1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 struct net_device *dev,
177 struct netlink_ext_ack *extack);
178
179 static DEFINE_MUTEX(ifalias_mutex);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 unsigned int val = net->dev_base_seq + 1;
190
191 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 #ifndef CONFIG_PREEMPT_RT
207
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 static_branch_enable(&use_backlog_threads_key);
213 return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 return static_branch_unlikely(&use_backlog_threads_key);
220 }
221
222 #else
223
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 return true;
227 }
228
229 #endif
230
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 unsigned long *flags)
233 {
234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 else
237 local_irq_save(*flags);
238 }
239
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 spin_lock_irq(&sd->input_pkt_queue.lock);
244 else
245 local_irq_disable();
246 }
247
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 unsigned long *flags)
250 {
251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 else
254 local_irq_restore(*flags);
255 }
256
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 spin_unlock_irq(&sd->input_pkt_queue.lock);
261 else
262 local_irq_enable();
263 }
264
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 const char *name)
267 {
268 struct netdev_name_node *name_node;
269
270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 if (!name_node)
272 return NULL;
273 INIT_HLIST_NODE(&name_node->hlist);
274 name_node->dev = dev;
275 name_node->name = name;
276 return name_node;
277 }
278
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 struct netdev_name_node *name_node;
283
284 name_node = netdev_name_node_alloc(dev, dev->name);
285 if (!name_node)
286 return NULL;
287 INIT_LIST_HEAD(&name_node->list);
288 return name_node;
289 }
290
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 kfree(name_node);
294 }
295
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 struct netdev_name_node *name_node)
298 {
299 hlist_add_head_rcu(&name_node->hlist,
300 dev_name_hash(net, name_node->name));
301 }
302
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 hlist_del_rcu(&name_node->hlist);
306 }
307
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 const char *name)
310 {
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318 }
319
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 const char *name)
322 {
323 struct hlist_head *head = dev_name_hash(net, name);
324 struct netdev_name_node *name_node;
325
326 hlist_for_each_entry_rcu(name_node, head, hlist)
327 if (!strcmp(name_node->name, name))
328 return name_node;
329 return NULL;
330 }
331
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 struct netdev_name_node *name_node;
341 struct net *net = dev_net(dev);
342
343 name_node = netdev_name_node_lookup(net, name);
344 if (name_node)
345 return -EEXIST;
346 name_node = netdev_name_node_alloc(dev, name);
347 if (!name_node)
348 return -ENOMEM;
349 netdev_name_node_add(net, name_node);
350 /* The node that holds dev->name acts as a head of per-device list. */
351 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352
353 return 0;
354 }
355
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 struct netdev_name_node *name_node =
359 container_of(head, struct netdev_name_node, rcu);
360
361 kfree(name_node->name);
362 netdev_name_node_free(name_node);
363 }
364
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 netdev_name_node_del(name_node);
368 list_del(&name_node->list);
369 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 struct netdev_name_node *name_node;
375 struct net *net = dev_net(dev);
376
377 name_node = netdev_name_node_lookup(net, name);
378 if (!name_node)
379 return -ENOENT;
380 /* lookup might have found our primary name or a name belonging
381 * to another device.
382 */
383 if (name_node == dev->name_node || name_node->dev != dev)
384 return -EINVAL;
385
386 __netdev_name_node_alt_destroy(name_node);
387 return 0;
388 }
389
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 struct netdev_name_node *name_node, *tmp;
393
394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 list_del(&name_node->list);
396 netdev_name_node_alt_free(&name_node->rcu);
397 }
398 }
399
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 struct netdev_name_node *name_node;
404 struct net *net = dev_net(dev);
405
406 ASSERT_RTNL();
407
408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 netdev_name_node_add(net, dev->name_node);
410 hlist_add_head_rcu(&dev->index_hlist,
411 dev_index_hash(net, dev->ifindex));
412
413 netdev_for_each_altname(dev, name_node)
414 netdev_name_node_add(net, name_node);
415
416 /* We reserved the ifindex, this can't fail */
417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418
419 dev_base_seq_inc(net);
420 }
421
422 /* Device list removal
423 * caller must respect a RCU grace period before freeing/reusing dev
424 */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 struct netdev_name_node *name_node;
428 struct net *net = dev_net(dev);
429
430 ASSERT_RTNL();
431
432 xa_erase(&net->dev_by_index, dev->ifindex);
433
434 netdev_for_each_altname(dev, name_node)
435 netdev_name_node_del(name_node);
436
437 /* Unlink dev from the device chain */
438 list_del_rcu(&dev->dev_list);
439 netdev_name_node_del(dev->name_node);
440 hlist_del_rcu(&dev->index_hlist);
441
442 dev_base_seq_inc(dev_net(dev));
443 }
444
445 /*
446 * Our notifier list
447 */
448
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450
451 /*
452 * Device drivers call our routines to queue packets here. We empty the
453 * queue in the local softnet handler.
454 */
455
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462 * PP consumers must pay attention to run APIs in the appropriate context
463 * (e.g. NAPI context).
464 */
465 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
466
467 #ifdef CONFIG_LOCKDEP
468 /*
469 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
470 * according to dev->type
471 */
472 static const unsigned short netdev_lock_type[] = {
473 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
474 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
475 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
476 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
477 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
478 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
479 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
480 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
481 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
482 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
483 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
484 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
485 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
486 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
487 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
488
489 static const char *const netdev_lock_name[] = {
490 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
491 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
492 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
493 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
494 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
495 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
496 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
497 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
498 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
499 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
500 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
501 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
502 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
503 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
504 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
505
506 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
508
netdev_lock_pos(unsigned short dev_type)509 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
510 {
511 int i;
512
513 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
514 if (netdev_lock_type[i] == dev_type)
515 return i;
516 /* the last key is used by default */
517 return ARRAY_SIZE(netdev_lock_type) - 1;
518 }
519
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521 unsigned short dev_type)
522 {
523 int i;
524
525 i = netdev_lock_pos(dev_type);
526 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
527 netdev_lock_name[i]);
528 }
529
netdev_set_addr_lockdep_class(struct net_device * dev)530 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
531 {
532 int i;
533
534 i = netdev_lock_pos(dev->type);
535 lockdep_set_class_and_name(&dev->addr_list_lock,
536 &netdev_addr_lock_key[i],
537 netdev_lock_name[i]);
538 }
539 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)540 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
541 unsigned short dev_type)
542 {
543 }
544
netdev_set_addr_lockdep_class(struct net_device * dev)545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 }
548 #endif
549
550 /*******************************************************************************
551 *
552 * Protocol management and registration routines
553 *
554 *******************************************************************************/
555
556
557 /*
558 * Add a protocol ID to the list. Now that the input handler is
559 * smarter we can dispense with all the messy stuff that used to be
560 * here.
561 *
562 * BEWARE!!! Protocol handlers, mangling input packets,
563 * MUST BE last in hash buckets and checking protocol handlers
564 * MUST start from promiscuous ptype_all chain in net_bh.
565 * It is true now, do not change it.
566 * Explanation follows: if protocol handler, mangling packet, will
567 * be the first on list, it is not able to sense, that packet
568 * is cloned and should be copied-on-write, so that it will
569 * change it and subsequent readers will get broken packet.
570 * --ANK (980803)
571 */
572
ptype_head(const struct packet_type * pt)573 static inline struct list_head *ptype_head(const struct packet_type *pt)
574 {
575 if (pt->type == htons(ETH_P_ALL)) {
576 if (!pt->af_packet_net && !pt->dev)
577 return NULL;
578
579 return pt->dev ? &pt->dev->ptype_all :
580 &pt->af_packet_net->ptype_all;
581 }
582
583 if (pt->dev)
584 return &pt->dev->ptype_specific;
585
586 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
587 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
588 }
589
590 /**
591 * dev_add_pack - add packet handler
592 * @pt: packet type declaration
593 *
594 * Add a protocol handler to the networking stack. The passed &packet_type
595 * is linked into kernel lists and may not be freed until it has been
596 * removed from the kernel lists.
597 *
598 * This call does not sleep therefore it can not
599 * guarantee all CPU's that are in middle of receiving packets
600 * will see the new packet type (until the next received packet).
601 */
602
dev_add_pack(struct packet_type * pt)603 void dev_add_pack(struct packet_type *pt)
604 {
605 struct list_head *head = ptype_head(pt);
606
607 if (WARN_ON_ONCE(!head))
608 return;
609
610 spin_lock(&ptype_lock);
611 list_add_rcu(&pt->list, head);
612 spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(dev_add_pack);
615
616 /**
617 * __dev_remove_pack - remove packet handler
618 * @pt: packet type declaration
619 *
620 * Remove a protocol handler that was previously added to the kernel
621 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
622 * from the kernel lists and can be freed or reused once this function
623 * returns.
624 *
625 * The packet type might still be in use by receivers
626 * and must not be freed until after all the CPU's have gone
627 * through a quiescent state.
628 */
__dev_remove_pack(struct packet_type * pt)629 void __dev_remove_pack(struct packet_type *pt)
630 {
631 struct list_head *head = ptype_head(pt);
632 struct packet_type *pt1;
633
634 if (!head)
635 return;
636
637 spin_lock(&ptype_lock);
638
639 list_for_each_entry(pt1, head, list) {
640 if (pt == pt1) {
641 list_del_rcu(&pt->list);
642 goto out;
643 }
644 }
645
646 pr_warn("dev_remove_pack: %p not found\n", pt);
647 out:
648 spin_unlock(&ptype_lock);
649 }
650 EXPORT_SYMBOL(__dev_remove_pack);
651
652 /**
653 * dev_remove_pack - remove packet handler
654 * @pt: packet type declaration
655 *
656 * Remove a protocol handler that was previously added to the kernel
657 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
658 * from the kernel lists and can be freed or reused once this function
659 * returns.
660 *
661 * This call sleeps to guarantee that no CPU is looking at the packet
662 * type after return.
663 */
dev_remove_pack(struct packet_type * pt)664 void dev_remove_pack(struct packet_type *pt)
665 {
666 __dev_remove_pack(pt);
667
668 synchronize_net();
669 }
670 EXPORT_SYMBOL(dev_remove_pack);
671
672
673 /*******************************************************************************
674 *
675 * Device Interface Subroutines
676 *
677 *******************************************************************************/
678
679 /**
680 * dev_get_iflink - get 'iflink' value of a interface
681 * @dev: targeted interface
682 *
683 * Indicates the ifindex the interface is linked to.
684 * Physical interfaces have the same 'ifindex' and 'iflink' values.
685 */
686
dev_get_iflink(const struct net_device * dev)687 int dev_get_iflink(const struct net_device *dev)
688 {
689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 return dev->netdev_ops->ndo_get_iflink(dev);
691
692 return READ_ONCE(dev->ifindex);
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697 * dev_fill_metadata_dst - Retrieve tunnel egress information.
698 * @dev: targeted interface
699 * @skb: The packet.
700 *
701 * For better visibility of tunnel traffic OVS needs to retrieve
702 * egress tunnel information for a packet. Following API allows
703 * user to get this info.
704 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 struct ip_tunnel_info *info;
708
709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
710 return -EINVAL;
711
712 info = skb_tunnel_info_unclone(skb);
713 if (!info)
714 return -ENOMEM;
715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 return -EINVAL;
717
718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
dev_fwd_path(struct net_device_path_stack * stack)722 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
723 {
724 int k = stack->num_paths++;
725
726 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
727 return NULL;
728
729 return &stack->path[k];
730 }
731
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)732 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
733 struct net_device_path_stack *stack)
734 {
735 const struct net_device *last_dev;
736 struct net_device_path_ctx ctx = {
737 .dev = dev,
738 };
739 struct net_device_path *path;
740 int ret = 0;
741
742 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
743 stack->num_paths = 0;
744 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
745 last_dev = ctx.dev;
746 path = dev_fwd_path(stack);
747 if (!path)
748 return -1;
749
750 memset(path, 0, sizeof(struct net_device_path));
751 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
752 if (ret < 0)
753 return -1;
754
755 if (WARN_ON_ONCE(last_dev == ctx.dev))
756 return -1;
757 }
758
759 if (!ctx.dev)
760 return ret;
761
762 path = dev_fwd_path(stack);
763 if (!path)
764 return -1;
765 path->type = DEV_PATH_ETHERNET;
766 path->dev = ctx.dev;
767
768 return ret;
769 }
770 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
771
772 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)773 static struct napi_struct *napi_by_id(unsigned int napi_id)
774 {
775 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
776 struct napi_struct *napi;
777
778 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
779 if (napi->napi_id == napi_id)
780 return napi;
781
782 return NULL;
783 }
784
785 /* must be called under rcu_read_lock(), as we dont take a reference */
786 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)787 netdev_napi_by_id(struct net *net, unsigned int napi_id)
788 {
789 struct napi_struct *napi;
790
791 napi = napi_by_id(napi_id);
792 if (!napi)
793 return NULL;
794
795 if (WARN_ON_ONCE(!napi->dev))
796 return NULL;
797 if (!net_eq(net, dev_net(napi->dev)))
798 return NULL;
799
800 return napi;
801 }
802
803 /**
804 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
805 * @net: the applicable net namespace
806 * @napi_id: ID of a NAPI of a target device
807 *
808 * Find a NAPI instance with @napi_id. Lock its device.
809 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
810 * netdev_unlock() must be called to release it.
811 *
812 * Return: pointer to NAPI, its device with lock held, NULL if not found.
813 */
814 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)815 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
816 {
817 struct napi_struct *napi;
818 struct net_device *dev;
819
820 rcu_read_lock();
821 napi = netdev_napi_by_id(net, napi_id);
822 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
823 rcu_read_unlock();
824 return NULL;
825 }
826
827 dev = napi->dev;
828 dev_hold(dev);
829 rcu_read_unlock();
830
831 dev = __netdev_put_lock(dev);
832 if (!dev)
833 return NULL;
834
835 rcu_read_lock();
836 napi = netdev_napi_by_id(net, napi_id);
837 if (napi && napi->dev != dev)
838 napi = NULL;
839 rcu_read_unlock();
840
841 if (!napi)
842 netdev_unlock(dev);
843 return napi;
844 }
845
846 /**
847 * __dev_get_by_name - find a device by its name
848 * @net: the applicable net namespace
849 * @name: name to find
850 *
851 * Find an interface by name. Must be called under RTNL semaphore.
852 * If the name is found a pointer to the device is returned.
853 * If the name is not found then %NULL is returned. The
854 * reference counters are not incremented so the caller must be
855 * careful with locks.
856 */
857
__dev_get_by_name(struct net * net,const char * name)858 struct net_device *__dev_get_by_name(struct net *net, const char *name)
859 {
860 struct netdev_name_node *node_name;
861
862 node_name = netdev_name_node_lookup(net, name);
863 return node_name ? node_name->dev : NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_name);
866
867 /**
868 * dev_get_by_name_rcu - find a device by its name
869 * @net: the applicable net namespace
870 * @name: name to find
871 *
872 * Find an interface by name.
873 * If the name is found a pointer to the device is returned.
874 * If the name is not found then %NULL is returned.
875 * The reference counters are not incremented so the caller must be
876 * careful with locks. The caller must hold RCU lock.
877 */
878
dev_get_by_name_rcu(struct net * net,const char * name)879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880 {
881 struct netdev_name_node *node_name;
882
883 node_name = netdev_name_node_lookup_rcu(net, name);
884 return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(dev_get_by_name_rcu);
887
888 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)889 struct net_device *dev_get_by_name(struct net *net, const char *name)
890 {
891 struct net_device *dev;
892
893 rcu_read_lock();
894 dev = dev_get_by_name_rcu(net, name);
895 dev_hold(dev);
896 rcu_read_unlock();
897 return dev;
898 }
899 EXPORT_SYMBOL(dev_get_by_name);
900
901 /**
902 * netdev_get_by_name() - find a device by its name
903 * @net: the applicable net namespace
904 * @name: name to find
905 * @tracker: tracking object for the acquired reference
906 * @gfp: allocation flags for the tracker
907 *
908 * Find an interface by name. This can be called from any
909 * context and does its own locking. The returned handle has
910 * the usage count incremented and the caller must use netdev_put() to
911 * release it when it is no longer needed. %NULL is returned if no
912 * matching device is found.
913 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)914 struct net_device *netdev_get_by_name(struct net *net, const char *name,
915 netdevice_tracker *tracker, gfp_t gfp)
916 {
917 struct net_device *dev;
918
919 dev = dev_get_by_name(net, name);
920 if (dev)
921 netdev_tracker_alloc(dev, tracker, gfp);
922 return dev;
923 }
924 EXPORT_SYMBOL(netdev_get_by_name);
925
926 /**
927 * __dev_get_by_index - find a device by its ifindex
928 * @net: the applicable net namespace
929 * @ifindex: index of device
930 *
931 * Search for an interface by index. Returns %NULL if the device
932 * is not found or a pointer to the device. The device has not
933 * had its reference counter increased so the caller must be careful
934 * about locking. The caller must hold the RTNL semaphore.
935 */
936
__dev_get_by_index(struct net * net,int ifindex)937 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
938 {
939 struct net_device *dev;
940 struct hlist_head *head = dev_index_hash(net, ifindex);
941
942 hlist_for_each_entry(dev, head, index_hlist)
943 if (dev->ifindex == ifindex)
944 return dev;
945
946 return NULL;
947 }
948 EXPORT_SYMBOL(__dev_get_by_index);
949
950 /**
951 * dev_get_by_index_rcu - find a device by its ifindex
952 * @net: the applicable net namespace
953 * @ifindex: index of device
954 *
955 * Search for an interface by index. Returns %NULL if the device
956 * is not found or a pointer to the device. The device has not
957 * had its reference counter increased so the caller must be careful
958 * about locking. The caller must hold RCU lock.
959 */
960
dev_get_by_index_rcu(struct net * net,int ifindex)961 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
962 {
963 struct net_device *dev;
964 struct hlist_head *head = dev_index_hash(net, ifindex);
965
966 hlist_for_each_entry_rcu(dev, head, index_hlist)
967 if (dev->ifindex == ifindex)
968 return dev;
969
970 return NULL;
971 }
972 EXPORT_SYMBOL(dev_get_by_index_rcu);
973
974 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977 struct net_device *dev;
978
979 rcu_read_lock();
980 dev = dev_get_by_index_rcu(net, ifindex);
981 dev_hold(dev);
982 rcu_read_unlock();
983 return dev;
984 }
985 EXPORT_SYMBOL(dev_get_by_index);
986
987 /**
988 * netdev_get_by_index() - find a device by its ifindex
989 * @net: the applicable net namespace
990 * @ifindex: index of device
991 * @tracker: tracking object for the acquired reference
992 * @gfp: allocation flags for the tracker
993 *
994 * Search for an interface by index. Returns NULL if the device
995 * is not found or a pointer to the device. The device returned has
996 * had a reference added and the pointer is safe until the user calls
997 * netdev_put() to indicate they have finished with it.
998 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)999 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1000 netdevice_tracker *tracker, gfp_t gfp)
1001 {
1002 struct net_device *dev;
1003
1004 dev = dev_get_by_index(net, ifindex);
1005 if (dev)
1006 netdev_tracker_alloc(dev, tracker, gfp);
1007 return dev;
1008 }
1009 EXPORT_SYMBOL(netdev_get_by_index);
1010
1011 /**
1012 * dev_get_by_napi_id - find a device by napi_id
1013 * @napi_id: ID of the NAPI struct
1014 *
1015 * Search for an interface by NAPI ID. Returns %NULL if the device
1016 * is not found or a pointer to the device. The device has not had
1017 * its reference counter increased so the caller must be careful
1018 * about locking. The caller must hold RCU lock.
1019 */
dev_get_by_napi_id(unsigned int napi_id)1020 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1021 {
1022 struct napi_struct *napi;
1023
1024 WARN_ON_ONCE(!rcu_read_lock_held());
1025
1026 if (!napi_id_valid(napi_id))
1027 return NULL;
1028
1029 napi = napi_by_id(napi_id);
1030
1031 return napi ? napi->dev : NULL;
1032 }
1033
1034 /* Release the held reference on the net_device, and if the net_device
1035 * is still registered try to lock the instance lock. If device is being
1036 * unregistered NULL will be returned (but the reference has been released,
1037 * either way!)
1038 *
1039 * This helper is intended for locking net_device after it has been looked up
1040 * using a lockless lookup helper. Lock prevents the instance from going away.
1041 */
__netdev_put_lock(struct net_device * dev)1042 struct net_device *__netdev_put_lock(struct net_device *dev)
1043 {
1044 netdev_lock(dev);
1045 if (dev->reg_state > NETREG_REGISTERED) {
1046 netdev_unlock(dev);
1047 dev_put(dev);
1048 return NULL;
1049 }
1050 dev_put(dev);
1051 return dev;
1052 }
1053
1054 /**
1055 * netdev_get_by_index_lock() - find a device by its ifindex
1056 * @net: the applicable net namespace
1057 * @ifindex: index of device
1058 *
1059 * Search for an interface by index. If a valid device
1060 * with @ifindex is found it will be returned with netdev->lock held.
1061 * netdev_unlock() must be called to release it.
1062 *
1063 * Return: pointer to a device with lock held, NULL if not found.
1064 */
netdev_get_by_index_lock(struct net * net,int ifindex)1065 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1066 {
1067 struct net_device *dev;
1068
1069 dev = dev_get_by_index(net, ifindex);
1070 if (!dev)
1071 return NULL;
1072
1073 return __netdev_put_lock(dev);
1074 }
1075
1076 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1077 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1078 unsigned long *index)
1079 {
1080 if (dev)
1081 netdev_unlock(dev);
1082
1083 do {
1084 rcu_read_lock();
1085 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1086 if (!dev) {
1087 rcu_read_unlock();
1088 return NULL;
1089 }
1090 dev_hold(dev);
1091 rcu_read_unlock();
1092
1093 dev = __netdev_put_lock(dev);
1094 if (dev)
1095 return dev;
1096
1097 (*index)++;
1098 } while (true);
1099 }
1100
1101 static DEFINE_SEQLOCK(netdev_rename_lock);
1102
netdev_copy_name(struct net_device * dev,char * name)1103 void netdev_copy_name(struct net_device *dev, char *name)
1104 {
1105 unsigned int seq;
1106
1107 do {
1108 seq = read_seqbegin(&netdev_rename_lock);
1109 strscpy(name, dev->name, IFNAMSIZ);
1110 } while (read_seqretry(&netdev_rename_lock, seq));
1111 }
1112
1113 /**
1114 * netdev_get_name - get a netdevice name, knowing its ifindex.
1115 * @net: network namespace
1116 * @name: a pointer to the buffer where the name will be stored.
1117 * @ifindex: the ifindex of the interface to get the name from.
1118 */
netdev_get_name(struct net * net,char * name,int ifindex)1119 int netdev_get_name(struct net *net, char *name, int ifindex)
1120 {
1121 struct net_device *dev;
1122 int ret;
1123
1124 rcu_read_lock();
1125
1126 dev = dev_get_by_index_rcu(net, ifindex);
1127 if (!dev) {
1128 ret = -ENODEV;
1129 goto out;
1130 }
1131
1132 netdev_copy_name(dev, name);
1133
1134 ret = 0;
1135 out:
1136 rcu_read_unlock();
1137 return ret;
1138 }
1139
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1140 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1141 const char *ha)
1142 {
1143 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1144 }
1145
1146 /**
1147 * dev_getbyhwaddr_rcu - find a device by its hardware address
1148 * @net: the applicable net namespace
1149 * @type: media type of device
1150 * @ha: hardware address
1151 *
1152 * Search for an interface by MAC address. Returns NULL if the device
1153 * is not found or a pointer to the device.
1154 * The caller must hold RCU.
1155 * The returned device has not had its ref count increased
1156 * and the caller must therefore be careful about locking
1157 *
1158 */
1159
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1160 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1161 const char *ha)
1162 {
1163 struct net_device *dev;
1164
1165 for_each_netdev_rcu(net, dev)
1166 if (dev_addr_cmp(dev, type, ha))
1167 return dev;
1168
1169 return NULL;
1170 }
1171 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1172
1173 /**
1174 * dev_getbyhwaddr() - find a device by its hardware address
1175 * @net: the applicable net namespace
1176 * @type: media type of device
1177 * @ha: hardware address
1178 *
1179 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1180 * rtnl_lock.
1181 *
1182 * Context: rtnl_lock() must be held.
1183 * Return: pointer to the net_device, or NULL if not found
1184 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1185 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1186 const char *ha)
1187 {
1188 struct net_device *dev;
1189
1190 ASSERT_RTNL();
1191 for_each_netdev(net, dev)
1192 if (dev_addr_cmp(dev, type, ha))
1193 return dev;
1194
1195 return NULL;
1196 }
1197 EXPORT_SYMBOL(dev_getbyhwaddr);
1198
dev_getfirstbyhwtype(struct net * net,unsigned short type)1199 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1200 {
1201 struct net_device *dev, *ret = NULL;
1202
1203 rcu_read_lock();
1204 for_each_netdev_rcu(net, dev)
1205 if (dev->type == type) {
1206 dev_hold(dev);
1207 ret = dev;
1208 break;
1209 }
1210 rcu_read_unlock();
1211 return ret;
1212 }
1213 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1214
1215 /**
1216 * __dev_get_by_flags - find any device with given flags
1217 * @net: the applicable net namespace
1218 * @if_flags: IFF_* values
1219 * @mask: bitmask of bits in if_flags to check
1220 *
1221 * Search for any interface with the given flags. Returns NULL if a device
1222 * is not found or a pointer to the device. Must be called inside
1223 * rtnl_lock(), and result refcount is unchanged.
1224 */
1225
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1226 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1227 unsigned short mask)
1228 {
1229 struct net_device *dev, *ret;
1230
1231 ASSERT_RTNL();
1232
1233 ret = NULL;
1234 for_each_netdev(net, dev) {
1235 if (((dev->flags ^ if_flags) & mask) == 0) {
1236 ret = dev;
1237 break;
1238 }
1239 }
1240 return ret;
1241 }
1242 EXPORT_SYMBOL(__dev_get_by_flags);
1243
1244 /**
1245 * dev_valid_name - check if name is okay for network device
1246 * @name: name string
1247 *
1248 * Network device names need to be valid file names to
1249 * allow sysfs to work. We also disallow any kind of
1250 * whitespace.
1251 */
dev_valid_name(const char * name)1252 bool dev_valid_name(const char *name)
1253 {
1254 if (*name == '\0')
1255 return false;
1256 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1257 return false;
1258 if (!strcmp(name, ".") || !strcmp(name, ".."))
1259 return false;
1260
1261 while (*name) {
1262 if (*name == '/' || *name == ':' || isspace(*name))
1263 return false;
1264 name++;
1265 }
1266 return true;
1267 }
1268 EXPORT_SYMBOL(dev_valid_name);
1269
1270 /**
1271 * __dev_alloc_name - allocate a name for a device
1272 * @net: network namespace to allocate the device name in
1273 * @name: name format string
1274 * @res: result name string
1275 *
1276 * Passed a format string - eg "lt%d" it will try and find a suitable
1277 * id. It scans list of devices to build up a free map, then chooses
1278 * the first empty slot. The caller must hold the dev_base or rtnl lock
1279 * while allocating the name and adding the device in order to avoid
1280 * duplicates.
1281 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1282 * Returns the number of the unit assigned or a negative errno code.
1283 */
1284
__dev_alloc_name(struct net * net,const char * name,char * res)1285 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1286 {
1287 int i = 0;
1288 const char *p;
1289 const int max_netdevices = 8*PAGE_SIZE;
1290 unsigned long *inuse;
1291 struct net_device *d;
1292 char buf[IFNAMSIZ];
1293
1294 /* Verify the string as this thing may have come from the user.
1295 * There must be one "%d" and no other "%" characters.
1296 */
1297 p = strchr(name, '%');
1298 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1299 return -EINVAL;
1300
1301 /* Use one page as a bit array of possible slots */
1302 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1303 if (!inuse)
1304 return -ENOMEM;
1305
1306 for_each_netdev(net, d) {
1307 struct netdev_name_node *name_node;
1308
1309 netdev_for_each_altname(d, name_node) {
1310 if (!sscanf(name_node->name, name, &i))
1311 continue;
1312 if (i < 0 || i >= max_netdevices)
1313 continue;
1314
1315 /* avoid cases where sscanf is not exact inverse of printf */
1316 snprintf(buf, IFNAMSIZ, name, i);
1317 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1318 __set_bit(i, inuse);
1319 }
1320 if (!sscanf(d->name, name, &i))
1321 continue;
1322 if (i < 0 || i >= max_netdevices)
1323 continue;
1324
1325 /* avoid cases where sscanf is not exact inverse of printf */
1326 snprintf(buf, IFNAMSIZ, name, i);
1327 if (!strncmp(buf, d->name, IFNAMSIZ))
1328 __set_bit(i, inuse);
1329 }
1330
1331 i = find_first_zero_bit(inuse, max_netdevices);
1332 bitmap_free(inuse);
1333 if (i == max_netdevices)
1334 return -ENFILE;
1335
1336 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1337 strscpy(buf, name, IFNAMSIZ);
1338 snprintf(res, IFNAMSIZ, buf, i);
1339 return i;
1340 }
1341
1342 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1343 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1344 const char *want_name, char *out_name,
1345 int dup_errno)
1346 {
1347 if (!dev_valid_name(want_name))
1348 return -EINVAL;
1349
1350 if (strchr(want_name, '%'))
1351 return __dev_alloc_name(net, want_name, out_name);
1352
1353 if (netdev_name_in_use(net, want_name))
1354 return -dup_errno;
1355 if (out_name != want_name)
1356 strscpy(out_name, want_name, IFNAMSIZ);
1357 return 0;
1358 }
1359
1360 /**
1361 * dev_alloc_name - allocate a name for a device
1362 * @dev: device
1363 * @name: name format string
1364 *
1365 * Passed a format string - eg "lt%d" it will try and find a suitable
1366 * id. It scans list of devices to build up a free map, then chooses
1367 * the first empty slot. The caller must hold the dev_base or rtnl lock
1368 * while allocating the name and adding the device in order to avoid
1369 * duplicates.
1370 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1371 * Returns the number of the unit assigned or a negative errno code.
1372 */
1373
dev_alloc_name(struct net_device * dev,const char * name)1374 int dev_alloc_name(struct net_device *dev, const char *name)
1375 {
1376 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1377 }
1378 EXPORT_SYMBOL(dev_alloc_name);
1379
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1380 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1381 const char *name)
1382 {
1383 int ret;
1384
1385 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1386 return ret < 0 ? ret : 0;
1387 }
1388
netif_change_name(struct net_device * dev,const char * newname)1389 int netif_change_name(struct net_device *dev, const char *newname)
1390 {
1391 struct net *net = dev_net(dev);
1392 unsigned char old_assign_type;
1393 char oldname[IFNAMSIZ];
1394 int err = 0;
1395 int ret;
1396
1397 ASSERT_RTNL_NET(net);
1398
1399 if (!strncmp(newname, dev->name, IFNAMSIZ))
1400 return 0;
1401
1402 memcpy(oldname, dev->name, IFNAMSIZ);
1403
1404 write_seqlock_bh(&netdev_rename_lock);
1405 err = dev_get_valid_name(net, dev, newname);
1406 write_sequnlock_bh(&netdev_rename_lock);
1407
1408 if (err < 0)
1409 return err;
1410
1411 if (oldname[0] && !strchr(oldname, '%'))
1412 netdev_info(dev, "renamed from %s%s\n", oldname,
1413 dev->flags & IFF_UP ? " (while UP)" : "");
1414
1415 old_assign_type = dev->name_assign_type;
1416 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1417
1418 rollback:
1419 ret = device_rename(&dev->dev, dev->name);
1420 if (ret) {
1421 write_seqlock_bh(&netdev_rename_lock);
1422 memcpy(dev->name, oldname, IFNAMSIZ);
1423 write_sequnlock_bh(&netdev_rename_lock);
1424 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1425 return ret;
1426 }
1427
1428 netdev_adjacent_rename_links(dev, oldname);
1429
1430 netdev_name_node_del(dev->name_node);
1431
1432 synchronize_net();
1433
1434 netdev_name_node_add(net, dev->name_node);
1435
1436 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1437 ret = notifier_to_errno(ret);
1438
1439 if (ret) {
1440 /* err >= 0 after dev_alloc_name() or stores the first errno */
1441 if (err >= 0) {
1442 err = ret;
1443 write_seqlock_bh(&netdev_rename_lock);
1444 memcpy(dev->name, oldname, IFNAMSIZ);
1445 write_sequnlock_bh(&netdev_rename_lock);
1446 memcpy(oldname, newname, IFNAMSIZ);
1447 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1448 old_assign_type = NET_NAME_RENAMED;
1449 goto rollback;
1450 } else {
1451 netdev_err(dev, "name change rollback failed: %d\n",
1452 ret);
1453 }
1454 }
1455
1456 return err;
1457 }
1458
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1459 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1460 {
1461 struct dev_ifalias *new_alias = NULL;
1462
1463 if (len >= IFALIASZ)
1464 return -EINVAL;
1465
1466 if (len) {
1467 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1468 if (!new_alias)
1469 return -ENOMEM;
1470
1471 memcpy(new_alias->ifalias, alias, len);
1472 new_alias->ifalias[len] = 0;
1473 }
1474
1475 mutex_lock(&ifalias_mutex);
1476 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1477 mutex_is_locked(&ifalias_mutex));
1478 mutex_unlock(&ifalias_mutex);
1479
1480 if (new_alias)
1481 kfree_rcu(new_alias, rcuhead);
1482
1483 return len;
1484 }
1485
1486 /**
1487 * dev_get_alias - get ifalias of a device
1488 * @dev: device
1489 * @name: buffer to store name of ifalias
1490 * @len: size of buffer
1491 *
1492 * get ifalias for a device. Caller must make sure dev cannot go
1493 * away, e.g. rcu read lock or own a reference count to device.
1494 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1495 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1496 {
1497 const struct dev_ifalias *alias;
1498 int ret = 0;
1499
1500 rcu_read_lock();
1501 alias = rcu_dereference(dev->ifalias);
1502 if (alias)
1503 ret = snprintf(name, len, "%s", alias->ifalias);
1504 rcu_read_unlock();
1505
1506 return ret;
1507 }
1508
1509 /**
1510 * netdev_features_change - device changes features
1511 * @dev: device to cause notification
1512 *
1513 * Called to indicate a device has changed features.
1514 */
netdev_features_change(struct net_device * dev)1515 void netdev_features_change(struct net_device *dev)
1516 {
1517 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1518 }
1519 EXPORT_SYMBOL(netdev_features_change);
1520
1521 /**
1522 * netdev_state_change - device changes state
1523 * @dev: device to cause notification
1524 *
1525 * Called to indicate a device has changed state. This function calls
1526 * the notifier chains for netdev_chain and sends a NEWLINK message
1527 * to the routing socket.
1528 */
netdev_state_change(struct net_device * dev)1529 void netdev_state_change(struct net_device *dev)
1530 {
1531 if (dev->flags & IFF_UP) {
1532 struct netdev_notifier_change_info change_info = {
1533 .info.dev = dev,
1534 };
1535
1536 call_netdevice_notifiers_info(NETDEV_CHANGE,
1537 &change_info.info);
1538 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1539 }
1540 }
1541 EXPORT_SYMBOL(netdev_state_change);
1542
1543 /**
1544 * __netdev_notify_peers - notify network peers about existence of @dev,
1545 * to be called when rtnl lock is already held.
1546 * @dev: network device
1547 *
1548 * Generate traffic such that interested network peers are aware of
1549 * @dev, such as by generating a gratuitous ARP. This may be used when
1550 * a device wants to inform the rest of the network about some sort of
1551 * reconfiguration such as a failover event or virtual machine
1552 * migration.
1553 */
__netdev_notify_peers(struct net_device * dev)1554 void __netdev_notify_peers(struct net_device *dev)
1555 {
1556 ASSERT_RTNL();
1557 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1558 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1559 }
1560 EXPORT_SYMBOL(__netdev_notify_peers);
1561
1562 /**
1563 * netdev_notify_peers - notify network peers about existence of @dev
1564 * @dev: network device
1565 *
1566 * Generate traffic such that interested network peers are aware of
1567 * @dev, such as by generating a gratuitous ARP. This may be used when
1568 * a device wants to inform the rest of the network about some sort of
1569 * reconfiguration such as a failover event or virtual machine
1570 * migration.
1571 */
netdev_notify_peers(struct net_device * dev)1572 void netdev_notify_peers(struct net_device *dev)
1573 {
1574 rtnl_lock();
1575 __netdev_notify_peers(dev);
1576 rtnl_unlock();
1577 }
1578 EXPORT_SYMBOL(netdev_notify_peers);
1579
1580 static int napi_threaded_poll(void *data);
1581
napi_kthread_create(struct napi_struct * n)1582 static int napi_kthread_create(struct napi_struct *n)
1583 {
1584 int err = 0;
1585
1586 /* Create and wake up the kthread once to put it in
1587 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1588 * warning and work with loadavg.
1589 */
1590 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1591 n->dev->name, n->napi_id);
1592 if (IS_ERR(n->thread)) {
1593 err = PTR_ERR(n->thread);
1594 pr_err("kthread_run failed with err %d\n", err);
1595 n->thread = NULL;
1596 }
1597
1598 return err;
1599 }
1600
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1601 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1602 {
1603 const struct net_device_ops *ops = dev->netdev_ops;
1604 int ret;
1605
1606 ASSERT_RTNL();
1607 dev_addr_check(dev);
1608
1609 if (!netif_device_present(dev)) {
1610 /* may be detached because parent is runtime-suspended */
1611 if (dev->dev.parent)
1612 pm_runtime_resume(dev->dev.parent);
1613 if (!netif_device_present(dev))
1614 return -ENODEV;
1615 }
1616
1617 /* Block netpoll from trying to do any rx path servicing.
1618 * If we don't do this there is a chance ndo_poll_controller
1619 * or ndo_poll may be running while we open the device
1620 */
1621 netpoll_poll_disable(dev);
1622
1623 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1624 ret = notifier_to_errno(ret);
1625 if (ret)
1626 return ret;
1627
1628 set_bit(__LINK_STATE_START, &dev->state);
1629
1630 netdev_ops_assert_locked(dev);
1631
1632 if (ops->ndo_validate_addr)
1633 ret = ops->ndo_validate_addr(dev);
1634
1635 if (!ret && ops->ndo_open)
1636 ret = ops->ndo_open(dev);
1637
1638 netpoll_poll_enable(dev);
1639
1640 if (ret)
1641 clear_bit(__LINK_STATE_START, &dev->state);
1642 else {
1643 netif_set_up(dev, true);
1644 dev_set_rx_mode(dev);
1645 dev_activate(dev);
1646 add_device_randomness(dev->dev_addr, dev->addr_len);
1647 }
1648
1649 return ret;
1650 }
1651
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1652 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1653 {
1654 int ret;
1655
1656 if (dev->flags & IFF_UP)
1657 return 0;
1658
1659 ret = __dev_open(dev, extack);
1660 if (ret < 0)
1661 return ret;
1662
1663 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1664 call_netdevice_notifiers(NETDEV_UP, dev);
1665
1666 return ret;
1667 }
1668
__dev_close_many(struct list_head * head)1669 static void __dev_close_many(struct list_head *head)
1670 {
1671 struct net_device *dev;
1672
1673 ASSERT_RTNL();
1674 might_sleep();
1675
1676 list_for_each_entry(dev, head, close_list) {
1677 /* Temporarily disable netpoll until the interface is down */
1678 netpoll_poll_disable(dev);
1679
1680 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1681
1682 clear_bit(__LINK_STATE_START, &dev->state);
1683
1684 /* Synchronize to scheduled poll. We cannot touch poll list, it
1685 * can be even on different cpu. So just clear netif_running().
1686 *
1687 * dev->stop() will invoke napi_disable() on all of it's
1688 * napi_struct instances on this device.
1689 */
1690 smp_mb__after_atomic(); /* Commit netif_running(). */
1691 }
1692
1693 dev_deactivate_many(head);
1694
1695 list_for_each_entry(dev, head, close_list) {
1696 const struct net_device_ops *ops = dev->netdev_ops;
1697
1698 /*
1699 * Call the device specific close. This cannot fail.
1700 * Only if device is UP
1701 *
1702 * We allow it to be called even after a DETACH hot-plug
1703 * event.
1704 */
1705
1706 netdev_ops_assert_locked(dev);
1707
1708 if (ops->ndo_stop)
1709 ops->ndo_stop(dev);
1710
1711 netif_set_up(dev, false);
1712 netpoll_poll_enable(dev);
1713 }
1714 }
1715
__dev_close(struct net_device * dev)1716 static void __dev_close(struct net_device *dev)
1717 {
1718 LIST_HEAD(single);
1719
1720 list_add(&dev->close_list, &single);
1721 __dev_close_many(&single);
1722 list_del(&single);
1723 }
1724
dev_close_many(struct list_head * head,bool unlink)1725 void dev_close_many(struct list_head *head, bool unlink)
1726 {
1727 struct net_device *dev, *tmp;
1728
1729 /* Remove the devices that don't need to be closed */
1730 list_for_each_entry_safe(dev, tmp, head, close_list)
1731 if (!(dev->flags & IFF_UP))
1732 list_del_init(&dev->close_list);
1733
1734 __dev_close_many(head);
1735
1736 list_for_each_entry_safe(dev, tmp, head, close_list) {
1737 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1738 call_netdevice_notifiers(NETDEV_DOWN, dev);
1739 if (unlink)
1740 list_del_init(&dev->close_list);
1741 }
1742 }
1743 EXPORT_SYMBOL(dev_close_many);
1744
netif_close(struct net_device * dev)1745 void netif_close(struct net_device *dev)
1746 {
1747 if (dev->flags & IFF_UP) {
1748 LIST_HEAD(single);
1749
1750 list_add(&dev->close_list, &single);
1751 dev_close_many(&single, true);
1752 list_del(&single);
1753 }
1754 }
1755 EXPORT_SYMBOL(netif_close);
1756
netif_disable_lro(struct net_device * dev)1757 void netif_disable_lro(struct net_device *dev)
1758 {
1759 struct net_device *lower_dev;
1760 struct list_head *iter;
1761
1762 dev->wanted_features &= ~NETIF_F_LRO;
1763 netdev_update_features(dev);
1764
1765 if (unlikely(dev->features & NETIF_F_LRO))
1766 netdev_WARN(dev, "failed to disable LRO!\n");
1767
1768 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1769 netdev_lock_ops(lower_dev);
1770 netif_disable_lro(lower_dev);
1771 netdev_unlock_ops(lower_dev);
1772 }
1773 }
1774
1775 /**
1776 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777 * @dev: device
1778 *
1779 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1780 * called under RTNL. This is needed if Generic XDP is installed on
1781 * the device.
1782 */
dev_disable_gro_hw(struct net_device * dev)1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785 dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 netdev_update_features(dev);
1787
1788 if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791
netdev_cmd_to_name(enum netdev_cmd cmd)1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val) \
1795 case NETDEV_##val: \
1796 return "NETDEV_" __stringify(val);
1797 switch (cmd) {
1798 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1802 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1803 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1804 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1808 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1809 N(XDP_FEAT_CHANGE)
1810 }
1811 #undef N
1812 return "UNKNOWN_NETDEV_EVENT";
1813 }
1814 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1815
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1816 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1817 struct net_device *dev)
1818 {
1819 struct netdev_notifier_info info = {
1820 .dev = dev,
1821 };
1822
1823 return nb->notifier_call(nb, val, &info);
1824 }
1825
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1826 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1827 struct net_device *dev)
1828 {
1829 int err;
1830
1831 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1832 err = notifier_to_errno(err);
1833 if (err)
1834 return err;
1835
1836 if (!(dev->flags & IFF_UP))
1837 return 0;
1838
1839 call_netdevice_notifier(nb, NETDEV_UP, dev);
1840 return 0;
1841 }
1842
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1843 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1844 struct net_device *dev)
1845 {
1846 if (dev->flags & IFF_UP) {
1847 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1848 dev);
1849 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1850 }
1851 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1852 }
1853
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1854 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1855 struct net *net)
1856 {
1857 struct net_device *dev;
1858 int err;
1859
1860 for_each_netdev(net, dev) {
1861 err = call_netdevice_register_notifiers(nb, dev);
1862 if (err)
1863 goto rollback;
1864 }
1865 return 0;
1866
1867 rollback:
1868 for_each_netdev_continue_reverse(net, dev)
1869 call_netdevice_unregister_notifiers(nb, dev);
1870 return err;
1871 }
1872
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1873 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1874 struct net *net)
1875 {
1876 struct net_device *dev;
1877
1878 for_each_netdev(net, dev)
1879 call_netdevice_unregister_notifiers(nb, dev);
1880 }
1881
1882 static int dev_boot_phase = 1;
1883
1884 /**
1885 * register_netdevice_notifier - register a network notifier block
1886 * @nb: notifier
1887 *
1888 * Register a notifier to be called when network device events occur.
1889 * The notifier passed is linked into the kernel structures and must
1890 * not be reused until it has been unregistered. A negative errno code
1891 * is returned on a failure.
1892 *
1893 * When registered all registration and up events are replayed
1894 * to the new notifier to allow device to have a race free
1895 * view of the network device list.
1896 */
1897
register_netdevice_notifier(struct notifier_block * nb)1898 int register_netdevice_notifier(struct notifier_block *nb)
1899 {
1900 struct net *net;
1901 int err;
1902
1903 /* Close race with setup_net() and cleanup_net() */
1904 down_write(&pernet_ops_rwsem);
1905
1906 /* When RTNL is removed, we need protection for netdev_chain. */
1907 rtnl_lock();
1908
1909 err = raw_notifier_chain_register(&netdev_chain, nb);
1910 if (err)
1911 goto unlock;
1912 if (dev_boot_phase)
1913 goto unlock;
1914 for_each_net(net) {
1915 __rtnl_net_lock(net);
1916 err = call_netdevice_register_net_notifiers(nb, net);
1917 __rtnl_net_unlock(net);
1918 if (err)
1919 goto rollback;
1920 }
1921
1922 unlock:
1923 rtnl_unlock();
1924 up_write(&pernet_ops_rwsem);
1925 return err;
1926
1927 rollback:
1928 for_each_net_continue_reverse(net) {
1929 __rtnl_net_lock(net);
1930 call_netdevice_unregister_net_notifiers(nb, net);
1931 __rtnl_net_unlock(net);
1932 }
1933
1934 raw_notifier_chain_unregister(&netdev_chain, nb);
1935 goto unlock;
1936 }
1937 EXPORT_SYMBOL(register_netdevice_notifier);
1938
1939 /**
1940 * unregister_netdevice_notifier - unregister a network notifier block
1941 * @nb: notifier
1942 *
1943 * Unregister a notifier previously registered by
1944 * register_netdevice_notifier(). The notifier is unlinked into the
1945 * kernel structures and may then be reused. A negative errno code
1946 * is returned on a failure.
1947 *
1948 * After unregistering unregister and down device events are synthesized
1949 * for all devices on the device list to the removed notifier to remove
1950 * the need for special case cleanup code.
1951 */
1952
unregister_netdevice_notifier(struct notifier_block * nb)1953 int unregister_netdevice_notifier(struct notifier_block *nb)
1954 {
1955 struct net *net;
1956 int err;
1957
1958 /* Close race with setup_net() and cleanup_net() */
1959 down_write(&pernet_ops_rwsem);
1960 rtnl_lock();
1961 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1962 if (err)
1963 goto unlock;
1964
1965 for_each_net(net) {
1966 __rtnl_net_lock(net);
1967 call_netdevice_unregister_net_notifiers(nb, net);
1968 __rtnl_net_unlock(net);
1969 }
1970
1971 unlock:
1972 rtnl_unlock();
1973 up_write(&pernet_ops_rwsem);
1974 return err;
1975 }
1976 EXPORT_SYMBOL(unregister_netdevice_notifier);
1977
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1978 static int __register_netdevice_notifier_net(struct net *net,
1979 struct notifier_block *nb,
1980 bool ignore_call_fail)
1981 {
1982 int err;
1983
1984 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1985 if (err)
1986 return err;
1987 if (dev_boot_phase)
1988 return 0;
1989
1990 err = call_netdevice_register_net_notifiers(nb, net);
1991 if (err && !ignore_call_fail)
1992 goto chain_unregister;
1993
1994 return 0;
1995
1996 chain_unregister:
1997 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1998 return err;
1999 }
2000
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2001 static int __unregister_netdevice_notifier_net(struct net *net,
2002 struct notifier_block *nb)
2003 {
2004 int err;
2005
2006 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2007 if (err)
2008 return err;
2009
2010 call_netdevice_unregister_net_notifiers(nb, net);
2011 return 0;
2012 }
2013
2014 /**
2015 * register_netdevice_notifier_net - register a per-netns network notifier block
2016 * @net: network namespace
2017 * @nb: notifier
2018 *
2019 * Register a notifier to be called when network device events occur.
2020 * The notifier passed is linked into the kernel structures and must
2021 * not be reused until it has been unregistered. A negative errno code
2022 * is returned on a failure.
2023 *
2024 * When registered all registration and up events are replayed
2025 * to the new notifier to allow device to have a race free
2026 * view of the network device list.
2027 */
2028
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2029 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2030 {
2031 int err;
2032
2033 rtnl_net_lock(net);
2034 err = __register_netdevice_notifier_net(net, nb, false);
2035 rtnl_net_unlock(net);
2036
2037 return err;
2038 }
2039 EXPORT_SYMBOL(register_netdevice_notifier_net);
2040
2041 /**
2042 * unregister_netdevice_notifier_net - unregister a per-netns
2043 * network notifier block
2044 * @net: network namespace
2045 * @nb: notifier
2046 *
2047 * Unregister a notifier previously registered by
2048 * register_netdevice_notifier_net(). The notifier is unlinked from the
2049 * kernel structures and may then be reused. A negative errno code
2050 * is returned on a failure.
2051 *
2052 * After unregistering unregister and down device events are synthesized
2053 * for all devices on the device list to the removed notifier to remove
2054 * the need for special case cleanup code.
2055 */
2056
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2057 int unregister_netdevice_notifier_net(struct net *net,
2058 struct notifier_block *nb)
2059 {
2060 int err;
2061
2062 rtnl_net_lock(net);
2063 err = __unregister_netdevice_notifier_net(net, nb);
2064 rtnl_net_unlock(net);
2065
2066 return err;
2067 }
2068 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2069
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2070 static void __move_netdevice_notifier_net(struct net *src_net,
2071 struct net *dst_net,
2072 struct notifier_block *nb)
2073 {
2074 __unregister_netdevice_notifier_net(src_net, nb);
2075 __register_netdevice_notifier_net(dst_net, nb, true);
2076 }
2077
rtnl_net_dev_lock(struct net_device * dev)2078 static void rtnl_net_dev_lock(struct net_device *dev)
2079 {
2080 bool again;
2081
2082 do {
2083 struct net *net;
2084
2085 again = false;
2086
2087 /* netns might be being dismantled. */
2088 rcu_read_lock();
2089 net = dev_net_rcu(dev);
2090 net_passive_inc(net);
2091 rcu_read_unlock();
2092
2093 rtnl_net_lock(net);
2094
2095 #ifdef CONFIG_NET_NS
2096 /* dev might have been moved to another netns. */
2097 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2098 rtnl_net_unlock(net);
2099 net_passive_dec(net);
2100 again = true;
2101 }
2102 #endif
2103 } while (again);
2104 }
2105
rtnl_net_dev_unlock(struct net_device * dev)2106 static void rtnl_net_dev_unlock(struct net_device *dev)
2107 {
2108 struct net *net = dev_net(dev);
2109
2110 rtnl_net_unlock(net);
2111 net_passive_dec(net);
2112 }
2113
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2114 int register_netdevice_notifier_dev_net(struct net_device *dev,
2115 struct notifier_block *nb,
2116 struct netdev_net_notifier *nn)
2117 {
2118 int err;
2119
2120 rtnl_net_dev_lock(dev);
2121 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2122 if (!err) {
2123 nn->nb = nb;
2124 list_add(&nn->list, &dev->net_notifier_list);
2125 }
2126 rtnl_net_dev_unlock(dev);
2127
2128 return err;
2129 }
2130 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2131
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2132 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2133 struct notifier_block *nb,
2134 struct netdev_net_notifier *nn)
2135 {
2136 int err;
2137
2138 rtnl_net_dev_lock(dev);
2139 list_del(&nn->list);
2140 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2141 rtnl_net_dev_unlock(dev);
2142
2143 return err;
2144 }
2145 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2146
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2147 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2148 struct net *net)
2149 {
2150 struct netdev_net_notifier *nn;
2151
2152 list_for_each_entry(nn, &dev->net_notifier_list, list)
2153 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2154 }
2155
2156 /**
2157 * call_netdevice_notifiers_info - call all network notifier blocks
2158 * @val: value passed unmodified to notifier function
2159 * @info: notifier information data
2160 *
2161 * Call all network notifier blocks. Parameters and return value
2162 * are as for raw_notifier_call_chain().
2163 */
2164
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2165 int call_netdevice_notifiers_info(unsigned long val,
2166 struct netdev_notifier_info *info)
2167 {
2168 struct net *net = dev_net(info->dev);
2169 int ret;
2170
2171 ASSERT_RTNL();
2172
2173 /* Run per-netns notifier block chain first, then run the global one.
2174 * Hopefully, one day, the global one is going to be removed after
2175 * all notifier block registrators get converted to be per-netns.
2176 */
2177 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2178 if (ret & NOTIFY_STOP_MASK)
2179 return ret;
2180 return raw_notifier_call_chain(&netdev_chain, val, info);
2181 }
2182
2183 /**
2184 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2185 * for and rollback on error
2186 * @val_up: value passed unmodified to notifier function
2187 * @val_down: value passed unmodified to the notifier function when
2188 * recovering from an error on @val_up
2189 * @info: notifier information data
2190 *
2191 * Call all per-netns network notifier blocks, but not notifier blocks on
2192 * the global notifier chain. Parameters and return value are as for
2193 * raw_notifier_call_chain_robust().
2194 */
2195
2196 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2197 call_netdevice_notifiers_info_robust(unsigned long val_up,
2198 unsigned long val_down,
2199 struct netdev_notifier_info *info)
2200 {
2201 struct net *net = dev_net(info->dev);
2202
2203 ASSERT_RTNL();
2204
2205 return raw_notifier_call_chain_robust(&net->netdev_chain,
2206 val_up, val_down, info);
2207 }
2208
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2209 static int call_netdevice_notifiers_extack(unsigned long val,
2210 struct net_device *dev,
2211 struct netlink_ext_ack *extack)
2212 {
2213 struct netdev_notifier_info info = {
2214 .dev = dev,
2215 .extack = extack,
2216 };
2217
2218 return call_netdevice_notifiers_info(val, &info);
2219 }
2220
2221 /**
2222 * call_netdevice_notifiers - call all network notifier blocks
2223 * @val: value passed unmodified to notifier function
2224 * @dev: net_device pointer passed unmodified to notifier function
2225 *
2226 * Call all network notifier blocks. Parameters and return value
2227 * are as for raw_notifier_call_chain().
2228 */
2229
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2230 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2231 {
2232 return call_netdevice_notifiers_extack(val, dev, NULL);
2233 }
2234 EXPORT_SYMBOL(call_netdevice_notifiers);
2235
2236 /**
2237 * call_netdevice_notifiers_mtu - call all network notifier blocks
2238 * @val: value passed unmodified to notifier function
2239 * @dev: net_device pointer passed unmodified to notifier function
2240 * @arg: additional u32 argument passed to the notifier function
2241 *
2242 * Call all network notifier blocks. Parameters and return value
2243 * are as for raw_notifier_call_chain().
2244 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2245 static int call_netdevice_notifiers_mtu(unsigned long val,
2246 struct net_device *dev, u32 arg)
2247 {
2248 struct netdev_notifier_info_ext info = {
2249 .info.dev = dev,
2250 .ext.mtu = arg,
2251 };
2252
2253 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2254
2255 return call_netdevice_notifiers_info(val, &info.info);
2256 }
2257
2258 #ifdef CONFIG_NET_INGRESS
2259 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2260
net_inc_ingress_queue(void)2261 void net_inc_ingress_queue(void)
2262 {
2263 static_branch_inc(&ingress_needed_key);
2264 }
2265 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2266
net_dec_ingress_queue(void)2267 void net_dec_ingress_queue(void)
2268 {
2269 static_branch_dec(&ingress_needed_key);
2270 }
2271 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2272 #endif
2273
2274 #ifdef CONFIG_NET_EGRESS
2275 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2276
net_inc_egress_queue(void)2277 void net_inc_egress_queue(void)
2278 {
2279 static_branch_inc(&egress_needed_key);
2280 }
2281 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2282
net_dec_egress_queue(void)2283 void net_dec_egress_queue(void)
2284 {
2285 static_branch_dec(&egress_needed_key);
2286 }
2287 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2288 #endif
2289
2290 #ifdef CONFIG_NET_CLS_ACT
2291 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2292 EXPORT_SYMBOL(tcf_sw_enabled_key);
2293 #endif
2294
2295 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2296 EXPORT_SYMBOL(netstamp_needed_key);
2297 #ifdef CONFIG_JUMP_LABEL
2298 static atomic_t netstamp_needed_deferred;
2299 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2300 static void netstamp_clear(struct work_struct *work)
2301 {
2302 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2303 int wanted;
2304
2305 wanted = atomic_add_return(deferred, &netstamp_wanted);
2306 if (wanted > 0)
2307 static_branch_enable(&netstamp_needed_key);
2308 else
2309 static_branch_disable(&netstamp_needed_key);
2310 }
2311 static DECLARE_WORK(netstamp_work, netstamp_clear);
2312 #endif
2313
net_enable_timestamp(void)2314 void net_enable_timestamp(void)
2315 {
2316 #ifdef CONFIG_JUMP_LABEL
2317 int wanted = atomic_read(&netstamp_wanted);
2318
2319 while (wanted > 0) {
2320 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2321 return;
2322 }
2323 atomic_inc(&netstamp_needed_deferred);
2324 schedule_work(&netstamp_work);
2325 #else
2326 static_branch_inc(&netstamp_needed_key);
2327 #endif
2328 }
2329 EXPORT_SYMBOL(net_enable_timestamp);
2330
net_disable_timestamp(void)2331 void net_disable_timestamp(void)
2332 {
2333 #ifdef CONFIG_JUMP_LABEL
2334 int wanted = atomic_read(&netstamp_wanted);
2335
2336 while (wanted > 1) {
2337 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2338 return;
2339 }
2340 atomic_dec(&netstamp_needed_deferred);
2341 schedule_work(&netstamp_work);
2342 #else
2343 static_branch_dec(&netstamp_needed_key);
2344 #endif
2345 }
2346 EXPORT_SYMBOL(net_disable_timestamp);
2347
net_timestamp_set(struct sk_buff * skb)2348 static inline void net_timestamp_set(struct sk_buff *skb)
2349 {
2350 skb->tstamp = 0;
2351 skb->tstamp_type = SKB_CLOCK_REALTIME;
2352 if (static_branch_unlikely(&netstamp_needed_key))
2353 skb->tstamp = ktime_get_real();
2354 }
2355
2356 #define net_timestamp_check(COND, SKB) \
2357 if (static_branch_unlikely(&netstamp_needed_key)) { \
2358 if ((COND) && !(SKB)->tstamp) \
2359 (SKB)->tstamp = ktime_get_real(); \
2360 } \
2361
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2362 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2363 {
2364 return __is_skb_forwardable(dev, skb, true);
2365 }
2366 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2367
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2368 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2369 bool check_mtu)
2370 {
2371 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2372
2373 if (likely(!ret)) {
2374 skb->protocol = eth_type_trans(skb, dev);
2375 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2376 }
2377
2378 return ret;
2379 }
2380
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2381 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2382 {
2383 return __dev_forward_skb2(dev, skb, true);
2384 }
2385 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2386
2387 /**
2388 * dev_forward_skb - loopback an skb to another netif
2389 *
2390 * @dev: destination network device
2391 * @skb: buffer to forward
2392 *
2393 * return values:
2394 * NET_RX_SUCCESS (no congestion)
2395 * NET_RX_DROP (packet was dropped, but freed)
2396 *
2397 * dev_forward_skb can be used for injecting an skb from the
2398 * start_xmit function of one device into the receive queue
2399 * of another device.
2400 *
2401 * The receiving device may be in another namespace, so
2402 * we have to clear all information in the skb that could
2403 * impact namespace isolation.
2404 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2405 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2406 {
2407 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2408 }
2409 EXPORT_SYMBOL_GPL(dev_forward_skb);
2410
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2411 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2412 {
2413 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2414 }
2415
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2416 static inline int deliver_skb(struct sk_buff *skb,
2417 struct packet_type *pt_prev,
2418 struct net_device *orig_dev)
2419 {
2420 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2421 return -ENOMEM;
2422 refcount_inc(&skb->users);
2423 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2424 }
2425
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2426 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2427 struct packet_type **pt,
2428 struct net_device *orig_dev,
2429 __be16 type,
2430 struct list_head *ptype_list)
2431 {
2432 struct packet_type *ptype, *pt_prev = *pt;
2433
2434 list_for_each_entry_rcu(ptype, ptype_list, list) {
2435 if (ptype->type != type)
2436 continue;
2437 if (pt_prev)
2438 deliver_skb(skb, pt_prev, orig_dev);
2439 pt_prev = ptype;
2440 }
2441 *pt = pt_prev;
2442 }
2443
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2444 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2445 {
2446 if (!ptype->af_packet_priv || !skb->sk)
2447 return false;
2448
2449 if (ptype->id_match)
2450 return ptype->id_match(ptype, skb->sk);
2451 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2452 return true;
2453
2454 return false;
2455 }
2456
2457 /**
2458 * dev_nit_active_rcu - return true if any network interface taps are in use
2459 *
2460 * The caller must hold the RCU lock
2461 *
2462 * @dev: network device to check for the presence of taps
2463 */
dev_nit_active_rcu(const struct net_device * dev)2464 bool dev_nit_active_rcu(const struct net_device *dev)
2465 {
2466 /* Callers may hold either RCU or RCU BH lock */
2467 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2468
2469 return !list_empty(&dev_net(dev)->ptype_all) ||
2470 !list_empty(&dev->ptype_all);
2471 }
2472 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2473
2474 /*
2475 * Support routine. Sends outgoing frames to any network
2476 * taps currently in use.
2477 */
2478
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2479 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2480 {
2481 struct packet_type *ptype, *pt_prev = NULL;
2482 struct list_head *ptype_list;
2483 struct sk_buff *skb2 = NULL;
2484
2485 rcu_read_lock();
2486 ptype_list = &dev_net_rcu(dev)->ptype_all;
2487 again:
2488 list_for_each_entry_rcu(ptype, ptype_list, list) {
2489 if (READ_ONCE(ptype->ignore_outgoing))
2490 continue;
2491
2492 /* Never send packets back to the socket
2493 * they originated from - MvS (miquels@drinkel.ow.org)
2494 */
2495 if (skb_loop_sk(ptype, skb))
2496 continue;
2497
2498 if (pt_prev) {
2499 deliver_skb(skb2, pt_prev, skb->dev);
2500 pt_prev = ptype;
2501 continue;
2502 }
2503
2504 /* need to clone skb, done only once */
2505 skb2 = skb_clone(skb, GFP_ATOMIC);
2506 if (!skb2)
2507 goto out_unlock;
2508
2509 net_timestamp_set(skb2);
2510
2511 /* skb->nh should be correctly
2512 * set by sender, so that the second statement is
2513 * just protection against buggy protocols.
2514 */
2515 skb_reset_mac_header(skb2);
2516
2517 if (skb_network_header(skb2) < skb2->data ||
2518 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2519 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2520 ntohs(skb2->protocol),
2521 dev->name);
2522 skb_reset_network_header(skb2);
2523 }
2524
2525 skb2->transport_header = skb2->network_header;
2526 skb2->pkt_type = PACKET_OUTGOING;
2527 pt_prev = ptype;
2528 }
2529
2530 if (ptype_list != &dev->ptype_all) {
2531 ptype_list = &dev->ptype_all;
2532 goto again;
2533 }
2534 out_unlock:
2535 if (pt_prev) {
2536 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2537 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2538 else
2539 kfree_skb(skb2);
2540 }
2541 rcu_read_unlock();
2542 }
2543 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2544
2545 /**
2546 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2547 * @dev: Network device
2548 * @txq: number of queues available
2549 *
2550 * If real_num_tx_queues is changed the tc mappings may no longer be
2551 * valid. To resolve this verify the tc mapping remains valid and if
2552 * not NULL the mapping. With no priorities mapping to this
2553 * offset/count pair it will no longer be used. In the worst case TC0
2554 * is invalid nothing can be done so disable priority mappings. If is
2555 * expected that drivers will fix this mapping if they can before
2556 * calling netif_set_real_num_tx_queues.
2557 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2558 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2559 {
2560 int i;
2561 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2562
2563 /* If TC0 is invalidated disable TC mapping */
2564 if (tc->offset + tc->count > txq) {
2565 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2566 dev->num_tc = 0;
2567 return;
2568 }
2569
2570 /* Invalidated prio to tc mappings set to TC0 */
2571 for (i = 1; i < TC_BITMASK + 1; i++) {
2572 int q = netdev_get_prio_tc_map(dev, i);
2573
2574 tc = &dev->tc_to_txq[q];
2575 if (tc->offset + tc->count > txq) {
2576 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2577 i, q);
2578 netdev_set_prio_tc_map(dev, i, 0);
2579 }
2580 }
2581 }
2582
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2583 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2584 {
2585 if (dev->num_tc) {
2586 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2587 int i;
2588
2589 /* walk through the TCs and see if it falls into any of them */
2590 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2591 if ((txq - tc->offset) < tc->count)
2592 return i;
2593 }
2594
2595 /* didn't find it, just return -1 to indicate no match */
2596 return -1;
2597 }
2598
2599 return 0;
2600 }
2601 EXPORT_SYMBOL(netdev_txq_to_tc);
2602
2603 #ifdef CONFIG_XPS
2604 static struct static_key xps_needed __read_mostly;
2605 static struct static_key xps_rxqs_needed __read_mostly;
2606 static DEFINE_MUTEX(xps_map_mutex);
2607 #define xmap_dereference(P) \
2608 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2609
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2610 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2611 struct xps_dev_maps *old_maps, int tci, u16 index)
2612 {
2613 struct xps_map *map = NULL;
2614 int pos;
2615
2616 map = xmap_dereference(dev_maps->attr_map[tci]);
2617 if (!map)
2618 return false;
2619
2620 for (pos = map->len; pos--;) {
2621 if (map->queues[pos] != index)
2622 continue;
2623
2624 if (map->len > 1) {
2625 map->queues[pos] = map->queues[--map->len];
2626 break;
2627 }
2628
2629 if (old_maps)
2630 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2631 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2632 kfree_rcu(map, rcu);
2633 return false;
2634 }
2635
2636 return true;
2637 }
2638
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2639 static bool remove_xps_queue_cpu(struct net_device *dev,
2640 struct xps_dev_maps *dev_maps,
2641 int cpu, u16 offset, u16 count)
2642 {
2643 int num_tc = dev_maps->num_tc;
2644 bool active = false;
2645 int tci;
2646
2647 for (tci = cpu * num_tc; num_tc--; tci++) {
2648 int i, j;
2649
2650 for (i = count, j = offset; i--; j++) {
2651 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2652 break;
2653 }
2654
2655 active |= i < 0;
2656 }
2657
2658 return active;
2659 }
2660
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2661 static void reset_xps_maps(struct net_device *dev,
2662 struct xps_dev_maps *dev_maps,
2663 enum xps_map_type type)
2664 {
2665 static_key_slow_dec_cpuslocked(&xps_needed);
2666 if (type == XPS_RXQS)
2667 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2668
2669 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2670
2671 kfree_rcu(dev_maps, rcu);
2672 }
2673
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2674 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2675 u16 offset, u16 count)
2676 {
2677 struct xps_dev_maps *dev_maps;
2678 bool active = false;
2679 int i, j;
2680
2681 dev_maps = xmap_dereference(dev->xps_maps[type]);
2682 if (!dev_maps)
2683 return;
2684
2685 for (j = 0; j < dev_maps->nr_ids; j++)
2686 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2687 if (!active)
2688 reset_xps_maps(dev, dev_maps, type);
2689
2690 if (type == XPS_CPUS) {
2691 for (i = offset + (count - 1); count--; i--)
2692 netdev_queue_numa_node_write(
2693 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2694 }
2695 }
2696
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2697 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2698 u16 count)
2699 {
2700 if (!static_key_false(&xps_needed))
2701 return;
2702
2703 cpus_read_lock();
2704 mutex_lock(&xps_map_mutex);
2705
2706 if (static_key_false(&xps_rxqs_needed))
2707 clean_xps_maps(dev, XPS_RXQS, offset, count);
2708
2709 clean_xps_maps(dev, XPS_CPUS, offset, count);
2710
2711 mutex_unlock(&xps_map_mutex);
2712 cpus_read_unlock();
2713 }
2714
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2715 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2716 {
2717 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2718 }
2719
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2720 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2721 u16 index, bool is_rxqs_map)
2722 {
2723 struct xps_map *new_map;
2724 int alloc_len = XPS_MIN_MAP_ALLOC;
2725 int i, pos;
2726
2727 for (pos = 0; map && pos < map->len; pos++) {
2728 if (map->queues[pos] != index)
2729 continue;
2730 return map;
2731 }
2732
2733 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2734 if (map) {
2735 if (pos < map->alloc_len)
2736 return map;
2737
2738 alloc_len = map->alloc_len * 2;
2739 }
2740
2741 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2742 * map
2743 */
2744 if (is_rxqs_map)
2745 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2746 else
2747 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2748 cpu_to_node(attr_index));
2749 if (!new_map)
2750 return NULL;
2751
2752 for (i = 0; i < pos; i++)
2753 new_map->queues[i] = map->queues[i];
2754 new_map->alloc_len = alloc_len;
2755 new_map->len = pos;
2756
2757 return new_map;
2758 }
2759
2760 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2761 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2762 struct xps_dev_maps *new_dev_maps, int index,
2763 int tc, bool skip_tc)
2764 {
2765 int i, tci = index * dev_maps->num_tc;
2766 struct xps_map *map;
2767
2768 /* copy maps belonging to foreign traffic classes */
2769 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2770 if (i == tc && skip_tc)
2771 continue;
2772
2773 /* fill in the new device map from the old device map */
2774 map = xmap_dereference(dev_maps->attr_map[tci]);
2775 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2776 }
2777 }
2778
2779 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2780 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2781 u16 index, enum xps_map_type type)
2782 {
2783 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2784 const unsigned long *online_mask = NULL;
2785 bool active = false, copy = false;
2786 int i, j, tci, numa_node_id = -2;
2787 int maps_sz, num_tc = 1, tc = 0;
2788 struct xps_map *map, *new_map;
2789 unsigned int nr_ids;
2790
2791 WARN_ON_ONCE(index >= dev->num_tx_queues);
2792
2793 if (dev->num_tc) {
2794 /* Do not allow XPS on subordinate device directly */
2795 num_tc = dev->num_tc;
2796 if (num_tc < 0)
2797 return -EINVAL;
2798
2799 /* If queue belongs to subordinate dev use its map */
2800 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2801
2802 tc = netdev_txq_to_tc(dev, index);
2803 if (tc < 0)
2804 return -EINVAL;
2805 }
2806
2807 mutex_lock(&xps_map_mutex);
2808
2809 dev_maps = xmap_dereference(dev->xps_maps[type]);
2810 if (type == XPS_RXQS) {
2811 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2812 nr_ids = dev->num_rx_queues;
2813 } else {
2814 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2815 if (num_possible_cpus() > 1)
2816 online_mask = cpumask_bits(cpu_online_mask);
2817 nr_ids = nr_cpu_ids;
2818 }
2819
2820 if (maps_sz < L1_CACHE_BYTES)
2821 maps_sz = L1_CACHE_BYTES;
2822
2823 /* The old dev_maps could be larger or smaller than the one we're
2824 * setting up now, as dev->num_tc or nr_ids could have been updated in
2825 * between. We could try to be smart, but let's be safe instead and only
2826 * copy foreign traffic classes if the two map sizes match.
2827 */
2828 if (dev_maps &&
2829 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2830 copy = true;
2831
2832 /* allocate memory for queue storage */
2833 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2834 j < nr_ids;) {
2835 if (!new_dev_maps) {
2836 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2837 if (!new_dev_maps) {
2838 mutex_unlock(&xps_map_mutex);
2839 return -ENOMEM;
2840 }
2841
2842 new_dev_maps->nr_ids = nr_ids;
2843 new_dev_maps->num_tc = num_tc;
2844 }
2845
2846 tci = j * num_tc + tc;
2847 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2848
2849 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2850 if (!map)
2851 goto error;
2852
2853 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2854 }
2855
2856 if (!new_dev_maps)
2857 goto out_no_new_maps;
2858
2859 if (!dev_maps) {
2860 /* Increment static keys at most once per type */
2861 static_key_slow_inc_cpuslocked(&xps_needed);
2862 if (type == XPS_RXQS)
2863 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2864 }
2865
2866 for (j = 0; j < nr_ids; j++) {
2867 bool skip_tc = false;
2868
2869 tci = j * num_tc + tc;
2870 if (netif_attr_test_mask(j, mask, nr_ids) &&
2871 netif_attr_test_online(j, online_mask, nr_ids)) {
2872 /* add tx-queue to CPU/rx-queue maps */
2873 int pos = 0;
2874
2875 skip_tc = true;
2876
2877 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2878 while ((pos < map->len) && (map->queues[pos] != index))
2879 pos++;
2880
2881 if (pos == map->len)
2882 map->queues[map->len++] = index;
2883 #ifdef CONFIG_NUMA
2884 if (type == XPS_CPUS) {
2885 if (numa_node_id == -2)
2886 numa_node_id = cpu_to_node(j);
2887 else if (numa_node_id != cpu_to_node(j))
2888 numa_node_id = -1;
2889 }
2890 #endif
2891 }
2892
2893 if (copy)
2894 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2895 skip_tc);
2896 }
2897
2898 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2899
2900 /* Cleanup old maps */
2901 if (!dev_maps)
2902 goto out_no_old_maps;
2903
2904 for (j = 0; j < dev_maps->nr_ids; j++) {
2905 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2906 map = xmap_dereference(dev_maps->attr_map[tci]);
2907 if (!map)
2908 continue;
2909
2910 if (copy) {
2911 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2912 if (map == new_map)
2913 continue;
2914 }
2915
2916 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2917 kfree_rcu(map, rcu);
2918 }
2919 }
2920
2921 old_dev_maps = dev_maps;
2922
2923 out_no_old_maps:
2924 dev_maps = new_dev_maps;
2925 active = true;
2926
2927 out_no_new_maps:
2928 if (type == XPS_CPUS)
2929 /* update Tx queue numa node */
2930 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2931 (numa_node_id >= 0) ?
2932 numa_node_id : NUMA_NO_NODE);
2933
2934 if (!dev_maps)
2935 goto out_no_maps;
2936
2937 /* removes tx-queue from unused CPUs/rx-queues */
2938 for (j = 0; j < dev_maps->nr_ids; j++) {
2939 tci = j * dev_maps->num_tc;
2940
2941 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2942 if (i == tc &&
2943 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2944 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2945 continue;
2946
2947 active |= remove_xps_queue(dev_maps,
2948 copy ? old_dev_maps : NULL,
2949 tci, index);
2950 }
2951 }
2952
2953 if (old_dev_maps)
2954 kfree_rcu(old_dev_maps, rcu);
2955
2956 /* free map if not active */
2957 if (!active)
2958 reset_xps_maps(dev, dev_maps, type);
2959
2960 out_no_maps:
2961 mutex_unlock(&xps_map_mutex);
2962
2963 return 0;
2964 error:
2965 /* remove any maps that we added */
2966 for (j = 0; j < nr_ids; j++) {
2967 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2968 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2969 map = copy ?
2970 xmap_dereference(dev_maps->attr_map[tci]) :
2971 NULL;
2972 if (new_map && new_map != map)
2973 kfree(new_map);
2974 }
2975 }
2976
2977 mutex_unlock(&xps_map_mutex);
2978
2979 kfree(new_dev_maps);
2980 return -ENOMEM;
2981 }
2982 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2983
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2984 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2985 u16 index)
2986 {
2987 int ret;
2988
2989 cpus_read_lock();
2990 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2991 cpus_read_unlock();
2992
2993 return ret;
2994 }
2995 EXPORT_SYMBOL(netif_set_xps_queue);
2996
2997 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2998 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2999 {
3000 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3001
3002 /* Unbind any subordinate channels */
3003 while (txq-- != &dev->_tx[0]) {
3004 if (txq->sb_dev)
3005 netdev_unbind_sb_channel(dev, txq->sb_dev);
3006 }
3007 }
3008
netdev_reset_tc(struct net_device * dev)3009 void netdev_reset_tc(struct net_device *dev)
3010 {
3011 #ifdef CONFIG_XPS
3012 netif_reset_xps_queues_gt(dev, 0);
3013 #endif
3014 netdev_unbind_all_sb_channels(dev);
3015
3016 /* Reset TC configuration of device */
3017 dev->num_tc = 0;
3018 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3019 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3020 }
3021 EXPORT_SYMBOL(netdev_reset_tc);
3022
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3023 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3024 {
3025 if (tc >= dev->num_tc)
3026 return -EINVAL;
3027
3028 #ifdef CONFIG_XPS
3029 netif_reset_xps_queues(dev, offset, count);
3030 #endif
3031 dev->tc_to_txq[tc].count = count;
3032 dev->tc_to_txq[tc].offset = offset;
3033 return 0;
3034 }
3035 EXPORT_SYMBOL(netdev_set_tc_queue);
3036
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3037 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3038 {
3039 if (num_tc > TC_MAX_QUEUE)
3040 return -EINVAL;
3041
3042 #ifdef CONFIG_XPS
3043 netif_reset_xps_queues_gt(dev, 0);
3044 #endif
3045 netdev_unbind_all_sb_channels(dev);
3046
3047 dev->num_tc = num_tc;
3048 return 0;
3049 }
3050 EXPORT_SYMBOL(netdev_set_num_tc);
3051
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3052 void netdev_unbind_sb_channel(struct net_device *dev,
3053 struct net_device *sb_dev)
3054 {
3055 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3056
3057 #ifdef CONFIG_XPS
3058 netif_reset_xps_queues_gt(sb_dev, 0);
3059 #endif
3060 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3061 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3062
3063 while (txq-- != &dev->_tx[0]) {
3064 if (txq->sb_dev == sb_dev)
3065 txq->sb_dev = NULL;
3066 }
3067 }
3068 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3069
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3070 int netdev_bind_sb_channel_queue(struct net_device *dev,
3071 struct net_device *sb_dev,
3072 u8 tc, u16 count, u16 offset)
3073 {
3074 /* Make certain the sb_dev and dev are already configured */
3075 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3076 return -EINVAL;
3077
3078 /* We cannot hand out queues we don't have */
3079 if ((offset + count) > dev->real_num_tx_queues)
3080 return -EINVAL;
3081
3082 /* Record the mapping */
3083 sb_dev->tc_to_txq[tc].count = count;
3084 sb_dev->tc_to_txq[tc].offset = offset;
3085
3086 /* Provide a way for Tx queue to find the tc_to_txq map or
3087 * XPS map for itself.
3088 */
3089 while (count--)
3090 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3091
3092 return 0;
3093 }
3094 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3095
netdev_set_sb_channel(struct net_device * dev,u16 channel)3096 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3097 {
3098 /* Do not use a multiqueue device to represent a subordinate channel */
3099 if (netif_is_multiqueue(dev))
3100 return -ENODEV;
3101
3102 /* We allow channels 1 - 32767 to be used for subordinate channels.
3103 * Channel 0 is meant to be "native" mode and used only to represent
3104 * the main root device. We allow writing 0 to reset the device back
3105 * to normal mode after being used as a subordinate channel.
3106 */
3107 if (channel > S16_MAX)
3108 return -EINVAL;
3109
3110 dev->num_tc = -channel;
3111
3112 return 0;
3113 }
3114 EXPORT_SYMBOL(netdev_set_sb_channel);
3115
3116 /*
3117 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3118 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3119 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3120 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3121 {
3122 bool disabling;
3123 int rc;
3124
3125 disabling = txq < dev->real_num_tx_queues;
3126
3127 if (txq < 1 || txq > dev->num_tx_queues)
3128 return -EINVAL;
3129
3130 if (dev->reg_state == NETREG_REGISTERED ||
3131 dev->reg_state == NETREG_UNREGISTERING) {
3132 ASSERT_RTNL();
3133 netdev_ops_assert_locked(dev);
3134
3135 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3136 txq);
3137 if (rc)
3138 return rc;
3139
3140 if (dev->num_tc)
3141 netif_setup_tc(dev, txq);
3142
3143 net_shaper_set_real_num_tx_queues(dev, txq);
3144
3145 dev_qdisc_change_real_num_tx(dev, txq);
3146
3147 dev->real_num_tx_queues = txq;
3148
3149 if (disabling) {
3150 synchronize_net();
3151 qdisc_reset_all_tx_gt(dev, txq);
3152 #ifdef CONFIG_XPS
3153 netif_reset_xps_queues_gt(dev, txq);
3154 #endif
3155 }
3156 } else {
3157 dev->real_num_tx_queues = txq;
3158 }
3159
3160 return 0;
3161 }
3162 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3163
3164 /**
3165 * netif_set_real_num_rx_queues - set actual number of RX queues used
3166 * @dev: Network device
3167 * @rxq: Actual number of RX queues
3168 *
3169 * This must be called either with the rtnl_lock held or before
3170 * registration of the net device. Returns 0 on success, or a
3171 * negative error code. If called before registration, it always
3172 * succeeds.
3173 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3174 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3175 {
3176 int rc;
3177
3178 if (rxq < 1 || rxq > dev->num_rx_queues)
3179 return -EINVAL;
3180
3181 if (dev->reg_state == NETREG_REGISTERED) {
3182 ASSERT_RTNL();
3183 netdev_ops_assert_locked(dev);
3184
3185 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3186 rxq);
3187 if (rc)
3188 return rc;
3189 }
3190
3191 dev->real_num_rx_queues = rxq;
3192 return 0;
3193 }
3194 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3195
3196 /**
3197 * netif_set_real_num_queues - set actual number of RX and TX queues used
3198 * @dev: Network device
3199 * @txq: Actual number of TX queues
3200 * @rxq: Actual number of RX queues
3201 *
3202 * Set the real number of both TX and RX queues.
3203 * Does nothing if the number of queues is already correct.
3204 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3205 int netif_set_real_num_queues(struct net_device *dev,
3206 unsigned int txq, unsigned int rxq)
3207 {
3208 unsigned int old_rxq = dev->real_num_rx_queues;
3209 int err;
3210
3211 if (txq < 1 || txq > dev->num_tx_queues ||
3212 rxq < 1 || rxq > dev->num_rx_queues)
3213 return -EINVAL;
3214
3215 /* Start from increases, so the error path only does decreases -
3216 * decreases can't fail.
3217 */
3218 if (rxq > dev->real_num_rx_queues) {
3219 err = netif_set_real_num_rx_queues(dev, rxq);
3220 if (err)
3221 return err;
3222 }
3223 if (txq > dev->real_num_tx_queues) {
3224 err = netif_set_real_num_tx_queues(dev, txq);
3225 if (err)
3226 goto undo_rx;
3227 }
3228 if (rxq < dev->real_num_rx_queues)
3229 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3230 if (txq < dev->real_num_tx_queues)
3231 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3232
3233 return 0;
3234 undo_rx:
3235 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3236 return err;
3237 }
3238 EXPORT_SYMBOL(netif_set_real_num_queues);
3239
3240 /**
3241 * netif_set_tso_max_size() - set the max size of TSO frames supported
3242 * @dev: netdev to update
3243 * @size: max skb->len of a TSO frame
3244 *
3245 * Set the limit on the size of TSO super-frames the device can handle.
3246 * Unless explicitly set the stack will assume the value of
3247 * %GSO_LEGACY_MAX_SIZE.
3248 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3249 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3250 {
3251 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3252 if (size < READ_ONCE(dev->gso_max_size))
3253 netif_set_gso_max_size(dev, size);
3254 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3255 netif_set_gso_ipv4_max_size(dev, size);
3256 }
3257 EXPORT_SYMBOL(netif_set_tso_max_size);
3258
3259 /**
3260 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3261 * @dev: netdev to update
3262 * @segs: max number of TCP segments
3263 *
3264 * Set the limit on the number of TCP segments the device can generate from
3265 * a single TSO super-frame.
3266 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3267 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3268 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3269 {
3270 dev->tso_max_segs = segs;
3271 if (segs < READ_ONCE(dev->gso_max_segs))
3272 netif_set_gso_max_segs(dev, segs);
3273 }
3274 EXPORT_SYMBOL(netif_set_tso_max_segs);
3275
3276 /**
3277 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3278 * @to: netdev to update
3279 * @from: netdev from which to copy the limits
3280 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3281 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3282 {
3283 netif_set_tso_max_size(to, from->tso_max_size);
3284 netif_set_tso_max_segs(to, from->tso_max_segs);
3285 }
3286 EXPORT_SYMBOL(netif_inherit_tso_max);
3287
3288 /**
3289 * netif_get_num_default_rss_queues - default number of RSS queues
3290 *
3291 * Default value is the number of physical cores if there are only 1 or 2, or
3292 * divided by 2 if there are more.
3293 */
netif_get_num_default_rss_queues(void)3294 int netif_get_num_default_rss_queues(void)
3295 {
3296 cpumask_var_t cpus;
3297 int cpu, count = 0;
3298
3299 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3300 return 1;
3301
3302 cpumask_copy(cpus, cpu_online_mask);
3303 for_each_cpu(cpu, cpus) {
3304 ++count;
3305 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3306 }
3307 free_cpumask_var(cpus);
3308
3309 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3310 }
3311 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3312
__netif_reschedule(struct Qdisc * q)3313 static void __netif_reschedule(struct Qdisc *q)
3314 {
3315 struct softnet_data *sd;
3316 unsigned long flags;
3317
3318 local_irq_save(flags);
3319 sd = this_cpu_ptr(&softnet_data);
3320 q->next_sched = NULL;
3321 *sd->output_queue_tailp = q;
3322 sd->output_queue_tailp = &q->next_sched;
3323 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3324 local_irq_restore(flags);
3325 }
3326
__netif_schedule(struct Qdisc * q)3327 void __netif_schedule(struct Qdisc *q)
3328 {
3329 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3330 __netif_reschedule(q);
3331 }
3332 EXPORT_SYMBOL(__netif_schedule);
3333
3334 struct dev_kfree_skb_cb {
3335 enum skb_drop_reason reason;
3336 };
3337
get_kfree_skb_cb(const struct sk_buff * skb)3338 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3339 {
3340 return (struct dev_kfree_skb_cb *)skb->cb;
3341 }
3342
netif_schedule_queue(struct netdev_queue * txq)3343 void netif_schedule_queue(struct netdev_queue *txq)
3344 {
3345 rcu_read_lock();
3346 if (!netif_xmit_stopped(txq)) {
3347 struct Qdisc *q = rcu_dereference(txq->qdisc);
3348
3349 __netif_schedule(q);
3350 }
3351 rcu_read_unlock();
3352 }
3353 EXPORT_SYMBOL(netif_schedule_queue);
3354
netif_tx_wake_queue(struct netdev_queue * dev_queue)3355 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3356 {
3357 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3358 struct Qdisc *q;
3359
3360 rcu_read_lock();
3361 q = rcu_dereference(dev_queue->qdisc);
3362 __netif_schedule(q);
3363 rcu_read_unlock();
3364 }
3365 }
3366 EXPORT_SYMBOL(netif_tx_wake_queue);
3367
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3368 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3369 {
3370 unsigned long flags;
3371
3372 if (unlikely(!skb))
3373 return;
3374
3375 if (likely(refcount_read(&skb->users) == 1)) {
3376 smp_rmb();
3377 refcount_set(&skb->users, 0);
3378 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3379 return;
3380 }
3381 get_kfree_skb_cb(skb)->reason = reason;
3382 local_irq_save(flags);
3383 skb->next = __this_cpu_read(softnet_data.completion_queue);
3384 __this_cpu_write(softnet_data.completion_queue, skb);
3385 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3386 local_irq_restore(flags);
3387 }
3388 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3389
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3390 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3391 {
3392 if (in_hardirq() || irqs_disabled())
3393 dev_kfree_skb_irq_reason(skb, reason);
3394 else
3395 kfree_skb_reason(skb, reason);
3396 }
3397 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3398
3399
3400 /**
3401 * netif_device_detach - mark device as removed
3402 * @dev: network device
3403 *
3404 * Mark device as removed from system and therefore no longer available.
3405 */
netif_device_detach(struct net_device * dev)3406 void netif_device_detach(struct net_device *dev)
3407 {
3408 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3409 netif_running(dev)) {
3410 netif_tx_stop_all_queues(dev);
3411 }
3412 }
3413 EXPORT_SYMBOL(netif_device_detach);
3414
3415 /**
3416 * netif_device_attach - mark device as attached
3417 * @dev: network device
3418 *
3419 * Mark device as attached from system and restart if needed.
3420 */
netif_device_attach(struct net_device * dev)3421 void netif_device_attach(struct net_device *dev)
3422 {
3423 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3424 netif_running(dev)) {
3425 netif_tx_wake_all_queues(dev);
3426 netdev_watchdog_up(dev);
3427 }
3428 }
3429 EXPORT_SYMBOL(netif_device_attach);
3430
3431 /*
3432 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3433 * to be used as a distribution range.
3434 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3435 static u16 skb_tx_hash(const struct net_device *dev,
3436 const struct net_device *sb_dev,
3437 struct sk_buff *skb)
3438 {
3439 u32 hash;
3440 u16 qoffset = 0;
3441 u16 qcount = dev->real_num_tx_queues;
3442
3443 if (dev->num_tc) {
3444 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3445
3446 qoffset = sb_dev->tc_to_txq[tc].offset;
3447 qcount = sb_dev->tc_to_txq[tc].count;
3448 if (unlikely(!qcount)) {
3449 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3450 sb_dev->name, qoffset, tc);
3451 qoffset = 0;
3452 qcount = dev->real_num_tx_queues;
3453 }
3454 }
3455
3456 if (skb_rx_queue_recorded(skb)) {
3457 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3458 hash = skb_get_rx_queue(skb);
3459 if (hash >= qoffset)
3460 hash -= qoffset;
3461 while (unlikely(hash >= qcount))
3462 hash -= qcount;
3463 return hash + qoffset;
3464 }
3465
3466 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3467 }
3468
skb_warn_bad_offload(const struct sk_buff * skb)3469 void skb_warn_bad_offload(const struct sk_buff *skb)
3470 {
3471 static const netdev_features_t null_features;
3472 struct net_device *dev = skb->dev;
3473 const char *name = "";
3474
3475 if (!net_ratelimit())
3476 return;
3477
3478 if (dev) {
3479 if (dev->dev.parent)
3480 name = dev_driver_string(dev->dev.parent);
3481 else
3482 name = netdev_name(dev);
3483 }
3484 skb_dump(KERN_WARNING, skb, false);
3485 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3486 name, dev ? &dev->features : &null_features,
3487 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3488 }
3489
3490 /*
3491 * Invalidate hardware checksum when packet is to be mangled, and
3492 * complete checksum manually on outgoing path.
3493 */
skb_checksum_help(struct sk_buff * skb)3494 int skb_checksum_help(struct sk_buff *skb)
3495 {
3496 __wsum csum;
3497 int ret = 0, offset;
3498
3499 if (skb->ip_summed == CHECKSUM_COMPLETE)
3500 goto out_set_summed;
3501
3502 if (unlikely(skb_is_gso(skb))) {
3503 skb_warn_bad_offload(skb);
3504 return -EINVAL;
3505 }
3506
3507 if (!skb_frags_readable(skb)) {
3508 return -EFAULT;
3509 }
3510
3511 /* Before computing a checksum, we should make sure no frag could
3512 * be modified by an external entity : checksum could be wrong.
3513 */
3514 if (skb_has_shared_frag(skb)) {
3515 ret = __skb_linearize(skb);
3516 if (ret)
3517 goto out;
3518 }
3519
3520 offset = skb_checksum_start_offset(skb);
3521 ret = -EINVAL;
3522 if (unlikely(offset >= skb_headlen(skb))) {
3523 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3524 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3525 offset, skb_headlen(skb));
3526 goto out;
3527 }
3528 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3529
3530 offset += skb->csum_offset;
3531 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3532 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3533 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3534 offset + sizeof(__sum16), skb_headlen(skb));
3535 goto out;
3536 }
3537 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3538 if (ret)
3539 goto out;
3540
3541 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3542 out_set_summed:
3543 skb->ip_summed = CHECKSUM_NONE;
3544 out:
3545 return ret;
3546 }
3547 EXPORT_SYMBOL(skb_checksum_help);
3548
skb_crc32c_csum_help(struct sk_buff * skb)3549 int skb_crc32c_csum_help(struct sk_buff *skb)
3550 {
3551 __le32 crc32c_csum;
3552 int ret = 0, offset, start;
3553
3554 if (skb->ip_summed != CHECKSUM_PARTIAL)
3555 goto out;
3556
3557 if (unlikely(skb_is_gso(skb)))
3558 goto out;
3559
3560 /* Before computing a checksum, we should make sure no frag could
3561 * be modified by an external entity : checksum could be wrong.
3562 */
3563 if (unlikely(skb_has_shared_frag(skb))) {
3564 ret = __skb_linearize(skb);
3565 if (ret)
3566 goto out;
3567 }
3568 start = skb_checksum_start_offset(skb);
3569 offset = start + offsetof(struct sctphdr, checksum);
3570 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3571 ret = -EINVAL;
3572 goto out;
3573 }
3574
3575 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3576 if (ret)
3577 goto out;
3578
3579 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3580 skb->len - start, ~(__u32)0,
3581 crc32c_csum_stub));
3582 *(__le32 *)(skb->data + offset) = crc32c_csum;
3583 skb_reset_csum_not_inet(skb);
3584 out:
3585 return ret;
3586 }
3587 EXPORT_SYMBOL(skb_crc32c_csum_help);
3588
skb_network_protocol(struct sk_buff * skb,int * depth)3589 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3590 {
3591 __be16 type = skb->protocol;
3592
3593 /* Tunnel gso handlers can set protocol to ethernet. */
3594 if (type == htons(ETH_P_TEB)) {
3595 struct ethhdr *eth;
3596
3597 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3598 return 0;
3599
3600 eth = (struct ethhdr *)skb->data;
3601 type = eth->h_proto;
3602 }
3603
3604 return vlan_get_protocol_and_depth(skb, type, depth);
3605 }
3606
3607
3608 /* Take action when hardware reception checksum errors are detected. */
3609 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3610 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3611 {
3612 netdev_err(dev, "hw csum failure\n");
3613 skb_dump(KERN_ERR, skb, true);
3614 dump_stack();
3615 }
3616
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3617 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3618 {
3619 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3620 }
3621 EXPORT_SYMBOL(netdev_rx_csum_fault);
3622 #endif
3623
3624 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3625 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3626 {
3627 #ifdef CONFIG_HIGHMEM
3628 int i;
3629
3630 if (!(dev->features & NETIF_F_HIGHDMA)) {
3631 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3632 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3633 struct page *page = skb_frag_page(frag);
3634
3635 if (page && PageHighMem(page))
3636 return 1;
3637 }
3638 }
3639 #endif
3640 return 0;
3641 }
3642
3643 /* If MPLS offload request, verify we are testing hardware MPLS features
3644 * instead of standard features for the netdev.
3645 */
3646 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3647 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3648 netdev_features_t features,
3649 __be16 type)
3650 {
3651 if (eth_p_mpls(type))
3652 features &= skb->dev->mpls_features;
3653
3654 return features;
3655 }
3656 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3657 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3658 netdev_features_t features,
3659 __be16 type)
3660 {
3661 return features;
3662 }
3663 #endif
3664
harmonize_features(struct sk_buff * skb,netdev_features_t features)3665 static netdev_features_t harmonize_features(struct sk_buff *skb,
3666 netdev_features_t features)
3667 {
3668 __be16 type;
3669
3670 type = skb_network_protocol(skb, NULL);
3671 features = net_mpls_features(skb, features, type);
3672
3673 if (skb->ip_summed != CHECKSUM_NONE &&
3674 !can_checksum_protocol(features, type)) {
3675 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3676 }
3677 if (illegal_highdma(skb->dev, skb))
3678 features &= ~NETIF_F_SG;
3679
3680 return features;
3681 }
3682
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3683 netdev_features_t passthru_features_check(struct sk_buff *skb,
3684 struct net_device *dev,
3685 netdev_features_t features)
3686 {
3687 return features;
3688 }
3689 EXPORT_SYMBOL(passthru_features_check);
3690
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3691 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3692 struct net_device *dev,
3693 netdev_features_t features)
3694 {
3695 return vlan_features_check(skb, features);
3696 }
3697
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3698 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3699 struct net_device *dev,
3700 netdev_features_t features)
3701 {
3702 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3703
3704 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3705 return features & ~NETIF_F_GSO_MASK;
3706
3707 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3708 return features & ~NETIF_F_GSO_MASK;
3709
3710 if (!skb_shinfo(skb)->gso_type) {
3711 skb_warn_bad_offload(skb);
3712 return features & ~NETIF_F_GSO_MASK;
3713 }
3714
3715 /* Support for GSO partial features requires software
3716 * intervention before we can actually process the packets
3717 * so we need to strip support for any partial features now
3718 * and we can pull them back in after we have partially
3719 * segmented the frame.
3720 */
3721 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3722 features &= ~dev->gso_partial_features;
3723
3724 /* Make sure to clear the IPv4 ID mangling feature if the
3725 * IPv4 header has the potential to be fragmented.
3726 */
3727 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3728 struct iphdr *iph = skb->encapsulation ?
3729 inner_ip_hdr(skb) : ip_hdr(skb);
3730
3731 if (!(iph->frag_off & htons(IP_DF)))
3732 features &= ~NETIF_F_TSO_MANGLEID;
3733 }
3734
3735 return features;
3736 }
3737
netif_skb_features(struct sk_buff * skb)3738 netdev_features_t netif_skb_features(struct sk_buff *skb)
3739 {
3740 struct net_device *dev = skb->dev;
3741 netdev_features_t features = dev->features;
3742
3743 if (skb_is_gso(skb))
3744 features = gso_features_check(skb, dev, features);
3745
3746 /* If encapsulation offload request, verify we are testing
3747 * hardware encapsulation features instead of standard
3748 * features for the netdev
3749 */
3750 if (skb->encapsulation)
3751 features &= dev->hw_enc_features;
3752
3753 if (skb_vlan_tagged(skb))
3754 features = netdev_intersect_features(features,
3755 dev->vlan_features |
3756 NETIF_F_HW_VLAN_CTAG_TX |
3757 NETIF_F_HW_VLAN_STAG_TX);
3758
3759 if (dev->netdev_ops->ndo_features_check)
3760 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3761 features);
3762 else
3763 features &= dflt_features_check(skb, dev, features);
3764
3765 return harmonize_features(skb, features);
3766 }
3767 EXPORT_SYMBOL(netif_skb_features);
3768
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3769 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3770 struct netdev_queue *txq, bool more)
3771 {
3772 unsigned int len;
3773 int rc;
3774
3775 if (dev_nit_active_rcu(dev))
3776 dev_queue_xmit_nit(skb, dev);
3777
3778 len = skb->len;
3779 trace_net_dev_start_xmit(skb, dev);
3780 rc = netdev_start_xmit(skb, dev, txq, more);
3781 trace_net_dev_xmit(skb, rc, dev, len);
3782
3783 return rc;
3784 }
3785
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3786 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3787 struct netdev_queue *txq, int *ret)
3788 {
3789 struct sk_buff *skb = first;
3790 int rc = NETDEV_TX_OK;
3791
3792 while (skb) {
3793 struct sk_buff *next = skb->next;
3794
3795 skb_mark_not_on_list(skb);
3796 rc = xmit_one(skb, dev, txq, next != NULL);
3797 if (unlikely(!dev_xmit_complete(rc))) {
3798 skb->next = next;
3799 goto out;
3800 }
3801
3802 skb = next;
3803 if (netif_tx_queue_stopped(txq) && skb) {
3804 rc = NETDEV_TX_BUSY;
3805 break;
3806 }
3807 }
3808
3809 out:
3810 *ret = rc;
3811 return skb;
3812 }
3813
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3814 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3815 netdev_features_t features)
3816 {
3817 if (skb_vlan_tag_present(skb) &&
3818 !vlan_hw_offload_capable(features, skb->vlan_proto))
3819 skb = __vlan_hwaccel_push_inside(skb);
3820 return skb;
3821 }
3822
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3823 int skb_csum_hwoffload_help(struct sk_buff *skb,
3824 const netdev_features_t features)
3825 {
3826 if (unlikely(skb_csum_is_sctp(skb)))
3827 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3828 skb_crc32c_csum_help(skb);
3829
3830 if (features & NETIF_F_HW_CSUM)
3831 return 0;
3832
3833 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3834 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3835 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3836 !ipv6_has_hopopt_jumbo(skb))
3837 goto sw_checksum;
3838
3839 switch (skb->csum_offset) {
3840 case offsetof(struct tcphdr, check):
3841 case offsetof(struct udphdr, check):
3842 return 0;
3843 }
3844 }
3845
3846 sw_checksum:
3847 return skb_checksum_help(skb);
3848 }
3849 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3850
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3851 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3852 {
3853 netdev_features_t features;
3854
3855 if (!skb_frags_readable(skb))
3856 goto out_kfree_skb;
3857
3858 features = netif_skb_features(skb);
3859 skb = validate_xmit_vlan(skb, features);
3860 if (unlikely(!skb))
3861 goto out_null;
3862
3863 skb = sk_validate_xmit_skb(skb, dev);
3864 if (unlikely(!skb))
3865 goto out_null;
3866
3867 if (netif_needs_gso(skb, features)) {
3868 struct sk_buff *segs;
3869
3870 segs = skb_gso_segment(skb, features);
3871 if (IS_ERR(segs)) {
3872 goto out_kfree_skb;
3873 } else if (segs) {
3874 consume_skb(skb);
3875 skb = segs;
3876 }
3877 } else {
3878 if (skb_needs_linearize(skb, features) &&
3879 __skb_linearize(skb))
3880 goto out_kfree_skb;
3881
3882 /* If packet is not checksummed and device does not
3883 * support checksumming for this protocol, complete
3884 * checksumming here.
3885 */
3886 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3887 if (skb->encapsulation)
3888 skb_set_inner_transport_header(skb,
3889 skb_checksum_start_offset(skb));
3890 else
3891 skb_set_transport_header(skb,
3892 skb_checksum_start_offset(skb));
3893 if (skb_csum_hwoffload_help(skb, features))
3894 goto out_kfree_skb;
3895 }
3896 }
3897
3898 skb = validate_xmit_xfrm(skb, features, again);
3899
3900 return skb;
3901
3902 out_kfree_skb:
3903 kfree_skb(skb);
3904 out_null:
3905 dev_core_stats_tx_dropped_inc(dev);
3906 return NULL;
3907 }
3908
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3909 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3910 {
3911 struct sk_buff *next, *head = NULL, *tail;
3912
3913 for (; skb != NULL; skb = next) {
3914 next = skb->next;
3915 skb_mark_not_on_list(skb);
3916
3917 /* in case skb won't be segmented, point to itself */
3918 skb->prev = skb;
3919
3920 skb = validate_xmit_skb(skb, dev, again);
3921 if (!skb)
3922 continue;
3923
3924 if (!head)
3925 head = skb;
3926 else
3927 tail->next = skb;
3928 /* If skb was segmented, skb->prev points to
3929 * the last segment. If not, it still contains skb.
3930 */
3931 tail = skb->prev;
3932 }
3933 return head;
3934 }
3935 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3936
qdisc_pkt_len_init(struct sk_buff * skb)3937 static void qdisc_pkt_len_init(struct sk_buff *skb)
3938 {
3939 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3940
3941 qdisc_skb_cb(skb)->pkt_len = skb->len;
3942
3943 /* To get more precise estimation of bytes sent on wire,
3944 * we add to pkt_len the headers size of all segments
3945 */
3946 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3947 u16 gso_segs = shinfo->gso_segs;
3948 unsigned int hdr_len;
3949
3950 /* mac layer + network layer */
3951 hdr_len = skb_transport_offset(skb);
3952
3953 /* + transport layer */
3954 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3955 const struct tcphdr *th;
3956 struct tcphdr _tcphdr;
3957
3958 th = skb_header_pointer(skb, hdr_len,
3959 sizeof(_tcphdr), &_tcphdr);
3960 if (likely(th))
3961 hdr_len += __tcp_hdrlen(th);
3962 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3963 struct udphdr _udphdr;
3964
3965 if (skb_header_pointer(skb, hdr_len,
3966 sizeof(_udphdr), &_udphdr))
3967 hdr_len += sizeof(struct udphdr);
3968 }
3969
3970 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3971 int payload = skb->len - hdr_len;
3972
3973 /* Malicious packet. */
3974 if (payload <= 0)
3975 return;
3976 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3977 }
3978 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3979 }
3980 }
3981
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3982 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3983 struct sk_buff **to_free,
3984 struct netdev_queue *txq)
3985 {
3986 int rc;
3987
3988 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3989 if (rc == NET_XMIT_SUCCESS)
3990 trace_qdisc_enqueue(q, txq, skb);
3991 return rc;
3992 }
3993
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3994 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3995 struct net_device *dev,
3996 struct netdev_queue *txq)
3997 {
3998 spinlock_t *root_lock = qdisc_lock(q);
3999 struct sk_buff *to_free = NULL;
4000 bool contended;
4001 int rc;
4002
4003 qdisc_calculate_pkt_len(skb, q);
4004
4005 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4006
4007 if (q->flags & TCQ_F_NOLOCK) {
4008 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4009 qdisc_run_begin(q)) {
4010 /* Retest nolock_qdisc_is_empty() within the protection
4011 * of q->seqlock to protect from racing with requeuing.
4012 */
4013 if (unlikely(!nolock_qdisc_is_empty(q))) {
4014 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4015 __qdisc_run(q);
4016 qdisc_run_end(q);
4017
4018 goto no_lock_out;
4019 }
4020
4021 qdisc_bstats_cpu_update(q, skb);
4022 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4023 !nolock_qdisc_is_empty(q))
4024 __qdisc_run(q);
4025
4026 qdisc_run_end(q);
4027 return NET_XMIT_SUCCESS;
4028 }
4029
4030 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4031 qdisc_run(q);
4032
4033 no_lock_out:
4034 if (unlikely(to_free))
4035 kfree_skb_list_reason(to_free,
4036 tcf_get_drop_reason(to_free));
4037 return rc;
4038 }
4039
4040 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4041 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4042 return NET_XMIT_DROP;
4043 }
4044 /*
4045 * Heuristic to force contended enqueues to serialize on a
4046 * separate lock before trying to get qdisc main lock.
4047 * This permits qdisc->running owner to get the lock more
4048 * often and dequeue packets faster.
4049 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4050 * and then other tasks will only enqueue packets. The packets will be
4051 * sent after the qdisc owner is scheduled again. To prevent this
4052 * scenario the task always serialize on the lock.
4053 */
4054 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4055 if (unlikely(contended))
4056 spin_lock(&q->busylock);
4057
4058 spin_lock(root_lock);
4059 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4060 __qdisc_drop(skb, &to_free);
4061 rc = NET_XMIT_DROP;
4062 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4063 qdisc_run_begin(q)) {
4064 /*
4065 * This is a work-conserving queue; there are no old skbs
4066 * waiting to be sent out; and the qdisc is not running -
4067 * xmit the skb directly.
4068 */
4069
4070 qdisc_bstats_update(q, skb);
4071
4072 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4073 if (unlikely(contended)) {
4074 spin_unlock(&q->busylock);
4075 contended = false;
4076 }
4077 __qdisc_run(q);
4078 }
4079
4080 qdisc_run_end(q);
4081 rc = NET_XMIT_SUCCESS;
4082 } else {
4083 WRITE_ONCE(q->owner, smp_processor_id());
4084 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4085 WRITE_ONCE(q->owner, -1);
4086 if (qdisc_run_begin(q)) {
4087 if (unlikely(contended)) {
4088 spin_unlock(&q->busylock);
4089 contended = false;
4090 }
4091 __qdisc_run(q);
4092 qdisc_run_end(q);
4093 }
4094 }
4095 spin_unlock(root_lock);
4096 if (unlikely(to_free))
4097 kfree_skb_list_reason(to_free,
4098 tcf_get_drop_reason(to_free));
4099 if (unlikely(contended))
4100 spin_unlock(&q->busylock);
4101 return rc;
4102 }
4103
4104 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4105 static void skb_update_prio(struct sk_buff *skb)
4106 {
4107 const struct netprio_map *map;
4108 const struct sock *sk;
4109 unsigned int prioidx;
4110
4111 if (skb->priority)
4112 return;
4113 map = rcu_dereference_bh(skb->dev->priomap);
4114 if (!map)
4115 return;
4116 sk = skb_to_full_sk(skb);
4117 if (!sk)
4118 return;
4119
4120 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4121
4122 if (prioidx < map->priomap_len)
4123 skb->priority = map->priomap[prioidx];
4124 }
4125 #else
4126 #define skb_update_prio(skb)
4127 #endif
4128
4129 /**
4130 * dev_loopback_xmit - loop back @skb
4131 * @net: network namespace this loopback is happening in
4132 * @sk: sk needed to be a netfilter okfn
4133 * @skb: buffer to transmit
4134 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4135 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4136 {
4137 skb_reset_mac_header(skb);
4138 __skb_pull(skb, skb_network_offset(skb));
4139 skb->pkt_type = PACKET_LOOPBACK;
4140 if (skb->ip_summed == CHECKSUM_NONE)
4141 skb->ip_summed = CHECKSUM_UNNECESSARY;
4142 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4143 skb_dst_force(skb);
4144 netif_rx(skb);
4145 return 0;
4146 }
4147 EXPORT_SYMBOL(dev_loopback_xmit);
4148
4149 #ifdef CONFIG_NET_EGRESS
4150 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4151 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4152 {
4153 int qm = skb_get_queue_mapping(skb);
4154
4155 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4156 }
4157
4158 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4159 static bool netdev_xmit_txqueue_skipped(void)
4160 {
4161 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4162 }
4163
netdev_xmit_skip_txqueue(bool skip)4164 void netdev_xmit_skip_txqueue(bool skip)
4165 {
4166 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4167 }
4168 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4169
4170 #else
netdev_xmit_txqueue_skipped(void)4171 static bool netdev_xmit_txqueue_skipped(void)
4172 {
4173 return current->net_xmit.skip_txqueue;
4174 }
4175
netdev_xmit_skip_txqueue(bool skip)4176 void netdev_xmit_skip_txqueue(bool skip)
4177 {
4178 current->net_xmit.skip_txqueue = skip;
4179 }
4180 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4181 #endif
4182 #endif /* CONFIG_NET_EGRESS */
4183
4184 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4185 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4186 enum skb_drop_reason *drop_reason)
4187 {
4188 int ret = TC_ACT_UNSPEC;
4189 #ifdef CONFIG_NET_CLS_ACT
4190 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4191 struct tcf_result res;
4192
4193 if (!miniq)
4194 return ret;
4195
4196 /* Global bypass */
4197 if (!static_branch_likely(&tcf_sw_enabled_key))
4198 return ret;
4199
4200 /* Block-wise bypass */
4201 if (tcf_block_bypass_sw(miniq->block))
4202 return ret;
4203
4204 tc_skb_cb(skb)->mru = 0;
4205 tc_skb_cb(skb)->post_ct = false;
4206 tcf_set_drop_reason(skb, *drop_reason);
4207
4208 mini_qdisc_bstats_cpu_update(miniq, skb);
4209 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4210 /* Only tcf related quirks below. */
4211 switch (ret) {
4212 case TC_ACT_SHOT:
4213 *drop_reason = tcf_get_drop_reason(skb);
4214 mini_qdisc_qstats_cpu_drop(miniq);
4215 break;
4216 case TC_ACT_OK:
4217 case TC_ACT_RECLASSIFY:
4218 skb->tc_index = TC_H_MIN(res.classid);
4219 break;
4220 }
4221 #endif /* CONFIG_NET_CLS_ACT */
4222 return ret;
4223 }
4224
4225 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4226
tcx_inc(void)4227 void tcx_inc(void)
4228 {
4229 static_branch_inc(&tcx_needed_key);
4230 }
4231
tcx_dec(void)4232 void tcx_dec(void)
4233 {
4234 static_branch_dec(&tcx_needed_key);
4235 }
4236
4237 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4238 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4239 const bool needs_mac)
4240 {
4241 const struct bpf_mprog_fp *fp;
4242 const struct bpf_prog *prog;
4243 int ret = TCX_NEXT;
4244
4245 if (needs_mac)
4246 __skb_push(skb, skb->mac_len);
4247 bpf_mprog_foreach_prog(entry, fp, prog) {
4248 bpf_compute_data_pointers(skb);
4249 ret = bpf_prog_run(prog, skb);
4250 if (ret != TCX_NEXT)
4251 break;
4252 }
4253 if (needs_mac)
4254 __skb_pull(skb, skb->mac_len);
4255 return tcx_action_code(skb, ret);
4256 }
4257
4258 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4259 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4260 struct net_device *orig_dev, bool *another)
4261 {
4262 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4263 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4264 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4265 int sch_ret;
4266
4267 if (!entry)
4268 return skb;
4269
4270 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4271 if (*pt_prev) {
4272 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4273 *pt_prev = NULL;
4274 }
4275
4276 qdisc_skb_cb(skb)->pkt_len = skb->len;
4277 tcx_set_ingress(skb, true);
4278
4279 if (static_branch_unlikely(&tcx_needed_key)) {
4280 sch_ret = tcx_run(entry, skb, true);
4281 if (sch_ret != TC_ACT_UNSPEC)
4282 goto ingress_verdict;
4283 }
4284 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4285 ingress_verdict:
4286 switch (sch_ret) {
4287 case TC_ACT_REDIRECT:
4288 /* skb_mac_header check was done by BPF, so we can safely
4289 * push the L2 header back before redirecting to another
4290 * netdev.
4291 */
4292 __skb_push(skb, skb->mac_len);
4293 if (skb_do_redirect(skb) == -EAGAIN) {
4294 __skb_pull(skb, skb->mac_len);
4295 *another = true;
4296 break;
4297 }
4298 *ret = NET_RX_SUCCESS;
4299 bpf_net_ctx_clear(bpf_net_ctx);
4300 return NULL;
4301 case TC_ACT_SHOT:
4302 kfree_skb_reason(skb, drop_reason);
4303 *ret = NET_RX_DROP;
4304 bpf_net_ctx_clear(bpf_net_ctx);
4305 return NULL;
4306 /* used by tc_run */
4307 case TC_ACT_STOLEN:
4308 case TC_ACT_QUEUED:
4309 case TC_ACT_TRAP:
4310 consume_skb(skb);
4311 fallthrough;
4312 case TC_ACT_CONSUMED:
4313 *ret = NET_RX_SUCCESS;
4314 bpf_net_ctx_clear(bpf_net_ctx);
4315 return NULL;
4316 }
4317 bpf_net_ctx_clear(bpf_net_ctx);
4318
4319 return skb;
4320 }
4321
4322 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4323 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4324 {
4325 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4326 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4327 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4328 int sch_ret;
4329
4330 if (!entry)
4331 return skb;
4332
4333 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4334
4335 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4336 * already set by the caller.
4337 */
4338 if (static_branch_unlikely(&tcx_needed_key)) {
4339 sch_ret = tcx_run(entry, skb, false);
4340 if (sch_ret != TC_ACT_UNSPEC)
4341 goto egress_verdict;
4342 }
4343 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4344 egress_verdict:
4345 switch (sch_ret) {
4346 case TC_ACT_REDIRECT:
4347 /* No need to push/pop skb's mac_header here on egress! */
4348 skb_do_redirect(skb);
4349 *ret = NET_XMIT_SUCCESS;
4350 bpf_net_ctx_clear(bpf_net_ctx);
4351 return NULL;
4352 case TC_ACT_SHOT:
4353 kfree_skb_reason(skb, drop_reason);
4354 *ret = NET_XMIT_DROP;
4355 bpf_net_ctx_clear(bpf_net_ctx);
4356 return NULL;
4357 /* used by tc_run */
4358 case TC_ACT_STOLEN:
4359 case TC_ACT_QUEUED:
4360 case TC_ACT_TRAP:
4361 consume_skb(skb);
4362 fallthrough;
4363 case TC_ACT_CONSUMED:
4364 *ret = NET_XMIT_SUCCESS;
4365 bpf_net_ctx_clear(bpf_net_ctx);
4366 return NULL;
4367 }
4368 bpf_net_ctx_clear(bpf_net_ctx);
4369
4370 return skb;
4371 }
4372 #else
4373 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4374 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4375 struct net_device *orig_dev, bool *another)
4376 {
4377 return skb;
4378 }
4379
4380 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4381 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4382 {
4383 return skb;
4384 }
4385 #endif /* CONFIG_NET_XGRESS */
4386
4387 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4388 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4389 struct xps_dev_maps *dev_maps, unsigned int tci)
4390 {
4391 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4392 struct xps_map *map;
4393 int queue_index = -1;
4394
4395 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4396 return queue_index;
4397
4398 tci *= dev_maps->num_tc;
4399 tci += tc;
4400
4401 map = rcu_dereference(dev_maps->attr_map[tci]);
4402 if (map) {
4403 if (map->len == 1)
4404 queue_index = map->queues[0];
4405 else
4406 queue_index = map->queues[reciprocal_scale(
4407 skb_get_hash(skb), map->len)];
4408 if (unlikely(queue_index >= dev->real_num_tx_queues))
4409 queue_index = -1;
4410 }
4411 return queue_index;
4412 }
4413 #endif
4414
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4415 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4416 struct sk_buff *skb)
4417 {
4418 #ifdef CONFIG_XPS
4419 struct xps_dev_maps *dev_maps;
4420 struct sock *sk = skb->sk;
4421 int queue_index = -1;
4422
4423 if (!static_key_false(&xps_needed))
4424 return -1;
4425
4426 rcu_read_lock();
4427 if (!static_key_false(&xps_rxqs_needed))
4428 goto get_cpus_map;
4429
4430 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4431 if (dev_maps) {
4432 int tci = sk_rx_queue_get(sk);
4433
4434 if (tci >= 0)
4435 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4436 tci);
4437 }
4438
4439 get_cpus_map:
4440 if (queue_index < 0) {
4441 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4442 if (dev_maps) {
4443 unsigned int tci = skb->sender_cpu - 1;
4444
4445 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4446 tci);
4447 }
4448 }
4449 rcu_read_unlock();
4450
4451 return queue_index;
4452 #else
4453 return -1;
4454 #endif
4455 }
4456
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4457 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4458 struct net_device *sb_dev)
4459 {
4460 return 0;
4461 }
4462 EXPORT_SYMBOL(dev_pick_tx_zero);
4463
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4464 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4465 struct net_device *sb_dev)
4466 {
4467 struct sock *sk = skb->sk;
4468 int queue_index = sk_tx_queue_get(sk);
4469
4470 sb_dev = sb_dev ? : dev;
4471
4472 if (queue_index < 0 || skb->ooo_okay ||
4473 queue_index >= dev->real_num_tx_queues) {
4474 int new_index = get_xps_queue(dev, sb_dev, skb);
4475
4476 if (new_index < 0)
4477 new_index = skb_tx_hash(dev, sb_dev, skb);
4478
4479 if (queue_index != new_index && sk &&
4480 sk_fullsock(sk) &&
4481 rcu_access_pointer(sk->sk_dst_cache))
4482 sk_tx_queue_set(sk, new_index);
4483
4484 queue_index = new_index;
4485 }
4486
4487 return queue_index;
4488 }
4489 EXPORT_SYMBOL(netdev_pick_tx);
4490
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4491 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4492 struct sk_buff *skb,
4493 struct net_device *sb_dev)
4494 {
4495 int queue_index = 0;
4496
4497 #ifdef CONFIG_XPS
4498 u32 sender_cpu = skb->sender_cpu - 1;
4499
4500 if (sender_cpu >= (u32)NR_CPUS)
4501 skb->sender_cpu = raw_smp_processor_id() + 1;
4502 #endif
4503
4504 if (dev->real_num_tx_queues != 1) {
4505 const struct net_device_ops *ops = dev->netdev_ops;
4506
4507 if (ops->ndo_select_queue)
4508 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4509 else
4510 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4511
4512 queue_index = netdev_cap_txqueue(dev, queue_index);
4513 }
4514
4515 skb_set_queue_mapping(skb, queue_index);
4516 return netdev_get_tx_queue(dev, queue_index);
4517 }
4518
4519 /**
4520 * __dev_queue_xmit() - transmit a buffer
4521 * @skb: buffer to transmit
4522 * @sb_dev: suboordinate device used for L2 forwarding offload
4523 *
4524 * Queue a buffer for transmission to a network device. The caller must
4525 * have set the device and priority and built the buffer before calling
4526 * this function. The function can be called from an interrupt.
4527 *
4528 * When calling this method, interrupts MUST be enabled. This is because
4529 * the BH enable code must have IRQs enabled so that it will not deadlock.
4530 *
4531 * Regardless of the return value, the skb is consumed, so it is currently
4532 * difficult to retry a send to this method. (You can bump the ref count
4533 * before sending to hold a reference for retry if you are careful.)
4534 *
4535 * Return:
4536 * * 0 - buffer successfully transmitted
4537 * * positive qdisc return code - NET_XMIT_DROP etc.
4538 * * negative errno - other errors
4539 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4540 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4541 {
4542 struct net_device *dev = skb->dev;
4543 struct netdev_queue *txq = NULL;
4544 struct Qdisc *q;
4545 int rc = -ENOMEM;
4546 bool again = false;
4547
4548 skb_reset_mac_header(skb);
4549 skb_assert_len(skb);
4550
4551 if (unlikely(skb_shinfo(skb)->tx_flags &
4552 (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4553 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4554
4555 /* Disable soft irqs for various locks below. Also
4556 * stops preemption for RCU.
4557 */
4558 rcu_read_lock_bh();
4559
4560 skb_update_prio(skb);
4561
4562 qdisc_pkt_len_init(skb);
4563 tcx_set_ingress(skb, false);
4564 #ifdef CONFIG_NET_EGRESS
4565 if (static_branch_unlikely(&egress_needed_key)) {
4566 if (nf_hook_egress_active()) {
4567 skb = nf_hook_egress(skb, &rc, dev);
4568 if (!skb)
4569 goto out;
4570 }
4571
4572 netdev_xmit_skip_txqueue(false);
4573
4574 nf_skip_egress(skb, true);
4575 skb = sch_handle_egress(skb, &rc, dev);
4576 if (!skb)
4577 goto out;
4578 nf_skip_egress(skb, false);
4579
4580 if (netdev_xmit_txqueue_skipped())
4581 txq = netdev_tx_queue_mapping(dev, skb);
4582 }
4583 #endif
4584 /* If device/qdisc don't need skb->dst, release it right now while
4585 * its hot in this cpu cache.
4586 */
4587 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4588 skb_dst_drop(skb);
4589 else
4590 skb_dst_force(skb);
4591
4592 if (!txq)
4593 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4594
4595 q = rcu_dereference_bh(txq->qdisc);
4596
4597 trace_net_dev_queue(skb);
4598 if (q->enqueue) {
4599 rc = __dev_xmit_skb(skb, q, dev, txq);
4600 goto out;
4601 }
4602
4603 /* The device has no queue. Common case for software devices:
4604 * loopback, all the sorts of tunnels...
4605
4606 * Really, it is unlikely that netif_tx_lock protection is necessary
4607 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4608 * counters.)
4609 * However, it is possible, that they rely on protection
4610 * made by us here.
4611
4612 * Check this and shot the lock. It is not prone from deadlocks.
4613 *Either shot noqueue qdisc, it is even simpler 8)
4614 */
4615 if (dev->flags & IFF_UP) {
4616 int cpu = smp_processor_id(); /* ok because BHs are off */
4617
4618 /* Other cpus might concurrently change txq->xmit_lock_owner
4619 * to -1 or to their cpu id, but not to our id.
4620 */
4621 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4622 if (dev_xmit_recursion())
4623 goto recursion_alert;
4624
4625 skb = validate_xmit_skb(skb, dev, &again);
4626 if (!skb)
4627 goto out;
4628
4629 HARD_TX_LOCK(dev, txq, cpu);
4630
4631 if (!netif_xmit_stopped(txq)) {
4632 dev_xmit_recursion_inc();
4633 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4634 dev_xmit_recursion_dec();
4635 if (dev_xmit_complete(rc)) {
4636 HARD_TX_UNLOCK(dev, txq);
4637 goto out;
4638 }
4639 }
4640 HARD_TX_UNLOCK(dev, txq);
4641 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4642 dev->name);
4643 } else {
4644 /* Recursion is detected! It is possible,
4645 * unfortunately
4646 */
4647 recursion_alert:
4648 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4649 dev->name);
4650 }
4651 }
4652
4653 rc = -ENETDOWN;
4654 rcu_read_unlock_bh();
4655
4656 dev_core_stats_tx_dropped_inc(dev);
4657 kfree_skb_list(skb);
4658 return rc;
4659 out:
4660 rcu_read_unlock_bh();
4661 return rc;
4662 }
4663 EXPORT_SYMBOL(__dev_queue_xmit);
4664
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4665 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4666 {
4667 struct net_device *dev = skb->dev;
4668 struct sk_buff *orig_skb = skb;
4669 struct netdev_queue *txq;
4670 int ret = NETDEV_TX_BUSY;
4671 bool again = false;
4672
4673 if (unlikely(!netif_running(dev) ||
4674 !netif_carrier_ok(dev)))
4675 goto drop;
4676
4677 skb = validate_xmit_skb_list(skb, dev, &again);
4678 if (skb != orig_skb)
4679 goto drop;
4680
4681 skb_set_queue_mapping(skb, queue_id);
4682 txq = skb_get_tx_queue(dev, skb);
4683
4684 local_bh_disable();
4685
4686 dev_xmit_recursion_inc();
4687 HARD_TX_LOCK(dev, txq, smp_processor_id());
4688 if (!netif_xmit_frozen_or_drv_stopped(txq))
4689 ret = netdev_start_xmit(skb, dev, txq, false);
4690 HARD_TX_UNLOCK(dev, txq);
4691 dev_xmit_recursion_dec();
4692
4693 local_bh_enable();
4694 return ret;
4695 drop:
4696 dev_core_stats_tx_dropped_inc(dev);
4697 kfree_skb_list(skb);
4698 return NET_XMIT_DROP;
4699 }
4700 EXPORT_SYMBOL(__dev_direct_xmit);
4701
4702 /*************************************************************************
4703 * Receiver routines
4704 *************************************************************************/
4705 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4706
4707 int weight_p __read_mostly = 64; /* old backlog weight */
4708 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4709 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4710
4711 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4712 static inline void ____napi_schedule(struct softnet_data *sd,
4713 struct napi_struct *napi)
4714 {
4715 struct task_struct *thread;
4716
4717 lockdep_assert_irqs_disabled();
4718
4719 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4720 /* Paired with smp_mb__before_atomic() in
4721 * napi_enable()/dev_set_threaded().
4722 * Use READ_ONCE() to guarantee a complete
4723 * read on napi->thread. Only call
4724 * wake_up_process() when it's not NULL.
4725 */
4726 thread = READ_ONCE(napi->thread);
4727 if (thread) {
4728 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4729 goto use_local_napi;
4730
4731 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4732 wake_up_process(thread);
4733 return;
4734 }
4735 }
4736
4737 use_local_napi:
4738 list_add_tail(&napi->poll_list, &sd->poll_list);
4739 WRITE_ONCE(napi->list_owner, smp_processor_id());
4740 /* If not called from net_rx_action()
4741 * we have to raise NET_RX_SOFTIRQ.
4742 */
4743 if (!sd->in_net_rx_action)
4744 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4745 }
4746
4747 #ifdef CONFIG_RPS
4748
4749 struct static_key_false rps_needed __read_mostly;
4750 EXPORT_SYMBOL(rps_needed);
4751 struct static_key_false rfs_needed __read_mostly;
4752 EXPORT_SYMBOL(rfs_needed);
4753
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4754 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4755 {
4756 return hash_32(hash, flow_table->log);
4757 }
4758
4759 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4760 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4761 struct rps_dev_flow *rflow, u16 next_cpu)
4762 {
4763 if (next_cpu < nr_cpu_ids) {
4764 u32 head;
4765 #ifdef CONFIG_RFS_ACCEL
4766 struct netdev_rx_queue *rxqueue;
4767 struct rps_dev_flow_table *flow_table;
4768 struct rps_dev_flow *old_rflow;
4769 u16 rxq_index;
4770 u32 flow_id;
4771 int rc;
4772
4773 /* Should we steer this flow to a different hardware queue? */
4774 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4775 !(dev->features & NETIF_F_NTUPLE))
4776 goto out;
4777 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4778 if (rxq_index == skb_get_rx_queue(skb))
4779 goto out;
4780
4781 rxqueue = dev->_rx + rxq_index;
4782 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4783 if (!flow_table)
4784 goto out;
4785 flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4786 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4787 rxq_index, flow_id);
4788 if (rc < 0)
4789 goto out;
4790 old_rflow = rflow;
4791 rflow = &flow_table->flows[flow_id];
4792 WRITE_ONCE(rflow->filter, rc);
4793 if (old_rflow->filter == rc)
4794 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4795 out:
4796 #endif
4797 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4798 rps_input_queue_tail_save(&rflow->last_qtail, head);
4799 }
4800
4801 WRITE_ONCE(rflow->cpu, next_cpu);
4802 return rflow;
4803 }
4804
4805 /*
4806 * get_rps_cpu is called from netif_receive_skb and returns the target
4807 * CPU from the RPS map of the receiving queue for a given skb.
4808 * rcu_read_lock must be held on entry.
4809 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4810 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4811 struct rps_dev_flow **rflowp)
4812 {
4813 const struct rps_sock_flow_table *sock_flow_table;
4814 struct netdev_rx_queue *rxqueue = dev->_rx;
4815 struct rps_dev_flow_table *flow_table;
4816 struct rps_map *map;
4817 int cpu = -1;
4818 u32 tcpu;
4819 u32 hash;
4820
4821 if (skb_rx_queue_recorded(skb)) {
4822 u16 index = skb_get_rx_queue(skb);
4823
4824 if (unlikely(index >= dev->real_num_rx_queues)) {
4825 WARN_ONCE(dev->real_num_rx_queues > 1,
4826 "%s received packet on queue %u, but number "
4827 "of RX queues is %u\n",
4828 dev->name, index, dev->real_num_rx_queues);
4829 goto done;
4830 }
4831 rxqueue += index;
4832 }
4833
4834 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4835
4836 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4837 map = rcu_dereference(rxqueue->rps_map);
4838 if (!flow_table && !map)
4839 goto done;
4840
4841 skb_reset_network_header(skb);
4842 hash = skb_get_hash(skb);
4843 if (!hash)
4844 goto done;
4845
4846 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4847 if (flow_table && sock_flow_table) {
4848 struct rps_dev_flow *rflow;
4849 u32 next_cpu;
4850 u32 ident;
4851
4852 /* First check into global flow table if there is a match.
4853 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4854 */
4855 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4856 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4857 goto try_rps;
4858
4859 next_cpu = ident & net_hotdata.rps_cpu_mask;
4860
4861 /* OK, now we know there is a match,
4862 * we can look at the local (per receive queue) flow table
4863 */
4864 rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4865 tcpu = rflow->cpu;
4866
4867 /*
4868 * If the desired CPU (where last recvmsg was done) is
4869 * different from current CPU (one in the rx-queue flow
4870 * table entry), switch if one of the following holds:
4871 * - Current CPU is unset (>= nr_cpu_ids).
4872 * - Current CPU is offline.
4873 * - The current CPU's queue tail has advanced beyond the
4874 * last packet that was enqueued using this table entry.
4875 * This guarantees that all previous packets for the flow
4876 * have been dequeued, thus preserving in order delivery.
4877 */
4878 if (unlikely(tcpu != next_cpu) &&
4879 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4880 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4881 rflow->last_qtail)) >= 0)) {
4882 tcpu = next_cpu;
4883 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4884 }
4885
4886 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4887 *rflowp = rflow;
4888 cpu = tcpu;
4889 goto done;
4890 }
4891 }
4892
4893 try_rps:
4894
4895 if (map) {
4896 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4897 if (cpu_online(tcpu)) {
4898 cpu = tcpu;
4899 goto done;
4900 }
4901 }
4902
4903 done:
4904 return cpu;
4905 }
4906
4907 #ifdef CONFIG_RFS_ACCEL
4908
4909 /**
4910 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4911 * @dev: Device on which the filter was set
4912 * @rxq_index: RX queue index
4913 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4914 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4915 *
4916 * Drivers that implement ndo_rx_flow_steer() should periodically call
4917 * this function for each installed filter and remove the filters for
4918 * which it returns %true.
4919 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4920 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4921 u32 flow_id, u16 filter_id)
4922 {
4923 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4924 struct rps_dev_flow_table *flow_table;
4925 struct rps_dev_flow *rflow;
4926 bool expire = true;
4927 unsigned int cpu;
4928
4929 rcu_read_lock();
4930 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4931 if (flow_table && flow_id < (1UL << flow_table->log)) {
4932 rflow = &flow_table->flows[flow_id];
4933 cpu = READ_ONCE(rflow->cpu);
4934 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4935 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4936 READ_ONCE(rflow->last_qtail)) <
4937 (int)(10 << flow_table->log)))
4938 expire = false;
4939 }
4940 rcu_read_unlock();
4941 return expire;
4942 }
4943 EXPORT_SYMBOL(rps_may_expire_flow);
4944
4945 #endif /* CONFIG_RFS_ACCEL */
4946
4947 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4948 static void rps_trigger_softirq(void *data)
4949 {
4950 struct softnet_data *sd = data;
4951
4952 ____napi_schedule(sd, &sd->backlog);
4953 sd->received_rps++;
4954 }
4955
4956 #endif /* CONFIG_RPS */
4957
4958 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4959 static void trigger_rx_softirq(void *data)
4960 {
4961 struct softnet_data *sd = data;
4962
4963 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4964 smp_store_release(&sd->defer_ipi_scheduled, 0);
4965 }
4966
4967 /*
4968 * After we queued a packet into sd->input_pkt_queue,
4969 * we need to make sure this queue is serviced soon.
4970 *
4971 * - If this is another cpu queue, link it to our rps_ipi_list,
4972 * and make sure we will process rps_ipi_list from net_rx_action().
4973 *
4974 * - If this is our own queue, NAPI schedule our backlog.
4975 * Note that this also raises NET_RX_SOFTIRQ.
4976 */
napi_schedule_rps(struct softnet_data * sd)4977 static void napi_schedule_rps(struct softnet_data *sd)
4978 {
4979 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4980
4981 #ifdef CONFIG_RPS
4982 if (sd != mysd) {
4983 if (use_backlog_threads()) {
4984 __napi_schedule_irqoff(&sd->backlog);
4985 return;
4986 }
4987
4988 sd->rps_ipi_next = mysd->rps_ipi_list;
4989 mysd->rps_ipi_list = sd;
4990
4991 /* If not called from net_rx_action() or napi_threaded_poll()
4992 * we have to raise NET_RX_SOFTIRQ.
4993 */
4994 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4995 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4996 return;
4997 }
4998 #endif /* CONFIG_RPS */
4999 __napi_schedule_irqoff(&mysd->backlog);
5000 }
5001
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)5002 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5003 {
5004 unsigned long flags;
5005
5006 if (use_backlog_threads()) {
5007 backlog_lock_irq_save(sd, &flags);
5008
5009 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5010 __napi_schedule_irqoff(&sd->backlog);
5011
5012 backlog_unlock_irq_restore(sd, &flags);
5013
5014 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5015 smp_call_function_single_async(cpu, &sd->defer_csd);
5016 }
5017 }
5018
5019 #ifdef CONFIG_NET_FLOW_LIMIT
5020 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5021 #endif
5022
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5023 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5024 {
5025 #ifdef CONFIG_NET_FLOW_LIMIT
5026 struct sd_flow_limit *fl;
5027 struct softnet_data *sd;
5028 unsigned int old_flow, new_flow;
5029
5030 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5031 return false;
5032
5033 sd = this_cpu_ptr(&softnet_data);
5034
5035 rcu_read_lock();
5036 fl = rcu_dereference(sd->flow_limit);
5037 if (fl) {
5038 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5039 old_flow = fl->history[fl->history_head];
5040 fl->history[fl->history_head] = new_flow;
5041
5042 fl->history_head++;
5043 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5044
5045 if (likely(fl->buckets[old_flow]))
5046 fl->buckets[old_flow]--;
5047
5048 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5049 fl->count++;
5050 rcu_read_unlock();
5051 return true;
5052 }
5053 }
5054 rcu_read_unlock();
5055 #endif
5056 return false;
5057 }
5058
5059 /*
5060 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5061 * queue (may be a remote CPU queue).
5062 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5063 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5064 unsigned int *qtail)
5065 {
5066 enum skb_drop_reason reason;
5067 struct softnet_data *sd;
5068 unsigned long flags;
5069 unsigned int qlen;
5070 int max_backlog;
5071 u32 tail;
5072
5073 reason = SKB_DROP_REASON_DEV_READY;
5074 if (!netif_running(skb->dev))
5075 goto bad_dev;
5076
5077 reason = SKB_DROP_REASON_CPU_BACKLOG;
5078 sd = &per_cpu(softnet_data, cpu);
5079
5080 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5081 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5082 if (unlikely(qlen > max_backlog))
5083 goto cpu_backlog_drop;
5084 backlog_lock_irq_save(sd, &flags);
5085 qlen = skb_queue_len(&sd->input_pkt_queue);
5086 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5087 if (!qlen) {
5088 /* Schedule NAPI for backlog device. We can use
5089 * non atomic operation as we own the queue lock.
5090 */
5091 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5092 &sd->backlog.state))
5093 napi_schedule_rps(sd);
5094 }
5095 __skb_queue_tail(&sd->input_pkt_queue, skb);
5096 tail = rps_input_queue_tail_incr(sd);
5097 backlog_unlock_irq_restore(sd, &flags);
5098
5099 /* save the tail outside of the critical section */
5100 rps_input_queue_tail_save(qtail, tail);
5101 return NET_RX_SUCCESS;
5102 }
5103
5104 backlog_unlock_irq_restore(sd, &flags);
5105
5106 cpu_backlog_drop:
5107 atomic_inc(&sd->dropped);
5108 bad_dev:
5109 dev_core_stats_rx_dropped_inc(skb->dev);
5110 kfree_skb_reason(skb, reason);
5111 return NET_RX_DROP;
5112 }
5113
netif_get_rxqueue(struct sk_buff * skb)5114 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5115 {
5116 struct net_device *dev = skb->dev;
5117 struct netdev_rx_queue *rxqueue;
5118
5119 rxqueue = dev->_rx;
5120
5121 if (skb_rx_queue_recorded(skb)) {
5122 u16 index = skb_get_rx_queue(skb);
5123
5124 if (unlikely(index >= dev->real_num_rx_queues)) {
5125 WARN_ONCE(dev->real_num_rx_queues > 1,
5126 "%s received packet on queue %u, but number "
5127 "of RX queues is %u\n",
5128 dev->name, index, dev->real_num_rx_queues);
5129
5130 return rxqueue; /* Return first rxqueue */
5131 }
5132 rxqueue += index;
5133 }
5134 return rxqueue;
5135 }
5136
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5137 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5138 const struct bpf_prog *xdp_prog)
5139 {
5140 void *orig_data, *orig_data_end, *hard_start;
5141 struct netdev_rx_queue *rxqueue;
5142 bool orig_bcast, orig_host;
5143 u32 mac_len, frame_sz;
5144 __be16 orig_eth_type;
5145 struct ethhdr *eth;
5146 u32 metalen, act;
5147 int off;
5148
5149 /* The XDP program wants to see the packet starting at the MAC
5150 * header.
5151 */
5152 mac_len = skb->data - skb_mac_header(skb);
5153 hard_start = skb->data - skb_headroom(skb);
5154
5155 /* SKB "head" area always have tailroom for skb_shared_info */
5156 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5157 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5158
5159 rxqueue = netif_get_rxqueue(skb);
5160 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5161 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5162 skb_headlen(skb) + mac_len, true);
5163 if (skb_is_nonlinear(skb)) {
5164 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5165 xdp_buff_set_frags_flag(xdp);
5166 } else {
5167 xdp_buff_clear_frags_flag(xdp);
5168 }
5169
5170 orig_data_end = xdp->data_end;
5171 orig_data = xdp->data;
5172 eth = (struct ethhdr *)xdp->data;
5173 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5174 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5175 orig_eth_type = eth->h_proto;
5176
5177 act = bpf_prog_run_xdp(xdp_prog, xdp);
5178
5179 /* check if bpf_xdp_adjust_head was used */
5180 off = xdp->data - orig_data;
5181 if (off) {
5182 if (off > 0)
5183 __skb_pull(skb, off);
5184 else if (off < 0)
5185 __skb_push(skb, -off);
5186
5187 skb->mac_header += off;
5188 skb_reset_network_header(skb);
5189 }
5190
5191 /* check if bpf_xdp_adjust_tail was used */
5192 off = xdp->data_end - orig_data_end;
5193 if (off != 0) {
5194 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5195 skb->len += off; /* positive on grow, negative on shrink */
5196 }
5197
5198 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5199 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5200 */
5201 if (xdp_buff_has_frags(xdp))
5202 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5203 else
5204 skb->data_len = 0;
5205
5206 /* check if XDP changed eth hdr such SKB needs update */
5207 eth = (struct ethhdr *)xdp->data;
5208 if ((orig_eth_type != eth->h_proto) ||
5209 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5210 skb->dev->dev_addr)) ||
5211 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5212 __skb_push(skb, ETH_HLEN);
5213 skb->pkt_type = PACKET_HOST;
5214 skb->protocol = eth_type_trans(skb, skb->dev);
5215 }
5216
5217 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5218 * before calling us again on redirect path. We do not call do_redirect
5219 * as we leave that up to the caller.
5220 *
5221 * Caller is responsible for managing lifetime of skb (i.e. calling
5222 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5223 */
5224 switch (act) {
5225 case XDP_REDIRECT:
5226 case XDP_TX:
5227 __skb_push(skb, mac_len);
5228 break;
5229 case XDP_PASS:
5230 metalen = xdp->data - xdp->data_meta;
5231 if (metalen)
5232 skb_metadata_set(skb, metalen);
5233 break;
5234 }
5235
5236 return act;
5237 }
5238
5239 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5240 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5241 {
5242 struct sk_buff *skb = *pskb;
5243 int err, hroom, troom;
5244
5245 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5246 return 0;
5247
5248 /* In case we have to go down the path and also linearize,
5249 * then lets do the pskb_expand_head() work just once here.
5250 */
5251 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5252 troom = skb->tail + skb->data_len - skb->end;
5253 err = pskb_expand_head(skb,
5254 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5255 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5256 if (err)
5257 return err;
5258
5259 return skb_linearize(skb);
5260 }
5261
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5262 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5263 struct xdp_buff *xdp,
5264 const struct bpf_prog *xdp_prog)
5265 {
5266 struct sk_buff *skb = *pskb;
5267 u32 mac_len, act = XDP_DROP;
5268
5269 /* Reinjected packets coming from act_mirred or similar should
5270 * not get XDP generic processing.
5271 */
5272 if (skb_is_redirected(skb))
5273 return XDP_PASS;
5274
5275 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5276 * bytes. This is the guarantee that also native XDP provides,
5277 * thus we need to do it here as well.
5278 */
5279 mac_len = skb->data - skb_mac_header(skb);
5280 __skb_push(skb, mac_len);
5281
5282 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5283 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5284 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5285 goto do_drop;
5286 }
5287
5288 __skb_pull(*pskb, mac_len);
5289
5290 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5291 switch (act) {
5292 case XDP_REDIRECT:
5293 case XDP_TX:
5294 case XDP_PASS:
5295 break;
5296 default:
5297 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5298 fallthrough;
5299 case XDP_ABORTED:
5300 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5301 fallthrough;
5302 case XDP_DROP:
5303 do_drop:
5304 kfree_skb(*pskb);
5305 break;
5306 }
5307
5308 return act;
5309 }
5310
5311 /* When doing generic XDP we have to bypass the qdisc layer and the
5312 * network taps in order to match in-driver-XDP behavior. This also means
5313 * that XDP packets are able to starve other packets going through a qdisc,
5314 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5315 * queues, so they do not have this starvation issue.
5316 */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5317 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5318 {
5319 struct net_device *dev = skb->dev;
5320 struct netdev_queue *txq;
5321 bool free_skb = true;
5322 int cpu, rc;
5323
5324 txq = netdev_core_pick_tx(dev, skb, NULL);
5325 cpu = smp_processor_id();
5326 HARD_TX_LOCK(dev, txq, cpu);
5327 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5328 rc = netdev_start_xmit(skb, dev, txq, 0);
5329 if (dev_xmit_complete(rc))
5330 free_skb = false;
5331 }
5332 HARD_TX_UNLOCK(dev, txq);
5333 if (free_skb) {
5334 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5335 dev_core_stats_tx_dropped_inc(dev);
5336 kfree_skb(skb);
5337 }
5338 }
5339
5340 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5341
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5342 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5343 {
5344 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5345
5346 if (xdp_prog) {
5347 struct xdp_buff xdp;
5348 u32 act;
5349 int err;
5350
5351 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5352 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5353 if (act != XDP_PASS) {
5354 switch (act) {
5355 case XDP_REDIRECT:
5356 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5357 &xdp, xdp_prog);
5358 if (err)
5359 goto out_redir;
5360 break;
5361 case XDP_TX:
5362 generic_xdp_tx(*pskb, xdp_prog);
5363 break;
5364 }
5365 bpf_net_ctx_clear(bpf_net_ctx);
5366 return XDP_DROP;
5367 }
5368 bpf_net_ctx_clear(bpf_net_ctx);
5369 }
5370 return XDP_PASS;
5371 out_redir:
5372 bpf_net_ctx_clear(bpf_net_ctx);
5373 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5374 return XDP_DROP;
5375 }
5376 EXPORT_SYMBOL_GPL(do_xdp_generic);
5377
netif_rx_internal(struct sk_buff * skb)5378 static int netif_rx_internal(struct sk_buff *skb)
5379 {
5380 int ret;
5381
5382 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5383
5384 trace_netif_rx(skb);
5385
5386 #ifdef CONFIG_RPS
5387 if (static_branch_unlikely(&rps_needed)) {
5388 struct rps_dev_flow voidflow, *rflow = &voidflow;
5389 int cpu;
5390
5391 rcu_read_lock();
5392
5393 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5394 if (cpu < 0)
5395 cpu = smp_processor_id();
5396
5397 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5398
5399 rcu_read_unlock();
5400 } else
5401 #endif
5402 {
5403 unsigned int qtail;
5404
5405 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5406 }
5407 return ret;
5408 }
5409
5410 /**
5411 * __netif_rx - Slightly optimized version of netif_rx
5412 * @skb: buffer to post
5413 *
5414 * This behaves as netif_rx except that it does not disable bottom halves.
5415 * As a result this function may only be invoked from the interrupt context
5416 * (either hard or soft interrupt).
5417 */
__netif_rx(struct sk_buff * skb)5418 int __netif_rx(struct sk_buff *skb)
5419 {
5420 int ret;
5421
5422 lockdep_assert_once(hardirq_count() | softirq_count());
5423
5424 trace_netif_rx_entry(skb);
5425 ret = netif_rx_internal(skb);
5426 trace_netif_rx_exit(ret);
5427 return ret;
5428 }
5429 EXPORT_SYMBOL(__netif_rx);
5430
5431 /**
5432 * netif_rx - post buffer to the network code
5433 * @skb: buffer to post
5434 *
5435 * This function receives a packet from a device driver and queues it for
5436 * the upper (protocol) levels to process via the backlog NAPI device. It
5437 * always succeeds. The buffer may be dropped during processing for
5438 * congestion control or by the protocol layers.
5439 * The network buffer is passed via the backlog NAPI device. Modern NIC
5440 * driver should use NAPI and GRO.
5441 * This function can used from interrupt and from process context. The
5442 * caller from process context must not disable interrupts before invoking
5443 * this function.
5444 *
5445 * return values:
5446 * NET_RX_SUCCESS (no congestion)
5447 * NET_RX_DROP (packet was dropped)
5448 *
5449 */
netif_rx(struct sk_buff * skb)5450 int netif_rx(struct sk_buff *skb)
5451 {
5452 bool need_bh_off = !(hardirq_count() | softirq_count());
5453 int ret;
5454
5455 if (need_bh_off)
5456 local_bh_disable();
5457 trace_netif_rx_entry(skb);
5458 ret = netif_rx_internal(skb);
5459 trace_netif_rx_exit(ret);
5460 if (need_bh_off)
5461 local_bh_enable();
5462 return ret;
5463 }
5464 EXPORT_SYMBOL(netif_rx);
5465
net_tx_action(void)5466 static __latent_entropy void net_tx_action(void)
5467 {
5468 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5469
5470 if (sd->completion_queue) {
5471 struct sk_buff *clist;
5472
5473 local_irq_disable();
5474 clist = sd->completion_queue;
5475 sd->completion_queue = NULL;
5476 local_irq_enable();
5477
5478 while (clist) {
5479 struct sk_buff *skb = clist;
5480
5481 clist = clist->next;
5482
5483 WARN_ON(refcount_read(&skb->users));
5484 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5485 trace_consume_skb(skb, net_tx_action);
5486 else
5487 trace_kfree_skb(skb, net_tx_action,
5488 get_kfree_skb_cb(skb)->reason, NULL);
5489
5490 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5491 __kfree_skb(skb);
5492 else
5493 __napi_kfree_skb(skb,
5494 get_kfree_skb_cb(skb)->reason);
5495 }
5496 }
5497
5498 if (sd->output_queue) {
5499 struct Qdisc *head;
5500
5501 local_irq_disable();
5502 head = sd->output_queue;
5503 sd->output_queue = NULL;
5504 sd->output_queue_tailp = &sd->output_queue;
5505 local_irq_enable();
5506
5507 rcu_read_lock();
5508
5509 while (head) {
5510 struct Qdisc *q = head;
5511 spinlock_t *root_lock = NULL;
5512
5513 head = head->next_sched;
5514
5515 /* We need to make sure head->next_sched is read
5516 * before clearing __QDISC_STATE_SCHED
5517 */
5518 smp_mb__before_atomic();
5519
5520 if (!(q->flags & TCQ_F_NOLOCK)) {
5521 root_lock = qdisc_lock(q);
5522 spin_lock(root_lock);
5523 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5524 &q->state))) {
5525 /* There is a synchronize_net() between
5526 * STATE_DEACTIVATED flag being set and
5527 * qdisc_reset()/some_qdisc_is_busy() in
5528 * dev_deactivate(), so we can safely bail out
5529 * early here to avoid data race between
5530 * qdisc_deactivate() and some_qdisc_is_busy()
5531 * for lockless qdisc.
5532 */
5533 clear_bit(__QDISC_STATE_SCHED, &q->state);
5534 continue;
5535 }
5536
5537 clear_bit(__QDISC_STATE_SCHED, &q->state);
5538 qdisc_run(q);
5539 if (root_lock)
5540 spin_unlock(root_lock);
5541 }
5542
5543 rcu_read_unlock();
5544 }
5545
5546 xfrm_dev_backlog(sd);
5547 }
5548
5549 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5550 /* This hook is defined here for ATM LANE */
5551 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5552 unsigned char *addr) __read_mostly;
5553 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5554 #endif
5555
5556 /**
5557 * netdev_is_rx_handler_busy - check if receive handler is registered
5558 * @dev: device to check
5559 *
5560 * Check if a receive handler is already registered for a given device.
5561 * Return true if there one.
5562 *
5563 * The caller must hold the rtnl_mutex.
5564 */
netdev_is_rx_handler_busy(struct net_device * dev)5565 bool netdev_is_rx_handler_busy(struct net_device *dev)
5566 {
5567 ASSERT_RTNL();
5568 return dev && rtnl_dereference(dev->rx_handler);
5569 }
5570 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5571
5572 /**
5573 * netdev_rx_handler_register - register receive handler
5574 * @dev: device to register a handler for
5575 * @rx_handler: receive handler to register
5576 * @rx_handler_data: data pointer that is used by rx handler
5577 *
5578 * Register a receive handler for a device. This handler will then be
5579 * called from __netif_receive_skb. A negative errno code is returned
5580 * on a failure.
5581 *
5582 * The caller must hold the rtnl_mutex.
5583 *
5584 * For a general description of rx_handler, see enum rx_handler_result.
5585 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5586 int netdev_rx_handler_register(struct net_device *dev,
5587 rx_handler_func_t *rx_handler,
5588 void *rx_handler_data)
5589 {
5590 if (netdev_is_rx_handler_busy(dev))
5591 return -EBUSY;
5592
5593 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5594 return -EINVAL;
5595
5596 /* Note: rx_handler_data must be set before rx_handler */
5597 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5598 rcu_assign_pointer(dev->rx_handler, rx_handler);
5599
5600 return 0;
5601 }
5602 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5603
5604 /**
5605 * netdev_rx_handler_unregister - unregister receive handler
5606 * @dev: device to unregister a handler from
5607 *
5608 * Unregister a receive handler from a device.
5609 *
5610 * The caller must hold the rtnl_mutex.
5611 */
netdev_rx_handler_unregister(struct net_device * dev)5612 void netdev_rx_handler_unregister(struct net_device *dev)
5613 {
5614
5615 ASSERT_RTNL();
5616 RCU_INIT_POINTER(dev->rx_handler, NULL);
5617 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5618 * section has a guarantee to see a non NULL rx_handler_data
5619 * as well.
5620 */
5621 synchronize_net();
5622 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5623 }
5624 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5625
5626 /*
5627 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5628 * the special handling of PFMEMALLOC skbs.
5629 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5630 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5631 {
5632 switch (skb->protocol) {
5633 case htons(ETH_P_ARP):
5634 case htons(ETH_P_IP):
5635 case htons(ETH_P_IPV6):
5636 case htons(ETH_P_8021Q):
5637 case htons(ETH_P_8021AD):
5638 return true;
5639 default:
5640 return false;
5641 }
5642 }
5643
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5644 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5645 int *ret, struct net_device *orig_dev)
5646 {
5647 if (nf_hook_ingress_active(skb)) {
5648 int ingress_retval;
5649
5650 if (*pt_prev) {
5651 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5652 *pt_prev = NULL;
5653 }
5654
5655 rcu_read_lock();
5656 ingress_retval = nf_hook_ingress(skb);
5657 rcu_read_unlock();
5658 return ingress_retval;
5659 }
5660 return 0;
5661 }
5662
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5663 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5664 struct packet_type **ppt_prev)
5665 {
5666 struct packet_type *ptype, *pt_prev;
5667 rx_handler_func_t *rx_handler;
5668 struct sk_buff *skb = *pskb;
5669 struct net_device *orig_dev;
5670 bool deliver_exact = false;
5671 int ret = NET_RX_DROP;
5672 __be16 type;
5673
5674 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5675
5676 trace_netif_receive_skb(skb);
5677
5678 orig_dev = skb->dev;
5679
5680 skb_reset_network_header(skb);
5681 #if !defined(CONFIG_DEBUG_NET)
5682 /* We plan to no longer reset the transport header here.
5683 * Give some time to fuzzers and dev build to catch bugs
5684 * in network stacks.
5685 */
5686 if (!skb_transport_header_was_set(skb))
5687 skb_reset_transport_header(skb);
5688 #endif
5689 skb_reset_mac_len(skb);
5690
5691 pt_prev = NULL;
5692
5693 another_round:
5694 skb->skb_iif = skb->dev->ifindex;
5695
5696 __this_cpu_inc(softnet_data.processed);
5697
5698 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5699 int ret2;
5700
5701 migrate_disable();
5702 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5703 &skb);
5704 migrate_enable();
5705
5706 if (ret2 != XDP_PASS) {
5707 ret = NET_RX_DROP;
5708 goto out;
5709 }
5710 }
5711
5712 if (eth_type_vlan(skb->protocol)) {
5713 skb = skb_vlan_untag(skb);
5714 if (unlikely(!skb))
5715 goto out;
5716 }
5717
5718 if (skb_skip_tc_classify(skb))
5719 goto skip_classify;
5720
5721 if (pfmemalloc)
5722 goto skip_taps;
5723
5724 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5725 list) {
5726 if (pt_prev)
5727 ret = deliver_skb(skb, pt_prev, orig_dev);
5728 pt_prev = ptype;
5729 }
5730
5731 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5732 if (pt_prev)
5733 ret = deliver_skb(skb, pt_prev, orig_dev);
5734 pt_prev = ptype;
5735 }
5736
5737 skip_taps:
5738 #ifdef CONFIG_NET_INGRESS
5739 if (static_branch_unlikely(&ingress_needed_key)) {
5740 bool another = false;
5741
5742 nf_skip_egress(skb, true);
5743 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5744 &another);
5745 if (another)
5746 goto another_round;
5747 if (!skb)
5748 goto out;
5749
5750 nf_skip_egress(skb, false);
5751 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5752 goto out;
5753 }
5754 #endif
5755 skb_reset_redirect(skb);
5756 skip_classify:
5757 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5758 goto drop;
5759
5760 if (skb_vlan_tag_present(skb)) {
5761 if (pt_prev) {
5762 ret = deliver_skb(skb, pt_prev, orig_dev);
5763 pt_prev = NULL;
5764 }
5765 if (vlan_do_receive(&skb))
5766 goto another_round;
5767 else if (unlikely(!skb))
5768 goto out;
5769 }
5770
5771 rx_handler = rcu_dereference(skb->dev->rx_handler);
5772 if (rx_handler) {
5773 if (pt_prev) {
5774 ret = deliver_skb(skb, pt_prev, orig_dev);
5775 pt_prev = NULL;
5776 }
5777 switch (rx_handler(&skb)) {
5778 case RX_HANDLER_CONSUMED:
5779 ret = NET_RX_SUCCESS;
5780 goto out;
5781 case RX_HANDLER_ANOTHER:
5782 goto another_round;
5783 case RX_HANDLER_EXACT:
5784 deliver_exact = true;
5785 break;
5786 case RX_HANDLER_PASS:
5787 break;
5788 default:
5789 BUG();
5790 }
5791 }
5792
5793 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5794 check_vlan_id:
5795 if (skb_vlan_tag_get_id(skb)) {
5796 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5797 * find vlan device.
5798 */
5799 skb->pkt_type = PACKET_OTHERHOST;
5800 } else if (eth_type_vlan(skb->protocol)) {
5801 /* Outer header is 802.1P with vlan 0, inner header is
5802 * 802.1Q or 802.1AD and vlan_do_receive() above could
5803 * not find vlan dev for vlan id 0.
5804 */
5805 __vlan_hwaccel_clear_tag(skb);
5806 skb = skb_vlan_untag(skb);
5807 if (unlikely(!skb))
5808 goto out;
5809 if (vlan_do_receive(&skb))
5810 /* After stripping off 802.1P header with vlan 0
5811 * vlan dev is found for inner header.
5812 */
5813 goto another_round;
5814 else if (unlikely(!skb))
5815 goto out;
5816 else
5817 /* We have stripped outer 802.1P vlan 0 header.
5818 * But could not find vlan dev.
5819 * check again for vlan id to set OTHERHOST.
5820 */
5821 goto check_vlan_id;
5822 }
5823 /* Note: we might in the future use prio bits
5824 * and set skb->priority like in vlan_do_receive()
5825 * For the time being, just ignore Priority Code Point
5826 */
5827 __vlan_hwaccel_clear_tag(skb);
5828 }
5829
5830 type = skb->protocol;
5831
5832 /* deliver only exact match when indicated */
5833 if (likely(!deliver_exact)) {
5834 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5835 &ptype_base[ntohs(type) &
5836 PTYPE_HASH_MASK]);
5837
5838 /* orig_dev and skb->dev could belong to different netns;
5839 * Even in such case we need to traverse only the list
5840 * coming from skb->dev, as the ptype owner (packet socket)
5841 * will use dev_net(skb->dev) to do namespace filtering.
5842 */
5843 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5844 &dev_net_rcu(skb->dev)->ptype_specific);
5845 }
5846
5847 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5848 &orig_dev->ptype_specific);
5849
5850 if (unlikely(skb->dev != orig_dev)) {
5851 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5852 &skb->dev->ptype_specific);
5853 }
5854
5855 if (pt_prev) {
5856 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5857 goto drop;
5858 *ppt_prev = pt_prev;
5859 } else {
5860 drop:
5861 if (!deliver_exact)
5862 dev_core_stats_rx_dropped_inc(skb->dev);
5863 else
5864 dev_core_stats_rx_nohandler_inc(skb->dev);
5865 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5866 /* Jamal, now you will not able to escape explaining
5867 * me how you were going to use this. :-)
5868 */
5869 ret = NET_RX_DROP;
5870 }
5871
5872 out:
5873 /* The invariant here is that if *ppt_prev is not NULL
5874 * then skb should also be non-NULL.
5875 *
5876 * Apparently *ppt_prev assignment above holds this invariant due to
5877 * skb dereferencing near it.
5878 */
5879 *pskb = skb;
5880 return ret;
5881 }
5882
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5883 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5884 {
5885 struct net_device *orig_dev = skb->dev;
5886 struct packet_type *pt_prev = NULL;
5887 int ret;
5888
5889 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5890 if (pt_prev)
5891 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5892 skb->dev, pt_prev, orig_dev);
5893 return ret;
5894 }
5895
5896 /**
5897 * netif_receive_skb_core - special purpose version of netif_receive_skb
5898 * @skb: buffer to process
5899 *
5900 * More direct receive version of netif_receive_skb(). It should
5901 * only be used by callers that have a need to skip RPS and Generic XDP.
5902 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5903 *
5904 * This function may only be called from softirq context and interrupts
5905 * should be enabled.
5906 *
5907 * Return values (usually ignored):
5908 * NET_RX_SUCCESS: no congestion
5909 * NET_RX_DROP: packet was dropped
5910 */
netif_receive_skb_core(struct sk_buff * skb)5911 int netif_receive_skb_core(struct sk_buff *skb)
5912 {
5913 int ret;
5914
5915 rcu_read_lock();
5916 ret = __netif_receive_skb_one_core(skb, false);
5917 rcu_read_unlock();
5918
5919 return ret;
5920 }
5921 EXPORT_SYMBOL(netif_receive_skb_core);
5922
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5923 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5924 struct packet_type *pt_prev,
5925 struct net_device *orig_dev)
5926 {
5927 struct sk_buff *skb, *next;
5928
5929 if (!pt_prev)
5930 return;
5931 if (list_empty(head))
5932 return;
5933 if (pt_prev->list_func != NULL)
5934 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5935 ip_list_rcv, head, pt_prev, orig_dev);
5936 else
5937 list_for_each_entry_safe(skb, next, head, list) {
5938 skb_list_del_init(skb);
5939 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5940 }
5941 }
5942
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5943 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5944 {
5945 /* Fast-path assumptions:
5946 * - There is no RX handler.
5947 * - Only one packet_type matches.
5948 * If either of these fails, we will end up doing some per-packet
5949 * processing in-line, then handling the 'last ptype' for the whole
5950 * sublist. This can't cause out-of-order delivery to any single ptype,
5951 * because the 'last ptype' must be constant across the sublist, and all
5952 * other ptypes are handled per-packet.
5953 */
5954 /* Current (common) ptype of sublist */
5955 struct packet_type *pt_curr = NULL;
5956 /* Current (common) orig_dev of sublist */
5957 struct net_device *od_curr = NULL;
5958 struct sk_buff *skb, *next;
5959 LIST_HEAD(sublist);
5960
5961 list_for_each_entry_safe(skb, next, head, list) {
5962 struct net_device *orig_dev = skb->dev;
5963 struct packet_type *pt_prev = NULL;
5964
5965 skb_list_del_init(skb);
5966 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5967 if (!pt_prev)
5968 continue;
5969 if (pt_curr != pt_prev || od_curr != orig_dev) {
5970 /* dispatch old sublist */
5971 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5972 /* start new sublist */
5973 INIT_LIST_HEAD(&sublist);
5974 pt_curr = pt_prev;
5975 od_curr = orig_dev;
5976 }
5977 list_add_tail(&skb->list, &sublist);
5978 }
5979
5980 /* dispatch final sublist */
5981 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5982 }
5983
__netif_receive_skb(struct sk_buff * skb)5984 static int __netif_receive_skb(struct sk_buff *skb)
5985 {
5986 int ret;
5987
5988 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5989 unsigned int noreclaim_flag;
5990
5991 /*
5992 * PFMEMALLOC skbs are special, they should
5993 * - be delivered to SOCK_MEMALLOC sockets only
5994 * - stay away from userspace
5995 * - have bounded memory usage
5996 *
5997 * Use PF_MEMALLOC as this saves us from propagating the allocation
5998 * context down to all allocation sites.
5999 */
6000 noreclaim_flag = memalloc_noreclaim_save();
6001 ret = __netif_receive_skb_one_core(skb, true);
6002 memalloc_noreclaim_restore(noreclaim_flag);
6003 } else
6004 ret = __netif_receive_skb_one_core(skb, false);
6005
6006 return ret;
6007 }
6008
__netif_receive_skb_list(struct list_head * head)6009 static void __netif_receive_skb_list(struct list_head *head)
6010 {
6011 unsigned long noreclaim_flag = 0;
6012 struct sk_buff *skb, *next;
6013 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6014
6015 list_for_each_entry_safe(skb, next, head, list) {
6016 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6017 struct list_head sublist;
6018
6019 /* Handle the previous sublist */
6020 list_cut_before(&sublist, head, &skb->list);
6021 if (!list_empty(&sublist))
6022 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6023 pfmemalloc = !pfmemalloc;
6024 /* See comments in __netif_receive_skb */
6025 if (pfmemalloc)
6026 noreclaim_flag = memalloc_noreclaim_save();
6027 else
6028 memalloc_noreclaim_restore(noreclaim_flag);
6029 }
6030 }
6031 /* Handle the remaining sublist */
6032 if (!list_empty(head))
6033 __netif_receive_skb_list_core(head, pfmemalloc);
6034 /* Restore pflags */
6035 if (pfmemalloc)
6036 memalloc_noreclaim_restore(noreclaim_flag);
6037 }
6038
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6039 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6040 {
6041 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6042 struct bpf_prog *new = xdp->prog;
6043 int ret = 0;
6044
6045 switch (xdp->command) {
6046 case XDP_SETUP_PROG:
6047 rcu_assign_pointer(dev->xdp_prog, new);
6048 if (old)
6049 bpf_prog_put(old);
6050
6051 if (old && !new) {
6052 static_branch_dec(&generic_xdp_needed_key);
6053 } else if (new && !old) {
6054 static_branch_inc(&generic_xdp_needed_key);
6055 netif_disable_lro(dev);
6056 dev_disable_gro_hw(dev);
6057 }
6058 break;
6059
6060 default:
6061 ret = -EINVAL;
6062 break;
6063 }
6064
6065 return ret;
6066 }
6067
netif_receive_skb_internal(struct sk_buff * skb)6068 static int netif_receive_skb_internal(struct sk_buff *skb)
6069 {
6070 int ret;
6071
6072 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6073
6074 if (skb_defer_rx_timestamp(skb))
6075 return NET_RX_SUCCESS;
6076
6077 rcu_read_lock();
6078 #ifdef CONFIG_RPS
6079 if (static_branch_unlikely(&rps_needed)) {
6080 struct rps_dev_flow voidflow, *rflow = &voidflow;
6081 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6082
6083 if (cpu >= 0) {
6084 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6085 rcu_read_unlock();
6086 return ret;
6087 }
6088 }
6089 #endif
6090 ret = __netif_receive_skb(skb);
6091 rcu_read_unlock();
6092 return ret;
6093 }
6094
netif_receive_skb_list_internal(struct list_head * head)6095 void netif_receive_skb_list_internal(struct list_head *head)
6096 {
6097 struct sk_buff *skb, *next;
6098 LIST_HEAD(sublist);
6099
6100 list_for_each_entry_safe(skb, next, head, list) {
6101 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6102 skb);
6103 skb_list_del_init(skb);
6104 if (!skb_defer_rx_timestamp(skb))
6105 list_add_tail(&skb->list, &sublist);
6106 }
6107 list_splice_init(&sublist, head);
6108
6109 rcu_read_lock();
6110 #ifdef CONFIG_RPS
6111 if (static_branch_unlikely(&rps_needed)) {
6112 list_for_each_entry_safe(skb, next, head, list) {
6113 struct rps_dev_flow voidflow, *rflow = &voidflow;
6114 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6115
6116 if (cpu >= 0) {
6117 /* Will be handled, remove from list */
6118 skb_list_del_init(skb);
6119 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6120 }
6121 }
6122 }
6123 #endif
6124 __netif_receive_skb_list(head);
6125 rcu_read_unlock();
6126 }
6127
6128 /**
6129 * netif_receive_skb - process receive buffer from network
6130 * @skb: buffer to process
6131 *
6132 * netif_receive_skb() is the main receive data processing function.
6133 * It always succeeds. The buffer may be dropped during processing
6134 * for congestion control or by the protocol layers.
6135 *
6136 * This function may only be called from softirq context and interrupts
6137 * should be enabled.
6138 *
6139 * Return values (usually ignored):
6140 * NET_RX_SUCCESS: no congestion
6141 * NET_RX_DROP: packet was dropped
6142 */
netif_receive_skb(struct sk_buff * skb)6143 int netif_receive_skb(struct sk_buff *skb)
6144 {
6145 int ret;
6146
6147 trace_netif_receive_skb_entry(skb);
6148
6149 ret = netif_receive_skb_internal(skb);
6150 trace_netif_receive_skb_exit(ret);
6151
6152 return ret;
6153 }
6154 EXPORT_SYMBOL(netif_receive_skb);
6155
6156 /**
6157 * netif_receive_skb_list - process many receive buffers from network
6158 * @head: list of skbs to process.
6159 *
6160 * Since return value of netif_receive_skb() is normally ignored, and
6161 * wouldn't be meaningful for a list, this function returns void.
6162 *
6163 * This function may only be called from softirq context and interrupts
6164 * should be enabled.
6165 */
netif_receive_skb_list(struct list_head * head)6166 void netif_receive_skb_list(struct list_head *head)
6167 {
6168 struct sk_buff *skb;
6169
6170 if (list_empty(head))
6171 return;
6172 if (trace_netif_receive_skb_list_entry_enabled()) {
6173 list_for_each_entry(skb, head, list)
6174 trace_netif_receive_skb_list_entry(skb);
6175 }
6176 netif_receive_skb_list_internal(head);
6177 trace_netif_receive_skb_list_exit(0);
6178 }
6179 EXPORT_SYMBOL(netif_receive_skb_list);
6180
6181 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6182 static void flush_backlog(struct work_struct *work)
6183 {
6184 struct sk_buff *skb, *tmp;
6185 struct sk_buff_head list;
6186 struct softnet_data *sd;
6187
6188 __skb_queue_head_init(&list);
6189 local_bh_disable();
6190 sd = this_cpu_ptr(&softnet_data);
6191
6192 backlog_lock_irq_disable(sd);
6193 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6194 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6195 __skb_unlink(skb, &sd->input_pkt_queue);
6196 __skb_queue_tail(&list, skb);
6197 rps_input_queue_head_incr(sd);
6198 }
6199 }
6200 backlog_unlock_irq_enable(sd);
6201
6202 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6203 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6204 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6205 __skb_unlink(skb, &sd->process_queue);
6206 __skb_queue_tail(&list, skb);
6207 rps_input_queue_head_incr(sd);
6208 }
6209 }
6210 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6211 local_bh_enable();
6212
6213 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6214 }
6215
flush_required(int cpu)6216 static bool flush_required(int cpu)
6217 {
6218 #if IS_ENABLED(CONFIG_RPS)
6219 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6220 bool do_flush;
6221
6222 backlog_lock_irq_disable(sd);
6223
6224 /* as insertion into process_queue happens with the rps lock held,
6225 * process_queue access may race only with dequeue
6226 */
6227 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6228 !skb_queue_empty_lockless(&sd->process_queue);
6229 backlog_unlock_irq_enable(sd);
6230
6231 return do_flush;
6232 #endif
6233 /* without RPS we can't safely check input_pkt_queue: during a
6234 * concurrent remote skb_queue_splice() we can detect as empty both
6235 * input_pkt_queue and process_queue even if the latter could end-up
6236 * containing a lot of packets.
6237 */
6238 return true;
6239 }
6240
6241 struct flush_backlogs {
6242 cpumask_t flush_cpus;
6243 struct work_struct w[];
6244 };
6245
flush_backlogs_alloc(void)6246 static struct flush_backlogs *flush_backlogs_alloc(void)
6247 {
6248 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6249 GFP_KERNEL);
6250 }
6251
6252 static struct flush_backlogs *flush_backlogs_fallback;
6253 static DEFINE_MUTEX(flush_backlogs_mutex);
6254
flush_all_backlogs(void)6255 static void flush_all_backlogs(void)
6256 {
6257 struct flush_backlogs *ptr = flush_backlogs_alloc();
6258 unsigned int cpu;
6259
6260 if (!ptr) {
6261 mutex_lock(&flush_backlogs_mutex);
6262 ptr = flush_backlogs_fallback;
6263 }
6264 cpumask_clear(&ptr->flush_cpus);
6265
6266 cpus_read_lock();
6267
6268 for_each_online_cpu(cpu) {
6269 if (flush_required(cpu)) {
6270 INIT_WORK(&ptr->w[cpu], flush_backlog);
6271 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6272 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6273 }
6274 }
6275
6276 /* we can have in flight packet[s] on the cpus we are not flushing,
6277 * synchronize_net() in unregister_netdevice_many() will take care of
6278 * them.
6279 */
6280 for_each_cpu(cpu, &ptr->flush_cpus)
6281 flush_work(&ptr->w[cpu]);
6282
6283 cpus_read_unlock();
6284
6285 if (ptr != flush_backlogs_fallback)
6286 kfree(ptr);
6287 else
6288 mutex_unlock(&flush_backlogs_mutex);
6289 }
6290
net_rps_send_ipi(struct softnet_data * remsd)6291 static void net_rps_send_ipi(struct softnet_data *remsd)
6292 {
6293 #ifdef CONFIG_RPS
6294 while (remsd) {
6295 struct softnet_data *next = remsd->rps_ipi_next;
6296
6297 if (cpu_online(remsd->cpu))
6298 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6299 remsd = next;
6300 }
6301 #endif
6302 }
6303
6304 /*
6305 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6306 * Note: called with local irq disabled, but exits with local irq enabled.
6307 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6308 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6309 {
6310 #ifdef CONFIG_RPS
6311 struct softnet_data *remsd = sd->rps_ipi_list;
6312
6313 if (!use_backlog_threads() && remsd) {
6314 sd->rps_ipi_list = NULL;
6315
6316 local_irq_enable();
6317
6318 /* Send pending IPI's to kick RPS processing on remote cpus. */
6319 net_rps_send_ipi(remsd);
6320 } else
6321 #endif
6322 local_irq_enable();
6323 }
6324
sd_has_rps_ipi_waiting(struct softnet_data * sd)6325 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6326 {
6327 #ifdef CONFIG_RPS
6328 return !use_backlog_threads() && sd->rps_ipi_list;
6329 #else
6330 return false;
6331 #endif
6332 }
6333
process_backlog(struct napi_struct * napi,int quota)6334 static int process_backlog(struct napi_struct *napi, int quota)
6335 {
6336 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6337 bool again = true;
6338 int work = 0;
6339
6340 /* Check if we have pending ipi, its better to send them now,
6341 * not waiting net_rx_action() end.
6342 */
6343 if (sd_has_rps_ipi_waiting(sd)) {
6344 local_irq_disable();
6345 net_rps_action_and_irq_enable(sd);
6346 }
6347
6348 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6349 while (again) {
6350 struct sk_buff *skb;
6351
6352 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6353 while ((skb = __skb_dequeue(&sd->process_queue))) {
6354 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6355 rcu_read_lock();
6356 __netif_receive_skb(skb);
6357 rcu_read_unlock();
6358 if (++work >= quota) {
6359 rps_input_queue_head_add(sd, work);
6360 return work;
6361 }
6362
6363 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6364 }
6365 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6366
6367 backlog_lock_irq_disable(sd);
6368 if (skb_queue_empty(&sd->input_pkt_queue)) {
6369 /*
6370 * Inline a custom version of __napi_complete().
6371 * only current cpu owns and manipulates this napi,
6372 * and NAPI_STATE_SCHED is the only possible flag set
6373 * on backlog.
6374 * We can use a plain write instead of clear_bit(),
6375 * and we dont need an smp_mb() memory barrier.
6376 */
6377 napi->state &= NAPIF_STATE_THREADED;
6378 again = false;
6379 } else {
6380 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6381 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6382 &sd->process_queue);
6383 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6384 }
6385 backlog_unlock_irq_enable(sd);
6386 }
6387
6388 if (work)
6389 rps_input_queue_head_add(sd, work);
6390 return work;
6391 }
6392
6393 /**
6394 * __napi_schedule - schedule for receive
6395 * @n: entry to schedule
6396 *
6397 * The entry's receive function will be scheduled to run.
6398 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6399 */
__napi_schedule(struct napi_struct * n)6400 void __napi_schedule(struct napi_struct *n)
6401 {
6402 unsigned long flags;
6403
6404 local_irq_save(flags);
6405 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6406 local_irq_restore(flags);
6407 }
6408 EXPORT_SYMBOL(__napi_schedule);
6409
6410 /**
6411 * napi_schedule_prep - check if napi can be scheduled
6412 * @n: napi context
6413 *
6414 * Test if NAPI routine is already running, and if not mark
6415 * it as running. This is used as a condition variable to
6416 * insure only one NAPI poll instance runs. We also make
6417 * sure there is no pending NAPI disable.
6418 */
napi_schedule_prep(struct napi_struct * n)6419 bool napi_schedule_prep(struct napi_struct *n)
6420 {
6421 unsigned long new, val = READ_ONCE(n->state);
6422
6423 do {
6424 if (unlikely(val & NAPIF_STATE_DISABLE))
6425 return false;
6426 new = val | NAPIF_STATE_SCHED;
6427
6428 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6429 * This was suggested by Alexander Duyck, as compiler
6430 * emits better code than :
6431 * if (val & NAPIF_STATE_SCHED)
6432 * new |= NAPIF_STATE_MISSED;
6433 */
6434 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6435 NAPIF_STATE_MISSED;
6436 } while (!try_cmpxchg(&n->state, &val, new));
6437
6438 return !(val & NAPIF_STATE_SCHED);
6439 }
6440 EXPORT_SYMBOL(napi_schedule_prep);
6441
6442 /**
6443 * __napi_schedule_irqoff - schedule for receive
6444 * @n: entry to schedule
6445 *
6446 * Variant of __napi_schedule() assuming hard irqs are masked.
6447 *
6448 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6449 * because the interrupt disabled assumption might not be true
6450 * due to force-threaded interrupts and spinlock substitution.
6451 */
__napi_schedule_irqoff(struct napi_struct * n)6452 void __napi_schedule_irqoff(struct napi_struct *n)
6453 {
6454 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6455 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6456 else
6457 __napi_schedule(n);
6458 }
6459 EXPORT_SYMBOL(__napi_schedule_irqoff);
6460
napi_complete_done(struct napi_struct * n,int work_done)6461 bool napi_complete_done(struct napi_struct *n, int work_done)
6462 {
6463 unsigned long flags, val, new, timeout = 0;
6464 bool ret = true;
6465
6466 /*
6467 * 1) Don't let napi dequeue from the cpu poll list
6468 * just in case its running on a different cpu.
6469 * 2) If we are busy polling, do nothing here, we have
6470 * the guarantee we will be called later.
6471 */
6472 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6473 NAPIF_STATE_IN_BUSY_POLL)))
6474 return false;
6475
6476 if (work_done) {
6477 if (n->gro.bitmask)
6478 timeout = napi_get_gro_flush_timeout(n);
6479 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6480 }
6481 if (n->defer_hard_irqs_count > 0) {
6482 n->defer_hard_irqs_count--;
6483 timeout = napi_get_gro_flush_timeout(n);
6484 if (timeout)
6485 ret = false;
6486 }
6487
6488 /*
6489 * When the NAPI instance uses a timeout and keeps postponing
6490 * it, we need to bound somehow the time packets are kept in
6491 * the GRO layer.
6492 */
6493 gro_flush(&n->gro, !!timeout);
6494 gro_normal_list(&n->gro);
6495
6496 if (unlikely(!list_empty(&n->poll_list))) {
6497 /* If n->poll_list is not empty, we need to mask irqs */
6498 local_irq_save(flags);
6499 list_del_init(&n->poll_list);
6500 local_irq_restore(flags);
6501 }
6502 WRITE_ONCE(n->list_owner, -1);
6503
6504 val = READ_ONCE(n->state);
6505 do {
6506 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6507
6508 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6509 NAPIF_STATE_SCHED_THREADED |
6510 NAPIF_STATE_PREFER_BUSY_POLL);
6511
6512 /* If STATE_MISSED was set, leave STATE_SCHED set,
6513 * because we will call napi->poll() one more time.
6514 * This C code was suggested by Alexander Duyck to help gcc.
6515 */
6516 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6517 NAPIF_STATE_SCHED;
6518 } while (!try_cmpxchg(&n->state, &val, new));
6519
6520 if (unlikely(val & NAPIF_STATE_MISSED)) {
6521 __napi_schedule(n);
6522 return false;
6523 }
6524
6525 if (timeout)
6526 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6527 HRTIMER_MODE_REL_PINNED);
6528 return ret;
6529 }
6530 EXPORT_SYMBOL(napi_complete_done);
6531
skb_defer_free_flush(struct softnet_data * sd)6532 static void skb_defer_free_flush(struct softnet_data *sd)
6533 {
6534 struct sk_buff *skb, *next;
6535
6536 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6537 if (!READ_ONCE(sd->defer_list))
6538 return;
6539
6540 spin_lock(&sd->defer_lock);
6541 skb = sd->defer_list;
6542 sd->defer_list = NULL;
6543 sd->defer_count = 0;
6544 spin_unlock(&sd->defer_lock);
6545
6546 while (skb != NULL) {
6547 next = skb->next;
6548 napi_consume_skb(skb, 1);
6549 skb = next;
6550 }
6551 }
6552
6553 #if defined(CONFIG_NET_RX_BUSY_POLL)
6554
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6555 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6556 {
6557 if (!skip_schedule) {
6558 gro_normal_list(&napi->gro);
6559 __napi_schedule(napi);
6560 return;
6561 }
6562
6563 /* Flush too old packets. If HZ < 1000, flush all packets */
6564 gro_flush(&napi->gro, HZ >= 1000);
6565 gro_normal_list(&napi->gro);
6566
6567 clear_bit(NAPI_STATE_SCHED, &napi->state);
6568 }
6569
6570 enum {
6571 NAPI_F_PREFER_BUSY_POLL = 1,
6572 NAPI_F_END_ON_RESCHED = 2,
6573 };
6574
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6575 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6576 unsigned flags, u16 budget)
6577 {
6578 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6579 bool skip_schedule = false;
6580 unsigned long timeout;
6581 int rc;
6582
6583 /* Busy polling means there is a high chance device driver hard irq
6584 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6585 * set in napi_schedule_prep().
6586 * Since we are about to call napi->poll() once more, we can safely
6587 * clear NAPI_STATE_MISSED.
6588 *
6589 * Note: x86 could use a single "lock and ..." instruction
6590 * to perform these two clear_bit()
6591 */
6592 clear_bit(NAPI_STATE_MISSED, &napi->state);
6593 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6594
6595 local_bh_disable();
6596 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6597
6598 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6599 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6600 timeout = napi_get_gro_flush_timeout(napi);
6601 if (napi->defer_hard_irqs_count && timeout) {
6602 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6603 skip_schedule = true;
6604 }
6605 }
6606
6607 /* All we really want here is to re-enable device interrupts.
6608 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6609 */
6610 rc = napi->poll(napi, budget);
6611 /* We can't gro_normal_list() here, because napi->poll() might have
6612 * rearmed the napi (napi_complete_done()) in which case it could
6613 * already be running on another CPU.
6614 */
6615 trace_napi_poll(napi, rc, budget);
6616 netpoll_poll_unlock(have_poll_lock);
6617 if (rc == budget)
6618 __busy_poll_stop(napi, skip_schedule);
6619 bpf_net_ctx_clear(bpf_net_ctx);
6620 local_bh_enable();
6621 }
6622
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6623 static void __napi_busy_loop(unsigned int napi_id,
6624 bool (*loop_end)(void *, unsigned long),
6625 void *loop_end_arg, unsigned flags, u16 budget)
6626 {
6627 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6628 int (*napi_poll)(struct napi_struct *napi, int budget);
6629 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6630 void *have_poll_lock = NULL;
6631 struct napi_struct *napi;
6632
6633 WARN_ON_ONCE(!rcu_read_lock_held());
6634
6635 restart:
6636 napi_poll = NULL;
6637
6638 napi = napi_by_id(napi_id);
6639 if (!napi)
6640 return;
6641
6642 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6643 preempt_disable();
6644 for (;;) {
6645 int work = 0;
6646
6647 local_bh_disable();
6648 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6649 if (!napi_poll) {
6650 unsigned long val = READ_ONCE(napi->state);
6651
6652 /* If multiple threads are competing for this napi,
6653 * we avoid dirtying napi->state as much as we can.
6654 */
6655 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6656 NAPIF_STATE_IN_BUSY_POLL)) {
6657 if (flags & NAPI_F_PREFER_BUSY_POLL)
6658 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6659 goto count;
6660 }
6661 if (cmpxchg(&napi->state, val,
6662 val | NAPIF_STATE_IN_BUSY_POLL |
6663 NAPIF_STATE_SCHED) != val) {
6664 if (flags & NAPI_F_PREFER_BUSY_POLL)
6665 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6666 goto count;
6667 }
6668 have_poll_lock = netpoll_poll_lock(napi);
6669 napi_poll = napi->poll;
6670 }
6671 work = napi_poll(napi, budget);
6672 trace_napi_poll(napi, work, budget);
6673 gro_normal_list(&napi->gro);
6674 count:
6675 if (work > 0)
6676 __NET_ADD_STATS(dev_net(napi->dev),
6677 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6678 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6679 bpf_net_ctx_clear(bpf_net_ctx);
6680 local_bh_enable();
6681
6682 if (!loop_end || loop_end(loop_end_arg, start_time))
6683 break;
6684
6685 if (unlikely(need_resched())) {
6686 if (flags & NAPI_F_END_ON_RESCHED)
6687 break;
6688 if (napi_poll)
6689 busy_poll_stop(napi, have_poll_lock, flags, budget);
6690 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6691 preempt_enable();
6692 rcu_read_unlock();
6693 cond_resched();
6694 rcu_read_lock();
6695 if (loop_end(loop_end_arg, start_time))
6696 return;
6697 goto restart;
6698 }
6699 cpu_relax();
6700 }
6701 if (napi_poll)
6702 busy_poll_stop(napi, have_poll_lock, flags, budget);
6703 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6704 preempt_enable();
6705 }
6706
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6707 void napi_busy_loop_rcu(unsigned int napi_id,
6708 bool (*loop_end)(void *, unsigned long),
6709 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6710 {
6711 unsigned flags = NAPI_F_END_ON_RESCHED;
6712
6713 if (prefer_busy_poll)
6714 flags |= NAPI_F_PREFER_BUSY_POLL;
6715
6716 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6717 }
6718
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6719 void napi_busy_loop(unsigned int napi_id,
6720 bool (*loop_end)(void *, unsigned long),
6721 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6722 {
6723 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6724
6725 rcu_read_lock();
6726 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6727 rcu_read_unlock();
6728 }
6729 EXPORT_SYMBOL(napi_busy_loop);
6730
napi_suspend_irqs(unsigned int napi_id)6731 void napi_suspend_irqs(unsigned int napi_id)
6732 {
6733 struct napi_struct *napi;
6734
6735 rcu_read_lock();
6736 napi = napi_by_id(napi_id);
6737 if (napi) {
6738 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6739
6740 if (timeout)
6741 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6742 HRTIMER_MODE_REL_PINNED);
6743 }
6744 rcu_read_unlock();
6745 }
6746
napi_resume_irqs(unsigned int napi_id)6747 void napi_resume_irqs(unsigned int napi_id)
6748 {
6749 struct napi_struct *napi;
6750
6751 rcu_read_lock();
6752 napi = napi_by_id(napi_id);
6753 if (napi) {
6754 /* If irq_suspend_timeout is set to 0 between the call to
6755 * napi_suspend_irqs and now, the original value still
6756 * determines the safety timeout as intended and napi_watchdog
6757 * will resume irq processing.
6758 */
6759 if (napi_get_irq_suspend_timeout(napi)) {
6760 local_bh_disable();
6761 napi_schedule(napi);
6762 local_bh_enable();
6763 }
6764 }
6765 rcu_read_unlock();
6766 }
6767
6768 #endif /* CONFIG_NET_RX_BUSY_POLL */
6769
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6770 static void __napi_hash_add_with_id(struct napi_struct *napi,
6771 unsigned int napi_id)
6772 {
6773 napi->gro.cached_napi_id = napi_id;
6774
6775 WRITE_ONCE(napi->napi_id, napi_id);
6776 hlist_add_head_rcu(&napi->napi_hash_node,
6777 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6778 }
6779
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6780 static void napi_hash_add_with_id(struct napi_struct *napi,
6781 unsigned int napi_id)
6782 {
6783 unsigned long flags;
6784
6785 spin_lock_irqsave(&napi_hash_lock, flags);
6786 WARN_ON_ONCE(napi_by_id(napi_id));
6787 __napi_hash_add_with_id(napi, napi_id);
6788 spin_unlock_irqrestore(&napi_hash_lock, flags);
6789 }
6790
napi_hash_add(struct napi_struct * napi)6791 static void napi_hash_add(struct napi_struct *napi)
6792 {
6793 unsigned long flags;
6794
6795 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6796 return;
6797
6798 spin_lock_irqsave(&napi_hash_lock, flags);
6799
6800 /* 0..NR_CPUS range is reserved for sender_cpu use */
6801 do {
6802 if (unlikely(!napi_id_valid(++napi_gen_id)))
6803 napi_gen_id = MIN_NAPI_ID;
6804 } while (napi_by_id(napi_gen_id));
6805
6806 __napi_hash_add_with_id(napi, napi_gen_id);
6807
6808 spin_unlock_irqrestore(&napi_hash_lock, flags);
6809 }
6810
6811 /* Warning : caller is responsible to make sure rcu grace period
6812 * is respected before freeing memory containing @napi
6813 */
napi_hash_del(struct napi_struct * napi)6814 static void napi_hash_del(struct napi_struct *napi)
6815 {
6816 unsigned long flags;
6817
6818 spin_lock_irqsave(&napi_hash_lock, flags);
6819
6820 hlist_del_init_rcu(&napi->napi_hash_node);
6821
6822 spin_unlock_irqrestore(&napi_hash_lock, flags);
6823 }
6824
napi_watchdog(struct hrtimer * timer)6825 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6826 {
6827 struct napi_struct *napi;
6828
6829 napi = container_of(timer, struct napi_struct, timer);
6830
6831 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6832 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6833 */
6834 if (!napi_disable_pending(napi) &&
6835 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6836 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6837 __napi_schedule_irqoff(napi);
6838 }
6839
6840 return HRTIMER_NORESTART;
6841 }
6842
dev_set_threaded(struct net_device * dev,bool threaded)6843 int dev_set_threaded(struct net_device *dev, bool threaded)
6844 {
6845 struct napi_struct *napi;
6846 int err = 0;
6847
6848 netdev_assert_locked_or_invisible(dev);
6849
6850 if (dev->threaded == threaded)
6851 return 0;
6852
6853 if (threaded) {
6854 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6855 if (!napi->thread) {
6856 err = napi_kthread_create(napi);
6857 if (err) {
6858 threaded = false;
6859 break;
6860 }
6861 }
6862 }
6863 }
6864
6865 WRITE_ONCE(dev->threaded, threaded);
6866
6867 /* Make sure kthread is created before THREADED bit
6868 * is set.
6869 */
6870 smp_mb__before_atomic();
6871
6872 /* Setting/unsetting threaded mode on a napi might not immediately
6873 * take effect, if the current napi instance is actively being
6874 * polled. In this case, the switch between threaded mode and
6875 * softirq mode will happen in the next round of napi_schedule().
6876 * This should not cause hiccups/stalls to the live traffic.
6877 */
6878 list_for_each_entry(napi, &dev->napi_list, dev_list)
6879 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6880
6881 return err;
6882 }
6883 EXPORT_SYMBOL(dev_set_threaded);
6884
6885 /**
6886 * netif_queue_set_napi - Associate queue with the napi
6887 * @dev: device to which NAPI and queue belong
6888 * @queue_index: Index of queue
6889 * @type: queue type as RX or TX
6890 * @napi: NAPI context, pass NULL to clear previously set NAPI
6891 *
6892 * Set queue with its corresponding napi context. This should be done after
6893 * registering the NAPI handler for the queue-vector and the queues have been
6894 * mapped to the corresponding interrupt vector.
6895 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)6896 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6897 enum netdev_queue_type type, struct napi_struct *napi)
6898 {
6899 struct netdev_rx_queue *rxq;
6900 struct netdev_queue *txq;
6901
6902 if (WARN_ON_ONCE(napi && !napi->dev))
6903 return;
6904 netdev_ops_assert_locked_or_invisible(dev);
6905
6906 switch (type) {
6907 case NETDEV_QUEUE_TYPE_RX:
6908 rxq = __netif_get_rx_queue(dev, queue_index);
6909 rxq->napi = napi;
6910 return;
6911 case NETDEV_QUEUE_TYPE_TX:
6912 txq = netdev_get_tx_queue(dev, queue_index);
6913 txq->napi = napi;
6914 return;
6915 default:
6916 return;
6917 }
6918 }
6919 EXPORT_SYMBOL(netif_queue_set_napi);
6920
6921 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)6922 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6923 const cpumask_t *mask)
6924 {
6925 struct napi_struct *napi =
6926 container_of(notify, struct napi_struct, notify);
6927 #ifdef CONFIG_RFS_ACCEL
6928 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6929 int err;
6930 #endif
6931
6932 if (napi->config && napi->dev->irq_affinity_auto)
6933 cpumask_copy(&napi->config->affinity_mask, mask);
6934
6935 #ifdef CONFIG_RFS_ACCEL
6936 if (napi->dev->rx_cpu_rmap_auto) {
6937 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6938 if (err)
6939 netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6940 err);
6941 }
6942 #endif
6943 }
6944
6945 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)6946 static void netif_napi_affinity_release(struct kref *ref)
6947 {
6948 struct napi_struct *napi =
6949 container_of(ref, struct napi_struct, notify.kref);
6950 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6951
6952 netdev_assert_locked(napi->dev);
6953 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6954 &napi->state));
6955
6956 if (!napi->dev->rx_cpu_rmap_auto)
6957 return;
6958 rmap->obj[napi->napi_rmap_idx] = NULL;
6959 napi->napi_rmap_idx = -1;
6960 cpu_rmap_put(rmap);
6961 }
6962
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6963 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6964 {
6965 if (dev->rx_cpu_rmap_auto)
6966 return 0;
6967
6968 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6969 if (!dev->rx_cpu_rmap)
6970 return -ENOMEM;
6971
6972 dev->rx_cpu_rmap_auto = true;
6973 return 0;
6974 }
6975 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6976
netif_del_cpu_rmap(struct net_device * dev)6977 static void netif_del_cpu_rmap(struct net_device *dev)
6978 {
6979 struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6980
6981 if (!dev->rx_cpu_rmap_auto)
6982 return;
6983
6984 /* Free the rmap */
6985 cpu_rmap_put(rmap);
6986 dev->rx_cpu_rmap = NULL;
6987 dev->rx_cpu_rmap_auto = false;
6988 }
6989
6990 #else
netif_napi_affinity_release(struct kref * ref)6991 static void netif_napi_affinity_release(struct kref *ref)
6992 {
6993 }
6994
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)6995 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6996 {
6997 return 0;
6998 }
6999 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7000
netif_del_cpu_rmap(struct net_device * dev)7001 static void netif_del_cpu_rmap(struct net_device *dev)
7002 {
7003 }
7004 #endif
7005
netif_set_affinity_auto(struct net_device * dev)7006 void netif_set_affinity_auto(struct net_device *dev)
7007 {
7008 unsigned int i, maxqs, numa;
7009
7010 maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7011 numa = dev_to_node(&dev->dev);
7012
7013 for (i = 0; i < maxqs; i++)
7014 cpumask_set_cpu(cpumask_local_spread(i, numa),
7015 &dev->napi_config[i].affinity_mask);
7016
7017 dev->irq_affinity_auto = true;
7018 }
7019 EXPORT_SYMBOL(netif_set_affinity_auto);
7020
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7021 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7022 {
7023 int rc;
7024
7025 netdev_assert_locked_or_invisible(napi->dev);
7026
7027 if (napi->irq == irq)
7028 return;
7029
7030 /* Remove existing resources */
7031 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7032 irq_set_affinity_notifier(napi->irq, NULL);
7033
7034 napi->irq = irq;
7035 if (irq < 0 ||
7036 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7037 return;
7038
7039 /* Abort for buggy drivers */
7040 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7041 return;
7042
7043 #ifdef CONFIG_RFS_ACCEL
7044 if (napi->dev->rx_cpu_rmap_auto) {
7045 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7046 if (rc < 0)
7047 return;
7048
7049 cpu_rmap_get(napi->dev->rx_cpu_rmap);
7050 napi->napi_rmap_idx = rc;
7051 }
7052 #endif
7053
7054 /* Use core IRQ notifier */
7055 napi->notify.notify = netif_napi_irq_notify;
7056 napi->notify.release = netif_napi_affinity_release;
7057 rc = irq_set_affinity_notifier(irq, &napi->notify);
7058 if (rc) {
7059 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7060 rc);
7061 goto put_rmap;
7062 }
7063
7064 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7065 return;
7066
7067 put_rmap:
7068 #ifdef CONFIG_RFS_ACCEL
7069 if (napi->dev->rx_cpu_rmap_auto) {
7070 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7071 cpu_rmap_put(napi->dev->rx_cpu_rmap);
7072 napi->napi_rmap_idx = -1;
7073 }
7074 #endif
7075 napi->notify.notify = NULL;
7076 napi->notify.release = NULL;
7077 }
7078 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7079
napi_restore_config(struct napi_struct * n)7080 static void napi_restore_config(struct napi_struct *n)
7081 {
7082 n->defer_hard_irqs = n->config->defer_hard_irqs;
7083 n->gro_flush_timeout = n->config->gro_flush_timeout;
7084 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7085
7086 if (n->dev->irq_affinity_auto &&
7087 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7088 irq_set_affinity(n->irq, &n->config->affinity_mask);
7089
7090 /* a NAPI ID might be stored in the config, if so use it. if not, use
7091 * napi_hash_add to generate one for us.
7092 */
7093 if (n->config->napi_id) {
7094 napi_hash_add_with_id(n, n->config->napi_id);
7095 } else {
7096 napi_hash_add(n);
7097 n->config->napi_id = n->napi_id;
7098 }
7099 }
7100
napi_save_config(struct napi_struct * n)7101 static void napi_save_config(struct napi_struct *n)
7102 {
7103 n->config->defer_hard_irqs = n->defer_hard_irqs;
7104 n->config->gro_flush_timeout = n->gro_flush_timeout;
7105 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7106 napi_hash_del(n);
7107 }
7108
7109 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7110 * inherit an existing ID try to insert it at the right position.
7111 */
7112 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7113 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7114 {
7115 unsigned int new_id, pos_id;
7116 struct list_head *higher;
7117 struct napi_struct *pos;
7118
7119 new_id = UINT_MAX;
7120 if (napi->config && napi->config->napi_id)
7121 new_id = napi->config->napi_id;
7122
7123 higher = &dev->napi_list;
7124 list_for_each_entry(pos, &dev->napi_list, dev_list) {
7125 if (napi_id_valid(pos->napi_id))
7126 pos_id = pos->napi_id;
7127 else if (pos->config)
7128 pos_id = pos->config->napi_id;
7129 else
7130 pos_id = UINT_MAX;
7131
7132 if (pos_id <= new_id)
7133 break;
7134 higher = &pos->dev_list;
7135 }
7136 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7137 }
7138
7139 /* Double check that napi_get_frags() allocates skbs with
7140 * skb->head being backed by slab, not a page fragment.
7141 * This is to make sure bug fixed in 3226b158e67c
7142 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7143 * does not accidentally come back.
7144 */
napi_get_frags_check(struct napi_struct * napi)7145 static void napi_get_frags_check(struct napi_struct *napi)
7146 {
7147 struct sk_buff *skb;
7148
7149 local_bh_disable();
7150 skb = napi_get_frags(napi);
7151 WARN_ON_ONCE(skb && skb->head_frag);
7152 napi_free_frags(napi);
7153 local_bh_enable();
7154 }
7155
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7156 void netif_napi_add_weight_locked(struct net_device *dev,
7157 struct napi_struct *napi,
7158 int (*poll)(struct napi_struct *, int),
7159 int weight)
7160 {
7161 netdev_assert_locked(dev);
7162 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7163 return;
7164
7165 INIT_LIST_HEAD(&napi->poll_list);
7166 INIT_HLIST_NODE(&napi->napi_hash_node);
7167 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7168 gro_init(&napi->gro);
7169 napi->skb = NULL;
7170 napi->poll = poll;
7171 if (weight > NAPI_POLL_WEIGHT)
7172 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7173 weight);
7174 napi->weight = weight;
7175 napi->dev = dev;
7176 #ifdef CONFIG_NETPOLL
7177 napi->poll_owner = -1;
7178 #endif
7179 napi->list_owner = -1;
7180 set_bit(NAPI_STATE_SCHED, &napi->state);
7181 set_bit(NAPI_STATE_NPSVC, &napi->state);
7182 netif_napi_dev_list_add(dev, napi);
7183
7184 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7185 * configuration will be loaded in napi_enable
7186 */
7187 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7188 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7189
7190 napi_get_frags_check(napi);
7191 /* Create kthread for this napi if dev->threaded is set.
7192 * Clear dev->threaded if kthread creation failed so that
7193 * threaded mode will not be enabled in napi_enable().
7194 */
7195 if (dev->threaded && napi_kthread_create(napi))
7196 dev->threaded = false;
7197 netif_napi_set_irq_locked(napi, -1);
7198 }
7199 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7200
napi_disable_locked(struct napi_struct * n)7201 void napi_disable_locked(struct napi_struct *n)
7202 {
7203 unsigned long val, new;
7204
7205 might_sleep();
7206 netdev_assert_locked(n->dev);
7207
7208 set_bit(NAPI_STATE_DISABLE, &n->state);
7209
7210 val = READ_ONCE(n->state);
7211 do {
7212 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7213 usleep_range(20, 200);
7214 val = READ_ONCE(n->state);
7215 }
7216
7217 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7218 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7219 } while (!try_cmpxchg(&n->state, &val, new));
7220
7221 hrtimer_cancel(&n->timer);
7222
7223 if (n->config)
7224 napi_save_config(n);
7225 else
7226 napi_hash_del(n);
7227
7228 clear_bit(NAPI_STATE_DISABLE, &n->state);
7229 }
7230 EXPORT_SYMBOL(napi_disable_locked);
7231
7232 /**
7233 * napi_disable() - prevent NAPI from scheduling
7234 * @n: NAPI context
7235 *
7236 * Stop NAPI from being scheduled on this context.
7237 * Waits till any outstanding processing completes.
7238 * Takes netdev_lock() for associated net_device.
7239 */
napi_disable(struct napi_struct * n)7240 void napi_disable(struct napi_struct *n)
7241 {
7242 netdev_lock(n->dev);
7243 napi_disable_locked(n);
7244 netdev_unlock(n->dev);
7245 }
7246 EXPORT_SYMBOL(napi_disable);
7247
napi_enable_locked(struct napi_struct * n)7248 void napi_enable_locked(struct napi_struct *n)
7249 {
7250 unsigned long new, val = READ_ONCE(n->state);
7251
7252 if (n->config)
7253 napi_restore_config(n);
7254 else
7255 napi_hash_add(n);
7256
7257 do {
7258 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7259
7260 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7261 if (n->dev->threaded && n->thread)
7262 new |= NAPIF_STATE_THREADED;
7263 } while (!try_cmpxchg(&n->state, &val, new));
7264 }
7265 EXPORT_SYMBOL(napi_enable_locked);
7266
7267 /**
7268 * napi_enable() - enable NAPI scheduling
7269 * @n: NAPI context
7270 *
7271 * Enable scheduling of a NAPI instance.
7272 * Must be paired with napi_disable().
7273 * Takes netdev_lock() for associated net_device.
7274 */
napi_enable(struct napi_struct * n)7275 void napi_enable(struct napi_struct *n)
7276 {
7277 netdev_lock(n->dev);
7278 napi_enable_locked(n);
7279 netdev_unlock(n->dev);
7280 }
7281 EXPORT_SYMBOL(napi_enable);
7282
7283 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7284 void __netif_napi_del_locked(struct napi_struct *napi)
7285 {
7286 netdev_assert_locked(napi->dev);
7287
7288 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7289 return;
7290
7291 /* Make sure NAPI is disabled (or was never enabled). */
7292 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7293
7294 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7295 irq_set_affinity_notifier(napi->irq, NULL);
7296
7297 if (napi->config) {
7298 napi->index = -1;
7299 napi->config = NULL;
7300 }
7301
7302 list_del_rcu(&napi->dev_list);
7303 napi_free_frags(napi);
7304
7305 gro_cleanup(&napi->gro);
7306
7307 if (napi->thread) {
7308 kthread_stop(napi->thread);
7309 napi->thread = NULL;
7310 }
7311 }
7312 EXPORT_SYMBOL(__netif_napi_del_locked);
7313
__napi_poll(struct napi_struct * n,bool * repoll)7314 static int __napi_poll(struct napi_struct *n, bool *repoll)
7315 {
7316 int work, weight;
7317
7318 weight = n->weight;
7319
7320 /* This NAPI_STATE_SCHED test is for avoiding a race
7321 * with netpoll's poll_napi(). Only the entity which
7322 * obtains the lock and sees NAPI_STATE_SCHED set will
7323 * actually make the ->poll() call. Therefore we avoid
7324 * accidentally calling ->poll() when NAPI is not scheduled.
7325 */
7326 work = 0;
7327 if (napi_is_scheduled(n)) {
7328 work = n->poll(n, weight);
7329 trace_napi_poll(n, work, weight);
7330
7331 xdp_do_check_flushed(n);
7332 }
7333
7334 if (unlikely(work > weight))
7335 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7336 n->poll, work, weight);
7337
7338 if (likely(work < weight))
7339 return work;
7340
7341 /* Drivers must not modify the NAPI state if they
7342 * consume the entire weight. In such cases this code
7343 * still "owns" the NAPI instance and therefore can
7344 * move the instance around on the list at-will.
7345 */
7346 if (unlikely(napi_disable_pending(n))) {
7347 napi_complete(n);
7348 return work;
7349 }
7350
7351 /* The NAPI context has more processing work, but busy-polling
7352 * is preferred. Exit early.
7353 */
7354 if (napi_prefer_busy_poll(n)) {
7355 if (napi_complete_done(n, work)) {
7356 /* If timeout is not set, we need to make sure
7357 * that the NAPI is re-scheduled.
7358 */
7359 napi_schedule(n);
7360 }
7361 return work;
7362 }
7363
7364 /* Flush too old packets. If HZ < 1000, flush all packets */
7365 gro_flush(&n->gro, HZ >= 1000);
7366 gro_normal_list(&n->gro);
7367
7368 /* Some drivers may have called napi_schedule
7369 * prior to exhausting their budget.
7370 */
7371 if (unlikely(!list_empty(&n->poll_list))) {
7372 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7373 n->dev ? n->dev->name : "backlog");
7374 return work;
7375 }
7376
7377 *repoll = true;
7378
7379 return work;
7380 }
7381
napi_poll(struct napi_struct * n,struct list_head * repoll)7382 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7383 {
7384 bool do_repoll = false;
7385 void *have;
7386 int work;
7387
7388 list_del_init(&n->poll_list);
7389
7390 have = netpoll_poll_lock(n);
7391
7392 work = __napi_poll(n, &do_repoll);
7393
7394 if (do_repoll)
7395 list_add_tail(&n->poll_list, repoll);
7396
7397 netpoll_poll_unlock(have);
7398
7399 return work;
7400 }
7401
napi_thread_wait(struct napi_struct * napi)7402 static int napi_thread_wait(struct napi_struct *napi)
7403 {
7404 set_current_state(TASK_INTERRUPTIBLE);
7405
7406 while (!kthread_should_stop()) {
7407 /* Testing SCHED_THREADED bit here to make sure the current
7408 * kthread owns this napi and could poll on this napi.
7409 * Testing SCHED bit is not enough because SCHED bit might be
7410 * set by some other busy poll thread or by napi_disable().
7411 */
7412 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7413 WARN_ON(!list_empty(&napi->poll_list));
7414 __set_current_state(TASK_RUNNING);
7415 return 0;
7416 }
7417
7418 schedule();
7419 set_current_state(TASK_INTERRUPTIBLE);
7420 }
7421 __set_current_state(TASK_RUNNING);
7422
7423 return -1;
7424 }
7425
napi_threaded_poll_loop(struct napi_struct * napi)7426 static void napi_threaded_poll_loop(struct napi_struct *napi)
7427 {
7428 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7429 struct softnet_data *sd;
7430 unsigned long last_qs = jiffies;
7431
7432 for (;;) {
7433 bool repoll = false;
7434 void *have;
7435
7436 local_bh_disable();
7437 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7438
7439 sd = this_cpu_ptr(&softnet_data);
7440 sd->in_napi_threaded_poll = true;
7441
7442 have = netpoll_poll_lock(napi);
7443 __napi_poll(napi, &repoll);
7444 netpoll_poll_unlock(have);
7445
7446 sd->in_napi_threaded_poll = false;
7447 barrier();
7448
7449 if (sd_has_rps_ipi_waiting(sd)) {
7450 local_irq_disable();
7451 net_rps_action_and_irq_enable(sd);
7452 }
7453 skb_defer_free_flush(sd);
7454 bpf_net_ctx_clear(bpf_net_ctx);
7455 local_bh_enable();
7456
7457 if (!repoll)
7458 break;
7459
7460 rcu_softirq_qs_periodic(last_qs);
7461 cond_resched();
7462 }
7463 }
7464
napi_threaded_poll(void * data)7465 static int napi_threaded_poll(void *data)
7466 {
7467 struct napi_struct *napi = data;
7468
7469 while (!napi_thread_wait(napi))
7470 napi_threaded_poll_loop(napi);
7471
7472 return 0;
7473 }
7474
net_rx_action(void)7475 static __latent_entropy void net_rx_action(void)
7476 {
7477 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7478 unsigned long time_limit = jiffies +
7479 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7480 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7481 int budget = READ_ONCE(net_hotdata.netdev_budget);
7482 LIST_HEAD(list);
7483 LIST_HEAD(repoll);
7484
7485 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7486 start:
7487 sd->in_net_rx_action = true;
7488 local_irq_disable();
7489 list_splice_init(&sd->poll_list, &list);
7490 local_irq_enable();
7491
7492 for (;;) {
7493 struct napi_struct *n;
7494
7495 skb_defer_free_flush(sd);
7496
7497 if (list_empty(&list)) {
7498 if (list_empty(&repoll)) {
7499 sd->in_net_rx_action = false;
7500 barrier();
7501 /* We need to check if ____napi_schedule()
7502 * had refilled poll_list while
7503 * sd->in_net_rx_action was true.
7504 */
7505 if (!list_empty(&sd->poll_list))
7506 goto start;
7507 if (!sd_has_rps_ipi_waiting(sd))
7508 goto end;
7509 }
7510 break;
7511 }
7512
7513 n = list_first_entry(&list, struct napi_struct, poll_list);
7514 budget -= napi_poll(n, &repoll);
7515
7516 /* If softirq window is exhausted then punt.
7517 * Allow this to run for 2 jiffies since which will allow
7518 * an average latency of 1.5/HZ.
7519 */
7520 if (unlikely(budget <= 0 ||
7521 time_after_eq(jiffies, time_limit))) {
7522 sd->time_squeeze++;
7523 break;
7524 }
7525 }
7526
7527 local_irq_disable();
7528
7529 list_splice_tail_init(&sd->poll_list, &list);
7530 list_splice_tail(&repoll, &list);
7531 list_splice(&list, &sd->poll_list);
7532 if (!list_empty(&sd->poll_list))
7533 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7534 else
7535 sd->in_net_rx_action = false;
7536
7537 net_rps_action_and_irq_enable(sd);
7538 end:
7539 bpf_net_ctx_clear(bpf_net_ctx);
7540 }
7541
7542 struct netdev_adjacent {
7543 struct net_device *dev;
7544 netdevice_tracker dev_tracker;
7545
7546 /* upper master flag, there can only be one master device per list */
7547 bool master;
7548
7549 /* lookup ignore flag */
7550 bool ignore;
7551
7552 /* counter for the number of times this device was added to us */
7553 u16 ref_nr;
7554
7555 /* private field for the users */
7556 void *private;
7557
7558 struct list_head list;
7559 struct rcu_head rcu;
7560 };
7561
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7562 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7563 struct list_head *adj_list)
7564 {
7565 struct netdev_adjacent *adj;
7566
7567 list_for_each_entry(adj, adj_list, list) {
7568 if (adj->dev == adj_dev)
7569 return adj;
7570 }
7571 return NULL;
7572 }
7573
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7574 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7575 struct netdev_nested_priv *priv)
7576 {
7577 struct net_device *dev = (struct net_device *)priv->data;
7578
7579 return upper_dev == dev;
7580 }
7581
7582 /**
7583 * netdev_has_upper_dev - Check if device is linked to an upper device
7584 * @dev: device
7585 * @upper_dev: upper device to check
7586 *
7587 * Find out if a device is linked to specified upper device and return true
7588 * in case it is. Note that this checks only immediate upper device,
7589 * not through a complete stack of devices. The caller must hold the RTNL lock.
7590 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7591 bool netdev_has_upper_dev(struct net_device *dev,
7592 struct net_device *upper_dev)
7593 {
7594 struct netdev_nested_priv priv = {
7595 .data = (void *)upper_dev,
7596 };
7597
7598 ASSERT_RTNL();
7599
7600 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7601 &priv);
7602 }
7603 EXPORT_SYMBOL(netdev_has_upper_dev);
7604
7605 /**
7606 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7607 * @dev: device
7608 * @upper_dev: upper device to check
7609 *
7610 * Find out if a device is linked to specified upper device and return true
7611 * in case it is. Note that this checks the entire upper device chain.
7612 * The caller must hold rcu lock.
7613 */
7614
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7615 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7616 struct net_device *upper_dev)
7617 {
7618 struct netdev_nested_priv priv = {
7619 .data = (void *)upper_dev,
7620 };
7621
7622 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7623 &priv);
7624 }
7625 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7626
7627 /**
7628 * netdev_has_any_upper_dev - Check if device is linked to some device
7629 * @dev: device
7630 *
7631 * Find out if a device is linked to an upper device and return true in case
7632 * it is. The caller must hold the RTNL lock.
7633 */
netdev_has_any_upper_dev(struct net_device * dev)7634 bool netdev_has_any_upper_dev(struct net_device *dev)
7635 {
7636 ASSERT_RTNL();
7637
7638 return !list_empty(&dev->adj_list.upper);
7639 }
7640 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7641
7642 /**
7643 * netdev_master_upper_dev_get - Get master upper device
7644 * @dev: device
7645 *
7646 * Find a master upper device and return pointer to it or NULL in case
7647 * it's not there. The caller must hold the RTNL lock.
7648 */
netdev_master_upper_dev_get(struct net_device * dev)7649 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7650 {
7651 struct netdev_adjacent *upper;
7652
7653 ASSERT_RTNL();
7654
7655 if (list_empty(&dev->adj_list.upper))
7656 return NULL;
7657
7658 upper = list_first_entry(&dev->adj_list.upper,
7659 struct netdev_adjacent, list);
7660 if (likely(upper->master))
7661 return upper->dev;
7662 return NULL;
7663 }
7664 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7665
__netdev_master_upper_dev_get(struct net_device * dev)7666 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7667 {
7668 struct netdev_adjacent *upper;
7669
7670 ASSERT_RTNL();
7671
7672 if (list_empty(&dev->adj_list.upper))
7673 return NULL;
7674
7675 upper = list_first_entry(&dev->adj_list.upper,
7676 struct netdev_adjacent, list);
7677 if (likely(upper->master) && !upper->ignore)
7678 return upper->dev;
7679 return NULL;
7680 }
7681
7682 /**
7683 * netdev_has_any_lower_dev - Check if device is linked to some device
7684 * @dev: device
7685 *
7686 * Find out if a device is linked to a lower device and return true in case
7687 * it is. The caller must hold the RTNL lock.
7688 */
netdev_has_any_lower_dev(struct net_device * dev)7689 static bool netdev_has_any_lower_dev(struct net_device *dev)
7690 {
7691 ASSERT_RTNL();
7692
7693 return !list_empty(&dev->adj_list.lower);
7694 }
7695
netdev_adjacent_get_private(struct list_head * adj_list)7696 void *netdev_adjacent_get_private(struct list_head *adj_list)
7697 {
7698 struct netdev_adjacent *adj;
7699
7700 adj = list_entry(adj_list, struct netdev_adjacent, list);
7701
7702 return adj->private;
7703 }
7704 EXPORT_SYMBOL(netdev_adjacent_get_private);
7705
7706 /**
7707 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7708 * @dev: device
7709 * @iter: list_head ** of the current position
7710 *
7711 * Gets the next device from the dev's upper list, starting from iter
7712 * position. The caller must hold RCU read lock.
7713 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7714 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7715 struct list_head **iter)
7716 {
7717 struct netdev_adjacent *upper;
7718
7719 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7720
7721 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7722
7723 if (&upper->list == &dev->adj_list.upper)
7724 return NULL;
7725
7726 *iter = &upper->list;
7727
7728 return upper->dev;
7729 }
7730 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7731
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7732 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7733 struct list_head **iter,
7734 bool *ignore)
7735 {
7736 struct netdev_adjacent *upper;
7737
7738 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7739
7740 if (&upper->list == &dev->adj_list.upper)
7741 return NULL;
7742
7743 *iter = &upper->list;
7744 *ignore = upper->ignore;
7745
7746 return upper->dev;
7747 }
7748
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7749 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7750 struct list_head **iter)
7751 {
7752 struct netdev_adjacent *upper;
7753
7754 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7755
7756 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7757
7758 if (&upper->list == &dev->adj_list.upper)
7759 return NULL;
7760
7761 *iter = &upper->list;
7762
7763 return upper->dev;
7764 }
7765
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7766 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7767 int (*fn)(struct net_device *dev,
7768 struct netdev_nested_priv *priv),
7769 struct netdev_nested_priv *priv)
7770 {
7771 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7772 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7773 int ret, cur = 0;
7774 bool ignore;
7775
7776 now = dev;
7777 iter = &dev->adj_list.upper;
7778
7779 while (1) {
7780 if (now != dev) {
7781 ret = fn(now, priv);
7782 if (ret)
7783 return ret;
7784 }
7785
7786 next = NULL;
7787 while (1) {
7788 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7789 if (!udev)
7790 break;
7791 if (ignore)
7792 continue;
7793
7794 next = udev;
7795 niter = &udev->adj_list.upper;
7796 dev_stack[cur] = now;
7797 iter_stack[cur++] = iter;
7798 break;
7799 }
7800
7801 if (!next) {
7802 if (!cur)
7803 return 0;
7804 next = dev_stack[--cur];
7805 niter = iter_stack[cur];
7806 }
7807
7808 now = next;
7809 iter = niter;
7810 }
7811
7812 return 0;
7813 }
7814
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7815 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7816 int (*fn)(struct net_device *dev,
7817 struct netdev_nested_priv *priv),
7818 struct netdev_nested_priv *priv)
7819 {
7820 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7821 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7822 int ret, cur = 0;
7823
7824 now = dev;
7825 iter = &dev->adj_list.upper;
7826
7827 while (1) {
7828 if (now != dev) {
7829 ret = fn(now, priv);
7830 if (ret)
7831 return ret;
7832 }
7833
7834 next = NULL;
7835 while (1) {
7836 udev = netdev_next_upper_dev_rcu(now, &iter);
7837 if (!udev)
7838 break;
7839
7840 next = udev;
7841 niter = &udev->adj_list.upper;
7842 dev_stack[cur] = now;
7843 iter_stack[cur++] = iter;
7844 break;
7845 }
7846
7847 if (!next) {
7848 if (!cur)
7849 return 0;
7850 next = dev_stack[--cur];
7851 niter = iter_stack[cur];
7852 }
7853
7854 now = next;
7855 iter = niter;
7856 }
7857
7858 return 0;
7859 }
7860 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7861
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7862 static bool __netdev_has_upper_dev(struct net_device *dev,
7863 struct net_device *upper_dev)
7864 {
7865 struct netdev_nested_priv priv = {
7866 .flags = 0,
7867 .data = (void *)upper_dev,
7868 };
7869
7870 ASSERT_RTNL();
7871
7872 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7873 &priv);
7874 }
7875
7876 /**
7877 * netdev_lower_get_next_private - Get the next ->private from the
7878 * lower neighbour list
7879 * @dev: device
7880 * @iter: list_head ** of the current position
7881 *
7882 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7883 * list, starting from iter position. The caller must hold either hold the
7884 * RTNL lock or its own locking that guarantees that the neighbour lower
7885 * list will remain unchanged.
7886 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7887 void *netdev_lower_get_next_private(struct net_device *dev,
7888 struct list_head **iter)
7889 {
7890 struct netdev_adjacent *lower;
7891
7892 lower = list_entry(*iter, struct netdev_adjacent, list);
7893
7894 if (&lower->list == &dev->adj_list.lower)
7895 return NULL;
7896
7897 *iter = lower->list.next;
7898
7899 return lower->private;
7900 }
7901 EXPORT_SYMBOL(netdev_lower_get_next_private);
7902
7903 /**
7904 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7905 * lower neighbour list, RCU
7906 * variant
7907 * @dev: device
7908 * @iter: list_head ** of the current position
7909 *
7910 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7911 * list, starting from iter position. The caller must hold RCU read lock.
7912 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7913 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7914 struct list_head **iter)
7915 {
7916 struct netdev_adjacent *lower;
7917
7918 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7919
7920 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7921
7922 if (&lower->list == &dev->adj_list.lower)
7923 return NULL;
7924
7925 *iter = &lower->list;
7926
7927 return lower->private;
7928 }
7929 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7930
7931 /**
7932 * netdev_lower_get_next - Get the next device from the lower neighbour
7933 * list
7934 * @dev: device
7935 * @iter: list_head ** of the current position
7936 *
7937 * Gets the next netdev_adjacent from the dev's lower neighbour
7938 * list, starting from iter position. The caller must hold RTNL lock or
7939 * its own locking that guarantees that the neighbour lower
7940 * list will remain unchanged.
7941 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7942 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7943 {
7944 struct netdev_adjacent *lower;
7945
7946 lower = list_entry(*iter, struct netdev_adjacent, list);
7947
7948 if (&lower->list == &dev->adj_list.lower)
7949 return NULL;
7950
7951 *iter = lower->list.next;
7952
7953 return lower->dev;
7954 }
7955 EXPORT_SYMBOL(netdev_lower_get_next);
7956
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7957 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7958 struct list_head **iter)
7959 {
7960 struct netdev_adjacent *lower;
7961
7962 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7963
7964 if (&lower->list == &dev->adj_list.lower)
7965 return NULL;
7966
7967 *iter = &lower->list;
7968
7969 return lower->dev;
7970 }
7971
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7972 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7973 struct list_head **iter,
7974 bool *ignore)
7975 {
7976 struct netdev_adjacent *lower;
7977
7978 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7979
7980 if (&lower->list == &dev->adj_list.lower)
7981 return NULL;
7982
7983 *iter = &lower->list;
7984 *ignore = lower->ignore;
7985
7986 return lower->dev;
7987 }
7988
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7989 int netdev_walk_all_lower_dev(struct net_device *dev,
7990 int (*fn)(struct net_device *dev,
7991 struct netdev_nested_priv *priv),
7992 struct netdev_nested_priv *priv)
7993 {
7994 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7995 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7996 int ret, cur = 0;
7997
7998 now = dev;
7999 iter = &dev->adj_list.lower;
8000
8001 while (1) {
8002 if (now != dev) {
8003 ret = fn(now, priv);
8004 if (ret)
8005 return ret;
8006 }
8007
8008 next = NULL;
8009 while (1) {
8010 ldev = netdev_next_lower_dev(now, &iter);
8011 if (!ldev)
8012 break;
8013
8014 next = ldev;
8015 niter = &ldev->adj_list.lower;
8016 dev_stack[cur] = now;
8017 iter_stack[cur++] = iter;
8018 break;
8019 }
8020
8021 if (!next) {
8022 if (!cur)
8023 return 0;
8024 next = dev_stack[--cur];
8025 niter = iter_stack[cur];
8026 }
8027
8028 now = next;
8029 iter = niter;
8030 }
8031
8032 return 0;
8033 }
8034 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8035
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8036 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8037 int (*fn)(struct net_device *dev,
8038 struct netdev_nested_priv *priv),
8039 struct netdev_nested_priv *priv)
8040 {
8041 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8042 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8043 int ret, cur = 0;
8044 bool ignore;
8045
8046 now = dev;
8047 iter = &dev->adj_list.lower;
8048
8049 while (1) {
8050 if (now != dev) {
8051 ret = fn(now, priv);
8052 if (ret)
8053 return ret;
8054 }
8055
8056 next = NULL;
8057 while (1) {
8058 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8059 if (!ldev)
8060 break;
8061 if (ignore)
8062 continue;
8063
8064 next = ldev;
8065 niter = &ldev->adj_list.lower;
8066 dev_stack[cur] = now;
8067 iter_stack[cur++] = iter;
8068 break;
8069 }
8070
8071 if (!next) {
8072 if (!cur)
8073 return 0;
8074 next = dev_stack[--cur];
8075 niter = iter_stack[cur];
8076 }
8077
8078 now = next;
8079 iter = niter;
8080 }
8081
8082 return 0;
8083 }
8084
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8085 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8086 struct list_head **iter)
8087 {
8088 struct netdev_adjacent *lower;
8089
8090 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8091 if (&lower->list == &dev->adj_list.lower)
8092 return NULL;
8093
8094 *iter = &lower->list;
8095
8096 return lower->dev;
8097 }
8098 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8099
__netdev_upper_depth(struct net_device * dev)8100 static u8 __netdev_upper_depth(struct net_device *dev)
8101 {
8102 struct net_device *udev;
8103 struct list_head *iter;
8104 u8 max_depth = 0;
8105 bool ignore;
8106
8107 for (iter = &dev->adj_list.upper,
8108 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8109 udev;
8110 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8111 if (ignore)
8112 continue;
8113 if (max_depth < udev->upper_level)
8114 max_depth = udev->upper_level;
8115 }
8116
8117 return max_depth;
8118 }
8119
__netdev_lower_depth(struct net_device * dev)8120 static u8 __netdev_lower_depth(struct net_device *dev)
8121 {
8122 struct net_device *ldev;
8123 struct list_head *iter;
8124 u8 max_depth = 0;
8125 bool ignore;
8126
8127 for (iter = &dev->adj_list.lower,
8128 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8129 ldev;
8130 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8131 if (ignore)
8132 continue;
8133 if (max_depth < ldev->lower_level)
8134 max_depth = ldev->lower_level;
8135 }
8136
8137 return max_depth;
8138 }
8139
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8140 static int __netdev_update_upper_level(struct net_device *dev,
8141 struct netdev_nested_priv *__unused)
8142 {
8143 dev->upper_level = __netdev_upper_depth(dev) + 1;
8144 return 0;
8145 }
8146
8147 #ifdef CONFIG_LOCKDEP
8148 static LIST_HEAD(net_unlink_list);
8149
net_unlink_todo(struct net_device * dev)8150 static void net_unlink_todo(struct net_device *dev)
8151 {
8152 if (list_empty(&dev->unlink_list))
8153 list_add_tail(&dev->unlink_list, &net_unlink_list);
8154 }
8155 #endif
8156
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8157 static int __netdev_update_lower_level(struct net_device *dev,
8158 struct netdev_nested_priv *priv)
8159 {
8160 dev->lower_level = __netdev_lower_depth(dev) + 1;
8161
8162 #ifdef CONFIG_LOCKDEP
8163 if (!priv)
8164 return 0;
8165
8166 if (priv->flags & NESTED_SYNC_IMM)
8167 dev->nested_level = dev->lower_level - 1;
8168 if (priv->flags & NESTED_SYNC_TODO)
8169 net_unlink_todo(dev);
8170 #endif
8171 return 0;
8172 }
8173
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8174 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8175 int (*fn)(struct net_device *dev,
8176 struct netdev_nested_priv *priv),
8177 struct netdev_nested_priv *priv)
8178 {
8179 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8180 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8181 int ret, cur = 0;
8182
8183 now = dev;
8184 iter = &dev->adj_list.lower;
8185
8186 while (1) {
8187 if (now != dev) {
8188 ret = fn(now, priv);
8189 if (ret)
8190 return ret;
8191 }
8192
8193 next = NULL;
8194 while (1) {
8195 ldev = netdev_next_lower_dev_rcu(now, &iter);
8196 if (!ldev)
8197 break;
8198
8199 next = ldev;
8200 niter = &ldev->adj_list.lower;
8201 dev_stack[cur] = now;
8202 iter_stack[cur++] = iter;
8203 break;
8204 }
8205
8206 if (!next) {
8207 if (!cur)
8208 return 0;
8209 next = dev_stack[--cur];
8210 niter = iter_stack[cur];
8211 }
8212
8213 now = next;
8214 iter = niter;
8215 }
8216
8217 return 0;
8218 }
8219 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8220
8221 /**
8222 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8223 * lower neighbour list, RCU
8224 * variant
8225 * @dev: device
8226 *
8227 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8228 * list. The caller must hold RCU read lock.
8229 */
netdev_lower_get_first_private_rcu(struct net_device * dev)8230 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8231 {
8232 struct netdev_adjacent *lower;
8233
8234 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8235 struct netdev_adjacent, list);
8236 if (lower)
8237 return lower->private;
8238 return NULL;
8239 }
8240 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8241
8242 /**
8243 * netdev_master_upper_dev_get_rcu - Get master upper device
8244 * @dev: device
8245 *
8246 * Find a master upper device and return pointer to it or NULL in case
8247 * it's not there. The caller must hold the RCU read lock.
8248 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8249 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8250 {
8251 struct netdev_adjacent *upper;
8252
8253 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8254 struct netdev_adjacent, list);
8255 if (upper && likely(upper->master))
8256 return upper->dev;
8257 return NULL;
8258 }
8259 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8260
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8261 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8262 struct net_device *adj_dev,
8263 struct list_head *dev_list)
8264 {
8265 char linkname[IFNAMSIZ+7];
8266
8267 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8268 "upper_%s" : "lower_%s", adj_dev->name);
8269 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8270 linkname);
8271 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8272 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8273 char *name,
8274 struct list_head *dev_list)
8275 {
8276 char linkname[IFNAMSIZ+7];
8277
8278 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8279 "upper_%s" : "lower_%s", name);
8280 sysfs_remove_link(&(dev->dev.kobj), linkname);
8281 }
8282
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8283 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8284 struct net_device *adj_dev,
8285 struct list_head *dev_list)
8286 {
8287 return (dev_list == &dev->adj_list.upper ||
8288 dev_list == &dev->adj_list.lower) &&
8289 net_eq(dev_net(dev), dev_net(adj_dev));
8290 }
8291
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8292 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8293 struct net_device *adj_dev,
8294 struct list_head *dev_list,
8295 void *private, bool master)
8296 {
8297 struct netdev_adjacent *adj;
8298 int ret;
8299
8300 adj = __netdev_find_adj(adj_dev, dev_list);
8301
8302 if (adj) {
8303 adj->ref_nr += 1;
8304 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8305 dev->name, adj_dev->name, adj->ref_nr);
8306
8307 return 0;
8308 }
8309
8310 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8311 if (!adj)
8312 return -ENOMEM;
8313
8314 adj->dev = adj_dev;
8315 adj->master = master;
8316 adj->ref_nr = 1;
8317 adj->private = private;
8318 adj->ignore = false;
8319 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8320
8321 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8322 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8323
8324 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8325 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8326 if (ret)
8327 goto free_adj;
8328 }
8329
8330 /* Ensure that master link is always the first item in list. */
8331 if (master) {
8332 ret = sysfs_create_link(&(dev->dev.kobj),
8333 &(adj_dev->dev.kobj), "master");
8334 if (ret)
8335 goto remove_symlinks;
8336
8337 list_add_rcu(&adj->list, dev_list);
8338 } else {
8339 list_add_tail_rcu(&adj->list, dev_list);
8340 }
8341
8342 return 0;
8343
8344 remove_symlinks:
8345 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8346 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8347 free_adj:
8348 netdev_put(adj_dev, &adj->dev_tracker);
8349 kfree(adj);
8350
8351 return ret;
8352 }
8353
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8354 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8355 struct net_device *adj_dev,
8356 u16 ref_nr,
8357 struct list_head *dev_list)
8358 {
8359 struct netdev_adjacent *adj;
8360
8361 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8362 dev->name, adj_dev->name, ref_nr);
8363
8364 adj = __netdev_find_adj(adj_dev, dev_list);
8365
8366 if (!adj) {
8367 pr_err("Adjacency does not exist for device %s from %s\n",
8368 dev->name, adj_dev->name);
8369 WARN_ON(1);
8370 return;
8371 }
8372
8373 if (adj->ref_nr > ref_nr) {
8374 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8375 dev->name, adj_dev->name, ref_nr,
8376 adj->ref_nr - ref_nr);
8377 adj->ref_nr -= ref_nr;
8378 return;
8379 }
8380
8381 if (adj->master)
8382 sysfs_remove_link(&(dev->dev.kobj), "master");
8383
8384 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8385 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8386
8387 list_del_rcu(&adj->list);
8388 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8389 adj_dev->name, dev->name, adj_dev->name);
8390 netdev_put(adj_dev, &adj->dev_tracker);
8391 kfree_rcu(adj, rcu);
8392 }
8393
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8394 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8395 struct net_device *upper_dev,
8396 struct list_head *up_list,
8397 struct list_head *down_list,
8398 void *private, bool master)
8399 {
8400 int ret;
8401
8402 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8403 private, master);
8404 if (ret)
8405 return ret;
8406
8407 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8408 private, false);
8409 if (ret) {
8410 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8411 return ret;
8412 }
8413
8414 return 0;
8415 }
8416
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8417 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8418 struct net_device *upper_dev,
8419 u16 ref_nr,
8420 struct list_head *up_list,
8421 struct list_head *down_list)
8422 {
8423 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8424 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8425 }
8426
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8427 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8428 struct net_device *upper_dev,
8429 void *private, bool master)
8430 {
8431 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8432 &dev->adj_list.upper,
8433 &upper_dev->adj_list.lower,
8434 private, master);
8435 }
8436
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8437 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8438 struct net_device *upper_dev)
8439 {
8440 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8441 &dev->adj_list.upper,
8442 &upper_dev->adj_list.lower);
8443 }
8444
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8445 static int __netdev_upper_dev_link(struct net_device *dev,
8446 struct net_device *upper_dev, bool master,
8447 void *upper_priv, void *upper_info,
8448 struct netdev_nested_priv *priv,
8449 struct netlink_ext_ack *extack)
8450 {
8451 struct netdev_notifier_changeupper_info changeupper_info = {
8452 .info = {
8453 .dev = dev,
8454 .extack = extack,
8455 },
8456 .upper_dev = upper_dev,
8457 .master = master,
8458 .linking = true,
8459 .upper_info = upper_info,
8460 };
8461 struct net_device *master_dev;
8462 int ret = 0;
8463
8464 ASSERT_RTNL();
8465
8466 if (dev == upper_dev)
8467 return -EBUSY;
8468
8469 /* To prevent loops, check if dev is not upper device to upper_dev. */
8470 if (__netdev_has_upper_dev(upper_dev, dev))
8471 return -EBUSY;
8472
8473 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8474 return -EMLINK;
8475
8476 if (!master) {
8477 if (__netdev_has_upper_dev(dev, upper_dev))
8478 return -EEXIST;
8479 } else {
8480 master_dev = __netdev_master_upper_dev_get(dev);
8481 if (master_dev)
8482 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8483 }
8484
8485 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8486 &changeupper_info.info);
8487 ret = notifier_to_errno(ret);
8488 if (ret)
8489 return ret;
8490
8491 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8492 master);
8493 if (ret)
8494 return ret;
8495
8496 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8497 &changeupper_info.info);
8498 ret = notifier_to_errno(ret);
8499 if (ret)
8500 goto rollback;
8501
8502 __netdev_update_upper_level(dev, NULL);
8503 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8504
8505 __netdev_update_lower_level(upper_dev, priv);
8506 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8507 priv);
8508
8509 return 0;
8510
8511 rollback:
8512 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8513
8514 return ret;
8515 }
8516
8517 /**
8518 * netdev_upper_dev_link - Add a link to the upper device
8519 * @dev: device
8520 * @upper_dev: new upper device
8521 * @extack: netlink extended ack
8522 *
8523 * Adds a link to device which is upper to this one. The caller must hold
8524 * the RTNL lock. On a failure a negative errno code is returned.
8525 * On success the reference counts are adjusted and the function
8526 * returns zero.
8527 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8528 int netdev_upper_dev_link(struct net_device *dev,
8529 struct net_device *upper_dev,
8530 struct netlink_ext_ack *extack)
8531 {
8532 struct netdev_nested_priv priv = {
8533 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8534 .data = NULL,
8535 };
8536
8537 return __netdev_upper_dev_link(dev, upper_dev, false,
8538 NULL, NULL, &priv, extack);
8539 }
8540 EXPORT_SYMBOL(netdev_upper_dev_link);
8541
8542 /**
8543 * netdev_master_upper_dev_link - Add a master link to the upper device
8544 * @dev: device
8545 * @upper_dev: new upper device
8546 * @upper_priv: upper device private
8547 * @upper_info: upper info to be passed down via notifier
8548 * @extack: netlink extended ack
8549 *
8550 * Adds a link to device which is upper to this one. In this case, only
8551 * one master upper device can be linked, although other non-master devices
8552 * might be linked as well. The caller must hold the RTNL lock.
8553 * On a failure a negative errno code is returned. On success the reference
8554 * counts are adjusted and the function returns zero.
8555 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8556 int netdev_master_upper_dev_link(struct net_device *dev,
8557 struct net_device *upper_dev,
8558 void *upper_priv, void *upper_info,
8559 struct netlink_ext_ack *extack)
8560 {
8561 struct netdev_nested_priv priv = {
8562 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8563 .data = NULL,
8564 };
8565
8566 return __netdev_upper_dev_link(dev, upper_dev, true,
8567 upper_priv, upper_info, &priv, extack);
8568 }
8569 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8570
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8571 static void __netdev_upper_dev_unlink(struct net_device *dev,
8572 struct net_device *upper_dev,
8573 struct netdev_nested_priv *priv)
8574 {
8575 struct netdev_notifier_changeupper_info changeupper_info = {
8576 .info = {
8577 .dev = dev,
8578 },
8579 .upper_dev = upper_dev,
8580 .linking = false,
8581 };
8582
8583 ASSERT_RTNL();
8584
8585 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8586
8587 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8588 &changeupper_info.info);
8589
8590 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8591
8592 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8593 &changeupper_info.info);
8594
8595 __netdev_update_upper_level(dev, NULL);
8596 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8597
8598 __netdev_update_lower_level(upper_dev, priv);
8599 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8600 priv);
8601 }
8602
8603 /**
8604 * netdev_upper_dev_unlink - Removes a link to upper device
8605 * @dev: device
8606 * @upper_dev: new upper device
8607 *
8608 * Removes a link to device which is upper to this one. The caller must hold
8609 * the RTNL lock.
8610 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8611 void netdev_upper_dev_unlink(struct net_device *dev,
8612 struct net_device *upper_dev)
8613 {
8614 struct netdev_nested_priv priv = {
8615 .flags = NESTED_SYNC_TODO,
8616 .data = NULL,
8617 };
8618
8619 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8620 }
8621 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8622
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8623 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8624 struct net_device *lower_dev,
8625 bool val)
8626 {
8627 struct netdev_adjacent *adj;
8628
8629 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8630 if (adj)
8631 adj->ignore = val;
8632
8633 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8634 if (adj)
8635 adj->ignore = val;
8636 }
8637
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8638 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8639 struct net_device *lower_dev)
8640 {
8641 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8642 }
8643
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8644 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8645 struct net_device *lower_dev)
8646 {
8647 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8648 }
8649
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8650 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8651 struct net_device *new_dev,
8652 struct net_device *dev,
8653 struct netlink_ext_ack *extack)
8654 {
8655 struct netdev_nested_priv priv = {
8656 .flags = 0,
8657 .data = NULL,
8658 };
8659 int err;
8660
8661 if (!new_dev)
8662 return 0;
8663
8664 if (old_dev && new_dev != old_dev)
8665 netdev_adjacent_dev_disable(dev, old_dev);
8666 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8667 extack);
8668 if (err) {
8669 if (old_dev && new_dev != old_dev)
8670 netdev_adjacent_dev_enable(dev, old_dev);
8671 return err;
8672 }
8673
8674 return 0;
8675 }
8676 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8677
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8678 void netdev_adjacent_change_commit(struct net_device *old_dev,
8679 struct net_device *new_dev,
8680 struct net_device *dev)
8681 {
8682 struct netdev_nested_priv priv = {
8683 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8684 .data = NULL,
8685 };
8686
8687 if (!new_dev || !old_dev)
8688 return;
8689
8690 if (new_dev == old_dev)
8691 return;
8692
8693 netdev_adjacent_dev_enable(dev, old_dev);
8694 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8695 }
8696 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8697
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8698 void netdev_adjacent_change_abort(struct net_device *old_dev,
8699 struct net_device *new_dev,
8700 struct net_device *dev)
8701 {
8702 struct netdev_nested_priv priv = {
8703 .flags = 0,
8704 .data = NULL,
8705 };
8706
8707 if (!new_dev)
8708 return;
8709
8710 if (old_dev && new_dev != old_dev)
8711 netdev_adjacent_dev_enable(dev, old_dev);
8712
8713 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8714 }
8715 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8716
8717 /**
8718 * netdev_bonding_info_change - Dispatch event about slave change
8719 * @dev: device
8720 * @bonding_info: info to dispatch
8721 *
8722 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8723 * The caller must hold the RTNL lock.
8724 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8725 void netdev_bonding_info_change(struct net_device *dev,
8726 struct netdev_bonding_info *bonding_info)
8727 {
8728 struct netdev_notifier_bonding_info info = {
8729 .info.dev = dev,
8730 };
8731
8732 memcpy(&info.bonding_info, bonding_info,
8733 sizeof(struct netdev_bonding_info));
8734 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8735 &info.info);
8736 }
8737 EXPORT_SYMBOL(netdev_bonding_info_change);
8738
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8739 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8740 struct netlink_ext_ack *extack)
8741 {
8742 struct netdev_notifier_offload_xstats_info info = {
8743 .info.dev = dev,
8744 .info.extack = extack,
8745 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8746 };
8747 int err;
8748 int rc;
8749
8750 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8751 GFP_KERNEL);
8752 if (!dev->offload_xstats_l3)
8753 return -ENOMEM;
8754
8755 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8756 NETDEV_OFFLOAD_XSTATS_DISABLE,
8757 &info.info);
8758 err = notifier_to_errno(rc);
8759 if (err)
8760 goto free_stats;
8761
8762 return 0;
8763
8764 free_stats:
8765 kfree(dev->offload_xstats_l3);
8766 dev->offload_xstats_l3 = NULL;
8767 return err;
8768 }
8769
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8770 int netdev_offload_xstats_enable(struct net_device *dev,
8771 enum netdev_offload_xstats_type type,
8772 struct netlink_ext_ack *extack)
8773 {
8774 ASSERT_RTNL();
8775
8776 if (netdev_offload_xstats_enabled(dev, type))
8777 return -EALREADY;
8778
8779 switch (type) {
8780 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8781 return netdev_offload_xstats_enable_l3(dev, extack);
8782 }
8783
8784 WARN_ON(1);
8785 return -EINVAL;
8786 }
8787 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8788
netdev_offload_xstats_disable_l3(struct net_device * dev)8789 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8790 {
8791 struct netdev_notifier_offload_xstats_info info = {
8792 .info.dev = dev,
8793 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8794 };
8795
8796 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8797 &info.info);
8798 kfree(dev->offload_xstats_l3);
8799 dev->offload_xstats_l3 = NULL;
8800 }
8801
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8802 int netdev_offload_xstats_disable(struct net_device *dev,
8803 enum netdev_offload_xstats_type type)
8804 {
8805 ASSERT_RTNL();
8806
8807 if (!netdev_offload_xstats_enabled(dev, type))
8808 return -EALREADY;
8809
8810 switch (type) {
8811 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8812 netdev_offload_xstats_disable_l3(dev);
8813 return 0;
8814 }
8815
8816 WARN_ON(1);
8817 return -EINVAL;
8818 }
8819 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8820
netdev_offload_xstats_disable_all(struct net_device * dev)8821 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8822 {
8823 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8824 }
8825
8826 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8827 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8828 enum netdev_offload_xstats_type type)
8829 {
8830 switch (type) {
8831 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8832 return dev->offload_xstats_l3;
8833 }
8834
8835 WARN_ON(1);
8836 return NULL;
8837 }
8838
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8839 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8840 enum netdev_offload_xstats_type type)
8841 {
8842 ASSERT_RTNL();
8843
8844 return netdev_offload_xstats_get_ptr(dev, type);
8845 }
8846 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8847
8848 struct netdev_notifier_offload_xstats_ru {
8849 bool used;
8850 };
8851
8852 struct netdev_notifier_offload_xstats_rd {
8853 struct rtnl_hw_stats64 stats;
8854 bool used;
8855 };
8856
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8857 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8858 const struct rtnl_hw_stats64 *src)
8859 {
8860 dest->rx_packets += src->rx_packets;
8861 dest->tx_packets += src->tx_packets;
8862 dest->rx_bytes += src->rx_bytes;
8863 dest->tx_bytes += src->tx_bytes;
8864 dest->rx_errors += src->rx_errors;
8865 dest->tx_errors += src->tx_errors;
8866 dest->rx_dropped += src->rx_dropped;
8867 dest->tx_dropped += src->tx_dropped;
8868 dest->multicast += src->multicast;
8869 }
8870
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8871 static int netdev_offload_xstats_get_used(struct net_device *dev,
8872 enum netdev_offload_xstats_type type,
8873 bool *p_used,
8874 struct netlink_ext_ack *extack)
8875 {
8876 struct netdev_notifier_offload_xstats_ru report_used = {};
8877 struct netdev_notifier_offload_xstats_info info = {
8878 .info.dev = dev,
8879 .info.extack = extack,
8880 .type = type,
8881 .report_used = &report_used,
8882 };
8883 int rc;
8884
8885 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8886 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8887 &info.info);
8888 *p_used = report_used.used;
8889 return notifier_to_errno(rc);
8890 }
8891
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8892 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8893 enum netdev_offload_xstats_type type,
8894 struct rtnl_hw_stats64 *p_stats,
8895 bool *p_used,
8896 struct netlink_ext_ack *extack)
8897 {
8898 struct netdev_notifier_offload_xstats_rd report_delta = {};
8899 struct netdev_notifier_offload_xstats_info info = {
8900 .info.dev = dev,
8901 .info.extack = extack,
8902 .type = type,
8903 .report_delta = &report_delta,
8904 };
8905 struct rtnl_hw_stats64 *stats;
8906 int rc;
8907
8908 stats = netdev_offload_xstats_get_ptr(dev, type);
8909 if (WARN_ON(!stats))
8910 return -EINVAL;
8911
8912 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8913 &info.info);
8914
8915 /* Cache whatever we got, even if there was an error, otherwise the
8916 * successful stats retrievals would get lost.
8917 */
8918 netdev_hw_stats64_add(stats, &report_delta.stats);
8919
8920 if (p_stats)
8921 *p_stats = *stats;
8922 *p_used = report_delta.used;
8923
8924 return notifier_to_errno(rc);
8925 }
8926
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8927 int netdev_offload_xstats_get(struct net_device *dev,
8928 enum netdev_offload_xstats_type type,
8929 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8930 struct netlink_ext_ack *extack)
8931 {
8932 ASSERT_RTNL();
8933
8934 if (p_stats)
8935 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8936 p_used, extack);
8937 else
8938 return netdev_offload_xstats_get_used(dev, type, p_used,
8939 extack);
8940 }
8941 EXPORT_SYMBOL(netdev_offload_xstats_get);
8942
8943 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8944 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8945 const struct rtnl_hw_stats64 *stats)
8946 {
8947 report_delta->used = true;
8948 netdev_hw_stats64_add(&report_delta->stats, stats);
8949 }
8950 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8951
8952 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8953 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8954 {
8955 report_used->used = true;
8956 }
8957 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8958
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8959 void netdev_offload_xstats_push_delta(struct net_device *dev,
8960 enum netdev_offload_xstats_type type,
8961 const struct rtnl_hw_stats64 *p_stats)
8962 {
8963 struct rtnl_hw_stats64 *stats;
8964
8965 ASSERT_RTNL();
8966
8967 stats = netdev_offload_xstats_get_ptr(dev, type);
8968 if (WARN_ON(!stats))
8969 return;
8970
8971 netdev_hw_stats64_add(stats, p_stats);
8972 }
8973 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8974
8975 /**
8976 * netdev_get_xmit_slave - Get the xmit slave of master device
8977 * @dev: device
8978 * @skb: The packet
8979 * @all_slaves: assume all the slaves are active
8980 *
8981 * The reference counters are not incremented so the caller must be
8982 * careful with locks. The caller must hold RCU lock.
8983 * %NULL is returned if no slave is found.
8984 */
8985
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8986 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8987 struct sk_buff *skb,
8988 bool all_slaves)
8989 {
8990 const struct net_device_ops *ops = dev->netdev_ops;
8991
8992 if (!ops->ndo_get_xmit_slave)
8993 return NULL;
8994 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8995 }
8996 EXPORT_SYMBOL(netdev_get_xmit_slave);
8997
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8998 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8999 struct sock *sk)
9000 {
9001 const struct net_device_ops *ops = dev->netdev_ops;
9002
9003 if (!ops->ndo_sk_get_lower_dev)
9004 return NULL;
9005 return ops->ndo_sk_get_lower_dev(dev, sk);
9006 }
9007
9008 /**
9009 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9010 * @dev: device
9011 * @sk: the socket
9012 *
9013 * %NULL is returned if no lower device is found.
9014 */
9015
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9016 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9017 struct sock *sk)
9018 {
9019 struct net_device *lower;
9020
9021 lower = netdev_sk_get_lower_dev(dev, sk);
9022 while (lower) {
9023 dev = lower;
9024 lower = netdev_sk_get_lower_dev(dev, sk);
9025 }
9026
9027 return dev;
9028 }
9029 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9030
netdev_adjacent_add_links(struct net_device * dev)9031 static void netdev_adjacent_add_links(struct net_device *dev)
9032 {
9033 struct netdev_adjacent *iter;
9034
9035 struct net *net = dev_net(dev);
9036
9037 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9038 if (!net_eq(net, dev_net(iter->dev)))
9039 continue;
9040 netdev_adjacent_sysfs_add(iter->dev, dev,
9041 &iter->dev->adj_list.lower);
9042 netdev_adjacent_sysfs_add(dev, iter->dev,
9043 &dev->adj_list.upper);
9044 }
9045
9046 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9047 if (!net_eq(net, dev_net(iter->dev)))
9048 continue;
9049 netdev_adjacent_sysfs_add(iter->dev, dev,
9050 &iter->dev->adj_list.upper);
9051 netdev_adjacent_sysfs_add(dev, iter->dev,
9052 &dev->adj_list.lower);
9053 }
9054 }
9055
netdev_adjacent_del_links(struct net_device * dev)9056 static void netdev_adjacent_del_links(struct net_device *dev)
9057 {
9058 struct netdev_adjacent *iter;
9059
9060 struct net *net = dev_net(dev);
9061
9062 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9063 if (!net_eq(net, dev_net(iter->dev)))
9064 continue;
9065 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9066 &iter->dev->adj_list.lower);
9067 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9068 &dev->adj_list.upper);
9069 }
9070
9071 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9072 if (!net_eq(net, dev_net(iter->dev)))
9073 continue;
9074 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9075 &iter->dev->adj_list.upper);
9076 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9077 &dev->adj_list.lower);
9078 }
9079 }
9080
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9081 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9082 {
9083 struct netdev_adjacent *iter;
9084
9085 struct net *net = dev_net(dev);
9086
9087 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9088 if (!net_eq(net, dev_net(iter->dev)))
9089 continue;
9090 netdev_adjacent_sysfs_del(iter->dev, oldname,
9091 &iter->dev->adj_list.lower);
9092 netdev_adjacent_sysfs_add(iter->dev, dev,
9093 &iter->dev->adj_list.lower);
9094 }
9095
9096 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9097 if (!net_eq(net, dev_net(iter->dev)))
9098 continue;
9099 netdev_adjacent_sysfs_del(iter->dev, oldname,
9100 &iter->dev->adj_list.upper);
9101 netdev_adjacent_sysfs_add(iter->dev, dev,
9102 &iter->dev->adj_list.upper);
9103 }
9104 }
9105
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9106 void *netdev_lower_dev_get_private(struct net_device *dev,
9107 struct net_device *lower_dev)
9108 {
9109 struct netdev_adjacent *lower;
9110
9111 if (!lower_dev)
9112 return NULL;
9113 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9114 if (!lower)
9115 return NULL;
9116
9117 return lower->private;
9118 }
9119 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9120
9121
9122 /**
9123 * netdev_lower_state_changed - Dispatch event about lower device state change
9124 * @lower_dev: device
9125 * @lower_state_info: state to dispatch
9126 *
9127 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9128 * The caller must hold the RTNL lock.
9129 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9130 void netdev_lower_state_changed(struct net_device *lower_dev,
9131 void *lower_state_info)
9132 {
9133 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9134 .info.dev = lower_dev,
9135 };
9136
9137 ASSERT_RTNL();
9138 changelowerstate_info.lower_state_info = lower_state_info;
9139 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9140 &changelowerstate_info.info);
9141 }
9142 EXPORT_SYMBOL(netdev_lower_state_changed);
9143
dev_change_rx_flags(struct net_device * dev,int flags)9144 static void dev_change_rx_flags(struct net_device *dev, int flags)
9145 {
9146 const struct net_device_ops *ops = dev->netdev_ops;
9147
9148 if (ops->ndo_change_rx_flags)
9149 ops->ndo_change_rx_flags(dev, flags);
9150 }
9151
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9152 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9153 {
9154 unsigned int old_flags = dev->flags;
9155 unsigned int promiscuity, flags;
9156 kuid_t uid;
9157 kgid_t gid;
9158
9159 ASSERT_RTNL();
9160
9161 promiscuity = dev->promiscuity + inc;
9162 if (promiscuity == 0) {
9163 /*
9164 * Avoid overflow.
9165 * If inc causes overflow, untouch promisc and return error.
9166 */
9167 if (unlikely(inc > 0)) {
9168 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9169 return -EOVERFLOW;
9170 }
9171 flags = old_flags & ~IFF_PROMISC;
9172 } else {
9173 flags = old_flags | IFF_PROMISC;
9174 }
9175 WRITE_ONCE(dev->promiscuity, promiscuity);
9176 if (flags != old_flags) {
9177 WRITE_ONCE(dev->flags, flags);
9178 netdev_info(dev, "%s promiscuous mode\n",
9179 dev->flags & IFF_PROMISC ? "entered" : "left");
9180 if (audit_enabled) {
9181 current_uid_gid(&uid, &gid);
9182 audit_log(audit_context(), GFP_ATOMIC,
9183 AUDIT_ANOM_PROMISCUOUS,
9184 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9185 dev->name, (dev->flags & IFF_PROMISC),
9186 (old_flags & IFF_PROMISC),
9187 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9188 from_kuid(&init_user_ns, uid),
9189 from_kgid(&init_user_ns, gid),
9190 audit_get_sessionid(current));
9191 }
9192
9193 dev_change_rx_flags(dev, IFF_PROMISC);
9194 }
9195 if (notify)
9196 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9197 return 0;
9198 }
9199
9200 /**
9201 * dev_set_promiscuity - update promiscuity count on a device
9202 * @dev: device
9203 * @inc: modifier
9204 *
9205 * Add or remove promiscuity from a device. While the count in the device
9206 * remains above zero the interface remains promiscuous. Once it hits zero
9207 * the device reverts back to normal filtering operation. A negative inc
9208 * value is used to drop promiscuity on the device.
9209 * Return 0 if successful or a negative errno code on error.
9210 */
dev_set_promiscuity(struct net_device * dev,int inc)9211 int dev_set_promiscuity(struct net_device *dev, int inc)
9212 {
9213 unsigned int old_flags = dev->flags;
9214 int err;
9215
9216 err = __dev_set_promiscuity(dev, inc, true);
9217 if (err < 0)
9218 return err;
9219 if (dev->flags != old_flags)
9220 dev_set_rx_mode(dev);
9221 return err;
9222 }
9223 EXPORT_SYMBOL(dev_set_promiscuity);
9224
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9225 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9226 {
9227 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9228 unsigned int allmulti, flags;
9229
9230 ASSERT_RTNL();
9231
9232 allmulti = dev->allmulti + inc;
9233 if (allmulti == 0) {
9234 /*
9235 * Avoid overflow.
9236 * If inc causes overflow, untouch allmulti and return error.
9237 */
9238 if (unlikely(inc > 0)) {
9239 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9240 return -EOVERFLOW;
9241 }
9242 flags = old_flags & ~IFF_ALLMULTI;
9243 } else {
9244 flags = old_flags | IFF_ALLMULTI;
9245 }
9246 WRITE_ONCE(dev->allmulti, allmulti);
9247 if (flags != old_flags) {
9248 WRITE_ONCE(dev->flags, flags);
9249 netdev_info(dev, "%s allmulticast mode\n",
9250 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9251 dev_change_rx_flags(dev, IFF_ALLMULTI);
9252 dev_set_rx_mode(dev);
9253 if (notify)
9254 __dev_notify_flags(dev, old_flags,
9255 dev->gflags ^ old_gflags, 0, NULL);
9256 }
9257 return 0;
9258 }
9259
9260 /*
9261 * Upload unicast and multicast address lists to device and
9262 * configure RX filtering. When the device doesn't support unicast
9263 * filtering it is put in promiscuous mode while unicast addresses
9264 * are present.
9265 */
__dev_set_rx_mode(struct net_device * dev)9266 void __dev_set_rx_mode(struct net_device *dev)
9267 {
9268 const struct net_device_ops *ops = dev->netdev_ops;
9269
9270 /* dev_open will call this function so the list will stay sane. */
9271 if (!(dev->flags&IFF_UP))
9272 return;
9273
9274 if (!netif_device_present(dev))
9275 return;
9276
9277 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9278 /* Unicast addresses changes may only happen under the rtnl,
9279 * therefore calling __dev_set_promiscuity here is safe.
9280 */
9281 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9282 __dev_set_promiscuity(dev, 1, false);
9283 dev->uc_promisc = true;
9284 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9285 __dev_set_promiscuity(dev, -1, false);
9286 dev->uc_promisc = false;
9287 }
9288 }
9289
9290 if (ops->ndo_set_rx_mode)
9291 ops->ndo_set_rx_mode(dev);
9292 }
9293
dev_set_rx_mode(struct net_device * dev)9294 void dev_set_rx_mode(struct net_device *dev)
9295 {
9296 netif_addr_lock_bh(dev);
9297 __dev_set_rx_mode(dev);
9298 netif_addr_unlock_bh(dev);
9299 }
9300
9301 /**
9302 * dev_get_flags - get flags reported to userspace
9303 * @dev: device
9304 *
9305 * Get the combination of flag bits exported through APIs to userspace.
9306 */
dev_get_flags(const struct net_device * dev)9307 unsigned int dev_get_flags(const struct net_device *dev)
9308 {
9309 unsigned int flags;
9310
9311 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9312 IFF_ALLMULTI |
9313 IFF_RUNNING |
9314 IFF_LOWER_UP |
9315 IFF_DORMANT)) |
9316 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9317 IFF_ALLMULTI));
9318
9319 if (netif_running(dev)) {
9320 if (netif_oper_up(dev))
9321 flags |= IFF_RUNNING;
9322 if (netif_carrier_ok(dev))
9323 flags |= IFF_LOWER_UP;
9324 if (netif_dormant(dev))
9325 flags |= IFF_DORMANT;
9326 }
9327
9328 return flags;
9329 }
9330 EXPORT_SYMBOL(dev_get_flags);
9331
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9332 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9333 struct netlink_ext_ack *extack)
9334 {
9335 unsigned int old_flags = dev->flags;
9336 int ret;
9337
9338 ASSERT_RTNL();
9339
9340 /*
9341 * Set the flags on our device.
9342 */
9343
9344 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9345 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9346 IFF_AUTOMEDIA)) |
9347 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9348 IFF_ALLMULTI));
9349
9350 /*
9351 * Load in the correct multicast list now the flags have changed.
9352 */
9353
9354 if ((old_flags ^ flags) & IFF_MULTICAST)
9355 dev_change_rx_flags(dev, IFF_MULTICAST);
9356
9357 dev_set_rx_mode(dev);
9358
9359 /*
9360 * Have we downed the interface. We handle IFF_UP ourselves
9361 * according to user attempts to set it, rather than blindly
9362 * setting it.
9363 */
9364
9365 ret = 0;
9366 if ((old_flags ^ flags) & IFF_UP) {
9367 if (old_flags & IFF_UP)
9368 __dev_close(dev);
9369 else
9370 ret = __dev_open(dev, extack);
9371 }
9372
9373 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9374 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9375 old_flags = dev->flags;
9376
9377 dev->gflags ^= IFF_PROMISC;
9378
9379 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9380 if (dev->flags != old_flags)
9381 dev_set_rx_mode(dev);
9382 }
9383
9384 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9385 * is important. Some (broken) drivers set IFF_PROMISC, when
9386 * IFF_ALLMULTI is requested not asking us and not reporting.
9387 */
9388 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9389 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9390
9391 dev->gflags ^= IFF_ALLMULTI;
9392 netif_set_allmulti(dev, inc, false);
9393 }
9394
9395 return ret;
9396 }
9397
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9398 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9399 unsigned int gchanges, u32 portid,
9400 const struct nlmsghdr *nlh)
9401 {
9402 unsigned int changes = dev->flags ^ old_flags;
9403
9404 if (gchanges)
9405 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9406
9407 if (changes & IFF_UP) {
9408 if (dev->flags & IFF_UP)
9409 call_netdevice_notifiers(NETDEV_UP, dev);
9410 else
9411 call_netdevice_notifiers(NETDEV_DOWN, dev);
9412 }
9413
9414 if (dev->flags & IFF_UP &&
9415 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9416 struct netdev_notifier_change_info change_info = {
9417 .info = {
9418 .dev = dev,
9419 },
9420 .flags_changed = changes,
9421 };
9422
9423 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9424 }
9425 }
9426
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9427 int netif_change_flags(struct net_device *dev, unsigned int flags,
9428 struct netlink_ext_ack *extack)
9429 {
9430 int ret;
9431 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9432
9433 ret = __dev_change_flags(dev, flags, extack);
9434 if (ret < 0)
9435 return ret;
9436
9437 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9438 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9439 return ret;
9440 }
9441
__dev_set_mtu(struct net_device * dev,int new_mtu)9442 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9443 {
9444 const struct net_device_ops *ops = dev->netdev_ops;
9445
9446 if (ops->ndo_change_mtu)
9447 return ops->ndo_change_mtu(dev, new_mtu);
9448
9449 /* Pairs with all the lockless reads of dev->mtu in the stack */
9450 WRITE_ONCE(dev->mtu, new_mtu);
9451 return 0;
9452 }
9453 EXPORT_SYMBOL(__dev_set_mtu);
9454
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9455 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9456 struct netlink_ext_ack *extack)
9457 {
9458 /* MTU must be positive, and in range */
9459 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9460 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9461 return -EINVAL;
9462 }
9463
9464 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9465 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9466 return -EINVAL;
9467 }
9468 return 0;
9469 }
9470
9471 /**
9472 * netif_set_mtu_ext - Change maximum transfer unit
9473 * @dev: device
9474 * @new_mtu: new transfer unit
9475 * @extack: netlink extended ack
9476 *
9477 * Change the maximum transfer size of the network device.
9478 */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9479 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9480 struct netlink_ext_ack *extack)
9481 {
9482 int err, orig_mtu;
9483
9484 if (new_mtu == dev->mtu)
9485 return 0;
9486
9487 err = dev_validate_mtu(dev, new_mtu, extack);
9488 if (err)
9489 return err;
9490
9491 if (!netif_device_present(dev))
9492 return -ENODEV;
9493
9494 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9495 err = notifier_to_errno(err);
9496 if (err)
9497 return err;
9498
9499 orig_mtu = dev->mtu;
9500 err = __dev_set_mtu(dev, new_mtu);
9501
9502 if (!err) {
9503 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9504 orig_mtu);
9505 err = notifier_to_errno(err);
9506 if (err) {
9507 /* setting mtu back and notifying everyone again,
9508 * so that they have a chance to revert changes.
9509 */
9510 __dev_set_mtu(dev, orig_mtu);
9511 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9512 new_mtu);
9513 }
9514 }
9515 return err;
9516 }
9517
netif_set_mtu(struct net_device * dev,int new_mtu)9518 int netif_set_mtu(struct net_device *dev, int new_mtu)
9519 {
9520 struct netlink_ext_ack extack;
9521 int err;
9522
9523 memset(&extack, 0, sizeof(extack));
9524 err = netif_set_mtu_ext(dev, new_mtu, &extack);
9525 if (err && extack._msg)
9526 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9527 return err;
9528 }
9529 EXPORT_SYMBOL(netif_set_mtu);
9530
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9531 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9532 {
9533 unsigned int orig_len = dev->tx_queue_len;
9534 int res;
9535
9536 if (new_len != (unsigned int)new_len)
9537 return -ERANGE;
9538
9539 if (new_len != orig_len) {
9540 WRITE_ONCE(dev->tx_queue_len, new_len);
9541 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9542 res = notifier_to_errno(res);
9543 if (res)
9544 goto err_rollback;
9545 res = dev_qdisc_change_tx_queue_len(dev);
9546 if (res)
9547 goto err_rollback;
9548 }
9549
9550 return 0;
9551
9552 err_rollback:
9553 netdev_err(dev, "refused to change device tx_queue_len\n");
9554 WRITE_ONCE(dev->tx_queue_len, orig_len);
9555 return res;
9556 }
9557
netif_set_group(struct net_device * dev,int new_group)9558 void netif_set_group(struct net_device *dev, int new_group)
9559 {
9560 dev->group = new_group;
9561 }
9562
9563 /**
9564 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9565 * @dev: device
9566 * @addr: new address
9567 * @extack: netlink extended ack
9568 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9569 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9570 struct netlink_ext_ack *extack)
9571 {
9572 struct netdev_notifier_pre_changeaddr_info info = {
9573 .info.dev = dev,
9574 .info.extack = extack,
9575 .dev_addr = addr,
9576 };
9577 int rc;
9578
9579 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9580 return notifier_to_errno(rc);
9581 }
9582 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9583
netif_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)9584 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9585 struct netlink_ext_ack *extack)
9586 {
9587 const struct net_device_ops *ops = dev->netdev_ops;
9588 int err;
9589
9590 if (!ops->ndo_set_mac_address)
9591 return -EOPNOTSUPP;
9592 if (sa->sa_family != dev->type)
9593 return -EINVAL;
9594 if (!netif_device_present(dev))
9595 return -ENODEV;
9596 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9597 if (err)
9598 return err;
9599 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9600 err = ops->ndo_set_mac_address(dev, sa);
9601 if (err)
9602 return err;
9603 }
9604 dev->addr_assign_type = NET_ADDR_SET;
9605 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9606 add_device_randomness(dev->dev_addr, dev->addr_len);
9607 return 0;
9608 }
9609
9610 DECLARE_RWSEM(dev_addr_sem);
9611
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9612 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9613 {
9614 size_t size = sizeof(sa->sa_data_min);
9615 struct net_device *dev;
9616 int ret = 0;
9617
9618 down_read(&dev_addr_sem);
9619 rcu_read_lock();
9620
9621 dev = dev_get_by_name_rcu(net, dev_name);
9622 if (!dev) {
9623 ret = -ENODEV;
9624 goto unlock;
9625 }
9626 if (!dev->addr_len)
9627 memset(sa->sa_data, 0, size);
9628 else
9629 memcpy(sa->sa_data, dev->dev_addr,
9630 min_t(size_t, size, dev->addr_len));
9631 sa->sa_family = dev->type;
9632
9633 unlock:
9634 rcu_read_unlock();
9635 up_read(&dev_addr_sem);
9636 return ret;
9637 }
9638 EXPORT_SYMBOL(dev_get_mac_address);
9639
netif_change_carrier(struct net_device * dev,bool new_carrier)9640 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9641 {
9642 const struct net_device_ops *ops = dev->netdev_ops;
9643
9644 if (!ops->ndo_change_carrier)
9645 return -EOPNOTSUPP;
9646 if (!netif_device_present(dev))
9647 return -ENODEV;
9648 return ops->ndo_change_carrier(dev, new_carrier);
9649 }
9650
9651 /**
9652 * dev_get_phys_port_id - Get device physical port ID
9653 * @dev: device
9654 * @ppid: port ID
9655 *
9656 * Get device physical port ID
9657 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9658 int dev_get_phys_port_id(struct net_device *dev,
9659 struct netdev_phys_item_id *ppid)
9660 {
9661 const struct net_device_ops *ops = dev->netdev_ops;
9662
9663 if (!ops->ndo_get_phys_port_id)
9664 return -EOPNOTSUPP;
9665 return ops->ndo_get_phys_port_id(dev, ppid);
9666 }
9667
9668 /**
9669 * dev_get_phys_port_name - Get device physical port name
9670 * @dev: device
9671 * @name: port name
9672 * @len: limit of bytes to copy to name
9673 *
9674 * Get device physical port name
9675 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9676 int dev_get_phys_port_name(struct net_device *dev,
9677 char *name, size_t len)
9678 {
9679 const struct net_device_ops *ops = dev->netdev_ops;
9680 int err;
9681
9682 if (ops->ndo_get_phys_port_name) {
9683 err = ops->ndo_get_phys_port_name(dev, name, len);
9684 if (err != -EOPNOTSUPP)
9685 return err;
9686 }
9687 return devlink_compat_phys_port_name_get(dev, name, len);
9688 }
9689
9690 /**
9691 * dev_get_port_parent_id - Get the device's port parent identifier
9692 * @dev: network device
9693 * @ppid: pointer to a storage for the port's parent identifier
9694 * @recurse: allow/disallow recursion to lower devices
9695 *
9696 * Get the devices's port parent identifier
9697 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9698 int dev_get_port_parent_id(struct net_device *dev,
9699 struct netdev_phys_item_id *ppid,
9700 bool recurse)
9701 {
9702 const struct net_device_ops *ops = dev->netdev_ops;
9703 struct netdev_phys_item_id first = { };
9704 struct net_device *lower_dev;
9705 struct list_head *iter;
9706 int err;
9707
9708 if (ops->ndo_get_port_parent_id) {
9709 err = ops->ndo_get_port_parent_id(dev, ppid);
9710 if (err != -EOPNOTSUPP)
9711 return err;
9712 }
9713
9714 err = devlink_compat_switch_id_get(dev, ppid);
9715 if (!recurse || err != -EOPNOTSUPP)
9716 return err;
9717
9718 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9719 err = dev_get_port_parent_id(lower_dev, ppid, true);
9720 if (err)
9721 break;
9722 if (!first.id_len)
9723 first = *ppid;
9724 else if (memcmp(&first, ppid, sizeof(*ppid)))
9725 return -EOPNOTSUPP;
9726 }
9727
9728 return err;
9729 }
9730 EXPORT_SYMBOL(dev_get_port_parent_id);
9731
9732 /**
9733 * netdev_port_same_parent_id - Indicate if two network devices have
9734 * the same port parent identifier
9735 * @a: first network device
9736 * @b: second network device
9737 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9738 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9739 {
9740 struct netdev_phys_item_id a_id = { };
9741 struct netdev_phys_item_id b_id = { };
9742
9743 if (dev_get_port_parent_id(a, &a_id, true) ||
9744 dev_get_port_parent_id(b, &b_id, true))
9745 return false;
9746
9747 return netdev_phys_item_id_same(&a_id, &b_id);
9748 }
9749 EXPORT_SYMBOL(netdev_port_same_parent_id);
9750
netif_change_proto_down(struct net_device * dev,bool proto_down)9751 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9752 {
9753 if (!dev->change_proto_down)
9754 return -EOPNOTSUPP;
9755 if (!netif_device_present(dev))
9756 return -ENODEV;
9757 if (proto_down)
9758 netif_carrier_off(dev);
9759 else
9760 netif_carrier_on(dev);
9761 WRITE_ONCE(dev->proto_down, proto_down);
9762 return 0;
9763 }
9764
9765 /**
9766 * netdev_change_proto_down_reason_locked - proto down reason
9767 *
9768 * @dev: device
9769 * @mask: proto down mask
9770 * @value: proto down value
9771 */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9772 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9773 unsigned long mask, u32 value)
9774 {
9775 u32 proto_down_reason;
9776 int b;
9777
9778 if (!mask) {
9779 proto_down_reason = value;
9780 } else {
9781 proto_down_reason = dev->proto_down_reason;
9782 for_each_set_bit(b, &mask, 32) {
9783 if (value & (1 << b))
9784 proto_down_reason |= BIT(b);
9785 else
9786 proto_down_reason &= ~BIT(b);
9787 }
9788 }
9789 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9790 }
9791
9792 struct bpf_xdp_link {
9793 struct bpf_link link;
9794 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9795 int flags;
9796 };
9797
dev_xdp_mode(struct net_device * dev,u32 flags)9798 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9799 {
9800 if (flags & XDP_FLAGS_HW_MODE)
9801 return XDP_MODE_HW;
9802 if (flags & XDP_FLAGS_DRV_MODE)
9803 return XDP_MODE_DRV;
9804 if (flags & XDP_FLAGS_SKB_MODE)
9805 return XDP_MODE_SKB;
9806 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9807 }
9808
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9809 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9810 {
9811 switch (mode) {
9812 case XDP_MODE_SKB:
9813 return generic_xdp_install;
9814 case XDP_MODE_DRV:
9815 case XDP_MODE_HW:
9816 return dev->netdev_ops->ndo_bpf;
9817 default:
9818 return NULL;
9819 }
9820 }
9821
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9822 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9823 enum bpf_xdp_mode mode)
9824 {
9825 return dev->xdp_state[mode].link;
9826 }
9827
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9828 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9829 enum bpf_xdp_mode mode)
9830 {
9831 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9832
9833 if (link)
9834 return link->link.prog;
9835 return dev->xdp_state[mode].prog;
9836 }
9837
dev_xdp_prog_count(struct net_device * dev)9838 u8 dev_xdp_prog_count(struct net_device *dev)
9839 {
9840 u8 count = 0;
9841 int i;
9842
9843 for (i = 0; i < __MAX_XDP_MODE; i++)
9844 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9845 count++;
9846 return count;
9847 }
9848 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9849
dev_xdp_sb_prog_count(struct net_device * dev)9850 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9851 {
9852 u8 count = 0;
9853 int i;
9854
9855 for (i = 0; i < __MAX_XDP_MODE; i++)
9856 if (dev->xdp_state[i].prog &&
9857 !dev->xdp_state[i].prog->aux->xdp_has_frags)
9858 count++;
9859 return count;
9860 }
9861
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)9862 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9863 {
9864 if (!dev->netdev_ops->ndo_bpf)
9865 return -EOPNOTSUPP;
9866
9867 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9868 bpf->command == XDP_SETUP_PROG &&
9869 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9870 NL_SET_ERR_MSG(bpf->extack,
9871 "unable to propagate XDP to device using tcp-data-split");
9872 return -EBUSY;
9873 }
9874
9875 if (dev_get_min_mp_channel_count(dev)) {
9876 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9877 return -EBUSY;
9878 }
9879
9880 return dev->netdev_ops->ndo_bpf(dev, bpf);
9881 }
9882
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9883 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9884 {
9885 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9886
9887 return prog ? prog->aux->id : 0;
9888 }
9889
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9890 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9891 struct bpf_xdp_link *link)
9892 {
9893 dev->xdp_state[mode].link = link;
9894 dev->xdp_state[mode].prog = NULL;
9895 }
9896
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9897 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9898 struct bpf_prog *prog)
9899 {
9900 dev->xdp_state[mode].link = NULL;
9901 dev->xdp_state[mode].prog = prog;
9902 }
9903
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9904 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9905 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9906 u32 flags, struct bpf_prog *prog)
9907 {
9908 struct netdev_bpf xdp;
9909 int err;
9910
9911 netdev_ops_assert_locked(dev);
9912
9913 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9914 prog && !prog->aux->xdp_has_frags) {
9915 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9916 return -EBUSY;
9917 }
9918
9919 if (dev_get_min_mp_channel_count(dev)) {
9920 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9921 return -EBUSY;
9922 }
9923
9924 memset(&xdp, 0, sizeof(xdp));
9925 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9926 xdp.extack = extack;
9927 xdp.flags = flags;
9928 xdp.prog = prog;
9929
9930 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9931 * "moved" into driver), so they don't increment it on their own, but
9932 * they do decrement refcnt when program is detached or replaced.
9933 * Given net_device also owns link/prog, we need to bump refcnt here
9934 * to prevent drivers from underflowing it.
9935 */
9936 if (prog)
9937 bpf_prog_inc(prog);
9938 err = bpf_op(dev, &xdp);
9939 if (err) {
9940 if (prog)
9941 bpf_prog_put(prog);
9942 return err;
9943 }
9944
9945 if (mode != XDP_MODE_HW)
9946 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9947
9948 return 0;
9949 }
9950
dev_xdp_uninstall(struct net_device * dev)9951 static void dev_xdp_uninstall(struct net_device *dev)
9952 {
9953 struct bpf_xdp_link *link;
9954 struct bpf_prog *prog;
9955 enum bpf_xdp_mode mode;
9956 bpf_op_t bpf_op;
9957
9958 ASSERT_RTNL();
9959
9960 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9961 prog = dev_xdp_prog(dev, mode);
9962 if (!prog)
9963 continue;
9964
9965 bpf_op = dev_xdp_bpf_op(dev, mode);
9966 if (!bpf_op)
9967 continue;
9968
9969 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9970
9971 /* auto-detach link from net device */
9972 link = dev_xdp_link(dev, mode);
9973 if (link)
9974 link->dev = NULL;
9975 else
9976 bpf_prog_put(prog);
9977
9978 dev_xdp_set_link(dev, mode, NULL);
9979 }
9980 }
9981
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9982 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9983 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9984 struct bpf_prog *old_prog, u32 flags)
9985 {
9986 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9987 struct bpf_prog *cur_prog;
9988 struct net_device *upper;
9989 struct list_head *iter;
9990 enum bpf_xdp_mode mode;
9991 bpf_op_t bpf_op;
9992 int err;
9993
9994 ASSERT_RTNL();
9995
9996 /* either link or prog attachment, never both */
9997 if (link && (new_prog || old_prog))
9998 return -EINVAL;
9999 /* link supports only XDP mode flags */
10000 if (link && (flags & ~XDP_FLAGS_MODES)) {
10001 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10002 return -EINVAL;
10003 }
10004 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10005 if (num_modes > 1) {
10006 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10007 return -EINVAL;
10008 }
10009 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10010 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10011 NL_SET_ERR_MSG(extack,
10012 "More than one program loaded, unset mode is ambiguous");
10013 return -EINVAL;
10014 }
10015 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10016 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10017 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10018 return -EINVAL;
10019 }
10020
10021 mode = dev_xdp_mode(dev, flags);
10022 /* can't replace attached link */
10023 if (dev_xdp_link(dev, mode)) {
10024 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10025 return -EBUSY;
10026 }
10027
10028 /* don't allow if an upper device already has a program */
10029 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10030 if (dev_xdp_prog_count(upper) > 0) {
10031 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10032 return -EEXIST;
10033 }
10034 }
10035
10036 cur_prog = dev_xdp_prog(dev, mode);
10037 /* can't replace attached prog with link */
10038 if (link && cur_prog) {
10039 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10040 return -EBUSY;
10041 }
10042 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10043 NL_SET_ERR_MSG(extack, "Active program does not match expected");
10044 return -EEXIST;
10045 }
10046
10047 /* put effective new program into new_prog */
10048 if (link)
10049 new_prog = link->link.prog;
10050
10051 if (new_prog) {
10052 bool offload = mode == XDP_MODE_HW;
10053 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10054 ? XDP_MODE_DRV : XDP_MODE_SKB;
10055
10056 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10057 NL_SET_ERR_MSG(extack, "XDP program already attached");
10058 return -EBUSY;
10059 }
10060 if (!offload && dev_xdp_prog(dev, other_mode)) {
10061 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10062 return -EEXIST;
10063 }
10064 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10065 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10066 return -EINVAL;
10067 }
10068 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10069 NL_SET_ERR_MSG(extack, "Program bound to different device");
10070 return -EINVAL;
10071 }
10072 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10073 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10074 return -EINVAL;
10075 }
10076 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10077 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10078 return -EINVAL;
10079 }
10080 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10081 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10082 return -EINVAL;
10083 }
10084 }
10085
10086 /* don't call drivers if the effective program didn't change */
10087 if (new_prog != cur_prog) {
10088 bpf_op = dev_xdp_bpf_op(dev, mode);
10089 if (!bpf_op) {
10090 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10091 return -EOPNOTSUPP;
10092 }
10093
10094 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10095 if (err)
10096 return err;
10097 }
10098
10099 if (link)
10100 dev_xdp_set_link(dev, mode, link);
10101 else
10102 dev_xdp_set_prog(dev, mode, new_prog);
10103 if (cur_prog)
10104 bpf_prog_put(cur_prog);
10105
10106 return 0;
10107 }
10108
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10109 static int dev_xdp_attach_link(struct net_device *dev,
10110 struct netlink_ext_ack *extack,
10111 struct bpf_xdp_link *link)
10112 {
10113 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10114 }
10115
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10116 static int dev_xdp_detach_link(struct net_device *dev,
10117 struct netlink_ext_ack *extack,
10118 struct bpf_xdp_link *link)
10119 {
10120 enum bpf_xdp_mode mode;
10121 bpf_op_t bpf_op;
10122
10123 ASSERT_RTNL();
10124
10125 mode = dev_xdp_mode(dev, link->flags);
10126 if (dev_xdp_link(dev, mode) != link)
10127 return -EINVAL;
10128
10129 bpf_op = dev_xdp_bpf_op(dev, mode);
10130 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10131 dev_xdp_set_link(dev, mode, NULL);
10132 return 0;
10133 }
10134
bpf_xdp_link_release(struct bpf_link * link)10135 static void bpf_xdp_link_release(struct bpf_link *link)
10136 {
10137 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10138
10139 rtnl_lock();
10140
10141 /* if racing with net_device's tear down, xdp_link->dev might be
10142 * already NULL, in which case link was already auto-detached
10143 */
10144 if (xdp_link->dev) {
10145 netdev_lock_ops(xdp_link->dev);
10146 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10147 netdev_unlock_ops(xdp_link->dev);
10148 xdp_link->dev = NULL;
10149 }
10150
10151 rtnl_unlock();
10152 }
10153
bpf_xdp_link_detach(struct bpf_link * link)10154 static int bpf_xdp_link_detach(struct bpf_link *link)
10155 {
10156 bpf_xdp_link_release(link);
10157 return 0;
10158 }
10159
bpf_xdp_link_dealloc(struct bpf_link * link)10160 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10161 {
10162 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10163
10164 kfree(xdp_link);
10165 }
10166
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10167 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10168 struct seq_file *seq)
10169 {
10170 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10171 u32 ifindex = 0;
10172
10173 rtnl_lock();
10174 if (xdp_link->dev)
10175 ifindex = xdp_link->dev->ifindex;
10176 rtnl_unlock();
10177
10178 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10179 }
10180
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10181 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10182 struct bpf_link_info *info)
10183 {
10184 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10185 u32 ifindex = 0;
10186
10187 rtnl_lock();
10188 if (xdp_link->dev)
10189 ifindex = xdp_link->dev->ifindex;
10190 rtnl_unlock();
10191
10192 info->xdp.ifindex = ifindex;
10193 return 0;
10194 }
10195
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10196 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10197 struct bpf_prog *old_prog)
10198 {
10199 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10200 enum bpf_xdp_mode mode;
10201 bpf_op_t bpf_op;
10202 int err = 0;
10203
10204 rtnl_lock();
10205
10206 /* link might have been auto-released already, so fail */
10207 if (!xdp_link->dev) {
10208 err = -ENOLINK;
10209 goto out_unlock;
10210 }
10211
10212 if (old_prog && link->prog != old_prog) {
10213 err = -EPERM;
10214 goto out_unlock;
10215 }
10216 old_prog = link->prog;
10217 if (old_prog->type != new_prog->type ||
10218 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10219 err = -EINVAL;
10220 goto out_unlock;
10221 }
10222
10223 if (old_prog == new_prog) {
10224 /* no-op, don't disturb drivers */
10225 bpf_prog_put(new_prog);
10226 goto out_unlock;
10227 }
10228
10229 netdev_lock_ops(xdp_link->dev);
10230 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10231 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10232 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10233 xdp_link->flags, new_prog);
10234 netdev_unlock_ops(xdp_link->dev);
10235 if (err)
10236 goto out_unlock;
10237
10238 old_prog = xchg(&link->prog, new_prog);
10239 bpf_prog_put(old_prog);
10240
10241 out_unlock:
10242 rtnl_unlock();
10243 return err;
10244 }
10245
10246 static const struct bpf_link_ops bpf_xdp_link_lops = {
10247 .release = bpf_xdp_link_release,
10248 .dealloc = bpf_xdp_link_dealloc,
10249 .detach = bpf_xdp_link_detach,
10250 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10251 .fill_link_info = bpf_xdp_link_fill_link_info,
10252 .update_prog = bpf_xdp_link_update,
10253 };
10254
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10255 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10256 {
10257 struct net *net = current->nsproxy->net_ns;
10258 struct bpf_link_primer link_primer;
10259 struct netlink_ext_ack extack = {};
10260 struct bpf_xdp_link *link;
10261 struct net_device *dev;
10262 int err, fd;
10263
10264 rtnl_lock();
10265 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10266 if (!dev) {
10267 rtnl_unlock();
10268 return -EINVAL;
10269 }
10270
10271 link = kzalloc(sizeof(*link), GFP_USER);
10272 if (!link) {
10273 err = -ENOMEM;
10274 goto unlock;
10275 }
10276
10277 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10278 link->dev = dev;
10279 link->flags = attr->link_create.flags;
10280
10281 err = bpf_link_prime(&link->link, &link_primer);
10282 if (err) {
10283 kfree(link);
10284 goto unlock;
10285 }
10286
10287 err = dev_xdp_attach_link(dev, &extack, link);
10288 rtnl_unlock();
10289
10290 if (err) {
10291 link->dev = NULL;
10292 bpf_link_cleanup(&link_primer);
10293 trace_bpf_xdp_link_attach_failed(extack._msg);
10294 goto out_put_dev;
10295 }
10296
10297 fd = bpf_link_settle(&link_primer);
10298 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10299 dev_put(dev);
10300 return fd;
10301
10302 unlock:
10303 rtnl_unlock();
10304
10305 out_put_dev:
10306 dev_put(dev);
10307 return err;
10308 }
10309
10310 /**
10311 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10312 * @dev: device
10313 * @extack: netlink extended ack
10314 * @fd: new program fd or negative value to clear
10315 * @expected_fd: old program fd that userspace expects to replace or clear
10316 * @flags: xdp-related flags
10317 *
10318 * Set or clear a bpf program for a device
10319 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10320 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10321 int fd, int expected_fd, u32 flags)
10322 {
10323 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10324 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10325 int err;
10326
10327 ASSERT_RTNL();
10328
10329 if (fd >= 0) {
10330 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10331 mode != XDP_MODE_SKB);
10332 if (IS_ERR(new_prog))
10333 return PTR_ERR(new_prog);
10334 }
10335
10336 if (expected_fd >= 0) {
10337 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10338 mode != XDP_MODE_SKB);
10339 if (IS_ERR(old_prog)) {
10340 err = PTR_ERR(old_prog);
10341 old_prog = NULL;
10342 goto err_out;
10343 }
10344 }
10345
10346 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10347
10348 err_out:
10349 if (err && new_prog)
10350 bpf_prog_put(new_prog);
10351 if (old_prog)
10352 bpf_prog_put(old_prog);
10353 return err;
10354 }
10355
dev_get_min_mp_channel_count(const struct net_device * dev)10356 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10357 {
10358 int i;
10359
10360 netdev_ops_assert_locked(dev);
10361
10362 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10363 if (dev->_rx[i].mp_params.mp_priv)
10364 /* The channel count is the idx plus 1. */
10365 return i + 1;
10366
10367 return 0;
10368 }
10369
10370 /**
10371 * dev_index_reserve() - allocate an ifindex in a namespace
10372 * @net: the applicable net namespace
10373 * @ifindex: requested ifindex, pass %0 to get one allocated
10374 *
10375 * Allocate a ifindex for a new device. Caller must either use the ifindex
10376 * to store the device (via list_netdevice()) or call dev_index_release()
10377 * to give the index up.
10378 *
10379 * Return: a suitable unique value for a new device interface number or -errno.
10380 */
dev_index_reserve(struct net * net,u32 ifindex)10381 static int dev_index_reserve(struct net *net, u32 ifindex)
10382 {
10383 int err;
10384
10385 if (ifindex > INT_MAX) {
10386 DEBUG_NET_WARN_ON_ONCE(1);
10387 return -EINVAL;
10388 }
10389
10390 if (!ifindex)
10391 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10392 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10393 else
10394 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10395 if (err < 0)
10396 return err;
10397
10398 return ifindex;
10399 }
10400
dev_index_release(struct net * net,int ifindex)10401 static void dev_index_release(struct net *net, int ifindex)
10402 {
10403 /* Expect only unused indexes, unlist_netdevice() removes the used */
10404 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10405 }
10406
from_cleanup_net(void)10407 static bool from_cleanup_net(void)
10408 {
10409 #ifdef CONFIG_NET_NS
10410 return current == cleanup_net_task;
10411 #else
10412 return false;
10413 #endif
10414 }
10415
10416 /* Delayed registration/unregisteration */
10417 LIST_HEAD(net_todo_list);
10418 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10419 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10420
net_set_todo(struct net_device * dev)10421 static void net_set_todo(struct net_device *dev)
10422 {
10423 list_add_tail(&dev->todo_list, &net_todo_list);
10424 }
10425
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10426 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10427 struct net_device *upper, netdev_features_t features)
10428 {
10429 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10430 netdev_features_t feature;
10431 int feature_bit;
10432
10433 for_each_netdev_feature(upper_disables, feature_bit) {
10434 feature = __NETIF_F_BIT(feature_bit);
10435 if (!(upper->wanted_features & feature)
10436 && (features & feature)) {
10437 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10438 &feature, upper->name);
10439 features &= ~feature;
10440 }
10441 }
10442
10443 return features;
10444 }
10445
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10446 static void netdev_sync_lower_features(struct net_device *upper,
10447 struct net_device *lower, netdev_features_t features)
10448 {
10449 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10450 netdev_features_t feature;
10451 int feature_bit;
10452
10453 for_each_netdev_feature(upper_disables, feature_bit) {
10454 feature = __NETIF_F_BIT(feature_bit);
10455 if (!(features & feature) && (lower->features & feature)) {
10456 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10457 &feature, lower->name);
10458 lower->wanted_features &= ~feature;
10459 __netdev_update_features(lower);
10460
10461 if (unlikely(lower->features & feature))
10462 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10463 &feature, lower->name);
10464 else
10465 netdev_features_change(lower);
10466 }
10467 }
10468 }
10469
netdev_has_ip_or_hw_csum(netdev_features_t features)10470 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10471 {
10472 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10473 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10474 bool hw_csum = features & NETIF_F_HW_CSUM;
10475
10476 return ip_csum || hw_csum;
10477 }
10478
netdev_fix_features(struct net_device * dev,netdev_features_t features)10479 static netdev_features_t netdev_fix_features(struct net_device *dev,
10480 netdev_features_t features)
10481 {
10482 /* Fix illegal checksum combinations */
10483 if ((features & NETIF_F_HW_CSUM) &&
10484 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10485 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10486 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10487 }
10488
10489 /* TSO requires that SG is present as well. */
10490 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10491 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10492 features &= ~NETIF_F_ALL_TSO;
10493 }
10494
10495 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10496 !(features & NETIF_F_IP_CSUM)) {
10497 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10498 features &= ~NETIF_F_TSO;
10499 features &= ~NETIF_F_TSO_ECN;
10500 }
10501
10502 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10503 !(features & NETIF_F_IPV6_CSUM)) {
10504 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10505 features &= ~NETIF_F_TSO6;
10506 }
10507
10508 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10509 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10510 features &= ~NETIF_F_TSO_MANGLEID;
10511
10512 /* TSO ECN requires that TSO is present as well. */
10513 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10514 features &= ~NETIF_F_TSO_ECN;
10515
10516 /* Software GSO depends on SG. */
10517 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10518 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10519 features &= ~NETIF_F_GSO;
10520 }
10521
10522 /* GSO partial features require GSO partial be set */
10523 if ((features & dev->gso_partial_features) &&
10524 !(features & NETIF_F_GSO_PARTIAL)) {
10525 netdev_dbg(dev,
10526 "Dropping partially supported GSO features since no GSO partial.\n");
10527 features &= ~dev->gso_partial_features;
10528 }
10529
10530 if (!(features & NETIF_F_RXCSUM)) {
10531 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10532 * successfully merged by hardware must also have the
10533 * checksum verified by hardware. If the user does not
10534 * want to enable RXCSUM, logically, we should disable GRO_HW.
10535 */
10536 if (features & NETIF_F_GRO_HW) {
10537 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10538 features &= ~NETIF_F_GRO_HW;
10539 }
10540 }
10541
10542 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10543 if (features & NETIF_F_RXFCS) {
10544 if (features & NETIF_F_LRO) {
10545 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10546 features &= ~NETIF_F_LRO;
10547 }
10548
10549 if (features & NETIF_F_GRO_HW) {
10550 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10551 features &= ~NETIF_F_GRO_HW;
10552 }
10553 }
10554
10555 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10556 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10557 features &= ~NETIF_F_LRO;
10558 }
10559
10560 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10561 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10562 features &= ~NETIF_F_HW_TLS_TX;
10563 }
10564
10565 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10566 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10567 features &= ~NETIF_F_HW_TLS_RX;
10568 }
10569
10570 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10571 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10572 features &= ~NETIF_F_GSO_UDP_L4;
10573 }
10574
10575 return features;
10576 }
10577
__netdev_update_features(struct net_device * dev)10578 int __netdev_update_features(struct net_device *dev)
10579 {
10580 struct net_device *upper, *lower;
10581 netdev_features_t features;
10582 struct list_head *iter;
10583 int err = -1;
10584
10585 ASSERT_RTNL();
10586 netdev_ops_assert_locked(dev);
10587
10588 features = netdev_get_wanted_features(dev);
10589
10590 if (dev->netdev_ops->ndo_fix_features)
10591 features = dev->netdev_ops->ndo_fix_features(dev, features);
10592
10593 /* driver might be less strict about feature dependencies */
10594 features = netdev_fix_features(dev, features);
10595
10596 /* some features can't be enabled if they're off on an upper device */
10597 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10598 features = netdev_sync_upper_features(dev, upper, features);
10599
10600 if (dev->features == features)
10601 goto sync_lower;
10602
10603 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10604 &dev->features, &features);
10605
10606 if (dev->netdev_ops->ndo_set_features)
10607 err = dev->netdev_ops->ndo_set_features(dev, features);
10608 else
10609 err = 0;
10610
10611 if (unlikely(err < 0)) {
10612 netdev_err(dev,
10613 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10614 err, &features, &dev->features);
10615 /* return non-0 since some features might have changed and
10616 * it's better to fire a spurious notification than miss it
10617 */
10618 return -1;
10619 }
10620
10621 sync_lower:
10622 /* some features must be disabled on lower devices when disabled
10623 * on an upper device (think: bonding master or bridge)
10624 */
10625 netdev_for_each_lower_dev(dev, lower, iter)
10626 netdev_sync_lower_features(dev, lower, features);
10627
10628 if (!err) {
10629 netdev_features_t diff = features ^ dev->features;
10630
10631 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10632 /* udp_tunnel_{get,drop}_rx_info both need
10633 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10634 * device, or they won't do anything.
10635 * Thus we need to update dev->features
10636 * *before* calling udp_tunnel_get_rx_info,
10637 * but *after* calling udp_tunnel_drop_rx_info.
10638 */
10639 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10640 dev->features = features;
10641 udp_tunnel_get_rx_info(dev);
10642 } else {
10643 udp_tunnel_drop_rx_info(dev);
10644 }
10645 }
10646
10647 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10648 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10649 dev->features = features;
10650 err |= vlan_get_rx_ctag_filter_info(dev);
10651 } else {
10652 vlan_drop_rx_ctag_filter_info(dev);
10653 }
10654 }
10655
10656 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10657 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10658 dev->features = features;
10659 err |= vlan_get_rx_stag_filter_info(dev);
10660 } else {
10661 vlan_drop_rx_stag_filter_info(dev);
10662 }
10663 }
10664
10665 dev->features = features;
10666 }
10667
10668 return err < 0 ? 0 : 1;
10669 }
10670
10671 /**
10672 * netdev_update_features - recalculate device features
10673 * @dev: the device to check
10674 *
10675 * Recalculate dev->features set and send notifications if it
10676 * has changed. Should be called after driver or hardware dependent
10677 * conditions might have changed that influence the features.
10678 */
netdev_update_features(struct net_device * dev)10679 void netdev_update_features(struct net_device *dev)
10680 {
10681 if (__netdev_update_features(dev))
10682 netdev_features_change(dev);
10683 }
10684 EXPORT_SYMBOL(netdev_update_features);
10685
10686 /**
10687 * netdev_change_features - recalculate device features
10688 * @dev: the device to check
10689 *
10690 * Recalculate dev->features set and send notifications even
10691 * if they have not changed. Should be called instead of
10692 * netdev_update_features() if also dev->vlan_features might
10693 * have changed to allow the changes to be propagated to stacked
10694 * VLAN devices.
10695 */
netdev_change_features(struct net_device * dev)10696 void netdev_change_features(struct net_device *dev)
10697 {
10698 __netdev_update_features(dev);
10699 netdev_features_change(dev);
10700 }
10701 EXPORT_SYMBOL(netdev_change_features);
10702
10703 /**
10704 * netif_stacked_transfer_operstate - transfer operstate
10705 * @rootdev: the root or lower level device to transfer state from
10706 * @dev: the device to transfer operstate to
10707 *
10708 * Transfer operational state from root to device. This is normally
10709 * called when a stacking relationship exists between the root
10710 * device and the device(a leaf device).
10711 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10712 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10713 struct net_device *dev)
10714 {
10715 if (rootdev->operstate == IF_OPER_DORMANT)
10716 netif_dormant_on(dev);
10717 else
10718 netif_dormant_off(dev);
10719
10720 if (rootdev->operstate == IF_OPER_TESTING)
10721 netif_testing_on(dev);
10722 else
10723 netif_testing_off(dev);
10724
10725 if (netif_carrier_ok(rootdev))
10726 netif_carrier_on(dev);
10727 else
10728 netif_carrier_off(dev);
10729 }
10730 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10731
netif_alloc_rx_queues(struct net_device * dev)10732 static int netif_alloc_rx_queues(struct net_device *dev)
10733 {
10734 unsigned int i, count = dev->num_rx_queues;
10735 struct netdev_rx_queue *rx;
10736 size_t sz = count * sizeof(*rx);
10737 int err = 0;
10738
10739 BUG_ON(count < 1);
10740
10741 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10742 if (!rx)
10743 return -ENOMEM;
10744
10745 dev->_rx = rx;
10746
10747 for (i = 0; i < count; i++) {
10748 rx[i].dev = dev;
10749
10750 /* XDP RX-queue setup */
10751 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10752 if (err < 0)
10753 goto err_rxq_info;
10754 }
10755 return 0;
10756
10757 err_rxq_info:
10758 /* Rollback successful reg's and free other resources */
10759 while (i--)
10760 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10761 kvfree(dev->_rx);
10762 dev->_rx = NULL;
10763 return err;
10764 }
10765
netif_free_rx_queues(struct net_device * dev)10766 static void netif_free_rx_queues(struct net_device *dev)
10767 {
10768 unsigned int i, count = dev->num_rx_queues;
10769
10770 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10771 if (!dev->_rx)
10772 return;
10773
10774 for (i = 0; i < count; i++)
10775 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10776
10777 kvfree(dev->_rx);
10778 }
10779
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10780 static void netdev_init_one_queue(struct net_device *dev,
10781 struct netdev_queue *queue, void *_unused)
10782 {
10783 /* Initialize queue lock */
10784 spin_lock_init(&queue->_xmit_lock);
10785 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10786 queue->xmit_lock_owner = -1;
10787 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10788 queue->dev = dev;
10789 #ifdef CONFIG_BQL
10790 dql_init(&queue->dql, HZ);
10791 #endif
10792 }
10793
netif_free_tx_queues(struct net_device * dev)10794 static void netif_free_tx_queues(struct net_device *dev)
10795 {
10796 kvfree(dev->_tx);
10797 }
10798
netif_alloc_netdev_queues(struct net_device * dev)10799 static int netif_alloc_netdev_queues(struct net_device *dev)
10800 {
10801 unsigned int count = dev->num_tx_queues;
10802 struct netdev_queue *tx;
10803 size_t sz = count * sizeof(*tx);
10804
10805 if (count < 1 || count > 0xffff)
10806 return -EINVAL;
10807
10808 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10809 if (!tx)
10810 return -ENOMEM;
10811
10812 dev->_tx = tx;
10813
10814 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10815 spin_lock_init(&dev->tx_global_lock);
10816
10817 return 0;
10818 }
10819
netif_tx_stop_all_queues(struct net_device * dev)10820 void netif_tx_stop_all_queues(struct net_device *dev)
10821 {
10822 unsigned int i;
10823
10824 for (i = 0; i < dev->num_tx_queues; i++) {
10825 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10826
10827 netif_tx_stop_queue(txq);
10828 }
10829 }
10830 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10831
netdev_do_alloc_pcpu_stats(struct net_device * dev)10832 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10833 {
10834 void __percpu *v;
10835
10836 /* Drivers implementing ndo_get_peer_dev must support tstat
10837 * accounting, so that skb_do_redirect() can bump the dev's
10838 * RX stats upon network namespace switch.
10839 */
10840 if (dev->netdev_ops->ndo_get_peer_dev &&
10841 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10842 return -EOPNOTSUPP;
10843
10844 switch (dev->pcpu_stat_type) {
10845 case NETDEV_PCPU_STAT_NONE:
10846 return 0;
10847 case NETDEV_PCPU_STAT_LSTATS:
10848 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10849 break;
10850 case NETDEV_PCPU_STAT_TSTATS:
10851 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10852 break;
10853 case NETDEV_PCPU_STAT_DSTATS:
10854 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10855 break;
10856 default:
10857 return -EINVAL;
10858 }
10859
10860 return v ? 0 : -ENOMEM;
10861 }
10862
netdev_do_free_pcpu_stats(struct net_device * dev)10863 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10864 {
10865 switch (dev->pcpu_stat_type) {
10866 case NETDEV_PCPU_STAT_NONE:
10867 return;
10868 case NETDEV_PCPU_STAT_LSTATS:
10869 free_percpu(dev->lstats);
10870 break;
10871 case NETDEV_PCPU_STAT_TSTATS:
10872 free_percpu(dev->tstats);
10873 break;
10874 case NETDEV_PCPU_STAT_DSTATS:
10875 free_percpu(dev->dstats);
10876 break;
10877 }
10878 }
10879
netdev_free_phy_link_topology(struct net_device * dev)10880 static void netdev_free_phy_link_topology(struct net_device *dev)
10881 {
10882 struct phy_link_topology *topo = dev->link_topo;
10883
10884 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10885 xa_destroy(&topo->phys);
10886 kfree(topo);
10887 dev->link_topo = NULL;
10888 }
10889 }
10890
10891 /**
10892 * register_netdevice() - register a network device
10893 * @dev: device to register
10894 *
10895 * Take a prepared network device structure and make it externally accessible.
10896 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10897 * Callers must hold the rtnl lock - you may want register_netdev()
10898 * instead of this.
10899 */
register_netdevice(struct net_device * dev)10900 int register_netdevice(struct net_device *dev)
10901 {
10902 int ret;
10903 struct net *net = dev_net(dev);
10904
10905 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10906 NETDEV_FEATURE_COUNT);
10907 BUG_ON(dev_boot_phase);
10908 ASSERT_RTNL();
10909
10910 might_sleep();
10911
10912 /* When net_device's are persistent, this will be fatal. */
10913 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10914 BUG_ON(!net);
10915
10916 ret = ethtool_check_ops(dev->ethtool_ops);
10917 if (ret)
10918 return ret;
10919
10920 /* rss ctx ID 0 is reserved for the default context, start from 1 */
10921 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10922 mutex_init(&dev->ethtool->rss_lock);
10923
10924 spin_lock_init(&dev->addr_list_lock);
10925 netdev_set_addr_lockdep_class(dev);
10926
10927 ret = dev_get_valid_name(net, dev, dev->name);
10928 if (ret < 0)
10929 goto out;
10930
10931 ret = -ENOMEM;
10932 dev->name_node = netdev_name_node_head_alloc(dev);
10933 if (!dev->name_node)
10934 goto out;
10935
10936 /* Init, if this function is available */
10937 if (dev->netdev_ops->ndo_init) {
10938 ret = dev->netdev_ops->ndo_init(dev);
10939 if (ret) {
10940 if (ret > 0)
10941 ret = -EIO;
10942 goto err_free_name;
10943 }
10944 }
10945
10946 if (((dev->hw_features | dev->features) &
10947 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10948 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10949 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10950 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10951 ret = -EINVAL;
10952 goto err_uninit;
10953 }
10954
10955 ret = netdev_do_alloc_pcpu_stats(dev);
10956 if (ret)
10957 goto err_uninit;
10958
10959 ret = dev_index_reserve(net, dev->ifindex);
10960 if (ret < 0)
10961 goto err_free_pcpu;
10962 dev->ifindex = ret;
10963
10964 /* Transfer changeable features to wanted_features and enable
10965 * software offloads (GSO and GRO).
10966 */
10967 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10968 dev->features |= NETIF_F_SOFT_FEATURES;
10969
10970 if (dev->udp_tunnel_nic_info) {
10971 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10972 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10973 }
10974
10975 dev->wanted_features = dev->features & dev->hw_features;
10976
10977 if (!(dev->flags & IFF_LOOPBACK))
10978 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10979
10980 /* If IPv4 TCP segmentation offload is supported we should also
10981 * allow the device to enable segmenting the frame with the option
10982 * of ignoring a static IP ID value. This doesn't enable the
10983 * feature itself but allows the user to enable it later.
10984 */
10985 if (dev->hw_features & NETIF_F_TSO)
10986 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10987 if (dev->vlan_features & NETIF_F_TSO)
10988 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10989 if (dev->mpls_features & NETIF_F_TSO)
10990 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10991 if (dev->hw_enc_features & NETIF_F_TSO)
10992 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10993
10994 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10995 */
10996 dev->vlan_features |= NETIF_F_HIGHDMA;
10997
10998 /* Make NETIF_F_SG inheritable to tunnel devices.
10999 */
11000 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11001
11002 /* Make NETIF_F_SG inheritable to MPLS.
11003 */
11004 dev->mpls_features |= NETIF_F_SG;
11005
11006 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11007 ret = notifier_to_errno(ret);
11008 if (ret)
11009 goto err_ifindex_release;
11010
11011 ret = netdev_register_kobject(dev);
11012
11013 netdev_lock(dev);
11014 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11015 netdev_unlock(dev);
11016
11017 if (ret)
11018 goto err_uninit_notify;
11019
11020 netdev_lock_ops(dev);
11021 __netdev_update_features(dev);
11022 netdev_unlock_ops(dev);
11023
11024 /*
11025 * Default initial state at registry is that the
11026 * device is present.
11027 */
11028
11029 set_bit(__LINK_STATE_PRESENT, &dev->state);
11030
11031 linkwatch_init_dev(dev);
11032
11033 dev_init_scheduler(dev);
11034
11035 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11036 list_netdevice(dev);
11037
11038 add_device_randomness(dev->dev_addr, dev->addr_len);
11039
11040 /* If the device has permanent device address, driver should
11041 * set dev_addr and also addr_assign_type should be set to
11042 * NET_ADDR_PERM (default value).
11043 */
11044 if (dev->addr_assign_type == NET_ADDR_PERM)
11045 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11046
11047 /* Notify protocols, that a new device appeared. */
11048 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11049 ret = notifier_to_errno(ret);
11050 if (ret) {
11051 /* Expect explicit free_netdev() on failure */
11052 dev->needs_free_netdev = false;
11053 unregister_netdevice_queue(dev, NULL);
11054 goto out;
11055 }
11056 /*
11057 * Prevent userspace races by waiting until the network
11058 * device is fully setup before sending notifications.
11059 */
11060 if (!dev->rtnl_link_ops ||
11061 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11062 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11063
11064 out:
11065 return ret;
11066
11067 err_uninit_notify:
11068 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11069 err_ifindex_release:
11070 dev_index_release(net, dev->ifindex);
11071 err_free_pcpu:
11072 netdev_do_free_pcpu_stats(dev);
11073 err_uninit:
11074 if (dev->netdev_ops->ndo_uninit)
11075 dev->netdev_ops->ndo_uninit(dev);
11076 if (dev->priv_destructor)
11077 dev->priv_destructor(dev);
11078 err_free_name:
11079 netdev_name_node_free(dev->name_node);
11080 goto out;
11081 }
11082 EXPORT_SYMBOL(register_netdevice);
11083
11084 /* Initialize the core of a dummy net device.
11085 * The setup steps dummy netdevs need which normal netdevs get by going
11086 * through register_netdevice().
11087 */
init_dummy_netdev(struct net_device * dev)11088 static void init_dummy_netdev(struct net_device *dev)
11089 {
11090 /* make sure we BUG if trying to hit standard
11091 * register/unregister code path
11092 */
11093 dev->reg_state = NETREG_DUMMY;
11094
11095 /* a dummy interface is started by default */
11096 set_bit(__LINK_STATE_PRESENT, &dev->state);
11097 set_bit(__LINK_STATE_START, &dev->state);
11098
11099 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11100 * because users of this 'device' dont need to change
11101 * its refcount.
11102 */
11103 }
11104
11105 /**
11106 * register_netdev - register a network device
11107 * @dev: device to register
11108 *
11109 * Take a completed network device structure and add it to the kernel
11110 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11111 * chain. 0 is returned on success. A negative errno code is returned
11112 * on a failure to set up the device, or if the name is a duplicate.
11113 *
11114 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11115 * and expands the device name if you passed a format string to
11116 * alloc_netdev.
11117 */
register_netdev(struct net_device * dev)11118 int register_netdev(struct net_device *dev)
11119 {
11120 struct net *net = dev_net(dev);
11121 int err;
11122
11123 if (rtnl_net_lock_killable(net))
11124 return -EINTR;
11125
11126 err = register_netdevice(dev);
11127
11128 rtnl_net_unlock(net);
11129
11130 return err;
11131 }
11132 EXPORT_SYMBOL(register_netdev);
11133
netdev_refcnt_read(const struct net_device * dev)11134 int netdev_refcnt_read(const struct net_device *dev)
11135 {
11136 #ifdef CONFIG_PCPU_DEV_REFCNT
11137 int i, refcnt = 0;
11138
11139 for_each_possible_cpu(i)
11140 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11141 return refcnt;
11142 #else
11143 return refcount_read(&dev->dev_refcnt);
11144 #endif
11145 }
11146 EXPORT_SYMBOL(netdev_refcnt_read);
11147
11148 int netdev_unregister_timeout_secs __read_mostly = 10;
11149
11150 #define WAIT_REFS_MIN_MSECS 1
11151 #define WAIT_REFS_MAX_MSECS 250
11152 /**
11153 * netdev_wait_allrefs_any - wait until all references are gone.
11154 * @list: list of net_devices to wait on
11155 *
11156 * This is called when unregistering network devices.
11157 *
11158 * Any protocol or device that holds a reference should register
11159 * for netdevice notification, and cleanup and put back the
11160 * reference if they receive an UNREGISTER event.
11161 * We can get stuck here if buggy protocols don't correctly
11162 * call dev_put.
11163 */
netdev_wait_allrefs_any(struct list_head * list)11164 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11165 {
11166 unsigned long rebroadcast_time, warning_time;
11167 struct net_device *dev;
11168 int wait = 0;
11169
11170 rebroadcast_time = warning_time = jiffies;
11171
11172 list_for_each_entry(dev, list, todo_list)
11173 if (netdev_refcnt_read(dev) == 1)
11174 return dev;
11175
11176 while (true) {
11177 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11178 rtnl_lock();
11179
11180 /* Rebroadcast unregister notification */
11181 list_for_each_entry(dev, list, todo_list)
11182 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11183
11184 __rtnl_unlock();
11185 rcu_barrier();
11186 rtnl_lock();
11187
11188 list_for_each_entry(dev, list, todo_list)
11189 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11190 &dev->state)) {
11191 /* We must not have linkwatch events
11192 * pending on unregister. If this
11193 * happens, we simply run the queue
11194 * unscheduled, resulting in a noop
11195 * for this device.
11196 */
11197 linkwatch_run_queue();
11198 break;
11199 }
11200
11201 __rtnl_unlock();
11202
11203 rebroadcast_time = jiffies;
11204 }
11205
11206 rcu_barrier();
11207
11208 if (!wait) {
11209 wait = WAIT_REFS_MIN_MSECS;
11210 } else {
11211 msleep(wait);
11212 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11213 }
11214
11215 list_for_each_entry(dev, list, todo_list)
11216 if (netdev_refcnt_read(dev) == 1)
11217 return dev;
11218
11219 if (time_after(jiffies, warning_time +
11220 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11221 list_for_each_entry(dev, list, todo_list) {
11222 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11223 dev->name, netdev_refcnt_read(dev));
11224 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11225 }
11226
11227 warning_time = jiffies;
11228 }
11229 }
11230 }
11231
11232 /* The sequence is:
11233 *
11234 * rtnl_lock();
11235 * ...
11236 * register_netdevice(x1);
11237 * register_netdevice(x2);
11238 * ...
11239 * unregister_netdevice(y1);
11240 * unregister_netdevice(y2);
11241 * ...
11242 * rtnl_unlock();
11243 * free_netdev(y1);
11244 * free_netdev(y2);
11245 *
11246 * We are invoked by rtnl_unlock().
11247 * This allows us to deal with problems:
11248 * 1) We can delete sysfs objects which invoke hotplug
11249 * without deadlocking with linkwatch via keventd.
11250 * 2) Since we run with the RTNL semaphore not held, we can sleep
11251 * safely in order to wait for the netdev refcnt to drop to zero.
11252 *
11253 * We must not return until all unregister events added during
11254 * the interval the lock was held have been completed.
11255 */
netdev_run_todo(void)11256 void netdev_run_todo(void)
11257 {
11258 struct net_device *dev, *tmp;
11259 struct list_head list;
11260 int cnt;
11261 #ifdef CONFIG_LOCKDEP
11262 struct list_head unlink_list;
11263
11264 list_replace_init(&net_unlink_list, &unlink_list);
11265
11266 while (!list_empty(&unlink_list)) {
11267 dev = list_first_entry(&unlink_list, struct net_device,
11268 unlink_list);
11269 list_del_init(&dev->unlink_list);
11270 dev->nested_level = dev->lower_level - 1;
11271 }
11272 #endif
11273
11274 /* Snapshot list, allow later requests */
11275 list_replace_init(&net_todo_list, &list);
11276
11277 __rtnl_unlock();
11278
11279 /* Wait for rcu callbacks to finish before next phase */
11280 if (!list_empty(&list))
11281 rcu_barrier();
11282
11283 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11284 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11285 netdev_WARN(dev, "run_todo but not unregistering\n");
11286 list_del(&dev->todo_list);
11287 continue;
11288 }
11289
11290 netdev_lock(dev);
11291 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11292 netdev_unlock(dev);
11293 linkwatch_sync_dev(dev);
11294 }
11295
11296 cnt = 0;
11297 while (!list_empty(&list)) {
11298 dev = netdev_wait_allrefs_any(&list);
11299 list_del(&dev->todo_list);
11300
11301 /* paranoia */
11302 BUG_ON(netdev_refcnt_read(dev) != 1);
11303 BUG_ON(!list_empty(&dev->ptype_all));
11304 BUG_ON(!list_empty(&dev->ptype_specific));
11305 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11306 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11307
11308 netdev_do_free_pcpu_stats(dev);
11309 if (dev->priv_destructor)
11310 dev->priv_destructor(dev);
11311 if (dev->needs_free_netdev)
11312 free_netdev(dev);
11313
11314 cnt++;
11315
11316 /* Free network device */
11317 kobject_put(&dev->dev.kobj);
11318 }
11319 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11320 wake_up(&netdev_unregistering_wq);
11321 }
11322
11323 /* Collate per-cpu network dstats statistics
11324 *
11325 * Read per-cpu network statistics from dev->dstats and populate the related
11326 * fields in @s.
11327 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11328 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11329 const struct pcpu_dstats __percpu *dstats)
11330 {
11331 int cpu;
11332
11333 for_each_possible_cpu(cpu) {
11334 u64 rx_packets, rx_bytes, rx_drops;
11335 u64 tx_packets, tx_bytes, tx_drops;
11336 const struct pcpu_dstats *stats;
11337 unsigned int start;
11338
11339 stats = per_cpu_ptr(dstats, cpu);
11340 do {
11341 start = u64_stats_fetch_begin(&stats->syncp);
11342 rx_packets = u64_stats_read(&stats->rx_packets);
11343 rx_bytes = u64_stats_read(&stats->rx_bytes);
11344 rx_drops = u64_stats_read(&stats->rx_drops);
11345 tx_packets = u64_stats_read(&stats->tx_packets);
11346 tx_bytes = u64_stats_read(&stats->tx_bytes);
11347 tx_drops = u64_stats_read(&stats->tx_drops);
11348 } while (u64_stats_fetch_retry(&stats->syncp, start));
11349
11350 s->rx_packets += rx_packets;
11351 s->rx_bytes += rx_bytes;
11352 s->rx_dropped += rx_drops;
11353 s->tx_packets += tx_packets;
11354 s->tx_bytes += tx_bytes;
11355 s->tx_dropped += tx_drops;
11356 }
11357 }
11358
11359 /* ndo_get_stats64 implementation for dtstats-based accounting.
11360 *
11361 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11362 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11363 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11364 static void dev_get_dstats64(const struct net_device *dev,
11365 struct rtnl_link_stats64 *s)
11366 {
11367 netdev_stats_to_stats64(s, &dev->stats);
11368 dev_fetch_dstats(s, dev->dstats);
11369 }
11370
11371 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11372 * all the same fields in the same order as net_device_stats, with only
11373 * the type differing, but rtnl_link_stats64 may have additional fields
11374 * at the end for newer counters.
11375 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11376 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11377 const struct net_device_stats *netdev_stats)
11378 {
11379 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11380 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11381 u64 *dst = (u64 *)stats64;
11382
11383 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11384 for (i = 0; i < n; i++)
11385 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11386 /* zero out counters that only exist in rtnl_link_stats64 */
11387 memset((char *)stats64 + n * sizeof(u64), 0,
11388 sizeof(*stats64) - n * sizeof(u64));
11389 }
11390 EXPORT_SYMBOL(netdev_stats_to_stats64);
11391
netdev_core_stats_alloc(struct net_device * dev)11392 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11393 struct net_device *dev)
11394 {
11395 struct net_device_core_stats __percpu *p;
11396
11397 p = alloc_percpu_gfp(struct net_device_core_stats,
11398 GFP_ATOMIC | __GFP_NOWARN);
11399
11400 if (p && cmpxchg(&dev->core_stats, NULL, p))
11401 free_percpu(p);
11402
11403 /* This READ_ONCE() pairs with the cmpxchg() above */
11404 return READ_ONCE(dev->core_stats);
11405 }
11406
netdev_core_stats_inc(struct net_device * dev,u32 offset)11407 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11408 {
11409 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11410 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11411 unsigned long __percpu *field;
11412
11413 if (unlikely(!p)) {
11414 p = netdev_core_stats_alloc(dev);
11415 if (!p)
11416 return;
11417 }
11418
11419 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11420 this_cpu_inc(*field);
11421 }
11422 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11423
11424 /**
11425 * dev_get_stats - get network device statistics
11426 * @dev: device to get statistics from
11427 * @storage: place to store stats
11428 *
11429 * Get network statistics from device. Return @storage.
11430 * The device driver may provide its own method by setting
11431 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11432 * otherwise the internal statistics structure is used.
11433 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11434 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11435 struct rtnl_link_stats64 *storage)
11436 {
11437 const struct net_device_ops *ops = dev->netdev_ops;
11438 const struct net_device_core_stats __percpu *p;
11439
11440 /*
11441 * IPv{4,6} and udp tunnels share common stat helpers and use
11442 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11443 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11444 */
11445 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11446 offsetof(struct pcpu_dstats, rx_bytes));
11447 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11448 offsetof(struct pcpu_dstats, rx_packets));
11449 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11450 offsetof(struct pcpu_dstats, tx_bytes));
11451 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11452 offsetof(struct pcpu_dstats, tx_packets));
11453
11454 if (ops->ndo_get_stats64) {
11455 memset(storage, 0, sizeof(*storage));
11456 ops->ndo_get_stats64(dev, storage);
11457 } else if (ops->ndo_get_stats) {
11458 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11459 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11460 dev_get_tstats64(dev, storage);
11461 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11462 dev_get_dstats64(dev, storage);
11463 } else {
11464 netdev_stats_to_stats64(storage, &dev->stats);
11465 }
11466
11467 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11468 p = READ_ONCE(dev->core_stats);
11469 if (p) {
11470 const struct net_device_core_stats *core_stats;
11471 int i;
11472
11473 for_each_possible_cpu(i) {
11474 core_stats = per_cpu_ptr(p, i);
11475 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11476 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11477 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11478 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11479 }
11480 }
11481 return storage;
11482 }
11483 EXPORT_SYMBOL(dev_get_stats);
11484
11485 /**
11486 * dev_fetch_sw_netstats - get per-cpu network device statistics
11487 * @s: place to store stats
11488 * @netstats: per-cpu network stats to read from
11489 *
11490 * Read per-cpu network statistics and populate the related fields in @s.
11491 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11492 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11493 const struct pcpu_sw_netstats __percpu *netstats)
11494 {
11495 int cpu;
11496
11497 for_each_possible_cpu(cpu) {
11498 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11499 const struct pcpu_sw_netstats *stats;
11500 unsigned int start;
11501
11502 stats = per_cpu_ptr(netstats, cpu);
11503 do {
11504 start = u64_stats_fetch_begin(&stats->syncp);
11505 rx_packets = u64_stats_read(&stats->rx_packets);
11506 rx_bytes = u64_stats_read(&stats->rx_bytes);
11507 tx_packets = u64_stats_read(&stats->tx_packets);
11508 tx_bytes = u64_stats_read(&stats->tx_bytes);
11509 } while (u64_stats_fetch_retry(&stats->syncp, start));
11510
11511 s->rx_packets += rx_packets;
11512 s->rx_bytes += rx_bytes;
11513 s->tx_packets += tx_packets;
11514 s->tx_bytes += tx_bytes;
11515 }
11516 }
11517 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11518
11519 /**
11520 * dev_get_tstats64 - ndo_get_stats64 implementation
11521 * @dev: device to get statistics from
11522 * @s: place to store stats
11523 *
11524 * Populate @s from dev->stats and dev->tstats. Can be used as
11525 * ndo_get_stats64() callback.
11526 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11527 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11528 {
11529 netdev_stats_to_stats64(s, &dev->stats);
11530 dev_fetch_sw_netstats(s, dev->tstats);
11531 }
11532 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11533
dev_ingress_queue_create(struct net_device * dev)11534 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11535 {
11536 struct netdev_queue *queue = dev_ingress_queue(dev);
11537
11538 #ifdef CONFIG_NET_CLS_ACT
11539 if (queue)
11540 return queue;
11541 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11542 if (!queue)
11543 return NULL;
11544 netdev_init_one_queue(dev, queue, NULL);
11545 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11546 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11547 rcu_assign_pointer(dev->ingress_queue, queue);
11548 #endif
11549 return queue;
11550 }
11551
11552 static const struct ethtool_ops default_ethtool_ops;
11553
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11554 void netdev_set_default_ethtool_ops(struct net_device *dev,
11555 const struct ethtool_ops *ops)
11556 {
11557 if (dev->ethtool_ops == &default_ethtool_ops)
11558 dev->ethtool_ops = ops;
11559 }
11560 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11561
11562 /**
11563 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11564 * @dev: netdev to enable the IRQ coalescing on
11565 *
11566 * Sets a conservative default for SW IRQ coalescing. Users can use
11567 * sysfs attributes to override the default values.
11568 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11569 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11570 {
11571 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11572
11573 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11574 netdev_set_gro_flush_timeout(dev, 20000);
11575 netdev_set_defer_hard_irqs(dev, 1);
11576 }
11577 }
11578 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11579
11580 /**
11581 * alloc_netdev_mqs - allocate network device
11582 * @sizeof_priv: size of private data to allocate space for
11583 * @name: device name format string
11584 * @name_assign_type: origin of device name
11585 * @setup: callback to initialize device
11586 * @txqs: the number of TX subqueues to allocate
11587 * @rxqs: the number of RX subqueues to allocate
11588 *
11589 * Allocates a struct net_device with private data area for driver use
11590 * and performs basic initialization. Also allocates subqueue structs
11591 * for each queue on the device.
11592 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11593 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11594 unsigned char name_assign_type,
11595 void (*setup)(struct net_device *),
11596 unsigned int txqs, unsigned int rxqs)
11597 {
11598 struct net_device *dev;
11599 size_t napi_config_sz;
11600 unsigned int maxqs;
11601
11602 BUG_ON(strlen(name) >= sizeof(dev->name));
11603
11604 if (txqs < 1) {
11605 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11606 return NULL;
11607 }
11608
11609 if (rxqs < 1) {
11610 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11611 return NULL;
11612 }
11613
11614 maxqs = max(txqs, rxqs);
11615
11616 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11617 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11618 if (!dev)
11619 return NULL;
11620
11621 dev->priv_len = sizeof_priv;
11622
11623 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11624 #ifdef CONFIG_PCPU_DEV_REFCNT
11625 dev->pcpu_refcnt = alloc_percpu(int);
11626 if (!dev->pcpu_refcnt)
11627 goto free_dev;
11628 __dev_hold(dev);
11629 #else
11630 refcount_set(&dev->dev_refcnt, 1);
11631 #endif
11632
11633 if (dev_addr_init(dev))
11634 goto free_pcpu;
11635
11636 dev_mc_init(dev);
11637 dev_uc_init(dev);
11638
11639 dev_net_set(dev, &init_net);
11640
11641 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11642 dev->xdp_zc_max_segs = 1;
11643 dev->gso_max_segs = GSO_MAX_SEGS;
11644 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11645 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11646 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11647 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11648 dev->tso_max_segs = TSO_MAX_SEGS;
11649 dev->upper_level = 1;
11650 dev->lower_level = 1;
11651 #ifdef CONFIG_LOCKDEP
11652 dev->nested_level = 0;
11653 INIT_LIST_HEAD(&dev->unlink_list);
11654 #endif
11655
11656 INIT_LIST_HEAD(&dev->napi_list);
11657 INIT_LIST_HEAD(&dev->unreg_list);
11658 INIT_LIST_HEAD(&dev->close_list);
11659 INIT_LIST_HEAD(&dev->link_watch_list);
11660 INIT_LIST_HEAD(&dev->adj_list.upper);
11661 INIT_LIST_HEAD(&dev->adj_list.lower);
11662 INIT_LIST_HEAD(&dev->ptype_all);
11663 INIT_LIST_HEAD(&dev->ptype_specific);
11664 INIT_LIST_HEAD(&dev->net_notifier_list);
11665 #ifdef CONFIG_NET_SCHED
11666 hash_init(dev->qdisc_hash);
11667 #endif
11668
11669 mutex_init(&dev->lock);
11670
11671 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11672 setup(dev);
11673
11674 if (!dev->tx_queue_len) {
11675 dev->priv_flags |= IFF_NO_QUEUE;
11676 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11677 }
11678
11679 dev->num_tx_queues = txqs;
11680 dev->real_num_tx_queues = txqs;
11681 if (netif_alloc_netdev_queues(dev))
11682 goto free_all;
11683
11684 dev->num_rx_queues = rxqs;
11685 dev->real_num_rx_queues = rxqs;
11686 if (netif_alloc_rx_queues(dev))
11687 goto free_all;
11688 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11689 if (!dev->ethtool)
11690 goto free_all;
11691
11692 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11693 if (!dev->cfg)
11694 goto free_all;
11695 dev->cfg_pending = dev->cfg;
11696
11697 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11698 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11699 if (!dev->napi_config)
11700 goto free_all;
11701
11702 strscpy(dev->name, name);
11703 dev->name_assign_type = name_assign_type;
11704 dev->group = INIT_NETDEV_GROUP;
11705 if (!dev->ethtool_ops)
11706 dev->ethtool_ops = &default_ethtool_ops;
11707
11708 nf_hook_netdev_init(dev);
11709
11710 return dev;
11711
11712 free_all:
11713 free_netdev(dev);
11714 return NULL;
11715
11716 free_pcpu:
11717 #ifdef CONFIG_PCPU_DEV_REFCNT
11718 free_percpu(dev->pcpu_refcnt);
11719 free_dev:
11720 #endif
11721 kvfree(dev);
11722 return NULL;
11723 }
11724 EXPORT_SYMBOL(alloc_netdev_mqs);
11725
netdev_napi_exit(struct net_device * dev)11726 static void netdev_napi_exit(struct net_device *dev)
11727 {
11728 if (!list_empty(&dev->napi_list)) {
11729 struct napi_struct *p, *n;
11730
11731 netdev_lock(dev);
11732 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11733 __netif_napi_del_locked(p);
11734 netdev_unlock(dev);
11735
11736 synchronize_net();
11737 }
11738
11739 kvfree(dev->napi_config);
11740 }
11741
11742 /**
11743 * free_netdev - free network device
11744 * @dev: device
11745 *
11746 * This function does the last stage of destroying an allocated device
11747 * interface. The reference to the device object is released. If this
11748 * is the last reference then it will be freed.Must be called in process
11749 * context.
11750 */
free_netdev(struct net_device * dev)11751 void free_netdev(struct net_device *dev)
11752 {
11753 might_sleep();
11754
11755 /* When called immediately after register_netdevice() failed the unwind
11756 * handling may still be dismantling the device. Handle that case by
11757 * deferring the free.
11758 */
11759 if (dev->reg_state == NETREG_UNREGISTERING) {
11760 ASSERT_RTNL();
11761 dev->needs_free_netdev = true;
11762 return;
11763 }
11764
11765 WARN_ON(dev->cfg != dev->cfg_pending);
11766 kfree(dev->cfg);
11767 kfree(dev->ethtool);
11768 netif_free_tx_queues(dev);
11769 netif_free_rx_queues(dev);
11770
11771 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11772
11773 /* Flush device addresses */
11774 dev_addr_flush(dev);
11775
11776 netdev_napi_exit(dev);
11777
11778 netif_del_cpu_rmap(dev);
11779
11780 ref_tracker_dir_exit(&dev->refcnt_tracker);
11781 #ifdef CONFIG_PCPU_DEV_REFCNT
11782 free_percpu(dev->pcpu_refcnt);
11783 dev->pcpu_refcnt = NULL;
11784 #endif
11785 free_percpu(dev->core_stats);
11786 dev->core_stats = NULL;
11787 free_percpu(dev->xdp_bulkq);
11788 dev->xdp_bulkq = NULL;
11789
11790 netdev_free_phy_link_topology(dev);
11791
11792 mutex_destroy(&dev->lock);
11793
11794 /* Compatibility with error handling in drivers */
11795 if (dev->reg_state == NETREG_UNINITIALIZED ||
11796 dev->reg_state == NETREG_DUMMY) {
11797 kvfree(dev);
11798 return;
11799 }
11800
11801 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11802 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11803
11804 /* will free via device release */
11805 put_device(&dev->dev);
11806 }
11807 EXPORT_SYMBOL(free_netdev);
11808
11809 /**
11810 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11811 * @sizeof_priv: size of private data to allocate space for
11812 *
11813 * Return: the allocated net_device on success, NULL otherwise
11814 */
alloc_netdev_dummy(int sizeof_priv)11815 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11816 {
11817 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11818 init_dummy_netdev);
11819 }
11820 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11821
11822 /**
11823 * synchronize_net - Synchronize with packet receive processing
11824 *
11825 * Wait for packets currently being received to be done.
11826 * Does not block later packets from starting.
11827 */
synchronize_net(void)11828 void synchronize_net(void)
11829 {
11830 might_sleep();
11831 if (from_cleanup_net() || rtnl_is_locked())
11832 synchronize_rcu_expedited();
11833 else
11834 synchronize_rcu();
11835 }
11836 EXPORT_SYMBOL(synchronize_net);
11837
netdev_rss_contexts_free(struct net_device * dev)11838 static void netdev_rss_contexts_free(struct net_device *dev)
11839 {
11840 struct ethtool_rxfh_context *ctx;
11841 unsigned long context;
11842
11843 mutex_lock(&dev->ethtool->rss_lock);
11844 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11845 struct ethtool_rxfh_param rxfh;
11846
11847 rxfh.indir = ethtool_rxfh_context_indir(ctx);
11848 rxfh.key = ethtool_rxfh_context_key(ctx);
11849 rxfh.hfunc = ctx->hfunc;
11850 rxfh.input_xfrm = ctx->input_xfrm;
11851 rxfh.rss_context = context;
11852 rxfh.rss_delete = true;
11853
11854 xa_erase(&dev->ethtool->rss_ctx, context);
11855 if (dev->ethtool_ops->create_rxfh_context)
11856 dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11857 context, NULL);
11858 else
11859 dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11860 kfree(ctx);
11861 }
11862 xa_destroy(&dev->ethtool->rss_ctx);
11863 mutex_unlock(&dev->ethtool->rss_lock);
11864 }
11865
11866 /**
11867 * unregister_netdevice_queue - remove device from the kernel
11868 * @dev: device
11869 * @head: list
11870 *
11871 * This function shuts down a device interface and removes it
11872 * from the kernel tables.
11873 * If head not NULL, device is queued to be unregistered later.
11874 *
11875 * Callers must hold the rtnl semaphore. You may want
11876 * unregister_netdev() instead of this.
11877 */
11878
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)11879 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11880 {
11881 ASSERT_RTNL();
11882
11883 if (head) {
11884 list_move_tail(&dev->unreg_list, head);
11885 } else {
11886 LIST_HEAD(single);
11887
11888 list_add(&dev->unreg_list, &single);
11889 unregister_netdevice_many(&single);
11890 }
11891 }
11892 EXPORT_SYMBOL(unregister_netdevice_queue);
11893
dev_memory_provider_uninstall(struct net_device * dev)11894 static void dev_memory_provider_uninstall(struct net_device *dev)
11895 {
11896 unsigned int i;
11897
11898 for (i = 0; i < dev->real_num_rx_queues; i++) {
11899 struct netdev_rx_queue *rxq = &dev->_rx[i];
11900 struct pp_memory_provider_params *p = &rxq->mp_params;
11901
11902 if (p->mp_ops && p->mp_ops->uninstall)
11903 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11904 }
11905 }
11906
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)11907 void unregister_netdevice_many_notify(struct list_head *head,
11908 u32 portid, const struct nlmsghdr *nlh)
11909 {
11910 struct net_device *dev, *tmp;
11911 LIST_HEAD(close_head);
11912 int cnt = 0;
11913
11914 BUG_ON(dev_boot_phase);
11915 ASSERT_RTNL();
11916
11917 if (list_empty(head))
11918 return;
11919
11920 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11921 /* Some devices call without registering
11922 * for initialization unwind. Remove those
11923 * devices and proceed with the remaining.
11924 */
11925 if (dev->reg_state == NETREG_UNINITIALIZED) {
11926 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11927 dev->name, dev);
11928
11929 WARN_ON(1);
11930 list_del(&dev->unreg_list);
11931 continue;
11932 }
11933 dev->dismantle = true;
11934 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11935 }
11936
11937 /* If device is running, close it first. */
11938 list_for_each_entry(dev, head, unreg_list) {
11939 list_add_tail(&dev->close_list, &close_head);
11940 netdev_lock_ops(dev);
11941 }
11942 dev_close_many(&close_head, true);
11943
11944 list_for_each_entry(dev, head, unreg_list) {
11945 netdev_unlock_ops(dev);
11946 /* And unlink it from device chain. */
11947 unlist_netdevice(dev);
11948 netdev_lock(dev);
11949 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11950 netdev_unlock(dev);
11951 }
11952 flush_all_backlogs();
11953
11954 synchronize_net();
11955
11956 list_for_each_entry(dev, head, unreg_list) {
11957 struct sk_buff *skb = NULL;
11958
11959 /* Shutdown queueing discipline. */
11960 dev_shutdown(dev);
11961 dev_tcx_uninstall(dev);
11962 netdev_lock_ops(dev);
11963 dev_xdp_uninstall(dev);
11964 dev_memory_provider_uninstall(dev);
11965 netdev_unlock_ops(dev);
11966 bpf_dev_bound_netdev_unregister(dev);
11967
11968 netdev_offload_xstats_disable_all(dev);
11969
11970 /* Notify protocols, that we are about to destroy
11971 * this device. They should clean all the things.
11972 */
11973 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11974
11975 if (!dev->rtnl_link_ops ||
11976 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11977 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11978 GFP_KERNEL, NULL, 0,
11979 portid, nlh);
11980
11981 /*
11982 * Flush the unicast and multicast chains
11983 */
11984 dev_uc_flush(dev);
11985 dev_mc_flush(dev);
11986
11987 netdev_name_node_alt_flush(dev);
11988 netdev_name_node_free(dev->name_node);
11989
11990 netdev_rss_contexts_free(dev);
11991
11992 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11993
11994 if (dev->netdev_ops->ndo_uninit)
11995 dev->netdev_ops->ndo_uninit(dev);
11996
11997 mutex_destroy(&dev->ethtool->rss_lock);
11998
11999 net_shaper_flush_netdev(dev);
12000
12001 if (skb)
12002 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12003
12004 /* Notifier chain MUST detach us all upper devices. */
12005 WARN_ON(netdev_has_any_upper_dev(dev));
12006 WARN_ON(netdev_has_any_lower_dev(dev));
12007
12008 /* Remove entries from kobject tree */
12009 netdev_unregister_kobject(dev);
12010 #ifdef CONFIG_XPS
12011 /* Remove XPS queueing entries */
12012 netif_reset_xps_queues_gt(dev, 0);
12013 #endif
12014 }
12015
12016 synchronize_net();
12017
12018 list_for_each_entry(dev, head, unreg_list) {
12019 netdev_put(dev, &dev->dev_registered_tracker);
12020 net_set_todo(dev);
12021 cnt++;
12022 }
12023 atomic_add(cnt, &dev_unreg_count);
12024
12025 list_del(head);
12026 }
12027
12028 /**
12029 * unregister_netdevice_many - unregister many devices
12030 * @head: list of devices
12031 *
12032 * Note: As most callers use a stack allocated list_head,
12033 * we force a list_del() to make sure stack won't be corrupted later.
12034 */
unregister_netdevice_many(struct list_head * head)12035 void unregister_netdevice_many(struct list_head *head)
12036 {
12037 unregister_netdevice_many_notify(head, 0, NULL);
12038 }
12039 EXPORT_SYMBOL(unregister_netdevice_many);
12040
12041 /**
12042 * unregister_netdev - remove device from the kernel
12043 * @dev: device
12044 *
12045 * This function shuts down a device interface and removes it
12046 * from the kernel tables.
12047 *
12048 * This is just a wrapper for unregister_netdevice that takes
12049 * the rtnl semaphore. In general you want to use this and not
12050 * unregister_netdevice.
12051 */
unregister_netdev(struct net_device * dev)12052 void unregister_netdev(struct net_device *dev)
12053 {
12054 rtnl_net_dev_lock(dev);
12055 unregister_netdevice(dev);
12056 rtnl_net_dev_unlock(dev);
12057 }
12058 EXPORT_SYMBOL(unregister_netdev);
12059
netif_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12060 int netif_change_net_namespace(struct net_device *dev, struct net *net,
12061 const char *pat, int new_ifindex,
12062 struct netlink_ext_ack *extack)
12063 {
12064 struct netdev_name_node *name_node;
12065 struct net *net_old = dev_net(dev);
12066 char new_name[IFNAMSIZ] = {};
12067 int err, new_nsid;
12068
12069 ASSERT_RTNL();
12070
12071 /* Don't allow namespace local devices to be moved. */
12072 err = -EINVAL;
12073 if (dev->netns_immutable) {
12074 NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12075 goto out;
12076 }
12077
12078 /* Ensure the device has been registered */
12079 if (dev->reg_state != NETREG_REGISTERED) {
12080 NL_SET_ERR_MSG(extack, "The interface isn't registered");
12081 goto out;
12082 }
12083
12084 /* Get out if there is nothing todo */
12085 err = 0;
12086 if (net_eq(net_old, net))
12087 goto out;
12088
12089 /* Pick the destination device name, and ensure
12090 * we can use it in the destination network namespace.
12091 */
12092 err = -EEXIST;
12093 if (netdev_name_in_use(net, dev->name)) {
12094 /* We get here if we can't use the current device name */
12095 if (!pat) {
12096 NL_SET_ERR_MSG(extack,
12097 "An interface with the same name exists in the target netns");
12098 goto out;
12099 }
12100 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12101 if (err < 0) {
12102 NL_SET_ERR_MSG_FMT(extack,
12103 "Unable to use '%s' for the new interface name in the target netns",
12104 pat);
12105 goto out;
12106 }
12107 }
12108 /* Check that none of the altnames conflicts. */
12109 err = -EEXIST;
12110 netdev_for_each_altname(dev, name_node) {
12111 if (netdev_name_in_use(net, name_node->name)) {
12112 NL_SET_ERR_MSG_FMT(extack,
12113 "An interface with the altname %s exists in the target netns",
12114 name_node->name);
12115 goto out;
12116 }
12117 }
12118
12119 /* Check that new_ifindex isn't used yet. */
12120 if (new_ifindex) {
12121 err = dev_index_reserve(net, new_ifindex);
12122 if (err < 0) {
12123 NL_SET_ERR_MSG_FMT(extack,
12124 "The ifindex %d is not available in the target netns",
12125 new_ifindex);
12126 goto out;
12127 }
12128 } else {
12129 /* If there is an ifindex conflict assign a new one */
12130 err = dev_index_reserve(net, dev->ifindex);
12131 if (err == -EBUSY)
12132 err = dev_index_reserve(net, 0);
12133 if (err < 0) {
12134 NL_SET_ERR_MSG(extack,
12135 "Unable to allocate a new ifindex in the target netns");
12136 goto out;
12137 }
12138 new_ifindex = err;
12139 }
12140
12141 /*
12142 * And now a mini version of register_netdevice unregister_netdevice.
12143 */
12144
12145 /* If device is running close it first. */
12146 netif_close(dev);
12147
12148 /* And unlink it from device chain */
12149 unlist_netdevice(dev);
12150
12151 synchronize_net();
12152
12153 /* Shutdown queueing discipline. */
12154 dev_shutdown(dev);
12155
12156 /* Notify protocols, that we are about to destroy
12157 * this device. They should clean all the things.
12158 *
12159 * Note that dev->reg_state stays at NETREG_REGISTERED.
12160 * This is wanted because this way 8021q and macvlan know
12161 * the device is just moving and can keep their slaves up.
12162 */
12163 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12164 rcu_barrier();
12165
12166 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12167
12168 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12169 new_ifindex);
12170
12171 /*
12172 * Flush the unicast and multicast chains
12173 */
12174 dev_uc_flush(dev);
12175 dev_mc_flush(dev);
12176
12177 /* Send a netdev-removed uevent to the old namespace */
12178 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12179 netdev_adjacent_del_links(dev);
12180
12181 /* Move per-net netdevice notifiers that are following the netdevice */
12182 move_netdevice_notifiers_dev_net(dev, net);
12183
12184 /* Actually switch the network namespace */
12185 dev_net_set(dev, net);
12186 dev->ifindex = new_ifindex;
12187
12188 if (new_name[0]) {
12189 /* Rename the netdev to prepared name */
12190 write_seqlock_bh(&netdev_rename_lock);
12191 strscpy(dev->name, new_name, IFNAMSIZ);
12192 write_sequnlock_bh(&netdev_rename_lock);
12193 }
12194
12195 /* Fixup kobjects */
12196 dev_set_uevent_suppress(&dev->dev, 1);
12197 err = device_rename(&dev->dev, dev->name);
12198 dev_set_uevent_suppress(&dev->dev, 0);
12199 WARN_ON(err);
12200
12201 /* Send a netdev-add uevent to the new namespace */
12202 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12203 netdev_adjacent_add_links(dev);
12204
12205 /* Adapt owner in case owning user namespace of target network
12206 * namespace is different from the original one.
12207 */
12208 err = netdev_change_owner(dev, net_old, net);
12209 WARN_ON(err);
12210
12211 /* Add the device back in the hashes */
12212 list_netdevice(dev);
12213
12214 /* Notify protocols, that a new device appeared. */
12215 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12216
12217 /*
12218 * Prevent userspace races by waiting until the network
12219 * device is fully setup before sending notifications.
12220 */
12221 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12222
12223 synchronize_net();
12224 err = 0;
12225 out:
12226 return err;
12227 }
12228
dev_cpu_dead(unsigned int oldcpu)12229 static int dev_cpu_dead(unsigned int oldcpu)
12230 {
12231 struct sk_buff **list_skb;
12232 struct sk_buff *skb;
12233 unsigned int cpu;
12234 struct softnet_data *sd, *oldsd, *remsd = NULL;
12235
12236 local_irq_disable();
12237 cpu = smp_processor_id();
12238 sd = &per_cpu(softnet_data, cpu);
12239 oldsd = &per_cpu(softnet_data, oldcpu);
12240
12241 /* Find end of our completion_queue. */
12242 list_skb = &sd->completion_queue;
12243 while (*list_skb)
12244 list_skb = &(*list_skb)->next;
12245 /* Append completion queue from offline CPU. */
12246 *list_skb = oldsd->completion_queue;
12247 oldsd->completion_queue = NULL;
12248
12249 /* Append output queue from offline CPU. */
12250 if (oldsd->output_queue) {
12251 *sd->output_queue_tailp = oldsd->output_queue;
12252 sd->output_queue_tailp = oldsd->output_queue_tailp;
12253 oldsd->output_queue = NULL;
12254 oldsd->output_queue_tailp = &oldsd->output_queue;
12255 }
12256 /* Append NAPI poll list from offline CPU, with one exception :
12257 * process_backlog() must be called by cpu owning percpu backlog.
12258 * We properly handle process_queue & input_pkt_queue later.
12259 */
12260 while (!list_empty(&oldsd->poll_list)) {
12261 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12262 struct napi_struct,
12263 poll_list);
12264
12265 list_del_init(&napi->poll_list);
12266 if (napi->poll == process_backlog)
12267 napi->state &= NAPIF_STATE_THREADED;
12268 else
12269 ____napi_schedule(sd, napi);
12270 }
12271
12272 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12273 local_irq_enable();
12274
12275 if (!use_backlog_threads()) {
12276 #ifdef CONFIG_RPS
12277 remsd = oldsd->rps_ipi_list;
12278 oldsd->rps_ipi_list = NULL;
12279 #endif
12280 /* send out pending IPI's on offline CPU */
12281 net_rps_send_ipi(remsd);
12282 }
12283
12284 /* Process offline CPU's input_pkt_queue */
12285 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12286 netif_rx(skb);
12287 rps_input_queue_head_incr(oldsd);
12288 }
12289 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12290 netif_rx(skb);
12291 rps_input_queue_head_incr(oldsd);
12292 }
12293
12294 return 0;
12295 }
12296
12297 /**
12298 * netdev_increment_features - increment feature set by one
12299 * @all: current feature set
12300 * @one: new feature set
12301 * @mask: mask feature set
12302 *
12303 * Computes a new feature set after adding a device with feature set
12304 * @one to the master device with current feature set @all. Will not
12305 * enable anything that is off in @mask. Returns the new feature set.
12306 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12307 netdev_features_t netdev_increment_features(netdev_features_t all,
12308 netdev_features_t one, netdev_features_t mask)
12309 {
12310 if (mask & NETIF_F_HW_CSUM)
12311 mask |= NETIF_F_CSUM_MASK;
12312 mask |= NETIF_F_VLAN_CHALLENGED;
12313
12314 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12315 all &= one | ~NETIF_F_ALL_FOR_ALL;
12316
12317 /* If one device supports hw checksumming, set for all. */
12318 if (all & NETIF_F_HW_CSUM)
12319 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12320
12321 return all;
12322 }
12323 EXPORT_SYMBOL(netdev_increment_features);
12324
netdev_create_hash(void)12325 static struct hlist_head * __net_init netdev_create_hash(void)
12326 {
12327 int i;
12328 struct hlist_head *hash;
12329
12330 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12331 if (hash != NULL)
12332 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12333 INIT_HLIST_HEAD(&hash[i]);
12334
12335 return hash;
12336 }
12337
12338 /* Initialize per network namespace state */
netdev_init(struct net * net)12339 static int __net_init netdev_init(struct net *net)
12340 {
12341 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12342 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12343
12344 INIT_LIST_HEAD(&net->dev_base_head);
12345
12346 net->dev_name_head = netdev_create_hash();
12347 if (net->dev_name_head == NULL)
12348 goto err_name;
12349
12350 net->dev_index_head = netdev_create_hash();
12351 if (net->dev_index_head == NULL)
12352 goto err_idx;
12353
12354 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12355
12356 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12357
12358 return 0;
12359
12360 err_idx:
12361 kfree(net->dev_name_head);
12362 err_name:
12363 return -ENOMEM;
12364 }
12365
12366 /**
12367 * netdev_drivername - network driver for the device
12368 * @dev: network device
12369 *
12370 * Determine network driver for device.
12371 */
netdev_drivername(const struct net_device * dev)12372 const char *netdev_drivername(const struct net_device *dev)
12373 {
12374 const struct device_driver *driver;
12375 const struct device *parent;
12376 const char *empty = "";
12377
12378 parent = dev->dev.parent;
12379 if (!parent)
12380 return empty;
12381
12382 driver = parent->driver;
12383 if (driver && driver->name)
12384 return driver->name;
12385 return empty;
12386 }
12387
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12388 static void __netdev_printk(const char *level, const struct net_device *dev,
12389 struct va_format *vaf)
12390 {
12391 if (dev && dev->dev.parent) {
12392 dev_printk_emit(level[1] - '0',
12393 dev->dev.parent,
12394 "%s %s %s%s: %pV",
12395 dev_driver_string(dev->dev.parent),
12396 dev_name(dev->dev.parent),
12397 netdev_name(dev), netdev_reg_state(dev),
12398 vaf);
12399 } else if (dev) {
12400 printk("%s%s%s: %pV",
12401 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12402 } else {
12403 printk("%s(NULL net_device): %pV", level, vaf);
12404 }
12405 }
12406
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12407 void netdev_printk(const char *level, const struct net_device *dev,
12408 const char *format, ...)
12409 {
12410 struct va_format vaf;
12411 va_list args;
12412
12413 va_start(args, format);
12414
12415 vaf.fmt = format;
12416 vaf.va = &args;
12417
12418 __netdev_printk(level, dev, &vaf);
12419
12420 va_end(args);
12421 }
12422 EXPORT_SYMBOL(netdev_printk);
12423
12424 #define define_netdev_printk_level(func, level) \
12425 void func(const struct net_device *dev, const char *fmt, ...) \
12426 { \
12427 struct va_format vaf; \
12428 va_list args; \
12429 \
12430 va_start(args, fmt); \
12431 \
12432 vaf.fmt = fmt; \
12433 vaf.va = &args; \
12434 \
12435 __netdev_printk(level, dev, &vaf); \
12436 \
12437 va_end(args); \
12438 } \
12439 EXPORT_SYMBOL(func);
12440
12441 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12442 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12443 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12444 define_netdev_printk_level(netdev_err, KERN_ERR);
12445 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12446 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12447 define_netdev_printk_level(netdev_info, KERN_INFO);
12448
netdev_exit(struct net * net)12449 static void __net_exit netdev_exit(struct net *net)
12450 {
12451 kfree(net->dev_name_head);
12452 kfree(net->dev_index_head);
12453 xa_destroy(&net->dev_by_index);
12454 if (net != &init_net)
12455 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12456 }
12457
12458 static struct pernet_operations __net_initdata netdev_net_ops = {
12459 .init = netdev_init,
12460 .exit = netdev_exit,
12461 };
12462
default_device_exit_net(struct net * net)12463 static void __net_exit default_device_exit_net(struct net *net)
12464 {
12465 struct netdev_name_node *name_node, *tmp;
12466 struct net_device *dev, *aux;
12467 /*
12468 * Push all migratable network devices back to the
12469 * initial network namespace
12470 */
12471 ASSERT_RTNL();
12472 for_each_netdev_safe(net, dev, aux) {
12473 int err;
12474 char fb_name[IFNAMSIZ];
12475
12476 /* Ignore unmoveable devices (i.e. loopback) */
12477 if (dev->netns_immutable)
12478 continue;
12479
12480 /* Leave virtual devices for the generic cleanup */
12481 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12482 continue;
12483
12484 /* Push remaining network devices to init_net */
12485 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12486 if (netdev_name_in_use(&init_net, fb_name))
12487 snprintf(fb_name, IFNAMSIZ, "dev%%d");
12488
12489 netdev_for_each_altname_safe(dev, name_node, tmp)
12490 if (netdev_name_in_use(&init_net, name_node->name))
12491 __netdev_name_node_alt_destroy(name_node);
12492
12493 err = dev_change_net_namespace(dev, &init_net, fb_name);
12494 if (err) {
12495 pr_emerg("%s: failed to move %s to init_net: %d\n",
12496 __func__, dev->name, err);
12497 BUG();
12498 }
12499 }
12500 }
12501
default_device_exit_batch(struct list_head * net_list)12502 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12503 {
12504 /* At exit all network devices most be removed from a network
12505 * namespace. Do this in the reverse order of registration.
12506 * Do this across as many network namespaces as possible to
12507 * improve batching efficiency.
12508 */
12509 struct net_device *dev;
12510 struct net *net;
12511 LIST_HEAD(dev_kill_list);
12512
12513 rtnl_lock();
12514 list_for_each_entry(net, net_list, exit_list) {
12515 default_device_exit_net(net);
12516 cond_resched();
12517 }
12518
12519 list_for_each_entry(net, net_list, exit_list) {
12520 for_each_netdev_reverse(net, dev) {
12521 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12522 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12523 else
12524 unregister_netdevice_queue(dev, &dev_kill_list);
12525 }
12526 }
12527 unregister_netdevice_many(&dev_kill_list);
12528 rtnl_unlock();
12529 }
12530
12531 static struct pernet_operations __net_initdata default_device_ops = {
12532 .exit_batch = default_device_exit_batch,
12533 };
12534
net_dev_struct_check(void)12535 static void __init net_dev_struct_check(void)
12536 {
12537 /* TX read-mostly hotpath */
12538 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12539 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12540 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12541 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12542 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12543 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12544 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12545 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12546 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12547 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12548 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12549 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12550 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12551 #ifdef CONFIG_XPS
12552 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12553 #endif
12554 #ifdef CONFIG_NETFILTER_EGRESS
12555 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12556 #endif
12557 #ifdef CONFIG_NET_XGRESS
12558 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12559 #endif
12560 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12561
12562 /* TXRX read-mostly hotpath */
12563 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12564 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12565 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12566 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12567 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12568 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12569 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12570
12571 /* RX read-mostly hotpath */
12572 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12573 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12574 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12575 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12576 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12577 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12578 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12579 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12580 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12581 #ifdef CONFIG_NETPOLL
12582 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12583 #endif
12584 #ifdef CONFIG_NET_XGRESS
12585 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12586 #endif
12587 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12588 }
12589
12590 /*
12591 * Initialize the DEV module. At boot time this walks the device list and
12592 * unhooks any devices that fail to initialise (normally hardware not
12593 * present) and leaves us with a valid list of present and active devices.
12594 *
12595 */
12596
12597 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12598 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12599
net_page_pool_create(int cpuid)12600 static int net_page_pool_create(int cpuid)
12601 {
12602 #if IS_ENABLED(CONFIG_PAGE_POOL)
12603 struct page_pool_params page_pool_params = {
12604 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12605 .flags = PP_FLAG_SYSTEM_POOL,
12606 .nid = cpu_to_mem(cpuid),
12607 };
12608 struct page_pool *pp_ptr;
12609 int err;
12610
12611 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12612 if (IS_ERR(pp_ptr))
12613 return -ENOMEM;
12614
12615 err = xdp_reg_page_pool(pp_ptr);
12616 if (err) {
12617 page_pool_destroy(pp_ptr);
12618 return err;
12619 }
12620
12621 per_cpu(system_page_pool, cpuid) = pp_ptr;
12622 #endif
12623 return 0;
12624 }
12625
backlog_napi_should_run(unsigned int cpu)12626 static int backlog_napi_should_run(unsigned int cpu)
12627 {
12628 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12629 struct napi_struct *napi = &sd->backlog;
12630
12631 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12632 }
12633
run_backlog_napi(unsigned int cpu)12634 static void run_backlog_napi(unsigned int cpu)
12635 {
12636 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12637
12638 napi_threaded_poll_loop(&sd->backlog);
12639 }
12640
backlog_napi_setup(unsigned int cpu)12641 static void backlog_napi_setup(unsigned int cpu)
12642 {
12643 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12644 struct napi_struct *napi = &sd->backlog;
12645
12646 napi->thread = this_cpu_read(backlog_napi);
12647 set_bit(NAPI_STATE_THREADED, &napi->state);
12648 }
12649
12650 static struct smp_hotplug_thread backlog_threads = {
12651 .store = &backlog_napi,
12652 .thread_should_run = backlog_napi_should_run,
12653 .thread_fn = run_backlog_napi,
12654 .thread_comm = "backlog_napi/%u",
12655 .setup = backlog_napi_setup,
12656 };
12657
12658 /*
12659 * This is called single threaded during boot, so no need
12660 * to take the rtnl semaphore.
12661 */
net_dev_init(void)12662 static int __init net_dev_init(void)
12663 {
12664 int i, rc = -ENOMEM;
12665
12666 BUG_ON(!dev_boot_phase);
12667
12668 net_dev_struct_check();
12669
12670 if (dev_proc_init())
12671 goto out;
12672
12673 if (netdev_kobject_init())
12674 goto out;
12675
12676 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12677 INIT_LIST_HEAD(&ptype_base[i]);
12678
12679 if (register_pernet_subsys(&netdev_net_ops))
12680 goto out;
12681
12682 /*
12683 * Initialise the packet receive queues.
12684 */
12685
12686 flush_backlogs_fallback = flush_backlogs_alloc();
12687 if (!flush_backlogs_fallback)
12688 goto out;
12689
12690 for_each_possible_cpu(i) {
12691 struct softnet_data *sd = &per_cpu(softnet_data, i);
12692
12693 skb_queue_head_init(&sd->input_pkt_queue);
12694 skb_queue_head_init(&sd->process_queue);
12695 #ifdef CONFIG_XFRM_OFFLOAD
12696 skb_queue_head_init(&sd->xfrm_backlog);
12697 #endif
12698 INIT_LIST_HEAD(&sd->poll_list);
12699 sd->output_queue_tailp = &sd->output_queue;
12700 #ifdef CONFIG_RPS
12701 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12702 sd->cpu = i;
12703 #endif
12704 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12705 spin_lock_init(&sd->defer_lock);
12706
12707 gro_init(&sd->backlog.gro);
12708 sd->backlog.poll = process_backlog;
12709 sd->backlog.weight = weight_p;
12710 INIT_LIST_HEAD(&sd->backlog.poll_list);
12711
12712 if (net_page_pool_create(i))
12713 goto out;
12714 }
12715 if (use_backlog_threads())
12716 smpboot_register_percpu_thread(&backlog_threads);
12717
12718 dev_boot_phase = 0;
12719
12720 /* The loopback device is special if any other network devices
12721 * is present in a network namespace the loopback device must
12722 * be present. Since we now dynamically allocate and free the
12723 * loopback device ensure this invariant is maintained by
12724 * keeping the loopback device as the first device on the
12725 * list of network devices. Ensuring the loopback devices
12726 * is the first device that appears and the last network device
12727 * that disappears.
12728 */
12729 if (register_pernet_device(&loopback_net_ops))
12730 goto out;
12731
12732 if (register_pernet_device(&default_device_ops))
12733 goto out;
12734
12735 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12736 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12737
12738 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12739 NULL, dev_cpu_dead);
12740 WARN_ON(rc < 0);
12741 rc = 0;
12742
12743 /* avoid static key IPIs to isolated CPUs */
12744 if (housekeeping_enabled(HK_TYPE_MISC))
12745 net_enable_timestamp();
12746 out:
12747 if (rc < 0) {
12748 for_each_possible_cpu(i) {
12749 struct page_pool *pp_ptr;
12750
12751 pp_ptr = per_cpu(system_page_pool, i);
12752 if (!pp_ptr)
12753 continue;
12754
12755 xdp_unreg_page_pool(pp_ptr);
12756 page_pool_destroy(pp_ptr);
12757 per_cpu(system_page_pool, i) = NULL;
12758 }
12759 }
12760
12761 return rc;
12762 }
12763
12764 subsys_initcall(net_dev_init);
12765