,
2499 					  struct list_head *ptype_list)
2500 {
2501 	struct packet_type *ptype, *pt_prev = *pt;
2502 
2503 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2504 		if (ptype->type != type)
2505 			continue;
2506 		if (unlikely(pt_prev))
2507 			deliver_skb(skb, pt_prev, orig_dev);
2508 		pt_prev = ptype;
2509 	}
2510 	*pt = pt_prev;
2511 }
2512 
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2513 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2514 {
2515 	if (!ptype->af_packet_priv || !skb->sk)
2516 		return false;
2517 
2518 	if (ptype->id_match)
2519 		return ptype->id_match(ptype, skb->sk);
2520 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2521 		return true;
2522 
2523 	return false;
2524 }
2525 
2526 /**
2527  * dev_nit_active_rcu - return true if any network interface taps are in use
2528  *
2529  * The caller must hold the RCU lock
2530  *
2531  * @dev: network device to check for the presence of taps
2532  */
dev_nit_active_rcu(const struct net_device * dev)2533 bool dev_nit_active_rcu(const struct net_device *dev)
2534 {
2535 	/* Callers may hold either RCU or RCU BH lock */
2536 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2537 
2538 	return !list_empty(&dev_net(dev)->ptype_all) ||
2539 	       !list_empty(&dev->ptype_all);
2540 }
2541 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2542 
2543 /*
2544  *	Support routine. Sends outgoing frames to any network
2545  *	taps currently in use.
2546  */
2547 
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2548 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2549 {
2550 	struct packet_type *ptype, *pt_prev = NULL;
2551 	struct list_head *ptype_list;
2552 	struct sk_buff *skb2 = NULL;
2553 
2554 	rcu_read_lock();
2555 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2556 again:
2557 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2558 		if (READ_ONCE(ptype->ignore_outgoing))
2559 			continue;
2560 
2561 		/* Never send packets back to the socket
2562 		 * they originated from - MvS (miquels@drinkel.ow.org)
2563 		 */
2564 		if (skb_loop_sk(ptype, skb))
2565 			continue;
2566 
2567 		if (unlikely(pt_prev)) {
2568 			deliver_skb(skb2, pt_prev, skb->dev);
2569 			pt_prev = ptype;
2570 			continue;
2571 		}
2572 
2573 		/* need to clone skb, done only once */
2574 		skb2 = skb_clone(skb, GFP_ATOMIC);
2575 		if (!skb2)
2576 			goto out_unlock;
2577 
2578 		net_timestamp_set(skb2);
2579 
2580 		/* skb->nh should be correctly
2581 		 * set by sender, so that the second statement is
2582 		 * just protection against buggy protocols.
2583 		 */
2584 		skb_reset_mac_header(skb2);
2585 
2586 		if (skb_network_header(skb2) < skb2->data ||
2587 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2588 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2589 					     ntohs(skb2->protocol),
2590 					     dev->name);
2591 			skb_reset_network_header(skb2);
2592 		}
2593 
2594 		skb2->transport_header = skb2->network_header;
2595 		skb2->pkt_type = PACKET_OUTGOING;
2596 		pt_prev = ptype;
2597 	}
2598 
2599 	if (ptype_list != &dev->ptype_all) {
2600 		ptype_list = &dev->ptype_all;
2601 		goto again;
2602 	}
2603 out_unlock:
2604 	if (pt_prev) {
2605 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2606 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2607 		else
2608 			kfree_skb(skb2);
2609 	}
2610 	rcu_read_unlock();
2611 }
2612 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2613 
2614 /**
2615  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2616  * @dev: Network device
2617  * @txq: number of queues available
2618  *
2619  * If real_num_tx_queues is changed the tc mappings may no longer be
2620  * valid. To resolve this verify the tc mapping remains valid and if
2621  * not NULL the mapping. With no priorities mapping to this
2622  * offset/count pair it will no longer be used. In the worst case TC0
2623  * is invalid nothing can be done so disable priority mappings. If is
2624  * expected that drivers will fix this mapping if they can before
2625  * calling netif_set_real_num_tx_queues.
2626  */
netif_setup_tc(struct net_device * dev,unsigned int txq)2627 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2628 {
2629 	int i;
2630 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2631 
2632 	/* If TC0 is invalidated disable TC mapping */
2633 	if (tc->offset + tc->count > txq) {
2634 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2635 		dev->num_tc = 0;
2636 		return;
2637 	}
2638 
2639 	/* Invalidated prio to tc mappings set to TC0 */
2640 	for (i = 1; i < TC_BITMASK + 1; i++) {
2641 		int q = netdev_get_prio_tc_map(dev, i);
2642 
2643 		tc = &dev->tc_to_txq[q];
2644 		if (tc->offset + tc->count > txq) {
2645 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2646 				    i, q);
2647 			netdev_set_prio_tc_map(dev, i, 0);
2648 		}
2649 	}
2650 }
2651 
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2652 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2653 {
2654 	if (dev->num_tc) {
2655 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2656 		int i;
2657 
2658 		/* walk through the TCs and see if it falls into any of them */
2659 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2660 			if ((txq - tc->offset) < tc->count)
2661 				return i;
2662 		}
2663 
2664 		/* didn't find it, just return -1 to indicate no match */
2665 		return -1;
2666 	}
2667 
2668 	return 0;
2669 }
2670 EXPORT_SYMBOL(netdev_txq_to_tc);
2671 
2672 #ifdef CONFIG_XPS
2673 static struct static_key xps_needed __read_mostly;
2674 static struct static_key xps_rxqs_needed __read_mostly;
2675 static DEFINE_MUTEX(xps_map_mutex);
2676 #define xmap_dereference(P)		\
2677 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2678 
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2679 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2680 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2681 {
2682 	struct xps_map *map = NULL;
2683 	int pos;
2684 
2685 	map = xmap_dereference(dev_maps->attr_map[tci]);
2686 	if (!map)
2687 		return false;
2688 
2689 	for (pos = map->len; pos--;) {
2690 		if (map->queues[pos] != index)
2691 			continue;
2692 
2693 		if (map->len > 1) {
2694 			map->queues[pos] = map->queues[--map->len];
2695 			break;
2696 		}
2697 
2698 		if (old_maps)
2699 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2700 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2701 		kfree_rcu(map, rcu);
2702 		return false;
2703 	}
2704 
2705 	return true;
2706 }
2707 
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2708 static bool remove_xps_queue_cpu(struct net_device *dev,
2709 				 struct xps_dev_maps *dev_maps,
2710 				 int cpu, u16 offset, u16 count)
2711 {
2712 	int num_tc = dev_maps->num_tc;
2713 	bool active = false;
2714 	int tci;
2715 
2716 	for (tci = cpu * num_tc; num_tc--; tci++) {
2717 		int i, j;
2718 
2719 		for (i = count, j = offset; i--; j++) {
2720 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2721 				break;
2722 		}
2723 
2724 		active |= i < 0;
2725 	}
2726 
2727 	return active;
2728 }
2729 
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2730 static void reset_xps_maps(struct net_device *dev,
2731 			   struct xps_dev_maps *dev_maps,
2732 			   enum xps_map_type type)
2733 {
2734 	static_key_slow_dec_cpuslocked(&xps_needed);
2735 	if (type == XPS_RXQS)
2736 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2737 
2738 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2739 
2740 	kfree_rcu(dev_maps, rcu);
2741 }
2742 
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2743 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2744 			   u16 offset, u16 count)
2745 {
2746 	struct xps_dev_maps *dev_maps;
2747 	bool active = false;
2748 	int i, j;
2749 
2750 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2751 	if (!dev_maps)
2752 		return;
2753 
2754 	for (j = 0; j < dev_maps->nr_ids; j++)
2755 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2756 	if (!active)
2757 		reset_xps_maps(dev, dev_maps, type);
2758 
2759 	if (type == XPS_CPUS) {
2760 		for (i = offset + (count - 1); count--; i--)
2761 			netdev_queue_numa_node_write(
2762 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2763 	}
2764 }
2765 
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2766 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2767 				   u16 count)
2768 {
2769 	if (!static_key_false(&xps_needed))
2770 		return;
2771 
2772 	cpus_read_lock();
2773 	mutex_lock(&xps_map_mutex);
2774 
2775 	if (static_key_false(&xps_rxqs_needed))
2776 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2777 
2778 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2779 
2780 	mutex_unlock(&xps_map_mutex);
2781 	cpus_read_unlock();
2782 }
2783 
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2784 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2785 {
2786 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2787 }
2788 
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2789 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2790 				      u16 index, bool is_rxqs_map)
2791 {
2792 	struct xps_map *new_map;
2793 	int alloc_len = XPS_MIN_MAP_ALLOC;
2794 	int i, pos;
2795 
2796 	for (pos = 0; map && pos < map->len; pos++) {
2797 		if (map->queues[pos] != index)
2798 			continue;
2799 		return map;
2800 	}
2801 
2802 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2803 	if (map) {
2804 		if (pos < map->alloc_len)
2805 			return map;
2806 
2807 		alloc_len = map->alloc_len * 2;
2808 	}
2809 
2810 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2811 	 *  map
2812 	 */
2813 	if (is_rxqs_map)
2814 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2815 	else
2816 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2817 				       cpu_to_node(attr_index));
2818 	if (!new_map)
2819 		return NULL;
2820 
2821 	for (i = 0; i < pos; i++)
2822 		new_map->queues[i] = map->queues[i];
2823 	new_map->alloc_len = alloc_len;
2824 	new_map->len = pos;
2825 
2826 	return new_map;
2827 }
2828 
2829 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2830 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2831 			      struct xps_dev_maps *new_dev_maps, int index,
2832 			      int tc, bool skip_tc)
2833 {
2834 	int i, tci = index * dev_maps->num_tc;
2835 	struct xps_map *map;
2836 
2837 	/* copy maps belonging to foreign traffic classes */
2838 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2839 		if (i == tc && skip_tc)
2840 			continue;
2841 
2842 		/* fill in the new device map from the old device map */
2843 		map = xmap_dereference(dev_maps->attr_map[tci]);
2844 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2845 	}
2846 }
2847 
2848 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2849 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2850 			  u16 index, enum xps_map_type type)
2851 {
2852 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2853 	const unsigned long *online_mask = NULL;
2854 	bool active = false, copy = false;
2855 	int i, j, tci, numa_node_id = -2;
2856 	int maps_sz, num_tc = 1, tc = 0;
2857 	struct xps_map *map, *new_map;
2858 	unsigned int nr_ids;
2859 
2860 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2861 
2862 	if (dev->num_tc) {
2863 		/* Do not allow XPS on subordinate device directly */
2864 		num_tc = dev->num_tc;
2865 		if (num_tc < 0)
2866 			return -EINVAL;
2867 
2868 		/* If queue belongs to subordinate dev use its map */
2869 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2870 
2871 		tc = netdev_txq_to_tc(dev, index);
2872 		if (tc < 0)
2873 			return -EINVAL;
2874 	}
2875 
2876 	mutex_lock(&xps_map_mutex);
2877 
2878 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2879 	if (type == XPS_RXQS) {
2880 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2881 		nr_ids = dev->num_rx_queues;
2882 	} else {
2883 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2884 		if (num_possible_cpus() > 1)
2885 			online_mask = cpumask_bits(cpu_online_mask);
2886 		nr_ids = nr_cpu_ids;
2887 	}
2888 
2889 	if (maps_sz < L1_CACHE_BYTES)
2890 		maps_sz = L1_CACHE_BYTES;
2891 
2892 	/* The old dev_maps could be larger or smaller than the one we're
2893 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2894 	 * between. We could try to be smart, but let's be safe instead and only
2895 	 * copy foreign traffic classes if the two map sizes match.
2896 	 */
2897 	if (dev_maps &&
2898 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2899 		copy = true;
2900 
2901 	/* allocate memory for queue storage */
2902 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2903 	     j < nr_ids;) {
2904 		if (!new_dev_maps) {
2905 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2906 			if (!new_dev_maps) {
2907 				mutex_unlock(&xps_map_mutex);
2908 				return -ENOMEM;
2909 			}
2910 
2911 			new_dev_maps->nr_ids = nr_ids;
2912 			new_dev_maps->num_tc = num_tc;
2913 		}
2914 
2915 		tci = j * num_tc + tc;
2916 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2917 
2918 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2919 		if (!map)
2920 			goto error;
2921 
2922 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2923 	}
2924 
2925 	if (!new_dev_maps)
2926 		goto out_no_new_maps;
2927 
2928 	if (!dev_maps) {
2929 		/* Increment static keys at most once per type */
2930 		static_key_slow_inc_cpuslocked(&xps_needed);
2931 		if (type == XPS_RXQS)
2932 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2933 	}
2934 
2935 	for (j = 0; j < nr_ids; j++) {
2936 		bool skip_tc = false;
2937 
2938 		tci = j * num_tc + tc;
2939 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2940 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2941 			/* add tx-queue to CPU/rx-queue maps */
2942 			int pos = 0;
2943 
2944 			skip_tc = true;
2945 
2946 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2947 			while ((pos < map->len) && (map->queues[pos] != index))
2948 				pos++;
2949 
2950 			if (pos == map->len)
2951 				map->queues[map->len++] = index;
2952 #ifdef CONFIG_NUMA
2953 			if (type == XPS_CPUS) {
2954 				if (numa_node_id == -2)
2955 					numa_node_id = cpu_to_node(j);
2956 				else if (numa_node_id != cpu_to_node(j))
2957 					numa_node_id = -1;
2958 			}
2959 #endif
2960 		}
2961 
2962 		if (copy)
2963 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2964 					  skip_tc);
2965 	}
2966 
2967 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2968 
2969 	/* Cleanup old maps */
2970 	if (!dev_maps)
2971 		goto out_no_old_maps;
2972 
2973 	for (j = 0; j < dev_maps->nr_ids; j++) {
2974 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2975 			map = xmap_dereference(dev_maps->attr_map[tci]);
2976 			if (!map)
2977 				continue;
2978 
2979 			if (copy) {
2980 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2981 				if (map == new_map)
2982 					continue;
2983 			}
2984 
2985 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2986 			kfree_rcu(map, rcu);
2987 		}
2988 	}
2989 
2990 	old_dev_maps = dev_maps;
2991 
2992 out_no_old_maps:
2993 	dev_maps = new_dev_maps;
2994 	active = true;
2995 
2996 out_no_new_maps:
2997 	if (type == XPS_CPUS)
2998 		/* update Tx queue numa node */
2999 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
3000 					     (numa_node_id >= 0) ?
3001 					     numa_node_id : NUMA_NO_NODE);
3002 
3003 	if (!dev_maps)
3004 		goto out_no_maps;
3005 
3006 	/* removes tx-queue from unused CPUs/rx-queues */
3007 	for (j = 0; j < dev_maps->nr_ids; j++) {
3008 		tci = j * dev_maps->num_tc;
3009 
3010 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
3011 			if (i == tc &&
3012 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
3013 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
3014 				continue;
3015 
3016 			active |= remove_xps_queue(dev_maps,
3017 						   copy ? old_dev_maps : NULL,
3018 						   tci, index);
3019 		}
3020 	}
3021 
3022 	if (old_dev_maps)
3023 		kfree_rcu(old_dev_maps, rcu);
3024 
3025 	/* free map if not active */
3026 	if (!active)
3027 		reset_xps_maps(dev, dev_maps, type);
3028 
3029 out_no_maps:
3030 	mutex_unlock(&xps_map_mutex);
3031 
3032 	return 0;
3033 error:
3034 	/* remove any maps that we added */
3035 	for (j = 0; j < nr_ids; j++) {
3036 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
3037 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3038 			map = copy ?
3039 			      xmap_dereference(dev_maps->attr_map[tci]) :
3040 			      NULL;
3041 			if (new_map && new_map != map)
3042 				kfree(new_map);
3043 		}
3044 	}
3045 
3046 	mutex_unlock(&xps_map_mutex);
3047 
3048 	kfree(new_dev_maps);
3049 	return -ENOMEM;
3050 }
3051 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3052 
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3053 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3054 			u16 index)
3055 {
3056 	int ret;
3057 
3058 	cpus_read_lock();
3059 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3060 	cpus_read_unlock();
3061 
3062 	return ret;
3063 }
3064 EXPORT_SYMBOL(netif_set_xps_queue);
3065 
3066 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3067 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3068 {
3069 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3070 
3071 	/* Unbind any subordinate channels */
3072 	while (txq-- != &dev->_tx[0]) {
3073 		if (txq->sb_dev)
3074 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3075 	}
3076 }
3077 
netdev_reset_tc(struct net_device * dev)3078 void netdev_reset_tc(struct net_device *dev)
3079 {
3080 #ifdef CONFIG_XPS
3081 	netif_reset_xps_queues_gt(dev, 0);
3082 #endif
3083 	netdev_unbind_all_sb_channels(dev);
3084 
3085 	/* Reset TC configuration of device */
3086 	dev->num_tc = 0;
3087 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3088 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3089 }
3090 EXPORT_SYMBOL(netdev_reset_tc);
3091 
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3092 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3093 {
3094 	if (tc >= dev->num_tc)
3095 		return -EINVAL;
3096 
3097 #ifdef CONFIG_XPS
3098 	netif_reset_xps_queues(dev, offset, count);
3099 #endif
3100 	dev->tc_to_txq[tc].count = count;
3101 	dev->tc_to_txq[tc].offset = offset;
3102 	return 0;
3103 }
3104 EXPORT_SYMBOL(netdev_set_tc_queue);
3105 
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3106 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3107 {
3108 	if (num_tc > TC_MAX_QUEUE)
3109 		return -EINVAL;
3110 
3111 #ifdef CONFIG_XPS
3112 	netif_reset_xps_queues_gt(dev, 0);
3113 #endif
3114 	netdev_unbind_all_sb_channels(dev);
3115 
3116 	dev->num_tc = num_tc;
3117 	return 0;
3118 }
3119 EXPORT_SYMBOL(netdev_set_num_tc);
3120 
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3121 void netdev_unbind_sb_channel(struct net_device *dev,
3122 			      struct net_device *sb_dev)
3123 {
3124 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3125 
3126 #ifdef CONFIG_XPS
3127 	netif_reset_xps_queues_gt(sb_dev, 0);
3128 #endif
3129 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3130 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3131 
3132 	while (txq-- != &dev->_tx[0]) {
3133 		if (txq->sb_dev == sb_dev)
3134 			txq->sb_dev = NULL;
3135 	}
3136 }
3137 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3138 
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3139 int netdev_bind_sb_channel_queue(struct net_device *dev,
3140 				 struct net_device *sb_dev,
3141 				 u8 tc, u16 count, u16 offset)
3142 {
3143 	/* Make certain the sb_dev and dev are already configured */
3144 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3145 		return -EINVAL;
3146 
3147 	/* We cannot hand out queues we don't have */
3148 	if ((offset + count) > dev->real_num_tx_queues)
3149 		return -EINVAL;
3150 
3151 	/* Record the mapping */
3152 	sb_dev->tc_to_txq[tc].count = count;
3153 	sb_dev->tc_to_txq[tc].offset = offset;
3154 
3155 	/* Provide a way for Tx queue to find the tc_to_txq map or
3156 	 * XPS map for itself.
3157 	 */
3158 	while (count--)
3159 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3160 
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3164 
netdev_set_sb_channel(struct net_device * dev,u16 channel)3165 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3166 {
3167 	/* Do not use a multiqueue device to represent a subordinate channel */
3168 	if (netif_is_multiqueue(dev))
3169 		return -ENODEV;
3170 
3171 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3172 	 * Channel 0 is meant to be "native" mode and used only to represent
3173 	 * the main root device. We allow writing 0 to reset the device back
3174 	 * to normal mode after being used as a subordinate channel.
3175 	 */
3176 	if (channel > S16_MAX)
3177 		return -EINVAL;
3178 
3179 	dev->num_tc = -channel;
3180 
3181 	return 0;
3182 }
3183 EXPORT_SYMBOL(netdev_set_sb_channel);
3184 
3185 /*
3186  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3187  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3188  */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3189 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3190 {
3191 	bool disabling;
3192 	int rc;
3193 
3194 	disabling = txq < dev->real_num_tx_queues;
3195 
3196 	if (txq < 1 || txq > dev->num_tx_queues)
3197 		return -EINVAL;
3198 
3199 	if (dev->reg_state == NETREG_REGISTERED ||
3200 	    dev->reg_state == NETREG_UNREGISTERING) {
3201 		netdev_ops_assert_locked(dev);
3202 
3203 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3204 						  txq);
3205 		if (rc)
3206 			return rc;
3207 
3208 		if (dev->num_tc)
3209 			netif_setup_tc(dev, txq);
3210 
3211 		net_shaper_set_real_num_tx_queues(dev, txq);
3212 
3213 		dev_qdisc_change_real_num_tx(dev, txq);
3214 
3215 		dev->real_num_tx_queues = txq;
3216 
3217 		if (disabling) {
3218 			synchronize_net();
3219 			qdisc_reset_all_tx_gt(dev, txq);
3220 #ifdef CONFIG_XPS
3221 			netif_reset_xps_queues_gt(dev, txq);
3222 #endif
3223 		}
3224 	} else {
3225 		dev->real_num_tx_queues = txq;
3226 	}
3227 
3228 	return 0;
3229 }
3230 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3231 
3232 /**
3233  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3234  *	@dev: Network device
3235  *	@rxq: Actual number of RX queues
3236  *
3237  *	This must be called either with the rtnl_lock held or before
3238  *	registration of the net device.  Returns 0 on success, or a
3239  *	negative error code.  If called before registration, it always
3240  *	succeeds.
3241  */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3242 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3243 {
3244 	int rc;
3245 
3246 	if (rxq < 1 || rxq > dev->num_rx_queues)
3247 		return -EINVAL;
3248 
3249 	if (dev->reg_state == NETREG_REGISTERED) {
3250 		netdev_ops_assert_locked(dev);
3251 
3252 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3253 						  rxq);
3254 		if (rc)
3255 			return rc;
3256 	}
3257 
3258 	dev->real_num_rx_queues = rxq;
3259 	return 0;
3260 }
3261 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3262 
3263 /**
3264  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3265  *	@dev: Network device
3266  *	@txq: Actual number of TX queues
3267  *	@rxq: Actual number of RX queues
3268  *
3269  *	Set the real number of both TX and RX queues.
3270  *	Does nothing if the number of queues is already correct.
3271  */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3272 int netif_set_real_num_queues(struct net_device *dev,
3273 			      unsigned int txq, unsigned int rxq)
3274 {
3275 	unsigned int old_rxq = dev->real_num_rx_queues;
3276 	int err;
3277 
3278 	if (txq < 1 || txq > dev->num_tx_queues ||
3279 	    rxq < 1 || rxq > dev->num_rx_queues)
3280 		return -EINVAL;
3281 
3282 	/* Start from increases, so the error path only does decreases -
3283 	 * decreases can't fail.
3284 	 */
3285 	if (rxq > dev->real_num_rx_queues) {
3286 		err = netif_set_real_num_rx_queues(dev, rxq);
3287 		if (err)
3288 			return err;
3289 	}
3290 	if (txq > dev->real_num_tx_queues) {
3291 		err = netif_set_real_num_tx_queues(dev, txq);
3292 		if (err)
3293 			goto undo_rx;
3294 	}
3295 	if (rxq < dev->real_num_rx_queues)
3296 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3297 	if (txq < dev->real_num_tx_queues)
3298 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3299 
3300 	return 0;
3301 undo_rx:
3302 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3303 	return err;
3304 }
3305 EXPORT_SYMBOL(netif_set_real_num_queues);
3306 
3307 /**
3308  * netif_set_tso_max_size() - set the max size of TSO frames supported
3309  * @dev:	netdev to update
3310  * @size:	max skb->len of a TSO frame
3311  *
3312  * Set the limit on the size of TSO super-frames the device can handle.
3313  * Unless explicitly set the stack will assume the value of
3314  * %GSO_LEGACY_MAX_SIZE.
3315  */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3316 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3317 {
3318 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3319 	if (size < READ_ONCE(dev->gso_max_size))
3320 		netif_set_gso_max_size(dev, size);
3321 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3322 		netif_set_gso_ipv4_max_size(dev, size);
3323 }
3324 EXPORT_SYMBOL(netif_set_tso_max_size);
3325 
3326 /**
3327  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3328  * @dev:	netdev to update
3329  * @segs:	max number of TCP segments
3330  *
3331  * Set the limit on the number of TCP segments the device can generate from
3332  * a single TSO super-frame.
3333  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3334  */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3335 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3336 {
3337 	dev->tso_max_segs = segs;
3338 	if (segs < READ_ONCE(dev->gso_max_segs))
3339 		netif_set_gso_max_segs(dev, segs);
3340 }
3341 EXPORT_SYMBOL(netif_set_tso_max_segs);
3342 
3343 /**
3344  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3345  * @to:		netdev to update
3346  * @from:	netdev from which to copy the limits
3347  */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3348 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3349 {
3350 	netif_set_tso_max_size(to, from->tso_max_size);
3351 	netif_set_tso_max_segs(to, from->tso_max_segs);
3352 }
3353 EXPORT_SYMBOL(netif_inherit_tso_max);
3354 
3355 /**
3356  * netif_get_num_default_rss_queues - default number of RSS queues
3357  *
3358  * Default value is the number of physical cores if there are only 1 or 2, or
3359  * divided by 2 if there are more.
3360  */
netif_get_num_default_rss_queues(void)3361 int netif_get_num_default_rss_queues(void)
3362 {
3363 	cpumask_var_t cpus;
3364 	int cpu, count = 0;
3365 
3366 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3367 		return 1;
3368 
3369 	cpumask_copy(cpus, cpu_online_mask);
3370 	for_each_cpu(cpu, cpus) {
3371 		++count;
3372 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3373 	}
3374 	free_cpumask_var(cpus);
3375 
3376 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3377 }
3378 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3379 
__netif_reschedule(struct Qdisc * q)3380 static void __netif_reschedule(struct Qdisc *q)
3381 {
3382 	struct softnet_data *sd;
3383 	unsigned long flags;
3384 
3385 	local_irq_save(flags);
3386 	sd = this_cpu_ptr(&softnet_data);
3387 	q->next_sched = NULL;
3388 	*sd->output_queue_tailp = q;
3389 	sd->output_queue_tailp = &q->next_sched;
3390 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3391 	local_irq_restore(flags);
3392 }
3393 
__netif_schedule(struct Qdisc * q)3394 void __netif_schedule(struct Qdisc *q)
3395 {
3396 	/* If q->defer_list is not empty, at least one thread is
3397 	 * in __dev_xmit_skb() before llist_del_all(&q->defer_list).
3398 	 * This thread will attempt to run the queue.
3399 	 */
3400 	if (!llist_empty(&q->defer_list))
3401 		return;
3402 
3403 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3404 		__netif_reschedule(q);
3405 }
3406 EXPORT_SYMBOL(__netif_schedule);
3407 
3408 struct dev_kfree_skb_cb {
3409 	enum skb_drop_reason reason;
3410 };
3411 
get_kfree_skb_cb(const struct sk_buff * skb)3412 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3413 {
3414 	return (struct dev_kfree_skb_cb *)skb->cb;
3415 }
3416 
netif_schedule_queue(struct netdev_queue * txq)3417 void netif_schedule_queue(struct netdev_queue *txq)
3418 {
3419 	rcu_read_lock();
3420 	if (!netif_xmit_stopped(txq)) {
3421 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3422 
3423 		__netif_schedule(q);
3424 	}
3425 	rcu_read_unlock();
3426 }
3427 EXPORT_SYMBOL(netif_schedule_queue);
3428 
netif_tx_wake_queue(struct netdev_queue * dev_queue)3429 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3430 {
3431 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3432 		struct Qdisc *q;
3433 
3434 		rcu_read_lock();
3435 		q = rcu_dereference(dev_queue->qdisc);
3436 		__netif_schedule(q);
3437 		rcu_read_unlock();
3438 	}
3439 }
3440 EXPORT_SYMBOL(netif_tx_wake_queue);
3441 
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3442 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3443 {
3444 	unsigned long flags;
3445 
3446 	if (unlikely(!skb))
3447 		return;
3448 
3449 	if (likely(refcount_read(&skb->users) == 1)) {
3450 		smp_rmb();
3451 		refcount_set(&skb->users, 0);
3452 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3453 		return;
3454 	}
3455 	get_kfree_skb_cb(skb)->reason = reason;
3456 	local_irq_save(flags);
3457 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3458 	__this_cpu_write(softnet_data.completion_queue, skb);
3459 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3460 	local_irq_restore(flags);
3461 }
3462 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3463 
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3464 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3465 {
3466 	if (in_hardirq() || irqs_disabled())
3467 		dev_kfree_skb_irq_reason(skb, reason);
3468 	else
3469 		kfree_skb_reason(skb, reason);
3470 }
3471 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3472 
3473 
3474 /**
3475  * netif_device_detach - mark device as removed
3476  * @dev: network device
3477  *
3478  * Mark device as removed from system and therefore no longer available.
3479  */
netif_device_detach(struct net_device * dev)3480 void netif_device_detach(struct net_device *dev)
3481 {
3482 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3483 	    netif_running(dev)) {
3484 		netif_tx_stop_all_queues(dev);
3485 	}
3486 }
3487 EXPORT_SYMBOL(netif_device_detach);
3488 
3489 /**
3490  * netif_device_attach - mark device as attached
3491  * @dev: network device
3492  *
3493  * Mark device as attached from system and restart if needed.
3494  */
netif_device_attach(struct net_device * dev)3495 void netif_device_attach(struct net_device *dev)
3496 {
3497 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3498 	    netif_running(dev)) {
3499 		netif_tx_wake_all_queues(dev);
3500 		netdev_watchdog_up(dev);
3501 	}
3502 }
3503 EXPORT_SYMBOL(netif_device_attach);
3504 
3505 /*
3506  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3507  * to be used as a distribution range.
3508  */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3509 static u16 skb_tx_hash(const struct net_device *dev,
3510 		       const struct net_device *sb_dev,
3511 		       struct sk_buff *skb)
3512 {
3513 	u32 hash;
3514 	u16 qoffset = 0;
3515 	u16 qcount = dev->real_num_tx_queues;
3516 
3517 	if (dev->num_tc) {
3518 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3519 
3520 		qoffset = sb_dev->tc_to_txq[tc].offset;
3521 		qcount = sb_dev->tc_to_txq[tc].count;
3522 		if (unlikely(!qcount)) {
3523 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3524 					     sb_dev->name, qoffset, tc);
3525 			qoffset = 0;
3526 			qcount = dev->real_num_tx_queues;
3527 		}
3528 	}
3529 
3530 	if (skb_rx_queue_recorded(skb)) {
3531 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3532 		hash = skb_get_rx_queue(skb);
3533 		if (hash >= qoffset)
3534 			hash -= qoffset;
3535 		while (unlikely(hash >= qcount))
3536 			hash -= qcount;
3537 		return hash + qoffset;
3538 	}
3539 
3540 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3541 }
3542 
skb_warn_bad_offload(const struct sk_buff * skb)3543 void skb_warn_bad_offload(const struct sk_buff *skb)
3544 {
3545 	static const netdev_features_t null_features;
3546 	struct net_device *dev = skb->dev;
3547 	const char *name = "";
3548 
3549 	if (!net_ratelimit())
3550 		return;
3551 
3552 	if (dev) {
3553 		if (dev->dev.parent)
3554 			name = dev_driver_string(dev->dev.parent);
3555 		else
3556 			name = netdev_name(dev);
3557 	}
3558 	skb_dump(KERN_WARNING, skb, false);
3559 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3560 	     name, dev ? &dev->features : &null_features,
3561 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3562 }
3563 
3564 /*
3565  * Invalidate hardware checksum when packet is to be mangled, and
3566  * complete checksum manually on outgoing path.
3567  */
skb_checksum_help(struct sk_buff * skb)3568 int skb_checksum_help(struct sk_buff *skb)
3569 {
3570 	__wsum csum;
3571 	int ret = 0, offset;
3572 
3573 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3574 		goto out_set_summed;
3575 
3576 	if (unlikely(skb_is_gso(skb))) {
3577 		skb_warn_bad_offload(skb);
3578 		return -EINVAL;
3579 	}
3580 
3581 	if (!skb_frags_readable(skb)) {
3582 		return -EFAULT;
3583 	}
3584 
3585 	/* Before computing a checksum, we should make sure no frag could
3586 	 * be modified by an external entity : checksum could be wrong.
3587 	 */
3588 	if (skb_has_shared_frag(skb)) {
3589 		ret = __skb_linearize(skb);
3590 		if (ret)
3591 			goto out;
3592 	}
3593 
3594 	offset = skb_checksum_start_offset(skb);
3595 	ret = -EINVAL;
3596 	if (unlikely(offset >= skb_headlen(skb))) {
3597 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3598 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3599 			  offset, skb_headlen(skb));
3600 		goto out;
3601 	}
3602 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3603 
3604 	offset += skb->csum_offset;
3605 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3606 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3607 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3608 			  offset + sizeof(__sum16), skb_headlen(skb));
3609 		goto out;
3610 	}
3611 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3612 	if (ret)
3613 		goto out;
3614 
3615 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3616 out_set_summed:
3617 	skb->ip_summed = CHECKSUM_NONE;
3618 out:
3619 	return ret;
3620 }
3621 EXPORT_SYMBOL(skb_checksum_help);
3622 
3623 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3624 int skb_crc32c_csum_help(struct sk_buff *skb)
3625 {
3626 	u32 crc;
3627 	int ret = 0, offset, start;
3628 
3629 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3630 		goto out;
3631 
3632 	if (unlikely(skb_is_gso(skb)))
3633 		goto out;
3634 
3635 	/* Before computing a checksum, we should make sure no frag could
3636 	 * be modified by an external entity : checksum could be wrong.
3637 	 */
3638 	if (unlikely(skb_has_shared_frag(skb))) {
3639 		ret = __skb_linearize(skb);
3640 		if (ret)
3641 			goto out;
3642 	}
3643 	start = skb_checksum_start_offset(skb);
3644 	offset = start + offsetof(struct sctphdr, checksum);
3645 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3646 		ret = -EINVAL;
3647 		goto out;
3648 	}
3649 
3650 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3651 	if (ret)
3652 		goto out;
3653 
3654 	crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3655 	*(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3656 	skb_reset_csum_not_inet(skb);
3657 out:
3658 	return ret;
3659 }
3660 EXPORT_SYMBOL(skb_crc32c_csum_help);
3661 #endif /* CONFIG_NET_CRC32C */
3662 
skb_network_protocol(struct sk_buff * skb,int * depth)3663 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3664 {
3665 	__be16 type = skb->protocol;
3666 
3667 	/* Tunnel gso handlers can set protocol to ethernet. */
3668 	if (type == htons(ETH_P_TEB)) {
3669 		struct ethhdr *eth;
3670 
3671 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3672 			return 0;
3673 
3674 		eth = (struct ethhdr *)skb->data;
3675 		type = eth->h_proto;
3676 	}
3677 
3678 	return vlan_get_protocol_and_depth(skb, type, depth);
3679 }
3680 
3681 
3682 /* Take action when hardware reception checksum errors are detected. */
3683 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3684 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3685 {
3686 	netdev_err(dev, "hw csum failure\n");
3687 	skb_dump(KERN_ERR, skb, true);
3688 	dump_stack();
3689 }
3690 
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3691 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3692 {
3693 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3694 }
3695 EXPORT_SYMBOL(netdev_rx_csum_fault);
3696 #endif
3697 
3698 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3699 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3700 {
3701 #ifdef CONFIG_HIGHMEM
3702 	int i;
3703 
3704 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3705 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3706 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3707 			struct page *page = skb_frag_page(frag);
3708 
3709 			if (page && PageHighMem(page))
3710 				return 1;
3711 		}
3712 	}
3713 #endif
3714 	return 0;
3715 }
3716 
3717 /* If MPLS offload request, verify we are testing hardware MPLS features
3718  * instead of standard features for the netdev.
3719  */
3720 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3721 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3722 					   netdev_features_t features,
3723 					   __be16 type)
3724 {
3725 	if (eth_p_mpls(type))
3726 		features &= skb->dev->mpls_features;
3727 
3728 	return features;
3729 }
3730 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3731 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3732 					   netdev_features_t features,
3733 					   __be16 type)
3734 {
3735 	return features;
3736 }
3737 #endif
3738 
harmonize_features(struct sk_buff * skb,netdev_features_t features)3739 static netdev_features_t harmonize_features(struct sk_buff *skb,
3740 	netdev_features_t features)
3741 {
3742 	__be16 type;
3743 
3744 	type = skb_network_protocol(skb, NULL);
3745 	features = net_mpls_features(skb, features, type);
3746 
3747 	if (skb->ip_summed != CHECKSUM_NONE &&
3748 	    !can_checksum_protocol(features, type)) {
3749 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3750 	}
3751 	if (illegal_highdma(skb->dev, skb))
3752 		features &= ~NETIF_F_SG;
3753 
3754 	return features;
3755 }
3756 
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3757 netdev_features_t passthru_features_check(struct sk_buff *skb,
3758 					  struct net_device *dev,
3759 					  netdev_features_t features)
3760 {
3761 	return features;
3762 }
3763 EXPORT_SYMBOL(passthru_features_check);
3764 
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3765 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3766 					     struct net_device *dev,
3767 					     netdev_features_t features)
3768 {
3769 	return vlan_features_check(skb, features);
3770 }
3771 
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3772 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3773 					    struct net_device *dev,
3774 					    netdev_features_t features)
3775 {
3776 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3777 
3778 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3779 		return features & ~NETIF_F_GSO_MASK;
3780 
3781 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3782 		return features & ~NETIF_F_GSO_MASK;
3783 
3784 	if (!skb_shinfo(skb)->gso_type) {
3785 		skb_warn_bad_offload(skb);
3786 		return features & ~NETIF_F_GSO_MASK;
3787 	}
3788 
3789 	/* Support for GSO partial features requires software
3790 	 * intervention before we can actually process the packets
3791 	 * so we need to strip support for any partial features now
3792 	 * and we can pull them back in after we have partially
3793 	 * segmented the frame.
3794 	 */
3795 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3796 		features &= ~dev->gso_partial_features;
3797 
3798 	/* Make sure to clear the IPv4 ID mangling feature if the IPv4 header
3799 	 * has the potential to be fragmented so that TSO does not generate
3800 	 * segments with the same ID. For encapsulated packets, the ID mangling
3801 	 * feature is guaranteed not to use the same ID for the outer IPv4
3802 	 * headers of the generated segments if the headers have the potential
3803 	 * to be fragmented, so there is no need to clear the IPv4 ID mangling
3804 	 * feature (see the section about NETIF_F_TSO_MANGLEID in
3805 	 * segmentation-offloads.rst).
3806 	 */
3807 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3808 		struct iphdr *iph = skb->encapsulation ?
3809 				    inner_ip_hdr(skb) : ip_hdr(skb);
3810 
3811 		if (!(iph->frag_off & htons(IP_DF)))
3812 			features &= ~dev->mangleid_features;
3813 	}
3814 
3815 	/* NETIF_F_IPV6_CSUM does not support IPv6 extension headers,
3816 	 * so neither does TSO that depends on it.
3817 	 */
3818 	if (features & NETIF_F_IPV6_CSUM &&
3819 	    (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6 ||
3820 	     (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4 &&
3821 	      vlan_get_protocol(skb) == htons(ETH_P_IPV6))) &&
3822 	    skb_transport_header_was_set(skb) &&
3823 	    skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3824 		features &= ~(NETIF_F_IPV6_CSUM | NETIF_F_TSO6 | NETIF_F_GSO_UDP_L4);
3825 
3826 	return features;
3827 }
3828 
netif_skb_features(struct sk_buff * skb)3829 netdev_features_t netif_skb_features(struct sk_buff *skb)
3830 {
3831 	struct net_device *dev = skb->dev;
3832 	netdev_features_t features = dev->features;
3833 
3834 	if (skb_is_gso(skb))
3835 		features = gso_features_check(skb, dev, features);
3836 
3837 	/* If encapsulation offload request, verify we are testing
3838 	 * hardware encapsulation features instead of standard
3839 	 * features for the netdev
3840 	 */
3841 	if (skb->encapsulation)
3842 		features &= dev->hw_enc_features;
3843 
3844 	if (skb_vlan_tagged(skb))
3845 		features = netdev_intersect_features(features,
3846 						     dev->vlan_features |
3847 						     NETIF_F_HW_VLAN_CTAG_TX |
3848 						     NETIF_F_HW_VLAN_STAG_TX);
3849 
3850 	if (dev->netdev_ops->ndo_features_check)
3851 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3852 								features);
3853 	else
3854 		features &= dflt_features_check(skb, dev, features);
3855 
3856 	return harmonize_features(skb, features);
3857 }
3858 EXPORT_SYMBOL(netif_skb_features);
3859 
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3860 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3861 		    struct netdev_queue *txq, bool more)
3862 {
3863 	unsigned int len;
3864 	int rc;
3865 
3866 	if (dev_nit_active_rcu(dev))
3867 		dev_queue_xmit_nit(skb, dev);
3868 
3869 	len = skb->len;
3870 	trace_net_dev_start_xmit(skb, dev);
3871 	rc = netdev_start_xmit(skb, dev, txq, more);
3872 	trace_net_dev_xmit(skb, rc, dev, len);
3873 
3874 	return rc;
3875 }
3876 
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3877 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3878 				    struct netdev_queue *txq, int *ret)
3879 {
3880 	struct sk_buff *skb = first;
3881 	int rc = NETDEV_TX_OK;
3882 
3883 	while (skb) {
3884 		struct sk_buff *next = skb->next;
3885 
3886 		skb_mark_not_on_list(skb);
3887 		rc = xmit_one(skb, dev, txq, next != NULL);
3888 		if (unlikely(!dev_xmit_complete(rc))) {
3889 			skb->next = next;
3890 			goto out;
3891 		}
3892 
3893 		skb = next;
3894 		if (netif_tx_queue_stopped(txq) && skb) {
3895 			rc = NETDEV_TX_BUSY;
3896 			break;
3897 		}
3898 	}
3899 
3900 out:
3901 	*ret = rc;
3902 	return skb;
3903 }
3904 
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3905 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3906 					  netdev_features_t features)
3907 {
3908 	if (skb_vlan_tag_present(skb) &&
3909 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3910 		skb = __vlan_hwaccel_push_inside(skb);
3911 	return skb;
3912 }
3913 
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3914 int skb_csum_hwoffload_help(struct sk_buff *skb,
3915 			    const netdev_features_t features)
3916 {
3917 	if (unlikely(skb_csum_is_sctp(skb)))
3918 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3919 			skb_crc32c_csum_help(skb);
3920 
3921 	if (features & NETIF_F_HW_CSUM)
3922 		return 0;
3923 
3924 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3925 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3926 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr))
3927 			goto sw_checksum;
3928 
3929 		switch (skb->csum_offset) {
3930 		case offsetof(struct tcphdr, check):
3931 		case offsetof(struct udphdr, check):
3932 			return 0;
3933 		}
3934 	}
3935 
3936 sw_checksum:
3937 	return skb_checksum_help(skb);
3938 }
3939 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3940 
3941 /* Checks if this SKB belongs to an HW offloaded socket
3942  * and whether any SW fallbacks are required based on dev.
3943  * Check decrypted mark in case skb_orphan() cleared socket.
3944  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)3945 static struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
3946 					    struct net_device *dev)
3947 {
3948 #ifdef CONFIG_SOCK_VALIDATE_XMIT
3949 	struct sk_buff *(*sk_validate)(struct sock *sk, struct net_device *dev,
3950 				       struct sk_buff *skb);
3951 	struct sock *sk = skb->sk;
3952 
3953 	sk_validate = NULL;
3954 	if (sk) {
3955 		if (sk_fullsock(sk))
3956 			sk_validate = sk->sk_validate_xmit_skb;
3957 		else if (sk_is_inet(sk) && sk->sk_state == TCP_TIME_WAIT)
3958 			sk_validate = inet_twsk(sk)->tw_validate_xmit_skb;
3959 	}
3960 
3961 	if (sk_validate) {
3962 		skb = sk_validate(sk, dev, skb);
3963 	} else if (unlikely(skb_is_decrypted(skb))) {
3964 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
3965 		kfree_skb(skb);
3966 		skb = NULL;
3967 	}
3968 #endif
3969 
3970 	return skb;
3971 }
3972 
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3973 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3974 						    struct net_device *dev)
3975 {
3976 	struct skb_shared_info *shinfo;
3977 	struct net_iov *niov;
3978 
3979 	if (likely(skb_frags_readable(skb)))
3980 		goto out;
3981 
3982 	if (!dev->netmem_tx)
3983 		goto out_free;
3984 
3985 	shinfo = skb_shinfo(skb);
3986 
3987 	if (shinfo->nr_frags > 0) {
3988 		niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3989 		if (net_is_devmem_iov(niov) &&
3990 		    net_devmem_iov_binding(niov)->dev != dev)
3991 			goto out_free;
3992 	}
3993 
3994 out:
3995 	return skb;
3996 
3997 out_free:
3998 	kfree_skb(skb);
3999 	return NULL;
4000 }
4001 
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)4002 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
4003 {
4004 	netdev_features_t features;
4005 
4006 	skb = validate_xmit_unreadable_skb(skb, dev);
4007 	if (unlikely(!skb))
4008 		goto out_null;
4009 
4010 	features = netif_skb_features(skb);
4011 	skb = validate_xmit_vlan(skb, features);
4012 	if (unlikely(!skb))
4013 		goto out_null;
4014 
4015 	skb = sk_validate_xmit_skb(skb, dev);
4016 	if (unlikely(!skb))
4017 		goto out_null;
4018 
4019 	if (netif_needs_gso(skb, features)) {
4020 		struct sk_buff *segs;
4021 
4022 		segs = skb_gso_segment(skb, features);
4023 		if (IS_ERR(segs)) {
4024 			goto out_kfree_skb;
4025 		} else if (segs) {
4026 			consume_skb(skb);
4027 			skb = segs;
4028 		}
4029 	} else {
4030 		if (skb_needs_linearize(skb, features) &&
4031 		    __skb_linearize(skb))
4032 			goto out_kfree_skb;
4033 
4034 		/* If packet is not checksummed and device does not
4035 		 * support checksumming for this protocol, complete
4036 		 * checksumming here.
4037 		 */
4038 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
4039 			if (skb->encapsulation)
4040 				skb_set_inner_transport_header(skb,
4041 							       skb_checksum_start_offset(skb));
4042 			else
4043 				skb_set_transport_header(skb,
4044 							 skb_checksum_start_offset(skb));
4045 			if (skb_csum_hwoffload_help(skb, features))
4046 				goto out_kfree_skb;
4047 		}
4048 	}
4049 
4050 	skb = validate_xmit_xfrm(skb, features, again);
4051 
4052 	return skb;
4053 
4054 out_kfree_skb:
4055 	kfree_skb(skb);
4056 out_null:
4057 	dev_core_stats_tx_dropped_inc(dev);
4058 	return NULL;
4059 }
4060 
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)4061 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
4062 {
4063 	struct sk_buff *next, *head = NULL, *tail;
4064 
4065 	for (; skb != NULL; skb = next) {
4066 		next = skb->next;
4067 		skb_mark_not_on_list(skb);
4068 
4069 		/* in case skb won't be segmented, point to itself */
4070 		skb->prev = skb;
4071 
4072 		skb = validate_xmit_skb(skb, dev, again);
4073 		if (!skb)
4074 			continue;
4075 
4076 		if (!head)
4077 			head = skb;
4078 		else
4079 			tail->next = skb;
4080 		/* If skb was segmented, skb->prev points to
4081 		 * the last segment. If not, it still contains skb.
4082 		 */
4083 		tail = skb->prev;
4084 	}
4085 	return head;
4086 }
4087 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4088 
qdisc_pkt_len_segs_init(struct sk_buff * skb)4089 static void qdisc_pkt_len_segs_init(struct sk_buff *skb)
4090 {
4091 	struct skb_shared_info *shinfo = skb_shinfo(skb);
4092 	u16 gso_segs;
4093 
4094 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4095 	if (!shinfo->gso_size) {
4096 		qdisc_skb_cb(skb)->pkt_segs = 1;
4097 		return;
4098 	}
4099 
4100 	qdisc_skb_cb(skb)->pkt_segs = gso_segs = shinfo->gso_segs;
4101 
4102 	/* To get more precise estimation of bytes sent on wire,
4103 	 * we add to pkt_len the headers size of all segments
4104 	 */
4105 	if (skb_transport_header_was_set(skb)) {
4106 		unsigned int hdr_len;
4107 
4108 		/* mac layer + network layer */
4109 		if (!skb->encapsulation)
4110 			hdr_len = skb_transport_offset(skb);
4111 		else
4112 			hdr_len = skb_inner_transport_offset(skb);
4113 
4114 		/* + transport layer */
4115 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4116 			const struct tcphdr *th;
4117 			struct tcphdr _tcphdr;
4118 
4119 			th = skb_header_pointer(skb, hdr_len,
4120 						sizeof(_tcphdr), &_tcphdr);
4121 			if (likely(th))
4122 				hdr_len += __tcp_hdrlen(th);
4123 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4124 			struct udphdr _udphdr;
4125 
4126 			if (skb_header_pointer(skb, hdr_len,
4127 					       sizeof(_udphdr), &_udphdr))
4128 				hdr_len += sizeof(struct udphdr);
4129 		}
4130 
4131 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4132 			int payload = skb->len - hdr_len;
4133 
4134 			/* Malicious packet. */
4135 			if (payload <= 0)
4136 				return;
4137 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4138 			shinfo->gso_segs = gso_segs;
4139 			qdisc_skb_cb(skb)->pkt_segs = gso_segs;
4140 		}
4141 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4142 	}
4143 }
4144 
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4145 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4146 			     struct sk_buff **to_free,
4147 			     struct netdev_queue *txq)
4148 {
4149 	int rc;
4150 
4151 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4152 	if (rc == NET_XMIT_SUCCESS)
4153 		trace_qdisc_enqueue(q, txq, skb);
4154 	return rc;
4155 }
4156 
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4157 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4158 				 struct net_device *dev,
4159 				 struct netdev_queue *txq)
4160 {
4161 	struct sk_buff *next, *to_free = NULL, *to_free2 = NULL;
4162 	spinlock_t *root_lock = qdisc_lock(q);
4163 	struct llist_node *ll_list, *first_n;
4164 	unsigned long defer_count = 0;
4165 	int rc;
4166 
4167 	qdisc_calculate_pkt_len(skb, q);
4168 
4169 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4170 
4171 	if (q->flags & TCQ_F_NOLOCK) {
4172 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4173 		    qdisc_run_begin(q)) {
4174 			/* Retest nolock_qdisc_is_empty() within the protection
4175 			 * of q->seqlock to protect from racing with requeuing.
4176 			 */
4177 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4178 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4179 				__qdisc_run(q);
4180 				to_free2 = qdisc_run_end(q);
4181 
4182 				goto free_skbs;
4183 			}
4184 
4185 			qdisc_bstats_cpu_update(q, skb);
4186 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4187 			    !nolock_qdisc_is_empty(q))
4188 				__qdisc_run(q);
4189 
4190 			to_free2 = qdisc_run_end(q);
4191 			rc = NET_XMIT_SUCCESS;
4192 			goto free_skbs;
4193 		}
4194 
4195 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4196 		to_free2 = qdisc_run(q);
4197 		goto free_skbs;
4198 	}
4199 
4200 	/* Open code llist_add(&skb->ll_node, &q->defer_list) + queue limit.
4201 	 * In the try_cmpxchg() loop, we want to increment q->defer_count
4202 	 * at most once to limit the number of skbs in defer_list.
4203 	 * We perform the defer_count increment only if the list is not empty,
4204 	 * because some arches have slow atomic_long_inc_return().
4205 	 */
4206 	first_n = READ_ONCE(q->defer_list.first);
4207 	do {
4208 		if (first_n && !defer_count) {
4209 			defer_count = atomic_long_inc_return(&q->defer_count);
4210 			if (unlikely(defer_count > READ_ONCE(net_hotdata.qdisc_max_burst))) {
4211 				kfree_skb_reason(skb, SKB_DROP_REASON_QDISC_BURST_DROP);
4212 				return NET_XMIT_DROP;
4213 			}
4214 		}
4215 		skb->ll_node.next = first_n;
4216 	} while (!try_cmpxchg(&q->defer_list.first, &first_n, &skb->ll_node));
4217 
4218 	/* If defer_list was not empty, we know the cpu which queued
4219 	 * the first skb will process the whole list for us.
4220 	 */
4221 	if (first_n)
4222 		return NET_XMIT_SUCCESS;
4223 
4224 	spin_lock(root_lock);
4225 
4226 	ll_list = llist_del_all(&q->defer_list);
4227 	/* There is a small race because we clear defer_count not atomically
4228 	 * with the prior llist_del_all(). This means defer_list could grow
4229 	 * over qdisc_max_burst.
4230 	 */
4231 	atomic_long_set(&q->defer_count, 0);
4232 
4233 	ll_list = llist_reverse_order(ll_list);
4234 
4235 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4236 		llist_for_each_entry_safe(skb, next, ll_list, ll_node)
4237 			__qdisc_drop(skb, &to_free);
4238 		rc = NET_XMIT_DROP;
4239 		goto unlock;
4240 	}
4241 	if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4242 	    !llist_next(ll_list) && qdisc_run_begin(q)) {
4243 		/*
4244 		 * This is a work-conserving queue; there are no old skbs
4245 		 * waiting to be sent out; and the qdisc is not running -
4246 		 * xmit the skb directly.
4247 		 */
4248 
4249 		DEBUG_NET_WARN_ON_ONCE(skb != llist_entry(ll_list,
4250 							  struct sk_buff,
4251 							  ll_node));
4252 		qdisc_bstats_update(q, skb);
4253 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true))
4254 			__qdisc_run(q);
4255 		to_free2 = qdisc_run_end(q);
4256 		rc = NET_XMIT_SUCCESS;
4257 	} else {
4258 		int count = 0;
4259 
4260 		llist_for_each_entry_safe(skb, next, ll_list, ll_node) {
4261 			if (next) {
4262 				prefetch(next);
4263 				prefetch(&next->priority);
4264 				skb_mark_not_on_list(skb);
4265 			}
4266 			rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4267 			count++;
4268 		}
4269 		to_free2 = qdisc_run(q);
4270 		if (count != 1)
4271 			rc = NET_XMIT_SUCCESS;
4272 	}
4273 unlock:
4274 	spin_unlock(root_lock);
4275 
4276 free_skbs:
4277 	tcf_kfree_skb_list(to_free);
4278 	tcf_kfree_skb_list(to_free2);
4279 	return rc;
4280 }
4281 
4282 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4283 static void skb_update_prio(struct sk_buff *skb)
4284 {
4285 	const struct netprio_map *map;
4286 	const struct sock *sk;
4287 	unsigned int prioidx;
4288 
4289 	if (skb->priority)
4290 		return;
4291 	map = rcu_dereference_bh(skb->dev->priomap);
4292 	if (!map)
4293 		return;
4294 	sk = skb_to_full_sk(skb);
4295 	if (!sk)
4296 		return;
4297 
4298 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4299 
4300 	if (prioidx < map->priomap_len)
4301 		skb->priority = map->priomap[prioidx];
4302 }
4303 #else
4304 #define skb_update_prio(skb)
4305 #endif
4306 
4307 /**
4308  *	dev_loopback_xmit - loop back @skb
4309  *	@net: network namespace this loopback is happening in
4310  *	@sk:  sk needed to be a netfilter okfn
4311  *	@skb: buffer to transmit
4312  */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4313 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4314 {
4315 	skb_reset_mac_header(skb);
4316 	__skb_pull(skb, skb_network_offset(skb));
4317 	skb->pkt_type = PACKET_LOOPBACK;
4318 	if (skb->ip_summed == CHECKSUM_NONE)
4319 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4320 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4321 	skb_dst_force(skb);
4322 	netif_rx(skb);
4323 	return 0;
4324 }
4325 EXPORT_SYMBOL(dev_loopback_xmit);
4326 
4327 #ifdef CONFIG_NET_EGRESS
4328 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4329 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4330 {
4331 	int qm = skb_get_queue_mapping(skb);
4332 
4333 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4334 }
4335 
4336 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4337 static bool netdev_xmit_txqueue_skipped(void)
4338 {
4339 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4340 }
4341 
netdev_xmit_skip_txqueue(bool skip)4342 void netdev_xmit_skip_txqueue(bool skip)
4343 {
4344 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4345 }
4346 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4347 
4348 #else
netdev_xmit_txqueue_skipped(void)4349 static bool netdev_xmit_txqueue_skipped(void)
4350 {
4351 	return current->net_xmit.skip_txqueue;
4352 }
4353 
netdev_xmit_skip_txqueue(bool skip)4354 void netdev_xmit_skip_txqueue(bool skip)
4355 {
4356 	current->net_xmit.skip_txqueue = skip;
4357 }
4358 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4359 #endif
4360 #endif /* CONFIG_NET_EGRESS */
4361 
4362 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4363 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4364 		  enum skb_drop_reason *drop_reason)
4365 {
4366 	int ret = TC_ACT_UNSPEC;
4367 #ifdef CONFIG_NET_CLS_ACT
4368 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4369 	struct tcf_result res;
4370 
4371 	if (!miniq)
4372 		return ret;
4373 
4374 	/* Global bypass */
4375 	if (!static_branch_likely(&tcf_sw_enabled_key))
4376 		return ret;
4377 
4378 	/* Block-wise bypass */
4379 	if (tcf_block_bypass_sw(miniq->block))
4380 		return ret;
4381 
4382 	tc_skb_cb(skb)->mru = 0;
4383 	qdisc_skb_cb(skb)->post_ct = false;
4384 	tcf_set_drop_reason(skb, *drop_reason);
4385 
4386 	mini_qdisc_bstats_cpu_update(miniq, skb);
4387 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4388 	/* Only tcf related quirks below. */
4389 	switch (ret) {
4390 	case TC_ACT_SHOT:
4391 		*drop_reason = tcf_get_drop_reason(skb);
4392 		mini_qdisc_qstats_cpu_drop(miniq);
4393 		break;
4394 	case TC_ACT_OK:
4395 	case TC_ACT_RECLASSIFY:
4396 		skb->tc_index = TC_H_MIN(res.classid);
4397 		break;
4398 	}
4399 #endif /* CONFIG_NET_CLS_ACT */
4400 	return ret;
4401 }
4402 
4403 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4404 
tcx_inc(void)4405 void tcx_inc(void)
4406 {
4407 	static_branch_inc(&tcx_needed_key);
4408 }
4409 
tcx_dec(void)4410 void tcx_dec(void)
4411 {
4412 	static_branch_dec(&tcx_needed_key);
4413 }
4414 
4415 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4416 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4417 	const bool needs_mac)
4418 {
4419 	const struct bpf_mprog_fp *fp;
4420 	const struct bpf_prog *prog;
4421 	int ret = TCX_NEXT;
4422 
4423 	if (needs_mac)
4424 		__skb_push(skb, skb->mac_len);
4425 	bpf_mprog_foreach_prog(entry, fp, prog) {
4426 		bpf_compute_data_pointers(skb);
4427 		ret = bpf_prog_run(prog, skb);
4428 		if (ret != TCX_NEXT)
4429 			break;
4430 	}
4431 	if (needs_mac)
4432 		__skb_pull(skb, skb->mac_len);
4433 	return tcx_action_code(skb, ret);
4434 }
4435 
4436 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4437 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4438 		   struct net_device *orig_dev, bool *another)
4439 {
4440 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4441 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4442 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4443 	int sch_ret;
4444 
4445 	if (!entry)
4446 		return skb;
4447 
4448 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4449 	if (unlikely(*pt_prev)) {
4450 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4451 		*pt_prev = NULL;
4452 	}
4453 
4454 	qdisc_pkt_len_segs_init(skb);
4455 	tcx_set_ingress(skb, true);
4456 
4457 	if (static_branch_unlikely(&tcx_needed_key)) {
4458 		sch_ret = tcx_run(entry, skb, true);
4459 		if (sch_ret != TC_ACT_UNSPEC)
4460 			goto ingress_verdict;
4461 	}
4462 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4463 ingress_verdict:
4464 	switch (sch_ret) {
4465 	case TC_ACT_REDIRECT:
4466 		/* skb_mac_header check was done by BPF, so we can safely
4467 		 * push the L2 header back before redirecting to another
4468 		 * netdev.
4469 		 */
4470 		__skb_push(skb, skb->mac_len);
4471 		if (skb_do_redirect(skb) == -EAGAIN) {
4472 			__skb_pull(skb, skb->mac_len);
4473 			*another = true;
4474 			break;
4475 		}
4476 		*ret = NET_RX_SUCCESS;
4477 		bpf_net_ctx_clear(bpf_net_ctx);
4478 		return NULL;
4479 	case TC_ACT_SHOT:
4480 		kfree_skb_reason(skb, drop_reason);
4481 		*ret = NET_RX_DROP;
4482 		bpf_net_ctx_clear(bpf_net_ctx);
4483 		return NULL;
4484 	/* used by tc_run */
4485 	case TC_ACT_STOLEN:
4486 	case TC_ACT_QUEUED:
4487 	case TC_ACT_TRAP:
4488 		consume_skb(skb);
4489 		fallthrough;
4490 	case TC_ACT_CONSUMED:
4491 		*ret = NET_RX_SUCCESS;
4492 		bpf_net_ctx_clear(bpf_net_ctx);
4493 		return NULL;
4494 	}
4495 	bpf_net_ctx_clear(bpf_net_ctx);
4496 
4497 	return skb;
4498 }
4499 
4500 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4501 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4502 {
4503 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4504 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4505 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4506 	int sch_ret;
4507 
4508 	if (!entry)
4509 		return skb;
4510 
4511 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4512 
4513 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4514 	 * already set by the caller.
4515 	 */
4516 	if (static_branch_unlikely(&tcx_needed_key)) {
4517 		sch_ret = tcx_run(entry, skb, false);
4518 		if (sch_ret != TC_ACT_UNSPEC)
4519 			goto egress_verdict;
4520 	}
4521 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4522 egress_verdict:
4523 	switch (sch_ret) {
4524 	case TC_ACT_REDIRECT:
4525 		/* No need to push/pop skb's mac_header here on egress! */
4526 		skb_do_redirect(skb);
4527 		*ret = NET_XMIT_SUCCESS;
4528 		bpf_net_ctx_clear(bpf_net_ctx);
4529 		return NULL;
4530 	case TC_ACT_SHOT:
4531 		kfree_skb_reason(skb, drop_reason);
4532 		*ret = NET_XMIT_DROP;
4533 		bpf_net_ctx_clear(bpf_net_ctx);
4534 		return NULL;
4535 	/* used by tc_run */
4536 	case TC_ACT_STOLEN:
4537 	case TC_ACT_QUEUED:
4538 	case TC_ACT_TRAP:
4539 		consume_skb(skb);
4540 		fallthrough;
4541 	case TC_ACT_CONSUMED:
4542 		*ret = NET_XMIT_SUCCESS;
4543 		bpf_net_ctx_clear(bpf_net_ctx);
4544 		return NULL;
4545 	}
4546 	bpf_net_ctx_clear(bpf_net_ctx);
4547 
4548 	return skb;
4549 }
4550 #else
4551 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4552 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4553 		   struct net_device *orig_dev, bool *another)
4554 {
4555 	return skb;
4556 }
4557 
4558 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4559 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4560 {
4561 	return skb;
4562 }
4563 #endif /* CONFIG_NET_XGRESS */
4564 
4565 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4566 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4567 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4568 {
4569 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4570 	struct xps_map *map;
4571 	int queue_index = -1;
4572 
4573 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4574 		return queue_index;
4575 
4576 	tci *= dev_maps->num_tc;
4577 	tci += tc;
4578 
4579 	map = rcu_dereference(dev_maps->attr_map[tci]);
4580 	if (map) {
4581 		if (map->len == 1)
4582 			queue_index = map->queues[0];
4583 		else
4584 			queue_index = map->queues[reciprocal_scale(
4585 						skb_get_hash(skb), map->len)];
4586 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4587 			queue_index = -1;
4588 	}
4589 	return queue_index;
4590 }
4591 #endif
4592 
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4593 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4594 			 struct sk_buff *skb)
4595 {
4596 #ifdef CONFIG_XPS
4597 	struct xps_dev_maps *dev_maps;
4598 	struct sock *sk = skb->sk;
4599 	int queue_index = -1;
4600 
4601 	if (!static_key_false(&xps_needed))
4602 		return -1;
4603 
4604 	rcu_read_lock();
4605 	if (!static_key_false(&xps_rxqs_needed))
4606 		goto get_cpus_map;
4607 
4608 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4609 	if (dev_maps) {
4610 		int tci = sk_rx_queue_get(sk);
4611 
4612 		if (tci >= 0)
4613 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4614 							  tci);
4615 	}
4616 
4617 get_cpus_map:
4618 	if (queue_index < 0) {
4619 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4620 		if (dev_maps) {
4621 			unsigned int tci = skb->sender_cpu - 1;
4622 
4623 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4624 							  tci);
4625 		}
4626 	}
4627 	rcu_read_unlock();
4628 
4629 	return queue_index;
4630 #else
4631 	return -1;
4632 #endif
4633 }
4634 
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4635 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4636 		     struct net_device *sb_dev)
4637 {
4638 	return 0;
4639 }
4640 EXPORT_SYMBOL(dev_pick_tx_zero);
4641 
sk_tx_queue_get(const struct sock * sk)4642 int sk_tx_queue_get(const struct sock *sk)
4643 {
4644 	int resel, val;
4645 
4646 	if (!sk)
4647 		return -1;
4648 	/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
4649 	 * and sk_tx_queue_set().
4650 	 */
4651 	val = READ_ONCE(sk->sk_tx_queue_mapping);
4652 
4653 	if (val == NO_QUEUE_MAPPING)
4654 		return -1;
4655 
4656 	if (!sk_fullsock(sk))
4657 		return val;
4658 
4659 	resel = READ_ONCE(sock_net(sk)->core.sysctl_txq_reselection);
4660 	if (resel && time_is_before_jiffies(
4661 			READ_ONCE(sk->sk_tx_queue_mapping_jiffies) + resel))
4662 		return -1;
4663 
4664 	return val;
4665 }
4666 EXPORT_SYMBOL(sk_tx_queue_get);
4667 
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4668 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4669 		     struct net_device *sb_dev)
4670 {
4671 	struct sock *sk = skb->sk;
4672 	int queue_index = sk_tx_queue_get(sk);
4673 
4674 	sb_dev = sb_dev ? : dev;
4675 
4676 	if (queue_index < 0 || skb->ooo_okay ||
4677 	    queue_index >= dev->real_num_tx_queues) {
4678 		int new_index = get_xps_queue(dev, sb_dev, skb);
4679 
4680 		if (new_index < 0)
4681 			new_index = skb_tx_hash(dev, sb_dev, skb);
4682 
4683 		if (sk && sk_fullsock(sk) &&
4684 		    rcu_access_pointer(sk->sk_dst_cache))
4685 			sk_tx_queue_set(sk, new_index);
4686 
4687 		queue_index = new_index;
4688 	}
4689 
4690 	return queue_index;
4691 }
4692 EXPORT_SYMBOL(netdev_pick_tx);
4693 
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4694 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4695 					 struct sk_buff *skb,
4696 					 struct net_device *sb_dev)
4697 {
4698 	int queue_index = 0;
4699 
4700 #ifdef CONFIG_XPS
4701 	u32 sender_cpu = skb->sender_cpu - 1;
4702 
4703 	if (sender_cpu >= (u32)NR_CPUS)
4704 		skb->sender_cpu = raw_smp_processor_id() + 1;
4705 #endif
4706 
4707 	if (dev->real_num_tx_queues != 1) {
4708 		const struct net_device_ops *ops = dev->netdev_ops;
4709 
4710 		if (ops->ndo_select_queue)
4711 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4712 		else
4713 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4714 
4715 		queue_index = netdev_cap_txqueue(dev, queue_index);
4716 	}
4717 
4718 	skb_set_queue_mapping(skb, queue_index);
4719 	return netdev_get_tx_queue(dev, queue_index);
4720 }
4721 
4722 /**
4723  * __dev_queue_xmit() - transmit a buffer
4724  * @skb:	buffer to transmit
4725  * @sb_dev:	suboordinate device used for L2 forwarding offload
4726  *
4727  * Queue a buffer for transmission to a network device. The caller must
4728  * have set the device and priority and built the buffer before calling
4729  * this function. The function can be called from an interrupt.
4730  *
4731  * When calling this method, interrupts MUST be enabled. This is because
4732  * the BH enable code must have IRQs enabled so that it will not deadlock.
4733  *
4734  * Regardless of the return value, the skb is consumed, so it is currently
4735  * difficult to retry a send to this method. (You can bump the ref count
4736  * before sending to hold a reference for retry if you are careful.)
4737  *
4738  * Return:
4739  * * 0				- buffer successfully transmitted
4740  * * positive qdisc return code	- NET_XMIT_DROP etc.
4741  * * negative errno		- other errors
4742  */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4743 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4744 {
4745 	struct net_device *dev = skb->dev;
4746 	struct netdev_queue *txq = NULL;
4747 	struct Qdisc *q;
4748 	int rc = -ENOMEM;
4749 	bool again = false;
4750 
4751 	skb_reset_mac_header(skb);
4752 	skb_assert_len(skb);
4753 
4754 	if (unlikely(skb_shinfo(skb)->tx_flags &
4755 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4756 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4757 
4758 	/* Disable soft irqs for various locks below. Also
4759 	 * stops preemption for RCU.
4760 	 */
4761 	rcu_read_lock_bh();
4762 
4763 	skb_update_prio(skb);
4764 
4765 	qdisc_pkt_len_segs_init(skb);
4766 	tcx_set_ingress(skb, false);
4767 #ifdef CONFIG_NET_EGRESS
4768 	if (static_branch_unlikely(&egress_needed_key)) {
4769 		if (nf_hook_egress_active()) {
4770 			skb = nf_hook_egress(skb, &rc, dev);
4771 			if (!skb)
4772 				goto out;
4773 		}
4774 
4775 		netdev_xmit_skip_txqueue(false);
4776 
4777 		nf_skip_egress(skb, true);
4778 		skb = sch_handle_egress(skb, &rc, dev);
4779 		if (!skb)
4780 			goto out;
4781 		nf_skip_egress(skb, false);
4782 
4783 		if (netdev_xmit_txqueue_skipped())
4784 			txq = netdev_tx_queue_mapping(dev, skb);
4785 	}
4786 #endif
4787 	/* If device/qdisc don't need skb->dst, release it right now while
4788 	 * its hot in this cpu cache.
4789 	 */
4790 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4791 		skb_dst_drop(skb);
4792 	else
4793 		skb_dst_force(skb);
4794 
4795 	if (!txq)
4796 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4797 
4798 	q = rcu_dereference_bh(txq->qdisc);
4799 
4800 	trace_net_dev_queue(skb);
4801 	if (q->enqueue) {
4802 		rc = __dev_xmit_skb(skb, q, dev, txq);
4803 		goto out;
4804 	}
4805 
4806 	/* The device has no queue. Common case for software devices:
4807 	 * loopback, all the sorts of tunnels...
4808 
4809 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4810 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4811 	 * counters.)
4812 	 * However, it is possible, that they rely on protection
4813 	 * made by us here.
4814 
4815 	 * Check this and shot the lock. It is not prone from deadlocks.
4816 	 *Either shot noqueue qdisc, it is even simpler 8)
4817 	 */
4818 	if (dev->flags & IFF_UP) {
4819 		int cpu = smp_processor_id(); /* ok because BHs are off */
4820 
4821 		/* Other cpus might concurrently change txq->xmit_lock_owner
4822 		 * to -1 or to their cpu id, but not to our id.
4823 		 */
4824 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4825 			if (dev_xmit_recursion())
4826 				goto recursion_alert;
4827 
4828 			skb = validate_xmit_skb(skb, dev, &again);
4829 			if (!skb)
4830 				goto out;
4831 
4832 			HARD_TX_LOCK(dev, txq, cpu);
4833 
4834 			if (!netif_xmit_stopped(txq)) {
4835 				dev_xmit_recursion_inc();
4836 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4837 				dev_xmit_recursion_dec();
4838 				if (dev_xmit_complete(rc)) {
4839 					HARD_TX_UNLOCK(dev, txq);
4840 					goto out;
4841 				}
4842 			}
4843 			HARD_TX_UNLOCK(dev, txq);
4844 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4845 					     dev->name);
4846 		} else {
4847 			/* Recursion is detected! It is possible,
4848 			 * unfortunately
4849 			 */
4850 recursion_alert:
4851 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4852 					     dev->name);
4853 		}
4854 	}
4855 
4856 	rc = -ENETDOWN;
4857 	rcu_read_unlock_bh();
4858 
4859 	dev_core_stats_tx_dropped_inc(dev);
4860 	kfree_skb_list(skb);
4861 	return rc;
4862 out:
4863 	rcu_read_unlock_bh();
4864 	return rc;
4865 }
4866 EXPORT_SYMBOL(__dev_queue_xmit);
4867 
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4868 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4869 {
4870 	struct net_device *dev = skb->dev;
4871 	struct sk_buff *orig_skb = skb;
4872 	struct netdev_queue *txq;
4873 	int ret = NETDEV_TX_BUSY;
4874 	bool again = false;
4875 
4876 	if (unlikely(!netif_running(dev) ||
4877 		     !netif_carrier_ok(dev)))
4878 		goto drop;
4879 
4880 	skb = validate_xmit_skb_list(skb, dev, &again);
4881 	if (skb != orig_skb)
4882 		goto drop;
4883 
4884 	skb_set_queue_mapping(skb, queue_id);
4885 	txq = skb_get_tx_queue(dev, skb);
4886 
4887 	local_bh_disable();
4888 
4889 	dev_xmit_recursion_inc();
4890 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4891 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4892 		ret = netdev_start_xmit(skb, dev, txq, false);
4893 	HARD_TX_UNLOCK(dev, txq);
4894 	dev_xmit_recursion_dec();
4895 
4896 	local_bh_enable();
4897 	return ret;
4898 drop:
4899 	dev_core_stats_tx_dropped_inc(dev);
4900 	kfree_skb_list(skb);
4901 	return NET_XMIT_DROP;
4902 }
4903 EXPORT_SYMBOL(__dev_direct_xmit);
4904 
4905 /*************************************************************************
4906  *			Receiver routines
4907  *************************************************************************/
4908 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4909 
4910 int weight_p __read_mostly = 64;           /* old backlog weight */
4911 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4912 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4913 
4914 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4915 static inline void ____napi_schedule(struct softnet_data *sd,
4916 				     struct napi_struct *napi)
4917 {
4918 	struct task_struct *thread;
4919 
4920 	lockdep_assert_irqs_disabled();
4921 
4922 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4923 		/* Paired with smp_mb__before_atomic() in
4924 		 * napi_enable()/netif_set_threaded().
4925 		 * Use READ_ONCE() to guarantee a complete
4926 		 * read on napi->thread. Only call
4927 		 * wake_up_process() when it's not NULL.
4928 		 */
4929 		thread = READ_ONCE(napi->thread);
4930 		if (thread) {
4931 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4932 				goto use_local_napi;
4933 
4934 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4935 			wake_up_process(thread);
4936 			return;
4937 		}
4938 	}
4939 
4940 use_local_napi:
4941 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4942 	list_add_tail(&napi->poll_list, &sd->poll_list);
4943 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4944 	/* If not called from net_rx_action()
4945 	 * we have to raise NET_RX_SOFTIRQ.
4946 	 */
4947 	if (!sd->in_net_rx_action)
4948 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4949 }
4950 
4951 #ifdef CONFIG_RPS
4952 
4953 struct static_key_false rps_needed __read_mostly;
4954 EXPORT_SYMBOL(rps_needed);
4955 struct static_key_false rfs_needed __read_mostly;
4956 EXPORT_SYMBOL(rfs_needed);
4957 
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4958 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4959 {
4960 	return hash_32(hash, flow_table->log);
4961 }
4962 
4963 #ifdef CONFIG_RFS_ACCEL
4964 /**
4965  * rps_flow_is_active - check whether the flow is recently active.
4966  * @rflow: Specific flow to check activity.
4967  * @flow_table: per-queue flowtable that @rflow belongs to.
4968  * @cpu: CPU saved in @rflow.
4969  *
4970  * If the CPU has processed many packets since the flow's last activity
4971  * (beyond 10 times the table size), the flow is considered stale.
4972  *
4973  * Return: true if flow was recently active.
4974  */
rps_flow_is_active(struct rps_dev_flow * rflow,struct rps_dev_flow_table * flow_table,unsigned int cpu)4975 static bool rps_flow_is_active(struct rps_dev_flow *rflow,
4976 			       struct rps_dev_flow_table *flow_table,
4977 			       unsigned int cpu)
4978 {
4979 	unsigned int flow_last_active;
4980 	unsigned int sd_input_head;
4981 
4982 	if (cpu >= nr_cpu_ids)
4983 		return false;
4984 
4985 	sd_input_head = READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head);
4986 	flow_last_active = READ_ONCE(rflow->last_qtail);
4987 
4988 	return (int)(sd_input_head - flow_last_active) <
4989 		(int)(10 << flow_table->log);
4990 }
4991 #endif
4992 
4993 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu,u32 hash,u32 flow_id)4994 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4995 	    struct rps_dev_flow *rflow, u16 next_cpu, u32 hash,
4996 	    u32 flow_id)
4997 {
4998 	if (next_cpu < nr_cpu_ids) {
4999 		u32 head;
5000 #ifdef CONFIG_RFS_ACCEL
5001 		struct netdev_rx_queue *rxqueue;
5002 		struct rps_dev_flow_table *flow_table;
5003 		struct rps_dev_flow *old_rflow;
5004 		struct rps_dev_flow *tmp_rflow;
5005 		unsigned int tmp_cpu;
5006 		u16 rxq_index;
5007 		int rc;
5008 
5009 		/* Should we steer this flow to a different hardware queue? */
5010 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
5011 		    !(dev->features & NETIF_F_NTUPLE))
5012 			goto out;
5013 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
5014 		if (rxq_index == skb_get_rx_queue(skb))
5015 			goto out;
5016 
5017 		rxqueue = dev->_rx + rxq_index;
5018 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
5019 		if (!flow_table)
5020 			goto out;
5021 
5022 		tmp_rflow = &flow_table->flows[flow_id];
5023 		tmp_cpu = READ_ONCE(tmp_rflow->cpu);
5024 
5025 		if (READ_ONCE(tmp_rflow->filter) != RPS_NO_FILTER) {
5026 			if (rps_flow_is_active(tmp_rflow, flow_table,
5027 					       tmp_cpu)) {
5028 				if (hash != READ_ONCE(tmp_rflow->hash) ||
5029 				    next_cpu == tmp_cpu)
5030 					goto out;
5031 			}
5032 		}
5033 
5034 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
5035 							rxq_index, flow_id);
5036 		if (rc < 0)
5037 			goto out;
5038 
5039 		old_rflow = rflow;
5040 		rflow = tmp_rflow;
5041 		WRITE_ONCE(rflow->filter, rc);
5042 		WRITE_ONCE(rflow->hash, hash);
5043 
5044 		if (old_rflow->filter == rc)
5045 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
5046 	out:
5047 #endif
5048 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
5049 		rps_input_queue_tail_save(&rflow->last_qtail, head);
5050 	}
5051 
5052 	WRITE_ONCE(rflow->cpu, next_cpu);
5053 	return rflow;
5054 }
5055 
5056 /*
5057  * get_rps_cpu is called from netif_receive_skb and returns the target
5058  * CPU from the RPS map of the receiving queue for a given skb.
5059  * rcu_read_lock must be held on entry.
5060  */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)5061 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
5062 		       struct rps_dev_flow **rflowp)
5063 {
5064 	const struct rps_sock_flow_table *sock_flow_table;
5065 	struct netdev_rx_queue *rxqueue = dev->_rx;
5066 	struct rps_dev_flow_table *flow_table;
5067 	struct rps_map *map;
5068 	int cpu = -1;
5069 	u32 flow_id;
5070 	u32 tcpu;
5071 	u32 hash;
5072 
5073 	if (skb_rx_queue_recorded(skb)) {
5074 		u16 index = skb_get_rx_queue(skb);
5075 
5076 		if (unlikely(index >= dev->real_num_rx_queues)) {
5077 			WARN_ONCE(dev->real_num_rx_queues > 1,
5078 				  "%s received packet on queue %u, but number "
5079 				  "of RX queues is %u\n",
5080 				  dev->name, index, dev->real_num_rx_queues);
5081 			goto done;
5082 		}
5083 		rxqueue += index;
5084 	}
5085 
5086 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
5087 
5088 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5089 	map = rcu_dereference(rxqueue->rps_map);
5090 	if (!flow_table && !map)
5091 		goto done;
5092 
5093 	skb_reset_network_header(skb);
5094 	hash = skb_get_hash(skb);
5095 	if (!hash)
5096 		goto done;
5097 
5098 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
5099 	if (flow_table && sock_flow_table) {
5100 		struct rps_dev_flow *rflow;
5101 		u32 next_cpu;
5102 		u32 ident;
5103 
5104 		/* First check into global flow table if there is a match.
5105 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
5106 		 */
5107 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
5108 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
5109 			goto try_rps;
5110 
5111 		next_cpu = ident & net_hotdata.rps_cpu_mask;
5112 
5113 		/* OK, now we know there is a match,
5114 		 * we can look at the local (per receive queue) flow table
5115 		 */
5116 		flow_id = rfs_slot(hash, flow_table);
5117 		rflow = &flow_table->flows[flow_id];
5118 		tcpu = rflow->cpu;
5119 
5120 		/*
5121 		 * If the desired CPU (where last recvmsg was done) is
5122 		 * different from current CPU (one in the rx-queue flow
5123 		 * table entry), switch if one of the following holds:
5124 		 *   - Current CPU is unset (>= nr_cpu_ids).
5125 		 *   - Current CPU is offline.
5126 		 *   - The current CPU's queue tail has advanced beyond the
5127 		 *     last packet that was enqueued using this table entry.
5128 		 *     This guarantees that all previous packets for the flow
5129 		 *     have been dequeued, thus preserving in order delivery.
5130 		 */
5131 		if (unlikely(tcpu != next_cpu) &&
5132 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
5133 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
5134 		      rflow->last_qtail)) >= 0)) {
5135 			tcpu = next_cpu;
5136 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu, hash,
5137 					    flow_id);
5138 		}
5139 
5140 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
5141 			*rflowp = rflow;
5142 			cpu = tcpu;
5143 			goto done;
5144 		}
5145 	}
5146 
5147 try_rps:
5148 
5149 	if (map) {
5150 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
5151 		if (cpu_online(tcpu)) {
5152 			cpu = tcpu;
5153 			goto done;
5154 		}
5155 	}
5156 
5157 done:
5158 	return cpu;
5159 }
5160 
5161 #ifdef CONFIG_RFS_ACCEL
5162 
5163 /**
5164  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
5165  * @dev: Device on which the filter was set
5166  * @rxq_index: RX queue index
5167  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
5168  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
5169  *
5170  * Drivers that implement ndo_rx_flow_steer() should periodically call
5171  * this function for each installed filter and remove the filters for
5172  * which it returns %true.
5173  */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5174 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5175 			 u32 flow_id, u16 filter_id)
5176 {
5177 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5178 	struct rps_dev_flow_table *flow_table;
5179 	struct rps_dev_flow *rflow;
5180 	bool expire = true;
5181 
5182 	rcu_read_lock();
5183 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
5184 	if (flow_table && flow_id < (1UL << flow_table->log)) {
5185 		unsigned int cpu;
5186 
5187 		rflow = &flow_table->flows[flow_id];
5188 		cpu = READ_ONCE(rflow->cpu);
5189 		if (READ_ONCE(rflow->filter) == filter_id &&
5190 		    rps_flow_is_active(rflow, flow_table, cpu))
5191 			expire = false;
5192 	}
5193 	rcu_read_unlock();
5194 	return expire;
5195 }
5196 EXPORT_SYMBOL(rps_may_expire_flow);
5197 
5198 #endif /* CONFIG_RFS_ACCEL */
5199 
5200 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5201 static void rps_trigger_softirq(void *data)
5202 {
5203 	struct softnet_data *sd = data;
5204 
5205 	____napi_schedule(sd, &sd->backlog);
5206 	/* Pairs with READ_ONCE() in softnet_seq_show() */
5207 	WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5208 }
5209 
5210 #endif /* CONFIG_RPS */
5211 
5212 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5213 static void trigger_rx_softirq(void *data)
5214 {
5215 	struct softnet_data *sd = data;
5216 
5217 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5218 	smp_store_release(&sd->defer_ipi_scheduled, 0);
5219 }
5220 
5221 /*
5222  * After we queued a packet into sd->input_pkt_queue,
5223  * we need to make sure this queue is serviced soon.
5224  *
5225  * - If this is another cpu queue, link it to our rps_ipi_list,
5226  *   and make sure we will process rps_ipi_list from net_rx_action().
5227  *
5228  * - If this is our own queue, NAPI schedule our backlog.
5229  *   Note that this also raises NET_RX_SOFTIRQ.
5230  */
napi_schedule_rps(struct softnet_data * sd)5231 static void napi_schedule_rps(struct softnet_data *sd)
5232 {
5233 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5234 
5235 #ifdef CONFIG_RPS
5236 	if (sd != mysd) {
5237 		if (use_backlog_threads()) {
5238 			__napi_schedule_irqoff(&sd->backlog);
5239 			return;
5240 		}
5241 
5242 		sd->rps_ipi_next = mysd->rps_ipi_list;
5243 		mysd->rps_ipi_list = sd;
5244 
5245 		/* If not called from net_rx_action() or napi_threaded_poll()
5246 		 * we have to raise NET_RX_SOFTIRQ.
5247 		 */
5248 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5249 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5250 		return;
5251 	}
5252 #endif /* CONFIG_RPS */
5253 	__napi_schedule_irqoff(&mysd->backlog);
5254 }
5255 
kick_defer_list_purge(unsigned int cpu)5256 void kick_defer_list_purge(unsigned int cpu)
5257 {
5258 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5259 	unsigned long flags;
5260 
5261 	if (use_backlog_threads()) {
5262 		backlog_lock_irq_save(sd, &flags);
5263 
5264 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5265 			__napi_schedule_irqoff(&sd->backlog);
5266 
5267 		backlog_unlock_irq_restore(sd, flags);
5268 
5269 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5270 		smp_call_function_single_async(cpu, &sd->defer_csd);
5271 	}
5272 }
5273 
5274 #ifdef CONFIG_NET_FLOW_LIMIT
5275 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5276 #endif
5277 
skb_flow_limit(struct sk_buff * skb,unsigned int qlen,int max_backlog)5278 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen,
5279 			   int max_backlog)
5280 {
5281 #ifdef CONFIG_NET_FLOW_LIMIT
5282 	unsigned int old_flow, new_flow;
5283 	const struct softnet_data *sd;
5284 	struct sd_flow_limit *fl;
5285 
5286 	if (likely(qlen < (max_backlog >> 1)))
5287 		return false;
5288 
5289 	sd = this_cpu_ptr(&softnet_data);
5290 
5291 	rcu_read_lock();
5292 	fl = rcu_dereference(sd->flow_limit);
5293 	if (fl) {
5294 		new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5295 		old_flow = fl->history[fl->history_head];
5296 		fl->history[fl->history_head] = new_flow;
5297 
5298 		fl->history_head++;
5299 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5300 
5301 		if (likely(fl->buckets[old_flow]))
5302 			fl->buckets[old_flow]--;
5303 
5304 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5305 			/* Pairs with READ_ONCE() in softnet_seq_show() */
5306 			WRITE_ONCE(fl->count, fl->count + 1);
5307 			rcu_read_unlock();
5308 			return true;
5309 		}
5310 	}
5311 	rcu_read_unlock();
5312 #endif
5313 	return false;
5314 }
5315 
5316 /*
5317  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5318  * queue (may be a remote CPU queue).
5319  */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5320 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5321 			      unsigned int *qtail)
5322 {
5323 	enum skb_drop_reason reason;
5324 	struct softnet_data *sd;
5325 	unsigned long flags;
5326 	unsigned int qlen;
5327 	int max_backlog;
5328 	u32 tail;
5329 
5330 	reason = SKB_DROP_REASON_DEV_READY;
5331 	if (unlikely(!netif_running(skb->dev)))
5332 		goto bad_dev;
5333 
5334 	sd = &per_cpu(softnet_data, cpu);
5335 
5336 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5337 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5338 	if (unlikely(qlen > max_backlog) ||
5339 	    skb_flow_limit(skb, qlen, max_backlog))
5340 		goto cpu_backlog_drop;
5341 	backlog_lock_irq_save(sd, &flags);
5342 	qlen = skb_queue_len(&sd->input_pkt_queue);
5343 	if (likely(qlen <= max_backlog)) {
5344 		if (!qlen) {
5345 			/* Schedule NAPI for backlog device. We can use
5346 			 * non atomic operation as we own the queue lock.
5347 			 */
5348 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5349 						&sd->backlog.state))
5350 				napi_schedule_rps(sd);
5351 		}
5352 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5353 		tail = rps_input_queue_tail_incr(sd);
5354 		backlog_unlock_irq_restore(sd, flags);
5355 
5356 		/* save the tail outside of the critical section */
5357 		rps_input_queue_tail_save(qtail, tail);
5358 		return NET_RX_SUCCESS;
5359 	}
5360 
5361 	backlog_unlock_irq_restore(sd, flags);
5362 
5363 cpu_backlog_drop:
5364 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5365 	numa_drop_add(&sd->drop_counters, 1);
5366 bad_dev:
5367 	dev_core_stats_rx_dropped_inc(skb->dev);
5368 	kfree_skb_reason(skb, reason);
5369 	return NET_RX_DROP;
5370 }
5371 
netif_get_rxqueue(struct sk_buff * skb)5372 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5373 {
5374 	struct net_device *dev = skb->dev;
5375 	struct netdev_rx_queue *rxqueue;
5376 
5377 	rxqueue = dev->_rx;
5378 
5379 	if (skb_rx_queue_recorded(skb)) {
5380 		u16 index = skb_get_rx_queue(skb);
5381 
5382 		if (unlikely(index >= dev->real_num_rx_queues)) {
5383 			WARN_ONCE(dev->real_num_rx_queues > 1,
5384 				  "%s received packet on queue %u, but number "
5385 				  "of RX queues is %u\n",
5386 				  dev->name, index, dev->real_num_rx_queues);
5387 
5388 			return rxqueue; /* Return first rxqueue */
5389 		}
5390 		rxqueue += index;
5391 	}
5392 	return rxqueue;
5393 }
5394 
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5395 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5396 			     const struct bpf_prog *xdp_prog)
5397 {
5398 	void *orig_data, *orig_data_end, *hard_start;
5399 	struct netdev_rx_queue *rxqueue;
5400 	bool orig_bcast, orig_host;
5401 	u32 mac_len, frame_sz;
5402 	__be16 orig_eth_type;
5403 	struct ethhdr *eth;
5404 	u32 metalen, act;
5405 	int off;
5406 
5407 	/* The XDP program wants to see the packet starting at the MAC
5408 	 * header.
5409 	 */
5410 	mac_len = skb->data - skb_mac_header(skb);
5411 	hard_start = skb->data - skb_headroom(skb);
5412 
5413 	/* SKB "head" area always have tailroom for skb_shared_info */
5414 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5415 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5416 
5417 	rxqueue = netif_get_rxqueue(skb);
5418 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5419 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5420 			 skb_headlen(skb) + mac_len, true);
5421 	if (skb_is_nonlinear(skb)) {
5422 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5423 		xdp_buff_set_frags_flag(xdp);
5424 	} else {
5425 		xdp_buff_clear_frags_flag(xdp);
5426 	}
5427 
5428 	orig_data_end = xdp->data_end;
5429 	orig_data = xdp->data;
5430 	eth = (struct ethhdr *)xdp->data;
5431 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5432 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5433 	orig_eth_type = eth->h_proto;
5434 
5435 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5436 
5437 	/* check if bpf_xdp_adjust_head was used */
5438 	off = xdp->data - orig_data;
5439 	if (off) {
5440 		if (off > 0)
5441 			__skb_pull(skb, off);
5442 		else if (off < 0)
5443 			__skb_push(skb, -off);
5444 
5445 		skb->mac_header += off;
5446 		skb_reset_network_header(skb);
5447 	}
5448 
5449 	/* check if bpf_xdp_adjust_tail was used */
5450 	off = xdp->data_end - orig_data_end;
5451 	if (off != 0) {
5452 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5453 		skb->len += off; /* positive on grow, negative on shrink */
5454 	}
5455 
5456 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5457 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5458 	 */
5459 	if (xdp_buff_has_frags(xdp))
5460 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5461 	else
5462 		skb->data_len = 0;
5463 
5464 	/* check if XDP changed eth hdr such SKB needs update */
5465 	eth = (struct ethhdr *)xdp->data;
5466 	if ((orig_eth_type != eth->h_proto) ||
5467 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5468 						  skb->dev->dev_addr)) ||
5469 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5470 		__skb_push(skb, ETH_HLEN);
5471 		skb->pkt_type = PACKET_HOST;
5472 		skb->protocol = eth_type_trans(skb, skb->dev);
5473 	}
5474 
5475 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5476 	 * before calling us again on redirect path. We do not call do_redirect
5477 	 * as we leave that up to the caller.
5478 	 *
5479 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5480 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5481 	 */
5482 	switch (act) {
5483 	case XDP_REDIRECT:
5484 	case XDP_TX:
5485 		__skb_push(skb, mac_len);
5486 		break;
5487 	case XDP_PASS:
5488 		metalen = xdp->data - xdp->data_meta;
5489 		if (metalen)
5490 			skb_metadata_set(skb, metalen);
5491 		break;
5492 	}
5493 
5494 	return act;
5495 }
5496 
5497 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5498 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5499 {
5500 	struct sk_buff *skb = *pskb;
5501 	int err, hroom, troom;
5502 
5503 	local_lock_nested_bh(&system_page_pool.bh_lock);
5504 	err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5505 	local_unlock_nested_bh(&system_page_pool.bh_lock);
5506 	if (!err)
5507 		return 0;
5508 
5509 	/* In case we have to go down the path and also linearize,
5510 	 * then lets do the pskb_expand_head() work just once here.
5511 	 */
5512 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5513 	troom = skb->tail + skb->data_len - skb->end;
5514 	err = pskb_expand_head(skb,
5515 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5516 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5517 	if (err)
5518 		return err;
5519 
5520 	return skb_linearize(skb);
5521 }
5522 
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5523 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5524 				     struct xdp_buff *xdp,
5525 				     const struct bpf_prog *xdp_prog)
5526 {
5527 	struct sk_buff *skb = *pskb;
5528 	u32 mac_len, act = XDP_DROP;
5529 
5530 	/* Reinjected packets coming from act_mirred or similar should
5531 	 * not get XDP generic processing.
5532 	 */
5533 	if (skb_is_redirected(skb))
5534 		return XDP_PASS;
5535 
5536 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5537 	 * bytes. This is the guarantee that also native XDP provides,
5538 	 * thus we need to do it here as well.
5539 	 */
5540 	mac_len = skb->data - skb_mac_header(skb);
5541 	__skb_push(skb, mac_len);
5542 
5543 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5544 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5545 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5546 			goto do_drop;
5547 	}
5548 
5549 	__skb_pull(*pskb, mac_len);
5550 
5551 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5552 	switch (act) {
5553 	case XDP_REDIRECT:
5554 	case XDP_TX:
5555 	case XDP_PASS:
5556 		break;
5557 	default:
5558 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5559 		fallthrough;
5560 	case XDP_ABORTED:
5561 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5562 		fallthrough;
5563 	case XDP_DROP:
5564 	do_drop:
5565 		kfree_skb(*pskb);
5566 		break;
5567 	}
5568 
5569 	return act;
5570 }
5571 
5572 /* When doing generic XDP we have to bypass the qdisc layer and the
5573  * network taps in order to match in-driver-XDP behavior. This also means
5574  * that XDP packets are able to starve other packets going through a qdisc,
5575  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5576  * queues, so they do not have this starvation issue.
5577  */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5578 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5579 {
5580 	struct net_device *dev = skb->dev;
5581 	struct netdev_queue *txq;
5582 	bool free_skb = true;
5583 	int cpu, rc;
5584 
5585 	txq = netdev_core_pick_tx(dev, skb, NULL);
5586 	cpu = smp_processor_id();
5587 	HARD_TX_LOCK(dev, txq, cpu);
5588 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5589 		rc = netdev_start_xmit(skb, dev, txq, 0);
5590 		if (dev_xmit_complete(rc))
5591 			free_skb = false;
5592 	}
5593 	HARD_TX_UNLOCK(dev, txq);
5594 	if (free_skb) {
5595 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5596 		dev_core_stats_tx_dropped_inc(dev);
5597 		kfree_skb(skb);
5598 	}
5599 }
5600 
5601 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5602 
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5603 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5604 {
5605 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5606 
5607 	if (xdp_prog) {
5608 		struct xdp_buff xdp;
5609 		u32 act;
5610 		int err;
5611 
5612 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5613 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5614 		if (act != XDP_PASS) {
5615 			switch (act) {
5616 			case XDP_REDIRECT:
5617 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5618 							      &xdp, xdp_prog);
5619 				if (err)
5620 					goto out_redir;
5621 				break;
5622 			case XDP_TX:
5623 				generic_xdp_tx(*pskb, xdp_prog);
5624 				break;
5625 			}
5626 			bpf_net_ctx_clear(bpf_net_ctx);
5627 			return XDP_DROP;
5628 		}
5629 		bpf_net_ctx_clear(bpf_net_ctx);
5630 	}
5631 	return XDP_PASS;
5632 out_redir:
5633 	bpf_net_ctx_clear(bpf_net_ctx);
5634 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5635 	return XDP_DROP;
5636 }
5637 EXPORT_SYMBOL_GPL(do_xdp_generic);
5638 
netif_rx_internal(struct sk_buff * skb)5639 static int netif_rx_internal(struct sk_buff *skb)
5640 {
5641 	int ret;
5642 
5643 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5644 
5645 	trace_netif_rx(skb);
5646 
5647 #ifdef CONFIG_RPS
5648 	if (static_branch_unlikely(&rps_needed)) {
5649 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5650 		int cpu;
5651 
5652 		rcu_read_lock();
5653 
5654 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5655 		if (cpu < 0)
5656 			cpu = smp_processor_id();
5657 
5658 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5659 
5660 		rcu_read_unlock();
5661 	} else
5662 #endif
5663 	{
5664 		unsigned int qtail;
5665 
5666 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5667 	}
5668 	return ret;
5669 }
5670 
5671 /**
5672  *	__netif_rx	-	Slightly optimized version of netif_rx
5673  *	@skb: buffer to post
5674  *
5675  *	This behaves as netif_rx except that it does not disable bottom halves.
5676  *	As a result this function may only be invoked from the interrupt context
5677  *	(either hard or soft interrupt).
5678  */
__netif_rx(struct sk_buff * skb)5679 int __netif_rx(struct sk_buff *skb)
5680 {
5681 	int ret;
5682 
5683 	lockdep_assert_once(hardirq_count() | softirq_count());
5684 
5685 	trace_netif_rx_entry(skb);
5686 	ret = netif_rx_internal(skb);
5687 	trace_netif_rx_exit(ret);
5688 	return ret;
5689 }
5690 EXPORT_SYMBOL(__netif_rx);
5691 
5692 /**
5693  *	netif_rx	-	post buffer to the network code
5694  *	@skb: buffer to post
5695  *
5696  *	This function receives a packet from a device driver and queues it for
5697  *	the upper (protocol) levels to process via the backlog NAPI device. It
5698  *	always succeeds. The buffer may be dropped during processing for
5699  *	congestion control or by the protocol layers.
5700  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5701  *	driver should use NAPI and GRO.
5702  *	This function can used from interrupt and from process context. The
5703  *	caller from process context must not disable interrupts before invoking
5704  *	this function.
5705  *
5706  *	return values:
5707  *	NET_RX_SUCCESS	(no congestion)
5708  *	NET_RX_DROP     (packet was dropped)
5709  *
5710  */
netif_rx(struct sk_buff * skb)5711 int netif_rx(struct sk_buff *skb)
5712 {
5713 	bool need_bh_off = !(hardirq_count() | softirq_count());
5714 	int ret;
5715 
5716 	if (need_bh_off)
5717 		local_bh_disable();
5718 	trace_netif_rx_entry(skb);
5719 	ret = netif_rx_internal(skb);
5720 	trace_netif_rx_exit(ret);
5721 	if (need_bh_off)
5722 		local_bh_enable();
5723 	return ret;
5724 }
5725 EXPORT_SYMBOL(netif_rx);
5726 
net_tx_action(void)5727 static __latent_entropy void net_tx_action(void)
5728 {
5729 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5730 
5731 	if (sd->completion_queue) {
5732 		struct sk_buff *clist;
5733 
5734 		local_irq_disable();
5735 		clist = sd->completion_queue;
5736 		sd->completion_queue = NULL;
5737 		local_irq_enable();
5738 
5739 		while (clist) {
5740 			struct sk_buff *skb = clist;
5741 
5742 			clist = clist->next;
5743 
5744 			WARN_ON(refcount_read(&skb->users));
5745 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5746 				trace_consume_skb(skb, net_tx_action);
5747 			else
5748 				trace_kfree_skb(skb, net_tx_action,
5749 						get_kfree_skb_cb(skb)->reason, NULL);
5750 
5751 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5752 				__kfree_skb(skb);
5753 			else
5754 				__napi_kfree_skb(skb,
5755 						 get_kfree_skb_cb(skb)->reason);
5756 		}
5757 	}
5758 
5759 	if (sd->output_queue) {
5760 		struct Qdisc *head;
5761 
5762 		local_irq_disable();
5763 		head = sd->output_queue;
5764 		sd->output_queue = NULL;
5765 		sd->output_queue_tailp = &sd->output_queue;
5766 		local_irq_enable();
5767 
5768 		rcu_read_lock();
5769 
5770 		while (head) {
5771 			spinlock_t *root_lock = NULL;
5772 			struct sk_buff *to_free;
5773 			struct Qdisc *q = head;
5774 
5775 			head = head->next_sched;
5776 
5777 			/* We need to make sure head->next_sched is read
5778 			 * before clearing __QDISC_STATE_SCHED
5779 			 */
5780 			smp_mb__before_atomic();
5781 
5782 			if (!(q->flags & TCQ_F_NOLOCK)) {
5783 				root_lock = qdisc_lock(q);
5784 				spin_lock(root_lock);
5785 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5786 						     &q->state))) {
5787 				/* There is a synchronize_net() between
5788 				 * STATE_DEACTIVATED flag being set and
5789 				 * qdisc_reset()/some_qdisc_is_busy() in
5790 				 * dev_deactivate(), so we can safely bail out
5791 				 * early here to avoid data race between
5792 				 * qdisc_deactivate() and some_qdisc_is_busy()
5793 				 * for lockless qdisc.
5794 				 */
5795 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5796 				continue;
5797 			}
5798 
5799 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5800 			to_free = qdisc_run(q);
5801 			if (root_lock)
5802 				spin_unlock(root_lock);
5803 			tcf_kfree_skb_list(to_free);
5804 		}
5805 
5806 		rcu_read_unlock();
5807 	}
5808 
5809 	xfrm_dev_backlog(sd);
5810 }
5811 
5812 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5813 /* This hook is defined here for ATM LANE */
5814 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5815 			     unsigned char *addr) __read_mostly;
5816 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5817 #endif
5818 
5819 /**
5820  *	netdev_is_rx_handler_busy - check if receive handler is registered
5821  *	@dev: device to check
5822  *
5823  *	Check if a receive handler is already registered for a given device.
5824  *	Return true if there one.
5825  *
5826  *	The caller must hold the rtnl_mutex.
5827  */
netdev_is_rx_handler_busy(struct net_device * dev)5828 bool netdev_is_rx_handler_busy(struct net_device *dev)
5829 {
5830 	ASSERT_RTNL();
5831 	return dev && rtnl_dereference(dev->rx_handler);
5832 }
5833 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5834 
5835 /**
5836  *	netdev_rx_handler_register - register receive handler
5837  *	@dev: device to register a handler for
5838  *	@rx_handler: receive handler to register
5839  *	@rx_handler_data: data pointer that is used by rx handler
5840  *
5841  *	Register a receive handler for a device. This handler will then be
5842  *	called from __netif_receive_skb. A negative errno code is returned
5843  *	on a failure.
5844  *
5845  *	The caller must hold the rtnl_mutex.
5846  *
5847  *	For a general description of rx_handler, see enum rx_handler_result.
5848  */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5849 int netdev_rx_handler_register(struct net_device *dev,
5850 			       rx_handler_func_t *rx_handler,
5851 			       void *rx_handler_data)
5852 {
5853 	if (netdev_is_rx_handler_busy(dev))
5854 		return -EBUSY;
5855 
5856 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5857 		return -EINVAL;
5858 
5859 	/* Note: rx_handler_data must be set before rx_handler */
5860 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5861 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5862 
5863 	return 0;
5864 }
5865 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5866 
5867 /**
5868  *	netdev_rx_handler_unregister - unregister receive handler
5869  *	@dev: device to unregister a handler from
5870  *
5871  *	Unregister a receive handler from a device.
5872  *
5873  *	The caller must hold the rtnl_mutex.
5874  */
netdev_rx_handler_unregister(struct net_device * dev)5875 void netdev_rx_handler_unregister(struct net_device *dev)
5876 {
5877 
5878 	ASSERT_RTNL();
5879 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5880 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5881 	 * section has a guarantee to see a non NULL rx_handler_data
5882 	 * as well.
5883 	 */
5884 	synchronize_net();
5885 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5886 }
5887 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5888 
5889 /*
5890  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5891  * the special handling of PFMEMALLOC skbs.
5892  */
skb_pfmemalloc_protocol(struct sk_buff * skb)5893 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5894 {
5895 	switch (skb->protocol) {
5896 	case htons(ETH_P_ARP):
5897 	case htons(ETH_P_IP):
5898 	case htons(ETH_P_IPV6):
5899 	case htons(ETH_P_8021Q):
5900 	case htons(ETH_P_8021AD):
5901 		return true;
5902 	default:
5903 		return false;
5904 	}
5905 }
5906 
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5907 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5908 			     int *ret, struct net_device *orig_dev)
5909 {
5910 	if (nf_hook_ingress_active(skb)) {
5911 		int ingress_retval;
5912 
5913 		if (unlikely(*pt_prev)) {
5914 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5915 			*pt_prev = NULL;
5916 		}
5917 
5918 		rcu_read_lock();
5919 		ingress_retval = nf_hook_ingress(skb);
5920 		rcu_read_unlock();
5921 		return ingress_retval;
5922 	}
5923 	return 0;
5924 }
5925 
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5926 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5927 				    struct packet_type **ppt_prev)
5928 {
5929 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5930 	struct packet_type *ptype, *pt_prev;
5931 	rx_handler_func_t *rx_handler;
5932 	struct sk_buff *skb = *pskb;
5933 	struct net_device *orig_dev;
5934 	bool deliver_exact = false;
5935 	int ret = NET_RX_DROP;
5936 	__be16 type;
5937 
5938 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5939 
5940 	trace_netif_receive_skb(skb);
5941 
5942 	orig_dev = skb->dev;
5943 
5944 	skb_reset_network_header(skb);
5945 #if !defined(CONFIG_DEBUG_NET)
5946 	/* We plan to no longer reset the transport header here.
5947 	 * Give some time to fuzzers and dev build to catch bugs
5948 	 * in network stacks.
5949 	 */
5950 	if (!skb_transport_header_was_set(skb))
5951 		skb_reset_transport_header(skb);
5952 #endif
5953 	skb_reset_mac_len(skb);
5954 
5955 	pt_prev = NULL;
5956 
5957 another_round:
5958 	skb->skb_iif = skb->dev->ifindex;
5959 
5960 	__this_cpu_inc(softnet_data.processed);
5961 
5962 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5963 		int ret2;
5964 
5965 		migrate_disable();
5966 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5967 				      &skb);
5968 		migrate_enable();
5969 
5970 		if (ret2 != XDP_PASS) {
5971 			ret = NET_RX_DROP;
5972 			goto out;
5973 		}
5974 	}
5975 
5976 	if (eth_type_vlan(skb->protocol)) {
5977 		skb = skb_vlan_untag(skb);
5978 		if (unlikely(!skb))
5979 			goto out;
5980 	}
5981 
5982 	if (skb_skip_tc_classify(skb))
5983 		goto skip_classify;
5984 
5985 	if (pfmemalloc)
5986 		goto skip_taps;
5987 
5988 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5989 				list) {
5990 		if (unlikely(pt_prev))
5991 			ret = deliver_skb(skb, pt_prev, orig_dev);
5992 		pt_prev = ptype;
5993 	}
5994 
5995 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5996 		if (unlikely(pt_prev))
5997 			ret = deliver_skb(skb, pt_prev, orig_dev);
5998 		pt_prev = ptype;
5999 	}
6000 
6001 skip_taps:
6002 #ifdef CONFIG_NET_INGRESS
6003 	if (static_branch_unlikely(&ingress_needed_key)) {
6004 		bool another = false;
6005 
6006 		nf_skip_egress(skb, true);
6007 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
6008 					 &another);
6009 		if (another)
6010 			goto another_round;
6011 		if (!skb)
6012 			goto out;
6013 
6014 		nf_skip_egress(skb, false);
6015 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
6016 			goto out;
6017 	}
6018 #endif
6019 	skb_reset_redirect(skb);
6020 skip_classify:
6021 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
6022 		drop_reason = SKB_DROP_REASON_PFMEMALLOC;
6023 		goto drop;
6024 	}
6025 
6026 	if (skb_vlan_tag_present(skb)) {
6027 		if (unlikely(pt_prev)) {
6028 			ret = deliver_skb(skb, pt_prev, orig_dev);
6029 			pt_prev = NULL;
6030 		}
6031 		if (vlan_do_receive(&skb))
6032 			goto another_round;
6033 		else if (unlikely(!skb))
6034 			goto out;
6035 	}
6036 
6037 	rx_handler = rcu_dereference(skb->dev->rx_handler);
6038 	if (rx_handler) {
6039 		if (unlikely(pt_prev)) {
6040 			ret = deliver_skb(skb, pt_prev, orig_dev);
6041 			pt_prev = NULL;
6042 		}
6043 		switch (rx_handler(&skb)) {
6044 		case RX_HANDLER_CONSUMED:
6045 			ret = NET_RX_SUCCESS;
6046 			goto out;
6047 		case RX_HANDLER_ANOTHER:
6048 			goto another_round;
6049 		case RX_HANDLER_EXACT:
6050 			deliver_exact = true;
6051 			break;
6052 		case RX_HANDLER_PASS:
6053 			break;
6054 		default:
6055 			BUG();
6056 		}
6057 	}
6058 
6059 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
6060 check_vlan_id:
6061 		if (skb_vlan_tag_get_id(skb)) {
6062 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
6063 			 * find vlan device.
6064 			 */
6065 			skb->pkt_type = PACKET_OTHERHOST;
6066 		} else if (eth_type_vlan(skb->protocol)) {
6067 			/* Outer header is 802.1P with vlan 0, inner header is
6068 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
6069 			 * not find vlan dev for vlan id 0.
6070 			 */
6071 			__vlan_hwaccel_clear_tag(skb);
6072 			skb = skb_vlan_untag(skb);
6073 			if (unlikely(!skb))
6074 				goto out;
6075 			if (vlan_do_receive(&skb))
6076 				/* After stripping off 802.1P header with vlan 0
6077 				 * vlan dev is found for inner header.
6078 				 */
6079 				goto another_round;
6080 			else if (unlikely(!skb))
6081 				goto out;
6082 			else
6083 				/* We have stripped outer 802.1P vlan 0 header.
6084 				 * But could not find vlan dev.
6085 				 * check again for vlan id to set OTHERHOST.
6086 				 */
6087 				goto check_vlan_id;
6088 		}
6089 		/* Note: we might in the future use prio bits
6090 		 * and set skb->priority like in vlan_do_receive()
6091 		 * For the time being, just ignore Priority Code Point
6092 		 */
6093 		__vlan_hwaccel_clear_tag(skb);
6094 	}
6095 
6096 	type = skb->protocol;
6097 
6098 	/* deliver only exact match when indicated */
6099 	if (likely(!deliver_exact)) {
6100 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6101 				       &ptype_base[ntohs(type) &
6102 						   PTYPE_HASH_MASK]);
6103 
6104 		/* orig_dev and skb->dev could belong to different netns;
6105 		 * Even in such case we need to traverse only the list
6106 		 * coming from skb->dev, as the ptype owner (packet socket)
6107 		 * will use dev_net(skb->dev) to do namespace filtering.
6108 		 */
6109 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6110 				       &dev_net_rcu(skb->dev)->ptype_specific);
6111 	}
6112 
6113 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6114 			       &orig_dev->ptype_specific);
6115 
6116 	if (unlikely(skb->dev != orig_dev)) {
6117 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
6118 				       &skb->dev->ptype_specific);
6119 	}
6120 
6121 	if (pt_prev) {
6122 		*ppt_prev = pt_prev;
6123 	} else {
6124 drop:
6125 		if (!deliver_exact)
6126 			dev_core_stats_rx_dropped_inc(skb->dev);
6127 		else
6128 			dev_core_stats_rx_nohandler_inc(skb->dev);
6129 
6130 		kfree_skb_reason(skb, drop_reason);
6131 		/* Jamal, now you will not able to escape explaining
6132 		 * me how you were going to use this. :-)
6133 		 */
6134 		ret = NET_RX_DROP;
6135 	}
6136 
6137 out:
6138 	/* The invariant here is that if *ppt_prev is not NULL
6139 	 * then skb should also be non-NULL.
6140 	 *
6141 	 * Apparently *ppt_prev assignment above holds this invariant due to
6142 	 * skb dereferencing near it.
6143 	 */
6144 	*pskb = skb;
6145 	return ret;
6146 }
6147 
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)6148 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
6149 {
6150 	struct net_device *orig_dev = skb->dev;
6151 	struct packet_type *pt_prev = NULL;
6152 	int ret;
6153 
6154 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6155 	if (pt_prev)
6156 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
6157 					 skb->dev, pt_prev, orig_dev);
6158 	return ret;
6159 }
6160 
6161 /**
6162  *	netif_receive_skb_core - special purpose version of netif_receive_skb
6163  *	@skb: buffer to process
6164  *
6165  *	More direct receive version of netif_receive_skb().  It should
6166  *	only be used by callers that have a need to skip RPS and Generic XDP.
6167  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
6168  *
6169  *	This function may only be called from softirq context and interrupts
6170  *	should be enabled.
6171  *
6172  *	Return values (usually ignored):
6173  *	NET_RX_SUCCESS: no congestion
6174  *	NET_RX_DROP: packet was dropped
6175  */
netif_receive_skb_core(struct sk_buff * skb)6176 int netif_receive_skb_core(struct sk_buff *skb)
6177 {
6178 	int ret;
6179 
6180 	rcu_read_lock();
6181 	ret = __netif_receive_skb_one_core(skb, false);
6182 	rcu_read_unlock();
6183 
6184 	return ret;
6185 }
6186 EXPORT_SYMBOL(netif_receive_skb_core);
6187 
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6188 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6189 						  struct packet_type *pt_prev,
6190 						  struct net_device *orig_dev)
6191 {
6192 	struct sk_buff *skb, *next;
6193 
6194 	if (!pt_prev)
6195 		return;
6196 	if (list_empty(head))
6197 		return;
6198 	if (pt_prev->list_func != NULL)
6199 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6200 				   ip_list_rcv, head, pt_prev, orig_dev);
6201 	else
6202 		list_for_each_entry_safe(skb, next, head, list) {
6203 			skb_list_del_init(skb);
6204 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6205 		}
6206 }
6207 
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6208 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6209 {
6210 	/* Fast-path assumptions:
6211 	 * - There is no RX handler.
6212 	 * - Only one packet_type matches.
6213 	 * If either of these fails, we will end up doing some per-packet
6214 	 * processing in-line, then handling the 'last ptype' for the whole
6215 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
6216 	 * because the 'last ptype' must be constant across the sublist, and all
6217 	 * other ptypes are handled per-packet.
6218 	 */
6219 	/* Current (common) ptype of sublist */
6220 	struct packet_type *pt_curr = NULL;
6221 	/* Current (common) orig_dev of sublist */
6222 	struct net_device *od_curr = NULL;
6223 	struct sk_buff *skb, *next;
6224 	LIST_HEAD(sublist);
6225 
6226 	list_for_each_entry_safe(skb, next, head, list) {
6227 		struct net_device *orig_dev = skb->dev;
6228 		struct packet_type *pt_prev = NULL;
6229 
6230 		skb_list_del_init(skb);
6231 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6232 		if (!pt_prev)
6233 			continue;
6234 		if (pt_curr != pt_prev || od_curr != orig_dev) {
6235 			/* dispatch old sublist */
6236 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6237 			/* start new sublist */
6238 			INIT_LIST_HEAD(&sublist);
6239 			pt_curr = pt_prev;
6240 			od_curr = orig_dev;
6241 		}
6242 		list_add_tail(&skb->list, &sublist);
6243 	}
6244 
6245 	/* dispatch final sublist */
6246 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6247 }
6248 
__netif_receive_skb(struct sk_buff * skb)6249 static int __netif_receive_skb(struct sk_buff *skb)
6250 {
6251 	int ret;
6252 
6253 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6254 		unsigned int noreclaim_flag;
6255 
6256 		/*
6257 		 * PFMEMALLOC skbs are special, they should
6258 		 * - be delivered to SOCK_MEMALLOC sockets only
6259 		 * - stay away from userspace
6260 		 * - have bounded memory usage
6261 		 *
6262 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6263 		 * context down to all allocation sites.
6264 		 */
6265 		noreclaim_flag = memalloc_noreclaim_save();
6266 		ret = __netif_receive_skb_one_core(skb, true);
6267 		memalloc_noreclaim_restore(noreclaim_flag);
6268 	} else
6269 		ret = __netif_receive_skb_one_core(skb, false);
6270 
6271 	return ret;
6272 }
6273 
__netif_receive_skb_list(struct list_head * head)6274 static void __netif_receive_skb_list(struct list_head *head)
6275 {
6276 	unsigned long noreclaim_flag = 0;
6277 	struct sk_buff *skb, *next;
6278 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6279 
6280 	list_for_each_entry_safe(skb, next, head, list) {
6281 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6282 			struct list_head sublist;
6283 
6284 			/* Handle the previous sublist */
6285 			list_cut_before(&sublist, head, &skb->list);
6286 			if (!list_empty(&sublist))
6287 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6288 			pfmemalloc = !pfmemalloc;
6289 			/* See comments in __netif_receive_skb */
6290 			if (pfmemalloc)
6291 				noreclaim_flag = memalloc_noreclaim_save();
6292 			else
6293 				memalloc_noreclaim_restore(noreclaim_flag);
6294 		}
6295 	}
6296 	/* Handle the remaining sublist */
6297 	if (!list_empty(head))
6298 		__netif_receive_skb_list_core(head, pfmemalloc);
6299 	/* Restore pflags */
6300 	if (pfmemalloc)
6301 		memalloc_noreclaim_restore(noreclaim_flag);
6302 }
6303 
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6304 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6305 {
6306 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6307 	struct bpf_prog *new = xdp->prog;
6308 	int ret = 0;
6309 
6310 	switch (xdp->command) {
6311 	case XDP_SETUP_PROG:
6312 		rcu_assign_pointer(dev->xdp_prog, new);
6313 		if (old)
6314 			bpf_prog_put(old);
6315 
6316 		if (old && !new) {
6317 			static_branch_dec(&generic_xdp_needed_key);
6318 		} else if (new && !old) {
6319 			static_branch_inc(&generic_xdp_needed_key);
6320 			netif_disable_lro(dev);
6321 			dev_disable_gro_hw(dev);
6322 		}
6323 		break;
6324 
6325 	default:
6326 		ret = -EINVAL;
6327 		break;
6328 	}
6329 
6330 	return ret;
6331 }
6332 
netif_receive_skb_internal(struct sk_buff * skb)6333 static int netif_receive_skb_internal(struct sk_buff *skb)
6334 {
6335 	int ret;
6336 
6337 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6338 
6339 	if (skb_defer_rx_timestamp(skb))
6340 		return NET_RX_SUCCESS;
6341 
6342 	rcu_read_lock();
6343 #ifdef CONFIG_RPS
6344 	if (static_branch_unlikely(&rps_needed)) {
6345 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6346 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6347 
6348 		if (cpu >= 0) {
6349 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6350 			rcu_read_unlock();
6351 			return ret;
6352 		}
6353 	}
6354 #endif
6355 	ret = __netif_receive_skb(skb);
6356 	rcu_read_unlock();
6357 	return ret;
6358 }
6359 
netif_receive_skb_list_internal(struct list_head * head)6360 void netif_receive_skb_list_internal(struct list_head *head)
6361 {
6362 	struct sk_buff *skb, *next;
6363 	LIST_HEAD(sublist);
6364 
6365 	list_for_each_entry_safe(skb, next, head, list) {
6366 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6367 				    skb);
6368 		skb_list_del_init(skb);
6369 		if (!skb_defer_rx_timestamp(skb))
6370 			list_add_tail(&skb->list, &sublist);
6371 	}
6372 	list_splice_init(&sublist, head);
6373 
6374 	rcu_read_lock();
6375 #ifdef CONFIG_RPS
6376 	if (static_branch_unlikely(&rps_needed)) {
6377 		list_for_each_entry_safe(skb, next, head, list) {
6378 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6379 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6380 
6381 			if (cpu >= 0) {
6382 				/* Will be handled, remove from list */
6383 				skb_list_del_init(skb);
6384 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6385 			}
6386 		}
6387 	}
6388 #endif
6389 	__netif_receive_skb_list(head);
6390 	rcu_read_unlock();
6391 }
6392 
6393 /**
6394  *	netif_receive_skb - process receive buffer from network
6395  *	@skb: buffer to process
6396  *
6397  *	netif_receive_skb() is the main receive data processing function.
6398  *	It always succeeds. The buffer may be dropped during processing
6399  *	for congestion control or by the protocol layers.
6400  *
6401  *	This function may only be called from softirq context and interrupts
6402  *	should be enabled.
6403  *
6404  *	Return values (usually ignored):
6405  *	NET_RX_SUCCESS: no congestion
6406  *	NET_RX_DROP: packet was dropped
6407  */
netif_receive_skb(struct sk_buff * skb)6408 int netif_receive_skb(struct sk_buff *skb)
6409 {
6410 	int ret;
6411 
6412 	trace_netif_receive_skb_entry(skb);
6413 
6414 	ret = netif_receive_skb_internal(skb);
6415 	trace_netif_receive_skb_exit(ret);
6416 
6417 	return ret;
6418 }
6419 EXPORT_SYMBOL(netif_receive_skb);
6420 
6421 /**
6422  *	netif_receive_skb_list - process many receive buffers from network
6423  *	@head: list of skbs to process.
6424  *
6425  *	Since return value of netif_receive_skb() is normally ignored, and
6426  *	wouldn't be meaningful for a list, this function returns void.
6427  *
6428  *	This function may only be called from softirq context and interrupts
6429  *	should be enabled.
6430  */
netif_receive_skb_list(struct list_head * head)6431 void netif_receive_skb_list(struct list_head *head)
6432 {
6433 	struct sk_buff *skb;
6434 
6435 	if (list_empty(head))
6436 		return;
6437 	if (trace_netif_receive_skb_list_entry_enabled()) {
6438 		list_for_each_entry(skb, head, list)
6439 			trace_netif_receive_skb_list_entry(skb);
6440 	}
6441 	netif_receive_skb_list_internal(head);
6442 	trace_netif_receive_skb_list_exit(0);
6443 }
6444 EXPORT_SYMBOL(netif_receive_skb_list);
6445 
6446 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6447 static void flush_backlog(struct work_struct *work)
6448 {
6449 	struct sk_buff *skb, *tmp;
6450 	struct sk_buff_head list;
6451 	struct softnet_data *sd;
6452 
6453 	__skb_queue_head_init(&list);
6454 	local_bh_disable();
6455 	sd = this_cpu_ptr(&softnet_data);
6456 
6457 	backlog_lock_irq_disable(sd);
6458 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6459 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6460 			__skb_unlink(skb, &sd->input_pkt_queue);
6461 			__skb_queue_tail(&list, skb);
6462 			rps_input_queue_head_incr(sd);
6463 		}
6464 	}
6465 	backlog_unlock_irq_enable(sd);
6466 
6467 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6468 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6469 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6470 			__skb_unlink(skb, &sd->process_queue);
6471 			__skb_queue_tail(&list, skb);
6472 			rps_input_queue_head_incr(sd);
6473 		}
6474 	}
6475 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6476 	local_bh_enable();
6477 
6478 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6479 }
6480 
flush_required(int cpu)6481 static bool flush_required(int cpu)
6482 {
6483 #if IS_ENABLED(CONFIG_RPS)
6484 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6485 	bool do_flush;
6486 
6487 	backlog_lock_irq_disable(sd);
6488 
6489 	/* as insertion into process_queue happens with the rps lock held,
6490 	 * process_queue access may race only with dequeue
6491 	 */
6492 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6493 		   !skb_queue_empty_lockless(&sd->process_queue);
6494 	backlog_unlock_irq_enable(sd);
6495 
6496 	return do_flush;
6497 #endif
6498 	/* without RPS we can't safely check input_pkt_queue: during a
6499 	 * concurrent remote skb_queue_splice() we can detect as empty both
6500 	 * input_pkt_queue and process_queue even if the latter could end-up
6501 	 * containing a lot of packets.
6502 	 */
6503 	return true;
6504 }
6505 
6506 struct flush_backlogs {
6507 	cpumask_t		flush_cpus;
6508 	struct work_struct	w[];
6509 };
6510 
flush_backlogs_alloc(void)6511 static struct flush_backlogs *flush_backlogs_alloc(void)
6512 {
6513 	return kmalloc_flex(struct flush_backlogs, w, nr_cpu_ids, GFP_KERNEL);
6514 }
6515 
6516 static struct flush_backlogs *flush_backlogs_fallback;
6517 static DEFINE_MUTEX(flush_backlogs_mutex);
6518 
flush_all_backlogs(void)6519 static void flush_all_backlogs(void)
6520 {
6521 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6522 	unsigned int cpu;
6523 
6524 	if (!ptr) {
6525 		mutex_lock(&flush_backlogs_mutex);
6526 		ptr = flush_backlogs_fallback;
6527 	}
6528 	cpumask_clear(&ptr->flush_cpus);
6529 
6530 	cpus_read_lock();
6531 
6532 	for_each_online_cpu(cpu) {
6533 		if (flush_required(cpu)) {
6534 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6535 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6536 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6537 		}
6538 	}
6539 
6540 	/* we can have in flight packet[s] on the cpus we are not flushing,
6541 	 * synchronize_net() in unregister_netdevice_many() will take care of
6542 	 * them.
6543 	 */
6544 	for_each_cpu(cpu, &ptr->flush_cpus)
6545 		flush_work(&ptr->w[cpu]);
6546 
6547 	cpus_read_unlock();
6548 
6549 	if (ptr != flush_backlogs_fallback)
6550 		kfree(ptr);
6551 	else
6552 		mutex_unlock(&flush_backlogs_mutex);
6553 }
6554 
net_rps_send_ipi(struct softnet_data * remsd)6555 static void net_rps_send_ipi(struct softnet_data *remsd)
6556 {
6557 #ifdef CONFIG_RPS
6558 	while (remsd) {
6559 		struct softnet_data *next = remsd->rps_ipi_next;
6560 
6561 		if (cpu_online(remsd->cpu))
6562 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6563 		remsd = next;
6564 	}
6565 #endif
6566 }
6567 
6568 /*
6569  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6570  * Note: called with local irq disabled, but exits with local irq enabled.
6571  */
net_rps_action_and_irq_enable(struct softnet_data * sd)6572 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6573 {
6574 #ifdef CONFIG_RPS
6575 	struct softnet_data *remsd = sd->rps_ipi_list;
6576 
6577 	if (!use_backlog_threads() && remsd) {
6578 		sd->rps_ipi_list = NULL;
6579 
6580 		local_irq_enable();
6581 
6582 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6583 		net_rps_send_ipi(remsd);
6584 	} else
6585 #endif
6586 		local_irq_enable();
6587 }
6588 
sd_has_rps_ipi_waiting(struct softnet_data * sd)6589 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6590 {
6591 #ifdef CONFIG_RPS
6592 	return !use_backlog_threads() && sd->rps_ipi_list;
6593 #else
6594 	return false;
6595 #endif
6596 }
6597 
process_backlog(struct napi_struct * napi,int quota)6598 static int process_backlog(struct napi_struct *napi, int quota)
6599 {
6600 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6601 	bool again = true;
6602 	int work = 0;
6603 
6604 	/* Check if we have pending ipi, its better to send them now,
6605 	 * not waiting net_rx_action() end.
6606 	 */
6607 	if (sd_has_rps_ipi_waiting(sd)) {
6608 		local_irq_disable();
6609 		net_rps_action_and_irq_enable(sd);
6610 	}
6611 
6612 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6613 	while (again) {
6614 		struct sk_buff *skb;
6615 
6616 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6617 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6618 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6619 			rcu_read_lock();
6620 			__netif_receive_skb(skb);
6621 			rcu_read_unlock();
6622 			if (++work >= quota) {
6623 				rps_input_queue_head_add(sd, work);
6624 				return work;
6625 			}
6626 
6627 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6628 		}
6629 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6630 
6631 		backlog_lock_irq_disable(sd);
6632 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6633 			/*
6634 			 * Inline a custom version of __napi_complete().
6635 			 * only current cpu owns and manipulates this napi,
6636 			 * and NAPI_STATE_SCHED is the only possible flag set
6637 			 * on backlog.
6638 			 * We can use a plain write instead of clear_bit(),
6639 			 * and we dont need an smp_mb() memory barrier.
6640 			 */
6641 			napi->state &= NAPIF_STATE_THREADED;
6642 			again = false;
6643 		} else {
6644 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6645 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6646 						   &sd->process_queue);
6647 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6648 		}
6649 		backlog_unlock_irq_enable(sd);
6650 	}
6651 
6652 	if (work)
6653 		rps_input_queue_head_add(sd, work);
6654 	return work;
6655 }
6656 
6657 /**
6658  * __napi_schedule - schedule for receive
6659  * @n: entry to schedule
6660  *
6661  * The entry's receive function will be scheduled to run.
6662  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6663  */
__napi_schedule(struct napi_struct * n)6664 void __napi_schedule(struct napi_struct *n)
6665 {
6666 	unsigned long flags;
6667 
6668 	local_irq_save(flags);
6669 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6670 	local_irq_restore(flags);
6671 }
6672 EXPORT_SYMBOL(__napi_schedule);
6673 
6674 /**
6675  *	napi_schedule_prep - check if napi can be scheduled
6676  *	@n: napi context
6677  *
6678  * Test if NAPI routine is already running, and if not mark
6679  * it as running.  This is used as a condition variable to
6680  * insure only one NAPI poll instance runs.  We also make
6681  * sure there is no pending NAPI disable.
6682  */
napi_schedule_prep(struct napi_struct * n)6683 bool napi_schedule_prep(struct napi_struct *n)
6684 {
6685 	unsigned long new, val = READ_ONCE(n->state);
6686 
6687 	do {
6688 		if (unlikely(val & NAPIF_STATE_DISABLE))
6689 			return false;
6690 		new = val | NAPIF_STATE_SCHED;
6691 
6692 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6693 		 * This was suggested by Alexander Duyck, as compiler
6694 		 * emits better code than :
6695 		 * if (val & NAPIF_STATE_SCHED)
6696 		 *     new |= NAPIF_STATE_MISSED;
6697 		 */
6698 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6699 						   NAPIF_STATE_MISSED;
6700 	} while (!try_cmpxchg(&n->state, &val, new));
6701 
6702 	return !(val & NAPIF_STATE_SCHED);
6703 }
6704 EXPORT_SYMBOL(napi_schedule_prep);
6705 
6706 /**
6707  * __napi_schedule_irqoff - schedule for receive
6708  * @n: entry to schedule
6709  *
6710  * Variant of __napi_schedule() assuming hard irqs are masked.
6711  *
6712  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6713  * because the interrupt disabled assumption might not be true
6714  * due to force-threaded interrupts and spinlock substitution.
6715  */
__napi_schedule_irqoff(struct napi_struct * n)6716 void __napi_schedule_irqoff(struct napi_struct *n)
6717 {
6718 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6719 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6720 	else
6721 		__napi_schedule(n);
6722 }
6723 EXPORT_SYMBOL(__napi_schedule_irqoff);
6724 
napi_complete_done(struct napi_struct * n,int work_done)6725 bool napi_complete_done(struct napi_struct *n, int work_done)
6726 {
6727 	unsigned long flags, val, new, timeout = 0;
6728 	bool ret = true;
6729 
6730 	/*
6731 	 * 1) Don't let napi dequeue from the cpu poll list
6732 	 *    just in case its running on a different cpu.
6733 	 * 2) If we are busy polling, do nothing here, we have
6734 	 *    the guarantee we will be called later.
6735 	 */
6736 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6737 				 NAPIF_STATE_IN_BUSY_POLL)))
6738 		return false;
6739 
6740 	if (work_done) {
6741 		if (n->gro.bitmask)
6742 			timeout = napi_get_gro_flush_timeout(n);
6743 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6744 	}
6745 	if (n->defer_hard_irqs_count > 0) {
6746 		n->defer_hard_irqs_count--;
6747 		timeout = napi_get_gro_flush_timeout(n);
6748 		if (timeout)
6749 			ret = false;
6750 	}
6751 
6752 	/*
6753 	 * When the NAPI instance uses a timeout and keeps postponing
6754 	 * it, we need to bound somehow the time packets are kept in
6755 	 * the GRO layer.
6756 	 */
6757 	gro_flush_normal(&n->gro, !!timeout);
6758 
6759 	if (unlikely(!list_empty(&n->poll_list))) {
6760 		/* If n->poll_list is not empty, we need to mask irqs */
6761 		local_irq_save(flags);
6762 		list_del_init(&n->poll_list);
6763 		local_irq_restore(flags);
6764 	}
6765 	WRITE_ONCE(n->list_owner, -1);
6766 
6767 	val = READ_ONCE(n->state);
6768 	do {
6769 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6770 
6771 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6772 			      NAPIF_STATE_SCHED_THREADED |
6773 			      NAPIF_STATE_PREFER_BUSY_POLL);
6774 
6775 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6776 		 * because we will call napi->poll() one more time.
6777 		 * This C code was suggested by Alexander Duyck to help gcc.
6778 		 */
6779 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6780 						    NAPIF_STATE_SCHED;
6781 	} while (!try_cmpxchg(&n->state, &val, new));
6782 
6783 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6784 		__napi_schedule(n);
6785 		return false;
6786 	}
6787 
6788 	if (timeout)
6789 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6790 			      HRTIMER_MODE_REL_PINNED);
6791 	return ret;
6792 }
6793 EXPORT_SYMBOL(napi_complete_done);
6794 
skb_defer_free_flush(void)6795 static void skb_defer_free_flush(void)
6796 {
6797 	struct llist_node *free_list;
6798 	struct sk_buff *skb, *next;
6799 	struct skb_defer_node *sdn;
6800 	int node;
6801 
6802 	for_each_node(node) {
6803 		sdn = this_cpu_ptr(net_hotdata.skb_defer_nodes) + node;
6804 
6805 		if (llist_empty(&sdn->defer_list))
6806 			continue;
6807 		atomic_long_set(&sdn->defer_count, 0);
6808 		free_list = llist_del_all(&sdn->defer_list);
6809 
6810 		llist_for_each_entry_safe(skb, next, free_list, ll_node) {
6811 			prefetch(next);
6812 			napi_consume_skb(skb, 1);
6813 		}
6814 	}
6815 }
6816 
6817 #if defined(CONFIG_NET_RX_BUSY_POLL)
6818 
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6819 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6820 {
6821 	if (!skip_schedule) {
6822 		gro_normal_list(&napi->gro);
6823 		__napi_schedule(napi);
6824 		return;
6825 	}
6826 
6827 	/* Flush too old packets. If HZ < 1000, flush all packets */
6828 	gro_flush_normal(&napi->gro, HZ >= 1000);
6829 
6830 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6831 }
6832 
6833 enum {
6834 	NAPI_F_PREFER_BUSY_POLL	= 1,
6835 	NAPI_F_END_ON_RESCHED	= 2,
6836 };
6837 
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6838 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6839 			   unsigned flags, u16 budget)
6840 {
6841 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6842 	bool skip_schedule = false;
6843 	unsigned long timeout;
6844 	int rc;
6845 
6846 	/* Busy polling means there is a high chance device driver hard irq
6847 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6848 	 * set in napi_schedule_prep().
6849 	 * Since we are about to call napi->poll() once more, we can safely
6850 	 * clear NAPI_STATE_MISSED.
6851 	 *
6852 	 * Note: x86 could use a single "lock and ..." instruction
6853 	 * to perform these two clear_bit()
6854 	 */
6855 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6856 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6857 
6858 	local_bh_disable();
6859 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6860 
6861 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6862 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6863 		timeout = napi_get_gro_flush_timeout(napi);
6864 		if (napi->defer_hard_irqs_count && timeout) {
6865 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6866 			skip_schedule = true;
6867 		}
6868 	}
6869 
6870 	/* All we really want here is to re-enable device interrupts.
6871 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6872 	 */
6873 	rc = napi->poll(napi, budget);
6874 	/* We can't gro_normal_list() here, because napi->poll() might have
6875 	 * rearmed the napi (napi_complete_done()) in which case it could
6876 	 * already be running on another CPU.
6877 	 */
6878 	trace_napi_poll(napi, rc, budget);
6879 	netpoll_poll_unlock(have_poll_lock);
6880 	if (rc == budget)
6881 		__busy_poll_stop(napi, skip_schedule);
6882 	bpf_net_ctx_clear(bpf_net_ctx);
6883 	local_bh_enable();
6884 }
6885 
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6886 static void __napi_busy_loop(unsigned int napi_id,
6887 		      bool (*loop_end)(void *, unsigned long),
6888 		      void *loop_end_arg, unsigned flags, u16 budget)
6889 {
6890 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6891 	int (*napi_poll)(struct napi_struct *napi, int budget);
6892 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6893 	void *have_poll_lock = NULL;
6894 	struct napi_struct *napi;
6895 
6896 	WARN_ON_ONCE(!rcu_read_lock_held());
6897 
6898 restart:
6899 	napi_poll = NULL;
6900 
6901 	napi = napi_by_id(napi_id);
6902 	if (!napi)
6903 		return;
6904 
6905 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6906 		preempt_disable();
6907 	for (;;) {
6908 		int work = 0;
6909 
6910 		local_bh_disable();
6911 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6912 		if (!napi_poll) {
6913 			unsigned long val = READ_ONCE(napi->state);
6914 
6915 			/* If multiple threads are competing for this napi,
6916 			 * we avoid dirtying napi->state as much as we can.
6917 			 */
6918 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6919 				   NAPIF_STATE_IN_BUSY_POLL)) {
6920 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6921 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6922 				goto count;
6923 			}
6924 			if (cmpxchg(&napi->state, val,
6925 				    val | NAPIF_STATE_IN_BUSY_POLL |
6926 					  NAPIF_STATE_SCHED) != val) {
6927 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6928 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6929 				goto count;
6930 			}
6931 			have_poll_lock = netpoll_poll_lock(napi);
6932 			napi_poll = napi->poll;
6933 		}
6934 		work = napi_poll(napi, budget);
6935 		trace_napi_poll(napi, work, budget);
6936 		gro_normal_list(&napi->gro);
6937 count:
6938 		if (work > 0)
6939 			__NET_ADD_STATS(dev_net(napi->dev),
6940 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6941 		skb_defer_free_flush();
6942 		bpf_net_ctx_clear(bpf_net_ctx);
6943 		local_bh_enable();
6944 
6945 		if (!loop_end || loop_end(loop_end_arg, start_time))
6946 			break;
6947 
6948 		if (unlikely(need_resched())) {
6949 			if (flags & NAPI_F_END_ON_RESCHED)
6950 				break;
6951 			if (napi_poll)
6952 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6953 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6954 				preempt_enable();
6955 			rcu_read_unlock();
6956 			cond_resched();
6957 			rcu_read_lock();
6958 			if (loop_end(loop_end_arg, start_time))
6959 				return;
6960 			goto restart;
6961 		}
6962 		cpu_relax();
6963 	}
6964 	if (napi_poll)
6965 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6966 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6967 		preempt_enable();
6968 }
6969 
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6970 void napi_busy_loop_rcu(unsigned int napi_id,
6971 			bool (*loop_end)(void *, unsigned long),
6972 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6973 {
6974 	unsigned flags = NAPI_F_END_ON_RESCHED;
6975 
6976 	if (prefer_busy_poll)
6977 		flags |= NAPI_F_PREFER_BUSY_POLL;
6978 
6979 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6980 }
6981 
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6982 void napi_busy_loop(unsigned int napi_id,
6983 		    bool (*loop_end)(void *, unsigned long),
6984 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6985 {
6986 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6987 
6988 	rcu_read_lock();
6989 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6990 	rcu_read_unlock();
6991 }
6992 EXPORT_SYMBOL(napi_busy_loop);
6993 
napi_suspend_irqs(unsigned int napi_id)6994 void napi_suspend_irqs(unsigned int napi_id)
6995 {
6996 	struct napi_struct *napi;
6997 
6998 	rcu_read_lock();
6999 	napi = napi_by_id(napi_id);
7000 	if (napi) {
7001 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
7002 
7003 		if (timeout)
7004 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
7005 				      HRTIMER_MODE_REL_PINNED);
7006 	}
7007 	rcu_read_unlock();
7008 }
7009 
napi_resume_irqs(unsigned int napi_id)7010 void napi_resume_irqs(unsigned int napi_id)
7011 {
7012 	struct napi_struct *napi;
7013 
7014 	rcu_read_lock();
7015 	napi = napi_by_id(napi_id);
7016 	if (napi) {
7017 		/* If irq_suspend_timeout is set to 0 between the call to
7018 		 * napi_suspend_irqs and now, the original value still
7019 		 * determines the safety timeout as intended and napi_watchdog
7020 		 * will resume irq processing.
7021 		 */
7022 		if (napi_get_irq_suspend_timeout(napi)) {
7023 			local_bh_disable();
7024 			napi_schedule(napi);
7025 			local_bh_enable();
7026 		}
7027 	}
7028 	rcu_read_unlock();
7029 }
7030 
7031 #endif /* CONFIG_NET_RX_BUSY_POLL */
7032 
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7033 static void __napi_hash_add_with_id(struct napi_struct *napi,
7034 				    unsigned int napi_id)
7035 {
7036 	napi->gro.cached_napi_id = napi_id;
7037 
7038 	WRITE_ONCE(napi->napi_id, napi_id);
7039 	hlist_add_head_rcu(&napi->napi_hash_node,
7040 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
7041 }
7042 
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)7043 static void napi_hash_add_with_id(struct napi_struct *napi,
7044 				  unsigned int napi_id)
7045 {
7046 	unsigned long flags;
7047 
7048 	spin_lock_irqsave(&napi_hash_lock, flags);
7049 	WARN_ON_ONCE(napi_by_id(napi_id));
7050 	__napi_hash_add_with_id(napi, napi_id);
7051 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7052 }
7053 
napi_hash_add(struct napi_struct * napi)7054 static void napi_hash_add(struct napi_struct *napi)
7055 {
7056 	unsigned long flags;
7057 
7058 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
7059 		return;
7060 
7061 	spin_lock_irqsave(&napi_hash_lock, flags);
7062 
7063 	/* 0..NR_CPUS range is reserved for sender_cpu use */
7064 	do {
7065 		if (unlikely(!napi_id_valid(++napi_gen_id)))
7066 			napi_gen_id = MIN_NAPI_ID;
7067 	} while (napi_by_id(napi_gen_id));
7068 
7069 	__napi_hash_add_with_id(napi, napi_gen_id);
7070 
7071 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7072 }
7073 
7074 /* Warning : caller is responsible to make sure rcu grace period
7075  * is respected before freeing memory containing @napi
7076  */
napi_hash_del(struct napi_struct * napi)7077 static void napi_hash_del(struct napi_struct *napi)
7078 {
7079 	unsigned long flags;
7080 
7081 	spin_lock_irqsave(&napi_hash_lock, flags);
7082 
7083 	hlist_del_init_rcu(&napi->napi_hash_node);
7084 
7085 	spin_unlock_irqrestore(&napi_hash_lock, flags);
7086 }
7087 
napi_watchdog(struct hrtimer * timer)7088 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
7089 {
7090 	struct napi_struct *napi;
7091 
7092 	napi = container_of(timer, struct napi_struct, timer);
7093 
7094 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
7095 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
7096 	 */
7097 	if (!napi_disable_pending(napi) &&
7098 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
7099 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
7100 		__napi_schedule_irqoff(napi);
7101 	}
7102 
7103 	return HRTIMER_NORESTART;
7104 }
7105 
napi_stop_kthread(struct napi_struct * napi)7106 static void napi_stop_kthread(struct napi_struct *napi)
7107 {
7108 	unsigned long val, new;
7109 
7110 	/* Wait until the napi STATE_THREADED is unset. */
7111 	while (true) {
7112 		val = READ_ONCE(napi->state);
7113 
7114 		/* If napi kthread own this napi or the napi is idle,
7115 		 * STATE_THREADED can be unset here.
7116 		 */
7117 		if ((val & NAPIF_STATE_SCHED_THREADED) ||
7118 		    !(val & NAPIF_STATE_SCHED)) {
7119 			new = val & (~(NAPIF_STATE_THREADED |
7120 				       NAPIF_STATE_THREADED_BUSY_POLL));
7121 		} else {
7122 			msleep(20);
7123 			continue;
7124 		}
7125 
7126 		if (try_cmpxchg(&napi->state, &val, new))
7127 			break;
7128 	}
7129 
7130 	/* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
7131 	 * the kthread.
7132 	 */
7133 	while (true) {
7134 		if (!test_bit(NAPI_STATE_SCHED_THREADED, &napi->state))
7135 			break;
7136 
7137 		msleep(20);
7138 	}
7139 
7140 	kthread_stop(napi->thread);
7141 	napi->thread = NULL;
7142 }
7143 
napi_set_threaded_state(struct napi_struct * napi,enum netdev_napi_threaded threaded_mode)7144 static void napi_set_threaded_state(struct napi_struct *napi,
7145 				    enum netdev_napi_threaded threaded_mode)
7146 {
7147 	bool threaded = threaded_mode != NETDEV_NAPI_THREADED_DISABLED;
7148 	bool busy_poll = threaded_mode == NETDEV_NAPI_THREADED_BUSY_POLL;
7149 
7150 	assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
7151 	assign_bit(NAPI_STATE_THREADED_BUSY_POLL, &napi->state, busy_poll);
7152 }
7153 
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)7154 int napi_set_threaded(struct napi_struct *napi,
7155 		      enum netdev_napi_threaded threaded)
7156 {
7157 	if (threaded) {
7158 		if (!napi->thread) {
7159 			int err = napi_kthread_create(napi);
7160 
7161 			if (err)
7162 				return err;
7163 		}
7164 	}
7165 
7166 	if (napi->config)
7167 		napi->config->threaded = threaded;
7168 
7169 	/* Setting/unsetting threaded mode on a napi might not immediately
7170 	 * take effect, if the current napi instance is actively being
7171 	 * polled. In this case, the switch between threaded mode and
7172 	 * softirq mode will happen in the next round of napi_schedule().
7173 	 * This should not cause hiccups/stalls to the live traffic.
7174 	 */
7175 	if (!threaded && napi->thread) {
7176 		napi_stop_kthread(napi);
7177 	} else {
7178 		/* Make sure kthread is created before THREADED bit is set. */
7179 		smp_mb__before_atomic();
7180 		napi_set_threaded_state(napi, threaded);
7181 	}
7182 
7183 	return 0;
7184 }
7185 
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)7186 int netif_set_threaded(struct net_device *dev,
7187 		       enum netdev_napi_threaded threaded)
7188 {
7189 	struct napi_struct *napi;
7190 	int i, err = 0;
7191 
7192 	netdev_assert_locked_or_invisible(dev);
7193 
7194 	if (threaded) {
7195 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
7196 			if (!napi->thread) {
7197 				err = napi_kthread_create(napi);
7198 				if (err) {
7199 					threaded = NETDEV_NAPI_THREADED_DISABLED;
7200 					break;
7201 				}
7202 			}
7203 		}
7204 	}
7205 
7206 	WRITE_ONCE(dev->threaded, threaded);
7207 
7208 	/* The error should not occur as the kthreads are already created. */
7209 	list_for_each_entry(napi, &dev->napi_list, dev_list)
7210 		WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7211 
7212 	/* Override the config for all NAPIs even if currently not listed */
7213 	for (i = 0; i < dev->num_napi_configs; i++)
7214 		dev->napi_config[i].threaded = threaded;
7215 
7216 	return err;
7217 }
7218 
7219 /**
7220  * netif_threaded_enable() - enable threaded NAPIs
7221  * @dev: net_device instance
7222  *
7223  * Enable threaded mode for the NAPI instances of the device. This may be useful
7224  * for devices where multiple NAPI instances get scheduled by a single
7225  * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7226  * than the core where IRQ is mapped.
7227  *
7228  * This function should be called before @dev is registered.
7229  */
netif_threaded_enable(struct net_device * dev)7230 void netif_threaded_enable(struct net_device *dev)
7231 {
7232 	WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7233 }
7234 EXPORT_SYMBOL(netif_threaded_enable);
7235 
7236 /**
7237  * netif_queue_set_napi - Associate queue with the napi
7238  * @dev: device to which NAPI and queue belong
7239  * @queue_index: Index of queue
7240  * @type: queue type as RX or TX
7241  * @napi: NAPI context, pass NULL to clear previously set NAPI
7242  *
7243  * Set queue with its corresponding napi context. This should be done after
7244  * registering the NAPI handler for the queue-vector and the queues have been
7245  * mapped to the corresponding interrupt vector.
7246  */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7247 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7248 			  enum netdev_queue_type type, struct napi_struct *napi)
7249 {
7250 	struct netdev_rx_queue *rxq;
7251 	struct netdev_queue *txq;
7252 
7253 	if (WARN_ON_ONCE(napi && !napi->dev))
7254 		return;
7255 	netdev_ops_assert_locked_or_invisible(dev);
7256 
7257 	switch (type) {
7258 	case NETDEV_QUEUE_TYPE_RX:
7259 		rxq = __netif_get_rx_queue(dev, queue_index);
7260 		rxq->napi = napi;
7261 		return;
7262 	case NETDEV_QUEUE_TYPE_TX:
7263 		txq = netdev_get_tx_queue(dev, queue_index);
7264 		txq->napi = napi;
7265 		return;
7266 	default:
7267 		return;
7268 	}
7269 }
7270 EXPORT_SYMBOL(netif_queue_set_napi);
7271 
7272 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7273 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7274 		      const cpumask_t *mask)
7275 {
7276 	struct napi_struct *napi =
7277 		container_of(notify, struct napi_struct, notify);
7278 #ifdef CONFIG_RFS_ACCEL
7279 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7280 	int err;
7281 #endif
7282 
7283 	if (napi->config && napi->dev->irq_affinity_auto)
7284 		cpumask_copy(&napi->config->affinity_mask, mask);
7285 
7286 #ifdef CONFIG_RFS_ACCEL
7287 	if (napi->dev->rx_cpu_rmap_auto) {
7288 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7289 		if (err)
7290 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7291 				    err);
7292 	}
7293 #endif
7294 }
7295 
7296 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7297 static void netif_napi_affinity_release(struct kref *ref)
7298 {
7299 	struct napi_struct *napi =
7300 		container_of(ref, struct napi_struct, notify.kref);
7301 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7302 
7303 	netdev_assert_locked(napi->dev);
7304 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7305 				   &napi->state));
7306 
7307 	if (!napi->dev->rx_cpu_rmap_auto)
7308 		return;
7309 	rmap->obj[napi->napi_rmap_idx] = NULL;
7310 	napi->napi_rmap_idx = -1;
7311 	cpu_rmap_put(rmap);
7312 }
7313 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7314 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7315 {
7316 	if (dev->rx_cpu_rmap_auto)
7317 		return 0;
7318 
7319 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7320 	if (!dev->rx_cpu_rmap)
7321 		return -ENOMEM;
7322 
7323 	dev->rx_cpu_rmap_auto = true;
7324 	return 0;
7325 }
7326 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7327 
netif_del_cpu_rmap(struct net_device * dev)7328 static void netif_del_cpu_rmap(struct net_device *dev)
7329 {
7330 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7331 
7332 	if (!dev->rx_cpu_rmap_auto)
7333 		return;
7334 
7335 	/* Free the rmap */
7336 	cpu_rmap_put(rmap);
7337 	dev->rx_cpu_rmap = NULL;
7338 	dev->rx_cpu_rmap_auto = false;
7339 }
7340 
7341 #else
netif_napi_affinity_release(struct kref * ref)7342 static void netif_napi_affinity_release(struct kref *ref)
7343 {
7344 }
7345 
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7346 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7347 {
7348 	return 0;
7349 }
7350 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7351 
netif_del_cpu_rmap(struct net_device * dev)7352 static void netif_del_cpu_rmap(struct net_device *dev)
7353 {
7354 }
7355 #endif
7356 
netif_set_affinity_auto(struct net_device * dev)7357 void netif_set_affinity_auto(struct net_device *dev)
7358 {
7359 	unsigned int i, maxqs, numa;
7360 
7361 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7362 	numa = dev_to_node(&dev->dev);
7363 
7364 	for (i = 0; i < maxqs; i++)
7365 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7366 				&dev->napi_config[i].affinity_mask);
7367 
7368 	dev->irq_affinity_auto = true;
7369 }
7370 EXPORT_SYMBOL(netif_set_affinity_auto);
7371 
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7372 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7373 {
7374 	int rc;
7375 
7376 	netdev_assert_locked_or_invisible(napi->dev);
7377 
7378 	if (napi->irq == irq)
7379 		return;
7380 
7381 	/* Remove existing resources */
7382 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7383 		irq_set_affinity_notifier(napi->irq, NULL);
7384 
7385 	napi->irq = irq;
7386 	if (irq < 0 ||
7387 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7388 		return;
7389 
7390 	/* Abort for buggy drivers */
7391 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7392 		return;
7393 
7394 #ifdef CONFIG_RFS_ACCEL
7395 	if (napi->dev->rx_cpu_rmap_auto) {
7396 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7397 		if (rc < 0)
7398 			return;
7399 
7400 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7401 		napi->napi_rmap_idx = rc;
7402 	}
7403 #endif
7404 
7405 	/* Use core IRQ notifier */
7406 	napi->notify.notify = netif_napi_irq_notify;
7407 	napi->notify.release = netif_napi_affinity_release;
7408 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7409 	if (rc) {
7410 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7411 			    rc);
7412 		goto put_rmap;
7413 	}
7414 
7415 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7416 	return;
7417 
7418 put_rmap:
7419 #ifdef CONFIG_RFS_ACCEL
7420 	if (napi->dev->rx_cpu_rmap_auto) {
7421 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7422 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7423 		napi->napi_rmap_idx = -1;
7424 	}
7425 #endif
7426 	napi->notify.notify = NULL;
7427 	napi->notify.release = NULL;
7428 }
7429 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7430 
napi_restore_config(struct napi_struct * n)7431 static void napi_restore_config(struct napi_struct *n)
7432 {
7433 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7434 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7435 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7436 
7437 	if (n->dev->irq_affinity_auto &&
7438 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7439 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7440 
7441 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7442 	 * napi_hash_add to generate one for us.
7443 	 */
7444 	if (n->config->napi_id) {
7445 		napi_hash_add_with_id(n, n->config->napi_id);
7446 	} else {
7447 		napi_hash_add(n);
7448 		n->config->napi_id = n->napi_id;
7449 	}
7450 
7451 	WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7452 }
7453 
napi_save_config(struct napi_struct * n)7454 static void napi_save_config(struct napi_struct *n)
7455 {
7456 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7457 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7458 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7459 	napi_hash_del(n);
7460 }
7461 
7462 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7463  * inherit an existing ID try to insert it at the right position.
7464  */
7465 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7466 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7467 {
7468 	unsigned int new_id, pos_id;
7469 	struct list_head *higher;
7470 	struct napi_struct *pos;
7471 
7472 	new_id = UINT_MAX;
7473 	if (napi->config && napi->config->napi_id)
7474 		new_id = napi->config->napi_id;
7475 
7476 	higher = &dev->napi_list;
7477 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7478 		if (napi_id_valid(pos->napi_id))
7479 			pos_id = pos->napi_id;
7480 		else if (pos->config)
7481 			pos_id = pos->config->napi_id;
7482 		else
7483 			pos_id = UINT_MAX;
7484 
7485 		if (pos_id <= new_id)
7486 			break;
7487 		higher = &pos->dev_list;
7488 	}
7489 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7490 }
7491 
7492 /* Double check that napi_get_frags() allocates skbs with
7493  * skb->head being backed by slab, not a page fragment.
7494  * This is to make sure bug fixed in 3226b158e67c
7495  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7496  * does not accidentally come back.
7497  */
napi_get_frags_check(struct napi_struct * napi)7498 static void napi_get_frags_check(struct napi_struct *napi)
7499 {
7500 	struct sk_buff *skb;
7501 
7502 	local_bh_disable();
7503 	skb = napi_get_frags(napi);
7504 	WARN_ON_ONCE(skb && skb->head_frag);
7505 	napi_free_frags(napi);
7506 	local_bh_enable();
7507 }
7508 
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7509 void netif_napi_add_weight_locked(struct net_device *dev,
7510 				  struct napi_struct *napi,
7511 				  int (*poll)(struct napi_struct *, int),
7512 				  int weight)
7513 {
7514 	netdev_assert_locked(dev);
7515 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7516 		return;
7517 
7518 	INIT_LIST_HEAD(&napi->poll_list);
7519 	INIT_HLIST_NODE(&napi->napi_hash_node);
7520 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7521 	gro_init(&napi->gro);
7522 	napi->skb = NULL;
7523 	napi->poll = poll;
7524 	if (weight > NAPI_POLL_WEIGHT)
7525 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7526 				weight);
7527 	napi->weight = weight;
7528 	napi->dev = dev;
7529 #ifdef CONFIG_NETPOLL
7530 	napi->poll_owner = -1;
7531 #endif
7532 	napi->list_owner = -1;
7533 	set_bit(NAPI_STATE_SCHED, &napi->state);
7534 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7535 	netif_napi_dev_list_add(dev, napi);
7536 
7537 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7538 	 * configuration will be loaded in napi_enable
7539 	 */
7540 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7541 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7542 
7543 	napi_get_frags_check(napi);
7544 	/* Create kthread for this napi if dev->threaded is set.
7545 	 * Clear dev->threaded if kthread creation failed so that
7546 	 * threaded mode will not be enabled in napi_enable().
7547 	 */
7548 	if (napi_get_threaded_config(dev, napi))
7549 		if (napi_kthread_create(napi))
7550 			dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7551 	netif_napi_set_irq_locked(napi, -1);
7552 }
7553 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7554 
napi_disable_locked(struct napi_struct * n)7555 void napi_disable_locked(struct napi_struct *n)
7556 {
7557 	unsigned long val, new;
7558 
7559 	might_sleep();
7560 	netdev_assert_locked(n->dev);
7561 
7562 	set_bit(NAPI_STATE_DISABLE, &n->state);
7563 
7564 	val = READ_ONCE(n->state);
7565 	do {
7566 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7567 			usleep_range(20, 200);
7568 			val = READ_ONCE(n->state);
7569 		}
7570 
7571 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7572 		new &= ~(NAPIF_STATE_THREADED |
7573 			 NAPIF_STATE_THREADED_BUSY_POLL |
7574 			 NAPIF_STATE_PREFER_BUSY_POLL);
7575 	} while (!try_cmpxchg(&n->state, &val, new));
7576 
7577 	hrtimer_cancel(&n->timer);
7578 
7579 	if (n->config)
7580 		napi_save_config(n);
7581 	else
7582 		napi_hash_del(n);
7583 
7584 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7585 }
7586 EXPORT_SYMBOL(napi_disable_locked);
7587 
7588 /**
7589  * napi_disable() - prevent NAPI from scheduling
7590  * @n: NAPI context
7591  *
7592  * Stop NAPI from being scheduled on this context.
7593  * Waits till any outstanding processing completes.
7594  * Takes netdev_lock() for associated net_device.
7595  */
napi_disable(struct napi_struct * n)7596 void napi_disable(struct napi_struct *n)
7597 {
7598 	netdev_lock(n->dev);
7599 	napi_disable_locked(n);
7600 	netdev_unlock(n->dev);
7601 }
7602 EXPORT_SYMBOL(napi_disable);
7603 
napi_enable_locked(struct napi_struct * n)7604 void napi_enable_locked(struct napi_struct *n)
7605 {
7606 	unsigned long new, val = READ_ONCE(n->state);
7607 
7608 	if (n->config)
7609 		napi_restore_config(n);
7610 	else
7611 		napi_hash_add(n);
7612 
7613 	do {
7614 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7615 
7616 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7617 		if (n->dev->threaded && n->thread)
7618 			new |= NAPIF_STATE_THREADED;
7619 	} while (!try_cmpxchg(&n->state, &val, new));
7620 }
7621 EXPORT_SYMBOL(napi_enable_locked);
7622 
7623 /**
7624  * napi_enable() - enable NAPI scheduling
7625  * @n: NAPI context
7626  *
7627  * Enable scheduling of a NAPI instance.
7628  * Must be paired with napi_disable().
7629  * Takes netdev_lock() for associated net_device.
7630  */
napi_enable(struct napi_struct * n)7631 void napi_enable(struct napi_struct *n)
7632 {
7633 	netdev_lock(n->dev);
7634 	napi_enable_locked(n);
7635 	netdev_unlock(n->dev);
7636 }
7637 EXPORT_SYMBOL(napi_enable);
7638 
7639 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7640 void __netif_napi_del_locked(struct napi_struct *napi)
7641 {
7642 	netdev_assert_locked(napi->dev);
7643 
7644 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7645 		return;
7646 
7647 	/* Make sure NAPI is disabled (or was never enabled). */
7648 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7649 
7650 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7651 		irq_set_affinity_notifier(napi->irq, NULL);
7652 
7653 	if (napi->config) {
7654 		napi->index = -1;
7655 		napi->config = NULL;
7656 	}
7657 
7658 	list_del_rcu(&napi->dev_list);
7659 	napi_free_frags(napi);
7660 
7661 	gro_cleanup(&napi->gro);
7662 
7663 	if (napi->thread) {
7664 		kthread_stop(napi->thread);
7665 		napi->thread = NULL;
7666 	}
7667 }
7668 EXPORT_SYMBOL(__netif_napi_del_locked);
7669 
__napi_poll(struct napi_struct * n,bool * repoll)7670 static int __napi_poll(struct napi_struct *n, bool *repoll)
7671 {
7672 	int work, weight;
7673 
7674 	weight = n->weight;
7675 
7676 	/* This NAPI_STATE_SCHED test is for avoiding a race
7677 	 * with netpoll's poll_napi().  Only the entity which
7678 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7679 	 * actually make the ->poll() call.  Therefore we avoid
7680 	 * accidentally calling ->poll() when NAPI is not scheduled.
7681 	 */
7682 	work = 0;
7683 	if (napi_is_scheduled(n)) {
7684 		work = n->poll(n, weight);
7685 		trace_napi_poll(n, work, weight);
7686 
7687 		xdp_do_check_flushed(n);
7688 	}
7689 
7690 	if (unlikely(work > weight))
7691 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7692 				n->poll, work, weight);
7693 
7694 	if (likely(work < weight))
7695 		return work;
7696 
7697 	/* Drivers must not modify the NAPI state if they
7698 	 * consume the entire weight.  In such cases this code
7699 	 * still "owns" the NAPI instance and therefore can
7700 	 * move the instance around on the list at-will.
7701 	 */
7702 	if (unlikely(napi_disable_pending(n))) {
7703 		napi_complete(n);
7704 		return work;
7705 	}
7706 
7707 	/* The NAPI context has more processing work, but busy-polling
7708 	 * is preferred. Exit early.
7709 	 */
7710 	if (napi_prefer_busy_poll(n)) {
7711 		if (napi_complete_done(n, work)) {
7712 			/* If timeout is not set, we need to make sure
7713 			 * that the NAPI is re-scheduled.
7714 			 */
7715 			napi_schedule(n);
7716 		}
7717 		return work;
7718 	}
7719 
7720 	/* Flush too old packets. If HZ < 1000, flush all packets */
7721 	gro_flush_normal(&n->gro, HZ >= 1000);
7722 
7723 	/* Some drivers may have called napi_schedule
7724 	 * prior to exhausting their budget.
7725 	 */
7726 	if (unlikely(!list_empty(&n->poll_list))) {
7727 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7728 			     n->dev ? n->dev->name : "backlog");
7729 		return work;
7730 	}
7731 
7732 	*repoll = true;
7733 
7734 	return work;
7735 }
7736 
napi_poll(struct napi_struct * n,struct list_head * repoll)7737 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7738 {
7739 	bool do_repoll = false;
7740 	void *have;
7741 	int work;
7742 
7743 	list_del_init(&n->poll_list);
7744 
7745 	have = netpoll_poll_lock(n);
7746 
7747 	work = __napi_poll(n, &do_repoll);
7748 
7749 	if (do_repoll) {
7750 #if defined(CONFIG_DEBUG_NET)
7751 		if (unlikely(!napi_is_scheduled(n)))
7752 			pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7753 				n->dev->name, n->poll);
7754 #endif
7755 		list_add_tail(&n->poll_list, repoll);
7756 	}
7757 	netpoll_poll_unlock(have);
7758 
7759 	return work;
7760 }
7761 
napi_thread_wait(struct napi_struct * napi)7762 static int napi_thread_wait(struct napi_struct *napi)
7763 {
7764 	set_current_state(TASK_INTERRUPTIBLE);
7765 
7766 	while (!kthread_should_stop()) {
7767 		/* Testing SCHED_THREADED bit here to make sure the current
7768 		 * kthread owns this napi and could poll on this napi.
7769 		 * Testing SCHED bit is not enough because SCHED bit might be
7770 		 * set by some other busy poll thread or by napi_disable().
7771 		 */
7772 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7773 			WARN_ON(!list_empty(&napi->poll_list));
7774 			__set_current_state(TASK_RUNNING);
7775 			return 0;
7776 		}
7777 
7778 		schedule();
7779 		set_current_state(TASK_INTERRUPTIBLE);
7780 	}
7781 	__set_current_state(TASK_RUNNING);
7782 
7783 	return -1;
7784 }
7785 
napi_threaded_poll_loop(struct napi_struct * napi,bool busy_poll)7786 static void napi_threaded_poll_loop(struct napi_struct *napi, bool busy_poll)
7787 {
7788 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7789 	struct softnet_data *sd;
7790 	unsigned long last_qs = jiffies;
7791 
7792 	for (;;) {
7793 		bool repoll = false;
7794 		void *have;
7795 
7796 		local_bh_disable();
7797 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7798 
7799 		sd = this_cpu_ptr(&softnet_data);
7800 		sd->in_napi_threaded_poll = true;
7801 
7802 		have = netpoll_poll_lock(napi);
7803 		__napi_poll(napi, &repoll);
7804 		netpoll_poll_unlock(have);
7805 
7806 		sd->in_napi_threaded_poll = false;
7807 		barrier();
7808 
7809 		if (sd_has_rps_ipi_waiting(sd)) {
7810 			local_irq_disable();
7811 			net_rps_action_and_irq_enable(sd);
7812 		}
7813 		skb_defer_free_flush();
7814 		bpf_net_ctx_clear(bpf_net_ctx);
7815 
7816 		/* When busy poll is enabled, the old packets are not flushed in
7817 		 * napi_complete_done. So flush them here.
7818 		 */
7819 		if (busy_poll)
7820 			gro_flush_normal(&napi->gro, HZ >= 1000);
7821 		local_bh_enable();
7822 
7823 		/* Call cond_resched here to avoid watchdog warnings. */
7824 		if (repoll || busy_poll) {
7825 			rcu_softirq_qs_periodic(last_qs);
7826 			cond_resched();
7827 		}
7828 
7829 		if (!repoll)
7830 			break;
7831 	}
7832 }
7833 
napi_threaded_poll(void * data)7834 static int napi_threaded_poll(void *data)
7835 {
7836 	struct napi_struct *napi = data;
7837 	bool want_busy_poll;
7838 	bool in_busy_poll;
7839 	unsigned long val;
7840 
7841 	while (!napi_thread_wait(napi)) {
7842 		val = READ_ONCE(napi->state);
7843 
7844 		want_busy_poll = val & NAPIF_STATE_THREADED_BUSY_POLL;
7845 		in_busy_poll = val & NAPIF_STATE_IN_BUSY_POLL;
7846 
7847 		if (unlikely(val & NAPIF_STATE_DISABLE))
7848 			want_busy_poll = false;
7849 
7850 		if (want_busy_poll != in_busy_poll)
7851 			assign_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state,
7852 				   want_busy_poll);
7853 
7854 		napi_threaded_poll_loop(napi, want_busy_poll);
7855 	}
7856 
7857 	return 0;
7858 }
7859 
net_rx_action(void)7860 static __latent_entropy void net_rx_action(void)
7861 {
7862 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7863 	unsigned long time_limit = jiffies +
7864 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7865 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7866 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7867 	LIST_HEAD(list);
7868 	LIST_HEAD(repoll);
7869 
7870 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7871 start:
7872 	sd->in_net_rx_action = true;
7873 	local_irq_disable();
7874 	list_splice_init(&sd->poll_list, &list);
7875 	local_irq_enable();
7876 
7877 	for (;;) {
7878 		struct napi_struct *n;
7879 
7880 		skb_defer_free_flush();
7881 
7882 		if (list_empty(&list)) {
7883 			if (list_empty(&repoll)) {
7884 				sd->in_net_rx_action = false;
7885 				barrier();
7886 				/* We need to check if ____napi_schedule()
7887 				 * had refilled poll_list while
7888 				 * sd->in_net_rx_action was true.
7889 				 */
7890 				if (!list_empty(&sd->poll_list))
7891 					goto start;
7892 				if (!sd_has_rps_ipi_waiting(sd))
7893 					goto end;
7894 			}
7895 			break;
7896 		}
7897 
7898 		n = list_first_entry(&list, struct napi_struct, poll_list);
7899 		budget -= napi_poll(n, &repoll);
7900 
7901 		/* If softirq window is exhausted then punt.
7902 		 * Allow this to run for 2 jiffies since which will allow
7903 		 * an average latency of 1.5/HZ.
7904 		 */
7905 		if (unlikely(budget <= 0 ||
7906 			     time_after_eq(jiffies, time_limit))) {
7907 			/* Pairs with READ_ONCE() in softnet_seq_show() */
7908 			WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7909 			break;
7910 		}
7911 	}
7912 
7913 	local_irq_disable();
7914 
7915 	list_splice_tail_init(&sd->poll_list, &list);
7916 	list_splice_tail(&repoll, &list);
7917 	list_splice(&list, &sd->poll_list);
7918 	if (!list_empty(&sd->poll_list))
7919 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7920 	else
7921 		sd->in_net_rx_action = false;
7922 
7923 	net_rps_action_and_irq_enable(sd);
7924 end:
7925 	bpf_net_ctx_clear(bpf_net_ctx);
7926 }
7927 
7928 struct netdev_adjacent {
7929 	struct net_device *dev;
7930 	netdevice_tracker dev_tracker;
7931 
7932 	/* upper master flag, there can only be one master device per list */
7933 	bool master;
7934 
7935 	/* lookup ignore flag */
7936 	bool ignore;
7937 
7938 	/* counter for the number of times this device was added to us */
7939 	u16 ref_nr;
7940 
7941 	/* private field for the users */
7942 	void *private;
7943 
7944 	struct list_head list;
7945 	struct rcu_head rcu;
7946 };
7947 
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7948 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7949 						 struct list_head *adj_list)
7950 {
7951 	struct netdev_adjacent *adj;
7952 
7953 	list_for_each_entry(adj, adj_list, list) {
7954 		if (adj->dev == adj_dev)
7955 			return adj;
7956 	}
7957 	return NULL;
7958 }
7959 
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7960 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7961 				    struct netdev_nested_priv *priv)
7962 {
7963 	struct net_device *dev = (struct net_device *)priv->data;
7964 
7965 	return upper_dev == dev;
7966 }
7967 
7968 /**
7969  * netdev_has_upper_dev - Check if device is linked to an upper device
7970  * @dev: device
7971  * @upper_dev: upper device to check
7972  *
7973  * Find out if a device is linked to specified upper device and return true
7974  * in case it is. Note that this checks only immediate upper device,
7975  * not through a complete stack of devices. The caller must hold the RTNL lock.
7976  */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7977 bool netdev_has_upper_dev(struct net_device *dev,
7978 			  struct net_device *upper_dev)
7979 {
7980 	struct netdev_nested_priv priv = {
7981 		.data = (void *)upper_dev,
7982 	};
7983 
7984 	ASSERT_RTNL();
7985 
7986 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7987 					     &priv);
7988 }
7989 EXPORT_SYMBOL(netdev_has_upper_dev);
7990 
7991 /**
7992  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7993  * @dev: device
7994  * @upper_dev: upper device to check
7995  *
7996  * Find out if a device is linked to specified upper device and return true
7997  * in case it is. Note that this checks the entire upper device chain.
7998  * The caller must hold rcu lock.
7999  */
8000 
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)8001 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
8002 				  struct net_device *upper_dev)
8003 {
8004 	struct netdev_nested_priv priv = {
8005 		.data = (void *)upper_dev,
8006 	};
8007 
8008 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
8009 					       &priv);
8010 }
8011 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
8012 
8013 /**
8014  * netdev_has_any_upper_dev - Check if device is linked to some device
8015  * @dev: device
8016  *
8017  * Find out if a device is linked to an upper device and return true in case
8018  * it is. The caller must hold the RTNL lock.
8019  */
netdev_has_any_upper_dev(struct net_device * dev)8020 bool netdev_has_any_upper_dev(struct net_device *dev)
8021 {
8022 	ASSERT_RTNL();
8023 
8024 	return !list_empty(&dev->adj_list.upper);
8025 }
8026 EXPORT_SYMBOL(netdev_has_any_upper_dev);
8027 
8028 /**
8029  * netdev_master_upper_dev_get - Get master upper device
8030  * @dev: device
8031  *
8032  * Find a master upper device and return pointer to it or NULL in case
8033  * it's not there. The caller must hold the RTNL lock.
8034  */
netdev_master_upper_dev_get(struct net_device * dev)8035 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
8036 {
8037 	struct netdev_adjacent *upper;
8038 
8039 	ASSERT_RTNL();
8040 
8041 	if (list_empty(&dev->adj_list.upper))
8042 		return NULL;
8043 
8044 	upper = list_first_entry(&dev->adj_list.upper,
8045 				 struct netdev_adjacent, list);
8046 	if (likely(upper->master))
8047 		return upper->dev;
8048 	return NULL;
8049 }
8050 EXPORT_SYMBOL(netdev_master_upper_dev_get);
8051 
__netdev_master_upper_dev_get(struct net_device * dev)8052 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
8053 {
8054 	struct netdev_adjacent *upper;
8055 
8056 	ASSERT_RTNL();
8057 
8058 	if (list_empty(&dev->adj_list.upper))
8059 		return NULL;
8060 
8061 	upper = list_first_entry(&dev->adj_list.upper,
8062 				 struct netdev_adjacent, list);
8063 	if (likely(upper->master) && !upper->ignore)
8064 		return upper->dev;
8065 	return NULL;
8066 }
8067 
8068 /**
8069  * netdev_has_any_lower_dev - Check if device is linked to some device
8070  * @dev: device
8071  *
8072  * Find out if a device is linked to a lower device and return true in case
8073  * it is. The caller must hold the RTNL lock.
8074  */
netdev_has_any_lower_dev(struct net_device * dev)8075 static bool netdev_has_any_lower_dev(struct net_device *dev)
8076 {
8077 	ASSERT_RTNL();
8078 
8079 	return !list_empty(&dev->adj_list.lower);
8080 }
8081 
netdev_adjacent_get_private(struct list_head * adj_list)8082 void *netdev_adjacent_get_private(struct list_head *adj_list)
8083 {
8084 	struct netdev_adjacent *adj;
8085 
8086 	adj = list_entry(adj_list, struct netdev_adjacent, list);
8087 
8088 	return adj->private;
8089 }
8090 EXPORT_SYMBOL(netdev_adjacent_get_private);
8091 
8092 /**
8093  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
8094  * @dev: device
8095  * @iter: list_head ** of the current position
8096  *
8097  * Gets the next device from the dev's upper list, starting from iter
8098  * position. The caller must hold RCU read lock.
8099  */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)8100 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
8101 						 struct list_head **iter)
8102 {
8103 	struct netdev_adjacent *upper;
8104 
8105 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8106 
8107 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8108 
8109 	if (&upper->list == &dev->adj_list.upper)
8110 		return NULL;
8111 
8112 	*iter = &upper->list;
8113 
8114 	return upper->dev;
8115 }
8116 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
8117 
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8118 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
8119 						  struct list_head **iter,
8120 						  bool *ignore)
8121 {
8122 	struct netdev_adjacent *upper;
8123 
8124 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
8125 
8126 	if (&upper->list == &dev->adj_list.upper)
8127 		return NULL;
8128 
8129 	*iter = &upper->list;
8130 	*ignore = upper->ignore;
8131 
8132 	return upper->dev;
8133 }
8134 
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)8135 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
8136 						    struct list_head **iter)
8137 {
8138 	struct netdev_adjacent *upper;
8139 
8140 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
8141 
8142 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8143 
8144 	if (&upper->list == &dev->adj_list.upper)
8145 		return NULL;
8146 
8147 	*iter = &upper->list;
8148 
8149 	return upper->dev;
8150 }
8151 
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8152 static int __netdev_walk_all_upper_dev(struct net_device *dev,
8153 				       int (*fn)(struct net_device *dev,
8154 					 struct netdev_nested_priv *priv),
8155 				       struct netdev_nested_priv *priv)
8156 {
8157 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8158 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8159 	int ret, cur = 0;
8160 	bool ignore;
8161 
8162 	now = dev;
8163 	iter = &dev->adj_list.upper;
8164 
8165 	while (1) {
8166 		if (now != dev) {
8167 			ret = fn(now, priv);
8168 			if (ret)
8169 				return ret;
8170 		}
8171 
8172 		next = NULL;
8173 		while (1) {
8174 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
8175 			if (!udev)
8176 				break;
8177 			if (ignore)
8178 				continue;
8179 
8180 			next = udev;
8181 			niter = &udev->adj_list.upper;
8182 			dev_stack[cur] = now;
8183 			iter_stack[cur++] = iter;
8184 			break;
8185 		}
8186 
8187 		if (!next) {
8188 			if (!cur)
8189 				return 0;
8190 			next = dev_stack[--cur];
8191 			niter = iter_stack[cur];
8192 		}
8193 
8194 		now = next;
8195 		iter = niter;
8196 	}
8197 
8198 	return 0;
8199 }
8200 
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8201 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
8202 				  int (*fn)(struct net_device *dev,
8203 					    struct netdev_nested_priv *priv),
8204 				  struct netdev_nested_priv *priv)
8205 {
8206 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8207 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8208 	int ret, cur = 0;
8209 
8210 	now = dev;
8211 	iter = &dev->adj_list.upper;
8212 
8213 	while (1) {
8214 		if (now != dev) {
8215 			ret = fn(now, priv);
8216 			if (ret)
8217 				return ret;
8218 		}
8219 
8220 		next = NULL;
8221 		while (1) {
8222 			udev = netdev_next_upper_dev_rcu(now, &iter);
8223 			if (!udev)
8224 				break;
8225 
8226 			next = udev;
8227 			niter = &udev->adj_list.upper;
8228 			dev_stack[cur] = now;
8229 			iter_stack[cur++] = iter;
8230 			break;
8231 		}
8232 
8233 		if (!next) {
8234 			if (!cur)
8235 				return 0;
8236 			next = dev_stack[--cur];
8237 			niter = iter_stack[cur];
8238 		}
8239 
8240 		now = next;
8241 		iter = niter;
8242 	}
8243 
8244 	return 0;
8245 }
8246 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8247 
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8248 static bool __netdev_has_upper_dev(struct net_device *dev,
8249 				   struct net_device *upper_dev)
8250 {
8251 	struct netdev_nested_priv priv = {
8252 		.flags = 0,
8253 		.data = (void *)upper_dev,
8254 	};
8255 
8256 	ASSERT_RTNL();
8257 
8258 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8259 					   &priv);
8260 }
8261 
8262 /**
8263  * netdev_lower_get_next_private - Get the next ->private from the
8264  *				   lower neighbour list
8265  * @dev: device
8266  * @iter: list_head ** of the current position
8267  *
8268  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8269  * list, starting from iter position. The caller must hold either hold the
8270  * RTNL lock or its own locking that guarantees that the neighbour lower
8271  * list will remain unchanged.
8272  */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8273 void *netdev_lower_get_next_private(struct net_device *dev,
8274 				    struct list_head **iter)
8275 {
8276 	struct netdev_adjacent *lower;
8277 
8278 	lower = list_entry(*iter, struct netdev_adjacent, list);
8279 
8280 	if (&lower->list == &dev->adj_list.lower)
8281 		return NULL;
8282 
8283 	*iter = lower->list.next;
8284 
8285 	return lower->private;
8286 }
8287 EXPORT_SYMBOL(netdev_lower_get_next_private);
8288 
8289 /**
8290  * netdev_lower_get_next_private_rcu - Get the next ->private from the
8291  *				       lower neighbour list, RCU
8292  *				       variant
8293  * @dev: device
8294  * @iter: list_head ** of the current position
8295  *
8296  * Gets the next netdev_adjacent->private from the dev's lower neighbour
8297  * list, starting from iter position. The caller must hold RCU read lock.
8298  */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8299 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8300 					struct list_head **iter)
8301 {
8302 	struct netdev_adjacent *lower;
8303 
8304 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8305 
8306 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8307 
8308 	if (&lower->list == &dev->adj_list.lower)
8309 		return NULL;
8310 
8311 	*iter = &lower->list;
8312 
8313 	return lower->private;
8314 }
8315 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8316 
8317 /**
8318  * netdev_lower_get_next - Get the next device from the lower neighbour
8319  *                         list
8320  * @dev: device
8321  * @iter: list_head ** of the current position
8322  *
8323  * Gets the next netdev_adjacent from the dev's lower neighbour
8324  * list, starting from iter position. The caller must hold RTNL lock or
8325  * its own locking that guarantees that the neighbour lower
8326  * list will remain unchanged.
8327  */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8328 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8329 {
8330 	struct netdev_adjacent *lower;
8331 
8332 	lower = list_entry(*iter, struct netdev_adjacent, list);
8333 
8334 	if (&lower->list == &dev->adj_list.lower)
8335 		return NULL;
8336 
8337 	*iter = lower->list.next;
8338 
8339 	return lower->dev;
8340 }
8341 EXPORT_SYMBOL(netdev_lower_get_next);
8342 
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8343 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8344 						struct list_head **iter)
8345 {
8346 	struct netdev_adjacent *lower;
8347 
8348 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8349 
8350 	if (&lower->list == &dev->adj_list.lower)
8351 		return NULL;
8352 
8353 	*iter = &lower->list;
8354 
8355 	return lower->dev;
8356 }
8357 
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8358 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8359 						  struct list_head **iter,
8360 						  bool *ignore)
8361 {
8362 	struct netdev_adjacent *lower;
8363 
8364 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8365 
8366 	if (&lower->list == &dev->adj_list.lower)
8367 		return NULL;
8368 
8369 	*iter = &lower->list;
8370 	*ignore = lower->ignore;
8371 
8372 	return lower->dev;
8373 }
8374 
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8375 int netdev_walk_all_lower_dev(struct net_device *dev,
8376 			      int (*fn)(struct net_device *dev,
8377 					struct netdev_nested_priv *priv),
8378 			      struct netdev_nested_priv *priv)
8379 {
8380 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8381 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8382 	int ret, cur = 0;
8383 
8384 	now = dev;
8385 	iter = &dev->adj_list.lower;
8386 
8387 	while (1) {
8388 		if (now != dev) {
8389 			ret = fn(now, priv);
8390 			if (ret)
8391 				return ret;
8392 		}
8393 
8394 		next = NULL;
8395 		while (1) {
8396 			ldev = netdev_next_lower_dev(now, &iter);
8397 			if (!ldev)
8398 				break;
8399 
8400 			next = ldev;
8401 			niter = &ldev->adj_list.lower;
8402 			dev_stack[cur] = now;
8403 			iter_stack[cur++] = iter;
8404 			break;
8405 		}
8406 
8407 		if (!next) {
8408 			if (!cur)
8409 				return 0;
8410 			next = dev_stack[--cur];
8411 			niter = iter_stack[cur];
8412 		}
8413 
8414 		now = next;
8415 		iter = niter;
8416 	}
8417 
8418 	return 0;
8419 }
8420 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8421 
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8422 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8423 				       int (*fn)(struct net_device *dev,
8424 					 struct netdev_nested_priv *priv),
8425 				       struct netdev_nested_priv *priv)
8426 {
8427 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8428 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8429 	int ret, cur = 0;
8430 	bool ignore;
8431 
8432 	now = dev;
8433 	iter = &dev->adj_list.lower;
8434 
8435 	while (1) {
8436 		if (now != dev) {
8437 			ret = fn(now, priv);
8438 			if (ret)
8439 				return ret;
8440 		}
8441 
8442 		next = NULL;
8443 		while (1) {
8444 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8445 			if (!ldev)
8446 				break;
8447 			if (ignore)
8448 				continue;
8449 
8450 			next = ldev;
8451 			niter = &ldev->adj_list.lower;
8452 			dev_stack[cur] = now;
8453 			iter_stack[cur++] = iter;
8454 			break;
8455 		}
8456 
8457 		if (!next) {
8458 			if (!cur)
8459 				return 0;
8460 			next = dev_stack[--cur];
8461 			niter = iter_stack[cur];
8462 		}
8463 
8464 		now = next;
8465 		iter = niter;
8466 	}
8467 
8468 	return 0;
8469 }
8470 
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8471 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8472 					     struct list_head **iter)
8473 {
8474 	struct netdev_adjacent *lower;
8475 
8476 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8477 	if (&lower->list == &dev->adj_list.lower)
8478 		return NULL;
8479 
8480 	*iter = &lower->list;
8481 
8482 	return lower->dev;
8483 }
8484 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8485 
__netdev_upper_depth(struct net_device * dev)8486 static u8 __netdev_upper_depth(struct net_device *dev)
8487 {
8488 	struct net_device *udev;
8489 	struct list_head *iter;
8490 	u8 max_depth = 0;
8491 	bool ignore;
8492 
8493 	for (iter = &dev->adj_list.upper,
8494 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8495 	     udev;
8496 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8497 		if (ignore)
8498 			continue;
8499 		if (max_depth < udev->upper_level)
8500 			max_depth = udev->upper_level;
8501 	}
8502 
8503 	return max_depth;
8504 }
8505 
__netdev_lower_depth(struct net_device * dev)8506 static u8 __netdev_lower_depth(struct net_device *dev)
8507 {
8508 	struct net_device *ldev;
8509 	struct list_head *iter;
8510 	u8 max_depth = 0;
8511 	bool ignore;
8512 
8513 	for (iter = &dev->adj_list.lower,
8514 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8515 	     ldev;
8516 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8517 		if (ignore)
8518 			continue;
8519 		if (max_depth < ldev->lower_level)
8520 			max_depth = ldev->lower_level;
8521 	}
8522 
8523 	return max_depth;
8524 }
8525 
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8526 static int __netdev_update_upper_level(struct net_device *dev,
8527 				       struct netdev_nested_priv *__unused)
8528 {
8529 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8530 	return 0;
8531 }
8532 
8533 #ifdef CONFIG_LOCKDEP
8534 static LIST_HEAD(net_unlink_list);
8535 
net_unlink_todo(struct net_device * dev)8536 static void net_unlink_todo(struct net_device *dev)
8537 {
8538 	if (list_empty(&dev->unlink_list))
8539 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8540 }
8541 #endif
8542 
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8543 static int __netdev_update_lower_level(struct net_device *dev,
8544 				       struct netdev_nested_priv *priv)
8545 {
8546 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8547 
8548 #ifdef CONFIG_LOCKDEP
8549 	if (!priv)
8550 		return 0;
8551 
8552 	if (priv->flags & NESTED_SYNC_IMM)
8553 		dev->nested_level = dev->lower_level - 1;
8554 	if (priv->flags & NESTED_SYNC_TODO)
8555 		net_unlink_todo(dev);
8556 #endif
8557 	return 0;
8558 }
8559 
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8560 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8561 				  int (*fn)(struct net_device *dev,
8562 					    struct netdev_nested_priv *priv),
8563 				  struct netdev_nested_priv *priv)
8564 {
8565 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8566 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8567 	int ret, cur = 0;
8568 
8569 	now = dev;
8570 	iter = &dev->adj_list.lower;
8571 
8572 	while (1) {
8573 		if (now != dev) {
8574 			ret = fn(now, priv);
8575 			if (ret)
8576 				return ret;
8577 		}
8578 
8579 		next = NULL;
8580 		while (1) {
8581 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8582 			if (!ldev)
8583 				break;
8584 
8585 			next = ldev;
8586 			niter = &ldev->adj_list.lower;
8587 			dev_stack[cur] = now;
8588 			iter_stack[cur++] = iter;
8589 			break;
8590 		}
8591 
8592 		if (!next) {
8593 			if (!cur)
8594 				return 0;
8595 			next = dev_stack[--cur];
8596 			niter = iter_stack[cur];
8597 		}
8598 
8599 		now = next;
8600 		iter = niter;
8601 	}
8602 
8603 	return 0;
8604 }
8605 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8606 
8607 /**
8608  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8609  *				       lower neighbour list, RCU
8610  *				       variant
8611  * @dev: device
8612  *
8613  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8614  * list. The caller must hold RCU read lock.
8615  */
netdev_lower_get_first_private_rcu(struct net_device * dev)8616 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8617 {
8618 	struct netdev_adjacent *lower;
8619 
8620 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8621 			struct netdev_adjacent, list);
8622 	if (lower)
8623 		return lower->private;
8624 	return NULL;
8625 }
8626 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8627 
8628 /**
8629  * netdev_master_upper_dev_get_rcu - Get master upper device
8630  * @dev: device
8631  *
8632  * Find a master upper device and return pointer to it or NULL in case
8633  * it's not there. The caller must hold the RCU read lock.
8634  */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8635 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8636 {
8637 	struct netdev_adjacent *upper;
8638 
8639 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8640 				       struct netdev_adjacent, list);
8641 	if (upper && likely(upper->master))
8642 		return upper->dev;
8643 	return NULL;
8644 }
8645 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8646 
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8647 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8648 			      struct net_device *adj_dev,
8649 			      struct list_head *dev_list)
8650 {
8651 	char linkname[IFNAMSIZ+7];
8652 
8653 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8654 		"upper_%s" : "lower_%s", adj_dev->name);
8655 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8656 				 linkname);
8657 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8658 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8659 			       char *name,
8660 			       struct list_head *dev_list)
8661 {
8662 	char linkname[IFNAMSIZ+7];
8663 
8664 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8665 		"upper_%s" : "lower_%s", name);
8666 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8667 }
8668 
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8669 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8670 						 struct net_device *adj_dev,
8671 						 struct list_head *dev_list)
8672 {
8673 	return (dev_list == &dev->adj_list.upper ||
8674 		dev_list == &dev->adj_list.lower) &&
8675 		net_eq(dev_net(dev), dev_net(adj_dev));
8676 }
8677 
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8678 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8679 					struct net_device *adj_dev,
8680 					struct list_head *dev_list,
8681 					void *private, bool master)
8682 {
8683 	struct netdev_adjacent *adj;
8684 	int ret;
8685 
8686 	adj = __netdev_find_adj(adj_dev, dev_list);
8687 
8688 	if (adj) {
8689 		adj->ref_nr += 1;
8690 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8691 			 dev->name, adj_dev->name, adj->ref_nr);
8692 
8693 		return 0;
8694 	}
8695 
8696 	adj = kmalloc_obj(*adj, GFP_KERNEL);
8697 	if (!adj)
8698 		return -ENOMEM;
8699 
8700 	adj->dev = adj_dev;
8701 	adj->master = master;
8702 	adj->ref_nr = 1;
8703 	adj->private = private;
8704 	adj->ignore = false;
8705 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8706 
8707 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8708 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8709 
8710 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8711 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8712 		if (ret)
8713 			goto free_adj;
8714 	}
8715 
8716 	/* Ensure that master link is always the first item in list. */
8717 	if (master) {
8718 		ret = sysfs_create_link(&(dev->dev.kobj),
8719 					&(adj_dev->dev.kobj), "master");
8720 		if (ret)
8721 			goto remove_symlinks;
8722 
8723 		list_add_rcu(&adj->list, dev_list);
8724 	} else {
8725 		list_add_tail_rcu(&adj->list, dev_list);
8726 	}
8727 
8728 	return 0;
8729 
8730 remove_symlinks:
8731 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8732 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8733 free_adj:
8734 	netdev_put(adj_dev, &adj->dev_tracker);
8735 	kfree(adj);
8736 
8737 	return ret;
8738 }
8739 
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8740 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8741 					 struct net_device *adj_dev,
8742 					 u16 ref_nr,
8743 					 struct list_head *dev_list)
8744 {
8745 	struct netdev_adjacent *adj;
8746 
8747 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8748 		 dev->name, adj_dev->name, ref_nr);
8749 
8750 	adj = __netdev_find_adj(adj_dev, dev_list);
8751 
8752 	if (!adj) {
8753 		pr_err("Adjacency does not exist for device %s from %s\n",
8754 		       dev->name, adj_dev->name);
8755 		WARN_ON(1);
8756 		return;
8757 	}
8758 
8759 	if (adj->ref_nr > ref_nr) {
8760 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8761 			 dev->name, adj_dev->name, ref_nr,
8762 			 adj->ref_nr - ref_nr);
8763 		adj->ref_nr -= ref_nr;
8764 		return;
8765 	}
8766 
8767 	if (adj->master)
8768 		sysfs_remove_link(&(dev->dev.kobj), "master");
8769 
8770 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8771 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8772 
8773 	list_del_rcu(&adj->list);
8774 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8775 		 adj_dev->name, dev->name, adj_dev->name);
8776 	netdev_put(adj_dev, &adj->dev_tracker);
8777 	kfree_rcu(adj, rcu);
8778 }
8779 
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8780 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8781 					    struct net_device *upper_dev,
8782 					    struct list_head *up_list,
8783 					    struct list_head *down_list,
8784 					    void *private, bool master)
8785 {
8786 	int ret;
8787 
8788 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8789 					   private, master);
8790 	if (ret)
8791 		return ret;
8792 
8793 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8794 					   private, false);
8795 	if (ret) {
8796 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8797 		return ret;
8798 	}
8799 
8800 	return 0;
8801 }
8802 
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8803 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8804 					       struct net_device *upper_dev,
8805 					       u16 ref_nr,
8806 					       struct list_head *up_list,
8807 					       struct list_head *down_list)
8808 {
8809 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8810 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8811 }
8812 
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8813 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8814 						struct net_device *upper_dev,
8815 						void *private, bool master)
8816 {
8817 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8818 						&dev->adj_list.upper,
8819 						&upper_dev->adj_list.lower,
8820 						private, master);
8821 }
8822 
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8823 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8824 						   struct net_device *upper_dev)
8825 {
8826 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8827 					   &dev->adj_list.upper,
8828 					   &upper_dev->adj_list.lower);
8829 }
8830 
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8831 static int __netdev_upper_dev_link(struct net_device *dev,
8832 				   struct net_device *upper_dev, bool master,
8833 				   void *upper_priv, void *upper_info,
8834 				   struct netdev_nested_priv *priv,
8835 				   struct netlink_ext_ack *extack)
8836 {
8837 	struct netdev_notifier_changeupper_info changeupper_info = {
8838 		.info = {
8839 			.dev = dev,
8840 			.extack = extack,
8841 		},
8842 		.upper_dev = upper_dev,
8843 		.master = master,
8844 		.linking = true,
8845 		.upper_info = upper_info,
8846 	};
8847 	struct net_device *master_dev;
8848 	int ret = 0;
8849 
8850 	ASSERT_RTNL();
8851 
8852 	if (dev == upper_dev)
8853 		return -EBUSY;
8854 
8855 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8856 	if (__netdev_has_upper_dev(upper_dev, dev))
8857 		return -EBUSY;
8858 
8859 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8860 		return -EMLINK;
8861 
8862 	if (!master) {
8863 		if (__netdev_has_upper_dev(dev, upper_dev))
8864 			return -EEXIST;
8865 	} else {
8866 		master_dev = __netdev_master_upper_dev_get(dev);
8867 		if (master_dev)
8868 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8869 	}
8870 
8871 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8872 					    &changeupper_info.info);
8873 	ret = notifier_to_errno(ret);
8874 	if (ret)
8875 		return ret;
8876 
8877 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8878 						   master);
8879 	if (ret)
8880 		return ret;
8881 
8882 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8883 					    &changeupper_info.info);
8884 	ret = notifier_to_errno(ret);
8885 	if (ret)
8886 		goto rollback;
8887 
8888 	__netdev_update_upper_level(dev, NULL);
8889 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8890 
8891 	__netdev_update_lower_level(upper_dev, priv);
8892 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8893 				    priv);
8894 
8895 	return 0;
8896 
8897 rollback:
8898 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8899 
8900 	return ret;
8901 }
8902 
8903 /**
8904  * netdev_upper_dev_link - Add a link to the upper device
8905  * @dev: device
8906  * @upper_dev: new upper device
8907  * @extack: netlink extended ack
8908  *
8909  * Adds a link to device which is upper to this one. The caller must hold
8910  * the RTNL lock. On a failure a negative errno code is returned.
8911  * On success the reference counts are adjusted and the function
8912  * returns zero.
8913  */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8914 int netdev_upper_dev_link(struct net_device *dev,
8915 			  struct net_device *upper_dev,
8916 			  struct netlink_ext_ack *extack)
8917 {
8918 	struct netdev_nested_priv priv = {
8919 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8920 		.data = NULL,
8921 	};
8922 
8923 	return __netdev_upper_dev_link(dev, upper_dev, false,
8924 				       NULL, NULL, &priv, extack);
8925 }
8926 EXPORT_SYMBOL(netdev_upper_dev_link);
8927 
8928 /**
8929  * netdev_master_upper_dev_link - Add a master link to the upper device
8930  * @dev: device
8931  * @upper_dev: new upper device
8932  * @upper_priv: upper device private
8933  * @upper_info: upper info to be passed down via notifier
8934  * @extack: netlink extended ack
8935  *
8936  * Adds a link to device which is upper to this one. In this case, only
8937  * one master upper device can be linked, although other non-master devices
8938  * might be linked as well. The caller must hold the RTNL lock.
8939  * On a failure a negative errno code is returned. On success the reference
8940  * counts are adjusted and the function returns zero.
8941  */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8942 int netdev_master_upper_dev_link(struct net_device *dev,
8943 				 struct net_device *upper_dev,
8944 				 void *upper_priv, void *upper_info,
8945 				 struct netlink_ext_ack *extack)
8946 {
8947 	struct netdev_nested_priv priv = {
8948 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8949 		.data = NULL,
8950 	};
8951 
8952 	return __netdev_upper_dev_link(dev, upper_dev, true,
8953 				       upper_priv, upper_info, &priv, extack);
8954 }
8955 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8956 
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8957 static void __netdev_upper_dev_unlink(struct net_device *dev,
8958 				      struct net_device *upper_dev,
8959 				      struct netdev_nested_priv *priv)
8960 {
8961 	struct netdev_notifier_changeupper_info changeupper_info = {
8962 		.info = {
8963 			.dev = dev,
8964 		},
8965 		.upper_dev = upper_dev,
8966 		.linking = false,
8967 	};
8968 
8969 	ASSERT_RTNL();
8970 
8971 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8972 
8973 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8974 				      &changeupper_info.info);
8975 
8976 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8977 
8978 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8979 				      &changeupper_info.info);
8980 
8981 	__netdev_update_upper_level(dev, NULL);
8982 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8983 
8984 	__netdev_update_lower_level(upper_dev, priv);
8985 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8986 				    priv);
8987 }
8988 
8989 /**
8990  * netdev_upper_dev_unlink - Removes a link to upper device
8991  * @dev: device
8992  * @upper_dev: new upper device
8993  *
8994  * Removes a link to device which is upper to this one. The caller must hold
8995  * the RTNL lock.
8996  */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8997 void netdev_upper_dev_unlink(struct net_device *dev,
8998 			     struct net_device *upper_dev)
8999 {
9000 	struct netdev_nested_priv priv = {
9001 		.flags = NESTED_SYNC_TODO,
9002 		.data = NULL,
9003 	};
9004 
9005 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
9006 }
9007 EXPORT_SYMBOL(netdev_upper_dev_unlink);
9008 
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)9009 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
9010 				      struct net_device *lower_dev,
9011 				      bool val)
9012 {
9013 	struct netdev_adjacent *adj;
9014 
9015 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
9016 	if (adj)
9017 		adj->ignore = val;
9018 
9019 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
9020 	if (adj)
9021 		adj->ignore = val;
9022 }
9023 
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)9024 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
9025 					struct net_device *lower_dev)
9026 {
9027 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
9028 }
9029 
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)9030 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
9031 				       struct net_device *lower_dev)
9032 {
9033 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
9034 }
9035 
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)9036 int netdev_adjacent_change_prepare(struct net_device *old_dev,
9037 				   struct net_device *new_dev,
9038 				   struct net_device *dev,
9039 				   struct netlink_ext_ack *extack)
9040 {
9041 	struct netdev_nested_priv priv = {
9042 		.flags = 0,
9043 		.data = NULL,
9044 	};
9045 	int err;
9046 
9047 	if (!new_dev)
9048 		return 0;
9049 
9050 	if (old_dev && new_dev != old_dev)
9051 		netdev_adjacent_dev_disable(dev, old_dev);
9052 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
9053 				      extack);
9054 	if (err) {
9055 		if (old_dev && new_dev != old_dev)
9056 			netdev_adjacent_dev_enable(dev, old_dev);
9057 		return err;
9058 	}
9059 
9060 	return 0;
9061 }
9062 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
9063 
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9064 void netdev_adjacent_change_commit(struct net_device *old_dev,
9065 				   struct net_device *new_dev,
9066 				   struct net_device *dev)
9067 {
9068 	struct netdev_nested_priv priv = {
9069 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
9070 		.data = NULL,
9071 	};
9072 
9073 	if (!new_dev || !old_dev)
9074 		return;
9075 
9076 	if (new_dev == old_dev)
9077 		return;
9078 
9079 	netdev_adjacent_dev_enable(dev, old_dev);
9080 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
9081 }
9082 EXPORT_SYMBOL(netdev_adjacent_change_commit);
9083 
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)9084 void netdev_adjacent_change_abort(struct net_device *old_dev,
9085 				  struct net_device *new_dev,
9086 				  struct net_device *dev)
9087 {
9088 	struct netdev_nested_priv priv = {
9089 		.flags = 0,
9090 		.data = NULL,
9091 	};
9092 
9093 	if (!new_dev)
9094 		return;
9095 
9096 	if (old_dev && new_dev != old_dev)
9097 		netdev_adjacent_dev_enable(dev, old_dev);
9098 
9099 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
9100 }
9101 EXPORT_SYMBOL(netdev_adjacent_change_abort);
9102 
9103 /**
9104  * netdev_bonding_info_change - Dispatch event about slave change
9105  * @dev: device
9106  * @bonding_info: info to dispatch
9107  *
9108  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
9109  * The caller must hold the RTNL lock.
9110  */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)9111 void netdev_bonding_info_change(struct net_device *dev,
9112 				struct netdev_bonding_info *bonding_info)
9113 {
9114 	struct netdev_notifier_bonding_info info = {
9115 		.info.dev = dev,
9116 	};
9117 
9118 	memcpy(&info.bonding_info, bonding_info,
9119 	       sizeof(struct netdev_bonding_info));
9120 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
9121 				      &info.info);
9122 }
9123 EXPORT_SYMBOL(netdev_bonding_info_change);
9124 
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)9125 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
9126 					   struct netlink_ext_ack *extack)
9127 {
9128 	struct netdev_notifier_offload_xstats_info info = {
9129 		.info.dev = dev,
9130 		.info.extack = extack,
9131 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9132 	};
9133 	int err;
9134 	int rc;
9135 
9136 	dev->offload_xstats_l3 = kzalloc_obj(*dev->offload_xstats_l3,
9137 					     GFP_KERNEL);
9138 	if (!dev->offload_xstats_l3)
9139 		return -ENOMEM;
9140 
9141 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
9142 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
9143 						  &info.info);
9144 	err = notifier_to_errno(rc);
9145 	if (err)
9146 		goto free_stats;
9147 
9148 	return 0;
9149 
9150 free_stats:
9151 	kfree(dev->offload_xstats_l3);
9152 	dev->offload_xstats_l3 = NULL;
9153 	return err;
9154 }
9155 
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)9156 int netdev_offload_xstats_enable(struct net_device *dev,
9157 				 enum netdev_offload_xstats_type type,
9158 				 struct netlink_ext_ack *extack)
9159 {
9160 	ASSERT_RTNL();
9161 
9162 	if (netdev_offload_xstats_enabled(dev, type))
9163 		return -EALREADY;
9164 
9165 	switch (type) {
9166 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9167 		return netdev_offload_xstats_enable_l3(dev, extack);
9168 	}
9169 
9170 	WARN_ON(1);
9171 	return -EINVAL;
9172 }
9173 EXPORT_SYMBOL(netdev_offload_xstats_enable);
9174 
netdev_offload_xstats_disable_l3(struct net_device * dev)9175 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
9176 {
9177 	struct netdev_notifier_offload_xstats_info info = {
9178 		.info.dev = dev,
9179 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
9180 	};
9181 
9182 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
9183 				      &info.info);
9184 	kfree(dev->offload_xstats_l3);
9185 	dev->offload_xstats_l3 = NULL;
9186 }
9187 
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)9188 int netdev_offload_xstats_disable(struct net_device *dev,
9189 				  enum netdev_offload_xstats_type type)
9190 {
9191 	ASSERT_RTNL();
9192 
9193 	if (!netdev_offload_xstats_enabled(dev, type))
9194 		return -EALREADY;
9195 
9196 	switch (type) {
9197 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9198 		netdev_offload_xstats_disable_l3(dev);
9199 		return 0;
9200 	}
9201 
9202 	WARN_ON(1);
9203 	return -EINVAL;
9204 }
9205 EXPORT_SYMBOL(netdev_offload_xstats_disable);
9206 
netdev_offload_xstats_disable_all(struct net_device * dev)9207 static void netdev_offload_xstats_disable_all(struct net_device *dev)
9208 {
9209 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
9210 }
9211 
9212 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)9213 netdev_offload_xstats_get_ptr(const struct net_device *dev,
9214 			      enum netdev_offload_xstats_type type)
9215 {
9216 	switch (type) {
9217 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
9218 		return dev->offload_xstats_l3;
9219 	}
9220 
9221 	WARN_ON(1);
9222 	return NULL;
9223 }
9224 
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9225 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9226 				   enum netdev_offload_xstats_type type)
9227 {
9228 	ASSERT_RTNL();
9229 
9230 	return netdev_offload_xstats_get_ptr(dev, type);
9231 }
9232 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9233 
9234 struct netdev_notifier_offload_xstats_ru {
9235 	bool used;
9236 };
9237 
9238 struct netdev_notifier_offload_xstats_rd {
9239 	struct rtnl_hw_stats64 stats;
9240 	bool used;
9241 };
9242 
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9243 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9244 				  const struct rtnl_hw_stats64 *src)
9245 {
9246 	dest->rx_packets	  += src->rx_packets;
9247 	dest->tx_packets	  += src->tx_packets;
9248 	dest->rx_bytes		  += src->rx_bytes;
9249 	dest->tx_bytes		  += src->tx_bytes;
9250 	dest->rx_errors		  += src->rx_errors;
9251 	dest->tx_errors		  += src->tx_errors;
9252 	dest->rx_dropped	  += src->rx_dropped;
9253 	dest->tx_dropped	  += src->tx_dropped;
9254 	dest->multicast		  += src->multicast;
9255 }
9256 
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9257 static int netdev_offload_xstats_get_used(struct net_device *dev,
9258 					  enum netdev_offload_xstats_type type,
9259 					  bool *p_used,
9260 					  struct netlink_ext_ack *extack)
9261 {
9262 	struct netdev_notifier_offload_xstats_ru report_used = {};
9263 	struct netdev_notifier_offload_xstats_info info = {
9264 		.info.dev = dev,
9265 		.info.extack = extack,
9266 		.type = type,
9267 		.report_used = &report_used,
9268 	};
9269 	int rc;
9270 
9271 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9272 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9273 					   &info.info);
9274 	*p_used = report_used.used;
9275 	return notifier_to_errno(rc);
9276 }
9277 
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9278 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9279 					   enum netdev_offload_xstats_type type,
9280 					   struct rtnl_hw_stats64 *p_stats,
9281 					   bool *p_used,
9282 					   struct netlink_ext_ack *extack)
9283 {
9284 	struct netdev_notifier_offload_xstats_rd report_delta = {};
9285 	struct netdev_notifier_offload_xstats_info info = {
9286 		.info.dev = dev,
9287 		.info.extack = extack,
9288 		.type = type,
9289 		.report_delta = &report_delta,
9290 	};
9291 	struct rtnl_hw_stats64 *stats;
9292 	int rc;
9293 
9294 	stats = netdev_offload_xstats_get_ptr(dev, type);
9295 	if (WARN_ON(!stats))
9296 		return -EINVAL;
9297 
9298 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9299 					   &info.info);
9300 
9301 	/* Cache whatever we got, even if there was an error, otherwise the
9302 	 * successful stats retrievals would get lost.
9303 	 */
9304 	netdev_hw_stats64_add(stats, &report_delta.stats);
9305 
9306 	if (p_stats)
9307 		*p_stats = *stats;
9308 	*p_used = report_delta.used;
9309 
9310 	return notifier_to_errno(rc);
9311 }
9312 
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9313 int netdev_offload_xstats_get(struct net_device *dev,
9314 			      enum netdev_offload_xstats_type type,
9315 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
9316 			      struct netlink_ext_ack *extack)
9317 {
9318 	ASSERT_RTNL();
9319 
9320 	if (p_stats)
9321 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
9322 						       p_used, extack);
9323 	else
9324 		return netdev_offload_xstats_get_used(dev, type, p_used,
9325 						      extack);
9326 }
9327 EXPORT_SYMBOL(netdev_offload_xstats_get);
9328 
9329 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9330 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9331 				   const struct rtnl_hw_stats64 *stats)
9332 {
9333 	report_delta->used = true;
9334 	netdev_hw_stats64_add(&report_delta->stats, stats);
9335 }
9336 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9337 
9338 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9339 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9340 {
9341 	report_used->used = true;
9342 }
9343 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9344 
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9345 void netdev_offload_xstats_push_delta(struct net_device *dev,
9346 				      enum netdev_offload_xstats_type type,
9347 				      const struct rtnl_hw_stats64 *p_stats)
9348 {
9349 	struct rtnl_hw_stats64 *stats;
9350 
9351 	ASSERT_RTNL();
9352 
9353 	stats = netdev_offload_xstats_get_ptr(dev, type);
9354 	if (WARN_ON(!stats))
9355 		return;
9356 
9357 	netdev_hw_stats64_add(stats, p_stats);
9358 }
9359 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9360 
9361 /**
9362  * netdev_get_xmit_slave - Get the xmit slave of master device
9363  * @dev: device
9364  * @skb: The packet
9365  * @all_slaves: assume all the slaves are active
9366  *
9367  * The reference counters are not incremented so the caller must be
9368  * careful with locks. The caller must hold RCU lock.
9369  * %NULL is returned if no slave is found.
9370  */
9371 
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9372 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9373 					 struct sk_buff *skb,
9374 					 bool all_slaves)
9375 {
9376 	const struct net_device_ops *ops = dev->netdev_ops;
9377 
9378 	if (!ops->ndo_get_xmit_slave)
9379 		return NULL;
9380 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9381 }
9382 EXPORT_SYMBOL(netdev_get_xmit_slave);
9383 
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9384 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9385 						  struct sock *sk)
9386 {
9387 	const struct net_device_ops *ops = dev->netdev_ops;
9388 
9389 	if (!ops->ndo_sk_get_lower_dev)
9390 		return NULL;
9391 	return ops->ndo_sk_get_lower_dev(dev, sk);
9392 }
9393 
9394 /**
9395  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9396  * @dev: device
9397  * @sk: the socket
9398  *
9399  * %NULL is returned if no lower device is found.
9400  */
9401 
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9402 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9403 					    struct sock *sk)
9404 {
9405 	struct net_device *lower;
9406 
9407 	lower = netdev_sk_get_lower_dev(dev, sk);
9408 	while (lower) {
9409 		dev = lower;
9410 		lower = netdev_sk_get_lower_dev(dev, sk);
9411 	}
9412 
9413 	return dev;
9414 }
9415 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9416 
netdev_adjacent_add_links(struct net_device * dev)9417 static void netdev_adjacent_add_links(struct net_device *dev)
9418 {
9419 	struct netdev_adjacent *iter;
9420 
9421 	struct net *net = dev_net(dev);
9422 
9423 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9424 		if (!net_eq(net, dev_net(iter->dev)))
9425 			continue;
9426 		netdev_adjacent_sysfs_add(iter->dev, dev,
9427 					  &iter->dev->adj_list.lower);
9428 		netdev_adjacent_sysfs_add(dev, iter->dev,
9429 					  &dev->adj_list.upper);
9430 	}
9431 
9432 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9433 		if (!net_eq(net, dev_net(iter->dev)))
9434 			continue;
9435 		netdev_adjacent_sysfs_add(iter->dev, dev,
9436 					  &iter->dev->adj_list.upper);
9437 		netdev_adjacent_sysfs_add(dev, iter->dev,
9438 					  &dev->adj_list.lower);
9439 	}
9440 }
9441 
netdev_adjacent_del_links(struct net_device * dev)9442 static void netdev_adjacent_del_links(struct net_device *dev)
9443 {
9444 	struct netdev_adjacent *iter;
9445 
9446 	struct net *net = dev_net(dev);
9447 
9448 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9449 		if (!net_eq(net, dev_net(iter->dev)))
9450 			continue;
9451 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9452 					  &iter->dev->adj_list.lower);
9453 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9454 					  &dev->adj_list.upper);
9455 	}
9456 
9457 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9458 		if (!net_eq(net, dev_net(iter->dev)))
9459 			continue;
9460 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9461 					  &iter->dev->adj_list.upper);
9462 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9463 					  &dev->adj_list.lower);
9464 	}
9465 }
9466 
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9467 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9468 {
9469 	struct netdev_adjacent *iter;
9470 
9471 	struct net *net = dev_net(dev);
9472 
9473 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9474 		if (!net_eq(net, dev_net(iter->dev)))
9475 			continue;
9476 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9477 					  &iter->dev->adj_list.lower);
9478 		netdev_adjacent_sysfs_add(iter->dev, dev,
9479 					  &iter->dev->adj_list.lower);
9480 	}
9481 
9482 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9483 		if (!net_eq(net, dev_net(iter->dev)))
9484 			continue;
9485 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9486 					  &iter->dev->adj_list.upper);
9487 		netdev_adjacent_sysfs_add(iter->dev, dev,
9488 					  &iter->dev->adj_list.upper);
9489 	}
9490 }
9491 
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9492 void *netdev_lower_dev_get_private(struct net_device *dev,
9493 				   struct net_device *lower_dev)
9494 {
9495 	struct netdev_adjacent *lower;
9496 
9497 	if (!lower_dev)
9498 		return NULL;
9499 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9500 	if (!lower)
9501 		return NULL;
9502 
9503 	return lower->private;
9504 }
9505 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9506 
9507 
9508 /**
9509  * netdev_lower_state_changed - Dispatch event about lower device state change
9510  * @lower_dev: device
9511  * @lower_state_info: state to dispatch
9512  *
9513  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9514  * The caller must hold the RTNL lock.
9515  */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9516 void netdev_lower_state_changed(struct net_device *lower_dev,
9517 				void *lower_state_info)
9518 {
9519 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9520 		.info.dev = lower_dev,
9521 	};
9522 
9523 	ASSERT_RTNL();
9524 	changelowerstate_info.lower_state_info = lower_state_info;
9525 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9526 				      &changelowerstate_info.info);
9527 }
9528 EXPORT_SYMBOL(netdev_lower_state_changed);
9529 
dev_change_rx_flags(struct net_device * dev,int flags)9530 static void dev_change_rx_flags(struct net_device *dev, int flags)
9531 {
9532 	const struct net_device_ops *ops = dev->netdev_ops;
9533 
9534 	if (ops->ndo_change_rx_flags)
9535 		ops->ndo_change_rx_flags(dev, flags);
9536 }
9537 
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9538 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9539 {
9540 	unsigned int old_flags = dev->flags;
9541 	unsigned int promiscuity, flags;
9542 	kuid_t uid;
9543 	kgid_t gid;
9544 
9545 	ASSERT_RTNL();
9546 
9547 	promiscuity = dev->promiscuity + inc;
9548 	if (promiscuity == 0) {
9549 		/*
9550 		 * Avoid overflow.
9551 		 * If inc causes overflow, untouch promisc and return error.
9552 		 */
9553 		if (unlikely(inc > 0)) {
9554 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9555 			return -EOVERFLOW;
9556 		}
9557 		flags = old_flags & ~IFF_PROMISC;
9558 	} else {
9559 		flags = old_flags | IFF_PROMISC;
9560 	}
9561 	WRITE_ONCE(dev->promiscuity, promiscuity);
9562 	if (flags != old_flags) {
9563 		WRITE_ONCE(dev->flags, flags);
9564 		netdev_info(dev, "%s promiscuous mode\n",
9565 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9566 		if (audit_enabled) {
9567 			current_uid_gid(&uid, &gid);
9568 			audit_log(audit_context(), GFP_ATOMIC,
9569 				  AUDIT_ANOM_PROMISCUOUS,
9570 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9571 				  dev->name, (dev->flags & IFF_PROMISC),
9572 				  (old_flags & IFF_PROMISC),
9573 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9574 				  from_kuid(&init_user_ns, uid),
9575 				  from_kgid(&init_user_ns, gid),
9576 				  audit_get_sessionid(current));
9577 		}
9578 
9579 		dev_change_rx_flags(dev, IFF_PROMISC);
9580 	}
9581 	if (notify) {
9582 		/* The ops lock is only required to ensure consistent locking
9583 		 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9584 		 * called without the lock, even for devices that are ops
9585 		 * locked, such as in `dev_uc_sync_multiple` when using
9586 		 * bonding or teaming.
9587 		 */
9588 		netdev_ops_assert_locked(dev);
9589 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9590 	}
9591 	return 0;
9592 }
9593 
netif_set_promiscuity(struct net_device * dev,int inc)9594 int netif_set_promiscuity(struct net_device *dev, int inc)
9595 {
9596 	unsigned int old_flags = dev->flags;
9597 	int err;
9598 
9599 	err = __dev_set_promiscuity(dev, inc, true);
9600 	if (err < 0)
9601 		return err;
9602 	if (dev->flags != old_flags)
9603 		dev_set_rx_mode(dev);
9604 	return err;
9605 }
9606 
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9607 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9608 {
9609 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9610 	unsigned int allmulti, flags;
9611 
9612 	ASSERT_RTNL();
9613 
9614 	allmulti = dev->allmulti + inc;
9615 	if (allmulti == 0) {
9616 		/*
9617 		 * Avoid overflow.
9618 		 * If inc causes overflow, untouch allmulti and return error.
9619 		 */
9620 		if (unlikely(inc > 0)) {
9621 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9622 			return -EOVERFLOW;
9623 		}
9624 		flags = old_flags & ~IFF_ALLMULTI;
9625 	} else {
9626 		flags = old_flags | IFF_ALLMULTI;
9627 	}
9628 	WRITE_ONCE(dev->allmulti, allmulti);
9629 	if (flags != old_flags) {
9630 		WRITE_ONCE(dev->flags, flags);
9631 		netdev_info(dev, "%s allmulticast mode\n",
9632 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9633 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9634 		dev_set_rx_mode(dev);
9635 		if (notify)
9636 			__dev_notify_flags(dev, old_flags,
9637 					   dev->gflags ^ old_gflags, 0, NULL);
9638 	}
9639 	return 0;
9640 }
9641 
9642 /*
9643  *	Upload unicast and multicast address lists to device and
9644  *	configure RX filtering. When the device doesn't support unicast
9645  *	filtering it is put in promiscuous mode while unicast addresses
9646  *	are present.
9647  */
__dev_set_rx_mode(struct net_device * dev)9648 void __dev_set_rx_mode(struct net_device *dev)
9649 {
9650 	const struct net_device_ops *ops = dev->netdev_ops;
9651 
9652 	/* dev_open will call this function so the list will stay sane. */
9653 	if (!(dev->flags&IFF_UP))
9654 		return;
9655 
9656 	if (!netif_device_present(dev))
9657 		return;
9658 
9659 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9660 		/* Unicast addresses changes may only happen under the rtnl,
9661 		 * therefore calling __dev_set_promiscuity here is safe.
9662 		 */
9663 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9664 			__dev_set_promiscuity(dev, 1, false);
9665 			dev->uc_promisc = true;
9666 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9667 			__dev_set_promiscuity(dev, -1, false);
9668 			dev->uc_promisc = false;
9669 		}
9670 	}
9671 
9672 	if (ops->ndo_set_rx_mode)
9673 		ops->ndo_set_rx_mode(dev);
9674 }
9675 
dev_set_rx_mode(struct net_device * dev)9676 void dev_set_rx_mode(struct net_device *dev)
9677 {
9678 	netif_addr_lock_bh(dev);
9679 	__dev_set_rx_mode(dev);
9680 	netif_addr_unlock_bh(dev);
9681 }
9682 
9683 /**
9684  * netif_get_flags() - get flags reported to userspace
9685  * @dev: device
9686  *
9687  * Get the combination of flag bits exported through APIs to userspace.
9688  */
netif_get_flags(const struct net_device * dev)9689 unsigned int netif_get_flags(const struct net_device *dev)
9690 {
9691 	unsigned int flags;
9692 
9693 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9694 				IFF_ALLMULTI |
9695 				IFF_RUNNING |
9696 				IFF_LOWER_UP |
9697 				IFF_DORMANT)) |
9698 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9699 				IFF_ALLMULTI));
9700 
9701 	if (netif_running(dev)) {
9702 		if (netif_oper_up(dev))
9703 			flags |= IFF_RUNNING;
9704 		if (netif_carrier_ok(dev))
9705 			flags |= IFF_LOWER_UP;
9706 		if (netif_dormant(dev))
9707 			flags |= IFF_DORMANT;
9708 	}
9709 
9710 	return flags;
9711 }
9712 EXPORT_SYMBOL(netif_get_flags);
9713 
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9714 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9715 		       struct netlink_ext_ack *extack)
9716 {
9717 	unsigned int old_flags = dev->flags;
9718 	int ret;
9719 
9720 	ASSERT_RTNL();
9721 
9722 	/*
9723 	 *	Set the flags on our device.
9724 	 */
9725 
9726 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9727 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9728 			       IFF_AUTOMEDIA)) |
9729 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9730 				    IFF_ALLMULTI));
9731 
9732 	/*
9733 	 *	Load in the correct multicast list now the flags have changed.
9734 	 */
9735 
9736 	if ((old_flags ^ flags) & IFF_MULTICAST)
9737 		dev_change_rx_flags(dev, IFF_MULTICAST);
9738 
9739 	dev_set_rx_mode(dev);
9740 
9741 	/*
9742 	 *	Have we downed the interface. We handle IFF_UP ourselves
9743 	 *	according to user attempts to set it, rather than blindly
9744 	 *	setting it.
9745 	 */
9746 
9747 	ret = 0;
9748 	if ((old_flags ^ flags) & IFF_UP) {
9749 		if (old_flags & IFF_UP)
9750 			__dev_close(dev);
9751 		else
9752 			ret = __dev_open(dev, extack);
9753 	}
9754 
9755 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9756 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9757 		old_flags = dev->flags;
9758 
9759 		dev->gflags ^= IFF_PROMISC;
9760 
9761 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9762 			if (dev->flags != old_flags)
9763 				dev_set_rx_mode(dev);
9764 	}
9765 
9766 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9767 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9768 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9769 	 */
9770 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9771 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9772 
9773 		dev->gflags ^= IFF_ALLMULTI;
9774 		netif_set_allmulti(dev, inc, false);
9775 	}
9776 
9777 	return ret;
9778 }
9779 
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9780 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9781 			unsigned int gchanges, u32 portid,
9782 			const struct nlmsghdr *nlh)
9783 {
9784 	unsigned int changes = dev->flags ^ old_flags;
9785 
9786 	if (gchanges)
9787 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9788 
9789 	if (changes & IFF_UP) {
9790 		if (dev->flags & IFF_UP)
9791 			call_netdevice_notifiers(NETDEV_UP, dev);
9792 		else
9793 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9794 	}
9795 
9796 	if (dev->flags & IFF_UP &&
9797 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9798 		struct netdev_notifier_change_info change_info = {
9799 			.info = {
9800 				.dev = dev,
9801 			},
9802 			.flags_changed = changes,
9803 		};
9804 
9805 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9806 	}
9807 }
9808 
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9809 int netif_change_flags(struct net_device *dev, unsigned int flags,
9810 		       struct netlink_ext_ack *extack)
9811 {
9812 	int ret;
9813 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9814 
9815 	ret = __dev_change_flags(dev, flags, extack);
9816 	if (ret < 0)
9817 		return ret;
9818 
9819 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9820 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9821 	return ret;
9822 }
9823 
__netif_set_mtu(struct net_device * dev,int new_mtu)9824 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9825 {
9826 	const struct net_device_ops *ops = dev->netdev_ops;
9827 
9828 	if (ops->ndo_change_mtu)
9829 		return ops->ndo_change_mtu(dev, new_mtu);
9830 
9831 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9832 	WRITE_ONCE(dev->mtu, new_mtu);
9833 	return 0;
9834 }
9835 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9836 
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9837 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9838 		     struct netlink_ext_ack *extack)
9839 {
9840 	/* MTU must be positive, and in range */
9841 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9842 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9843 		return -EINVAL;
9844 	}
9845 
9846 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9847 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9848 		return -EINVAL;
9849 	}
9850 	return 0;
9851 }
9852 
9853 /**
9854  * netif_set_mtu_ext() - Change maximum transfer unit
9855  * @dev: device
9856  * @new_mtu: new transfer unit
9857  * @extack: netlink extended ack
9858  *
9859  * Change the maximum transfer size of the network device.
9860  *
9861  * Return: 0 on success, -errno on failure.
9862  */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9863 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9864 		      struct netlink_ext_ack *extack)
9865 {
9866 	int err, orig_mtu;
9867 
9868 	netdev_ops_assert_locked(dev);
9869 
9870 	if (new_mtu == dev->mtu)
9871 		return 0;
9872 
9873 	err = dev_validate_mtu(dev, new_mtu, extack);
9874 	if (err)
9875 		return err;
9876 
9877 	if (!netif_device_present(dev))
9878 		return -ENODEV;
9879 
9880 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9881 	err = notifier_to_errno(err);
9882 	if (err)
9883 		return err;
9884 
9885 	orig_mtu = dev->mtu;
9886 	err = __netif_set_mtu(dev, new_mtu);
9887 
9888 	if (!err) {
9889 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9890 						   orig_mtu);
9891 		err = notifier_to_errno(err);
9892 		if (err) {
9893 			/* setting mtu back and notifying everyone again,
9894 			 * so that they have a chance to revert changes.
9895 			 */
9896 			__netif_set_mtu(dev, orig_mtu);
9897 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9898 						     new_mtu);
9899 		}
9900 	}
9901 	return err;
9902 }
9903 
netif_set_mtu(struct net_device * dev,int new_mtu)9904 int netif_set_mtu(struct net_device *dev, int new_mtu)
9905 {
9906 	struct netlink_ext_ack extack;
9907 	int err;
9908 
9909 	memset(&extack, 0, sizeof(extack));
9910 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9911 	if (err && extack._msg)
9912 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9913 	return err;
9914 }
9915 EXPORT_SYMBOL(netif_set_mtu);
9916 
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9917 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9918 {
9919 	unsigned int orig_len = dev->tx_queue_len;
9920 	int res;
9921 
9922 	if (new_len != (unsigned int)new_len)
9923 		return -ERANGE;
9924 
9925 	if (new_len != orig_len) {
9926 		WRITE_ONCE(dev->tx_queue_len, new_len);
9927 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9928 		res = notifier_to_errno(res);
9929 		if (res)
9930 			goto err_rollback;
9931 		res = dev_qdisc_change_tx_queue_len(dev);
9932 		if (res)
9933 			goto err_rollback;
9934 	}
9935 
9936 	return 0;
9937 
9938 err_rollback:
9939 	netdev_err(dev, "refused to change device tx_queue_len\n");
9940 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9941 	return res;
9942 }
9943 
netif_set_group(struct net_device * dev,int new_group)9944 void netif_set_group(struct net_device *dev, int new_group)
9945 {
9946 	dev->group = new_group;
9947 }
9948 
9949 /**
9950  * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9951  * @dev: device
9952  * @addr: new address
9953  * @extack: netlink extended ack
9954  *
9955  * Return: 0 on success, -errno on failure.
9956  */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9957 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9958 				struct netlink_ext_ack *extack)
9959 {
9960 	struct netdev_notifier_pre_changeaddr_info info = {
9961 		.info.dev = dev,
9962 		.info.extack = extack,
9963 		.dev_addr = addr,
9964 	};
9965 	int rc;
9966 
9967 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9968 	return notifier_to_errno(rc);
9969 }
9970 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9971 
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9972 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9973 			  struct netlink_ext_ack *extack)
9974 {
9975 	const struct net_device_ops *ops = dev->netdev_ops;
9976 	int err;
9977 
9978 	if (!ops->ndo_set_mac_address)
9979 		return -EOPNOTSUPP;
9980 	if (ss->ss_family != dev->type)
9981 		return -EINVAL;
9982 	if (!netif_device_present(dev))
9983 		return -ENODEV;
9984 	err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9985 	if (err)
9986 		return err;
9987 	if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9988 		err = ops->ndo_set_mac_address(dev, ss);
9989 		if (err)
9990 			return err;
9991 	}
9992 	dev->addr_assign_type = NET_ADDR_SET;
9993 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9994 	add_device_randomness(dev->dev_addr, dev->addr_len);
9995 	return 0;
9996 }
9997 
9998 DECLARE_RWSEM(dev_addr_sem);
9999 
10000 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)10001 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
10002 {
10003 	size_t size = sizeof(sa->sa_data);
10004 	struct net_device *dev;
10005 	int ret = 0;
10006 
10007 	down_read(&dev_addr_sem);
10008 	rcu_read_lock();
10009 
10010 	dev = dev_get_by_name_rcu(net, dev_name);
10011 	if (!dev) {
10012 		ret = -ENODEV;
10013 		goto unlock;
10014 	}
10015 	if (!dev->addr_len)
10016 		memset(sa->sa_data, 0, size);
10017 	else
10018 		memcpy(sa->sa_data, dev->dev_addr,
10019 		       min_t(size_t, size, dev->addr_len));
10020 	sa->sa_family = dev->type;
10021 
10022 unlock:
10023 	rcu_read_unlock();
10024 	up_read(&dev_addr_sem);
10025 	return ret;
10026 }
10027 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
10028 
netif_change_carrier(struct net_device * dev,bool new_carrier)10029 int netif_change_carrier(struct net_device *dev, bool new_carrier)
10030 {
10031 	const struct net_device_ops *ops = dev->netdev_ops;
10032 
10033 	if (!ops->ndo_change_carrier)
10034 		return -EOPNOTSUPP;
10035 	if (!netif_device_present(dev))
10036 		return -ENODEV;
10037 	return ops->ndo_change_carrier(dev, new_carrier);
10038 }
10039 
10040 /**
10041  *	dev_get_phys_port_id - Get device physical port ID
10042  *	@dev: device
10043  *	@ppid: port ID
10044  *
10045  *	Get device physical port ID
10046  */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)10047 int dev_get_phys_port_id(struct net_device *dev,
10048 			 struct netdev_phys_item_id *ppid)
10049 {
10050 	const struct net_device_ops *ops = dev->netdev_ops;
10051 
10052 	if (!ops->ndo_get_phys_port_id)
10053 		return -EOPNOTSUPP;
10054 	return ops->ndo_get_phys_port_id(dev, ppid);
10055 }
10056 
10057 /**
10058  *	dev_get_phys_port_name - Get device physical port name
10059  *	@dev: device
10060  *	@name: port name
10061  *	@len: limit of bytes to copy to name
10062  *
10063  *	Get device physical port name
10064  */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)10065 int dev_get_phys_port_name(struct net_device *dev,
10066 			   char *name, size_t len)
10067 {
10068 	const struct net_device_ops *ops = dev->netdev_ops;
10069 	int err;
10070 
10071 	if (ops->ndo_get_phys_port_name) {
10072 		err = ops->ndo_get_phys_port_name(dev, name, len);
10073 		if (err != -EOPNOTSUPP)
10074 			return err;
10075 	}
10076 	return devlink_compat_phys_port_name_get(dev, name, len);
10077 }
10078 
10079 /**
10080  * netif_get_port_parent_id() - Get the device's port parent identifier
10081  * @dev: network device
10082  * @ppid: pointer to a storage for the port's parent identifier
10083  * @recurse: allow/disallow recursion to lower devices
10084  *
10085  * Get the devices's port parent identifier.
10086  *
10087  * Return: 0 on success, -errno on failure.
10088  */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)10089 int netif_get_port_parent_id(struct net_device *dev,
10090 			     struct netdev_phys_item_id *ppid, bool recurse)
10091 {
10092 	const struct net_device_ops *ops = dev->netdev_ops;
10093 	struct netdev_phys_item_id first = { };
10094 	struct net_device *lower_dev;
10095 	struct list_head *iter;
10096 	int err;
10097 
10098 	if (ops->ndo_get_port_parent_id) {
10099 		err = ops->ndo_get_port_parent_id(dev, ppid);
10100 		if (err != -EOPNOTSUPP)
10101 			return err;
10102 	}
10103 
10104 	err = devlink_compat_switch_id_get(dev, ppid);
10105 	if (!recurse || err != -EOPNOTSUPP)
10106 		return err;
10107 
10108 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
10109 		err = netif_get_port_parent_id(lower_dev, ppid, true);
10110 		if (err)
10111 			break;
10112 		if (!first.id_len)
10113 			first = *ppid;
10114 		else if (memcmp(&first, ppid, sizeof(*ppid)))
10115 			return -EOPNOTSUPP;
10116 	}
10117 
10118 	return err;
10119 }
10120 EXPORT_SYMBOL(netif_get_port_parent_id);
10121 
10122 /**
10123  *	netdev_port_same_parent_id - Indicate if two network devices have
10124  *	the same port parent identifier
10125  *	@a: first network device
10126  *	@b: second network device
10127  */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)10128 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
10129 {
10130 	struct netdev_phys_item_id a_id = { };
10131 	struct netdev_phys_item_id b_id = { };
10132 
10133 	if (netif_get_port_parent_id(a, &a_id, true) ||
10134 	    netif_get_port_parent_id(b, &b_id, true))
10135 		return false;
10136 
10137 	return netdev_phys_item_id_same(&a_id, &b_id);
10138 }
10139 EXPORT_SYMBOL(netdev_port_same_parent_id);
10140 
netif_change_proto_down(struct net_device * dev,bool proto_down)10141 int netif_change_proto_down(struct net_device *dev, bool proto_down)
10142 {
10143 	if (!dev->change_proto_down)
10144 		return -EOPNOTSUPP;
10145 	if (!netif_device_present(dev))
10146 		return -ENODEV;
10147 	if (proto_down)
10148 		netif_carrier_off(dev);
10149 	else
10150 		netif_carrier_on(dev);
10151 	WRITE_ONCE(dev->proto_down, proto_down);
10152 	return 0;
10153 }
10154 
10155 /**
10156  *	netdev_change_proto_down_reason_locked - proto down reason
10157  *
10158  *	@dev: device
10159  *	@mask: proto down mask
10160  *	@value: proto down value
10161  */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)10162 void netdev_change_proto_down_reason_locked(struct net_device *dev,
10163 					    unsigned long mask, u32 value)
10164 {
10165 	u32 proto_down_reason;
10166 	int b;
10167 
10168 	if (!mask) {
10169 		proto_down_reason = value;
10170 	} else {
10171 		proto_down_reason = dev->proto_down_reason;
10172 		for_each_set_bit(b, &mask, 32) {
10173 			if (value & (1 << b))
10174 				proto_down_reason |= BIT(b);
10175 			else
10176 				proto_down_reason &= ~BIT(b);
10177 		}
10178 	}
10179 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
10180 }
10181 
10182 struct bpf_xdp_link {
10183 	struct bpf_link link;
10184 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
10185 	int flags;
10186 };
10187 
dev_xdp_mode(struct net_device * dev,u32 flags)10188 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
10189 {
10190 	if (flags & XDP_FLAGS_HW_MODE)
10191 		return XDP_MODE_HW;
10192 	if (flags & XDP_FLAGS_DRV_MODE)
10193 		return XDP_MODE_DRV;
10194 	if (flags & XDP_FLAGS_SKB_MODE)
10195 		return XDP_MODE_SKB;
10196 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
10197 }
10198 
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)10199 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
10200 {
10201 	switch (mode) {
10202 	case XDP_MODE_SKB:
10203 		return generic_xdp_install;
10204 	case XDP_MODE_DRV:
10205 	case XDP_MODE_HW:
10206 		return dev->netdev_ops->ndo_bpf;
10207 	default:
10208 		return NULL;
10209 	}
10210 }
10211 
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)10212 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
10213 					 enum bpf_xdp_mode mode)
10214 {
10215 	return dev->xdp_state[mode].link;
10216 }
10217 
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)10218 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
10219 				     enum bpf_xdp_mode mode)
10220 {
10221 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10222 
10223 	if (link)
10224 		return link->link.prog;
10225 	return dev->xdp_state[mode].prog;
10226 }
10227 
dev_xdp_prog_count(struct net_device * dev)10228 u8 dev_xdp_prog_count(struct net_device *dev)
10229 {
10230 	u8 count = 0;
10231 	int i;
10232 
10233 	for (i = 0; i < __MAX_XDP_MODE; i++)
10234 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10235 			count++;
10236 	return count;
10237 }
10238 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10239 
dev_xdp_sb_prog_count(struct net_device * dev)10240 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10241 {
10242 	u8 count = 0;
10243 	int i;
10244 
10245 	for (i = 0; i < __MAX_XDP_MODE; i++)
10246 		if (dev->xdp_state[i].prog &&
10247 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
10248 			count++;
10249 	return count;
10250 }
10251 
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10252 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10253 {
10254 	if (!dev->netdev_ops->ndo_bpf)
10255 		return -EOPNOTSUPP;
10256 
10257 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10258 	    bpf->command == XDP_SETUP_PROG &&
10259 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10260 		NL_SET_ERR_MSG(bpf->extack,
10261 			       "unable to propagate XDP to device using tcp-data-split");
10262 		return -EBUSY;
10263 	}
10264 
10265 	if (dev_get_min_mp_channel_count(dev)) {
10266 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10267 		return -EBUSY;
10268 	}
10269 
10270 	return dev->netdev_ops->ndo_bpf(dev, bpf);
10271 }
10272 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10273 
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10274 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10275 {
10276 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10277 
10278 	return prog ? prog->aux->id : 0;
10279 }
10280 
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10281 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10282 			     struct bpf_xdp_link *link)
10283 {
10284 	dev->xdp_state[mode].link = link;
10285 	dev->xdp_state[mode].prog = NULL;
10286 }
10287 
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10288 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10289 			     struct bpf_prog *prog)
10290 {
10291 	dev->xdp_state[mode].link = NULL;
10292 	dev->xdp_state[mode].prog = prog;
10293 }
10294 
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10295 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10296 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10297 			   u32 flags, struct bpf_prog *prog)
10298 {
10299 	struct netdev_bpf xdp;
10300 	int err;
10301 
10302 	netdev_ops_assert_locked(dev);
10303 
10304 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10305 	    prog && !prog->aux->xdp_has_frags) {
10306 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10307 		return -EBUSY;
10308 	}
10309 
10310 	if (dev_get_min_mp_channel_count(dev)) {
10311 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10312 		return -EBUSY;
10313 	}
10314 
10315 	memset(&xdp, 0, sizeof(xdp));
10316 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10317 	xdp.extack = extack;
10318 	xdp.flags = flags;
10319 	xdp.prog = prog;
10320 
10321 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
10322 	 * "moved" into driver), so they don't increment it on their own, but
10323 	 * they do decrement refcnt when program is detached or replaced.
10324 	 * Given net_device also owns link/prog, we need to bump refcnt here
10325 	 * to prevent drivers from underflowing it.
10326 	 */
10327 	if (prog)
10328 		bpf_prog_inc(prog);
10329 	err = bpf_op(dev, &xdp);
10330 	if (err) {
10331 		if (prog)
10332 			bpf_prog_put(prog);
10333 		return err;
10334 	}
10335 
10336 	if (mode != XDP_MODE_HW)
10337 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10338 
10339 	return 0;
10340 }
10341 
dev_xdp_uninstall(struct net_device * dev)10342 static void dev_xdp_uninstall(struct net_device *dev)
10343 {
10344 	struct bpf_xdp_link *link;
10345 	struct bpf_prog *prog;
10346 	enum bpf_xdp_mode mode;
10347 	bpf_op_t bpf_op;
10348 
10349 	ASSERT_RTNL();
10350 
10351 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10352 		prog = dev_xdp_prog(dev, mode);
10353 		if (!prog)
10354 			continue;
10355 
10356 		bpf_op = dev_xdp_bpf_op(dev, mode);
10357 		if (!bpf_op)
10358 			continue;
10359 
10360 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10361 
10362 		/* auto-detach link from net device */
10363 		link = dev_xdp_link(dev, mode);
10364 		if (link)
10365 			link->dev = NULL;
10366 		else
10367 			bpf_prog_put(prog);
10368 
10369 		dev_xdp_set_link(dev, mode, NULL);
10370 	}
10371 }
10372 
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10373 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10374 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10375 			  struct bpf_prog *old_prog, u32 flags)
10376 {
10377 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10378 	struct bpf_prog *cur_prog;
10379 	struct net_device *upper;
10380 	struct list_head *iter;
10381 	enum bpf_xdp_mode mode;
10382 	bpf_op_t bpf_op;
10383 	int err;
10384 
10385 	ASSERT_RTNL();
10386 
10387 	/* either link or prog attachment, never both */
10388 	if (link && (new_prog || old_prog))
10389 		return -EINVAL;
10390 	/* link supports only XDP mode flags */
10391 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10392 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10393 		return -EINVAL;
10394 	}
10395 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10396 	if (num_modes > 1) {
10397 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10398 		return -EINVAL;
10399 	}
10400 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10401 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10402 		NL_SET_ERR_MSG(extack,
10403 			       "More than one program loaded, unset mode is ambiguous");
10404 		return -EINVAL;
10405 	}
10406 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10407 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10408 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10409 		return -EINVAL;
10410 	}
10411 
10412 	mode = dev_xdp_mode(dev, flags);
10413 	/* can't replace attached link */
10414 	if (dev_xdp_link(dev, mode)) {
10415 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10416 		return -EBUSY;
10417 	}
10418 
10419 	/* don't allow if an upper device already has a program */
10420 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10421 		if (dev_xdp_prog_count(upper) > 0) {
10422 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10423 			return -EEXIST;
10424 		}
10425 	}
10426 
10427 	cur_prog = dev_xdp_prog(dev, mode);
10428 	/* can't replace attached prog with link */
10429 	if (link && cur_prog) {
10430 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10431 		return -EBUSY;
10432 	}
10433 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10434 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10435 		return -EEXIST;
10436 	}
10437 
10438 	/* put effective new program into new_prog */
10439 	if (link)
10440 		new_prog = link->link.prog;
10441 
10442 	if (new_prog) {
10443 		bool offload = mode == XDP_MODE_HW;
10444 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10445 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10446 
10447 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10448 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10449 			return -EBUSY;
10450 		}
10451 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10452 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10453 			return -EEXIST;
10454 		}
10455 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10456 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10457 			return -EINVAL;
10458 		}
10459 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10460 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10461 			return -EINVAL;
10462 		}
10463 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10464 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10465 			return -EINVAL;
10466 		}
10467 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10468 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10469 			return -EINVAL;
10470 		}
10471 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10472 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10473 			return -EINVAL;
10474 		}
10475 	}
10476 
10477 	/* don't call drivers if the effective program didn't change */
10478 	if (new_prog != cur_prog) {
10479 		bpf_op = dev_xdp_bpf_op(dev, mode);
10480 		if (!bpf_op) {
10481 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10482 			return -EOPNOTSUPP;
10483 		}
10484 
10485 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10486 		if (err)
10487 			return err;
10488 	}
10489 
10490 	if (link)
10491 		dev_xdp_set_link(dev, mode, link);
10492 	else
10493 		dev_xdp_set_prog(dev, mode, new_prog);
10494 	if (cur_prog)
10495 		bpf_prog_put(cur_prog);
10496 
10497 	return 0;
10498 }
10499 
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10500 static int dev_xdp_attach_link(struct net_device *dev,
10501 			       struct netlink_ext_ack *extack,
10502 			       struct bpf_xdp_link *link)
10503 {
10504 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10505 }
10506 
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10507 static int dev_xdp_detach_link(struct net_device *dev,
10508 			       struct netlink_ext_ack *extack,
10509 			       struct bpf_xdp_link *link)
10510 {
10511 	enum bpf_xdp_mode mode;
10512 	bpf_op_t bpf_op;
10513 
10514 	ASSERT_RTNL();
10515 
10516 	mode = dev_xdp_mode(dev, link->flags);
10517 	if (dev_xdp_link(dev, mode) != link)
10518 		return -EINVAL;
10519 
10520 	bpf_op = dev_xdp_bpf_op(dev, mode);
10521 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10522 	dev_xdp_set_link(dev, mode, NULL);
10523 	return 0;
10524 }
10525 
bpf_xdp_link_release(struct bpf_link * link)10526 static void bpf_xdp_link_release(struct bpf_link *link)
10527 {
10528 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10529 
10530 	rtnl_lock();
10531 
10532 	/* if racing with net_device's tear down, xdp_link->dev might be
10533 	 * already NULL, in which case link was already auto-detached
10534 	 */
10535 	if (xdp_link->dev) {
10536 		netdev_lock_ops(xdp_link->dev);
10537 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10538 		netdev_unlock_ops(xdp_link->dev);
10539 		xdp_link->dev = NULL;
10540 	}
10541 
10542 	rtnl_unlock();
10543 }
10544 
bpf_xdp_link_detach(struct bpf_link * link)10545 static int bpf_xdp_link_detach(struct bpf_link *link)
10546 {
10547 	bpf_xdp_link_release(link);
10548 	return 0;
10549 }
10550 
bpf_xdp_link_dealloc(struct bpf_link * link)10551 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10552 {
10553 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10554 
10555 	kfree(xdp_link);
10556 }
10557 
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10558 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10559 				     struct seq_file *seq)
10560 {
10561 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10562 	u32 ifindex = 0;
10563 
10564 	rtnl_lock();
10565 	if (xdp_link->dev)
10566 		ifindex = xdp_link->dev->ifindex;
10567 	rtnl_unlock();
10568 
10569 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10570 }
10571 
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10572 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10573 				       struct bpf_link_info *info)
10574 {
10575 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10576 	u32 ifindex = 0;
10577 
10578 	rtnl_lock();
10579 	if (xdp_link->dev)
10580 		ifindex = xdp_link->dev->ifindex;
10581 	rtnl_unlock();
10582 
10583 	info->xdp.ifindex = ifindex;
10584 	return 0;
10585 }
10586 
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10587 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10588 			       struct bpf_prog *old_prog)
10589 {
10590 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10591 	enum bpf_xdp_mode mode;
10592 	bpf_op_t bpf_op;
10593 	int err = 0;
10594 
10595 	rtnl_lock();
10596 
10597 	/* link might have been auto-released already, so fail */
10598 	if (!xdp_link->dev) {
10599 		err = -ENOLINK;
10600 		goto out_unlock;
10601 	}
10602 
10603 	if (old_prog && link->prog != old_prog) {
10604 		err = -EPERM;
10605 		goto out_unlock;
10606 	}
10607 	old_prog = link->prog;
10608 	if (old_prog->type != new_prog->type ||
10609 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10610 		err = -EINVAL;
10611 		goto out_unlock;
10612 	}
10613 
10614 	if (old_prog == new_prog) {
10615 		/* no-op, don't disturb drivers */
10616 		bpf_prog_put(new_prog);
10617 		goto out_unlock;
10618 	}
10619 
10620 	netdev_lock_ops(xdp_link->dev);
10621 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10622 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10623 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10624 			      xdp_link->flags, new_prog);
10625 	netdev_unlock_ops(xdp_link->dev);
10626 	if (err)
10627 		goto out_unlock;
10628 
10629 	old_prog = xchg(&link->prog, new_prog);
10630 	bpf_prog_put(old_prog);
10631 
10632 out_unlock:
10633 	rtnl_unlock();
10634 	return err;
10635 }
10636 
10637 static const struct bpf_link_ops bpf_xdp_link_lops = {
10638 	.release = bpf_xdp_link_release,
10639 	.dealloc = bpf_xdp_link_dealloc,
10640 	.detach = bpf_xdp_link_detach,
10641 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10642 	.fill_link_info = bpf_xdp_link_fill_link_info,
10643 	.update_prog = bpf_xdp_link_update,
10644 };
10645 
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10646 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10647 {
10648 	struct net *net = current->nsproxy->net_ns;
10649 	struct bpf_link_primer link_primer;
10650 	struct netlink_ext_ack extack = {};
10651 	struct bpf_xdp_link *link;
10652 	struct net_device *dev;
10653 	int err, fd;
10654 
10655 	rtnl_lock();
10656 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10657 	if (!dev) {
10658 		rtnl_unlock();
10659 		return -EINVAL;
10660 	}
10661 
10662 	link = kzalloc_obj(*link, GFP_USER);
10663 	if (!link) {
10664 		err = -ENOMEM;
10665 		goto unlock;
10666 	}
10667 
10668 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10669 		      attr->link_create.attach_type);
10670 	link->dev = dev;
10671 	link->flags = attr->link_create.flags;
10672 
10673 	err = bpf_link_prime(&link->link, &link_primer);
10674 	if (err) {
10675 		kfree(link);
10676 		goto unlock;
10677 	}
10678 
10679 	netdev_lock_ops(dev);
10680 	err = dev_xdp_attach_link(dev, &extack, link);
10681 	netdev_unlock_ops(dev);
10682 	rtnl_unlock();
10683 
10684 	if (err) {
10685 		link->dev = NULL;
10686 		bpf_link_cleanup(&link_primer);
10687 		trace_bpf_xdp_link_attach_failed(extack._msg);
10688 		goto out_put_dev;
10689 	}
10690 
10691 	fd = bpf_link_settle(&link_primer);
10692 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10693 	dev_put(dev);
10694 	return fd;
10695 
10696 unlock:
10697 	rtnl_unlock();
10698 
10699 out_put_dev:
10700 	dev_put(dev);
10701 	return err;
10702 }
10703 
10704 /**
10705  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10706  *	@dev: device
10707  *	@extack: netlink extended ack
10708  *	@fd: new program fd or negative value to clear
10709  *	@expected_fd: old program fd that userspace expects to replace or clear
10710  *	@flags: xdp-related flags
10711  *
10712  *	Set or clear a bpf program for a device
10713  */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10714 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10715 		      int fd, int expected_fd, u32 flags)
10716 {
10717 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10718 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10719 	int err;
10720 
10721 	ASSERT_RTNL();
10722 
10723 	if (fd >= 0) {
10724 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10725 						 mode != XDP_MODE_SKB);
10726 		if (IS_ERR(new_prog))
10727 			return PTR_ERR(new_prog);
10728 	}
10729 
10730 	if (expected_fd >= 0) {
10731 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10732 						 mode != XDP_MODE_SKB);
10733 		if (IS_ERR(old_prog)) {
10734 			err = PTR_ERR(old_prog);
10735 			old_prog = NULL;
10736 			goto err_out;
10737 		}
10738 	}
10739 
10740 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10741 
10742 err_out:
10743 	if (err && new_prog)
10744 		bpf_prog_put(new_prog);
10745 	if (old_prog)
10746 		bpf_prog_put(old_prog);
10747 	return err;
10748 }
10749 
dev_get_min_mp_channel_count(const struct net_device * dev)10750 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10751 {
10752 	int i;
10753 
10754 	netdev_ops_assert_locked(dev);
10755 
10756 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10757 		if (dev->_rx[i].mp_params.mp_priv)
10758 			/* The channel count is the idx plus 1. */
10759 			return i + 1;
10760 
10761 	return 0;
10762 }
10763 
10764 /**
10765  * dev_index_reserve() - allocate an ifindex in a namespace
10766  * @net: the applicable net namespace
10767  * @ifindex: requested ifindex, pass %0 to get one allocated
10768  *
10769  * Allocate a ifindex for a new device. Caller must either use the ifindex
10770  * to store the device (via list_netdevice()) or call dev_index_release()
10771  * to give the index up.
10772  *
10773  * Return: a suitable unique value for a new device interface number or -errno.
10774  */
dev_index_reserve(struct net * net,u32 ifindex)10775 static int dev_index_reserve(struct net *net, u32 ifindex)
10776 {
10777 	int err;
10778 
10779 	if (ifindex > INT_MAX) {
10780 		DEBUG_NET_WARN_ON_ONCE(1);
10781 		return -EINVAL;
10782 	}
10783 
10784 	if (!ifindex)
10785 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10786 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10787 	else
10788 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10789 	if (err < 0)
10790 		return err;
10791 
10792 	return ifindex;
10793 }
10794 
dev_index_release(struct net * net,int ifindex)10795 static void dev_index_release(struct net *net, int ifindex)
10796 {
10797 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10798 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10799 }
10800 
from_cleanup_net(void)10801 static bool from_cleanup_net(void)
10802 {
10803 #ifdef CONFIG_NET_NS
10804 	return current == READ_ONCE(cleanup_net_task);
10805 #else
10806 	return false;
10807 #endif
10808 }
10809 
10810 /* Delayed registration/unregisteration */
10811 LIST_HEAD(net_todo_list);
10812 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10813 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10814 
net_set_todo(struct net_device * dev)10815 static void net_set_todo(struct net_device *dev)
10816 {
10817 	list_add_tail(&dev->todo_list, &net_todo_list);
10818 }
10819 
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10820 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10821 	struct net_device *upper, netdev_features_t features)
10822 {
10823 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10824 	netdev_features_t feature;
10825 	int feature_bit;
10826 
10827 	for_each_netdev_feature(upper_disables, feature_bit) {
10828 		feature = __NETIF_F_BIT(feature_bit);
10829 		if (!(upper->wanted_features & feature)
10830 		    && (features & feature)) {
10831 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10832 				   &feature, upper->name);
10833 			features &= ~feature;
10834 		}
10835 	}
10836 
10837 	return features;
10838 }
10839 
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10840 static void netdev_sync_lower_features(struct net_device *upper,
10841 	struct net_device *lower, netdev_features_t features)
10842 {
10843 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10844 	netdev_features_t feature;
10845 	int feature_bit;
10846 
10847 	for_each_netdev_feature(upper_disables, feature_bit) {
10848 		feature = __NETIF_F_BIT(feature_bit);
10849 		if (!(features & feature) && (lower->features & feature)) {
10850 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10851 				   &feature, lower->name);
10852 			netdev_lock_ops(lower);
10853 			lower->wanted_features &= ~feature;
10854 			__netdev_update_features(lower);
10855 
10856 			if (unlikely(lower->features & feature))
10857 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10858 					    &feature, lower->name);
10859 			else
10860 				netdev_features_change(lower);
10861 			netdev_unlock_ops(lower);
10862 		}
10863 	}
10864 }
10865 
netdev_has_ip_or_hw_csum(netdev_features_t features)10866 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10867 {
10868 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10869 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10870 	bool hw_csum = features & NETIF_F_HW_CSUM;
10871 
10872 	return ip_csum || hw_csum;
10873 }
10874 
netdev_fix_features(struct net_device * dev,netdev_features_t features)10875 static netdev_features_t netdev_fix_features(struct net_device *dev,
10876 	netdev_features_t features)
10877 {
10878 	/* Fix illegal checksum combinations */
10879 	if ((features & NETIF_F_HW_CSUM) &&
10880 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10881 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10882 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10883 	}
10884 
10885 	/* TSO requires that SG is present as well. */
10886 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10887 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10888 		features &= ~NETIF_F_ALL_TSO;
10889 	}
10890 
10891 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10892 					!(features & NETIF_F_IP_CSUM)) {
10893 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10894 		features &= ~NETIF_F_TSO;
10895 		features &= ~NETIF_F_TSO_ECN;
10896 	}
10897 
10898 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10899 					 !(features & NETIF_F_IPV6_CSUM)) {
10900 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10901 		features &= ~NETIF_F_TSO6;
10902 	}
10903 
10904 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10905 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10906 		features &= ~NETIF_F_TSO_MANGLEID;
10907 
10908 	/* TSO ECN requires that TSO is present as well. */
10909 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10910 		features &= ~NETIF_F_TSO_ECN;
10911 
10912 	/* Software GSO depends on SG. */
10913 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10914 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10915 		features &= ~NETIF_F_GSO;
10916 	}
10917 
10918 	/* GSO partial features require GSO partial be set */
10919 	if ((features & dev->gso_partial_features) &&
10920 	    !(features & NETIF_F_GSO_PARTIAL)) {
10921 		netdev_dbg(dev,
10922 			   "Dropping partially supported GSO features since no GSO partial.\n");
10923 		features &= ~dev->gso_partial_features;
10924 	}
10925 
10926 	if (!(features & NETIF_F_RXCSUM)) {
10927 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10928 		 * successfully merged by hardware must also have the
10929 		 * checksum verified by hardware.  If the user does not
10930 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10931 		 */
10932 		if (features & NETIF_F_GRO_HW) {
10933 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10934 			features &= ~NETIF_F_GRO_HW;
10935 		}
10936 	}
10937 
10938 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10939 	if (features & NETIF_F_RXFCS) {
10940 		if (features & NETIF_F_LRO) {
10941 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10942 			features &= ~NETIF_F_LRO;
10943 		}
10944 
10945 		if (features & NETIF_F_GRO_HW) {
10946 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10947 			features &= ~NETIF_F_GRO_HW;
10948 		}
10949 	}
10950 
10951 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10952 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10953 		features &= ~NETIF_F_LRO;
10954 	}
10955 
10956 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10957 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10958 		features &= ~NETIF_F_HW_TLS_TX;
10959 	}
10960 
10961 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10962 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10963 		features &= ~NETIF_F_HW_TLS_RX;
10964 	}
10965 
10966 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10967 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10968 		features &= ~NETIF_F_GSO_UDP_L4;
10969 	}
10970 
10971 	return features;
10972 }
10973 
__netdev_update_features(struct net_device * dev)10974 int __netdev_update_features(struct net_device *dev)
10975 {
10976 	struct net_device *upper, *lower;
10977 	netdev_features_t features;
10978 	struct list_head *iter;
10979 	int err = -1;
10980 
10981 	ASSERT_RTNL();
10982 	netdev_ops_assert_locked(dev);
10983 
10984 	features = netdev_get_wanted_features(dev);
10985 
10986 	if (dev->netdev_ops->ndo_fix_features)
10987 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10988 
10989 	/* driver might be less strict about feature dependencies */
10990 	features = netdev_fix_features(dev, features);
10991 
10992 	/* some features can't be enabled if they're off on an upper device */
10993 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10994 		features = netdev_sync_upper_features(dev, upper, features);
10995 
10996 	if (dev->features == features)
10997 		goto sync_lower;
10998 
10999 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
11000 		&dev->features, &features);
11001 
11002 	if (dev->netdev_ops->ndo_set_features)
11003 		err = dev->netdev_ops->ndo_set_features(dev, features);
11004 	else
11005 		err = 0;
11006 
11007 	if (unlikely(err < 0)) {
11008 		netdev_err(dev,
11009 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
11010 			err, &features, &dev->features);
11011 		/* return non-0 since some features might have changed and
11012 		 * it's better to fire a spurious notification than miss it
11013 		 */
11014 		return -1;
11015 	}
11016 
11017 sync_lower:
11018 	/* some features must be disabled on lower devices when disabled
11019 	 * on an upper device (think: bonding master or bridge)
11020 	 */
11021 	netdev_for_each_lower_dev(dev, lower, iter)
11022 		netdev_sync_lower_features(dev, lower, features);
11023 
11024 	if (!err) {
11025 		netdev_features_t diff = features ^ dev->features;
11026 
11027 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
11028 			/* udp_tunnel_{get,drop}_rx_info both need
11029 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
11030 			 * device, or they won't do anything.
11031 			 * Thus we need to update dev->features
11032 			 * *before* calling udp_tunnel_get_rx_info,
11033 			 * but *after* calling udp_tunnel_drop_rx_info.
11034 			 */
11035 			udp_tunnel_nic_lock(dev);
11036 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
11037 				dev->features = features;
11038 				udp_tunnel_get_rx_info(dev);
11039 			} else {
11040 				udp_tunnel_drop_rx_info(dev);
11041 			}
11042 			udp_tunnel_nic_unlock(dev);
11043 		}
11044 
11045 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
11046 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
11047 				dev->features = features;
11048 				err |= vlan_get_rx_ctag_filter_info(dev);
11049 			} else {
11050 				vlan_drop_rx_ctag_filter_info(dev);
11051 			}
11052 		}
11053 
11054 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
11055 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
11056 				dev->features = features;
11057 				err |= vlan_get_rx_stag_filter_info(dev);
11058 			} else {
11059 				vlan_drop_rx_stag_filter_info(dev);
11060 			}
11061 		}
11062 
11063 		dev->features = features;
11064 	}
11065 
11066 	return err < 0 ? 0 : 1;
11067 }
11068 
11069 /**
11070  *	netdev_update_features - recalculate device features
11071  *	@dev: the device to check
11072  *
11073  *	Recalculate dev->features set and send notifications if it
11074  *	has changed. Should be called after driver or hardware dependent
11075  *	conditions might have changed that influence the features.
11076  */
netdev_update_features(struct net_device * dev)11077 void netdev_update_features(struct net_device *dev)
11078 {
11079 	if (__netdev_update_features(dev))
11080 		netdev_features_change(dev);
11081 }
11082 EXPORT_SYMBOL(netdev_update_features);
11083 
11084 /**
11085  *	netdev_change_features - recalculate device features
11086  *	@dev: the device to check
11087  *
11088  *	Recalculate dev->features set and send notifications even
11089  *	if they have not changed. Should be called instead of
11090  *	netdev_update_features() if also dev->vlan_features might
11091  *	have changed to allow the changes to be propagated to stacked
11092  *	VLAN devices.
11093  */
netdev_change_features(struct net_device * dev)11094 void netdev_change_features(struct net_device *dev)
11095 {
11096 	__netdev_update_features(dev);
11097 	netdev_features_change(dev);
11098 }
11099 EXPORT_SYMBOL(netdev_change_features);
11100 
11101 /**
11102  *	netif_stacked_transfer_operstate -	transfer operstate
11103  *	@rootdev: the root or lower level device to transfer state from
11104  *	@dev: the device to transfer operstate to
11105  *
11106  *	Transfer operational state from root to device. This is normally
11107  *	called when a stacking relationship exists between the root
11108  *	device and the device(a leaf device).
11109  */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)11110 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
11111 					struct net_device *dev)
11112 {
11113 	if (rootdev->operstate == IF_OPER_DORMANT)
11114 		netif_dormant_on(dev);
11115 	else
11116 		netif_dormant_off(dev);
11117 
11118 	if (rootdev->operstate == IF_OPER_TESTING)
11119 		netif_testing_on(dev);
11120 	else
11121 		netif_testing_off(dev);
11122 
11123 	if (netif_carrier_ok(rootdev))
11124 		netif_carrier_on(dev);
11125 	else
11126 		netif_carrier_off(dev);
11127 }
11128 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
11129 
netif_alloc_rx_queues(struct net_device * dev)11130 static int netif_alloc_rx_queues(struct net_device *dev)
11131 {
11132 	unsigned int i, count = dev->num_rx_queues;
11133 	struct netdev_rx_queue *rx;
11134 	size_t sz = count * sizeof(*rx);
11135 	int err = 0;
11136 
11137 	BUG_ON(count < 1);
11138 
11139 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11140 	if (!rx)
11141 		return -ENOMEM;
11142 
11143 	dev->_rx = rx;
11144 
11145 	for (i = 0; i < count; i++) {
11146 		rx[i].dev = dev;
11147 
11148 		/* XDP RX-queue setup */
11149 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
11150 		if (err < 0)
11151 			goto err_rxq_info;
11152 	}
11153 	return 0;
11154 
11155 err_rxq_info:
11156 	/* Rollback successful reg's and free other resources */
11157 	while (i--)
11158 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
11159 	kvfree(dev->_rx);
11160 	dev->_rx = NULL;
11161 	return err;
11162 }
11163 
netif_free_rx_queues(struct net_device * dev)11164 static void netif_free_rx_queues(struct net_device *dev)
11165 {
11166 	unsigned int i, count = dev->num_rx_queues;
11167 
11168 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
11169 	if (!dev->_rx)
11170 		return;
11171 
11172 	for (i = 0; i < count; i++)
11173 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
11174 
11175 	kvfree(dev->_rx);
11176 }
11177 
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)11178 static void netdev_init_one_queue(struct net_device *dev,
11179 				  struct netdev_queue *queue, void *_unused)
11180 {
11181 	/* Initialize queue lock */
11182 	spin_lock_init(&queue->_xmit_lock);
11183 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
11184 	queue->xmit_lock_owner = -1;
11185 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
11186 	queue->dev = dev;
11187 #ifdef CONFIG_BQL
11188 	dql_init(&queue->dql, HZ);
11189 #endif
11190 }
11191 
netif_free_tx_queues(struct net_device * dev)11192 static void netif_free_tx_queues(struct net_device *dev)
11193 {
11194 	kvfree(dev->_tx);
11195 }
11196 
netif_alloc_netdev_queues(struct net_device * dev)11197 static int netif_alloc_netdev_queues(struct net_device *dev)
11198 {
11199 	unsigned int count = dev->num_tx_queues;
11200 	struct netdev_queue *tx;
11201 	size_t sz = count * sizeof(*tx);
11202 
11203 	if (count < 1 || count > 0xffff)
11204 		return -EINVAL;
11205 
11206 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11207 	if (!tx)
11208 		return -ENOMEM;
11209 
11210 	dev->_tx = tx;
11211 
11212 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
11213 	spin_lock_init(&dev->tx_global_lock);
11214 
11215 	return 0;
11216 }
11217 
netif_tx_stop_all_queues(struct net_device * dev)11218 void netif_tx_stop_all_queues(struct net_device *dev)
11219 {
11220 	unsigned int i;
11221 
11222 	for (i = 0; i < dev->num_tx_queues; i++) {
11223 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11224 
11225 		netif_tx_stop_queue(txq);
11226 	}
11227 }
11228 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11229 
netdev_do_alloc_pcpu_stats(struct net_device * dev)11230 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11231 {
11232 	void __percpu *v;
11233 
11234 	/* Drivers implementing ndo_get_peer_dev must support tstat
11235 	 * accounting, so that skb_do_redirect() can bump the dev's
11236 	 * RX stats upon network namespace switch.
11237 	 */
11238 	if (dev->netdev_ops->ndo_get_peer_dev &&
11239 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11240 		return -EOPNOTSUPP;
11241 
11242 	switch (dev->pcpu_stat_type) {
11243 	case NETDEV_PCPU_STAT_NONE:
11244 		return 0;
11245 	case NETDEV_PCPU_STAT_LSTATS:
11246 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11247 		break;
11248 	case NETDEV_PCPU_STAT_TSTATS:
11249 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11250 		break;
11251 	case NETDEV_PCPU_STAT_DSTATS:
11252 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11253 		break;
11254 	default:
11255 		return -EINVAL;
11256 	}
11257 
11258 	return v ? 0 : -ENOMEM;
11259 }
11260 
netdev_do_free_pcpu_stats(struct net_device * dev)11261 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11262 {
11263 	switch (dev->pcpu_stat_type) {
11264 	case NETDEV_PCPU_STAT_NONE:
11265 		return;
11266 	case NETDEV_PCPU_STAT_LSTATS:
11267 		free_percpu(dev->lstats);
11268 		break;
11269 	case NETDEV_PCPU_STAT_TSTATS:
11270 		free_percpu(dev->tstats);
11271 		break;
11272 	case NETDEV_PCPU_STAT_DSTATS:
11273 		free_percpu(dev->dstats);
11274 		break;
11275 	}
11276 }
11277 
netdev_free_phy_link_topology(struct net_device * dev)11278 static void netdev_free_phy_link_topology(struct net_device *dev)
11279 {
11280 	struct phy_link_topology *topo = dev->link_topo;
11281 
11282 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11283 		xa_destroy(&topo->phys);
11284 		kfree(topo);
11285 		dev->link_topo = NULL;
11286 	}
11287 }
11288 
11289 /**
11290  * register_netdevice() - register a network device
11291  * @dev: device to register
11292  *
11293  * Take a prepared network device structure and make it externally accessible.
11294  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11295  * Callers must hold the rtnl lock - you may want register_netdev()
11296  * instead of this.
11297  */
register_netdevice(struct net_device * dev)11298 int register_netdevice(struct net_device *dev)
11299 {
11300 	int ret;
11301 	struct net *net = dev_net(dev);
11302 
11303 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11304 		     NETDEV_FEATURE_COUNT);
11305 	BUG_ON(dev_boot_phase);
11306 	ASSERT_RTNL();
11307 
11308 	might_sleep();
11309 
11310 	/* When net_device's are persistent, this will be fatal. */
11311 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11312 	BUG_ON(!net);
11313 
11314 	ret = ethtool_check_ops(dev->ethtool_ops);
11315 	if (ret)
11316 		return ret;
11317 
11318 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
11319 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11320 	mutex_init(&dev->ethtool->rss_lock);
11321 
11322 	spin_lock_init(&dev->addr_list_lock);
11323 	netdev_set_addr_lockdep_class(dev);
11324 
11325 	ret = dev_get_valid_name(net, dev, dev->name);
11326 	if (ret < 0)
11327 		goto out;
11328 
11329 	ret = -ENOMEM;
11330 	dev->name_node = netdev_name_node_head_alloc(dev);
11331 	if (!dev->name_node)
11332 		goto out;
11333 
11334 	/* Init, if this function is available */
11335 	if (dev->netdev_ops->ndo_init) {
11336 		ret = dev->netdev_ops->ndo_init(dev);
11337 		if (ret) {
11338 			if (ret > 0)
11339 				ret = -EIO;
11340 			goto err_free_name;
11341 		}
11342 	}
11343 
11344 	if (((dev->hw_features | dev->features) &
11345 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
11346 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11347 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11348 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11349 		ret = -EINVAL;
11350 		goto err_uninit;
11351 	}
11352 
11353 	ret = netdev_do_alloc_pcpu_stats(dev);
11354 	if (ret)
11355 		goto err_uninit;
11356 
11357 	ret = dev_index_reserve(net, dev->ifindex);
11358 	if (ret < 0)
11359 		goto err_free_pcpu;
11360 	dev->ifindex = ret;
11361 
11362 	/* Transfer changeable features to wanted_features and enable
11363 	 * software offloads (GSO and GRO).
11364 	 */
11365 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11366 	dev->features |= NETIF_F_SOFT_FEATURES;
11367 
11368 	if (dev->udp_tunnel_nic_info) {
11369 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11370 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11371 	}
11372 
11373 	dev->wanted_features = dev->features & dev->hw_features;
11374 
11375 	if (!(dev->flags & IFF_LOOPBACK))
11376 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11377 
11378 	/* If IPv4 TCP segmentation offload is supported we should also
11379 	 * allow the device to enable segmenting the frame with the option
11380 	 * of ignoring a static IP ID value.  This doesn't enable the
11381 	 * feature itself but allows the user to enable it later.
11382 	 */
11383 	if (dev->hw_features & NETIF_F_TSO)
11384 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11385 	if (dev->vlan_features & NETIF_F_TSO)
11386 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11387 	if (dev->mpls_features & NETIF_F_TSO)
11388 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11389 	if (dev->hw_enc_features & NETIF_F_TSO)
11390 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11391 
11392 	/* TSO_MANGLEID belongs in mangleid_features by definition */
11393 	dev->mangleid_features |= NETIF_F_TSO_MANGLEID;
11394 
11395 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11396 	 */
11397 	dev->vlan_features |= NETIF_F_HIGHDMA;
11398 
11399 	/* Make NETIF_F_SG inheritable to tunnel devices.
11400 	 */
11401 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11402 
11403 	/* Make NETIF_F_SG inheritable to MPLS.
11404 	 */
11405 	dev->mpls_features |= NETIF_F_SG;
11406 
11407 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11408 	ret = notifier_to_errno(ret);
11409 	if (ret)
11410 		goto err_ifindex_release;
11411 
11412 	ret = netdev_register_kobject(dev);
11413 
11414 	netdev_lock(dev);
11415 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11416 	netdev_unlock(dev);
11417 
11418 	if (ret)
11419 		goto err_uninit_notify;
11420 
11421 	netdev_lock_ops(dev);
11422 	__netdev_update_features(dev);
11423 	netdev_unlock_ops(dev);
11424 
11425 	/*
11426 	 *	Default initial state at registry is that the
11427 	 *	device is present.
11428 	 */
11429 
11430 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11431 
11432 	linkwatch_init_dev(dev);
11433 
11434 	dev_init_scheduler(dev);
11435 
11436 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11437 	list_netdevice(dev);
11438 
11439 	add_device_randomness(dev->dev_addr, dev->addr_len);
11440 
11441 	/* If the device has permanent device address, driver should
11442 	 * set dev_addr and also addr_assign_type should be set to
11443 	 * NET_ADDR_PERM (default value).
11444 	 */
11445 	if (dev->addr_assign_type == NET_ADDR_PERM)
11446 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11447 
11448 	/* Notify protocols, that a new device appeared. */
11449 	netdev_lock_ops(dev);
11450 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11451 	netdev_unlock_ops(dev);
11452 	ret = notifier_to_errno(ret);
11453 	if (ret) {
11454 		/* Expect explicit free_netdev() on failure */
11455 		dev->needs_free_netdev = false;
11456 		unregister_netdevice_queue(dev, NULL);
11457 		goto out;
11458 	}
11459 	/*
11460 	 *	Prevent userspace races by waiting until the network
11461 	 *	device is fully setup before sending notifications.
11462 	 */
11463 	if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11464 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11465 
11466 out:
11467 	return ret;
11468 
11469 err_uninit_notify:
11470 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11471 err_ifindex_release:
11472 	dev_index_release(net, dev->ifindex);
11473 err_free_pcpu:
11474 	netdev_do_free_pcpu_stats(dev);
11475 err_uninit:
11476 	if (dev->netdev_ops->ndo_uninit)
11477 		dev->netdev_ops->ndo_uninit(dev);
11478 	if (dev->priv_destructor)
11479 		dev->priv_destructor(dev);
11480 err_free_name:
11481 	netdev_name_node_free(dev->name_node);
11482 	goto out;
11483 }
11484 EXPORT_SYMBOL(register_netdevice);
11485 
11486 /* Initialize the core of a dummy net device.
11487  * The setup steps dummy netdevs need which normal netdevs get by going
11488  * through register_netdevice().
11489  */
init_dummy_netdev(struct net_device * dev)11490 static void init_dummy_netdev(struct net_device *dev)
11491 {
11492 	/* make sure we BUG if trying to hit standard
11493 	 * register/unregister code path
11494 	 */
11495 	dev->reg_state = NETREG_DUMMY;
11496 
11497 	/* a dummy interface is started by default */
11498 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11499 	set_bit(__LINK_STATE_START, &dev->state);
11500 
11501 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11502 	 * because users of this 'device' dont need to change
11503 	 * its refcount.
11504 	 */
11505 }
11506 
11507 /**
11508  *	register_netdev	- register a network device
11509  *	@dev: device to register
11510  *
11511  *	Take a completed network device structure and add it to the kernel
11512  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11513  *	chain. 0 is returned on success. A negative errno code is returned
11514  *	on a failure to set up the device, or if the name is a duplicate.
11515  *
11516  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11517  *	and expands the device name if you passed a format string to
11518  *	alloc_netdev.
11519  */
register_netdev(struct net_device * dev)11520 int register_netdev(struct net_device *dev)
11521 {
11522 	struct net *net = dev_net(dev);
11523 	int err;
11524 
11525 	if (rtnl_net_lock_killable(net))
11526 		return -EINTR;
11527 
11528 	err = register_netdevice(dev);
11529 
11530 	rtnl_net_unlock(net);
11531 
11532 	return err;
11533 }
11534 EXPORT_SYMBOL(register_netdev);
11535 
netdev_refcnt_read(const struct net_device * dev)11536 int netdev_refcnt_read(const struct net_device *dev)
11537 {
11538 #ifdef CONFIG_PCPU_DEV_REFCNT
11539 	int i, refcnt = 0;
11540 
11541 	for_each_possible_cpu(i)
11542 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11543 	return refcnt;
11544 #else
11545 	return refcount_read(&dev->dev_refcnt);
11546 #endif
11547 }
11548 EXPORT_SYMBOL(netdev_refcnt_read);
11549 
11550 int netdev_unregister_timeout_secs __read_mostly = 10;
11551 
11552 #define WAIT_REFS_MIN_MSECS 1
11553 #define WAIT_REFS_MAX_MSECS 250
11554 /**
11555  * netdev_wait_allrefs_any - wait until all references are gone.
11556  * @list: list of net_devices to wait on
11557  *
11558  * This is called when unregistering network devices.
11559  *
11560  * Any protocol or device that holds a reference should register
11561  * for netdevice notification, and cleanup and put back the
11562  * reference if they receive an UNREGISTER event.
11563  * We can get stuck here if buggy protocols don't correctly
11564  * call dev_put.
11565  */
netdev_wait_allrefs_any(struct list_head * list)11566 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11567 {
11568 	unsigned long rebroadcast_time, warning_time;
11569 	struct net_device *dev;
11570 	int wait = 0;
11571 
11572 	rebroadcast_time = warning_time = jiffies;
11573 
11574 	list_for_each_entry(dev, list, todo_list)
11575 		if (netdev_refcnt_read(dev) == 1)
11576 			return dev;
11577 
11578 	while (true) {
11579 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11580 			rtnl_lock();
11581 
11582 			/* Rebroadcast unregister notification */
11583 			list_for_each_entry(dev, list, todo_list)
11584 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11585 
11586 			__rtnl_unlock();
11587 			rcu_barrier();
11588 			rtnl_lock();
11589 
11590 			list_for_each_entry(dev, list, todo_list)
11591 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11592 					     &dev->state)) {
11593 					/* We must not have linkwatch events
11594 					 * pending on unregister. If this
11595 					 * happens, we simply run the queue
11596 					 * unscheduled, resulting in a noop
11597 					 * for this device.
11598 					 */
11599 					linkwatch_run_queue();
11600 					break;
11601 				}
11602 
11603 			__rtnl_unlock();
11604 
11605 			rebroadcast_time = jiffies;
11606 		}
11607 
11608 		rcu_barrier();
11609 
11610 		if (!wait) {
11611 			wait = WAIT_REFS_MIN_MSECS;
11612 		} else {
11613 			msleep(wait);
11614 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11615 		}
11616 
11617 		list_for_each_entry(dev, list, todo_list)
11618 			if (netdev_refcnt_read(dev) == 1)
11619 				return dev;
11620 
11621 		if (time_after(jiffies, warning_time +
11622 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11623 			list_for_each_entry(dev, list, todo_list) {
11624 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11625 					 dev->name, netdev_refcnt_read(dev));
11626 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11627 			}
11628 
11629 			warning_time = jiffies;
11630 		}
11631 	}
11632 }
11633 
11634 /* The sequence is:
11635  *
11636  *	rtnl_lock();
11637  *	...
11638  *	register_netdevice(x1);
11639  *	register_netdevice(x2);
11640  *	...
11641  *	unregister_netdevice(y1);
11642  *	unregister_netdevice(y2);
11643  *      ...
11644  *	rtnl_unlock();
11645  *	free_netdev(y1);
11646  *	free_netdev(y2);
11647  *
11648  * We are invoked by rtnl_unlock().
11649  * This allows us to deal with problems:
11650  * 1) We can delete sysfs objects which invoke hotplug
11651  *    without deadlocking with linkwatch via keventd.
11652  * 2) Since we run with the RTNL semaphore not held, we can sleep
11653  *    safely in order to wait for the netdev refcnt to drop to zero.
11654  *
11655  * We must not return until all unregister events added during
11656  * the interval the lock was held have been completed.
11657  */
netdev_run_todo(void)11658 void netdev_run_todo(void)
11659 {
11660 	struct net_device *dev, *tmp;
11661 	struct list_head list;
11662 	int cnt;
11663 #ifdef CONFIG_LOCKDEP
11664 	struct list_head unlink_list;
11665 
11666 	list_replace_init(&net_unlink_list, &unlink_list);
11667 
11668 	while (!list_empty(&unlink_list)) {
11669 		dev = list_first_entry(&unlink_list, struct net_device,
11670 				       unlink_list);
11671 		list_del_init(&dev->unlink_list);
11672 		dev->nested_level = dev->lower_level - 1;
11673 	}
11674 #endif
11675 
11676 	/* Snapshot list, allow later requests */
11677 	list_replace_init(&net_todo_list, &list);
11678 
11679 	__rtnl_unlock();
11680 
11681 	/* Wait for rcu callbacks to finish before next phase */
11682 	if (!list_empty(&list))
11683 		rcu_barrier();
11684 
11685 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11686 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11687 			netdev_WARN(dev, "run_todo but not unregistering\n");
11688 			list_del(&dev->todo_list);
11689 			continue;
11690 		}
11691 
11692 		netdev_lock(dev);
11693 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11694 		netdev_unlock(dev);
11695 		linkwatch_sync_dev(dev);
11696 	}
11697 
11698 	cnt = 0;
11699 	while (!list_empty(&list)) {
11700 		dev = netdev_wait_allrefs_any(&list);
11701 		list_del(&dev->todo_list);
11702 
11703 		/* paranoia */
11704 		BUG_ON(netdev_refcnt_read(dev) != 1);
11705 		BUG_ON(!list_empty(&dev->ptype_all));
11706 		BUG_ON(!list_empty(&dev->ptype_specific));
11707 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11708 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11709 
11710 		netdev_do_free_pcpu_stats(dev);
11711 		if (dev->priv_destructor)
11712 			dev->priv_destructor(dev);
11713 		if (dev->needs_free_netdev)
11714 			free_netdev(dev);
11715 
11716 		cnt++;
11717 
11718 		/* Free network device */
11719 		kobject_put(&dev->dev.kobj);
11720 	}
11721 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11722 		wake_up(&netdev_unregistering_wq);
11723 }
11724 
11725 /* Collate per-cpu network dstats statistics
11726  *
11727  * Read per-cpu network statistics from dev->dstats and populate the related
11728  * fields in @s.
11729  */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11730 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11731 			     const struct pcpu_dstats __percpu *dstats)
11732 {
11733 	int cpu;
11734 
11735 	for_each_possible_cpu(cpu) {
11736 		u64 rx_packets, rx_bytes, rx_drops;
11737 		u64 tx_packets, tx_bytes, tx_drops;
11738 		const struct pcpu_dstats *stats;
11739 		unsigned int start;
11740 
11741 		stats = per_cpu_ptr(dstats, cpu);
11742 		do {
11743 			start = u64_stats_fetch_begin(&stats->syncp);
11744 			rx_packets = u64_stats_read(&stats->rx_packets);
11745 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11746 			rx_drops   = u64_stats_read(&stats->rx_drops);
11747 			tx_packets = u64_stats_read(&stats->tx_packets);
11748 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11749 			tx_drops   = u64_stats_read(&stats->tx_drops);
11750 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11751 
11752 		s->rx_packets += rx_packets;
11753 		s->rx_bytes   += rx_bytes;
11754 		s->rx_dropped += rx_drops;
11755 		s->tx_packets += tx_packets;
11756 		s->tx_bytes   += tx_bytes;
11757 		s->tx_dropped += tx_drops;
11758 	}
11759 }
11760 
11761 /* ndo_get_stats64 implementation for dtstats-based accounting.
11762  *
11763  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11764  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11765  */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11766 static void dev_get_dstats64(const struct net_device *dev,
11767 			     struct rtnl_link_stats64 *s)
11768 {
11769 	netdev_stats_to_stats64(s, &dev->stats);
11770 	dev_fetch_dstats(s, dev->dstats);
11771 }
11772 
11773 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11774  * all the same fields in the same order as net_device_stats, with only
11775  * the type differing, but rtnl_link_stats64 may have additional fields
11776  * at the end for newer counters.
11777  */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11778 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11779 			     const struct net_device_stats *netdev_stats)
11780 {
11781 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11782 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11783 	u64 *dst = (u64 *)stats64;
11784 
11785 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11786 	for (i = 0; i < n; i++)
11787 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11788 	/* zero out counters that only exist in rtnl_link_stats64 */
11789 	memset((char *)stats64 + n * sizeof(u64), 0,
11790 	       sizeof(*stats64) - n * sizeof(u64));
11791 }
11792 EXPORT_SYMBOL(netdev_stats_to_stats64);
11793 
netdev_core_stats_alloc(struct net_device * dev)11794 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11795 		struct net_device *dev)
11796 {
11797 	struct net_device_core_stats __percpu *p;
11798 
11799 	p = alloc_percpu_gfp(struct net_device_core_stats,
11800 			     GFP_ATOMIC | __GFP_NOWARN);
11801 
11802 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11803 		free_percpu(p);
11804 
11805 	/* This READ_ONCE() pairs with the cmpxchg() above */
11806 	return READ_ONCE(dev->core_stats);
11807 }
11808 
netdev_core_stats_inc(struct net_device * dev,u32 offset)11809 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11810 {
11811 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11812 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11813 	unsigned long __percpu *field;
11814 
11815 	if (unlikely(!p)) {
11816 		p = netdev_core_stats_alloc(dev);
11817 		if (!p)
11818 			return;
11819 	}
11820 
11821 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11822 	this_cpu_inc(*field);
11823 }
11824 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11825 
11826 /**
11827  *	dev_get_stats	- get network device statistics
11828  *	@dev: device to get statistics from
11829  *	@storage: place to store stats
11830  *
11831  *	Get network statistics from device. Return @storage.
11832  *	The device driver may provide its own method by setting
11833  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11834  *	otherwise the internal statistics structure is used.
11835  */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11836 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11837 					struct rtnl_link_stats64 *storage)
11838 {
11839 	const struct net_device_ops *ops = dev->netdev_ops;
11840 	const struct net_device_core_stats __percpu *p;
11841 
11842 	/*
11843 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11844 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11845 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11846 	 */
11847 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11848 		     offsetof(struct pcpu_dstats, rx_bytes));
11849 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11850 		     offsetof(struct pcpu_dstats, rx_packets));
11851 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11852 		     offsetof(struct pcpu_dstats, tx_bytes));
11853 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11854 		     offsetof(struct pcpu_dstats, tx_packets));
11855 
11856 	if (ops->ndo_get_stats64) {
11857 		memset(storage, 0, sizeof(*storage));
11858 		ops->ndo_get_stats64(dev, storage);
11859 	} else if (ops->ndo_get_stats) {
11860 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11861 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11862 		dev_get_tstats64(dev, storage);
11863 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11864 		dev_get_dstats64(dev, storage);
11865 	} else {
11866 		netdev_stats_to_stats64(storage, &dev->stats);
11867 	}
11868 
11869 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11870 	p = READ_ONCE(dev->core_stats);
11871 	if (p) {
11872 		const struct net_device_core_stats *core_stats;
11873 		int i;
11874 
11875 		for_each_possible_cpu(i) {
11876 			core_stats = per_cpu_ptr(p, i);
11877 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11878 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11879 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11880 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11881 		}
11882 	}
11883 	return storage;
11884 }
11885 EXPORT_SYMBOL(dev_get_stats);
11886 
11887 /**
11888  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11889  *	@s: place to store stats
11890  *	@netstats: per-cpu network stats to read from
11891  *
11892  *	Read per-cpu network statistics and populate the related fields in @s.
11893  */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11894 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11895 			   const struct pcpu_sw_netstats __percpu *netstats)
11896 {
11897 	int cpu;
11898 
11899 	for_each_possible_cpu(cpu) {
11900 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11901 		const struct pcpu_sw_netstats *stats;
11902 		unsigned int start;
11903 
11904 		stats = per_cpu_ptr(netstats, cpu);
11905 		do {
11906 			start = u64_stats_fetch_begin(&stats->syncp);
11907 			rx_packets = u64_stats_read(&stats->rx_packets);
11908 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11909 			tx_packets = u64_stats_read(&stats->tx_packets);
11910 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11911 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11912 
11913 		s->rx_packets += rx_packets;
11914 		s->rx_bytes   += rx_bytes;
11915 		s->tx_packets += tx_packets;
11916 		s->tx_bytes   += tx_bytes;
11917 	}
11918 }
11919 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11920 
11921 /**
11922  *	dev_get_tstats64 - ndo_get_stats64 implementation
11923  *	@dev: device to get statistics from
11924  *	@s: place to store stats
11925  *
11926  *	Populate @s from dev->stats and dev->tstats. Can be used as
11927  *	ndo_get_stats64() callback.
11928  */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11929 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11930 {
11931 	netdev_stats_to_stats64(s, &dev->stats);
11932 	dev_fetch_sw_netstats(s, dev->tstats);
11933 }
11934 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11935 
dev_ingress_queue_create(struct net_device * dev)11936 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11937 {
11938 	struct netdev_queue *queue = dev_ingress_queue(dev);
11939 
11940 #ifdef CONFIG_NET_CLS_ACT
11941 	if (queue)
11942 		return queue;
11943 	queue = kzalloc_obj(*queue, GFP_KERNEL);
11944 	if (!queue)
11945 		return NULL;
11946 	netdev_init_one_queue(dev, queue, NULL);
11947 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11948 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11949 	rcu_assign_pointer(dev->ingress_queue, queue);
11950 #endif
11951 	return queue;
11952 }
11953 
11954 static const struct ethtool_ops default_ethtool_ops;
11955 
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11956 void netdev_set_default_ethtool_ops(struct net_device *dev,
11957 				    const struct ethtool_ops *ops)
11958 {
11959 	if (dev->ethtool_ops == &default_ethtool_ops)
11960 		dev->ethtool_ops = ops;
11961 }
11962 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11963 
11964 /**
11965  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11966  * @dev: netdev to enable the IRQ coalescing on
11967  *
11968  * Sets a conservative default for SW IRQ coalescing. Users can use
11969  * sysfs attributes to override the default values.
11970  */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11971 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11972 {
11973 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11974 
11975 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11976 		netdev_set_gro_flush_timeout(dev, 20000);
11977 		netdev_set_defer_hard_irqs(dev, 1);
11978 	}
11979 }
11980 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11981 
11982 /**
11983  * alloc_netdev_mqs - allocate network device
11984  * @sizeof_priv: size of private data to allocate space for
11985  * @name: device name format string
11986  * @name_assign_type: origin of device name
11987  * @setup: callback to initialize device
11988  * @txqs: the number of TX subqueues to allocate
11989  * @rxqs: the number of RX subqueues to allocate
11990  *
11991  * Allocates a struct net_device with private data area for driver use
11992  * and performs basic initialization.  Also allocates subqueue structs
11993  * for each queue on the device.
11994  */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11995 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11996 		unsigned char name_assign_type,
11997 		void (*setup)(struct net_device *),
11998 		unsigned int txqs, unsigned int rxqs)
11999 {
12000 	struct net_device *dev;
12001 	size_t napi_config_sz;
12002 	unsigned int maxqs;
12003 
12004 	BUG_ON(strlen(name) >= sizeof(dev->name));
12005 
12006 	if (txqs < 1) {
12007 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
12008 		return NULL;
12009 	}
12010 
12011 	if (rxqs < 1) {
12012 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
12013 		return NULL;
12014 	}
12015 
12016 	maxqs = max(txqs, rxqs);
12017 
12018 	dev = kvzalloc_flex(*dev, priv, sizeof_priv,
12019 			    GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
12020 	if (!dev)
12021 		return NULL;
12022 
12023 	dev->priv_len = sizeof_priv;
12024 
12025 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
12026 #ifdef CONFIG_PCPU_DEV_REFCNT
12027 	dev->pcpu_refcnt = alloc_percpu(int);
12028 	if (!dev->pcpu_refcnt)
12029 		goto free_dev;
12030 	__dev_hold(dev);
12031 #else
12032 	refcount_set(&dev->dev_refcnt, 1);
12033 #endif
12034 
12035 	if (dev_addr_init(dev))
12036 		goto free_pcpu;
12037 
12038 	dev_mc_init(dev);
12039 	dev_uc_init(dev);
12040 
12041 	dev_net_set(dev, &init_net);
12042 
12043 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
12044 	dev->xdp_zc_max_segs = 1;
12045 	dev->gso_max_segs = GSO_MAX_SEGS;
12046 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
12047 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
12048 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
12049 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
12050 	dev->tso_max_segs = TSO_MAX_SEGS;
12051 	dev->upper_level = 1;
12052 	dev->lower_level = 1;
12053 #ifdef CONFIG_LOCKDEP
12054 	dev->nested_level = 0;
12055 	INIT_LIST_HEAD(&dev->unlink_list);
12056 #endif
12057 
12058 	INIT_LIST_HEAD(&dev->napi_list);
12059 	INIT_LIST_HEAD(&dev->unreg_list);
12060 	INIT_LIST_HEAD(&dev->close_list);
12061 	INIT_LIST_HEAD(&dev->link_watch_list);
12062 	INIT_LIST_HEAD(&dev->adj_list.upper);
12063 	INIT_LIST_HEAD(&dev->adj_list.lower);
12064 	INIT_LIST_HEAD(&dev->ptype_all);
12065 	INIT_LIST_HEAD(&dev->ptype_specific);
12066 	INIT_LIST_HEAD(&dev->net_notifier_list);
12067 #ifdef CONFIG_NET_SCHED
12068 	hash_init(dev->qdisc_hash);
12069 #endif
12070 
12071 	mutex_init(&dev->lock);
12072 
12073 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12074 	setup(dev);
12075 
12076 	if (!dev->tx_queue_len) {
12077 		dev->priv_flags |= IFF_NO_QUEUE;
12078 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
12079 	}
12080 
12081 	dev->num_tx_queues = txqs;
12082 	dev->real_num_tx_queues = txqs;
12083 	if (netif_alloc_netdev_queues(dev))
12084 		goto free_all;
12085 
12086 	dev->num_rx_queues = rxqs;
12087 	dev->real_num_rx_queues = rxqs;
12088 	if (netif_alloc_rx_queues(dev))
12089 		goto free_all;
12090 	dev->ethtool = kzalloc_obj(*dev->ethtool, GFP_KERNEL_ACCOUNT);
12091 	if (!dev->ethtool)
12092 		goto free_all;
12093 
12094 	dev->cfg = kzalloc_obj(*dev->cfg, GFP_KERNEL_ACCOUNT);
12095 	if (!dev->cfg)
12096 		goto free_all;
12097 	dev->cfg_pending = dev->cfg;
12098 
12099 	dev->num_napi_configs = maxqs;
12100 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
12101 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
12102 	if (!dev->napi_config)
12103 		goto free_all;
12104 
12105 	strscpy(dev->name, name);
12106 	dev->name_assign_type = name_assign_type;
12107 	dev->group = INIT_NETDEV_GROUP;
12108 	if (!dev->ethtool_ops)
12109 		dev->ethtool_ops = &default_ethtool_ops;
12110 
12111 	nf_hook_netdev_init(dev);
12112 
12113 	return dev;
12114 
12115 free_all:
12116 	free_netdev(dev);
12117 	return NULL;
12118 
12119 free_pcpu:
12120 #ifdef CONFIG_PCPU_DEV_REFCNT
12121 	free_percpu(dev->pcpu_refcnt);
12122 free_dev:
12123 #endif
12124 	kvfree(dev);
12125 	return NULL;
12126 }
12127 EXPORT_SYMBOL(alloc_netdev_mqs);
12128 
netdev_napi_exit(struct net_device * dev)12129 static void netdev_napi_exit(struct net_device *dev)
12130 {
12131 	if (!list_empty(&dev->napi_list)) {
12132 		struct napi_struct *p, *n;
12133 
12134 		netdev_lock(dev);
12135 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
12136 			__netif_napi_del_locked(p);
12137 		netdev_unlock(dev);
12138 
12139 		synchronize_net();
12140 	}
12141 
12142 	kvfree(dev->napi_config);
12143 }
12144 
12145 /**
12146  * free_netdev - free network device
12147  * @dev: device
12148  *
12149  * This function does the last stage of destroying an allocated device
12150  * interface. The reference to the device object is released. If this
12151  * is the last reference then it will be freed.Must be called in process
12152  * context.
12153  */
free_netdev(struct net_device * dev)12154 void free_netdev(struct net_device *dev)
12155 {
12156 	might_sleep();
12157 
12158 	/* When called immediately after register_netdevice() failed the unwind
12159 	 * handling may still be dismantling the device. Handle that case by
12160 	 * deferring the free.
12161 	 */
12162 	if (dev->reg_state == NETREG_UNREGISTERING) {
12163 		ASSERT_RTNL();
12164 		dev->needs_free_netdev = true;
12165 		return;
12166 	}
12167 
12168 	WARN_ON(dev->cfg != dev->cfg_pending);
12169 	kfree(dev->cfg);
12170 	kfree(dev->ethtool);
12171 	netif_free_tx_queues(dev);
12172 	netif_free_rx_queues(dev);
12173 
12174 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
12175 
12176 	/* Flush device addresses */
12177 	dev_addr_flush(dev);
12178 
12179 	netdev_napi_exit(dev);
12180 
12181 	netif_del_cpu_rmap(dev);
12182 
12183 	ref_tracker_dir_exit(&dev->refcnt_tracker);
12184 #ifdef CONFIG_PCPU_DEV_REFCNT
12185 	free_percpu(dev->pcpu_refcnt);
12186 	dev->pcpu_refcnt = NULL;
12187 #endif
12188 	free_percpu(dev->core_stats);
12189 	dev->core_stats = NULL;
12190 	free_percpu(dev->xdp_bulkq);
12191 	dev->xdp_bulkq = NULL;
12192 
12193 	netdev_free_phy_link_topology(dev);
12194 
12195 	mutex_destroy(&dev->lock);
12196 
12197 	/*  Compatibility with error handling in drivers */
12198 	if (dev->reg_state == NETREG_UNINITIALIZED ||
12199 	    dev->reg_state == NETREG_DUMMY) {
12200 		kvfree(dev);
12201 		return;
12202 	}
12203 
12204 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
12205 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
12206 
12207 	/* will free via device release */
12208 	put_device(&dev->dev);
12209 }
12210 EXPORT_SYMBOL(free_netdev);
12211 
12212 /**
12213  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
12214  * @sizeof_priv: size of private data to allocate space for
12215  *
12216  * Return: the allocated net_device on success, NULL otherwise
12217  */
alloc_netdev_dummy(int sizeof_priv)12218 struct net_device *alloc_netdev_dummy(int sizeof_priv)
12219 {
12220 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
12221 			    init_dummy_netdev);
12222 }
12223 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12224 
12225 /**
12226  *	synchronize_net -  Synchronize with packet receive processing
12227  *
12228  *	Wait for packets currently being received to be done.
12229  *	Does not block later packets from starting.
12230  */
synchronize_net(void)12231 void synchronize_net(void)
12232 {
12233 	might_sleep();
12234 	if (from_cleanup_net() || rtnl_is_locked())
12235 		synchronize_rcu_expedited();
12236 	else
12237 		synchronize_rcu();
12238 }
12239 EXPORT_SYMBOL(synchronize_net);
12240 
netdev_rss_contexts_free(struct net_device * dev)12241 static void netdev_rss_contexts_free(struct net_device *dev)
12242 {
12243 	struct ethtool_rxfh_context *ctx;
12244 	unsigned long context;
12245 
12246 	mutex_lock(&dev->ethtool->rss_lock);
12247 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12248 		xa_erase(&dev->ethtool->rss_ctx, context);
12249 		dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12250 		kfree(ctx);
12251 	}
12252 	xa_destroy(&dev->ethtool->rss_ctx);
12253 	mutex_unlock(&dev->ethtool->rss_lock);
12254 }
12255 
12256 /**
12257  *	unregister_netdevice_queue - remove device from the kernel
12258  *	@dev: device
12259  *	@head: list
12260  *
12261  *	This function shuts down a device interface and removes it
12262  *	from the kernel tables.
12263  *	If head not NULL, device is queued to be unregistered later.
12264  *
12265  *	Callers must hold the rtnl semaphore.  You may want
12266  *	unregister_netdev() instead of this.
12267  */
12268 
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12269 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12270 {
12271 	ASSERT_RTNL();
12272 
12273 	if (head) {
12274 		list_move_tail(&dev->unreg_list, head);
12275 	} else {
12276 		LIST_HEAD(single);
12277 
12278 		list_add(&dev->unreg_list, &single);
12279 		unregister_netdevice_many(&single);
12280 	}
12281 }
12282 EXPORT_SYMBOL(unregister_netdevice_queue);
12283 
dev_memory_provider_uninstall(struct net_device * dev)12284 static void dev_memory_provider_uninstall(struct net_device *dev)
12285 {
12286 	unsigned int i;
12287 
12288 	for (i = 0; i < dev->real_num_rx_queues; i++) {
12289 		struct netdev_rx_queue *rxq = &dev->_rx[i];
12290 		struct pp_memory_provider_params *p = &rxq->mp_params;
12291 
12292 		if (p->mp_ops && p->mp_ops->uninstall)
12293 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12294 	}
12295 }
12296 
12297 /* devices must be UP and netdev_lock()'d */
netif_close_many_and_unlock(struct list_head * close_head)12298 static void netif_close_many_and_unlock(struct list_head *close_head)
12299 {
12300 	struct net_device *dev, *tmp;
12301 
12302 	netif_close_many(close_head, false);
12303 
12304 	/* ... now unlock them */
12305 	list_for_each_entry_safe(dev, tmp, close_head, close_list) {
12306 		netdev_unlock(dev);
12307 		list_del_init(&dev->close_list);
12308 	}
12309 }
12310 
netif_close_many_and_unlock_cond(struct list_head * close_head)12311 static void netif_close_many_and_unlock_cond(struct list_head *close_head)
12312 {
12313 #ifdef CONFIG_LOCKDEP
12314 	/* We can only track up to MAX_LOCK_DEPTH locks per task.
12315 	 *
12316 	 * Reserve half the available slots for additional locks possibly
12317 	 * taken by notifiers and (soft)irqs.
12318 	 */
12319 	unsigned int limit = MAX_LOCK_DEPTH / 2;
12320 
12321 	if (lockdep_depth(current) > limit)
12322 		netif_close_many_and_unlock(close_head);
12323 #endif
12324 }
12325 
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12326 void unregister_netdevice_many_notify(struct list_head *head,
12327 				      u32 portid, const struct nlmsghdr *nlh)
12328 {
12329 	struct net_device *dev, *tmp;
12330 	LIST_HEAD(close_head);
12331 	int cnt = 0;
12332 
12333 	BUG_ON(dev_boot_phase);
12334 	ASSERT_RTNL();
12335 
12336 	if (list_empty(head))
12337 		return;
12338 
12339 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12340 		/* Some devices call without registering
12341 		 * for initialization unwind. Remove those
12342 		 * devices and proceed with the remaining.
12343 		 */
12344 		if (dev->reg_state == NETREG_UNINITIALIZED) {
12345 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12346 				 dev->name, dev);
12347 
12348 			WARN_ON(1);
12349 			list_del(&dev->unreg_list);
12350 			continue;
12351 		}
12352 		dev->dismantle = true;
12353 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
12354 	}
12355 
12356 	/* If device is running, close it first. Start with ops locked... */
12357 	list_for_each_entry(dev, head, unreg_list) {
12358 		if (!(dev->flags & IFF_UP))
12359 			continue;
12360 		if (netdev_need_ops_lock(dev)) {
12361 			list_add_tail(&dev->close_list, &close_head);
12362 			netdev_lock(dev);
12363 		}
12364 		netif_close_many_and_unlock_cond(&close_head);
12365 	}
12366 	netif_close_many_and_unlock(&close_head);
12367 	/* ... now go over the rest. */
12368 	list_for_each_entry(dev, head, unreg_list) {
12369 		if (!netdev_need_ops_lock(dev))
12370 			list_add_tail(&dev->close_list, &close_head);
12371 	}
12372 	netif_close_many(&close_head, true);
12373 
12374 	list_for_each_entry(dev, head, unreg_list) {
12375 		/* And unlink it from device chain. */
12376 		unlist_netdevice(dev);
12377 		netdev_lock(dev);
12378 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12379 		netdev_unlock(dev);
12380 	}
12381 	flush_all_backlogs();
12382 
12383 	synchronize_net();
12384 
12385 	list_for_each_entry(dev, head, unreg_list) {
12386 		struct sk_buff *skb = NULL;
12387 
12388 		/* Shutdown queueing discipline. */
12389 		netdev_lock_ops(dev);
12390 		dev_shutdown(dev);
12391 		dev_tcx_uninstall(dev);
12392 		dev_xdp_uninstall(dev);
12393 		dev_memory_provider_uninstall(dev);
12394 		netdev_unlock_ops(dev);
12395 		bpf_dev_bound_netdev_unregister(dev);
12396 
12397 		netdev_offload_xstats_disable_all(dev);
12398 
12399 		/* Notify protocols, that we are about to destroy
12400 		 * this device. They should clean all the things.
12401 		 */
12402 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12403 
12404 		if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12405 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12406 						     GFP_KERNEL, NULL, 0,
12407 						     portid, nlh);
12408 
12409 		/*
12410 		 *	Flush the unicast and multicast chains
12411 		 */
12412 		dev_uc_flush(dev);
12413 		dev_mc_flush(dev);
12414 
12415 		netdev_name_node_alt_flush(dev);
12416 		netdev_name_node_free(dev->name_node);
12417 
12418 		netdev_rss_contexts_free(dev);
12419 
12420 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12421 
12422 		if (dev->netdev_ops->ndo_uninit)
12423 			dev->netdev_ops->ndo_uninit(dev);
12424 
12425 		mutex_destroy(&dev->ethtool->rss_lock);
12426 
12427 		net_shaper_flush_netdev(dev);
12428 
12429 		if (skb)
12430 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12431 
12432 		/* Notifier chain MUST detach us all upper devices. */
12433 		WARN_ON(netdev_has_any_upper_dev(dev));
12434 		WARN_ON(netdev_has_any_lower_dev(dev));
12435 
12436 		/* Remove entries from kobject tree */
12437 		netdev_unregister_kobject(dev);
12438 #ifdef CONFIG_XPS
12439 		/* Remove XPS queueing entries */
12440 		netif_reset_xps_queues_gt(dev, 0);
12441 #endif
12442 	}
12443 
12444 	synchronize_net();
12445 
12446 	list_for_each_entry(dev, head, unreg_list) {
12447 		netdev_put(dev, &dev->dev_registered_tracker);
12448 		net_set_todo(dev);
12449 		cnt++;
12450 	}
12451 	atomic_add(cnt, &dev_unreg_count);
12452 
12453 	list_del(head);
12454 }
12455 
12456 /**
12457  *	unregister_netdevice_many - unregister many devices
12458  *	@head: list of devices
12459  *
12460  *  Note: As most callers use a stack allocated list_head,
12461  *  we force a list_del() to make sure stack won't be corrupted later.
12462  */
unregister_netdevice_many(struct list_head * head)12463 void unregister_netdevice_many(struct list_head *head)
12464 {
12465 	unregister_netdevice_many_notify(head, 0, NULL);
12466 }
12467 EXPORT_SYMBOL(unregister_netdevice_many);
12468 
12469 /**
12470  *	unregister_netdev - remove device from the kernel
12471  *	@dev: device
12472  *
12473  *	This function shuts down a device interface and removes it
12474  *	from the kernel tables.
12475  *
12476  *	This is just a wrapper for unregister_netdevice that takes
12477  *	the rtnl semaphore.  In general you want to use this and not
12478  *	unregister_netdevice.
12479  */
unregister_netdev(struct net_device * dev)12480 void unregister_netdev(struct net_device *dev)
12481 {
12482 	rtnl_net_dev_lock(dev);
12483 	unregister_netdevice(dev);
12484 	rtnl_net_dev_unlock(dev);
12485 }
12486 EXPORT_SYMBOL(unregister_netdev);
12487 
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12488 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12489 			       const char *pat, int new_ifindex,
12490 			       struct netlink_ext_ack *extack)
12491 {
12492 	struct netdev_name_node *name_node;
12493 	struct net *net_old = dev_net(dev);
12494 	char new_name[IFNAMSIZ] = {};
12495 	int err, new_nsid;
12496 
12497 	ASSERT_RTNL();
12498 
12499 	/* Don't allow namespace local devices to be moved. */
12500 	err = -EINVAL;
12501 	if (dev->netns_immutable) {
12502 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12503 		goto out;
12504 	}
12505 
12506 	/* Ensure the device has been registered */
12507 	if (dev->reg_state != NETREG_REGISTERED) {
12508 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12509 		goto out;
12510 	}
12511 
12512 	/* Get out if there is nothing todo */
12513 	err = 0;
12514 	if (net_eq(net_old, net))
12515 		goto out;
12516 
12517 	/* Pick the destination device name, and ensure
12518 	 * we can use it in the destination network namespace.
12519 	 */
12520 	err = -EEXIST;
12521 	if (netdev_name_in_use(net, dev->name)) {
12522 		/* We get here if we can't use the current device name */
12523 		if (!pat) {
12524 			NL_SET_ERR_MSG(extack,
12525 				       "An interface with the same name exists in the target netns");
12526 			goto out;
12527 		}
12528 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12529 		if (err < 0) {
12530 			NL_SET_ERR_MSG_FMT(extack,
12531 					   "Unable to use '%s' for the new interface name in the target netns",
12532 					   pat);
12533 			goto out;
12534 		}
12535 	}
12536 	/* Check that none of the altnames conflicts. */
12537 	err = -EEXIST;
12538 	netdev_for_each_altname(dev, name_node) {
12539 		if (netdev_name_in_use(net, name_node->name)) {
12540 			NL_SET_ERR_MSG_FMT(extack,
12541 					   "An interface with the altname %s exists in the target netns",
12542 					   name_node->name);
12543 			goto out;
12544 		}
12545 	}
12546 
12547 	/* Check that new_ifindex isn't used yet. */
12548 	if (new_ifindex) {
12549 		err = dev_index_reserve(net, new_ifindex);
12550 		if (err < 0) {
12551 			NL_SET_ERR_MSG_FMT(extack,
12552 					   "The ifindex %d is not available in the target netns",
12553 					   new_ifindex);
12554 			goto out;
12555 		}
12556 	} else {
12557 		/* If there is an ifindex conflict assign a new one */
12558 		err = dev_index_reserve(net, dev->ifindex);
12559 		if (err == -EBUSY)
12560 			err = dev_index_reserve(net, 0);
12561 		if (err < 0) {
12562 			NL_SET_ERR_MSG(extack,
12563 				       "Unable to allocate a new ifindex in the target netns");
12564 			goto out;
12565 		}
12566 		new_ifindex = err;
12567 	}
12568 
12569 	/*
12570 	 * And now a mini version of register_netdevice unregister_netdevice.
12571 	 */
12572 
12573 	netdev_lock_ops(dev);
12574 	/* If device is running close it first. */
12575 	netif_close(dev);
12576 	/* And unlink it from device chain */
12577 	unlist_netdevice(dev);
12578 
12579 	if (!netdev_need_ops_lock(dev))
12580 		netdev_lock(dev);
12581 	dev->moving_ns = true;
12582 	netdev_unlock(dev);
12583 
12584 	synchronize_net();
12585 
12586 	/* Shutdown queueing discipline. */
12587 	netdev_lock_ops(dev);
12588 	dev_shutdown(dev);
12589 	netdev_unlock_ops(dev);
12590 
12591 	/* Notify protocols, that we are about to destroy
12592 	 * this device. They should clean all the things.
12593 	 *
12594 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12595 	 * This is wanted because this way 8021q and macvlan know
12596 	 * the device is just moving and can keep their slaves up.
12597 	 */
12598 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12599 	rcu_barrier();
12600 
12601 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12602 
12603 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12604 			    new_ifindex);
12605 
12606 	/*
12607 	 *	Flush the unicast and multicast chains
12608 	 */
12609 	dev_uc_flush(dev);
12610 	dev_mc_flush(dev);
12611 
12612 	/* Send a netdev-removed uevent to the old namespace */
12613 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12614 	netdev_adjacent_del_links(dev);
12615 
12616 	/* Move per-net netdevice notifiers that are following the netdevice */
12617 	move_netdevice_notifiers_dev_net(dev, net);
12618 
12619 	/* Actually switch the network namespace */
12620 	netdev_lock(dev);
12621 	dev_net_set(dev, net);
12622 	netdev_unlock(dev);
12623 	dev->ifindex = new_ifindex;
12624 
12625 	if (new_name[0]) {
12626 		/* Rename the netdev to prepared name */
12627 		write_seqlock_bh(&netdev_rename_lock);
12628 		strscpy(dev->name, new_name, IFNAMSIZ);
12629 		write_sequnlock_bh(&netdev_rename_lock);
12630 	}
12631 
12632 	/* Fixup kobjects */
12633 	dev_set_uevent_suppress(&dev->dev, 1);
12634 	err = device_rename(&dev->dev, dev->name);
12635 	dev_set_uevent_suppress(&dev->dev, 0);
12636 	WARN_ON(err);
12637 
12638 	/* Send a netdev-add uevent to the new namespace */
12639 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12640 	netdev_adjacent_add_links(dev);
12641 
12642 	/* Adapt owner in case owning user namespace of target network
12643 	 * namespace is different from the original one.
12644 	 */
12645 	err = netdev_change_owner(dev, net_old, net);
12646 	WARN_ON(err);
12647 
12648 	netdev_lock(dev);
12649 	dev->moving_ns = false;
12650 	if (!netdev_need_ops_lock(dev))
12651 		netdev_unlock(dev);
12652 
12653 	/* Add the device back in the hashes */
12654 	list_netdevice(dev);
12655 	/* Notify protocols, that a new device appeared. */
12656 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12657 	netdev_unlock_ops(dev);
12658 
12659 	/*
12660 	 *	Prevent userspace races by waiting until the network
12661 	 *	device is fully setup before sending notifications.
12662 	 */
12663 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12664 
12665 	synchronize_net();
12666 	err = 0;
12667 out:
12668 	return err;
12669 }
12670 
dev_cpu_dead(unsigned int oldcpu)12671 static int dev_cpu_dead(unsigned int oldcpu)
12672 {
12673 	struct sk_buff **list_skb;
12674 	struct sk_buff *skb;
12675 	unsigned int cpu;
12676 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12677 
12678 	local_irq_disable();
12679 	cpu = smp_processor_id();
12680 	sd = &per_cpu(softnet_data, cpu);
12681 	oldsd = &per_cpu(softnet_data, oldcpu);
12682 
12683 	/* Find end of our completion_queue. */
12684 	list_skb = &sd->completion_queue;
12685 	while (*list_skb)
12686 		list_skb = &(*list_skb)->next;
12687 	/* Append completion queue from offline CPU. */
12688 	*list_skb = oldsd->completion_queue;
12689 	oldsd->completion_queue = NULL;
12690 
12691 	/* Append output queue from offline CPU. */
12692 	if (oldsd->output_queue) {
12693 		*sd->output_queue_tailp = oldsd->output_queue;
12694 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12695 		oldsd->output_queue = NULL;
12696 		oldsd->output_queue_tailp = &oldsd->output_queue;
12697 	}
12698 	/* Append NAPI poll list from offline CPU, with one exception :
12699 	 * process_backlog() must be called by cpu owning percpu backlog.
12700 	 * We properly handle process_queue & input_pkt_queue later.
12701 	 */
12702 	while (!list_empty(&oldsd->poll_list)) {
12703 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12704 							    struct napi_struct,
12705 							    poll_list);
12706 
12707 		list_del_init(&napi->poll_list);
12708 		if (napi->poll == process_backlog)
12709 			napi->state &= NAPIF_STATE_THREADED;
12710 		else
12711 			____napi_schedule(sd, napi);
12712 	}
12713 
12714 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12715 	local_irq_enable();
12716 
12717 	if (!use_backlog_threads()) {
12718 #ifdef CONFIG_RPS
12719 		remsd = oldsd->rps_ipi_list;
12720 		oldsd->rps_ipi_list = NULL;
12721 #endif
12722 		/* send out pending IPI's on offline CPU */
12723 		net_rps_send_ipi(remsd);
12724 	}
12725 
12726 	/* Process offline CPU's input_pkt_queue */
12727 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12728 		netif_rx(skb);
12729 		rps_input_queue_head_incr(oldsd);
12730 	}
12731 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12732 		netif_rx(skb);
12733 		rps_input_queue_head_incr(oldsd);
12734 	}
12735 
12736 	return 0;
12737 }
12738 
12739 /**
12740  *	netdev_increment_features - increment feature set by one
12741  *	@all: current feature set
12742  *	@one: new feature set
12743  *	@mask: mask feature set
12744  *
12745  *	Computes a new feature set after adding a device with feature set
12746  *	@one to the master device with current feature set @all.  Will not
12747  *	enable anything that is off in @mask. Returns the new feature set.
12748  */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12749 netdev_features_t netdev_increment_features(netdev_features_t all,
12750 	netdev_features_t one, netdev_features_t mask)
12751 {
12752 	if (mask & NETIF_F_HW_CSUM)
12753 		mask |= NETIF_F_CSUM_MASK;
12754 	mask |= NETIF_F_VLAN_CHALLENGED;
12755 
12756 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12757 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12758 
12759 	/* If one device supports hw checksumming, set for all. */
12760 	if (all & NETIF_F_HW_CSUM)
12761 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12762 
12763 	return all;
12764 }
12765 EXPORT_SYMBOL(netdev_increment_features);
12766 
12767 /**
12768  *	netdev_compute_master_upper_features - compute feature from lowers
12769  *	@dev: the upper device
12770  *	@update_header: whether to update upper device's header_len/headroom/tailroom
12771  *
12772  *	Recompute the upper device's feature based on all lower devices.
12773  */
netdev_compute_master_upper_features(struct net_device * dev,bool update_header)12774 void netdev_compute_master_upper_features(struct net_device *dev, bool update_header)
12775 {
12776 	unsigned int dst_release_flag = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
12777 	netdev_features_t gso_partial_features = MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES;
12778 	netdev_features_t xfrm_features = MASTER_UPPER_DEV_XFRM_FEATURES;
12779 	netdev_features_t mpls_features = MASTER_UPPER_DEV_MPLS_FEATURES;
12780 	netdev_features_t vlan_features = MASTER_UPPER_DEV_VLAN_FEATURES;
12781 	netdev_features_t enc_features = MASTER_UPPER_DEV_ENC_FEATURES;
12782 	unsigned short max_header_len = ETH_HLEN;
12783 	unsigned int tso_max_size = TSO_MAX_SIZE;
12784 	unsigned short max_headroom = 0;
12785 	unsigned short max_tailroom = 0;
12786 	u16 tso_max_segs = TSO_MAX_SEGS;
12787 	struct net_device *lower_dev;
12788 	struct list_head *iter;
12789 
12790 	mpls_features = netdev_base_features(mpls_features);
12791 	vlan_features = netdev_base_features(vlan_features);
12792 	enc_features = netdev_base_features(enc_features);
12793 
12794 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
12795 		gso_partial_features = netdev_increment_features(gso_partial_features,
12796 								 lower_dev->gso_partial_features,
12797 								 MASTER_UPPER_DEV_GSO_PARTIAL_FEATURES);
12798 
12799 		vlan_features = netdev_increment_features(vlan_features,
12800 							  lower_dev->vlan_features,
12801 							  MASTER_UPPER_DEV_VLAN_FEATURES);
12802 
12803 		enc_features = netdev_increment_features(enc_features,
12804 							 lower_dev->hw_enc_features,
12805 							 MASTER_UPPER_DEV_ENC_FEATURES);
12806 
12807 		if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12808 			xfrm_features = netdev_increment_features(xfrm_features,
12809 								  lower_dev->hw_enc_features,
12810 								  MASTER_UPPER_DEV_XFRM_FEATURES);
12811 
12812 		mpls_features = netdev_increment_features(mpls_features,
12813 							  lower_dev->mpls_features,
12814 							  MASTER_UPPER_DEV_MPLS_FEATURES);
12815 
12816 		dst_release_flag &= lower_dev->priv_flags;
12817 
12818 		if (update_header) {
12819 			max_header_len = max(max_header_len, lower_dev->hard_header_len);
12820 			max_headroom = max(max_headroom, lower_dev->needed_headroom);
12821 			max_tailroom = max(max_tailroom, lower_dev->needed_tailroom);
12822 		}
12823 
12824 		tso_max_size = min(tso_max_size, lower_dev->tso_max_size);
12825 		tso_max_segs = min(tso_max_segs, lower_dev->tso_max_segs);
12826 	}
12827 
12828 	dev->gso_partial_features = gso_partial_features;
12829 	dev->vlan_features = vlan_features;
12830 	dev->hw_enc_features = enc_features | NETIF_F_GSO_ENCAP_ALL |
12831 			       NETIF_F_HW_VLAN_CTAG_TX |
12832 			       NETIF_F_HW_VLAN_STAG_TX;
12833 	if (IS_ENABLED(CONFIG_XFRM_OFFLOAD))
12834 		dev->hw_enc_features |= xfrm_features;
12835 	dev->mpls_features = mpls_features;
12836 
12837 	dev->priv_flags &= ~IFF_XMIT_DST_RELEASE;
12838 	if ((dev->priv_flags & IFF_XMIT_DST_RELEASE_PERM) &&
12839 	    dst_release_flag == (IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM))
12840 		dev->priv_flags |= IFF_XMIT_DST_RELEASE;
12841 
12842 	if (update_header) {
12843 		dev->hard_header_len = max_header_len;
12844 		dev->needed_headroom = max_headroom;
12845 		dev->needed_tailroom = max_tailroom;
12846 	}
12847 
12848 	netif_set_tso_max_segs(dev, tso_max_segs);
12849 	netif_set_tso_max_size(dev, tso_max_size);
12850 
12851 	netdev_change_features(dev);
12852 }
12853 EXPORT_SYMBOL(netdev_compute_master_upper_features);
12854 
netdev_create_hash(void)12855 static struct hlist_head * __net_init netdev_create_hash(void)
12856 {
12857 	int i;
12858 	struct hlist_head *hash;
12859 
12860 	hash = kmalloc_objs(*hash, NETDEV_HASHENTRIES, GFP_KERNEL);
12861 	if (hash != NULL)
12862 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12863 			INIT_HLIST_HEAD(&hash[i]);
12864 
12865 	return hash;
12866 }
12867 
12868 /* Initialize per network namespace state */
netdev_init(struct net * net)12869 static int __net_init netdev_init(struct net *net)
12870 {
12871 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12872 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12873 
12874 	INIT_LIST_HEAD(&net->dev_base_head);
12875 
12876 	net->dev_name_head = netdev_create_hash();
12877 	if (net->dev_name_head == NULL)
12878 		goto err_name;
12879 
12880 	net->dev_index_head = netdev_create_hash();
12881 	if (net->dev_index_head == NULL)
12882 		goto err_idx;
12883 
12884 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12885 
12886 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12887 
12888 	return 0;
12889 
12890 err_idx:
12891 	kfree(net->dev_name_head);
12892 err_name:
12893 	return -ENOMEM;
12894 }
12895 
12896 /**
12897  *	netdev_drivername - network driver for the device
12898  *	@dev: network device
12899  *
12900  *	Determine network driver for device.
12901  */
netdev_drivername(const struct net_device * dev)12902 const char *netdev_drivername(const struct net_device *dev)
12903 {
12904 	const struct device_driver *driver;
12905 	const struct device *parent;
12906 	const char *empty = "";
12907 
12908 	parent = dev->dev.parent;
12909 	if (!parent)
12910 		return empty;
12911 
12912 	driver = parent->driver;
12913 	if (driver && driver->name)
12914 		return driver->name;
12915 	return empty;
12916 }
12917 
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12918 static void __netdev_printk(const char *level, const struct net_device *dev,
12919 			    struct va_format *vaf)
12920 {
12921 	if (dev && dev->dev.parent) {
12922 		dev_printk_emit(level[1] - '0',
12923 				dev->dev.parent,
12924 				"%s %s %s%s: %pV",
12925 				dev_driver_string(dev->dev.parent),
12926 				dev_name(dev->dev.parent),
12927 				netdev_name(dev), netdev_reg_state(dev),
12928 				vaf);
12929 	} else if (dev) {
12930 		printk("%s%s%s: %pV",
12931 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12932 	} else {
12933 		printk("%s(NULL net_device): %pV", level, vaf);
12934 	}
12935 }
12936 
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12937 void netdev_printk(const char *level, const struct net_device *dev,
12938 		   const char *format, ...)
12939 {
12940 	struct va_format vaf;
12941 	va_list args;
12942 
12943 	va_start(args, format);
12944 
12945 	vaf.fmt = format;
12946 	vaf.va = &args;
12947 
12948 	__netdev_printk(level, dev, &vaf);
12949 
12950 	va_end(args);
12951 }
12952 EXPORT_SYMBOL(netdev_printk);
12953 
12954 #define define_netdev_printk_level(func, level)			\
12955 void func(const struct net_device *dev, const char *fmt, ...)	\
12956 {								\
12957 	struct va_format vaf;					\
12958 	va_list args;						\
12959 								\
12960 	va_start(args, fmt);					\
12961 								\
12962 	vaf.fmt = fmt;						\
12963 	vaf.va = &args;						\
12964 								\
12965 	__netdev_printk(level, dev, &vaf);			\
12966 								\
12967 	va_end(args);						\
12968 }								\
12969 EXPORT_SYMBOL(func);
12970 
12971 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12972 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12973 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12974 define_netdev_printk_level(netdev_err, KERN_ERR);
12975 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12976 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12977 define_netdev_printk_level(netdev_info, KERN_INFO);
12978 
netdev_exit(struct net * net)12979 static void __net_exit netdev_exit(struct net *net)
12980 {
12981 	kfree(net->dev_name_head);
12982 	kfree(net->dev_index_head);
12983 	xa_destroy(&net->dev_by_index);
12984 	if (net != &init_net)
12985 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12986 }
12987 
12988 static struct pernet_operations __net_initdata netdev_net_ops = {
12989 	.init = netdev_init,
12990 	.exit = netdev_exit,
12991 };
12992 
default_device_exit_net(struct net * net)12993 static void __net_exit default_device_exit_net(struct net *net)
12994 {
12995 	struct netdev_name_node *name_node, *tmp;
12996 	struct net_device *dev, *aux;
12997 	/*
12998 	 * Push all migratable network devices back to the
12999 	 * initial network namespace
13000 	 */
13001 	ASSERT_RTNL();
13002 	for_each_netdev_safe(net, dev, aux) {
13003 		int err;
13004 		char fb_name[IFNAMSIZ];
13005 
13006 		/* Ignore unmoveable devices (i.e. loopback) */
13007 		if (dev->netns_immutable)
13008 			continue;
13009 
13010 		/* Leave virtual devices for the generic cleanup */
13011 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
13012 			continue;
13013 
13014 		/* Push remaining network devices to init_net */
13015 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
13016 		if (netdev_name_in_use(&init_net, fb_name))
13017 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
13018 
13019 		netdev_for_each_altname_safe(dev, name_node, tmp)
13020 			if (netdev_name_in_use(&init_net, name_node->name))
13021 				__netdev_name_node_alt_destroy(name_node);
13022 
13023 		err = dev_change_net_namespace(dev, &init_net, fb_name);
13024 		if (err) {
13025 			pr_emerg("%s: failed to move %s to init_net: %d\n",
13026 				 __func__, dev->name, err);
13027 			BUG();
13028 		}
13029 	}
13030 }
13031 
default_device_exit_batch(struct list_head * net_list)13032 static void __net_exit default_device_exit_batch(struct list_head *net_list)
13033 {
13034 	/* At exit all network devices most be removed from a network
13035 	 * namespace.  Do this in the reverse order of registration.
13036 	 * Do this across as many network namespaces as possible to
13037 	 * improve batching efficiency.
13038 	 */
13039 	struct net_device *dev;
13040 	struct net *net;
13041 	LIST_HEAD(dev_kill_list);
13042 
13043 	rtnl_lock();
13044 	list_for_each_entry(net, net_list, exit_list) {
13045 		default_device_exit_net(net);
13046 		cond_resched();
13047 	}
13048 
13049 	list_for_each_entry(net, net_list, exit_list) {
13050 		for_each_netdev_reverse(net, dev) {
13051 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
13052 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
13053 			else
13054 				unregister_netdevice_queue(dev, &dev_kill_list);
13055 		}
13056 	}
13057 	unregister_netdevice_many(&dev_kill_list);
13058 	rtnl_unlock();
13059 }
13060 
13061 static struct pernet_operations __net_initdata default_device_ops = {
13062 	.exit_batch = default_device_exit_batch,
13063 };
13064 
net_dev_struct_check(void)13065 static void __init net_dev_struct_check(void)
13066 {
13067 	/* TX read-mostly hotpath */
13068 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
13069 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
13070 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
13071 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
13072 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
13073 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
13074 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
13075 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
13076 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
13077 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
13078 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
13079 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
13080 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
13081 #ifdef CONFIG_XPS
13082 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
13083 #endif
13084 #ifdef CONFIG_NETFILTER_EGRESS
13085 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
13086 #endif
13087 #ifdef CONFIG_NET_XGRESS
13088 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
13089 #endif
13090 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
13091 
13092 	/* TXRX read-mostly hotpath */
13093 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
13094 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
13095 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
13096 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
13097 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
13098 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
13099 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
13100 
13101 	/* RX read-mostly hotpath */
13102 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
13103 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
13104 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
13105 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
13106 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
13107 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
13108 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
13109 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
13110 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
13111 #ifdef CONFIG_NETPOLL
13112 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
13113 #endif
13114 #ifdef CONFIG_NET_XGRESS
13115 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
13116 #endif
13117 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
13118 }
13119 
13120 /*
13121  *	Initialize the DEV module. At boot time this walks the device list and
13122  *	unhooks any devices that fail to initialise (normally hardware not
13123  *	present) and leaves us with a valid list of present and active devices.
13124  *
13125  */
13126 
13127 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
13128 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
13129 
net_page_pool_create(int cpuid)13130 static int net_page_pool_create(int cpuid)
13131 {
13132 #if IS_ENABLED(CONFIG_PAGE_POOL)
13133 	struct page_pool_params page_pool_params = {
13134 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
13135 		.flags = PP_FLAG_SYSTEM_POOL,
13136 		.nid = cpu_to_mem(cpuid),
13137 	};
13138 	struct page_pool *pp_ptr;
13139 	int err;
13140 
13141 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
13142 	if (IS_ERR(pp_ptr))
13143 		return -ENOMEM;
13144 
13145 	err = xdp_reg_page_pool(pp_ptr);
13146 	if (err) {
13147 		page_pool_destroy(pp_ptr);
13148 		return err;
13149 	}
13150 
13151 	per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
13152 #endif
13153 	return 0;
13154 }
13155 
backlog_napi_should_run(unsigned int cpu)13156 static int backlog_napi_should_run(unsigned int cpu)
13157 {
13158 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13159 	struct napi_struct *napi = &sd->backlog;
13160 
13161 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
13162 }
13163 
run_backlog_napi(unsigned int cpu)13164 static void run_backlog_napi(unsigned int cpu)
13165 {
13166 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13167 
13168 	napi_threaded_poll_loop(&sd->backlog, false);
13169 }
13170 
backlog_napi_setup(unsigned int cpu)13171 static void backlog_napi_setup(unsigned int cpu)
13172 {
13173 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
13174 	struct napi_struct *napi = &sd->backlog;
13175 
13176 	napi->thread = this_cpu_read(backlog_napi);
13177 	set_bit(NAPI_STATE_THREADED, &napi->state);
13178 }
13179 
13180 static struct smp_hotplug_thread backlog_threads = {
13181 	.store			= &backlog_napi,
13182 	.thread_should_run	= backlog_napi_should_run,
13183 	.thread_fn		= run_backlog_napi,
13184 	.thread_comm		= "backlog_napi/%u",
13185 	.setup			= backlog_napi_setup,
13186 };
13187 
13188 /*
13189  *       This is called single threaded during boot, so no need
13190  *       to take the rtnl semaphore.
13191  */
net_dev_init(void)13192 static int __init net_dev_init(void)
13193 {
13194 	int i, rc = -ENOMEM;
13195 
13196 	BUG_ON(!dev_boot_phase);
13197 
13198 	net_dev_struct_check();
13199 
13200 	if (dev_proc_init())
13201 		goto out;
13202 
13203 	if (netdev_kobject_init())
13204 		goto out;
13205 
13206 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
13207 		INIT_LIST_HEAD(&ptype_base[i]);
13208 
13209 	if (register_pernet_subsys(&netdev_net_ops))
13210 		goto out;
13211 
13212 	/*
13213 	 *	Initialise the packet receive queues.
13214 	 */
13215 
13216 	flush_backlogs_fallback = flush_backlogs_alloc();
13217 	if (!flush_backlogs_fallback)
13218 		goto out;
13219 
13220 	for_each_possible_cpu(i) {
13221 		struct softnet_data *sd = &per_cpu(softnet_data, i);
13222 
13223 		skb_queue_head_init(&sd->input_pkt_queue);
13224 		skb_queue_head_init(&sd->process_queue);
13225 #ifdef CONFIG_XFRM_OFFLOAD
13226 		skb_queue_head_init(&sd->xfrm_backlog);
13227 #endif
13228 		INIT_LIST_HEAD(&sd->poll_list);
13229 		sd->output_queue_tailp = &sd->output_queue;
13230 #ifdef CONFIG_RPS
13231 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
13232 		sd->cpu = i;
13233 #endif
13234 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
13235 
13236 		gro_init(&sd->backlog.gro);
13237 		sd->backlog.poll = process_backlog;
13238 		sd->backlog.weight = weight_p;
13239 		INIT_LIST_HEAD(&sd->backlog.poll_list);
13240 
13241 		if (net_page_pool_create(i))
13242 			goto out;
13243 	}
13244 	net_hotdata.skb_defer_nodes =
13245 		 __alloc_percpu(sizeof(struct skb_defer_node) * nr_node_ids,
13246 				__alignof__(struct skb_defer_node));
13247 	if (!net_hotdata.skb_defer_nodes)
13248 		goto out;
13249 	if (use_backlog_threads())
13250 		smpboot_register_percpu_thread(&backlog_threads);
13251 
13252 	dev_boot_phase = 0;
13253 
13254 	/* The loopback device is special if any other network devices
13255 	 * is present in a network namespace the loopback device must
13256 	 * be present. Since we now dynamically allocate and free the
13257 	 * loopback device ensure this invariant is maintained by
13258 	 * keeping the loopback device as the first device on the
13259 	 * list of network devices.  Ensuring the loopback devices
13260 	 * is the first device that appears and the last network device
13261 	 * that disappears.
13262 	 */
13263 	if (register_pernet_device(&loopback_net_ops))
13264 		goto out;
13265 
13266 	if (register_pernet_device(&default_device_ops))
13267 		goto out;
13268 
13269 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
13270 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
13271 
13272 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
13273 				       NULL, dev_cpu_dead);
13274 	WARN_ON(rc < 0);
13275 	rc = 0;
13276 
13277 	/* avoid static key IPIs to isolated CPUs */
13278 	if (housekeeping_enabled(HK_TYPE_MISC))
13279 		net_enable_timestamp();
13280 out:
13281 	if (rc < 0) {
13282 		for_each_possible_cpu(i) {
13283 			struct page_pool *pp_ptr;
13284 
13285 			pp_ptr = per_cpu(system_page_pool.pool, i);
13286 			if (!pp_ptr)
13287 				continue;
13288 
13289 			xdp_unreg_page_pool(pp_ptr);
13290 			page_pool_destroy(pp_ptr);
13291 			per_cpu(system_page_pool.pool, i) = NULL;
13292 		}
13293 	}
13294 
13295 	return rc;
13296 }
13297 
13298 subsys_initcall(net_dev_init);
13299